QOXYy!

Manual for version 1.3.3

Written by Dimitri van Heesch

(©1997-2003

CONTENTS

Contents

10

11

12

13

14

15

16

User Manual

Installation

Getting started
Documenting the code

Lists

Grouping

Including formulas

Graphs and diagrams
Preprocessing

Linking to external documentation
Frequently Asked Questions

Troubleshooting

Reference Manual
Features

Doxygen History
Doxygen usage
Doxytag usage

Doxysearch usage

14

19

28

30

35

36

39

43

45

50

52

52

54

57

58

60

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

CONTENTS

17

18

19

20

21

22

23

24

25

Doxywizard usage
Installdox usage
Automatic link generation
Configuration

Special Commands

HTML Commands

Developers Manual
Doxygen’s Internals
Perl Module output format documentation

Internationalization

63

64

65

70

92

128

132

132

136

140

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

CONTENTS

Introduction

Doxygen is a documentation system for C++, C, Java, IDL (Corba and Microsoft fla-
vors) and to some extent PHP and C#.

It can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line
reference manual (irfIeX) from a set of documented source files. There is
also support for generating output in RTF (MS-Word), PostScript, hyperlinked
PDF, compressed HTML, and Unix man pages. The documentation is extracted
directly from the sources, which makes it much easier to keep the documentation
consistent with the source code.

2. You canconfiguredoxygen to extract the code structure from undocumented
source files. This is very useful to quickly find your way in large source distri-
butions. You can also visualize the relations between the various elements by
means of include dependency graphs, inheritance diagrams, and collaboration
diagrams, which are all generated automatically.

3. You can even ‘abuse’ doxygen for creating normal documentation (as | did for
this manual).

Doxygen is developed undemux , but is set-up to be highly portable. As a result, it
runs on most other Unix flavors as well. Furthermore, executables for Windows 9x/NT
and Mac OS X are available.

This manual is divided into three parts, each of which is divided into several sections.

The first part forms a user manual:

e SectionInstallationdiscusses how tdownload , compile and install doxygen
for your platform.

e SectionGetting startedells you how to generate your first piece of documenta-
tion quickly.

e SectionDocumenting the coddemonstrates the various ways that code can be
documented.

e SectionLists show various ways to create lists.
e SectionGroupingshows how to group things together.
e Sectionincluding formulasshows how to insert formulas in the documentation.

e SectionGraphs and diagrandescribes the diagrams and graphs that doxygen
can generate.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.linux.org
http://www.doxygen.org/download.html

CONTENTS

SectionPreprocessingxplains how doxygen deals with macro definitions.

SectionLinking to external documentatioexplains how to let doxygen create
links to externally generated documentation.

SectionFrequently Asked Questiorgives answers to frequently asked ques-
tions.

SectionTroubleshootindells you what to do when you have problems.

The second part forms a reference manual:

SectionFeaturepresents an overview of what doxygen can do.

SectionDoxygen Historyshows what has changed during the development of
doxygen and what still has to be done.

SectionDoxygen usagshows how to use thdoxygen program.
SectionDoxytag usagshows how to use th#oxytag program.
SectionDoxysearch usagghows how to use thdoxysearch program.
SectionDoxywizard usagshows how to use théoxywizard program.

Sectioninstalldox usagshows how to use thiastalldox script that is gen-
erated by doxygen if you use tag files.

SectionOutput Formatshows how to generate the various output formats sup-
ported by doxygen.

SectionAutomatic link generatiorshows how to put links to files, classes, and
members in the documentation.

SectionConfigurationshows how to fine-tune doxygen, so it generates the doc-
umentation you want.

SectionSpecial Commandshows an overview of the special commands that can
be used within the documentation.

SectionHTML Commandsshows an overview of the HTML commands that can
be used within the documentation.

The third part provides information for developers:

SectionDoxygen’s Internalgjives a global overview of how doxygen is inter-
nally structured.

SectionPerl Module output format documentatishows how to use the Perl-
Mod output.

SectionInternationalizatiorexplains how to add support for new output lan-
guages.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

CONTENTS

Doxygen license

Copyright(©1997-2003 byDimitri van Heesch

Permission to use, copy, modify, and distribute this software and its documentation un-
der the terms of the GNU General Public License is hereby granted. No representations
are made about the suitability of this software for any purpose. It is provided "as is”
without express or implied warranty. See tB&lU General Public License

for more details.

Documents produced by doxygen are derivative works derived from the input used in
their production; they are not affected by this license.

Projects using doxygen

I have compiled a list of projects that use doxygen (see
http://www.doxygen.org/projects.html). If you know other projects, let
me know and I'll add them.

Future work

Although doxygen is used successfully by a lot of people already, there is al-
ways room for improvement. Therefore, | have compiled a todo/wish list (see
http://www.doxygen.org/todo.html) of possible and/or requested en-
hancements.

Acknowledgements
Thanks go to:

e Malte Zockler and Roland Wunderling, authors of DOC++. The first version of
doxygen borrowed some code of an old version of DOC++. Although | have
rewritten practically all code since then, DOC++ has still given me a good start
in writing doxygen.

o All people at Troll Tech, for creating a beautiful GUI Toolkit (which is very
useful as a Windows/Unix platform abstraction layer :-)

e My brotherFrank for rendering the logos.
e Harm van der Heijden for adding HTML help support.

e Wouter Slegers ofYour Creative Solutions for registering the
www.doxygen.org domain.

e Parker Waechter for adding the RTF output generator.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

mailto:dimitri@stack.nl
http://www.gnu.org/copyleft/gpl.html
http://www.stack.nl/~fidget/index.html
http://www.yourcreativesolutions.nl

CONTENTS

e Joerg Baumann, for adding conditional documentation blocks, PDF links, and
the configuration generator.

e Matthias Andree for providing a .spec script for building rpms from the sources.
e Tim Mensch for adding the todo command.

e Christian Hammond for redesigning the web-site.

e Ken Wong for providing the HTML tree view code.

e Petr Prikryl for coordinating the internationalisation support. All language main-
tainers for providing translations into many languages.

e Erik Jan Lingen ofHabanera , Mark Roddy, Paul Schwartz, Charles Duffy,
Vadym Voznyuk, Philip Walton, Dwight Browne, Andreas Fredriksson, Karel
Lindveld, Ivan Lee, Albert Vlernon, Adam McKee, Vijapurapu Anatharac, Ben
Hunsberger and Walter Wartenweiler, Jeff Garbers, David Harris, Terry Brown
and Nicolas Reimen for donating money.

e The Comms group obymbian for donating an ultra codRevo plus orga-
nizer!

e Steve Upstill of Weta Digital for sending me some.ord of the
Rings goodies.

e The bandPorcupine Tree for providing hours of great music to listen to
while coding.

e many, many others for suggestions, patches and bug reports.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.habanera.nl/
http://www.symbian.com
http://www.psion.com/revoplus
http://www.wetadigital.com/digital/index_flash.htm
http://www.lordoftherings.net/
http://www.lordoftherings.net/
http://www.porcupinetree.com

Part |

User Manual

1 Installation

First go to thedownload page bttp://www.doxygen.org/download.html)to
get the latest distribution, if you did not have it already.

This section is divided into the following sections:

e Compiling from source on Unix

Installing the binaries on Unix

Known compilation problems for Unix

Compiling from source on Windows

e Installing the binaries on Windows

Tools used to develop doxygen

1.1 Compiling from source on Unix

If you downloaded the source distribution, you need at least the following to build the
executable:

e TheGNUools flex, bison and make

e In order to generate a Makefile for your platform, you nesetl (see
http:/www.perl.com/).

To take full advantage of doxygen'’s features the following additional tools should be
installed.

e Troll Tech’s GUI toolkitQt (seehttp://www.trolltech.com/products/qt.html
version 2 or higher. This is needed to build the GUI front-end doxywizard.

e A IATEX distribution: for instancéeTeX 1.0
par (seénttp://www.tug.org/interest.html#free). Thisis needed
for generating LaTeX, Postscript, and PDF output.

e the Graph visualization toolkit version 1.8.10 or
higher
par (seehttp://www.research.att.com/sw/tools/graphviz/).

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.doxygen.org/download.html
ftp://prep.ai.mit.edu/pub/gnu/
http://www.perl.com/
http://www.trolltech.com/products/qt.html
http://www.tug.org/interest.html#free
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/

1.1 Compiling from source on Unix

Needed for the include dependency graphs, the graphical inheritance graphs,
and the collaboration graphs. If you compile graphviz yourself, make sure you
do include freetype support (which requires the freetype library and header
files), otherwise the graphs will not render proper text labels.

e The ghostscript interpreter. To be foundmatw.ghostscript.com
Compilation is now done by performing the following steps:

1. Unpack the archive, unless you already have done that:

gunzip doxygen-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

2. Run the configure script:

sh ./configure

The script tries to determine the platform you use, the make tool (whicstbe
GNU make) and the perl interpreter. It will report what it finds.

To override the auto detected platform and compiler you can run configure as
follows:

configure --platform platform-type

See thdPLATFORMSile for a list of possible platform options.

If you have Qt-2.1.x installed and want to build the GUI front-end, you should
run the configure script with thewith-doxywizard option:

configure --with-doxywizard
For an overview of other configuration options use
configure --help
3. Compile the program by running make:
make
The program should compile without problems and three binadesygen ,

doxytag , anddoxysearch) should be available in the bin directory of the
distribution.

4. Optional: Generate the user manual.

make docs

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.ghostscript.com/

1.2 Installing the binaries on Unix

To let doxygen generate the HTML documentation.

Note:
You will need the stream edit@ed for this, but this should be available on
any Unix platform.

The HTML directory of the distribution will now contain the html documentation
(just point a HTML browser to the filendex.html in the html directory).

5. Optional: Generate a PDF version of the manual (you will neéfiatex
makeindex , andegrep for this).

make pdf

The PDF manuadoxygen _manual.pdf will be located in the latex directory
of the distribution. Just view and print it via the acrobat reader.

1.2 Installing the binaries on Unix

After the compilation of the source code donake install to install doxygen. If
you downloaded the binary distribution for Unix, type:

Jconfigure
make install

Binaries are installed into the directogyprefix >/bin . Usemake install _-
docs to install the documentation and examples iatocdir >/doxygen

<prefix > defaults to /usr but can be changed with the-prefix
option of the configure script. The defaulkdocdir > directory is
<prefix >/share/doc/packages and can be changed with thedocdir
option of the configure script.

Alternatively, you can also copy the binaries from bie directory manually to some
bin directory in your search path. This is sufficient to use doxygen.

Note:
You need the GNU install tool for this to work (it is part of the fileutils package).
Other install tools may put the binaries in the wrong directory!

If you have a RPM or DEP package, then please follow the standard installation proce-
dure that is required for these packages.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

1.3 Known compilation problems for Unix

1.3 Known compilation problems for Unix

Qt problems

The Qt include files and libraries are not a subdirectory of the directory pointed to by
QTDIR on some systems (for instance on Red Hat 6.0 includes are in /usr/include/qt
and libs are in /ust/lib).

The solution: go to the root of the doxygen distribution and do:
mkdir qt
cd gt
In -s your-gt-include-dir-here include

In -s your-gt-lib-dir-here lib
export QTDIR=$PWD

If you have a csh-like shell you should usetenv QTDIR $PWD instead of the
export command above.

Now install doxygen as described above.
Bison problems
Versions 1.31 to 1.34 of bison contain a "bug” that results in a compiler errors like this:

ceparse.cpp:348: member ‘class CPPValue yyalloc::yyvs’ with constructor not al-
lowed in union

This problem has been solved in version 1.35 (versions before 1.31 will also work).
Latex problems

The fileadwide.sty is not available for all distributions. If your distribution does
not have it please select another paper type in the config file (sSEABPIERTYPEtag
in the config file).

HP-UX & Digital Unix problems
If you are compiling for HP-UX with aCC and you get this error:

/opt/aCCl/Ibin/ld: Unsatisfied symbols:
alloca (code)

then you should (according to Anke Selig) edlit_parse.cpp and replace

extern "C" {
void *alloca (unsigned int);

k
with

#include <alloca.h>

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

1.3 Known compilation problems for Unix

If that does not help, try removinge _parse.cpp and let bison rebuild it (this
worked for me).

If you are compiling for Digital Unix, the same problem can be solved (according to
Barnard Schmallhof) by replacing the following in_parse.cpp:

#else /* not GNU C. */

#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi)

#include <alloca.h>

with

#else /* not GNU C. */
#if (ldefined (__STDC__) && defined (sparc)) || defined (__sparc_) \

|| defined (__sparc) || defined (__sgi) || defined (__osf)
#include <alloca.h>

Alternatively, one could fix the problem at the bison side. Here is patch for bison.simple
(provided by Andre Johansen):

--- bison.simple” Tue Nov 18 11:45:53 1997
+++ bison.simple Mon Jan 26 15:10:26 1998
@@ -27,7 +27,7 @@

#ifdef _ GNUC__

#define alloca __ builtin_alloca

#else /* not GNU C. */

-#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi)

+#if (Idefined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi) || defined (__alpha)

#include <alloca.h>

#else [* not sparc */

#if defined (MSDOS) && !defined (__TURBOC_)

The generated scanner.cpp that comes with doxygen is build with this patch applied.
Sun compiler problems

| tried compiling doxygen only with Sun’s C++ WorkShop Compiler version 5.0 (I
used./configure --platform solaris-cc)

Qt-2.x.y is required for this compiler (Qt-1.44 has problems with the bool type).

Compiling thedoxygen binary went ok, but while linkingloxytag 1| got a lot of
link errors, like these:

QList<Pagelnfo>::__ vtbl /home/dimitri/doxygen/
objects/SunWS_cache/CC_obj_6/6c3e04logMT2vrIGCQUQ.o
[Hint: try checking whether the first non-inlined, non-pure
virtual function of class QList<Pagelnfo> is defined]

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

1.4 Compiling from source on Windows 10

These are generated because the compiler is confused about the object sharing between
doxygen anddoxytag . To compiledoxytag anddoxysearch anyway do:

rm -rf objects

mkdir objects

cd src

gmake -f Makefile.doxytag
gmake -f Makefile.doxysearch

when configuring with-static | got:
Undefined first referenced
symbol in file
diclose lusr/lib/libc.a(nss_deffinder.o)
disym lust/lib/libc.a(nss_deffinder.o)
dlopen Just/lib/libc.a(nss_deffinder.o)
Manually adding-Bdynamic after the target rule ilMakefile.doxygen and

Makefile.doxytag will fix this:

$(TARGET): $(OBJECTS) $(OBJMOC)
$(LINK) $(LFLAGS) -0 $(TARGET) $(OBJECTS) $(OBIJMOC) $(LIBS) -Bdynamic

GCC compiler problems

Older versions of the GNU compiler have problems with constant strings containing
characters with character codes larger than 127. Therefore the compiler will fail to
compile some of the translatamx.h files. A workaround, if you are planning to use the
English translation only, is to configure doxygen with thenglish-only option.

On some platforms (such as OpenBSD) using some versions of gcc with -O2 can lead to
eating all memory during the compilation of files such as config.cpp. As a workaround
use —debug as a configure option or omit the -O2 for the particular files in the Makefile.

Gcc versions before 2.95 may produce broken binaries due to bugs in these compilers.
Dot problems

Due to a change in the way image maps are generated, older versions of doxygen
(<=1.2.17) will not work correctly with newer versions of graphviz<1.8.8). The

effect of this incompatibility is that generated graphs in HTML are not properly click-
able. For doxygen 1.3 it is recommended to use at least graphviz 1.8.10 or higher.

1.4 Compiling from source on Windows

Currently, | have only compiled doxygen for Windows using Microsoft’s Visual
C++ (version 6.0). For other compilers you may need to edit the perl script in
wintools/make.pl a bit. Let me know what you had to change if you got Doxygen
working with another compiler.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

1.4 Compiling from source on Windows

If you have Visual C++ 6.0, and the source distribution, you can easily build doxy-
gen using the project files in theintools directory. If you want to build the CVS
sources, or want to build from the command line, or with another compiler, you have
to follow the steps below.

Thomas Baust reported that if you have Visual Studio.NET (2003) then you should be
aware that there is a problem with th@open() andpclose() implementation, which
currently leaks handles, so if you build doxygen with it and use the INFUTER,

you will run to risk of crashing Windows! The problem is reported to and confirmed
by Microsoft so maybe it will fixed in the next service pack.

Since Windows comes without all the nice tools that Unix users are used to, you'll need
to install a number of these tools before you can compile doxygen for Windows from
the command-line.

Here is what is required:

e An unzip/untar tool like WinZip to unpack the tar source distribution. This can
be found ahttp://www.winzip.com/

The good, tested, and free alternative istidue utility supplied withcygwin
tools . Anyway, the cygwin’s flex, bison, and sed are also recommended below.

e Microsoft Visual C++ (I only tested with version 6.0). Use thevars32.bat
batch file to set the environment variables (if you did not select to do this auto-
matically during installation).

Borland C++ or MINGW (seéhttp://www.mingw.org/) are also sup-
ported.

e Perl 5.0 or higher for Windows. This can be downloaded from:
http://www.ActiveState.com/Products/ActivePerl/

e The GNU tools flex, bison, and sed. To get these work-
ing on Windows vyou should install thecygwin tools (see
http://sources.redhat.com/cygwin/)

Alternatively, you can also choose to download onlys@all subset
(seehttp://lwww.doxygen.org/dl/cygwin _tools.zip)of the cyg-

win tools that | put together just to compile doxygen.

As a third alternative one could use the GNUWIn32 tools that can be found at
http://gnuwin32.sourceforge.net/

Make sure theBISONLIB environment variable points to the location where
the files bison.simple and bison.hairy are located. For instance if
these files are ir: \tools \cygwin \share then BISONLIB should be set
to //c/tools/cygwin/share/

Also make sure the tools are available from a dos box, by adding the directory
they are in to the search path.

For those of you who are very new to cygwin (if you are going to install it
from scratch), you should notice that there is an archivebfiletstrap.zip

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.winzip.com/
http://sourceware.cygnus.com/cygwin/
http://sourceware.cygnus.com/cygwin/
http://www.mingw.org/
http://www.ActiveState.com/Products/ActivePerl/
http://sources.redhat.com/cygwin/
http://www.doxygen.org/dl/cygwin_tools.zip
http://gnuwin32.sourceforge.net/

1.4 Compiling from source on Windows 12

which also contains thdar utility (tar.exe), gzip utilities, and the
cygwinl.dll core. This also means that you have the in hands from

the start. It can be used to unpack the tar source distribution instead of using
WinZip — as mentioned at the beginning of this list of steps.

e From Doxygen-1.2.2-20001015 onwards, the distribution includes the part of
Qt-2.x.y that is needed for to compile doxygen, doxytag, and doxysearch. The
Windows specific part were also created. As a result doxygen can be compiled
on systems without X11 or the commerical version of Qt.

For doxywizard, a complete Qt library is still a requirement however. You can
download the non-commercial version from Troll-Tech web-site. See doxygen
download page for a link.

e To generate LaTeX documentation or formulas in HTML you need
the tools: latex , dvips and gswin32 . To get these working
under Windows install the fpTeX distribution. You can find more
info at: http://www.fptex.org/ and download it from CTAN or
one of its mirrors. In the Netherlands for example this would be:
ftp://ftp.easynet.nl/mirror/CTAN/systems/win32/fptex/

Make sure the tools are available from a dos box, by adding the directory they
are in to the search path.

For your information, the LaTeX is freely available set of so called macros and
styles on the top of the famous TeX program (by famous Donald Knuth) and the
accompanied utilities (all available for free). It is used for high quality typeset-
ting. The result — in the form of so calldaVI (DeVice Independent) file — can

be printed or displayed on various devices preserving exactly the same look up
to the capability of the device. Thdvips allows you to convert thelvi to

the high quality PostScript (i.e. PostScript that can be processed by utilities like
psnup , psbook , psselect , and others). The derived version of TeX (the
pdfTeX) can be used to produce PDF output instead of DVI, or the PDF can be
produced from PostScript using the utilpg2pdf .

If you want to use MikTeX then you need to select at least the medium size
installation. For really old versions of MikTex or minimal installations, you
may need to download the fancyhdr package separately. You can find it at:
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/supported/fancyhdr/

e If you want to generate compressed HTML help (seBEN-
ERATEHTMLHELP) in the config file, then you need the
Microsoft HTML help workshop. You can download it at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vscon-
HH1Start.asp

o If you used WinZip to extract the tar archive it will (apparently) not create empty
folders, so you have to add the foldedgjects andbin manually in the root
of the distribution before compiling.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.fptex.org/
ftp://ftp.easynet.nl/mirror/CTAN/systems/win32/fptex/
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/supported/fancyhdr/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp

15

Installing the binaries on Windows 13

e the Graph visualization toolkit version 1.8.10

(see http://www.research.att.com/swi/tools/graphviz/
Needed for the include dependency graphs, the graphical inheritance graphs
and the collaboration graphs.

Compilation is now done by performing the following steps:

1. Open a dos box. Make sure all tools (iremake, latex , gswin32 , dvips ,

15

sed, flex ,bison ,cl ,rm,andperl), are accessible from the command-line
(add them to the PATH environment variable if needed).

Notice: The use of LaTeX is optional and only needed for compilation of the
documentation into PostScript or PDF. Itriet needed for compiling the doxy-
gen’s binaries.

. Go to the doxygen root dir and type:

make.bat msvc

This should build the executabledoxygen.exe , doxytag.exe , and
doxysearch.exe using Microsoft's Visual C++ compiler (The compiler
should not produce any serious warnings or errors).

You can use also thecc argument to build executables using the Borland C++
compiler, ormingw argument to compile using GNU gcc.

. To build the examples, go to tlexamples subdirectory and type:

nmake

. To generate the doxygen documentation, go tadihe subdirectory and type:

nmake

The generated HTML docs are located in thé\html subdirectory.

The sources for LaTeX documentation are located in.thglatex subdirec-
tory. From those sources, the DVI, PostScript, and PDF documentation can be
generated.

Installing the binaries on Windows

There is no fancy installation procedure at the moment (if anyone can add it in a loca-
tion independent way please let me know).

To install doxygen, just copy the binaries from thi@ directory to a location some-
where in the path. Alternatively, you can include thie directory of the distribution
to the path.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.research.att.com/sw/tools/graphviz/

1.6 Tools used to develop doxygen 14

1.6 Tools used to develop doxygen

Doxygen was developed and tested under Linux using the following open-source tools:

e GCC version 2.95.3

e GNU flex version 2.5.4

e GNU bison version 1.35

¢ GNU make version 3.79.1

e Perl version 5.0093

e VIM version 5.8

e Mozilla1.0

e Troll Tech’s tmake version 1.3 (included in the distribution)
e teTeX version 1.0

e CVS1.10.7

2 Getting started

The executableloxygen is the main program that parses the sources and generates
the documentation. See sectiboxygen usagér more detailed usage information.

The executabldoxytag is only needed if you want to generate references to external
documentation (i.e. documentation that was generated by doxygen) for which you do
not have the sources or to create a search index for the search engine. See section
Doxytag usagéor more detailed usage information.

The executabldoxysearch is only needed if you want to use the search engine. See
sectionDoxysearch usagier more detailed usage information.

Optionally, the executabldoxywizard is a GUI front-end for editing the configura-
tion files that are used by doxygen.

The following figure shows the relation between the tools and the flow of information
between them:

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

2.1 Step 1: Creating a configuration file

-
Doxywizard E Your application custom
d output
rea :
i doxmlparser lib
generate/edit XML files ® =
Config file
Doxyfile
make ps postscript
Latex files kit
read generate/update + -
Makefile make pdf PDF
read L
Sources Doxygen
| read
read generate
J Man pages
Custom
— headers iR
— footers Tag file(s) e
— images U Z ! Windows only
] |
import doc
i refman.rtf 1 MS-Word
I
|
search !
: enerate I
index generate ¢ !
% I
I
|
uses HTML read | chm
Doxytag pages X HTML Help Workshop —*
parse |
Doxysearch I |
used from generates r o,
Figure 1: Doxygen information flow
2.1 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should
get its own configuration file. A project can consist of a single source file, but can also
be an entire source tree that is recursively scanned.

To simplify the creation of a configuration file, doxygen can create a template configu-
ration file for you. To do this calloxygen with the-g option:

doxygen -g <config-file>

where<config-file> is the name of the configuration file. If you omit the file name, a

file namedDoxyfile

will be created. If a file with the nameconfig-file> already

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©)1997-2003

2.1 Step 1: Creating a configuration file 16

exists, doxygen will rename it taconfig-file>.bak before generating the configuration
template. If you use (i.e. the minus sign) as the file name then doxygen will try to
read the configuration file from standard inpstidjn).

The configuration file has a format that is similar to that of a (simple) Makefile. It
contains of a number of assignments (tags) of the form:

TAGNAME = VALU&
TAGNAME = VALUE1 VALUE2 ...

You can probably leave the values of most tags in a generated template configuration
file to their default value. See secti@onfigurationfor more details about the config-
uration file.

If you do not like to edit the config file with a text editor, you should have a look at
doxywizard which is a GUI front-end that can create, read and write doxygen config-
uration files, and allows setting configuration options by entering them via dialogs.

For a small project consisting of a few C and/or C++ source and header files, you can
leavelNPUT tag empty and doxygen will search for sources in the current directory.

If you have a larger project consisting of a source directory or tree you should put the
root directory or directories after tH&lPUT tag, and add one or more file patterns

to the FILE_PATTERNStag (for instances.cpp *.h). Only files that match one

of the patterns will be parsed (if the patterns are omitted a list of source extensions is
used). For recursive parsing of a source tree you must sRHERRJRSIVEtag toYES

To further fine-tune the list of files that is parsed B¥CLUDE and EXCLUDE -
PATTERNStags can be used. To omit alist directories from a source tree for
instance, one could use:

EXCLUDE_PATTERNS = */test/*

Doxygen normally parses files if they are C or C++ sources. If a file hai a or
.odl extension it is treated as an IDL file. If it hasjava extension it is treated as
a file written in Java. Files ending withs are treated as C# files. Finally, files with
the extensiongphp , .php4 ,.inc or.phtml are treated as PHP sources.

If you start using doxygen for an existing project (thus without any documentation that
doxygen is aware of), you can still get an idea of what the documented result would be.
To do so, you must set tHEXTRACT_ALL tag in the configuration file tf¥ES Then,
doxygen will pretend everything in your sources is documented. Please note that as a
consequence warnings about undocumented members will not be generated as long as
EXTRACT_ALL is set toYES

To analyse an existing piece of software it is useful to cross-reference a (documented)
entity with its definition in the source files. Doxygen will generate such cross-
references if you set thEOURCEBROWSERtag to YES It can also include the
sources directly into the documentation by settiNgINE_SOURCESto YES (this

can be handy for code reviews for instance).

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

2.2 Step 2: Running doxygen 17

2.2 Step 2: Running doxygen

To generate the documentation you can now enter:

doxygen <config-file>

Doxygen will create ehtml , rtf , latex and/orman directory inside the output
directory. As the names suggest these directories contain the generated documentation
in HTML, RTF, IATeX and Unix-Man page format.

The default output directory is the directory in whidbxygen is started. The direc-
tory to which the output is written can be changed usingQhETPUT_ DIRECTORY,
HTML _OUTPUT, RTF.OUTPUT, LATEX_OUTPUT, and MAN _OUTPUT tags of
the configuration file. If the output directory does not exdxygen will try to
create it for you.

The generated HTML documentation can be viewed by pointing a HTML browser
to theindex.html file in the html directory. For the best results a browser that
supports cascading style sheets (CSS) should be used (I'm currently using Netscape
4.61 to test the generated output).

The generated’TpX documentation must first be compiled by*&gX compiler (I use
teTeX distribution version 0.9 that containgXTversion 3.14159). To simplify the
process of compiling the generated documentatomxygen writes aMakefile

into the latex directory. By typingmake in the latex directory the dvi file
refman.dvi will be generated (provided that you have a make tool caitede

of course). This file can then be viewed usikdyi or converted into a PostScript
file refman.ps by typingmake ps (this requiresdvips). To put 2 pages on one
physical page usmake ps_2onl instead. The resulting PostScript file can be send
to a PostScript printer. If you do not have a PostScript printer, you can try to use
ghostscript to convert PostScript into something your printer understands. Conversion
to PDF is also possible if you have installed the ghostscript interpreter; jusirtgke

pdf (ormake pdf _2onl). To get the best results for PDF output you should set the
PDFHYPERLINKStag toYES

The generated man pages can be viewed usinmirgrogram. You do need to make
sure the man directory is in the man path (seeNWENPATHeNvironment variable).

Note that there are some limitations to the capabilities of the man page format, so some
information (like class diagrams, cross references and formulas) will be lost.

2.3 Step 3: Documenting the sources

Although documenting the source is presented as step 3, in a hew project this should
of course be step 1. Here | assume you already have some code and you want doxygen
to generate a nice document describing the API and maybe the internals as well.

If the EXTRACT_ALL option is set tdNOin the configuration file (the default), then
doxygen will only generate documentation tiwcumentednembers, files, classes and

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

2.3 Step 3: Documenting the sources

namespaces. So how do you document these? For members, classes and namespaces
there are basically two options:

1. Place aspecialdocumentation block in front of the declaration or definition of
the member, class or namespace. For file, class and namespace membersiitis also
allowed to place the documention directly after the member. See s&qirial
documentation block® learn more about special documentation blocks.

2. Place a special documentation block somewhere else (another file or another
location)and put astructural commanéh the documentation block. A structural
command links a documentation block to a certain entity that can be documented
(e.g. a member, class, namespace or file). See sdationmentation at other
placesto learn more about structural commands.

Files can only be documented using the second option, since there is no way to put
a documentation block before a file. Of course, file members (functions, variable,
typedefs, defines) do not need an explicit structural command,; just putting a special
documentation block in front or behind them will do.

The text inside a special documentation block is parsed before it is written to the HTML
and/or £TpX output files.

During parsing the following steps take place:

e The special commands inside the documentation are executed. See Seetion
cial Commandgor an overview of all commands.

o If a line starts with some whitespace followed by one or more asterigkang
then optionally more whitespace, then all whitespace and asterisks are removed.

e All resulting blank lines are treated as a paragraph separators. This saves you
from placing new-paragraph commands yourself in order to make the generated
documentation readable.

e Links are created for words corresponding to documented classes.

e Links to members are created when certain patterns are found in the text. See
sectionAutomatic link generatiorior more information on how the automatic
link generation works.

e HTML tags that are in the documentation are interpreted and convert&Exo L
equivalents for theAIpX output. See sectioHTML Commanddor an overview
of all supported HTML tags.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

19

3 Documenting the code

3.1 Special documentation blocks

A special documentation block is a C or C++ comment block with some additional
markings, so doxygen knows it is a piece of documentation that needs to end up in the
generated documentation.

For each code item there are two types of descriptions, which together form the doc-
umentation: aorief description andietaileddescription, both are optional. Having
more than one brief or detailed description however, is not allowed.

As the name suggest, a brief description is a short one-liner, whereas the detailed de-
scription provides longer, more detailed documentation.

There are several ways to mark a comment block as a detailed description:

1. You can use the JavaDoc style, which consist of a C-style comment block starting
with two *'s, like this:

/**

* oL text ..
*/

2. oryou can use the Qt style and add an exclamation mark (!) after the opening of
a C-style comment block, as shown in this example:

[*!
* oL text ..
*/

In both cases the intermediatis are optional, so

1
.otext ...
*

is also valid.

3. A third alternative is to use a block of at least two C++ comment lines, where
each line starts with an additional slash or an exclamation mark. Here are exam-
ples of the two cases:

mn
... text ...
mn

or

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

3.1 Special documentation blocks 20

n
... text ...
I

4. Some people like to make their comment blocks more visible in the documenta-
tion. For this purpose you can use the following:

i
... text ...
T

For the brief description there are also several posibilities:

1. One could use thgbrief command with one of the above comment blocks. This
command ends at the end of a paragraph, so the detailed description follows after
an empty line.

Here is an example:

/*! \brief Brief description.

* Brief description continued.
*

* Detailed description starts here.
*/

2. If JAVADOC_AUTOBRIEF is set toYESin the configuration file, then using
JavaDoc style comment blocks will automatically start a brief description which
ends at the first dot followed by a space or new line. Here is an example:

/** Brief description which ends at this dot. Details follow
* here.
*/

The option has the same effect for multi-line special C++ comments:

/Il Brief description which ends at this dot. Details follow
Il here.

3. A third option is to use a special C++ style comment which does not span more
than one line. Here are two examples:

/Il Brief description.
/** Detailed description. */

or

/' Brief descripion.

/I' Detailed description
/Il starts here.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

3.1 Special documentation blocks

21

Note the blank line in the last example, which is required to separate the brief
description from the block containing the detailed description. JAVADOC -
AUTOBRIEF should also be set td4Ofor this case.

As you can see doxygen is quite flexible. The following however is not legal

/I' Brief description, which is

/I' really a detailed description since it spans multiple lines.
/*I Oops, another detailed description!

*/

because doxygen only allows one brief and one detailed description.

Furthermore, if there is one brief description before a declaration and one before a
definition of a code item, only the one before thexlarationwill be used. If the same
situation occurs for a detailed description, the one before¢fiaitionis preferred and

the one before the declaration will be ignored.

Here is an example of a documented piece of C++ code using the Qt style:

/' A test class.
*!

A more elaborate class description.
*

class Test

{
public:

/' An enum.

/*! More detailed enum description. */

enum TEnum {
TVall, /*'< Enum value TVall. */
TVal2, /*'< Enum value TVal2. */
TVal3 /*I< Enum value TVal3. */

/I' Enum pointer.
/*! Details. */
*enumPtr,

/' Enum variable.
/*! Details. */
enumVar;

/I' A constructor.
/*!
A more elaborate description of the constructor.
*
Test();

/' A destructor.
/!
A more elaborate description of the destructor.
*/
“Test();

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

3.1 Special documentation blocks

22

/' A normal member taking two arguments and returning an integer value.
/*!
\param a an integer argument.
\param s a constant character pointer.
\return The test results
\sa Test(), "Test(), testMeToo() and publicVar()
*/
int testMe(int a,const char *s);

/' A pure virtual member.
/!
\sa testMe()
\param c1 the first argument.
\param c2 the second argument.
*
virtual void testMeToo(char cl,char c2) = O;

/' A public variable.
I
Details.
*/
int publicVvar;

/' A function variable.
[*!
Details.
*/
int (*handler)(int a,int b);

The one-line comments contain a brief description, whereas the multi-line comment
blocks contain a more detailed description.

The brief descriptions are included in the member overview of a class, namespace or
file and are printed using a small italic font (this description can be hidden by setting
BRIEF-MEMBER_DESCto NOin the config file). By default the brief descriptions
become the first sentence of the detailed descriptions (but this can be changed by set-
ting the REPEAT_BRIEF tag toNQ. Both the brief and the detailed descriptions are
optional for the Qt style.

By default a JavaDoc style documentation block behaves the same way as a Qt style
documentation block. This is not according the JavaDoc specification however, where
the first sentence of the documentation block is automatically treated as a brief descrip-
tion. To enable this behaviour you should $&/ADOC_AUTOBRIEFto YES in the
configuration file. If you enable this option and want to put a dot in the middle of a
sentence without ending it, you should put a backslash and a space after it. Here is an
example:

/** Brief description (e.g.\ using only a few words). Details follow. */

Here is the same piece of code as shown above, this time documented using the Java-

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

3.1 Special documentation blocks

23

Doc style andJAVADOC_AUTOBRIEF set to YES:

/**
* A test class. A more elaborate class description.
*

class Test

{
public:

/**

* An enum.

* More detailed enum description.
*/

enum TEnum {
TVall, /**< enum value TVall. */
TVal2, /**< enum value TVal2. */
TVal3 /**< enum value TVal3. */
}
*enumPtr, /**< enum pointer. Details. */
enumVar; /**< enum variable. Details. */

/**

* A constructor.

* A more elaborate description of the constructor.
*

Test();

/**
* A destructor.
* A more elaborate description of the destructor.
*/

“Test();

* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.

* @param s a constant character pointer.

* @see Test()

* @see “Test()

* @see testMeToo()

* @see publicvar()

* @return The test results

*/

int testMe(int a,const char *s);

/**

* A pure virtual member.

* @see testMe()

* @param cl the first argument.

* @param c2 the second argument.

*

virtual void testMeToo(char cl,char c2) = O;

/**

* a public variable.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

3.2 Putting documentation after members 24

* Details.

*/

int publicVar;

/**

* a function variable.

* Details.

*/

int (*handler)(int a,int b);

Unlike most other documentation systems, doxygen also allows you to put the docu-
mentation of members (including global functions) in front of tledinition This way

the documentation can be placed in the source file instead of the header file. This keeps
the header file compact, and allows the implementer of the members more direct access
to the documentation. As a compromise the brief description could be placed before
the declaration and the detailed description before the member definition.

3.2 Putting documentation after members
If you want to document the members of a file, struct, union, class, or enum, and you
want to put the documentation for these members inside the compound, it is sometimes

desired to place the documentation block after the member instead of before. For this
purpose you should put an additioralmarker in the comment block.

Here are some examples:

int var; /*I< Detailed description after the member */

This block can be used to put a Qt style detailed documentation bliteka member.
Other ways to do the same are:

int var; /**< Detailed description after the member */
or

int var; //'< Detailed description after the member
<

or

int var; ///< Detailed description after the member
1<

Most often one only wants to put a brief description after a member. This is done as
follows:

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

3.3 Documentation at other places 25

int var; //'< Brief description after the member

or

int var; //l< Brief description after the member

Note that these blocks have the same structure and meaning as the special comment
blocks in the previous section only tkeindicates that the member is located in front
of the block instead of after the block.

Here is an example of the use of these comment blocks:

/1 A test class */

class Test

{
public:
/** An enum type.
* The documentation block cannot be put after the enum!
*
enum EnumType

int EVall, /**< enum value 1 */
int EVal2 [**< enum value 2 */

5

void member(); /l'< a member function.

protected:
int value; /*I< an integer value */

8

Warning:
These blocks can only be used to docummeambersandparameters They cannot
be used to document files, classes, unions, structs, groups, namespaces and enums
themselves. Furthermore, the structural commands mentioned in the next section
(like \class) are ignored inside these comment blocks.

3.3 Documentation at other places

So far we have assumed that the documentation blocks are always located in front of
the declaration or definition of a file, class or namespace or in front or after one of its
members. Although this is often comfortable, there may sometimes be reasons to put
the documentation somewhere else. For documenting a file this is even required since
there is no such thing as "in front of a file”. Doxygen allows you to put your docu-
mentation blocks practically anywhere (the exception is inside the body of a function
or inside a normal C style comment block).

The price you pay for not putting the documentation block before (or after) an item is
the need to put a structural command inside the documentation block, which leads to
some duplication of information.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

3.3 Documentation at other places 26

Structural commands (like all other commands) start with a backslgslor(an at-

sign (@ if you prefer JavaDoc style, followed by a command name and one or more
parameters. For instance, if you want to document the dass in the example
above, you could have also put the following documentation block somewhere in the
input that is read by doxygen:

/*! \class Test
\brief A test class.

A more detailed class description.
*

Here the special commangdlass is used to indicate that the comment block contains
documentation for the cla§®est . Other structural commands are:

e \struct todocument a C-struct.

\union to document a union.

\enumto document an enumeration type.

\fn to document a function.

\var to document a variable or typedef or enum value.

\def to document a #define.

\file to document a file.

\namespace to document a namespace.

\package to document a Java package.

\interface to document an IDL interface.

See sectiorSpecial Command®r detailed information about these and many other
commands.

To document a member of a C++ class, you must also document the class itself. The
same holds for namespaces. To document a global C function, typedef, enum or pre-
processor definition you must first document the file that contains it (usually this will be

a header file, because that file contains the information that is exported to other source
files).

Let's repeat that, because it is often overlooked: to document global objects (functions,
typedefs, enum, macros, etc), yowstdocument the file in which they are defined. In
other words, therenustat least be a

¥ \ile */

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

3.3 Documentation at other places

27

ora
> @file */

line in this file.

Here is an example of a C header nansédictcmd.h that is documented using
structural commands:

/*! Yfile structcmd.h
\brief A Documented file.

Details.

*

/*1 \def MAX(a,b)

\brief A macro that returns the maximum of \a a and \a b.
Details.

*

/*! \var typedef unsigned int UINT32
\brief A type definition for a .

Details.

*

/*I \War int errno
\brief Contains the last error code.

\warning Not thread safe!

*

/*1 \fn int open(const char *pathname,int flags)
\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.
*/
/*! \fn int close(int fd)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*

/*1 \fn size_t write(int fd,const char *buf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.

\param buf The data buffer to write.
\param count The number of bytes to write.

*

/*1 \fn int read(int fd,char *buf,size_t count)

\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

28

\param count The number of bytes to read.
*

#define MAX(a,b) (((a)>(b))?(a):(b))
typedef unsigned int UINT32;

int errno;

int open(const char *int);

int close(int);

size_t write(int,const char *, size_t);
int read(int,char *size_t);

Because each comment block in the example above contains a structural command,
all the comment blocks could be moved to another location or input file (the source
file for instance), without affecting the generated documentation. The disadvantage of
this approach is that prototypes are duplicated, so all changes have to be made twice!
Because of this you should first consider if this is really needed, and avoid structural
commands if possible. | often receive examples that coffaisommand in comment
blocks which are place in front of a function. This is clearly a case whera fthe
command is redundant and will only lead to problems.

4 Lists

Doxygen has a number of ways to create lists of items.
Using dashes

By putting a number of column-aligned minus signs at the start of a line, a bullet list
will automatically be generated. Numbered lists can also be generated by using a minus
followed by a hash. Nesting of lists is allowed.

Here is an example:

/*!

* A list of events:

* - mouse events

* -# mouse move event
* -# mouse click event\n
* More info about the click event.
* -# mouse double click event
* - keyboard events

* -# key down event

* -# key up event

*

*

More text here.
*/

The result will be:

A list of events:

e mouse events

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

29

1. mouse move event

2. mouse click event
More info about the click event.

3. mouse double click event
e keyboard events

1. key down event
2. key up event

More text here.

If you use tabs within lists, please make sure B _SIZE in the configuration file is
set to the correct tab size.

You can end a list by starting a new paragraph or by putting a dot (.) on an empty line
at the same indent level as the list you would like to end.

Here is an example that speaks for itself:

Text before the list
- list item 1
- sub item 1
- sub sub item 1
- sub sub item 2

The dot above ends the sub sub item list.
More text for the first sub item

The dot above ends the first sub item.
More text for the first list item
- sub item 2
- sub item 3
- list item 2

More text in the same paragraph.

More text in a new paragraph.

Using HTML commands

If you like you can also use HTML commands inside the documentation blocks. Using
these commands has the advantage that it is more natural for list items that consists of
multiple paragraphs.

Here is the above example with HTML commands:
I

* A list of events:
*

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

 mouse events

mouse move event
mouse click event\n

More info about the click event.

mouse double click event

 keyboard events

key down event
key up event

More text here.

. T R I R

*
<

Note:
The indentation here is not important.

Using \arg or @li

For compatibility with the Troll Tech’s internal documentation tool and with KDoc,
doxygen has two commands that can be used to create simple unnested lists.

See\argand\li for more info.

5 Grouping

Doxygen has two mechanisms to group things together. One mechanism works at a
global level, creating a new page for each group. These groups are called "modules”
in the documentation. The other mechanism works within a member list of some com-

pound entity, and is refered to as a "'member group”.

5.1 Modules

Modules are a way to group things together on a separate page. You can document a
group as a whole, as well as all individual members. Members of a group can be files,
namespaces, classes, functions, variables, enums, typedefs, and defines, but also other
groups.

To define a group, you should put theefgroupcommand in a special comment block.
The first argument of the command is a label that should uniquely identify the group.
You can make an entity a member of a specific group by puttiviggroupcommand
inside its documentation block. The second argument is the title of the group.

To avoid putting\ingroupcommands in the documentation of each member you can
also group members together by the open ma@ebefore the group and the closing
marker@ after the group. The markers can be put in the documentation of the group
definition or in a separate documentation block.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

5.1 Modules 31

Groups can also be nested using these grouping markers.

You will get an error message when you use the same group label more than once.
If you don’t want doxygen to enforce unique labels, then you can\askltogroup
instead of\defgroup It can be used exactly likedefgroup but when the group has
been defined already, then it silently merges the existing documentation with the new
one. The title of the group is optional for this command, so you can use

/** \addtogroup <label> */
M@
M@y

to add members to a group that is defined in more detail elsewhere.

Note that compound entities (like classes, files and namespaces) can be put into multi-
ple groups, but members (like variable, functions, typedefs and enums) can only be a
member of one group (this restriction is to avoid ambiguous linking targets).

Doxygen will put members into that group where the grouping definition had the high-
est priority: f.i. \ingroupoverrides any automatic grouping definition @ @. Con-
flicting grouping definitions with the same priority trigger a warning, unless one def-
inition was for a member without any explicit documentation. The following exam-
ple puts VarlnA into group A and silently resolves the conflict for IntegerVariable by
putting it into group IntVariables, because the second instance of IntegerVariable is
undocumented:

/**

* \ingroup A

*/

extern int VarlnA;

/**

* \defgroup IntVariables Global integer variables
*/
rF@{*/

[** an integer variable */
extern int IntegerVariable;

@y

/**

* \defgroup Variables Global variables
*/

rFa{*

/** a variable in group A */
int VarlnA;

int IntegerVariable;

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

5.1 Modules 32

@y

The priorities of grouping definitions are (from highest to lowest)ingroup
\defgroup \addtogroup\weakgroup The last command is exactly likeaddtogroup
with a lower priority. It was added to allow "lazy” grouping definitions: you can use
commands with a higher priority in your .h files to define the hierarchy\areakgroup

in .c files without having to duplicate the hierarchy exactly.

Example:

/** @defgroup groupl The First Group
* This is the first group

* @{

*

/** @brief class C1 in group 1 */
class C1 {};

/** @brief class C2 in group 1 */
class C2 {};

/** function in group 1 */
void func() {}

I @} */ /I end of groupl

/**
* @defgroup group2 The Second Group

* This is the second group
*

/** @defgroup group3 The Third Group
* This is the third group
*

/** @defgroup group4 The Fourth Group
* @ingroup group3

* Group 4 is a subgroup of group 3
*

/**

* @ingroup group2

* @brief class C3 in group 2

*/

class C3 {};

[** @ingroup group2

* @brief class C4 in group 2
*/

class C4 {};

[** @ingroup group3

* @brief class C5 in @link group3 the third group@endlink.
*/

class C5 {};

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

5.2 Member Groups

33

/** @ingroup groupl group2 group3 group4
* namespace N1 is in four groups
* @sa @link groupl The first group@endlink, group2, group3, group4

*

* Also see @ref mypage2
*

namespace N1 {};

/** @file
* @ingroup group3

* @brief this file in group 3
*/

/** @defgroup group5 The Fifth Group
* This is the fifth group

* @

*

/** @page mypagel This is a section in group 5
* Text of the first section
*/

/** @page mypage2 This is another section in group 5
* Text of the second section

*/

= @} */ /I end of group5

/** @addtogroup groupl

* More documentation for the first group.

* @

*/

/** another function in group 1 */
void func2() {}

/** yet another function in group 1 */
void func3() {}

= @} */ /I end of groupl

5.2 Member Groups

If a compound (e.g. a class or file) has many members, it is often desired to group them
together. Doxygen already automatically groups things together on type and protection
level, but maybe you feel that this is not enough or that that default grouping is wrong.
For instance, because you feel that members of different (syntactic) types belong to the
same (semantic) group.

A member group is defined by a

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

5.2 Member Groups

34

s
1@}

block or a

r@{
r@w

block if you prefer C style comments. Note that the members of the group should be
physcially inside the member group’s body.

Before the opening marker of a block a separate comment block may be placed. This
block should contain th@namegor \namg command and is used to specify the header

of the group. Optionally, the comment block may also contain more detailed informa-
tion about the group.

Nesting of member groups is not allowed.

If all members of a member group inside a class have the same type and protection level
(for instance all are static public members), then the whole member group is displayed
as a subgroup of the type/protection level group (the group is displayed as a subsection
of the "Static Public Members” section for instance). If two or more members have
different types, then the group is put at the same level as the automatically generated
groups. If you want to force all member-groups of a class to be at the top level, you
should put & nosubgroupingommand inside the documentation of the class.

Example:

/** A class. Details */
class Test
{
public:
lna{
/** Same documentation for both members. Details */
void funclinGroupl();
void func2InGroupl();
i@}

/** Function without group. Details. */
void ungroupedFunction();
void funclinGroup2();
protected:
void func2InGroup2();
h

void Test::funclinGroupl() {}
void Test::func2InGroupl() {}

/** @name Group2
* Description of group 2.
*

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

35

Hax

/** Function 2 in group 2. Details. */
void Test::func2InGroup2() {}

/** Function 1 in group 2. Details. */
void Test:funclinGroup2() {}

@}

/%1 \file
* docs for this file
*/

Hax

/I' one description for all members of this group

/I' (because DISTRIBUTE_GROUP_DOC is YES in the config file)
#define A 1

#define B 2

void glob_func();

@}

Here Groupl is displayed as a subsection of the "Public Members”. And Group?2 is
a separate section because it contains members with different protection levels (i.e.
public and protected).

6 Including formulas

Doxygen allows you to putTEeX formulas in the output (this works only for the HTML
and BTpX output, not for the RTF nor for the man page output). To be able to include
formulas (as images) in the HTML documentation, you will also need to have the
following tools installed

e latex : the BTpX compiler, needed to parse the formulas. To test | have used
the teTeX 0.9 distribution.

e dvips : atool to convert DVI files to PostScript files | have used version 5.86
from Radical Eye software for testing.

e gs: the GhostScript interpreter for converting PostScript files to bitmaps. | have
used Aladdin GhostScript 5.10 for testing.

There are two ways to include formulas in the documentation.

1. Using in-text formulas that appear in the running text. These formulas should be
put between a pair 0ff$ commands, so

The distance between \f$(x_1,y 1)\f$ and \f$(x_2,y 2)\f$ is
\fB\sqrt{(x_2-x_1)"2+(y_2-y_1)"2}\f$.

results in:
The distance betwedn1, y1) and(z2, y2) is v/ (z2 — 21)% + (y2 — y1)2.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

36

2. Unnumbered displayed formulas that are centered on a separate line. These for-
mulas should be put betweé&fi and \f] commands. An example:

\f
[I_2]=\left| \int_{O}'T \psi(t)
\left\{
u(at)-
\int_{\gamma(t)}"a
\frac{d\thetal{k(\theta,t)}
\int_{a}"\theta c(\xi)u_t(\xi,t)\,d\xi
\right\} dt
\right|
\]

results in:

T a 9
L) = ‘ / b(t) {a(a,w - /) k[ft) / () ur(€, 1) dg} dt

Formulas should be valid commands4fgX’s math-mode.

Warning:
Currently, doxygen is not very fault tolerant in recovering from typos in formulas.
It may have to be necessary to remove thefbilenula.repository that is

written in the html directory to a rid of an incorrect formula

7 Graphs and diagrams

Doxygen has built-in support to generate inheritance diagrams for C++ classes.

Doxygen can use the "dot” tool from graphviz 1.5 to generate more ad-
vanced diagrams and graphs. Graphviz is an "open-sourced”, cross-platform
graph drawing toolkit from AT&T and Lucent Bell Labs and can be found at

http://www.research.att.com/sw/tools/graphviz/

If you have the "dot” tool available in the path, you can Hé&VE _DOT to YESin the
configuration file to let doxygen use it.

Doxygen uses the "dot” tool to generate the following graphs:

o if GRAPHICAL HIERARCHY is set toYES a graphical representation of the
class hierarchy will be drawn, along with the textual one. Currently this feature
is supported for HTML only.

Warning: When you have a very large class hierarchy where many classes derive
from a common base class, the resulting image may become too big to handle
for some browsers.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.research.att.com/sw/tools/graphviz/

37

e if CLASS GRAPHis set toYES a graph will be generated for each documented
class showing the direct and indirect inheritance relations. This disables the
generation of the built-in class inheritance diagrams.

o if INCLUDE_GRAPHI s set toYES an include dependency graph is generated
for each documented file that includes at least one other file. This feature is
currently supported for HTML and RTF only.

e if COLLABORATION_GRAPHis set to YES, a graph is drawn for each docu-
mented class and struct that shows:

— the inheritance relations with base classes.

— the usage relations with other structs and classes (e.g.Alessa member
variablema of type clasdB, thenA has an arrow t® with ma as label).

The elements in the class diagrams in HTML and RTF have the following meaning:

¢ A yellow box indicates a class. A box can have a little marker in the lower
right corner to indicate that the class contains base classes that are hidden. For
the class diagrams the maximum tree width is currently 8 elements. If a tree is
wider some nodes will be hidden. If the box is filled with a dashed pattern the
inheritance relation is virtual.

¢ A white box indicates that the documentation of the class is currently shown.
e A grey box indicates an undocumented class.

e A solid dark blue arrow indicates public inheritance.

e A dashed dark greenarrow indicates protected inheritance.

e A dotted dark greenarrow indicates private inheritance.
The elements in the class diagramATeX have the following meaning:

e A white box indicates a class. Aarker in the lower right corner of the box
indicates that the class has base classes that are hidden. If the boddsed
border this indicates virtual inheritance.

e A solid arrow indicates public inheritance.
¢ A dashedarrow indicates protected inheritance.

¢ A dotted arrow indicates private inheritance.
The elements in the graphs generated by the dot tool have the following meaning:

e A white box indicates a class or struct or file.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

38

e Abox with ared border indicates a node that lrasrearrows than are shown! In
other words: the graph tsuncatedwith respect to this node. The reason why a
graph is sometimes truncated is to prevent images from becoming too large. For
the graphs generated with dot doxygen tries to limit the width of the resulting
image to 1024 pixels.

e A black box indicates that the class’ documentation is currently shown.

e A dark blue arrow indicates an include relation (for the include dependency
graph) or public inheritance (for the other graphs).

e A dark green arrow indicates protected inheritance.
e A dark red arrow indicates private inheritance.

e A purple dashedarrow indicated a "usage” relation, the edge of the arrow is
labled with the variable(s) responsible for the relation. Classes clas8, if
classA has a member variablaof type C, where B is a subtype of C (e.g. C
could beB, Bx, Tx).

Here are a couple of header files that together show the various diagrams that doxygen
can generate:

diagrams _a.h

#ifndef _DIAGRAMS_A_H
#define _DIAGRAMS_A_H
class A { public: A *m_self; };
#endif

diagrams _b.h

#ifndef _DIAGRAMS_B_H
#define _DIAGRAMS_B_H
class A;

class B { public: A *m_a; };
#endif

diagrams _c.h

#ifndef _DIAGRAMS_C_H

#define _DIAGRAMS_C_H

#include “"diagrams_c.h"

class D;

class C : public A { public: D *m_d; };
#endif

diagrams _d.h

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

39

#ifndef _DIAGRAM_D_H

#define _DIAGRAM_D_H

#include "diagrams_a.h"

#include "diagrams_b.h"

class C;

class D : virtual protected A, private B { public: C m_c; };
#endif

diagrams _e.h

#ifndef _DIAGRAM_E_H
#define _DIAGRAM_E_H
#include “"diagrams_d.h"
class E : public D {};
#endif

8 Preprocessing

Source files that are used as input to doxygen can be parsed by doxygen’s built-in
C-preprocessor.

By default doxygen does only partial preprocessing. That is, it evaluates conditional
compilation statements (like #if) and evaluates macro definitions, but it does not per-
form macro expansion.

So if you have the following code fragment

#define VERSION 200
#define CONST_STRING const char *

#if VERSION < 200

static CONST_STRING version = "2.xx";
#else

static CONST_STRING version = "1.xx";
#endif

Then by default doxygen will feed the following to its parser:

#define VERSION
#define CONST_STRING

static CONST_STRING version = "2.xx";

You can disable all preprocessing by settBiyABLE_PREPROCESSINGo NOin
the configuation file. In the case above doxygen will then read both statements, i.e:

static CONST_STRING version
static CONST_STRING version

"2.XX";
"1.xx";

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

40

In case you want to expand t@EONSTSTRINGmacro, you should set thHdACRO _-
EXPANSION tag in the config file toYES Then the result after preprocessing be-
comes:

#define VERSION
#define CONST_STRING

static const char * version = "1.xx";

Note that doxygen will now exparall macro definitions (recursively if needed). This

is often too much. Therefore, doxygen also allows you to expand only those defines
that you explicitly specify. For this you have to set 88PAND_ONLY _PREDEFtag

to YESand specify the macro definitions after SRREDEFINEDor EXPAND_AS -
DEFINED tag.

As an example, suppose you have the following obfuscated code fragment of an ab-
stract base class callédnknown :

/*! A reference to an IID */
#ifdef __ cplusplus

#define REFIID const IID &
#else

#define REFIID const IID *
#endif

/¥ The IUnknown interface */
DECLARE_INTERFACE(IUnknown)

STDMETHOD(HRESULT,Querylnterface) (THIS_ REFIID iid, void **ppv) PURE;
STDMETHOD(ULONG,AddRef) (THIS) PURE;
STDMETHOD(ULONG,Release) (THIS) PURE;

h

without macro expansion doxygen will get confused, but we may not want to expand
the REFIID macro, because it is documented and the user that reads the documentation
should use it when implementing the interface.

By setting the following in the config file:

ENABLE_PREPROCESSING = YES

MACRO_EXPANSION = YES

EXPAND_ONLY_PREDEF = YES

PREDEFINED = "DECLARE_INTERFACE(name)=class name" \
"STDMETHOD(result,name)=virtual result name" \
"PURE= = 0" \
THIS =\
THIS= \

__cplusplus

we can make sure that the proper result is fed to doxygen’s parser:

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

41

/¥ A reference to an IID */
#define REFIID

/*! The IUnknown interface */
class IUnknown

{
virtual HRESULT Queryinterface (REFIID iid, void **ppv) = 0;

virtual ULONG AddRef () = 0;
virtual ULONG Release () = O;

k

Note that the PREDEFINED tag accepts function like macro definitions (like
DECLARBNTERFACE), normal macro substitutions (likkUREand THIS) and
plain defines (like_cplusplus).

Note also that preprocessor definitions that are normally defined automatically by the
preprocessor (like_cplusplus), have to be defined by hand with doxygen’s parser
(this is done because these defines are often platform/compiler specific).

In some cases you may want to substitute a macro name or function by something else
without exposing the result to further macro substitution. You can do this but using the
:= operator instead of

As an example suppose we have the following piece of code:

#define QList QListT
class QListT

{

h

Then the only way to get doxygen interpret this as a class definition for class QList is
to define:

PREDEFINED = QListT:=QList

Here is an example provided by Valter Minute and Reyes Ponce that helps doxygen to
wade through the boilerplate code in Microsoft's ATL & MFC libraries:

PREDEFINED = "DECLARE_INTERFACE(name)=class name" \
"STDMETHOD(result,name)=virtual result name" \
"PURE= = 0" \

THIS_=\

THIS= \
DECLARE_REGISTRY_RESOURCEID=// \
DECLARE_PROTECT_FINAL_CONSTRUCT=// \
"DECLARE_AGGREGATABLE(Class)= " \
"DECLARE_REGISTRY_RESOURCEID(Id)= " \
DECLARE_MESSAGE_MAP =\
BEGIN_MESSAGE_MAP=/* \
END_MESSAGE_MAP=*/// \
BEGIN_COM_MAP=/* \

END_COM_MAP=*//] \

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

42

BEGIN_PROP_MAP=/* \
END_PROP_MAP=*//| \

BEGIN_MSG_MAP=/* \

END_MSG_MAP=*/// \
BEGIN_PROPERTY_MAP=/* \
END_PROPERTY_MAP=%/// \
BEGIN_OBJECT_MAP=/* \
END_OBJECT_MAP()=*/I/ \
DECLARE_VIEW_STATUS=// \
"STDMETHOD(a)=HRESULT a" \
"ATL_NO_VTABLE= " \

" declspec(a)= " \
BEGIN_CONNECTION_POINT_MAP=/* \
END_CONNECTION_POINT_MAP=*/// \
"DECLARE_DYNAMIC(class)= " \
"IMPLEMENT_DYNAMIC(class1, class2)= " \
"DECLARE_DYNCREATE(class)= " \
"IMPLEMENT_DYNCREATE(class1, class2)= " \
"IMPLEMENT_SERIAL(class1, class2, class3)= " \
"DECLARE_MESSAGE_MAP()= " \

TRY=try \

"CATCH_ALL(e)= catch(...)" \
END_CATCH_ALL= \

"THROW_LAST()= throw"\
"RUNTIME_CLASS(class)=class" \
"MAKEINTRESOURCE(nld)=nld" \
"IMPLEMENT_REGISTER(v, w, X, y, z)= "\
"ASSERT(x)=assert(x)" \
"ASSERT_VALID(x)=assert(x)" \
"TRACEO(x)=printf(x)" \

"OS_ERR(A,B)={ #A, B }" \

__cplusplus \

"DECLARE_OLECREATE(class)= " \
"BEGIN_DISPATCH_MAP(class1, class2)= " \
"BEGIN_INTERFACE_MAP(classl, class2)= " \
"INTERFACE_PART(class, id, name)= " \
"END_INTERFACE_MAP()="\
"DISP_FUNCTION(class, name, function, result, id)=" \
"END_DISPATCH_MAP()=" \
"IMPLEMENT_OLECREATEZ2(class, name, idl, id2, id3, id4,\
id5, id6, id7, id8, id9, id10, id11)="

As you can see doxygen’s preprocessor is quite powerful, but if you want even more
flexibility you can always write an input filter and specify it after INMNPUT_FILTER
tag.

If you are unsure what the effect of doxygen'’s preprocessing will be you can run doxy-
gen as follows:

doxygen -d Preprocessor

This will instruct doxygen to dump the input sources to standard output after prepro-
cessing has been done (Hint: SIET = YESandWARNINGS = N@ the con-
figuration file to disable any other output).

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

43

9 Linking to external documentation

If your project depends on external libraries or tools, there are several reasons to not
include all sources for these with every run of doxygen:

Disk space: Some documentation may be available outside of the output directory of
doxygen already, for instance somewhere on the web. You may want to link to
these pages instead of generating the documentation in your local output direc-
tory.

Compilation speed: External projects typically have a different update frequency
from your own project. It does not make much sense to let doxygen parse
the sources for these external project over and over again, even if nothing has
changed.

Memory: For very large source trees, letting doxygen parse all sources may simply
take too much of your system’s memory. By dividing the sources into several
"packages”, the sources of one package can be parsed by doxygen, while all
other packages that this package depends on, are linked in externally. This saves
a lot of memory.

Availability: For some projects that are documented with doxygen, the sources may
just not be available.

Copyright issues: If the external package and its documentation are copyright some-
one else, it may be better - or even necessary - to reference it rather than include
a copy of it with your project’s documentation. When the author forbids redis-
tribution, this is necessary. If the author requires compliance with some license
condition as a precondition of redistribution, and you do not want to be bound
by those conditions, referring to their copy of their documentation is preferable
to including a copy.

If any of the above apply, you can use doxygen’s tag file mechanism. A tag file is ba-
sically a compact representation of the entities found in the external sources. Doxygen
can both generate and read tag files.

To generate a tag file for your project, simply put the name of the tag file after the
GENERATE.TAGFILE option in the configuration file.

To combine the output of one or more external projects with your own project you
should specify the name of the tag files afterTA&FILES option in the configuration
file.

A tag file does not contain information about where the external documentation is
located. This could be a directory or an URL. So when you include a tag file you have
to specify where the external documentation is located. There are two ways to do this:

At configuration time: just assign the location of the output to the tag files specified
after theTAGFILES configuration option. If you use a relative path it should be

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

44

relative with respect to the directory where the HTML output of your project is
generated.

After compile time: if you do not assign a location to a tag file, doxygen will generate
dummy links for all external HTML references. It will also generate a perl script
calledinstalldoxin the HTML output directory. This script should be run to
replace the dummy links with real links for all generated HTML files.

Example:
Suppose you have a projgmbj that uses two external projects calledtl and
ext2 . The directory structure looks as follows:

<root>
+- proj
| +- html HTML output directory for proj
| +- src sources for proj
| |- proj.cpp
+- extl
| +- html HTML output directory for extl
| |- extl.tag tag file for extl
+- ext2
| +- html HTML output directory for ext2
| |- ext2.tag tag file for ext2
|- proj.cfg doxygen configuration file for proj
|- extl.cfg doxygen configuration file for extl
|- ext2.cfg doxygen configuration file for ext2

Then the relevant parts of the configuration files look as follows:

proj.cfg:

OUTPUT_DIRECTORY = proj

INPUT = proj/src

TAGFILES = extl/extl.tag=../../extl/html \
ext2/ext2.tag=../../ext2/html

extl.cfg:

OUTPUT_DIRECTORY
GENERATE_TAGFILE

= extl
= extl/extl.tag

ext2.cfg:

OUTPUT_DIRECTORY
GENERATE_TAGFILE

ext2
ext2/ext2.tag

In some (hopefully exceptional) cases you may have the documentation generated by
doxygen, but not the sources nor a tag file. In this case you can udexgigagtool to

extract a tag file from the generated HTML sources. Another case where you should
use doxytag is if you want to create a tag file for the Qt documentation.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

45

The tooldoxytag depends on the particular structure of the generated output and on
some special markers that are generated by doxygen. Since this type of extraction is
brittle and error-prone | suggest you only use this approach if there is no alternative.
The doxytag tool may even become obsolete in the future.

10 Frequently Asked Questions

1. How to get information on the index page in HTML?
You should use themainpage command inside a comment block like this:
/*! \mainpage My Personal Index Page

\section intro Introduction

This is the introduction.

\section install Installation

\subsection stepl Step 1: Opening the box

T TR R

etc...

*
<

2. Help, some/all of the members of my class / file / namespace are not docu-
mented?

Check the following:

(a) Is your class / file / namespace documented? If not, it will not be extracted
from the sources unle&XTRACTALL is set toYESin the config file.

(b) Are the members private? If so, you mustBX{TRACTPRIVATEto YES
to make them appear in the documentation.

(c) Is there a function macro in your class that does not end with a semicolon
(e.g. MY_-MACRO())? If so then you have to instruct doxygen’s prepro-
cessor to remove it.

This typically boils down to the following settings in the config file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = MY_MACRO()=

Please read thereprocessingection of the manual for more information.

3. When | set EXTRACT _ALL to NO none of my functions are shown in the
documentation.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

46

In order for global functions, variables, enums, typedefs, and defines to be docu-
mented you should document the file in which these commands are located using
a comment block containing'dile (or @file) command.

Alternatively, you can put all members in a group (or module) usingitigroup
command and then document the group using a comment block containing the
\defgroup command.

For member functions or functions that are part of a namespace you should doc-
ument either the class or namespace.

4. How can | make doxygen ignore some code fragment?
You can use Doxygen’s preprocessor for this: If you put
#ifndef DOXYGEN_SHOULD_SKIP_THIS

/* code that must be skipped by Doxygen */

#endif /* DOXYGEN_SHOULD_SKIP_THIS */

around the blocks that should be hidden and put:

PREDEFINED = DOXYGEN_SHOULD_SKIP_THIS

in the config file then all blocks should be skipped by Doxygen as long as
PREPROCESSING = YES

5. How can | change what is after the#include in the class documentation?
You can document your class like

/*I \class MyClassName include.h path/include.h

* Docs for MyClassName
*/
To make doxygen put

#include <path/include.h >

in the documentation of the class MyClassName regardless of the name of the
actual header file in which the definition of MyClassName is contained.

If you want doxygen to show that the include file should be included using quotes
instead of angle brackets you should type:

[*! \class MyClassName myhdr.h "path/myhdr.h"

* Docs for MyClassName
*

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

47

6. How can | use tag files in combination with compressed HTML?

If you want to refer from one compressed HTML fédechm to another com-
pressed HTML file calledb.chm , the link ina.chm must have the following
format:

Unfortunately this only works if both compressed HTML files are in the same
directory.

As a result you must rename the generaelx.chm files for all projects into
something unique and put all .chm files in one directory.

Suppose you have a projeatreferring to a projecb using tag fileb.tag ,
then you could rename thiadex.chm for projecta into a.chm and the
index.chm for projectb into b.chm . In the configuration file for projec
you write:

TAGFILES = b.tag=b.chm::

or you can usénstalldox to set the links as follows:

installdox -lb.tag@b.chm::

7. | don't like the quick index that is put above each HTML page, what do |
do?

You can disable the index by setting DISABURDEX to YES. Then you can
put in your own header file by writing your own header and feed that to HFML
HEADER.

8. The overall HTML output looks different, while | only wanted to use my
own html header file

You probably forgot to include the stylesheleixygen.css that doxygen gen-
erates. You can include this by putting

<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">

in the HEAD section of the HTML page.

9. Why does doxygen use Qt?

The most important reason is to have a platform abstraction for most Unices and
Windows by means of the QFile, QFileinfo, QDir, QDate, QTime and QIODe-
vice classes. Another reason is for the nice and bug free utility classes, like
QList, QDict, QString, QArray, QTextStream, QRegExp, QXML etc.

The GUI front-end doxywizard uses Qt for... well... the GUI!

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

48

10. How can | exclude all test directories from my directory tree?
Simply put an exclude pattern like this in the configuration file:

EXCLUDE_PATTERNS = */test/*

11. Doxygen automatically generates a link to the class MyClass somewhere in
the running text. How do | prevent that at a certain place?

Put a % in front of the class name. Like this: %MyClass. Doxygen will then
remove the and keep the word unlinked.

12. My favourite programming language is X. Can | still use doxygen?

No, not as such; doxygen needs to understand the structure of what it reads. If
you don’t mind spending some time on it, there are several options:

o If the grammar of X is close to C or C++, then it is probably not too hard to
tweak src/scanner.l a bit so the language is supported. This is done for all
other languages directly supported by doxygen (i.e. Java, IDL, C#, PHP).

e If the grammar of X is somewhat different than you can
write an input filter that translates X into something sim-
ilar enough to C/C++ for doxygen to understand (this ap-
proach is taken for VB, Object Pascal, and Javascript, see
http://www.stack.nl/ ~dimitri/doxygen/download.html#helpers).

e If the grammar is completely different one could write a parser for X
and write a backend that produces a similar syntax tree as is done by
src/scanner.l (and also by src/tagreader.cpp while reading tag files).

13. Help! | get the cryptic message "input buffer overflow, can’t enlarge buffer
because scanner uses REJECT”

This error happens when doxygen lexical scanner has a rule that matches more
than 16K of input characters in one go. I've seen this happening on a very large
generated filext 16K lines), where the built-in preprocessor converted it into an
empty file (with>16K of newlines). Another case where this might happen is if
you have lines in your code with more than 16K characters.

If you have run into such a case and want me to fix it, you should send me a
code fragment that triggers the message. To work around the problem, put some
line-breaks into your file, split it up into smaller parts, or exclude it from the
input using EXCLUDE.

14. When running make in the latex dir | get "TeX capacity exceeded”. Now
what?
You can edit the texmf.cfg file to increase the default values of the various buffers
and then run "texconfig init”.

15. Why are dependencies via STL classes not shown in the dot graphs?

Doxygen is unware of the STL classes, so it does not know that class A relates
to class B in the following example

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.stack.nl/~dimitri/doxygen/download.html#helpers

49

#include <vector>
using namespace std;
class B {};

class A

{
public:
vector m_bvec;

To overcome this problem you could provide the definition of the vector class
to doxygen (by including the file that defines it at the INPUT tag in the config
file). Since STL header files are often messy, a (possibly) better approach is to
include a dummy definition of a vector class to the input. Here is an example of
a dummy STL file for the vector class:

namespace std {
template<class T> class vector { public: T element; };

}

I'm still looking for someone who can provide me with definitions for all (rele-
vant) STL classes.

16. How did doxygen get its name?
Doxygen got its name from playing with the words documentation and generator.

documentation -> docs -> dox
generator -> gen

At the time | was looking into lex and yacc, where a lot of things start with "yy”,
so the "y” slipped in and made things pronounceable (the proper pronouncement
is Docs-ee-gen, so with a long "e”).

17. What was the reason to develop doxygen?

| once wrote a GUI widget based on the Qt library (it is still available at
http://qdbttabular.sourceforge.net/ and maintained by Sven
Meyer). Qt had nicely generated documentation (using an internal tool which
they didn’t want to release) and | wrote similar docs by hand. This was a night-
mare to maintain, so | wanted a similar tool. | looked at Doc++ but that just
wasn’t good enough (it didn’t support signals and slots and did not have the Qt
look and feel | had grown to like), so | started to write my own tool...

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://qdbttabular.sourceforge.net/

50

11

Troubleshooting

Known problems:

Doxygen isnot a real compiler, it is only a lexical scanner. This means that it
can and will not detect errors in your source code.

Since it impossible to test all possible code fragments, it is very well possible,
that some valid piece of C/C++ code is not handled properly. If you find such a
piece, please send it to me, so | can improve doxygen’s parsing capabilities. Try
to make the piece of code you send as small as possible, to help me narrow down
the search.

Doxygen does not work properly if there are multiple classes, structs or unions
with the same name in your code. It should not crash however, rather it should
ignore all of the classes with the same name except one.

Some commands do not work inside the arguments of other commands. Inside
a HTML link (i.e ...<a>) for instance other commands (includ-

ing other HTML commands) do not work! The sectioning commands are an
important exception.

Redundant braces can confuse doxygen in some cases. For example:
void f (int);
is properly parsed as a function declaration, but

const int (a);

is also seen as a function declaration with nanmbe, because only the syntax is
analysed, not the semantics. If the redundant braces can be detected, as in

int *(a[20]);

then doxygen will remove the braces and correctly parse the result.

Not all names in code fragments that are included in the documentation are re-
placed by links (for instance when usiSpURCEBROWSER YES) and links

to overloaded members may point to the wrong member. This also holds for the
"Referenced by” list that is generated for each function.

For a part this is because the code parser isn’t smart enough at the moment. I'll
try to improve this in the future. But even with these improvements not everthing
can be properly linked to the corresponding documentation, because of possible
ambiguities or lack of information about the context in which the code fragment
is found.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

51

e ltis not possible to insert a non-member function fin a class A usingritlates
command, if class A already has a member with name f and the same argument
list.

e There is only very limited support for member specialization at the moment. It
only works if there is a specialized template class as well.

¢ Not all special commands are properly translated to RTF.

e \ersion 1.8.6 of dot (and maybe earlier versions too) do not generate proper map
files, causing the graphs that doxygen generates not to be properly clickable.

How to help

The development of Doxygen highly depends on your input!

If you are trying Doxygen let me know what you think of it (do you miss certain
features?). Even if you decide not to use it, please let me know why.

How to report a bug

If you find a bug please send an e-mail thmitri@stack.nl . If you are unsure
whether or not something is a bug, please ask help ongkes mailing list
first (subscription is required).

If you send only a (vague) description of a bug, you are usually not very helpful and it
will cost me much more time to figure out what you mean. In the worst-case your bug
report may even be completely ignored by me, so always try to include the following
information in your bug report:

e The version of doxygen you are using (for instance 1.2.4, dseygen
--version if you are not sure).

e The name and version number of your operating system (for instance SuSE
Linux 6.4)

e Itis usually a good idea to send along the configuation file as well, but please
use doxygen with thes flag while generating it to keep it small (udexygen
-Ss -u [configName] to strip the comments from an existing config file).

e The easiest (and often the only) way for me to fix bugs is if you can send me a
small example demonstrating the problem you have, so | can reproduce it on my
machine. Please make sure the example is valid source code (could potentially
compile) and that the problem is really captured by the example (I often get
examples that do not trigger the actual bug!). If you intend to send more than
one file please zip or tar the files together into a single attachment for easier
processing.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

mailto:dimitri@stack.nl
http://sourceforge.net/mail/?group_id=5971

52

If you have ideas (or even better some code or a patch) how to fix existing bugs and
limitations please discuss them on tievelopers mailing list . Patches can
also send directly tdimitri@stack.nl

For patches please use "diff -uN” or include the files you modified. If you send more
than one file please tar or zip everything, so | only have to save and download one file.

Note that you can also post bug reports via the bug tracker at sourceforge, but | do not
really like this because of its web interface, which I find rather clumpsy to use.

Part Il

Reference Manual

12 Features

e Requires very little overhead from the writer of the documentation. Plain text
will do, but for more fancy or structured output HTML tags and/or some of
doxygen’s special commands can be used.

e Supports C/C++, Java, (Corba and Microsoft) Java, IDL, and to some extent C#
and PHP sources.

e Supports documentation of files, namespaces, classes, structs, unions, templates,
variables, functions, typedefs, enums and defines.

e JavaDoc (1.1), Qt-Doc, and KDOC compatible.

e Automatically generates class diagrams in HTML (as clickable image maps) and
IATEX (as Encapsulated PostScript images).

e Uses the dot tool of the Graphviz tool kit to generate include dependency graphs,
collaboration diagrams, and graphical class hierarchy graphs.

e Allows you to put documentation in the header file (before the declaration of an
entity), source file (before the definition of an entity) or in a separate file.

e Can generate a list of all members of a class (including any inherited members)
along with their protection level.

e Outputs documentation in on-line format (HTML and UNIX man page) and off-
line format (BTpX and RTF) simultaneously (any of these can be disabled if
desired). All formats are optimized for ease of reading.

Furthermore, compressed HTML can be generated from HTML output using
Microsoft's HTML Help Workshop (Windows only) and PDF can be generated
from the BTEX output.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://sourceforge.net/mail/?group_id=5971
mailto:dimitri@stack.nl

53

e Includes a full C preprocessor to allow proper parsing of conditional code frag-
ments and to allow expansion of all or part of macros definitions.

e Automatically detects public, protected and private sections, as well as the Qt
specific signal and slots sections. Extraction of private class members is optional.

e Automatically generates references to documented classes, files, namespaces and
members. Documentation of global functions, globals variables, typedefs, de-
fines and enumerations is also supported.

o References to base/super classes and inherited/overridden members are gener-
ated automatically.

e Includes a fast, rank based search engine to search for strings or words in the
class and member documentation.

e You can type normal HTML tags in your documentation. Doxygen will convert
them to their equivalentTgX, RTF, and man-page counterparts automatically.

o Allows references to documentation generated for other projects (or another part
of the same project) in a location independent way.

e Allows inclusion of source code examples that are automatically cross-
referenced with the documentation.

¢ Inclusion of undocumented classes is also supported, allowing to quickly learn
the structure and interfaces of a (large) piece of code without looking into the
implementation details.

e Allows automatic cross-referencing of (documented) entities with their definition
in the source code.

e All source code fragments are syntax highlighted for ease of reading.
e Allows inclusion of function/member/class definitions in the documentation.

¢ All options are read from an easy to edit and (optionally) annotated configuration
file.

e Documentation and search engine can be transferred to another location or ma-
chine without regenerating the documentation.

e Can cope with large projects easily.

Although doxygen can be used in any C or C++ project, it was specifically designed to
be used for projects that make use of Troll Tecbistoolkit . I have tried to make
doxygen ‘Qt-compatible’. That is: Doxygen can read the documentation contained in
the Qt source code and create a class browser that looks very similar to the one that is
generated by Troll Tech. Doxygen understands the C++ extensions used by Qt such as
signals and slots.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.trolltech.com/products/qt.html

54

Doxygen can also automatically generate links to existing documentation that was gen-
erated with Doxygen or with Qt's non-public class browser generator. For a Qt based
project this means that whenever you refer to members or classes belonging to the Qt
toolkit, a link will be generated to the Qt documentation. This is done independent of
where this documentation is located!

13 Doxygen History

Version 1.2.0

Major new features:

e Support for RTF output.

e Using the dot tool of the AT&T’s GraphViz package, doxygen can now gener-
ate inheritance diagrams, collaboration diagrams, include dependency graphs,
included by graphs and graphical inheritance overviews.

e Function arguments can now be documented with separate comment blocks.
e Initializers and macro definitions are now included in the documentation.
e Variables and typedefs are now put in their own section.

e Old configuration files can be upgraded using the -u option without loosing any
changes.

e Using the\if and \endif commands, doxygen can conditionally include docu-
mentation blocks.

e Added Doc++ like support for member grouping.
e Doxygen now has a GUI front-end called doxywizard (based on Qt-2.1)

e All info about configuration options is now concentrated in a new tool called
configgen. This tool can generate the configuration parser and GUI front-end
from source templates.

e Better support for the using keyword.

e New transparent mini logo that is put in the footer of all HTML pages.

¢ Internationalization support for the Polish, Portuguese and Croatian language.
e Todo list support.

o If the source browser is enabled, for a function, a list of function whose imple-
mentation calls that function, is generated.

e All source code fragments are now syntax highlighted in the HTML output. The
colors can be changed using cascading style sheets.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

55

Version 1.0.0
Major new features:

e Support for templates and namespaces.

¢ Internationalization support. Currently supported languages are: English, Czech,
German, Spanish, Finnish, French, Italian, Japanese, Dutch, and Swedish.

e Automatic generation of inheritance diagrams for sub and super classes.

e Support for man page, compressed HTML help, and hyperlinked PDF output.
e Cross-referencing documentation with source code and source inlining.

e LaTeX formulas can be included in the documentation.

e Support for parsing Corba and Microsoft IDL.

e Images can be included in the documentation.

e Improved parsing and preprocessing.

Version 0.4
Major new features:

e LaTeX output generation.
e Full JavaDoc support.

e Build-in C-preprocessor for correct conditional parsing of source code that is
read by Doxygen.

e Build-in HTML to LaTeX converter. This allows you to use HTML tags in your
documentation, while doxygen still generates proper LaTeX output.

e Many new commands (there are now more than 60!) to document more entities,
to make the documentation look nicer, and to include examples or pieces of
examples.

e Enum types, enum values, typedefs, #defines, and files can now be documented.
e Completely new documentation, that is now generated by Doxygen.

¢ Alot of small examples are now included.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

56

Version 0.3
Major new features:

e A search engindoxysearch |, that allows you to search through the generated
documentation.

e A configuration file instead of command-line options. A default configuration
file can be generated lmjoxygen .

e Added an option to generate output for undocumented classes.
e Added an option to generate output for private members.

e Every page now contains a condensed index page, allowing much faster naviga-
tion through the documentation.

e Global and member variables can now be documented.

e A project name can now given, which will be included in the documentation.

Version 0.2
Major new features:

e Blocks of code are now parsed. Function calls and variables are replaced by links
to their documentation if possible.

e Special example documentation block added. This can be used to provide cross
references between the documentation and some example code.

e Documentation blocks can now be placed inside the body of a class.

e Documentation blocks with line range may now be created using spécial
C++ line comments.

e Unrelated members can now be documented. A page containing a list of these
members is generated.

e Added an\include command to insert blocks of source code into the docu-
mentation.

e Warnings are generated for members that are undocumented.

e You can now specify your own HTML headers and footers for the generated
pages.

e Option added to generated indices containing all external classes instead of only
the used ones.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

file:doxysearch_usage.html
file:doxygen_usage.html

57

Version 0.1

Initial version.

14 Doxygen usage

Doxygen is a command line based utility. Callidgxygen with the--help option
at the command line will give you a brief description of the usage of the program.

All options consist of a leading characterfollowed by one character and one or more
arguments depending on the option.

To generate a manual for your project you typically need to follow these steps:

1. You document your source code with special documentation blocks (see section
Special documentation blocks

2. You generate a configuration file (see sec@amfiguration by calling doxygen
with the-g option:

doxygen -g <config_file>
3. You edit the configuration file so it matches your project. In the configuration
file you can specify the input files and a lot of optional information.

4. You let doxygen generate the documentation, based on the settings in the config-
uration file:

doxygen <config_file>

If you have a configuration file generated with an older version of doxygen, you can
upgrade it to the current version by running doxygen with the -u option.

doxygen -u <config_file>

All configuration settings in the orginal configuration file will be copied to the new
configuration file. Any new options will have their default value. Note that comments
that you may have added in the original configuration file will be lost.

If you want to fine-tune the way the output looks, doxygen allows you generate default
style sheet, header, and footer files that you can edit afterwards:

e For HTML output, you can generate the default header file (d@&IL -
HEADER), the default footer (sed TML _FOOTER), and the default style sheet
(seeHTML _STYLESHEET), using the following command:

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

58

doxygen -w html header.html footer.html stylesheet.css

e For LaTeX output, you can generate the first partrefman.tex (see
LATEX _HEADER) and the style sheet included by that header (normally
doxygen.sty), using:

doxygen -w latex header.tex doxygen.sty

e For RTF output, you can generate the default style sheet file Rgde-
STYLESHEETFILE) using:

doxygen -w rtf rtfstyle.cfg

Note:

¢ |f you do not want documentation for each item inside the configuration file then
you can use the optionas option. This can use be used in combination with
the-u option, to add or strip the documentation from an existing configuration
file. Please use thes option if you send me a configuration file as part of a bug
report!

e To make doxygen read/write to standard input/output instead of from/to a file,
use- for the file name.

If you also want to use the search engine, you should look at sdatigysearch usage

15 Doxytag usage

Doxytag is a small command line based utility. It has two functions:

e Doxytag can generatiag files These tag files can be used witbxygen to
generate references to external documentation (i.e. documentation not contained
in the input files that are used by doxygen). A tag file contains information about
files, classes and members documented in external documentation. Doxytag ex-
tracts this information directly from the HTML files. This has the advantage
that you do not need to have the sources from which the documentation was
extracted. If youdo have the sources it is better to Bdxygen generate the
tag file by putting the name of the tag file af6BENERATE TAGFILE in the
configuration file.

e Doxytag can generatesgarch indefor the documentation generated with doxy-
gen or for the Qt documentation. See the documentatiaivgfsearch for
more information on how to do this. A search index contains information about

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

file:doxygen_usage.html
file:doxysearch_usage.html

59

all the words (and all substrings thereof) that are contained in the documentation.
For each string the index contains the set of documentation blocks that contain
the string and the frequency of occurrence. This wayysearch can search

for words very quickly (most queries are processed within a few milliseconds on
my system.)

In both cases the input of doxytag consists of a set of HTML files.

Important:
If you use tag files or use a search engine, the links that are generated by doxygen
will contain dummylinks. You have to run thénstalldox script to change
these dummy links into real links. Seéestalldox usagdor more information.
The use of dummy links may seem redundant, but it is really useful, if you want
to move the external documentation to another location. Then the documentation
does not need to be regenerateddbyxygen , only installdox has to be run.

Note:
Because the HTML files are expected to have a certain structure, only HTML files
generated with doxygen or with Qt’s class browser generator can be used. Doxytag
only readsthe HTML files, they are not altered in any way.

Doxytag expects a list of all HTML files that form the documentation or a directory that
contains all HTML files. If neither is present doxytag will read all files withnaml
extension from the current directory. If doxytag is used with-theflag it generates a
tag file.

Example 1:
Suppose the filexample.cpp from theexamples directory that is listed be-
low is included in some package for which you do not have the sources. Fortu-
nately, the distributor of the packages included the HTML documentation that was
generated by doxygen in the package.

/** A Test class.
* More details about this class.
*/

class Test
{
public:
/** An example member function.
* More details about this function.
*/
void example();

h
void Test::example() {}

/** \example example_test.cpp

* This is an example of how to use the Test class.
* More details about this example.

*/

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

60

Now you can create a tag file from the HTML files in the package by typing:

doxytag -t example.tag example/html

from the examples directory. Finally you can use this tag file with your own piece
of code, such as done in the following example:

/*1 A class that is inherited from the external class Test.
*/

class Tag : public Test

{
public:
/¥ an overloaded member. */
void example();

k

Doxygen will now include links to the external package in your own documenta-
tion. Because the tag file does not specify where the documentation is located, you
will have to specify that by running the installdox script that doxygen generates
(See sectiomnstalldox usagéor more information).

Note that this is actually a feature because if you (or someone else) moves the external
documentation to a different directory or URL you can simply run the script again and
all links in the HTML files will be updated.

Example 2:
To generate a tag file of the Qt documentation you can do the following:

doxytag -t gt.tag $QTDIR/doc/html

A typical example to use doxytag to generate a search index is:

doxytag -s search.idx

Note:
In the current version of doxygen, the search index must be cadlath.idx

16 Doxysearch usage

Doxysearch is a small, fast and highly portable search engine that allows you to search
for strings or words in the documentation generatedibyygen or in the Qt docu-
mentation (sedelow). Doxysearch must be run as a CGI binary. This implies the
following:

e There must be a HTTP daemon running on the system where you want to install
the documentation (thargef)

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

file:doxygen_usage.html

61

e You must have permission to install and execute a CGl binary on the target.

Ask your system administrator or provider if you are unsure if this is possible.

In order to be able to search fast and efficient, doxysearch does not search the generated
documentation directly. Instead, it usesiadex file that should be generated with
doxytag . The index file is extracted from the generated HTML files and contains all
words and substrings of words present in the HTML files, in a compact form, together
with their frequencies and links. Although I tried to store all information as compactly

as possible, the size of the index is still quite large. Usually it is about the same size as
the original HTML files.

| have tried to make the search engine highly portable, because it must run on the target
system. As a result doxysearch does not require the Qt library. All that is required to
build doxysearch is a C++ compiler. If you are usopgt+ for example, you can build

the search engine manually, by typing:

g++ doxysearch.cpp -0 doxysearch

Generating the search engine To include a search engine in the documentation gen-
erated by doxygen follow these steps:

1. Generate a configuration file wittbxygen using the-g option, if you haven't
done this already.

2. Edit the search engine section (see secHearch engine optiorts the configu-
ration file). Make sure thEEARCHENGINEag is set torESand that all paths
are correct.

3. Usedoxygen to generate the documentation. Apart from the documentation,
Doxygen will create the following files:

e A small shell script. The name of the script is determined byGk& _-
NAMBEag in the configuration file. The script is a small wrapper that calls
doxysearch with the correct parameters. Using this script allows multi-
ple search engines for different projects to be present in one directory.

e search.cfg : this file is a small configuration file for the search engine.
It contains two lines of text. The first line should be the absolute URL to
the documentation. The second line should be the absolute URL to the CGl
script. This information is taken from the configuration file.

e search.gif : thisis the image that is used for the search button.

Note:
On the Windows platform Unix shell scripts cannot be used. In fact the
HTTP daemon that | tried (apache for Windows) only recognizgd files
that were renamed executables (so DOS batch files do not seem to work

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

file:doxytag_usage.html
file:doxygen_usage.html
file:doxygen_usage.html

62

either). Therefore, on Windows a small C program will be generated by
doxygen. You should compile and link the program with your favourite
compiler and change the extension of the executable fexa to .cgi

4. Copy (or move) the CGI script to the directory where the CGI binaries are lo-
cated. This is usually a special directory on your system or in your home direc-
tory. Consult the manual of your HTTP daemon or your system administrator to
find out where this directory resides on your system.

5. Goto the directory where the generated HTML files are located and run doxytag
as follows:

doxytag -s search.idx

This will create a search index with the nareearch.idx . Currently the
index filemustbe called like this.

6. If you change the location of the search engine or the documentation and you
do not want to regenerate the HTML output, you can simply edit the generated
search.cfg file and run the generatestalldox script to correct the links in
the documentation.

Creating a search engine to search in the Qt documentation Using doxytag
anddoxysearch it is possible to create a search engine for the Qt documentation,
without needing the sources! This can be done by carefully following these steps:

1. Go to the html directory of the Qt-distribution:
cd $QTDIR/html

2. Generate the search index by typing:
doxytag -s search.idx

in the directory where the HTML files are located. This will parse all files and
build a search index. Apart from the figearch.idx two other files will be
generatedsearch.gif andsearch.cgi

Note:
Doxytag requires quite a large amount of memory to generate the search
index (about 30 MB on my Linux box)! The resulting index file requires
about 3 MB of space on your disk.

3. Edit the shell scripsearch.cgi with a text editor.

Fill in the absolute path to théoxysearch binary after theDOXYSEARCH=
tag. On my system this becomes:

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

file:installdox_usage.html

63

DOXYSEARCH=/usr/local/bin/doxysearch

Fill in the absolute path to the gt documentation after@Di@XYPATH+ag. On
my system this becomes:

DOXYPATH=/usr/local/qt/html

4. CGl binaries are usually located in a special directory. Consult the manual of
your HTTP daemon or your system administrator to find out, where this direc-
tory resides on your system. Copy (or move) #sarch.cgi script to this
directory. If needed you may change the name of the script. On my system, this
becomes:

cp search.cgi /usr/local/lib/httpd/cgi-bin/

5. Create a text-file with the namsearch.cfg . On the first line, you must put
the absoluteURL to the Qt documentation. Since, | only use the search engine
on my own standalone system, | use fhe: protocol. On the second line,
you must put thebsoluteURL to the cgi script. On my system the resulting file
looks like this:

file://fusr/local/gt/html
http://blizzard/cgi-bin/search.cgi

6. Add a link to the search engine in the Qt documentation. On my system, | have
put aline

Search the documentation<a>

in the additional information section of tledex.html file.

7. Start your favourite web browser and click on the link. If everything is OK, you
should get a page where you can enter search terms.

17 Doxywizard usage

Doxywizard is a GUI front-end for creating and editing configuration files that are used
by doxygen.

Doxywizard consists of a single executable that, when started, pops up a window.

The main window has a number of tab field, one for each section in the configuration
file. Each tab-field contains a number of lines, one for each configuration option in that
section.

The kind of input widget depends on the type of the configuration option.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

64

e For each boolean option (those options that are answered with YES or NO in the
configuration file) there is a check-box.

e For items taking one of a fixed set of values (liR&JTPUT.LANGUAGE) a
combo box is used.

e For items taking an integer value from a range, a spinbox is used.
e For free form string-type options there is a one line edit field

e For options taking a lists of strings, a one line edit field is available, with a ‘+’
button to add this string to the list and a -’ button to remove the selected string
from the list. There is also a button with a circular "refresh” arrow that, when
pressed, replaces the selected item in the list with the string entered in the edit
field.

e For file and folder entries, there are special buttons that start a file dialog.

18 Installdox usage

Installdox is a perl script that is generated by doxygen whenever tag files are used (See
TAGFILES in sectionExternal reference optiohsr the search engine is enabled (See
SEARCHENGINIh sectionSearch engine optiopsThe script is located in the same
directory where the HTML files are located.

Its purpose is to set the location of the external documentation for each tag file and to
set the correct links to the search engine at install time.

Calling installdox with option -h at the command line will give you a brief de-
scription of the usage of the program.

The following options are available:

-| <tadfile >@xlocation > Each tag file contains information about the files,
classes and members documented in a set of HTML files. A user can install
these HTML files anywhere on his/her hard disk or web site. Therefore installdox
requiresthe location of the documentation for each tag fileagfile > that
is used by doxygen. The locatienocation > can be an absolute path or a
URL.

Note:
Each<tagfile> must be unique and should only be the name of the file, not
including the path.

-g When this option is specified, installdox will generate no output other than fatal
errors.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

18.1 Output Formats

65

Optionally a list of HTML files may be given. These files are scanned and modified if
needed. If this list is omitted all files in the current directory that end with .html are
used.

Theinstalldox script is unique for each generated class browser in the sense that
it ‘knows’ what tag files are used. It will generate an error if theption is missing for
a tag file or if an invalid tag file is given.

18.1 Output Formats
The following output formats aréirectly supported by doxygen:

HTML Generated IGENERATEHTMLIs set toYESin the configuration file.
IATEX Generated iIGENERATHEATEXIs set toYESin the configuration file.
Man pages Generated iIGENERATHEVIANS set toYESin the configuration file.

RTF Generated iIGENERATERTFis set toYESin the configuration file.
Note that the RTF output probably only looks nice with Microsoft's Word 97. If
you have success with other programs, please let me know.

XML Generated ifSENERATEXMLIs set toYESin the configuration file.
Note that the XML output is still under development.

The following output formats aredirectly supported by doxygen:

Compressed HTML (a.k.a. Windows 98 help) Generated by Microsoft's HTML
Help workshop from the HTML output GENERATEHTMLHELRSs set toYES

PostScript Generated from theé’IgX output by runningmake ps in the output di-
rectory. For the best resulBDF HYPERLINKSshould be set thiQ

PDF Generated from théeX output by runningnmake pdf in the output directory.
In order to get hyperlinks in the PDF fileDFHYPERLINKSshould be set to
YESin the configuration file.

19 Automatic link generation

Most documentation systems have special ‘see also’ sections where links to other
pieces of documentation can be inserted. Although doxygen also has a command to
start such a section (See secti@a), it does allow you to put these kind of links any-
where in the documentation. F@TEX documentation a reference to the page number

is written instead of a link. Furthermore, the index at the end of the document can be

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

19.1 Links to web pages and mail addresses 66

used to quickly find the documentation of a member, class, namespace or file. For man
pages no reference information is generated.

The next sections show how to generate links to the various documented entities in a
source file.

19.1 Links to web pages and mail addresses

Doxygen will automatically replace any URLs and mail addresses found in the docu-
mentation by links (in HTML).

19.2 Links to classes.

All words in the documentation that correspond to a documented class will automat-
ically be replaced by a link to the page containing the documentation of the class. If
you want to prevent that a word that corresponds to a documented class is replaced by
a link you should put a % in front of the word.

19.3 Linkstofiles.
All words that contain a dot () that is not the last character in the word are considered

to be file names. If the word is indeed the name of a documented input file, a link will
automatically be created to the documentation of that file.

19.4 Links to functions.
Links to functions are created if one of the following patterns is encountered:

. <functionName >"(" <argument-list >")"
. <functionName >"()"

. """ <functionName >

=)

<functionName >"(" <argument-list >")"

1
2
3
4. (<className >":")
5. (<className >":") " <functionName >"()"
6

. (<className >":") M <functionName >

where n>0.

Note 1:
The patterns above should not contain spaces, tabs or newlines.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

19.5 Links to variables, typedefs, enum types, enum values and defines. 67

Note 2:
For JavaDoc compatibility a # may be used instead of a :: in the patterns above.

Note 3:
In the documentation of a class containing a member foo, a reference to a global
variable is made using ::foo, whereas #foo will link to the member.

For non overloaded members the argument list may be omitted.

If a function is overloaded and no matching argument list is specified (i.e. pattern 2 or 5
is used), a link will be created to the documentation of one of the overloaded members.

For member functions the class scope (as used in patterns 4 to 6) may be omitted, if:
1. The pattern points to a documented member that belongs to the same class as the
documentation block that contains the pattern.

2. The class that corresponds to the documentation blocks that contains the pattern
has a base class that contains a documented member that matches the pattern.

19.5 Links to variables, typedefs, enum types, enum values and
defines.

All of these entities can be linked to in the same way as described in the previous
section. For sake of clarity it is advised to only use patterns 3 and 6 in this case.

Example:

/*1 \file autolink.cpp
Testing automatic link generation.

A link to a member of the Test class: Test::member,

More specific links to the each of the overloaded members:
Test::member(int) and Test#member(int,int)

A link to a protected member variable of Test: Test#var,
link to the global enumeration type #GlobEnum.

link to the define #ABS(X).

link to the destructor of the Test class: Test: Test,
link to the typedef ::B.

link to the enumeration type Test:EType

> » » >» >» >

link to some enumeration values Test::Vall and :GVal2
*/

*!

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

19.5 Links to variables, typedefs, enum types, enum values and defines. 68

Since this documentation block belongs to the class Test no link to
Test is generated.

Two ways to link to a constructor are: #Test and Test().
Links to the destructor are: # Test and “Test().
A link to a member in this class: member().

More specific links to the each of the overloaded members:
member(int) and member(int,int).

A link to the variable #var.

A link to the global typedef :B.

A link to the global enumeration type #GlobEnum.

A link to the define ABS(x).

A link to a variable \link #var using another text\endlink as a link.

A link to the enumeration type #EType.

A link to some enumeration values: \link Test::Vall Vall \endlink and ::GVall.
And last but not least a link to a file: autolink.cpp.

\sa Inside a see also section any word is checked, so EType,
Vall, GVall, "Test and member will be replaced by links in HTML.

*/
class Test
{
public:
Test(); /['< constructor
“Test(); //'< destructor
void member(int); /**< A member function. Details. */
void member(int,int); /**< An overloaded member function. Details */
/** An enum type. More details */
enum EType {
Vall, /**< enum value 1 */
Val2 /**< enum value 2 */
h
protected:
int var; /**< A member variable */
h
/*! details. */

Test:Test() { }

/*! details. */
Test:"Test() { }

/¥ A global variable. */

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

19.6 typedefs.

69

int globVar;

/*I A global enum. */

enum GlobEnum {
GVall, /*1< global enum value 1 */
GVal2 [*I< global enum value 2 */

8

/¥

* A macro definition.

*/

#define ABS(x) (((X)>0)?(x):-(x))

typedef Test B;

/*1 \fn typedef Test B
* A type definition.
*

19.6 typedefs.

Typedefs that involve classes, structs and unions, like

typedef struct StructName TypeName

create an alias for StructName, so links will be generated to StructName, when either
StructName itself or TypeName is encountered.

Example:

/*1 \file restypedef.cpp
* An example of resolving typedefs.
*/

/*1 \struct CoordStruct

* A coordinate pair.

*/

struct CoordStruct

{
/*1 The x coordinate */
float x;
/*! The y coordinate */
float y;

h

/*! Creates a type name for CoordStruct */
typedef CoordStruct Coord;

%!

* This function returns the addition of \a c1 and \a c2, i.e:
* (cl.x+c2.x,cl.y+c2.y)

*/

Coord add(Coord c1,Coord c2)

{

}

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

70

20 Configuration

20.1 Format

A configuration file is a free-form ASCII text file with a structure that is similar to
that of a Makefile, default namoxyfile . Itis parsed bydoxygen . The file may
contain tabs and newlines for formatting purposes. The statements in the file are case-
sensitive. Comments may be placed anywhere within the file (except within quotes).
Comments begin with the # character and end at the end of the line.

The file essentially consists of a list of assignment statements. Each statement consists
of aTAGNAMBEwritten in capitals, followed by the character and one or more values.

If the same tag is assigned more than once, the last assignment overwrites any earlier
assignment. For options that take a list as their argument;thaperator can be used
instead of= to append new values to the list. Values are sequences of non-blanks. If
the value should contain one or more blanks it must be surrounded by quotes (”...").
Multiple lines can be concatenated by inserting a backslgshs(the last character of
aline. Environment variables can be expanded using the p&tEiV_VARIABLE _-

NAME).

You can also include part of a configuration file from another configuration file using a
@INCLUDEHEag as follows:

@INCLUDE = config_file_name

The include file is searched in the current working directory. You can also specify a list
of directories that should be searched before looking in the current working directory.
Do this by putting 8@ INCLUDBEPATHtag with these paths before tt@INCLUDHEag,

e.g:

@INCLUDE_PATH = my_config_dir

The configuration options can be divided into several categories. Below is an alpha-
betical index of the tags that are recognized followed by the descriptions of the tags
grouped by category.

ALIASES 20.2 BRIEF_MEMBER _DESC 20.2
ALLEXTERNALS 20.15 CALL _GRAPH 20.16
ALPHABETICAL _INDEX 20.6 CASE_SENSENAMES 20.2
ALWAYS _DETAILED _SEC 20.2 CGI_NAME 20.17
BIN _ABSPATH 20.17 CGI_URL 20.17
BINARY _-TOC 20.7 CHM _FILE 20.7

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.1 Format

CLASS_DIAGRAMS 20.16 EXTRACT _STATIC 20.2
CLASS_GRAPH 20.16 FILE _PATTERNS 20.4
COLLABORATION _GRAPH 20.16 FILTER _-SOURCE_FILES 20.4
COLSL_IN_ALPHA _INDEX 20.6 FULL _PATH _NAMES 20.2
COMPACT _LATEX 20.8 GENERATE _AUTOGEN _DEF 20.12
COMPACT _RTF 20.9 GENERATE _BUGLIST 20.2
DETAILS _AT_TOP 20.2 GENERATE _CHI 20.7
DISABLE _INDEX 20.7 GENERATE _DEPRECIATEDLIST 20.2
DISTRIBUTE .GROUP_DOC 20.2 GENERATE _HTML 20.7
DOC_ABSPATH 20.17 GENERATE _HTMLHELP 20.7
DOC_URL 20.17 GENERATE _LATEX 20.8
DOT_IMAGE _FORMAT 20.16 GENERATE _LEGEND 20.16
DOT_PATH 20.16 GENERATE _MAN 20.10
DOTFILE _DIRS 20.16 GENERATE _PERLMOD 20.13
ENABLE _PREPROCESSING 20.14 GENERATE _RTF 20.9
ENUM _VALUES _PER_LINE 20.7 GENERATE _TAGFILE 20.15
ENABLED _SECTIONS 20.2 GENERATE _TESTLIST 20.2
EXAMPLE _PATH 20.4 GENERATE _TODOLIST 20.2
EXAMPLE _PATTERNS 20.4 GENERATE _TREEVIEW 20.7
EXAMPLE _RECURSIVE 20.4 GENERATE XML 20.11
EXCLUDE 20.4 GRAPHICAL _HIERARCHY 20.16
EXCLUDE _PATTERNS 20.4 HAVE DOT 20.16
EXCLUDE _SYMLINKS 20.4 HHC _LOCATION 20.7
EXPAND_AS_DEFINED 20.14 HIDE _-FRIEND _COMPOUNDS 20.2
EXPAND_ONLY _PREDEF 20.14 HIDE _IN_BODY _DOCS 20.2
EXT _DOC_PATHS 20.17 HIDE _SCOPE.NAMES 20.2
EXTERNAL _GROUPS 20.15 HIDE _UNDOC_CLASSES 20.2
EXTRA _PACKAGES 20.8 HIDE _UNDOC_MEMBERS 20.2
EXTRACT _ALL 20.2 HIDE _UNDOC_RELATIONS 20.16
EXTRACT _LOCAL _CLASSES 20.2 HTML _ALIGN _.MEMBERS 20.7
EXTRACT _PRIVATE 20.2 HTML _FOOTER 20.7

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.1 Format

72

HTML _HEADER

HTML _OUTPUT

HTML _STYLESHEET

IGNORE _PREFIX

IMAGE _PATH

INCLUDE _.GRAPH

INCLUDE _PATH

INHERIT _DOCS

INLINE _INFO

INLINE _INHERITED _.MEMB

INLINE _SOURCES

INPUT

INPUT _FILTER

INTERNAL _DOCS

JAVADOC _AUTOBRIEF

LATEX -BATCHMODE

LATEX _CMD _NAME

LATEX .HEADER

LATEX _HIDE _INDICES

LATEX _OUTPUT

MACRO _.EXPANSION

MAKEINDEX _CMD_NAME

MAN _EXTENSION

MAN _LINKS

MAN _OUTPUT

MAX _-DOT_GRAPH_DEPTH

MAX _-DOT_GRAPH_HEIGHT

MAX _-DOT_GRAPH_WIDTH

MAX _INITIALIZER _LINES

MULTILINE _CPP.IS_BRIEF

OPTIMIZE _OUTPUT_FOR_C

20.7

20.7

20.7

20.6

20.4

20.16

20.14

20.2

20.2

20.2

20.5

20.4

20.4

20.2

20.2

20.8

20.8

20.8

20.8

20.8

20.14

20.8

20.10

20.10

20.10

20.16

20.16

20.16

20.2

20.2

20.2

OPTIMIZE _OUTPUT _JAVA

OUTPUT_DIRECTORY

OUTPUT_LANGUAGE

PAPER_TYPE

PDF_.HYPERLINKS

PERL_PATH

PERLMOD _LATEX

PERLMOD _PRETTY

PERLMOD _-MAKEVAR _PREFIX

PREDEFINED
PROJECT_NAME
PROJECT_NUMBER

QUIET

RECURSIVE
REFERENCED_BY _RELATION
REFERENCES.RELATION
REPEAT _BRIEF
RTF_EXTENSIONS_FILE
RTF_HYPERLINKS
RTF_OUTPUT
RTF_STYLESHEET _FILE
SEARCH_INCLUDES
SEARCHENGINE
SHORT_NAMES
SHOW_INCLUDE _FILES
SHOW_USED.FILES
SKIP_FUNCTION _MACROS
SORT_.MEMBER _DOCS
SOURCE.BROWSER
STRIP_.CODE_.COMMENTS

STRIP_.FROM _PATH

20.2

20.2

20.2

20.8

20.8

20.15

20.13

20.13

20.13

20.14

20.2

20.2

20.3

20.4

20.5

20.5

20.2

20.9

20.9

20.9

20.9

20.14

20.17

20.2

20.2

20.2

20.14

20.2

20.5

20.5

20.2

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.2 General options 73

SUBGROUPING 20.2 WARN _FORMAT 20.3
TAB _SIZE 20.2 WARN _IF_DOC_ERROR 20.3
TAGFILES 20.15 WARN _IF_UNDOCUMENTED 20.3
TEMPLATE _RELATIONS 20.16 WARN _LOGFILE 20.3
TOC_EXPAND 20.7 WARNINGS 20.3
TREEVIEW WIDTH 20.7 XML _DTD 20.11
USE_WINDOWS _ENCODING 20.2 XML _OUTPUT 20.11
VERBATIM _HEADERS 20.2 XML _SCHEMA 20.11

20.2 General options

PROJECTNAME The PROJECTNAMRBag is a single word (or a sequence of words
surrounded by double-quotes) that should identify the project for which the doc-
umentation is generated. This name is used in the title of most generated pages
and in a few other places.

PROJECTNUMBERThe PROJECTNUMBERag can be used to enter a project or
revision number. This could be handy for archiving the generated documentation
or if some version control system is used.

OUTPUTDIRECTORY TheOUTPUIDIRECTORYMag is used to specify the (relative
or absolute) path into which the generated documentation will be written. If a
relative path is entered, it will be relative to the location where doxygen was
started. If left blank the current directory will be used.

OUTPUTLANGUAGEThe OUTPUTLANGUAGHag is used to specify the language
in which all documentation generated by doxygen is written. Doxygen will use
this information to generate all constant output in the proper language. The
default language is English, other supported languages are: Brazilian, Chinese,
Croatian, Czech, Danish, Dutch, Finnish, French, German, Greek, Hungarian,
Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian,
Serbian, Slovak, Slovene, Spanish, Swedish, and Ukrainian.

USEWINDOWENCODING This tag can be used to specify the encoding used in the
generated output. The encoding is not always determined by the language that is
chosen, but also whether or not the output is meant for Windows or non-Windows
users. In case there is a difference, settindt8& WINDOWENCODINGag to
YESforces the Windows encoding, (this is the default for the Windows binary),
whereas setting the tag téOuses a Unix-style encoding (the default for all
platforms other than Windows).

EXTRACTALL If the EXTRACTALL tag is set tovESdoxygen will assume all en-
tities in documentation are documented, even if no documentation was avail-

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.2 General options 74

able. Private class members and static file members will be hidden unless the
EXTRACTPRIVATE andEXTRACTSTATIC tags are set t¥ES

Note:
This will also disable the warnings about undocumented members that are
normally produced wheWARNINGS$s set toYES

EXTRACTPRIVATE If the EXTRACTPRIVATE tag is set tovESall private mem-
bers of a class will be included in the documentation.

EXTRACTSTATIC If the EXTRACTSTATIC tag is set toYESall static members
of a file will be included in the documentation.

EXTRACTLOCALCLASSES If the EXTRACTLOCALCLASSEStag is set toYES
classes (and structs) defined locally in source files will be included in the docu-
mentation. If set to NO only classes defined in header files are included. Does
not have any effect for Java sources.

HIDE_UNDOQVEMBERSIf the HIDE_UNDOMMEMBER#g is set torES doxygen
will hide all undocumented members inside documented classes or files. If setto
NO(the default) these members will be included in the various overviews, but no
documentation section is generated. This option has no effEXTRACTALL
is enabled.

HIDE_UNDOGCLASSES If the HIDE_UNDOGCLASSESSag is set toYES doxy-
gen will hide all undocumented classes. If setN® (the default) these
classes will be included in the various overviews. This option has no effect if
EXTRACTALL is enabled.

HIDE_FRIEND_.COMPOUND¥ the HIDE_FRIEND_.COMPOUND&q is set torES
Doxygen will hide all friend (clagstrucfunion) declarations. If set tNO(the
default) these declarations will be included in the documentation.

HIDE_IN _BODYDOCS Ifthe HIDE_IN _-BODYDOCSag is set torES Doxygen will
hide any documentation blocks found inside the body of a function. If 98Cto
(the default) these blocks will be appended to the function’s detailed documen-
tation block.

BRIEF_MEMBEBESC If the BRIEF_MEMBEBRESCtag is set torES(the default)
doxygen will include brief member descriptions after the members that are listed
in the file and class documentation (similar to JavaDoc). Set to NO to disable
this.

REPEATBRIEF If the REPEATBRIEF tag is set torES(the default) doxygen will
prepend the brief description of a member or function before the detailed de-
scription

Note:
If both HIDE_UNDOMMEMBERSNdBRIEF_MEMBEBESCare set tdtNQ
the brief descriptions will be completely suppressed.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.2 General options 75

ALWAYSDETAILED_SEC If the ALWAYSDETAILED_SEC and REPEATBRIEF
tags are both set tyESthen doxygen will generate a detailed section even if
there is only a brief description.

INLINE _INHERITED_MEMB If the INLINE _INHERITED_MEMRBag is set torES
doxygen will show all inherited members of a class in the documentation of that
class as if those members were ordinary class members. Constructors, destruc-
tors and assignment operators of the base classes will not be shown.

FULL_ PATHNAMES If the FULL_ PATHNAMEStag is set toYES doxygen will
prepend the full path before files name in the file list and in the header files.
If set to NO the shortest path that makes the file name unique will be used

STRIP_FROMPATH If the FULL.PATHNAMESag is set torESthen theSTRIP _-
FROMPATHTtag can be used to strip a user-defined part of the path. Stripping is
only done if one of the specified strings matches the left-hand part of the path.

INTERNALDOCS The INTERNAL DOCStag determines if documentation that is
typed after a\internalcommand is included. If the tag is seti®(the default)
then the documentation will be excluded. Set iMaSto include the internal
documentation.

CASESENSENAMES If the CASESENSENAMESag is set tdNO(the default) then
doxygen will only generate file names in lower-case letters. If sg&8upper-
case letters are also allowed. This is useful if you have classes or files whose
names only differ in case and if your file system supports case sensitive file
names.

SHORTNAMES If the SHORTNAMESag is set torES doxygen will generate much
shorter (but less readable) file names. This can be useful is your file systems
doesn’t support long names like on DOS, Mac, or CD-ROM.

HIDE_SCOPENAMES If the HIDE_SCOPENAMESag is set tdNO(the default) then
doxygen will show members with their full class and namespace scopes in the
documentation. If set t¥ESthe scope will be hidden.

VERBATIMHEADERSIIf the VERBATIMHEADERSag is set theES(the default)
then doxygen will generate a verbatim copy of the header file for each class for
which an include is specified. Set to NO to disable this.

See also:
Section\class

SHOWNCLUDEFILES If the SHOW.INCLUDE FILES tag is set to YES (the de-
fault) then doxygen will put a list of the files that are included by a file in the
documentation of that file.

JAVADOCAUTOBRIEF If the JAVADOCAUTOBRIEFis set toYESthen doxygen
will interpret the first line (until the first dot) of a JavaDoc-style comment as the
brief description. If set to NO (the default), the Javadoc-style will behave just
like the Qt-style comments.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.2 General options 76

MULTILINE _CPPIS BRIEF The MULTILINE_CPPRIS_BRIEF tag can be set to
YES to make Doxygen treat a multi-line C++ special comment block (i.e. a
block of //! or /Il comments) as a brief description. This used to be the default
behaviour. The new default is to treat a multi-line C++ comment block as a
detailed description. Set this tag to YES if you prefer the old behaviour instead.
Note that setting this tag to YES also means that rational rose comments are not
recognised any more.

DETAILS _AT_TOP If the DETAILS_AT _TOP tag is set to YES then Doxygen will
output the detailed description near the top, like JavaDoc. If set to NO, the
detailed description appears after the member documentation.

INHERIT _DOCS If the INHERIT _DOCSag is set toYES (the default) then an un-
documented member inherits the documentation from any documented member
that it reimplements.

INLINE _INFO Ifthe INLINE _INFO tag is set tor ES(the default) then a tag [inline]
is inserted in the documentation for inline members.

SORTMEMBEROCS If the SORTMEMBEBROCStag is set toYES (the default)
then doxygen will sort the (detailed) documentation of file and class members
alphabetically by member name. If setNi@the members will appear in decla-
ration order.

DISTRIBUTE_GROUHMDOC If member grouping is used in the documentation and
the DISTRIBUTEGROUPRDOC tag is set to YES, then doxygen will reuse the
documentation of the first member in the group (if any) for the other members of
the group. By default all members of a group must be documented explicitly.

TABSIZE theTAB._SIZE tag can be used to set the number of spaces in a tab. Doxy-
gen uses this value to replace tabs by spaces in code fragments.

ENABLEDSECTIONS The ENABLEDSECTIONStag can be used to enable condi-
tional documentation sections, marked\lify <section-labeb ... \endif blocks.

GENERATHDEPRECATEDLIST The GENERATEDEPRECATEDLIST tag can be
used to enable (YES) or disable (NO) the deprecated list. This list is created by
putting \ deprecatedommands in the documentation.

GENERATHODOLIST The GENERATETODOLIST tag can be used to enable
(YES) or disable (NO) the todo list. This list is created by puttipgdo com-
mands in the documentation.

GENERATHESTLIST The GENERATETESTLIST tag can be used to enable
(YES) or disable (NO) the test list. This list is created by puttitgstcom-
mands in the documentation.

GENERATBBUGLIST The GENERATEBUGLIST tag can be used to enable (YES)
or disable (NO) the bug list. This list is created by puttiimig commands in
the documentation.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.3 Options related to warning and progress messages 77

ALIASES This tag can be used to specify a number of aliases that acts as commands
in the documentation. An alias has the form

name=value

For example adding

"sideeffect=\par Side Effects:\n"

will allow you to put the commangsideeffect (or @sideeffect) in the documen-
tation, which will result in a user-defined paragraph with heading "Side Effects:”.
You can put\n’s in the value part of an alias to insert newlines.

MAXINITIALIZER _LINES TheMAXINITIALIZER _LINES tag determines the
maximum number of lines that the initial value of a variable or define can be.
If the initializer consists of more lines than specified here it will be hidden.
Use a value of 0 to hide initializers completely. The appearance of the value
of individual variables and defines can be controlled usjsigowinitializeror
\hideinitializercommand in the documentation.

OPTIMIZE _OUTPUTFORC Set the OPTIMIZE_OUTPUTFORC tag to YES if
your project consists of C sources only. Doxygen will then generate output that
is more tailored for C. For instance, some of the names that are used will be
different. The list of all members will be omitted, etc.

OPTIMIZE OUTPUTIAVA Set the OPTIMIZEOUTPUT.JAVA tag to YES if your
project consists of Java sources only. Doxygen will then generate output that is
more tailored for Java. For instance, namespaces will be presented as packages,
qualified scopes will look different, etc.

SHOWJSEDFILES SettheSHOWJSEDFILES tag toNOto disable the list of files
generated at the bottom of the documentation of classes and structs. V&S to
the list will mention the files that were used to generate the documentation.

SUBGROUPINGSet theSUBGROUPIN@g toYES(the default) to allow class mem-
ber groups of the same type (for instance a group of public functions) to be put
as a subgroup of that type (e.g. under the Public Functions section). Set it to
NOto prevent subgrouping. Alternatively, this can be done per class using the
\nosubgroupingommand.

20.3 Options related to warning and progress messages

QUIET The QUIET tag can be used to turn on/off the messages that are generated
to standard output by doxygen. Possible valuesYd&E& and NQ whereYES
implies that the messages are off. If left blak®is used.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.4 Inputrelated options 78

WARNINGSThe WARNINGSag can be used to turn on/off the warning messages
that are generated to standard error by doxygen. Possible valu¥&&rend
NQ whereYESimplies that the warnings are on. If left blaMOis used.

Tip: Turn warnings on while writing the documentation.

WARNF _UNDOCUMENTED WARNF _UNDOCUMENTExet toYES then doxy-
gen will generate warnings for undocumented membeBXIFRACTALL is set
to YESthen this flag will automatically be disabled.

WARNF -DOCERROR If WARNF _DOCERRORs set toYES doxygen will gener-
ate warnings for potential errors in the documentation, such as not document-
ing some parameters in a documented function, or documenting parameters that
don't exist or using markup commands wrongly.

WARN-ORMAT The WARN-ORMATag determines the format of the warning mes-
sages that doxygen can produce. The string should contaffitee , $line
and$text tags, which will be replaced by the file and line number from which
the warning originated and the warning text.

WARN.OGFILE The WARN.OGFILE tag can be used to specify a file to which
warning and error messages should be written. If left blank the output is written
to stderr.

20.4 Input related options

INPUT ThelNPUT tag is used to specify the files and/or directories that contain doc-
umented source files. You may enter file namestikgile.cpp or directories
like /usr/src/myproject . Separate the files or directories with spaces.

Note: If this tag is empty the current directory is searched.

FILE _PATTERNS If the value of theINPUT tag contains directories, you can
use theFILE PATTERNStag to specify one or more wildcard patterns (like
x.Ccpp and«.h) to filter out the source-files in the directories. If left blank the
following patterns are tested.c x.CC *.CXX *.Cpp #.C++ x.java
il kIXX kipp xit+ xinl x.h x.hh xhxx *.hpp .h++
+.idl x.0dl *.cs

RECURSIVE TheRECURSIVERag can be used to specify whether or not subdirecto-
ries should be searched for input files as well. Possible valuegEBandNQ
If left blank NOis used.

EXCLUDE The EXCLUDEtag can be used to specify files and/or directories that
should excluded from theNPUT source files. This way you can easily exclude
a subdirectory from a directory tree whose root is specified withNIRUT tag.

EXCLUDESYMLINKS The EXCLUDESYMLINKStag can be used select whether
or not files or directories that are symbolic links (a Unix filesystem feature) are
excluded from the input.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.5 Source browsing related options 79

EXCLUDEPATTERNS If the value of thelNPUT tag contains directories, you can
use theEXCLUDEPATTERNSag to specify one or more wildcard patterns to
exclude certain files from those directories.

EXAMPLEPATH The EXAMPLEPATHtag can be used to specify one or more files
or directories that contain example code fragments that are included (see the
\include command in sectioyinclude.

EXAMPLERECURSIVE If the EXAMPLERECURSIVEtag is set toYESthen sub-
directories will be searched for input files to be used with Yfreclude or
\dontinclude commands irrespective of the value of REECURSIVEag. Pos-
sible values ar& ESandNQ If left blank NOis used.

EXAMPLEPATTERNS If the value of theEXAMPLEPATHtag contains directories,
you can use thEXAMPLEPATTERNSag to specify one or more wildcard pat-
tern (like x.cpp andx.h) to filter out the source-files in the directories. If left
blank all files are included.

IMAGEPATH The IMAGEPATHtag can be used to specify one or more files or
directories that contain images that are to be included in the documentation (see
the \imagecommand).

INPUT_FILTER The INPUT_FILTER tag can be used to specify a program that
doxygen should invoke to filter for each input file. Doxygen will invoke the filter
program by executing (via popen()) the command:

<filter> <input-file>

where<filter> is the value of théNPUT_FILTER tag, and<input-file> is the
name of an input file. Doxygen will then use the output that the filter program
writes to standard output.

FILTER _SOURCEFILES If the FILTER _SOURCEHE-ILES tag is set toYES the
input filter (if set usingINPUT_FILTER) will be used to filter the input files
when producing source files to browse.

20.5 Source browsing related options

SOURCBROWSER(f the SOURCEBROWSERQg is set torESthen a list of source
files will be generated. Documented entities will be cross-referenced with these
sources.

INLINE .SOURCESSetting thdNLINE _SOURCES$ag toYESwill include the body
of functions, classes and enums directly into the documentation.

STRIP_CODECOMMENTSSetting theSTRIP_CODECOMMENTSg to YES (the
default) will instruct doxygen to hide any special comment blocks from gen-
erated source code fragments. Normal C and C++ comments will always remain
visible.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.6 Alphabetical index options 80

REFERENCEBY_RELATION If the REFERENCEBY_RELATION tag is set to
YES (the default) then for each documented function all documented functions
referencing it will be listed.

REFERENCERELATION If the REFERENCERELATIONtag is set toYES (the
default) then for each documented function all documented entities called/used
by that function will be listed.

20.6 Alphabetical index options

ALPHABETICALINDEX If the ALPHABETICALINDEX tag is set toYES an al-
phabetical index of all compounds will be generated. Enable this if the project
contains a lot of classes, structs, unions or interfaces.

COLSIN ALPHAINDEX If the alphabetical index is enabled (see
ALPHABETICALINDEX) then the COLSIN _ALPHAINDEX tag can be
used to specify the number of columns in which this list will be split (can be a
number in the range [1..20])

IGNOREPREFIX In case all classes in a project start with a common prefix, all
classes will be put under the same header in the alphabetical index. The
IGNOREPREFIX tag can be used to specify a prefix (or a list of prefixes) that
should be ignored while generating the index headers.

20.7 HTML related options

GENERATHEHHTML If the GENERATEHTMLtag is set toYES (the default) doxygen
will generate HTML output

HTMLOUTPUT TheHTMLOUTPUTag is used to specify where the HTML docs will
be put. If a relative path is entered the valueGQd TPUTDIRECTORWill be
put in front of it. If left blank ‘htmlI’ will be used as the default path.

HTMLFILE _EXTENSION The HTMLFILE _ EXTENSIONtag can be used to spec-
ify the file extension for each generated HTML page (for example: .htm, .php,
.asp). If it is left blank doxygen will generate files with .html extension.

HTMLHEADER TheHTMLHEADERag can be used to specify a user-defined HTML
header file for each generated HTML page. To get valid HTML the header file
should contain at least aHTML> and a<BODY> tag, but it is good idea to
include the style sheet that is generated by doxygen as well. Minimal example:

<HTML>
<HEAD>
<TITLE>My title</TITLE>
<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">
</HEAD>
<BODY BGCOLOR="#FFFFFF">

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.7 HTML related options 81

If the tag is left blank doxygen will generate a standard header.

The following commands have a special meaning inside the header:
$title , $datetime , $date , $doxygenversion , $projectname
$projectnumber . Doxygen will replace them by respectively the title of
the page, the current date and time, only the current date, the version number
of doxygen, the project name (SBROJECTNAME, or the project number (see
PROJECTNUMBER

See also sectioBoxygen usagéor information on how to generate the default
header that doxygen normally uses.

HTMLFOOTER TheHTMLFOOTERag can be used to specify a user-defined HTML
footer for each generated HTML page. To get valid HTML the header file should
contain at least a&/BODY> and a</HTML> tag. A minimal example:

</BODY>
</HTML>

If the tag is left blank doxygen will generate a standard footer.

The following commands have a special meaning inside the header:
$title , $datetime , $date , $doxygenversion , $projectname
$projectnumber . Doxygen will replace them by respectively the title of
the page, the current date and time, only the current date, the version number
of doxygen, the project name (sBROJECTNAME, or the project number (see
PROJECTNUMBER

See also sectioDoxygen usagéor information on how to generate the default
footer that doxygen normally uses.

HTMLSTYLESHEET The HTMLSTYLESHEETtag can be used to specify a user-
defined cascading style sheet that is used by each HTML page. It can be used
to fine-tune the look of the HTML output. If the tag is left blank doxygen will
generate a default style sheet.

See also sectioboxygen usagdor information on how to generate the style
sheet that doxygen normally uses.

HTMLALIGN_MEMBERSIf the HTMLALIGN_MEMBER#g is set torES the mem-
bers of classes, files or namespaces will be aligned in HTML using tables. If set
to NOa bullet list will be used.

Note: Setting this tag taNOwill become obsolete in the future, since | only
intent to support and test the aligned representation.

GENERATEHTMLHELP If the GENERATEHTMLHELRag is set torESthen doxy-
gen generates three additional HTML index filgsdex.hhp , index.hhc
and index.hhk . The index.hhp is a project file that can be read by
Microsoft's HTML Help Workshop on Windows.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp

20.7 HTML related options 82

The HTML Help Workshop contains a compiler that can convert all HTML out-
put generated by doxygen into a single compressed HTML file (.chm). Com-
pressed HTML files are now used as the Windows 98 help format, and will re-
place the old Windows help format (.hlp) on all Windows platforms in the future.
Compressed HTML files also contain an index, a table of contents, and you can
search for words in the documentation (which basically rendexysearch
obsolete on Windows). The HTML workshop also contains a viewer for com-
pressed HTML files.

CHMFILE If the GENERATEHTMLHELRag is set toYES the CHMFILE tag can
be used to specify the file name of the resulting .chm file. You can add a path in
front of the file if the result should not be written to the html output dir.

HHCLOCATION If the GENERATEHHTMLHELPtag is set toYES the HHC-
LOCATIONtag can be used to specify the location (absolute path including file
name) of the HTML help compiler (hhc.exe). If non empty doxygen will try to
run the HTML help compiler on the generated index.hhp.

GENERATECHI If the GENERATEHTMLHELRag is set torES theGENERATE
CHI flag controls if a separate .chi index file is generatéd$) or that it should
be included in the master .chm filHQ.

BINARY_TOC If the GENERATEHTMLHELPag is set toYES the BINARY.TOC
flag controls whether a binary table of contents is generat&®)yor a normal
table of contentsNQ in the .chm file.

TOCEXPAND The TOCEXPANLflag can be set to YES to add extra items for group
members to the table of contents of the HTML help documentation and to the
tree view.

DISABLE_INDEX If you want full control over the layout of the generated HTML
pages it might be necessary to disable the index and replace it with your own.
TheDISABLE_INDEX tag can be used to turn on/off the condensed index at top
of each page. A value of NO (the default) enables the index and the value YES
disables it.

ENUMVALUESPERLINE This tag can be used to set the number of enum values
(range [1..20]) that doxygen will group on one line in the generated HTML doc-
umentation.

GENERATHREEVIEW If the GENERATHREEVIEWag is set to YES, a side pan-
nel will be generated containing a tree-like index structure (just like the one that
is generated for HTML Help). For this to work a browser that supports JavaScript
and frames is required (for instance Mozilla 1.0+, Netscape 6.0+ or Internet ex-
plorer 5.0+ or Konqueror).

TREEVIEWWIDTH If the treeview is enabled (SS BENERATHREEVIEW then
this tag can be used to set the initial width (in pixels) of the frame in which
the tree is shown.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.8 LaTeX related options

83

20.8 LaTeX related options

GENERATHATEX If the GENERATHATEXtag is set toYES (the default) doxy-
gen will generateAEX output.

LATEX.OUTPUT The LATEXOUTPUTtag is used to specify where thagX docs
will be put. If a relative path is entered the value@ TPUTDIRECTOR Ywill
be put in front of it. If left blank ‘latex’ will be used as the default path.

LATEXCMDNAME The LATEX CMDNAMEtag can be used to specify the LaTeX
command name to be invoked. If left blank ‘latex’ will be used as the default
command name.

MAKEINDEXCMDNAME The MAKEINDEX_CMD_NAME tag can be used to spec-
ify the command name to generate index for LaTeX. If left blank ‘makeindex’
will be used as the default command name.

COMPACTATEX If the COMPACTATEX tag is set toYES doxygen generates
more compactilpX documents. This may be useful for small projects and may
help to save some trees in general.

PAPERTYPE ThePAPERTYPEtag can be used to set the paper type that is used by
the printer. Possible values are:
e a4 (210 x 297 mm).
adwide (same as a4, but including the adwide package).
letter (8.5 x 11 inches).
legal (8.5 x 14 inches).
e executive (7.25x10.5inches)

If left blank ad4wide will be used.

EXTRAPACKAGESTheEXTRAPACKAGES$ag can be used to specify one or more
IATEX package names that should be included in tHgX_output. To get the
times font for instance you can specify

EXTRA_PACKAGES = times

If left blank no extra packages will be included.

LATEXHEADER The LATEXHEADERag can be used to specify a persoddtX
header for the generatefTiX document. The header should contain everything
until the first chapter.

If it is left blank doxygen will generate a standard header. See sebtiaggen
usagdor information on how to let doxygen write the default header to a separate
file.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.9 RTF related options 84

Note:
Only use a user-defined header if you know what you are doing!

The following commands have a special meaning inside the header:
$title , $datetime , $date , $doxygenversion , $projectname
$projectnumber . Doxygen will replace them by respectively the title of
the page, the current date and time, only the current date, the version number
of doxygen, the project name (SBROJECTNAME, or the project number (see
PROJECTNUMBER

PDFEHYPERLINKS If the PDEHYPERLINKStag is set toYES the BTEX that is
generated is prepared for conversion to PDF (using ps2pdf). The PDF file will
contain links (just like the HTML output) instead of page references. This makes
the output suitable for online browsing using a PDF viewer.

USEPDFLATEX Ifthe LATEXPDFLATEXag is set torES doxygen will use pdfla-
tex to generate the PDF file directly from thégX files.

LATEXBATCHMODHf the LATEXBATCHMODIA(is set torES doxygen will add
the \batchmode. command to the generat&gh{ files. This will instruct ETpX
to keep running if errors occur, instead of asking the user for help. This option
is also used when generating formulas in HTML.

LATEXHIDE_INDICES If LATEXHIDE_INDICES is set toYES then doxygen
will not include the index chapters (such as File Index, Compound Index, etc.)
in the output.

20.9 RTF related options

GENERATIRTF Ifthe GENERATHERTFtag is set tor ESdoxygen will generate RTF
output. The RTF output is optimised for Word 97 and may not look too pretty
with other readers/editors.

RTF.OUTPUT The RTF.OUTPUTag is used to specify where the RTF docs will be
put. If a relative path is entered the value@ TPUTDIRECTORwiIll be put
in front of it. If left blank rtf will be used as the default path.

COMPACRTF Ifthe COMPACTRTFtag is set tor ESdoxygen generates more com-
pact RTF documents. This may be useful for small projects and may help to save
some trees in general.

RTF.HYPERLINKS If the RTF-HYPERLINKStag is set torES the RTF that is gen-
erated will contain hyperlink fields. The RTF file will contain links (just like the
HTML output) instead of page references. This makes the output suitable for
online browsing using Word or some other Word compatible reader that support
those fields.

note:
WordPad (write) and others do not support links.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.10 Man page related options 85

RTFE.STYLESHEETFILE Load stylesheet definitions from file. Syntax is similar
to doxygen’s config file, i.e. a series of assigments. You only have to provide
replacements, missing definitions are set to their default value.

See also sectioBoxygen usagéor information on how to generate the default
style sheet that doxygen normally uses.

RTFEXTENSIONSFILE Set optional variables used in the generation of an RTF
document. Syntax is similar to doxygen'’s config file. A template extensions file
can be generated usinlpxygen -e rtf extensionFile

20.10 Man page related options

GENERATEMAN If the GENERATEVANAag is set tor ES(the default) doxygen will
generate man pages for classes and files.

MANOUTPUT The MANOUTPUTag is used to specify where the man pages will be
put. If a relative path is entered the value@TPUTDIRECTORYWill be put
in front of it. If left blank ‘man’ will be used as the default path. A directory
man3 will be created inside the directory specifiedd&NOUTPUT

MANEXTENSION The MANEXTENSIONtag determines the extension that is added
to the generated man pages (default is the subroutine’s section .3)

MANLINKS If the MANLINKS tag is set tor ESand doxygen generates man output,
then it will generate one additional man file for each entity documented in the real
man page(s). These additional files only source the real man page, but without
them the man command would be unable to find the correct page. The default is
NQ

20.11 XML related options

GENERATEXML If the GENERATEXMLtag is set torESDoxygen will generate an
XML file that captures the structure of the code including all documentation.

XMLOUTPUT The XMLOUTPUTtag is used to specify where the XML pages will
be put. If a relative path is entered the valueGd§ TPUTDIRECTORWwill be
put in front of it. If left blankxml will be used as the default path.

XMLSCHEMAThe XMLSCHEMAag can be used to specify an XML schema, which
can be used by a validating XML parser to check the syntax of the XML files.

XMLDTD TheXMLDTDtag can be used to specify an XML DTD, which can be used
by a validating XML parser to check the syntax of the XML files.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.12 AUTOGEN.DEF related options 86

20.12 AUTOGEN DEF related options

GENERATEAUTOGENDEF If the GENERATRAUTOGENDEF tag is
set to YES Doxygen will generate an AutoGen Definitions (see
http://autogen.sf.net) file that captures the structure of the code
including all documentation. Note that this feature is still experimental and
incomplete at the moment.

20.13 PERLMOD related options

GENERATHEPERLMODIf the GENERATEPERLMOIRG is set tor ESDoxygen will
generate a Perl module file that captures the structure of the code including all
documentation. Note that this feature is still experimental and incomplete at the
moment.

PERLMOLRLATEX If the PERLMODATEXtag is set torESDoxygen will generate
the necessary Makefile rules, Perl scripts and LaTeX code to be able to generate
PDF and DVI output from the Perl module output.

PERLMOIPRETTY Ifthe PERLMODPRETT Ytag is set tor ESthe Perl module out-
put will be nicely formatted so it can be parsed by a human reader. This is useful
if you want to understand what is going on. On the other hand, if this tag is set
to NOthe size of the Perl module output will be much smaller and Perl will parse
it just the same.

PERLMOIMAKEVARPREFIX The names of the make variables in the generated
doxyrules.make file are prefixed with the string containedPEERLMOD
MAKEVARPREFIX. This is useful so different doxyrules.make files included
by the same Makefile don't overwrite each other’s variables.

20.14 Preprocessor related options

ENABLEPREPROCESSINGf the ENABLEPREPROCESSINGg is set toYES
(the default) doxygen will evaluate all C-preprocessor directives found in the
sources and include files.

MACREXPANSION If the MACREXPANSIONag is set tor ESdoxygen will ex-
pand all macro names in the source code. If séi@j{the default) only condi-
tional compilation will be performed. Macro expansion can be done in a con-
trolled way by settindeEXPANDONLYPREDERo YES

EXPANDONLYPREDEF If the EXPANDONLYPREDEFRaNdMACREXPANSION
tags are both set to YES then the macro expansion is limited to the macros spec-
ified with thePREDEFINEDandEXPANDAS DEFINEDtags.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://autogen.sf.net

20.15 External reference options

87

SEARCHNCLUDES If the SEARCHNCLUDEStag is set toYES (the default) the
includes files in théNCLUDE PATH(see below) will be searched if a #include
is found.

INCLUDE.PATH TheINCLUDE PATHtag can be used to specify one or more direc-
tories that contain include files that are not input files but should be processed by
the preprocessor.

PREDEFINED The PREDEFINEDtag can be used to specify one or more macro
names that are defined before the preprocessor is started (similar to the -D op-
tion of gcc). The argument of the tag is a list of macros of the forrame
or name=definition (no spaces). If the definition and the "=" are omitted,
"=1"is assumed.

EXPANDAS DEFINED If the MACREXPANSIONand EXPANDONLYPREDEF
tags are set t&ESthen this tag can be used to specify a list of macro names
that should be expanded. The macro definition that is found in the sources will
be used. Use theREDEFINEDag if you want to use a different macro defini-
tion.

SKIP _FUNCTIONMACROSIf the SKIP _FUNCTIONMACROSg is set torES(the
default) then doxygen’s preprocessor will remove all function-like macros that

are alone on a line, have an all uppercase name, and do not end with a semicolon.

Such function macros are typically used for boiler-plate code, and will confuse
the parser if not removed.

20.15 External reference options

TAGFILES TheTAGFILES tag can be used to specify one or more tagfiles.
See sectiooxytag usagéor more information about the usage of tag files.

Optionally an initial location of the external documentation can be added for
each tagdfile. The format of a tag file without this location is as follows:

TAGFILES = filel file2 ...
Adding location for the tag files is done as follows:
TAGFILES = filel=locl "file2 = loc2" ...

wherelocl andloc2 can be relative or absolute paths or URLSs, If a location
is present for each tag, the installdox tool (see sedtistalldox usagéor more
information) does not have to be run to correct the links.

Note:
Each tag file must have a uniqgue name (where the namendoegiude the
path) If a tag file is not located in the directory in which doxygen is run, you
must also specify the path to the tagfile here.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.16 Dot options 88

GENERATHAGFILE When a file name is specified at&GENERATHAGFILE,
doxygen will create a tag file that is based on the input files it reads. See section
Doxytag usagéor more information about the usage of tag files.

ALLEXTERNALS If the ALLEXTERNALSag is set torESall external class will be
listed in the class index. If set tdOonly the inherited external classes will be
listed.

EXTERNALGROUPSIf the EXTERNALGROUPSag is set toYES all external
groups will be listed in the modules index. If setNQ only the current project’s
groups will be listed.

PERLPATH ThePERLPATHshould be the absolute path and name of the perl script
interpreter (i.e. the result oihich perl).

20.16 Dot options

CLASSDIAGRAMS If the CLASSDIAGRAMSag is set toYES (the default) doxy-
gen will generate a class diagram (in HTML aAfEX) for classes with base or
super classes. Setting the tag\i®turns the diagrams off. Note that this option
is superceded by the HAVBOT option below. This is only a fallback. It is
recommended to install and use dot, since it yields more powerful graphs.

HAVEDOT If you set theHAVEDOTtag to YESthen doxygen will assume the dot
tool is available from the path. This tool is part®faphviz , a graph visualiza-
tion toolkit from AT&T and Lucent Bell Labs. The other options in this section
have no effect if this option is set tddO(the default)

CLASSGRAPH If the CLASSGRAPHINdHAVEDOTtags are set t¥ ESthen doxy-
gen will generate a graph for each documented class showing the direct and
indirect inheritance relations. Setting this tagr@Swill force the theCLASS-
DIAGRAMSag to NO.

COLLABORATIONGRAPH If the COLLABORATIONGRAPHand HAVEDOTtags
are set toYESthen doxygen will generate a graph for each documented class
showing the direct and indirect implementation dependencies (inheritance, con-
tainment, and class references variables) of the class with other documented
classes.

TEMPLATERELATIONS If the TEMPLATERELATIONSandHAVEDOTtags are
set to YES then doxygen will show the relations between templates and their
instances.

HIDE_UNDORELATIONS If set to YES, the inheritance and collaboration graphs
will hide inheritance and usage relations if the target is undocumented or is not
aclass.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.research.att.com/sw/tools/graphviz/

20.16 Dot options 89

INCLUDEGRAPHIf the ENABLEPREPROCESSING SEARCHNCLUDES
INCLUDE.GRAPH and HAVEDOT tags are set torES then doxygen will
generate a graph for each documented file showing the direct and indirect
include dependencies of the file with other documented files.

INCLUDEDBY_GRAPH If the ENABLEPREPROCESSINGSEARCHNCLUDES
INCLUDEDBY_GRAPHandHAVEDOTtags are set t&y ESthen doxygen will
generate a graph for each documented header file showing the documented files
that directly or indirectly include this file.

CALL_GRAPH If the CALL GRAPHandHAVEDOTtags are set t¥ ESthen doxygen
will generate a call dependency graph for every global function or class method.
Note that enabling this option will significantly increase the time of a run. So in
most cases it will be better to enable call graphs for selected functions only using
the\ callgraph command.

GRAPHICALHIERARCHY If the GRAPHICALHIERARCHYand HAVEDOTtags
are set tovESthen doxygen will graphical hierarchy of all classes instead of a
textual one.

DOTIMAGEFORMAT The DOT.IMAGE _FORMAT tag can be used to set the image
format of the images generated by dot. Possible values are gif, jpg, and png. If
left blank png will be used.

DOTPATH This tag can be used to specify the path where the dot tool can be found.
If left blank, it is assumed the dot tool can be found on the path.

DOTFILE_DIRS This tag can be used to specify one or more directories that contain
dot files that are included in the documentation (seé twfile command).

MAXDOTGRAPHHEIGHT The MAXDOTGRAPHHEIGHT tag can be used to set
the maximum allows height (in pixels) of the graphs generated by dot. If a graph
becomes larger than this value, doxygen will try to truncate the graph, so that it
fits within the specified constraint. Beware that most browsers cannot cope with
very large images.

MAXDOTGRAPHDEPTH The MAXDOTGRAPHDEPTHtag can be used to set the
maximum depth of the graphs generated by dot. A depth value of 3 means that
only nodes reachable from the root by following a path via at most 3 edges will
be shown. Nodes that lay further from the root node will be omitted. Note that
setting this option to 1 or 2 may greatly reduce the computation time needed for
large code bases. Also note that a graph may be further truncated if the graph’s
image dimensions are not sufficient to fit the graph (¢&eX _DOT_GRAPH.-
WIDTH and MAX _DOT_GRAPHHEIGHT). If 0 is used fot the depth value
(the default), the graph is not depth-constraint.

MAXDOTGRAPHWIDTH The MAXDOTGRAPHWIDTHtag can be used to set the
maximum allowed width (in pixels) of the graphs generated by dot. If a graph
becomes larger than this value, doxygen will try to truncate the graph, so that it

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.17 Search engine options 90

fits within the specified constraint. Beware that most browsers cannot cope with
very large images.

GENERATHEGEND If the GENERATH.EGENDtag is set toYES (the default)
doxygen will generate a legend page explaining the meaning of the various boxes
and arrows in the dot generated graphs.

DOTCLEANUP If the DOTCLEANURag is set toYES (the default) doxygen will
remove the intermediate dot files that are used to generate the various graphs.

20.17 Search engine options

SEARCHENGINEThe SEARCHENGINIEag specifies whether or not a search should
be used. Possible values &ESandNQ If set toNOor left blank, the values of
all other tags in this section will be ignored.

CGI_NAME The CGI_.NAMRBag should be the name of the CGI script that starts the
search enginedpxysearch) with the correct parameters. A script with this
name will be generated by doxygen.

CGI_URL TheCGI_URLtag should be the absolute URL to the directory where the
cgi binaries are located. See the documentation of your HTTP daemon for de-
tails.

DOCURL TheDOCURLtag should be the absolute URL to the directory where the
documentation is located. If left blank the absolute path to the documentation,
with file:// prepended to it, will be used. This is correct for local viewing
only.

DOCABSPATH The DOCABSPATHag should be the absolute path to the directory
where the documentation is located. If left blank the directory on the local ma-
chine will be used.

BIN _ABSPATH TheBIN _ABSPATHag must point to the directory where the doxy-
search binary is installed.

EXT_DOCPATHS The EXT.DOCPATHStag can be used to specify one or more
paths to documentation generated for other projects. This allows doxysearch to
search the documentation for these projects as well. All paths must be absolute.

Examples

Suppose you have a simple project consisting of two files: a souraxéimple.cc
and a header filexample.h . Then a minimal configuration file is as simple as:

INPUT = example.cc example.h

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

20.17 Search engine options

91

Assuming the example makes use of Qt classes and perl is locatestibin |, a
more realistic configuration file would be:

PROJECT_NAME = Example

INPUT = example.cc example.h
WARNINGS = YES

TAGFILES = qgt.tag

PERL_PATH = [usr/bin/perl
SEARCHENGINE = NO

To generate the documentation for tQelbtTabular package | have used the fol-
lowing configuration file:

PROJECT_NAME = QdbtTabular
OUTPUT_DIRECTORY = html

WARNINGS = YES

INPUT = examples/examples.doc src
FILE_PATTERNS = *cc *h

INCLUDE_PATH = examples

TAGFILES = qgt.tag

PERL_PATH = /usr/local/bin/perl
SEARCHENGINE = YES

CGI_NAME = search.cgi

CGI_URL = http://www.stack.nl/"dimitri/cgi-bin
DOC_URL = http://www.stack.nl/"dimitri/gdbttabular
DOC_ABSPATH = /home/dimitri/.ntml/qdbttabular
BIN_ABSPATH = /home/dimitri/bin

To regenerate the Qt-1.44 documentation from the sources, you could use the following

config file:

PROJECT_NAME
OUTPUT_DIRECTORY docs
HIDE_UNDOC_MEMBERS = YES

Qt
qt

HIDE_UNDOC_CLASSES = YES
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
SEARCH_INCLUDES = YES
FULL_PATH_NAMES = YES
STRIP_FROM_PATH = $(QTDIR)/

PREDEFINED USE_TEMPLATECLASS Q_EXPORT= \
QArrayT:=QArray \
QListT:=QList \
QDictT:=QDict \
QQueueT:=QQueue \
QVectorT:=QVector \
QPtrDictT:=QPtrDict \
QIntDictT:=QIntDict \
QStackT:=QStack \
QDictlteratorT:=QDictlterator \
QListlteratorT:=QListlterator \
QCacheT:=QCache \

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

http://www.stack.nl/~dimitri/qdbttabular/index.html

92

QCachelteratorT:=QCachelterator \
QIntCacheT:=QIntCache \
QIntCachelteratorT:=QIntCachelterator \
QIntDictlteratorT:=QIntDictlterator \
QPtrDictlteratorT:=QPtrDictlterator
INPUT = $(QTDIR)/doc \
$(QTDIR)/src/widgets \
$(QTDIR)/src/kernel \
$(QTDIR)/src/dialogs \
$(QTDIR)/src/tools
*cpp *.h g*.doc
$(QTDIR)/include
YES

FILE_PATTERNS
INCLUDE_PATH
RECURSIVE

For the Qt-2.1 sources | recommend to use the following settings:

PROJECT_NAME = Qt
PROJECT_NUMBER =21
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
SOURCE_BROWSER = YES

INPUT = $(QTDIR)/src
FILE_PATTERNS = *cpp *.h g*.doc
RECURSIVE = YES
EXCLUDE_PATTERNS = *codec.cpp moc_* */compat/* */3rdparty/*
ALPHABETICAL_INDEX = YES
COLS_IN_ALPHA_INDEX = 3
IGNORE_PREFIX =Q
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES

INCLUDE_PATH
PREDEFINED

$(QTDIR)/include

Q_PROPERTY(x)= \
Q_OVERRIDE(x)= \

Q_EXPORT= \

Q_ENUMS(x)= \
"QT_STATIC_CONST=static const " \
_WS_X11_ \
INCLUDE_MENUITEM_DEF
EXPAND_ONLY_PREDEF = YES

EXPAND_AS_DEFINED = Q_OBJECT_FAKE Q_OBJECT ACTIVATE_SIGNAL_WITH_PARAM \
Q_VARIANT_AS

Here doxygen'’s preprocessor is used to substitute some macro names that are normally
substituted by the C preprocessor, but without doing full macro expansion.

21 Special Commands

21.1 Introduction

All commands in the documentation start with a backslagtof an at-sign @). If

you prefer you can replace all commands starting with a backslash below, by their
counterparts that start with an at-sign.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.1 Introduction

Some commands have one or more arguments. Each argument has a certain range:

o If <sharp> braces are used the argument is a single word.

¢ |f (round) braces are used the argument extends until the end of the line on which
the command was found.

e If {curly} braces are used the argument extends until the next paragraph. Para-
graphs are delimited by a blank line or by a section indicator.

If [square] brackets are used the argument is optional.

Here is an alphabetically sorted list of all commands with references to their documen-
tation:

\a 21.75 \else 21.35
\addindex 21.58 \elseif 21.36
\addtogroup 21.2 \em 21.83
\anchor 21.59 \endcode 21.84
\arg 21.76 \endhtmlonly 21.85
\attention 21.29 \endif 21.37
\author 21.30 \endlatexonly 21.86
\b 21.77 \endlink 21.60
\brief 21.31 \endverbatim 21.87
\bug 21.32 \endxmlonly 21.88
\c 21.78 \enum 21.7
\callgraph 21.3 \example 21.8
\class 21.4 \exception 21.38
\code 21.79 \f$ 21.89
\copydoc 21.80 \f[21.90
\date 21.33 \f] 21.91
\def 215 \file 21.9
\defgroup 21.6 \fn 21.10
\deprecated 21.34 \hideinitializer 21.11
\dontinclude 21.67 \htmlinclude 21.74
\dotfile 21.81 \htmlonly 21.92
\e 21.82 \if 21.39

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.1 Introduction

\ifnot 21.40 \sa 21.50
\image 21.93 \section 21.63
\include 21.68 \showinitializer 21.23
\ingroup 21.12 \since 2151
\internal 21.14 \skip 21.70
\invariant 21.41 \skipline 2171
\interface 21.13 \struct 21.24
\latexonly 21.94 \subsection 21.64
\l 21.95 \subsubsection 21.65
\line 21.69 \test 21.52
\link 21 61 \throw 21.53
. \todo 21.54

\mainpage 21.15
\ 2196 \typedef 21.25

n .
\ 2116 \union 21.26
name .

\until 21.72

\namespace 21.17
\var 21.27

\nosubgrouping 21.18
\verbatim 21.98

\note 21.42
\verbinclude 21.73

\overload 21.19
\version 21.55

\p 21.97
\warning 21.56

\package 21.20
\weakgroup 21.28

age 21.21
\Pag \xmlonly 21.99

\par 21.43)

\xrefitem 21.57

aram 21.44
\P \$ 21.104
\post 21.45 \@ 21.101
\pre 2146\ 21.100
\ref 21.62 \& 21103
\relates 21.22 \~ 21.102
\remarks 21.47 \< 21.106
\return 21.48 \> 21.107
\retval 21.49 \# 21.105

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.2 \addtogroup <name> [(title)] 95

The following subsections provide a list of all commands that are recognized by doxy-
gen. Unrecognized commands are treated as normal text.

Structural indicators

21.2 \addtogroup <name> [(title)]

Defines a group just likedefgroup but in contrast to that command using the same
<name> more than once will not result in a warning, but rather one group with a
merged documentation and the first title found in any of the commands.

The title is optional, so this command can also be used to add a number of entities to
an existing group using @and @ like this:

/*! \addtogroup mygrp

* Additional documentation for group ‘mygrp’
* @

*/

/¥

* A function

*

void funci()

{
}

/*! Another function */
void func2()

{

}

M @) *

See also:
pageGrouping sections\defgroup \ingroupand\weakgroup

21.3 \callgraph

When this command is put in a comment block of a function or method-s\E _-
DOTis setto YES, then doxygen will generate a call graph for that function (provided
the implementation of the function or method calls other documented functions). The
call graph will generated regardless of the valu€éi.L._GRAPH

Note:
The completeness (and correctness) of the call graph depends on the doxygen code
parser which is not perfect.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.4 \class<name> [<header-file>] [<header-name>] 96

21.4 \class<name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a class with name
<name>. Optionally a header file and a header name can be specified. If the header-
file is specified, a link to a verbatim copy of the header will be included in the HTML
documentation. Thecheader-name argument can be used to overwrite the name of
the link that is used in the class documentation to something othekthaader-file-.

This can be useful if the include name is not located on the default include path (like
<X11/X.h>). With the <header-name argument you can also specify how the in-
clude statement should look like, by adding either quotes or sharp brackets around the
name. Sharp brackets are used if just the name is given.

Example:
/* A dummy class */

class Test

{
h

/*1 \class Test class.h "inc/class.h"

* \brief This is a test class.

*

* Some details about the Test class
*/

21.5 \def <name>
Indicates that a comment block contains documentation fedine macro.

Example:

/*1 \file define.h
\brief testing defines

This is to test the documentation of defines.
*

!

\def MAX(X,y)

Computes the maximum of \a x and \a vy.
*

T
Computes the absolute value of its argument \a x.
*/
#define ABS(x) (((x)>0)?(x):-(x))
#define MAX(x,y) ((X)>(¥)?(x):(¥))
#define MIN(X,y) ((X)>(y)?(y):(x)) /*!< Computes the minimum of \a x and \a y. */

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.6 \defgroup <name> (group title) 97

21.6 \defgroup <name> (group title)

Indicates that a comment block contains documentation gppapof classes, files or
namespaces. This can be used to categorize classes, files or namespaces, and document
those categories. You can also use groups as members of other groups, thus building a
hierarchy of groups.

The <name> argument should be a single-word identifier.

See also:
pageGrouping sections\ingroup \addtogroup\weakgroup

21.7 \enum<name>

Indicates that a comment block contains documentation for an enumeration, with name
<name>. If the enum is a member of a class and the documentation block is located
outside the class definition, the scope of the class should be specified as well. If a
comment block is located directly in front of an enum declaration) émim comment

may be omitted.

Note:
The type of an anonymous enum cannot be documented, but the values of an
anonymous enum can.

Example:
class Test

{
public:
enum TEnum { Vall, Val2 },

/¥ Another enum, with inline docs */
enum AnotherEnum

V1, /*I< value 1 */
V2 [*I< value 2 */
I
3

/*! \class Test
* The class description.
*/

/*! \enum Test::TEnum

* A description of the enum type.
*

/

[*! \var Test:TEnum Test::Vall
* The description of the first enum value.
*/

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.8 \example<file-name>

21.8 \example<file-name>

Indicates that a comment block contains documentation for a source code example.
The name of the source file isfile-name>. The text of this file will be included in

the documentation, just after the documentation contained in the comment block. All
examples are placed in a list. The source code is scanned for documented members
and classes. If any are found, the names are cross-referenced with the documenta-
tion. Source files or directories can be specified usinggKAMPLE _PATH tag of
doxygen’s configuration file.

If <file-name> itself is not unique for the set of example files specified byEXAM-
PLE_PATH tag, you can include part of the absolute path to disambiguate it.

If more that one source file is needed for the example,\thelude command can be
used.

Example:

/** A Test class.
* More details about this class.
*/

class Test

public:
/** An example member function.
* More details about this function.
*/
void example();

h
void Test::example() {}

/** \example example_test.cpp

* This is an example of how to use the Test class.

* More details about this example.

*/

Where the example filexample _test.cpp looks as follows:

void main()

{
Test t;

t.example();

See also:
section\include

21.9 \file [<xname>]

Indicates that a comment block contains documentation for a source or header file with
name<name-. The file name may include (part of) the path if the file-name alone

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.10 \fn (function declaration) 99

is not unique. If the file name is omitted (i.e. the line aftéife is left blank) then
the documentation block that contains ttfde command will belong to the file it is
located in.

Important:
The documentation of global functions, variables, typedefs, and enums will only
be included in the output if the file they are in is documented as well.

Example:
[+ Yile file.h
* A brief file description.
* A more elaborated file description.
*/
/**

* A global integer value.

* More details about this value.
*

extern int globalValue;

21.10 \fn (function declaration)

Indicates that a comment block contains documentation for a function (either global
or as a member of a class). This commandrify needed if a comment block st
placed in front (or behind) the function declaration or definition.

If your comment blocks in front of the function declaration or definition this command
can (and to avoid redundancy should) be omitted.

A full function declaration including arguments should be specified aftexftheom-
mand on asingleline, since the argument ends at the end of the line!

Warning:
Do not use this command if it is not absolutely needed, since it will lead to dupli-
cation of information and thus to errors.

Example:
class Test

{
public:
const char *member(char,int) throw(std::out_of_range);
h

const char *Test::member(char c,int n) throw(std::out_of range) {}

/*! \class Test

* \brief Test class.

*

* Details about Test.
*/

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.11 \hideinitializer 100

*

/*1 \fn const char *Test:member(char c,int n)

\brief A member function.

\param c a character.

\param n an integer.

\exception std::out_of range parameter is out of range.

\return a character pointer.

L

*/

See also:
section\var and\typedef

21.11 \hideinitializer

By default the value of a define and the initializer of a variable are displayed unless
they are longer than 30 lines. By putting this command in a comment block of a define
or variable, the initializer is always hidden.

See also:
section\showinitializet

21.12 \ingroup (<groupname> [<groupname> <groupname>])

If the \ingroup command is placed in a comment block of a class, file or namespace,
then it will be added to the group or groups identified<groupname-.

See also:
pageGrouping sections\defgroup \addtogroumnd\weakgroup

21.13 \interface

Indicates that a comment block contains documentation for an interface with name
<name>. The arguments are equal to thelass command.

See also:
section\class

21.14 \internal

This command writes the message ‘For internal use only’ to the output and alftext
an\internal command until the end of the comment block or the end of the section
(whichever comes first) is marked as "internal”.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.15 \mainpage [(title)] 101

If the \internal command is put inside a section (see for exargéetior) all subsec-
tion after the command are considered to be internal as well. Only a new section at the
same level will be visible again.

You can usdNTERNAL _DOCSin the config file to show or hide the internal docu-
mentation.

21.15 \mainpage [(title)]
If the \mainpage command is placed in a comment block the block is used to customize
the index page (in HTML) or the first chapter (FTiEX).

The title argument is optional and replaces the default title that doxygen normally gen-
erates. If you do not want any title you can spedaifytitle as the argument of
\mainpage.

Here is an example:

/*! \mainpage My Personal Index Page
\section intro Introduction

This is the introduction.

\section install Installation

\subsection stepl Step 1: Opening the box

L N N S

etc...

*
<

You can refer to the main page usikgef index (if the treeview is disabled, otherwise
you should us&ref main).

See also:
section\section section\subsectiorand sectiorpage

21.16 \name (header)

This command turns a comment block into a header definition of a member group.
The comment block should be followed by/@ { ... //@ } block containing the
members of the group.

See sectioMember Group$or an example.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.17 \namespace<name> 102

21.17 \namespace<name>

Indicates that a comment block contains documentation for a namespace with name
<name>.

21.18 \nosubgrouping

This command can be put in the documentation of a class. It can be used in combination
with member grouping to avoid that doxygen puts a member group as a subgroup of a
Public/Protected/Private/... section.

21.19 \overload [(function declaration)]

This command can be used to generate the following standard text for an overloaded
member function:

‘This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.’

If the documentation for the overloaded member function is not located in front of the
function declaration or definition, the optional argument should be used to specify the
correct function.

Any other documentation that is inside the documentation block will by appended after
the generated message.

Note 1:
You are responsible that there is indeed an earlier documented member that is
overloaded by this one. To prevent that document reorders the documentation you
should seBORT.MEMBER_DOCSto NO in this case.

Note 2:
The\overload command does not work inside a one-line comment.

Example:
class Test

{
public:
void drawRect(int,int,int,int);
void drawRect(const Rect &r);

b

void Test::drawRect(int x,int y,int w,int h) {}
void Test::drawRect(const Rect &r) {}

/*! \class Test

* \brief A short description.
*

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.20 \package<name> 103

* More text.
*/

/*1 \fn void Test::drawRect(int x,int y,int w,int h)

* This command draws a rectangle with a left upper corner at (\a x , \a y),
* width \a w and height \a h.

*/

/¥

* \overload void Test::drawRect(const Rect &r)
*

/

21.20 \package<name>

Indicates that a comment block contains documentation for a Java package with name
<name>.

21.21 \page<name> (title)

Indicates that a comment block contains a piece of documentation that is not directly
related to one specific class, file or member. The HTML generator creates a page
containing the documentation. THEEX generator starts a new section in the chapter
‘Page documentation’.

Example:

/*! \page pagel A documentation page
Leading text.
\section sec An example section
This page contains the subsections \ref subsectionl and \ref subsection2.
For more info see page \ref page2.
\subsection subsectionl The first subsection
Text.
\subsection subsection2 The second subsection
More text.

*

/*! \page page2 Another page
Even more info.
*/

Note:
The <name> argument consists of a combination of letters and number digits. If
you wish to use upper case letters (Vb PAGE), or mixed case letters (e.iyly-
Pagel) in the <name> argument, you should S ASESENSENAMESo YES
However, this is advisable only if your file system is case sensitive. Otherwise
(and for better portability) you should use all lower case letters (@ypagel)
for <name> in all references to the page.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.22 \relates<name> 104

See also:
section\section section\subsectiopand section ref.

21.22 \relates<name>

This command can be used in the documentation of a non-member furciame-.

It puts the function inside the ‘related function’ section of the class documentation.
This command is useful for documenting non-friend functions that are nevertheless
strongly coupled to a certain class. It prevents the need of having to document a file,
but only works for functions.

Example:
!
* A String class.
*/

class String

{
friend int strcmp(const String &,const String &);

3

/¥
* Compares two strings.
*/

int strcmp(const String &sl,const String &s2)

{
}

/*I \relates String
* A string debug function.
*

void stringDebug()
{
}

21.23 \showinitializer

By default the value of a define and the initializer of a variable are only displayed if
they are less than 30 lines long. By putting this command in a comment block of a
define or variable, the initializer is shown unconditionally.

See also:
section\ hideinitializer.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.24 \struct <name> [<header-file>] [<header-name>] 105

21.24 \struct <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a struct with name
<name>. The arguments are equal to thelass command.

See also:
section\class

21.25 \typedef (typedef declaration)

Indicates that a comment block contains documentation for a typedef (either global or
as a member of a class). This command is equivalef¥do and\fn.

See also:
section\fn and\var.

21.26 \union <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a union with name
<name>. The arguments are equal to thelass command.

See also:
section\class

21.27 \var (variable declaration)
Indicates that a comment block contains documentation for a variable or enum value

(either global or as a member of a class). This command is equivalgtygedef and
\fn.

See also:
section\fn and\typedef

21.28 \weakgroup <name> [(title)]

Can be used exactly likeaddtogroupbut has a lower priority when it comes to resolv-
ing conflicting grouping definitions.

See also:
pageGroupingand\addtogroup

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.29 \attention { attention text } 106

Section indicators

21.29 \attention { attention text }

Starts a paragraph where a message that needs attention may be entered. The para-
graph will be indented. The text of the paragraph has no special internal structure. All
visual enhancement commands may be used inside the paragraph. Multiple adjacent
\attention commands will be joined into a single paragraph. \Et&ntion command

ends when a blank line or some other sectioning command is encountered.

21.30 \author { list of authors }

Starts a paragraph where one or more author names may be entered. The paragraph
will be indented. The text of the paragraph has no special internal structure. All visual
enhancement commands may be used inside the paragraph. Multiple adpabor
commands will be joined into a single paragraph and separated by commas. Alter-
natively, one\author command may mention several authors. Jdghor command

ends when a blank line or some other sectioning command is encountered.

Example:

/*I \class WindowsNT

\brief Windows Nice Try.

\author Bill Gates

\author Several species of small furry animals gathered together
in a cave and grooving with a pict.

\version 4.0

\date 1996-1998

\bug It crashes a lot and requires huge amounts of memory.

\bug The class introduces the more bugs, the longer it is used.

\warning This class may explode in your face.

\warning If you inherit anything from this class, you're doomed.

R T R

*
<

class WindowsNT {};

21.31 \brief {brief description}

Starts a paragraph that serves as a brief description. For classes and files the brief
description will be used in lists and at the start of the documentation page. For class
and file members, the brief description will be placed at the declaration of the member
and prepended to the detailed description. A brief description may span several lines
(although it is advised to keep it brief!). A brief description ends when a blank line or
another sectioning command is encountered. If multipiéef commands are present

they will be joined. See sectid@uthorfor an example.

Synonymous toshort.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.32 \bug { bug description } 107

21.32 \bug { bug description }

Starts a paragraph where one or more bugs may be reported. The paragraph will be
indented. The text of the paragraph has no special internal structure. All visual en-
hancement commands may be used inside the paragraph. Multiple adjaggmiom-

mands will be joined into a single paragraph. Each bug description will start on a new
line. Alternatively, oné bug command may mention several bugs. Theg command

ends when a blank line or some other sectioning command is encountered. See section
\authorfor an example.

21.33 \date { date description }

Starts a paragraph where one or more dates may be entered. The paragraph will be in-
dented. The text of the paragraph has no special internal structure. All visual enhance-
ment commands may be used inside the paragraph. Multiple adjazetcommands

will be joined into a single paragraph. Each date description will start on a new line.
Alternatively, one\date command may mention several dates. Ydete command

ends when a blank line or some other sectioning command is encountered. See section
\authorfor an example.

21.34 \deprecated{ description }

Starts a paragraph indicating that this documentation block belongs to a deprecated
entity. Can be used to describe alternatives, expected life span, etc.

21.35 \else

Starts a conditional section if the previous conditional section was not enabled. The
previous section should have been started witlifa, \ifnot , or \elseif = com-
mand.

See also:
\if, \ifnot, \elseif \endif.

21.36 \elseif <section-labet>

Starts a conditional documentation section if the previous section was not enabled. A
conditional section is disabled by default. To enable it you must put the section-label
after theENABLED_SECTIONStag in the configuration file. Conditional blocks can

be nested. A nested section is only enabled if all enclosing sections are enabled as well.

See also:
sections\endif, \ifnot, \else and\elseif

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.37 \endif 108

21.37 \endif

Ends a conditional section that was started wijth or \ifnot For each\if or
\ifnot one and only one matchingndif must follow.

See also:
\if, and\ifnot.

21.38 \exception<exception-object- { exception description}

Starts an exception description for an exception object with naexeeption-object.
Followed by a description of the exception. The existence of the exception object is
not checked. The text of the paragraph has no special internal structure. All visual en-
hancement commands may be used inside the paragraph. Multiple adjexesption
commands will be joined into a single paragraph. Each parameter description will
start on a new line. Thgexception description ends when a blank line or some other
sectioning command is encountered. See segfiofior an example.

Note:
the tag\exceptions is a synonym for this tag.

21.39 \if <section-labe}>

Starts a conditional documentation section. The section ends with a matemdi
command. A conditional section is disabled by default. To enable it you must put
the section-label after tHENABLED_SECTIONStag in the configuration file. Condi-
tional blocks can be nested. A nested section is only enabled if all enclosing sections
are enabled as well.

Example:

/*I Unconditionally shown documentation.
* \if Condl

* Only included if Condl is set.

* \endif

* \if Cond2

* Only included if Cond2 is set.

* \if Cond3

* Only included if Cond2 and Cond3 are set.
* \endif

* More text.

*\endif

* Unconditional text.

*

You can also use conditional commands inside aliases. To document a class in two
languages you could for instance use:

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.40 \ifnot <section-labe}> 109

Example 2:
/*I \english
* This is English.
* \endenglish
* \dutch
* Dit is Nederlands.
* \enddutch

*/
class Example

{
5

Where the following aliases are defined in the configuration file:

ALIASES = "english=\if english" \
"endenglish=\endif" \
"dutch=\if dutch" \
"enddutch=\endif"

andENABLEDSECTIONScan be used to enable eitharglish or dutch .

See also:
sections\endif, \ifnot, \else and\elseit

21.40 \ifnot <section-labe}>

Starts a conditional documentation section. The section ends with a matemidij
command. This conditional section is enabled by default. To disable it you must put
the section-label after tHeENABLED_SECTIONStag in the configuration file.

See also:
sections\endif, \if, \else and\elseif

21.41 \invariant { description of invariant }

Starts a paragraph where the invariant of an entity can be described. The paragraph will
be indented. The text of the paragraph has no special internal structure. All visual en-
hancement commands may be used inside the paragraph. Multiple adjmwenint
commands will be joined into a single paragraph. Each invariant description will start
on a new line. Alternatively, onginvariant command may mention several invariants.
The\invariant command ends when a blank line or some other sectioning command is
encountered.

21.42 \note { text }

Starts a paragraph where a note can be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement com-

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.43 \par [(paragraph title)] { paragraph } 110

mands may be used inside the paragraph. Multiple adjagete commands will be
joined into a single paragraph. Each note description will start on a new line. Alter-
natively, one\note command may mention several notes. Thete command ends
when a blank line or some other sectioning command is encountered. See §pation
for an example.

21.43 \par [(paragraph title)] { paragraph }

If a paragraph title is given this command starts a paragraph with a user defined head-
ing. The heading extends until the end of the line. The paragraph following the com-
mand will be indented.

If no paragraph title is given this command will start a new paragraph. This will also
work inside other paragraph commands (ligaram or\warning) without ending the
that command.

The text of the paragraph has no special internal structure. All visual enhancement
commands may be used inside the paragraph.\phae command ends when a blank
line or some other sectioning command is encountered.

Example:

\class Test
Normal text.

-
£

I T R N

\par User defined paragraph:
Contents of the paragraph.

\par
New paragraph under the same heading.

\note
This note consists of two paragraphs.
This is the first paragraph.

\par
And this is the second paragraph.

More normal text.

*
<

class Test {};

21.44 \param <parameter-name> { parameter description }

Starts a parameter description for a function parameter with rguaeameter-name.
Followed by a description of the parameter. The existence of the parameter is not
checked. The text of the paragraph has no special internal structure. All visual en-
hancement commands may be used inside the paragraph. Multiple adjpaean
commands will be joined into a single paragraph. Each parameter description will start

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.45 \post{ description of the postcondition} 111

on a new line. Th¶m description ends when a blank line or some other sectioning
command is encountered. See sectjbmfor an example.

21.45 \post{ description of the postcondition}

Starts a paragraph where the postcondition of an entity can be described. The paragraph
will be indented. The text of the paragraph has no special internal structure. All visual
enhancement commands may be used inside the paragraph. Multiple adjpesint
commands will be joined into a single paragraph. Each postcondition will start on

a new line. Alternatively, ongpost command may mention several postconditions.
The \post command ends when a blank line or some other sectioning command is
encountered.

21.46 \pre { description of the precondition }

Starts a paragraph where the precondition of an entity can be described. The paragraph
will be indented. The text of the paragraph has no special internal structure. All visual
enhancement commands may be used inside the paragraph. Multiple adjeent
commands will be joined into a single paragraph. Each precondition will start on a new
line. Alternatively, oné\pre command may mention several preconditions. pre
command ends when a blank line or some other sectioning command is encountered.

21.47 \remarks { remark text }

Starts a paragraph where one or more remarks may be entered. The paragraph will
be indented. The text of the paragraph has no special internal structure. All visual
enhancement commands may be used inside the paragraph. Multiple atijacesutk
commands will be joined into a single paragraph. Each remark will start on a new
line. Alternatively, oné\remark command may mention several remarks. \feeark
command ends when a blank line or some other sectioning command is encountered.

21.48 \return { description of the return value }

Starts a return value description for a function. The text of the paragraph has no special
internal structure. All visual enhancement commands may be used inside the para-
graph. Multiple adjacentreturn commands will be joined into a single paragraph.
The\return description ends when a blank line or some other sectioning command is
encountered. See sectigin for an example.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.49 \retval <return value> { description } 112

21.49 \retval <return value> { description }

Starts a return value description for a function with naareturn value-. Followed

by a description of the return value. The text of the paragraph that forms the descrip-
tion has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacemetval commands will be joined into a single
paragraph. Each return value description will start on a new line.\Tétgal descrip-

tion ends when a blank line or some other sectioning command is encountered.

21.50 \saf{ references}

Starts a paragraph where one or more cross-references to classes, functions, methods,
variables, files or URL may be specified. Two names joined by eitheor # are
understood as referring to a class and one of its members. One of several overloaded
methods or constructors may be selected by including a parenthesized list of argument
types after the method name.

Synonymous tosee.

See also:
sectionautolinkfor information on how to create links to objects.

21.51 \since{ text }

This tag can be used to specify since when (version or time) an entity is available. The
paragraph that follow§since does not have any special internal structure. All visual
enhancement commands may be used inside the paragraph\sifice description
ends when a blank line or some other sectioning command is encountered.

21.52 \test{ paragraph describing a test casg
Starts a paragraph where a test case can be described. The description will also add
the test case to a separate test list. The two instances of the description will be cross-

referenced. Each test case in the test list will be preceded by a header that indicates the
origin of the test case.

21.53 \throw <exception-object> { exception description}
Synonymous td exception (see sectiofexception.

Note:
the tag\throws is a synonym for this tag.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.54 \todo { paragraph describing what is to be done} 113

21.54 \todo { paragraph describing what is to be done}

Starts a paragraph where a TODO item is described. The description will also add
an item to a separate TODO list. The two instances of the description will be cross-
referenced. Each item in the TODO list will be preceded by a header that indicates the
origin of the item.

21.55 \version{ version number }

Starts a paragraph where one or more version strings may be entered. The paragraph
will be indented. The text of the paragraph has no special internal structure. All visual
enhancement commands may be used inside the paragraph. Multiple atljezsitn
commands will be joined into a single paragraph. Each version description will start on

a new line. Alternatively, ongversion command may mention several version strings.
The\version command ends when a blank line or some other sectioning command is
encountered. See sectipauthorfor an example.

21.56 \warning { warning message}

Starts a paragraph where one or more warning messages may be entered. The para-
graph will be indented. The text of the paragraph has no special internal structure. All
visual enhancement commands may be used inside the paragraph. Multiple adjacent
\warning commands will be joined into a single paragraph. Each warning description
will start on a new line. Alternatively, ongwarning command may mention several
warnings. Thé\warning command ends when a blank line or some other sectioning
command is encountered. See sectjanthorfor an example.

21.57 \xrefitem <key> "(heading)” "(list title)” {text}

This command is a generalization of commands suctiaand\bug It can be used

to create user-defined text sections which are automatically cross-referenced between
the place of occurrence and a related page, which will be generated. On the related
page all sections of the same type will be collected.

The first argumentkey> is a identifier uniquely representing the type of the section.
The second argument is a quoted string representing the heading of the section under
which text passed as the forth argument is put. The third argument (list title) is used as
the title for the related page containing all items with the same key. The keys "todo”,
"test”, "bug”, and "deprecated” are predefined.

To get an idea on how to use therefitem command and what its effect is, consider
the todo list, which (for English output) can be seen an alias for the command

\xrefitem todo "Todo" "Todo List"

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.58 \addindex (text)

114

Since it is very tedious and error-prone to repeat the first three parameters of the com-
mand for each section, the command is meant to be used in combination with the
ALIASES option in the configuration file. To define a new commaneiminder, for
instance, one should add the following line to the configuration file:

ALIASES += "reminder=\xrefitem reminders \"Reminder\" \"Reminders\""

Note the use of escaped quotes for the second and third argument ‘ofréfiteem
command.

Commands to create links

21.58 \addindex (text)

This command adds (text) to thEX index.

21.59 \anchor <word>

This command places an invisible, named anchor into the documentation to which you
can refer with the,ref command.

Note:
Anchors can currently only be put into a comment block that is marked as a page
(using\pagg or mainpage \(mainpagg

See also:
section\ref.

21.60 \endlink
This command ends a link that is started with ik command.

See also:
section\link.

21.61 \link <link-object>

The links that are automatically generated by doxygen always have the name of the
object they point to as link-text.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.62 \ref <name> ["(text)”] 115

The\link command can be used to create a link to an object (a file, class, or member)
with a user specified link-text. The link command should end with emdlink com-
mand. All text between thglink and \endlink commands serves as text for a link to
the <link-object> specified as the first argument'dink.

See sectiomutolink for more information on automatically generated links and valid
link-objects.

21.62 \ref <name> ["(text)"]

Creates a reference to a hamed section, subsection, page or anchor. For HTML docu-
mentation the reference command will generate a link to the section. For a sections or
subsections the title of the section will be used as the text of the link. For anchor the
optional text between quotes will be used<arame> if no text is specified. FORTEX
documentation the reference command will generate a section number for sections or
the text followed by a page number<ifhame> refers to an anchor.

See also:
Section\pagefor an example of theref command.

21.63 \section<section-name- (section title)

Creates a section with namesection-name. The title of the section should be spec-
ified as the second argument of tteection command.

Warning:
This command only works inside related page documentationnabéh other
documentation blocks!

21.64 \subsection<subsection-name- (subsection title)

Creates a subsection with narisubsection-name. The title of the subsection should
be specified as the second argument of\thighsection command.

Warning:
This command only works inside a section of a related page documentation block
andnotin other documentation blocks!

See also:
Section\pagefor an example of th&subsectiorrommand.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.65 \subsubsection<subsubsection-name (subsubsection title) 116

21.65 \subsubsection<subsubsection-name (subsubsection title)

Creates a subsubsection with namsubsubsection-name The title of the subsub-
section should be specified as the second argument §bthesubsection command.

Warning:
This command only works inside a subsection of a related page documentation
block andnotin other documentation blocks!

See also:
Section\pagefor an example of th&subsubsectionommand.

21.66 \paragraph <paragraph-name> (paragraph title)

Creates a named paragraph with nanparagraph-name. The title of the paragraph
should be specified as the second argument of laeagraph command.

Warning:
This command only works inside a subsubsection of a related page documentation
block andnotin other documentation blocks!

See also:
Section\pagefor an example of th¶grapfcommand.

Commands for displaying examples

21.67 \dontinclude <file-name>

This command can be used to parse a source file without actually verbatim including
it in the documentation (as thgnclude command does). This is useful if you want to
divide the source file into smaller pieces and add documentation between the pieces.
Source files or directories can be specified usingBR&MPLE _PATH tag of doxy-

gen’s configuration file.

The class and member declarations and definitions inside the code fragment are ‘re-
membered’ during the parsing of the comment block that containetidtwetinclude
command.

For line by line descriptions of source files, one or more lines of the example can be
displayed using theline, \skip, \skipline, and\until commands. An internal pointer

is used for these commands. Tieontinclude command sets the pointer to the first
line of the example.

Example:
/*1 A test class. */

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.68 \include <file-name>

117

class Test
{
public:
/Il a member function
void example();

*

/*1 \page example

* \dontinclude example_test.cpp

* Our main function starts like this:

* \skip main

*\until {

* First we create a object \c t of the Test class.
* \skipline Test

* Then we call the example member function

* \line example

* After that our little test routine ends.

* \line }

i
Where the example filexample _test.cpp looks as follows:

void main()

Test t;
t.example();

}

See also:
sections\line, \skip, \skipling, and\until.

21.68 \include <file-name>

This command can be used to include a source file as a block of code. The command
takes the name of an include file as an argument. Source files or directories can be
specified using thEXAMPLE _PATH tag of doxygen’s configuration file.

If <file-name> itself is not unique for the set of example files specified byEXAM-
PLE_PATH tag, you can include part of the absolute path to disambiguate it.

Using the\include command is equivalent to inserting the file into the documentation
block and surrounding it withcodeand\endcodecommands.

The main purpose of thginclude command is to avoid code duplication in case of
example blocks that consist of multiple source and header files.

For a line by line description of a source files use tdentincludecommand in com-
bination with the\line, \skip, \skipling, and\until commands.

See also:
section\exampleand\dontinclude

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.69 \line (pattern)

118

21.69 \line (pattern)

This command searches line by line through the example that was last included us-
ing \include or\dontinclude until it finds a non-blank line. If that line contains the
specified pattern, it is written to the output.

The internal pointer that is used to keep track of the current line in the example, is set
to the start of the line following the non-blank line that was found (or to the end of the
example if no such line could be found).

See sectiondontincludefor an example.

21.70 \skip (pattern)
This command searches line by line through the example that was last included using
\include or\dontinclude until it finds a line that contains the specified pattern.

The internal pointer that is used to keep track of the current line in the example, is set
to the start of the line that contains the specified pattern (or to the end of the example
if the pattern could not be found).

See sectiofdontincludefor an example.

21.71 \skipline (pattern)

This command searches line by line through the example that was last included using
\include or\dontinclude until it finds a line that contains the specified pattern. It then
writes the line to the output.

The internal pointer that is used to keep track of the current line in the example, is set
to the start of the line following the line that is written (or to the end of the example if
the pattern could not be found).

Note:
The command:

\skipline pattern
is equivalent to:

\skip pattern
\line pattern

See sectiondontincludefor an example.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.72 \until (pattern) 119

21.72 \until (pattern)

This command writes all lines of the example that was last included ygnegude or
\dontinclude to the output, until it finds a line containing the specified pattern. The line
containing the pattern will be written as well.

The internal pointer that is used to keep track of the current line in the example, is set
to the start of the line following last written line (or to the end of the example if the
pattern could not be found).

See sectiondontincludefor an example.

21.73 \verbinclude <file-name>

This command includes the filefile-name> verbatim in the documentation. The
command is equivalent to pasting the file in the documentation and plaearbatim
and\endverbatim commands around it.

Files or directories that doxygen should look for can be specified usingX#evi-
PLE_PATH tag of doxygen'’s configuration file.

21.74 \htmlinclude <file-name>

This command includes the filefile-name> as is in the HTML documentation. The
command is equivalent to pasting the file in the documentation and plaegrbatim
and\endhtmlonly commands around it.

Files or directories that doxygen should look for can be specified usingXxi#evi-
PLE_PATH tag of doxygen’s configuration file.

Commands for visual enhancements

21.75 \a<word>

Displays the argumentword> using a special font. Use this command to refer to
member arguments in the running text.

Example:
.. the \a x and \a y coordinates are used to ...

This will result in the following text:
... thex andy coordinates are used to ...

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.76 \arg { item-description }

120

21.76 \arg { item-description }

This command has one argument that continues until the first blank line or until another
\arg is encountered. The command can be used to generate a simple, not nested list of
arguments. Each argument should start witfaay command.

Example:
Typing:

\arg \c AlignLeft left alignment.
\arg \c AlignCenter center alignment.
\arg \c AlignRight right alignment

No other types of alignment are supported.

will result in the following text:

e AlignLeft left alignment.
e AlignCenter center alignment.
e AlignRight right alignment

No other types of alignment are supported.

Note:
For nested lists, HTML commands should be used.

Equivalent to\li

21.77 \b <word>

Displays the argumentword> using a bold font. Equivalent tab>word. To
put multiple words in bold useb>multiple words.

21.78 \c <word>

Displays the argumentword> using a typewriter font. Use this to refer to a word of
code. Equivalent tectt>word</tt>.

Example:
Typing:

.. This function returns \c void and not \c int ...

will result in the following text:
... This function returnsoid and notint

Equivalent to\p To have multiple words in typewriter font usett>multiple
words</tt>.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.79 \code 121

21.79 \code

Starts a block of code. A code block is treated differently from ordinary text. It is
interpreted as C/C++ code. The names of the classes and members that are documented
are automatically replaced by links to the documentation.

See also:
section\endcodesection\verbatim

21.80 \copydoc<link-object>

Copies a documentation block from the object specifiegbgk-object> and pastes

it at the location of the command. This command can be useful to avoid cases where a
documentation block would otherwise have to be duplicated or it can be used to extend
the documentation of an inherited member.

The link object can point to a member (of a class, file or group), a class, a hamespace,
a group, a page, or a file (checked in that order). Note that if the object pointed to
is a member (function, variable, typedef, etc), the compound (class, file, or group)
containing it should also be documented for the copying to work.

To copy the documentation for a member of a class for instance one can put the fol-
lowing in the documentation

/*1 @copydoc MyClass::myfunction()
* More documentation.
*/

if the member is overloaded, you should specify the argument types explicitly (without
spaces!), like in the following:

/*1 @copydoc MyClass::myfunction(typel,type2) */

Qualified names are only needed if the context in which the documentation block is
found requires them.

The copydoc command can be used recursively, but cycles in the copydoc relation will
be broken and flagged as an error.

21.81 \dotfile <file> ["caption”]

Inserts an image generated by dot frerfile> into the documentation.

The first argument specifies the file name of the image. doxygen will look for files in
the paths (or files) that you specified after DOTFILE_DIRS tag. If the dot file is
found it will be used as an input file to the dot tool. The resulting image will be put

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.82 \e<word>

122

into the correct output directory. If the dot file name contains spaces you'll have to put
quotes () around it.

The second argument is optional and can be used to specify the caption that is displayed
below the image. This argument has to be specified between quotes even if it does not
contain any spaces. The quotes are stripped before the caption is displayed.

21.82 \e<word>
Displays the argumentword> in italics. Use this command to emphasize words.

Example:
Typing:

.. this is a \e really good example ...

will result in the following text:
... this is areally good example ...

Equivalent to\em To emphasis multiple words useen>multiple words</enm>.

21.83 \em <word>
Displays the argumenrtword> in italics. Use this command to emphasize words.

Example:
Typing:

.. this is a \em really good example ...

will result in the following text:
... this is areally good example ...

Equivalent to\e

21.84 \endcode

Ends a block of code.

See also:
section\code

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©)1997-2003

21.85 \endhtmlonly 123

21.85 \endhtmlonly
Ends a block of text that was started with\aerbatim command.

See also:
section\verbatim

21.86 \endlatexonly
Ends a block of text that was started with\erbatim command.

See also:
section\verbatim

21.87 \endverbatim
Ends a block of text that was started with\erbatim command.

See also:
section\verbatim

21.88 \endxmlonly
Ends a block of text that was started withyanlonly command.

See also:
section\xmlonly.

21.89 \f$

Marks the start and end of an in-text formula.

See also:
sectionformulasfor an example.

21.90 \f

Marks the start of a long formula that is displayed centered on a separate line.

See also:
section\f] and sectiorformulas

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.91 \f] 124

21.91 \f]

Marks the end of a long formula that is displayed centered on a separate line.

See also:
section\f[and sectiorformulas

21.92 \htmlonly

Starts a block of text that will be verbatim included in the generated HTML documen-
tation only. The block ends with a endhtmlonly command.

This command can be used to include HTML code that is too complex for doxygen
(i.e. applets, java-scripts, and HTML tags that require attributes). You can use the
\verbatim and endlatexonly pair to provide a propéiX alternative.

Note: environment variables (like $(HOME)) are resolved inside a HTML-only block.

See also:
section\verbatimand section verbatim

21.93 \image <format > <file> ["caption”]
[<sizeindication>=<size>]

Inserts an image into the documentation. This command is format specific, so if you
want to insert an image for more than one format you'll have to repeat this command
for each format.

The first argument specifies the output format. Currently, the following values are
supportedhtml andlatex

The second argument specifies the file name of the image. doxygen will look for files in
the paths (or files) that you specified after tRAGE _PATH tag. If the image is found
it will be copied to the correct output directory. If the image name contains spaces
you'll have to put quotes (") around it. You can also specify an absolute URL instead
of a file name, but then doxygen does not copy the image nor check its existance.

The third argument is optional and can be used to specify the caption that is displayed
below the image. This argument has to be specified between quotes even if it does not
contain any spaces. The quotes are stripped before the caption is displayed.

The fourth argument is also optional and can be used to specify the width or height
of the image. This is only useful foATgX output (i.e. formatfatex). The
sizeindication can be eithewidth orheight . The size should be a valid size
specifier in ATpX (for examplelOcm or 6in or a symbolic width like\textwidth).

Here is example of a comment block:

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.94 \latexonly 125

/*! Here is a snapshot of my new application:

* \image html application.jpg

* \image latex application.eps "My application" width=10cm
*/

And this is an example of how the relevant part of the configuration file may look:
IMAGE_PATH = my_image_dir

Warning:
The image format for HTML is limited to what your browser supports. FgeL
the image format must be Encapsulated PostScript (eps).
Doxygen does not check if the image is in the correct formatydadhave to make
sure this is the case!

21.94 \latexonly

Starts a block of text that will be verbatim included in the generaiBKldocumenta-
tion only. The block ends with a endlatexonly command.

This command can be used to includgX code that is too complex for doxygen (i.e.
images, formulas, special characters). You can usétaebatim and\endhtmlonly
pair to provide a proper HTML alternative.

Note: environment variables (like $(HOME)) are resolved insid&lg{-only block.

See also:
section\verbatimand sectionverbatim

21.95 \li { item-description }

This command has one argument that continues until the first blank line or until another
\li is encountered. The command can be used to generate a simple, not nested list of
arguments. Each argument should start witi @ommand.

Example:
Typing:
\li \c AlignLeft left alignment.
\li \c AlignCenter center alignment.
\li \c AlignRight right alignment

No other types of alignment are supported.

will result in the following text:

e AlignLeft left alignment.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.96 \n 126

e AlignCenter center alignment.
e AlignRight right alignment

No other types of alignment are supported.

Note:
For nested lists, HTML commands should be used.

Equivalent to\arg

21.96 \n

Forces a new line. Equivalent tobr> and inspired by the printf function.

21.97 \p <word>

Displays the parameterword> using a typewriter font. You can use this command to
refer to member function parameters in the running text.

Example:
.. the \p x and \p y coordinates are used to ...

This will result in the following text:
... thex andy coordinates are used to ...

Equivalent to\c

21.98 \verbatim

Starts a block of text that will be verbatim included in both the HTML and g
documentation. The block should end withendverbatim block. All commands are
disabled in a verbatim block.

Warning:
Make sure you include gendverbatim command for eatkerbatim command or
the parser will get confused!

21.99 \xmlonly

Starts a block of text that will be verbatim included in the generated XML output only.
The block ends with a endxmlonly command.

This command can be used to include custom XML tags.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.100 \\

127

See also:
section\verbatimand sectiorverbatim

21.100 \\

This command writes a backslash charactgrd the HTML and ATpX output. The

backslash has to be escaped in some cases because doxygen uses it to detect commands.

21101 \@

This command writes an at-sign (@) to the HTML aATEX output. The at-sign has
to be escaped in some cases because doxygen uses it to detect JavaDoc commands.

21.102 \~[Languageld]

This command enables/disables a language specific filter. This can be used to put
documentation for different language into one comment block and useWieUT-
LANGUAGHag to filter out only a specific language. Uselanguageid to enable
output for a specific language only aké to enable output for all languages (this is
also the default mode).

Example:

/*I \"english This is english \"dutch Dit is Nederlands \"german Dieses ist
deutsch. \” output for all languages.
*

21.103 \&

This command writes the & character to the HTML afAfEK output. This character
has to be escaped because it has a special meaning in HTML.

21.104 \$

This command writes the $ character to the HTML af¥ighX output. This character
has to be escaped in some cases, because it is used to expand environment variables.

21.105 \#

This command writes the # character to the HTML afigbX output. This character
has to be escaped in some cases, because it is used to refer to documented entities.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

21.106 < 128

21.106 <

This command writes the: character to the HTML andTgX output. This character
has to be escaped because it has a special meaning in HTML.

21.107 >

This command writes the character to the HTML andTgX output. This character
has to be escaped because it has a special meaning in HTML.

Commands included for Qt compatibility

The following commands are supported to remain compatible to the Qt class browser
generator. Danot use these commands in your own documentation.

¢ \annotatedclasslist

\classhierarchy
\define
\functionindex
\header

\headefrfilelist

\inherit

\l

\postheader

For PHP files there are a number of additional commands, that can be used inside
classes to make members public, private, or protected even though the language itself
doesn’t support this notion.

To mark a single item use one gprivate, \protected,\public. For starting a sec-
tion with a certain protection level use one ofprivatesection,\protectedsection,
\publicsection. The latter commands are similar to "private:”, "protected:”, and "pub-
lic:”in C++.

22 HTML Commands

Here is a list of all HTML commands that may be used inside the documentation. Note
that all attributes of a HTML tag are passed on to the HTML output only (the HREF
and NAME attributes for the A tag are the only exception).

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

129

e Starts a HTML hyper-link (HTML only).
e Starts an named anchor (HTML only).
e Ends a link or anchor (HTML only).

e Starts a piece of text displayed in a bold font.

e Ends a section.

e <BODY- Does not generate any output.

e </BODY> Does not generate any output.

e
 Forces a line break.

o <CENTER- starts a section of centered text.

e </CENTER> ends a section of centered text.

e <CAPTION> Starts a caption. Use within a table only.

e </CAPTION> Ends a caption. Use within a table only.

e <CODE Starts a piece of text displayed in a typewriter font.
e </CODE> End a<CODE- section.

e <DD> Starts an item description.

¢ <DFN> Starts a piece of text displayed in a typewriter font.
e </DFN> Ends a<DFN> section.

e <DL> Starts a description list.

e </DL > Ends a description list.

e <DT> Starts an item title.

e </DT > Ends an item title.

e Starts a piece of text displayed in an italic font.

e Ends a section.

o <FORNt+ Does not generate any output.

¢ </FORM> Does not generate any output.

e <HR> Writes a horizontal ruler.

e <H1> Starts an unnumbered section.

e </H1 > Ends an unnumberd section.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

130

e <H2> Starts an unnumbered subsection.

e </H2 > Ends an unnumbered subsection.

e <H3> Starts an unnumbered subsubsection.

e </H3 > Ends an unnumbered subsubsection.

e <| > Starts a piece of text displayed in an italic font.

¢ <INPUT> Does not generate any output.

e </l > Ends a<l > section.

e This command is written with attributes to the HTML output only.
e Starts a new list item.

e Ends a listitem.

¢ <META> Does not generate any output.

e <MULTICOL> ignored by doxygen.

e </MUTLICOL > ignored by doxygen.

e Starts a numbered item list.

e Ends a numbered item list.

e <P> Starts a new paragraph.

e </P > Ends a paragraph.

¢ <PRE> Starts a preformatted fragment.

e </PRE> Ends a preformatted fragment.

e <SMALL> Starts a section of text displayed in a smaller font.
e </SMALL> Ends a<SMALL> section.

e <STRONG Starts a section of bold text.

e Ends a section of bold text.

e <SUB> Starts a piece of text displayed in subscript.

e </SUB> Ends a<SUB> section.

e <SUP> Starts a piece of text displayed in superscript.
e </SUP> Ends a</SUP > section.

o <TABLE> starts a table.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

131

e </TABLE > ends atable.

e <TD> Starts a new table data element.

e </TD > Ends a table data element.

e <TR> Starts a new table row.

e </TR > Ends a table row.

e <TT> Starts a piece of text displayed in a typewriter font.
e </TT > Ends a<TT> section.

e <KBD> Starts a piece of text displayed in a typewriter font.
e </KBD> Ends a<KBD> section.

e Starts an unnumbered item list.

e Ends an unnumbered item list.

e <VAR> Starts a piece of text displayed in an italic font.

e </VAR> Ends a</VAR > section.
The special HTML character entities that are recognized by Doxygen:

e © the copyright symbol
e " adouble quote

e &?uml; where ? is one ofA,E,|,0,U,Y,a,e,i,o,u,y, writes a character with a
diaeresis accent (lik&).

e &?acute; where ? is one ofA,E,|,0,U,Y,a,e,i,o,u,y, writes a character with
a acute accent (lika).

e &?grave; where ? is one ofA,E,1,0,U,a,e,i,0,u,y, writes a character with a
grave accent (like).

e &?circ; where ? is one ofA,E,l,0,U,a,e,i,0,u,y, writes a character with a
circumflex accent (lik&).

o &7?tilde; where ? is one ofAN,0,a,n,d, writes a character with a tilde
accent (liked).

e ß write a sharp s (i.e. ”s) to the output.
e &?cedil; where ? is one ofc,C}, writes a c-cedille (like ¢).

e &?ring; where ? is one ofa,A}, writes ana with a ring (likea).

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

132

e anon breakable space.

Finally, to put invisible comments inside comment blocks, HTML style comments can
be used:

/*! <l-- This is a comment with a comment block --> Visible text */

Part Il

Developers Manual

23 Doxygen’s Internals

Doxygen’s internals Note that this section is still under construction!

The following picture shows how source files are processed by doxygen.

config file

Config parser

input files

drives

C Preprocessor Language parser Data organiser

drives

drivz7’

Doc Parser

tag file parser

Source Parser -
drives

Figure 2: Data flow overview

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

133

The following sections explain the steps above in more detail.

Config parser The configuration file that controls the settings of a project is parsed
and the settings are stored in the singleton cfagefig in src/config .h. The
parser itself is written usinfilex and can be found ierc/config .I. This parser is
also used directly bgoxywizard , so itis putin a separate library.

Each configuration option has one of 5 possible typ&ring , List , Enum

Int , or Bool . The values of these options are available through the global func-
tions Config _getXXX() , whereXXXis the type of the option. The argument of
these function is a string naming the option as it appears in the configuration file.
For instance:Config _getBool ("GENERATE.TESTLIST”) returns a reference to

a boolean value that iIERUEIf the test list was enabled in the config file.

The functionreadConfiguration() in src/doxygen .cpp reads the command
line options and then calls the configuration parser.

C Preprocessor The input files mentioned in the config file are (by default) fed to
the C Preprocessor (after being piped through a user defined filter if available).

The way the preprocessor works differs somewhat from a standard C Preprocessor. By
default it does not do macro expansion, although it can be configured to expand all

macros. Typical usage is to only expand a user specified set of macros. This is to allow
macro names to appear in the type of function parameters for instance.

Another difference is that the preprocessor parses, but not actually includes code when
it encounters a #include (with the exception of #include found in§ide } blocks).

The reasons behind this deviation from the standard is to prevent feeding multiple

definitions of the same functions/classes to doxygen'’s parser. If all source files would

include a common header file for instance, the class and type definitions (and their
documentation) would be present in each translation unit.

The preprocessor is written usifigx and can be found isrc/pre .I. For condition
blocks (#if) evaluation of constant expressions is needed. For flas@ based parser
is used, which can be found smc/constexp .y andsrc/constexp ..

The preprocessor is invoked for each file using peprocessFile() function
declared irsrc/pre .h, and will append the preprocessed result to a character buffer.
The format of the character buffer is

0x06 file name 1
0x06 preprocessed contents of file 1

0x06 file name n
0x06 preprocessed contents of file n

Language parser The preprocessed input buffer is fed to the language parser, which
is implemented as a big state machine usitex . It can be found in the file

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

134

src/scanner .l There is one parser for all languages (C/C++/Java/IDL). The state
variablesinsidelIDL andinsideJava are uses at some places for language spe-
cific choices.

The task of the parser is to convert the input buffer into a tree of entries (basically an
abstract syntax tree). An entry is definedsirt/entry .h and is a blob of loosely
structured information. The most important fielsection ~ which specifies the kind

of information contained in the entry.

Possible improvements for future versions:

e Use one scanner/parser per language instead of one big scanner.
e Move the first pass parsing of documentation blocks to a separate module.

e Parse defines (these are currently gathered by the preprocessor, and ignored by
the language parser).

Data organizer This step consists of many smaller steps, that build dictionaries of the
extracted classes, files, namespaces, variables, functions, packages, pages, and groups.
Besides building dictionaries, during this step relations (such as inheritance relations),
between the extracted entities are computed.

Each step has a function definedsrc/doxygen .cpp, which operates on the tree
of entries, built during language parsing. Look at the "Gathering information” part of
parselnput() for details.

The result of this step is a number of dictionaries, which can be found in the Doxygen
"namespace” defined iarc/doxygen .h. Most elements of these dictionaries are
derived from the clasBefinition ; The classMemberDef, for instance, holds all
information for a member. An instance of such a class can be part of a file (class
FileDef), a class (clas€lassDef), a namespace (clablamespaceDef), a

group (classsroupDef), or a Java package (claBackageDef).

Tag file parser |If tag files are specified in the configuration file, these are parsed
by a SAX based XML parser, which can be foundsirt/tagreader .cpp. The
result of parsing a tag file is the insertiontrfitry objects in the entry tree. The field
Entry::taginfo is used to mark the entry as external, and holds information about
the tag file.

Documentation parser Special comment blocks are stored as strings in the entities
that they document. There is a string for the brief description and a string for the
detailed description. The documentation parser reads these strings and executes the
commands it finds in it (this is the second pass in parsing the documentation). It writes
the result directly to the output generators.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

135

The parser is written in C++ and can be found in src/docparser.cpp. The tokens that
are eaten by the parser come from src/doctokenizer.l. Code fragments found in the
comment blocks are passed on to the source parser.

The main entry point for the documentation parservaidatingParse-
Doc() declared insrc/docparser .h. For simple texts with special commands
validatingParseText() is used.

Source parser If source browsing is enabled or if code fragments are encountered in
the documentation, the source parser is invoked.

The code parser tries to cross-reference to source code it parses with documented en-
tities. It also does syntax highlighting of the sources. The output is directly written to
the output generators.

The main entry point for the code parseparseCode() declared irsrc/code .h.

Output generators After data is gathered and cross-referenced, doxygen generates
output in various formats. For this it uses the methods provided by the abstract class
OutputGenerator . In order to generate output for multiple formats at once, the
methods ofOutputList are called instead. This class maintains a list of concrete
output generators, where each method called is delegated to all generators in the list.

To allow small deviations in what is written to the output for each concrete out-
put generator, it is possible to temporarily disable certain generators. The Output-
List class contains varioudisable() and enable() methods for this. The
methodsOutputList::pushGeneratorState() andOutputList::pop-
GeneratorState() are used to temporarily save the set of enabled/disabled output
generators on a stack.

The XML is generated directly from the gathered data structures. In the future XML
will be used as an intermediate language (IL). The output generators will then use this
IL as a starting point to generate the specific output formats. The advantage of having
an IL is that various independently developed tools written in various languages, could
extract information from the XML output. Possible tools could be:

e an interactive source browser
e aclass diagram generator

e computing code metrics.

Debugging Since doxygen uses a lotfiéx code it is important to understand how
flex works (for this one should read the man page) and to understand what it is doing
whenflex is parsing some input. Fortunately, when flex is used with the -d option it
outputs what rules matched. This makes it quite easy to follow what is going on for a
particular input fragment.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

136

To make it easier to toggle debug information for a given flex file | wrote the follow-
ing perl script, which automatically adds or removes -d from the correct line in the
Makefile:

#l/usr/local/bin/perl

$file = shift @ARGV;
print "Toggle debugging mode for $file\n";

add or remove the -d flex flag in the makefile

unless (rename "Makefile.libdoxygen","Makefile.libdoxygen.old") {
print STDERR "Error: cannot rename Makefile.libdoxygen\n";
exit 1;

}
if (open(F,"<Makefile.libdoxygen.old")) {

unless (open(G,">Makefile.libdoxygen™)) {
print STDERR "Error: opening file Makefile.libdoxygen for writing\n";
exit 1;

}

print "Processing Makefile.libdoxygen...\n";

while (<F>) {
if (SA(LEX\) -P([a-z]+)YY -t $file/(LEX) -d -P\1YY -t $file/lg) {

print "Enabling debug info for $file\n";

}
elsif (sS\(LEX\) -d -P([a-z]+)YY -t $file/(LEX) -P\1YY -t $file/lg) {
print "Disabling debug info for $file\n";

}
print G "$_";
}
close F;
unlink "Makefile.libdoxygen.old";

else {
print STDERR "Warning file Makefile.libdoxygen.old does not existi\n";
}

touch the file
$now = time;
utime $now, $now, $file

24 Perl Module output format documentation

Since version 1.2.18, Doxygen can generate a new output format we have called the
"Perl Module output format”. It has been designed as an intermediate format that can
be used to generate new and customized output without having to modify the Doxygen
source. Therefore, its purpose is similar to the XML output format that can be also
generated by Doxygen. The XML output format is more standard, but the Perl Module
output format is possibly simpler and easier to use.

The Perl Module output format is still experimental at the moment and could be
changed in incompatible ways in future versions, although this should not be very
probable. Itis also lacking some features of other Doxygen backends. However, it can

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

24.1 Using the Perl Module output format. 137

be already used to generate useful output, as shown by the Perl Module-based LaTeX
generator.

Please report any bugs or problems you find in the Perl Module backend or the Perl
Module-based LaTeX generator to the doxygen-develop mailing list. Suggestions are
welcome as well.

24.1 Using the Perl Module output format.

When theGENERATE _PERLMOD tag is enabled in the Doxyfile, running Doxy-
gen generates a number of files in trexrlmod/ subdirectory of your output directory.
These files are the following:

e DoxyDocs.pm This is the Perl module that actually contains the documentation,
in the Perl Module format describéxlow.

e DoxyModel.pm. This Perl module describes the structureDafxyDocs.pm
independently of the actual documentation. Belewfor details.

e doxyrules.make This file contains the make rules to build and clean the files
that are generated from the Doxyfile. Also contains the paths to those files and
other relevant information. This file is intended to be included by your own
Makefile.

e Makefile. This is a simple Makefile includindoxyrules.make

To make use of the documentation stored in DoxyDocs.pm you can use one of the de-
fault Perl Module-based generators provided by Doxygen (at the moment this includes
the Perl Module-based LaTeX generator, betow) or write your own customized
generator. This should not be too hard if you have some knowledge of Perl and it's the
main purpose of including the Perl Module backend in Doxygen.b@&&svfor details

on how to do this.

24.2 Using the Perl Module-based LaTeX generator.

The Perl Module-based LaTeX generator is pretty experimental and incomplete at the
moment, but you could find it useful nevertheless. It can generate documentation for
functions, typedefs and variables within files and classes and can be customized quite
a lot by redefining TeX macros. However, there is still no documentation on how to do
this.

Setting thePERLMOD _LATEX tag to YES in the Doxyfile enables the creation of
some additional files in thperlmod/ subdirectory of your output directory. These
files contain the Perl scripts and LaTeX code necessary to generate PDF and DVI out-
put from the Perl Module output, using PDFLaTeX and LaTeX respectively. Rules to
automate the use of these files are also addedxyrules.makeand theMakefile.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

24.2 Using the Perl Module-based LaTeX generator. 138

The additional generated files are the following:

o doxylatex.pl. This Perl script uses DoxyDocs.pm and DoxyModel.pm to gener-
atedoxydocs.tex a TeX file containing the documentation in a format that can
be accessed by LaTeX code. This file is not directly LaTeXable.

e doxyformat.tex. This file contains the LaTeX code that transforms the docu-
mentation from doxydocs.tex into LaTeX text suitable to be LaTeX'ed and pre-
sented to the user.

o doxylatex-template.pl This Perl script uses DoxyModel.pm to generate
doxytemplate.tex a TeX file defining default values for some macros. doxytem-
plate.tex is included by doxyformat.tex to avoid the need of explicitly defining
some macros.

e doxylatex.tex This is a very simple LaTeX document that loads some packages
and includes doxyformat.tex and doxydocs.tex. This document is LaTeX'ed to
produce the PDF and DVI documentation by the rules addddsxtgrules.make

24.2.1 Simple creation of PDF and DVI output using the Perl Module-based La-
TeX generator.

To try this you need to have installed LaTeX, PDFLaTeX and the packages used by
doxylatex.tex

1. Update your Doxyfile to the latest version using:
doxygen -u Doxyfile

2. Set bothGENERATE _PERLMOD andPERLMOD _LATEX tags to YES in
your Doxyfile.

3. Run Doxygen on your Doxyfile:

doxygen Doxyfile

4. A perlmod/ subdirectory should have appeared in your output directory. Enter
the perlmod/ subdirectory and run:

make pdf

This should generatedoxylatex.pdfwith the documentation in PDF format.

5. Run:

make dvi

This should generatedoxylatex.dviwith the documentation in DVI format.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

24.3 Perl Module documentation format. 139

24.3 Perl Module documentation format.

The Perl Module documentation generated by Doxygen is stor&bkyDocs.pm

This is a very simple Perl module that contains only two statements: an assigment
to the variable$doxydocsand the customary; statement which usually ends Perl
modules. The documentation is stored in the varidlolexydocs which can then be
accessed by a Perl script usiDbgxyDocs.pm

$doxydocscontains a tree-like structure composed of three types of nodes: strings,
hashes and lists.

e Strings. These are normal Perl strings. They can be of any length can contain
any character. Their semantics depends on their location within the tree. This
type of node has no children.

e Hashes These are references to anonymous Perl hashes. A hash can have mul-
tiple fields, each with a different key. The value of a hash field can be a string,
a hash or a list, and its semantics depends on the key of the hash field and the
location of the hash within the tree. The values of the hash fields are the children
of the node.

e Lists. These are references to anonymous Perl lists. A list has an undefined
number of elements, which are the children of the node. Each element has the
same type (string, hash or list) and the same semantics, depending on the location
of the list within the tree.

As you can see, the documentation containektlioxydocsdoes not present any special
impediment to be processed by a simple Perl script. To be able to generate meaningful
output using the documentation containe&doxydocsyou’ll probably need to know

the semantics of the nodes of the documentation tree, which we pregbist rage

24.4 Data structure describing the Perl Module documentation
tree.

You might be interested in processing the documentation containedxybDocs.pm
without needing to take into account the semantics of each node of the documentation
tree. For this purpose, Doxygen generat@oayModel.pm file which contains a data
structure describing the type and children of each node in the documentation tree.

The rest of this section is to be written yet, but in the meantime you can look at the Perl
scripts generated by Doxygen (suchdaxylatex.pl or doxytemplate-latex.p) to get
an idea on how to useoxyModel.pm.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

140

25 Internationalization

Support for multiple languages Doxygen has built-in support for multiple lan-
guages. This means that the text fragments that doxygen generates can be produced
in languages other than English (the default) at configuration time.

Currently (version 1.3.2-20030717), 28 languages are supported (sorted alphabeti-
cally): Brazilian Portuguese, Catalan, Chinese, Chinese Traditional, Croatian, Czech,

Danish, Dutch, English, Finnish, French, German, Greek, Hungarian, Italian, Japanese,
Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovene,
Spanish, Swedish, and Ukrainian.

The table of information related to the supported languages follows. It is sorted by
language alphabetically. TH&tatus column was generated from sources and shows
approximately the last version when the translator was updated.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

141

| Language | Maintainer | Contact address Status |
Brazilian Portuguese Fabio "FJTC” Jun Takada Chinp chino@icmc.sc.usp.br up-to-date
Catalan Albert Mora amora@iua.upf.es 1.2.17
Chinese Wei Liu liuwei@asiainfo.com 1.2.13
Wang Weihan wangweihan@capinfo.com.cn
Chinese Traditional | Daniel YC Lin daniel@twpda.com up-to-date
Gary Lee garylee@ecosine.com.tw
Croatian Boris Bralo boris.bralo@zg.tel.hr 1.3.1
Czech Petr Rikryl prikrylp@skil.cz up-to-date
Danish Erik Sge Sgrensen erik@mail.nu strange
Dutch Dimitri van Heesch dimitri@stack.nl up-to-date
English Dimitri van Heesch dimitri@stack.nl up-to-date
Finnish Olli Korhonen Olli.Korhonen@ccc.fi obsolete
French Xavier Outhier xouthier@yahoo.fr up-to-date
German Jens Seidel jensseidel@users.sf.net 1.3.1
Greek Harry Kalogirou harkal@rainbow.cs.unipi.gr 1.2.11
Hungarian Foldvari Gyorgy foldvari@diatronltd.com 1.2.1
Italian Alessandro Falappa alessandro@falappa.net up-to-date
Ahmed Aldo Faisal aaf23@cam.ac.uk
Japanese Ryunosuke Satoh sun594@hotmail.com obsolete
Kenji Nagamatsu naga@joyful.club.ne.jp
Korean Richard Kim ryk@dspwiz.com strange
Norwegian Lars Erik Jordet lej@circuitry.no 1.2.2
Polish Piotr Kaminski Piotr.Kaminski@ctm.gdynia.pl strange
Grzegorz Kowall g_kowal@poczta.onet.pl
Portuguese Rui Godinho Lopes ruiglopes@yahoo.com up-to-date
Romanian Alexandru losup aiosup@yahoo.com 1.2.16
Russian Alexandr Chelpanov cav@cryptopro.ru strange
Serbian Dejan Milosavljevic dmilos@email.com up-to-date
Slovak Stanislav Kudh¢ skudlac@pobox.sk 1.2.18
Slovene Matjaz Ostroversnik matjaz.ostroversnik@zrs-tk.si 1.2.16
Spanish Francisco Oltra Thennet foltra@puc.cl 1.2.7
Swedish XeT Erixon xet@hem.passagen.se obsolete
Ukrainian Olexij Tkatchenko olexij.tkatchenko@gmx.de 1.2.11

Most people on the list have indicated that they were also busy doing other things, so
if you want to help to speed things up please let them (or me) know.

If you want to add support for a language that is not yet listed please read the next

section.

Adding a new language to doxygen This short HOWTO explains how to add sup-
port for a new language to Doxygen:

Just follow these steps:

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

142

1. Tell me for which language you want to add support. If no one else is already
working on support for that language, you will be assigned as the maintainer for
the language.

2. Create a copy of translat@n.h and name it translateryour_2_letter country -
code>.h I'll use xx in the rest of this document.

3. Add definition of the symbol for your language into laofg.h:

#define LANG_xx

Use capital letters for youxx (to be consistent). Thiang _cfg.h defines
which language translators will be compiled into doxygen executable. Itis a kind
of configuration file. If you are sure that you do not need some of the languages,
you can remove (comment out) definitions of symbols for the languages, or you
can say#undef instead oftdefine for them.

4. Edit language.cpp: Add a

#ifdef LANG_xx
#include<translator_xx.h>
#endif

Remember to use the same symbol LANGthat you added ttang _cfg.h
l.e., thexx should be capital letters that identify your language. On the other
hand, thexx inside yourtranslator xx.h should be lower case.

Now, in setTranslator() add

#ifdef LANG_xx
else if (L_EQUAL("your_language_name"))

theTranslator = new TranslatorYourLanguage;

}
#endif
after theif { ... }. lL.e., it must be placed after the code for creating the
English translator at the beginning, and beforedtee { ... } part that

creates the translator for the default language (English again).
5. Edit libdoxygen.pro.in and adudanslator xx.h totheHEADERSne.
6. Edittranslator ~ xx.h :

¢ RenameTRANSLATOHRENH to TRANSLATORX H twice (i.e. in the
#ifndef and#define preprocessor commands at the beginning of the
file).

e Rename TranslatorEnglish to TranslatorYourLanguage

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

143

¢ In the memberdLanguage() change "english” into the name of your
language (use lower case characters only). Depending on the language
you may also wish to change the member functions latexLanguageSupport-
Command(), idLanguageCharset() and others (you will recognize them
when you start the work).

o Edit all the strings that are returned by the member functions that start with
tr. Try to match punctuation and capitals! To enter special characters (with
accents) you can:

— Enter them directly if your keyboard supports that and you are using
a Latin-1 font. Doxygen will translate the characters to propgdL
and leave the HTML and man output for what it is (which is fine, if
idLanguageCharset() is set correctly).

— Use html codes like ä for an a with an umlaut (i#@. See the
HTML specification for the codes.

7. Run configure and make again from the root of the distribution, in order to re-
generated the Makefiles.

8. Now you can useOUTPUTLANGUAGE = yourlanguage _name in the
config file to generate output in your language.

9. Sendtranslator _xx.h to me so | can add it to doxygen. Send also your
name and e-mail address to be included inrttantainers.txt list.

Maintaining a language New versions of doxygen may use new translated sen-
tences. In such situation, thEranslator class requires implementation of new
methods — its interface changes. Of course, the English sentences need to be translated
to the other languages. At least, new methods have to be implemented by the language-
related translator class; otherwise, doxygen wouldn’t even compile. Waiting until all
language maintainers have translated the new sentences and sent the results would not
be very practical. The following text describes the usage of translator adapters to solve
the problem.

The role of Translator Adapters. Whenever theTranslator class interface
changes in the new release, the new clasmslatorAdapter X_y_z is added

to thetranslator ~ _adapter.h file (here X, y, and z are numbers that correspond
to the current official version of doxygen). All translators that previously derived from
theTranslator class now derive from this adapter class.

The TranslatorAdapter X_y_z class implements the new, required methods. If
the new method replaces some similar but obsolete method(s) (e.g. if the number
of arguments changed and/or the functionality of the older method was changed or
enriched), theTranslatorAdapter _X_y_z class may use the obsolete method to
get the result which is as close as possible to the older result in the target language.
If it is not possible, the result (the default translation) is obtained using the English
translator, which is (by definition) always up-to-date.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

144

For example, when the newtrFile() method with parameters (to determine the
capitalization of the first letter and the singular/plural form) was introduced to replace
the older methodrFiles() without arguments, the following code appeared in one
of the translator adapter classes:

/*! This is the default implementation of the obsolete method
* used in the documentation of a group before the list of
* links to documented files. This is possibly localized.

*
virtual QCString trFiles()
{ return "Files"; }

/*! This is the localized implementation of newer equivalent
* using the obsolete method trFiles().

*/

virtual QCString trFile(bool first_capital, bool singular)

if (first_capital && !singular)

return trFiles(); // possibly localized, obsolete method
else

return english.trFile(first_capital, singular);

ThetrFiles() is not present in th@ranslatorEnglish class, because it was
removed as obsolete. However, it was used until now and its call was replaced by

trFile(true, false)

in the doxygen source files. Probably, many language translators implemented the
obsolete method, so it perfectly makes sense to use the same language dependent re-
sult in those cases. TheanslatorEnglish does not implement the old method.

It derives from the abstradiranslator class. On the other hand, the old trans-
lator for a different language does not implement the tite() method. Be-

cause of that it is derived from another base cla3sanslatorAdapter XYy_Z.

The TranslatorAdapter _X_y_z class have to implement the new, requited

File()) method. However, the translator adapter would not be compiled ifrthe

Files() method was not implemented. This is the reason for implementing the old
method in the translator adapter class (using the same code, that was removed from the
TranslatorEnglish).

The simplest way would be to pass the arguments to the English translator and to return
its result. Instead, the adapter uses thetdiiles() in one special case — when

the newtrFile(true, false) is called. This is the mostly used case at the time

of introducing the new method — see above. While this may look too complicated, the
technique allows the developers of the core sources to change the Translator interface,
while the users may not even notice the change. Of course, when thieFileg)

is used with different arguments, the English result is returned and it will be noticed by
non English users. Here the maintainer of the language translator should implement at
least that one particular method.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

145

What says the base class of a language translator? the language translator class
inherits from any adapter class the maintenance is needed. In such case, the language
translator is not considered up-to-date. On the other hand, if the language translator
derives directly from the abstract claSenslator , the language translator is up-
to-date.

The translator adapter classes are chained so that the older translator adapter class uses
the one-step-newer translator adapter as the base class. The newer adapter does less
adaptingwork than the older one. The oldest adapter class derives (indirectly) from

all of the adapter classes. The name of the adapter class is chosen so that its suffix is
derived from the previous official version of doxygen that did not need the adapter. This
way, one can say approximately, when the language translator class was last updated —
see details below.

The newest translator adapter derives from the absEracislatorAdapterBase

class that derives directly from the abstraichnslator class. It adds only the pri-

vate English-translator member for easy implementation of the default translation in-
side the adapter classes, and it also enforces implementation of one method for noticing
the user that the language translation is not up-to-date (because of that some sentences
in the generated files may appear in English).

Once the oldest adapter class is not used by any of the language translators, it can be
removed from the doxygen project. The maintainers should try to reach the state with
the minimal number of translator adapter classes.

To simplify the maintenance of the language translator classe$or the sup-
ported languages, th&anslator.pl perl script was developed (located in
doxygen/doc directory). It extracts the important information about obsolete and
new methods from the source files for each of the languages. The information is stored
in thetranslator reportASCII file (doxygen/doc/translator _report.txt).

Looking at the base class of the language translator, the script guesses also the sta-
tus of the translator — see the last column of the table with languages above. The
translator.pl is called automatically when the doxygen documentation is gen-
erated. You can also run the script manualy whenever you feel that it can help you.
Of course, you are not forced to use the results of the script. You can find the same
information by looking at the adapter class and its base classes.

How should | update my language translator? Firstly, you should be the language
maintainer, or you should let him/her know about the changes. The following text was
written for the language maintainers as the primary audience.

There are several approaches to be taken when updating your language. If you are not
extremely busy, you should always chose the most radical one. When the update takes
much more time than you expected, you can always decide use some suitable translator
adapter to finish the changes later and still make your translator working.

The most radical way of updating the language translatoiis to make your translator
class derive directly from the abstract cldsanslator ~ and provide translations for
the methods that are required to be implemented — the compiler will tell you if you for-

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

146

got to implement some of them. If you are in doubt, have a look aftheslator-

English class to recognize the purpose of the implemented method. Looking at the
previously used adapter class may help you sometimes, but it can also be misleading
because the adapter classes do implement also the obsolete methods (see the previous
trFiles() example).

In other words, the up-to-date language translators do not neetrainslator-

Adapter x_y_z classes at all, and you do not need to implement anything else than
the methods required by the Translator class (i.e. the pure virtual methods of the
Translator —they end with=0;).

If everything compiles fine, try to rutmanslator.pl , and have a look at the trans-
lator report (ASCII file) at thedoxygen/doc directory. Even if your translator is
marked as up-to-date, there still may be some remarks related to your souce code.
Namely, the obsolete methods—that are not used at all-may be listed in the section for
your language. Simply, remove their code (and runttaeslator.pl again).

If you do not have time to finish all the updatesyou should still start withhe most
radical approachas described above. You can always change the base class to the
translator adapter class that implements all of the not-yet-implemented methods.

If you prefer to update your translator gradually , look at thetranslator reportgen-

erated by theranslator.pl script and choose one of the missing method that is
implemented by the translator adapter, that is used as your base class. When there is
not such a method in your translator adapter base class, you probably can change the
translator adapter base to the newer one.

Probably the easiest approach of the gradual update is to look at the translator report to
the part where the list of the implemented translator adapters is shown. Then:

e Look how many required methods each adapter implements and guess how many
methods you are willing to update (to spend the time with).

e Choose the related oldest translator adapters to be removed (i.e. not used by your
translator).

e Change the base class of your translator class to the translator adapter that you
want to use.

¢ Implement the methods that were implemented by the older translator adapters.

Notice: Do not blindly implement all methods that are implemented by your translator
adapter base class. The reason is that the adapter classes implement also obsolete
methods. Another reason is that some of the methods could become obsolete from
some newer adapter on. Focus on the methods listeshaged

The really obsolete language translatorsnay lead to too much complicated adapters.
Because of that, doxygen developers may decide to derive such translators from the
TranslatorEnglish class, which is by definition always up-to-date.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

147

When doing so, all the missing methods will be replaced by the English translation.
This means that not-implemented methods will always return the English result. Such
translators are marked using wasdsolete . You should read iteally obsolete No
guess about the last update can be done.

Often, it is possible to construct better result from the obsolete methods. Because
of that, the translator adapter classes should be used if possible. On the other hand,

implementation of adapters for really obsolete translators brings too much maintenance
and run-time overhead.

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

Index

\#,127

\$, 127

\&, 127

\<, 128

\>, 128

\\, 127

\a,119
\addindex,114
\addtogroup95, 105
\anchor,114
\arg,120
\attention,106
\author,106

\b, 120

\brief, 106
\bug,107

\c, 120
\callgraph,95
\class 96
\code,121
\copydoc,121
\date,107
\def,96
\defgroup,97
\deprecatedl 07
\dontinclude 116
\dotfile,121
\e,122

\else, 107
\elseif,107

\em ,122
\endcodel22
\endhtmlonly,123
\endif, 108
\endlatexonly123
\endlink ,114
\endverbatim123
\endxmlonly,123
\enum,97
\example 98
\exception, 108
\f$, 123

\f[, 123

\f], 124

\file, 98

\fn, 99
\hideinitializer,100
\htmlinclude,119
\htmlonly, 124
\if, 108

\ifnot, 109
\image,124
\include,117
\ingroup,100
\interface, 100
\internal, 100
\invariant,109
\latexonly,125
\li, 125

\line, 118

\link, 114
\mainpagel101
\n, 126
\namespacei,02
\nosubgroupingl102
\note,109
\overload,102
\p, 126
\package103
\page,103
\par,110
\paragraphl116
\param,110
\post,111
\pre,111

\ref, 115
\relates,104
\remarks111
\return,111
\retval,112
\sa,112
\section,115
\showinitializer,104
\since,112
\skip,118
\skipline,118

INDEX

149

\struct,105
\subsection115
\subsubsectior, 16
\test,112
\throw, 112
\todo,113
\typedef,105
\union,105
\until, 119

\var, 105
\verbatim,126
\verbinclude 119
\version,113
\warning,113
\xmlonly, 126
\xrefitem,113
\~, 127

acknowledgements§,
ALIASES, 77
ALLEXTERNALS, 88
ALPHABETICAL _INDEX, 80
ALWAYS DETAILED _SEC,75

BIN_ABSPATH, 90

BINARY _TOC, 82

bison,5
BRIEFMEMBER_DESC,74
browser,17

CALL _GRAPH,89
CASE.SENSENAMES, 75
CGILNAME, 90

CGI_URL, 90

CHM_FILE, 82

CLASS DIAGRAMS, 88
CLASS GRAPH,88
COLLABORATION_GRAPH, 88
COLS.IN_ALPHA_INDEX, 80
COMPACT.LATEX, 83
COMPACT.RTF, 84

DETAILS_AT_TOP,76
DISABLE_INDEX, 82
DISTRIBUTE.GROUPDOC, 76
Doc++,3

DOC_ABSPATH, 90
DOC_URL, 90
DOT_CLEANUP, 90
DOT_IMAGE _FORMAT, 89
DOT_PATH, 89
DOTFILE_DIRS, 89

ENABLE_PREPROCESSING36
ENABLED_SECTIONS,76
ENUM_VALUES_PERLINE, 82
EXAMPLE_PATH, 79
EXAMPLE_PATTERNS,79
EXAMPLE_RECURSIVE,79
EXCLUDE, 78
EXCLUDE_PATTERNS,79
EXCLUDE_SYMLINKS, 78
EXPAND_AS_DEFINED, 87
EXPAND_ONLY _PREDEF 86
EXT_DOC_PATHS,90
EXTERNAL_GROUPS88
EXTRA_PACKAGES,83
EXTRACTALL, 73
EXTRACT_LOCAL_CLASSES,74
EXTRACT_PRIVATE, 74
EXTRACT_STATIC, 74

featuresb2
FILE_.PATTERNS,78
FILTER_SOURCEFILES, 79
flex, 5

FULL_PATH_NAMES, 75

GENERATEAUTOGEN.DEF, 86
GENERATEBUGLIST, 76
GENERATECHI, 82
GENERATEDEPRECATEDLIST,76
GENERATEHTML, 80
GENERATEHTMLHELP, 81
GENERATELATEX, 83
GENERATELEGEND, 90
GENERATEMAN, 85
GENERATEPERLMOD, 86
GENERATERTF, 84
GENERATETAGFILE, 88
GENERATETESTLIST,76
GENERATETODOLIST, 76

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

INDEX

150

GENERATETREEVIEW, 82
GENERATEXML, 85

GPL,3
GRAPHICAL_HIERARCHY, 89

HAVE_DOQOT, 88
HHC_LOCATION, 82
HIDE_FRIEND_.COMPOUNDS,74
HIDE_IN_.BODY_DOCS,74
HIDE_SCOPENAMES, 75
HIDE_UNDOC_CLASSES,74
HIDE_UNDOC_MEMBERS, 74
HIDE_UNDOC_RELATIONS, 88
HTML _ALIGN_MEMBERS, 81
HTML _FILE_EXTENSION, 80
HTML_FOOTER,81

HTML _HEADER, 80

HTML _OUTPUT,80

HTML _STYLESHEET,81

IGNORE_PREFIX,80
IMAGE _PATH, 79
INCLUDE_GRAPH ,89
INCLUDE_PATH, 87
INCLUDED_BY _GRAPH ,89
INHERIT_DOCS,76
INLINE_INFO , 76

INLINE _.INHERITED_MEMB, 75
INLINE _SOURCES/9
INPUT, 78
INPUT_FILTER, 79
installation,5
INTERNAL_DOCS,75

JAVADOC_AUTOBRIEF, 75

LaTeX, 17

LATEX _BATCHMODE, 84
LATEX _CMD_NAME, 83
LATEX _HEADER, 83
LATEX _HIDE_INDICES, 84
LATEX _OUTPUT,83
LATEX _PDFLATEX, 84
license3

MACRO_EXPANSION, 86
make,5

MAKEINDEX _CMD_NAME, 83
MAN _LINKS, 85

MAN _OUTPUT, 85

MAX _DOT_GRAPHDEPTH,89
MAX _DOT_-GRAPHHEIGHT, 89
MAX _DOT_-GRAPHWIDTH, 89
MAX _EXTENSION, 85

MAX _INITIALIZER _LINES, 77
MULTILINE _CPPRIS_BRIEF, 76

OPTIMIZE_.OUTPUT.FORC, 77
OPTIMIZE_.OUTPUT.JAVA, 77
output formatsg5
OUTPUT.DIRECTORY,73
OUTPUT.LANGUAGE, 73

PAPERTYPE, 83
parsing,18
PDFHYPERLINKS, 84
perl,5

PERLPATH, 88
perlmod,136
PERLMOD.LATEX, 86
PERLMOD MAKEVAR _PREFIX,86
PERLMOD.PRETTY,86
PREDEFINED 87
PROJECTNAME, 73
PROJECTINUMBER, 73

Qt,5
QUIET, 77

RECURSIVE,78
REFERENCEDBY _RELATION, 80
REFERENCESRELATION, 80
REPEATBRIEF, 74
RTF.HYPERLINKS, 84
RTF.OUTPUT,84
RTF.STYLESHEETFILE, 85

SEARCHINCLUDES, 87
SEARCHENGINE90
SHORTNAMES, 75
SHOW.INCLUDE_FILES, 75
SHOW.USED.FILES, 77
SKIP_.FUNCTION.MACROS, 87
SORTMEMBER_DOCS,76

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

INDEX

151

SOURCEBROWSER,79
STRIP.CODECOMMENTS, 79
STRIP.FROM_PATH, 75
SUBGROUPING,77

TAB_SIZE, 76

TAGFILES, 87
TEMPLATE_RELATIONS, 88
TOC_EXPAND, 82
TREEVIEW.WIDTH, 82

USEWINDOWS_ENCODING, 73
VERBATIM _HEADERS,75

WARN_FORMAT, 78
WARN_IF_UNDOCUMENTED, 78
WARN_LOGFILE, 78
WARNINGS, 78

XML _DTD, 85
XML _OUTPUT,85
XML _SCHEMA, 85

User Manual for Doxygen 1.3.3, written by Dimitri van Heesch(©1997-2003

	I User Manual
	Installation
	Getting started
	Documenting the code
	Lists
	Grouping
	Including formulas
	Graphs and diagrams
	Preprocessing
	Linking to external documentation
	Frequently Asked Questions
	Troubleshooting

	II Reference Manual
	Features
	Doxygen History
	Doxygen usage
	Doxytag usage
	Doxysearch usage
	Doxywizard usage
	Installdox usage
	Automatic link generation
	Configuration
	Special Commands
	HTML Commands

	III Developers Manual
	Doxygen's Internals
	Perl Module output format documentation
	Internationalization

