

pdfmap-1.60/doc/index.html

 Table of Contents

 			PDFMap's programming documentation
 			

			
 			

 Modules and Packages

 			

			

			pdfmap			

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap.py.html

 Table of Contents

 			Module: pdfmap
 			pdfmap.py

			

			

 Imported modules

 			

			

import cStringIO

import cgi

import getopt

import os

import re

import string

import sys

import urllib

import whrandom

			

 Functions

 			

			

__display_usage_and_quit

__display_version_and_quit

createpdfmap

parse_commandline

standardize_form

			

 			
 __display_usage_and_quit

			

__display_usage_and_quit ()

Displays command line usage, then exists successfully.

			

 			
 __display_version_and_quit

			

__display_version_and_quit ()

Displays version number, then exists successfully.

			

 			
 createpdfmap

			

createpdfmap (
 cmdline,
 arguments,
 mandatory,
)

Options check and conversions, then does the real work.

			

 			
 parse_commandline

			

parse_commandline (
 argv,
 short,
 long,
)

Parses the command line, controlling options.

			

 Exceptions

 			

			

PDFMapError, "Unexpected problem when parsing command line"

			

 			
 standardize_form

			

standardize_form (form)

Tries to determine if we were launched as a CGI script
 or from Zope, then returns the form contents as a dictionnary
 identical in both cases.

			

 Classes

 			

			

			Circle			
For objects represented by circles on the map.

			Cross			
For objects represented by crosses on the map.

			Diamond			
For objects represented by diamonds on the map.

			Ellipse			
For objects represented by ellipses on the map.

			Image			
For objects represented by images on the map.

			MapBackground			
For rasterized background images.

			MapObject			
For shapes/images which represent objects on the map.

			PDFMap			
Our Map class.

			PDFMapError			
PDFMap's Exception class.

			Rectangle			
For objects represented by rectangles on the map.

			Square			
For objects represented by squares on the map.

			Star			
For objects represented by stars on the map.

			Triangle			
For objects represented by triangles on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Circle.py.html

 Table of Contents

 			Class: Circle
 			pdfmap.py

			

For objects represented by circles on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

draw

			

 			
 draw

			

draw (self)

Draws this shape on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Cross.py.html

 Table of Contents

 			Class: Cross
 			pdfmap.py

			

For objects represented by crosses on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

draw

			

 			
 draw

			

draw (self)

Draws this shape on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Diamond.py.html

 Table of Contents

 			Class: Diamond
 			pdfmap.py

			

For objects represented by diamonds on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

draw

			

 			
 draw

			

draw (self)

Draws this shape on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Ellipse.py.html

 Table of Contents

 			Class: Ellipse
 			pdfmap.py

			

For objects represented by ellipses on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

draw

			

 			
 draw

			

draw (self)

Draws this shape on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Image.py.html

 Table of Contents

 			Class: Image
 			pdfmap.py

			

For objects represented by images on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

__init__

draw

realDraw

			

 			
 __init__

			

__init__ (
 self,
 mappdf,
 dummy,
 imagename,
 mask="auto",
)

Initializes an image Map object.

 mappdf : the PDF Map object

 dummy : unused, but provides a constructor consistent
 with other MapObjects

 imagename : image name or directory name

 mask : either "auto" or a color tuple or empty (which means "auto" too)
 represents the color to mask in the image (the transparent color)

			

 			
 draw

			

draw (self, message)

Represents the object as an error message when something went wrong.

			

 			
 realDraw

			

realDraw (self)

Really draws the image object on the PDF map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_MapBackground.py.html

 Table of Contents

 			Class: MapBackground
 			pdfmap.py

			

For rasterized background images.

			

 Methods

 			

			

__init__

draw

			

 			
 __init__

			

__init__ (
 self,
 filename,
 x,
 y,
 width,
 height,
 rotation=0,
)

Initialize local data.

 filename : the raster map in a graphic file format (e.g. tiff)
 or the image itself in PIL.Image.Image format

 x, y : coordinates of the bottom left of the raster map in meters

 width, height : real width and height of the map in meters

 height : real height of the map in meters

 rotation : angle in degres between the raster map and the real North

			

 			
 draw

			

draw (self, mappdf)

Draws the map image file on the pdf document, taking care of the scales.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_MapObject.py.html

 Table of Contents

 			Class: MapObject
 			pdfmap.py

			

For shapes/images which represent objects on the map.

			

 Methods

 			

			

__init__

draw

drawIt

realDraw

			

 			
 __init__

			

__init__ (
 self,
 mappdf,
 thickness,
 rgbout,
 rgbin,
)

Initializes a shape Map object.

 mappdf : the PDF Map object

 thickness : thickness of the drawing

 rgbout : drawing's external color or filename (images)

 rgbin : drawing's internal color or ""

			

 			
 draw

			

draw (self)

Only there to be sure the user will override it.

			

 Exceptions

 			

			

PDFMapError, 'NotImplemented\nYou must first subclass pdfmap.MapObject, then override its draw() method'

			

 			
 drawIt

			

drawIt (
 self,
 x,
 y,
 length,
 width,
 orientation,
 url=None,
)

Draws an object on the PDF map.

 x,y : object's coordinates in meters

 length : object's length in meters

 width : object's width in meters

 orientation : object's orientation in degres

 url : optional url to make an hyperlink on this object

			

 			
 realDraw

			

realDraw (self)

Really draws the object on the PDF map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_PDFMap.py.html

 Table of Contents

 			Class: PDFMap
 			pdfmap.py

			

Our Map class.

			

 Methods

 			

			

 			
__del__

__init__

__str__

_available_shapes

_draw_call_logo

_draw_grid

_draw_legend

_draw_north

			
_draw_object

_draw_scales

_draw_titles

_read_config

_splitline

draw_datas

endpage

formatpage

			
initpage

output

setaxis

unit_to_points

			

 			
 __del__

			

__del__ (self)

Frees some more memory.

			

 			
 __init__

			

__init__ (
 self,
 author,
 title,
 subtitle,
 papersize,
)

Initialize a PDF Map.

 author : the author's name

 title : the document's title

 subtitle : the document's subtitle

 papersize : any paper size natively recognized by the ReportLab toolkit,
 or a string of the form "WxH" where W and H are the Page's
 dimensions in centimeters.

			

 			
 __str__

			

__str__ (self)

Returns the PDF document as a string of text.

			

 			
 _available_shapes

			

_available_shapes (self)

Returns the list of available shapes as defined in this module.

			

 			
 _draw_call_logo

			

_draw_call_logo (self)

			

 			
 _draw_grid

			

_draw_grid (self)

Draws the grid on the page.

			

 			
 _draw_legend

			

_draw_legend (
 self,
 config,
 total,
 rejected,
)

Draws the map legend.

			

 			
 _draw_north

			

_draw_north (self)

Draws the North arrow.

			

 			
 _draw_object

			

_draw_object (self, linesplit)

Draws an object on the map.

 linesplit : a tuple containing the corresponding
 entry in the configuration file and
 the fields from the input file :

 (confobject, [nature, x, y, length, width, orientation, url])

			

 			
 _draw_scales

			

_draw_scales (self)

Draws the x and optionally y scales.

 This code is actually deactivated.

			

 			
 _draw_titles

			

_draw_titles (self)

Draws the different titles and copyright messages.

			

 			
 _read_config

			

_read_config (self, filename)

Reads a configuration file and returns a Python dictionnary.

			

 Exceptions

 			

			

 			
PDFMapError, "%s : file doesn't exist" % filename

PDFMapError, "Error in configuration file %s\n\tduplicated line : '%s'" %(filename, confline)

PDFMapError, "Error in configuration file %s\n\tincomplete line : '%s'" %(filename, confline)

PDFMapError, "Error in configuration file %s\n\tinvalid Magnify field : '%s'" %(filename, confline)

PDFMapError, "Error in configuration file %s\n\tinvalid MaximalSize field : '%s'" %(filename, confline)

			
PDFMapError, "Error in configuration file %s\n\tinvalid MinimalSize field : '%s'" %(filename, confline)

PDFMapError, "Error in configuration file %s\n\tinvalid RGBin field : '%s'" %(filename, confline)

PDFMapError, "Error in configuration file %s\n\tinvalid RGBout field : '%s'" %(filename, confline)

PDFMapError, "Error in configuration file %s\n\tinvalid Thickness field : '%s'" %(filename, confline)

PDFMapError, "Error in configuration file %s\n\tunknown shape type : '%s'" %(filename, confline)

			

 			
 _splitline

			

_splitline (
 self,
 configuration,
 line,
)

Splits a data line, trying to be intelligent about the line format at the same time.

 The datas read from the input file must be of the form :

 nature x y length width orientation url

 or nature,x,y,length,width,orientation,url

 or nature;x;y;length;width;orientation;url

 or all the fields separated by any amount of whitespace

 The url field is optionnal.

			

 Exceptions

 			

			

PDFMapError, "Nature %s unknown and no DEFAULT entry in configuration file" % nature

			

 			
 draw_datas

			

draw_datas (
 self,
 configfile,
 inputfile,
 legend=1,
)

Draws all objects of an input file on the map.

 configfile : the configuration file name

 inputfile : the datas file name or handle,
 or "-" or None which both mean sys.stdin

 legend : 1 indicates that we want a legend, 0 that we don't

			

 Exceptions

 			

			

PDFMapError, "%s : file doesn't exist" % inputfile

PDFMapError, "%s : invalid configuration file" % configfile

			

 			
 endpage

			

endpage (self)

Ends the previous page and creates a new one.

			

 			
 formatpage

			

formatpage (
 self,
 orientation="portrait",
 leftmargin="1.5cm",
 bottommargin="1.5cm",
 rightmargin="1.5cm",
 topmargin="1.5cm",
)

Set the page orientation and margins.

 The page dimensions are set from the constructor's papersize
 parameter, because having multiple different page sizes is
 probably possible but not convenient for printing. However
 having a different orientation from page to page is
 interesting.

 orientation : "portrait" or "landscape", defaults to "portrait"

 leftmargin : left margin, defaults to 1.5cm

 bottommargin : bottom margin, defaults to 1.5cm

 rightmargin : right margin, defaults to 1.5cm

 topmargin : top margin, defaults to 1.5cm

			

 Exceptions

 			

			

PDFMapError, "Invalid bottommargin %s" % bottommargin

PDFMapError, "Invalid leftmargin %s" % leftmargin

PDFMapError, "Invalid orientation %s" % str(orientation)

PDFMapError, "Invalid papersize %s" % str(self.papersize)

PDFMapError, "Invalid rightmargin %s" % rightmargin

PDFMapError, "Invalid topmargin %s" % topmargin

			

 			
 initpage

			

initpage (
 self,
 background,
 xorigin,
 yorigin,
 xscale,
 yscale,
 xstep,
 ystep,
 rotation,
)

Creates a new page in the PDF document.

 background : a MapBackground object

 xorigin, yorigin : origin coordinates in meters

 xscale, yscale : x and y scales (e.g. 1.0/25000.0)

 xstep, ystep : grid cell's dimensions in meters

 rotation : orientation wrt. the North, in degres.

			

 			
 output

			

output (self, file="-")

Outputs the PDF document to the specified file.

 file : "-" or None both mean sys.stdout, which is the default
 you can also pass a file object

			

 			
 setaxis

			

setaxis (
 self,
 xaxis=[],
 yaxis=[],
 xaxisalign=1,
 yaxisalign=1,
)

Sets the two axis labels.

 xaxis : list of labels for x

 yaxis : list of labels for y

 xaxisalign : 1 if x labels are aligned with grid, 0 if they are centered in cell's width

 yaxisalign : 1 if y labels are aligned with grid, 0 if they are centered in cell's height

			

 			
 unit_to_points

			

unit_to_points (self, value)

Converts a value expressed in centimeters, inches, points into points.

 value : The number to convert. If it doesn't contain a unit string
 like pt for points, cm for centimeters or in for inches, then
 centimeters is assumed.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_PDFMapError.py.html

 Table of Contents

 			Class: PDFMapError
 			pdfmap.py

			

PDFMap's Exception class.

			

 Methods

 			

			

__init__

__str__

			

 			
 __init__

			

__init__ (self, value)

			

 			
 __str__

			

__str__ (self)

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Rectangle.py.html

 Table of Contents

 			Class: Rectangle
 			pdfmap.py

			

For objects represented by rectangles on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

draw

			

 			
 draw

			

draw (self)

Draws this shape on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Square.py.html

 Table of Contents

 			Class: Square
 			pdfmap.py

			

For objects represented by squares on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

draw

			

 			
 draw

			

draw (self)

Draws this shape on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Star.py.html

 Table of Contents

 			Class: Star
 			pdfmap.py

			

For objects represented by stars on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

draw

			

 			
 draw

			

draw (self)

Draws this shape on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/doc/pdfmap_Triangle.py.html

 Table of Contents

 			Class: Triangle
 			pdfmap.py

			

For objects represented by triangles on the map.

			

 Base Classes

 			

			

MapObject

			

 Methods

 			

			

draw

			

 			
 draw

			

draw (self)

Draws this shape on the map.

 Table of Contents

 This document was automatically generated
 on Mon Apr 15 15:20:55 2002 by
 HappyDoc version
 2.0

pdfmap-1.60/tests/README

$Id: README,v 1.4 2002/01/23 10:12:50 jalet Exp $
#
pdfmap tests - January 13th, 2002

(c) 2001 Jerome Alet <alet@librelogiciel.com>
You're welcome to redistribute this software under the
terms of the GNU General Public Licence version 2.0
or, at your option, any higher version.

You can read the complete GNU GPL in the file COPYING
which should come along with this software, or visit
the Free Software Foundation's WEB site http://www.fsf.org

The sample scripts europe.sh, europe.py and europe.bat, will
produce a map of Europe and draw on this map some symbols to
represent cities and capitols. The europe.sh script is Unix
specific, while the europe.bat script is Windows specific. The
europe.py script works both under Unix and under Windows.

The sample dataset comes from the MapIt project, which is
downloadable from :

	http://www.mapit.de/

and I was generously allowed to include it in this project
by Bernhard Reiter and Bernhard Herzog, from Intevation GmbH.

I was generously allowed to include the Eiffel Tower picture
by Geraldine Chouard (http://wwwusers.imaginet.fr/~chouard).

To produce the map of Europe with pdfmap, simply type :

	$./europe.sh europe.datas

or :

	$./europe.py europe.datas

Windows users have to launch either :

	C:\PDFMAP\TESTS> europe.bat europe.datas

or :

	C:\PDFMAP\TESTS> python europe.py europe.datas

Then view or print it with any tool of your choice,
some examples are : Adobe Acrobat Reader, gv, xpdf

	$ acroread europe.pdf

Some tools like Adobe Acrobat Reader will then
allow you to click on each city or capitol to
view Google's search results about this town.

Both europe.py, europe.bat and europe.sh produce exactly
the same map, although the size of the resulting pdf
files may differ a bit. Reading these scripts as well
as the configuration file europe.conf and the data file
europe.datas will help you in understanding how
to use successfully pdfmap with your own datas.

When viewing europe.pdf, don't be afraid of seing
the big logo of my freelancer company at the upper
left. This won't appear on your own maps provided
you don't put a file named "calllogo.png" in
your application's directory.

If you plan to produce some maps from your own
datas and don't know how to do, then you can
buy some consulting time. Just send me an email
describing where your datas come from (MSExcel, RDBMS...)
and what they look like, and I'll send you a quote with
great pleasure ;-)

Buying some consulting time will help improve this
software, but you can also help improve it by sending
patches, sample datasets and maps (which must be Freely
redistributable, and for no fee), etc...

Enjoy !

Please e-mail bugs to: alet@librelogiciel.com (Jerome Alet)

pdfmap-1.60/tests/calllogo.png

pdfmap-1.60/tests/eiffel.gif

pdfmap-1.60/tests/europe.bat

@echo off
:
: $Id: europe.bat,v 1.2 2002/01/26 09:54:18 jalet Exp $
:
: pdfmap test script - January 19th, 2002
:
: (c) 2001 Jerome Alet <alet@librelogiciel.com>
: You're welcome to redistribute this software under the
: terms of the GNU General Public Licence version 2.0
: or, at your option, any higher version.
:
: You can read the complete GNU GPL in the file COPYING
: which should come along with this software, or visit
: the Free Software Foundation's WEB site http://www.fsf.org
:
\reportlab\python ..\pdfmap.py --config europe.conf --bgmap europe.png --bgx=0 --bgy=0 --bgwidth=2400 --bgheight=2400 --bgrotation=0 --legend --author="Jerome Alet" --title="Europe" --subtitle="Datas from MapIt.de" --papersize="A3" --orientation="portrait" --xorigin=0 --yorigin=0 --xscale=0.000105 --yscale=0.00015 --xstep=500 --ystep=500 --rotation=0 --xalign --xlabels="0 500 1000 1500 2000 2500" --yalign --ylabels="0 500 1000 1500 2000 2500" --leftmargin=1.5cm --bottommargin=1.5cm --rightmargin=1.5cm --topmargin=1.5cm --outputfile=europe.pdf %1

pdfmap-1.60/tests/europe.conf

europe.conf - (c) 2002 Jerome Alet
(c) 2002 C@LL - Conseil Internet & Logiciels Libres
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
#
$Id: europe.conf,v 1.5 2002/04/14 12:16:48 jalet Exp $
#
Sample configuration file for pdfmap
#
Each line is composed from nine fields separated with ':'
Some fields are optional.
Empty lines or lines beginning with a '#' are ignored.
#
Each line has the following form :
#
#
Nature : Shape : Thickness : RGBout : RGBin : Magnify : MinimalSize : MaximalSize : Description
#
#
Nature :
Can be any string, which represents an object nature
in the data input file. A mandatory 'DEFAULT' entry
must be present to represent objects with an unknown
nature. This field is case sensitive.
Examples of natures : House, Rock, Tree, City, etc...
#
Shape :
The shape in which all objects of nature 'Nature' will
be represented on the map.
Valid shapes are : Circle, Square, Rectangle, Ellipse,
Triangle, Star, Cross, Diamond, Image,
more to come...
#
Thickness :
Defines the width of the pen when drawing shapes. Unused
when the Shape is an Image. You can consider it similar
to the Shape's contour width.
Default value is 0.01, which is very thin.
#
RGBout, RGBin :
Each one is a triplet of real values between 0 and 1
of the form : r, g, b which represent respectively
the part of Red, Green, Blue which made the color.
0, 0, 0 is Black, while 1, 1, 1 is White.
RGBout is the color of the outside of the shape.
RGBin is the color of the inside of the shape. If
RGBin is omitted the the shape will not be filled
and will only be visible from its contour in RGBout
color.
For Image shapes, the RGBout field contains the name
of an image file in almost any graphic format which
will be used to draw objects of this nature. The image
filename can also be an URL to a remote image in any
protocol supported by the Python Standard Library.
NB: in this case you must enclose this field between
double quotes. The RGBout can also contain a directory
name in which case image files contained in this
directory will be used at random to represent these
objects.
For Image shapes, the RGBin may be used to specify
a color to mask (render transparent) in the image,
in the same format as for other type of Shapes.
It can also contain "auto" which tells PDFMap to
try to detected the transparent color automatically.
If this field is empty, then auto is assumed.
#
Magnify :
An optional magnifying factor applied to
each object's dimensions (both length and width).
Using a value between 0 and 1 is allowed to specify
a reducing factor to both dimensions. If omitted
then a default value of 1 is used, meaning no
magnification will be done : objects will be
represented at their real dimensions on the map,
in the current scale.
#
MinimalSize :
An optional minimal size of the shape in square units
(e.g. square meters) under which no object is drawn.
The default value is 0, meaning that all objects are drawn.
WARNING : The test is done *after* the application of the
magnifying factor.
#
MaximalSize :
An optional maximal size of the shape in square units
(e.g. square meters) above which no object is drawn.
The default value is sys.maxint, meaning that most regular
objects are drawn.
WARNING : The test is done *after* the application of the
magnifying factor.
#
Description :
Optional free text to be displayed in the legend for
the current nature. If omitted then the nature is used
in the legend. Example : School or University
#
Each city will be represented by a little yellow star,
downloaded from my homepage
City:Image::"http://cortex.unice.fr/~jerome/star.gif":::::
#
Each capitol will be represented by a red and blue square,
with a pen thickness of 1. A Magnifying factor of 1.5 will
be applied to both of each capitol's dimension.
Capitol:Square:1:0,0,1:1,0,0:1.5:::
#
Two generous companies, represented by their own logos.
INTEVATION:Image::intevation.small.png:::::Intevation GmbH
This one will have the white color rendered transparent.
LOGIBALL:Image::logiball.small.png:1.0,1.0,1.0::::Logiball GmbH
#
Me. Again white will be rendered as transparent.
C@LL:Image::calllogo.png:1,1,1::::Conseil Internet & Logiciels Libres
#
J'ai deux amours, mon pays et Paris...
This one doesn't need a transparent color because
the image is already transparent.
PARIS:Image::eiffel.gif:::::Paris, French Capitol
#
a DEFAULT entry must be present
DEFAULT:Diamond::0,1,0:0,1,0::::Unknown

pdfmap-1.60/tests/europe.datas

$Id: europe.datas,v 1.2 2002/01/17 15:05:22 jalet Exp $
pdfmap sample data - January 13th, 2002
#
(c) 2001 Jerome Alet <alet@librelogiciel.com>
You're welcome to redistribute this software under the
terms of the GNU General Public Licence version 2.0
or, at your option, any higher version.
#
You can read the complete GNU GPL in the file COPYING
which should come along with this software, or visit
the Free Software Foundation's WEB site http://www.fsf.org
#
This data set comes from the MapIt project
http://www.mapit.de/
#
#
Each line has the following structure :
#
Nature, X, Y, Length, Width, Orientation, Url
#
The fields may be separated with :
#
#	, ; or any amount of whitespace
#
#	field separators are tested in the order above.
#
Fields explanation :
#
Nature : What differentiate objects. All objects of the
#	 same nature will be represented the same way.
#	 A corresponding entry in the configuration file
#	 must be present. WARNING : This field is case
#	 sensitive.
#
X, Y : Position of the object on the map, in map coordinates.
#
Length, Width : Dimensions of the object in map coordinates.
#		 In this sample file, every town is considered
#		 to be 20x20 (whatever the 20 may represent).
#		 You may modify this sample file to set these
#		 dimensions to be a factor of each town's number
#		 of inhabitants for example, so bigger cities
#		 would also appear bigger on the map.
#
Orientation : Orientation of the object. Can be a string
#		like NE for North-East for example, or a number
#		which will represent degres counter-clockwise
#		with regard to the North.
#		The object will be rotated before being placed
#		on the map to reflect this orientation. If you
#		don't need this, then just set this field to N
#		or 0, which means no rotation (or North oriented).
#
Url : This optional field renders the object clickable on
#	the map, at least in Adobe Acrobat Reader. This may
#	allow you to access to your own datas easily from the
#	map viewer, provided your legacy applications are
#	web enabled, and that you specify the correct url for
#	each object.
#
#
Capitol,76,394,20,20,N,http://www.google.com/search?q=Lisbon
Capitol,132,87,20,20,N,http://www.google.com/search?q=Rabat
Capitol,424,439,20,20,N,http://www.google.com/search?q=Madrid
Capitol,795,178,20,20,N,http://www.google.com/search?q=Algiers
Capitol,1244,165,20,20,N,http://www.google.com/search?q=Tunis
Capitol,1374,477,20,20,N,http://www.google.com/search?q=Rome
Capitol,157,1986,20,20,N,http://www.google.com/search?q=Reykjavík
Capitol,1250,1552,20,20,N,http://www.google.com/search?q=Oslo
Capitol,1537,1532,20,20,N,http://www.google.com/search?q=Stockholm
Capitol,1792,1615,20,20,N,http://www.google.com/search?q=Helsinki
Capitol,2383,1481,20,20,N,http://www.google.com/search?q=Moscow
Capitol,1796,1570,20,20,N,http://www.google.com/search?q=Tallinn
Capitol,1809,1421,20,20,N,http://www.google.com/search?q=Riga
Capitol,1896,1297,20,20,N,http://www.google.com/search?q=Vilnius
Capitol,2007,1270,20,20,N,http://www.google.com/search?q=Minsk
Capitol,1739,1125,20,20,N,http://www.google.com/search?q=Warsaw
Capitol,2211,1099,20,20,N,http://www.google.com/search?q=Kiev
Capitol,2200,884,20,20,N,http://www.google.com/search?q=Chisinau
Capitol,1095,777,20,20,N,http://www.google.com/search?q=Geneva
Capitol,952,1016,20,20,N,http://www.google.com/search?q=Brussels
Capitol,488,1218,20,20,N,http://www.google.com/search?q=Dublin
Capitol,745,1072,20,20,N,http://www.google.com/search?q=London
Capitol,987,1105,20,20,N,http://www.google.com/search?q=Amsterdam
Capitol,1335,1299,20,20,N,http://www.google.com/search?q=Copenhagen
Capitol,1551,865,20,20,N,http://www.google.com/search?q=Vienna
Capitol,1982,581,20,20,N,http://www.google.com/search?q=Sofia
Capitol,1445,971,20,20,N,http://www.google.com/search?q=Prague
Capitol,1382,1113,20,20,N,http://www.google.com/search?q=Berlin
Capitol,1696,836,20,20,N,http://www.google.com/search?q=Budapest
Capitol,2106,708,20,20,N,http://www.google.com/search?q=Bucharest
Capitol,1590,865,20,20,N,http://www.google.com/search?q=Bratislava
Capitol,1696,615,20,20,N,http://www.google.com/search?q=Sarajevo
Capitol,1467,730,20,20,N,http://www.google.com/search?q=Ljubljana
Capitol,1799,686,20,20,N,http://www.google.com/search?q=Belgrade
Capitol,1549,721,20,20,N,http://www.google.com/search?q=Zagreb
Capitol,1888,525,20,20,N,http://www.google.com/search?q=Skopje
Capitol,1755,536,20,20,N,http://www.google.com/search?q=Podgorica
Capitol,2076,304,20,20,N,http://www.google.com/search?q=Athens
Capitol,1801,474,20,20,N,http://www.google.com/search?q=Tirana
Capitol,614,1734,20,20,N,http://www.google.com/search?q=Tórshavn
Capitol,751,534,20,20,N,http://www.google.com/search?q=Andorra la Vella
Capitol,1202,790,20,20,N,http://www.google.com/search?q=Liechtenstein
Capitol,1034,939,20,20,N,http://www.google.com/search?q=Luxemburg
Capitol,1516,119,20,20,N,http://www.google.com/search?q=Malta
City,1079,1017,20,20,N,http://www.google.com/search?q=Essen
City,1339,1043,20,20,N,http://www.google.com/search?q=Leipzig
City,1170,1143,20,20,N,http://www.google.com/search?q=Bremen
City,1224,1172,20,20,N,http://www.google.com/search?q=Hamburg
City,1160,966,20,20,N,http://www.google.com/search?q=Frankfurt am Main
City,1382,1113,20,20,N,http://www.google.com/search?q=Berlin
City,1077,1008,20,20,N,http://www.google.com/search?q=Bonn
City,1185,887,20,20,N,http://www.google.com/search?q=Stuttgart
City,1306,850,20,20,N,http://www.google.com/search?q=München
INTEVATION,1127,1094,100,30,N,http://intevation.net/
LOGIBALL,1093,1050,100,30,N,http://www.logiball.de/
C@LL,1060,575,100,30,N,http://www.librelogiciel.com/
PARIS,841,906,50,100,N,http://wwwusers.imaginet.fr/~chouard

pdfmap-1.60/tests/europe.png

pdfmap-1.60/tests/europe.py

#! /usr/bin/env python
#
$Id: europe.py,v 1.6 2002/04/13 13:01:08 jalet Exp $
#
pdfmap python test script - January 13th, 2002
#
(c) 2001 Jerome Alet <alet@librelogiciel.com>
You're welcome to redistribute this software under the
terms of the GNU General Public Licence version 2.0
or, at your option, any higher version.
#
You can read the complete GNU GPL in the file COPYING
which should come along with this software, or visit
the Free Software Foundation's WEB site http://www.fsf.org
#

import sys
import os
import string
sys.path.append("..")
import pdfmap

if __name__ == '__main__' :
 if len(sys.argv) < 2 :
 sys.argv.append("-") # sys.stdin as single input file

 # maybe an exception will occur
 try :
 # what rasterized map to use as the map background
 bg = pdfmap.MapBackground("europe.png", 0, 0, 2400, 2400, 0)

 # initialize the PDF document
 doc = pdfmap.PDFMap(author="Jerome Alet", \
 title = "Europe", subtitle = "Datas from MapIt.de", \
 papersize = "A3")

 # set the format of the next pages
 doc.formatpage("portrait", "1.5cm", "1.5cm", "1.5cm", "1.5cm")

 # sets the labels for the two axis
 doc.setaxis(xaxis = [0, 500, 1000, 1500, 2000, 2500], \
 yaxis = "0 500 1000 1500 2000 2500", \
 xaxisalign = 1, yaxisalign = 1)

 for infile in sys.argv[1:] :
 # initialize the new page
 doc.initpage(background = bg, xorigin = 0, yorigin = 0, \
 xscale = 0.000105, yscale = 0.00015, \
 xstep = 500.0, ystep = 500.0, \
 rotation = 0)

 # draws the datas read from he input files
 # according to what's in the configuration file
 doc.draw_datas("europe.conf", infile, legend = 1)

 # ends the current page
 doc.endpage()

 # generates the PDF document
 doc.output("europe.pdf")
 sys.exit(0)
 except pdfmap.PDFMapError, msg :
 sys.stderr.write("%s\n" % msg)
 sys.stderr.flush()
 sys.exit(-1)

pdfmap-1.60/tests/europe.sh

#! /bin/sh
#
$Id: europe.sh,v 1.5 2002/04/15 13:44:28 jalet Exp $
#
pdfmap test script - January 13th, 2002
#
(c) 2001 Jerome Alet <alet@librelogiciel.com>
You're welcome to redistribute this software under the
terms of the GNU General Public Licence version 2.0
or, at your option, any higher version.
#
You can read the complete GNU GPL in the file COPYING
which should come along with this software, or visit
the Free Software Foundation's WEB site http://www.fsf.org
#
python ../pdfmap.py --config europe.conf --bgmap europe.png --bgx=0 --bgy=0 --bgwidth=2400 --bgheight=2400 --bgrotation=0 \
--legend --author="Jerome Alet" --title="Europe" --subtitle="Datas from MapIt.de" --papersize="29.7cmx42cm" \
--orientation="portrait" --xorigin=0 --yorigin=0 --xscale=0.000105 --yscale=0.00015 --xstep=500 --ystep=500 --rotation=0 \
--xalign --xlabels="0 500 1000 1500 2000 2500" \
--yalign --ylabels="0 500 1000 1500 2000 2500" \
--leftmargin=1.5cm --bottommargin=1.5cm --rightmargin=1.5cm --topmargin=1.5cm --outputfile=europe.pdf $*

pdfmap-1.60/tests/intevation.small.png

pdfmap-1.60/tests/logiball.small.png

pdfmap-1.60/COPYING

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 59 Temple Place, Suite 330
 Boston, MA 02111-1307, USA.
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 Appendix: How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) 19yy <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) 19yy name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

pdfmap-1.60/CREDITS

$Id: CREDITS,v 1.3 2002/04/13 13:01:08 jalet Exp $
pdfmap credits file.

Bernhard Herzog and Bernhard Reiter from Intevation GmbH,
http://www.intevation.de/ for the Europe map and dataset,
and for MapIt, http://www.mapit.de/ which gave me the idea
to generalise this software to other maps than
archaeological ones.

The ReportLab team, http://www.reportlab.com/ for their
wonderful software, and their patience with me ;-)

Geraldine Chouard http://wwwusers.imaginet.fr/~chouard/
for the nice Eiffel Tower picture.

pdfmap-1.60/MANIFEST.in

include COPYING TODO NEWS CREDITS MANIFEST.in pdfmap.py
recursive-include tests *.py *.sh *.bat README *.png *.conf *.datas *.gif
recursive-include doc *.html

pdfmap-1.60/NEWS

			# pdfmap (c) 2001, 2002 Jerome Alet - Conseil Internet & Logiciels Libres

			#

			# $Id: NEWS,v 1.12 2002/04/15 13:50:33 jalet Exp $

			#

			

			pdfmap NEWS:

			============

			

						1.60 : Now needs ReportLab 1.14 or above or any CVS version

						 newer than April 14th 2002.

						 The --extremequality option was suppressed, because

						 it wasn't really useful.

						 Images which are transparent are now automatically rendered

						 correctly, and a color mask can be used for images which don't

						 have transparency information.

						 The map background image can also be remote now (e.g.

						 http://youserver.com/yourbackgroundimage.gif)

						 Page sizes can now be specified in centimeters (default),

						 inches, or points.

			

						1.51 : Now accepts arbitrary page sizes expressed as WxH where

						 W and H respectively are the Width and Height of the page

						 in centimeters (e.g. 21x29.7 for ISO A4).

						 Small bug fixes and some parameters checks added.

			

						1.50 : Now works as a CGI script, with a default HTML form included.

						 Module documentation generated with HappyDoc is now included.

						 Margins can now be set in centimeters, inches, or points.

						 In the configuration file, you can now use URLs for Image

						 shapes (but you must double-quote them).

			

						1.0 : Minor tweaks to the code, and improved documentation.

						 CVS tree now imported to SourceForge's CVS, all CVS

						 vars reset to blank.

			

						0.99 : Inclusion of a sample script and datas, with the

						 permission of MapIt's author, Bernhard Herzog, from

						 Intevation GmbH.

			

						0.9 : Code simplifications wrt image caching, and

						 previsions about the future canvas in ReportLab.

						 Unneeded forms are not created anymore : saves space.

						 The map background is now rotated correctly.

						 Configuration files now accept a thickness field, to

						 set the pen width for the shape drawing.

			

						0.8 : Errors are PDFMapError exceptions now

						 Better CGI detection and preliminary skeleton

						 Caches the list of available shapes

			

						0.7 : Doesn't use a Z field anymore

			

						0.2 to 0.6 : Big improvements

			

						0.1 : First version in (my) CVS

			

			

			Jerome Alet - <alet@librelogiciel.com>

pdfmap-1.60/README

$Id: README,v 1.8 2002/04/15 13:44:28 jalet Exp $
pdfmap v1.60 - April 13th, 2002

(c) 2001-2002 Jerome Alet <alet@librelogiciel.com>
You're welcome to redistribute this software under the
terms of the GNU General Public Licence version 2.0
or, at your option, any higher version.

You can read the complete GNU GPL in the file COPYING
which should come along with this software, or visit
the Free Software Foundation's WEB site http://www.fsf.org

==

PDFMap is both a Python module and a command line tool which
allows people to easily create very high quality maps in
PDF format.

It serves successfully in drawing archaelogical objects
on cave maps, but as the examples may show you, it can
also draw things at a very high scale, e.g. an Europe
or World map.

Each document can contain multiple maps (one per page).

Each map can have an optional rasterized background which
can be rotated automatically if it is not North oriented.

PDFMap can automatically draw objects on each map. Objects
can be of any type (e.g. City, School, Archaeological
objects, whatever you like), and are represented by
shapes or images, scaled to the actual object's dimensions
and orientation. Each object can also have an associated
url which will render the object clickable in tools
like Adobe Acrobat Reader (NB : the clickable area is
always a rectangle of the actual object's dimensions, not
of the representing shape's dimensions), the use of this
feature depends entirely on your imagination : draw
maps from a database and link back to a web enabled
application which manipulates this database is just
an example (and an interesting one at that, just
believe me).

PDFMap uses two types of input files :

	- Configuration files :

	 Those are used to tell PDFMap which shape or image
	 should represent each type of object, as well as
	 set different parameters for this object's type :
	 pen thickness, colors, minimal and maximal size,
	 etc...

	- Data files :

	 Those are used to feed PDFMap with lists of objects
	 to draw. They are generally the result of an ASCII
	 export from your favorite spreadsheet or relational
	 database management system.

The tests/ subdirectory contains sample configuration and data
files which are well commented. Read them and run the tests
programs to learn how PDFMap works.

==

Command line options :
======================

	pdfmap.py [options] [[inputfile1] [inputfile2] ...]

options :

 -v | --version	 prints PDFMap's version number then exits
 -h | --help		 prints this message then exits

 --config file.cfg	 uses file.cfg as the configuration file
 --outputfile file.pdf	 uses file.pdf as the output file, otherwise sends
			 the output to stdout
 --author authorname	 uses authorname as the document author's name
 --title doctitle	 uses doctitle as the document's title
 --subtitle docsubtitle uses docsubtitle as the document's subtitle

 --papersize psize	 uses psize as the paper size. psize can be any
			 paper size natively recognized by the ReportLab
			 ToolKit, expressed in UPPERCASE (i.e. A4 or LETTER
			 for example), or any size expressed as 'WxH' where
			 W and H respectively are Width and Height of
			 the page in centimeters (e.g. 21x29.7 for A4).
			 For each dimension, you can specify a unit which
			 may be different from one dimension to the other.
			 Allowed units are :
			 cm : centimeters (DEFAULT)
			 in : inches
			 pt : points
			 (e.g. 8.5inx11in for LETTER)

 --orientation o	 uses o as the paper orientation, which must be
			 either "portrait" or "landscape"

 --leftmargin lm	 left margin
 --bottommargin bm	 bottom margin
 --rightmargin rm	 right margin
 --topmargin tm	 top margin
			 You can choose the unit in which you express
			 the four margins, sticking either 'cm', 'in',
			 or 'pt' at the end of each number.
			 cm : centimeters (DEFAULT)
			 in : inches
			 pt : points
			 (e.g. 100pt for 100 points)

 --legend		 generates the map legend, default is no legend

 --bgmap image.jpeg	 uses image.jpeg as the map background. Most graphic
			 formats are allowed, and you can also give an URL
			 to download the background from a remote location.
 --bgx x		 X position of the map background in units
 --bgy y		 Y position of the map background in units
 --bgwidth w		 width of the map background in units
 --bgheight h		 height of the map background in units
 --bgrotation r	 rotation of the map background in degres (counter
			 clockwise) wrt the North

 --xlabels labels	 Labels for the X ticks
 --ylabels labels	 Labels for the Y ticks
 --xalign		 Align X labels on X ticks or center them (default)
 --yalign		 Align Y labels on Y ticks or center them (default)

 --xorigin x		 X origin of the generated map in units (from lower
			 left)
 --yorigin y		 Y origin of the generated map in units (from lower
			 left)
 --xscale xs		 scale for the X dimension
 --yscale ys		 scale for the Y dimension
 --xstep stx		 distance between two X ticks in units
 --ystep sty		 distance between two Y ticks in units

 --rotation r		 angle of the generated map in degres (counter
			 clockwise) wrt the North

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

==

Prerequisite :
==============

You need to have installed the following software
before being able to launch the test programs :

	Python - The Python language
	Download it from http://www.python.org

	PIL - The Python Imaging Library :
	Download it from http://www.pythonware.com

	ReportLab - The ReportLab ToolKit :
	Download it from http://www.reportlab.com
	(You'll need version 1.14 or above, or any CVS
	version newer than April 13th 2002)

	JAXML - The jaxml Python module :
	Download it from http://cortex.unice.fr/~jerome/
	This module is currently not needed unless you
	try to run PDFMap as a CGI script.

 For those of you who run Debian, the following will
do all the necessary steps for you (launch this as root) :

 # apt-get install python jaxml python-reportlab python-imaging

 If you run a recent GNU/Linux distribution of any sort,
the Python language is probably already installed.

Note for Windows users :

 The easiest for you to make PDFMap work, is probably to
download ReportLab Demo from http://www.reportlab.com
ReportLab Demo is a big (7 Mb) bundle which installs Python,
ReportLab, PIL, and configure Windows correctly to execute Python
scripts.

After having installed ReportLab Demo, you should be able to
launch all PDFMap's tests successfully (tested under Win98, with
ReportLab Demo 1.11). The tests/europe.bat script expects you
have installed ReportLab Demo in C:\REPORTLAB (default) and
PDFMap somewhere on the same disk.

==

Installation :
==============

	NB : Windows installation will not be described here, although
it should be very similar to the GNU/Linux installation instructions
described below :

	Now that you've installed the necessary Python modules,
and tried the test programs in the tests/ subdirectory, you really
enjoy PDFMap and you want to install it your system :

	Although PDFMap works fine with Python 1.5.2, installing
it requires that you've got the Distutils package installed.
Unfortunately the Distutils module is not part of Python 1.5.2,
so you have to download it separately from :

	http://www.python.org/sigs/distutils-sig/

	If you use a Python version above 2.0 then Distutils
is probably already installed, if not then read above and
install it.

Once Distutils is installed :

	* extract the PDFMap tar+gzip archive (if you're reading
	 this file then you've probably already done this) :

		$ gunzip <pdfmap-x.xx.tar.gz | tar -xf -

	* install PDFMap :

		$ cd pdfmap-x.xx
		$ python ./setup.py install

	That's all.

	NB : in the lines above, x.xx represents PDFMap's version
	number.

You can now use PDFMap from the command line or import it
in your own Python programs. To use it from the command line :

	$ pdfmap.py --help

	or :

	$ python /usr/local/bin/pdfmap.py --help

Under GNU/Linux systems, pdfmap.py will probably be installed under
/usr/local/bin, so if you plan to import this module in your own
Python software, you'll have to do something like :

	import sys
	sys.path.append("/usr/local/bin")
	import pdfmap

Alternatively you could copy pdfmap.py to a directory in
your Python path, e.g. /usr/lib/python2.1/site-packages/

==

PDFMap's official website is :

	http://pdfmap.sourceforge.net/

There's a public mailing list for general discussion about
this software : announces, bugs, help, etc...

	pdfmap-users@lists.sourceforge.net

You can buy support or consulting time to help future
developpement of this tool :

	http://www.librelogiciel.com

	contact@librelogiciel.com

NB : The website may actually be down, but email works.

==

Licensing issues :
==================

 This code is licensed under the GNU General Public
License of the Free Software Foundation, version 2.0
or, at your option, any higher version.

 This license was chosen to be sure that this software
will remain free in the future. This means that You
will always be authorized to use, modify, or redistribute
this software provided that You respect this license.

 You may not agree with this license, but in this
case you must either :

	- Not use this software at all.

	or :

	- Pay the author(s) mucho dinero to obtain the source
	 code under another licensing scheme. You must note
	 that in this case each and every author must agree
	 with your proposition.

 Any request to release this code under another license,
even recognized as being Free by any open source group of
some sort, and without a just compensation for the work done
will be silently ignored.

==

For the code lovers :
=====================

	* Most of the code is abundantely commented, but don't
	 hesitate to ask any question about it.

	* Any method you shouldn't override has a name
	 which begins with an underscore.

==

Please e-mail bugs to: alet@librelogiciel.com (Jerome Alet)

pdfmap-1.60/TODO

pdfmap (c) 2001 Jerome Alet - Conseil Internet & Logiciels Libres
#
$Id: TODO,v 1.3 2002/04/14 12:20:44 jalet Exp $
#

pdfmap TODO (in no particular order) :
======================================

 - Allow multiple passes, probably using pickle.

 - Allow page numbering (input first page number, and
 page number position).

 - Render the current date somewhere (ask).

 - Reactivate scales rendering (input the unit, and scales
 positions.

 - Allow legend positionning/sizing (input that)

 - Make it work from within Zope.

 - Add more shapes, and allow the user to register his own shapes.

 - Add the Text shape type.

 - Allow company's logo naming, sizing and positionning.

 - Allow sizing and positionning of title, subtitle, copyright
 message.

 - Make the test suite grow.

 - Keep the number of options low (hhmmm...)

Jerome Alet - <alet@librelogiciel.com>

pdfmap-1.60/pdfmap.py

#! /usr/bin/env python
#
pdfmap.py - (c) 2001-2002 Jerome Alet
#	 (c) 2001-2002 C@LL - Conseil Internet & Logiciels Libres
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
#
$Id: pdfmap.py,v 1.18 2002/04/15 13:44:28 jalet Exp $
#
$Log: pdfmap.py,v $
Revision 1.18 2002/04/15 13:44:28 jalet
Page sizes can now be specified in different units (previously only centimeters were allowed).
Small fix when converting default unit (centimeters) to points for margins and page size.
API doc updated.
1.6 ready => going to freshmeat !
#
# Revision 1.17	 2002/04/14 12:21:44 jalet
Now the RGBin field of configuration files can really be used to force
a color to be rendered as transparent.
#
# Revision 1.16	 2002/04/13 13:01:08 jalet
Version number changed to 1.60
Image transparency automatic support (with RerpotLab's CVS version)
Remote image for background too.
RGBin field can now be used to specify the color to mask : to override
the automatic feature or to deal with images which are not transparent
(NB : this last one is OK in the doc but not yet implemented in code,
only "auto" works yet)
PDFMapCanvas suppressed, we now use the real ReportLab.Canvas.
extremequality option suppressed : never used.
Probably more...
#
# Revision 1.15	 2002/04/11 22:24:14 jalet
formatpage() was called twice since a long time ago,
now it's corrected.
better parameter checking for page size.
#
# Revision 1.14	 2002/04/11 21:16:20 jalet
Version number changed to 1.51
Now accepts arbitrary page sizes
#
# Revision 1.13	 2002/02/04 11:41:22 jalet
Small fix.
#
# Revision 1.12	 2002/02/04 11:33:03 jalet
Version number changed to 1.50 to reflect the big improvements :
#	 - Now works fine as a CGI script.
#	- URLs are allowed for Image shapes.
#	 - Margins can be set in cm (default), inches or points.
#	- Correctly skip empty lines in the configuration and data files.
#
# Revision 1.11	 2002/01/26 09:54:18 jalet
Margins can now be set in centimeters (default), inches, or points, sticking
the strings 'cm', 'in', or 'pt' at the end of the number, e.g. --leftmargin 3.5in
means a left margin of 3.5 inches.
#
# Revision 1.10	 2002/01/25 11:58:46 jalet
Module documentation generated with HappyDoc is now included.
The docstrings were improved too.
#
# Revision 1.9	2002/01/24 11:37:35 jalet
Version number set to 1.10alpha
#
# Revision 1.8	2002/01/21 13:36:38 jalet
Better check for CGI vs command line
#
# Revision 1.7	2002/01/19 16:56:07 jalet
Using PDFMap as a CGI script works fine now, although
it still needs lots of polishing...
#
# Revision 1.6	2002/01/19 15:40:13 jalet
The input HTML form seems to be complete now.
#
# Revision 1.5	2002/01/19 09:19:55 jalet
Old comment deleted, was incorrect wrt the current code.
#
# Revision 1.4	2002/01/19 09:13:58 jalet
Configuration file and data file fields added to the HTML form
#
# Revision 1.3	2002/01/18 18:54:39 jalet
Deleted some code redundancy
#
# Revision 1.2	2002/01/18 18:49:33 jalet
Preliminary HTML Form for CGI use
#
# Revision 1.1.1.1 2002/01/16 20:09:49	 jalet
Initial import into Sourceforge's CVS tree
#
#
#
import sys
import os
import string
import re
import whrandom
import cStringIO
import getopt
import cgi
import urllib
try :
	from reportlab.pdfgen import canvas
	from reportlab.pdfgen import pdfimages
	from reportlab.lib.units import inch,cm
	from reportlab.lib import styles
	from reportlab.lib import pagesizes
except ImportError :
	sys.stderr.write("You MUST have installed the ReportLab Python module.\nYou can download it from http://www.reportlab.com\n")
	sys.exit(-1)

try :
	import PIL.Image
except ImportError :
	sys.stderr.write("You MUST have installed the Python Imaging Library module.\nYou can download it from http://www.pythonware.org\n")
	sys.exit(-1)

__author__ = "alet@librelogiciel.com (Jerome Alet)"

__version__ = "1.60"

__doc__ = """PDFMap v%s (C) 2001-2002 C@LL - Conseil Internet & Logiciels Libres
A python module to generate maps in PDF format and place clickable
objects on them.

Object types can be represented either by shapes of different forms and
colors (fill and contour), or by user provided images. Each object is
scaled, oriented and positionned on the map.

The more powerful way to use this software is to use its API in your
own programs, this will allow you to produce multipage documents with
different sizes, orientations, scales, background, etc... from page to
page.

However the same result can be obtained launching PDFMap several times
from the command line, producing one or many pages at a time, so here
are the different options available from the command line :

command line usage :

	pdfmap.py [options] [[inputfile1] [inputfile2] ...]

options :

 -v | --version	 prints PDFMap's version number then exits
 -h | --help		 prints this message then exits

 --config file.cfg	 uses file.cfg as the configuration file
 --outputfile file.pdf	 uses file.pdf as the output file, otherwise sends
			 the output to stdout
 --author authorname	 uses authorname as the document author's name
 --title doctitle	 uses doctitle as the document's title
 --subtitle docsubtitle uses docsubtitle as the document's subtitle

 --papersize psize	 uses psize as the paper size. psize can be any
			 paper size natively recognized by the ReportLab
			 ToolKit, expressed in UPPERCASE (i.e. A4 or LETTER
			 for example), or any size expressed as 'WxH' where
			 W and H respectively are Width and Height of
			 the page in centimeters (e.g. 21x29.7 for A4).
			 For each dimension, you can specify a unit which
			 may be different from one dimension to the other.
			 Allowed units are :
			 cm : centimeters (DEFAULT)
			 in : inches
			 pt : points
			 (e.g. 8.5inx11in for LETTER)

 --orientation o	 uses o as the paper orientation, which must be
			 either "portrait" or "landscape"

 --leftmargin lm	 left margin
 --bottommargin bm	 bottom margin
 --rightmargin rm	 right margin
 --topmargin tm	 top margin
			 You can choose the unit in which you express
			 the four margins, sticking either 'cm', 'in',
			 or 'pt' at the end of each number.
			 cm : centimeters (DEFAULT)
			 in : inches
			 pt : points
			 (e.g. 100pt for 100 points)

 --legend		 generates the map legend, default is no legend

 --bgmap image.jpeg	 uses image.jpeg as the map background. Most graphic
			 formats are allowed, and you can also give an URL
			 to download the background from a remote location.
 --bgx x		 X position of the map background in units
 --bgy y		 Y position of the map background in units
 --bgwidth w		 width of the map background in units
 --bgheight h		 height of the map background in units
 --bgrotation r	 rotation of the map background in degres (counter
			 clockwise) wrt the North

 --xlabels labels	 Labels for the X ticks
 --ylabels labels	 Labels for the Y ticks
 --xalign		 Align X labels on X ticks or center them (default)
 --yalign		 Align Y labels on Y ticks or center them (default)

 --xorigin x		 X origin of the generated map in units (from lower
			 left)
 --yorigin y		 Y origin of the generated map in units (from lower
			 left)
 --xscale xs		 scale for the X dimension
 --yscale ys		 scale for the Y dimension
 --xstep stx		 distance between two X ticks in units
 --ystep sty		 distance between two Y ticks in units

 --rotation r		 angle of the generated map in degres (counter
			 clockwise) wrt the North

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Please e-mail bugs to: %s""" % (__version__, __author__)

C@LL logo's name
LOGONAME = "calllogo.png"

and C@LL's website URL
WEBSITE = "http://www.librelogiciel.com"

Text color in logo
WEBSITECOLOR = (0.421875, 0.609375, 0.6953125)

Logo's copyright message
COPYRIGHT = "(c) 2001, 2002 C@LL - Conseil Internet & Logiciels Libres"

HTML form for CGI
HTMLFORM = """
 <form action="pdfmap.py" method="POST" enctype="multipart/form-data">
 <p>
	<pre>
 Author : <input type="text" size="50" name="author">
 Title : <input type="text" size="50" name="title">
 SubTitle : <input type="text" size="50" name="subtitle">
 Papersize : <select name="papersize">
	 <option value="A0">A0</option>
	 <option value="A1">A1</option>
	 <option value="A2">A2</option>
	 <option value="A3">A3</option>
	 <option value="A4" selected="SELECTED">A4</option>
	 <option value="A5">A5</option>
	 <option value="A6">A6</option>
	 <option value="LETTER">Letter</option>
	 </select>
Orientation : <select name="orientation">
	 <option value="portrait" SELECTED>Portrait</option>
	 <option value="landscape">Landscape</option>
	 </select>
Bottom Margin (cm/in/pt) : <input type="text" size="10" name="bottommargin"> (e.g. 1.8in)
 Left Margin (cm/in/pt) : <input type="text" size="10" name="leftmargin">
 Top Margin (cm/in/pt) : <input type="text" size="10" name="topmargin">
 Right Margin (cm/in/pt) : <input type="text" size="10" name="rightmargin">

	 Legend : <input type="checkbox" name="legend" checked="CHECKED">

 Map background : <input type="file" size="64" name="bgmap">
Background X position : <input type="text" size="10" name="bgx">
Background Y position : <input type="text" size="10" name="bgy">
 Background width : <input type="text" size="10" name="bgwidth">
 Background height : <input type="text" size="10" name="bgheight">
 Background rotation : <input type="text" size="10" name="bgrotation">

X Labels : <input type="text" size="60" name="xlabels">
Y Labels : <input type="text" size="60" name="ylabels">
Align on X Ticks : <input type="checkbox" checked="CHECKED" name="xalign"> Align on Y Ticks : <input type="checkbox" checked="CHECKED" name="yalign">

X Origin : <input type="text" size="10" name="xorigin"> X Scale : <input type="text" size="10" name="xscale"> X Step : <input type="text" size="10" name="xstep">
Y Origin : <input type="text" size="10" name="yorigin"> Y Scale : <input type="text" size="10" name="yscale"> Y Step : <input type="text" size="10" name="ystep">
Rotation : <input type="text" size="10" name="rotation">

Configuration file : <input type="file" size="64" name="config">
	 Data file : <input type="file" size="64" name="datafile">

	 <input type="hidden" name="PDFMapFormIsValid" value="1">
	 <input type="submit" value="Submit"> <input type="reset" value="Reset">
	</pre>
 </p>
 </form>"""

class PDFMapError :
	"""PDFMap's Exception class."""
	def __init__(self, value) :
		self.value = value

	def __str__(self) :
		return str(self.value)

class MapBackground :
	"""For rasterized background images."""
	def __init__(self, filename, x, y, width, height, rotation = 0) :
		"""Initialize local data.

		 filename : the raster map in a graphic file format (e.g. tiff)
				or the image itself in PIL.Image.Image format

		 x, y : coordinates of the bottom left of the raster map in meters

		 width, height : real width and height of the map in meters

		 height : real height of the map in meters

		 rotation : angle in degres between the raster map and the real North
		"""
		self.filename = filename
		(self.x, self.y) = (x, y)
		(self.width, self.height) = (width, height)
		self.rotation = rotation

	def draw(self, mappdf) :
		"""Draws the map image file on the pdf document, taking care of the scales."""
		pdfdoc = mappdf.document
		pdfdoc.saveState()

		path = pdfdoc.beginPath()
		path.rect(0, 0, mappdf.width, mappdf.height)
		pdfdoc.clipPath(path, fill=0)
		if self.filename and (isinstance(self.filename, PIL.Image.Image) or os.path.isfile(self.filename)) :
			width = mappdf.xratio * self.width
			height = mappdf.yratio * self.height
			xoffset = (self.x - mappdf.xorigin) * mappdf.xratio
			yoffset = (self.y - mappdf.yorigin) * mappdf.yratio
			width2 = width / 2.0
			height2 = height / 2.0
			pdfdoc.translate(xoffset + width2, yoffset + height2)
			pdfdoc.rotate(mappdf.rotation - self.rotation)
			pdfdoc.drawImage(self.filename, -width2, -height2, width, height, mask="auto")
		pdfdoc.restoreState()

class MapObject :
	"""For shapes/images which represent objects on the map."""
	def __init__(self, mappdf, thickness, rgbout, rgbin) :
		"""Initializes a shape Map object.

		 mappdf : the PDF Map object

		 thickness : thickness of the drawing

		 rgbout : drawing's external color or filename (images)

		 rgbin : drawing's internal color or ""
		"""
		# save some info
		self.mappdf = mappdf
		self.thickness = thickness
		self.rgbout = rgbout
		self.rgbin = rgbin

	def realDraw(self) :
		"""Really draws the object on the PDF map."""
		# here both rgbout and rgbin contain
		# the colors in which we want to draw.
		(r, g, b) = self.rgbout
		self.mappdf.document.setStrokeColorRGB(r, g, b)
		if self.rgbin != "" :
			(r, g, b) = self.rgbin
			self.mappdf.document.setFillColorRGB(r, g, b)

		# set drawing thickness
		self.mappdf.document.setLineWidth(self.thickness)

		# begin the drawing path
		self.path = self.mappdf.document.beginPath()

		# calls the real drawing routine
		self.draw()

		# validates the drawing path, with or without filling
		self.mappdf.document.drawPath(self.path, fill = (self.rgbin != ""))

	def drawIt(self, x, y, length, width, orientation, url = None) :
		"""Draws an object on the PDF map.

		 x,y : object's coordinates in meters

		 length : object's length in meters

		 width : object's width in meters

		 orientation : object's orientation in degres

		 url : optional url to make an hyperlink on this object
		"""
		# scale dimensions which are all in the same unit (e.g. meters)
		self.length = length * self.mappdf.xratio
		self.width = width * self.mappdf.yratio

		# maximum radius of the object on the document
		self.radius = max(self.length, self.width)

		# precomputes some values
		self.length2 = self.length / 2.0
		self.width2 = self.width / 2.0
		self.radius2 = self.radius / 2.0

		# computes actual coordinates in the document
		newx = (x - self.mappdf.xorigin) * self.mappdf.xratio
		newy = (y - self.mappdf.yorigin) * self.mappdf.yratio

		# change coordinates system : the new origin is at the center of
		# the object to be drawn.
		pdfdoc = self.mappdf.document
		pdfdoc.saveState()
		pdfdoc.translate(newx, newy)

		# rotate the object before drawing it, according to
		# the original angle
		pdfdoc.rotate(self.mappdf.rotation + orientation)

		# is there an url to use ?
		if url :
			pdfdoc.linkURL(url, (-self.length2, -self.width2, self.length2, self.width2), relative=1)

		# really draw the object
		self.realDraw()

		# restore original state
		pdfdoc.restoreState()

	def draw(self) :
		"""Only there to be sure the user will override it."""
		raise PDFMapError, 'NotImplemented\nYou must first subclass pdfmap.MapObject, then override its draw() method'

class Square(MapObject) :
	"""For objects represented by squares on the map."""
	def draw(self) :
		"""Draws this shape on the map."""
		self.path.rect(-self.radius2, -self.radius2, self.radius, self.radius)

class Circle(MapObject) :
	"""For objects represented by circles on the map."""
	def draw(self) :
		"""Draws this shape on the map."""
		self.path.circle(0, 0, self.radius2)

class Triangle(MapObject) :
	"""For objects represented by triangles on the map."""
	def draw(self) :
		"""Draws this shape on the map."""
		self.path.moveTo(0, self.radius2)
		self.path.lineTo(-self.radius2, -self.radius2)
		self.path.lineTo(self.radius2, -self.radius2)
		self.path.close()

class Diamond(MapObject) :
	"""For objects represented by diamonds on the map."""
	def draw(self) :
		"""Draws this shape on the map."""
		self.path.moveTo(0, self.width2)
		self.path.lineTo(-self.length2, 0)
		self.path.lineTo(0, -self.width2)
		self.path.lineTo(self.length2, 0)
		self.path.close()

class Cross(MapObject) :
	"""For objects represented by crosses on the map."""
	def draw(self) :
		"""Draws this shape on the map."""
		self.path.moveTo(0, self.width2)
		self.path.lineTo(0, -self.width2)
		self.path.moveTo(self.length2, 0)
		self.path.lineTo(-self.length2, 0)
		self.path.close()

class Star(MapObject) :
	"""For objects represented by stars on the map."""
	def draw(self) :
		"""Draws this shape on the map."""
		self.path.moveTo(0, self.radius2)
		self.path.lineTo(0, -self.radius2)
		self.path.moveTo(self.radius2, 0)
		self.path.lineTo(-self.radius2, 0)
		self.path.moveTo(self.radius2, self.radius2)
		self.path.lineTo(-self.radius2, -self.radius2)
		self.path.moveTo(-self.radius2, self.radius2)
		self.path.lineTo(self.radius2, -self.radius2)
		self.path.close()

class Ellipse(MapObject) :
	"""For objects represented by ellipses on the map."""
	def draw(self) :
		"""Draws this shape on the map."""
		self.path.ellipse(-self.length2, -self.width2, self.length, self.width)

class Rectangle(MapObject) :
	"""For objects represented by rectangles on the map."""
	def draw(self) :
		"""Draws this shape on the map."""
		self.path.rect(-self.length2, -self.width2, self.length, self.width)

class Image(MapObject) :
	"""For objects represented by images on the map."""
	def __init__(self, mappdf, dummy, imagename, mask = "auto") :
		"""Initializes an image Map object.

		 mappdf : the PDF Map object

		 dummy : unused, but provides a constructor consistent
				 with other MapObjects

		 imagename : image name or directory name

		 mask : either "auto" or a color tuple or empty (which means "auto" too)
			 represents the color to mask in the image (the transparent color)
		"""
		# save some info
		self.mappdf = mappdf
		if not mask :
			mask = "auto"
		self.mask = mask

		# imagename contains the image filename
		# or images directory name. An image directory
		# contains lots of images which are used at
		# random when rendering. If this is not a
		# directory then we must be sure that the file exists.
		# do something in case there's a ~username
		# imagename = os.path.normpath(os.path.expanduser(os.path.expandvars(imagename)))
		imagename = os.path.expanduser(os.path.expandvars(imagename))
		normimagename = os.path.normpath(imagename)
		if os.path.isdir(imagename) :
			self.imagenames = os.listdir(normimagename)
			if not self.imagenames :
				sys.stderr.write("%s doesn't contain any file\n" % normimagename)
			else :
				self.imagenames = filter(os.path.isfile, map(lambda image,prefix=normimagename : os.path.join(prefix, image), self.imagenames))
		elif not os.path.isfile(imagename) :
			self.imagenames = [imagename]
		else :
			self.imagenames = [normimagename]

	def realDraw(self) :
		"""Really draws the image object on the PDF map."""
		try :
			# translate again, because images are drawn
			# from their lower left, but our shapes are
			# drawn from their center.
			# displays the image, then done.
			# randomized, even if only one...
			imagename = whrandom.choice(self.imagenames)
			mask = self.mask
			if mask != "auto" :
				(r, g, b) = map(lambda x : x * 255.0, mask)
				mask = (r, r, g, g, b, b)
			self.mappdf.document.drawImage(imagename, -self.length2, -self.width2, self.length, self.width, mask)
		except IOError :
			# Invalid image file
			self.draw("Unable to open image file %s" % imagename)
		except IndexError :
			# empty form list : no filename was a real image
			self.draw("No image file !")

	def draw(self, message) :
		"""Represents the object as an error message when something went wrong."""
		sys.stderr.write("%s\n" % message)
		self.mappdf.document.drawCentredString(0, 0, message)

class PDFMap :
	"""Our Map class."""
	orientations = { "N": 0, "W": 90, "S": 180, "E" : -90, "EW" : 90, "NS": 180, "NW": 45, "SW" : 135, "SE": -135, "NE": -45, "SN": 0 }
	def __init__(self, author, title, subtitle, papersize) :
		"""Initialize a PDF Map.

		 author : the author's name

		 title : the document's title

		 subtitle : the document's subtitle

		 papersize : any paper size natively recognized by the ReportLab toolkit,
				 or a string of the form "WxH" where W and H are the Page's
				 dimensions in centimeters.
		"""
		# initialize local datas, global to the PDF document
		self.author = author or "Unknown"
		self.title = title or ""
		self.subtitle = subtitle or ""
		self.papersize = papersize
		self.pagewritten = 0

		# for testing purpose :
		# whrandom.seed(1,1,1)

		# creates a pseudo file to handle the pdf output
		self.file = cStringIO.StringIO()

		# initialize the PDF canvas
		pdfdoc = self.document = canvas.Canvas(self.file)

		# set the special fields
		pdfdoc.setAuthor(self.author)
		pdfdoc.setTitle(self.title)
		pdfdoc.setSubject(self.subtitle)

	def unit_to_points(self, value) :
		"""Converts a value expressed in centimeters, inches, points into points.

		 value : The number to convert. If it doesn't contain a unit string
			 like pt for points, cm for centimeters or in for inches, then
			 centimeters is assumed.
		"""
		if type(value) != type("") :
			# already a number so it's in centimeters
			return float(value) * cm
		else :
			number = float(value[:-2] or '0')
			unit = value[-2:]
			if unit == 'pt' :
				return number
			elif unit == 'cm' :
				return number * cm
			elif unit == 'in' :
				return number * inch
			else :
				# default when nothing specified
				return float(value) * cm

	def formatpage(self, orientation = "portrait", leftmargin = "1.5cm", bottommargin="1.5cm", rightmargin="1.5cm", topmargin="1.5cm") :
		"""Set the page orientation and margins.

		 The page dimensions are set from the constructor's papersize
		 parameter, because having multiple different page sizes is
		 probably possible but not convenient for printing. However
		 having a different orientation from page to page is
		 interesting.

		 orientation : "portrait" or "landscape", defaults to "portrait"

		 leftmargin : left margin, defaults to 1.5cm

		 bottommargin : bottom margin, defaults to 1.5cm

		 rightmargin : right margin, defaults to 1.5cm

		 topmargin : top margin, defaults to 1.5cm
		"""
		# set page size and orientation
		try :
			papersize = getattr(pagesizes, self.papersize)
		except AttributeError :
			try :
				papersize = map(lambda v,s=self : s.unit_to_points(v), string.split(self.papersize, 'x'))
				if len(papersize) != 2 :
					raise PDFMapError, "Invalid papersize %s" % str(self.papersize)
			except ValueError :
				raise PDFMapError, "Invalid papersize %s" % str(self.papersize)
		try :
			pagesize = getattr(pagesizes, orientation)(papersize)
		except AttributeError :
			raise PDFMapError, "Invalid orientation %s" % str(orientation)
		self.document.setPageSize(pagesize)

		# convert to points :
		try :
			self.leftmargin = self.unit_to_points(leftmargin)
		except ValueError :
			raise PDFMapError, "Invalid leftmargin %s" % leftmargin
		try :
			self.bottommargin = self.unit_to_points(bottommargin)
		except ValueError :
			raise PDFMapError, "Invalid bottommargin %s" % bottommargin
		try :
			self.rightmargin = self.unit_to_points(rightmargin)
		except ValueError :
			raise PDFMapError, "Invalid rightmargin %s" % rightmargin
		try :
			self.topmargin = self.unit_to_points(topmargin)
		except ValueError :
			raise PDFMapError, "Invalid topmargin %s" % topmargin

		# computes available width and height
		(w, h) = pagesize
		self.width = w - self.leftmargin - self.rightmargin
		self.height = h - self.topmargin - self.bottommargin

	def initpage(self, background, xorigin, yorigin, xscale, yscale, xstep, ystep, rotation) :
		"""Creates a new page in the PDF document.

		 background : a MapBackground object

		 xorigin, yorigin : origin coordinates in meters

		 xscale, yscale : x and y scales (e.g. 1.0/25000.0)

		 xstep, ystep : grid cell's dimensions in meters

		 rotation : orientation wrt. the North, in degres.
		"""
		# other local datas specific to each page
		self.pagewritten = 0
		self.rotation = rotation
		self.xstep = xstep
		self.ystep = ystep
		self.xscale = xscale
		self.yscale = yscale
		self.xorigin = xorigin
		self.yorigin = yorigin
		self.background = background

		# computes scaling factors
		# and x and y step for grid
		self.nbx = self.xstep * 100.0 * cm * xscale
		self.nby = self.ystep * 100.0 * cm * yscale
		self.xratio = self.nbx / self.xstep
		self.yratio = self.nby / self.ystep

		# new origin = bottom left of the raster map
		pdfdoc = self.document
		pdfdoc.translate(self.leftmargin, self.bottommargin)

		# then we can draw all
		if background is not None :
			self.background.draw(self)
		self._draw_titles()
		self._draw_scales()
		self._draw_grid()
		self._draw_north()

		# set clipping region
		pdfdoc.saveState()
		path = pdfdoc.beginPath()
		path.rect(0, 0, self.width, self.height)
		pdfdoc.clipPath(path, fill=0)

	def endpage(self) :
		"""Ends the previous page and creates a new one."""
		if not self.pagewritten :
			self.document.restoreState()
			self._draw_call_logo() # draw the logo now, otherwise objects could override it
			self.document.showPage()
			self.pagewritten = 1

	def setaxis(self, xaxis = [], yaxis = [], xaxisalign = 1, yaxisalign = 1) :
		"""Sets the two axis labels.

		 xaxis : list of labels for x

		 yaxis : list of labels for y

		 xaxisalign : 1 if x labels are aligned with grid, 0 if they are centered in cell's width

		 yaxisalign : 1 if y labels are aligned with grid, 0 if they are centered in cell's height
		"""
		# be sure there's no None value passing for labels
		xaxis = xaxis or []
		yaxis = yaxis or []
		if type(xaxis) == type("") :
			xaxis = string.split(xaxis)
		if type(yaxis) == type("") :
			yaxis = string.split(yaxis)
		xaxis = map(str, xaxis)
		yaxis = map(str, yaxis)
		self.xaxis = xaxis
		self.yaxis = yaxis
		self.xaxisalign = xaxisalign
		self.yaxisalign = yaxisalign

	def __del__(self) :
		"""Frees some more memory."""
		if self.file is not None :
			self.file.close()
			del self.file

	def __str__(self) :
		"""Returns the PDF document as a string of text."""
		if self.file is not None :
			self.endpage()
			self.document.save()
			return self.file.getvalue()
		else :
			return ""

	def output(self, file = "-") :
		"""Outputs the PDF document to the specified file.

		 file : "-" or None both mean sys.stdout, which is the default
			 you can also pass a file object
		"""
		isopen = 0
		if (type(file) == type("")) or (file is None) :
			if file and (file != "-") :
				outf = open(file, "w+b")
				isopen = 1
			else :
				outf = sys.stdout
		else :
			outf = file	# we assume it's a file like object
		outf.write(str(self))
		outf.flush()
		if isopen :
			outf.close()

	def _available_shapes(self) :
		"""Returns the list of available shapes as defined in this module."""
		# caches the list
		if hasattr(self, "AvailableShapes") :
			return self.AvailableShapes
		# no cache currently exist : build it
		# TODO : allow the user to register his own shapes
		# TODO : see if we could do this automatically
		import pdfmap
		self.AvailableShapes = []
		for c in dir(pdfmap) :
			cl = getattr(pdfmap, c)
			if type(cl) == type(pdfmap.MapObject) :
				# we want all subclasses of MapObject,
				# but not MapObject itself.
			 if issubclass(cl, pdfmap.MapObject) :
					if cl.__name__ != 'MapObject' :
						self.AvailableShapes.append(c)
		return self.AvailableShapes

	def _read_config(self, filename) :
		"""Reads a configuration file and returns a Python dictionnary."""
		import pdfmap
		cfg = {}
		havetoclose = 0
		if hasattr(filename, "readline") :
			conf = filename
		elif not os.path.isfile(filename) :
			raise PDFMapError, "%s : file doesn't exist" % filename
		else :
			conf = open(filename, "r")
			havetoclose = 1

		# thanks to Lionel Grolleau & Xavier Defrang
		splitter = re.compile(':|([^:]*"[^"]*"[^:]*)')

		while 1 :
			confline = conf.readline()
			if not confline :
				break
			confline = string.strip(confline)
			#
			# skip empty lines and comments
			if (not confline) or (confline[0:1] == '#') :
				continue
			eclate = map(string.strip, filter(lambda s : s is not None, splitter.split(confline)))
			#
			# very ugly code because regexp is not 100% correct
			# TODO : find a better solution
			j = 0
			while j < (len(eclate) - 1) :
				i = j + 1
				if (not eclate[j]) and \
				 eclate[i] and (eclate[i][0] == eclate[i][-1] == '"') :
					del eclate[j]
				if eclate[j] and (eclate[j][0] == eclate[j][-1] == '"') :
					eclate[j] = string.strip(eclate[j][1:-1])
				j = j + 1
			if len(eclate) < 8 :
				raise PDFMapError, "Error in configuration file %s\n\tincomplete line : '%s'" % (filename, confline)
			elif len(eclate) == 8 :
				eclate.append("")
			eclate = map(string.strip, eclate)
			ending = string.join(eclate[8:], ':')
			del eclate[8:]
			eclate.append(ending)
			(nature, shape, thickness, rgbout, rgbin, magnify, minimalsize, maximalsize, desc) = eclate

			if not thickness :
				thickness = 0.01
			try :
				thickness = abs(float(thickness))
			except :
				raise PDFMapError, "Error in configuration file %s\n\tinvalid Thickness field : '%s'" % (filename, confline)

			shape = string.capitalize(string.lower(shape))
			if shape not in self._available_shapes() :
				raise PDFMapError, "Error in configuration file %s\n\tunknown shape type : '%s'" % (filename, confline)

			if shape != "Image" :
				try :
					r,g,b = map(lambda x : abs(float(string.strip(x))), string.split(rgbout, ","))
					rgbout = (r, g, b)
				except :
					raise PDFMapError, "Error in configuration file %s\n\tinvalid RGBout field : '%s'" % (filename, confline)
			else :
				# rgbout contains the image filename or a directory
				# name, the directory should contain images
				pass

			if rgbin :
				try :
					r,g,b = map(lambda x : abs(float(string.strip(x))), string.split(rgbin, ","))
					rgbin = (r, g, b)
				except :
					if (shape != "Image") or (rgbin != "auto") :
						raise PDFMapError, "Error in configuration file %s\n\tinvalid RGBin field : '%s'" % (filename, confline)

			if not magnify :
				magnify = 1.0
			try :
				magnify = abs(float(magnify))
			except :
				raise PDFMapError, "Error in configuration file %s\n\tinvalid Magnify field : '%s'" % (filename, confline)

			if not minimalsize :
				minimalsize = 0.0
			try :
				minimalsize = abs(float(minimalsize))
			except :
				raise PDFMapError, "Error in configuration file %s\n\tinvalid MinimalSize field : '%s'" % (filename, confline)

			if not maximalsize :
				maximalsize = float(sys.maxint) # TODO : find a better maximum value
			try :
				maximalsize = abs(float(maximalsize))
			except :
				raise PDFMapError, "Error in configuration file %s\n\tinvalid MaximalSize field : '%s'" % (filename, confline)

			if cfg.has_key(nature) :
				raise PDFMapError, "Error in configuration file %s\n\tduplicated line : '%s'" % (filename, confline)
			cfg[nature] = { 'Shape': getattr(pdfmap, shape)(self, thickness, rgbout, rgbin), 'Magnify' : magnify, 'MinimalSize' : minimalsize, 'MaximalSize' : maximalsize, 'Description' : desc, 'Valid' : 0, 'TooSmall' : 0, 'TooBig' : 0 }
		if havetoclose :
			conf.close()
		return cfg

	def draw_datas(self, configfile, inputfile, legend = 1) :
		"""Draws all objects of an input file on the map.

		 configfile : the configuration file name

		 inputfile : the datas file name or handle,
				 or "-" or None which both mean sys.stdin

		 legend : 1 indicates that we want a legend, 0 that we don't
		"""
		config = self._read_config(configfile)
		if config is None :
			raise PDFMapError, "%s : invalid configuration file" % configfile

		havetoclose = 0
		if (inputfile == "-") or (inputfile is None) :
			infile = sys.stdin
		elif hasattr(inputfile, "readline") :
			infile = inputfile
		elif not os.path.isfile(inputfile) :
			raise PDFMapError, "%s : file doesn't exist" % inputfile
		else :
			infile = open(inputfile, "r")
			havetoclose = 1

		linenumber = 0
		skipped = 0
		while 1 :
			line = infile.readline()
			if not line :
				break
			linenumber = linenumber + 1
			line = string.strip(line)
			if not line or (line[0] == '#') :
				skipped = skipped + 1
			else :
				linesplit = self._splitline(config, line)
				if linesplit is None :
					sys.stderr.write("%s : Error on line %i (skipped)\n" % (inputfile, linenumber))
					skipped = skipped + 1
				else :
					self._draw_object(linesplit)
		if havetoclose :
			infile.close()

		if legend :
			self._draw_legend(config, linenumber, skipped)

	def _draw_object(self, linesplit) :
		"""Draws an object on the map.

		 linesplit : a tuple containing the corresponding
				 entry in the configuration file and
				 the fields from the input file :

		 (confobject, [nature, x, y, length, width, orientation, url])
		"""
		(confobject, fields) = linesplit
		(nature, x, y, length, width, orientation, url) = fields
		magfactor = confobject["Magnify"]
		length = length * magfactor
		width = width * magfactor
		shapesize = length * width
		if shapesize < confobject["MinimalSize"] :
			confobject["TooSmall"] = confobject["TooSmall"] + 1
		elif shapesize > confobject["MaximalSize"] :
			confobject["TooBig"] = confobject["TooBig"] + 1
		else :
			confobject["Valid"] = confobject["Valid"] + 1
			confobject["Shape"].drawIt(x, y, length, width, orientation, url)

	def _splitline(self, configuration, line) :
		"""Splits a data line, trying to be intelligent about the line format at the same time.

		 The datas read from the input file must be of the form :

		 nature\tx\ty\tlength\twidth\torientation\turl

		 or nature,x,y,length,width,orientation,url

		 or nature;x;y;length;width;orientation;url

		 or all the fields separated by any amount of whitespace

		 The url field is optionnal.
		"""
		ok = 0
		for separator in [',', ';', None] :
			 trythis = string.split(line, separator)
			 if 6 <= len(trythis) <= 7 :
				ok = 1
				break
		if not ok :
			# invalid line after three passes
			return

		# The url field is optionnal
		if len(trythis) == 6 :
			trythis.append("")

		trythis = map(string.strip, trythis)
		for i in range(1, 5) :
			try :
				value = float(trythis[i])
			except :
				# invalid line
				return
			trythis[i] = value

		# be sure that length and width are positive
		if (trythis[3] < 0.0) or (trythis[4] < 0.0) :
			# invalid length or width
			return

		# computes the angle from the orientation
		# in fact just extract it from our dictionnary
		# if it's a string. If it's a number, just use it
		# directly modulo 360 degres
		orientation = trythis[5]
		try :
			orientation = float(orientation) % 360
		except ValueError :
			# it's a string
			orientation = string.upper(orientation[:2])
			if self.orientations.has_key(orientation) :
				orientation = self.orientations[orientation]
			else :
				sys.stderr.write("Unknown orientation '%s', reset to North.\n" % orientation)
				orientation = 0
		trythis[5] = orientation

		for nature in [trythis[0], "DEFAULT"] :
			if configuration.has_key(nature) :
				return (configuration[nature], trythis)
		raise PDFMapError, "Nature %s unknown and no DEFAULT entry in configuration file" % nature

	def _draw_grid(self) :
		"""Draws the grid on the page."""
		pdfdoc = self.document
		pdfdoc.saveState()
		pdfdoc.setLineWidth(1)
		xmax = int(self.width / self.nbx) + 1
		ymax = int(self.height / self.nby) + 1
		for x in range(0, xmax) :
			xs = x * self.nbx
			pdfdoc.line(xs, 0, xs, -5)
			pdfdoc.line(xs, self.height, xs, self.height + 5)
			pdfdoc.saveState()
			pdfdoc.setLineWidth(0.01)
			pdfdoc.line(xs, 0, xs, self.height)
			pdfdoc.restoreState()
		for y in range(0, ymax) :
			ys = y * self.nby
			pdfdoc.line(-5, ys, 0, ys)
			pdfdoc.line(self.width, ys, self.width + 5, ys)
			pdfdoc.saveState()
			pdfdoc.setLineWidth(0.01)
			pdfdoc.line(0, ys, self.width, ys)
			pdfdoc.restoreState()

		fontsize = 8
		pdfdoc.setFont('Helvetica', fontsize)
		x = 0
		if not self.xaxisalign :
			x = x + (self.nbx / 2.0)
		xi = 0
		for xlabel in self.xaxis :
			pdfdoc.drawCentredString(x, -(fontsize+10) , xlabel)
			x = x + self.nbx
			xi = xi + 1
			if xi >= xmax :
				break
		y = 0
		if not self.yaxisalign :
			y = y + (self.nby / 2.0)
		yi = 0
		for ylabel in self.yaxis :
			pdfdoc.drawRightString(-10, y - (fontsize / 2), ylabel)
			y = y + self.nby
			yi = yi + 1
			if yi >= ymax :
				break
		pdfdoc.restoreState()

	def _draw_scales(self) :
		"""Draws the x and optionally y scales.

		 This code is actually deactivated.
		"""
		if 0 :
			pdfdoc = self.document
			pdfdoc.saveState()
			pdfdoc.setLineWidth(1)
			pdfdoc.translate(self.leftmargin, self.bottommargin - 20)
			pdfdoc.line(0, -5, 0, 5)
			pdfdoc.line(self.nbx, -5, self.nbx, 5)
			pdfdoc.setLineWidth(4)
			pdfdoc.line(0, 0, self.nbx, 0)
			pdfdoc.drawRightString(-10, 0, "0")
			pdfdoc.drawString(self.nbx + 10, 0, "%i Meters" % self.xstep)
			if self.nbx != self.nby :
				# TODO : we also need the vertical scale
				pass
			pdfdoc.restoreState()

	def _draw_north(self) :
		"""Draws the North arrow."""
		radius = 0.5*cm
		pdfdoc = self.document
		pdfdoc.saveState()
		pdfdoc.translate(4 * radius + 30, 4 * radius + 30) # 30 = 'N' FontSize
		pdfdoc.rotate(self.rotation)
		pdfdoc.setLineWidth(2)
		pdfdoc.circle(0, 0, radius)
		pdfdoc.line(-1.75*radius,0,1.75*radius,0)
		pdfdoc.line(0,4*radius,0,-4*radius)
		p = pdfdoc.beginPath()
		p.moveTo(0, 4*radius)
		p.lineTo(-0.5*radius, 3*radius)
		p.lineTo(0, 3.5*radius)
		p.lineTo(0.5*radius, 3*radius)
		p.close()
		pdfdoc.drawPath(p, fill=1)
		p = pdfdoc.beginPath()
		p.moveTo(0, -3*radius)
		p.lineTo(-0.5*radius, -4*radius)
		p.lineTo(0, -3.5*radius)
		p.lineTo(0.5*radius, -4*radius)
		p.close()
		pdfdoc.drawPath(p, fill=1)
		pdfdoc.setFillColorRGB(1,0,0)
		pdfdoc.setFont('Times-Bold', 30)
		pdfdoc.drawCentredString(0, 4*radius, "N")
		pdfdoc.restoreState()

	def _draw_titles(self) :
		"""Draws the different titles and copyright messages."""
		fontsize = 28
		offset = (fontsize / 2)
		pdfdoc = self.document
		pdfdoc.saveState()
		pdfdoc.translate(0, self.height)
		pdfdoc.setFont('Times-Roman', fontsize)
		pdfdoc.drawString(0, offset, "%s" % self.title)
		pdfdoc.setFont('Times-Roman', fontsize - 4)
		pdfdoc.drawRightString(self.width, offset, "%s" % self.subtitle)
		pdfdoc.restoreState()

	def _draw_call_logo(self) :
		"""Draws C@LL's logo.

		 This method expects a file named %s in the current
		 directory. If the file is absent, then nothing is
		 done, otherwise a clickable C@LL logo is drawn.

		 This is not intended to make this software
		 non Free in any way, it's just for me to make
		 demos not reusable by free riders. Does anyone
		 have a better solution ?
		""" % LOGONAME
		if os.path.isfile(LOGONAME) :
			image = PIL.Image.open(LOGONAME)
			(width, height) = image.size
			del image
			multi = (height + 0.0) / (2 * cm)
			width = width / multi
			height = height / multi
			self.logowidth = width + 2*cm
			self.logoheight = height + 2*cm

			pdfdoc = self.document
			pdfdoc.saveState()
			pdfdoc.translate(cm, self.height - cm - self.logoheight)
			pdfdoc.setLineWidth(2)
			pdfdoc.setStrokeColorRGB(0, 0, 0)
			pdfdoc.setFillColorRGB(1,1,1)
			p = pdfdoc.beginPath()
			p.rect(0, 0, self.logowidth, self.logoheight)
			p.close()
			pdfdoc.drawPath(p, fill=1)
			pdfdoc.drawImage(LOGONAME, cm, 1.5*cm, width, height, mask="auto")
			(r, g, b) = WEBSITECOLOR
			pdfdoc.setFillColorRGB(r, g, b)
			pdfdoc.setStrokeColorRGB(r, g, b)
			pdfdoc.drawCentredString(self.logowidth / 2.0, 1*cm, WEBSITE)
			pdfdoc.setFont('Helvetica', 8)
			pdfdoc.drawCentredString(self.logowidth / 2.0, 0.5*cm, "%s" % COPYRIGHT)
			pdfdoc.linkURL(WEBSITE, (0, 0, self.logowidth, self.logoheight), relative=1)
			pdfdoc.restoreState()

	def _draw_legend(self, config, total, rejected) :
		"""Draws the map legend."""
		pdfdoc = self.document
		font = "Times-Roman"
		fontsize = 10

		# computes the legend's width
		maxwidth = 0
		lines = []
		toosmall = toobig = 0
		for key in config.keys() :
			cfg = config[key]
			toosmall = toosmall + cfg["TooSmall"]
			toobig = toobig + cfg["TooBig"]
			if cfg["Valid"] :
				chaine = "%s" % key
				if cfg["Description"] :
					chaine = chaine + " - %s" % cfg["Description"]
				chaine = chaine + " (%i : %02.2f%%)" % (cfg["Valid"], (cfg["Valid"] * 100.0 / (total - rejected)))
				linewidth = pdfdoc.stringWidth(chaine, font, fontsize)
				if linewidth > maxwidth :
					maxwidth = linewidth
				lines.append((key, chaine))
		totalline = "%i lines, %i skipped, %i too small, %i too big" % (total, rejected, toosmall, toobig)
		linewidth = pdfdoc.stringWidth(totalline, font, fontsize)
		if linewidth > maxwidth :
			maxwidth = linewidth

		largeur = maxwidth + (2 * cm) + 15
		hauteur = len(lines) * 20
		pdfdoc.saveState()
		pdfdoc.setFont(font, fontsize)
		pdfdoc.translate(self.width - largeur - cm, self.height - hauteur - cm)
		pdfdoc.setLineWidth(2)
		pdfdoc.setStrokeColorRGB(0, 0, 0)
		pdfdoc.setFillColorRGB(1,1,1)
		p = pdfdoc.beginPath()
		p.rect(0, -cm, largeur, hauteur + cm)
		p.close()
		pdfdoc.drawPath(p, fill=1)

		pdfdoc.setStrokeColorRGB(0, 0, 0)
		pdfdoc.setFillColorRGB(0, 0, 0)

		for k in range(len(lines)) :
			(key, line) = lines[k]
			cfg = config[key]
			pdfdoc.saveState()
			pdfdoc.setLineWidth(0.01)
			pdfdoc.translate(cm, hauteur - ((k+1) * 20) + (fontsize / 2.0))
			# we fool the engine with false coordinates and rotation
			obj = cfg["Shape"].drawIt(self.xorigin, self.yorigin, fontsize / self.xratio, fontsize / (2.0 * self.yratio), -self.rotation)
			pdfdoc.restoreState()
			pdfdoc.drawString(cm + 15, hauteur - ((k+1) * 20), line)
		pdfdoc.setFont(font, fontsize - 2)
		pdfdoc.drawCentredString(largeur / 2.0, -24, totalline)
		pdfdoc.restoreState()

def __display_version_and_quit() :
	"""Displays version number, then exists successfully."""
	print __version__
	sys.exit(0)

def __display_usage_and_quit() :
	"""Displays command line usage, then exists successfully."""
	print __doc__
	sys.exit(0)

def standardize_form(form) :
	"""Tries to determine if we were launched as a CGI script
	 or from Zope, then returns the form contents as a dictionnary
	 identical in both cases."""
	# this field MUST be present in all cases
	if hasattr(form["PDFMapFormIsValid"], "value") :
		# regular CGI script
		# we must get rid of this '.value' thing
		newform = {}
		for key in form.keys() :
			newform[key] = form[key].value
		newform["bgmap"] = PIL.Image.open(cStringIO.StringIO(newform["bgmap"])).convert("RGB")
		for file in ["config", "datafile"] :
			if newform.has_key(file) :
				newform[file] = cStringIO.StringIO(newform[file])
		return newform
	else :
		# probably Zope : it's already a regular dictionnary
		# so we return it unchanged for now.
		# TODO : verify if we have to do something for the input fields of type file.
		return form

def parse_commandline(argv, short, long) :
	"""Parses the command line, controlling options."""
	# split options in two lists: those which need an argument, those which don't
	withoutarg = []
	witharg = []
	lgs = len(short)
	i = 0
	while i < lgs :
		ii = i + 1
		if (ii < lgs) and (short[ii] == ':') :
			# needs an argument
			witharg.append(short[i])
			ii = ii + 1 # skip the ':'
		else :
			# doesn't need an argument
			withoutarg.append(short[i])
		i = ii
	for option in long :
		if option[-1] == '=' :
			# needs an argument
			witharg.append(option[:-1])
		else :
			# doesn't need an argument
			withoutarg.append(option)

	# we begin with all possible options unset
	parsed = {}
	for option in withoutarg + witharg :
		parsed[option] = None

	# then we parse the command line
	args = []	# to not break if something unexpected happened
	try:
		options,args = getopt.getopt(argv, short, long)
		if options :
			for (o, v) in options :
				# we skip the '-' chars
				lgo = len(o)
				i = 0
				while (i < lgo) and (o[i] == '-') :
					i = i + 1
				o = o[i:]
				if o in witharg :
					# needs an argument : set it
					parsed[o] = v
				elif o in withoutarg :
					# doesn't need an argument : boolean
					parsed[o] = 1
				else :
					# should never occur
					raise PDFMapError, "Unexpected problem when parsing command line"
		elif (not args) and sys.stdin.isatty() : # no option and no argument, we display help if we are a tty
			__display_usage_and_quit()
	except getopt.error,msg :
		sys.stderr.write("%s\n" % msg)
		__display_usage_and_quit()
	return (parsed, args)

def createpdfmap(cmdline, arguments, mandatory) :
	"""Options check and conversions, then does the real work."""
	# convert some arguments to float if possible, else display error
	tofloat = ["xorigin", "yorigin", "xscale", "yscale", "xstep", "ystep", "rotation"]
	# providing a map background is optionnal
	if cmdline["bgmap"] is not None :
		# but if we do it we must ensure other options are present
		tofloat.extend(["bgx", "bgy", "bgwidth", "bgheight", "bgrotation"])
	for option in tofloat :
		try :
			cmdline[option] = float(cmdline[option])
		except ValueError :
			sys.stderr.write("Bad option %s : %s\n" % (option, cmdline[option]))
			__display_usage_and_quit()
		except TypeError :	# None
			sys.stderr.write("Option %s is mandatory\n" % option)
			__display_usage_and_quit()

	# do we want a rasterized map for the background ?
	if cmdline["bgmap"] is not None :
		background = MapBackground(cmdline["bgmap"], cmdline["bgx"], cmdline["bgy"], cmdline["bgwidth"], cmdline["bgheight"], cmdline["bgrotation"])
	else :
		background = None

	# verifies mandatory values
	# for floating point number that's already done (see above)
	for option in mandatory :
		if cmdline[option] is None :
			sys.stderr.write("Option %s is mandatory\n" % option)
			__display_usage_and_quit()

	# check some values
	cmdline["orientation"] = string.lower(cmdline["orientation"])
	if cmdline["orientation"] not in ["portrait", "landscape"] :
		sys.stderr.write("Unknown %s paper orientation\n" % cmdline["orientation"])
		__display_usage_and_quit()

	# initialize the PDF document
	doc = PDFMap(cmdline["author"], cmdline["title"], cmdline["subtitle"], cmdline["papersize"])

	# set the format of the next pages
	doc.formatpage(cmdline["orientation"], cmdline["leftmargin"], cmdline["bottommargin"], cmdline["rightmargin"], cmdline["topmargin"])

	# sets the labels for the two axis
	doc.setaxis(xaxis = cmdline["xlabels"], yaxis = cmdline["ylabels"], xaxisalign = cmdline["xalign"], yaxisalign = cmdline["yalign"])

	# generates a new page for each input file
	for infile in arguments :
		# initialize the new page
		doc.initpage(background, cmdline["xorigin"], cmdline["yorigin"], cmdline["xscale"], cmdline["yscale"], cmdline["xstep"], cmdline["ystep"], cmdline["rotation"])

		# draws the datas read from he input files
		# according to what's in the configuration file
		doc.draw_datas(cmdline["config"], infile, cmdline["legend"])

		# ends the current page
		doc.endpage()

	# returns the Map in PDF
	return doc

if __name__ == '__main__' :
	short_options = "hv"
	long_options = ["config=", "help", "version", "outputfile=", "legend", \
			"bgmap=", "bgx=", "bgy=", "bgwidth=", "bgheight=", "bgrotation=", \
			"author=", "title=", "subtitle=", "papersize=", "orientation=", \
			"leftmargin=", "bottommargin=", "rightmargin=", "topmargin=", \
			"xlabels=", "ylabels=", "xalign", "yalign", \
			"xorigin=", "yorigin=", "xscale=", "yscale=", "xstep=", "ystep=", "rotation="]

	# what non-number options are mandatory (NB: every number option is mandatory)
	mandatory = ["config", "papersize", "orientation", "leftmargin", "bottommargin", "rightmargin", "topmargin"]

	# are we a CGI script ?
	if (len(sys.argv) < 2) and os.environ.has_key("REQUEST_METHOD") :
		# YES, probably
		try :
			import jaxml
		except ImportError :
			sys.stderr.write("You MUST have installed the jaxml Python module.\nYou can download it from http://cortex.unice.fr/~jerome/\n")
			sys.exit(-1)
		try :
			doc = jaxml.CGI_document()
			form = cgi.FieldStorage()
			if not form.has_key("PDFMapFormIsValid") :
				doc._default_header("PDFMap v%s" % __version__)
				doc.body(bgcolor="white")
				doc._text(HTMLFORM)
			else :
				# standardizes the form
				newform = standardize_form(form)

				# creates the PDF document
				args = [newform["datafile"]]
				if not newform.has_key("legend") :
					newform["legend"] = None
				pdfmap = createpdfmap(newform, args, mandatory)

				# sets the correct HTTP header
				doc._set_content_type("application/pdf")
				doc._set_content_disposition("attachment; filename=map.pdf")
				doc._text(str(pdfmap))
		except PDFMapError, message :
			# send an error document to the client, in HTML
			title = "PDFMap v%s Error" % __version__
			doc = jaxml.CGI_document()
			doc._default_header(title)
			doc.body()
			doc.h2(title)
			doc._text(message)

			# also send something to stderr => Web server's error log file
			sys.stderr.write("%s - %s\n" % (title, message))
			sys.stderr.flush()

		# output our HTML doc
		doc._output()

		# we must exit with 0 otherwise Apache sends an Internal Server Error
		# and our message above is not sent at all.
		sys.exit(0)
	else :
		# NO, certainely
		try :
			# normal command line launch, then first parse it
			(cmdline, args) = parse_commandline(sys.argv[1:], short_options, long_options)

			# see if we have to display usage or version
			# if this is the case then the program ends here
			if (cmdline["help"] is not None) or (cmdline["h"] is not None) :
				__display_usage_and_quit()
			elif (cmdline["version"] is not None) or (cmdline["v"] is not None) :
				__display_version_and_quit()
			else :	# unneeded
				# no argument and stdin is redirected, then
				# we will read the datas from stdin
				if (not args) and (not sys.stdin.isatty()) :
					args.append("-")

				# creates the PDF document
				doc = createpdfmap(cmdline, args, mandatory)

				# generates the PDF document
				doc.output(cmdline["outputfile"])
		except PDFMapError, message :
			sys.stderr.write("%s\n" % message)
			sys.stderr.flush()
			sys.exit(-1)

pdfmap-1.60/setup.py

#! /usr/bin/env python
#
pdfmap
(c) 2001-2002 Jerome Alet <alet@librelogiciel.com>
You're welcome to redistribute this software under the
terms of the GNU General Public Licence version 2.0
or, at your option, any higher version.
#
You can read the complete GNU GPL in the file COPYING
which should come along with this software, or visit
the Free Software Foundation's WEB site http://www.fsf.org
#
$Id: setup.py,v 1.1.1.1 2002/01/16 20:09:49 jalet Exp $

from distutils.core import setup

import pdfmap

setup(name = "pdfmap", version = pdfmap.__version__,
 licence = "GNU GPL",
 description = pdfmap.__doc__,
 author = "Jerome Alet",
 author_email = "alet@librelogiciel.com",
 url = "http://pdfmap.sourceforge.net/",
 scripts = ["pdfmap.py"])

pdfmap-1.60/PKG-INFO

Metadata-Version: 1.0
Name: pdfmap
Version: 1.60
Summary: PDFMap v1.60 (C) 2001-2002 C@LL - Conseil Internet & Logiciels Libres
A python module to generate maps in PDF format and place clickable
objects on them.

Object types can be represented either by shapes of different forms and
colors (fill and contour), or by user provided images. Each object is
scaled, oriented and positionned on the map.

The more powerful way to use this software is to use its API in your
own programs, this will allow you to produce multipage documents with
different sizes, orientations, scales, background, etc... from page to
page.

However the same result can be obtained launching PDFMap several times
from the command line, producing one or many pages at a time, so here
are the different options available from the command line :

command line usage :

	pdfmap.py [options] [[inputfile1] [inputfile2] ...]

options :

 -v | --version	 prints PDFMap's version number then exits
 -h | --help		 prints this message then exits

 --config file.cfg	 uses file.cfg as the configuration file
 --outputfile file.pdf	 uses file.pdf as the output file, otherwise sends
			 the output to stdout
 --author authorname	 uses authorname as the document author's name
 --title doctitle	 uses doctitle as the document's title
 --subtitle docsubtitle uses docsubtitle as the document's subtitle

 --papersize psize	 uses psize as the paper size. psize can be any
			 paper size natively recognized by the ReportLab
			 ToolKit, expressed in UPPERCASE (i.e. A4 or LETTER
			 for example), or any size expressed as 'WxH' where
			 W and H respectively are Width and Height of
			 the page in centimeters (e.g. 21x29.7 for A4).
			 For each dimension, you can specify a unit which
			 may be different from one dimension to the other.
			 Allowed units are :
			 cm : centimeters (DEFAULT)
			 in : inches
			 pt : points
			 (e.g. 8.5inx11in for LETTER)

 --orientation o	 uses o as the paper orientation, which must be
			 either "portrait" or "landscape"

 --leftmargin lm	 left margin
 --bottommargin bm	 bottom margin
 --rightmargin rm	 right margin
 --topmargin tm	 top margin
			 You can choose the unit in which you express
			 the four margins, sticking either 'cm', 'in',
			 or 'pt' at the end of each number.
			 cm : centimeters (DEFAULT)
			 in : inches
			 pt : points
			 (e.g. 100pt for 100 points)

 --legend		 generates the map legend, default is no legend

 --bgmap image.jpeg	 uses image.jpeg as the map background. Most graphic
			 formats are allowed, and you can also give an URL
			 to download the background from a remote location.
 --bgx x		 X position of the map background in units
 --bgy y		 Y position of the map background in units
 --bgwidth w		 width of the map background in units
 --bgheight h		 height of the map background in units
 --bgrotation r	 rotation of the map background in degres (counter
			 clockwise) wrt the North

 --xlabels labels	 Labels for the X ticks
 --ylabels labels	 Labels for the Y ticks
 --xalign		 Align X labels on X ticks or center them (default)
 --yalign		 Align Y labels on Y ticks or center them (default)

 --xorigin x		 X origin of the generated map in units (from lower
			 left)
 --yorigin y		 Y origin of the generated map in units (from lower
			 left)
 --xscale xs		 scale for the X dimension
 --yscale ys		 scale for the Y dimension
 --xstep stx		 distance between two X ticks in units
 --ystep sty		 distance between two Y ticks in units

 --rotation r		 angle of the generated map in degres (counter
			 clockwise) wrt the North

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Please e-mail bugs to: alet@librelogiciel.com (Jerome Alet)
Home-page: http://pdfmap.sourceforge.net/
Author: Jerome Alet
Author-email: alet@librelogiciel.com
License: GNU GPL
Description: UNKNOWN
Platform: UNKNOWN

