NQL : a GAP 4 package - References

[Bartholdi03]
Laurent Bartholdi.
Endomorphic presentations of branch groups.
J. Algebra, 268:419--443, 2003.
[Baumslag71]
Gilbert Baumslag.
A finitely generated, infinitely related group with trivial multiplicator.
5:131--136, 1971.
[BEH08]
Laurent Bartholdi, Bettina Eick, and René Hartung.
A nilpotent quotient algorithm for certain infinitely presented groups and its applications.
Internat. J. Algebra Comput., 18(8):1321--1344, 2008.
[BartholdiGrigorchuk02]
Laurent Bartholdi and Rostislav I. Grigorchuk.
On parabolic subgroups and Hecke algebras of some fractal groups.
Serdica Math. J., 28(1):47--90, 2002.
[BrunnerVieiraSidki99]
A. M. Brunner, Said Sidki, and Ana Cristina Vieira.
A just-nonsolvable torsion-free group defined on the binary tree.
211(1):99--114, 1999.
[BartholdiVirag05]
Laurent Bartholdi and Bálint Virág.
Amenability via random walks.
Duke Math. J., 130(1):39--56, 2005.
[ParGap]
Gene Cooperman.
ParGAP, 2004.
A GAP4 package, see GAP4.
[EH09]
Bettina Eick and René Hartung.
Investigating some self-similar groups via nilpotent quotients.
Preprint.
[FabrykowskiGupta85]
Jacek Fabrykowski and Narain Gupta.
On groups with sub-exponential growth functions.
J. Indian Math. Soc. (N.S.), 49(3-4):249--256 (1987), 1985.
[Grigorchuk80]
R.I. Grigorchuk.
Burnside's problem on periodic groups.
Functional Analysis and its Applications, 14:41--43, 1980.
[Grigorchuk83]
R. I. Grigorchuk.
On the Milnor problem of group growth.
Dokl. Akad. Nauk SSSR, 271(1):30--33, 1983.
[Grigorchuk98]
R. I. Grigorchuk.
An example of a finitely presented amenable group that does not belong to the class EG.
Mat. Sb., 189(1):79--100, 1998.
[Grigorchuk99]
R. I. Grigorchuk.
On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata.
In Groups St. Andrews 1997 in Bath, I, volume 260 of London Math. Soc. Lecture Note Ser., pages 290--317. Cambridge Univ. Press, Cambridge, 1999.
[GrigorchukZuk02]
Rostislav Grigorchuk and Andrzej Zuk.
On a torsion-free weakly branch group defined by a three state automaton.
Internat. J. Algebra Comput., 12(1--2):223--246, 2002.
[Har09]
René Hartung.
Approximating the Schur multiplier of certain infinitely presented groups via nilpotent quotients.
Preprint.
[H08]
René Hartung.
A nilpotent quotient algorithm for finitely L-presented groups.
Diploma thesis, University of Braunschweig, 2008.
http://www-public.tu-bs.de:8080/~y0019492/pub/index.html.
[Lysenok85]
I.G. Lysenok.
A system of defining relations for a Grigorchuk group.
Mathematical Notes, 38:784--792, 1985.
[Nickel96]
Werner Nickel.
Computing nilpotent quotients of finitely presented groups.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 25:175--191, 1996.
[nq]
Werner Nickel.
NQ, 2003.
A GAP4 package, see GAP4.
[Sidki87]
Said Sidki.
On a 2-generated infinite 3-group: The presentation problem.
Journal of Algebra, 110:13--23, 1987.

[Up]

NQL manual
July 2009