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1  Overview
PAML (for Phylogenetic Analysis by Maximum Likelihood) is a package of programs for 
phylogenetic analyses of DNA and protein sequences using maximum likelihood.   

PAML Documentation 

Besides this manual, please note the following resources:  

• PAML web site: http://abacus.gene.ucl.ac.uk/software/PAML.html has 
information about downloading and compiling the programs.  There are also 
links from that site to the PAML FAQ page and the PAML discussion group. 

• PAML FAQ page: http://abacus.gene.ucl.ac.uk/software/pamlFAQs.pdf 

• PAML discussion group at http://www.rannala.org/phpBB2/.  Bug reports and 
questions should be directed to the discussion group. 

What PAML Programs Can Do 

The PAML package currently includes the following programs: baseml, basemlg, codeml, 
evolver, pamp, yn00, mcmctree, and chi2, with baseml, codeml, and evolver to be the 
most important ones.  Examples of analyses that can be performed using the package 
include 

• Comparison and tests of phylogenetic trees (baseml and codeml); 

• Estimation of parameters in sophisticated substitution models, including models of 
variable rates among sites and models for combined analysis of multiple genes or site 
partitions (baseml and codeml); 

• Likelihood ratio tests of hypotheses through comparison of implemented models 
(baseml, codeml, chi2); 

• Estimation of divergence times under global and local clock models (baseml and 
codeml); 

• Likelihood (Empirical Bayes) reconstruction of ancestral sequences using nucleotide, 
amino acid and codon models (baseml and codeml); 

• Generation of datasets of nucleotide, codon, and amino acid sequence by Monte 
Carlo simulation (evolver); 

• Estimation of synonymous and nonsynonymous substitution rates and detection of 
positive selection in protein-coding DNA sequences (yn00 and codeml). 

The strength of PAML is its collection of sophisticated substitution models.  Tree search 
algorithms implemented in baseml and codeml are rather primitive, so except for very 
small data sets with say, <10 species, you are better off to use another package, such as 
phylip, paup, or mrBayes, to infer the tree topology.  You can get a collection of trees 
from other programs and evaluate them using baseml or codeml as user trees. 

http://abacus.gene.ucl.ac.uk/software/paml.html
http://www.rannala.org/phpBB2/
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baseml and codeml.  The program baseml is for maximum likelihood analysis of 
nucleotide sequences.  The program codeml is formed by merging two old 
programs: codonml, which implements the codon substitution model of 
Goldman and Yang (1994) for protein-coding DNA sequences, and aaml, 
which implements models for amino acid sequences.  These two are now 
distinguished by the variable seqtype in the control file codeml.ctl, with 1 for 
codon sequences and 2 for amino acid sequences.  In this document I use 
codonml and aaml to mean codeml with seqtype = 1 and 2, respectively.  The 
programs baseml, codonml, and aaml use similar algorithms to fit models by 
maximum likelihood, the main difference being that the unit of evolution in the 
Markov model, referred to as a "site" in the sequence, is a nucleotide, a codon, 
or an amino acid for the three programs, respectively.  Markov process models 
are used to describe substitutions between nucleotides, codons or amino acids, 
with substitution rates assumed to be either constant or variable among sites.   

evolver.  This program can be used to simulate sequences under nucleotide, codon and 
amino acid substitution models.  It also has some other options such as 
generating random trees, and calculating the partition distances (Robinson and 
Foulds 1981) between trees. 

basemlg.  This program implements the (continuous) gamma model of Yang (1993).  It 
is very slow and unfeasible for data of more than 6 or 7 species.  Instead the 
discrete-gamma model in baseml should be used.  

pamp.  This implements the parsimony-based analysis of Yang and Kumar (1996). 

yn00.  This implements the method of Yang and Nielsen (2000) for estimating 
synonymous and nonsynonymous substitution rates (dS and dN) in pairwise 
comparisons of protein-coding DNA sequences.   

chi2.  This is for conducting likelihood ratio tests.  It calculates the chi square critical 
values, which you can compare with your test statistic calculated from the real 
data to determine whether the test is significant at the 5% or 1% levels.  Run the 
program by typing the program name “chi2”.  The program can also calculate 
the P value when you input the test statistic and the d.f.  Run the program by 
typing “chi2 p”.   

What PAML Programs Cannot Do 

There are many things that you might well expect a phylogenetics package should do but 
PAML cannot.  Here is a partial list, provided in the hope that it might help you avoid 
wasting time.   

• Sequence alignment.  You should use some other programs such as Clustal or 
TreeAlign to align the sequences automatically or do a manual alignment, 
perhaps with assistance from programs such as BioEdit and GeneDoc.  Manual 
adjustment does not seem to have reached the mature stage to be entirely 
trustable so you should always do manual adjustment if you can.  If you are 
constructing thousands of alignments in genome-wide analysis, you should 
implement some quality control, and, say, calculate some measure of sequence 
divergence as an indication of the unreliability of the alignment.  For coding 
sequences, you might align the protein sequences and construct the DNA 
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alignment based on the protein alignment.  Note that alignment gaps are treated 
as missing data in baseml and codeml (if cleandata = 1).  If cleandata = 
1, all sites with ambiguity characters and alignment gaps are removed. 

• Gene prediction.  The codon-based analysis implemented in codonml (codeml 
for codons with seqtype = 1) assumes that the sequences are pre-aligned exons, 
the sequence length is an exact multiple of 3, and the first nucleotide in the 
sequence is codon position 1.  Introns, spacers and other noncoding regions 
must be removed and the coding sequences must be aligned before running the 
program.  The program cannot process sequences downloaded directly from 
GenBank, even though the CDS information is there.  It cannot predict coding 
regions either. 

• Tree search in large data sets.  As mentioned earlier, you should use another 
program to get a tree or some candidate trees and use them as user trees to fit 
models that might not be available in other packages.  

Organisation of This Manual 

Chapter 2 “Installation and Getting Started” explains how to install the programs and 
how to run the example data sets included in the package to get started.  Chapter 3 
“Input File Formats” explains the formats of the sequence data file, the tree file.  It also 
goes through the variables in the control files such as baseml.ctl and codelm.ctl, which 
you use to specify the model of analysis.  Chapter 4 “Models and Analyses” provides 
background information about the models and analyses implemented.  It also mentions 
the control variables used to implement the models.  Chapters 3 and 4 thus constitute 
the bulk of this manual. 
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2  Installation and Running PAML 
Programs  
PAML programs do not have a graphics or menu-driven interface, so you have to know 
how to run programs from the command line.  There is not much of an installation 
either.  You download the archive from the PAML web site, typically named 
PAML*.*.tar.gz, and unpack the files onto your hard disk.  If you use Windows, the 
executables are included together with the source code.  If you use UNIX or MAC OS 
X, you will have to compile the programs yourselves.   

Windows 

The executables for Windows (95/98/NT/2000/XP) are included in the package.   

1. Go to the PAML web site http://abacus.gene.ucl.ac.uk/software/paml.html 
and download the latest archive and save it on your hard disk.  Unpack, say, 
using WinZip, the archive into a folder, say D:\software\paml\ (that is, the 
\software\paml folder on the D: drive).  You should remember the name of the 
folder.  I will use D:/software/paml/ as an example here, which you should 
substitute with the folder name you used. 

2. Start a command box.  On Windows, it is called "MS-DOS prompt" or 
"Command Prompt" and usually can be found "Start – Programs – 
Accessories”.   You can right click on the title bar to change the window 
properties (such as font, colour, size etc.). 

3. Change directory to the paml folder.  For example you type one of the 
following. 

d: 
cd \software\paml 
dir 

4. Note that Windows commands and file names are case-insensitive.  The folder src\ 
contains the source files.  The examples\ contains various example files, and bin contains 
Windows executables.  You can use Windows Explorer to look at the files.  To run the 
program baseml using the default control file baseml.ctl in the current folder, you can a 
command somewhat like the following.   

bin\baseml 

D:\software\paml3.14\bin\baseml 

This causes baseml to read the default control file baseml.ctl in the current 
folder and do the analysis according to its specifications.  Now you can print out 
a copy of baseml.ctl, and open a text editor to view the relevant sequence and 
tree files.   
Similarly you can run codeml and look at the control file codeml.ctl. 

Next you can prepare your own sequence data files and tree files.  Control files and other 
input files are all plain text files.  A common problem occurs due to differences in the 
way UNIX and Windows deal with carriage return or line breaks.  If you use MS Word 
to prepare the input files, you should save them as “Text with line breaks” or “Text 

http://abacus.gene.ucl.ac.uk/software/paml.html
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without line breaks”.  Sometimes only one of those two works.  Do not save the file as a 
Word document.  I have collected some notes in the section “Overcoming Windows 
Annoyances” in the Appendix (maybe this is in the PAML FAQ page).  

UNIX 

UNIX executables are not provided in the package, so you will have to compile them 
using the source files included in the package, in the src/folder.  Note that UNIX 
commands and file or folder names are case-sensitive.  The following assumes that you 
are at the UNIX prompt. 

1. Go to the PAML web site http://abacus.gene.ucl.ac.uk/software/paml.html 
and download the latest archive and save on your hard disk.  Unpack it using 
gzip, with a command like the following (replace the version numbers and use 
the correct name for the archive file) 
                   gzip –d paml3.14.tar.gz 
Probably you can use some other programs to unpack the files as well, but I am 
not sure. 

2. You can use ls to look at the files in the folder.  The Windows executables in the bin folder are 
useless, so we delete them (using rm).  Then cd to the src/ folder to compile using make. 

ls -lF bin  (this should list the .exe files in the bin folder) 
rm –r bin/*.exe 
cd src 
make 
ls -lF  
rm *.o  
mv baseml basemlg codeml pamp evolver yn00 chi2 ../bin  
cd ..  
bin/codeml  

3. If successful, the make command should compile the programs and generated 
new files named baseml, basemlg, codeml, pamp, evolver, yn00, and chi2, which 
you can see with the ls command.  Then remove (rm) the intermediate object 
files *.o, and move (mv) the compiled executables into bin/ folder in the PAML 
main folder (that is, ../bin from paml/src/).  Then cd  to the PAML main folder 
and run codeml, using the default control file codeml.ctl.  You can then print 
out a copy of codeml.ctl and look at it (and the main result file mlc). 

If the compilation (the make command) is unsuccessful, you might have to open and 
edit the file Makefile before issuing the make command.  For example, you can change 
cc to gcc and -fast to -O3 or -O4.  If that none of these works, look at the file readme.txt 
in the src/ folder for compiling instructions.  You can copy the compiling commands 
onto the command line.  For example  

cc –o baseml baseml.c tools.c –lm 
cc –o codeml codeml.c tools.c -lm 

would compile baseml and codeml using the C compiler cc.  However, in this case code 
optimization is not turned on.  If it works, you should use compiler switches to optimize 
the code, say,  

cc –o codeml –O2 codeml.c tools.c -lm 

http://abacus.gene.ucl.ac.uk/software/paml.html
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Finally, if your current folder is not on your search path, you will have to add ./ in front 
of the executable file name even if the executable is in your current working folder; that 
is, use ./codeml instead of codeml to run codeml.  

Mac OS X 

Since Mac OSX is UNIX, you should follow the instructions for UNIX above.  You 
should open a command terminal (Applications-Utilities-Terminal) and then compile 
and run the programs from the terminal.  You cd to the paml/src/ folder and look at the 
readme.txt or Makefile files.  See above.  You will need the Apple Developer’s Toolkit to 
compile the programs, which is not included in a standard installation of OS X.  Without 
this toolkit, you will get a "Command not found" error with either cc or make.  Go to 
the Apple web site http://developer.apple.com/tools/ to download and install the 
Toolkit first before you can compile the programs.  Perhaps I should buy a MAC just to 
compile PAML programs.  There are some more notes about running programs on 
MAC OS X or UNIX at the FAQ page. 

PowerMacs (PPC or G3 prior to OS X) 

I have stopped distributing executables for MACs running OS 9 or earlier.  MAC 
executables for two old versions, 3.0a and 3.0c, are still in the OldVersions/ folder at the 
ftp site. 

A few commonly used DOS and UNIX (including OS X) commands are listed in the 
PAML FAQ page. 

Files in the Package

The list is not up to date now, and you probably do not need to read this section.  The 
following is a list of files included in the package, which I prepared some time ago.   

Source codes (in the src/ folder):  

baseml.c: various models for nucleotide sequences 
codeml.c: models for codon (seqtype = 1) and amino acid (seqtype = 2) 
sequences 
pamp.c: parsimony analyses of nucleotide or amino acid sequences 
mcmctree.c: Bayes Markov chain Monte Carlo method on trees 
evolver.c:  simulation of sequence data and comparison of trees 
basemlg.c: Nucleotide-based model with (continuous) gamma rates among 
sites 
yn00.c: Estimation of dN and dS by the method of Yang and Nielsen (2000) 
treesub.c: a few functions 
treespace.c: a few more functions 
tools.c: my toolkit 
tools.h: header file 

Compiling commands 
Makefile: make file 
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Makefile.UNIX: make file for UNIX/Linux/MAC OSX 
README.txt: compiling commands for GNU gcc, and unix CC compilers 

Control files:  
baseml.ctl: control file for running baseml and basemlg; 
codeml.ctl: control file for codeml (i.e., codonml and aaml) 
pamp.ctl: control file for pamp 
yn00.ctl: control file for yn00 
mcmctree.ctl: control file for mcmctree 

Data files for codeml (see the files for details):  
grantham.dat: amino acid distance matrix (Grantham 1974) 
miyata.dat: amino acid distance matrix (Miyata et al. 1980) 
dayhoff.dat: Empirical amino acid substitution matrix of Dayhoff et al. 
(1978) 
jones.dat: Empirical amino acid substitution matrix of Jones et al. (1992) 
wag.dat: Empirical amino acid substitution matrix of Whelan and Goldman (in 
press) 
mtREV24.dat: Empirical amino acid substitution matrix of Adachi and 
Hasegawa (1996b) 
mtmam.dat: Empirical amino acid substitution matrix for mitochondrial 
proteins of mammals from Yang et al. (1998). 

Data files for evolver (see those small files for details):  
MCbase.dat: data file for simulating nucleotide sequences 
MCcodon.dat: data file for simulating codon sequences 
MCaa.dat: data file for simulating amino acid sequences 

Example tree files:  
4s.trees: tree structure file for 4-sequence data 
5s.trees: tree structure file for 5-sequence data 

Documentations:  
readme.txt: PAML readme file 
PAML.html: PAML web page, serving also as part of the manual (html file) 
PAMLDOC.pdf: this document 

Example Data Sets 

The examples/ folder contains many example data sets.  They were used in the 
original papers to test the new methods, and I included them so that you could duplicate 
our results in the papers.  Sequence alignments, control files, and detailed readme files 
are included.  They are intended to help you get familiar with the input data formats and 
with interpretation of the results, and also to help you discover bugs in the program.   

examples/HIVNSsites/: This folder contains example data files for the HIV-1 
env V3 region analyzed in Yang et al. (2000b).  The data set is for demonstrating 
the NSsites models described in that paper, that is, models of variable ω ratios 
among amino acid sites.  Those models are called the “random-sites” models by 
Yang & Swanson (2002) since a priori we do not know which sites might be 
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highly conserved and which under positive selection.  They are also known as 
“fishing-expedition” models.  The included data set is the 10th data set analyzed 
by Yang et al. (2000b) and the results are in table 12 of that paper.  Look at the 
readme file in that folder. 

examples/lysin/: This folder contains the sperm lysin genes from 25 abalone 
species analyzed by Yang, Swanson & Vacquier (2000a) and Yang and Swanson 
(2002).  The data set is for demonstrating both the “random-sites” models (as in 
Yang, Swanson & Vacquier (2000a)) and the “fixed-sites” models (as in (Yang 
and Swanson 2002)).  In the latter paper, we used structural information to 
partition amino acid sites in the lysin into the “buried” and “exposed” classes 
and assigned and estimated different ω ratios for the two partitions.  The 
hypothesis is that the sites exposed on the surface are likely to be under positive 
selection.  Look at the readme file in that folder. 

examples/lysozyme/: This folder contains the primate lysozyme c genes of 
Messier and Stewart (1997), re-analyzed by Yang (1998).  This is for 
demonstrating codon models that assign different ω ratios for different 
branches in the tree, useful for testing positive selection along lineages.  Those 
models are sometimes called branch models or branch-specific models.  Both 
the “large” and the “small” data sets in Yang (1998) are included.  Those models 
require the user to label branches in the tree, and the readme file and included 
tree file explain the format in great detail.  See also the section “Tree file and 
representations of tree topology” later about specifying branch/node labels. 

The lysozyme data set was also used by Yang and Nielsen (2002) to implement 
the so-callled “branch-site” models, which allow the ω ratio to vary both among 
lineages and among sites.  Look at the readme file to learn how to run those 
models. 

examples/MouseLemurs/: This folder includes the mtDNA alignment that Yang 
and Yoder (2003) analyzed to estimate divergence dates in mouse lemurs.  The 
data set is for demonstrating maximum likelihood estimation of divergence 
dates under models of global and local clocks.  The most sophisticated model 
described in that paper uses multiple calibration nodes simultaneously, analyzes 
multiple genes (or site partitions) while accounting for their differences, and also 
account for variable rates among branch groups.  The readme file explains the 
input data format as well as model specification in detail.  The readme2 file 
explains the ad hoc rate smoothing procedure of Yang (2004). 

examples/mtCDNA/: This folder includes the alignment of the 12 protein-coding 
genes on the same strand of the mitochondrial genome from seven ape species 
analyzed by Yang, Nielsen, & Hasegawa (1998) under a number of codon and 
amino acid substitution models.  The data set is the “small” data set referred to 
in that paper, and was used to fit both the “mechanistic” and empirical models 
of amino acid substitution as well as the “mechanistic” models of codon 
substitution.   The model can be used, for example, to test whether the rates of 
conserved and radical amino acid substitutions are equal.  See the readme file for 
details.  

examples/TipDate/: This folder includes the example data file used by Rambaut 
(2000) in his description of his TipDate models, for viral sequences with known 
dates of sequence determination.  The readme file explains how to use baseml to 
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fit the TipDate model, a global clock but with sequences determined at different 
dates.  Local clock models can be applied as well.  See the 
examples/MouseLemurs/ folder for how to do this.  Note that I use the symbol 
@ in the sequence name to prefix the date of sequence determination.  The file 
here is readable by Rambaut’s TipDate program, but the file in his package 
requires some editing (by inserting the @ symbol) before it can be read by 
baseml.   

Some other data files are included in the package as well.  The details follow. 

brown.nuc and brown.trees: the 895-bp mtDNA data of Brown et al. (1982), used 
in Yang et al. (1994) and Yang (1994b) to test models of variable rates among 
sites. 

mtprim9.nuc and 9s.trees:  mitochondrial segment consisting of 888 aligned sites 
from 9 primate species (Hayasaka et al. 1988), used by Yang (1994a) to test the 
discrete-gamma model and Yang (1995) to test the auto-discrete-gamma models.  

abglobin.nuc and abglobin.trees: the concatenated α- and β-globin genes, 
used by Goldman and Yang (1994) in their description of the codon model.  
abglobin.aa is the alignment of the translated amino acid sequences. 

stewart.aa and stewart.trees: lysozyme protein sequences of six mammals 
(Stewart et al. 1987), used by Yang et al. (1995a) to test methods for 
reconstructing ancestral amino acid sequences.  

Which Files Are Needed? 

You may copy the executables to a directory containing your data files. Please note that 
the program codeml may need some of the data files in the package such as 
grantham.dat, dayhoff.dat, jones.dat, wag.dat, mtREV24.dat, or 
mtmam.dat. You should probably copy these files together.  Other programs do not 
need such data files apart from the sequence and tree files you specify in the control file.  
There should be better ways of managing the multiple files, but I am too lazy and stupid 
to figure that out. 

Note also that the programs produce result files, with names such as rub, lnf, rst, or 
rates.  You should not use these names for your own files as otherwise they will be 
overwritten.  



3  Input File Formats 

Sequence Data File Format 

Have a look at some of the example data files in the package (.nuc, .aa, and .nex).  As 
long as you get your data file into one of the formats, PAML programs should be able to 
read it.  The “native” format is the PHYLIP format used in Joe Felsenstein’s PHYLIP 
package (Felsenstein 2005) (but see below).  PAML has limited support for the NEXUS 
file format used by PAUP and MacClade.  Only the sequence data or trees are read, and 
command blocks are ignored.  PAML does not deal with comment blocks in the 
sequence data block, so please avoid them. 

Sequential and Interleaved Formats 

Below is an example of the PHYLIP format (Felsenstein 2005).  The first line contains 
the number of species and the sequence length (possibly followed by option characters). 
For codon sequences (codeml with seqtype = 1), the sequence length in the sequence file refers to 
the number of nucleotides rather than the number of codons. The only options allowed in the 
sequence file are I, S, P, C, and G. The sequences may be in either interleaved format 
(option I, example data file abglobin.nuc), or sequential format (option S, example 
data file brown.nuc). The default option is S, so you don’t have to specify it. Option G 
is used for combined analysis of multiple gene data and is explained below.  The 
following is an example data set in the sequential format. It has 4 sequences each of 60 
nucleotides (or 20 codons).  

   4 60 
sequence 1 
AAGCTTCACCGGCGCAGTCATTCTCATAAT 
CGCCCACGGACTTACATCCTCATTACTATT 
sequence 2 
AAGCTTCACCGGCGCAATTATCCTCATAAT 
CGCCCACGGACTTACATCCTCATTATTATT 
sequence 3 
AAGCTTCACCGGCGCAGTTGTTCTTATAAT 
TGCCCACGGACTTACATCATCATTATTATT 
sequence 4 
AAGCTTCACCGGCGCAACCACCCTCATGAT 
TGCCCATGGACTCACATCCTCCCTACTGTT 

 

Species/sequence names. Do not use the following special symbols in a 
species/sequence name: “, : # ( ) $ =” in a species name as they are used for special 
purposes and may confuse the programs.  The symbol @ can be used as part and end of 
the sequence name to specify the date of determination of that sequence, for example, 
virus1@1984.  The @ symbol is considered part of the name and the sequence was 
determined in 1984.  The maximum number of characters in a species name 
(LSPNAME) is specified at the beginning of the main programs baseml.c and 
codeml.c.  In PHYLIP, exactly 10 characters are used for a species name, which I 
often found to be too restrictive.  So I use a default value of 30.  To make this 
discrepancy less a problem, PAML considers two consecutive spaces as the end of a 
species name, so that the species name does not have to have exactly 30 (or 10) 
characters.  To make this rule work, you should not have two consecutive spaces within a 
species name.  For example the above data set can have the following format too.  
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         4 60 

sequence 1  AAGCTTCACCGGCGCAGTCATTCTCATAAT 
CGCCCACGGACTTACATCCTCATTACTATT 
sequence 2  AAGCTTCACCGGCGCAATTATCCTCATAAT 
CGCCCACGGACTTACATCCTCATTATTATT 
sequence 3  AAGCTTCACC GGCGCAGTTG TTCTTATAAT 
TGCCCACGGACTTACATCATCATTATTATT 
sequence 4  AAGCTTCACCGGCGCAACCACCCTCATGAT 
TGCCCATGGACTCACATCCTCCCTACTGTT 

 
If you want the file to be readable by both PHYLIP and PAML, you should limit the 
number of characters in the name to 10 and separate the name and the sequence by at 
least two spaces.  

In a sequence, T, C, A, G, U, t, c, a, g, u are recognized as nucleotides (for baseml, 
basemlg and codonml), while the standard one-letter codes (A, R, N, D, C, Q, E, G, 
H, I, L, K, M, F, P, S, T, W, Y, V or their lowercase equivalents) are recognized as amino 
acids.  Ambiguity characters (undetermined nucleotides or amino acids) are allowed as 
well.  Three special characters ".", "-", and "?" are interpreted like this: a dot means the 
same character as in the first sequence, a dash means an alignment gap, and a question 
mark means an undetermined nucleotide or amino acid.  Non-alphabetic symbols such 
as ><!’"£$%&^[](){}0123456789 inside a sequence are simply ignored and can be freely 
used as signposts.  Lines do not have to be equally long and you can put the whole 
sequence on one line. 

The way that ambiguity characters and alignment gaps are treated in baseml and 
codeml depends on the variable cleandata in the control file.  In the maximum 
likelihood analysis, sites at which at least one sequence involves an ambiguity character 
are removed from all sequences before analysis if cleandata = 1, while if cleandata = 
0, both ambiguity characters and alignment gaps are treated as ambiguity characters.  In 
the pairwise distance calculation (the lower-diagonal distance matrix in the output), 
cleandata = 1 means “complete deletion”, with all sites involving ambiguity characters 
and alignment gaps removed from all sequences, while cleandata = 0 means “pairwise 
deletion”, with only sites which have missing characters in the pair removed. 

There are no models for insertions and deletions in the PAML programs.  So an 
alignment gap is treated as an ambiguity (that is, a question mark ?).  Note also that for 
codon sequences, removal of any nucleotide means removal of the whole codon.   

Notes may be placed at the end of the sequence file and will be ignored by the programs.  

Option G: This option is for combined analyses of heterogeneous data sets such as data 
of multiple genes or data of the three codon positions. The sequences must be 
concatenated and the option is used to specify which gene or codon position each site is 
from.  

There are three formats with this option. The first is illustrated by an excerpt of a 
sequence file listed below. The example data of Brown et al. (1982) are an 895-bp 
segment from the mitochondrial genome, which codes for parts of two proteins (ND4 
and ND5) at the two ends and three tRNAs in the middle. Sites in the sequence fall 
naturally into 4 classes: the three codon positions and the tRNA coding region. The first 
line of the file contains the option character G. The second line begins with a G at the 
first column, followed by the number of site classes. The following lines contain the site 
marks, one for each site in the sequence (or each codon in the case of codonml). The 
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site mark specifies which class each site is from. If there are g classes, the marks should 
be 1, 2, ..., g, and if g > 9, the marks need to be separated by spaces. The total number of 
marks must be equal to the total number of sites in each sequence. 

 5 895 G 
G 4 
3 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
1231231231231231231231231231231231231 
444444444444444444444444444444444444444444444444444444444444 
444444444444444444444444444444444444444444444444444444444444 
444444444444444444444444444444444444444444444444444444444444 
444444444444444444 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
12312312312312312312312312312312312312312312312312312312312 
Human 
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATT 
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATC........ 
Chimpanzee 
......... 

 

The second format is useful if the data are concatenated sequences of multiple genes, 
shown below for an example data set. This sequence has 1000 nucleotides from 4 genes, 
obtained from concatenating four genes with 100, 200, 300, and 400 nucleotides from 
genes 1, 2, 3, and 4, respectively. The "lengths" for the genes must be on the line that 
starts with G, i.e., on the second line of the sequence file. (This requirement allows the 
program to determine which of the two formats is being used.) The sum of the lengths 
for the genes should be equal to the number of nucleotides, amino acids, or codons in 
the combined sequence for baseml (or basemlg), aaml, and codonml, respectively.  

5 1000 G 
G 4 100 200 300 400 
Sequence 1 
TCGATAGATAGGTTTTAGGGGGGGGGGTAAAAAAAAA....... 

 

The third format applies to protein-coding DNA sequences only (for baseml). You use 
option characters GC on the first line instead of G alone. The program will then treat 
the three codon positions differently in the nucleotide-based analysis. It is assumed that 
the sequence length is an exact multiple of three.  

 
  5  855  GC 
human      GTG CTG TCT CCT ... 

 

Option G for codon sequences (codeml with seqtype = 1).  The format is similar to 
the same option for baseml, but note that the sequence length is in number of 
nucleotides while the gene lengths are in number of codons.  This has been a source of 
confusion.  Below is an example: 

  5  300  G 
G2   40  60 
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This data set has 5 sequences, each of 300 nucleotides (100 codons), which are 
partitioned into two genes, with the first gene having 40 codons and the second gene 60 
codons. 

Site Pattern Counts 

The sequence alignment can also be input in the form of site patterns and counts of sites 
having those site patterns.  This format is specified by the option “P” on the first line of 
the input data file, as illustrated by the following example.  Here there are 3 sequences, 8 
site patterns, with "P" indicating that the data are site patterns and not sites.  The "P" 
option is used in the same way as options "I" for interleaved format and "S" for 
sequential format (default).  The 8 numbers below the alignment are the numbers of sites 
having the 8 patterns above.  For example, at 100 sites, all three species has G, and at 
200 sites all three species has T, and so on.  In total there are 100 + 200 + 40 + … + 14 
= 440 sites.   

  3  8  P 
 
human   GTACTGCC 
rabbit  GTACTACT 
rat     GTACAGAC 
 
100 200 40 50 11 12 13 14 

This example applies to baseml and basemlg, program for nucleotide-based analysis.  To 
specify multiple genes (site partitions), one may use option G together with option P.   

  3  10  PG 
G 2    4 6 
 
human   GTTA CATGTC 
rabbit  GTCA CATATT 
rat     GTTA CAAGTC 
 
100 200 40 50 120 61 12 13 54 12 

Here there are 10 site patterns and 2 genes (site partitions).  The first 4 patterns are for 
the first gene while the next 6 patterns are for the second gene, with a total of 10 site 
patterns.  In partition 1 there are 40 sites having the data AAA (nucleotide A in all three 
species), and while in partition 2 there are 61 such sites.   

The same format applies to protein sequences (codeml with seqtype = 2), with amino 
acids replacing nucleotides in the examples above. 

For codon sequences (codeml with seqtype = 1), the format is as follows.  There are 3 
species, and 9 site patterns, with 6 sites having the first site pattern (which has the codon 
GTG in all three species).  Note that 27 = 9*3.  The program requires that you use 3 
times the number of codon site patterns here.  This is strange but consistent with the 
sequential or interleaved sequence format, where the sequence length is specified in the 
number of nucleotides rather than number of codons.  (Initially I did this so that the 
same file can be read by both baseml for nucleotide based analysis and codonml for 
codon based analysis.) 
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      3  27  P G 
 
human     GTG CTG TCT CCT GCC GAC AAG ACC  
rabbit    ... ... ... G.C ... ... ... T..  
rat       ... ... ... ..C ..T ... ... ...  
 
    6 1 1 1 1 4 3 1 1 

To specify multiple genes for codon site patterns, see the following example. 
      3  27  P G 
G 2      4   5 
 
human     GTG CTG TCT CCT GCC GAC AAG ACC  
rabbit    ... ... ... G.C ... ... ... T..  
rat       ... ... ... ..C ..T ... ... ...  
 
    6 1 1 1 1 4 3 1 1 

Here there are again 9 codon site patterns in total, with the first 4 patterns for gene 1 and 
the next 5 patterns for gene 2. 

Furthermore, option variable P can be used together with option variable I or S.  PI 
means that the site patterns are listed using the interleaved format while PS means that 
the site patterns are listed using the sequential format.  P without I or S uses the default 
sequential format.  Having the whole sequence of all site patterns on one line conforms 
with both the I and S formats, so there is no need to specify I or S. 

If you run baseml and codeml to read the sequential or interleaved formats of sequences, 
the output will include a print-out in this partitioned format.  Look for the line “Printing 
out site pattern counts”.  You can move this block into a new file and later on read that 
file instead, if it takes a long time to pack sites into patterns.  Note the restrictions with 
the P format below. 

Here are some restrictions to this option.  Some outputs are disabled for this option, 
including ancestral sequence reconstruction and posterior estimates of rates for sites (or 
site patterns), that you can get for sequences by using RateAncestor = 1.  Second, some 
of the calculations require the sequence length, which I set to the sum of the site pattern 
frequencies.  If the site pattern frequencies are not counts of sites but are instead site 
pattern probabilities, calculations involving sequence length will not be correct.  Such 
calculations include the SEs for MLEs, the numbers of sites S and N in codonml, for 
example. 

Possible uses of this option.  Sometimes I use evolver to simulate very long sequences (with 
>1M sites) and it can take minutes or hours to collapse sites into patterns, which is 
irritating when the maximum likelihood iteration takes a few seconds and I want to use 
the same data to run multiple models.  A similar case is analysis of large genomic data of 
long sequences with >100Mb sites.  In this case you can run baseml or codeml once, and 
then copy the pattern counts from the output file into a data file.  Next time, you run the 
program you can read the new file.  This way the program skips the step of counting site 
patterns.  Another situation is to calculate the site pattern probabilities under model and 
then read the probabilities for analysis using a wrong to see whether the correct tree is 
still recovered.  This way, you can check whether the tree reconstruction method is still 
consistent.  See Debry (1992) and Yang (1994c) for such analysis.  (I need to enable the 
code for printing site pattern probabilities.) 
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Tree File Format and Representations of Tree Topology 

A tree structure file is used when runmode = 0 or 1. The file name is specified in the 
appropriate control file.  The tree topology is typically specified using the parenthesis 
notation, although it is possible to use a branch representation, as described below. 

Parenthesis notation: The first is the familiar parenthesis representation, used in most 
phylogenetic software. The species can be represented using either their names or their 
indexes corresponding to the order of their occurrences in the sequence data file.  If 
species names are used, they have to match exactly those in the sequence data file 
(including spaces or strange characters).  Branch lengths are allowed.  The following is a 
possible tree structure file for a data set of four species (human, chimpanzee, gorilla, and 
orangutan, occurring in this order in the data file). The first tree is a star tree, while the 
next four trees are the same.  

    4 5 // 4 species, 5 trees 
(1,2,3,4); // the star tree 
((1,2),3,4); // species 1 and 2 are clustered together 
((1,2),3,4); // Commas are needed with more than 9 species 
((human,chimpanzee),gorilla,orangutan); 
((human:.1,chimpanzee:.2):.05,gorilla:.3,orangutan:.5); 

If the tree has branch lengths, baseml and codeml allow you to use the branch lengths in 
the tree as starting values for maximum likelihood iteration. 

Whether you should use rooted or unrooted trees depends on the model, for example, 
on whether a molecular clock is assumed.  Without the clock (clock = 0), unrooted trees 
should be used, such as ((1,2),3,4) or (1,2,(3,4)).  With the clock or local-clock models, 
the trees should be rooted and these two trees are different and both are different from 
(((1,2),3),4).  In PAML, a rooted tree has a bifurcation at the root, while an unrooted tree 
has a trifurcation or multifurcation at the root. 

Tree files produced by PAUP and MacClade.  PAML programs have only limited 
compatibility with the tree file generated by PAUP or MacClade.  First the “[&U]” 
notation for specifying an unrooted tree is ignored.  For the tree to be accepted as an 
unrooted tree by PAML, you have to manually modify the tree file so that there is a 
trifurcation at the root, for example, by changing “(((1,2),3),4)” into “((1,2),3,4)”.  
Second, the “Translate” keyword is ignored by PAML as well, and it is assumed that the 
ordering of the sequences in the tree file is exactly the same as the ordering of the 
sequences in the sequence data file. 

Branch or node labels.  Some models implemented in baseml and codeml allow 
several groups of branches on the tree, which are assigned different parameters of 
interest.  For example, in the local clock models (clock = 2 or 3) in baseml or codeml, 
you can have, say, 3 branch rate groups, with low, medium, and high rates respectively.  
Also the branch-specific codon models (model = 2 or 3 for codonml) allow different 
branch groups to have different ωs, leading to so called “two-ratios” and “three-ratios” 
models.  All those models require branches or nodes in the tree to be labeled.  Branch 
labels are specified in the same way as branch lengths except that the symbol “#” is used 
rather than “:”.  The branch labels are consecutive integers starting from 0, which is the 
default and does not have to be specified.  For example, the following tree 
((Hsa_Human, Hla_gibbon) #1, ((Cgu/Can_colobus, Pne_langur), Mmu_rhesus), (Ssc_squirrelM, 
Cja_marmoset));  
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is from the tree file examples/lysozyme/lysozyme.trees, with a branch label for 
fitting models of different ω ratios for branches.  The internal branch ancestral to human 
and gibbon has the ratio ω1, while all other branches (with the default label #0) have the 
background ratio ω0.  This fits the model in table 1C for the small data set of lysozyme 
genes in Yang (1998).  See the readme file in the examples/lysozyme/ folder. 

On a big tree, you might want to label all branches within a clade.  For this purpose, you 
can use the clade label $.  $ is for ∆, which looks like a good clade symbol but is missing 
on most keyboards.  So (clade) $2 is equivalent to labeling all nodes/branches within the 
clade with #2.  The following two trees are thus equivalent.   

(((rabbit, rat) $1, human), goat_cow, marsupial);  

(((rabbit #1, rat #1) #1, human), goat_cow, marsupial); 

Here are the rules concerning nested clade labels.  The symbol # takes precedence over 
the symbol $, and clade labels close to the tips take precedence over clade labels for 
ancestral nodes close to the root.  So the following two trees are equivalent.  In the first 
tree below, $1 is first applied to the whole clade of placental mammals (except for the 
human lineage), and then $2 is applied to the rabbit-rate clade. 

((((rabbit, rat) $2, human #3), goat_cow) $1, marsupial);  

((((rabbit #2, rat #2) #2, human #3) #1, goat_cow #1) #1, marsupial); 

I have found it convenient to create the tree file with labels and read the tree using Rod 
page’s (1996) TreeView to check that the tree and labels are right.  New versions of 
TreeView also allow you to add branch labels in the tree-edit window, but even being 
able to view the labels is a big help.  TreeView however does not recognize or allow 
labels for tips or tip branches.  Another program that you can use to create and/or view 
branch or node labels is Andrew Rambaut’s TreeEdit, available for the MAC.  I have no 
experiencing of using it. 

Divergence date symbol @.  Fossil calibration information is specified using the 
symbol @.  This is used for the clock and local clock models in baseml and codeml.  See 
the readme file in the examples/MouseLemurs/ folder.  In the mcmctree program 
implementing Bayes MCMC dating methods, I also use symbols < and > to specify soft 
bounds on fossil calibration nodes ages, while @ is used to represent the most likely age.  
So in the following example, the human-chimpanzee divergence is most likely at 6MY 
and quite unlikely to be outside the (4MY, 10MY) interval.   
((gorilla, (human, chimpanzee) '>.04 @0.06 <.10'), orangutan) '>.12 <.30'; 

Branch representation of tree topology:  A second way of representing the tree 
topology used in PAML is by enumerating its branches, each of which is represented by 
its starting and ending nodes.  This representation is also used in the result files for 
outputting the estimated branch lengths, but you can also use it in the tree file. For 
example, the tree ((1,2),3,4) can be specified by enumerating its 5 branches:  
       5 

     5 6    6 1    6 2    5 3    5 4 

The nodes in the tree are indexed by consecutive natural numbers, with 1, 2, ..., s 
representing the s known sequences in the data, in the same order as in the data.  A 
number larger than s labels an internal node, at which the sequence is unknown.  So in 
the above tree, node 5 is ancestral to nodes 6, 3, and 4, while node 6 is ancestral to nodes 
1 and 2.   

http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html
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This notation is convenient to specify a tree in which some sequences in the data are 
direct ancestors to some others.  For example, the following tree for 5 sequences has 4 
branches, with sequence 5 to be the common ancestor of sequences 1, 2, 3, and 4:  

4      

5 1     5 2     5 3     5 4 

Warning.  I did not try to make this tree representation work with all models 
implemented in baseml and codeml.  If you use this representation, you should test the 
program carefully.  If it does not work, you can let me know so that I will try to fix it. 

baseml Control File 

The default control file for baseml is baseml.ctl, and an example is shown below. 
Note that spaces are required on both sides of the equal sign, and blank lines or lines 
beginning with "*" are treated as comments. Options not used can be deleted from the 
control file.  The order of the variables is unimportant. 
      seqfile = brown.nuc * sequence data file name 
      outfile = mlb * main result file 
     treefile = brown.trees * tree structure file name 
 
        noisy = 3   * 0,1,2,3: how much rubbish on the screen 
      verbose = 0   * 1: detailed output, 0: concise output 
      runmode = 0   * 0: user tree;  1: semi-automatic;  2: automatic 
                    * 3: StepwiseAddition; (4,5):PerturbationNNI  
 
        model = 5   * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85 
                    * 5:T92, 6:TN93, 7:REV, 8:UNREST, 9:REVu; 10:UNRESTu 
        Mgene = 0   * 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff 
 
*       ndata = 1   * number of data sets  
        clock = 0   * 0:no clock, 1:clock; 2:local clock; 3:CombinedAnalysis 
    fix_kappa = 0  * 0: estimate kappa; 1: fix kappa at value below 
        kappa = 2.5   * initial or fixed kappa 
 
    fix_alpha = 1   * 0: estimate alpha; 1: fix alpha at value below 
        alpha = 0.  * initial or fixed alpha, 0:infinity (constant rate) 
       Malpha = 0   * 1: different alpha's for genes, 0: one alpha 
        ncatG = 5   * # of categories in the dG, AdG, or nparK models of rates 
 
      fix_rho = 1   * 0: estimate rho; 1: fix rho at value below  
          rho = 0.  * initial or fixed rho,   0:no correlation 
        nparK = 0   * rate-class models. 1:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK  
 
        nhomo = 0   * 0 & 1: homogeneous, 2: kappa for branches, 3: N1, 4: N2 
        getSE = 0   * 0: don't want them, 1: want S.E.s of estimates 
 RateAncestor = 0   * (0,1,2): rates (alpha>0) or ancestral states 
 
   Small_Diff = 1e-6 
*   cleandata = 1   * remove sites with ambiguity data (1:yes, 0:no)? 
*       icode = 0   * (RateAncestor=1 for coding genes, "GC" in data) 
* fix_blength = 0   * 0: ignore, -1: random, 1: initial, 2: fixed 
       method = 0   * 0: simultaneous; 1: one branch at a time 

 

The control variables are described below.  

seqfile, outfile, and treefile specifies the names of the sequence data file, main 
result file, and the tree structure file, respectively.   You should not have spaces 
inside a file name.  In general try to avoid special characters in a file name as 
they might have special meanings under the OS. 
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noisy controls how much output you want on the screen.  If the model being fitted 
involves much computation, you can choose a large number for noisy to 
avoid loneliness. verbose controls how much output in the result file.  

runmode = 0 means evaluation of the tree topologies specified in the tree structure file, 
and runmode = 1 or 2 means heuristic tree search by the star-decomposition 
algorithm. With runmode = 2, the algorithm starts from the star tree, while if 
runmode = 1, the program will read a multifurcating tree from the tree 
structure file and try to estimate the best bifurcating tree compatible with it. 
runmode = 3 means stepwise addition. runmode = 4 means NNI perturbation 
with the starting tree obtained by a parsimony algorithm, while runmode = 5 
means NNI perturbation with the starting tree read from the tree structure file. 
The tree search options do not work well, and so use runmode = 0 as much as 
you can.  For relatively small data set, the stepwise addition algorithm seems 
usable.   

model specifies the model of nucleotide substitution.  Models 0, 1, …, 8 represent 
models JC69, K80, F81, F84, HKY85, T92, TN93, REV (also known as GTR), 
and UNREST, respectively.  Check Yang (1994 JME 39:105-111) for notation.  
Two more models are implemented recently.  model = 9 are special cases of the 
REV model, while model = 10 are special cases of the unrestricted model.  The 
format is shown in the following examples and should be self-explanatory.  
Basically you include extra information on the same line that specifies the model 
when model = 9 or 10.  The number in the brackets [] are the number of free 
rate parameters.  For example, this should be 5 for REV and 11 for UNREST.  
Following that number are equal number of parenthesis pairs ().  The rate 
parameters in the output file will follow this order here.  The pairs that are not 
mentioned will have rate 1.  When model = 9, you specify TC or CT, but not 
both.  When model = 10, TC and CT are different.  See the following examples 
and Yang (1994a) for notation. 

       model = 10  [0]  /* JC69 */ 
       model = 10  [1 (TC CT AG GA)]  /* K80 */ 
       model = 10  [11 (TA) (TG) (CT) (CA) (CG) (AT) (AC) (AG) (GT) (GC) (GA) ]  /* unrest 

*/ 
       model = 10  [5 (AC CA) (AG GA) (AT TA) (CG GC) (CT TC)]  /* SYM */ 
       model = 9   [2 (TA TG CA CG) (AG)]    /* TN93 */ 

Mgene is used in combination with option G in the sequence data file, for combined 
analysis of data from multiple genes or multiple site partitions (such as the three 
codon positions). More details are given later in the Models and Methods 
section.  Choose 0 if option G is not used in the data file.  

ndata: specifies the number of separate data sets in the file.  This variable is useful for 
simulation.  You can use evolver to generate 200 replicate data sets, and then 
set ndata = 200 to use baseml to analyze them.   

clock specifies models concerning rate constancy or variation among lineages.  clock 
= 0 means no clock and rates are entirely free to vary from branch to branch.  
An unrooted tree should be used under this model.  For clock = 1, 2, or 3, a 
rooted tree should be used.  clock = 1 means the global clock, with all 
branches having the same rate.  If fossil calibration information is specified in 
the tree file using the symbol @, the absolute rate will be calculated.  Multiple 
calibration points can be specified this way.  If sequences have dates, this option 
will fit Andrew Rambaut’s TipDate model.  clock = 2 implements local clock 
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models of Yoder and Yang (2000) and Yang and Yoder (2003), which assume 
that branches on the tree can be partitioned into several rate groups.  The 
default is group 0, while all other groups have to be labeled using branch/node 
labels (symbols # and $) in the tree.  The program will then estimate those rates 
for branch groups.  clock = 3 is for combined analysis of multiple-gene or 
multiple-partition data, allowing the branch rates to vary in different ways 
among the data partitions (Yang and Yoder 2003).  To account for differences 
in the evolutionary process among data partitions, you have to use the option G 
in the sequence file as well as the control variable Mgene in the control file 
(baseml.ctl or codeml.ctl).  Read the section above on “Tree file format” about 
how to specify fossil calibration information in the tree, how to label branch 
groups.  Read Yang and Yoder (2003) and the readme file in the 
examples/MouseLemurs/ folder to duplicate the analysis of that paper.  Also 
the variable (= 5 or 6) is used to implement the ad hoc rate smoothing 
procedure of Yang (2004).  See the file readme2.txt for instructions and the 
paper for details of the model. 

fix_kappa specifies whether κ in K80, F84, or HKY85 is given at a fixed value or is to 
be estimated by iteration from the data. If fix_kappa = 1, the value of 
another variable, kappa, is the given value, and otherwise the value of kappa is 
used as the initial estimate for iteration. The variables fix_kappa and kappa 
have no effect with JC69 or F81 which does not involve such a parameter, or 
with TN93 and REV which have two and five rate parameters respectively, 
when all of them are estimated from the data.  

fix_alpha and alpha work in a similar way, where alpha refers to the shape 
parameter α of the gamma distribution for variable substitution rates across 
sites (Yang 1994a). The model of a single rate for all sites is specified as 
fix_alpha = 1 and alpha = 0 (0 means infinity), while the (discrete-) gamma 
model is specified by a positive value for alpha, and ncatG is then the number 
of categories for the discrete-gamma model (baseml).  

fix_rho and rho work in a similar way and concern independence or correlation of 
rates at adjacent sites, where ρ (rho) is the correlation parameter of the auto-
discrete-gamma model (Yang 1995). The model of independent rates for sites is 
specified as fix_rho = 1 and rho = 0; choosing alpha = 0 further means a 
constant rate for all sites. The auto-discrete-gamma model is specified by 
positive values for both alpha and rho. The model of a constant rate for sites 
is a special case of the (discrete) gamma model with α = ∞ (alpha = 0), and 
the model of independent rates for sites is a special case of the auto-discrete-
gamma model with ρ = 0 (rho = 0).  

nparK specifies nonparametric models for variable and Markov-dependent rates across 
sites: nparK = 1 or 2 means several (ncatG) categories of independent rates for 
sites, while nparK = 3 or 4 means the rates are Markov-dependent at adjacent 
sites; nparK = 1 and 3 have the restriction that each rate category has equal 
probability while nparK = 2 and 4 do not have this restriction (Yang and 
Roberts 1995). The variable nparK takes precedence over alpha or rho. 

nhomo is for baseml only, and concerns the frequency parameters in some of the 
substitution models.  The option nhomo = 1 fits a homogeneous model, but 
estimates the frequency parameters (πT, πC and πA; πG is not a free parameter as 
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the frequencies sum to 1) by maximum likelihood iteration.  This applies to F81, 
F84, HKY85, T92 (in which case only πGC is a parameter), TN93, or REV 
models. Normally (nhomo = 0) these are estimated by the averages of the 
observed frequencies. In both cases (nhomo = 0 and 1), you should count 3 (or 
1 for T92) free parameters for the base frequencies.  

Options nhomo = 3, 4, and 5 work with F84, HKY85, or T92 only.  They fit 
the nonhomogeneous models of Yang and Roberts (1995) and Galtier and 
Gouy (1998).  The nucleotide substitution is specified by the variable model 
and is one of F84, HKY85 or T92, but with different frequency parameters used 
in the rate matrix for different branches in the tree, to allow for unequal base 
frequencies in different sequences. The position of the root then makes a 
difference to the likelihood, and rooted trees are used.  Because of the 
parameter richness, the model may only be used with small trees except that you 
have extremely long sequences.  Yang and Roberts (1995) used the HKY85 or 
F84 models, and so three independent frequency parameters are used to 
describe the substitution pattern, while Galtier and Gouy (1998) used the T92 
substitution model and uses the GC content πGC only, with the base frequencies 
give as πT = πA = (1 – πGC)/2 and πC = πG = πGC/2.  The option nhomo = 4 
assigns one set of frequency parameters for the root, which are the initial base 
frequencies at the root, and one set for each branch in the tree.  This is model 
N2 in Yang and Roberts (1995) if the substitution model is F84 or HKY85 or 
the model of Galtier and Gouy (1998) if the substitution model is T92.  Option 
nhomo = 3 uses one set of base frequencies for each tip branch, one set for all 
internal branches in the tree, and one set for the root.  This specifies model N1 
in Yang and Roberts (1995). 

The option nhomo = 5 lets the user specify how many sets of frequency 
parameters should be used and which node (branch) should use which set.  The 
set for the root specifies the initial base frequencies at the root while the set for 
any other node is for parameters in the substitution matrix along the branch 
leading to the node.  You use branch (node) labels in the tree file (see the 
subsection “Tree file and representations of tree topology” above) to tell the 
program which set each branch should use.  There is no need to specify the 
default set (0).  So for example nhomo = 5 and the following tree in the tree file 
species sets 1, 2, 3, 4, and 5 for the tip branches, set 6 for the root, while all the 
internal branches (nodes) will have the default set 0.  This is equivalent to 
nhomo = 3. 
((((1 #1, 2: #2), 3 #3), 4 #4), 5 #5) #6; 

The output for nhomo = 3, 4, 5 is under the heading “base frequency 
parameters (4 sets) for branches, and frequencies at nodes”.  Two sets of 
frequencies are listed for each node.  The first set are the parameters (used in 
the substitution rate matrix for the branch leading to the node), and the second 
set are the expected base frequencies at the node, calculated from the model 
((Yang and Roberts 1995); page 456 column top).  If the node is the root, the 
same set of frequencies are printed twice. 



 P A M L  M A N U A L  2 1  

Note that the use of the variable fix_kappa here with nhomo = 3, 4 or 5 is 
unusual.  fix_kappa = 1 means one common κ is assumed and estimated for 
all branches, while fix_kappa = 0 means one κ is estimated for each branch.   

nhomo = 2 uses one transition/transversion rate ratio (κ) for each branch in the 
tree for the K80, F84, and HKY85 models (Yang 1994b; Yang and Yoder 1999).  

getSE tells whether we want estimates of the standard errors of estimated parameters. 
These are crude estimates, calculated by the curvature method, i.e., by inverting 
the matrix of second derivatives of the log-likelihood with respect to 
parameters. The second derivatives are calculated by the difference method, and 
are not always reliable. Even if this approximation is reliable, tests relying on the 
SE's should be taken with caution, as such tests rely on the normal 
approximation to the maximum likelihood estimates. The likelihood ratio test 
should always be preferred. The option is not available and choose getSE = 0 
when tree-search is performed.  

RateAncestor = 1 also works with runmode = 0 only.  For models of variable rates 
across sites, the program will calculate rates for sites along the sequence (output 
in the file rates) and performs marginal ancestral reconstruction (output in 
rst).  For models of one rate for all sites, RateAncestor = 1 does both 
marginal and joint ancestral sequence reconstruction (Yang et al. 1995a). The 
program lists results site by site.  You can also use the variable verbose to 
control the amount of output. If you choose verbose = 0, the program will list 
the best nucleotide at each node for the variable sites only and results for 
constant sites are suppressed. If verbose = 1, the program will list all sites for 
the best nucleotide at each node. If verbose = 2, the program also lists the full 
posterior probability distribution for each site at each ancestral node (for 
marginal reconstruction).  

For nucleotide based (baseml) analysis of protein coding DNA sequences 
(option GC in the sequence data file), the program also calculates the posterior 
probabilities of ancestral amino acids.  In this analysis, branch lengths and other 
parameters are estimated under a nucleotide substitution model, but the 
reconstructed nucleotide triplets are treated as a codon to infer the most likely 
amino acid encoded.  Posterior probabilities for stop codons are small and reset 
to zero to scale the posterior probabilities for amino acids.  To use this option, 
you should add the control variable icode in the control file baseml.ctl. 
This is not listed in the above. The variable icode can take a value out of 0, 1, 
..., 11, corresponding to the 12 genetic codes included in PAML (See the control 
file codeml.ctl for the definition of different genetic codes). A nucleotide 
substitution model that is very close to a codon-substitution model can be 
specified as follows. You add the option characters GC at the end of the first 
line in the data file and choose model = 4 (HKY85) and Mgene = 4. The 
model then assumes different substitution rates, different base frequencies, and 
different transition/transversion rate ratio (kappa) for the three codon positions. 
Ancestral reconstruction from such a nucleotide substitution should be very 
similar to codon-based reconstruction. (Thanks to Belinda Change for many 
useful suggestions.) 

Small_Diff is a small value used in the difference approximation of derivatives. 
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cleandata  = 1 means sites involving ambiguity characters (undetermined nucleotides 
such as N, ?, W, R, Y, etc. anything other than the four nucleotides) or 
alignment gaps are removed from all sequences.  This leads to faster calculation.  
cleaddata = 0 (default) uses those sites. 

method:  This variable controls the iteration algorithm for estimating branch lengths 
under a model of no clock.  method = 0 implements the old algorithm in 
PAML, which updates all parameters including branch lengths simultaneously.  
method  = 1 specifies an algorithm newly implemented in PAML, which 
updates branch lengths one by one.  method = 1 does not work under the 
clock models (clock = 1, 2, 3).  

icode:  This specifies the genetic code to be used for ancestral reconstruction of 
protein-coding DNA sequences.  This is implemented to compare results of 
ancestral reconstruction with codon-based analysis.  For example the F3×4 
codon model of Goldman and Yang (1994) is very similar to the nucleotide 
model HKY85 with different substitution rates and base frequencies for the 
three codon positions.  The latter is implemented by using use options GC in 
the sequence data file and model = 4 and Mgene = 4.  To use the option 
icode, you have to choose RateAncestor = 1. 

fix_blength:  This tells the program what to do if the tree has branch lengths.  Use 
0 if you want to ignore the branch lengths. Use –1 if you want the program to 
start from random starting points.  This might be useful if there are multiple 
local optima.  Use 1 if you want to use the branch lengths as initial values for the 
ML iteration.  Try to avoid using the “branch lengths” from a parsimony 
analysis from PAUP, as those are numbers of changes for the entire sequence 
(rather than per site) and are very poor initial values.  Use 2 if you want the 
branch lengths to be fixed at those given in the tree file (rather than estimating 
them by ML).  In this case, you should make sure that the branch lengths are 
sensible; for example, if two sequences in the data file are different, but the 
branch lengths connecting the two sequences in the tree are all zero, the data 
and tree will be in conflict and the program will crash. 

Output: The output should be self-explanatory. Descriptive statistics are always listed. 
The observed site patterns and their frequencies are listed, together with the proportions 
of constant patterns. Nucleotide frequencies for each species (and for each gene in case 
of multiple gene data) are counted and listed.  lmax = ln(Lmax) is the upper limit of the 
log likelihood and may be compared with the likelihood for the best (or true) tree under 
the substitution model to test the model's goodness of fit to data (Goldman 1993; Yang 
et al. 1995b).  You can ignore it if you don’t know what it means.  The pairwise sequence 
distances are included in the output as well, and also in a separate file called 2base.t.  
This is a lower-diagonal distance matrice, readable by the NEIGHBOR program in 
Felesenstein's PHYLIP package (Felsenstein 2005).  For models JC69, K80, F81, F84, 
the appropriate distance formulas are used, while for more complex models, the TN93 
formula is used.  baseml is mainly a maximum likelihood program, and the distance 
matrix is printed out for convenience and really has nothing to do with the later 
likelihood calculation.  

With getSE = 1, the S.E.s are calculated as the square roots of the large sample variances 
and listed exactly below the parameter estimates. Zeros on this line mean errors, either 
caused by divergence of the algorithm or zero branch lengths. The S.Es of the common 
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parameters measure the reliability of the estimates. For example, (κ − 1)/SE(κ), when κ 
is estimated under K80, can be compared with a normal distribution to see whether 
there is real difference between K80 and JC69. The test can be more reliably performed 
by comparing the log-likelihood values under the two models, using the likelihood ratio 
test. It has to be stressed that the S.E.’s of the estimated branch lengths should not be 
misinterpreted as an evaluation of the reliability of the estimated tree topology (Yang 
1994c). 

If the tree file has more than one tree, the programs baseml and codeml will 
calculate the bootstrap proportions using the RELL method (Kishino and Hasegawa 
1989), as well as the method of Shimodaira and Hasegawa (1999) with a correction for 
multiple comparison.  The bootstrap resampling accounts for possible data partitions 
(option G in the sequence data file).    

basemlg Control File 

basemlg uses the same control file baseml.ctl, as baseml.  Tree-search or the 
assumption of a molecular clock are not allowed and so choose runmode = 0 and 
clock = 0. Substitution models available for basemlg are JC69, F81, K80, F84 and 
HKY85, and a continuous gamma is always assumed for rates at sites. The variables 
ncatG, given_rho, rho, nhomo have no effect.  The S.E.'s of parameter estimates 
are always printed out because they are calculated during the iteration, and so getSE has 
no effect.   

Because of the intensive computation required by basemlg, the discrete-gamma model 
implemented in baseml is recommended for data analysis. If you choose to use 
basemlg, you should run baseml first, and then run basemlg. This allows baseml 
to collect initial values into a file named in.basemlg, for use by basemlg. Note that 
basemlg implements only a subset of models in baseml.  

codeml (codonml and aaml) Control File 

Since the codon based analysis and the amino acid based analysis use different models, 
and some of the control variables have different meanings, it may be a good idea to use 
different control files for codon and amino acid sequences. The default control file for 
codeml is codeml.ctl, as shown below.  
      seqfile = stewart.aa * sequence data file name 
      outfile = mlc * main result file name 
     treefile = stewart.trees * tree structure file name 
 
        noisy = 9  * 0,1,2,3,9: how much rubbish on the screen 
      verbose = 0  * 1: detailed output, 0: concise output 
      runmode = 0  * 0: user tree;  1: semi-automatic;  2: automatic 
                   * 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise 
 
      seqtype = 2  * 1:codons; 2:AAs; 3:codons-->AAs 
    CodonFreq = 2  * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table 
*       ndata = 10 
        clock = 0   * 0:no clock, 1:clock; 2:local clock; 3:TipDate 
 
       aaDist = 0  * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a 
                   * 7:AAClasses 
   aaRatefile = wag.dat * only used for aa seqs with model=empirical(_F) 
                  * dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own 
 
        model = 2 



2 4  P A M L  M A N U A L  

                   * models for codons: 
                       * 0:one, 1:b, 2:2 or more dN/dS ratios for branches 
                   * models for AAs or codon-translated AAs: 
                       * 0:poisson, 1:proportional,2:Empirical,3:Empirical+F 
                       * 6:FromCodon, 8:REVaa_0, 9:REVaa(nr=189) 
 
      NSsites = 0  * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs; 
                   * 5:gamma;6:2gamma;7:beta;8:beta&w;9:beta&gamma; 
                   * 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1; 
                   * 13:3normal>0 
 
        icode = 0  * 0:universal code; 1:mammalian mt; 2-11:see below 
        Mgene = 0  * 0:rates, 1:separate;  
 
    fix_kappa = 0  * 1: kappa fixed, 0: kappa to be estimated 
        kappa = 2  * initial or fixed kappa 
    fix_omega = 0  * 1: omega or omega_1 fixed, 0: estimate  
        omega = .4 * initial or fixed omega, for codons or codon-based AAs 
 
    fix_alpha = 1  * 0: estimate gamma shape parameter; 1: fix it at alpha 
        alpha = 0. * initial or fixed alpha, 0:infinity (constant rate) 
       Malpha = 0  * different alphas for genes 
        ncatG = 3  * # of categories in dG of NSsites models 
 
      fix_rho = 1  * 0: estimate rho; 1: fix it at rho 
          rho = 0. * initial or fixed rho,   0:no correlation 
 
        getSE = 0  * 0: don't want them, 1: want S.E.s of estimates 
 RateAncestor = 0  * (0,1,2): rates (alpha>0) or ancestral states (1 or 2) 
 
   Small_Diff = .5e-6 
*   cleandata = 0  * remove sites with ambiguity data (1:yes, 0:no)? 
* fix_blength = 0   * 0: ignore, -1: random, 1: initial, 2: fixed 
       method = 0   * 0: simultaneous; 1: one branch at a time 

 

The variables seqfile, outfile, treefile, noisy, Mgene, fix_alpha, alpha, 
Malpha, fix_rho, rho, clock, getSE, RateAncestor, Small_Diff, 
cleandata, ndata, fix_blength, and method are used in the same way as in 
baseml.ctl and are described in the previous section.  The variable seqtype 
specifies the type of sequences in the data; seqtype = 1 means codon sequences (the 
program is then codonml); 2 means amino acid sequences (the program is then aaml); 
and 3 means codon sequences which are to be translated into proteins for analysis.  

Codon Sequences (seqtype = 1) 

CodonFreq specifies the equilibrium codon frequencies in codon substitution model. 
These frequencies can be assumed to be equal (1/61 each for the standard 
genetic code, CodonFreq = 0), calculated from the average nucleotide 
frequencies (CodonFreq = 1), from the average nucleotide frequencies at the 
three codon positions (CodonFreq = 2), or used as free parameters 
(CodonFreq = 3).  The number of parameters involved in those models of 
codon frequencies is 0, 3, 9, and 60 (for the universal code), for CodonFreq = 
0, 1, 2, and 3 respectively. 

aaDist specifies whether equal amino acid distances are assumed (= 0) or Grantham's 
matrix is used (= 1) (Yang et al. 1998).   The example mitochondrial data set 
analyzed in that paper is included in the example/mtdna folder in the package. 

aaDist = 7 (AAClasses), which is implemented for both codon and amino acid 
sequences, allow you to have several types of amino acid substitutions and let 
the program estimate their different rates.  The model was implemented in Yang 
et al. (1998).  The number of substitution types and which pair of amino acid 
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changes belong which type is specified in a file called OmegaAA.dat.  You can 
use the model to fit different ω ratios for “conserved” and “charged” amino 
acid substitutions.  The folder examples/mtCDNA contain example files for 
this model; check the readme file in that folder. 

runmode = -2 performs ML estimation of dS and dN in pairwise comparisons of 
protein-coding sequences (seqtype = 1).  The program will collect estimates of 
dS and dN into the files 2ML.dS and 2ML.dN.  Since many users seem interested 
in looking at dN/dS ratios among lineages, examination of the tree shapes 
indicated by branch lengths calculated from the two rates may be interesting 
although the analysis is ad hoc.  If your species names have no more than 10 
characters, you can use the output distance matrices as input to Phylip programs 
such as neighbor without any change.  Otherwise you need to edit the files to 
cut the names short.  For amino acid sequences (seqtype = 2), option runmode 
= -2 lets the program calculate ML distances under the substitution model by 
numerical iteration, either under the model of one rate for all sites (alpha = 0) or 
under the gamma model of rates for sites (alpha ≠ 0).  In the latter case, the 
continuous gamma is used and the variable ncatG is ignored.  (With runmode = 
0, the discrete gamma is used.) 

model concerns assumptions about the ω ratios among branches (Yang 1998; Yang and 
Nielsen 1998).  model = 0 means one ω ratio for all lineages (branches), 1 
means one ratio for each branch (the free-ratio model), and 2 means an arbitrary 
number of ratios (such as the 2-ratios or 3-ratios models).  When model = 2, 
you have to group branches on the tree into branch groups using the symbols # 
or $ in the tree.  See the section above about specifying branch/node labels.   

With model = 2, the variable fix_omega fixes the last ratio (ωk − 1 if you have 
k ratios in total) at the value of omega specified in the file. This option can be 
used to test, for example, whether the ratio for a specific lineage is significantly 
different from one.  See the readme file in the examples/lysozyme/ folder 
and try to duplicate the results of Yang (1998). 

NSsites specifies models that allow the dN/dS ratio (ω) to vary among sites (Nielsen 
and Yang 1998; Yang et al. 2000b).  NSsites = m corresponds to model Mm 
in Yang et al. (2000b).  The variable ncatG is used to specify the number of 
categories in the ω distribution under some models.  The values of ncatG used 
to perform analyses in that paper are 3 for M3 (discrete), 5 for M4 (freq), 10 for 
the continuous distributions (M5: gamma, M6: 2gamma, M7: beta, M8:beta&w, 
M9:beta&gamma, M10: beta&gamma+1, M11:beta&normal>1, and 
M12:0&2normal>1, M13:3normal>0).  This means M8 will have 11 site classes 
(10 from the beta distribution plus 1 additional class).  The posterior 
probabilities for site classes as well as the expected ω values for sites are listed in 
the file rst, which may be useful to pinpoint sites under positive selection, if 
they exist.   

To run several Nssites models in one batch, you can specify several models 
on the same line, as follows: 

      NSsites = 0 1 2 3 7 8 

This forces the program to run models M0, M1, M2a, M3, M7, and M8 on the 
same data set in one go.  When more than one NSsites model is specified in this 
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way, the number of categories (ncatG) used will match those used in Yang et 
al. (2000b), and you do not have any control over it. 

The continuous neutral and selection models of Nielsen and Yang (1998) are 
not implemented in the program.   

Version 3.14 introduced some changes to the NSsites models M1 and M2.  
Specifically, the old version of those two models assume a class of conserved 
sites with ω0 = 0 while in the modified models, called M1a and M2a, ω0 is 
estimated from the data under the constraint 0 < ω0 < 1.  Furthermore, the 
Bayes empirical Bayes (BEB) calculation of posterior probabilities for site 
classes has been implemented for models M2a (NSsites = 2) and M8 (NSsites = 
8) to replace the old naïve empirical Bayes (NEB) calculation (Yang et al. 2005).  
The current advice is that you use M1a and M2a to construct an LRT and M7 
and M8 to construct an LRT, and use M2a and M8 to identify sites under 
positive selection.  See the section Codon Models in the next Chapter for more 
details. 

Example files for NSsites models: The HIV env data set used in Yang et al. ((2000b): 
table 12) is included in the PAML/examples/hivNSsites folder.  The abalone 
sperm lysin data set was analyzed by Yang, Swanson and Vacquier (2000a) using 
several NSsites models.  This data set is included in the examples/ folder as 
well.  Also the lysozyme data set, included in the examples/ folder, was analyzed 
by Yang and Nielsen (2002) using a few NSsites models.  

The branch-site model A (Yang and Nielsen 2002; Yang et al. 2005; Zhang et al. 
2005) is specified by 

Model A: model = 2, NSsites = 2,  fix_omega = 0 

This is the alternative model for the branch-site test of positive selection, or test 
2 in Zhang (2005).  The null model is also the branch-site model A but with ω2 
= 1 fixed, specified by  

Model A1: model = 2, NSsites = 2,  fix_omega = 1, omega = 1 

Use d.f. = 1 for the likelihood ratio test, although this tends to make the test 
conservative.  The BEB procedure for calculating probabilities of site classes is 
implemented for the branch-site model A.   

The above is a description of the model and test after modifications in Yang et 
al. (2005) and Zhang et al. (2005).  Our advice is that you use this test and forget 
about the old tests.   

In case you need the old tests, here are the details.  Note that those tests are not 
recommended.  The old branch-site model A fixes ω0 = 0.  This is not available 
in versions since 3.14.  You will have to use an earlier version of the program.  
The old branch-site model B is still in the program and is specified by  

Model B: model = 2, NSsites = 3 

The null model is the NSsites model 3 (discrete) with 2 site classes, specified as  
site model 3: model = 0, NSsites = 3,  ncatG = 2 

Use d.f. = 2 degrees of freedom for the test.  The (“large”) lysozyme data set 
analyzed in that paper is included in the examples folder in the package.  Look at 
the readme file. 
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Also Yang et al. (2005) and Zhang et al. (2005) described a branch-site test 1, 
although it was pointed out that the test can be significant when the foreground 
branches are either under relaxed selective constraint or under positive selection.  
This test uses the modified branch-site model A as the alternative hypothesis, 
while the null hypothesis is new site model M1a (NearlyNeutral), with d.f. ≈ 2.  
Note that we advise the use of test 2, the branch-site test of positive selection.  

The clade models C and D of Bielawski and Yang (2004) are specified by 
Model A: model = 3, NSsites = 2 
Model B: model = 3, NSsites = 3  ncatG = 2 

See that paper for details.  Similarly model A is modified and the BEB 
procedure is implemented for model A only.  See the next chapter for more 
details.  

icode specifies the genetic code.  Eleven genetic code tables are implemented using 
icode = 0 to 10 corresponding to transl_table 1 to 11 in GenBank.  These are 
0 for the universal code; 1 for the mammalian mitochondrial code; 3 for mold 
mt., 4 for invertebrate mt.; 5 for ciliate nuclear code; 6 for echinoderm mt.; 7 for 
euplotid mt.; 8 for alternative yeast nuclear; 9 for ascidian mt.; and 10 for 
blepharisma nuclear.  There is also an additional code, called Yang’s regularized 
code, specified by icode = 11.  In this code, there are 16 amino acids, all 
differences at the first and second codon positions are nonsynonymous and all 
differences at the third codon positions are synonymous; that is, all codons are 
4-fold degenerate.  There is yet no report of any organisms using this code. 

RateAncestor:  Choose 1 if you want to reconstruct ancestral sequences and 0 to avoid 
the calculation.  The output under codon-based models usually shows the 
encoded amino acid for each codon. The output under "Prob of best character 
at each node, listed by site" has two posterior probabilities for each node at each 
codon (amino acid) site. The first is for the best codon. The second, in 
parentheses, is for the most likely amino acid under the codon substitution 
model. This is a sum of posterior probabilities across synonymous codons.  In 
theory it is possible although rare for the most likely amino acid not to match 
the most likely codon. 

Under gamma models of rates for sites, choosing 1 for this variable will also 
force the program to estimate the substitution rate at each site.   

Output for codon sequences (seqtype = 1): The codon frequencies in each sequence 
are counted and listed in a genetic code table, together with their sums across species.  
Each table contains six or fewer species.  For data of multiple genes (option G in the 
sequence file), codon frequencies in each gene (summed over species) are also listed. The 
nucleotide distributions at the three codon positions are also listed. The method of Nei 
and Gojobori (1986) is used to calculate the number of synonymous substitutions per 
synonymous site (dS) and the number of nonsynonymous substitutions per 
nonsynonymous site (dN) and their ratio (dN/dS). These are used to construct initial 
estimates of branch lengths for the likelihood analysis but are not MLEs themselves.  

Results of ancestral reconstructions (RateAncestor = 1) are collected in the file 
rst.  Under models of variable dN/dS ratios among sites (NSsites models), the 
posterior probabilities for site classes as well as positively selected sites are listed in rst.  
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Amino Acid Sequences (seqtype = 2) 

model specifies the model of amino acid substitution: 0 for the Poisson model assuming 
equal rates for any amino acid substitutions (Bishop and Friday, 1987); 1 for the 
proportional model in which the rate of change to an amino acid is proportional 
to the frequency of that amino acid. Model = 2 specifies a class of empirical 
models, and the empirical amino acid substitution rate matrix is given in the file 
specified by aaRatefile. Files included in the package are for the empirical 
models of Dayhoff et al. (1978) (dayhoff.dat), Jones et al. 1992 (1992) (see 
(Kishino et al. 1990) for the construction), and Whelan and Goldman (2001) 
(wag.dat). The file mtmam.dat has a matrix for mitochondrial proteins 
estimated by maximum likelihood from a data set of 20 mammals (Yang et al. 
1998).  The mtREV24 model of the MOLPHY package (Adachi and Hasegawa 
1996b) is also provided (the file mtREV24.dat).  These two are similar, and the 
difference is that the former is derived from proteins from mammals only while 
the latter came from more-diverse species including chicken, fish, frog, and 
lamprey. Due to differences in the implementation, you may see small 
differences in log-likelihood values and branch lengths between aaml and 
protml in the MOLPHY package. Such differences are normal and you 
should use the same program to compare different trees. Under the mtREV24 
model, the two programs should give almost identical results.  

If you want to specify your own substitution rate matrix, have a look at one of 
those files, which has notes about the file structure. Other options for amino 
acid substitution models should be ignored.  To summarize, the variables 
model, aaDist, CodonFreq, NSsites, and icode are used for codon 
sequences (seqtype = 1), while model, alpha,  and aaRatefile are 
used for amino acid sequences.  

runmode also works in the same way as in baseml.ctl.  Specifying runmode = −2 
will forces the program to calculate the ML distances in pairwise comparisons.  
You can change the following variables in the control file codeml.ctl: 
aaRatefile, model, and alpha.  

If you do pairwise ML comparison (runmode = -2) and the data contain 
ambiguity characters or alignment gaps, the program will remove all sites which 
have such characters from all sequences before the pairwise comparison if 
cleandata = 1. This is known as "complete deletion". It will remove 
alignment gaps and ambiguity characters in each pairwise comparsion 
("pairwise" deletion) if cleandata = 0. {{This does not seem to be true.  
The program currently removes all sites with any ambiguities if runmode = -2.  
Need checking.  Note by Ziheng 31/08/04.}} Note that in a likelihood analysis 
of multiple sequences on a phylogeny, alignment gaps are treated as ambiguity 
characters if cleandata = 0, and both alignment gaps and ambiguity 
characters are deleted if cleandata = 1.  Note that removing alignment gaps 
and treating them as ambiguity characters both underestimate sequence 
divergences. Ambiguity characters in the data (cleandata = 0) make the 
likelihood calculation slower. 

Output for amino acid sequences (seqtype = 2):  The output file is self-explanatory 
and very similar to the result files for the nucleotide- and codon-based analyses.  The 
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empirical models of amino acid substitution (specified by dayhoff.dat, jones.dat, wag.dat, 
mtmam.dat, or mtREV24.dat) do not involve any parameters in the substitution rate 
matrix.  When RateAncestor = 1, results for ancestral reconstruction are in the file 
rst. Calculated substitution rates for sites under models of variable rates for sites are in 
rates.   

evolver 

This program has a small naïve menu, which looks like the following.   

        (1) Get random UNROOTED trees? 
        (2) Get random ROOTED trees? 
        (3) List all UNROOTED trees into file trees? 
        (4) List all ROOTED trees into file trees? 
        (5) Simulate nucleotide data sets (use MCbase.dat)? 
        (6) Simulate codon data sets      (use MCcodon.dat)? 
        (7) Simulate amino acid data sets (use MCaa.dat)? 
        (8) Calculate identical bi-partitions between trees? 
        (9) Calculate clade support values (read 2 treefiles)? 
        (0) Quit? 

Options 1, 2, 3, 4.  The program can be used to generate a random tree, either unrooted 
or rooted, either with or without branch lengths.  It can also list all the trees for a fixed 
number of species.  Of course, you should do this for a small number of species only as 
otherwise your hard drive will be filled by useless trees.  Option 8 is for reading many 
trees from a tree file and then calculating bi-partition distances either between the first 
and all the remaining trees or between every pair.   

Option 9 (Clade support values) can be used to summarize bootstrap or Bayesian 
analyses.  This reads two tree files.  The first file should include one tree, say, the 
maximum likelihood tree.  You should have the number of species and the number of 
tree (should be 1) at the beginning of this file.  The second tree file should include a 
collection of trees, such as 1000 maximum likelihood trees estimated from 1000 
bootstrap pseudo-samples.  This option will then calculate the bootstrap support value 
for each clade on the ML tree in the first tree file, that is, the proportion of trees in the 
second file that contain the node or clade in the tree in the first file.  The second tree file 
does not have to have the numbers of species and trees on the first line.  If you run 
MrBayes, you can move the maximum likelihood tree or maximum a posteriori tree into 
the first file, and the second tree file can be the .t file generated by MrBayes, with no 
change necessary.  Right now species are represented by numbers only in the tree files, I 
think.  You can choose this option by running evolver, then option 9.  The program will 
then ask you to input two file names.  An alternative way, which bypasses the naïve 
menu, is to put the option and two file names at the command line: 
     evolver 9 <MasterTreeFile> <TreesFile> 

Options 5, 6, 7 (Simulatoins). The program evolver simulates nucleotide, codon, 
and amino acid sequences with user-specified tree topology and branch lengths.  The 
user specifies the substitution model and parameters in a control file; see below.  The 
program generates multiple data sets in one file in either PAML (output mc.paml) or 
PAUP* (output mc.paup) format.  If you choose the PAUP* format, the program will 
look for files with the following names: paupstart (which the program copies to the 
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start of the data file), paupblock (which the program copies to the end of each 
simulated data set), and paupend (which the program incorporates at the end of the 
file.  This makes it possible to use PAUP* to analyze all data sets in one run.  Parameters 
for simulation are specified in three files: MCbase.dat, MCcodon.dat, and 
MCaa.dat for simulating nucleotide, codon, and amino acid sequences, respectively.  
Run the default options while watching out for screen output.  Then have a look at the 
appropriate .dat files.  As an example, the MCbase.dat file is reproduced below.  
Note that the first block of the file has the inputs for evolver, while the rest are notes.  
The tree length is the expected number of substitutions per site along all branches in the 
phylogeny, calculated as the sum of the branch lengths.  This variable was introduced 
when I was doing simulations to evaluate the effect of sequence divergence while 
keeping the shape of the tree fixed.  evolver will scale the tree so that the branch lengths 
sum up to the specified tree length.  If you use –1 for the tree length, the program will 
use the branch lengths given in the tree without the re-scaling.  Also note that the base 
frequencies have to be in a fixed order; this is the same for the amino acid and codon 
frequencies in MCaa.dat and MCcodon.dat. 

0       * 0,1:seqs or patterns in paml format (mc.paml); 2:paup format (mc.nex) 
367891      * random number seed (odd number) 
5 1000000 1 * <# seqs>  <# nucleotide sites>  <# replicates> 
-1          * <tree length, use -1 if tree has absolute branch lengths> 
(((A :0.1, B :0.2) :0.12, C :0.3) :0.123, D :0.4, E :0.5) ; 
 
3           * model: 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:T92, 6:TN93, 7:REV 
5           * kappa or rate parameters in model 
0  0        * <alpha>  <#categories for discrete gamma> 
 
0.1 0.2 0.3 0.4    * base frequencies 
  T   C   A   G 
 
================================================== 
The rest of this data file are notes, ignored by the program evolver. 
evolver simulates nucleotide sequences under the REV+Gamma model 
and its simpler forms. 
================================================== 

The simulation options (5, 6, 7) of evolver can be run using a command line format, 
bypassing the naïve menu.  So here are all the possible ways of running evolver: 
 evolver  
 evolver 5 MyMCbaseFile 
 evolver 6 MyMCcodonFile 
 evolver 7 MyMCaaFile 

The model of codon substitution used by option 6 here assumes the same ω ratio for all 
branches in the phylogeny and for all sites in the gene.  This is sometimes known as 
model M0.  To simulate under the site models with variable ω’s among sites, under the 
branch models with different ωs among branches, or under the branch-site models with 
ω varying both among sites and among branches, please read the file 
CodonSimulation.txt in the paml/Technical/Simulation/Codon/ folder. 

The evolver program also has a few options for listing all trees for a specified small 
number of species, and for generating random trees from a model of cladogenesis, the 
birth-death process with species sampling (Yang and Rannala 1997).  It also has an 
option for calculating the partition distance between tree topologies. 

Monte Carlo simulation algorithm used in evolver.  You can read about more details 
in the section “Models and Analyses”.  Here are some brief notes.  Evolver simulates 
data sets by “evolving” sequences along the tree.  First, a sequence is generated for the 
root using the equilibrium nucleotide, amino acid, or codon frequencies specified by the 
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model and/or the data file (MCbase.dat, MCcodon.dat, and MCaa.dat, 
respectively).  Then each site evolves along the branches of the tree according to the 
branch lengths, parameters in the substitution model etc.  When the sites in the sequence 
evolve according to the same process, the transition probability matrix is calculated only 
once for all sites for each branch.  For so called site-class models (such as the gamma, 
and the NSsites codon models), different sites might have different transition probability 
matrices.  Given the character at the start of the branch, the character at the end of the 
branch is sampled from a multinomial distribution specified by the transition 
probabilities from the source character.  Check any book on Monte Carlo simulation for 
procedures of sampling from a multinomial distribution.  Sequences at the ancestral 
nodes are generated during the simulation but not included in the output.  If you want 
those ancestral sequences, you can search for the following line in the routine Simulate() 
in the file evolver.c, and change the value from 0 to 1.   

   int verbose=0; 

Recompile the evolver program.  The program will then output the ancestral sequences 
in a file named ancestral.txt. 

Some people wanted to specify the sequence at the root rather than generating a random 
sequence using the base, amino acid, or codon frequencies.  You can do this by putting 
the sequence at the root in a file named RootSeq.txt.  This cannot have ambiguities or 
gaps or stop codons (that is, codons with 0 frequencies).  However, you have to make 
sure that fixing the sequence at the root is a sensible thing to do. 

yn00 

The program yn00 implements the method of Yang and Nielsen (2000) for estimating 
synonymous and nonsynonymous substitution rates between two sequences (dS and dN).  
The method of Nei and Gojobori (1986) is also included.  The ad hoc method 
implemented in the program accounts for the transition/transversion rate bias and 
codon usage bias, and is an approximation to the ML method accounting for the 
transition/transversion rate ratio and assuming the F3x4 codon frequency model. We 
recommend that you use the ML method (runmode= -2, CodonFreq = 2 in 
codeml.ctl) as much as possible even for pairwise sequence comparison.  

      seqfile = abglobin.nuc * sequence data file name 
      outfile = yn           * main result file 
      verbose = 0      * 1: detailed output (list sequences), 0: concise 
output 
 
        icode = 0  * 0:universal code; 1:mammalian mt; 2-10:see below 
    weighting = 0  * weighting pathways between codons (0/1)? 
   commonf3x4 = 0  * use one set of codon freqs for all pairs (0/1)?  

The control file yn00.ctl, an example of which is shown above, specifies the 
sequence data file name (seqfile), output file name (outfile), and the genetic 
code (icode).  Sites (codons) involving alignment gaps or ambiguity nucleotides in any 
sequence are removed from all sequences.  The variable weighting decides whether 
equal weighting or unequal weighting will be used when counting differences between 
codons. The two approaches will be different for divergent sequences, and unequal 
weighting is much slower computationally.  The transition/transversion rate ratio κ is 
estimated for all sequences in the data file and used in subsequent pairwise comparisons.  
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I hope to add an option to allow κ to be estimated for each pair.  commonf3x4 
specifies whether codon frequencies (based on the F3x4 model of codonml) should be 
estimated for each pair or for all sequences in the data.  Besides the main result file, the 
program also generates three distance matrices: 2YN.dS for synonymous rates, 
2YN.dN for nonsynonymous rates, 2YN.t for the combined codon rate (t is measured 
as the number of nucleotide substitutions per codon).  Those are lower-diagonal distance 
matrices and are directly readable by some distance programs such as NEIGHBOR in 
Felesenstein's PHYLIP package. 

mcmctree 

The program mcmctree used to implement the method of Yang and Rannala (Yang 
and Rannala 1997) see also (Rannala and Yang 1996) for Bayesian estimation of 
molecular phylogenies.  The program was very slow and thus decommissioned, since 
MrBayes now does a much better job of calculating posterior probabilities on trees.  
From version 3.15, mcmctree implements the MCMC algorithm of Yang and Rannala 
(2005) for estimating species divergence times using soft fossil bounds.  The example file 
is in the folder paml/examples/SoftBound/.  Look at the readme file there and try to 
duplicate the results in our paper.  Note that our method works under the molecular 
only (clock = 1), and the results can be highly unreliable if the clock assumption is 
violated.  Work is under way to relax the clock assumption.   

 

4  Models and Analyses

General Theory 

This chapter provides some background information about the models implemented in 
the programs in the PAML package and the kind of analyses that can be performed by 
the programs.  Almost all the models and analyses discussed in this chapter are 
implemented in the two programs baseml and codeml.  I will briefly mention the control 
variables used to specify the models under discussion when you run the programs, and 
you can consult Chapter 3 for more details.  The section on simulation is for the 
program evolver.   

In summary, baseml and codeml are maximum likelihood programs.  They use numerical 
optimization algorithms to maximize the log likelihood value under a model you specify 
to calculate the maximum likelihood estimates of parameters and the corresponding log 
likelihood.  A major use of those models is to test interesting biological hypothesis using 
the likelihood ratio test. 

 

Maximum likelihood estimates (MLEs) and likelihood ratio tests (LRTs) 

MLE:  The probability of observing the data X, when viewed as a function of the 
unknown parameters θ with the data given, is called the likelihood function: L(θ; X) = f 
(θ|X).  According to the likelihood principle, the likelihood function contains all 
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information in the data about parameters θ.  The best point estimate of θ is given by the 
θ that maximizes the likelihood L or the log likelihood (θ; X) = log{L(θ; X)}.  
Furthermore, the likelihood curve provides information about the uncertainty in the 
point estimate.  

LRT: Suppose the simpler (null) model has p0 parameters and the more general 
(alternative) model has p1 parameters, and the (optimal) log likelihood values under the 
two models are 0 and 1.  Then twice the log likelihood difference, 2∆  = 2( 1 – 0), has 
asymptotically a χ2 distribution with d.f. = p1 – p0 if the null model is true.  So the test 
statistic 2∆  can be compared with that χ2 distribution to test whether the null model is 
rejected against the alternative model.  

 

You can fit two nested models to construct a likelihood ratio test, but this process is not 
automated, and you have to change the specifications and run the program twice.  For 
example, JC69 and K80 can be compared using a likelihood ratio test, which will be a 
test of the null hypothesis that the transition/transversion rate ratio κ = 1 (JC69) against 
the alternative κ ≠ 1 (K80).  Twice the log likelihood 2∆  should be compared with the 
χ2 with d.f. = 1.  To conduct this test, you should run baseml on the same data set using 
the same tree once with model = 0 (for JC69) and another time with model = 1 (for 
K80) and retrieve the calculated log likelihood values.  You will then do the subtraction 
and multiplication to get 2( K80 – JC69).  You can get the P values by running the 
program chi2 included in the package or look up a table of χ2 critical values. 

Markov process models are used to describe substitutions between nucleotides (baseml 
and basemlg), codons (codeml) or amino acids (codeml).  The substitution rate can be 
constant over all sites or assumed to be variable among sites.  A discrete-gamma model 
(Yang 1994a) is used in baseml, codonml and aaml to accommodate rate variation 
among sites, according to which rates for sites come from several (say, four or eight) 
categories used to approximate the continuous gamma distribution.  When rates are 
variable at sites, the auto-discrete-gamma model (Yang 1995) accounts for correlation of 
rates between adjacent sites.  

General assumptions of the models (programs) include the following: 

• Substitutions occur independently in different lineages. 

• Substitutions occur independently among sites (except for the auto-discrete-
gamma model which account for correlated substitution rates at neighboring 
sites). 

• The process of substitution is described by a time-homogeneous Markov 
process. Further restrictions may be placed on the structure of the rate matrix of 
the process and lead to different substitution models. 

The process of substitution is assumed to be stationary.  In other words, the frequencies 
of nucleotides (baseml), codons (codonml), or amino acids (aaml) have remained 
constant over the time period covered by the data. 
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The existence of a molecular clock (rate constancy among lineages) is not necessary but 
can be imposed. Variation (and dependence) of rates at sites is allowed by the discrete-
gamma (or auto-discrete-gamma) models implemented in baseml, codonml and aaml.  

Nucleotide Substitution Models 

Markov process models of nucleotide substitution implemented in PAML include JC69 
(Jukes and Cantor 1969), K80 (Kimura 1980), F81 (Felsenstein 1981), F84 (Felsenstein, 
DNAML program since 1984, PHYLIP Version 2.6), HKY85 (Hasegawa et al. 1984; 
Hasegawa et al. 1985), Tamura (1992), Tamura and Nei (1993), and REV, also known as 
GTR for general-time-reversible (Yang 1994b; Zharkikh 1994).  The rate matrices of 
these models are given below 

JC69 : Q =   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.111
1.11
11.1
111.

K80 :  Q =  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.11
.11

11.
11.

κ
κ

κ
κ

F81 : Q =  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.
.

.
.

ACT

GCT

GAT

GAC

πππ
πππ
πππ
πππ

F84: Q =  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
+

+
+

.)/1(
)/1(.

.)/1(
)/1(.

ARCT

GRCT

GATY

GACY

ππκππ
ππκππ

ππππκ
ππππκ

with πY = πT + πC and πR = πA + πG. 
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TN93: Q =  
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REV (GTR):  Q =  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.
.

.
.

ACT

GCT

GAT

GAC

ec
db

eda
cba

πππ
πππ
πππ
πππ

UNREST Q =  . 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

.
.

.
.

.
.

.
.

lkj
ihg
fed
cba

qqq
qqq
qqq
qqq

GAGCGT

AGACAT

CGCACT

TGTATC

The element qij (i ≠ j) represents the rate of substitution from nucleotide i to j, with the 
diagonals qii specified by the mathematical requirement that each row of Q sums to zero.  
The nucleotides are ordered T, C, A, G.  The transition probability matrix over time t is 
then given as P(t) = {pij(t)} = exp(Qt), where pij(t) is the probability that nucleotide i will 
become nucleotide j after time t. The sequence data does not permit separation of rate 
(Q) and time (t), and so Q specifies relative rates only.  In the programs, Q is multiplied 
by a constant so that the average rate of substitution is 1 when the process is in 
equilibrium. This scaling means that time t, or the branch length in a tree, is measured by 
the expected number of nucleotide substitutions per site.  Q thus represents the pattern 
of substitution, while the amount of evolution is reflected in time or the branch length. 
The frequency parameters πT, πC, πA, πG (with the sum to be 1) give the equilibrium 
distribution of the process for the F81, F84, HKY85, TN93 and REV models.  The 
equilibrium distribution under the JC69 and K80 models has equal frequencies (1/4) for 
the four nucleotides, while that under T92 is πT = πA = (1 – πGC)/2, πC = πG = πGC/2, 
where the GC content πGC is a parameter. Parameters a, b, c, d, e in REV, κ in F84, 
HKY85 or T92, and κ1 and κ2 in TN93 may be termed rate ratio parameters. So the 
JC69, K80, F81, F84, HKY85, T92, TN93 and REV models contain 0, 1, 0, 1, 1, 1, 2, 5 
rate ratio parameters respectively, and 0, 0, 3, 3, 1, 3, 3, 3 frequency parameters 
respectively. Normally the frequency parameters are estimated using the averages of the 
observed frequencies, which should be very close to the true maximum likelihood 
estimates if the assumptions of homogeneity and stationarity are acceptable.  Under 
simple models for a single gene, you can use nhomo = 1 to estimate the frequency 
parameters by ML. 

Parameter κ in the K80, HKY85 and T92 models is equivalent to α/β in the notation of 
Kimura (1980) and Hasegawa et al. (Hasegawa et al. 1985).  The present notation is more 
convenient in a maximum likelihood analysis as the ratio is assumed to be constant for 
different branches of the tree. F84 is the model implemented in J. Felsenstein's DNAML 
program. The rate matrix for this model was given by Hasegawa and Kishino (1989), 
Kishino and Hasegawa (1989), Yang (1994a; 1994b) and Tateno et al. (1994).  Thorne et 
al. (1992) described the transition probability matrix, and Yang (1994a) and Tateno et al. 
(1994) derived formulae for estimating sequence distances under the model.  REV is the 
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general time-reversible process model, also known as GTR ( see also Tavaré 1986; Yang 
1994b; Zharkikh 1994).  It is used in baseml only.  It seems sufficiently general to 
enable accurate estimation of the substitution pattern from real data. 

For more details about nucleotide substitution models, see review articles by Swofford et 
al. (1996), Lio and Goldman (1998), and Whelan et al. (2001). 

Transition/transversion Rate Ratio 

Unfortunately there are quite a few different definitions of the transition/transversion rate 
ratio.  The worst is the ratio of the observed numbers of transitional and transversional 
differences between two sequences, without correcting for multiple hits, also known as 
P/Q in Kimura’s (1980) notation (see, e.g., (Wakeley 1994)).  I suggest that this measure 
should not be used.  The measure used in baseml is κ as specified in the above 
formulas for K80 or HKY95.  In Kimura’s (1980) notation, κ = α/β.  A third measure 
(R) is the ratio averaged over base frequencies; this is the ratio of the expected number 
of transitions to the expected number of transversions if one observes the substitution 
process over time.  In Kimura’s (1980) notation, R = α/(2β).  PHYLIP and PAUP* use 
R and name it the “transition/transversion rate ratio”, while κ is referred to in those 
programs as the “transition/transversion rate parameter”.  For a general substitution 
model without any constraint (the UNREST model in baseml), R is defined as  

GCGGTGACAATACGCCACTGTTAT

GAGAGACTCTCT

qqqqqqqq
qqqq

R
ππππππππ

ππππ
+++++++

+++
= . 

 

Special examples are listed in the following table.  

Model Average transition/transversion rate ratio (R) 
JC69 (Jukes and Cantor 1969) ½ 
K80 (Kimura 1980) κ/2 
F81 (Felsenstein 1981) (πTπC + πAπG)/(πYπR) 
F84 (Phylip) [πTπC(1 + κ/πY) + πAπG(1 + κ/πR)] / (πYπR) 
HKY85 (Hasegawa et al. 1985) (πTπC + πAπG)κ/(πYπR) 
T92 (Tamura 1992) To be filled in. 
TN93 (Tamura and Nei 1993) (πTπCκ1 + πAπGκ2)/(πYπR) 
REV (GTR) (πTπCa + πAπG)/(πTπAb + πTπGc + πCπAd + πCπGe) 

Note that the definition of κ under F84 is different than under K80 or HKY85.  When 
transition and transversion rates are equal, κ = 1 and R = ½ under K80, κ = 1 and R = 
(πTπC + πAπG)/(πYπR) under HKY85, and κ = 0 and R = (πTπC + πAπG)/(πYπR) under 
F84.  In general, by forcing R to be identical under HKY85 and F84, one can derive an 
approximate relationship between κHKY85 and κF84 (Goldman 1993): 

 F84HKY 1 κ
ππππ

ππππππ
κ

GACT

RGAYCT

+
+

+= . 

For K80, both κ and R would serve the same purpose.  For F84 and HKY85, κ is easier 
to use than R ; for example the null hypothesis of equal transition and transversion rates 
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is represented by κ = 0 under F84 and κ = 1 under HKY85, while it is rather awkward 
to specify using R.  However, for more complex models such as REV (GTR) or 
UNREST, it is impossible to define κ while R can be calculated straightforwardly.  

Codon Substitution Models 

There is now a large collection of codon substitution models.  Most of them are 
discussed in the following review articles (Yang and Bielawski 2000; Yang 2001; Yang 
2002).  Yang (2001) reviewed the mathematical aspects, while Yang and Bielawski (2000) 
and Yang (2002) are for biologists.  Add some comments about the simulation papers? 

Basic Model 

Goldman and Yang (1994) suggested a model of codon substitution that is similar to 
nucleotide-substitution models (especially HKY85) but considers a sense codon as the 
unit of evolution.  The original model used amino acid chemical distances (Grantham 
1974) to modify their substitution rate, but the model was found not to fit data well.  
The commonly used version now ignores the fact that some amino acids are close to 
each other chemically while others are very different.  This simplified version (Yang et al. 
1998) specifies the substitution rate from codon i to codon j as 

  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

,transition ousnonsynonymfor ,

on,transversi ousnonsynonymfor ,

,transition synonymousfor ,

on,transversi synonymousfor ,
position, one than moreat differ  codons two the if ,0

j

j

j

j

ijq

ωκπ

ωπ

κπ

π

The equilibrium frequency of codon j (πj) can be considered a free parameter, but can 
also be calculated from the nucleotide frequencies at the three codon positions (control 
variable CodonFreq).  Under this model, the relationship holds that ω = dN/dS, the 
ratio of nonsynonymous/synonymous substitution rates. This basic model is fitted by 
specifying model = 0 NSsites = 0, in the control file codeml.ctl.  It forms the basis for 
more sophisticated models implemented in codeml. 

The ω ratio is a measure of natural selection acting on the protein.  Simplistically, values 
of ω < 1, = 1, and > 1 means negative purifying selection, neutral evolution, and 
positive selection.  However, the ratio averaged over all sites and all lineages is almost 
never > 1, since positive selection is unlikely to affect all sites over prolonged time.  
Thus interest has been focused on detecting positive selection that affects only some 
lineages or some sites. 

Branch Models  

The branch models allow the ω ratio to vary among branches in the phylogeny and are 
useful for detecting positive selection acting on particular lineages (Yang 1998; Yang and 
Nielsen 1998).  They are specified using the variable model.  model = 1 fits the so-
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called free-ratios model, which assumes an independent ω ratio for each branch.  This 
model is very parameter-rich and its use is discouraged.  model = 2 allows you to have 
several ω ratios.  You have to specify how many ratios and which branches should have 
which rates in the tree file by using branch labels.  See “Branch or node labels” in the 
section “Tree file format” in Chapter 4.  The lysozyme example data files are included in 
the examples/lysozyme/ folder; check the readme file. 

Site Models 

The site models allow the ω ratio to vary among sites (among codons or amino acids in the 
protein) (Nielsen and Yang 1998; Yang et al. 2000b).  A number of such models are 
implemented in codeml using the variable Nssites (use model = 0).  You can run 
several Nssites models in one go, by specifying several values for NSsites.  For example, 
NSsites = 0 1 2 7 8 will fit 5 models to the same data in one go.  The site models have 
been used in real data analyses and evaluated in computer simulation studies (Anisimova 
et al. 2001; Anisimova et al. 2002; Anisimova et al. 2003; Wong et al. 2004).  Two pairs 
of models appear to be particularly useful and are recommended for real data analysis.  
The first pair include M1a (NearlyNeutral) and M2a (PositiveSelection), while the second 
pair include M7 (beta) and M8 (beta&ω).  M1a (NearlyNeutral) and M2a 
(PositiveSelection) are slight modifications of models M1 (neutral) and M2 (selection) in 
(Nielsen and Yang 1998).  See the table below.  The old models M1 and M2 fix ω0 = 1 
and ω1 = 1, and are unrealistic as they do not account for sites with 0 < ω < 1.  In the 
new models M1a and M2a, 0 < ω0 < 1 is estimated from the data while ω1 = 1 is fixed.  
The modified models M1a and M2a are described in Wong et al. (2004) and Yang et al. 
(2005).  In codeml prior to v3.14, M1 and M2 were implemented, but since 3.14, M1a 
and M2a have replaced M1 and M2, respectively, so M1 and M2 are not available in 
v3.14 or later.   

Model NSsites np Free parameters 
M0 (one ratio) NSsites = 0 1 ω 
M1a (NearlyNeutral): 
   p0 (p1 = 1 – p0) 
   ω0 < 1, ω1 = 1 

NSsites = 1 2 p0,  ω0 < 1 

M2a (PositiveSelection):  
   p0, p1 (p2 = 1 – p0 – p1) 
   ω0 < 1, ω1 = 1,  ω2 > 1 

NSsites = 2 4 p0, p1,  
ω0 < 1, ω2 > 1 

M3 (discrete):  
   p0, p1 (p2 = 1 – p0 – p1) 
   ω0, ω1, ω2 

NSsites = 3 5 p0, p1,  
   ω0, ω1, ω2 

M7 (beta): p, q NSsites = 7 2 p, q 
M8 (beta&ω): 
   p0 (p1 = 1 – p0) 
   p, q, ωs > 1 

NSsites = 8 4 p0, p, q, ωs > 1 

Also codeml v3.14 applies the constraints ω2 > 1 for M2a and ωs > 1 for M8, which 
seems to remove the problem of multiple local peaks for those two models. 

The modifications are based on the following considerations, some of which originated 
from computer simulation studies.  The insistence of a site class with ω1 = 1 in M2a 
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helps to avoid misclassifying sites under weak purifying selection (with ω slightly less 
than 1) into the site class of positive selection, as such sites will be lumped into the 
neutral class.  The M1a-M2a pair seems more robust than the M7-M8 pair.  If the true 
null model assumes several classes of conserved sites with ω < 1 as well as neutral sites 
with ω = 1, the M7-M8 comparison may often be significant, and among half of such 
cases, the ωs estimate under M8 will be >1, producing false positives.  In such cases, the 
M8a-M8 comparison or M1a-M2a comparison may be more robust.  See below on LRTs 
about description of M8a.   

M3 (discrete) is found not to be a good model either for LRT of positive selection or for 
identification of positive selection sites using NEB (naïve Empirical Bayes; see below).  
Partly this is because codeml looks at whether an ω estimate is > 1 but not at how much 
larger it is than 1.  So if an estimated ω is 1.12, the program may lump many sites under 
weak purifying selection (with true ω slightly less than 1) into this class of positively 
selected sites, producing many false positives.  In some simulations, M2a performed 
better than model M3 even if the data were simulated under M3 (I think there are some 
examples of this in (Anisimova et al. 2002) or (Wong et al. 2004).)  So even if M3 often 
fits the data better than all other models, we do not recommend the use of M0-M3 
comparison for detecting positive selection nor the use of M3 and NEB to identify sites 
under positive selection.  Note that the BEB (Bayes Empirical Bayes) procedure for 
identifying positive selection sites is implemented for M2a and M8 only and not for M3. 

You might want to check the original simulation papers cited above for details.  Notes, 
files, and summary programs for such simulations are in the paml release in the folder 
technical/simulation/codon/.  Also look at the small program multiruns useful when 
you run the same analysis multiple times to guide against convergence problems.  We 
welcome suggestions as to how to break our recommended models (M2a and M8).  
Note, however, that high rates of intragenic recombination may produce false positives 
(Anisimova et al. 2003). Strong local variation in the base mutation rate may also be 
expected to affect these tests.  

Testing positive selection using the likelihood ratio test (LRT).  We recommend two (almost 
three) LRTs for testing positive selection.  The first test compares M1a against M2a, and 
the second test compares M7 against M8.  See Yang et al. (2005) for detailed description 
of the models.  A third test compares the null hypothesis M8a (beta&ωs =1) and M8 
(Swanson et al. 2003; Wong et al. 2004).  M8a is specified using NSsites = 8, fix_omega = 
1, omega = 1.  The degree of freedom for the chi square in these three tests is unclear.  A 
difficulty is that when the proportion p2 under M2a or p1 under M8 is 0, the 
corresponding ω (ω2 for M2a or ωs for M8) is not identifiable.  We suggest the use of df 
= 2 for the M1a-M2a and M7-M8 comparisons, which is expected to be too 
conservative.  As pointed out by Swanson et al. (2003), the test statistic for the M8a-M8 
comparison should be compared with the 50:50 mixture of point mass 0 and  (Self 
and Liang 1987), so that the critical values are 2.71 at 5% and 5.41 at 1%.  Note that the 
p value for a 50:50 mixture of  and  is just the average of the two p values from 

the two distributions, in the case of M8a-M8 comparison, you get the p value from   
and then half it to get the p value for the mixture distribution.  For example, if the 
statistic is 2∆

2
1χ

2
jχ 2

kχ
2
1χ

 = 2.0, then p = 0.157/2 = 0.079.  Wong et al. (2004) recommended the 

use of  based on simulations and also to guide against violations of assumptions. 2
1χ
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Identifying sites using the Empirical Bayes method.  When the likelihood ratio test is significant, 
the empirical Bayes method is used to calculate posterior probabilities for site classes.  
The method we implemented initially (Nielsen and Yang 1998; Yang et al. 2000b) is 
called the naïve empirical Bayes (NEB).  It is naïve as it uses the maximum likelihood 
estimates of parameters (such as the proportions and ω ratios) but do not account for 
their sampling errors.  This defect is now fixed using a procedure called Bayes empirical 
Bayes (BEB) implemented for models M2a and M8 (Yang et al. 2005).   Both the NEB 
and BEB calculations are included in the output, and the calculations are automatically 
performed whenever you specify the site models. 

The BEB output has the following format: 
Prob(w>1) mean w  
135 K 0.983* 4.615 +- 1.329  
Interpretation: 4.615 is the approximate mean of the posterior distribution for w, and 1.329 is 
the square root of the variance in the posterior distribution for w.   The program prints out 
an * if the posterior probability is >95%, and ** if the probability is > 99%.  

The beta distribution.  The beta distribution, beta(p, q), is a flexible distribution for a 
variable in the range (0, 1).  Below are nine probability densities corresponding 
to different parameters p and q.  The x axis is the dN/dS ratio (omega), and the y 
axis represents the number or proportion of sites with that dN/dS ratio.  So the 
first plot, for beta(0.2, 0.2), indicates that most sites are either highly conserved 
with dN/dS close to 0 or nearly neutral with dN/dS = 1, while few sites are in 
between.  The shape of the beta distribution beta(p, q) depends on the two 
parameters p and q.  The left side of the curve goes up if p < 1 and down if p > 
1.  The right side of the curve goes up if q < 1 and down if q > 1.  Look at the 
plots below. 
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Suzuki and Gojobori’s (1999) method  

Suzuki & Gojobori (1999) proposed a method for testing the effect of selection at 
individual sites in an alignment of protein coding DNA sequences.  With the 
terminology used here, the method tests whether the ω ratio (dN/dS) is >1 or <1 
significantly, which indicates positive and purifying selection, respectively.  This method 
uses parsimony to reconstruct sequences at the ancestral nodes, and then for each site, 
counts the numbers of synonymous and nonsynonymous differences (Sd and Nd) and 
the numbers of synonymous and nonsynonymous sits (S and N).  It then test whether 
the dN/dS ratio at the site is significantly different from 1.  Errors in the ancestral 
sequence reconstruction are ignored.  Suzuki has a program called AdaptSite that 
implements the test. 

In PAML, a test of this kind is implemented as a by-product of ancestral sequence 
reconstruction in codeml and baseml.  A difference is that baseml and codeml use 
maximum likelihood to reconstruct ancestral sequences (Yang et al. 1995a), while Suzuki 
& Gojobori used parsimony.  Use RateAncestor = 1.  The output currently goes into the 
file rst1.  (I might move it to another place later on.)  The choice of baseml versus 
codeml and also the choice of substitution model for each program affects ancestral 
sequence reconstruction only.  The later steps are the same, and follow Suzuki & 
Gojobori (1999).  For codeml, you can use M0 (NSsites = 0 and model = 0).  If you 
want, you can try some other models, such as NSsites = 2 or 8.  The models are noted to 
make little difference.  For baseml, you should have "GC" on the first line of the 
sequence data file to indicate that the sequences are protein coding.  Use icode (= 0 for 
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the universal code and 1 for vertebrate mitochondrial code) in the control file to specify 
the genetic code, as in codeml.  The following “multiple-gene” model is close to M0: 
model = 4 Mgene = 4 (see (Yang 1996b) and the section titled “Models for combined 
analysis of partitioned data”).  Again the model choice should probably not matter much 
to ancestral reconstruction, so you can use a simple model such as JC69 (model = 0 
Mgene = 0). 

I did some test using the data file abglobin.nuc in the PAML release.  In general, the two 
implementations produce similar results.  At a few sites, the differences may be larger, 
due to the following reasons. 

o Adaptsite uses parsimony reconstruction while codeml uses a likelihood 
reconstruction, so the reconstructed ancestral states may be different. 

o S&G (1999) uses branch lengths to weight branches when sites (S and N) are 
counted, with longer branches given higher weights.  adaptsite uses an NJ 
algorithm to estimate branch lengths while codeml uses a codon model (M0) to 
do it, so the estimates may be different. 

o For codons that are neighbors of stop codons, adaptsite and codeml count sites 
differently.  For example, for codons TAC and TAT, adaptsite counts S = 1 and 
N = 2, while codeml gave 0.429 and 2.571. 

o Missing data are handled differently. 

Branch-site models 

Yang and Nielsen (2002) implemented two models, called A and B, that let the ω ratio 
vary both among sites and among lineages.  The models attempt to detect positive 
selection that affects only a few sites along a few lineages.  The specifications are model 
= 2 NSsites = 2 for model A and model = 2 NSsites = 3 for model B.  There has been a 
change to model A, as detailed in the table below (Yang et al. 2005; Zhang et al. 2005).    

The old model assumes ω0 = 0 and is unrealistic.  This is replaced by 0 < ω0 < 1, 
estimated from the data.  The new model is still called branch-site model A.  It can be 
compared with the new M1a (NearlyNeutral) to form a likelihood ratio test, with d.f. ≈ 2.  
This is called test 1.  This test can mistake relaxed selective constraint on the foreground 
branches as positive selection, and so bear in mind that a significant result does not 
necessarily mean positive selection.  Another test, called test 2 or branch-site test of 
positive selection, uses the same alternative model A but the null model is model A with 
ω2 = 1 fixed (use fix_omega = 1 and omega = 1 in codeml.ctl).  The null distribution 
should be a 50:50 mixture of point mass 0 and , so that the critical values at the 5% 

and 1% levels are 2.71 and 5.41, respectively.  We recommend use of  (with critical 
values 3.84 and 5.99) to guide against violations of model assumptions.  Test 2 appears 
to be a robust test of positive selection on the foreground branches and is called the 
branch-site test of positive selection.  We recommend its use.  You can forget about the 
old modes and tests. 

2
1χ

2
1χ

Similarly both the NEB and BEB methods for calculating posterior probabilities for site 
classes are implemented for the modified branch-site model A (not for model B).  You 
should use model A in combination with the BEB procedure and ignore the NEB 
output. 
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Branch site model A: Old and New  

  Old model A (np = 3) New model A (np = 4) 
Site 
class 

Proportion Background Foreground Background Foreground

0 p0 ω0 = 0 ω0 = 0 0 < ω0 < 1 0 < ω0 < 1
1 p1 ω1 = 1 ω1 = 1 ω1 = 1 ω1 = 1 
2a (1 – p0 – p1) p0/( p0 + p1) ω0 = 0 ω2 > 1 0 < ω0 < 1 ω2 > 1 
2b (1 – p0 – p1) p1/( p0 + p1) ω1 = 1 ω2 > 1 ω1 = 1 ω2 > 1 

Clade Models 

Clade model C is specified by model = 3 Nssites = 2 while clade model D is specified by 
model = 3 NSsites = 3 using ncatG to specify the number of site classes ( see also 
Forsberg and Christiansen 2003; Bielawski and Yang 2004).  Clade model C is changed, 
in a similar way to branch-site model A.  The new model C replaces ω0 = 0 by 0 < ω0 < 
1 and has 5 parameters in the ω distribution: p0, p1, ω0, ω2, and ω3.  The new model C 
can be compared with the new M1a (NearlyNeutral), which has 2 parameters, with d.f. ≈ 
3. 

Clade model C 

  Old model C (np = 4) New model C (np = 5) 
Site class Proportion Clade 1 Clade 2 Clade 1 Clade 2 
0 p0 ω0 = 0 ω0 = 0 0 < ω0 < 1 0 < ω0 < 1 
1 p1 ω1 = 1 ω1 = 1 ω1 = 1 ω1 = 1 
2 p2 = 1 – p0 – p1 ω2 ω3 ω2 ω3 

Clade model D can work with ncatG = 3 or 2.  The option variable ncatG is ignored 
when you specify branch-site models A and B, and clade model C, since the number of 
categories is fixed in the model. 

The BEB procedure is implemented for clade model C but not for model D.  You 
should use model C in combination with the BEB procedure.  Ignore the NEB output. 

Amino Acid Substitution Models 

“Empirical” models based on the Dayhoff substitution matrix (model = 2) or its updated 
version of Jones et al. (1992) are constructed using the same strategy. The transition 
probability matrix over a very short time period such as one PAM, i.e., P(0.01), is used to 
approximate the matrix of instantaneous rates (Q). The empirical matrices of Dayhoff et 
al. (1978) and Jones et al. (1992) were made to satisfy the reversibility condition, that is, 

 πiqij = πjqji 

for any i and j, so that my implementations may be slightly different from that of 
Kishino et al. (1990). These models assume a fixed pattern of amino acid substitution. 
The package also include an empirical model for globular proteins, the WAG model of 
Whelan and Goldman (2001), which is given by the file wag.dat, and  two similar 
empirical models for mitochondrial proteins. The first of these is given by the file 
mtREV24.dat and is the mtREV24 model of Adachi and Hasegawa (1996a; 1996b) 
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estimated from a diverse range of species including mammals, chicken, frog, fish, and 
lamprey. The matrix was estimated by maximum likelihood from real data. The second is 
given by the file mtmam.dat and is estimated from 20 mammalian species using 
maximum likelihood under the REV model with variable rates among sites (Yang et al. 
1998). You can check those files for more details, or if you want to supply your own 
empirical matrix. 

"Mechanistic" models of amino acid substitution requires consideration of both the 
mutational distance between the amino acids as determined by the locations of their 
encoding codons in the genetic code table, and the effects that the potential change may 
have on the structure and function of the protein, which may be related to the physical, 
chemical and structural differences between amino acids. It seems natural that such a 
model should be formulated at the level of codons. The program aaml implements a 
few such models, specified by the variable aaDist. 

Models of variable substitution rates across site (see (Yang 1996c) for review) are 
implemented for both nucleotide (baseml) and amino acid (aaml) sequences.  
Although the option variables such as fix_alpha and alpha are also available for 
codon models (codonml), the gamma model for codons is unrealistic as it applies the 
same gamma rate to both synonymous and nonsynonymous substitutions, with their rate 
ratio held constant among sites.  You are recommended to use the Nssites models 
instead, which assume homogeneous synonymous rates but variable nonsynonymous 
rates. 

Variable Rates Among Sites 

Those models assume that the substitution rates are variable among sites according to 
some statistical distribution.  Each site (nucleotide, amino acid, or codon) is assumed to 
have a rate, which stays constant throughout the tree, so that a fasts-evolving site is fast 
evolving along all lineages and a slowly-evolving site is always slowly-evolving.  A 
commonly used distribution is the gamma distribution (Uzzell and Corbin 1971; Jin and 
Nei 1990).  The gamma distribution has a shape parameter and a scale parameter.  To 
avoid the use of too many parameters, the scale parameter is fixed so that the mean of 
the distribution is 1 and as a result, the rates for sites are relative rate factors.  Thus the 
shape parameter α measures how variable the rates are among sites.  If α > 1, the 
distribution is bell-shaped (∩), meaning that most sites have rates around 1 while few 
sites have either very low or very high rates.  When α → ∞, the distribution degenerates 
into the model of one rate for all sites.  When α ≤ 1, the distribution has a highly skewed 
L-shape, meaning that most sites have very low rates or are nearly “invariable”, but there 
are some evolutionary “hot spots” with high rates. 

Likelihood calculation under the gamma distribution of rates for sites is described in 
Yang (1993).  The algorithm is implemented in the program basemlg, for nucleotide 
substitution models JC69 (Jukes and Cantor 1969), K80 (Kimura 1980), F81 (Felsenstein 
1981), F84 (Phylip), and HKY85 (Hasegawa et al. 1985).  Steel et al. (1993) described a 
way of achieving the same computation using Hadamard matrix transformation .  This 
works for models that are special cases of Kimura’s model of three substitution types 
(3ST) (1981).  There does not seem to be a program implementing this algorithm.  The 
algorithm of Yang (1993) involves very intense computation and basemlg is usable for 
trees of no more than about 6 or 7 sequences.  The commonly-used algorithm, called 
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discrete gamma, uses several categories of rates to approximate the continuous gamma 
(Yang 1994a).  This is the version implemented in packages such as PHYLIP/DNAML 
and PAUP.   In baseml and codeml, the model is implemented by specifying a nonzero 
value for the parameter alpha in the control files: fix_alpha = 0, alpha = 0.5, say, means 
estimating α using maximum likelihood with a starting value of 0.5, while fix_alpha = 1, 
alpha = 0.5 means a discrete-gamma model with α = 0.5 fixed.  The number of 
categories is specified using ncatG.  Values such as 5, 4, 8, or 10 are reasonable.  Note 
that the discrete gamma model has one parameter (α), like the continuous gamma 
model, and the number of categories is not a parameter. 

You can test whether the rates are variable among sites by comparing the log likelihood 
values between two models: the null model of one rate for all sites (fix_alpha = 1, alpha 
= 0) against the alternative gamma model (fix_alpha = 0).  The df is a 50:50 mixture of 
point mass at 0 and .  If you use  and the one-rate model is rejected, the same 
conclusion will be reached if you use the mixture distribution. 

2
1χ 2

1χ

Gu et al. (1995) extended the gamma model of Yang (1993) to include a class of 
“invariable” sites with rate 0.  This model is somewhat pathological as there is typically a 
strong correlation between the proportion of invariable sites and the gamma shape 
parameter.  Furthermore, the gamma model with a small α accommodate sites with rates 
virtually zero.  Models involving a proportion of invariable sites are not implemented in 
PAML programs.  They are implemented in PAUP and MrBayes.  Note that the α 
parameter under HKY+G is not comparable with the α parameter under HKY+G+I. 

Yang (1995) described a few models that allow the rates to be variable among sites but 
also correlated over neighbouring sites.  The algorithms are then hidden Markov models 
.  The so-called auto-discrete gamma model has two parameters: the gamma shape 
parameter α and a correlation parameter ρ, which is related to the correlation in rates 
between two neighbouring sites Yang (1995).  This model is implemented in baseml 
using the specifications: fix_alpha = 0 and fix_rho = 0.  The variable nparK specifies a 
few nonparametric models that assume a few rate classes, with a transition probability 
matrix describing the transition from one rate at a site to another rate at the next site.  
Felsenstein and Churchill (1996) developed a similar hidden Markov model for variable 
and correlated rates over sites, as implemented in phylip/dnaml.  This appears to be a 
special case of the nonparametric model mentioned above. 

The rates at individual sites can also be calculated under those models, using a Bayesian 
(or more precisely, empirical Bayesian) approach (Yang and Wang 1995).  If you choose 
RateAncestor = 1,  baseml and codeml will print out such estimated rates into a file 
named rst.  Under the continuous gamma model, the posterior mean of the rate at a site 
should minimize the mean squared error.  However, the calculation under the discrete 
gamma model is more a crude approximation.  As we use rate categories and take 
averages within the category, one can expect that the estimated rates will be too close to 
1, as the extremely high and lower rates disappear after the averaging.  Using a large 
number of categories (say, ncatG = 40) may be helpful if you are interested in calculating 
such rates. 

For a review of models of variable rates among sites, see Yang (1996c) and chapters 13 
and 16 of Felsenstein (2004). 
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Models for Combined Analyses of Partitioned Data 

For Nucleotides (baseml) 

Several models are described by Yang (1996b) and implemented in programs baseml 
and codeml (codonml and aaml) for analyzing heterogeneous data sets (such as 
those of multiple genes or different codon positions). The implementation and 
description below refer to the case of multiple genes, but in the case of nucleotide-based 
models (baseml), the method can be used to analysed data of different codon 
positions. These models account for different aspects of heterogeneity among the 
different data sets and are useful for testing hypotheses concerning the similarities and 
differences in the evolutionary process of different data sets.  

The simplest model which assumes complete homogeneity among genes can be fitted by 
concatenating different genes into one sequence without using the option G (and by 
specifying Mgene = 0 in the control file). The most general model is equavilent to a 
separate analysis. This can be done by fitting the same model to each data set (each 
gene), but can also be done by specifying Mgene = 1 with the option G in the 
combined data file. The sum of the log-likelihood values over different genes is then the 
log likelihood of the most general model considered here. Models accounting for some 
aspects of the heterogeneity of multiple genes are fitted by specifying Mgene in 
combination with the option G in the sequence data file. Mgene = 0 means a model 
that asumes different substitution rates but the same pattern of nucleotide substitution 
for different genes. Mgene = 2 means different frequency parameters for different 
genes but the same rate ratio parameters (κ in the K80, F84, HKY85 models or the rate 
parameters in the TN93 and REV models). Mgene = 3 means different rate ratio 
parameters and the same frequency parameters. Mgene = 4 means both different rate 
ratio parameters and different frequency parameters for different genes. Parameters and 
assumptions made in these models are summarized in the following table, with the 
HKY85 model used as an example. When substitution rates are assumed to vary from 
site to site, the control variable Malpha specifies whether one gamma distribution will 
be applied across all sites (Malpha = 0) or a different gamma distribution is used for 
each gene (or codon position).  

Sequence file  Control file  Parameters across genes 
No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same κ and π, but different cs (proportional branch lengths) 
Option G  Mgene = 2  the same κ, but different πs and cs 
Option G  Mgene = 3  the same π, but different κs and cs 
Option G  Mgene = 4  different κ, πs, and cs 
Option G  Mgene = 1  different κ, πs, and different (unproportional) branch lengths 

The different cs for different genes mean that branch lengths estimated for different 
genes are proportional. Parameters π represent the equilibrium nucleotide frequencies, 
which are estimated using the observed frequencies (nhomo = 0). The 
transition/transversion rate ratio κ in HKY85 can be replaced by the two or five rate 
ratio parameters under the TN93 or REV models, respectively. The likelihood ratio test 
can be used to compare these models, using an approach called the analysis of deviance 
(McCullagh and Nelder 1989), which is very similar to the more familiar analysis of 
variance.  
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For Codons (codeml with seqtype = 1) 

Codon models for multiple genes are described in detail by Yang & Swanson (2002).  
The following is table 1 of that paper.  The lysin data set used in that paper is included in 
the examples/ folder of the package.  The analysis separates the buried and exposed 
amino acids in the lysin into two partitions (“genes”), and heterogeneity between the 
partitions are accounted for in the analysis.  You can read the readme file and try to 
duplicate the results in table 6 of Yang & Swanson (2002).   

Sequence file  Control file  Parameters across genes 
No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same (κ, ω) and π, but different cs (proportional branch lengths) 
Option G  Mgene = 2  the same (κ,ω), but different πs and cs 
Option G  Mgene = 3  the same π, but different (κ, ω) and cs 
Option G  Mgene = 4  different (κ, ω), πs, and cs 
Option G  Mgene = 1  separate analysis 

For Amino Acids (codeml with seqtype = 2) 

Se Yang (1996 JME) for similar descriptions for nucleotide models 
Sequence file  Control file  Parameters across genes 
No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same π, but different cs (proportional branch lengths) 
Option G  Mgene = 2  different πs and cs 
Option G  Mgene = 1  separate analysis 

 

Global and Local Clocks, and Sequences With Dates 

PAML (baseml and codeml) implements three ML models regarding rate constancy 
among lineages.  clock = 0 means no clock and each branch has an independent rate.  
For a binary tree with n species (sequences), this model has (2n – 3) parameters (branch 
lengths).  clock = 1 means the global clock, and all branches have the same rate.  This 
model has (n – 1) parameters corresponding to the (n – 1) internal nodes in the binary 
tree.  So a test of the molecular clock assumption, which compares those two models, 
should have d.f. = n – 2. 

Between those two extremes are the local clock models, specified by clock = 2 (Yoder 
and Yang 2000; Yang and Yoder 2003), which assume that branches in the phylogeny 
conform with the clock assumption and has the default rate (r0 = 1) except for several 
pre-defined branches, which have different rates.  Rates for branches are specified using 
branch labels in the tree file.  For example, the tree (((1,2) #1, 3), 4) specifies rate r1 for 
the branch ancestral to species 1 and 2 while all other branches have the default rate r0, 
which does not have to be specified.  The user need to specify which branch has which 
rate, and the program estimates the unknown rates (such as r1 in the above example; r0 = 
1 is the default rate).  You need to be careful when specifying rates for branches to make 
sure that all rates can be estimated by the model; if you specify too many rate 
parameters, especially for branches around the root, it may not be possible to estimate all 
of them and you will have a problem with identifiability.  The number of parameters for 
a binary tree in the local clock model is (n – 1) plus the number of extra rate parameters 
for branches.  In the above tree of 4 species, you have only one extra rate parameter r1, 
and so the local clock model has (n – 1) + 1 = n = 4 parameters.  The no-clock model 
has 5 parameters while the global clock has 3 parameters for that tree. 
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Both the global-clock (clock = 1) and local-clock (clock = 2) models can accept a single 
or multiple fossil calibration points, in which case absolute substitution rates will be 
calculated.  You use the symbol @ to specify fossil calibration information in the tree 
file.  See the readme file in the examples/MouseLemurs/ folder for details.  Both clock 
models can be applied to viral sequences with known sequencing dates (Rambaut 2000).  
You have to use the symbol @ in sequence names to specify the dates of sequence 
determination.  See the readme file in the examples/TipDate/ folder.   

The option clock = 3 is for combined analysis of multiple-partition data (multiple genes 
or multiple codon positions, for example), and allows the branch group rates to vary 
freely among data partitions.  For example, the models allow some branches to be faster-
evolving at codon position 1 while they are more slowly-evolving at codon position 2.  
See Yang and Yoder (2003) and the examples/MouseLemurs/ folder for details. 

Reconstruction of Ancestral Sequences 

Nucleotides or amino acids of extinct ancestors can be reconstructed using information 
of the present-day sequences. Parsimony reconstructs ancestral character states by the 
criterion that the number of changes along the tree at the site is minimized. Algorithms 
based on this criterion were developed by Fitch (1971) and Hartigan (1973), and are 
implemented in the program pamp.  The likelihood approach uses branch lengths and 
the substitution pattern for ancestral reconstruction. It was developed by Yang et al. 
(1995a) and Koshi and Goldstein (1996) and is implemented in baseml for nucleotide 
sequences and in aaml (codeml.c with seqtype = 2) for amino acid sequences. 
Results are collected in the file rst. 

Marginal reconstruction: This approach compares the probabilities of different 
character assignments to an interior node at a site and select the character that has the 
highest posterior probability (eq. 4 in Yang et al. (1995a)). The algorithm implemented in 
PAML works under both the model of a constant rate for all sites and the gamma model 
of rates at sites.  If verbose = 1, the output will include the full probability distribution at 
each node at each site.  

Joint reconstruction: This approach considers the assignment of a set of characters to 
all interior nodes at a site as a reconstruction and select the reconstruction that has the 
highest posterior probability (eq. 2 in Yang et al. (1995a)).  The implementation in PAML 
now is based on the algorithm of Pupko et al. (2000), which gives the best reconstruction 
at each site and its posterior probability.  The algorithm works under the model of a 
constant rate for sites only and does not work for the gamma model.  (It works under 
models for multiple genes or data partitions as well.  My old algorithm looks at 
alternatives (sub-optimal reconstructions) although it is inefficient and may miss 
important reconstructions.  I have taken that algorithm out, as well as the old option 
(RateAncestor = 2) of allowing the user to specify the reconstruction to be 
evaluated.  If you need those options, let me know. 

The marginal and joint approaches use slightly different criteria, and none is better than 
the other.  They are expected to produce very similar results; that is, the most probable 
joint reconstruction for a site should almost always consist of characters that are also the 
best in the marginal reconstruction.  Differences may arise when the competing 
reconstructions have similar probabilities.  Since the marginal reconstruction works with 
models of variable rates among sites, it is recommended for data analysis.  
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Analysing Large Data Sets and Iteration Algorithms 

The maximum likelihood method estimates parameters by maximizing the likelihood 
function.  This is multi-dimensional optimisation problem that has to be solved 
numerically (except for the simplest possible case; see Yang (2000a)).  PAML 
implements two iteration algorithms.  The first one (method = 0) is a general-purpose 
minimization algorithm that deals with upper and lower bounds for parameters but not 
general equality or inequality constraints.  The algorithm requires first derivatives, which 
are calculated using the difference approximation, and accumulates information about 
the curvature (second derivatives) during the iteration using the BFGS updating scheme.  
At each iteration step, it calculates a search direction, and does a one-dimensional search 
along that direction to determine how far to go.  At the new point, the process is 
repeated, until there is no improvement in the log-likelihood value, and changes to the 
parameters are very small.  The algorithm updates all parameters including branch 
lengths simultaneously. 

Another algorithm (method = 1) works if an independent rate is assumed for each 
branch (clock = 0) (Yang 2000b).  This algorithm cycles through two phases.  Phase I 
estimates branch lengths with substitution parameters (such as the 
transition/transversion rate ratio κ and the gamma shape parameter α) fixed.  Phase II 
estimates substitution parameters using the BFGS algorithm, mentioned above, with 
branch lengths fixed.  The procedure is repeated until the algorithm converges.  In phase 
I of the algorithm, branch lengths are optimized one at a time.  The advantage of the 
algorithm is that when the likelihood is calculated for different values of one single 
branch length, as is required when that branch length only is optimised, much of 
likelihood calculations on the phylogeny is the same and can be avoided by storing 
intermediate results in the computer memory.  A cycle is completed after all branch 
lengths are optimized.  As estimates of branch lengths are correlated, several cycles are 
needed to achieve convergence of all branch lengths in the tree, that is, to complete 
phase I of the algorithm. 

If branch lengths are the only parameters to be estimated, that is, if substitution 
parameters are fixed, the second algorithm (method = 1) is much more efficient.  Thus 
to perform heuristic tree search using stepwise addition, for example, you are advised to 
fix substitution parameters (such as κ and α).  The second algorithm is also more 
efficient if the data contain many sequences so that the tree has many branch lengths.   

Tip: To get good initial values for large data sets of protein coding DNA sequences, 
you can use baseml.  Add the options characters “GC” at the end of the first line in the 
sequence data file.  Then run the data with baseml.  In the result file generated by baseml 
(say mlb), look for “branch lengths for codon models” and copy the tree with branch 
lengths into the tree file.  Then run codeml and choose “1: initial values” when asked 
about what to do with the branch lengths in the tree. 

Tree Search Algorithms 

One heuristic tree search algorithm implemented in baseml, codonml and aaml is a 
divisive algorithm, called "star-decomposition" by Adachi and Hasegawa (1996b). The 
algorithm starts from either the star tree (runmode = 2) or a multifurcating tree read 
from the tree structure file (runmode = 1). The algorithm joins two taxa to achieve the 
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greatest increase in log-likelihood over the star-like tree. This will reduce the number of 
OTUs by one. The process is repeated to reduce the number of OTUs by one at each 
stage, until no multifurcation exists in the tree. This algorithm works either with or 
without the clock assumption.  The stepwise addition algorithm is implemented with the 
option runmode = 3. Options runmode = 4 or 5 are used for nearest neighbor 
interchanges , with the intial tree determined with  stepwise addition under the 
parsimony criterion (runmode = 4) or read from the tree structure file (runmode = 
5). The results are self-explanatory.  

Besides the fact that ML calculations are slow, my implementations of these algorithms 
are crude.  If the data set is small (say, with <20 or 30 species), the stepwise addition 
algorithm (runmode = 3) appears usable.  Choose clock = 0, and method = 1 to 
use the algorithm that updates one branch at a time, and fix substitution parameters in 
the model (such as κ and α) so that only branch lengths are optimized.  Parameters κ 
and α can be fixed in the tree search using fix_kappa and fix_alpha in the 
control files.  Other parameters (such as substitution rates for genes or codon positions 
or site partitions) cannot be fixed this way; they can instead be specified in the file of 
initial values (in.baseml or in.codeml).  Suppose you use a candidate tree to 
estimate branch lengths and substitution parameters with runmode = 0.  You can then 
move the substitution parameters (but not the branch lengths) into the file of initial 
values.  You then change the following variables for tree search: runmode = 3, 
method = 1.  The program will use the substitution parameters as fixed in the tree 
search, and optimizes branch lengths only.  It is important that the substitution 
parameters are in the right order in the file; so copy-and-paste from PAML output is 
probably the safest.  It is also important that you do not change the parameter 
specifications in the control file; the control file should indicate that you want to 
estimate the substitution parameters, but when the program detects the file of initial 
values, fixed parameter values are used instead. 

Bootstrap Data Sets 

To generate bootstrap pseudo-samples from your original data, you should use the 
control variable bootstrap in the control files baseml.ctl or codeml.ctl, 
and specify the number of samples, as follows.  

bootstrap = 100   * generate bootstrap data sets 

This generates a file named boot.txt.  The file name is hard coded in the programs so 
you might want to rename it.  Note that the way bootstrap samples are generated 
depends on your model, so you use baseml to generate samples for nucleotide-based 
analysis and codeml for amino acid and codon-based analysis.  If you the data are 
partitioned (using option G), the programs use stratified sampling to generate bootstrap 
samples, preserving the number of sites in each partition.  

The bootstrap samples can be analyzed using phylip programs (choose the option for 
multiple data sets) and baseml or codeml (using the variable ndata in the control 
file). 
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Simulation 

Computer simulation is a widely used approach to evaluating estimation procedures.  In 
molecular phylogenetics, there are two major methods for simulating sequence data.  
The first approach samples data at different sites (nucleotide, amino acid, or codon sites) 
from the multinomial distribution.  Under most models of sequence evolution, data at 
different sites are independently and identically distributed.  This approach thus 
calculates the probability of observing each site pattern, and then sample from sites 
according to those site pattern probabilities.  The number of categories in the 
multinomial distribution, that is, the number of distinct site patterns, is the number of 
character states raised to the power of the number of sequences.  To simulate nucleotide 
sequences on a tree of 5 species, the multinomial will have 45 = 1024 categories, and to 
simulate a pair of codon sequences under the universal code (with 61 sense codons), the 
multinomial will have 612 = 3721 categories.  This approach is faster for simulating data 
sets on small trees but impractical on large trees as the number of categories may be too 
large. 

A second approach is to generates an ancestral sequence for the root of the tree, and 
then “evolve” the sequence along the tree according to the specified substitution model 
and using the specified branch lengths and substitution parameters.  The evolver 
program implements this approach.  The ancestral sequence is generated according to 
the equilibrium distribution of the characters, that is, by sampling characters repeatedly 
according to the equilibrium distribution.  The program then evolves the sequence along 
branches of the tree, according to the transition probabilities calculated for each branch.  
For site-heterogeneous models, the substitution pattern may be different from site to site 
and the different sites may have different transition probabilities.   See, for example, 
Huelsenbeck (1995) and Yang (1996a), for more details.   

 

Tips 

1. For analyzing multiple simulated data sets, you can copy the tree with branch lengths 
from MCbase.dat or MCaa.dat into the tree file to be used by baseml or codeml.  You 
can then use the variable fix_blength to let baseml or codeml use the branch lengths in 
the tree as initial values for the maximum likelihood iteration.  This should speed up the 
iteration since the true parameter values should be good initial values.  

2. A good test of the simulation as well as the analysis program is to use a small tree to 
simulate a large data set of very long sequences (say 1 million nucleotides or amino acids) 
and then use baseml or codeml to analyse the data to see whether you get estimates very 
close to the true values.  As ML is consistent, it should return the correct values with 
infinitely long sequences. 

3. Programs baseml and codeml output one line of results for each data set in a file 
named rst1.  The output typically includes the log likelihood, the estimated substitution 
parameters but not branch lengths.  If you can modify the source codes, you can go into 
baseml.c or codeml.c and search for frst1, and add or remove output.  However, this 
may require familiarity with the program, especially about how the variables are arranged 
during the iteration. 
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5  Technical Notes
This section contains some technical notes for running PAML programs.  Also see the 
FAQ page. 

The rub File Recording the Progress of Iteration 

If you use a large value for the variable noisy (say >2), the programs baseml and 
codeml will log output to the screen, indicating the progress of the iteration process, 
i.e., the minimization of the negative log-likelihood. They will also print in the rub file, 
the size (norm) of the gradient or search direction (h), the negative log likelihood, and 
the current values of parameters for each round of iteration. A healthy iteration is 
indicated by the decrease of both h and the negative log likelihood, and h is particularly 
sensitive. If you run a complicated model hard to converge or analyzing a large data set 
with hundreds or thousands of sequences, you may switch on the output. You can check 
this file to see whether the algorithm has converged. A typical symptom of failure of the 
algorithm is that estimates of parameters are at the preset boundaries, with values like 
2.00000, 5.00000. When method = 1, the output in the rub file lists the log likelihood 
and parameter estimates only.  

Specifying Initial Values 

You may change values of parameters in the control file such as kappa, alpha, omega, 
etc. to start the iteration from different initial values. Initial values for the second and 
later trees are determined by the program, and so you do not have much control in this 
way.  

You can collect initial values into a file called in.baseml if you are running baseml or 
in.codeml if you are running codeml.  This file should contain as many numbers, 
separated by white spaces, as the number of parameters that are being optimized by the 
program.  So if the program is estimating 56 parameters (say 51 branch lengths, 1 kappa, 
and 5 other parameters from the ω distribution), you should put 56 numbers in the file.  
The parameters are ordered internally in the program and you have no control of the 
ordering.  Nevertheless, the order is the same as in the main output (below the lnL line 
for each tree).  One way of generating the in.codeml or in.baseml files is to run a data 
set, and then copy initial values from the rub file or from the main output file.  The rub 
file records the iteration process and has one line for each round of iteration. Each line 
lists the current parameter values after the symbol x; you can copy those numbers (not 
the symbol x) into the file of initial values, and if you like, change one or a few of the 
parameter values too.  When you run the program, look at lnL0 printed out on the 
screen and check that it is the same as recorded in rub.   

When the program runs, it checks to see whether a file of initial values exists, and it 
does, the program will read initial values from it. This may be useful if the iteration is 
somehow aborted, and then you can collect current values of parameters from the file 
rub into this file of initial values, so that the new iteration can have a better start and 
may converge faster. The file of initial values may also be useful if you experience 
problems with convergence.   If you have already obtained parameter estimates before 
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and do not want the program to re-estimate them and only want to do some analysis 
based on those estimates such as reconstructing ancestral sequences, insert -1 before the 
initial values.  

Warning: A complication is that in some models a transformation is applied during the 
iteration while the printout uses the original variables.  Examples of this are the 
frequency/proportion parameters for base frequencies (nhomo = 1 in baseml), 
proportions of site classes in the NSsites models (except for models always having only 
two classes in which case no transformation is applied), and times or node ages in clock 
models (clock = 1, 2, 3, 5, 6, but not 0).  For those models, you can see that the line of 
output in the main output file looks different from the last line of rub after the iteration 
finishes.  In the file of initial values, if you use -1 at the start, the program assumes the 
original variables, while if you don’t, the program assumes transformed variables.  

Fine-tuning the Iteration Algorithm 

The iteration algorithm uses the difference approximation to calculate derivatives. This 
method changes the variable (x) slightly, say by a small number e, and see how the 
function value changes. One such formula is df/dx = [f(x + e) − f(x)]/e. The small 
number e should be small to allow accurate approximation but should not be too small 
to avoid rounding errors. You can change this value by adding a line in the control files 
baseml.ctl or codeml.ctl  

Small_Diff = 1e-6 

The iteration is rather sensitive to the value of this variable, and reasonable values are 
between 1e-5 and 1e-7. This variable also affects the calculation of the SE's for 
parameters, which are much more difficult to approximate than the first derivatives. If 
the calculated SE's are sensitive to slight change in this variable, they are not reliable.  

If you compile the source codes, you can also change the lower and upper bounds for 
parameters. I have not put these variables into the control files (See below). 

Adjustable Variables in the Source Codes 

This section is relevant only if you compile the source codes yourself.  The maximum 
values of certain variables are listed as constants in uppercase at the beginning of the 
main programs (baseml.c, basemlg.c, codeml.c). These values can be raised 
without increasing the memory requirement by too much. 

NS: maximum number of sequences (species) 
LSPNAME: maximum number of characters in a species name 
NGENE: maximum number of "genes" in data of multiple genes (option G)  
NCATG: maximum number of rate categories in the (auto-) discrete-gamma model (baseml.c, 
codeml.c) 

 

You can change the value of LSPNAME.  Other variables that may be changed include 
the bounds for parameters, specified at the beginning of the function testx or 
SetxBound in the main programs (baseml.c and codeml.c). For example, these 
variables are defined in the function SetxBound in codeml.c: 

 double tb[]={.0001,9}, rgeneb[]={0.1,99}, rateb[]={1e-4,999}; 
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 double alphab[]={0.005,99}, rhob[]={0.01,0.99}, omegab[]={.001,99}; 

 

The pairs of variables specify lower and upper bounds for variables (tb for branch 
lengths, rgeneb for relative rates of genes used in multiple gene analysis, alphab for 
the gamma shape parameter, rhob for the correlation parameter in the auto-discrete-
gamma model, and omegab for the dN/dS ratio in codon based analysis. 

More Codon Models 

Fcodon = 4 (F1x4MG) and 5 (F3x4MG) implement two codon models in the style of 
Muse and Gaut (1994).  Those models are very similar to the F1x4 and F3x4 models 
described before except that the substitution rate from codon i to codon j is 
proportional to the frequency of the target nucleotide rather than the frequency of the 
target codon.  Suppose codon i is the triplet i1i2i3, and codon j is the triplet j1j2j3.  We 
have to specify the substitution rate for codons i and j that are different at one position 
(otherwise the rate is 0).  Let that position be k (k = 1, 2, 3) and let the nucleotide 
frequency at codon position k be .  The rate matrix is then  )(k
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For example, the change from i = TCA to j = TCG is a synonymous transition, and the 
rate is qTCA→TCG = , where  is the frequency of G at position 3.  This model is 
obviously time-reversible, with the equilibrium codon frequency πj proportional to 

, as under the F3x4 models mentioned before.  To see this note that qTCA → 
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can be written in the form sij πj, where sij = sji.  The detailed balance condition for 
reversibility follows: ( ) ( ) jijjjijiii qq ×=× )3()2()1()3()2()1(
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ππππππ .   

Fcodon = 4 (F1x4MG) uses one set of base frequencies for all three codon positions, 
just like F1x4. 
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6  Appendixes

Appendix A.  Using PAML with Other Phylogenetics 
Software 

PHYLIP 

Sequence data file. There are some incompatibilities between the PHYLIP format used 
by PAML programs and the PHYLIP format used by the current version of Joe 
Felsenstein’s PHYLIP package.  First, in Phylip, the sequence name can have at most 10 
characters, while PAML uses 30 characters.  This difference exists all the time and is due 
to my need to use longer names sometimes ago.  If you want the sequence data file to be 
readable by both PHYLIP and PAML, you should limit the number of characters in the 
name to 10 and also separate the name from the sequence by at least two spaces.  Having 
two spaces at the end of the name will inform PAML programs that the name has 
finished.  Second, the “interleaved” format is specified by toggling the menu in PHYLIP 
programs while by a letter I on the first line inside the sequence data file.  The latter was 
the option used by earlier versions of PHYLIP.  I have not followed the change since in 
general PAML does not use command-line menus as PHYLIP programs do.  If you use 
the sequential format, the same file can be read by both programs.  You can even use 
sequential format with the whole sequence on one line. 

Tree file.  Many PHYLIP programs output the estimated trees in a file called treefile.  
This uses the parenthesis notation and the file should be directly useable in PAML.  Or 
you can copy the trees into a file and add the number of trees at the beginning of the file 
for use in baseml, codeml, or pamp. 

Distance matrices and neighbour.  baseml and codeml produce distance matrices.  
They are printed into separate files with names like 2ML.t, 2ML.dS, 2NG.dS, etc.  Those 
files use the lower-diagonal format and are directly readable by the neighbour program in 
PHYLIP, so you can use the program to make a neighbour-joining tree (Saitou and Nei 
1987).  You can rename the file as infile or type in the file name when prompted by 
neighbour.  Then type L to tell the program that the matrix if lower-diagonal.   

PAUP, MacClade, and MrBayes 

Sequence data file.  PAUP, MacClade and MrBayes use the so-called NEXUS file 
format.  PAML programs (mainly baseml and codeml) have some limited support for 
this format and can read the sequence alignment in that format.  Only the sequence 
alignment is read and the command blocks are ignored.  Also PAML does not recognise 
comments inside the sequence data block, so please avoid them. 

The program evolver in the paml package can generate data sets both in the 
PAML/PHYLIP format and in the PAUP/MrBayes nexus format.  You can also modify 
the file paupblock to add blocks of paup or MrBayes command at the end of each 
simulated data set.  See the descriptions for the evolver program in Chapter  

Tree file.  PAML programs have only limited support with the tree file generated by 
PAUP or MacClade.  First the “[&U]” notation for specifying an unrooted tree is not 
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recognised.  For a tree to be accepted as an unrooted tree by PAML, you have to 
manually modify the tree file and delete a pair of parenthesis so that there is a 
trifurcation at the root; that is, the outmost pair of parentheses groups together three 
taxa rather than two, so the tree should be in the format (A, B, C).  Thus changing 
“(((1,2),3),4)” into “((1,2),3,4)” will deroot the tree. Perhaps I should let the program to 
do this automatically.  Second, the “Translate” keyword is ignored by PAML, and it is 
assumed that the ordering of the sequences in the tree file is exactly the same as the 
ordering of the sequences in the sequence data file.  This seems normally the case if the 
trees are reconstructed from the same sequence file using paup. 

Clustal 

 Sequence data file.  When you save the clustal alignment in the PHYLIP format with 
extension .phy, clustal output the alignment using the “interleaved” phylip format, 
truncating sequence names to 10 characters.  This file is typically not readable by PAML 
programs.  You need to make two changes.  First add the letter I at the end of the first 
line, after the number of sequences and the number of sites in the sequence.  Second, 
add spaces between the sequence name and the sequence and make sure there are at least 
two spaces separating the name and the sequence.    

MEGA 

Sequence data file.  The MEGA sequence data format (Kumar et al. 1994) is different 
and not directly readable by PAML programs.  Need to find out about the format and 
write something here. 

MOLPHY 

 Sequence data file.  It is possible to prepare the same file to be readable by both 
MOLPHY programs (nucml and protml) and PAML programs.  Need to find out about 
the format and write something here. 

The tree file produced by MOLPHY also uses the parenthesis notation and is readable 
by PAML programs. 

TreeView 

 The trees with branch lengths calculated from PAML programs should be directly 
readable by TreeView (Page 1996).  You can copy the tree onto the click board and paste 
into TreeView, or same the tree in a file and read the file from within TreeView.   Some 
of the models implemented in baseml and codeml require the user to label branches or 
nodes on the tree, and I found TreeView particularly useful for this purpose  when the 
tree is large.  TreeView shows those labels as node labels.  For example, the free-ratios 
model in codonml (model = 1) estimates one ω ratio for each branch.  In the output, 
codeml prints out a tree with the estimated ω ratio as node/branch labels, with some 
notes like “Tree for Rod Page’s TreeView”.  I can copy this tree into tree view.  Similarly 
the global and local clock models in baseml and codeml estimate an age for each node, 
and the output tree from those two programs can be copied into TreeView directly.   
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Andrew Rambaut’s TreeEdit, which runs on MACs, has similar functionalities.  
However, I don’t have MAC and have no experience with the program. 

Other Programs 

More research is needed to write this. 

Appendix B.  Overcoming Windows Annoyances  

Turn on file extensions in Windows Explorer.  Windows Explorer by default hides 
file extensions for known file types.  You should go to "Windows Explorer - Tools - 
Folder options - View" and un-tick "Hide extensions for known file types", so that you 
can see the full file names from Windows Explorer.   

Using Task Manger to change job prior ty.  Start Task Manger (for example, right 
click on task bar and choose Task Manager).  Click on Processes button.  Locate the big 
job, say, codeml.  Right click and Set Priority to Low.  Note that the process running the 
Command Prompt is cmd.  If you change the priority of cmd to low, all jobs started 
from that window will run at low priority.  You can change View – Update Speed to 
Low and change View – Select Columns.  Change Options – Minimize on Use.  Then 
you can minimize rather than close Task Manger.

i

 

All input and output files are plain text files.  In the Command Prompt box (Start - 
Programs – Accessaries – Command Prompt), you can use type or more to view a text 
file.  If you see strange characters on the screen and perhaps also hear beeps, the file is 
not a plain text file.  You can also use a text editor to view and edit a plain text file.  If 
you use Microsoft Word or Wordpad to save a file, make sure that the files are saved as a 
plain text file.  Use File – Save As and change the file type.  When you do, Word or 
other programs might automatically add the file extension .txt, and you will have to 
rename the file if you don’t want the .txt.   

Appendix C.  Changes Since Version 3.13 

Here is a list of changes since version 3.13, in two parts: incompatible changes and 
minor bug fixes.  Changes in earlier versions are documented in the file 
PAMLHistory.txt included in the package. 

1. codonml (codeml for codons): 

The mechanisctic amino acid substitution models (table 3 in Yang et al. 1998 MBBE 
15: 1600-1611) appear to be broken in paml/codelm versions 3.13 and 3.14.  They 
were correct in version 3.12.  This is now fixed.  If you use those models, please run 
the examples in the folder examples/mtCDNA/ and compare results with those 
published in the paper to confirm the program.  The results in the paper are correct, 
but the program implementation may be broken due to lack of maintenance. 

2. codonml (codeml for codons) 

When you fit the branch models with three or more branch types (omega ratios), the 
program aborts with an error message saying that only two omega ratios are allowed.  
This is due to a bug in the program and is now fixed.  codonml (codeml for codons):  
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The site-based (NSsites) models models M1 (neutral), M2 (selection), and M8 
(beta&ω) (Nielsen and Yang 1998; Yang et al. 2000b) have been changed, according 
to Wong et al. (2004) and Yang et al. (2005).  The old models M1 and M2 have ω0 = 
0 fixed, and this is changed to 0 < ω0 < 1.  Model M8 (beta&ω) used to estimate ωs 
without constraint, but the model is changed so that ωs is now estimated under the 
constraint ωs > 1.  Similarly the branch-site model A (Yang and Nielsen 2002) and 
the clade model C ( see also Forsberg and Christiansen 2003; Bielawski and Yang 
2004) are changed so that 0 < ω0 < 1 is estimated from the data.   

The empirical Bayes procedure for calculating posterior probabilities of site classes 
under the site models, branch-site models, and clade models is called naïve empirical 
Bayes (NEB), and ignores sampling errors of maximum likelihood parameter 
estimates.  This is now replaced by the Bayes empirical Bayes procedure (Yang et al. 
2005).   

3. baseml/codeml: rewrote likelihood clock and local clock models.  Implemented 
models for combined analysis of multiple genes incorporating multiple calibration 
points (Yang and Yoder 2003).  The ad hoc rate smoothing procedure of Yang (2004) 
is implemented for nucleotide, amino acid, and codon substitution models, and the 
implementation also deals with missing species at some loci.  The option variable 
clock in the control files is now used differently from before.  See later in this 
documentation and also the readme and readme2 files in the folder 
examples/MouseLemurs/.    

4. codeml: added branch-site models C and D (Bielawski and Yang in press). 

5. mcmctree: this program is disabled in this release.  The old program died and the 
new program is still under construction.   

6. The main body of this documentation may not be up to date.  

7. baseml/codeml.  The output in the file rates under the gamma model lists 
inferred rate for each site.  The output is incorrect if the tree is large and scaling is 
used to avoid underflow.  The use of scaling is indicated by two lines of output on 
the monitor like the following:  
“2 node(s) used for scaling (Yang 2000 J Mol Evol 51:423-432): 
 155 350”.   
The results are clearly wrong as the probabilities are much greater than 1, and the 
rates are many orders of magnitude too large, etc.  Also under the same problematic 
condition the expected numbers of sites with certain site patterns in the file lnf are 
incorrect.  When scaling is not used, the results should be o.k. and look reasonable.  
This affects versions 3.13 and 3.14beta1-3.  This is fixed in version 3.14.  Thanks for 
Nick Goldman for pointing out the error. 

8. yn00.  The program crashes for large datasets with many codons due to a memory 
allocation error.  This affects versions 3.13 and some versions of 3.14beta1.  The 
problem is fixed in version 3.14. 

9. aaml (codeml for amino acids).  Model REVaa_0 is broken due to lack of 
maintenance in versions 3.1, 3.11, 3,12, 3,13, and 3,14beta1-4.  It seems to be 
working in version 3.  This is fixed in 3.14beta5.  2 April 2004. 

10. codonml (codeml for codons) in branch-site models (model = 2 NSsites = 2 or 3) 
prior to 3.14beta3 have a scaling problem, which makes the length of the foreground 
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branch to be incorrectly estimated.  Other branch lengths and substitution 
parameters, such as the parameters in the ω distribution, are corrected calculated, as 
well as the log likelihood values and the posterior probabilities.  27 March 2004 

11. pamp: The gamma parameter for variable rates among sites using the method of 
Yang & Kumar (1996) is not estimated correctly in 3.14beta1, beta2, beta3.  
Versions 3.13d and earlier seem fine. 

12. codonml (codeml for codons) in version 3.14beta and 3.14beta1 does not work 
when fix_omega = 1 is used for branch models.  The results are incorrect.  Please 
use newer versions 3.14beta3 or later.  Also version 3.13 is fine. 

13. baseml: Models TN93 and REV are wrong when used with Mgene = 3 or 4.  This 
seems correct in version 3.12 but went wrong in 3.13 and 3.14 since I inserted TN92 
between HKY85 and TN93.  Thanks for Lee Bofkin for reporting the error. 

14. codonml (codeml for codons): When codon models are used to reconstruct 
ancestral sequences (with RateAncestor = 1), the program lists synonymous and 
nonsynonymous changes at each site under the heading "Changes at sites (syn 
nonsyn)."  This listing is incorrect due to a bug in the program.  This bug affects 
versions 3.12, 3.13 and 3.14, and version 3.11 seems correct.  Thanks to Joe 
Bielawski. 

15. baseml/codeml: The SE's for divergence times under the clock models are 
calculated incorrectly.  This happens when you use clock = 1 or 2, supply fossil date 
to calculate absolute times, and request standard errors for times.  The estimates of 
times themselves are correct, but standard errors for times are wrong.  The SEs for 
times and for the rate under the TipDate model (clock = 3) are wrong as well.  The 
programs print out the variances after the +-, instead of their square roots.  This 
error was introduced in version 3.13.  Versions prior to 3.13 are correct.  I posted an 
update 3.13d to fix this bug. 

16. evolver: the simulation program can now accept species names in the tree.  Note 
that the data file formats for evolver (MCbase.dat, MCcodon.dat, MCaa.dat) have 
changed and you might have to change your own data files.  Look at the files 
included in the package.   

17. The documentation in PAML v3.13 from August 2002 - 12 December 2002 had a 
mistake about the critical values for the newer test using a modified M8.  The critical 
values for the test are 2.71 at the 5% significance level and 5.41 at the 1% level, 
rather than 1.95 and 3.32 as in the documentation.   
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