

User’s Guide

PAML:
Phylogenetic Analysis
by Maximum Likelihood
Version 3.15 (November 2005)

Ziheng Yang

 P A M L M A N U A L 1

© Copyright 1993 – 2005 by Ziheng Yang.

The software package is provided "as is" without warranty of any kind. In no event shall the author or his
employer be held responsible for any damage resulting from the use of this software, including but not
limited to the frustration that you may experience in using the package. The program package, including
source codes, example data sets, executables, and this documentation, is distributed free of charge for
academic use only. Permission is granted to copy and use programs in the package provided no fee is
charged for it and provided that this copyright notice is not removed.

Suggested citation:

Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum
likelihood Computer Applications in BioSciences 13:555-556
(http://abacus.gene.ucl.ac.uk/software/paml.html).

The author can be reached at

Ziheng Yang

Department of Biology
University College London
Gower Street
London WC1E 6BT
England

Fax: +44 (20) 7679 7096

http://abacus.gene.ucl.ac.uk/

2 P A M L M A N U A L

Table of Contents

Table of Contents ..2
1 Overview ..1

PAML Documentation...1
What PAML Programs Can Do ..1
What PAML Programs Cannot Do ...2
Organisation of This Manual ..3

2 Installation and Running PAML Programs ...4
Windows ..4
UNIX ...5
Mac OS X ..6
PowerMacs (PPC or G3 prior to OS X)..6
Files in the Package ..6

Example Data Sets...7
Which Files Are Needed?..9

3 Input File Formats ..10
Sequence Data File Format ..10

Sequential and Interleaved Formats...10
Site Pattern Counts ..13

Tree File Format and Representations of Tree Topology15
baseml Control File..17
basemlg Control File ...23
codeml (codonml and aaml) Control File..23

Codon Sequences (seqtype = 1) ..24
Amino Acid Sequences (seqtype = 2) ...28

evolver ..29
yn00 ...31
mcmctree..32

4 Models and Analyses...32
General Theory ...32
Nucleotide Substitution Models...34

Transition/transversion Rate Ratio ..36
Codon Substitution Models ...37

Basic Model ...37
Branch Models...37
Site Models ..38
Branch-site models ..42
Clade Models ...43

Amino Acid Substitution Models ...43
Variable Rates Among Sites ..44
Models for Combined Analyses of Partitioned Data...46

For Nucleotides (baseml)...46
For Codons (codeml with seqtype = 1)..47
For Amino Acids (codeml with seqtype = 2) ..47

Global and Local Clocks, and Sequences With Dates ..47
Reconstruction of Ancestral Sequences...48

 P A M L M A N U A L 3

Analysing Large Data Sets and Iteration Algorithms ...49
Tree Search Algorithms...49
Bootstrap Data Sets...50
Simulation ...51

5 Technical Notes ...52
The rub File Recording the Progress of Iteration ...52
Specifying Initial Values..52
Fine-tuning the Iteration Algorithm..53
Adjustable Variables in the Source Codes ..53
More Codon Models..54

6 Appendixes ..55
Appendix A. Using PAML with Other Phylogenetics Software..............................55

PHYLIP ...55
PAUP, MacClade, and MrBayes ...55
Clustal ..56
MEGA ...56
MOLPHY ..56
TreeView ...56
Other Programs..57

Appendix B. Overcoming Windows Annoyances..57
Appendix C. Changes Since Version 3.13 ..57

7 References..60
Index...65

 P A M L M A N U A L 1

1 Overview
PAML (for Phylogenetic Analysis by Maximum Likelihood) is a package of programs for
phylogenetic analyses of DNA and protein sequences using maximum likelihood.

PAML Documentation

Besides this manual, please note the following resources:

• PAML web site: http://abacus.gene.ucl.ac.uk/software/PAML.html has
information about downloading and compiling the programs. There are also
links from that site to the PAML FAQ page and the PAML discussion group.

• PAML FAQ page: http://abacus.gene.ucl.ac.uk/software/pamlFAQs.pdf

• PAML discussion group at http://www.rannala.org/phpBB2/. Bug reports and
questions should be directed to the discussion group.

What PAML Programs Can Do

The PAML package currently includes the following programs: baseml, basemlg, codeml,
evolver, pamp, yn00, mcmctree, and chi2, with baseml, codeml, and evolver to be the
most important ones. Examples of analyses that can be performed using the package
include

• Comparison and tests of phylogenetic trees (baseml and codeml);

• Estimation of parameters in sophisticated substitution models, including models of
variable rates among sites and models for combined analysis of multiple genes or site
partitions (baseml and codeml);

• Likelihood ratio tests of hypotheses through comparison of implemented models
(baseml, codeml, chi2);

• Estimation of divergence times under global and local clock models (baseml and
codeml);

• Likelihood (Empirical Bayes) reconstruction of ancestral sequences using nucleotide,
amino acid and codon models (baseml and codeml);

• Generation of datasets of nucleotide, codon, and amino acid sequence by Monte
Carlo simulation (evolver);

• Estimation of synonymous and nonsynonymous substitution rates and detection of
positive selection in protein-coding DNA sequences (yn00 and codeml).

The strength of PAML is its collection of sophisticated substitution models. Tree search
algorithms implemented in baseml and codeml are rather primitive, so except for very
small data sets with say, <10 species, you are better off to use another package, such as
phylip, paup, or mrBayes, to infer the tree topology. You can get a collection of trees
from other programs and evaluate them using baseml or codeml as user trees.

http://abacus.gene.ucl.ac.uk/software/paml.html
http://www.rannala.org/phpBB2/

2 P A M L M A N U A L

baseml and codeml. The program baseml is for maximum likelihood analysis of
nucleotide sequences. The program codeml is formed by merging two old
programs: codonml, which implements the codon substitution model of
Goldman and Yang (1994) for protein-coding DNA sequences, and aaml,
which implements models for amino acid sequences. These two are now
distinguished by the variable seqtype in the control file codeml.ctl, with 1 for
codon sequences and 2 for amino acid sequences. In this document I use
codonml and aaml to mean codeml with seqtype = 1 and 2, respectively. The
programs baseml, codonml, and aaml use similar algorithms to fit models by
maximum likelihood, the main difference being that the unit of evolution in the
Markov model, referred to as a "site" in the sequence, is a nucleotide, a codon,
or an amino acid for the three programs, respectively. Markov process models
are used to describe substitutions between nucleotides, codons or amino acids,
with substitution rates assumed to be either constant or variable among sites.

evolver. This program can be used to simulate sequences under nucleotide, codon and
amino acid substitution models. It also has some other options such as
generating random trees, and calculating the partition distances (Robinson and
Foulds 1981) between trees.

basemlg. This program implements the (continuous) gamma model of Yang (1993). It
is very slow and unfeasible for data of more than 6 or 7 species. Instead the
discrete-gamma model in baseml should be used.

pamp. This implements the parsimony-based analysis of Yang and Kumar (1996).

yn00. This implements the method of Yang and Nielsen (2000) for estimating
synonymous and nonsynonymous substitution rates (dS and dN) in pairwise
comparisons of protein-coding DNA sequences.

chi2. This is for conducting likelihood ratio tests. It calculates the chi square critical
values, which you can compare with your test statistic calculated from the real
data to determine whether the test is significant at the 5% or 1% levels. Run the
program by typing the program name “chi2”. The program can also calculate
the P value when you input the test statistic and the d.f. Run the program by
typing “chi2 p”.

What PAML Programs Cannot Do

There are many things that you might well expect a phylogenetics package should do but
PAML cannot. Here is a partial list, provided in the hope that it might help you avoid
wasting time.

• Sequence alignment. You should use some other programs such as Clustal or
TreeAlign to align the sequences automatically or do a manual alignment,
perhaps with assistance from programs such as BioEdit and GeneDoc. Manual
adjustment does not seem to have reached the mature stage to be entirely
trustable so you should always do manual adjustment if you can. If you are
constructing thousands of alignments in genome-wide analysis, you should
implement some quality control, and, say, calculate some measure of sequence
divergence as an indication of the unreliability of the alignment. For coding
sequences, you might align the protein sequences and construct the DNA

 P A M L M A N U A L 3

alignment based on the protein alignment. Note that alignment gaps are treated
as missing data in baseml and codeml (if cleandata = 1). If cleandata =
1, all sites with ambiguity characters and alignment gaps are removed.

• Gene prediction. The codon-based analysis implemented in codonml (codeml
for codons with seqtype = 1) assumes that the sequences are pre-aligned exons,
the sequence length is an exact multiple of 3, and the first nucleotide in the
sequence is codon position 1. Introns, spacers and other noncoding regions
must be removed and the coding sequences must be aligned before running the
program. The program cannot process sequences downloaded directly from
GenBank, even though the CDS information is there. It cannot predict coding
regions either.

• Tree search in large data sets. As mentioned earlier, you should use another
program to get a tree or some candidate trees and use them as user trees to fit
models that might not be available in other packages.

Organisation of This Manual

Chapter 2 “Installation and Getting Started” explains how to install the programs and
how to run the example data sets included in the package to get started. Chapter 3
“Input File Formats” explains the formats of the sequence data file, the tree file. It also
goes through the variables in the control files such as baseml.ctl and codelm.ctl, which
you use to specify the model of analysis. Chapter 4 “Models and Analyses” provides
background information about the models and analyses implemented. It also mentions
the control variables used to implement the models. Chapters 3 and 4 thus constitute
the bulk of this manual.

4 P A M L M A N U A L

2 Installation and Running PAML
Programs
PAML programs do not have a graphics or menu-driven interface, so you have to know
how to run programs from the command line. There is not much of an installation
either. You download the archive from the PAML web site, typically named
PAML*.*.tar.gz, and unpack the files onto your hard disk. If you use Windows, the
executables are included together with the source code. If you use UNIX or MAC OS
X, you will have to compile the programs yourselves.

Windows

The executables for Windows (95/98/NT/2000/XP) are included in the package.

1. Go to the PAML web site http://abacus.gene.ucl.ac.uk/software/paml.html
and download the latest archive and save it on your hard disk. Unpack, say,
using WinZip, the archive into a folder, say D:\software\paml\ (that is, the
\software\paml folder on the D: drive). You should remember the name of the
folder. I will use D:/software/paml/ as an example here, which you should
substitute with the folder name you used.

2. Start a command box. On Windows, it is called "MS-DOS prompt" or
"Command Prompt" and usually can be found "Start – Programs –
Accessories”. You can right click on the title bar to change the window
properties (such as font, colour, size etc.).

3. Change directory to the paml folder. For example you type one of the
following.

d:
cd \software\paml
dir

4. Note that Windows commands and file names are case-insensitive. The folder src\
contains the source files. The examples\ contains various example files, and bin contains
Windows executables. You can use Windows Explorer to look at the files. To run the
program baseml using the default control file baseml.ctl in the current folder, you can a
command somewhat like the following.

bin\baseml

D:\software\paml3.14\bin\baseml

This causes baseml to read the default control file baseml.ctl in the current
folder and do the analysis according to its specifications. Now you can print out
a copy of baseml.ctl, and open a text editor to view the relevant sequence and
tree files.
Similarly you can run codeml and look at the control file codeml.ctl.

Next you can prepare your own sequence data files and tree files. Control files and other
input files are all plain text files. A common problem occurs due to differences in the
way UNIX and Windows deal with carriage return or line breaks. If you use MS Word
to prepare the input files, you should save them as “Text with line breaks” or “Text

http://abacus.gene.ucl.ac.uk/software/paml.html

 P A M L M A N U A L 5

without line breaks”. Sometimes only one of those two works. Do not save the file as a
Word document. I have collected some notes in the section “Overcoming Windows
Annoyances” in the Appendix (maybe this is in the PAML FAQ page).

UNIX

UNIX executables are not provided in the package, so you will have to compile them
using the source files included in the package, in the src/folder. Note that UNIX
commands and file or folder names are case-sensitive. The following assumes that you
are at the UNIX prompt.

1. Go to the PAML web site http://abacus.gene.ucl.ac.uk/software/paml.html
and download the latest archive and save on your hard disk. Unpack it using
gzip, with a command like the following (replace the version numbers and use
the correct name for the archive file)
 gzip –d paml3.14.tar.gz
Probably you can use some other programs to unpack the files as well, but I am
not sure.

2. You can use ls to look at the files in the folder. The Windows executables in the bin folder are
useless, so we delete them (using rm). Then cd to the src/ folder to compile using make.

ls -lF bin (this should list the .exe files in the bin folder)
rm –r bin/*.exe
cd src
make
ls -lF
rm *.o
mv baseml basemlg codeml pamp evolver yn00 chi2 ../bin
cd ..
bin/codeml

3. If successful, the make command should compile the programs and generated
new files named baseml, basemlg, codeml, pamp, evolver, yn00, and chi2, which
you can see with the ls command. Then remove (rm) the intermediate object
files *.o, and move (mv) the compiled executables into bin/ folder in the PAML
main folder (that is, ../bin from paml/src/). Then cd to the PAML main folder
and run codeml, using the default control file codeml.ctl. You can then print
out a copy of codeml.ctl and look at it (and the main result file mlc).

If the compilation (the make command) is unsuccessful, you might have to open and
edit the file Makefile before issuing the make command. For example, you can change
cc to gcc and -fast to -O3 or -O4. If that none of these works, look at the file readme.txt
in the src/ folder for compiling instructions. You can copy the compiling commands
onto the command line. For example

cc –o baseml baseml.c tools.c –lm
cc –o codeml codeml.c tools.c -lm

would compile baseml and codeml using the C compiler cc. However, in this case code
optimization is not turned on. If it works, you should use compiler switches to optimize
the code, say,

cc –o codeml –O2 codeml.c tools.c -lm

http://abacus.gene.ucl.ac.uk/software/paml.html

6 P A M L M A N U A L

Finally, if your current folder is not on your search path, you will have to add ./ in front
of the executable file name even if the executable is in your current working folder; that
is, use ./codeml instead of codeml to run codeml.

Mac OS X

Since Mac OSX is UNIX, you should follow the instructions for UNIX above. You
should open a command terminal (Applications-Utilities-Terminal) and then compile
and run the programs from the terminal. You cd to the paml/src/ folder and look at the
readme.txt or Makefile files. See above. You will need the Apple Developer’s Toolkit to
compile the programs, which is not included in a standard installation of OS X. Without
this toolkit, you will get a "Command not found" error with either cc or make. Go to
the Apple web site http://developer.apple.com/tools/ to download and install the
Toolkit first before you can compile the programs. Perhaps I should buy a MAC just to
compile PAML programs. There are some more notes about running programs on
MAC OS X or UNIX at the FAQ page.

PowerMacs (PPC or G3 prior to OS X)

I have stopped distributing executables for MACs running OS 9 or earlier. MAC
executables for two old versions, 3.0a and 3.0c, are still in the OldVersions/ folder at the
ftp site.

A few commonly used DOS and UNIX (including OS X) commands are listed in the
PAML FAQ page.

Files in the Package

The list is not up to date now, and you probably do not need to read this section. The
following is a list of files included in the package, which I prepared some time ago.

Source codes (in the src/ folder):

baseml.c: various models for nucleotide sequences
codeml.c: models for codon (seqtype = 1) and amino acid (seqtype = 2)
sequences
pamp.c: parsimony analyses of nucleotide or amino acid sequences
mcmctree.c: Bayes Markov chain Monte Carlo method on trees
evolver.c: simulation of sequence data and comparison of trees
basemlg.c: Nucleotide-based model with (continuous) gamma rates among
sites
yn00.c: Estimation of dN and dS by the method of Yang and Nielsen (2000)
treesub.c: a few functions
treespace.c: a few more functions
tools.c: my toolkit
tools.h: header file

Compiling commands
Makefile: make file

 P A M L M A N U A L 7

Makefile.UNIX: make file for UNIX/Linux/MAC OSX
README.txt: compiling commands for GNU gcc, and unix CC compilers

Control files:
baseml.ctl: control file for running baseml and basemlg;
codeml.ctl: control file for codeml (i.e., codonml and aaml)
pamp.ctl: control file for pamp
yn00.ctl: control file for yn00
mcmctree.ctl: control file for mcmctree

Data files for codeml (see the files for details):
grantham.dat: amino acid distance matrix (Grantham 1974)
miyata.dat: amino acid distance matrix (Miyata et al. 1980)
dayhoff.dat: Empirical amino acid substitution matrix of Dayhoff et al.
(1978)
jones.dat: Empirical amino acid substitution matrix of Jones et al. (1992)
wag.dat: Empirical amino acid substitution matrix of Whelan and Goldman (in
press)
mtREV24.dat: Empirical amino acid substitution matrix of Adachi and
Hasegawa (1996b)
mtmam.dat: Empirical amino acid substitution matrix for mitochondrial
proteins of mammals from Yang et al. (1998).

Data files for evolver (see those small files for details):
MCbase.dat: data file for simulating nucleotide sequences
MCcodon.dat: data file for simulating codon sequences
MCaa.dat: data file for simulating amino acid sequences

Example tree files:
4s.trees: tree structure file for 4-sequence data
5s.trees: tree structure file for 5-sequence data

Documentations:
readme.txt: PAML readme file
PAML.html: PAML web page, serving also as part of the manual (html file)
PAMLDOC.pdf: this document

Example Data Sets

The examples/ folder contains many example data sets. They were used in the
original papers to test the new methods, and I included them so that you could duplicate
our results in the papers. Sequence alignments, control files, and detailed readme files
are included. They are intended to help you get familiar with the input data formats and
with interpretation of the results, and also to help you discover bugs in the program.

examples/HIVNSsites/: This folder contains example data files for the HIV-1
env V3 region analyzed in Yang et al. (2000b). The data set is for demonstrating
the NSsites models described in that paper, that is, models of variable ω ratios
among amino acid sites. Those models are called the “random-sites” models by
Yang & Swanson (2002) since a priori we do not know which sites might be

8 P A M L M A N U A L

highly conserved and which under positive selection. They are also known as
“fishing-expedition” models. The included data set is the 10th data set analyzed
by Yang et al. (2000b) and the results are in table 12 of that paper. Look at the
readme file in that folder.

examples/lysin/: This folder contains the sperm lysin genes from 25 abalone
species analyzed by Yang, Swanson & Vacquier (2000a) and Yang and Swanson
(2002). The data set is for demonstrating both the “random-sites” models (as in
Yang, Swanson & Vacquier (2000a)) and the “fixed-sites” models (as in (Yang
and Swanson 2002)). In the latter paper, we used structural information to
partition amino acid sites in the lysin into the “buried” and “exposed” classes
and assigned and estimated different ω ratios for the two partitions. The
hypothesis is that the sites exposed on the surface are likely to be under positive
selection. Look at the readme file in that folder.

examples/lysozyme/: This folder contains the primate lysozyme c genes of
Messier and Stewart (1997), re-analyzed by Yang (1998). This is for
demonstrating codon models that assign different ω ratios for different
branches in the tree, useful for testing positive selection along lineages. Those
models are sometimes called branch models or branch-specific models. Both
the “large” and the “small” data sets in Yang (1998) are included. Those models
require the user to label branches in the tree, and the readme file and included
tree file explain the format in great detail. See also the section “Tree file and
representations of tree topology” later about specifying branch/node labels.

The lysozyme data set was also used by Yang and Nielsen (2002) to implement
the so-callled “branch-site” models, which allow the ω ratio to vary both among
lineages and among sites. Look at the readme file to learn how to run those
models.

examples/MouseLemurs/: This folder includes the mtDNA alignment that Yang
and Yoder (2003) analyzed to estimate divergence dates in mouse lemurs. The
data set is for demonstrating maximum likelihood estimation of divergence
dates under models of global and local clocks. The most sophisticated model
described in that paper uses multiple calibration nodes simultaneously, analyzes
multiple genes (or site partitions) while accounting for their differences, and also
account for variable rates among branch groups. The readme file explains the
input data format as well as model specification in detail. The readme2 file
explains the ad hoc rate smoothing procedure of Yang (2004).

examples/mtCDNA/: This folder includes the alignment of the 12 protein-coding
genes on the same strand of the mitochondrial genome from seven ape species
analyzed by Yang, Nielsen, & Hasegawa (1998) under a number of codon and
amino acid substitution models. The data set is the “small” data set referred to
in that paper, and was used to fit both the “mechanistic” and empirical models
of amino acid substitution as well as the “mechanistic” models of codon
substitution. The model can be used, for example, to test whether the rates of
conserved and radical amino acid substitutions are equal. See the readme file for
details.

examples/TipDate/: This folder includes the example data file used by Rambaut
(2000) in his description of his TipDate models, for viral sequences with known
dates of sequence determination. The readme file explains how to use baseml to

 P A M L M A N U A L 9

fit the TipDate model, a global clock but with sequences determined at different
dates. Local clock models can be applied as well. See the
examples/MouseLemurs/ folder for how to do this. Note that I use the symbol
@ in the sequence name to prefix the date of sequence determination. The file
here is readable by Rambaut’s TipDate program, but the file in his package
requires some editing (by inserting the @ symbol) before it can be read by
baseml.

Some other data files are included in the package as well. The details follow.

brown.nuc and brown.trees: the 895-bp mtDNA data of Brown et al. (1982), used
in Yang et al. (1994) and Yang (1994b) to test models of variable rates among
sites.

mtprim9.nuc and 9s.trees: mitochondrial segment consisting of 888 aligned sites
from 9 primate species (Hayasaka et al. 1988), used by Yang (1994a) to test the
discrete-gamma model and Yang (1995) to test the auto-discrete-gamma models.

abglobin.nuc and abglobin.trees: the concatenated α- and β-globin genes,
used by Goldman and Yang (1994) in their description of the codon model.
abglobin.aa is the alignment of the translated amino acid sequences.

stewart.aa and stewart.trees: lysozyme protein sequences of six mammals
(Stewart et al. 1987), used by Yang et al. (1995a) to test methods for
reconstructing ancestral amino acid sequences.

Which Files Are Needed?

You may copy the executables to a directory containing your data files. Please note that
the program codeml may need some of the data files in the package such as
grantham.dat, dayhoff.dat, jones.dat, wag.dat, mtREV24.dat, or
mtmam.dat. You should probably copy these files together. Other programs do not
need such data files apart from the sequence and tree files you specify in the control file.
There should be better ways of managing the multiple files, but I am too lazy and stupid
to figure that out.

Note also that the programs produce result files, with names such as rub, lnf, rst, or
rates. You should not use these names for your own files as otherwise they will be
overwritten.

3 Input File Formats

Sequence Data File Format

Have a look at some of the example data files in the package (.nuc, .aa, and .nex). As
long as you get your data file into one of the formats, PAML programs should be able to
read it. The “native” format is the PHYLIP format used in Joe Felsenstein’s PHYLIP
package (Felsenstein 2005) (but see below). PAML has limited support for the NEXUS
file format used by PAUP and MacClade. Only the sequence data or trees are read, and
command blocks are ignored. PAML does not deal with comment blocks in the
sequence data block, so please avoid them.

Sequential and Interleaved Formats

Below is an example of the PHYLIP format (Felsenstein 2005). The first line contains
the number of species and the sequence length (possibly followed by option characters).
For codon sequences (codeml with seqtype = 1), the sequence length in the sequence file refers to
the number of nucleotides rather than the number of codons. The only options allowed in the
sequence file are I, S, P, C, and G. The sequences may be in either interleaved format
(option I, example data file abglobin.nuc), or sequential format (option S, example
data file brown.nuc). The default option is S, so you don’t have to specify it. Option G
is used for combined analysis of multiple gene data and is explained below. The
following is an example data set in the sequential format. It has 4 sequences each of 60
nucleotides (or 20 codons).

 4 60
sequence 1
AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2
AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3
AAGCTTCACCGGCGCAGTTGTTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4
AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

Species/sequence names. Do not use the following special symbols in a
species/sequence name: “, : # () $ =” in a species name as they are used for special
purposes and may confuse the programs. The symbol @ can be used as part and end of
the sequence name to specify the date of determination of that sequence, for example,
virus1@1984. The @ symbol is considered part of the name and the sequence was
determined in 1984. The maximum number of characters in a species name
(LSPNAME) is specified at the beginning of the main programs baseml.c and
codeml.c. In PHYLIP, exactly 10 characters are used for a species name, which I
often found to be too restrictive. So I use a default value of 30. To make this
discrepancy less a problem, PAML considers two consecutive spaces as the end of a
species name, so that the species name does not have to have exactly 30 (or 10)
characters. To make this rule work, you should not have two consecutive spaces within a
species name. For example the above data set can have the following format too.

 P A M L M A N U A L 1 1

 4 60

sequence 1 AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2 AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3 AAGCTTCACC GGCGCAGTTG TTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4 AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

If you want the file to be readable by both PHYLIP and PAML, you should limit the
number of characters in the name to 10 and separate the name and the sequence by at
least two spaces.

In a sequence, T, C, A, G, U, t, c, a, g, u are recognized as nucleotides (for baseml,
basemlg and codonml), while the standard one-letter codes (A, R, N, D, C, Q, E, G,
H, I, L, K, M, F, P, S, T, W, Y, V or their lowercase equivalents) are recognized as amino
acids. Ambiguity characters (undetermined nucleotides or amino acids) are allowed as
well. Three special characters ".", "-", and "?" are interpreted like this: a dot means the
same character as in the first sequence, a dash means an alignment gap, and a question
mark means an undetermined nucleotide or amino acid. Non-alphabetic symbols such
as ><!’"£$%&^[](){}0123456789 inside a sequence are simply ignored and can be freely
used as signposts. Lines do not have to be equally long and you can put the whole
sequence on one line.

The way that ambiguity characters and alignment gaps are treated in baseml and
codeml depends on the variable cleandata in the control file. In the maximum
likelihood analysis, sites at which at least one sequence involves an ambiguity character
are removed from all sequences before analysis if cleandata = 1, while if cleandata =
0, both ambiguity characters and alignment gaps are treated as ambiguity characters. In
the pairwise distance calculation (the lower-diagonal distance matrix in the output),
cleandata = 1 means “complete deletion”, with all sites involving ambiguity characters
and alignment gaps removed from all sequences, while cleandata = 0 means “pairwise
deletion”, with only sites which have missing characters in the pair removed.

There are no models for insertions and deletions in the PAML programs. So an
alignment gap is treated as an ambiguity (that is, a question mark ?). Note also that for
codon sequences, removal of any nucleotide means removal of the whole codon.

Notes may be placed at the end of the sequence file and will be ignored by the programs.

Option G: This option is for combined analyses of heterogeneous data sets such as data
of multiple genes or data of the three codon positions. The sequences must be
concatenated and the option is used to specify which gene or codon position each site is
from.

There are three formats with this option. The first is illustrated by an excerpt of a
sequence file listed below. The example data of Brown et al. (1982) are an 895-bp
segment from the mitochondrial genome, which codes for parts of two proteins (ND4
and ND5) at the two ends and three tRNAs in the middle. Sites in the sequence fall
naturally into 4 classes: the three codon positions and the tRNA coding region. The first
line of the file contains the option character G. The second line begins with a G at the
first column, followed by the number of site classes. The following lines contain the site
marks, one for each site in the sequence (or each codon in the case of codonml). The

1 2 P A M L M A N U A L

site mark specifies which class each site is from. If there are g classes, the marks should
be 1, 2, ..., g, and if g > 9, the marks need to be separated by spaces. The total number of
marks must be equal to the total number of sites in each sequence.

 5 895 G
G 4
3
123
123
123
123
123
123
123
1231231231231231231231231231231231231
44
44
44
444444444444444444
123
123
123
12312312312312312312312312312312312312312312312312312312312
Human
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATT
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATC........
Chimpanzee
.........

The second format is useful if the data are concatenated sequences of multiple genes,
shown below for an example data set. This sequence has 1000 nucleotides from 4 genes,
obtained from concatenating four genes with 100, 200, 300, and 400 nucleotides from
genes 1, 2, 3, and 4, respectively. The "lengths" for the genes must be on the line that
starts with G, i.e., on the second line of the sequence file. (This requirement allows the
program to determine which of the two formats is being used.) The sum of the lengths
for the genes should be equal to the number of nucleotides, amino acids, or codons in
the combined sequence for baseml (or basemlg), aaml, and codonml, respectively.

5 1000 G
G 4 100 200 300 400
Sequence 1
TCGATAGATAGGTTTTAGGGGGGGGGGTAAAAAAAAA.......

The third format applies to protein-coding DNA sequences only (for baseml). You use
option characters GC on the first line instead of G alone. The program will then treat
the three codon positions differently in the nucleotide-based analysis. It is assumed that
the sequence length is an exact multiple of three.

 5 855 GC
human GTG CTG TCT CCT ...

Option G for codon sequences (codeml with seqtype = 1). The format is similar to
the same option for baseml, but note that the sequence length is in number of
nucleotides while the gene lengths are in number of codons. This has been a source of
confusion. Below is an example:

 5 300 G
G2 40 60

 P A M L M A N U A L 1 3

This data set has 5 sequences, each of 300 nucleotides (100 codons), which are
partitioned into two genes, with the first gene having 40 codons and the second gene 60
codons.

Site Pattern Counts

The sequence alignment can also be input in the form of site patterns and counts of sites
having those site patterns. This format is specified by the option “P” on the first line of
the input data file, as illustrated by the following example. Here there are 3 sequences, 8
site patterns, with "P" indicating that the data are site patterns and not sites. The "P"
option is used in the same way as options "I" for interleaved format and "S" for
sequential format (default). The 8 numbers below the alignment are the numbers of sites
having the 8 patterns above. For example, at 100 sites, all three species has G, and at
200 sites all three species has T, and so on. In total there are 100 + 200 + 40 + … + 14
= 440 sites.

 3 8 P

human GTACTGCC
rabbit GTACTACT
rat GTACAGAC

100 200 40 50 11 12 13 14

This example applies to baseml and basemlg, program for nucleotide-based analysis. To
specify multiple genes (site partitions), one may use option G together with option P.

 3 10 PG
G 2 4 6

human GTTA CATGTC
rabbit GTCA CATATT
rat GTTA CAAGTC

100 200 40 50 120 61 12 13 54 12

Here there are 10 site patterns and 2 genes (site partitions). The first 4 patterns are for
the first gene while the next 6 patterns are for the second gene, with a total of 10 site
patterns. In partition 1 there are 40 sites having the data AAA (nucleotide A in all three
species), and while in partition 2 there are 61 such sites.

The same format applies to protein sequences (codeml with seqtype = 2), with amino
acids replacing nucleotides in the examples above.

For codon sequences (codeml with seqtype = 1), the format is as follows. There are 3
species, and 9 site patterns, with 6 sites having the first site pattern (which has the codon
GTG in all three species). Note that 27 = 9*3. The program requires that you use 3
times the number of codon site patterns here. This is strange but consistent with the
sequential or interleaved sequence format, where the sequence length is specified in the
number of nucleotides rather than number of codons. (Initially I did this so that the
same file can be read by both baseml for nucleotide based analysis and codonml for
codon based analysis.)

1 4 P A M L M A N U A L

 3 27 P G

human GTG CTG TCT CCT GCC GAC AAG ACC
rabbit G.C T..
rat C ..T

 6 1 1 1 1 4 3 1 1

To specify multiple genes for codon site patterns, see the following example.
 3 27 P G
G 2 4 5

human GTG CTG TCT CCT GCC GAC AAG ACC
rabbit G.C T..
rat C ..T

 6 1 1 1 1 4 3 1 1

Here there are again 9 codon site patterns in total, with the first 4 patterns for gene 1 and
the next 5 patterns for gene 2.

Furthermore, option variable P can be used together with option variable I or S. PI
means that the site patterns are listed using the interleaved format while PS means that
the site patterns are listed using the sequential format. P without I or S uses the default
sequential format. Having the whole sequence of all site patterns on one line conforms
with both the I and S formats, so there is no need to specify I or S.

If you run baseml and codeml to read the sequential or interleaved formats of sequences,
the output will include a print-out in this partitioned format. Look for the line “Printing
out site pattern counts”. You can move this block into a new file and later on read that
file instead, if it takes a long time to pack sites into patterns. Note the restrictions with
the P format below.

Here are some restrictions to this option. Some outputs are disabled for this option,
including ancestral sequence reconstruction and posterior estimates of rates for sites (or
site patterns), that you can get for sequences by using RateAncestor = 1. Second, some
of the calculations require the sequence length, which I set to the sum of the site pattern
frequencies. If the site pattern frequencies are not counts of sites but are instead site
pattern probabilities, calculations involving sequence length will not be correct. Such
calculations include the SEs for MLEs, the numbers of sites S and N in codonml, for
example.

Possible uses of this option. Sometimes I use evolver to simulate very long sequences (with
>1M sites) and it can take minutes or hours to collapse sites into patterns, which is
irritating when the maximum likelihood iteration takes a few seconds and I want to use
the same data to run multiple models. A similar case is analysis of large genomic data of
long sequences with >100Mb sites. In this case you can run baseml or codeml once, and
then copy the pattern counts from the output file into a data file. Next time, you run the
program you can read the new file. This way the program skips the step of counting site
patterns. Another situation is to calculate the site pattern probabilities under model and
then read the probabilities for analysis using a wrong to see whether the correct tree is
still recovered. This way, you can check whether the tree reconstruction method is still
consistent. See Debry (1992) and Yang (1994c) for such analysis. (I need to enable the
code for printing site pattern probabilities.)

 P A M L M A N U A L 1 5

Tree File Format and Representations of Tree Topology

A tree structure file is used when runmode = 0 or 1. The file name is specified in the
appropriate control file. The tree topology is typically specified using the parenthesis
notation, although it is possible to use a branch representation, as described below.

Parenthesis notation: The first is the familiar parenthesis representation, used in most
phylogenetic software. The species can be represented using either their names or their
indexes corresponding to the order of their occurrences in the sequence data file. If
species names are used, they have to match exactly those in the sequence data file
(including spaces or strange characters). Branch lengths are allowed. The following is a
possible tree structure file for a data set of four species (human, chimpanzee, gorilla, and
orangutan, occurring in this order in the data file). The first tree is a star tree, while the
next four trees are the same.

 4 5 // 4 species, 5 trees
(1,2,3,4); // the star tree
((1,2),3,4); // species 1 and 2 are clustered together
((1,2),3,4); // Commas are needed with more than 9 species
((human,chimpanzee),gorilla,orangutan);
((human:.1,chimpanzee:.2):.05,gorilla:.3,orangutan:.5);

If the tree has branch lengths, baseml and codeml allow you to use the branch lengths in
the tree as starting values for maximum likelihood iteration.

Whether you should use rooted or unrooted trees depends on the model, for example,
on whether a molecular clock is assumed. Without the clock (clock = 0), unrooted trees
should be used, such as ((1,2),3,4) or (1,2,(3,4)). With the clock or local-clock models,
the trees should be rooted and these two trees are different and both are different from
(((1,2),3),4). In PAML, a rooted tree has a bifurcation at the root, while an unrooted tree
has a trifurcation or multifurcation at the root.

Tree files produced by PAUP and MacClade. PAML programs have only limited
compatibility with the tree file generated by PAUP or MacClade. First the “[&U]”
notation for specifying an unrooted tree is ignored. For the tree to be accepted as an
unrooted tree by PAML, you have to manually modify the tree file so that there is a
trifurcation at the root, for example, by changing “(((1,2),3),4)” into “((1,2),3,4)”.
Second, the “Translate” keyword is ignored by PAML as well, and it is assumed that the
ordering of the sequences in the tree file is exactly the same as the ordering of the
sequences in the sequence data file.

Branch or node labels. Some models implemented in baseml and codeml allow
several groups of branches on the tree, which are assigned different parameters of
interest. For example, in the local clock models (clock = 2 or 3) in baseml or codeml,
you can have, say, 3 branch rate groups, with low, medium, and high rates respectively.
Also the branch-specific codon models (model = 2 or 3 for codonml) allow different
branch groups to have different ωs, leading to so called “two-ratios” and “three-ratios”
models. All those models require branches or nodes in the tree to be labeled. Branch
labels are specified in the same way as branch lengths except that the symbol “#” is used
rather than “:”. The branch labels are consecutive integers starting from 0, which is the
default and does not have to be specified. For example, the following tree
((Hsa_Human, Hla_gibbon) #1, ((Cgu/Can_colobus, Pne_langur), Mmu_rhesus), (Ssc_squirrelM,
Cja_marmoset));

1 6 P A M L M A N U A L

is from the tree file examples/lysozyme/lysozyme.trees, with a branch label for
fitting models of different ω ratios for branches. The internal branch ancestral to human
and gibbon has the ratio ω1, while all other branches (with the default label #0) have the
background ratio ω0. This fits the model in table 1C for the small data set of lysozyme
genes in Yang (1998). See the readme file in the examples/lysozyme/ folder.

On a big tree, you might want to label all branches within a clade. For this purpose, you
can use the clade label $. $ is for ∆, which looks like a good clade symbol but is missing
on most keyboards. So (clade) $2 is equivalent to labeling all nodes/branches within the
clade with #2. The following two trees are thus equivalent.

(((rabbit, rat) $1, human), goat_cow, marsupial);

(((rabbit #1, rat #1) #1, human), goat_cow, marsupial);

Here are the rules concerning nested clade labels. The symbol # takes precedence over
the symbol $, and clade labels close to the tips take precedence over clade labels for
ancestral nodes close to the root. So the following two trees are equivalent. In the first
tree below, $1 is first applied to the whole clade of placental mammals (except for the
human lineage), and then $2 is applied to the rabbit-rate clade.

((((rabbit, rat) $2, human #3), goat_cow) $1, marsupial);

((((rabbit #2, rat #2) #2, human #3) #1, goat_cow #1) #1, marsupial);

I have found it convenient to create the tree file with labels and read the tree using Rod
page’s (1996) TreeView to check that the tree and labels are right. New versions of
TreeView also allow you to add branch labels in the tree-edit window, but even being
able to view the labels is a big help. TreeView however does not recognize or allow
labels for tips or tip branches. Another program that you can use to create and/or view
branch or node labels is Andrew Rambaut’s TreeEdit, available for the MAC. I have no
experiencing of using it.

Divergence date symbol @. Fossil calibration information is specified using the
symbol @. This is used for the clock and local clock models in baseml and codeml. See
the readme file in the examples/MouseLemurs/ folder. In the mcmctree program
implementing Bayes MCMC dating methods, I also use symbols < and > to specify soft
bounds on fossil calibration nodes ages, while @ is used to represent the most likely age.
So in the following example, the human-chimpanzee divergence is most likely at 6MY
and quite unlikely to be outside the (4MY, 10MY) interval.
((gorilla, (human, chimpanzee) '>.04 @0.06 <.10'), orangutan) '>.12 <.30';

Branch representation of tree topology: A second way of representing the tree
topology used in PAML is by enumerating its branches, each of which is represented by
its starting and ending nodes. This representation is also used in the result files for
outputting the estimated branch lengths, but you can also use it in the tree file. For
example, the tree ((1,2),3,4) can be specified by enumerating its 5 branches:
 5

 5 6 6 1 6 2 5 3 5 4

The nodes in the tree are indexed by consecutive natural numbers, with 1, 2, ..., s
representing the s known sequences in the data, in the same order as in the data. A
number larger than s labels an internal node, at which the sequence is unknown. So in
the above tree, node 5 is ancestral to nodes 6, 3, and 4, while node 6 is ancestral to nodes
1 and 2.

http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html

 P A M L M A N U A L 1 7

This notation is convenient to specify a tree in which some sequences in the data are
direct ancestors to some others. For example, the following tree for 5 sequences has 4
branches, with sequence 5 to be the common ancestor of sequences 1, 2, 3, and 4:

4

5 1 5 2 5 3 5 4

Warning. I did not try to make this tree representation work with all models
implemented in baseml and codeml. If you use this representation, you should test the
program carefully. If it does not work, you can let me know so that I will try to fix it.

baseml Control File

The default control file for baseml is baseml.ctl, and an example is shown below.
Note that spaces are required on both sides of the equal sign, and blank lines or lines
beginning with "*" are treated as comments. Options not used can be deleted from the
control file. The order of the variables is unimportant.
 seqfile = brown.nuc * sequence data file name
 outfile = mlb * main result file
 treefile = brown.trees * tree structure file name

 noisy = 3 * 0,1,2,3: how much rubbish on the screen
 verbose = 0 * 1: detailed output, 0: concise output
 runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
 * 3: StepwiseAddition; (4,5):PerturbationNNI

 model = 5 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
 * 5:T92, 6:TN93, 7:REV, 8:UNREST, 9:REVu; 10:UNRESTu
 Mgene = 0 * 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff

* ndata = 1 * number of data sets
 clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:CombinedAnalysis
 fix_kappa = 0 * 0: estimate kappa; 1: fix kappa at value below
 kappa = 2.5 * initial or fixed kappa

 fix_alpha = 1 * 0: estimate alpha; 1: fix alpha at value below
 alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
 Malpha = 0 * 1: different alpha's for genes, 0: one alpha
 ncatG = 5 * # of categories in the dG, AdG, or nparK models of rates

 fix_rho = 1 * 0: estimate rho; 1: fix rho at value below
 rho = 0. * initial or fixed rho, 0:no correlation
 nparK = 0 * rate-class models. 1:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK

 nhomo = 0 * 0 & 1: homogeneous, 2: kappa for branches, 3: N1, 4: N2
 getSE = 0 * 0: don't want them, 1: want S.E.s of estimates
 RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states

 Small_Diff = 1e-6
* cleandata = 1 * remove sites with ambiguity data (1:yes, 0:no)?
* icode = 0 * (RateAncestor=1 for coding genes, "GC" in data)
* fix_blength = 0 * 0: ignore, -1: random, 1: initial, 2: fixed
 method = 0 * 0: simultaneous; 1: one branch at a time

The control variables are described below.

seqfile, outfile, and treefile specifies the names of the sequence data file, main
result file, and the tree structure file, respectively. You should not have spaces
inside a file name. In general try to avoid special characters in a file name as
they might have special meanings under the OS.

1 8 P A M L M A N U A L

noisy controls how much output you want on the screen. If the model being fitted
involves much computation, you can choose a large number for noisy to
avoid loneliness. verbose controls how much output in the result file.

runmode = 0 means evaluation of the tree topologies specified in the tree structure file,
and runmode = 1 or 2 means heuristic tree search by the star-decomposition
algorithm. With runmode = 2, the algorithm starts from the star tree, while if
runmode = 1, the program will read a multifurcating tree from the tree
structure file and try to estimate the best bifurcating tree compatible with it.
runmode = 3 means stepwise addition. runmode = 4 means NNI perturbation
with the starting tree obtained by a parsimony algorithm, while runmode = 5
means NNI perturbation with the starting tree read from the tree structure file.
The tree search options do not work well, and so use runmode = 0 as much as
you can. For relatively small data set, the stepwise addition algorithm seems
usable.

model specifies the model of nucleotide substitution. Models 0, 1, …, 8 represent
models JC69, K80, F81, F84, HKY85, T92, TN93, REV (also known as GTR),
and UNREST, respectively. Check Yang (1994 JME 39:105-111) for notation.
Two more models are implemented recently. model = 9 are special cases of the
REV model, while model = 10 are special cases of the unrestricted model. The
format is shown in the following examples and should be self-explanatory.
Basically you include extra information on the same line that specifies the model
when model = 9 or 10. The number in the brackets [] are the number of free
rate parameters. For example, this should be 5 for REV and 11 for UNREST.
Following that number are equal number of parenthesis pairs (). The rate
parameters in the output file will follow this order here. The pairs that are not
mentioned will have rate 1. When model = 9, you specify TC or CT, but not
both. When model = 10, TC and CT are different. See the following examples
and Yang (1994a) for notation.

 model = 10 [0] /* JC69 */
 model = 10 [1 (TC CT AG GA)] /* K80 */
 model = 10 [11 (TA) (TG) (CT) (CA) (CG) (AT) (AC) (AG) (GT) (GC) (GA)] /* unrest

*/
 model = 10 [5 (AC CA) (AG GA) (AT TA) (CG GC) (CT TC)] /* SYM */
 model = 9 [2 (TA TG CA CG) (AG)] /* TN93 */

Mgene is used in combination with option G in the sequence data file, for combined
analysis of data from multiple genes or multiple site partitions (such as the three
codon positions). More details are given later in the Models and Methods
section. Choose 0 if option G is not used in the data file.

ndata: specifies the number of separate data sets in the file. This variable is useful for
simulation. You can use evolver to generate 200 replicate data sets, and then
set ndata = 200 to use baseml to analyze them.

clock specifies models concerning rate constancy or variation among lineages. clock
= 0 means no clock and rates are entirely free to vary from branch to branch.
An unrooted tree should be used under this model. For clock = 1, 2, or 3, a
rooted tree should be used. clock = 1 means the global clock, with all
branches having the same rate. If fossil calibration information is specified in
the tree file using the symbol @, the absolute rate will be calculated. Multiple
calibration points can be specified this way. If sequences have dates, this option
will fit Andrew Rambaut’s TipDate model. clock = 2 implements local clock

 P A M L M A N U A L 1 9

models of Yoder and Yang (2000) and Yang and Yoder (2003), which assume
that branches on the tree can be partitioned into several rate groups. The
default is group 0, while all other groups have to be labeled using branch/node
labels (symbols # and $) in the tree. The program will then estimate those rates
for branch groups. clock = 3 is for combined analysis of multiple-gene or
multiple-partition data, allowing the branch rates to vary in different ways
among the data partitions (Yang and Yoder 2003). To account for differences
in the evolutionary process among data partitions, you have to use the option G
in the sequence file as well as the control variable Mgene in the control file
(baseml.ctl or codeml.ctl). Read the section above on “Tree file format” about
how to specify fossil calibration information in the tree, how to label branch
groups. Read Yang and Yoder (2003) and the readme file in the
examples/MouseLemurs/ folder to duplicate the analysis of that paper. Also
the variable (= 5 or 6) is used to implement the ad hoc rate smoothing
procedure of Yang (2004). See the file readme2.txt for instructions and the
paper for details of the model.

fix_kappa specifies whether κ in K80, F84, or HKY85 is given at a fixed value or is to
be estimated by iteration from the data. If fix_kappa = 1, the value of
another variable, kappa, is the given value, and otherwise the value of kappa is
used as the initial estimate for iteration. The variables fix_kappa and kappa
have no effect with JC69 or F81 which does not involve such a parameter, or
with TN93 and REV which have two and five rate parameters respectively,
when all of them are estimated from the data.

fix_alpha and alpha work in a similar way, where alpha refers to the shape
parameter α of the gamma distribution for variable substitution rates across
sites (Yang 1994a). The model of a single rate for all sites is specified as
fix_alpha = 1 and alpha = 0 (0 means infinity), while the (discrete-) gamma
model is specified by a positive value for alpha, and ncatG is then the number
of categories for the discrete-gamma model (baseml).

fix_rho and rho work in a similar way and concern independence or correlation of
rates at adjacent sites, where ρ (rho) is the correlation parameter of the auto-
discrete-gamma model (Yang 1995). The model of independent rates for sites is
specified as fix_rho = 1 and rho = 0; choosing alpha = 0 further means a
constant rate for all sites. The auto-discrete-gamma model is specified by
positive values for both alpha and rho. The model of a constant rate for sites
is a special case of the (discrete) gamma model with α = ∞ (alpha = 0), and
the model of independent rates for sites is a special case of the auto-discrete-
gamma model with ρ = 0 (rho = 0).

nparK specifies nonparametric models for variable and Markov-dependent rates across
sites: nparK = 1 or 2 means several (ncatG) categories of independent rates for
sites, while nparK = 3 or 4 means the rates are Markov-dependent at adjacent
sites; nparK = 1 and 3 have the restriction that each rate category has equal
probability while nparK = 2 and 4 do not have this restriction (Yang and
Roberts 1995). The variable nparK takes precedence over alpha or rho.

nhomo is for baseml only, and concerns the frequency parameters in some of the
substitution models. The option nhomo = 1 fits a homogeneous model, but
estimates the frequency parameters (πT, πC and πA; πG is not a free parameter as

2 0 P A M L M A N U A L

the frequencies sum to 1) by maximum likelihood iteration. This applies to F81,
F84, HKY85, T92 (in which case only πGC is a parameter), TN93, or REV
models. Normally (nhomo = 0) these are estimated by the averages of the
observed frequencies. In both cases (nhomo = 0 and 1), you should count 3 (or
1 for T92) free parameters for the base frequencies.

Options nhomo = 3, 4, and 5 work with F84, HKY85, or T92 only. They fit
the nonhomogeneous models of Yang and Roberts (1995) and Galtier and
Gouy (1998). The nucleotide substitution is specified by the variable model
and is one of F84, HKY85 or T92, but with different frequency parameters used
in the rate matrix for different branches in the tree, to allow for unequal base
frequencies in different sequences. The position of the root then makes a
difference to the likelihood, and rooted trees are used. Because of the
parameter richness, the model may only be used with small trees except that you
have extremely long sequences. Yang and Roberts (1995) used the HKY85 or
F84 models, and so three independent frequency parameters are used to
describe the substitution pattern, while Galtier and Gouy (1998) used the T92
substitution model and uses the GC content πGC only, with the base frequencies
give as πT = πA = (1 – πGC)/2 and πC = πG = πGC/2. The option nhomo = 4
assigns one set of frequency parameters for the root, which are the initial base
frequencies at the root, and one set for each branch in the tree. This is model
N2 in Yang and Roberts (1995) if the substitution model is F84 or HKY85 or
the model of Galtier and Gouy (1998) if the substitution model is T92. Option
nhomo = 3 uses one set of base frequencies for each tip branch, one set for all
internal branches in the tree, and one set for the root. This specifies model N1
in Yang and Roberts (1995).

The option nhomo = 5 lets the user specify how many sets of frequency
parameters should be used and which node (branch) should use which set. The
set for the root specifies the initial base frequencies at the root while the set for
any other node is for parameters in the substitution matrix along the branch
leading to the node. You use branch (node) labels in the tree file (see the
subsection “Tree file and representations of tree topology” above) to tell the
program which set each branch should use. There is no need to specify the
default set (0). So for example nhomo = 5 and the following tree in the tree file
species sets 1, 2, 3, 4, and 5 for the tip branches, set 6 for the root, while all the
internal branches (nodes) will have the default set 0. This is equivalent to
nhomo = 3.
((((1 #1, 2: #2), 3 #3), 4 #4), 5 #5) #6;

The output for nhomo = 3, 4, 5 is under the heading “base frequency
parameters (4 sets) for branches, and frequencies at nodes”. Two sets of
frequencies are listed for each node. The first set are the parameters (used in
the substitution rate matrix for the branch leading to the node), and the second
set are the expected base frequencies at the node, calculated from the model
((Yang and Roberts 1995); page 456 column top). If the node is the root, the
same set of frequencies are printed twice.

 P A M L M A N U A L 2 1

Note that the use of the variable fix_kappa here with nhomo = 3, 4 or 5 is
unusual. fix_kappa = 1 means one common κ is assumed and estimated for
all branches, while fix_kappa = 0 means one κ is estimated for each branch.

nhomo = 2 uses one transition/transversion rate ratio (κ) for each branch in the
tree for the K80, F84, and HKY85 models (Yang 1994b; Yang and Yoder 1999).

getSE tells whether we want estimates of the standard errors of estimated parameters.
These are crude estimates, calculated by the curvature method, i.e., by inverting
the matrix of second derivatives of the log-likelihood with respect to
parameters. The second derivatives are calculated by the difference method, and
are not always reliable. Even if this approximation is reliable, tests relying on the
SE's should be taken with caution, as such tests rely on the normal
approximation to the maximum likelihood estimates. The likelihood ratio test
should always be preferred. The option is not available and choose getSE = 0
when tree-search is performed.

RateAncestor = 1 also works with runmode = 0 only. For models of variable rates
across sites, the program will calculate rates for sites along the sequence (output
in the file rates) and performs marginal ancestral reconstruction (output in
rst). For models of one rate for all sites, RateAncestor = 1 does both
marginal and joint ancestral sequence reconstruction (Yang et al. 1995a). The
program lists results site by site. You can also use the variable verbose to
control the amount of output. If you choose verbose = 0, the program will list
the best nucleotide at each node for the variable sites only and results for
constant sites are suppressed. If verbose = 1, the program will list all sites for
the best nucleotide at each node. If verbose = 2, the program also lists the full
posterior probability distribution for each site at each ancestral node (for
marginal reconstruction).

For nucleotide based (baseml) analysis of protein coding DNA sequences
(option GC in the sequence data file), the program also calculates the posterior
probabilities of ancestral amino acids. In this analysis, branch lengths and other
parameters are estimated under a nucleotide substitution model, but the
reconstructed nucleotide triplets are treated as a codon to infer the most likely
amino acid encoded. Posterior probabilities for stop codons are small and reset
to zero to scale the posterior probabilities for amino acids. To use this option,
you should add the control variable icode in the control file baseml.ctl.
This is not listed in the above. The variable icode can take a value out of 0, 1,
..., 11, corresponding to the 12 genetic codes included in PAML (See the control
file codeml.ctl for the definition of different genetic codes). A nucleotide
substitution model that is very close to a codon-substitution model can be
specified as follows. You add the option characters GC at the end of the first
line in the data file and choose model = 4 (HKY85) and Mgene = 4. The
model then assumes different substitution rates, different base frequencies, and
different transition/transversion rate ratio (kappa) for the three codon positions.
Ancestral reconstruction from such a nucleotide substitution should be very
similar to codon-based reconstruction. (Thanks to Belinda Change for many
useful suggestions.)

Small_Diff is a small value used in the difference approximation of derivatives.

2 2 P A M L M A N U A L

cleandata = 1 means sites involving ambiguity characters (undetermined nucleotides
such as N, ?, W, R, Y, etc. anything other than the four nucleotides) or
alignment gaps are removed from all sequences. This leads to faster calculation.
cleaddata = 0 (default) uses those sites.

method: This variable controls the iteration algorithm for estimating branch lengths
under a model of no clock. method = 0 implements the old algorithm in
PAML, which updates all parameters including branch lengths simultaneously.
method = 1 specifies an algorithm newly implemented in PAML, which
updates branch lengths one by one. method = 1 does not work under the
clock models (clock = 1, 2, 3).

icode: This specifies the genetic code to be used for ancestral reconstruction of
protein-coding DNA sequences. This is implemented to compare results of
ancestral reconstruction with codon-based analysis. For example the F3×4
codon model of Goldman and Yang (1994) is very similar to the nucleotide
model HKY85 with different substitution rates and base frequencies for the
three codon positions. The latter is implemented by using use options GC in
the sequence data file and model = 4 and Mgene = 4. To use the option
icode, you have to choose RateAncestor = 1.

fix_blength: This tells the program what to do if the tree has branch lengths. Use
0 if you want to ignore the branch lengths. Use –1 if you want the program to
start from random starting points. This might be useful if there are multiple
local optima. Use 1 if you want to use the branch lengths as initial values for the
ML iteration. Try to avoid using the “branch lengths” from a parsimony
analysis from PAUP, as those are numbers of changes for the entire sequence
(rather than per site) and are very poor initial values. Use 2 if you want the
branch lengths to be fixed at those given in the tree file (rather than estimating
them by ML). In this case, you should make sure that the branch lengths are
sensible; for example, if two sequences in the data file are different, but the
branch lengths connecting the two sequences in the tree are all zero, the data
and tree will be in conflict and the program will crash.

Output: The output should be self-explanatory. Descriptive statistics are always listed.
The observed site patterns and their frequencies are listed, together with the proportions
of constant patterns. Nucleotide frequencies for each species (and for each gene in case
of multiple gene data) are counted and listed. lmax = ln(Lmax) is the upper limit of the
log likelihood and may be compared with the likelihood for the best (or true) tree under
the substitution model to test the model's goodness of fit to data (Goldman 1993; Yang
et al. 1995b). You can ignore it if you don’t know what it means. The pairwise sequence
distances are included in the output as well, and also in a separate file called 2base.t.
This is a lower-diagonal distance matrice, readable by the NEIGHBOR program in
Felesenstein's PHYLIP package (Felsenstein 2005). For models JC69, K80, F81, F84,
the appropriate distance formulas are used, while for more complex models, the TN93
formula is used. baseml is mainly a maximum likelihood program, and the distance
matrix is printed out for convenience and really has nothing to do with the later
likelihood calculation.

With getSE = 1, the S.E.s are calculated as the square roots of the large sample variances
and listed exactly below the parameter estimates. Zeros on this line mean errors, either
caused by divergence of the algorithm or zero branch lengths. The S.Es of the common

 P A M L M A N U A L 2 3

parameters measure the reliability of the estimates. For example, (κ − 1)/SE(κ), when κ
is estimated under K80, can be compared with a normal distribution to see whether
there is real difference between K80 and JC69. The test can be more reliably performed
by comparing the log-likelihood values under the two models, using the likelihood ratio
test. It has to be stressed that the S.E.’s of the estimated branch lengths should not be
misinterpreted as an evaluation of the reliability of the estimated tree topology (Yang
1994c).

If the tree file has more than one tree, the programs baseml and codeml will
calculate the bootstrap proportions using the RELL method (Kishino and Hasegawa
1989), as well as the method of Shimodaira and Hasegawa (1999) with a correction for
multiple comparison. The bootstrap resampling accounts for possible data partitions
(option G in the sequence data file).

basemlg Control File

basemlg uses the same control file baseml.ctl, as baseml. Tree-search or the
assumption of a molecular clock are not allowed and so choose runmode = 0 and
clock = 0. Substitution models available for basemlg are JC69, F81, K80, F84 and
HKY85, and a continuous gamma is always assumed for rates at sites. The variables
ncatG, given_rho, rho, nhomo have no effect. The S.E.'s of parameter estimates
are always printed out because they are calculated during the iteration, and so getSE has
no effect.

Because of the intensive computation required by basemlg, the discrete-gamma model
implemented in baseml is recommended for data analysis. If you choose to use
basemlg, you should run baseml first, and then run basemlg. This allows baseml
to collect initial values into a file named in.basemlg, for use by basemlg. Note that
basemlg implements only a subset of models in baseml.

codeml (codonml and aaml) Control File

Since the codon based analysis and the amino acid based analysis use different models,
and some of the control variables have different meanings, it may be a good idea to use
different control files for codon and amino acid sequences. The default control file for
codeml is codeml.ctl, as shown below.
 seqfile = stewart.aa * sequence data file name
 outfile = mlc * main result file name
 treefile = stewart.trees * tree structure file name

 noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
 verbose = 0 * 1: detailed output, 0: concise output
 runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
 * 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise

 seqtype = 2 * 1:codons; 2:AAs; 3:codons-->AAs
 CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table
* ndata = 10
 clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:TipDate

 aaDist = 0 * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a
 * 7:AAClasses
 aaRatefile = wag.dat * only used for aa seqs with model=empirical(_F)
 * dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own

 model = 2

2 4 P A M L M A N U A L

 * models for codons:
 * 0:one, 1:b, 2:2 or more dN/dS ratios for branches
 * models for AAs or codon-translated AAs:
 * 0:poisson, 1:proportional,2:Empirical,3:Empirical+F
 * 6:FromCodon, 8:REVaa_0, 9:REVaa(nr=189)

 NSsites = 0 * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;
 * 5:gamma;6:2gamma;7:beta;8:beta&w;9:betaγ
 * 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
 * 13:3normal>0

 icode = 0 * 0:universal code; 1:mammalian mt; 2-11:see below
 Mgene = 0 * 0:rates, 1:separate;

 fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated
 kappa = 2 * initial or fixed kappa
 fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate
 omega = .4 * initial or fixed omega, for codons or codon-based AAs

 fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha
 alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
 Malpha = 0 * different alphas for genes
 ncatG = 3 * # of categories in dG of NSsites models

 fix_rho = 1 * 0: estimate rho; 1: fix it at rho
 rho = 0. * initial or fixed rho, 0:no correlation

 getSE = 0 * 0: don't want them, 1: want S.E.s of estimates
 RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)

 Small_Diff = .5e-6
* cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
* fix_blength = 0 * 0: ignore, -1: random, 1: initial, 2: fixed
 method = 0 * 0: simultaneous; 1: one branch at a time

The variables seqfile, outfile, treefile, noisy, Mgene, fix_alpha, alpha,
Malpha, fix_rho, rho, clock, getSE, RateAncestor, Small_Diff,
cleandata, ndata, fix_blength, and method are used in the same way as in
baseml.ctl and are described in the previous section. The variable seqtype
specifies the type of sequences in the data; seqtype = 1 means codon sequences (the
program is then codonml); 2 means amino acid sequences (the program is then aaml);
and 3 means codon sequences which are to be translated into proteins for analysis.

Codon Sequences (seqtype = 1)

CodonFreq specifies the equilibrium codon frequencies in codon substitution model.
These frequencies can be assumed to be equal (1/61 each for the standard
genetic code, CodonFreq = 0), calculated from the average nucleotide
frequencies (CodonFreq = 1), from the average nucleotide frequencies at the
three codon positions (CodonFreq = 2), or used as free parameters
(CodonFreq = 3). The number of parameters involved in those models of
codon frequencies is 0, 3, 9, and 60 (for the universal code), for CodonFreq =
0, 1, 2, and 3 respectively.

aaDist specifies whether equal amino acid distances are assumed (= 0) or Grantham's
matrix is used (= 1) (Yang et al. 1998). The example mitochondrial data set
analyzed in that paper is included in the example/mtdna folder in the package.

aaDist = 7 (AAClasses), which is implemented for both codon and amino acid
sequences, allow you to have several types of amino acid substitutions and let
the program estimate their different rates. The model was implemented in Yang
et al. (1998). The number of substitution types and which pair of amino acid

 P A M L M A N U A L 2 5

changes belong which type is specified in a file called OmegaAA.dat. You can
use the model to fit different ω ratios for “conserved” and “charged” amino
acid substitutions. The folder examples/mtCDNA contain example files for
this model; check the readme file in that folder.

runmode = -2 performs ML estimation of dS and dN in pairwise comparisons of
protein-coding sequences (seqtype = 1). The program will collect estimates of
dS and dN into the files 2ML.dS and 2ML.dN. Since many users seem interested
in looking at dN/dS ratios among lineages, examination of the tree shapes
indicated by branch lengths calculated from the two rates may be interesting
although the analysis is ad hoc. If your species names have no more than 10
characters, you can use the output distance matrices as input to Phylip programs
such as neighbor without any change. Otherwise you need to edit the files to
cut the names short. For amino acid sequences (seqtype = 2), option runmode
= -2 lets the program calculate ML distances under the substitution model by
numerical iteration, either under the model of one rate for all sites (alpha = 0) or
under the gamma model of rates for sites (alpha ≠ 0). In the latter case, the
continuous gamma is used and the variable ncatG is ignored. (With runmode =
0, the discrete gamma is used.)

model concerns assumptions about the ω ratios among branches (Yang 1998; Yang and
Nielsen 1998). model = 0 means one ω ratio for all lineages (branches), 1
means one ratio for each branch (the free-ratio model), and 2 means an arbitrary
number of ratios (such as the 2-ratios or 3-ratios models). When model = 2,
you have to group branches on the tree into branch groups using the symbols #
or $ in the tree. See the section above about specifying branch/node labels.

With model = 2, the variable fix_omega fixes the last ratio (ωk − 1 if you have
k ratios in total) at the value of omega specified in the file. This option can be
used to test, for example, whether the ratio for a specific lineage is significantly
different from one. See the readme file in the examples/lysozyme/ folder
and try to duplicate the results of Yang (1998).

NSsites specifies models that allow the dN/dS ratio (ω) to vary among sites (Nielsen
and Yang 1998; Yang et al. 2000b). NSsites = m corresponds to model Mm
in Yang et al. (2000b). The variable ncatG is used to specify the number of
categories in the ω distribution under some models. The values of ncatG used
to perform analyses in that paper are 3 for M3 (discrete), 5 for M4 (freq), 10 for
the continuous distributions (M5: gamma, M6: 2gamma, M7: beta, M8:beta&w,
M9:beta&gamma, M10: beta&gamma+1, M11:beta&normal>1, and
M12:0&2normal>1, M13:3normal>0). This means M8 will have 11 site classes
(10 from the beta distribution plus 1 additional class). The posterior
probabilities for site classes as well as the expected ω values for sites are listed in
the file rst, which may be useful to pinpoint sites under positive selection, if
they exist.

To run several Nssites models in one batch, you can specify several models
on the same line, as follows:

 NSsites = 0 1 2 3 7 8

This forces the program to run models M0, M1, M2a, M3, M7, and M8 on the
same data set in one go. When more than one NSsites model is specified in this

2 6 P A M L M A N U A L

way, the number of categories (ncatG) used will match those used in Yang et
al. (2000b), and you do not have any control over it.

The continuous neutral and selection models of Nielsen and Yang (1998) are
not implemented in the program.

Version 3.14 introduced some changes to the NSsites models M1 and M2.
Specifically, the old version of those two models assume a class of conserved
sites with ω0 = 0 while in the modified models, called M1a and M2a, ω0 is
estimated from the data under the constraint 0 < ω0 < 1. Furthermore, the
Bayes empirical Bayes (BEB) calculation of posterior probabilities for site
classes has been implemented for models M2a (NSsites = 2) and M8 (NSsites =
8) to replace the old naïve empirical Bayes (NEB) calculation (Yang et al. 2005).
The current advice is that you use M1a and M2a to construct an LRT and M7
and M8 to construct an LRT, and use M2a and M8 to identify sites under
positive selection. See the section Codon Models in the next Chapter for more
details.

Example files for NSsites models: The HIV env data set used in Yang et al. ((2000b):
table 12) is included in the PAML/examples/hivNSsites folder. The abalone
sperm lysin data set was analyzed by Yang, Swanson and Vacquier (2000a) using
several NSsites models. This data set is included in the examples/ folder as
well. Also the lysozyme data set, included in the examples/ folder, was analyzed
by Yang and Nielsen (2002) using a few NSsites models.

The branch-site model A (Yang and Nielsen 2002; Yang et al. 2005; Zhang et al.
2005) is specified by

Model A: model = 2, NSsites = 2, fix_omega = 0

This is the alternative model for the branch-site test of positive selection, or test
2 in Zhang (2005). The null model is also the branch-site model A but with ω2
= 1 fixed, specified by

Model A1: model = 2, NSsites = 2, fix_omega = 1, omega = 1

Use d.f. = 1 for the likelihood ratio test, although this tends to make the test
conservative. The BEB procedure for calculating probabilities of site classes is
implemented for the branch-site model A.

The above is a description of the model and test after modifications in Yang et
al. (2005) and Zhang et al. (2005). Our advice is that you use this test and forget
about the old tests.

In case you need the old tests, here are the details. Note that those tests are not
recommended. The old branch-site model A fixes ω0 = 0. This is not available
in versions since 3.14. You will have to use an earlier version of the program.
The old branch-site model B is still in the program and is specified by

Model B: model = 2, NSsites = 3

The null model is the NSsites model 3 (discrete) with 2 site classes, specified as
site model 3: model = 0, NSsites = 3, ncatG = 2

Use d.f. = 2 degrees of freedom for the test. The (“large”) lysozyme data set
analyzed in that paper is included in the examples folder in the package. Look at
the readme file.

 P A M L M A N U A L 2 7

Also Yang et al. (2005) and Zhang et al. (2005) described a branch-site test 1,
although it was pointed out that the test can be significant when the foreground
branches are either under relaxed selective constraint or under positive selection.
This test uses the modified branch-site model A as the alternative hypothesis,
while the null hypothesis is new site model M1a (NearlyNeutral), with d.f. ≈ 2.
Note that we advise the use of test 2, the branch-site test of positive selection.

The clade models C and D of Bielawski and Yang (2004) are specified by
Model A: model = 3, NSsites = 2
Model B: model = 3, NSsites = 3 ncatG = 2

See that paper for details. Similarly model A is modified and the BEB
procedure is implemented for model A only. See the next chapter for more
details.

icode specifies the genetic code. Eleven genetic code tables are implemented using
icode = 0 to 10 corresponding to transl_table 1 to 11 in GenBank. These are
0 for the universal code; 1 for the mammalian mitochondrial code; 3 for mold
mt., 4 for invertebrate mt.; 5 for ciliate nuclear code; 6 for echinoderm mt.; 7 for
euplotid mt.; 8 for alternative yeast nuclear; 9 for ascidian mt.; and 10 for
blepharisma nuclear. There is also an additional code, called Yang’s regularized
code, specified by icode = 11. In this code, there are 16 amino acids, all
differences at the first and second codon positions are nonsynonymous and all
differences at the third codon positions are synonymous; that is, all codons are
4-fold degenerate. There is yet no report of any organisms using this code.

RateAncestor: Choose 1 if you want to reconstruct ancestral sequences and 0 to avoid
the calculation. The output under codon-based models usually shows the
encoded amino acid for each codon. The output under "Prob of best character
at each node, listed by site" has two posterior probabilities for each node at each
codon (amino acid) site. The first is for the best codon. The second, in
parentheses, is for the most likely amino acid under the codon substitution
model. This is a sum of posterior probabilities across synonymous codons. In
theory it is possible although rare for the most likely amino acid not to match
the most likely codon.

Under gamma models of rates for sites, choosing 1 for this variable will also
force the program to estimate the substitution rate at each site.

Output for codon sequences (seqtype = 1): The codon frequencies in each sequence
are counted and listed in a genetic code table, together with their sums across species.
Each table contains six or fewer species. For data of multiple genes (option G in the
sequence file), codon frequencies in each gene (summed over species) are also listed. The
nucleotide distributions at the three codon positions are also listed. The method of Nei
and Gojobori (1986) is used to calculate the number of synonymous substitutions per
synonymous site (dS) and the number of nonsynonymous substitutions per
nonsynonymous site (dN) and their ratio (dN/dS). These are used to construct initial
estimates of branch lengths for the likelihood analysis but are not MLEs themselves.

Results of ancestral reconstructions (RateAncestor = 1) are collected in the file
rst. Under models of variable dN/dS ratios among sites (NSsites models), the
posterior probabilities for site classes as well as positively selected sites are listed in rst.

2 8 P A M L M A N U A L

Amino Acid Sequences (seqtype = 2)

model specifies the model of amino acid substitution: 0 for the Poisson model assuming
equal rates for any amino acid substitutions (Bishop and Friday, 1987); 1 for the
proportional model in which the rate of change to an amino acid is proportional
to the frequency of that amino acid. Model = 2 specifies a class of empirical
models, and the empirical amino acid substitution rate matrix is given in the file
specified by aaRatefile. Files included in the package are for the empirical
models of Dayhoff et al. (1978) (dayhoff.dat), Jones et al. 1992 (1992) (see
(Kishino et al. 1990) for the construction), and Whelan and Goldman (2001)
(wag.dat). The file mtmam.dat has a matrix for mitochondrial proteins
estimated by maximum likelihood from a data set of 20 mammals (Yang et al.
1998). The mtREV24 model of the MOLPHY package (Adachi and Hasegawa
1996b) is also provided (the file mtREV24.dat). These two are similar, and the
difference is that the former is derived from proteins from mammals only while
the latter came from more-diverse species including chicken, fish, frog, and
lamprey. Due to differences in the implementation, you may see small
differences in log-likelihood values and branch lengths between aaml and
protml in the MOLPHY package. Such differences are normal and you
should use the same program to compare different trees. Under the mtREV24
model, the two programs should give almost identical results.

If you want to specify your own substitution rate matrix, have a look at one of
those files, which has notes about the file structure. Other options for amino
acid substitution models should be ignored. To summarize, the variables
model, aaDist, CodonFreq, NSsites, and icode are used for codon
sequences (seqtype = 1), while model, alpha, and aaRatefile are
used for amino acid sequences.

runmode also works in the same way as in baseml.ctl. Specifying runmode = −2
will forces the program to calculate the ML distances in pairwise comparisons.
You can change the following variables in the control file codeml.ctl:
aaRatefile, model, and alpha.

If you do pairwise ML comparison (runmode = -2) and the data contain
ambiguity characters or alignment gaps, the program will remove all sites which
have such characters from all sequences before the pairwise comparison if
cleandata = 1. This is known as "complete deletion". It will remove
alignment gaps and ambiguity characters in each pairwise comparsion
("pairwise" deletion) if cleandata = 0. {{This does not seem to be true.
The program currently removes all sites with any ambiguities if runmode = -2.
Need checking. Note by Ziheng 31/08/04.}} Note that in a likelihood analysis
of multiple sequences on a phylogeny, alignment gaps are treated as ambiguity
characters if cleandata = 0, and both alignment gaps and ambiguity
characters are deleted if cleandata = 1. Note that removing alignment gaps
and treating them as ambiguity characters both underestimate sequence
divergences. Ambiguity characters in the data (cleandata = 0) make the
likelihood calculation slower.

Output for amino acid sequences (seqtype = 2): The output file is self-explanatory
and very similar to the result files for the nucleotide- and codon-based analyses. The

 P A M L M A N U A L 2 9

empirical models of amino acid substitution (specified by dayhoff.dat, jones.dat, wag.dat,
mtmam.dat, or mtREV24.dat) do not involve any parameters in the substitution rate
matrix. When RateAncestor = 1, results for ancestral reconstruction are in the file
rst. Calculated substitution rates for sites under models of variable rates for sites are in
rates.

evolver

This program has a small naïve menu, which looks like the following.

 (1) Get random UNROOTED trees?
 (2) Get random ROOTED trees?
 (3) List all UNROOTED trees into file trees?
 (4) List all ROOTED trees into file trees?
 (5) Simulate nucleotide data sets (use MCbase.dat)?
 (6) Simulate codon data sets (use MCcodon.dat)?
 (7) Simulate amino acid data sets (use MCaa.dat)?
 (8) Calculate identical bi-partitions between trees?
 (9) Calculate clade support values (read 2 treefiles)?
 (0) Quit?

Options 1, 2, 3, 4. The program can be used to generate a random tree, either unrooted
or rooted, either with or without branch lengths. It can also list all the trees for a fixed
number of species. Of course, you should do this for a small number of species only as
otherwise your hard drive will be filled by useless trees. Option 8 is for reading many
trees from a tree file and then calculating bi-partition distances either between the first
and all the remaining trees or between every pair.

Option 9 (Clade support values) can be used to summarize bootstrap or Bayesian
analyses. This reads two tree files. The first file should include one tree, say, the
maximum likelihood tree. You should have the number of species and the number of
tree (should be 1) at the beginning of this file. The second tree file should include a
collection of trees, such as 1000 maximum likelihood trees estimated from 1000
bootstrap pseudo-samples. This option will then calculate the bootstrap support value
for each clade on the ML tree in the first tree file, that is, the proportion of trees in the
second file that contain the node or clade in the tree in the first file. The second tree file
does not have to have the numbers of species and trees on the first line. If you run
MrBayes, you can move the maximum likelihood tree or maximum a posteriori tree into
the first file, and the second tree file can be the .t file generated by MrBayes, with no
change necessary. Right now species are represented by numbers only in the tree files, I
think. You can choose this option by running evolver, then option 9. The program will
then ask you to input two file names. An alternative way, which bypasses the naïve
menu, is to put the option and two file names at the command line:
 evolver 9 <MasterTreeFile> <TreesFile>

Options 5, 6, 7 (Simulatoins). The program evolver simulates nucleotide, codon,
and amino acid sequences with user-specified tree topology and branch lengths. The
user specifies the substitution model and parameters in a control file; see below. The
program generates multiple data sets in one file in either PAML (output mc.paml) or
PAUP* (output mc.paup) format. If you choose the PAUP* format, the program will
look for files with the following names: paupstart (which the program copies to the

3 0 P A M L M A N U A L

start of the data file), paupblock (which the program copies to the end of each
simulated data set), and paupend (which the program incorporates at the end of the
file. This makes it possible to use PAUP* to analyze all data sets in one run. Parameters
for simulation are specified in three files: MCbase.dat, MCcodon.dat, and
MCaa.dat for simulating nucleotide, codon, and amino acid sequences, respectively.
Run the default options while watching out for screen output. Then have a look at the
appropriate .dat files. As an example, the MCbase.dat file is reproduced below.
Note that the first block of the file has the inputs for evolver, while the rest are notes.
The tree length is the expected number of substitutions per site along all branches in the
phylogeny, calculated as the sum of the branch lengths. This variable was introduced
when I was doing simulations to evaluate the effect of sequence divergence while
keeping the shape of the tree fixed. evolver will scale the tree so that the branch lengths
sum up to the specified tree length. If you use –1 for the tree length, the program will
use the branch lengths given in the tree without the re-scaling. Also note that the base
frequencies have to be in a fixed order; this is the same for the amino acid and codon
frequencies in MCaa.dat and MCcodon.dat.

0 * 0,1:seqs or patterns in paml format (mc.paml); 2:paup format (mc.nex)
367891 * random number seed (odd number)
5 1000000 1 * <# seqs> <# nucleotide sites> <# replicates>
-1 * <tree length, use -1 if tree has absolute branch lengths>
(((A :0.1, B :0.2) :0.12, C :0.3) :0.123, D :0.4, E :0.5) ;

3 * model: 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:T92, 6:TN93, 7:REV
5 * kappa or rate parameters in model
0 0 * <alpha> <#categories for discrete gamma>

0.1 0.2 0.3 0.4 * base frequencies
 T C A G

==
The rest of this data file are notes, ignored by the program evolver.
evolver simulates nucleotide sequences under the REV+Gamma model
and its simpler forms.
==

The simulation options (5, 6, 7) of evolver can be run using a command line format,
bypassing the naïve menu. So here are all the possible ways of running evolver:
 evolver
 evolver 5 MyMCbaseFile
 evolver 6 MyMCcodonFile
 evolver 7 MyMCaaFile

The model of codon substitution used by option 6 here assumes the same ω ratio for all
branches in the phylogeny and for all sites in the gene. This is sometimes known as
model M0. To simulate under the site models with variable ω’s among sites, under the
branch models with different ωs among branches, or under the branch-site models with
ω varying both among sites and among branches, please read the file
CodonSimulation.txt in the paml/Technical/Simulation/Codon/ folder.

The evolver program also has a few options for listing all trees for a specified small
number of species, and for generating random trees from a model of cladogenesis, the
birth-death process with species sampling (Yang and Rannala 1997). It also has an
option for calculating the partition distance between tree topologies.

Monte Carlo simulation algorithm used in evolver. You can read about more details
in the section “Models and Analyses”. Here are some brief notes. Evolver simulates
data sets by “evolving” sequences along the tree. First, a sequence is generated for the
root using the equilibrium nucleotide, amino acid, or codon frequencies specified by the

 P A M L M A N U A L 3 1

model and/or the data file (MCbase.dat, MCcodon.dat, and MCaa.dat,
respectively). Then each site evolves along the branches of the tree according to the
branch lengths, parameters in the substitution model etc. When the sites in the sequence
evolve according to the same process, the transition probability matrix is calculated only
once for all sites for each branch. For so called site-class models (such as the gamma,
and the NSsites codon models), different sites might have different transition probability
matrices. Given the character at the start of the branch, the character at the end of the
branch is sampled from a multinomial distribution specified by the transition
probabilities from the source character. Check any book on Monte Carlo simulation for
procedures of sampling from a multinomial distribution. Sequences at the ancestral
nodes are generated during the simulation but not included in the output. If you want
those ancestral sequences, you can search for the following line in the routine Simulate()
in the file evolver.c, and change the value from 0 to 1.

 int verbose=0;

Recompile the evolver program. The program will then output the ancestral sequences
in a file named ancestral.txt.

Some people wanted to specify the sequence at the root rather than generating a random
sequence using the base, amino acid, or codon frequencies. You can do this by putting
the sequence at the root in a file named RootSeq.txt. This cannot have ambiguities or
gaps or stop codons (that is, codons with 0 frequencies). However, you have to make
sure that fixing the sequence at the root is a sensible thing to do.

yn00

The program yn00 implements the method of Yang and Nielsen (2000) for estimating
synonymous and nonsynonymous substitution rates between two sequences (dS and dN).
The method of Nei and Gojobori (1986) is also included. The ad hoc method
implemented in the program accounts for the transition/transversion rate bias and
codon usage bias, and is an approximation to the ML method accounting for the
transition/transversion rate ratio and assuming the F3x4 codon frequency model. We
recommend that you use the ML method (runmode= -2, CodonFreq = 2 in
codeml.ctl) as much as possible even for pairwise sequence comparison.

 seqfile = abglobin.nuc * sequence data file name
 outfile = yn * main result file
 verbose = 0 * 1: detailed output (list sequences), 0: concise
output

 icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
 weighting = 0 * weighting pathways between codons (0/1)?
 commonf3x4 = 0 * use one set of codon freqs for all pairs (0/1)?

The control file yn00.ctl, an example of which is shown above, specifies the
sequence data file name (seqfile), output file name (outfile), and the genetic
code (icode). Sites (codons) involving alignment gaps or ambiguity nucleotides in any
sequence are removed from all sequences. The variable weighting decides whether
equal weighting or unequal weighting will be used when counting differences between
codons. The two approaches will be different for divergent sequences, and unequal
weighting is much slower computationally. The transition/transversion rate ratio κ is
estimated for all sequences in the data file and used in subsequent pairwise comparisons.

3 2 P A M L M A N U A L

I hope to add an option to allow κ to be estimated for each pair. commonf3x4
specifies whether codon frequencies (based on the F3x4 model of codonml) should be
estimated for each pair or for all sequences in the data. Besides the main result file, the
program also generates three distance matrices: 2YN.dS for synonymous rates,
2YN.dN for nonsynonymous rates, 2YN.t for the combined codon rate (t is measured
as the number of nucleotide substitutions per codon). Those are lower-diagonal distance
matrices and are directly readable by some distance programs such as NEIGHBOR in
Felesenstein's PHYLIP package.

mcmctree

The program mcmctree used to implement the method of Yang and Rannala (Yang
and Rannala 1997) see also (Rannala and Yang 1996) for Bayesian estimation of
molecular phylogenies. The program was very slow and thus decommissioned, since
MrBayes now does a much better job of calculating posterior probabilities on trees.
From version 3.15, mcmctree implements the MCMC algorithm of Yang and Rannala
(2005) for estimating species divergence times using soft fossil bounds. The example file
is in the folder paml/examples/SoftBound/. Look at the readme file there and try to
duplicate the results in our paper. Note that our method works under the molecular
only (clock = 1), and the results can be highly unreliable if the clock assumption is
violated. Work is under way to relax the clock assumption.

4 Models and Analyses

General Theory

This chapter provides some background information about the models implemented in
the programs in the PAML package and the kind of analyses that can be performed by
the programs. Almost all the models and analyses discussed in this chapter are
implemented in the two programs baseml and codeml. I will briefly mention the control
variables used to specify the models under discussion when you run the programs, and
you can consult Chapter 3 for more details. The section on simulation is for the
program evolver.

In summary, baseml and codeml are maximum likelihood programs. They use numerical
optimization algorithms to maximize the log likelihood value under a model you specify
to calculate the maximum likelihood estimates of parameters and the corresponding log
likelihood. A major use of those models is to test interesting biological hypothesis using
the likelihood ratio test.

Maximum likelihood estimates (MLEs) and likelihood ratio tests (LRTs)

MLE: The probability of observing the data X, when viewed as a function of the
unknown parameters θ with the data given, is called the likelihood function: L(θ; X) = f
(θ|X). According to the likelihood principle, the likelihood function contains all

 P A M L M A N U A L 3 3

information in the data about parameters θ. The best point estimate of θ is given by the
θ that maximizes the likelihood L or the log likelihood (θ; X) = log{L(θ; X)}.
Furthermore, the likelihood curve provides information about the uncertainty in the
point estimate.

LRT: Suppose the simpler (null) model has p0 parameters and the more general
(alternative) model has p1 parameters, and the (optimal) log likelihood values under the
two models are 0 and 1. Then twice the log likelihood difference, 2∆ = 2(1 – 0), has
asymptotically a χ2 distribution with d.f. = p1 – p0 if the null model is true. So the test
statistic 2∆ can be compared with that χ2 distribution to test whether the null model is
rejected against the alternative model.

You can fit two nested models to construct a likelihood ratio test, but this process is not
automated, and you have to change the specifications and run the program twice. For
example, JC69 and K80 can be compared using a likelihood ratio test, which will be a
test of the null hypothesis that the transition/transversion rate ratio κ = 1 (JC69) against
the alternative κ ≠ 1 (K80). Twice the log likelihood 2∆ should be compared with the
χ2 with d.f. = 1. To conduct this test, you should run baseml on the same data set using
the same tree once with model = 0 (for JC69) and another time with model = 1 (for
K80) and retrieve the calculated log likelihood values. You will then do the subtraction
and multiplication to get 2(K80 – JC69). You can get the P values by running the
program chi2 included in the package or look up a table of χ2 critical values.

Markov process models are used to describe substitutions between nucleotides (baseml
and basemlg), codons (codeml) or amino acids (codeml). The substitution rate can be
constant over all sites or assumed to be variable among sites. A discrete-gamma model
(Yang 1994a) is used in baseml, codonml and aaml to accommodate rate variation
among sites, according to which rates for sites come from several (say, four or eight)
categories used to approximate the continuous gamma distribution. When rates are
variable at sites, the auto-discrete-gamma model (Yang 1995) accounts for correlation of
rates between adjacent sites.

General assumptions of the models (programs) include the following:

• Substitutions occur independently in different lineages.

• Substitutions occur independently among sites (except for the auto-discrete-
gamma model which account for correlated substitution rates at neighboring
sites).

• The process of substitution is described by a time-homogeneous Markov
process. Further restrictions may be placed on the structure of the rate matrix of
the process and lead to different substitution models.

The process of substitution is assumed to be stationary. In other words, the frequencies
of nucleotides (baseml), codons (codonml), or amino acids (aaml) have remained
constant over the time period covered by the data.

3 4 P A M L M A N U A L

The existence of a molecular clock (rate constancy among lineages) is not necessary but
can be imposed. Variation (and dependence) of rates at sites is allowed by the discrete-
gamma (or auto-discrete-gamma) models implemented in baseml, codonml and aaml.

Nucleotide Substitution Models

Markov process models of nucleotide substitution implemented in PAML include JC69
(Jukes and Cantor 1969), K80 (Kimura 1980), F81 (Felsenstein 1981), F84 (Felsenstein,
DNAML program since 1984, PHYLIP Version 2.6), HKY85 (Hasegawa et al. 1984;
Hasegawa et al. 1985), Tamura (1992), Tamura and Nei (1993), and REV, also known as
GTR for general-time-reversible (Yang 1994b; Zharkikh 1994). The rate matrices of
these models are given below

JC69 : Q =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.111
1.11
11.1
111.

K80 : Q =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.11
.11

11.
11.

κ
κ

κ
κ

F81 : Q =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.
.

.
.

ACT

GCT

GAT

GAC

πππ
πππ
πππ
πππ

F84: Q =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
+

+
+

.)/1(
)/1(.

.)/1(
)/1(.

ARCT

GRCT

GATY

GACY

ππκππ
ππκππ

ππππκ
ππππκ

with πY = πT + πC and πR = πA + πG.

HKY85: Q =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.
.

.
.

ACT

GCT

GAT

GAC

κπππ
κπππ
ππκπ
ππκπ

T92: Q =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−−

−
−

.2/2/)1(2/)1(
2/.2/)1(2/)1(

2/2/.2/)1(
2/2/2/)1(.

GCGCGC

GCGCGC

GCGCGC

GCGCGC

κπππ
κπππ
πππκ
πππκ

 P A M L M A N U A L 3 5

TN93: Q =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.
.

.
.

2

2

1

1

ACT

GCT

GAT

GAC

πκππ
πκππ

πππκ
πππκ

REV (GTR): Q =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.
.

.
.

ACT

GCT

GAT

GAC

ec
db

eda
cba

πππ
πππ
πππ
πππ

UNREST Q = .

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.
.

.
.

.
.

.
.

lkj
ihg
fed
cba

qqq
qqq
qqq
qqq

GAGCGT

AGACAT

CGCACT

TGTATC

The element qij (i ≠ j) represents the rate of substitution from nucleotide i to j, with the
diagonals qii specified by the mathematical requirement that each row of Q sums to zero.
The nucleotides are ordered T, C, A, G. The transition probability matrix over time t is
then given as P(t) = {pij(t)} = exp(Qt), where pij(t) is the probability that nucleotide i will
become nucleotide j after time t. The sequence data does not permit separation of rate
(Q) and time (t), and so Q specifies relative rates only. In the programs, Q is multiplied
by a constant so that the average rate of substitution is 1 when the process is in
equilibrium. This scaling means that time t, or the branch length in a tree, is measured by
the expected number of nucleotide substitutions per site. Q thus represents the pattern
of substitution, while the amount of evolution is reflected in time or the branch length.
The frequency parameters πT, πC, πA, πG (with the sum to be 1) give the equilibrium
distribution of the process for the F81, F84, HKY85, TN93 and REV models. The
equilibrium distribution under the JC69 and K80 models has equal frequencies (1/4) for
the four nucleotides, while that under T92 is πT = πA = (1 – πGC)/2, πC = πG = πGC/2,
where the GC content πGC is a parameter. Parameters a, b, c, d, e in REV, κ in F84,
HKY85 or T92, and κ1 and κ2 in TN93 may be termed rate ratio parameters. So the
JC69, K80, F81, F84, HKY85, T92, TN93 and REV models contain 0, 1, 0, 1, 1, 1, 2, 5
rate ratio parameters respectively, and 0, 0, 3, 3, 1, 3, 3, 3 frequency parameters
respectively. Normally the frequency parameters are estimated using the averages of the
observed frequencies, which should be very close to the true maximum likelihood
estimates if the assumptions of homogeneity and stationarity are acceptable. Under
simple models for a single gene, you can use nhomo = 1 to estimate the frequency
parameters by ML.

Parameter κ in the K80, HKY85 and T92 models is equivalent to α/β in the notation of
Kimura (1980) and Hasegawa et al. (Hasegawa et al. 1985). The present notation is more
convenient in a maximum likelihood analysis as the ratio is assumed to be constant for
different branches of the tree. F84 is the model implemented in J. Felsenstein's DNAML
program. The rate matrix for this model was given by Hasegawa and Kishino (1989),
Kishino and Hasegawa (1989), Yang (1994a; 1994b) and Tateno et al. (1994). Thorne et
al. (1992) described the transition probability matrix, and Yang (1994a) and Tateno et al.
(1994) derived formulae for estimating sequence distances under the model. REV is the

3 6 P A M L M A N U A L

general time-reversible process model, also known as GTR (see also Tavaré 1986; Yang
1994b; Zharkikh 1994). It is used in baseml only. It seems sufficiently general to
enable accurate estimation of the substitution pattern from real data.

For more details about nucleotide substitution models, see review articles by Swofford et
al. (1996), Lio and Goldman (1998), and Whelan et al. (2001).

Transition/transversion Rate Ratio

Unfortunately there are quite a few different definitions of the transition/transversion rate
ratio. The worst is the ratio of the observed numbers of transitional and transversional
differences between two sequences, without correcting for multiple hits, also known as
P/Q in Kimura’s (1980) notation (see, e.g., (Wakeley 1994)). I suggest that this measure
should not be used. The measure used in baseml is κ as specified in the above
formulas for K80 or HKY95. In Kimura’s (1980) notation, κ = α/β. A third measure
(R) is the ratio averaged over base frequencies; this is the ratio of the expected number
of transitions to the expected number of transversions if one observes the substitution
process over time. In Kimura’s (1980) notation, R = α/(2β). PHYLIP and PAUP* use
R and name it the “transition/transversion rate ratio”, while κ is referred to in those
programs as the “transition/transversion rate parameter”. For a general substitution
model without any constraint (the UNREST model in baseml), R is defined as

GCGGTGACAATACGCCACTGTTAT

GAGAGACTCTCT

qqqqqqqq
qqqq

R
ππππππππ

ππππ
+++++++

+++
= .

Special examples are listed in the following table.

Model Average transition/transversion rate ratio (R)
JC69 (Jukes and Cantor 1969) ½
K80 (Kimura 1980) κ/2
F81 (Felsenstein 1981) (πTπC + πAπG)/(πYπR)
F84 (Phylip) [πTπC(1 + κ/πY) + πAπG(1 + κ/πR)] / (πYπR)
HKY85 (Hasegawa et al. 1985) (πTπC + πAπG)κ/(πYπR)
T92 (Tamura 1992) To be filled in.
TN93 (Tamura and Nei 1993) (πTπCκ1 + πAπGκ2)/(πYπR)
REV (GTR) (πTπCa + πAπG)/(πTπAb + πTπGc + πCπAd + πCπGe)

Note that the definition of κ under F84 is different than under K80 or HKY85. When
transition and transversion rates are equal, κ = 1 and R = ½ under K80, κ = 1 and R =
(πTπC + πAπG)/(πYπR) under HKY85, and κ = 0 and R = (πTπC + πAπG)/(πYπR) under
F84. In general, by forcing R to be identical under HKY85 and F84, one can derive an
approximate relationship between κHKY85 and κF84 (Goldman 1993):

 F84HKY 1 κ
ππππ

ππππππ
κ

GACT

RGAYCT

+
+

+= .

For K80, both κ and R would serve the same purpose. For F84 and HKY85, κ is easier
to use than R ; for example the null hypothesis of equal transition and transversion rates

 P A M L M A N U A L 3 7

is represented by κ = 0 under F84 and κ = 1 under HKY85, while it is rather awkward
to specify using R. However, for more complex models such as REV (GTR) or
UNREST, it is impossible to define κ while R can be calculated straightforwardly.

Codon Substitution Models

There is now a large collection of codon substitution models. Most of them are
discussed in the following review articles (Yang and Bielawski 2000; Yang 2001; Yang
2002). Yang (2001) reviewed the mathematical aspects, while Yang and Bielawski (2000)
and Yang (2002) are for biologists. Add some comments about the simulation papers?

Basic Model

Goldman and Yang (1994) suggested a model of codon substitution that is similar to
nucleotide-substitution models (especially HKY85) but considers a sense codon as the
unit of evolution. The original model used amino acid chemical distances (Grantham
1974) to modify their substitution rate, but the model was found not to fit data well.
The commonly used version now ignores the fact that some amino acids are close to
each other chemically while others are very different. This simplified version (Yang et al.
1998) specifies the substitution rate from codon i to codon j as

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

,transition ousnonsynonymfor ,

on,transversi ousnonsynonymfor ,

,transition synonymousfor ,

on,transversi synonymousfor ,
position, one than moreat differ codons two the if ,0

j

j

j

j

ijq

ωκπ

ωπ

κπ

π

The equilibrium frequency of codon j (πj) can be considered a free parameter, but can
also be calculated from the nucleotide frequencies at the three codon positions (control
variable CodonFreq). Under this model, the relationship holds that ω = dN/dS, the
ratio of nonsynonymous/synonymous substitution rates. This basic model is fitted by
specifying model = 0 NSsites = 0, in the control file codeml.ctl. It forms the basis for
more sophisticated models implemented in codeml.

The ω ratio is a measure of natural selection acting on the protein. Simplistically, values
of ω < 1, = 1, and > 1 means negative purifying selection, neutral evolution, and
positive selection. However, the ratio averaged over all sites and all lineages is almost
never > 1, since positive selection is unlikely to affect all sites over prolonged time.
Thus interest has been focused on detecting positive selection that affects only some
lineages or some sites.

Branch Models

The branch models allow the ω ratio to vary among branches in the phylogeny and are
useful for detecting positive selection acting on particular lineages (Yang 1998; Yang and
Nielsen 1998). They are specified using the variable model. model = 1 fits the so-

3 8 P A M L M A N U A L

called free-ratios model, which assumes an independent ω ratio for each branch. This
model is very parameter-rich and its use is discouraged. model = 2 allows you to have
several ω ratios. You have to specify how many ratios and which branches should have
which rates in the tree file by using branch labels. See “Branch or node labels” in the
section “Tree file format” in Chapter 4. The lysozyme example data files are included in
the examples/lysozyme/ folder; check the readme file.

Site Models

The site models allow the ω ratio to vary among sites (among codons or amino acids in the
protein) (Nielsen and Yang 1998; Yang et al. 2000b). A number of such models are
implemented in codeml using the variable Nssites (use model = 0). You can run
several Nssites models in one go, by specifying several values for NSsites. For example,
NSsites = 0 1 2 7 8 will fit 5 models to the same data in one go. The site models have
been used in real data analyses and evaluated in computer simulation studies (Anisimova
et al. 2001; Anisimova et al. 2002; Anisimova et al. 2003; Wong et al. 2004). Two pairs
of models appear to be particularly useful and are recommended for real data analysis.
The first pair include M1a (NearlyNeutral) and M2a (PositiveSelection), while the second
pair include M7 (beta) and M8 (beta&ω). M1a (NearlyNeutral) and M2a
(PositiveSelection) are slight modifications of models M1 (neutral) and M2 (selection) in
(Nielsen and Yang 1998). See the table below. The old models M1 and M2 fix ω0 = 1
and ω1 = 1, and are unrealistic as they do not account for sites with 0 < ω < 1. In the
new models M1a and M2a, 0 < ω0 < 1 is estimated from the data while ω1 = 1 is fixed.
The modified models M1a and M2a are described in Wong et al. (2004) and Yang et al.
(2005). In codeml prior to v3.14, M1 and M2 were implemented, but since 3.14, M1a
and M2a have replaced M1 and M2, respectively, so M1 and M2 are not available in
v3.14 or later.

Model NSsites np Free parameters
M0 (one ratio) NSsites = 0 1 ω
M1a (NearlyNeutral):
 p0 (p1 = 1 – p0)
 ω0 < 1, ω1 = 1

NSsites = 1 2 p0, ω0 < 1

M2a (PositiveSelection):
 p0, p1 (p2 = 1 – p0 – p1)
 ω0 < 1, ω1 = 1, ω2 > 1

NSsites = 2 4 p0, p1,
ω0 < 1, ω2 > 1

M3 (discrete):
 p0, p1 (p2 = 1 – p0 – p1)
 ω0, ω1, ω2

NSsites = 3 5 p0, p1,
 ω0, ω1, ω2

M7 (beta): p, q NSsites = 7 2 p, q
M8 (beta&ω):
 p0 (p1 = 1 – p0)
 p, q, ωs > 1

NSsites = 8 4 p0, p, q, ωs > 1

Also codeml v3.14 applies the constraints ω2 > 1 for M2a and ωs > 1 for M8, which
seems to remove the problem of multiple local peaks for those two models.

The modifications are based on the following considerations, some of which originated
from computer simulation studies. The insistence of a site class with ω1 = 1 in M2a

 P A M L M A N U A L 3 9

helps to avoid misclassifying sites under weak purifying selection (with ω slightly less
than 1) into the site class of positive selection, as such sites will be lumped into the
neutral class. The M1a-M2a pair seems more robust than the M7-M8 pair. If the true
null model assumes several classes of conserved sites with ω < 1 as well as neutral sites
with ω = 1, the M7-M8 comparison may often be significant, and among half of such
cases, the ωs estimate under M8 will be >1, producing false positives. In such cases, the
M8a-M8 comparison or M1a-M2a comparison may be more robust. See below on LRTs
about description of M8a.

M3 (discrete) is found not to be a good model either for LRT of positive selection or for
identification of positive selection sites using NEB (naïve Empirical Bayes; see below).
Partly this is because codeml looks at whether an ω estimate is > 1 but not at how much
larger it is than 1. So if an estimated ω is 1.12, the program may lump many sites under
weak purifying selection (with true ω slightly less than 1) into this class of positively
selected sites, producing many false positives. In some simulations, M2a performed
better than model M3 even if the data were simulated under M3 (I think there are some
examples of this in (Anisimova et al. 2002) or (Wong et al. 2004).) So even if M3 often
fits the data better than all other models, we do not recommend the use of M0-M3
comparison for detecting positive selection nor the use of M3 and NEB to identify sites
under positive selection. Note that the BEB (Bayes Empirical Bayes) procedure for
identifying positive selection sites is implemented for M2a and M8 only and not for M3.

You might want to check the original simulation papers cited above for details. Notes,
files, and summary programs for such simulations are in the paml release in the folder
technical/simulation/codon/. Also look at the small program multiruns useful when
you run the same analysis multiple times to guide against convergence problems. We
welcome suggestions as to how to break our recommended models (M2a and M8).
Note, however, that high rates of intragenic recombination may produce false positives
(Anisimova et al. 2003). Strong local variation in the base mutation rate may also be
expected to affect these tests.

Testing positive selection using the likelihood ratio test (LRT). We recommend two (almost
three) LRTs for testing positive selection. The first test compares M1a against M2a, and
the second test compares M7 against M8. See Yang et al. (2005) for detailed description
of the models. A third test compares the null hypothesis M8a (beta&ωs =1) and M8
(Swanson et al. 2003; Wong et al. 2004). M8a is specified using NSsites = 8, fix_omega =
1, omega = 1. The degree of freedom for the chi square in these three tests is unclear. A
difficulty is that when the proportion p2 under M2a or p1 under M8 is 0, the
corresponding ω (ω2 for M2a or ωs for M8) is not identifiable. We suggest the use of df
= 2 for the M1a-M2a and M7-M8 comparisons, which is expected to be too
conservative. As pointed out by Swanson et al. (2003), the test statistic for the M8a-M8
comparison should be compared with the 50:50 mixture of point mass 0 and (Self
and Liang 1987), so that the critical values are 2.71 at 5% and 5.41 at 1%. Note that the
p value for a 50:50 mixture of and is just the average of the two p values from

the two distributions, in the case of M8a-M8 comparison, you get the p value from
and then half it to get the p value for the mixture distribution. For example, if the
statistic is 2∆

2
1χ

2
jχ 2

kχ
2
1χ

 = 2.0, then p = 0.157/2 = 0.079. Wong et al. (2004) recommended the

use of based on simulations and also to guide against violations of assumptions. 2
1χ

4 0 P A M L M A N U A L

Identifying sites using the Empirical Bayes method. When the likelihood ratio test is significant,
the empirical Bayes method is used to calculate posterior probabilities for site classes.
The method we implemented initially (Nielsen and Yang 1998; Yang et al. 2000b) is
called the naïve empirical Bayes (NEB). It is naïve as it uses the maximum likelihood
estimates of parameters (such as the proportions and ω ratios) but do not account for
their sampling errors. This defect is now fixed using a procedure called Bayes empirical
Bayes (BEB) implemented for models M2a and M8 (Yang et al. 2005). Both the NEB
and BEB calculations are included in the output, and the calculations are automatically
performed whenever you specify the site models.

The BEB output has the following format:
Prob(w>1) mean w
135 K 0.983* 4.615 +- 1.329
Interpretation: 4.615 is the approximate mean of the posterior distribution for w, and 1.329 is
the square root of the variance in the posterior distribution for w. The program prints out
an * if the posterior probability is >95%, and ** if the probability is > 99%.

The beta distribution. The beta distribution, beta(p, q), is a flexible distribution for a
variable in the range (0, 1). Below are nine probability densities corresponding
to different parameters p and q. The x axis is the dN/dS ratio (omega), and the y
axis represents the number or proportion of sites with that dN/dS ratio. So the
first plot, for beta(0.2, 0.2), indicates that most sites are either highly conserved
with dN/dS close to 0 or nearly neutral with dN/dS = 1, while few sites are in
between. The shape of the beta distribution beta(p, q) depends on the two
parameters p and q. The left side of the curve goes up if p < 1 and down if p >
1. The right side of the curve goes up if q < 1 and down if q > 1. Look at the
plots below.

 P A M L M A N U A L 4 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1

0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1

beta(0.2, 1) beta(0.2, 2)

beta(1, 1)

beta(0.2, 0.2)

beta(1, 2)

beta(2, 0.2)
beta(2, 2)

beta(1, 0.2)

beta(2, 1)

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1

0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1

0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1

beta(0.2, 1) beta(0.2, 2)

beta(1, 1)

beta(0.2, 0.2)

beta(1, 2)

beta(2, 0.2)
beta(2, 2)

beta(1, 0.2)

beta(2, 1)

Suzuki and Gojobori’s (1999) method

Suzuki & Gojobori (1999) proposed a method for testing the effect of selection at
individual sites in an alignment of protein coding DNA sequences. With the
terminology used here, the method tests whether the ω ratio (dN/dS) is >1 or <1
significantly, which indicates positive and purifying selection, respectively. This method
uses parsimony to reconstruct sequences at the ancestral nodes, and then for each site,
counts the numbers of synonymous and nonsynonymous differences (Sd and Nd) and
the numbers of synonymous and nonsynonymous sits (S and N). It then test whether
the dN/dS ratio at the site is significantly different from 1. Errors in the ancestral
sequence reconstruction are ignored. Suzuki has a program called AdaptSite that
implements the test.

In PAML, a test of this kind is implemented as a by-product of ancestral sequence
reconstruction in codeml and baseml. A difference is that baseml and codeml use
maximum likelihood to reconstruct ancestral sequences (Yang et al. 1995a), while Suzuki
& Gojobori used parsimony. Use RateAncestor = 1. The output currently goes into the
file rst1. (I might move it to another place later on.) The choice of baseml versus
codeml and also the choice of substitution model for each program affects ancestral
sequence reconstruction only. The later steps are the same, and follow Suzuki &
Gojobori (1999). For codeml, you can use M0 (NSsites = 0 and model = 0). If you
want, you can try some other models, such as NSsites = 2 or 8. The models are noted to
make little difference. For baseml, you should have "GC" on the first line of the
sequence data file to indicate that the sequences are protein coding. Use icode (= 0 for

4 2 P A M L M A N U A L

the universal code and 1 for vertebrate mitochondrial code) in the control file to specify
the genetic code, as in codeml. The following “multiple-gene” model is close to M0:
model = 4 Mgene = 4 (see (Yang 1996b) and the section titled “Models for combined
analysis of partitioned data”). Again the model choice should probably not matter much
to ancestral reconstruction, so you can use a simple model such as JC69 (model = 0
Mgene = 0).

I did some test using the data file abglobin.nuc in the PAML release. In general, the two
implementations produce similar results. At a few sites, the differences may be larger,
due to the following reasons.

o Adaptsite uses parsimony reconstruction while codeml uses a likelihood
reconstruction, so the reconstructed ancestral states may be different.

o S&G (1999) uses branch lengths to weight branches when sites (S and N) are
counted, with longer branches given higher weights. adaptsite uses an NJ
algorithm to estimate branch lengths while codeml uses a codon model (M0) to
do it, so the estimates may be different.

o For codons that are neighbors of stop codons, adaptsite and codeml count sites
differently. For example, for codons TAC and TAT, adaptsite counts S = 1 and
N = 2, while codeml gave 0.429 and 2.571.

o Missing data are handled differently.

Branch-site models

Yang and Nielsen (2002) implemented two models, called A and B, that let the ω ratio
vary both among sites and among lineages. The models attempt to detect positive
selection that affects only a few sites along a few lineages. The specifications are model
= 2 NSsites = 2 for model A and model = 2 NSsites = 3 for model B. There has been a
change to model A, as detailed in the table below (Yang et al. 2005; Zhang et al. 2005).

The old model assumes ω0 = 0 and is unrealistic. This is replaced by 0 < ω0 < 1,
estimated from the data. The new model is still called branch-site model A. It can be
compared with the new M1a (NearlyNeutral) to form a likelihood ratio test, with d.f. ≈ 2.
This is called test 1. This test can mistake relaxed selective constraint on the foreground
branches as positive selection, and so bear in mind that a significant result does not
necessarily mean positive selection. Another test, called test 2 or branch-site test of
positive selection, uses the same alternative model A but the null model is model A with
ω2 = 1 fixed (use fix_omega = 1 and omega = 1 in codeml.ctl). The null distribution
should be a 50:50 mixture of point mass 0 and , so that the critical values at the 5%

and 1% levels are 2.71 and 5.41, respectively. We recommend use of (with critical
values 3.84 and 5.99) to guide against violations of model assumptions. Test 2 appears
to be a robust test of positive selection on the foreground branches and is called the
branch-site test of positive selection. We recommend its use. You can forget about the
old modes and tests.

2
1χ

2
1χ

Similarly both the NEB and BEB methods for calculating posterior probabilities for site
classes are implemented for the modified branch-site model A (not for model B). You
should use model A in combination with the BEB procedure and ignore the NEB
output.

 P A M L M A N U A L 4 3

Branch site model A: Old and New

 Old model A (np = 3) New model A (np = 4)
Site
class

Proportion Background Foreground Background Foreground

0 p0 ω0 = 0 ω0 = 0 0 < ω0 < 1 0 < ω0 < 1
1 p1 ω1 = 1 ω1 = 1 ω1 = 1 ω1 = 1
2a (1 – p0 – p1) p0/(p0 + p1) ω0 = 0 ω2 > 1 0 < ω0 < 1 ω2 > 1
2b (1 – p0 – p1) p1/(p0 + p1) ω1 = 1 ω2 > 1 ω1 = 1 ω2 > 1

Clade Models

Clade model C is specified by model = 3 Nssites = 2 while clade model D is specified by
model = 3 NSsites = 3 using ncatG to specify the number of site classes (see also
Forsberg and Christiansen 2003; Bielawski and Yang 2004). Clade model C is changed,
in a similar way to branch-site model A. The new model C replaces ω0 = 0 by 0 < ω0 <
1 and has 5 parameters in the ω distribution: p0, p1, ω0, ω2, and ω3. The new model C
can be compared with the new M1a (NearlyNeutral), which has 2 parameters, with d.f. ≈
3.

Clade model C

 Old model C (np = 4) New model C (np = 5)
Site class Proportion Clade 1 Clade 2 Clade 1 Clade 2
0 p0 ω0 = 0 ω0 = 0 0 < ω0 < 1 0 < ω0 < 1
1 p1 ω1 = 1 ω1 = 1 ω1 = 1 ω1 = 1
2 p2 = 1 – p0 – p1 ω2 ω3 ω2 ω3

Clade model D can work with ncatG = 3 or 2. The option variable ncatG is ignored
when you specify branch-site models A and B, and clade model C, since the number of
categories is fixed in the model.

The BEB procedure is implemented for clade model C but not for model D. You
should use model C in combination with the BEB procedure. Ignore the NEB output.

Amino Acid Substitution Models

“Empirical” models based on the Dayhoff substitution matrix (model = 2) or its updated
version of Jones et al. (1992) are constructed using the same strategy. The transition
probability matrix over a very short time period such as one PAM, i.e., P(0.01), is used to
approximate the matrix of instantaneous rates (Q). The empirical matrices of Dayhoff et
al. (1978) and Jones et al. (1992) were made to satisfy the reversibility condition, that is,

 πiqij = πjqji

for any i and j, so that my implementations may be slightly different from that of
Kishino et al. (1990). These models assume a fixed pattern of amino acid substitution.
The package also include an empirical model for globular proteins, the WAG model of
Whelan and Goldman (2001), which is given by the file wag.dat, and two similar
empirical models for mitochondrial proteins. The first of these is given by the file
mtREV24.dat and is the mtREV24 model of Adachi and Hasegawa (1996a; 1996b)

4 4 P A M L M A N U A L

estimated from a diverse range of species including mammals, chicken, frog, fish, and
lamprey. The matrix was estimated by maximum likelihood from real data. The second is
given by the file mtmam.dat and is estimated from 20 mammalian species using
maximum likelihood under the REV model with variable rates among sites (Yang et al.
1998). You can check those files for more details, or if you want to supply your own
empirical matrix.

"Mechanistic" models of amino acid substitution requires consideration of both the
mutational distance between the amino acids as determined by the locations of their
encoding codons in the genetic code table, and the effects that the potential change may
have on the structure and function of the protein, which may be related to the physical,
chemical and structural differences between amino acids. It seems natural that such a
model should be formulated at the level of codons. The program aaml implements a
few such models, specified by the variable aaDist.

Models of variable substitution rates across site (see (Yang 1996c) for review) are
implemented for both nucleotide (baseml) and amino acid (aaml) sequences.
Although the option variables such as fix_alpha and alpha are also available for
codon models (codonml), the gamma model for codons is unrealistic as it applies the
same gamma rate to both synonymous and nonsynonymous substitutions, with their rate
ratio held constant among sites. You are recommended to use the Nssites models
instead, which assume homogeneous synonymous rates but variable nonsynonymous
rates.

Variable Rates Among Sites

Those models assume that the substitution rates are variable among sites according to
some statistical distribution. Each site (nucleotide, amino acid, or codon) is assumed to
have a rate, which stays constant throughout the tree, so that a fasts-evolving site is fast
evolving along all lineages and a slowly-evolving site is always slowly-evolving. A
commonly used distribution is the gamma distribution (Uzzell and Corbin 1971; Jin and
Nei 1990). The gamma distribution has a shape parameter and a scale parameter. To
avoid the use of too many parameters, the scale parameter is fixed so that the mean of
the distribution is 1 and as a result, the rates for sites are relative rate factors. Thus the
shape parameter α measures how variable the rates are among sites. If α > 1, the
distribution is bell-shaped (∩), meaning that most sites have rates around 1 while few
sites have either very low or very high rates. When α → ∞, the distribution degenerates
into the model of one rate for all sites. When α ≤ 1, the distribution has a highly skewed
L-shape, meaning that most sites have very low rates or are nearly “invariable”, but there
are some evolutionary “hot spots” with high rates.

Likelihood calculation under the gamma distribution of rates for sites is described in
Yang (1993). The algorithm is implemented in the program basemlg, for nucleotide
substitution models JC69 (Jukes and Cantor 1969), K80 (Kimura 1980), F81 (Felsenstein
1981), F84 (Phylip), and HKY85 (Hasegawa et al. 1985). Steel et al. (1993) described a
way of achieving the same computation using Hadamard matrix transformation . This
works for models that are special cases of Kimura’s model of three substitution types
(3ST) (1981). There does not seem to be a program implementing this algorithm. The
algorithm of Yang (1993) involves very intense computation and basemlg is usable for
trees of no more than about 6 or 7 sequences. The commonly-used algorithm, called

 P A M L M A N U A L 4 5

discrete gamma, uses several categories of rates to approximate the continuous gamma
(Yang 1994a). This is the version implemented in packages such as PHYLIP/DNAML
and PAUP. In baseml and codeml, the model is implemented by specifying a nonzero
value for the parameter alpha in the control files: fix_alpha = 0, alpha = 0.5, say, means
estimating α using maximum likelihood with a starting value of 0.5, while fix_alpha = 1,
alpha = 0.5 means a discrete-gamma model with α = 0.5 fixed. The number of
categories is specified using ncatG. Values such as 5, 4, 8, or 10 are reasonable. Note
that the discrete gamma model has one parameter (α), like the continuous gamma
model, and the number of categories is not a parameter.

You can test whether the rates are variable among sites by comparing the log likelihood
values between two models: the null model of one rate for all sites (fix_alpha = 1, alpha
= 0) against the alternative gamma model (fix_alpha = 0). The df is a 50:50 mixture of
point mass at 0 and . If you use and the one-rate model is rejected, the same
conclusion will be reached if you use the mixture distribution.

2
1χ 2

1χ

Gu et al. (1995) extended the gamma model of Yang (1993) to include a class of
“invariable” sites with rate 0. This model is somewhat pathological as there is typically a
strong correlation between the proportion of invariable sites and the gamma shape
parameter. Furthermore, the gamma model with a small α accommodate sites with rates
virtually zero. Models involving a proportion of invariable sites are not implemented in
PAML programs. They are implemented in PAUP and MrBayes. Note that the α
parameter under HKY+G is not comparable with the α parameter under HKY+G+I.

Yang (1995) described a few models that allow the rates to be variable among sites but
also correlated over neighbouring sites. The algorithms are then hidden Markov models
. The so-called auto-discrete gamma model has two parameters: the gamma shape
parameter α and a correlation parameter ρ, which is related to the correlation in rates
between two neighbouring sites Yang (1995). This model is implemented in baseml
using the specifications: fix_alpha = 0 and fix_rho = 0. The variable nparK specifies a
few nonparametric models that assume a few rate classes, with a transition probability
matrix describing the transition from one rate at a site to another rate at the next site.
Felsenstein and Churchill (1996) developed a similar hidden Markov model for variable
and correlated rates over sites, as implemented in phylip/dnaml. This appears to be a
special case of the nonparametric model mentioned above.

The rates at individual sites can also be calculated under those models, using a Bayesian
(or more precisely, empirical Bayesian) approach (Yang and Wang 1995). If you choose
RateAncestor = 1, baseml and codeml will print out such estimated rates into a file
named rst. Under the continuous gamma model, the posterior mean of the rate at a site
should minimize the mean squared error. However, the calculation under the discrete
gamma model is more a crude approximation. As we use rate categories and take
averages within the category, one can expect that the estimated rates will be too close to
1, as the extremely high and lower rates disappear after the averaging. Using a large
number of categories (say, ncatG = 40) may be helpful if you are interested in calculating
such rates.

For a review of models of variable rates among sites, see Yang (1996c) and chapters 13
and 16 of Felsenstein (2004).

4 6 P A M L M A N U A L

Models for Combined Analyses of Partitioned Data

For Nucleotides (baseml)

Several models are described by Yang (1996b) and implemented in programs baseml
and codeml (codonml and aaml) for analyzing heterogeneous data sets (such as
those of multiple genes or different codon positions). The implementation and
description below refer to the case of multiple genes, but in the case of nucleotide-based
models (baseml), the method can be used to analysed data of different codon
positions. These models account for different aspects of heterogeneity among the
different data sets and are useful for testing hypotheses concerning the similarities and
differences in the evolutionary process of different data sets.

The simplest model which assumes complete homogeneity among genes can be fitted by
concatenating different genes into one sequence without using the option G (and by
specifying Mgene = 0 in the control file). The most general model is equavilent to a
separate analysis. This can be done by fitting the same model to each data set (each
gene), but can also be done by specifying Mgene = 1 with the option G in the
combined data file. The sum of the log-likelihood values over different genes is then the
log likelihood of the most general model considered here. Models accounting for some
aspects of the heterogeneity of multiple genes are fitted by specifying Mgene in
combination with the option G in the sequence data file. Mgene = 0 means a model
that asumes different substitution rates but the same pattern of nucleotide substitution
for different genes. Mgene = 2 means different frequency parameters for different
genes but the same rate ratio parameters (κ in the K80, F84, HKY85 models or the rate
parameters in the TN93 and REV models). Mgene = 3 means different rate ratio
parameters and the same frequency parameters. Mgene = 4 means both different rate
ratio parameters and different frequency parameters for different genes. Parameters and
assumptions made in these models are summarized in the following table, with the
HKY85 model used as an example. When substitution rates are assumed to vary from
site to site, the control variable Malpha specifies whether one gamma distribution will
be applied across all sites (Malpha = 0) or a different gamma distribution is used for
each gene (or codon position).

Sequence file Control file Parameters across genes
No G Mgene = 0 everything equal
Option G Mgene = 0 the same κ and π, but different cs (proportional branch lengths)
Option G Mgene = 2 the same κ, but different πs and cs
Option G Mgene = 3 the same π, but different κs and cs
Option G Mgene = 4 different κ, πs, and cs
Option G Mgene = 1 different κ, πs, and different (unproportional) branch lengths

The different cs for different genes mean that branch lengths estimated for different
genes are proportional. Parameters π represent the equilibrium nucleotide frequencies,
which are estimated using the observed frequencies (nhomo = 0). The
transition/transversion rate ratio κ in HKY85 can be replaced by the two or five rate
ratio parameters under the TN93 or REV models, respectively. The likelihood ratio test
can be used to compare these models, using an approach called the analysis of deviance
(McCullagh and Nelder 1989), which is very similar to the more familiar analysis of
variance.

 P A M L M A N U A L 4 7

For Codons (codeml with seqtype = 1)

Codon models for multiple genes are described in detail by Yang & Swanson (2002).
The following is table 1 of that paper. The lysin data set used in that paper is included in
the examples/ folder of the package. The analysis separates the buried and exposed
amino acids in the lysin into two partitions (“genes”), and heterogeneity between the
partitions are accounted for in the analysis. You can read the readme file and try to
duplicate the results in table 6 of Yang & Swanson (2002).

Sequence file Control file Parameters across genes
No G Mgene = 0 everything equal
Option G Mgene = 0 the same (κ, ω) and π, but different cs (proportional branch lengths)
Option G Mgene = 2 the same (κ,ω), but different πs and cs
Option G Mgene = 3 the same π, but different (κ, ω) and cs
Option G Mgene = 4 different (κ, ω), πs, and cs
Option G Mgene = 1 separate analysis

For Amino Acids (codeml with seqtype = 2)

Se Yang (1996 JME) for similar descriptions for nucleotide models
Sequence file Control file Parameters across genes
No G Mgene = 0 everything equal
Option G Mgene = 0 the same π, but different cs (proportional branch lengths)
Option G Mgene = 2 different πs and cs
Option G Mgene = 1 separate analysis

Global and Local Clocks, and Sequences With Dates

PAML (baseml and codeml) implements three ML models regarding rate constancy
among lineages. clock = 0 means no clock and each branch has an independent rate.
For a binary tree with n species (sequences), this model has (2n – 3) parameters (branch
lengths). clock = 1 means the global clock, and all branches have the same rate. This
model has (n – 1) parameters corresponding to the (n – 1) internal nodes in the binary
tree. So a test of the molecular clock assumption, which compares those two models,
should have d.f. = n – 2.

Between those two extremes are the local clock models, specified by clock = 2 (Yoder
and Yang 2000; Yang and Yoder 2003), which assume that branches in the phylogeny
conform with the clock assumption and has the default rate (r0 = 1) except for several
pre-defined branches, which have different rates. Rates for branches are specified using
branch labels in the tree file. For example, the tree (((1,2) #1, 3), 4) specifies rate r1 for
the branch ancestral to species 1 and 2 while all other branches have the default rate r0,
which does not have to be specified. The user need to specify which branch has which
rate, and the program estimates the unknown rates (such as r1 in the above example; r0 =
1 is the default rate). You need to be careful when specifying rates for branches to make
sure that all rates can be estimated by the model; if you specify too many rate
parameters, especially for branches around the root, it may not be possible to estimate all
of them and you will have a problem with identifiability. The number of parameters for
a binary tree in the local clock model is (n – 1) plus the number of extra rate parameters
for branches. In the above tree of 4 species, you have only one extra rate parameter r1,
and so the local clock model has (n – 1) + 1 = n = 4 parameters. The no-clock model
has 5 parameters while the global clock has 3 parameters for that tree.

4 8 P A M L M A N U A L

Both the global-clock (clock = 1) and local-clock (clock = 2) models can accept a single
or multiple fossil calibration points, in which case absolute substitution rates will be
calculated. You use the symbol @ to specify fossil calibration information in the tree
file. See the readme file in the examples/MouseLemurs/ folder for details. Both clock
models can be applied to viral sequences with known sequencing dates (Rambaut 2000).
You have to use the symbol @ in sequence names to specify the dates of sequence
determination. See the readme file in the examples/TipDate/ folder.

The option clock = 3 is for combined analysis of multiple-partition data (multiple genes
or multiple codon positions, for example), and allows the branch group rates to vary
freely among data partitions. For example, the models allow some branches to be faster-
evolving at codon position 1 while they are more slowly-evolving at codon position 2.
See Yang and Yoder (2003) and the examples/MouseLemurs/ folder for details.

Reconstruction of Ancestral Sequences

Nucleotides or amino acids of extinct ancestors can be reconstructed using information
of the present-day sequences. Parsimony reconstructs ancestral character states by the
criterion that the number of changes along the tree at the site is minimized. Algorithms
based on this criterion were developed by Fitch (1971) and Hartigan (1973), and are
implemented in the program pamp. The likelihood approach uses branch lengths and
the substitution pattern for ancestral reconstruction. It was developed by Yang et al.
(1995a) and Koshi and Goldstein (1996) and is implemented in baseml for nucleotide
sequences and in aaml (codeml.c with seqtype = 2) for amino acid sequences.
Results are collected in the file rst.

Marginal reconstruction: This approach compares the probabilities of different
character assignments to an interior node at a site and select the character that has the
highest posterior probability (eq. 4 in Yang et al. (1995a)). The algorithm implemented in
PAML works under both the model of a constant rate for all sites and the gamma model
of rates at sites. If verbose = 1, the output will include the full probability distribution at
each node at each site.

Joint reconstruction: This approach considers the assignment of a set of characters to
all interior nodes at a site as a reconstruction and select the reconstruction that has the
highest posterior probability (eq. 2 in Yang et al. (1995a)). The implementation in PAML
now is based on the algorithm of Pupko et al. (2000), which gives the best reconstruction
at each site and its posterior probability. The algorithm works under the model of a
constant rate for sites only and does not work for the gamma model. (It works under
models for multiple genes or data partitions as well. My old algorithm looks at
alternatives (sub-optimal reconstructions) although it is inefficient and may miss
important reconstructions. I have taken that algorithm out, as well as the old option
(RateAncestor = 2) of allowing the user to specify the reconstruction to be
evaluated. If you need those options, let me know.

The marginal and joint approaches use slightly different criteria, and none is better than
the other. They are expected to produce very similar results; that is, the most probable
joint reconstruction for a site should almost always consist of characters that are also the
best in the marginal reconstruction. Differences may arise when the competing
reconstructions have similar probabilities. Since the marginal reconstruction works with
models of variable rates among sites, it is recommended for data analysis.

 P A M L M A N U A L 4 9

Analysing Large Data Sets and Iteration Algorithms

The maximum likelihood method estimates parameters by maximizing the likelihood
function. This is multi-dimensional optimisation problem that has to be solved
numerically (except for the simplest possible case; see Yang (2000a)). PAML
implements two iteration algorithms. The first one (method = 0) is a general-purpose
minimization algorithm that deals with upper and lower bounds for parameters but not
general equality or inequality constraints. The algorithm requires first derivatives, which
are calculated using the difference approximation, and accumulates information about
the curvature (second derivatives) during the iteration using the BFGS updating scheme.
At each iteration step, it calculates a search direction, and does a one-dimensional search
along that direction to determine how far to go. At the new point, the process is
repeated, until there is no improvement in the log-likelihood value, and changes to the
parameters are very small. The algorithm updates all parameters including branch
lengths simultaneously.

Another algorithm (method = 1) works if an independent rate is assumed for each
branch (clock = 0) (Yang 2000b). This algorithm cycles through two phases. Phase I
estimates branch lengths with substitution parameters (such as the
transition/transversion rate ratio κ and the gamma shape parameter α) fixed. Phase II
estimates substitution parameters using the BFGS algorithm, mentioned above, with
branch lengths fixed. The procedure is repeated until the algorithm converges. In phase
I of the algorithm, branch lengths are optimized one at a time. The advantage of the
algorithm is that when the likelihood is calculated for different values of one single
branch length, as is required when that branch length only is optimised, much of
likelihood calculations on the phylogeny is the same and can be avoided by storing
intermediate results in the computer memory. A cycle is completed after all branch
lengths are optimized. As estimates of branch lengths are correlated, several cycles are
needed to achieve convergence of all branch lengths in the tree, that is, to complete
phase I of the algorithm.

If branch lengths are the only parameters to be estimated, that is, if substitution
parameters are fixed, the second algorithm (method = 1) is much more efficient. Thus
to perform heuristic tree search using stepwise addition, for example, you are advised to
fix substitution parameters (such as κ and α). The second algorithm is also more
efficient if the data contain many sequences so that the tree has many branch lengths.

Tip: To get good initial values for large data sets of protein coding DNA sequences,
you can use baseml. Add the options characters “GC” at the end of the first line in the
sequence data file. Then run the data with baseml. In the result file generated by baseml
(say mlb), look for “branch lengths for codon models” and copy the tree with branch
lengths into the tree file. Then run codeml and choose “1: initial values” when asked
about what to do with the branch lengths in the tree.

Tree Search Algorithms

One heuristic tree search algorithm implemented in baseml, codonml and aaml is a
divisive algorithm, called "star-decomposition" by Adachi and Hasegawa (1996b). The
algorithm starts from either the star tree (runmode = 2) or a multifurcating tree read
from the tree structure file (runmode = 1). The algorithm joins two taxa to achieve the

5 0 P A M L M A N U A L

greatest increase in log-likelihood over the star-like tree. This will reduce the number of
OTUs by one. The process is repeated to reduce the number of OTUs by one at each
stage, until no multifurcation exists in the tree. This algorithm works either with or
without the clock assumption. The stepwise addition algorithm is implemented with the
option runmode = 3. Options runmode = 4 or 5 are used for nearest neighbor
interchanges , with the intial tree determined with stepwise addition under the
parsimony criterion (runmode = 4) or read from the tree structure file (runmode =
5). The results are self-explanatory.

Besides the fact that ML calculations are slow, my implementations of these algorithms
are crude. If the data set is small (say, with <20 or 30 species), the stepwise addition
algorithm (runmode = 3) appears usable. Choose clock = 0, and method = 1 to
use the algorithm that updates one branch at a time, and fix substitution parameters in
the model (such as κ and α) so that only branch lengths are optimized. Parameters κ
and α can be fixed in the tree search using fix_kappa and fix_alpha in the
control files. Other parameters (such as substitution rates for genes or codon positions
or site partitions) cannot be fixed this way; they can instead be specified in the file of
initial values (in.baseml or in.codeml). Suppose you use a candidate tree to
estimate branch lengths and substitution parameters with runmode = 0. You can then
move the substitution parameters (but not the branch lengths) into the file of initial
values. You then change the following variables for tree search: runmode = 3,
method = 1. The program will use the substitution parameters as fixed in the tree
search, and optimizes branch lengths only. It is important that the substitution
parameters are in the right order in the file; so copy-and-paste from PAML output is
probably the safest. It is also important that you do not change the parameter
specifications in the control file; the control file should indicate that you want to
estimate the substitution parameters, but when the program detects the file of initial
values, fixed parameter values are used instead.

Bootstrap Data Sets

To generate bootstrap pseudo-samples from your original data, you should use the
control variable bootstrap in the control files baseml.ctl or codeml.ctl,
and specify the number of samples, as follows.

bootstrap = 100 * generate bootstrap data sets

This generates a file named boot.txt. The file name is hard coded in the programs so
you might want to rename it. Note that the way bootstrap samples are generated
depends on your model, so you use baseml to generate samples for nucleotide-based
analysis and codeml for amino acid and codon-based analysis. If you the data are
partitioned (using option G), the programs use stratified sampling to generate bootstrap
samples, preserving the number of sites in each partition.

The bootstrap samples can be analyzed using phylip programs (choose the option for
multiple data sets) and baseml or codeml (using the variable ndata in the control
file).

 P A M L M A N U A L 5 1

Simulation

Computer simulation is a widely used approach to evaluating estimation procedures. In
molecular phylogenetics, there are two major methods for simulating sequence data.
The first approach samples data at different sites (nucleotide, amino acid, or codon sites)
from the multinomial distribution. Under most models of sequence evolution, data at
different sites are independently and identically distributed. This approach thus
calculates the probability of observing each site pattern, and then sample from sites
according to those site pattern probabilities. The number of categories in the
multinomial distribution, that is, the number of distinct site patterns, is the number of
character states raised to the power of the number of sequences. To simulate nucleotide
sequences on a tree of 5 species, the multinomial will have 45 = 1024 categories, and to
simulate a pair of codon sequences under the universal code (with 61 sense codons), the
multinomial will have 612 = 3721 categories. This approach is faster for simulating data
sets on small trees but impractical on large trees as the number of categories may be too
large.

A second approach is to generates an ancestral sequence for the root of the tree, and
then “evolve” the sequence along the tree according to the specified substitution model
and using the specified branch lengths and substitution parameters. The evolver
program implements this approach. The ancestral sequence is generated according to
the equilibrium distribution of the characters, that is, by sampling characters repeatedly
according to the equilibrium distribution. The program then evolves the sequence along
branches of the tree, according to the transition probabilities calculated for each branch.
For site-heterogeneous models, the substitution pattern may be different from site to site
and the different sites may have different transition probabilities. See, for example,
Huelsenbeck (1995) and Yang (1996a), for more details.

Tips

1. For analyzing multiple simulated data sets, you can copy the tree with branch lengths
from MCbase.dat or MCaa.dat into the tree file to be used by baseml or codeml. You
can then use the variable fix_blength to let baseml or codeml use the branch lengths in
the tree as initial values for the maximum likelihood iteration. This should speed up the
iteration since the true parameter values should be good initial values.

2. A good test of the simulation as well as the analysis program is to use a small tree to
simulate a large data set of very long sequences (say 1 million nucleotides or amino acids)
and then use baseml or codeml to analyse the data to see whether you get estimates very
close to the true values. As ML is consistent, it should return the correct values with
infinitely long sequences.

3. Programs baseml and codeml output one line of results for each data set in a file
named rst1. The output typically includes the log likelihood, the estimated substitution
parameters but not branch lengths. If you can modify the source codes, you can go into
baseml.c or codeml.c and search for frst1, and add or remove output. However, this
may require familiarity with the program, especially about how the variables are arranged
during the iteration.

5 2 P A M L M A N U A L

5 Technical Notes
This section contains some technical notes for running PAML programs. Also see the
FAQ page.

The rub File Recording the Progress of Iteration

If you use a large value for the variable noisy (say >2), the programs baseml and
codeml will log output to the screen, indicating the progress of the iteration process,
i.e., the minimization of the negative log-likelihood. They will also print in the rub file,
the size (norm) of the gradient or search direction (h), the negative log likelihood, and
the current values of parameters for each round of iteration. A healthy iteration is
indicated by the decrease of both h and the negative log likelihood, and h is particularly
sensitive. If you run a complicated model hard to converge or analyzing a large data set
with hundreds or thousands of sequences, you may switch on the output. You can check
this file to see whether the algorithm has converged. A typical symptom of failure of the
algorithm is that estimates of parameters are at the preset boundaries, with values like
2.00000, 5.00000. When method = 1, the output in the rub file lists the log likelihood
and parameter estimates only.

Specifying Initial Values

You may change values of parameters in the control file such as kappa, alpha, omega,
etc. to start the iteration from different initial values. Initial values for the second and
later trees are determined by the program, and so you do not have much control in this
way.

You can collect initial values into a file called in.baseml if you are running baseml or
in.codeml if you are running codeml. This file should contain as many numbers,
separated by white spaces, as the number of parameters that are being optimized by the
program. So if the program is estimating 56 parameters (say 51 branch lengths, 1 kappa,
and 5 other parameters from the ω distribution), you should put 56 numbers in the file.
The parameters are ordered internally in the program and you have no control of the
ordering. Nevertheless, the order is the same as in the main output (below the lnL line
for each tree). One way of generating the in.codeml or in.baseml files is to run a data
set, and then copy initial values from the rub file or from the main output file. The rub
file records the iteration process and has one line for each round of iteration. Each line
lists the current parameter values after the symbol x; you can copy those numbers (not
the symbol x) into the file of initial values, and if you like, change one or a few of the
parameter values too. When you run the program, look at lnL0 printed out on the
screen and check that it is the same as recorded in rub.

When the program runs, it checks to see whether a file of initial values exists, and it
does, the program will read initial values from it. This may be useful if the iteration is
somehow aborted, and then you can collect current values of parameters from the file
rub into this file of initial values, so that the new iteration can have a better start and
may converge faster. The file of initial values may also be useful if you experience
problems with convergence. If you have already obtained parameter estimates before

 P A M L M A N U A L 5 3

and do not want the program to re-estimate them and only want to do some analysis
based on those estimates such as reconstructing ancestral sequences, insert -1 before the
initial values.

Warning: A complication is that in some models a transformation is applied during the
iteration while the printout uses the original variables. Examples of this are the
frequency/proportion parameters for base frequencies (nhomo = 1 in baseml),
proportions of site classes in the NSsites models (except for models always having only
two classes in which case no transformation is applied), and times or node ages in clock
models (clock = 1, 2, 3, 5, 6, but not 0). For those models, you can see that the line of
output in the main output file looks different from the last line of rub after the iteration
finishes. In the file of initial values, if you use -1 at the start, the program assumes the
original variables, while if you don’t, the program assumes transformed variables.

Fine-tuning the Iteration Algorithm

The iteration algorithm uses the difference approximation to calculate derivatives. This
method changes the variable (x) slightly, say by a small number e, and see how the
function value changes. One such formula is df/dx = [f(x + e) − f(x)]/e. The small
number e should be small to allow accurate approximation but should not be too small
to avoid rounding errors. You can change this value by adding a line in the control files
baseml.ctl or codeml.ctl

Small_Diff = 1e-6

The iteration is rather sensitive to the value of this variable, and reasonable values are
between 1e-5 and 1e-7. This variable also affects the calculation of the SE's for
parameters, which are much more difficult to approximate than the first derivatives. If
the calculated SE's are sensitive to slight change in this variable, they are not reliable.

If you compile the source codes, you can also change the lower and upper bounds for
parameters. I have not put these variables into the control files (See below).

Adjustable Variables in the Source Codes

This section is relevant only if you compile the source codes yourself. The maximum
values of certain variables are listed as constants in uppercase at the beginning of the
main programs (baseml.c, basemlg.c, codeml.c). These values can be raised
without increasing the memory requirement by too much.

NS: maximum number of sequences (species)
LSPNAME: maximum number of characters in a species name
NGENE: maximum number of "genes" in data of multiple genes (option G)
NCATG: maximum number of rate categories in the (auto-) discrete-gamma model (baseml.c,
codeml.c)

You can change the value of LSPNAME. Other variables that may be changed include
the bounds for parameters, specified at the beginning of the function testx or
SetxBound in the main programs (baseml.c and codeml.c). For example, these
variables are defined in the function SetxBound in codeml.c:

 double tb[]={.0001,9}, rgeneb[]={0.1,99}, rateb[]={1e-4,999};

5 4 P A M L M A N U A L

 double alphab[]={0.005,99}, rhob[]={0.01,0.99}, omegab[]={.001,99};

The pairs of variables specify lower and upper bounds for variables (tb for branch
lengths, rgeneb for relative rates of genes used in multiple gene analysis, alphab for
the gamma shape parameter, rhob for the correlation parameter in the auto-discrete-
gamma model, and omegab for the dN/dS ratio in codon based analysis.

More Codon Models

Fcodon = 4 (F1x4MG) and 5 (F3x4MG) implement two codon models in the style of
Muse and Gaut (1994). Those models are very similar to the F1x4 and F3x4 models
described before except that the substitution rate from codon i to codon j is
proportional to the frequency of the target nucleotide rather than the frequency of the
target codon. Suppose codon i is the triplet i1i2i3, and codon j is the triplet j1j2j3. We
have to specify the substitution rate for codons i and j that are different at one position
(otherwise the rate is 0). Let that position be k (k = 1, 2, 3) and let the nucleotide
frequency at codon position k be . The rate matrix is then)(k

jk
π

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

n, transitioousnonsynonymfor ,

ion, transversousnonsynonymfor ,

n, transitiosynonymousfor ,

ion, transverssynonymousfor ,
position, one than moreat differ codons two theif ,0

)(

)(

)(

)(

k
j

k
j

k
j

k
j

ij

k

k

k

k

q

ωκπ

ωπ

κπ

π

For example, the change from i = TCA to j = TCG is a synonymous transition, and the
rate is qTCA→TCG = , where is the frequency of G at position 3. This model is
obviously time-reversible, with the equilibrium codon frequency πj proportional to

, as under the F3x4 models mentioned before. To see this note that qTCA →

TCG =

)3(
Gκπ)3(

Gπ

)3()2()1(
321 jjj πππ

)3()2()1(
)2()1(GCT

CT

πππ
ππ
κ

× and qTCG → TCA =)3()2()1(
)2()1(ACT

CT

πππ
ππ

κω
× ; that the rate qij

can be written in the form sij πj, where sij = sji. The detailed balance condition for
reversibility follows: () () jijjjijiii qq ×=×)3()2()1()3()2()1(

321321
ππππππ .

Fcodon = 4 (F1x4MG) uses one set of base frequencies for all three codon positions,
just like F1x4.

 P A M L M A N U A L 5 5

6 Appendixes

Appendix A. Using PAML with Other Phylogenetics
Software

PHYLIP

Sequence data file. There are some incompatibilities between the PHYLIP format used
by PAML programs and the PHYLIP format used by the current version of Joe
Felsenstein’s PHYLIP package. First, in Phylip, the sequence name can have at most 10
characters, while PAML uses 30 characters. This difference exists all the time and is due
to my need to use longer names sometimes ago. If you want the sequence data file to be
readable by both PHYLIP and PAML, you should limit the number of characters in the
name to 10 and also separate the name from the sequence by at least two spaces. Having
two spaces at the end of the name will inform PAML programs that the name has
finished. Second, the “interleaved” format is specified by toggling the menu in PHYLIP
programs while by a letter I on the first line inside the sequence data file. The latter was
the option used by earlier versions of PHYLIP. I have not followed the change since in
general PAML does not use command-line menus as PHYLIP programs do. If you use
the sequential format, the same file can be read by both programs. You can even use
sequential format with the whole sequence on one line.

Tree file. Many PHYLIP programs output the estimated trees in a file called treefile.
This uses the parenthesis notation and the file should be directly useable in PAML. Or
you can copy the trees into a file and add the number of trees at the beginning of the file
for use in baseml, codeml, or pamp.

Distance matrices and neighbour. baseml and codeml produce distance matrices.
They are printed into separate files with names like 2ML.t, 2ML.dS, 2NG.dS, etc. Those
files use the lower-diagonal format and are directly readable by the neighbour program in
PHYLIP, so you can use the program to make a neighbour-joining tree (Saitou and Nei
1987). You can rename the file as infile or type in the file name when prompted by
neighbour. Then type L to tell the program that the matrix if lower-diagonal.

PAUP, MacClade, and MrBayes

Sequence data file. PAUP, MacClade and MrBayes use the so-called NEXUS file
format. PAML programs (mainly baseml and codeml) have some limited support for
this format and can read the sequence alignment in that format. Only the sequence
alignment is read and the command blocks are ignored. Also PAML does not recognise
comments inside the sequence data block, so please avoid them.

The program evolver in the paml package can generate data sets both in the
PAML/PHYLIP format and in the PAUP/MrBayes nexus format. You can also modify
the file paupblock to add blocks of paup or MrBayes command at the end of each
simulated data set. See the descriptions for the evolver program in Chapter

Tree file. PAML programs have only limited support with the tree file generated by
PAUP or MacClade. First the “[&U]” notation for specifying an unrooted tree is not

5 6 P A M L M A N U A L

recognised. For a tree to be accepted as an unrooted tree by PAML, you have to
manually modify the tree file and delete a pair of parenthesis so that there is a
trifurcation at the root; that is, the outmost pair of parentheses groups together three
taxa rather than two, so the tree should be in the format (A, B, C). Thus changing
“(((1,2),3),4)” into “((1,2),3,4)” will deroot the tree. Perhaps I should let the program to
do this automatically. Second, the “Translate” keyword is ignored by PAML, and it is
assumed that the ordering of the sequences in the tree file is exactly the same as the
ordering of the sequences in the sequence data file. This seems normally the case if the
trees are reconstructed from the same sequence file using paup.

Clustal

 Sequence data file. When you save the clustal alignment in the PHYLIP format with
extension .phy, clustal output the alignment using the “interleaved” phylip format,
truncating sequence names to 10 characters. This file is typically not readable by PAML
programs. You need to make two changes. First add the letter I at the end of the first
line, after the number of sequences and the number of sites in the sequence. Second,
add spaces between the sequence name and the sequence and make sure there are at least
two spaces separating the name and the sequence.

MEGA

Sequence data file. The MEGA sequence data format (Kumar et al. 1994) is different
and not directly readable by PAML programs. Need to find out about the format and
write something here.

MOLPHY

 Sequence data file. It is possible to prepare the same file to be readable by both
MOLPHY programs (nucml and protml) and PAML programs. Need to find out about
the format and write something here.

The tree file produced by MOLPHY also uses the parenthesis notation and is readable
by PAML programs.

TreeView

 The trees with branch lengths calculated from PAML programs should be directly
readable by TreeView (Page 1996). You can copy the tree onto the click board and paste
into TreeView, or same the tree in a file and read the file from within TreeView. Some
of the models implemented in baseml and codeml require the user to label branches or
nodes on the tree, and I found TreeView particularly useful for this purpose when the
tree is large. TreeView shows those labels as node labels. For example, the free-ratios
model in codonml (model = 1) estimates one ω ratio for each branch. In the output,
codeml prints out a tree with the estimated ω ratio as node/branch labels, with some
notes like “Tree for Rod Page’s TreeView”. I can copy this tree into tree view. Similarly
the global and local clock models in baseml and codeml estimate an age for each node,
and the output tree from those two programs can be copied into TreeView directly.

 P A M L M A N U A L 5 7

Andrew Rambaut’s TreeEdit, which runs on MACs, has similar functionalities.
However, I don’t have MAC and have no experience with the program.

Other Programs

More research is needed to write this.

Appendix B. Overcoming Windows Annoyances

Turn on file extensions in Windows Explorer. Windows Explorer by default hides
file extensions for known file types. You should go to "Windows Explorer - Tools -
Folder options - View" and un-tick "Hide extensions for known file types", so that you
can see the full file names from Windows Explorer.

Using Task Manger to change job prior ty. Start Task Manger (for example, right
click on task bar and choose Task Manager). Click on Processes button. Locate the big
job, say, codeml. Right click and Set Priority to Low. Note that the process running the
Command Prompt is cmd. If you change the priority of cmd to low, all jobs started
from that window will run at low priority. You can change View – Update Speed to
Low and change View – Select Columns. Change Options – Minimize on Use. Then
you can minimize rather than close Task Manger.

i

All input and output files are plain text files. In the Command Prompt box (Start -
Programs – Accessaries – Command Prompt), you can use type or more to view a text
file. If you see strange characters on the screen and perhaps also hear beeps, the file is
not a plain text file. You can also use a text editor to view and edit a plain text file. If
you use Microsoft Word or Wordpad to save a file, make sure that the files are saved as a
plain text file. Use File – Save As and change the file type. When you do, Word or
other programs might automatically add the file extension .txt, and you will have to
rename the file if you don’t want the .txt.

Appendix C. Changes Since Version 3.13

Here is a list of changes since version 3.13, in two parts: incompatible changes and
minor bug fixes. Changes in earlier versions are documented in the file
PAMLHistory.txt included in the package.

1. codonml (codeml for codons):

The mechanisctic amino acid substitution models (table 3 in Yang et al. 1998 MBBE
15: 1600-1611) appear to be broken in paml/codelm versions 3.13 and 3.14. They
were correct in version 3.12. This is now fixed. If you use those models, please run
the examples in the folder examples/mtCDNA/ and compare results with those
published in the paper to confirm the program. The results in the paper are correct,
but the program implementation may be broken due to lack of maintenance.

2. codonml (codeml for codons)

When you fit the branch models with three or more branch types (omega ratios), the
program aborts with an error message saying that only two omega ratios are allowed.
This is due to a bug in the program and is now fixed. codonml (codeml for codons):

5 8 P A M L M A N U A L

The site-based (NSsites) models models M1 (neutral), M2 (selection), and M8
(beta&ω) (Nielsen and Yang 1998; Yang et al. 2000b) have been changed, according
to Wong et al. (2004) and Yang et al. (2005). The old models M1 and M2 have ω0 =
0 fixed, and this is changed to 0 < ω0 < 1. Model M8 (beta&ω) used to estimate ωs
without constraint, but the model is changed so that ωs is now estimated under the
constraint ωs > 1. Similarly the branch-site model A (Yang and Nielsen 2002) and
the clade model C (see also Forsberg and Christiansen 2003; Bielawski and Yang
2004) are changed so that 0 < ω0 < 1 is estimated from the data.

The empirical Bayes procedure for calculating posterior probabilities of site classes
under the site models, branch-site models, and clade models is called naïve empirical
Bayes (NEB), and ignores sampling errors of maximum likelihood parameter
estimates. This is now replaced by the Bayes empirical Bayes procedure (Yang et al.
2005).

3. baseml/codeml: rewrote likelihood clock and local clock models. Implemented
models for combined analysis of multiple genes incorporating multiple calibration
points (Yang and Yoder 2003). The ad hoc rate smoothing procedure of Yang (2004)
is implemented for nucleotide, amino acid, and codon substitution models, and the
implementation also deals with missing species at some loci. The option variable
clock in the control files is now used differently from before. See later in this
documentation and also the readme and readme2 files in the folder
examples/MouseLemurs/.

4. codeml: added branch-site models C and D (Bielawski and Yang in press).

5. mcmctree: this program is disabled in this release. The old program died and the
new program is still under construction.

6. The main body of this documentation may not be up to date.

7. baseml/codeml. The output in the file rates under the gamma model lists
inferred rate for each site. The output is incorrect if the tree is large and scaling is
used to avoid underflow. The use of scaling is indicated by two lines of output on
the monitor like the following:
“2 node(s) used for scaling (Yang 2000 J Mol Evol 51:423-432):
 155 350”.
The results are clearly wrong as the probabilities are much greater than 1, and the
rates are many orders of magnitude too large, etc. Also under the same problematic
condition the expected numbers of sites with certain site patterns in the file lnf are
incorrect. When scaling is not used, the results should be o.k. and look reasonable.
This affects versions 3.13 and 3.14beta1-3. This is fixed in version 3.14. Thanks for
Nick Goldman for pointing out the error.

8. yn00. The program crashes for large datasets with many codons due to a memory
allocation error. This affects versions 3.13 and some versions of 3.14beta1. The
problem is fixed in version 3.14.

9. aaml (codeml for amino acids). Model REVaa_0 is broken due to lack of
maintenance in versions 3.1, 3.11, 3,12, 3,13, and 3,14beta1-4. It seems to be
working in version 3. This is fixed in 3.14beta5. 2 April 2004.

10. codonml (codeml for codons) in branch-site models (model = 2 NSsites = 2 or 3)
prior to 3.14beta3 have a scaling problem, which makes the length of the foreground

 P A M L M A N U A L 5 9

branch to be incorrectly estimated. Other branch lengths and substitution
parameters, such as the parameters in the ω distribution, are corrected calculated, as
well as the log likelihood values and the posterior probabilities. 27 March 2004

11. pamp: The gamma parameter for variable rates among sites using the method of
Yang & Kumar (1996) is not estimated correctly in 3.14beta1, beta2, beta3.
Versions 3.13d and earlier seem fine.

12. codonml (codeml for codons) in version 3.14beta and 3.14beta1 does not work
when fix_omega = 1 is used for branch models. The results are incorrect. Please
use newer versions 3.14beta3 or later. Also version 3.13 is fine.

13. baseml: Models TN93 and REV are wrong when used with Mgene = 3 or 4. This
seems correct in version 3.12 but went wrong in 3.13 and 3.14 since I inserted TN92
between HKY85 and TN93. Thanks for Lee Bofkin for reporting the error.

14. codonml (codeml for codons): When codon models are used to reconstruct
ancestral sequences (with RateAncestor = 1), the program lists synonymous and
nonsynonymous changes at each site under the heading "Changes at sites (syn
nonsyn)." This listing is incorrect due to a bug in the program. This bug affects
versions 3.12, 3.13 and 3.14, and version 3.11 seems correct. Thanks to Joe
Bielawski.

15. baseml/codeml: The SE's for divergence times under the clock models are
calculated incorrectly. This happens when you use clock = 1 or 2, supply fossil date
to calculate absolute times, and request standard errors for times. The estimates of
times themselves are correct, but standard errors for times are wrong. The SEs for
times and for the rate under the TipDate model (clock = 3) are wrong as well. The
programs print out the variances after the +-, instead of their square roots. This
error was introduced in version 3.13. Versions prior to 3.13 are correct. I posted an
update 3.13d to fix this bug.

16. evolver: the simulation program can now accept species names in the tree. Note
that the data file formats for evolver (MCbase.dat, MCcodon.dat, MCaa.dat) have
changed and you might have to change your own data files. Look at the files
included in the package.

17. The documentation in PAML v3.13 from August 2002 - 12 December 2002 had a
mistake about the critical values for the newer test using a modified M8. The critical
values for the test are 2.71 at the 5% significance level and 5.41 at the 1% level,
rather than 1.95 and 3.32 as in the documentation.

Acknowledgments.

(This is written a few years ago, and have not been updated.) I thank Nick Goldman,
Adrian Friday, and Sudhir Kumar for many useful comments on different versions of
the program package. I thank a number of users for reporting bugs and/or suggesting
changes, especially Liz Bailes, Thomas Buckley, Belinda Chang, Adrian Friday, Nicolas
Galtier, Nick Goldman, John Heulsenbeck, Sudhir Kumar, Robert D. Reed, Fransisco
Rodriguez-Trelles, John Heulsenbeck, John Mercer, and Xuhua Xia.

6 0 P A M L M A N U A L

7 References
Adachi, J., and M. Hasegawa. 1996a. Model of amino acid substitution in proteins encoded by

mitochondrial DNA. Journal of Molecular Evolution 42:459-468.
Adachi, J., and M. Hasegawa. 1996b. MOLPHY Version 2.3: Programs for molecular

phylogenetics based on maximum likelihood. Computer Science Monographs, 28:1-150.
Institute of Statistical Mathematics, Tokyo.

Anisimova, M., J. P. Bielawski, and Z. Yang. 2001. The accuracy and power of likelihood ratio
tests to detect positive selection at amino acid sites. Molecular Biology and Evolution
18:1585-1592.

Anisimova, M., J. P. Bielawski, and Z. Yang. 2002. Accuracy and power of Bayes prediction of
amino acid sites under positive selection. Molecular Biology and Evolution 19:950-958.

Anisimova, M., R. Nielsen, and Z. Yang. 2003. Effect of recombination on the accuracy of the
likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229-
1236.

Bielawski, J. P., and Z. Yang. 2004. A maximum likelihood method for detecting functional
divergence at individual codon sites, with application to gene family evolution. Journal of
Molecular Evolution 59:121-132.

Brown, W. M., E. M. Prager, A. Wang, and A. C. Wilson. 1982. Mitochondrial DNA sequences of
primates: Tempo and mode of evolution. Journal of Molecular Evolution 18:225-239.

Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in
proteins. Pp. 345-352. Atlas of protein sequence and structure, Vol 5, Suppl. 3. National
Biomedical Research Foundation, Washington D. C.

DeBry, R. W. 1992. The consistency of several phylogeny-inference methods under varying
evolutionary rates. Molecular Biology and Evolution 9:537-551.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution 17:368-376.

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts.
Felsenstein, J. 2005. Phylip: Phylogenetic inference program, Version 3.6. University of

Washington, Seattle.
Felsenstein, J., and G. A. Churchill. 1996. A hidden Markov model approach to variation among

sites in rate of evolution. Molecular Biology and Evolution 13:93-104.
Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree

topology. Systematic Zoology 20:406-416.
Forsberg, R., and F. B. Christiansen. 2003. A codon-based model of host-specific selection in

parasites, with an application to the influenza A virus. Molecular Biology and Evolution
20:1252-1259.

Galtier, N., and M. Gouy. 1998. Inferring pattern and process: maximum-likelihood
implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic
analysis. Molecular Biology and Evolution 15:871-879.

Goldman, N. 1993. Statistical tests of models of DNA substitution. Journal of Molecular
Evolution 36:182-198.

Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-
coding DNA sequences. Molecular Biology and Evolution 11:725-736.

Grantham, R. 1974. Amino acid difference formula to help explain protein evolution. Science
185:862-864.

Gu, X., Y. X. Fu, and W. H. Li. 1995. Maximum likelihood estimation of the heterogeneity of
substitution rate among nucleotide sites. Molecular Biology and Evolution 12:546-557.

Hartigan, J. A. 1973. Minimum evolution fits to a given tree. Biometrics 29:53-65.
Hasegawa, M., and H. Kishino. 1989. Heterogeneity of tempo and mode of mitochondrial DNA

evolution among mammalian orders [published erratum appears in Idengaku Zasshi 1989
Oct;64(5):411]. Jpn. J. Genet. 64:243-258.

Hasegawa, M., T. Yano, and H. Kishino. 1984. A new molecular clock of mitochondrial DNA
and the evolution of Hominoids. Proc. Japan Acad. B. 60:95-98.

 P A M L M A N U A L 6 1

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating the human-ape splitting by a molecular
clock of mitochondrial DNA. Journal of Molecular Evolution 22:160-174.

Hayasaka, K., T. Gojobori, and S. Horai. 1988. Hayasaka, K., T. Gojobori, and S. Horai. 1988.
Molecular phylogeny and evolution of primate mitochondrial DNA. Molecular Biology and
Evolution 5:626-644. Molecular Biology and Evolution 5:626-644.

Huelsenbeck, J. P. 1995. The performance of phylogenetic methods in simulation. Systematic
Biology 44:17-48.

Jin, L., and M. Nei. 1990. Limitations of the evolutionary parsimony method of phylogenetic
analysis [published erratum appears in Mol Biol Evol 1990 Mar;7(2):201]. Molecular Biology
and Evolution 7:82-102.

Jones, D. T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data
matrices from protein sequences. CABIOS 8:275-282.

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pp. 21-123 in H. N. Munro,
ed. Mammalian protein metabolism. Academic Press, New York.

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through
comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

Kimura, M. 1981. Estimation of evolutionary distances between homologous nucleotide
sequences. Proceedings of National Academy of Sciences USA 78:454-458.

Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the
evolutionary tree topologies from DNA sequence data, and the branching order in
hominoidea. Journal of Molecular Evolution 29:170-179.

Kishino, H., T. Miyata, and M. Hasegawa. 1990. Maximum likelihood inference of protein
phylogeny and the origin of chloroplasts. Journal of Molecular Evolution 31:151-160.

Koshi, J. M., and R. A. Goldstein. 1996. Probabilistic reconstruction of ancestral protein
sequences. Journal of Molecular Evolution 42:313-320.

Kumar, S., K. Tamura, and M. Nei. 1994. MEGA: Molecular Evolutionary Genetics Analysis
software for microcomputers. Comput Appl Biosci 10:189-191.

Lio, P., and N. Goldman. 1998. Models of molecular evolution and phylogeny. Genome Res.
8:1233-1244.

McCullagh, P., and J. A. Nelder. 1989. Generalized linear models. Chapman and Hall, London.
Messier, W., and C.-B. Stewart. 1997. Episodic adaptive evolution of primate lysozymes. Nature

385:151-154.
Muse, S. V., and B. S. Gaut. 1994. A likelihood approach for comparing synonymous and

nonsynonymous nucleotide substitution rates, with application to the chloroplast genome.
Molecular Biology and Evolution 11:715-724.

Nei, M., and T. Gojobori. 1986. Simple methods for estimating the numbers of synonymous and
nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418-426.

Nielsen, R., and Z. Yang. 1998. Likelihood models for detecting positively selected amino acid
sites and applications to the HIV-1 envelope gene. Genetics 148:929-936.

Page, R. D. M. 1996. TreeView: An application to display phylogenetic trees on personal
computers. Comput. Appl. Biosci. 12:357-358.

Pupko, T., I. Pe, R. Shamir, and D. Graur. 2000. A fast algorithm for joint reconstruction of
ancestral amino acid sequences. Molecular Biology and Evolution 17:890-896.

Rambaut, A. 2000. Estimating the rate of molecular evolution: incorporating non-
comptemporaneous sequences into maximum likelihood phylogenetics. Bioinformatics
16:395-399.

Rannala, B., and Z. Yang. 1996. Probability distribution of molecular evolutionary trees: a new
method of phylogenetic inference. Journal of Molecular Evolution 43:304-311.

Robinson, D. F., and L. R. Foulds. 1981. Comparison of phylogenetic trees. Math. Biosci. 53:131-
147.

Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4:406-425.

Self, S. G., and K.-Y. Liang. 1987. Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82:605-610.

6 2 P A M L M A N U A L

Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with
applications to phylogenetic inference. Molecular Biology and Evolution 16:1114-1116.

Steel, M. A., L. Szekely, P. L. Erdos, and P. J. Waddell. 1993. A complete family of phogenetic
invariants for any number of taxa under Kimura's 3ST model. New Zealand J. Botany
31:289-296.

Stewart, C.-B., J. W. Schilling, and A. C. Wilson. 1987. Adaptive evolution in the stomach
lysozymes of foregut fermenters. Nature 330:401-404.

Suzuki, Y., and T. Gojobori. 1999. A method for detecting positive selection at single amino acid
sites. Molecular Biology and Evolution 16:1315-1328.

Swanson, W. J., R. Nielsen, and Q. Yang. 2003. Pervasive adaptive evolution in mammalian
fertilization proteins. Molecular Biology and Evolution 20:18-20.

Swofford, D. L., G. J. Olsen, P. J. Waddell, and D. M. Hillis. 1996. Phylogeny Inference. Pp. 411-
501 in D. M. Hillis, C. Moritz, and B. K. Mable, eds. Molecular Systematics. Sinauer
Associates, Sunderland, Massachusetts.

Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong
transition-transversion and G+C content biases. Molecular Biology and Evolution 9:678-687.

Tamura, K., and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the
control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and
Evolution 10:512-526.

Tateno, Y., N. Takezaki, and M. Nei. 1994. Relative efficiencies of the maximum-likelihood,
neighbor-joining, and maximum-parsimony methods when substitution rate varies with site.
Molecular Biology and Evolution 11:261-277.

Tavaré, S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences.
Lectures in Mathematics in the Life Sciences 17:57-86.

Thorne, J. L., and H. Kishino. 1992. Freeing phylogenies from artifacts of alignment. Molecular
Biology and Evolution 9:1148-1162.

Uzzell, T., and K. W. Corbin. 1971. Fitting discrete probability distribution to evolutionary
events. Science 172:1089-1096.

Wakeley, J. 1994. Substitution-rate variation among sites and the estimation of transition bias.
Mol. Biol. Evol 11:436-442.

Whelan, S., and N. Goldman. 2001. A general empirical model of protein evolution derived from
multiple protein families using a maximum likelihood approach. Molecular Biology and
Evolution 18:691-699.

Whelan, S., P. Liò, and N. Goldman. 2001. Molecular phylogenetics: state of the art methods for
looking into the past. Trends in Genet. 17:262-272.

Wong, W. S., and R. Nielsen. 2004. Detecting selection in noncoding regions of nucleotide
sequences. Genetics 167:949-958.

Wong, W. S. W., Z. Yang, N. Goldman, and R. Nielsen. 2004. Accuracy and power of statistical
methods for detecting adaptive evolution in protein coding sequences and for identifying
positively selected sites. Genetics 168:1041-1051.

Yang, Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when
substitution rates differ over sites. Molecular Biology and Evolution 10:1396-1401.

Yang, Z. 1994a. Maximum likelihood phylogenetic estimation from DNA sequences with variable
rates over sites: approximate methods. Journal of Molecular Evolution 39:306-314.

Yang, Z. 1994b. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution
39:105-111.

Yang, Z. 1994c. Statistical properties of the maximum likelihood method of phylogenetic
estimation and comparison with distance matrix methods. Systematic Biology 43:329-342.

Yang, Z. 1995. A space-time process model for the evolution of DNA sequences. Genetics
139:993-1005.

Yang, Z. 1996a. Phylogenetic analysis using parsimony and likelihood methods. Journal of
Molecular Evolution 42:294-307.

Yang, Z. 1996b. Maximum-likelihood models for combined analyses of multiple sequence data.
Journal of Molecular Evolution 42:587-596.

 P A M L M A N U A L 6 3

Yang, Z. 1996c. Among-site rate variation and its impact on phylogenetic analyses. Trends in
Ecology and Evolution 11:367-372.

Yang, Z. 1998. Likelihood ratio tests for detecting positive selection and application to primate
lysozyme evolution. Molecular Biology and Evolution 15:568-573.

Yang, Z. 2000a. Complexity of the simplest phylogenetic estimation problem. Proc. R. Soc. B:
Biol. Sci. 267:109-116.

Yang, Z. 2000b. Maximum likelihood estimation on large phylogenies and analysis of adaptive
evolution in human influenza virus A. Journal of Molecular Evolution 51:423-432.

Yang, Z. 2001. Adaptive molecular evolution. Pp. 327-350 in D. Balding, M. Bishop, and C.
Cannings, eds. Handbook of statistical genetics. Wiley, New York.

Yang, Z. 2002. Inference of selection from multiple species alignments. Curr. Opinion Genet.
Devel. 12:688-694.

Yang, Z. 2004. A heuristic rate smoothing procedure for maximum likelihood estimation of
species divergence times. Acta Zoologica Sinica 50:645-656.

Yang, Z., and D. Roberts. 1995. On the use of nucleic acid sequences to infer early branchings in
the tree of life. Molecular Biology and Evolution 12:451-458.

Yang, Z., and T. Wang. 1995. Mixed model analysis of DNA sequence evolution. Biometrics
51:552-561.

Yang, Z., and S. Kumar. 1996. Approximate methods for estimating the pattern of nucleotide
substitution and the variation of substitution rates among sites. Molecular Biology and
Evolution 13:650-659.

Yang, Z., and B. Rannala. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov
chain Monte Carlo Method. Molecular Biology and Evolution 14:717-724.

Yang, Z., and R. Nielsen. 1998. Synonymous and nonsynonymous rate variation in nuclear genes
of mammals. Journal of Molecular Evolution 46:409-418.

Yang, Z., and A. D. Yoder. 1999. Estimation of the transition/transversion rate bias and species
sampling. Journal of Molecular Evolution 48:274-283.

Yang, Z., and R. Nielsen. 2000. Estimating synonymous and nonsynonymous substitution rates
under realistic evolutionary models. Molecular Biology and Evolution 17:32-43.

Yang, Z., and J. P. Bielawski. 2000. Statistical methods for detecting molecular adaptation. Trends
Ecol. Evol. 15:496-503.

Yang, Z., and W. J. Swanson. 2002. Codon-substitution models to detect adaptive evolution that
account for heterogeneous selective pressures among site classes. Molecular Biology and
Evolution 19:49-57.

Yang, Z., and R. Nielsen. 2002. Codon-substitution models for detecting molecular adaptation at
individual sites along specific lineages. Molecular Biology and Evolution 19:908-917.

Yang, Z., and A. D. Yoder. 2003. Comparison of likelihood and Bayesian methods for estimating
divergence times using multiple gene loci and calibration points, with application to a
radiation of cute-looking mouse lemur species. Systematic Biology 52:705-716.

Yang, Z., and B. Rannala. 2005. Bayesian estimation of species divergence times under a
molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and
Evolution:in press.

Yang, Z., N. Goldman, and A. Friday. 1994. Comparison of models for nucleotide substitution
used in maximum- likelihood phylogenetic estimation. Molecular Biology and Evolution
11:316-324.

Yang, Z., S. Kumar, and M. Nei. 1995a. A new method of inference of ancestral nucleotide and
amino acid sequences. Genetics 141:1641-1650.

Yang, Z., N. Goldman, and A. E. Friday. 1995b. Maximum likelihood trees from DNA
sequences: a peculiar statistical estimation problem. Systematic Biology 44:384-399.

Yang, Z., R. Nielsen, and M. Hasegawa. 1998. Models of amino acid substitution and applications
to mitochondrial protein evolution. Molecular Biology and Evolution 15:1600-1611.

Yang, Z., W. J. Swanson, and V. D. Vacquier. 2000a. Maximum likelihood analysis of molecular
adaptation in abalone sperm lysin reveals variable selective pressures among lineages and
sites. Molecular Biology and Evolution 17:1446-1455.

6 4 P A M L M A N U A L

Yang, Z., W. S. W. Wong, and R. Nielsen. 2005. Bayes empirical Bayes inference of amino acid
sites under positive selection. Molecular Biology and Evolution 22:1107-1118.

Yang, Z., R. Nielsen, N. Goldman, and A.-M. K. Pedersen. 2000b. Codon-substitution models
for heterogeneous selection pressure at amino acid sites. Genetics 155:431-449.

Yoder, A. D., and Z. Yang. 2000. Estimation of primate speciation dates using local molecular
clocks. Molecular Biology and Evolution 17:1081-1090.

Zhang, J., R. Nielsen, and Z. Yang. 2005. Evaluation of an improved branch-site likelihood
method for detecting positive selection at the molecular level. Molecular Biology and
Evolution:in press.

Zharkikh, A. 1994. Estimation of evolutionary distances between nucleotide sequences. Journal of
Molecular Evolution:315-329.

 P A M L M A N U A L 6 5

Index
aaDist ..24
alignment .. 2
alignment gap.. 11
alpha..19
ambiguity characters 11
BEB .. 26, 40
BFGS .. 49
BioEdit.. 2
bootstrap ... 50
branch label... 15, 38
clade label ... 15
cleandata ..11, 22
clock................................ 8, 15, 18, 22, 23, 47
CLUSTAL .. 2, 56
codon model

branch model .. 8, 37
branch-site model 26, 27
site model ... 7, 38

codon position.......... 11, 12, 21, 24, 37, 46, 54
CodonFreq ..24
convergence .. 49, 52
evolver...29
examples ... 9
fix_alpha ...19
fix_blength ..22
fix_kappa ..19
fix_rho ...19
fossil... 16, 18, 47
GenDoc ... 2
gene prediction.. 3
genetic code .. 21
getSE ...21
Hadamard transform 44
Hidden Markov model 45
icode ..22, 27
in.baseml... 52
in.codeml .. 52
initial values...................................... 22, 50, 52
likelihood ratio test2, 21, 33
LRT..............................See likelihood ratio test
lysozyme ... 8
MacClade.. 55
maximum likelihood estimate 33
MCaa.dat ..29
MCbase.dat ...29
MCcodon.dat ...29

MEGA .. 56
method ..22, 49
Mgene 10, 17, 18, 21, 46, 59
missing data .. 11
MLE............ See maximum likelihood estimate
model..18, 25, 28
MOLPHY ... 28, 56
Monte Carlo simulation 30
mouse lemurs .. 8
MrBayes.. 55
ncatG...19
ndata ... 18
NEB .. 40
nhomo ...19
noisy ..18
nonhomogeneous models.............................. 20
nparK ..19
NSsites ..7, 25, 26
OmegaAA.dat ...25
optimization .. 32, 49
Option G ... 10, 11, 12, 18, 19, 21, 23, 27, 46,

50, 53
outfile ..17
PAUP.. 55
PHYLIP .. 55
RateAncestor21, 27, 29, 41, 45
reconstruction.. 48

joint .. 48
marginal.. 48

rho ...19
runmode.. 18, 25
seqfile ..17
simulation ... 51
Small_Diff ...21, 53
TipDate ... 8
transition/transversion rate ratio.................... 36
tree

parenthesis notation 15
rooted.. 15
unrooted.. 15

tree search ..3, 18, 49
TreeAlign.. 2
treefile ...17
TreeView .. 16, 56
verbose ..18

	Table of Contents
	1 Overview
	PAML Documentation
	What PAML Programs Can Do
	What PAML Programs Cannot Do
	Organisation of This Manual

	2 Installation and Running PAML Programs
	Windows
	UNIX
	Mac OS X
	PowerMacs (PPC or G3 prior to OS X)
	Files in the Package
	Example Data Sets
	Which Files Are Needed?

	3 Input File Formats
	Sequence Data File Format
	Sequential and Interleaved Formats
	Site Pattern Counts

	Tree File Format and Representations of Tree Topology
	baseml Control File
	basemlg Control File
	codeml (codonml and aaml) Control File
	Codon Sequences (seqtype = 1)
	Amino Acid Sequences (seqtype = 2)

	evolver
	yn00
	mcmctree

	4 Models and Analyses
	General Theory
	Nucleotide Substitution Models
	Transition/transversion Rate Ratio

	Codon Substitution Models
	Basic Model
	Branch Models
	Site Models
	Branch-site models
	Clade Models

	Amino Acid Substitution Models
	Variable Rates Among Sites
	Models for Combined Analyses of Partitioned Data
	For Nucleotides (baseml)
	For Codons (codeml with seqtype = 1)
	For Amino Acids (codeml with seqtype = 2)

	Global and Local Clocks, and Sequences With Dates
	Reconstruction of Ancestral Sequences
	Analysing Large Data Sets and Iteration Algorithms
	Tree Search Algorithms
	Bootstrap Data Sets
	Simulation

	5 Technical Notes
	The rub File Recording the Progress of Iteration
	Specifying Initial Values
	Fine-tuning the Iteration Algorithm
	Adjustable Variables in the Source Codes
	More Codon Models

	6 Appendixes
	Appendix A. Using PAML with Other Phylogenetics Software
	PHYLIP
	PAUP, MacClade, and MrBayes
	Clustal
	MEGA
	MOLPHY
	TreeView
	Other Programs

	Appendix B. Overcoming Windows Annoyances
	Appendix C. Changes Since Version 3.13

	7 References
	Index

