
XPP Commands
Bard Ermentrout — Jan 2000

ODE File Format

comment line - name of file, etc

#include filenam

d<name>/dt=<formula>

<name>’=<formula>

<name>(t)=<formula>

volt <name>=<formula>

<name>(t+1)=<formula>

x[n1..n2]’ = ...[j] [j-1] ... <-- Arrays

%[i1..i2]

u[j]’=...

v[j]’=...

%

markov <name> <nstates>

{t01} {t02} ... {t0k-1}

{t10} ...

...

{tk-1,0} ... {tk-1 k-1}

aux <name>=<formula>

!<name>=<formula> <-- parameters defined as formulae

<name>=<formula>

parameter <name1>=<value1>,<name2>=<value2>, ...

wiener <name1>, <name2>, ...

number <name1>=<value1>,<name2>=<value2>, ...

<name>(<x1>,<x2>,...,<xn>)=<formula>

table <name> <filename>

table <name> % <npts> <xlo> <xhi> <function(t)>

global sign {condition} {name1=form1;...}

init <name>=<value>,...

<name>(0)=<value> or <expr> <-- delay initial conditions

bdry <expression>

0= <expression> <--- For DAEs

solv <name>=<expression> <------ For DAEs

special <name>=conv(type,npts,ncon,wgt,rootname)

fconv(type,npts,ncon,wgt,rootname,root2,function)

sparse(npts,ncon,wgt,index,rootname)

fsparse(npts,ncon,wgt,index,rootname,root2,function)

comments

@ <name>=<value>, ...

set <name> {x1=z1,x2=z2,...}

only <name1>,<name2>,...

options <filename>

" {z=3,b=3,...} Some nice text <--- Active comments

done

INTEGRAL EQUATIONS

The general integral equation

u(t) = f(t) +

∫ t

0

K(t, s, u(s))ds

1

becomes

u = f(t) + int{K(t,t’,u)}

The convolution equation:

v(t) = exp(−t) +

∫ t

0

e−(t−s)2v(s)ds

would be written as:

v(t) = exp(-t) + int{exp(-t^2)#v}

If one wants to solve, say,

u(t) = exp(−t) +

∫ t

0

(t − t′)−muK(t, t′, u(t′))dt′

the form is:

u(t)= exp(-t) + int[mu]{K(t,t’,u}

and for convolutions, use the form:

u(t)= exp(-t) + int[mu]{w(t)#u}

NETWORKS

special zip=conv(type,npts,ncon,wgt,root)

where root is the name of a variable and wgt is a table, produces an array zip with npts:

zip[i] =
ncon∑

j=−ncon
wgt[j + ncon]root[i + j]

The sparse network has the syntax:

special zip=sparse(npts,ncon,wgt,index,root)

where wgt and index are tables with at least npts * ncon entries. The array index returns the indices of the
offsets to with which to connect and the array wgt is the coupling strength. The return is

zip[i] = sum(j=0;j<ncon) w[i*ncon+j]*root[k]

k = index[i*ncon+j]

The other two types of networks allow more complicated interactions:

special zip=fconv(type,npts,ncon,wgt,root1,root2,f)

evaluates as

zip[i]=sum(j=-ncon;j=ncon) wgt[ncon+j]*f(root1[i+j],root2[i])

and

special zip=fsparse(npts,ncon,wgt,index,root1,root2,f)

evaluates as

zip[i]=sum(j=0;j<ncon) wgt[ncon*i+j]*f(root1[k],root2[i])

k = index[i*ncon+j]

Matrix multiplication is also possible:

2

special k=mmult(n,m,w,u)

returns a vector k of length m defined as

k(j)=sum(i=0;i<n)w(i+nj)u(i)

while

special k=fmmult(n,m,w,u,v,f)

returns

k(j)=sum(i=0;i<n)w(i+nj)f(u(i),v(j))

OPTIONS The format for changing the options is:

@ name1=value1, name2=value2, ...

where name is one of the following and value is either an integer, floating point, or string. (All names can be
upper or lower case). The first four options can only be set outside the program. They are:

• MAXSTOR=integer sets the total number of time steps that will be kept in memory. The default is 5000.
If you want to perform very long integrations change this to some large number.

• BACK= {Black,White} sets the background to black or white.
• SMALL=fontname where fontname is some font available to your X-server. This sets the “small” font

which is used in the Data Browser and in some other windows.
• BIG=fontname sets the font for all the menus and popups.
• SMC={0,...,10} sets the stable manifold color
• UMC={0,...,10} sets the unstable manifold color
• XNC={0,...,10} sets the X-nullcline color
• YNC={0,...,10} sets the Y-nullcline color

The remaining options can be set from within the program. They are

• LT=int sets the linetype. It should be less than 2 and greater than -6.
• SEED=int sets the random number generator seed.
• XP=name sets the name of the variable to plot on the x-axis. The default is T, the time-variable.
• YP=name sets the name of the variable on the y-axis.
• ZP=name sets the name of the variable on the z-axis (if the plot is 3D.)
• COLORMAP=0,1,2,3,4,5 sets the colormap
• NPLOT=int tells XPP how many plots will be in the opening screen.
• XP2=name,YP2=name,ZP2=name tells XPP the variables on the axes of the second curve; XP8 etc are

for the 8th plot. Up to 8 total plots can be specified on opening. They will be given different colors.
• AXES={2,3} determine whether a 2D or 3D plot will be displayed.
• TOTAL=value sets the total amount of time to integrate the equations (default is 20).
• DT=value sets the time step for the integrator (default is 0.05).
• NJMP=integer tells XPP how frequently to output the solution to the ODE. The default is 1, which

means at each integration step.
• T0=value sets the starting time (default is 0).
• TRANS=value tells XPP to integrate until T=TRANS and then start plotting solutions (default is 0.)
• NMESH=integer sets the mesh size for computing nullclines (default is 40).
• METH={ discrete,euler,modeuler,rungekutta,adams,gear,volterra, backeul, qualrk,stiff,cvode,5dp,83dp,2rb,ymp}

sets the integration method (default is Runge-Kutta.)
• DTMIN=value sets the minimum allowable timestep for the Gear integrator.
• DTMAX=value sets the maximum allowable timestep for the Gear integrator

3

• VMAXPTS=value sets the number of points maintained in for the Volterra integral solver. The default is
4000.

• { JAC EPS=value, NEWT TOL=value, NEWT ITER=value} set parameters for the root finders.
• ATOLER=value sets the absolute tolerance for CVODE.
• TOLER=value sets the error tolerance for the Gear, adaptive RK, and stiff integrators. It is the relative

tolerance for CVODE.
• BOUND=value sets the maximum bound any plotted variable can reach in magnitude. If any plottable

quantity exceeds this, the integrator will halt with a warning. The program will not stop however (default
is 100.)

• DELAY=value sets the maximum delay allowed in the integration (default is 0.)
• BANDUP=int, BANDLO=int bandwidths for the Jacobian computation.
• PHI=value,THETA=value set the angles for the three-dimensional plots.
• XLO=value,YLO=value,XHI=value,YHI=value set the limits for two-dimensional plots (defaults are 0,-

2,20,2 respectively.) Note that for three-dimensional plots, the plot is scaled to a cube with vertices that
are ±1 and this cube is rotated and projected onto the plane so setting these to ±2 works well for 3D plots.

• XMAX=value, XMIN=value, YMAX=value, YMIN=value, ZMAX=value, ZMIN=value set the scaling for
three-d plots.

• OUTPUT=filename sets the filename to which you want to write for “silent” integration. The default is
“output.dat”.

• POIMAP={ section,maxmin, period} sets up a Poincare map for either sections of a variable, the
extrema, or period.

• POIVAR=name sets the variable name whose section you are interested in finding.
• POIPLN=value is the value of the section; it is a floating point.
• POISGN={ 1, -1, 0 } determines the direction of the section.
• POISTOP=1 means to stop the integration when the section is reached.
• RANGE=1 means that you want to run a range integration (in batch mode).
• RANGEOVER=name, RANGESTEP=number, RANGELOW=number, RANGEHIGH=number, RAN-

GERESET=Yes,No, RANGEOLDIC=Yes,No all correspond to the entries in the range integration option.
• TOR PER=value, defined the period for a toroidal phasespace and tellx XPP that there will be some

variables on the circle.
• FOLD=name, tells XPP that the variable ¡name¿ is to be considered modulo the period. You can repeat

this for many variables.
• AUTO-stuff. The following AUTO-specific variables can also be set: NTST, NMAX, NPR, DSMIN, DSMAX,

DS, PARMIN, PARMAX, NORMMIN, NORMMAX, AUTOXMIN, AUTOXMAX, AUTOYMIN, AUTOYMAX, AUTOVAR. The
last is the variable to plot on the y-axis. The x-axis variable is always the first parameter in the ODE file
unless you change it within AUTO.

COLOR MEANING 0-Black/White; 1-Red; 2-Red Orange; 3-Orange; 4-Yellow Orange; 5-Yellow; 6-Yellow
Green; 7-Green; 8-Blue Green; 9-Blue; 10-Purple.

KEYWORDS You should be aware of the following keywords that should not be used in your ODE files for
anything other than their meaning here.

sin cos tan atan atan2 sinh cosh tanh

exp delay ln log log10 t pi if then else

asin acos heav sign ceil flr ran abs del_shft

max min normal besselj bessely erf erfc poisson

arg1 ... arg9 @ $ + - / * ^ ** shift

| > < == >= <= != not \# int sum of i’

These are mainly self-explanatory. The nonobvious ones are:

• heav(arg1) the step function, zero if arg1<0 and 1 otherwise.

4

• sign(arg) which is the sign of the argument (zero has sign 0)
• ran(arg) produces a uniformly distributed random number between 0 and arg.

• besselj, bessely take two arguments, n, x and return respectively, Jn(x) and Yn(x), the Bessel functions.
• erf(x), erfc(x) are the error function and the complementary function.
• normal(arg1,arg2) produces a normally distributed random number with mean arg1 and variance arg2.
• poisson(arg) produces the number of events from a Poisson process with parameter arg. It is a random

number.
• max(arg1,arg2) produces the maximum of the two arguments and min is the minimum of them.
• if(<exp1>)then(<exp2>)else(<exp3>) evaluates <exp1> If it is nonzero it evaluates to <exp2> otherwise

it is <exp3>. E.g. if(x>1)then(ln(x))else(x-1) will lead to ln(2) if x=2 and -1 if x=0.

• delay(<var>,<exp>) returns variable <var> delayed by the result of evaluating <exp>. In order to use the
delay you must inform the program of the maximal possible delay so it can allocate storage.

• del shft(<var>,<shft>,<delay>). This operator combines the delay and the shift operators and re-
turns the value of the variable <var> shifted by <shft> at the delayed time given by <delay>.

• ceil(arg),flr(arg) are the integer parts of<arg> returning the smallest integer greater than and the
largest integer less than <arg>.

• t is the current time in the integration of the differential equation.
• pi is π.

• arg1, ..., arg9 are the formal arguments for functions
• int, # concern Volterra equations.
• shift(<var>,<exp>) This operator evaluates the expression <exp> converts it to an integer and then

uses this to indirectly address a variable whose address is that of <var> plus the integer value of the
expression. This is a way to imitate arrays in XPP. For example if you defined the sequence of 5 variables,
u0,u1,u2,u3,u4 one right after another, then shift(u0,2) would return the value of u2.

• sum(<ex1>,<ex2>)of(<ex3>) is a way of summing up things. The expressions <ex1>,<ex1> are evaluated
and their integer parts are used as the lower and upper limits of the sum. The index of the sum is i’ so
that you cannot have double sums since there is only one index. <ex3> is the expression to be summed
and will generally involve i’. For example sum(1,10)of(i’) will be evaluated to 55. Another example
combines the sum with the shift operator. sum(0,4)of(shift(u0,i’)) will sum up u0 and the next four
variables that were defined after it.

5

