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Chapter 1

Introduction

1.1 Introduction to the GUAVA package

This is the manual of theAP packageGUAVA that provides implementations of some routines de-
signed for the construction and analysis of in the theory of error-correcting codes.
The functions can be divided into three subcategories:

e Construction of codessUAVA can construct unrestricted, linear and cyclic codes. Information
about the code, such as operations applicable to the code, is stored in a record-like data structure
called aGAP object.

e Manipulations of codes: Manipulation transforms one code into another, or constructs a new
code from two codes. The new code can profit from the data in the record of the old code(s), so
in these cases calculation time decreases.

e Computations of information about cod&€=3JAVA can calculate important parameters of codes
quickly. The results are stored in the codes’ object components.

Except for the automorphism group and isomorphism testing functions, which make use of J.S.
Leon’s programs (seé£091 and the documentation in the 'src’ subdirectory of the 'guava’ directory
for some details)GUAVA is written in theGAP language, and runs on any system suppor@ng4.3
and above. Several algorithms that need the speed were integratedsinrternel.

Good general references for error-correcting codes and the technical terms in this manual are
MacWilliams and Sloane\|S83 Huffman and Pless{P03.

1.2 Installing GUAVA

To install GUAVA (as aGAP 4 Package) unpack the archive file in a directory in the ‘pkg’ hierarchy
of your version ofGAP 4.

After unpackingGUAVA the GAP-only part of GUAVA is installed. The parts @dUAVA depending
on J. Leon’s backtrack programs package (for computing automorphism groups) are only available in
a UNIX environment, where you should proceed as follows: Go to the newly created ‘guava’ directory
and call*. /configure /gappath’ where/gappath is the path to th&AP home directory. So for
example, if you install the package in the main ‘pkg’ directory call

./configure ../..
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This will fetch the architecture type for whigBAP has been compiled last and create a ‘Makefile’.
Now call

make

to compile the binary and to install it in the appropriate place. (For a windows machine with CYGWIN
installed - se@ttp://www.cygwin.com/ - instructions for compiling Leon’s binaries are likely to be
similar to those above. On a 64-bit SUSE linux computer, instead of the configure command above -
which will only compile the 32-bit binary - type

./configure ../.. ——enable-libsuffix=64
make

to compile Leon’s program as a 64 bit native binary. This may also work for other 64-bit linux
distributions as well.)

This completes the installation GfUAVA for a single architecture. If you use this installation
of GUAVA on different hardware platforms you will have to compile the binary for each platform
separately.

1.3 Loading GUAVA

After starting UpGAP, the GUAVA package needs to be loaded. LaadAVA by typing at theGAP
prompt:

Example
gap> LoadPackage( "guava", "2.0", false );

If GUAVA isn't already in memory, it is loaded and the author information is displayed. If you are a
frequent user oGUAVA, you might consider putting this line in your ‘.gaprc’ file.


http://www.cygwin.com/

Chapter 2

Codewords

Let GF(q) denote a finite field witlg (a prime power) elements. éodeis a subseC of some finite-

dimensional vector spaseoverGF(q). Thelengthof C is the dimension o¥ . Usually,V = GF(q)"

and the length is the number of coordinate entries. Wdenitself a vector space ov&F(q) then it

is called dinear codeand thedimensiorof C is its dimension as a vector space oG (q).

In GUAVA, a ‘codeword’ is aGAP record, with one of its components being an element in
Likewise, a ‘code’ is &GAP record, with one of its components being a subset (or subspace with given
basis, ifC is linear) ofV.

Example

gap> C:=RandomLinearCode(20,10,GF (4));

a [20,10,?] randomly generated code over GF (4)

gap> c:=Random(C) ;

[12a00011a200alllallaado0]

gap> NamesOfComponents (C) ;

[ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",
"GeneratorMat", "name", "Basis", "NiceFreeLeftModule", "Dimension",

"Representative", "ZeroImmutable" ]
gap> NamesOfComponents(c);

[ "VectorCodeword", "WordLength", "treatAsPoly" ]

gap> c!.VectorCodeword;

[ immutable compressed vector length 20 over GF (4) ]

gap> Display(last);

[ 2(2°2), Z(2°2), Z(2°2), Z(2)"0, Z(2°2), Z(2°2)"2, 0*Z(2), Z(2°2), 7Z(2°2),
7(2)°0, 2(2°2)°2, 0%2(2), 0%Z(2), Z(2°2), 0*Z(2), 0%Z(2), 0*Z(2), 2(2°2)"2,
72(2)°0, 0*2(2) 1

gap> C!.Dimension;

10

Mathematically, a ‘codeword’ is an element of a co@e but in GUAVA the Codeword and
VectorCodeword commands have implementations which do not check if the codeword beloBgs to
(i.e., are independent of the code itself). They exist primarily to make it easier for the user to construct
a the associate@AP record. Using these commands, one can enter ird@aR both a codewora
(belonging taC) and a received word (not belonging taC) using the same command. The user can
input codewords in different formats (as strings, vectors, and polynomials), and output information is
formatted in a readable way.

A codewordc in a linear codeC arises in practice by an initial encoding of a 'block’ message
adding enough redundancy to recoweafterc is transmitted via a 'noisy’ communication medium.

11
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In GUAVA, for linear codes, the map—— cis computed using the command=m*C and recovering
mfrom cis obtained by the commandformationWord (c, C). These commands are explained more
below.

Many operations are available on codewords themselves, although codewords also work together
with codes (see chapt8ron Codes).

The first section describes how codewords are constructed¢geeord (2.1.1) andIsCodeword
(2.1.3). Sections2.2 and 2.3 describe the arithmetic operations applicable to codewords. Section
2.4 describe functions that convert codewords back to vectors or polynomialgeseerCodeword
(2.4.7) andprolyCodeword (2.4.2). Section2.5describe functions that change the way a codeword
is displayed (se&@reatAsvVector (2.5.1]) andTreatAsPoly (2.5.9). Finally, Sectior2.6 describes a
function to generate a null word (s&el1Word (2.6.1)) and some functions for extracting properties
of codewords (seRistanceCodeword (2.6.2), Support (2.6.3 andWeightCodeword (2.6.4).

2.1 Construction of Codewords

2.1.1 Codeword

QO Codeword( obij[, nl[,][F] ) (function)

Codeword returns a codeword or a list of codewords constructed fsbm The objecbb can be
a vector, a string, a polynomial or a codeword. It may also be a list of those (even a mixed list).

If a numbem is specified, all constructed codewords have lemgthhis is the only way to make
sure that all elements ob j are converted to codewords of the same length. Elementsjahat are
longer tham are reduced in length by cutting of the last positions. Element® pthat are shorter
thann are lengthened by adding zeros at the end. Ifin® specified, each constructed codeword is
handled individually.

If a Galois fieldr is specified, all codewords are constructed over this field. This is the only way
to make sure that all elements @7 are converted to the same figldotherwise they are converted
one by one). Note that all elementsa@fj must have elements overor over ‘Integers’. Converting
from one Galois field to another is not allowed. If nds specified, vectors or strings with integer
elements will be converted to the smallest Galois field possible.

Note that a significant speed increase is achieveddfspecified, even when all elementsobf;
already have elements over

Every vector inobj can be a finite field vector overor a vector over ‘Integers’. In the last case,
it is converted tar or, if omitted, to the smallest Galois field possible.

Every string inobj must be a string of numbers, without spaces, commas or any other characters.
These numbers must be from 0 to 9. The string is converted to a codeword oxef F is omitted,
over the smallest Galois field possible. Note that since all numbers in the string are interpreted as one-
digit numbers, Galois fields of size larger than 10 are not properly represented when using strings. In
fact, no finite field of size larger than 11 arises in this fashion at all.

Every polynomial inob j is converted to a codeword of lengtlor, if omitted, of a length dictated
by the degree of the polynomial. #fis specified, a polynomial inbj must be over.

Every element obbj that is already a codeword is changed to a codeword of lengthno n
was specified, the codeword doesn’t change.i#f specified, the codeword must have base field
Example

gap> ¢ := Codeword([0,1,1,1,0]);
[01110]
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)
"0, Z(2)°0, 0*Z(2) ]
1

I

gap> VectorCodeword( c
[ 0%Z(2), Z2(2)°0, Z(2)
gap> c2 := Codeword ([0
[01110]

gap> VectorCodeword( c2 );

[ 0*Z(3), Z(3)°0, Z(3)°0, Z(3)"0, 0*Z(3) ]

gap> Codeword([c, c2, "0110"]);

(ro11101, 101110171, 011071

gap> p := UnivariatePolynomial (GF(2), [Z(2)"0, 0*Z(2), Z(2)"01);
Z2(2)"0+x_1"2

gap> Codeword(p);

x"2 + 1

This command can also be called using the syntaxword (ob7j, C) . In this format, the elements
of ob7j are converted to elements of the same ambient vector space as the elements of. aldwle
command-odeword (c, C) is the same as callintpdeword (c, n, F), wheren is the word length of
and ther is the ground field of.

Example

gap> C := WholeSpaceCode (7,GF (5));

a cyclic [7,7,1]10 whole space code over GF(5)
gap> Codeword(["0220110", [1,1,1]11, C);
[[02201101], [1110000T7 ]

gap> Codeword(["0220110", [1,1,111, 7, GE(5));
[[ 02201101, [1110000T17 1

gap> C:=RandomLinearCode (10,5,GF (3));

a linear [10,5,1..3]3..5 random linear code over GF (3)
gap> Codeword("1000000000",C);
[1000000000]]

gap> Codeword("1000000000",10,GF (3));
[100000000O0]]

2.1.2 CodewordNr

¢ CodewordNr( C, list ) (function)

CodewordNr returns a list of codewords of 1ist may be a list of integers or a single integer. For
each integer of i st, the corresponding codeword ofs returned. The correspondence of a number
i with a codeword is determined as follows: if a list of elements @ available, thé'" element is
taken. Otherwise, itis calculated by multiplication of thénformation vector by the generator matrix
or generator polynomial, where the information vectors are ordered lexicographically. In particular,
the returned codeword(s) could be a vector or a polynomial.c&ewordNr (C, i) is equal to
AsSSortedList (C) [1], described in the next chapter. The latter function first calculates the set of
all the elements of and then returns thié' element of that set, whereas the former only calculates

theith codeword.
Example

gap> B := BinaryGolayCode ();

a cyclic [23,12,7]3 binary Golay code over GF(2)

gap> ¢ := CodewordNr (B, 4);

x"22 + x720 + x717 + x714 + x713 + x712 + x711 + x710
gap> R := ReedSolomonCode (2,2);
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a cyclic [2,1,2]1 Reed-Solomon code over GF (3)
gap> AsSSortedList (R);

(roorl, 1111, 102217]

gap> CodewordNr (R, [1,3]);

[T0071, T 2271]

2.1.3 IsCodeword

Q) IsCodeword( obj ) (function)

IsCodeword returns ‘true’ if obj, which can be an object of arbitrary type, is of the codeword
type and ‘false’ otherwise. The function will signal an errosiifj is an unbound variable.

Example

gap> IsCodeword(l);

false

gap> IsCodeword(ReedMullerCode (2, 3));
false

gap> IsCodeword("11111");

false

gap> IsCodeword (Codeword("11111"));
true

2.2 Comparisons of Codewords

221 =

O=(cl, c2) (function)

The equality operatot1 = c2 evaluates to ‘true’ if the codewords andc2 are equal, and to
‘false’ otherwise. Note that codewords are equal if and only if their base vectors are equal. Whether
they are represented as a vector or polynomial has nothing to do with the comparison.

Comparing codewords with objects of other types is not recommended, although it is possible. If
c2 is the codeword, the other object is first converted to a codeword, after which comparison is
possible. This way, a codeword can be compared with a vector, polynomial, or string.islthe
codeword, then problems may arise:if is a polynomial. In that case, the comparison always yields
a ‘'false’, because the polynomial comparison is called.

The equality operator is also denotegl andEQ (c1, c2) is the same asl = c2. There is also
an inequality operatok: >, or not EQ.

Example
gap> P := UnivariatePolynomial (GF(2), Z(2)*[1,0,0,1]);
Z(2)"0+x_1"3

gap> ¢ := Codeword(P, GF(2));

x"3 + 1

gap> P = ¢; # codeword operation

true

gap> c2 := Codeword("1001", GF(2));

[1001]

gap> c = c2;

true
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gap> C:=HammingCode (3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> cl:=Random(C);

[1 0011001

gap> c2:=Random (C) ;

[0100101]

gap> EQ(cl,c2);

false

gap> not EQ(cl,c2);

true

2.3 Arithmetic Operations for Codewords

231 +

O+(cl, c2) (function)

The following operations are always available for codewords. The operands must have a common
base field, and must have the same length. No implicit conversions are performed.
The operator evaluates to the sum of the codewordsandc?.

Example

gap> C:=RandomLinearCode (10,5,GF (3));

a linear [10,5,1..3]3..5 random linear code over GF (3)
gap> c:=Random(C);

[1022221020]

gap> Codeword (c+"2000000000");

(0022221020

gap> Codeword(c+"1000000000");

The last command return &AP ERROR since the ‘codeword’ whiclBUAVA associates to
"1000000000” belongs t&F(2) and notGF(3).

23.2 -

O-(cl, c2) (function)

Similar to addition: the operaterevaluates to the difference of the codewotdsandc?.

233 +

O+ v, C) (function)

The operator+C evaluates to the coset code of cadifter adding a ‘codeword’ to all codewords
in C. Note that ifc € C then mathematicallg + C = C but GUAVA only sees them equal asts See
CosetCode (6.1.15.

Note that the command:v returns the same output as the commancl

Example

gap> C:=RandomLinearCode (10,5);
a [10,5,?] randomly generated code over GF(2)
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gap> c:=Random(C);

[000000O0O0O0O0]]

gap> c+C;

[ add. coset of a [10,5,?] randomly generated code over GF(2) ]
gap> c+C=C;

true

gap> IsLinearCode (ctC);

false

gap> v:=Codeword("100000000");

[100000O00O0O0]]

gap> v+C;

[ add. coset of a [10,5,?] randomly generated code over GF(2) ]
gap> C=v+C;

false

gap> C := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] 1, GF(2) );

a linear [4,2,1]1 code defined by generator matrix over GF (2)

gap> Elements (C);

(roocool, 010071, 1100071, [T1T100T7]]

gap> v:=Codeword("0011");

[0011]

gap> C+v;

[ add. coset of a linear [4,2,4]1 code defined by generator matrix over GF(2) ]
gap> Elements (C+v);

rrooz1131, 101111, 110111, 1111111

In general, the operations just described can also be performed on codewords expressed as vectors,
strings or polynomials, although this is not recommended. The vector, string or polynomial is first
converted to a codeword, after which the normal operation is performed. For this to go right, make
sure that at least one of the operands is a codeword. Further more, it will not work when the right
operand is a polynomial. In that case, the polynomial operationsi (eFieldPolynomialOps) are
called, instead of the codeword operationsdewordOps).

Some other code-oriented operations with codewords are descriBetl in

2.4 Functions that Convert Codewords to Vectors or Polynomials
2.4.1 VectorCodeword

Q VectorCodeword( obj ) (function)

Hereobj can be a code word or a list of code words. This function returns the corresponding

vectors over a finite field.
Example

gap> a := Codeword("011011");;
gap> VectorCodeword(a);
[ 0%2(2), 2(2)"0, Z(2)°0, 0*Z(2), 2(2)°0, 2(2)70 ]

2.4.2 PolyCodeword

{ PolyCodeword( obj ) (function)
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PolyCodeword returns a polynomial or a list of polynomials over a Galois field, converted from
obj. The objecbb can be a codeword, or a list of codewords.

Example

gap> a := Codeword("011011");;
gap> PolyCodeword(a);
x_1+x_172+x_174+4x_1"5

2.5 Functions that Change the Display Form of a Codeword

2.5.1 TreatAsVector

Q) TreatAsVector( obj ) (function)

TreatAsVector adapts the codewords i j to make sure they are printed as vectars;j may
be a codeword or a list of codewords. Elementstof that are not codewords are ignored. After this
function is called, the codewords will be treated as vectors. The vector representation is obtained by
using the coefficient list of the polynomial.

Note that thisonly changes the way a codewordganted TreatAsVector returns nothing, it
is called only for its side effect. The functiorctorCodeword converts codewords to vectors (see
VectorCodeword (2.4.1).

Example

gap> B := BinaryGolayCode ();

a cyclic [23,12,7]3 binary Golay code over GF(2)

gap> ¢ := CodewordNr (B, 4);

X"22 + x720 + x"17 + x"14 + x713 + x"12 + x"11 + x"10
gap> TreatAsVector(c);

gap> c;

(0000000000111 1100100101]

2.5.2 TreatAsPoly

Q TreatAsPoly( obj ) (function)

TreatAsPoly adapts the codewords ¢ § to make sure they are printed as polynomialsj may
be a codeword or a list of codewords. Elementsiof that are not codewords are ignored. After this
function is called, the codewords will be treated as polynomials. The finite field vector that defines
the codeword is used as a coefficient list of the polynomial representation, where the first element of
the vector is the coefficient of degree zero, the second element is the coefficient of degree one, etc,
until the last element, which is the coefficient of highest degree.

Note that thisonly changes the way a codewordpggented TreatAsPoly returns nothing, it is
called only for its side effect. The functidvlyCodeword converts codewords to polynomials (see
PolyCodeword (2.4.2).

Example
gap> a := Codeword("00001",GF(2));
[ 000011
gap> TreatAsPoly(a); a;
x"4

gap> b := NullWord(6,GF (4));
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[ 0000001
gap> TreatAsPoly(b); b;
0

2.6 Other Codeword Functions

2.6.1 NullWord

O NullWord( n, F ) (function)

Other usesiulliord( n ) (defaultF = GF(2)) andNullWord( C ).NullWord returns acode-
word of lengthn over the fieldr of only zeros. The integer must be greater then zero. If only a code
C is specifiedNullword will return a null word with both the word length and the Galois field of

Example

gap> NullWord(8);

[00000000O0]]

gap> Codeword ("0000") = NullWord(4);

true

gap> NullWord(5,GF (16));

[ 000001

gap> NullWord (ExtendedTernaryGolayCode());
[00000000O00O00O0O]

2.6.2 DistanceCodeword

{ DistanceCodeword( cl, c2 ) (function)

DistanceCodeword returns the Hamming distance frot to c2. Both variables must be code-
words with equal word length over the same Galois field. The Hamming distance between two words
is the number of places in which they differ. As a resultstanceCodeword always returns an integer
between zero and the word length of the codewords.

Example
gap> a := Codeword([O0, 1, 2, 0, 1, 2]);; b := NullWord(6, GF(3));;
gap> DistanceCodeword(a, b);

4

gap> DistanceCodeword(b, a);

4

gap> DistanceCodeword(a, a);

0

2.6.3 Support

Q Support ( ¢ ) (function)

Support returns a set of integers indicating the positions of the non-zero entries in a codeword

Example
gap> a := Codeword("012320023002");; Support(a);
[ 2, 3, 4, 5, 8, 9, 12 ]
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gap> Support (NullWord(7));
[ ]

The support of a list with codewords can be calculated by taking the union of the individual supports.
The weight of the support is the length of the set.
Example
gap> L := Codeword(["000000", "101010", "222000"], GF(3));;
gap> S := Union (List (L, 1 -> Support(i)));

[ 1, 2, 3, 5]

gap> Length(S);

4

2.6.4 WeightCodeword

Q WeightCodeword( c ) (function)

WeightCodeword returns the weight of a codewonithe number of non-zero entriesdn As a

result,WweightCodeword always returns an integer between zero and the word length of the codeword.
Example
gap> WeightCodeword (Codeword("22222"));

5

gap> WeightCodeword (NullWord(3));

0

gap> C := HammingCode (3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)

gap> Minimum(List (AsSSortedList (C){[2..Size(C)]}, WeightCodeword ) );
3




Chapter 3

Codes

A codeis a set of codewords (recall a codewordGWAVA is simply a sequence of elements of a
finite field GF(q), whereq is a prime power). We call these teementof the code. Depending on
the type of code, a codeword can be interpreted as a vector or as a polynomial. This is explained in
more detail in Chapte2.

In GUAVA, codes can be a set specified by its elements (this will be callea@stricted codg
by a generator matrix listing a set of basis elements (for a linear code) or by a generator polynomial
(for a cyclic code).

Any code can be defined by its elements. If you like, you can give the code a name.
Example
gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF(2)

An (n,M,d) code is a code with worténgth n size Mandminimum distance d If the minimum
distance has not yet been calculated, the lower bound and upper bound are printed (except in the case
where the code is a random linear codes, where these are not printed for efficiency reasons). So

a (4,3,1..4)2..4 code over GF(2)

means a binary unrestricted code of length 4, with 3 elements and the minimum distance is greater
than or equal to 1 and less than or equal to 4 and the covering radius is greater than or equal to 2 and

less than or equal to 4.

Example
gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF(2)

gap> MinimumDistance (C);

2

gap> C;

a (4,3,2)2..4 example code over GF(2)

If the set of elements is a linear subspac&éf(q)", the code is calletinear. If a code is linear, it
can be defined by itgenerator matri>or parity check matrix By definition, the rows of the generator
matrix is a basis for the code (as a vector space @F{fq)). By definition, the rows of the parity
check matrix is a basis for the dual space of the code,

C'={veGF(q)"|v-c=0, forall ceC}.

20
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Example
gap> G := GeneratorMatCode([[1,0,1],[0,1,2]], "demo code", GF(3) );
a linear [3,2,1..2]1 demo code over GF (3)

So alineafn,k,d]r code is a code with worlgngth n dimension kminimum distance dndcovering
radius r.

If the code is linear and all cyclic shifts of its codewords (regarded-tagples) are again code-
words, the code is callegyclic. All elements of a cyclic code are multiples of the monic polynomial
modulo a polynomiak™ — 1, wheren is the word length of the code. Such a polynomial is called a
generator polynomialhe generator polynomial must divia® — 1 and its quotient is called éheck
polynomial Multiplying a codeword in a cyclic code by the check polynomial yields zero (modulo
the polynomiak™ — 1). In GUAVA, a cyclic code can be defined by either its generator polynomial or
check polynomial.

Example
gap> G := GeneratorPolCode (Indeterminate (GF(2))+z(2) "0, 7, GF(2) );
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)

Itis possible thaGUAVA does not know that an unrestricted code is in fact linear. This situation occurs

for example when a code is generated from a list of elements with the furkdtio@nt sCode (see
ElementsCode (5.1.1). By calling the function sLinearCode (SeeIsLinearCode (3.3.4), GUAVA

tests if the code can be represented by a generator matrix. If so, the code record and the operations
are converted accordingly.

Example
gap> L := Z(2)*[ [0,0,0], [1,0,0], [0,1,1], [1,1,1] 1;;
gap> C := ElementsCode( L, GF(2) );

a (3,4,1..3)1 user defined unrestricted code over GF (2)

# so far, GUAVA does not know what kind of code this is
gap> IsLinearCode( C );

true # it is linear

gap> C;j

a linear [3,2,1]1 user defined unrestricted code over GF (2)

Of course the same holds for unrestricted codes that in fact are cyclic, or codes, defined by a generator
matrix, that actually are cyclic.

Codes are printed simply by giving a small description of their parameters, the word length, size
or dimension and perhaps the minimum distance, followed by a short description and the base field of
the code. The functionisplay gives a more detailed description, showing the construction history
of the code.

GUAVA doesn't place much emphasis on the actual encoding and decoding processes; some al-
gorithms have been included though. Encoding works simply by multiplying an information vector
with a code, decoding is done by the functiargode or Decodeword. For more information about
encoding and decoding, see sectiBrdand3.10.1

Example

gap> R := ReedMullerCode( 1, 3 );

a linear [8,4,4]12 Reed-Muller (1,3) code over GF(2)
gap> w := [ 1, 0, 1, 1 1 * R;

[1 00110011

gap> Decode( R, w );

[ 1011]
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gap> Decode( R, w + "10000000" ); # One error at the first position
[1011] # Corrected by Guava

Sections3.1 and 3.2 describe the operations that are available for codes. Se8ti®escribe
the functions that tests whether an object is a code and what kind of code it ig {se¢e,
IsLinearCode (3.3.4 and IsCyclicCode) and various other boolean functions for codes. Sec-
tion 3.4 describe functions about equivalence and isomorphism of codesqBgeivalent (3.4.1),
CodeIsomorphism (3.4.2 andAutomorphismGroup (3.4.3). Section3.5 describes functions that
work ondomains(see Chapter "Domains and their Elements” in @xP Reference Manual). Sec-
tion 3.6 describes functions for printing and displaying codes. SecBighdescribes functions
that return the matrices and polynomials that define a codecgeaatorMat (3.7.1), CheckMat
(3.7.9, GeneratorPol (3.7.3, CheckPol (3.7.4, Root sOfCode (3.7.5). Section3.8describes func-
tions that return the basic parameters of codes {seélength (3.8.1), Redundancy (3.8.2 and
MinimumDistance (3.8.3). Section3.9 describes functions that return distance and weight distribu-
tions (se@ieightDistribution (3.9.1), InnerDistribution (3.9.2, OuterDistribution (3.9.4
andDistancesDistribution (3.9.3). Section3.10describes functions that are related to decod-
ing (seebecode (3.10.]), Decodeword (3.10.9, Syndrome (3.10.7, SyndromeTable (3.10.9 and
StandardArray (3.10.9). In Chapter$ and6 which follow, we describe functions that generate and
manipulate codes.

3.1 Comparisons of Codes

3.1.1 =

0= Cl, c2) (function)

The equality operatorl = C2 evaluates to ‘true’ if the codesl andc2 are equal, and to ‘false’
otherwise.

The equality operator is also denotegl andEq (C1,C2) is the same as1 = C2. There is also
an inequality operatok. >, ornot EQ.

Note that codes are equal if and only if their set of elements are equal. Codes can also be compared
with objects of other types. Of course they are never equal.

Example
gap> M := [ [0, O], [1, O], [O, 11, [1, 11 I;;
gap> Cl := ElementsCode( M, GF(2) );
a (2,4,1..2)0 user defined unrestricted code over GF(2)
gap> M = Cl;
false
gap> C2 := GeneratorMatCode( [ [1, 0], [0, 11 1, GF(2) );
a linear [2,2,1]0 code defined by generator matrix over GF (2)
gap> Cl = C2;
true
gap> ReedMullerCode( 1, 3 ) = HadamardCode( 8 );
true
gap> WholeSpaceCode( 5, GF(4) ) = WholeSpaceCode( 5, GF(2) );
false

Another way of comparing codes isEquivalent, which checks if two codes are equivalent (see
IsEquivalent (3.4.1). By the way, this calledodeIsomorphism. For the current version of
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GUAVA, unless one of the codes is unrestricted, this calls Leon’s C program (which only works for
binary linear codes and only on a unix/linux computer).

3.2 Operations for Codes
3.21 +

¢o+(CL, C2) (function)

The operator ‘+’ evaluates to the direct sum of the cadeandc2. SeebirectSumCode (6.2.7).

Example

gap> Cl:=RandomLinearCode (10,5);

a [10,5,?] randomly generated code over GF(2)

gap> C2:=RandomLinearCode (9,4);

a [9,4,?] randomly generated code over GF(2)

gap> Cl+C2;

a linear [10,9,1]0..10 unknown linear code over GF(2)

3.22 *

¢ *(C1, Cc2) (function)

The operator “*’ evaluates to the direct product of the catleandc2. SeebirectProductCode

(6.2.3.

Example
gap> Cl := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF (2)
gap> C2 := GeneratorMatCode( [ [0,0,1, 1], [0,0,0, 11 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF (2)
gap> Cl*C2;
a linear [16,4,1]4..12 direct product code
323 *
O*(m, C) (function)

The operaton+*C evaluates to the element©belonging to information word ('message’) Here
m may be a vector, polynomial, string or codeword or a list of those. This is the way to do encoding
in GUAVA. ¢ must be linear, because BUAVA, encoding by multiplication is only defined for linear
codes. Ift is a cyclic code, this multiplication is the same as multiplying an information polynomial
by the generator polynomial of If C is alinear code, itis equal to the multiplication of an information
vectorm by a generator matrix af.

To invert this, use the functiomformationWord (SeeInformationWord (3.2.4, which simply
calls the functiormecode).

Example
gap> C := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> m:=Codeword("11");
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[11]
gap> m*C;
[1100]

3.2.4 InformationWord

O InformationWord( c, C ) (function)

Herec is a linear code and is a codeword in it. The commanthformationWord returns
the message word (or 'information digitst) satisfyingc=m*C. This command simply callgecode,
providedc in Cis true. Otherwise, it returns an error.

To invert this, use the encoding functioer{see* (3.2.3).

Example
gap> C:=HammingCode (3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c:=Random(C);

[0001111]

gap> InformationWord(C,c);

[0111]

gap> c:=Codeword("1111100");

[ 11111001

gap> InformationWord(C,c);

"ERROR: codeword must belong to code"

gap> C:=NordstromRobinsonCode () ;

a (16,256,6)4 Nordstrom-Robinson code over GF (2)
gap> c:=Random(C);
[00010001002011011

gap> InformationWord(C,c);

"ERROR: code must be linear"

3.3 Boolean Functions for Codes

3.3.1 in

¢in(c, C) (function)

The command in C evaluates to ‘true’ it contains the codeword or list of codewords specified

by c. Of courseg andc must have the same word lengths and base fields.

Example
gap> C:= HammingCode( 2 );; eC:= AsSSortedList( C );
[[00O07], [ 111711

gap> eC[2] in C;

true

gap> [ 0 ] in C;

false
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3.3.2 IsSubset

{ IsSubset ( Cl, C2 ) (function)

The commandsSubset (C1,C2) returns ‘true’ ifC2 is a subcode of1, i.e. if C1 contains all the
elements of 2.

Example
gap> IsSubset ( HammingCode (3), RepetitionCode( 7 ) );
true
gap> IsSubset ( RepetitionCode( 7 ), HammingCode( 3 ) );
false
gap> IsSubset ( WholeSpaceCode( 7 ), HammingCode( 3 ) );
true
3.3.3 IsCode
Q IsCode( obj ) (function)

IsCode returns ‘true’ ifobj, which can be an object of arbitrary type, is a code and ‘false’ other-
wise. Will cause an error ifbj is an unbound variable.

Example

gap> IsCode( 1 );

false

gap> IsCode( ReedMullerCode( 2,3 ) );
true

3.3.4 IsLinearCode

{ IsLinearCode( obj ) (function)

IsLinearCode checks if objecbbj (not necessarily a code) is a linear code. If a code has already
been marked as linear or cyclic, the function automatically returns ‘true’. Otherwise, the function
checks if a basi$s of the elements obbj exists that generates the elementsbf. If so, G is
recorded as a generator matrix @fj and the function returns ‘true’. If not, the function returns
‘false’.

Example
gap> C := ElementsCode( [ [0,0,01,([1,1,1] 1, GF(2) );

a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> IsLinearCode( C );

true

gap> IsLinearCode( ElementsCode( [ [1,1,1] 1, GF(2) ) );
false

gap> IsLinearCode( 1 );

false

3.3.5 IsCyclicCode

Q IsCyclicCode( obj ) (function)
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IsCyclicCode checks if the objectby is a cyclic code. If a code has already been marked as
cyclic, the function automatically returns ‘true’. Otherwise, the function checks if a polynamial
exists that generates the elementsiof. If so, g is recorded as a generator polynomiabbfj and
the function returns ‘true’. If not, the function returns ‘false’.

Example
gap> C := ElementsCode( [ [0,0,01, [1,1,1] 1, GF(2) );

a (3,2,1..3)1 user defined unrestricted code over GF(2)

gap> # GUAVA does not know the code is cyclic

gap> IsCyclicCode( C ); # this command tells GUAVA to find out
true

gap> IsCyclicCode( HammingCode( 4, GF(2) ) );

false

gap> IsCyclicCode( 1 );

false

3.3.6 IsPerfectCode

Q IsPerfectCode( C ) (function)

IsPerfectCode (C) returns ‘true’ ifC is a perfect code. I€ C GF(q)" then, by definition, this
means that for some positive integethe spacesF(q)" is covered by non-overlapping spheres of
(Hamming) radius centered at the codewordsdnFor a code with odd minimum distande= 2t + 1,
this is the case when every word of the vector space isfat distance at mostfrom exactly one
element oft. Codes with even minimum distance are never perfect.

In fact, a code that is not "trivially perfect” (the binary repetition codes of odd length, the codes
consisting of one word, and the codes consisting of the whole vector space), and does not have the
parameters of a Hamming or Golay code, cannot be perfect (see section IHED®)[

Example

gap> H := HammingCode (2);

a linear [3,1,3]1 Hamming (2,2) code over GF(2)

gap> IsPerfectCode( H );

true

gap> IsPerfectCode( ElementsCode([[1,1,0],10,0,11]1,GF(2)) );
true

gap> IsPerfectCode( ReedSolomonCode( 6, 3 ) );

false

gap> IsPerfectCode( BinaryGolayCode() );

true

3.3.7 IsMDSCode

{) IsMDSCode( C ) (function)

IsMDSCode (C) returns true ifC is a maximum distance separable (MDS) code. A lirjagt,d|-
code of lengtn, dimensiork and minimum distance is an MDS code ik=n—d+1, in other words
if ¢ meets the Singleton bound (S@goerBoundSingleton (7.1.1). An unrestrictedn,M,d) code
is calledMDSif k =n—d+ 1, with k equal to the largest integer less than or equal to the logarithm
of M with baseq, the size of the base field of
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Well-known MDS codes include the repetition codes, the whole space codes, the even weight
codes (these are the orityinary MDS codes) and the Reed-Solomon codes.
Example

gap> Cl := ReedSolomonCode( 6, 3 );

a cyclic [6,4,3]2 Reed-Solomon code over GF(7)
gap> IsMDSCode( Cl );

true # 6-3+1 = 4

gap> IsMDSCode ( QRCode( 23, GF(2) ) );

false

3.3.8 IsSelfDualCode

{) IsSelfDualCode( C ) (function)

IsSelfDualCode (C) returns ‘true’ ifc is self-dual, i.e. when is equal to its dual code (see also
DualCode (6.1.13). A code is self-dual if it contains all vectors that its elements are orthogonal to. If
a code is self-dual, it automatically is self-orthogonal (5€&:1fOrthogonalCode (3.3.9).

If C is a non-linear code, it cannot be self-dual (the dual code is always linear), so ‘false’ is
returned. A linear code can only be self-dual when its dimensisrequal to the redundancy
Example
gap> IsSelfDualCode( ExtendedBinaryGolayCode() );
true
gap> C := ReedMullerCode( 1, 3 );

a linear [8,4,4]12 Reed-Muller (1,3) code over GF(2)
gap> DualCode( C ) = C;
true

3.3.9 IsSelfOrthogonalCode

Q) IsSelfOrthogonalCode( C ) (function)

IsSelfOrthogonalCode (C) returns ‘true’ ifC is self-orthogonal. A code iself-orthogonalf
every element of is orthogonal to all elements of including itself. (In the linear case, this simply
means that the generator matrix@fultiplied with its transpose yields a null matrix.)

Example

gap> R := ReedMullerCode (1,4);

a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> IsSelfOrthogonalCode (R);

true

gap> IsSelfDualCode (R);

false

3.4 Equivalence and Isomorphism of Codes

3.4.1 IsEquivalent

{ IsEquivalent ( C1, C2 ) (function)
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We say thatt1 is permutation equivalento c2 if c1 can be obtained from2 by carrying out
column permutationsIsEquivalent returns true ifcl andc2 are equivalent codes. At this time,
IsEquivalent only handlesbinary codes. (The external unix/linux prograbneESAUTO from J. S.
Leon is called byrsEquivalent.) Of course, ifc1 andc2 are equal, they are also equivalent.

Note that the algorithm igery slowfor non-linear codes.

More generally, we say thatl is equivalentto C2 if C1 can be obtained frorn2 by carrying out
column permutations and a permutation of the alphabet.

Example
gap> x:= Indeterminate( GF(2) );; pol:= x"3+x+1;

Z(2) "0+x_1+x_1°3

gap> H := GeneratorPolCode( pol, 7, GF(2));

a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> H = HammingCode (3, GF(2));

false

gap> IsEquivalent (H, HammingCode (3, GF(2)));

true # H is equivalent to a Hamming code
gap> CodeIsomorphism(H, HammingCode (3, GF(2)));

(3,4)(5,6,7)

3.4.2 Codelsomorphism

¢ CodelIsomorphism( C1, C2 ) (function)

If the two codescl and c2 are permutation equivalent codes (SeEquivalent (3.4.])),
CodeIsomorphism returns the permutation that transforaisinto c2. If the codes are not equiv-
alent, it returns ‘false’.

At this time, IsEquivalent only computes isomorphisms betweginary codes on a linux/unix
computer (since it calls Leon’s C programeSAUTO).
Example
gap> x:= Indeterminate( GF(2) );; pol:= x"3+x+1;

Z(2)"0+x_14x_ 173

gap> H := GeneratorPolCode( pol, 7, GF(2));

a cyclic [7,4,1..3]1 code defined by generator polynomial over GF (2)
gap> CodeIsomorphism(H, HammingCode (3, GF(2)));

(3,4)(5,6,7)

gap> PermutedCode (H, (3,4) (5,6,7)) = HammingCode (3, GF(2));

true

3.4.3 AutomorphismGroup

¢ AutomorphismGroup( C ) (function)

AutomorphismGroup returns the automorphism group of a linear cadeFor a binary code,
the automorphism group is the largest permutation group of dagmeech that each permutation
applied to the columns of again yieldsc. GUAVA calls the external programESAUTO written
by J. S. Leon, if it exists, to compute the automorphism group. If Leon’s program is not com-
piled on the system (and in the default directory) then it calls instead the much slower program
PermutationAutomorphismGroup.
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See Leon[[eo87 for a more precise description of the method, anddh&va/src/leon/doc

subdirectory for for details about Leon’s C programs.
The functionPermutedCode permutes the columns of a code ($eemutedCode (6.1.4).

Example
gap> R := RepetitionCode(7,GF(2));
a cyclic [7,1,7]3 repetition code over GF(2)
gap> AutomorphismGroup (R);
Sym( [ 1 .. 71)
# every permutation keeps R identical
gap> C := CordaroWagnerCode (7);
a linear [7,2,4]3 Cordaro-Wagner code over GF (2)
gap> AsSSortedList (C);
(rooo0oo0o000131, 170011111131, (110001121, [ 11111001
gap> AutomorphismGroup (C);
Group ([ (3,4), (4,5), (1,6)(2,7), (1,2), (6,7) 1)
gap> C2 := PermutedCode(C, (1,6)(2,7));
a linear [7,2,4]3 permuted code
gap> AsSSortedList (C2);
(rooo0oo0o00031, 100111121131, [110001121], [ 11111001
gap> C2 = C;
true

3.4.4 PermutationAutomorphismGroup

Q PermutationAutomorphismGroup( C ) (function)

PermutationAutomorphismGroup returns the permutation automorphism group of a linear code
C. This is the largest permutation group of degneseich that each permutation applied to the columns

of ¢ again yieldsc. It is written in GAP, so is much slower thamtomorphismGroup.

Whenc is binarypPermutationAutomorphismGroup doesnot call AutomorphismGroup, even
though they agree mathematically in that case. This BaywtationAutomorphismGroup can be

called on any platform which runs GAP.

The older name for this commargsrmutationGroup, Will become obsolete in the next version

of GAP.

Example

gap> R := RepetitionCode(3,GF(3));
a cyclic [3,1,3]2 repetition code over GF(3)
gap> G:=PermutationAutomorphismGroup (R);

Group([ O, (1,3), (1,2,3), (2,3), (1,3,2), (1,2) 1)
gap> G=SymmetricGroup(3);
true

3.5 Domain Functions for Codes

These are somBAP functions that work on ‘Domains’ in general. Their specific effect on ‘Codes’ is

explained here.
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3.5.1 IsFinite

{ IsFinite( C ) (function)

IsFinite is an implementation of th@eAP domain functionisFinite. It returns true for a code

C.
Example
gap> IsFinite( RepetitionCode( 1000, GF(11) ) );
true
3.5.2 Size
O Size( C ) (function)

Size returns the size af, the number of elements of the code. If the code is linear, the size of the
code is equal tg, whereq is the size of the base field ofandk is the dimension.
Example
gap> Size( RepetitionCode( 1000, GF(11) ) );
11
gap> Size( NordstromRobinsonCode () );
256

3.5.3 LeftActingDomain

Q LeftActingDomain( C ) (function)

LeftActingDomain returns the base field of a code Each element of consists of elements of
this base field. If the base field I5, and the word length of the codeis then the codewords are
elements of". If C is a cyclic code, its elements are interpreted as polynomials with coefficients over
F.

Example
gap> Cl := ElementsCode([[0,0,0], [1,0,1], [0,1,01], GF(4));
a (3,3,1..3)2..3 user defined unrestricted code over GF (4)
gap> LeftActingDomain( C1 );

GF(2°2)

gap> LeftActingDomain( HammingCode( 3, GF(9) ) );

GF(372)

3.5.4 Dimension

{ Dimension( C ) (function)

Dimension returns the parameté&rof C, the dimension of the code, or the number of information
symbols in each codeword. The dimension is not defined for non-linear codesnsion then
returns an error.

Example
gap> Dimension( NullCode( 5, GF(5) ) );

0

gap> C := BCHCode( 15, 4, GF(4) );
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a cyclic [15,9,5]3..4 BCH code, delta=5, b=1 over GF(4)

gap> Dimension( C );

9

gap> Size( C ) = Size( LeftActingDomain( C ) ) "~ Dimension( C );
true

3.5.5 AsSSortedList

{) AsSSortedList ( C ) (function)

AsSSortedList (as strictly sorted list) returns an immutable, duplicate free list of the elements
of c. For a finite fieldGF(q) generated by powers @f(q), the ordering on

GF(a) = {0,Z(a)°, Z(q), Z(a)?, ...Z(a)* 2}

is that determined by the exponent3 hese elements are of the type codeword (sgeword (2.1.1)).
Note that for large codes, generating the elements may be very time- and memory-consuming. For
generating a specific element or a subset of the elementspuseordNr (SeeCodewordNr (2.1.2).

Example

gap> C := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList( C )
[T 00O0O0O0T1, I
[1 00111, [
[1 11001, [
gap> CodewordNr( C, [ 1,
(000001, TOO01

[0 01171, [0
, L1 11071, [1

o O

1 11
0 10

R it

00
10
11 ]

’

]

[ R i
o e e e

]
]
]
)
]

3.6 Printing and Displaying Codes
3.6.1 Print

O Print( C ) (function)

Print prints information about. This is the same as typing the identifieat theGAP-prompt.
If the argument is an unrestricted code, information in the form

a (n,M,d)r ... code over GF(q)

is printed, where: is the word lengthy the number of elements of the codghe minimum distance
andr the covering radius.
If the argument is a linear code, information in the form

a linear [n,k,d]lr ... code over GF(q)

is printed, where: is the word lengthk the dimension of the code,the minimum distance andthe
covering radius.

Except for codes produced I®gndomLinearCode, if d is not yet known, it is displayed in the
form
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lowerbound. .upperbound

and if r is not yet known, it is displayed in the same way. For certain ranges tife values of
lowerbound andupperbound are obtained from tables.

The functionbisplay gives more information. See splay (3.6.3.
Example
gap> Cl := ExtendedCode( HammingCode( 3, GF(2) ) );
a linear [8,4,4]2 extended code
gap> Print( "This is ", NordstromRobinsonCode(), ". \n");
This is a (16,256,6)4 Nordstrom-Robinson code over GF(2).

3.6.2 String

O String( C ) (function)

String returns information about in a string. This function is used ¢ int.

Example
gap> x:= Indeterminate( GF(3) );; pol:= x"2+1;
x_172+42(3) "0
gap> Factors(pol);

[ x_17°2472(3)7°0 ]

gap> H := GeneratorPolCode( pol, 8, GF(3));

a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> String(H);

"a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)"

3.6.3 Display

O Display( C ) (function)

Display prints the method of construction of codeWith this history, in most cases an equal or
equivalent code can be reconstructedc 1§ an unmanipulated code, the result is equal to output of
the functionPrint (seeprint (3.6.1)).
Example
gap> Display( RepetitionCode( 6, GF(3) ) );
a cyclic [6,1,6]4 repetition code over GF(3)
gap> Cl := ExtendedCode( HammingCode (2) );;
gap> C2 := PuncturedCode( ReedMullerCode( 2, 3 ) );;
gap> Display( LengthenedCode( UUVCode( Cl, C2 ) ) );
a linear [12,8,2]2..4 code, lengthened with 1 column(s) of
a linear [11,8,1]1..2 U U4V construction code of
U: a linear [4,1,4]2 extended code of

a linear [3,1,3]1 Hamming (2,2) code over GF(2)
V: a linear [7,7,1]10 punctured code of

[8,7,2]1 Reed-Muller (2,3) code over GF(2)

a cyclic
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3.7 Generating (Check) Matrices and Polynomials

3.7.1 GeneratorMat

{) GeneratorMat ( C ) (function)

GeneratorMat returns a generator matrix of The code consists of all linear combinations of
the rows of this matrix.

If until now no generator matrix of was determined, it is computed from either the parity check

matrix, the generator polynomial, the check polynomial or the elements (if possible), whichever is
available.
If ¢ is a non-linear code, the function returns an error.
Example
gap> GeneratorMat ( HammingCode( 3, GF(2) ) );
[ [ an immutable GF2 vector of length 7
[ an immutable GF2 vector of length 7
[ an immutable GF2 vector of length 7
[ an immutable GF2 vector of length 7
gap> Display (last);

]!
1,
]I
]

]

111. ...

1. .11..

1.1 .01

11.1. .1
gap> GeneratorMat ( RepetitionCode( 5, GF(25) ) );
[ [ 2(5)70, 2(5)70, z(5)7°0, Z2(5)70, 2(5)70 ] ]

gap> GeneratorMat ( NullCode( 14, GF(4) ) );
[ ]

3.7.2 CheckMat

{) CheckMat ( C ) (function)

CheckMat returns a parity check matrix of The code consists of all words orthogonal to each
of the rows of this matrix. The transpose of the matrix is a right inverse of the generator matrix. The
parity check matrix is computed from either the generator matrix, the generator polynomial, the check
polynomial or the elements af(if possible), whichever is available.

If c is a non-linear code, the function returns an error.

Example
gap> CheckMat ( HammingCode (3, GF(2) ) );
[ [ 0%Z2(2), 0*zZ(2), 0*Z(2), Z(2)°0, Z2(2)°0, Z(2)°0, Z(2)"°0 1,
[ 0%Z(2), Z2(2)°0, Z(2)"0, 0*Z(2), 0*z(2), Z(2)°0, Z(2)°0 1,
[ Z(2)"0, 0%z(2), Z(2)°0, 0*Z(2), Z(2)"0, 0*Z(2), Z(2)"0 1 1
gap> Display(last);
.1 111
.11 . .11
1.1.1.1
gap> CheckMat ( RepetitionCode( 5, GF(25) ) )
[ [ 2(570, z(5)72, 0*Z(5), 0*Z(5), 0*Z(5) 1,
[ 0%Z(5), 2(5)°0, Z(5)"2, 0*z(5), 0*Z(5) 1,
[ 0%Z(5), 0*Z(5), Z(5)°0, Z(5)"2, 0*Z(5) 1,
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[ 0%Z(5), 0*z(5), 0*Z(5), Z2(5)70, z2(5)"2 ] ]
gap> CheckMat ( WholeSpaceCode( 12, GF(4) ) );
[ ]

3.7.3 GeneratorPol

{) GeneratorPol ( C ) (function)

GeneratorPol returns the generator polynomial of The code consists of all multiples of the
generator polynomial modubd® — 1, wheren is the word length of:. The generator polynomial is
determined from either the check polynomial, the generator or check matrix or the elemerfis of
possible), whichever is available.

If C is not a cyclic code, the function returns ‘false’.

Example

gap> GeneratorPol (GeneratorMatCode ([[1, 1, 0], [0, 1, 1]], GF(2)));
Z2(2)"0+x_1

gap> GeneratorPol ( WholeSpaceCode( 4, GF(2) ) );
Zz(2)°0

gap> GeneratorPol ( NullCode( 7, GF(3) ) );
-72(3)"0+x_1"7

3.7.4 CheckPol

{) CheckPol( C ) (function)

CheckPol returns the check polynomial of The code consists of all polynomialswith
f-h=0 (modx"—1),

whereh is the check polynomial, andlis the word length of. The check polynomial is computed
from the generator polynomial, the generator or parity check matrix or the elementi pbssible),
whichever is available.

If ¢ if not a cyclic code, the function returns an error.

Example
gap> CheckPol (GeneratorMatCode([[1, 1, 0], [0, 1, 111, GF(2)));
2(2)70+x_1+x_1"2

gap> CheckPol (WholeSpaceCode (4, GF(2)));

72(2)"0+x_1"4

gap> CheckPol (NullCode (7,GF (3)));

Z2(3)°0

3.7.5 RootsOfCode
{) RootsOfCode( C ) (function)
RootsOfCode returns a list of all zeros of the generator polynomial of a cyclic cadEhese are

finite field elements in the splitting field of the generator polynon@#g™), mis the multiplicative
order of the size of the base field of the code, modulo the word length.
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The reverse process, constructing a code from a set of roots, can be carried out by the function
RootsCode (SeeRootsCode (5.5.3).

Example

gap> Cl := ReedSolomonCode( 16, 5 );

a cyclic [16,12,5]3..4 Reed-Solomon code over GF(17)
gap> RootsOfCode( Cl );

[ Z(17), 2(17)"2, Z(17)"3, Z(17)"4 ]

gap> C2 := RootsCode( 16, last );

a cyclic [16,12,5]3..4 code defined by roots over GF(17)
gap> Cl = C2;

true

3.8 Parameters of Codes

3.8.1 WordLength

Q WordLength( C ) (function)

WordLength returns the parameterof ¢, the word length of the elements. Elements of cyclic
codes are polynomials of maximum degree 1, as calculations are carried out modxflo- 1.
Example
gap> WordLength ( NordstromRobinsonCode () );
16
gap> WordLength ( PuncturedCode ( WholeSpaceCode(7) ) );
6
gap> WordLength ( UUVCode ( WholeSpaceCode (7), RepetitionCode(7) ) );
14

3.8.2 Redundancy

{ Redundancy ( C ) (function)

Redundancy returns the redundancyof ¢, which is equal to the number of check symbols in each
element. Ifc is not a linear code the redundancy is not definedraradindancy returns an error.
If a linear codec has dimensiok and word lengthn, it has redundancy = n—k.

Example

gap> C := TernaryGolayCode () ;

a cyclic [11,6,5]2 ternary Golay code over GF (3)
gap> Redundancy (C) ;

5

gap> Redundancy ( DualCode (C) );

6

3.8.3 MinimumDistance

O MinimumDistance( C ) (function)
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MinimumDistance returns the minimum distance of the largest integedt with the property that
every element ot has at least a Hamming distant€seeDistanceCodeword (2.6.29) to any other
element oft. For linear codes, the minimum distance is equal to the minimum weight. This means
thatd is also the smallest positive value wittd + 1] # 0, wherew = (w[1],w[2],...,w[n]) is the
weight distribution oft (seelleightDistribution (3.9.1). For unrestricted coded,is the smallest
positive value withw[d + 1] # 0, wherew is the inner distribution of (seeInnerDistribution
(3.9.2).

For codes with only one element, the minimum distance is defined to be equal to the word length.

For linear codes, the algorithm used is the following: After replacindpy a permutation equiva-
lentc’, one may assume the generator matrix has the following @em(l | A), for somek x (n—Kk)
matrix A. If A= 0 then returrd(C) = 1. Next, find the minimum distance of the code spanned by the
rows of A. Call this distancel(A). Note thatd(A) is equal to the the Hamming distandéy,0) where
v is some proper linear combination ioflistinct rows ofA. Returnd(C) = d(A) +i, wherei is as in
the previous step.

This command may also be called using the syméaximumbistance (C, w). In this form,
MinimumDistance returns the minimum distance of a codewartb the codec, also called thelis-
tance fromwto C. This is the smallest valug for which there is an elemeuwtof the codec which is
at distancel from w. Sod is also the minimum value for whidd[d + 1] # 0, whereD is the distance
distribution ofw to C (seeDistancesDistribution (3.9.3).

Note thatw must be an element of the same vector space as the elements dbes not neces-
sarily belong to the code (if it does, the minimum distance is zero).

Example
gap> C := MOLSCode (7);; MinimumDistance (C);
3

gap> WeightDistribution(C);

[ 1, 0, 0, 24, 24 ]

gap> MinimumDistance( WholeSpaceCode( 5, GF(3) ) );

1

gap> MinimumDistance( NullCode( 4, GF(2) ) );

4

gap> C := ConferenceCode(9);; MinimumDistance (C);

4

gap> InnerDistribution(C);

(1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]

gap> C := MOLSCode(7);; w := CodewordNr( C, 17 );

[3362]

gap> MinimumDistance( C, w );

0

gap> C := RemovedElementsCode( C, w );; MinimumDistance( C, w );
3 # so w no longer belongs to C

See also th6&UAVA commands relating to bounds on the minimum distance in seétibn

3.8.4 MinimumDistancelLeon

{ MinimumDistanceLeon( C ) (function)

MinimumDistanceLeon returns the “probable” minimum distandg.qn Of @ linear binary code,
using an implementation of Leon’s probabilistic polynomial time algorithm. Briefly:dLle¢ a linear
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code of dimensiok overGF(q) as above. The algorithm has input paramesensdp, wheresis an
integer between 2 anad— k, andp is an integer between 2 akd

e Find a generator matrig of C.
e Randomly permute the columns Gf

e Perform Gaussian elimination on the permuted matrix to obtain a new matrix of the following
form:
G=(lk|Z|B)

with Z ak x s matrix. If (Z,B) is the zero matrix then return 1 for the minimum distance. If
Z = 0 but notB then either choose another permutation of the rowsarfreturn ‘method fails’.

e SearchZ for at mostp rows that lead to codewords of weight less tipan
e For these codewords, compute the weight of the whole wotd Return this weight.

(See for example J. S. Leor,do8g for more details.) Sometimes (as is the cas&WAVA) this
probabilistic algorithm is repeated several times and the most commonly occurring value is taken.
Example
gap> C:=RandomLinearCode (50,22,GF(2));

a [50,22,?] randomly generated code over GF(2)
gap> MinimumDistanceLeon(C); time;

6

211

gap> MinimumDistance (C); time;

6

1204

3.8.5 DecreaseMinimumbDistanceUpperBound

O DecreaseMinimumDistanceUpperBound( C, t, m ) (function)

DecreaseMinimumDistanceUpperBound iS an implementation of the algorithm for the minimum
distance of a linear binary codeby Leon [Leo89. This algorithm tries to find codewords with small
minimum weights. The parameteis at least 1 and less than the dimension.of he best results are
obtained if it is close to the dimension of the code. The paramegares the number of runs that the
algorithm will perform.

The result returned is a record with two fields; the firstindist, gives the lowest
weight found, andword gives the corresponding codeword. (This was implemented before
MinimumDistanceLeon but independently. The older manual had given the command incor-
rectly, so the command was only found after reading all ttgi files in the GUAVA Ii-
brary. Though botMinimumDistance and MinimumDistanceLeon Often run much faster than
DecreaseMinimumDistanceUpperBound, DecreaseMinimumDistanceUpperBound appears to be
more accurate tham nimumDistanceLeon.)

Example

gap> C:=RandomLinearCode(5,2,GF (2));

a [5,2,?] randomly generated code over GF(2)

gap> DecreaseMinimumDistanceUpperBound (C,1,4);

rec( mindist := 3, word := [ 0*Z(2), Z(2)°0, Z(2)"0, 0*Z(2), Z2(2)°0 ] )
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gap> MinimumDistance (C);

3

gap> C:=RandomLinearCode(8,4,GF (2));

a [8,4,?] randomly generated code over GF(2)
gap> DecreaseMinimumDistanceUpperBound (C, 3,4);

rec( mindist := 2,

word := [ Z(2)"0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)"0 1)
gap> MinimumDistance (C);
2

38

3.8.6 MinimumDistanceRandom

{ MinimumDistanceRandom( C, num, s ) (function)

MinimumDistanceRandom returns an upper bound for the minimum distadggqom Of a linear
binary codec, using a probabilistic polynomial time algorithm. Briefly: Letbe a linear code of
dimensionk over GF(q) as above. The algorithm has input parametersands, wheres is an

integer between 2 amd— 1, andnumis an integer greater than or equal to 1.
e Find a generator matrig of C.

e Randomly permute the columns Gf written Gy,..

G=(AB)

with A ak x smatrix. If Ais the zero matrix then return ‘method fails’.

e SearchA for at most 5 rows that lead to codewords, in the cBgevith generator matripd, of

minimum weight.

e For these codewords, use the associated linear combination to compute the weight of the whole

word inc. Return this weight and codeword.

This probabilistic algorithm is repeatedn times (with different random permutations of the rows of

G each time) and the weight and codeword of the lowest occurring weight is taken.

Example

gap> C:=RandomLinearCode (60,20,GF (2));

a [60,20,?] randomly generated code over GF(2)

gap> #mindist (C);time;

gap> #mindistleon(C,10,30);time; #doesn’t work well

gap> a:=MinimumDistanceRandom(C,10,30);time; # done 10 times -with fastest time!!

This is a probabilistic algorithm which may return the wrong answer.

[12, [0OOOOO0OO0O101000OO0OO0CO00C1100100O01000O0OO1O0O
10000000001 000100001000010°17 1

130

gap> al2] in C;

true

gap> b:=DecreaseMinimumDistanceUpperBound(C,10,1); time; #only done once!
rec( mindist := 12, word := [ 0*Z2(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*z(2), 0*zZ(2),
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z(2)°0, 0*Z(2), z(2)"0, 0*Z2(2), 0*z(2), 0*z(2), 0*Z(2), 0*z(2), 0*Z(2),
0%z (2), Z(2)°0, z(2)"0, 0*z(2), 0*Z(2), Z(2)"0, 0*Z(2), 0*z(2), 0*Z(2),
Zz(2)"0, 0%z(2), 0*z(2), 0*Z(2), 0*z(2), 0*zZ(2), 0*Z(2), Z(2)"0, 0*z(2),

0*Z(2), 7Z(2)°0, 0*z(2), 0*Z(2), 0*z(2), 0*z(2), 0*Z(2), 0*z(2), 0*Z(2),
0*z(2), 0*Z(2), z(2)"0, 0*Z(2), 0*z(2), 0*zZ(2), Z(2)"0, 0*z(2), 0*Z(2),
0*z(2), 0*Z(2), z(2)"0, 0*Z(2), 0*Z(2), 0*z(2), 0*Z(2), Z(2)"0, 0*Z(2) ]

649

gap> Codeword (b!.word) in C;

true

gap> MinimumDistance (C);time;

12

196

gap> c:=MinimumDistancelLeon (C);time;

12

66

gap> C:=RandomLinearCode (30,10,GF(3));

a [30,10,?] randomly generated code over GF (3)

gap> a:=MinimumDistanceRandom(C,10,10);time;

This is a probabilistic algorithm which may return the wrong answer.

[13, 00010000001 02211022010210001021]1

229

gap> al2] in C;

true

gap> MinimumDistance (C);time;

9

45

gap> c:=MinimumDistanceLeon (C);

Code must be binary. Quitting.

0

gap> a:=MinimumDistanceRandom(C,1,29);time;

This is a probabilistic algorithm which may return the wrong answer.

[10, [0O0102020100000010100100000222011

53

3.8.7 CoveringRadius
{Q CoveringRadius( C ) (function)

CoveringRadius returns thecovering radiusof a linear codec. This is the smallest number
with the property that each elementdf the ambient vector space otas at most a distanceo the
codec. So for each vector there must be an elemenbf ¢ with d(v,c) <r. The smallest covering
radius of any[n, k] binary linear code is denotedn, k). A binary linear code with reasonable small
covering radius is called @overing code

If cis a perfect code (seesperfectCode (3.3.69), the covering radius is equal tpthe num-
ber of errors the code can correct, whete= 2t + 1, with d the minimum distance of (see
MinimumDistance (3.8.3).

If there exists a function calleslpecialCoveringRadius in the ‘operations’ field of the code,
then this function will be called to compute the covering radius of the code. At the moment, no



GUAVA

code-specific functions are implemented.

If the length ofBoundsCoveringRadius (SeeBoundsCoveringRadius (7.2.0), is 1, then the

value in
C.boundsCoveringRadius

is returned. Otherwise, the function
C.operations.CoveringRadius

is executed, unless the redundancy g too large. In the last case, a warning is issued.

The algorithm used to compute the covering radius is the following. EissgtLeadersMatFFE
is used to compute the list of coset leaders (which returns a codeword in each c@$€yT/C of
minimum weight). ThemeightVecFFE is used to compute the weight of each of these coset leaders.

The program returns the maximum of these weights.

Example

gap> H := RandomLinearCode (10, 5, GF(2));

a [10,5,?] randomly generated code over GF(2)

gap> CoveringRadius (H);

3

gap> H := HammingCode (4, GF(2));; IsPerfectCode (H);
true

gap> CoveringRadius (H);

1 # Hamming codes have minimum distance 3
gap> CoveringRadius (ReedSolomonCode (7,4));

3

gap> CoveringRadius( BCHCode( 17, 3, GF(2) ) );

3

gap> CoveringRadius ( HammingCode( 5, GF(2) ) );

1

gap> C := ReedMullerCode( 1, 9 );;

gap> CoveringRadius( C );

CoveringRadius: warning, the covering radius of
this code cannot be computed straightforward.

Try to use IncreaseCoveringRadiusLowerBound( code ).
(see the manual for more details).

The covering radius of code lies in the interval:

[ 240 .. 248 ]

See also th6&6UAVA commands relating to bounds on the minimum distance in se¢tibn

3.8.8 SetCoveringRadius

Q) SetCoveringRadius( C, intlist )

SetCoveringRadius enables the user to set the covering radius herself, instead of lettingA
compute it. Ifintlist is an integerGUAVA will simply put it in the ‘boundsCoveringRadius’ field.
If it is a list of integers, however, it will intersect this list with the ‘boundsCoveringRadius’ field, thus
taking the best of both lists. If this would leave an empty list, the field is séhtaist. Because
some other computations use the covering radius of the code, it is important that the entered value is

not wrong, otherwise new results may be invalid.
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Example

gap> C := BCHCode( 17, 3, GF(2) );;
gap> BoundsCoveringRadius( C );

[ 3 .. 4]

gap> SetCoveringRadius( C, [
gap> BoundsCoveringRadius( C
([2..371]1

2 ..31);
)

r

3.9 Distributions

3.9.1 WeightDistribution

O WeightDistribution( C ) (function)

WeightDistribution returns the weight distribution af, as a vector. Thé&" element of this
vector contains the number of elements @fith weighti — 1. For linear codes, the weight distribution
is equal to the inner distribution (seéenerDistribution (3.9.9). If wis the weight distribution of
a linear code, it must have the zero codeword, wfl| = 1 (one word of weight 0).
Some codes, such as the Hamming codes, have precomputed weight distributions. For others, the
program WeightDistribution calls the GAP programstancesDistributionMat FFEVecFFE, which
is written in C. See alsOodelWeightEnumerator.

Example
gap> WeightDistribution( ConferenceCode (9) );

(1, 0, o, 0, O, 18, 0, 0, 0, 1 ]

gap> WeightDistribution( RepetitionCode( 7, GF(4) ) );
(1, 0, 0, 0, 0, 0, 0, 3]
gap> WeightDistribution( WholeSpaceCode( 5, GF(2) ) );

(1, 5, 10, 10, 5, 1 ]

3.9.2 InnerDistribution

¢ InnerDistribution( C ) (function)

InnerDistribution returns the inner distribution af. Theit" element of the vector contains
the average number of elementscodit distance — 1 to an element of. For linear codes, the inner
distribution is equal to the weight distribution (SéeightDistribution (3.9.1).

Supposew is the inner distribution of. Thenw[1] = 1, because each element®has exactly
one element at distance zero (the element itself). The minimum distarces ahe smallest value
d > 0 withw[d + 1] # O, because a distance between zerodindver occurs. SeeinimumDistance

(3.8.3.

Example
gap> InnerDistribution( ConferenceCode(9) );
(1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]

gap> InnerDistribution( RepetitionCode( 7, GF(4) ) );
(1, 0, 0, O, O, 0, 0, 3]
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3.9.3 DistancesDistribution

{ DistancesDistribution( C, w ) (function)

DistancesDistribution returns the distribution of the distances of all elements tof a code-
word w in the same vector space. THeelement of the distance distribution is the number of code-
words ofc that have distance— 1 tow. The smallest valud with wjd + 1] # 0, is defined as the
distance taC (seeMinimumDistance (3.8.3).

Example
gap> H := HadamardCode (20);

a (20,40,10)6..8 Hadamard code of order 20 over GF(2)

gap> ¢ := Codeword("10110101101010010101", H);
[10110101101010010101]

gap> DistancesDistribution(H, c);

ro o o o0o01,0,7 0 12, 0, 12, 0, 7, 0, 1, 0, 0, O, 0, 0]
gap> MinimumDistance (H, c);

5 # distance to H

3.9.4 OuterDistribution

Q OuterDistribution( C ) (function)

The functionouterDistribution returns a list of lengtly", whereq is the size of the base field
of ¢ andn is the word length. The elements of the list consist of pairs, the first coordinate being
an element ofGF(q)" (this is a codeword type) and the second coordinate being a distribution of
distances to the code (a list of integers). This tableeig/ large, and fom > 20 it will not fit in the
memory of most computers. The functibhstancesDistribution (SeeDistancesDistribution
(3.9.3) can be used to calculate one entry of the list.

Example
gap> C := RepetitionCode( 3, GF(2) );
a cyclic [3,1,3]1 repetition code over GF(2)
gap> OD := OuterDistribution(C);
rrrooo0gl, r¢,0%90,12113, 1rxr1121,1010,0111,
rrooz11, 0160, 1,11,011, [ (11071, [0, 1,1, 011,
(fr1r001, 060,11, 11,0711, rro0xrz21, 10, 1,1, 0711,
(rroz10131, 160,11, 11,0711, (102171, [0,1,1, 071711
gap> WeightDistribution(C) = OD[1][2];
true
gap> DistancesDistribution( C, Codeword("110") ) = OD[4][2];
true
3.10 Decoding Functions
3.10.1 Decode
{ Decode( C, r ) (function)

Decode decodes (a received word’) with respect to codeand returns the ‘message word’ (i.e.,
the information digits associated to the codewo&(C closest ta). Herer can be a5UAVA codeword
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or a list of codewords. First, possible errorsrifare corrected, then the codeword is decoded to an
information codeword rtand not an element af). If the code record has a field ‘specialDecoder’, this
special algorithm is used to decode the vector. Hamming codes and BCH codes have such a special
algorithm. (The algorithm used for BCH codes is the Sugiyama algorithm described, for example, in
section 5.4.3 of {P0J. Work in progressspecial decoders are now being written for the generalized
Reed-Solomon code.) tfis linear and no special decoder field has been set then syndrome decoding
is used. Otherwise (whenis non-linear), no decoding algorithms have been implemented and an
error is returned.

A special decoder can be created by defining a function

C!.SpecialDecoder := function(C, r) ... end;

The function uses the argumentgthe code record itself) and (a vector of the codeword type) to
decoder to an information vector. A normal decoder would take a codewood the same word
length and field as, and would return an information vector of lendggithe dimension of. The user
is not restricted to these normal demands though, and can for instance define a decoder for non-linear
codes.

Encoding is done by multiplying the information vector with the code &G&g
Example

gap> C := HammingCode (3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)

gap> ¢ := "1010"*C; # encoding

[1 0110101

gap> Decode(C, c); # decoding

[ 1010]

gap> Decode (C, Codeword("0010101"));

[1101] # one error corrected
gap> C!.SpecialDecoder := function(C, c)

> return NullWord(Dimension(C));

> end;

function ( C, ¢ ) ... end

gap> Decode (C, ¢);

[ 0000 ] # new decoder always returns null word

3.10.2 Decodeword

{ Decodeword( C, r ) (function)

Decodeword decodes (a received word’) with respect to codeand returns the codewoodk= C
closest tor. Herer can be aGUAVA codeword or a list of codewords. If the code record has a field
‘specialDecoder’, this special algorithm is used to decode the vector. Hamming codes, generalized
Reed-Solomon codes, and BCH codes have such a special algorithm. (The algorithm used for BCH
codes is the Sugiyama algorithm described, for example, in section 5.4:3°6f]] The algorithm
used for generalized Reed-Solomon codes is the “interpolation algorithm” described for example in
chapter 5 of JH04.) If c is linear and no special decoder field has been set then syndrome decoding is
used. Otherwise, whenis non-linear, the nearest neighbor algorithm has been implemented (which
should only be used for small-sized codes).
Example

gap> C := HammingCode (3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
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gap> c := "1010"*C; # encoding
[1011010]
gap> Decodeword(C, c¢); # decoding
[1011010]
gap>
gap> R:=PolynomialRing(GF (11), ["t"]);
GF (11) [t]
gap> P:=List([1,3,4,5,7],1i->Z(11)"1);
[ Z(11), Z(11)"3, Z(11)"4, Zz(11)"5, z(11)"7 ]
gap> C:=GeneralizedReedSolomonCode (P, 3,R);
a linear [5,3,1..3]2 generalized Reed-Solomon code over GF (11)
gap> MinimumDistance (C);
3
gap> c:=Random(C);
[09621]
gap> v:=Codeword("09620");
[09620]
gap> GeneralizedReedSolomonDecoderGao (C,V);
[ 096 21]
gap> Decodeword(C,v); # calls the special interpolation decoder
[09621]
gap> G:=GeneratorMat (C);
[ [ z(11)"0, 0*z(11), 0*z(11), Z(11)"8, Z(11)"9
[ 0*z(11), Z(11)"0, 0*z(11), Z(11)"0, Zz(11)"8 1,
[ 0*z(11), 0*z(11), Z(11)"0, Z(11)"3, z(11)"8
gap> Cl:=GeneratorMatCode (G,GF (11));
a linear [5,3,1..3]2 code defined by generator matrix over GF(11)
gap> Decodeword(C,v); # calls syndrome decoding
[ 096 21]

11
11
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3.10.3 GeneralizedReedSolomonDecoderGao

{ GeneralizedReedSolomonDecoderGao( C, r )

(function)

GeneralizedReedSolomonDecoderGao decodes (a received word’) to a codewortle C in a
generalized Reed-Solomon codéseeGeneralizedrReedSolomonCode (5.6.2), closest tor. Here
r must be aGUAVA codeword. If the code record does not have name ‘generalized Reed-Solomon

code’ then an error is returned. Otherwise, the Gao deca#te] |s used to compute.

For long codes, this method is faster in practice than the interpolation method used in

Decodeword.
Example

gap> R:=PolynomialRing (GF (11), ["t"]);

GF (11) [t]

gap> P:=List ([1,3,4,5,7],1->Z(11)"1);

[ Z(11), Z(11)"3, Z(11)"4, Z(11)"5, Z(11)"7 ]

gap> C:=GeneralizedReedSolomonCode (P, 3,R);

a linear [5,3,1..3]2 generalized Reed-Solomon code over GF (11)
gap> MinimumDistance (C);

3

gap> c:=Random(C);

[ 096 21]
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gap> v:=Codeword("09620");

[ 096201

gap> GeneralizedReedSolomonDecoderGao (C,V);
[09621]

3.10.4 GeneralizedReedSolomonListDecoder

{ GeneralizedReedSolomonListDecoder( C, r, tau )

GeneralizedReedSolomonListDecoder implements Sudans list-decoding algorithm (see sec-
tion 12.1 of PHO4) for “low rate” Reed-Solomon codes. It returns the list of all codewords in C which
are a distance of at mostu from r (a received word’).C must be a generalized Reed-Solomon code

C (seeGeneralizedReedSolomonCode (5.6.2) andr must be aSUAVA codeword.

(function)

Example
gap> F:=GF (16);
GF (274)
gap>
gap> a:=PrimitiveRoot (F);; b:=a"7;; b 4+b"3+1;
0*Z(2)

gap> Pts:=List ([0..14],1i->b"i);

[ Z(2)°0, z(274)"7, Z(2°4)"14, z2(274)"6, Z(274)"13, 2(2°2), Z(274)"12,
2(2°4)"11, 7(274)"3, Z(2°2)"2, 7Z(2°4)"2, Z2(274)"9, Z(2"4), Z(274)"8 ]

gap> x:=X(F);;

gap> Rl:=PolynomialRing(F, [x]);;

gap> vars:=IndeterminatesOfPolynomialRing(R1);;

gap> y:=X(F,vars);;

gap> R2:=PolynomialRing(F, [x,V]);;

gap> C:=GeneralizedReedSolomonCode (Pts, 3,R1);

a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)

gap> MinimumDistance(C); ## 6 error correcting

13

gap> z:=Zero(F);;

gap> r:=[(z,2,2,2,2,2,2,2,076,b72,b75,0"14,b,b"7,b"11];;

gap> r:=Codeword(r);

[0000O0O0O00a"12 a"1l4 a"5 a"8 a7 a"4 a"2 ]

gap> cs:=GeneralizedReedSolomonListDecoder (C,r,2); time;

[ [ 0a"9 a3 a"l3 a"6 a"10 a"11 a a"12 a"14 a"5 a"8 a7 a"4 a"2 1,
[000000000000O0OO0OGOT ]

250

gap> cl:=cs[1l]; cl in C;

[ 0a"9 a"3 a"13 a"6 a”10 a"11 a a"12 a"14 a"5 a"8 a"7 a"4 a"2 ]

true

gap> c2:=cs[2]; c2 in C;

[0000000O000O0O0O0O0O0]]

true

gap> WeightCodeword(cl-r);

7

gap> WeightCodeword(c2-r);

7

Z2(2°4) "4,
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3.10.5 NearestNeighborGRSDecodewords

O NearestNeighborGRSDecodewords( C, v, dist ) (function)

NearestNeighborGRSDecodewords finds all generalized Reed-Solomon codewords within dis-

tancedist from v andthe associated polynomial, using “brute force”. Inputs a received vector (a
GUAVA codeword) is a GRS codeqdist ¢ 0 is the distance fromto search irc. Output: a list of
pairs|c, f ()], wherewt(c—v) < dist— 1 andc = (f(x1),..., f(Xn))-

Example

gap> F:=GF(16);

GF (274)

gap> a:=PrimitiveRoot (F);; b:=a"7; b 4+b"3+1;

z(274)"1

0*Z (2)

gap> Pts: 7LlSt([ 41,1->b"1);

[ Z2(2)°0, Z(274)" 7 (2 4)°14, 7(274) "6, 72(274)"13, 72(2°2), 7(2"°4)"12,
2(2°4)"4, z2(274)" 7(27°4)"3, 2(2°2)"2, 7Z(274)"2, 7(274)"9, Z(274),
7(274)"8 ]

gap> x:=X(F);;
gap> Rl:=PolynomialRing(F, [x]);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing(F, [x,v]);;
gap> C:=GeneralizedReedSolomonCode (Pts,3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
gap> MinimumDistance(C); # 6 error correcting
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=(z,2,2,2,2,2,2,2,0b76,b72,b075,0"14,b,b"7,b"11];; # 7 errors
gap> r:=Codeword(r);
[0000O0O0O00a"12 a"14 a"5 a"8 a7 a"4 a"2 ]
gap> cs:=NearestNeighborGRSDecodewords (C,r,7);
[ [ IT0000O000000O0OOOOOT1], 0%*z(2) 1,
[ [ 0a"9 a"3 a"l3 a"6 a"10 a"11 a a”12 a"14 a"5 a"8 a"7 a"4 a"2 ], x_1+42(2)°0 ] ]

3.10.6 NearestNeighborDecodewords
Q) NearestNeighborDecodewords ( C, v, dist ) (function)
NearestNeighborDecodewords finds all codewords in a linear codewithin distancedist from

v, using “brute force”. Inputy is a received vector (UAVA codeword)( is a linear codedist ¢ O
is the distance from to search irc. Output: a list ofc € C, wherewt(c —v) < dist— 1.

Example
gap> F:=GF (16);
GF (274)
gap> a:=PrimitiveRoot (F);; b:=a"7; b 4+b"3+1;
z(274)"
0*Z(2)
gap> Pts:=List ([0..14],1i->b"i);
[ Z2(2)7°0, 2(274)"7, Z(274)"14, 2(274)"6, Z(274)"13, 2(2°2), z(2°4)"
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2(2°4)"4, 7(2°4)"11, Z(2°4)"3, 7Z(27°2)"°2, Z(274)"2, 7Z(2°4)"9, z(2"°4),
Z(2°4)°8 ]
gap> x:=X(F);;
gap> Rl:=PolynomialRing (F, [x]);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing (F, [x,v]);;
gap> C:=GeneralizedReedSolomonCode (Pts, 3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
gap> MinimumDistance (C);
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=[z,2,2,2,2,2,2,2,0°6,b"2,b75,b"14,b,b"7,b"111;;
gap> r:=Codeword(r);
[00000O0O00&a"12 a"14 a"5 a"8 a"7 a4 a"2 ]
gap> cs:=NearestNeighborDecodewords (C,r,7);
[ 000O0OO0CO0C0000O0OO0OOOGOT,
[ 0a"9 a"3 a”1l3 a6 a"10 a"1l a a"12 a"14 a"5 a"8 a"7 a"4 a"2 ] ]

3.10.7 Syndrome

¢ Syndrome( C, v ) (function)

Syndrome returns the syndrome of workdwith respect to a linear code v is a codeword in the
ambient vector space af If v is an element of, the syndrome is a zero vector. The syndrome can
be used for looking up an error vector in the syndrome table {geéromeTable (3.10.9) that is
needed to correct an errorvn

A syndrome is not defined for non-linear codegndrome then returns an error.

Example

gap> C := HammingCode (4);

a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> v := CodewordNr( C, 7 );
[110000000000110]

gap> Syndrome( C, v );

[ 000 0]

gap> Syndrome( C, Codeword( "000000001100111"™ ) );

[1111]

gap> Syndrome ( C, Codeword( "000000000000001"™ ) );

[1111] # the same syndrome: both codewords are in the same

# coset of C

3.10.8 SyndromeTable

¢ SyndromeTable ( C ) (function)

SyndromeTable returns asyndrome tablef a linear codec, consisting of two columns. The
first column consists of the error vectors that correspond to the syndrome vectors in the second col-
umn. These vectors both are of the codeword type. After calculating the syndrome of & witihd
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Syndrome (SeesSyndrome (3.10.7), the error vector needed to correatan be found in the syndrome
table. Subtracting this vector fromyields an element of. To make the search for the syndrome as
fast as possible, the syndrome table is sorted according to the syndrome vectors.

Example

gap> H := HammingCode (2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> SyndromeTable (H) ;

rrroool, ooy, 11001, 101711,
(ro1ro0l, o011, 0rooxry, (117111

gap> ¢ := Codeword("101");

[101]

gap> ¢ in H;

false # ¢ 1s not an element of H

gap> Syndrome (H, c);

[ 10 ] # according to the syndrome table,

# the error vector [ 0 1 0 ] belongs to this syndrome
gap> ¢ - Codeword("010") in H;
true # so the corrected codeword is

#1011 -[010)1=1711111],

# this is an element of H

3.10.9 StandardArray

¢ StandardArray( C ) (function)

StandardArray returns the standard array of a code This is a matrix with elements of the
codeword type. It hag' rows andg® columns, whergy is the size of the base field of r = n—k is
the redundancy of, andk is the dimension of. The first row contains all the elements@fEach
other row contains words that do not belong to the code, with in the first column their syndrome vector
(seesSyndrome (3.10.7).

A non-linear code does not have a standard agayndardArray then returns an error.

Note that calculating a standard array can be very time- and memory- consuming.

Example
gap> StandardArray (RepetitionCode (3));
rrrooo3, r2r221), 11001731, 111071,
(ro1ro0l], 102111, (01001, TO0O1T1T]1]]
3.10.10 PermutationDecode
{) PermutationDecode( C, v ) (function)

PermutationDecode performs permutation decoding when possible and returns original vector
and prints 'fail’ when not possible.

This uses AutomorphismGroup in the binary case, and (the slower)
PermutationAutomorphismGroup otherwise, to compute the permutation automorphism gi@up
of c. The algorithm runs through the elememptsf P checking if the weight oH (p-v) is less than
(d—1)/2. If it is then the vectop- v is used to decode: assumingC is in standard form then
c= p Emis the decoded word, whereis the information digits part op-v. If no suchp exists
then “fail” is returned. See, for example, section 10.2 of Huffman and Pt&383 for more details.
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gap> CO0:=HammingCode (3,GF (2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> GO:=GeneratorMat (CO);;
gap> G := List (GO, ShallowCopy);;
gap> PutStandardForm(G);
()
gap> Display(G);
1 ... .11
1. .1.1
1 .11.
. 1111
gap> HO:=CheckMat (CO) ;;
gap> Display (HO);
1111
11. .11
1 .1.1.1
gap> c0:=Random(C0) ;
[0001111]
gap> v0l:=cO[1]+Z(2)"2;;
gap> vl:=List (c0, ShallowCopy);;
gap> v1[1]:=v01;;
gap> vl:=Codeword(vl);
[1 0011111
gap> cl:=PermutationDecode (C0O,vl);
[0001111]
gap> cl=c0;
true




Chapter 4

Coding theory functions in the GAP
kernel

This chapter will recall from the GAP manual the GAP coding theory functions, some of which are
partially written in C. The main functions areClosestVectorCombinationsMatFFEVecFFE,
AClosestVectorCombinationsMatFFEVecFFECoords, CosetLeadersMatFFE,
DistancesDistributionMatFFEVecFFE, DistancesDistributionVecFFEsVecFFE,
DistanceVecFFE, and WeightVecFFE. These are declared in the GAP library file ’'listcoef.gd’
and implemented in ’listcoef.gi’.

4.1 Distance functions

4.1.1 AClosestVectorCombinationsMatFFEVecFFE

{ AClosestVectorCombinationsMatFFEVecFFE ( mat, F, vec, r, st ) (function)

This command runs through tRelinear combinations of the vectors in the rows of the maieix
that can be written as linear combinations of exacttgws (that is without using zero as a coefficient)
and returns a vector from these that is closest to the veetar The length of the rows afat and
the length ofvec must be equal, and all elements must lieeinThe rows ofmat must be linearly
independent. If it finds a vector of distance at m@stwhich must be a nonnegative integer, then it
stops immediately and returns this vector.

Example
gap> F:=GF(3);;
gap> x:= Indeterminate( F );; pol:= x"2+1;
x_172+472(3)70
gap> C := GeneratorPolCode (pol,8,F);
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> v:=Codeword("12101111");
[12101111]
gap> v:=VectorCodeword(v);
[ Z(3)°0, 2(3), Z2(3)70, 0*Z(3), 2(3)70, Z(3)"0, Z(3)"°0, Z(3)°0 ]
gap> G:=GeneratorMat (C);
[ [ Z2(3)°0, 0*Z(3), Z(3)"0, 0*Z(3), 0*Z(3), 0*Z(3), 0*z(3), 0*Z2(3) 1,

[ 0*Z(3), Z(3)70, 0*Z(3), Z(3)"0, 0*z(3), 0*Z(3), 0*Z(3), 0*z(3) 1,

[ 0%*Z(3), 0%*z(3), Z(3)°0, 0*Z(3), Z(3)"0, 0*Z(3), 0*Z(3), 0*z(3) 1,

50
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[ 0%Z(3), 0*z(3), 0*Z(3), Z(3)°0, 0*z(3), Z(3)"0, 0*z(3), 0*Z(3) 1,
[ 0%Z(3), 0*z(3), 0*Z(3), 0*Z(3), Z(3)°0, 0*Z2(3), Z(3)°0, 0*Z(3) 1,
[ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0*Z(3), Z(3)°0 1 ]
gap> AClosestVectorCombinationsMatFFEVecFFE (G, F,v,1,1);
[ 0%Z(3), 0*z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0*z(3), Z(3)"0 ]

4.1.2 AClosestVectorComb..MatFFEVecFFECoords

{Q AClosestVectorComb. .MatFFEVecFFECoords ( mat, F, vec, r, st ) (function)

AClosestVectorCombinationsMatFFEVecFFECoords returns a two element list containing (a)
the same closest vector asiitilosestVectorCombinationsMatFFEVecFFE, and (b) a vector with
exactlyr non-zero entries, such that matis the closest vector.

Example
gap> F:=GF(3);;
gap> x:= Indeterminate( F );; pol:= x"2+1;
x_1"2+472(3)70
gap> C := GeneratorPolCode (pol,8,F);

a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)

gap> v:=Codeword("12101111"); v:=VectorCodeword(v);;

[12101111]

gap> G:=GeneratorMat (C);

gap> AClosestVectorComblnat1onsMatFFEVecFFECoords(G F,v,1,1);

[ [ 0%2(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)°0, 0*Z(3),
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)°0 1 ]

z2(3)°0 1,

4.1.3 DistancesDistributionMatFFEVecFFE

{ DistancesDistributionMatFFEVecFFE ( vecs, vec ) (function)
DistancesDistributionMatFFEVecFFE returns the distances distribution of the vecter to

the vectors in the listecs. All vectors must have the same length, and all elements must lie in a

common field. The distances distribution is a tistf lengthLengthvec + 1, such that the valuei]

is the number of vectors in vecs that have distdneé to vec.

Example
gap> v:=[ Z(3)°0, Z( ), Z(3)70, 0*Z(3), Zz(3)°0, Z(3)°0, Z(3)°0, Z(3)°0 1;;
gap> vecs:=[ [ Z(3)~ 0*Z(3), Z(3)70, 0*z(3), 0*Z(3), 0*z(3), 0*Z(3), 0*Z(3) 1,
> [ 0%Z(3) (3)”0 O*Z(3) Z(3)70, 0*Z(3), 0*z(3), 0*z(3), 0*z(3) 1,
> [ 0%Z(3), 0*Z(3), Z(3)°0, 0%*z(3), Z(3)"0, 0*Z(3), 0*Z(3), 0*z(3) 1,
> [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0*z(3), Z(3)"0, 0*Z(3), 0*z(3) 1,
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*z(3), Z(3)"0, 0*Z(3), z(3)"0, 0*z(3) 1,
> [ 0%Z(3), 0*Z(3), 0*Z(3), 0*z(3), 0*Z(3), Z(3)70, 0*Z(3), Z(3)"0 1 1;;
gap> DistancesDistributionMatFFEVecFFE (vecs,GF (3),V);
[ 0, 4, 6, 60, 109, 216, 192, 112, 30 ]

4.1.4 DistancesDistributionVecFFEsVecFFE

{ DistancesDistributionVecFFEsVecFFE ( vecs, vec )

(function)
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DistancesDistributionVecFFEsVecFFE returns the distances distribution of the veactet to
the vectors in the listecs. All vectors must have the same length, and all elements must lie in a
common field. The distances distribution is a tistf lengthLengti{veg + 1, such that the valuei]
is the number of vectors ifiecs that have distancet 1 tovec.
Example

gap> v:=[ 2(3)"0, Z2(3), 2(3)°0, 0*2(3), Z(3)°0, Z(3)"0, Z(3)70, Z2(3)°0 1;;
gap> vecs:=[ [ Z(3)"0, 0*z(3), Z(3)°0, 0*z(3), 0*z(3), 0*Z(3), 0*Z(3), 0*Z(3) 1,
> [ 0*Z(3), Z(3)°0, 0*Z(3), Z(3)"0, 0*Z(3), 0*z(3), 0*z(3), 0*Z(3) 1,
> [ 0*Z(3), 0*z(3), Z(3)"0, 0*z(3), Z(3)"0, 0*z(3), 0*Z(3), 0*Z(3) 1,
> [ 0*Z(3), 0*z(3), 0*Z(3), Z(3)°0, 0*Z(3), z(3)°0, 0*Zz(3), 0*Z(3) 1,
> [ 0%z(3), 0*z(3), 0*Z(3), 0*z(3), Z(3)"0, 0*z(3), z(3)°0, 0*Z(3) 1,
> [ 0*%2(3), 0*z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)70, 0*2(3), Z2(3)"0 1 1;;
gap> DistancesDistributionVecFFEsVecFFE (vecs,V);
(o, 0,0, 0, 0, 4, 0, 1, 1]
4.2 Other functions
4.2.1 WeightVecFFE
O WeightVecFFE ( vec ) (function)

WeightVecFFE returns the weight of the finite field vectesc, i.e. the number of nonzero entries.

Example
gap> v:=[ Z(3)70, Z(3), Z(3)70, 0*Z(3), Z(3)°0, Z(3)70, 2(3)70, Z2(3)°0 1;;
gap> WeightVecFFE (v);

7

4.2.2 DistanceVecFFE

{) DistanceVecFFE( vecl, wvec2 ) (function)
TheHamming metrion GF(q)" is the function

dist((v1,...,Vn), (W1,...,Wn)) = [{i € [1..n] | vi =W }].

This is also called the (Hamming) distance betweer= (vi,...,Vn) and w = (Wy,...,Wy).
DistanceVecFFE returns the distance between the two vectarsl and vec2, which must have

the same length and whose elements must lie in a common field. The distance is the number of places
wherevecl andvec? differ.

Example
gap> vl:=[ Z(3)"0, Z(3), Z2(3)°0, 0*Z2(3), Z(3)°0, Z2(3)°0, Z(3)°0, 2(3)°0 1;;
gap> v2:=[ Z(3), Z(3)"0, Z(3)°0, 0*Z(3), z(3)"0 0 0 0 ;
gap> DistanceVecFFE (vl,v2);

2




Chapter 5

Generating Codes

In this chapter we describe functions for generating codes.

Section5.1describes functions for generating unrestricted codes.

Section5.2 describes functions for generating linear codes.

Section5.3 describes functions for constructing certain covering codes, such as the Gabidulin
codes.

Section5.4 describes functions for constructing the Golay codes.

Section5.5describes functions for generating cyclic codes.

Section5.6 describes functions for generating codes as the image of an evaluation map applied
to a space of functions. For example, generalized Reed-Solomon codes and toric codes are described
there.

5.1 Generating Unrestricted Codes

In this section we start with functions that creating code from user defined matrices or special matrices
(seeklementsCode (5.1.7), HadamardCode (5.1.2), ConferenceCode (5.1.3 andM0oLSCode (5.1.9).
These codes are unrestricted codes; they may later be discovered to be linear or cyclic.

The next functions generate random codes §seéomCode (5.1.9) and the Nordstrom-Robinson
code (se@ordstromRobinsonCode (5.1.6), respectively.

Finally, we describe two functions for generating Greedy codes. These are codes that contructed
by gathering codewords from a space (seeedyCode (5.1.7) andLexiCode (5.1.9).

5.1.1 ElementsCode

{ ElementsCode( L[, name,] F ) (function)

ElementsCode creates an unrestricted code of the list of elementa the fieldr. L must be a
list of vectors, strings, polynomials or codewordsme can contain a short description of the code.
If L contains a codeword more than once, it is removed from the list @nbPaset is returned.
Example
gap> M := 7(3)°0 * [ [1, 0, 1, 11, [2, 2, 0, O
gap> C := ElementsCode( M, "example code", GF(
a (4,3,1..4)2 example code over GF (3)

gap> MinimumDistance( C );
4

1, 10, 1, 2, 2] 1;;
3) );

53
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gap> AsSSortedList( C );
(10122171, 110111, 12200171

5.1.2 HadamardCode

{ HadamardCode ( H[, t] ) (function)

The four forms this command can take amadamardCode(H,t), HadamardCode (H),
HadamardCode (n, t), andHadamardCode (n).

In the case when the argumemtandt are both givenHadamardCode returns a Hadamard code
of thet!" kind from the Hadamard matrix In case only is given,t = 3 is used.

By definition, a Hadamard matrix is a square matriwith H-HT = —n-1,, wheren is the size
of 5. The entries ofi are either 1 or -1.

The matrixH is first transformed into a binary matri, by replacing the 1's by 0's and thel’s
by 1s).

The Hadamard matrix of thiirst kind (t = 1) is created by using the rows Af as elements, after
deleting the first column. This is@ — 1,n,n/2) code. We use this code for creating the Hadamard
code of thesecond kindt = 2), by adding all the complements of the already existing codewords. This
resultsin an—1,2n,n/2—1) code. Thehird kind (t = 3) is created by using the rows Af (without
cutting a column) and their complements as elements. This way, we hgve2mn/2)-code. The
returned code is generally an unrestricted code, but fer2", the code is linear.

The commandiadamardCode (n, t) returns a Hadamard code with parameteaf thet™" kind.

For the commandadamardCode (n),t = 3 is used.

When called in these formd8adamardCode first creates a Hadamard matrix (S&glamardMat
(7.3.9), of sizen and then follows the same procedure as described above. Therefore the same
restrictions with respect to as for Hadamard matrices hold.

Example
gap> H4 := [[1,1,1,1],[1,-1,1,-1),(1,1,-1,-11,11,-1,-1,111;;
gap> HadamardCode( H4, 1 );

a (3,4,2)1 Hadamard code of order 4 over GF(2)

gap> HadamardCode( H4, 2 );

a (3,8,1)0 Hadamard code of order 4 over GF(2)

gap> HadamardCode( H4 );

a (4,8,2)1 Hadamard code of order 4 over GF(2)

gap> H4 := [[1,1,1,1],[1,-1,1,-1],(1,1,-1,-11,11,-1,-1,111;;
gap> C := HadamardCode( 4 );

a (4,8,2)1 Hadamard code of order 4 over GF(2)

gap> C = HadamardCode( H4 );

true

5.1.3 ConferenceCode

{) ConferenceCode( H ) (function)

ConferenceCode returns a code of lengii— 1 constructed from a symmetric 'conference matrix’
H. A conference matrix is a symmetric matrix of ordar, which satisfiesd -H™ = ((n—1) - I, with
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n=2 (mod4. The rows ofy(H +1+J), 1(~H +1+J), plus the zero and all-ones vectors form
the elements of a binary non-line@r— 1,2n, (n—2)/2) code.

GUAVA constructs a symmetric conference matrix of onderl (n=1 (mod 4) and uses the
rows of that matrix, plus the zero and all-ones vectors, to construct a binary non<{mééan -+
1),(n—1)/2)-code.

Example
gap> H6 := [[0,1,1,1,1,1],(L,0,1,-1,-1,1],(1,1,0,1,-1,-17,
> [i,-1,1,0,1,-11,(1,-1,-1,1,0,11,(1,1,-1,-1,1,001;;

gap> Cl := ConferenceCode( H6 );

a (5,12,2)1..4 conference code over GF(2)

gap> IsLinearCode( Cl );

false
gap> C2 := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList( C2 );
rrooooo0ol, 001111, 1010111, r0r1011, 101110171,
rro0o011131,1r1r0zx2011, (10110171, 111001171, 1101017,
(1110071, [ 1111171
5.1.4 MOLSCode
Q MOLSCode ( [n,] g ) (function)

MOLSCode returns an(n,g?,n— 1) code overGF(q). The code is created from— 2 "Mutually
Orthogonal Latin Squares’ (MOLS) of sizex g. The default fom is 4. GUAVA can construct a
MOLS code fom— 2 < g. Hereq must be a prime poweg, > 2. If there are nm—2 MOLS, an error
is signalled.

Since each of tha— 2 MOLS is aq x g matrix, we can create a code of sigeby listing in each
code element the entries that are in the same position in each of the MOLS. We precede each of these
lists with the two coordinates that specify this position, making the word length become

The MOLS codes are MDS codes (segDsSCode (3.3.7)).

Example

gap> Cl := MOLSCode( 6, 5 );
a (6,25,5)3..4 code generated by 4 MOLS of order 5 over GF (5)
gap> mols := List( [l .. WordLength(Cl) - 2 ], function( nr )

> local 1s, el;

> 1s := NullMat ( Size(LeftActingDomain(Cl)), Size(LeftActingDomain (Cl)) );
> for el in VectorCodeword( AsSSortedList( Cl ) ) do

> 1s[IntFFE(el[1])+1] [IntFFE(el[2])+1] := el[nr + 2];

> od;

> return 1s;

> end );;

gap> AreMOLS( mols );

true

gap> C2 := MOLSCode( 11 );
a (4,121,3)2 code generated by 2 MOLS of order 11 over GF(11)
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5.1.5 RandomCode

{ RandomCode ( n, M, F ) (function)

RandomCode returns a random unrestricted code of siz&ith word lengthn overr. M must be
less than or equal to the number of elements in the sg&ceg)".

The function RandomLinearCode returns a random linear code (s@@ndomLinearCode
(5.2.1D).

Example
gap> Cl := RandomCode( 6, 10, GF(8) );

a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> MinimumDistance (Cl);

3

gap> C2 := RandomCode( 6, 10, GF(8) );

a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> Cl = C2;

false

5.1.6 NordstromRobinsonCode

Q) NordstromRobinsonCode ( ) (function)

NordstromRobinsonCode returns a Nordstrom-Robinson code, the best code with word length
n =16 and minimum distanog= 6 overGF(2). This is a non-lineaf16,256,6) code.

Example

gap> C := NordstromRobinsonCode () ;

a (16,256,6)4 Nordstrom-Robinson code over GF (2)
gap> OptimalityCode( C );

0

5.1.7 GreedyCode

Q GreedyCode( L, d, F ) (function)

GreedyCode returns a Greedy code with design distardcever the finite field=. The code is
constructed using the greedy algorithm on the list of vectoréThe greedy algorithm checks each
vector inL and adds it to the code if its distance to the current code is greater than or equélito
obvious that the resulting code has a minimum distance of atdeast

Greedy codes are often linear codes.

The functionLexiCode creates a greedy code from a basis instead of an enumerated list (see
LexiCode (5.1.8).

Example
gap> Cl := GreedyCode( Tuples( AsSSortedList( GF(2) ), 5 ), 3, GF(2) );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C2 := GreedyCode( Permuted( Tuples( AsSSortedList( GF(2) ), 5 ),
> (1,4) ), 3, GF(2) );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> Cl = C2;
false
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5.1.8 LexiCode

O LexiCode( n, d, F ) (function)

In this format,Lexicode returns a lexicode with word length design distance overr. The
code is constructed using the greedy algorithm on the lexicographically ordered list of all vectors of
lengthn overF. Every time a vector is found that has a distance to the current code of ad|@ast
added to the code. This results, obviously, in a code with minimum distance greater than or equal to
d.

Another syntax which one can use igxiCode( B, d, F ). When called in this format,
LexiCode uses the basis instead of the standard basisis a matrix of vectors over. The code is
constructed using the greedy algorithm on the list of vectors spanneddogiered lexicographically
with respect t.

Note that binary lexicodes are always linear.

Example
gap> C := LexiCode( 4, 3, GF(5) );
a (4,17,3..4)2..4 lexicode over GF (5)
gap> B := [ [Z2(2)7°0, 0*Z(2), 0*Z(2)], [Z2(2)"0, Z(2)°0, 0*Z(2)] 1;;
gap> C := LexiCode( B, 2, GF(2) );
a linear [3,1,2]1..2 lexicode over GF (2)

The functionGreedyCode creates a greedy code that is not restricted to a lexicographical order (see
GreedyCode (5.1.7)).

5.2 Generating Linear Codes

In this section we describe functions for constructing linear codes. A linear code always has a gener-
ator or check matrix.

The first two functions generate linear codes from the generator matrire fatorMatCode
(5.2.2) or check matrix ¢heckMatCode (5.2.3). All linear codes can be constructed with these
functions.

The next functions we describe generate some well-known codes, like Hamming codes
(HammingCode (5.2.4), Reed-Muller codesréedMullerCode (5.2.9) and the extended Golay codes
(ExtendedBinaryGolayCode (5.4.2 andExtendedTernaryGolayCode (5.4.4).

A large and powerful family of codes are alternant codes. They are obtained by a small modi-
fication of the parity check matrix of a BCH code (S8eernantCode (5.2.6, GoppaCode (5.2.7),
GeneralizedSrivastavaCode (5.2.8 andsSrivastavaCode (5.2.9).

Finally, we describe a function for generating random linear codes {seéoml.inearCode

(5.2.19).

5.2.1 GeneratorMatCode

{) GeneratorMatCode( G[, name,] F ) (function)

GeneratorMatCode returns a linear code with generator matixc must be a matrix over finite
field F. name can contain a short description of the code. The generator matrix is the basis of the
elements of the code. The resulting code has word lengtimensionk if G is a k x n-matrix.
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If GF(q) is the field of the code, the size of the code will ¢fe Before printing the information
[n,k,ds..dyr1..ro about the code to the screen usingewObj (an undocumented intern&UAVA
command), upper and lower estimates for the minimum distance and covering radius are computed.
These estimates are obtained as follows: firgt,ahdq are not too bigGUAVA searches though the
tables in the ‘tbl’ subdirectory for best-known upper bounds. This can be time-consuming. Otherwise,
GUAVA simply callsBoundsMinimumDistance andBoundsCoveringRadius.

If the generator matrix does not have full row rank, the linearly dependent rows are removed.
This is done by th&AP functionBaseMat and results in an equal code. The generator matrix can be
retrieved with the functioGeneratorMat (SeeGeneratorMat (3.7.1).

Example
gap> G := 7Z(3)°0 * [[1,0,1,2,0],(0,1,2,1,11,(0,0,1,2,111;;

gap> Cl := GeneratorMatCode( G, GF(3) );

a linear [5,3,1..2]1..2 code defined by generator matrix over GF(3)
gap> C2 := GeneratorMatCode( IdentityMat( 5, GF(2) ), GF(2) );

a linear [5,5,1]0 code defined by generator matrix over GF (2)

gap> GeneratorMatCode( List( AsSSortedList ( NordstromRobinsonCode() ),
> x —> VectorCodeword( x ) ), GF( 2 ) );

a linear [16,11,1..4]12 code defined by generator matrix over GF(2)

# This is the smallest linear code that contains the N-R code

5.2.2 GeneratorMatCodeNC

Q) GeneratorMatCodeNC( G, F ) (function)

GeneratorMatCodeNC returns a linear codg with generator matrix. This command is the same
asGeneratorMatCode, except that (1) it does not compute upper and lower bounds for the minimum
distance or covering radius f&@, and (2) it does not allow for an optional argumente. This
command is much faster th@aneratorMatCode in Some cases.

5.2.3 CheckMatCode

{) CheckMatCode ( H[, name,] F ) (function)

CheckMatCode returns a linear code with check mattix H must be a matrix over Galois field
F. [name. can contain a short description of the code. The parity check matrix is the transposed of
the nullmatrix of the generator matrix of the code. Thereforé]™ = 0 wherec is an element of the
code. IfH is ar x n-matrix, the code has word lengthredundancy and dimensiom—r.

If the check matrix does not have full row rank, the linearly dependent rows are removed. This is
done by theGAP functionBaseMat. and results in an equal code. The check matrix can be retrieved
with the functionCheckMat (seeCheckMat (3.7.2).
Example
gap> G := 7Z(3)°0 * [[1,0,1,2,0],(0,1,2,1,11,(0,0,1,2,111;;
gap> Cl := CheckMatCode( G, GF(3) );

a linear [5,2,1..2]2..3 code defined by check matrix over GF (3)
gap> CheckMat (C1);
[ [ 2(3)°0, 0%z(3), Z(3)°0, Z(3), 0*Z(3) 1,
[ 0%Z(3), Z(3)°0, Z(3), 2(3)°0, 2(3)°0 1,
[ 0%Z(3), 0*Z(3), Z(3)°0, Z(3), Z(3)°0 1 ]
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gap> C2 := CheckMatCode( IdentityMat( 5, GF(2) ), GF(2) );
a cyclic [5,0,5]5 code defined by check matrix over GF(2)

5.2.4 HammingCode

{ HammingCode ( r, F ) (function)

HammingCode returns a Hamming code with redundancgverr. A Hamming code is a single-
error-correcting code. The parity check matrix of a Hamming code has all nonzero vectors ofdength
in its columns, except for a multiplication factor. The decoding algorithm of the Hamming code (see
Decode (3.10.0) makes use of this property.

If gis the size of its field", the returned Hamming code is alinégy —1)/(q—1),(9" —1)/(q—

1) —r,3] code.

Example
gap> Cl := HammingCode( 4, GF(2) );

a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := HammingCode( 3, GF(9) );

a linear [91,88,3]1 Hamming (3,9) code over GF(9)

5.2.5 ReedMullerCode

Q ReedMullerCode( r, k ) (function)

ReedMullerCode returns a binary 'Reed-Muller cod@’(r, k) with dimensionk and orderr.
This is a code with length“2and minimum distance®2" (see for example, section 1.10 iHP03).
By definition, thert" order binary Reed-Muller code of length= 2™, for 0 < r < m, is the set of all
vectorsf, wheref is a Boolean function which is a polynomial of degree at nost

Example

gap> ReedMullerCode( 1, 3 );
a linear [8,4,4]12 Reed-Muller (1,3) code over GF(2)

SeeGeneralizedReedMul ler (??) for a more general construction.

5.2.6 AlternantCode

O AlternantCode( r, Y[, alpha,] F ) (function)

AlternantCode returns an 'alternant code’, with parameters andalpha (optional).F denotes
the (finite) base field. Here, is the design redundancy of the codeandalpha are both vectors
of lengthn from which the parity check matrix is constructed. The check matrix has the foem
([a,-’yi]), where 0< j <r—1, 1<i <n, and wher¢...] is as inverticalConversionFieldMat
(7.3.9). If no alpha is specified, the vectdd, a,&2,..,a" 1] is used, whera is a primitive element
of a Galois fieldF.
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Example
gap> ¥ := [ 1, 1, 1, 1, 1, 1, 11;; a := PrimitiveUnityRoot( 2, 7 );;
gap> alpha := List( [0..6], 1 -> a"i );;

gap> C := AlternantCode( 2, Y, alpha, GF(8) );

a linear [7,3,3..4]13..4 alternant code over GF (8)

5.2.7 GoppaCode

Q GoppaCode ( G, L ) (function)

GoppaCode returns a Goppa codefrom Goppa polynomial, having coefficients in a Galois Field
GF(q). L must be a list of elements iIBF(q), that are not roots of. The word length of the code
is equal to the length af. The parity check matrix has the forkh= ([ai‘/G(ai)])OSdequ)_L acls
whereg; € L and[...] is as inverticalConversionFieldMat (7.3.9, soH has entries irGF(q),
g=p™. Itis known thatd(C) > deg g) + 1, with a better bound in the binary case providguhs no
multiple roots. See Huffman and Ple$$H0d section 13.2.2, and MacWilliams and SloanéJ383
section 12.3, for more details.

One can also calloppaCode using the synta%oppaCode (g, n). When called with parametet
GUAVA constructs a list. of lengthn, such that no element afis a root ofg.

This is a special case of an alternant code.
Example

gap> x:=Indeterminate (GF(8),"x");

X

gap> L:=Elements (GF (8));

[ 0%Z(2), 2(2)°0, Z(273), Z(2°3)72, Z(273)"3, 7Z(2°3)74, Z(2°3)"5, 7Z(2°3)"6 ]
gap> g:=x"2+x+t1;

x"2+x+Z2(2) "0

gap> C:=GoppaCode (g, L);

a linear [8,2,5]3 Goppa code over GF(2)

gap> xx := Indeterminate( GF(2), "xx" );;

gap> gg := xx"2 + xx + 1;; L := AsSSortedList( GF(8) );;

gap> Cl := GoppaCode( gg, L );

a linear [8,2,5]3 Goppa code over GF(2)

gap> vy := Indeterminate( GF(2), "y" );;

gap> h =y 2 +y + 1;;

gap> C2 := GoppaCode( h, 8 );

a linear [8,2,5]3 Goppa code over GF (2)
gap> C1=C2;

true

gap> C=Cl;

true

5.2.8 GeneralizedSrivastavaCode

{) GeneralizedSrivastavaCode( a, w, z[, t,] F ) (function)

GeneralizedSrivastavaCode returns a generalized Srivastava code with parametess z,
t. a={ay,...,an} andw = {wy,...,ws} are lists ofn+ s distinct elements oF = GF(q"), zis a
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list of lengthn of nonzero elements @&F(g™). The parameter determines the designed distance:
d > st+ 1. The check matrix of this code is the form

),

HZQ@—M)

1<k<t,where[..] is as inverticalConversionFieldMat (7.3.9. We use this definition df to
define the code. The default foris 1. The original Srivastava codes (Se€ vastavaCode (5.2.9)
are a special cage=1,z7 = a,-“, for somey

Example
gap> a := Filtered( AsSSortedList( GF(2°6) ), e -> e in GF(2°3) );;
gap> w := [ Z(276) 1;; z := List( [1..8], e > 1 );;
gap> C := GeneralizedSrivastavaCode( a, w, z, 1, GF(64) );
a linear [8,2,2..5]3..4 generalized Srivastava code over GF (2)

5.2.9 SrivastavaCode

{ SrivastavaCode( a, w[, mu,] F ) (function)

SrivastavaCodeeturns a Srivastava code with parametersw (and optionallymu). a =
{a1,...,an} andw = {wy,...,ws} are lists ofn+ s distinct elements oF = GF(q™). The default
for mu is 1. The Srivastava code is a generalized Srivastava code, in which™ for somemnu and
t=1.

J. N. Srivastava introduced this code in 1967, though his work was not published. See Helgert
[Hel72 for more details on the properties of this code. Related reference: G. RoelofseapOpA
AND GENERALIZED SRIVASTAVA CODESPhD thesis, Dept. Math. and Comp. Sci., Eindhoven Univ.
of Technology, the Netherlands, 1982.

Example
gap> a := AsSSortedList ( GF(11) ){[2..8]};;
gap> w := AsSSortedList( GF(11) ){[9..10]};;
gap> C := SrivastavaCode( a, w, 2, GF(11l) );
a linear [7,5,3]2 Srivastava code over GF(11)
gap> IsMDSCode( C );

true # Always true if F is a prime field

5.2.10 CordaroWagnerCode

{Q CordaroWagnerCode ( n ) (function)

CordaroWagnerCode returns a binary Cordaro-Wagner code. This is a code of lengihd
dimension 2 having the best possible minimum distahcEhis code is just a little bit less trivial than
RepetitionCode (SeeRepetitionCode (5.5.10).
Example

gap> C := CordaroWagnerCode( 11 );
a linear [11,2,7]5 Cordaro-Wagner code over GF (2)
gap> AsSSortedList (C);
[[0OO0OO0OOOOCO0COO0OOOT]I], [OOOO
[11110002112171, [1111

1

1111111
11100007
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5.2.11 RandomLinearCode

{ RandomLinearCode( n, k, F ) (function)

RandomLinearCode returns a random linear code with word lengthdimensionk over fieldr.
The method used is to first construdt & n matrix of the block form(l,A), wherel is ak x k identity
matrix andA is ak x (n— k) matrix constructed usingandom (F) repeatedly. Then the columns are
permuted using a randomly selected elemerstyafnet ricGroup (n).

To create a random unrestricted code, Rig@lomCode (SeeRandomCode (5.1.9).

Example
gap> C := RandomLinearCode( 15, 4, GF(3) );
a [15,4,?] randomly generated code over GF(3)

gap> Display(C);

a linear [15,4,1..6]6..10 random linear code over GF(3)

The methodSUAVA chooses to output the result oRandomlLinearCode command is different than

other codes. For example, the bounds on the minimum distance is not displayed. Howeer, you can
use thebisplay command to print this information. This new display method was added in version
1.9 to speed up the commanditifs about 80 andt about 40, for example, the time it took to look up
and/or calculate the bounds on the minimum distance was too long).

5.2.12 OptimalityCode

Q OptimalityCode( C ) (function)

In general this command is no longer accurate, since the tables have not been updated since 1998.
See the web sitettp://www.win.tue.nl/ aeb/voorlincod.html for more recent data.
OptimalityCode returns the difference between the smallest known upper bound and the actual
size of the code. Note that the value of the functipperBound is not always equal to the actual
upper boundi(n,d) thus the result may not be equal to 0 even if the code is optimal!
OptimalityLinearCode is similar but applies only to linear codes.

5.2.13 BestKnownLinearCode

{ BestKnownLinearCode( n, k, F ) (function)

In general this command is no longer accurate, since the tables have not been updated since 1998.
See the web sitettp://www.win.tue.nl/ aeb/voorlincod.html for more recent data.

BestKnownLinearCode returns the best known (as of 1998) linear code of lengtfimensiork
over fieldr. The function uses the tables described in sedi@mdsMinimumDistance (7.1.129 to
construct this code.

This command can also be called using the syBtastKnownLinearCode ( rec ), Whererec
must be a record containing the fields ‘lowerBound’, ‘upperBound’ and ‘construction’. It uses the
information in this field to construct a code. This form is meant to be used together with the func-
tion BoundsMinimumDistance (See€BoundsMinimumDistance (7.1.13), if the bounds are already
calculated.


http://www.win.tue.nl/~aeb/voorlincod.html
http://www.win.tue.nl/~aeb/voorlincod.html
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Example
gap> Cl := BestKnownLinearCode( 23, 12, GF(2) );
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> Cl = BinaryGolayCode ();
true
gap> Display( BestKnownLinearCode( 8, 4, GF(4) ) );
a linear [8,4,4]12..3 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]3 repetition code over GF (4)
V: a cyclic [4,1,4]13 repetition code over GF (4)
gap> C := BestKnownLinearCode(131,47);
a linear [131,47,28..32]23..68 shortened code

gap> bounds := BoundsMinimumDistance( 20, 17, GF(4) );
rec( n := 20, k :=17, g := 4,
references := rec( HM := [ "%T this reference is unknown, for more info",
"$T contact A.E. Brouwer (aeb@cwi.nl)" ] ),
construction := [ [Operation "ShortenedCode"],
[ [ [Operation "HammingCode"], [ 3, 4 11, [ 1 1 1 1, lowerBound := 3,
lowerBoundExplanation := [ "Lb(20,17)=3, by shortening of:",

"Lb(21,18)=3, reference: HM" ], upperBound := 3,
upperBoundExplanation :=
[ "Ub(20,17)=3, otherwise construction B would contradict:",
"Ub(3,1)=3, repetition code" ] )
gap> C := BestKnownLinearCode ( bounds );
a linear [20,17,3]2 shortened code
gap> C = BestKnownLinearCode( 20, 17, GF(4) );
true

5.3 Gabidulin Codes

These five binary, linear codes are derived from an article by Gabidulin, Davydov and Tombak
[GDT91]. All these codes are defined by check matrices. Exact definitions can be found in the
article. The Gabidulin code, the enlarged Gabidulin code, the Davydov code, the Tombak code, and
the enlarged Tombak code, correspond with theorem 1, 2, 3, 4, and 5, respectively in the article.

Like the Hamming codes, these codes have fixed minimum distance and covering radius, but can
be arbitrarily long.

5.3.1 GabidulinCode

{ GabidulinCode( m, wl, w2 ) (function)

GabidulinCode yields a code of length 5.2 — 1, redundancy ®— 1, minimum distance 3
and covering radius 2:1 andw2 should be elements @F(2™2).

5.3.2 EnlargedGabidulinCode

Q EnlargedGabidulinCode( m, wl, w2, e ) (function)
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EnlargedGabidulinCode yields a code of length 7."22 — 2, redundancy®, minimum distance
3 and covering radius 2:1 andw2 are elements odBF(2™-2). e is an element oGF (2™).

5.3.3 DavydovCode

{Q DavydovCode( r, v, ei, ej ) (function)

DavydovCode yields a code of length'2+ 2"~V — 3, redundancy, minimum distance 4 and cov-
ering radius 2v is an integer between 2 amd- 2. ei andej are elements dBF(2Y) andGF (2" V),
respectively.

5.3.4 TombakCode
O TombakCode ( m, e, beta, gamma, wl, w2 ) (function)

TombakCode yields a code of length 12™2 — 3, redundancy @, minimum distance 4 and cov-
ering radius 2 is an element 06F(2M). beta andgamma are elements dBF(2™1). w1 andw2 are
elements oGF(2M3).

5.3.5 EnlargedTombakCode
{ EnlargedTombakCode ( m, e, beta, gamma, wl, w2, u ) (function)
EnlargedTombakCode yields a code of length 22™4 — 3, redundancy ®— 1, minimum dis-

tance 4 and covering radius 2. The parameiers, beta, gamma, wl andw2 are defined as in
TombakCode. u iS an element oGF (2™1).

Example
gap> GabidulinCode( 4, Z(4)°0, Z(4)"1 );

a linear [19,12,3]2 Gabidulin code (m=4) over GF (2)

gap> EnlargedGabidulinCode( 4, Z(4)°0, Z(4)"1, Z(16)"11 );

a linear [26,18,3]2 enlarged Gabidulin code (m=4) over GF (2)

gap> DavydovCode( 6, 3, Z(8)"1, Z(8)"5 );

a linear [13,7,4]2 Davydov code (r=6, v=3) over GF (2)

gap> TombakCode( 5, Z(32)"6, Z(16)"14, 7Z(16)°10, z(4)°0, Z(4)"1 );
a linear [57,47,4]2 Tombak code (m=5) over GF(2)

gap> EnlargedTombakCode( 6, Z(32)7°6, Z(16)" 14, Z(16)"10,

> 7Z(4)°0, z(4)"0, Z(32)"23 );

a linear [89,78,4]2 enlarged Tombak code (m=6) over GF(2)

5.4 Golay Codes

“The Golay code is probably the most important of all codes for both practical and theoretical reasons.
" (IMS83, pg. 64). Though born in Switzerland, M. J. E. Golay (1902-1989) worked for the US
Army Labs for most of his career. For more information on his life, see his obit in the June 1990 IEEE
Information Society Newsletter.
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5.4.1 BinaryGolayCode

{Q BinaryGolayCode ( ) (function)

BinaryGolayCode returns a binary Golay code. This is a perf@3,12, 7] code. Itis also cyclic,
and has generator polynomig{x) = 1+ x? +x* 4 x% +x8 4 x104-x!1. Extending it results in an
extended Golay code (seetendedBinaryGolayCode (5.4.2). There’'s also the ternary Golay code
(seeTernaryGolayCode (5.4.3).

Example

gap> C:=BinaryGolayCode();

a cyclic [23,12,7]3 binary Golay code over GF(2)

gap> ExtendedBinaryGolayCode () = ExtendedCode (BinaryGolayCode());
true

gap> IsPerfectCode (C);

true

gap> IsCyclicCode (C);

true

5.4.2 ExtendedBinaryGolayCode
Q) ExtendedBinaryGolayCode ( ) (function)
ExtendedBinaryGolayCode returns an extended binary Golay code. This {2412 8] code.

Puncturing in the last position results in a perfect binary Golay codes(seayGolayCode (5.4.7)).
The code is self-dual.

Example

gap> C := ExtendedBinaryGolayCode ();

a linear [24,12,8]4 extended binary Golay code over GF(2)
gap> IsSelfDualCode (C);

true

gap> P := PuncturedCode (C);

a linear [23,12,7]3 punctured code

gap> P = BinaryGolayCode ();

true

gap> IsCyclicCode (C);

false

5.4.3 TernaryGolayCode

{Q TernaryGolayCode ( ) (function)

TernaryGolayCode returns a ternary Golay code. This is a perfgict 6,5] code. It is also
cyclic, and has generator polynomggk) = 2+ x2 4 2x3 +x*+x°. Extending it results in an extended
Golay code (se@xtendedTernaryGolayCode (5.4.4). There's also the binary Golay code (see
BinaryGolayCode (5.4.1)).

Example

gap> C:=TernaryGolayCode () ;
a cyclic [11,6,5]2 ternary Golay code over GF (3)
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gap> ExtendedTernaryGolayCode () = ExtendedCode (TernaryGolayCode());
true

gap> IsCyclicCode (C);

true

5.4.4 ExtendedTernaryGolayCode

Q ExtendedTernaryGolayCode ( ) (function)

ExtendedTernaryGolayCode returns an extended ternary Golay code. This [$226,6] code.
Puncturing this code results in a perfect ternary Golay codeTseearyGolayCode (5.4.3). The

code is self-dual.
Example

gap> C := ExtendedTernaryGolayCode () ;

a linear [12,6,6]3 extended ternary Golay code over GF(3)
gap> IsSelfDualCode (C);

true

gap> P := PuncturedCode(C);

a linear [11,6,5]2 punctured code

gap> P = TernaryGolayCode();

true

gap> IsCyclicCode(C);

false

5.5 Generating Cyclic Codes

The elements of a cyclic co@®are all multiples of a ("generator’) polynomig{x), where calculations
are carried out modulg” — 1. Therefore, as polynomials i the elements always have degree less
thann. A cyclic code is an ideal in the ring[x]/ (X" — 1) of polynomials modulo" — 1. The unique
monic polynomial of least degree that generdies called thegenerator polynomiabf C. It is a
divisor of the polynomiak™ — 1.

Thecheck polynomiaik the polynomiah(x) with g(x)h(x) = x" — 1. Therefore it is also a divisor
of X" — 1. The check polynomial has the property that

c(x)h(x) =0 (modx"—1),

for every codeword(x) € C.

The first two functions described below generate cyclic codes from a given generator or check
polynomial. All cyclic codes can be constructed using these functions.

Two of the Golay codes already described are cyclic (B&earyGolayCode (5.4.1) and
TernaryGolayCode (5.4.3). For example, th&UAVA record for a binary Golay code contains the

generator polynomial:
Example

gap> C := BinaryGolayCode();

a cyclic [23,12,7]3 binary Golay code over GF(2)

gap> NamesOfComponents (C) ;

[ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",
"GeneratorMat", "GeneratorPol", "Dimension", "Redundancy", "Size", "name",
"lowerBoundMinimumDistance", "upperBoundMinimumDistance", "WeightDistribution",
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"boundsCoveringRadius", "MinimumWeightOfGenerators",
"UpperBoundOptimalMinimumDistance" ]
gap> C!.GeneratorPol;
x_1711+x_1710+x_1"6+x_1"5+4x_174+x_172+7Z(2) "0

Then functions that generate cyclic codes from a prescribed set of roots of the generator polynomial
are described, including the BCH codes (Beet sCode (5.5.3, BCHCode (5.5.4), ReedSolomonCode
(5.5.95 andorcode (5.5.9).

Finally we describe the trivial codes (se@#oleSpaceCode (5.5.8, NullCode (5.5.9,
RepetitionCode (5.5.1Q), and the commandCyclicCodes which lists all cyclic codes
(CyclicCodes (5.5.1D).

5.5.1 GeneratorPolCode

Q GeneratorPolCode( g, n[, name,] F ) (function)

GeneratorPolCode creates a cyclic code with a generator polynomialord lengthn, overr.
name can contain a short description of the code.

If g is not a divisor ofx" — 1, it cannot be a generator polynomial. In that case, a code is created
with generator polynomiajcd(g,x" — 1), i.e. the greatest common divisor @aandx” — 1. This is a
valid generator polynomial that generates the idgal SeeGenerating Cyclic Codes (5.5).
Example
gap> x:= Indeterminate( GF(2) );; P:= x"2+1;
7(2) "0+x"2
gap> Cl := GeneratorPolCode(P, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF (2)
gap> GeneratorPol( Cl );
7(2) "0+x
gap> C2 := GeneratorPolCode( x+1, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( C2 );
7(2) “0+x

5.5.2 CheckPolCode

{) CheckPolCode( h, n[, name,] F ) (function)

CheckPolCode creates a cyclic code with a check polynomialvord lengthn, overr. name can
contain a short description of the code (as a string).

If his not a divisor of" — 1, it cannot be a check polynomial. In that case, a code is created with
check polynomiaged(h,x" — 1), i.e. the greatest common divisor bfandx" — 1. This is a valid
check polynomial that yields the same elements as the {tgabee5.5.

Example
gap> x:= Indeterminate( GF(3) );; P:= x"2+2;
-7(3) "0+x_1"2

gap> H := CheckPolCode(P, 7, GF(3));

a cyclic [7,1,7]4 code defined by check polynomial over GF (3)
gap> CheckPol (H);

-7(3) " 0+x_1
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gap> Gcd (P, X(GF(3))"7-1);
-7Z(3)"0+x_1

5.5.3 RootsCode

{ RootsCode( n, list ) (function)

This is the generalization of the BCH, Reed-Solomon and quadratic residue codesHsege
(5.5.9, ReedSolomonCode (5.5.5 andgrcode (5.5.6). The user can give a length of the cadand
a prescribed set of zeros. The argumentt must be a valid list of primitiver" roots of unity in a
splitting field GF(g™). The resulting code will be over the fie@F(q). The function will return the
largest possible cyclic code for which the listst is a subset of the roots of the code. From this list,
GUAVA calculates the entire set of roots.

This command can also be called with the syrkaxtsCode ( n, list, g ). In this second
form, the second argument is a list of integers, ranging from®-td.. The resulting code will be
over a fieldGF(q). GUAVA calculates a primitive'" root of unity,a, in the extension field dBF(q).

It uses the set of the powers ofin the list as a prescribed set of zeros.

Example
gap> a := PrimitiveUnityRoot( 3, 14 );

Z(3°6) 52

gap> Cl := RootsCode( 14, [ a"0, a, a3 ] );
a cyclic [14,7,3..6]13..7 code defined by roots over GF(3)
gap> MinimumDistance( Cl );

4

gap> b := PrimitiveUnityRoot( 2, 15 );

Z(2°4)

gap> C2 := RootsCode( 15, [ b, b"2, b"3, b"4 ] );

a cyclic [15,7,5]3..5 code defined by roots over GF(2)
gap> C2 = BCHCode( 15, 5, GF(2) );

true

5.5.4 BCHCode

{) BCHCode ( n[, b,] delta, F ) (function)

The functionBCHCode returns a 'Bose-Chaudhuri-Hockenghem code’B&H codefor short).
This is the largest possible cyclic code of lengtbver fieldr, whose generator polynomial has zeros

ab abtl . gbdelta-2

whereais a primitivent” root of unity in the splitting field5F(q™), b is an integer 6< b < n—delta+

1 andmiis the multiplicative order off modulon. (The integerdb,...,b+ delta— 2} typically lie in

the range{1,...,n—1}.) Default value fom is 1, though the algorithm allows= 0. The length of

the code and the sizpof the field must be relatively prime. The generator polynomial is equal to the
least common multiple of the minimal polynomials of

ap’ap+17“"ap+deﬂa—2'
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The set of zeroes of the generator polynomial is equal to the union of the sets
{a* | xe Cy},

whereCy is thek!" cyclotomic coset off modulon andb < k < b+delta— 2 (seecyclotomicCosets
(7.5.13).

Special cases afe= 1 (resulting codes are called 'narrow-sense’ BCH codes),raadf™ — 1
(known as 'primitive’ BCH codes)GUAVA calculates the largest value @ffor which the BCH code
with designed distance coincides with the BCH code with designed distadeeta. This distance
d is called theBose distancef the code. The true minimum distance of the code is greater than or
equal to the Bose distance.

Printed are the designed distance (to be precise, the Bose distiace) the starting powd.

The Sugiyama decoding algorithm has been implemented for this codes(se® (3.10.1).

Example
gap> Cl := BCHCode( 15, 3, 5, GF(2) );

a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> DesignedDistance( Cl );

;

gap> C2 := BCHCode( 23, 2, GF(2) );

a cyclic [23,12,5..7]13 BCH code, delta=5, b=1 over GF(2)
gap> DesignedDistance( C2 );

5

gap> MinimumDistance (C2);

;

SeeRootsCode (5.5.3 for a more general construction.

5.5.5 ReedSolomonCode

{) ReedSolomonCode( n, d ) (function)

ReedSolomonCode returns a 'Reed-Solomon code’ of lengthdesigned distanceé. This code
is a primitive narrow-sense BCH code over the fi€lE(qg), whereq = n+ 1. The dimension of an
RS code ism—d+ 1. According to the Singleton bound (segperBoundSingleton (7.1.1) the
dimension cannot be greater than this, so the true minimum distance of an RS code is equa to
the code is maximum distance separable (g@®sCode (3.3.7).

Example

gap> Cl := ReedSolomonCode( 3, 2 );

a cyclic [3,2,2]1 Reed-Solomon code over GF (4)
gap> IsCyclicCode (Cl);

true

gap> C2 := ReedSolomonCode( 4, 3 );

a cyclic [4,2,3]2 Reed-Solomon code over GF(5)
gap> RootsOfCode( C2 );

[ 2(5), z(5)"2 ]
gap> IsMDSCode (C2);
true

SeeGeneralizedReedSolomonCode (5.6.2 for a more general construction.
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5.5.6 QRCode

{ QRCode( n, F ) (function)

QRCode returns a quadratic residue coder Ik a fieldGF(q), theng must be a quadratic residue
modulon. That is, anx exists withx?> = q (modn). Bothn andq must be primes. Its generator
polynomial is the product of the polynomiats- a'. ais a primitive nt" root of unity, andi is an
integer in the set of quadratic residues modulo

Example
gap> Cl := QRCode( 7, GF(2) );

a cyclic [7,4,3]1 quadratic residue code over GF(2)
gap> IsEquivalent ( Cl, HammingCode( 3, GF(2) ) );

true

gap> IsCyclicCode(Cl);

true

gap> IsCyclicCode (HammingCode( 3, GF(2) ));

false

gap> C2 := QRCode( 11, GF(3) );

a cyclic [11,6,4..5]2 quadratic residue code over GF (3)
gap> C2 = TernaryGolayCode();

true

5.5.7 FireCode

Q FireCode( g, b ) (function)

FireCode constructs a (binary) Fire code.is a primitive polynomial of degrem, and a factor
of X" — 1. b an integer 0< b < mnot divisible byr, that determines the burst length of a single error
burst that can be corrected. The argumemian be a polynomial with base rirfgF(2), or a list
of coefficients inGF(2). The generator polynomial of the code is defined as the produgtaoid
x-1 41,

Here is the general definition of 'Fire code’, named after P. Fire, who introduced these codes
in 1959 in order to correct burst errors. First, a definition.FI= GF(q) and f € F[x] then we
say f hasorder eif f(x)|(x*—1). A Fire codeis a cyclic code oveF with generator polynomial
g(x) = (x*~1 - 1)p(x), wherep(x) does not divide* ! — 1 and satisfieded p(x)) >t. The length
of such a code is the order gfx). Non-binary Fire codes have not been implemented.

Example
gap> x:= Indeterminate( GF(2) );; G:= x"3+x"2+1;

Z(2)"0+x"24x"3

gap> Factors( G );

[ Z2(2)"0+x"24+x"3 ]

gap> C := FireCode( G, 3 );

a cyclic [35,27,1..4]2..6 3 burst error correcting fire code over GF(2)
gap> MinimumDistance( C );

4 # Still it can correct bursts of length 3
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5.5.8 WholeSpaceCode

Q WholeSpaceCode( n, F ) (function)

WholeSpaceCode returns the cyclic whole space code of lengthverr. This code consists of all
polynomials of degree less tharand coefficients im.

Example
gap> C := WholeSpaceCode( 5, GF(3) );
a cyclic [5,5,1]0 whole space code over GF(3)

5.5.9 NullCode

O NullCode( n, F ) (function)

NullCode returns the zero-dimensional nullcode with lengtbverr. This code has only one
word: the all zero word. It is cyclic though!

Example

gap> C := NullCode( 5, GF(3) );

a cyclic [5,0,5]5 nullcode over GF (3)
gap> AsSSortedList( C );

[T 000O0O0T1] 1]

5.5.10 RepetitionCode

Q RepetitionCode( n, F ) (function)

RepetitionCode returns the cyclic repetition code of lengthoverr. The code has as many
elements as, because each codeword consists of a repetition of one of these elements.

Example

gap> C := RepetitionCode( 3, GF(5) );

a cyclic [3,1,3]2 repetition code over GF (5)

gap> AsSSortedList( C );

(o001, [1117], 12221, [444], [3331]]1
gap> IsPerfectCode( C );

false

gap> IsMDSCode( C );

true

5.5.11 CyclicCodes

{ CyclicCodes( n, F ) (function)

CyclicCodes returns a list of all cyclic codes of lengthoverF. It constructs all possible gen-
erator polynomials from the factors gf — 1. Each combination of these factors yields a generator
polynomial after multiplication.

Example

gap> CyclicCodes (3,GF(3));
[ a cyclic [3,3,110 enumerated code over GF(3),
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a cyclic [3,2,1..2]1 enumerated code over GF(3),
a cyclic [3,1,3]2 enumerated code over GF(3),
a cyclic [3,0,3]3 enumerated code over GF(3) ]

5.5.12 NrCyclicCodes

{ NrCyclicCodes( n, F ) (function)

The functionNrCyclicCodes calculates the number of cyclic codes of lengthver fieldr.

Example
gap> NrCyclicCodes( 23, GF(2) );
8
gap> codelist := CyclicCodes( 23, GF(2) );
[ a cyclic [23,23,1]10 enumerated code over GF(2),
cyclic [23,22,1..2]1 enumerated code over GF(2),
cyclic [23,11,1..8]14..7 enumerated code over GF(2),
23,0,23]23 enumerated code over GF(2),
23,11,1..8]4..7 enumerated code over GF(2),
cyclic [23,12,1..7]13 enumerated code over GF(2),
cyclic [23,1,23]11 enumerated code over GF(2),

a cyclic [23,12,1..7]3 enumerated code over GF(2) ]
gap> BinaryGolayCode() in codelist;
true
gap> RepetitionCode( 23, GF(2) ) in codelist;
true
gap> CordaroWagnerCode( 23 ) in codelist;
false # This code is not cyclic

cyclic
cyclic
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5.6 Evaluation Codes

5.6.1 EvaluationCode

{ EvaluationCode( P, L, R ) (function)

Input: F is a finite field,L is a list of rational functions iR = F[xy, ..., %], P is a list ofn points in
F'" at which all of the functions in are defined.
Output: The "evaluation cod€, which is the image of the evalation map

Evak : spanlL) — F",

given by f — (f(p1),..., f(pn)), whereP = {pa,...,pn} and f € L. The generator matrix o is
G = (fi(Pj)) fieL,pjep-

This command returns a "record” object with several extra components (type
NamesOfComponents (C) to see them all):C!.points (namely?P), C!.basis (namely 1), and
C!.ring (namelyr).

Example

gap> F:=GF(11);
GF (11)
gap> R := PolynomialRing(F, ["x","y"]);
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PolynomialRing (..., [ %, y ])

gap> indets := IndeterminatesOfPolynomialRing(R);;

gap> x:=indets[l];; y:=indets[2];;

gap> L:=[x"2*%y,x*y,x"5,x"4,x"3,x72,%,x"0];;

gap> Pts:=[ [ Z(11)"9, z(11) 1, [ Z(11)"8, Z(11) 1, [ Z(11)"7, 0*z(11) 1,
[ z(11)"6, 0*z(11) 1, [ Z(11)"5, 0*Z(11) 1, [ Z(11)°4, 0*z(11) 1,
[ z(11)"3, Z(11) 1, [ z(11)"2, 0*zZ(11) 1, [ Z(11), O*Z(11) 1, [ Z(11)"0, O*z(11) |,
[ 0%2(11), Z2(11) ] 1;;

gap> C:=EvaluationCode (Pts,L,R);

a linear [11,8,1..3]2..3 evaluation code over GF(11)

gap> MinimumDistance (C);

3

5.6.2 GeneralizedReedSolomonCode

{) GeneralizedReedSolomonCode( P, k, R ) (function)

Input: R=F[x], wherer is a finite fieldk is a positive integek is a list ofn points inF.
Output: TheC which is the image of the evaluation map

Evab : F[xjx — F",

given by f — (f(p1),..., f(pPn)), whereP = {ps,...,pn} C F and f ranges over the spa¢gx|y of
all polynomials of degree less th&n

This command returns a "record” object with several extra components (type
NamesOfComponents (C) to see them all): C!.points (namely P), C!.degree (namely k),
andc!.ring (namelyr).

This code can be decoded usingcodeword, which applies the special decoder method (the
interpolation method), or usingeneralizedReedSolomonDecoderGao Which applies an algorithm
of S. Gao (se@eneralizedReedSolomonDecoderGao (3.10.3). This code has a special decoder
record which implements the interpolation algorithm described in section 5.2 of Justesen and Hoholdt
[JHO4. Seebecode (3.10.]) andbecodeword (3.10.2 for more details.

The weighted version has implemented with the option
GeneralizedReedSolomonCode (P, k,R,wts), wherewts = [vi,...,Vn] IS @ sequence of non-
zero elements from the base fididof R. See also the generalized Reed—Solomon ¢R&(P,V)
described in[1S83, p.303.

Work in progressThe list-decoding algorithm of Sudan-Guraswami (described in section 12.1 of
[JHO4) should be implemented. SeeneralizedReedSolomonListDecoder (3.10.9.
Example

gap> R:=PolynomialRing(GF (11), ["t"]);

GF (11) [t]

gap> P:=List ([1,3,4,5,7],1i—>Z(11)"1);

[ Z2(11), 2(11)°3, Z(11)°4, 2(11)°5, Z(11)"7 ]

gap> C:=GeneralizedReedSolomonCode (P, 3,R);

a linear [5,3,1..3]2 generalized Reed-Solomon code over GF (11)
gap> MinimumDistance (C);
3

gap> V:=[2(11)"0,Z(11) "0
[ Zz(11)°0, Z(11)°0, Z(11
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gap> C:=GeneralizedReedSolomonCode (P, 3,R,V);

a linear [5,3,1..3]2 weighted generalized Reed-Solomon code over GF(11)
gap> MinimumDistance (C);

3

SeekvaluationCode (5.6.1) for a more general construction.

5.6.3 GeneralizedReedMullerCode

() GeneralizedReedMullerCode( Pts, r, F ) (function)

GeneralizedReedMullerCode returns a 'Reed-Muller codeC with length |Ptg and orderr.
One considers (a) a basis of monomials for the vector spaceFoveGF(q) of all polynomials in
F[x1,...,%s] Of degree at most, and (b) a sePtsof points inFY. The generator matrix of the asso-
ciatedReed-Muller code Gs G = (f(p))teB,pepts: This codeC is constructed using the command
GeneralizedReedMullerCode (Pts, r, F). WhenPtsis the set of alg® points inF9 then the com-
mandGeneralizedReedMuller (4, r,F) yields the code. WheRtsis the set of al(q— 1)9 points
with no coordinate equal to 0 then this is can be constructed usingothieCode command (as a
special case).

This command returns a "record” object with several extra components (type
NamesOfComponents (C) to see them all): C!.points (hamely Pts) and C!.degree (namely

r).

Example
gap> Pts:=ToricPoints(2,GF (5));
[ [ 2(5)7°0, 2(5°01, [ 2(570, 2(5) 1, [ 2(5)°0, z(5)"°2 1, [ z(570, Z2(5)°3 1,
[ Z(5), 2(5)°0 1, [ 2(5), 2(5) 1, [ z(5), z(5)"°2 1, [ Z2(5), Z2(5)°3 1,
[ Z2(5)"2, Z2(5)°0 1, [ 2(5)7°2, 2(5) 1, [ Zz(5)°2, 2(5)"2 1, [ 2(5)"2, Z2(5)"3 1,
[ 2(5)°3, Z2(5)°0 1, [ 2(5)73, 2(5) 1, [ 2(5)7°3, z2(5)"2 1, [ Z2(5)"3, Z2(5)"3 ] ]
gap> C:=GeneralizedReedMullerCode (Pts,2,GF (5));
a linear [16,6,1..11]6..10 generalized Reed-Muller code over GF (5)
SeekvaluationCode (5.6.1) for a more general construction.
5.6.4 AffinePointsOnCurve
Q AffinePointsOnCurve( f, R, E ) (function)

AffinePointsOnCurve (f, R, E) returns the pointgx,y) € E? satisyingf (x,y) = 0, wheref is an
element oR = F|x,y].

Example
gap> F:=GF (11);;

gap> R := PolynomialRing (F, ["x","y"]);
PolynomialRing (..., [ %, y 1)

gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1l];; y:=indets[2];;

gap> P:=AffinePointsOnCurve(y 2-x"11+x,R,F)

[ [ 2(11)°9, 0*z(11) 1, [ Z(11)"°8, 0*z(11) 1, [ Z(11)"7, 0*Z(11) 1,
[ Z(11)"6, 0*Z(11) 1, [ Z(11)°5, 0*z(11) 1, [ Z(11)"4, 0*z(11l) 1,
[ Z(11)"3, 0*z(11) 1, [ z(11)"2, O*z(11) 1, [ Z(11), O*Z(11) 1,
[ Z(11)°0, 0*Z(11) 1, [ 0*Z(11), 0*Z(11) 1 ]
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5.6.5 OnePointAGCode

{ OnePointAGCode( £, P, m, R ) (function)

Input: £ is a polynomial in R=F[x,y], where is a finite fieldm is a positive integer (the multiplic-
ity of the ‘point at infinity’ co on the curvef (x,y) = 0), P is a list ofn points on the curve ovet.
Output: TheC which is the image of the evaluation map

Evap : L(m-cw) — F",

given by f — (f(p1),..., f(pn)), wherep; € P. HereL(m- ) denotes the Riemann-Roch space of
the divisorm- c on the curve. This has a basis consisting of monomigls where(i, j) range over
a polygon depending om and f(x,y). For more details on the Riemann-Roch space of the divisor
m- o see Proposition 111.10.5 in Stichtenotft[93.

This command returns a "record” object with several extra components (type
NamesOfComponents (C) to see them all):C!.points (namelyP), C!.multiplicity (namely
m), C!.curve (namelyf) andC!.ring (hamelyr).

Example

gap> F:=GF(11);

GF (11)

gap> R := PolynomialRing(F, ["x","y"]);
PolynomialRing (..., [ x, v 1)

gap> indets := IndeterminatesOfPolynomialRing(R);

[ x, v 1

gap> x:=indets[1l]; y:=indets[2];

X

Y

gap> P:=AffinePointsOnCurve(y 2-x"11+x,R,F);;

gap> C:=OnePointAGCode (y"2-x"11+x,P,15,R);

a linear [11,8,1..0]2..3 one-point AG code over GF(1l1)
gap> MinimumDistance (C);

4

gap> Pts:=List([1,2,4,6,7,8,9,10,11],i->P[i]);;

gap> C:=OnePointAGCode(y"2-x"11+x,PT,10,R);

a linear [9,6,1..4]2..3 one-point AG code over GF(1l1)
gap> MinimumDistance (C);

4

SeekvaluationCode (5.6.1) for a more general construction.

5.6.6 ToricPoints

{ ToricPoints( n, F ) (function)

ToricPoints (n,F) returns the points igF *)".

Example
gap> ToricPoints(2,GF(5));
[ [ 2(5)7°0, 2(5)°0 1, [ 2(570, 2(5) 1, [ 2(5)70, z(5)"2 1,
[ 2(5)7°0, z(5)"3 1, [ 2(5), 2(5)°0 1, [ Z2(5), 2(5) 1, [ 2(5), Z(5) "2 ],
[ 2(5), 2(5)°3 1, [ Z2(5)72, Z2(5)°0 1, [ 2(5)7°2, Z2(5) 1, [ Z2(5)°2, Z2(5)"2 1,
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[ 2(5)°2, z(5)"3 1, [ Z2(5)"3, Zz(5)°0 1, [ Z(5"3, Z(5) 1,
[ 2(5)°3, Z(5)"2 1, [ Z(5)"3, 2(5)7°3 1]
5.6.7 ToricCode
{ ToricCode( L, F ) (function)

This function returns the toric codes as in D. JoyderyD4 (see also J. P. HanseA§n99). This
is a truncated (generalized) Reed-Muller code. Heiga list of integral vectors and is the finite
field. The size of must be different from 2.

This command returns a record objeatith an extra component (typ&mesOfComponents (C)
to see them all)c! .exponents (namelyL).

Example
gap> C:=ToricCode([[1,0],[3,411,GF(3));

a linear [4,1,4]2 toric code over GF(3)

gap> Display (GeneratorMat (C));

1122

gap> Elements (C);

(000011, [11221, [22111]]

SeekEvaluationCode (5.6.1) for a more general construction.



Chapter 6

Manipulating Codes

In this chapter we describe several functi@$AvA uses to manipulate codes. Some of the best codes
are obtained by starting with for example a BCH code, and manipulating it.

In some cases, it is faster to perform calculations with a manipulated code than to use the original
code. For example, if the dimension of the code is larger than half the word length, it is generally
faster to compute the weight distribution by first calculating the weight distribution of the dual code
than by directly calculating the weight distribution of the original code. The size of the dual code is
smaller in these cases.

BecauseGUAVA keeps all information in a code record, in some cases the information can be
preserved after manipulations. Therefore, computations do not always have to start from scratch.

In Section6.1, we describe functions that take a code with certain parameters, modify it
in some way and return a different code (S&eendedCode (6.1.1), PuncturedCode (6.1.2),
EvenWeightSubcode (6.1.3, PermutedCode (6.1.4), ExpurgatedCode (6.1.5, AugmentedCode
(6.1.6, RemovedElementsCode (6.1.7), AddedElementsCode (6.1.8, ShortenedCode (6.1.9,
LengthenedCode (6.1.1Q, ResidueCode (6.1.11), ConstructionBCode (6.1.19, DualCode
(6.1.13, conversionFieldCode (6.1.19, ConstantWeightSubcode (6.1.16, StandardFormCode
(6.1.17% and CosetCode (6.1.15). In Section6.2, we describe functions that generate a new
code out of two codes (s@a rectSumCode (6.2.1), UUVCode (6.2.9, DirectProductCode (6.2.3,
IntersectionCode (6.2.4 andUnionCode (6.2.5).

6.1 Functions that Generate a New Code from a Given Code

6.1.1 ExtendedCode

{ ExtendedCode( C[, i] ) (function)

ExtendedCode extends the code i times and returns the result.is equal to 1 by default. Ex-
tending is done by adding a parity check bit after the last coordinate. The coordinates of all codewords
now add up to zero. In the binary case, each codeword has even weight.

The word length increases by The size of the code remains the same. In the binary case, the
minimum distance increases by one if it was odd. In other cases, that is not always true.

A cyclic code in general is no longer cyclic after extending.

Example
gap> Cl := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)

77
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gap> C2 := ExtendedCode( Cl );

a linear [8,4,4]2 extended code

gap> IsEquivalent ( C2, ReedMullerCode( 1, 3 ) );
true

gap> List ( AsSSortedList( C2 ), WeightCodeword );
[ 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8]
gap> C3 := EvenWeightSubcode( C1 );

a linear [7,3,4]2..3 even weight subcode

To undo extending, callPuncturedCode (See PuncturedCode (6.1.2). The function
EvenWeightSubcode (SeeEvenWeightSubcode (6.1.3) also returns a related code with only even
weights, but without changing its word length.

6.1.2 PuncturedCode

{ PuncturedCode( C ) (function)

PuncturedCode punctureg in the last column, and returns the result. Puncturing is done simply
by cutting off the last column from each codeword. This means the word length decreases by one.
The minimum distance in general also decrease by one.

This command can also be called with the syntaxicturedCode( C, L ). In this case,
PuncturedCode puncturesc in the columns specified by, a list of integers. All columns speci-
fied by are omitted from each codeword.l liis the length of. (so the number of removed columns),
the word length decreases hyThe minimum distance can also decreasé tiyless.

Puncturing a cyclic code in general results in a non-cyclic code. If the code is punctured in all
the columns where a word of minimal weight is unequal to zero, the dimension of the resulting code
decreases.

Example
gap> Cl := BCHCode( 15, 5, GF(2) );

a cyclic [15,7,5]3..5 BCH code, delta=5, b=1 over GF(2)

gap> C2 := PuncturedCode( Cl );

a linear [14,7,4]3..5 punctured code

gap> ExtendedCode( C2 ) = Cl;

false

gap> PuncturedCode( C1, [1,2,3,4,5,6,7] );

a linear [8,7,1]1 punctured code

gap> PuncturedCode ( WholeSpaceCode( 4, GF(5) ) );

a linear [3,3,1]0 punctured code # The dimension decreased from 4 to 3

ExtendedCode extends the code again (SeecendedCode (6.1.1), although in general this does not

result in the old code.

6.1.3 EvenWeightSubcode

Q EvenWeightSubcode( C ) (function)
EvenWleightSubcode returns the even weight subcodextonsisting of all codewords afwith

even weight. I is a linear code and contains words of odd weight, the resulting code has a dimension
of one less. The minimum distance always increases with one if it was oddis l& binary cyclic
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code, andy(x) is its generator polynomial, the even weight subcode either has generator polynomial
g(x) (if g(x) is divisible byx— 1) org(x) - (x— 1) (if no factorx— 1 was present ig(x)). So the even
weight subcode is again cyclic.
Of course, if all codewords af are already of even weight, the returned code is equal to
Example
gap> Cl := EvenWeightSubcode ( BCHCode( 8, 4, GF(3) ) );
an (8,33,4..8)3..8 even weight subcode
gap> List( AsSSortedList( Cl ), WeightCodeword );
[0, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4, 6, 4, 4, 8, 6, 4, 6, 8, 4, 4,
4, 6, 4, 6, 8, 4, 6, 8]
gap> EvenWeightSubcode( ReedMullerCode( 1, 3 ) );
a linear [8,4,4]12 Reed-Muller (1,3) code over GF(2)

ExtendedCode also returns a related code of only even weights, but without reducing its dimension
(seeExtendedCode (6.1.1).

6.1.4 PermutedCode

{ PermutedCode( C, L ) (function)

PermutedCode returnsc after column permutationsL (in GAP disjoint cycle notation) is the
permutation to be executed on the columns oflf c is cyclic, the result in general is no longer
cyclic. If a permutation results in the same code athis permutation belongs to the automorphism
group ofc (seeAutomorphismGroup (3.4.3). In any case, the returned code is equivalent {eee
IsEquivalent (3.4.1).

Example
gap> Cl := PuncturedCode( ReedMullerCode( 1, 4 ) );
a linear [15,5,7]5 punctured code
gap> C2 := BCHCode( 15, 7, GF(2) );

[

a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 = Cl;
false

gap> p := Codelsomorphism( Cl, C2 );
(2, 4,14, 9,13, 7,11,10, 6, 8,12, 5)
gap> C3 := PermutedCode( Cl, p );

a linear [15,5,7]5 permuted code
gap> C2 = C3;

true

6.1.5 ExpurgatedCode

Q ExpurgatedCode( C, L ) (function)

ExpurgatedCode expurgates the codg, by throwing away codewords in list ¢ must be a linear
code.L must be a list of codeword input. The generator matrix of the new code no longer is a basis
for the codewords specified iy Since the returned code is still linear, it is very likely that, besides
the words ofi,, more codewords af are no longer in the new code.
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Example
gap> Cl := HammingCode( 4 );; WeightDistribution( Cl );

[ 1, 0, 0, 35,6 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
gap> L := Filtered( AsSSortedList (Cl), i -> WeightCodeword(i) = 3 );;
gap> C2 := ExpurgatedCode( Cl, L );

a linear [15,4,3..4]15..11 code, expurgated with 7 word(s)

gap> WeightDistribution( C2 );

(1, o0, o, 0, 14, 0, 0, 0, 1, O, O, O, O, O, O, O ]

This function does not work on non-linear codes. For removing words from a non-linear code, use
RemovedElement sCode (Se€RemovedElementsCode (6.1.7)). For expurgating a code of all words of
odd weight, use ‘EvenWeightSubcode’ (§8@nWeightSubcode (6.1.3).

6.1.6 AugmentedCode

Q AugmentedCode( C, L ) (function)

AugmentedCode returnsc after augmentingc must be a linear code,must be a list of codeword
inputs. The generator matrix of the new code is a basis for the codewords specified kxell as the
words that were already in code Note that the new code in general will consist of more words than
only the codewords af and the words.. The returned code is also a linear code.
This command can also be called with the symtaxmentedCode (C). When called without a list
of codewordsaugmentedCode returnsc after adding the all-ones vector to the generator matrix.
must be a linear code. If the all-ones vector was already in the code, nothing happens and a copy of the
argument is returned. tfis a binary code which does not contain the all-ones vector, the complement
of all codewords is added.
Example

gap> C31 := ReedMullerCode( 1, 3 );

a linear [8,4,4]12 Reed-Muller (1,3) code over GF(2)
gap> C32 := AugmentedCode(C31,["00000011","00000101",™00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)
gap> C32 = ReedMullerCode( 2, 3 );

true

gap> Cl := CordaroWagnerCode (6);

a linear [6,2,4]2..3 Cordaro-Wagner code over GF(2)
gap> Codeword( [0,0,1,1,1,1] ) in C1;

true

gap> C2 := AugmentedCode( Cl );

a linear [6,3,1..2]2..3 code, augmented with 1 word(s)
gap> Codeword( [1,1,0,0,0,0] ) in C2;

true

The functionAddedElementsCode adds elements to the codewords instead of adding them to the
basis (se@addedElementsCode (6.1.8).

6.1.7 RemovedElementsCode

{ RemovedElementsCode( C, L ) (function)
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RemovedElementsCode returns code after removing a list of codewordsfrom its elementsL
must be a list of codeword input. The result is an unrestricted code.

Example
gap> Cl := HammingCode( 4 );; WeightDistribution( Cl );
[ 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap> L := Filtered( AsSSortedList (Cl), i -> WeightCodeword(i) = 3 );;
gap> C2 := RemovedElementsCode( Cl, L );
a (15,2013,3..15)2..15 code with 35 word(s) removed
gap> WeightDistribution( C2 );
(1, 0, 0, O, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
gap> MinimumDistance( C2 );
3 # C2 is not linear, so the minimum weight does not have to

# be equal to the minimum distance

Adding elements to a code is done by the functiddedElementsCode (SeeAddedElementsCode
(6.1.89). To remove codewords from the base of a linear code, RigeirgatedCode (see
ExpurgatedCode (6.1.5).

6.1.8 AddedElementsCode

{) AddedElementsCode( C, L ) (function)

AddedElementsCode returns code after adding a list of codewordsto its elementsL must be
a list of codeword input. The result is an unrestricted code.

Example
gap> Cl := NullCode( 6, GF(2) );
a cyclic [6,0,6]6 nullcode over GF (2)
gap> C2 :=

AddedElementsCode( C1, [ "111111" ] );
a (6,2,1..6)3 code with 1 word(s) added

gap> IsCyclicCode( C2 );

true

gap> C3 := AddedElementsCode( C2, [ "101010", "010101"™ ] );
a (6,4,1..6)2 code with 2 word(s) added

gap> IsCyclicCode( C3 );

true

To remove elements from a code, B&@ovedElementsCode (S€€RemovedElementsCode (6.1.7).
To add elements to the base of a linear code pugeentedCode (Se€AugmentedCode (6.1.6).

6.1.9 ShortenedCode

Q) ShortenedCode( C[, L] ) (function)

ShortenedCode ( C ) returns the code shortened by taking a cross sectionc 1§ a linear code,
this is done by removing all codewords that start with a non-zero entry, after which the first column is
cut off. If c was a[n,k,d] code, the shortened code generally jsa 1,k—1,d] code. It is possible
that the dimension remains the same; it is also possible that the minimum distance increases.
If Cis a non-linear codeshortenedCode first checks which finite field element occurs most often
in the first column of the codewords. The codewords not starting with this element are removed from
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the code, after which the first column is cut off. The resulting shortened code has at least the same

minimum distance as.

This command can also be called using the systax-tenedCode (C,L). When called in this
format, ShortenedCode repeats the shortening process on each of the columns specified by
therefore is a list of integers. The column numbers.iare the numbers as they are before the
shortening process. if hasl entries, the returned code has a word lengthdsitions shorter than
C.

Example
gap> Cl := HammingCode( 4 );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := ShortenedCode( C1 );
a linear [14,10,3]2 shortened code
gap> C3 := ElementsCode( ["1000", "1101", "0011"™ 1, GF(2) );
a (4,3,1..4)2 user defined unrestricted code over GF (2)

gap> MinimumDistance( C3 );

2

gap> C4 := ShortenedCode( C3 );

a (3,2,2..3)1..2 shortened code

gap> AsSSortedList( C4 );

(00071, T1T01T7]]

gap> C5 := HammingCode( 5, GF(2) );

a linear [31,26,3]1 Hamming (5,2) code over GF(2)
gap> C6 := ShortenedCode( C5, [ 1, 2, 3] );
a linear [28,23,3]12 shortened code

gap> OptimalityLinearCode( C6 );

0

The functionLengthenedCode lengthens the code again (only for linear codes) segthenedCode
(6.1.10Q. In general, this is not exactly the inverse function.

6.1.10 LengthenedCode

Q LengthenedCode ( C[, 1] ) (function)

LengthenedCode ( C ) returns the code lengthenedc must be a linear code. First, the all-ones
vector is added to the generator matrix (segnentedCode (6.1.6). If the all-ones vector was already
a codeword, nothing happens to the code. Then, the code is exterieds (se&xtendedCode
(6.1.0). iis equal to 1 by default. If was an[n,k| code, the new code generally igrat i,k + 1]
code.

Example
gap> Cl := CordaroWagnerCode( 5 );

a linear [5,2,3]2 Cordaro-Wagner code over GF (2)

gap> C2 := LengthenedCode( Cl );

a linear [6,3,2]2..3 code, lengthened with 1 column(s)

ShortenedCode’ shortens the code, se®ortenedCode (6.1.9. In general, this is not exactly the
inverse function.
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6.1.11 ResidueCode

{ ResidueCode( C[, c] ) (function)

The functiorResidueCode takes a codewordof ¢ (if ¢ is omitted, a codeword of minimal weight
is used). Itremoves this word and all its linear combinations from the code and then punctures the code
in the coordinates whereis unequal to zero. The resulting code iarw,k—1,d— |wx*(q—1)/q]]

code.c must be a linear code andmust be non-zero. kK is not in then no change is madeto
Example

gap> Cl := BCHCode( 15, 7 );

a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)

gap> C2 := ResidueCode( Cl );

a linear [8,4,4]2 residue code

gap> ¢ := Codeword( [ 0,0,0,1,0,0,1,1,0,1,0,1,1,1,1 1, C1);;
gap> C3 := ResidueCode( Cl, c );

a linear [7,4,3]1 residue code

6.1.12 ConstructionBCode

{) ConstructionBCode( C ) (function)

The functionConstructionBCode takes a binary linear codeand calculates the minimum dis-
tance of the dual of (seebualCode (6.1.13). It then removes the columns of the parity check matrix
of ¢ where a codeword of the dual code of minimal weight has coordinates unequal to zero. The re-
sulting matrix is a parity check matrix for an—dd,k—dd+ 1, > d] code, wherald is the minimum

distance of the dual af.
Example

gap> Cl := ReedMullerCode( 2, 5 );

a linear [32,16,8]6 Reed-Muller (2,5) code over GF(2)
gap> C2 := ConstructionBCode( Cl );

a linear [24,9,8]15..10 Construction B (8 coordinates)
gap> BoundsMinimumDistance( 24, 9, GF(2) );

rec(n := 24, k :=9, q := 2, references := rec( ),
construction := [ [ Operation "UUVCode" ],
[ [ [ Operation "UUVCode" 1, [ [ [ Operation "DualCode" 1,
[ [ [ Operation "RepetitionCode" ], [ 6, 2 1 1 1 1,
[ [ Operation "CordaroWagnerCode" ], [ 61 1 1 1,
[ [ Operation "CordaroWagnerCode" ], [ 12 ] ] ] ], lowerBound := 8,
lowerBoundExplanation := [ "Lb(24,9)=8, u utv construction of Cl and C2:",

"Lb(12,7)=4, u ut+v construction of Cl and C2:",
"Lb(6,5)=2, dual of the repetition code",
"Lb(6,2)=4, Cordaro-Wagner code", "Lb(12,2)=8, Cordaro-Wagner code" 1],
upperBound := 8,
upperBoundExplanation := [ "Ub(24,9)=8, otherwise construction B would
contradict:", "Ub(18,4)=8, Griesmer bound" ] )
# so C2 is optimal

6.1.13 DualCode

{ DualCode( C ) (function)
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DualCode returns the dual code of The dual code consists of all codewords that are orthogonal
to the codewords aof. If C is a linear code with generator mati the dual code has parity check
matrix G (or if ¢ has parity check matrikl, the dual code has generator mattix SoifC is a linear
[n,k] code, the dual code afis a linearn,n—k| code. Ifc is a cyclic code with generator polynomial
g(x), the dual code has the reciprocal polynomiagpf) as check polynomial.

The dual code is always a linear code, evenig non-linear.

If a codec is equal to its dual code, it is callesglf-dual
Example

gap> R := ReedMullerCode( 1, 3 );

a linear [8,4,4]12 Reed-Muller (1,3) code over GF(2)
gap> RD := DualCode( R );

a linear [8,4,4]12 Reed-Muller (1,3) code over GF (2)
gap> R = RD;

true

gap> N := WholeSpaceCode( 7, GF(4) );

a cyclic [7,7,1]10 whole space code over GF (4)

gap> DualCode( N ) = NullCode( 7, GF(4) );

true

6.1.14 ConversionFieldCode

Q ConversionFieldCode( C ) (function)

ConversionFieldCode returns code after converting its field. If the field of is GF(q™), the
returned code has fiel@F(q). Each symbol of every codeword is replaced by a concatenation of
m symbols fromGF(q). If ¢ is an(n,M,d;) code, the returned code is(a- m,M,d,) code, where
do > d;.

See alsdiorizontalConversionFieldMat (7.3.10.
Example

gap> R := RepetitionCode( 4, GF(4) );

a cyclic [4,1,4]3 repetition code over GF (4)

gap> R2 := ConveISLOHFleldCode( R);

a linear [8 413..4 code, converted to basefield GF(2)
gap> Size( ) = Slze( R2 );

true

gap> GeneratorMat( R );

[ [ Z2(2)7°0, 2(2)°0, Z2(2)°0, 2(2)"0 1 1]

gap> GeneratorMat ( R2 );

[ [ Z(2)°0, 0*Z(2), Z(2)"0, 0*Z(2), Z(2)°0, 0*Z(2), Z(2)°0, 0*Z(2) 1,
[ 0%Z(2), Z2(2)°0, 0*Z(2), Z2(2)°0, 0*Z(2), Z(2)°0, 0*Z(2), Z(2)"0 1 ]

6.1.15 CosetCode

{ CosetCode( C, w ) (function)

CosetCode returns the coset of a codewith respect to wordi. w must be of the codeword type.
Then,w is added to each codeword ©fyielding the elements of the new codeclis linear andy is
an element ot, the new code is equal tg otherwise the new code is an unrestricted code.

Generating a coset is also possible by simply adding the wtod. See3.2
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Example

gap> H := HammingCode (3, GF(2));

a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> ¢ := Codeword("1011011");; c in H;

false

gap> C := CosetCode(H, c¢);

a (7,16,3)1 coset code

gap> List (AsSSortedList (C), el-> Syndrome (H, el));
rr1r113}3, (11113}, 1111131, 111171, 11111, 111117,
r111}3, 971111}, 11111], 111171, 11111, 11111],
(1111, r1111), 1111171, 1111171
# All elements of the coset have the same syndrome in H
6.1.16 ConstantWeightSubcode
{Q ConstantWeightSubcode( C, w ) (function)

ConstantWeightSubcode returns the subcode of that only has codewords of weight The
resulting code is a non-linear code, because it does not contain the all-zero vector.

This command also can be called with the syntaxstantWeightSubcode (C) In this format,
ConstantWeightSubcode returns the subcode afconsisting of all minimum weight codewords of
C.

ConstantWeightSubcode first checks if Leon’s binarytdist exists on your computer (in the
default directory). If it does, then this program is called. Otherwise, the constant weight subcode is
computed using a GAP program which checks each codewartbisee if it is of the desired weight.

Example

gap> N := NordstromRobinsonCode();; WeightDistribution (N);
(1 o0, 0, 0, 0, 0, 112, 0, 30, O, 112, 0, 0, 0, O, O, 11
gap> C := ConstantWeightSubcode (N, 8);

a (16,30,6..16)5..8 code with codewords of weight 8

gap> WeightDistribution (C);

( o, 0, o, 0, 0, 0, 0, 0, 30, 0, 0, O, O, O, O, O, O]

gap> eg := ExtendedTernaryGolayCode ();; WeightDistribution (eq);
(1, 0, 0, O, O, O, 264, 0, O, 440, 0, 0, 24 ]

gap> C := ConstantWeightSubcode (eqg);

a (12,264,6..12)3..6 code with codewords of weight 6

gap> WeightDistribution (C);

(o o 0, 0, 0, 0, 264, 0, 0, O, 0, 0, 0]

6.1.17 StandardFormCode

{ StandardFormCode ( C ) (function)

StandardFormCode returnsc after putting it in standard form. {fis a non-linear code, this means
the elements are organized using lexicographical order. This means they form @Aeg&et'.

If C is a linear code, the generator matrix and parity check matrix are put in standard form. The
generator matrix then has an identity matrix in its left part, the parity check matrix has an identity
matrix in its right part. Althougl&UAVA always puts both matrices in a standard form usismgeMat,
this never alters the codetandardFormCode even applies column permutations if unavoidable, and
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thereby changes the code. The column permutations are recorded in the construction history of the
new code (seeisplay (3.6.3). ¢ and the new code are of course equivalent.

If ¢ is a cyclic code, its generator matrix cannot be put in the usual upper triangular form, because
then it would be inconsistent with the generator polynomial. The reason is that generating the elements
from the generator matrix would result in a different order than generating the elements from the
generator polynomial. This is an unwanted effect, and therefosedardrormCode just returns a
copy ofc for cyclic codes.

Example
gap> G := GeneratorMatCode( z(2) * [ [O,1,1,0], [0,1,0,1], [0,0,1,1] 1,
> "random form code", GF(2) );

a linear [4,2,1..2]1..2 random form code over GF (2)

gap> Codeword( GeneratorMat( G ) );

[ro101]1, 00111711
gap> Codeword( GeneratorMat ( StandardFormCode( G ) ) );
(100171, 0101711

6.1.18 PiecewiseConstantCode

O PiecewiseConstantCode ( part, wts[, F] ) (function)

PiecewiseConstantCode returns a code with length= S n;, wherepart=[n,...,ny. wtsis a
list of constraints w= (ws,...,Wg), each of lengtlk, where 0< w; < n;. The default field iS5F(2).

A constraint is a list of integers, and a ward= (cy,...,Ck) (according topart, i.e., eacty; is a
subword of lengthn;) is in the resulting code if and only if, for some constrain€ wts, ||Gi|| = wi
forall 1 <i <k, where||...|| denotes the Hamming weight.

An example might make things clearer:

Example
gap> PiecewiseConstantCode( [ 2, 3 ],
>(ro, 01, 00,31, 01,01, [2 211,
> GF(2) );

a (5,7,1..5)1..5 piecewise constant code over GF(2)
gap> AsSSortedList (last);

(roo0oo0o0o0j], 10012121131, ro0r2000131, 1100001, 121210111,
[1 110111, [1111017]1

The first constraint is satisfied by codeword 1, the second by codeword 2, the third by codewords 3
and 4, and the fourth by codewords 5, 6 and 7.

6.2 Functions that Generate a New Code from Two Given Codes

6.2.1 DirectSumCode

{ DirectSumCode ( Cl, C2 ) (function)

DirectSumCode returns the direct sum of codes andc2. The direct sum code consists of every
codeword oft1 concatenated by every codewordaf. Therefore, ifci was a(nj, M;,d;) code, the
result is a(ny + Nz, M1 * M2, min(dy,dy)) code.
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If both c1 andc2 are linear codes, the result is also a linear code. If one of them is non-linear, the
direct sum is non-linear too. In general, a direct sum code is not cyclic.
Performing a direct sum can also be done by adding two codes (see S&@jioAnother often
used method is the ‘u, u+v’-construction, describeduriCode (6.2.2.
Example
gap> Cl := ElementsCode( [ [1,0], [4,5]1 1, GE(7) );;
gap> C2 := ElementsCode( [ [0,0,01, [3,3,31 1, GF(T7) );;
gap> D := DirectSumCode(Cl, C2);;
gap> AsSSortedList (D) ;
[[1000071, [103331, 450001, [453331]
gap> D = Cl + C2; # addition = direct sum
true

6.2.2 UUVCode

Q UUVCode ( C1, C2 ) (function)

UUVCode returns the so-callefu||u+ v) construction applied tal andc2. The resulting code
consists of every codewordof c1 concatenated by the sum wfand every codeword of c2. If C1
andc2 have different word lengths, sufficient zeros are added to the shorter code to make this sum
possible. Ifci is a(n,M;,d;) code, the result is afn; + maxng, n2), Mz - Mz, min(2-dy,dy)) code.

If both c1 andc2 are linear codes, the result is also a linear code. If one of them is non-linear, the
UUV sum is non-linear too. In general, a UUV sum code is not cyclic.

The functiondirect SumCode returns another sum of codes ($eeectSumCode (6.2.7)).
Example
gap> Cl := EvenWeightSubcode (WholeSpaceCode (4, GF(2)));
a cyclic [4,3,2]1 even weight subcode
gap> C2 := RepetitionCode (4, GF(2));
a cyclic [4,1,4]2 repetition code over GF(2)
gap> R := UUVCode (Cl, C2);
a linear [8,4,4]2 U U+V construction code
gap> R = ReedMullerCode (1, 3);
true

6.2.3 DirectProductCode

{) DirectProductCode( C1, C2 ) (function)

DirectProductCode returns the direct product of codes andc2. Both must be linear codes.
Suppose&i has generator matri®;. The direct product of 1 andc2 then has the Kronecker product
of G; andG; as the generator matrix (see tAR&P commandroneckerProduct).

If ciis a[m,ki,di] code, the direct product then is am - nz, k; - ko, ds - da] code.

Example

gap> L1 := LexiCode (10, 4, GF(2));

a linear [10,5,4]2..4 lexicode over GF(2)
gap> L2 := LexiCode (8, 3, GF(2));

a linear [8,4,3]2..3 lexicode over GF(2)

gap> D := DirectProductCode (L1, L2);

a linear [80,20,12]20..45 direct product code
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6.2.4 IntersectionCode

{ IntersectionCode( Cl, C2 ) (function)

IntersectionCode returns the intersection of codes andc2. This code consists of all code-
words that are both in1 andc2. If both codes are linear, the result is also linear. If both are cyclic,
the result is also cyclic.

Example

gap> C := CyclicCodes (7, GF(2));
[ a cyclic [7,7,110 enumerated code over GF(2),

a cyclic [7,6, l .2]1 enumerated code over GF(2),
cyclic [7,3 .4]12..3 enumerated code over GF(2),
cyclic [7,0, }7 enumerated code over GF(2),
cyclic [7,3, 412..3 enumerated code over GF(2),
cyclic [7,4 3]1 enumerated code over GF(2),
cyclic [7,1,7]3 enumerated code over GF(2),

a cyclic [7,4,1..3]1 enumerated code over GF(2) ]
gap> IntersectionCode (C[6], C[8]) = C[7];
true

r 4
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Thehull of a linear code is the intersection of the code with its dual code. In other words, the hull of
Cis IntersectionCode (C, DualCode(C)).

6.2.5 UnionCode

¢ UnionCode( C1, C2 ) (function)

UnionCode returns the union of codes andc2. This code consists of the union of all codewords
of c1 andc2 and all linear combinations. Therefore this function works only for linear codes. The
function AddedElementsCode can be used for non-linear codes, or if the resulting code should not
include linear combinations. SeededElementsCode (6.1.8. If both arguments are cyclic, the result
is also cyclic.

Example
gap> G := GeneratorMatCode([[1,0,1],[0,1,111*%2(2)"0, GF(2));

a linear [3,2,1..2]1 code defined by generator matrix over GF (2)
gap> H := GeneratorMatCode([[1,1,1]1]1*Z(2)"0, GF(2));

a linear [3,1,3]1 code defined by generator matrix over GF (2)
gap> U := UnionCode (G, H);

a linear [3,3,1]0 union code

gap> ¢ := Codeword("010");; c in G;

false

gap> ¢ in H;

false

gap> ¢ in U;

true

6.2.6 ExtendedDirectSumCode

{ ExtendedDirectSumCode( L, B, m ) (function)
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The extended direct sum construction is described in section V of Graham and SEfa®&. [
The resulting code consists witopies ofL, extended by repeating the codewords aftimes.

Suppose. is an[n., k |r_ code, ands is an[n, kg]rg code (non-linear codes are also permitted).
The length oB must be equal to the length of The length of the new codeiis= mn_, the dimension
(in the case of linear codes)ks< mk_+ kg, and the covering radius is< |mW¥(L,B)|, with

W(L,B) = max—— ) d(L,v+u).
( ueFLZk 2B

However, this computation will not be executed, because it may be too time consuming for large
codes.

If L C B, andL andB are linear codes, the last copyiofs omitted. In this case the dimension is
k=mk + (kg — ko).

Example

gap> ¢ := HammingCode( 3, GF(2) );

a linear [7,4,3]1 Hamming (3,2) code over GF(2)

gap> d := WholeSpaceCode( 7, GF(2) );

a cyclic [7,7,1]10 whole space code over GF(2)

gap> e := ExtendedDirectSumCode( c, d, 3 );

a linear [21,15,1..3]2 3-fold extended direct sum code

6.2.7 AmalgamatedDirectSumCode

Q AmalgamatedDirectSumCode ( cl, c2[, check] ) (function)

AmalgamatedDirectSumCode returns the amalgamated direct sum of the cadeandc2. The
amalgamated direct sum code consists of all codewords of the fofi||v) if (u||0) € ¢; and
(0]|v) € ¢z and all codewords of the forrtul|| 1||v) if (u]|1) € ¢c; and(1]||v) € c,. The resultis a
code with lengtm = n; +ny — 1 and sizeVl < M; - My/2.

If both codes are linear, they will first be standardized, with information symbols in the last and
first coordinates of the first and second code, respectively.

If c1 is a normal code (seesNormalCode (7.4.9) with the last coordinate acceptable (see
IsCoordinateAcceptable (7.4.3), andc2 is a normal code with the first coordinate acceptable,
then the covering radius of the new code is r; + rp. However, checking whether a code is normal
or not is a lot of work, and almost all codes seem to be normal. Therefore, an eptior can be
supplied. Ifcheck is true, then the codes will be checked for normality:-Héck is false or omitted,
then the codes will not be checked. In this case it is assumed that they are normal. Acceptability of
the last and first coordinate of the first and second code, respectively, is in the last case also assumed
to be done by the user.

Example

gap> ¢ := HammingCode( 3, GF(2) );

a linear [7,4,3]1 Hamming (3,2) code over GF(2)

gap> d := ReedMullerCode( 1, 4 );

a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> e := DirectSumCode( c, d );

a linear [23,9,3]7 direct sum code

gap> f := AmalgamatedDirectSumCode( c, d );;

gap> MinimumDistance( f );;

gap> CoveringRadius( f );;
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gap> f;
a linear [22,8,3]7 amalgamated direct sum code

6.2.8 BlockwiseDirectSumCode

{ BlockwiseDirectSumCode ( C1, L1, C2, L2 ) (function)

BlockwiseDirectSumCode returns a subcode of the direct sumaafandc2. The fields ofc1
andc2 must be same. The lista and1.2 are two equally long with elements from the ambient vector
spaces of 1 andcz2, respectivelypr 1.1 andL.2 are two equally long lists containing codes. The union
of the codes in.1 andL2 must bec1 andc2, respectively.

In the first case, the blockwise direct sum code is defined as

bds= [ J (Ci+(L1)i)® (C2+ (L2)i),

1<i<¢

where/ is the length of.1 and1.2, ands is the direct sum.
In the second case, it is defined as

bds= [ J ((Ly)i® (L2)i).

1<i<?

The length of the new code 5= n; + ny.

Example

gap> Cl := HammingCode( 3, GF(2) );;

gap> C2 := EvenWeightSubcode ( WholeSpaceCode( 6, GF(2) ) );;

gap> BlockwiseDirectSumCode( C1, [[ 0,0,0,0,0,0,0 1, 1,0,1,0,1,0,0 11,
>c2, [[ 0,0,0,0,0,071,[1,0,1,0,1,0 11 );

a (13,1024,1..13)1..2 blockwise direct sum code




Chapter 7

Bounds on codes, special matrices and
miscellaneous functions

In this chapter we describe functions that determine bounds on the size and minimum distance of
codes (Sectioid.1), functions that determine bounds on the size and covering radius of codes (Section
7.2), functions that work with special matric€JAVA needs for several codes (see Secid), and
constructing codes or performing calculations with codes (see Settpn

7.1 Distance bounds on codes

This section describes the functions that calculate estimates for upper bounds on the size and minimum
distance of codes. Several algorithms are known to compute a largest number of words a code can
have with given length and minimum distance. It is important however to understand that in some
cases the true upper bound is unknown. A code which has a size equalto the calculated upper bound
may not have been found. However, codes that have a larger size do not exist.

A second way to obtain bounds is a table UAVA, an extensive table is implemented for linear
codes ovelGF(2), GF(3) andGF(4). It contains bounds on the minimum distance for given word
length and dimension. For binary codes, it contains entries for word length less than or equal to 257.
For codes oveGF(3) andGF(4), it contains entries for word length less than or equal to 130.

Firstly, we describe functions that compute specific upper bounds on the code size
(see UpperBoundSingleton (7.1.1), UpperBoundHamming (7.1.d, UpperBoundJohnson (7.1.3,
UpperBoundPlotkin (7.1.4), UpperBoundElias (7.1.5 andUpperBoundGriesmer (7.1.9).

Next we describe a function that computesAVA’'s best upper bound on the code size (see
UpperBound (7.1.7).

Then we describe two functions that compute a lower and upper bound on the minimum distance
of a code (se@owerBoundMinimumDistance (7.1.8 andUpperBoundMinimumDistance (7.1.10).

Finally, we describe a function that returns a lower and upper bound on the minimum distance with
given parameters and a description of how the bounds were obtainegb(segMinimumDistance

(7.1.12).

7.1.1 UpperBoundSingleton

Q UpperBoundSingleton( n, d, q ) (function)

91
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UpperBoundSingleton returns the Singleton bound for a code of lengtiminimum distancel
over a field of size;. This bound is based on the shortening of codes. By shortenifg &hd) code
d—1times, anin—d+1,M, 1) code results, witt < g"~9** (seeshortenedCode (6.1.9). Thus

M < qnfd*‘rl.
Codes that meet this bound are calfedximum distance separal{geel sMDSCode (3.3.7)).
Example
gap> UpperBoundSingleton (4, 3, 5);
25
gap> C := ReedSolomonCode (4,3);; Size(C);
25
gap> IsMDSCode (C);
true
7.1.2 UpperBoundHamming
{ UpperBoundHamming( n, d, g ) (function)

The Hamming bound (also known as thighere packing boundeturns an upper bound on the
size of a code of length, minimum distance, over a field of size.. The Hamming bound is obtained
by dividing the contents of the entire spa@€(q)" by the contents of a ball with radiugd —1)/2].
As all these balls are disjoint, they can never contain more than the whole vector space.

qn

(n,e)’

whereM is the maxmimum number of codewords avith,e) is equal to the contents of a ball of
radiuse (seesphereContent (7.5.9). This bound is useful for small values of Codes for which

equality holds are calleperfect(seelsperfectCode (3.3.9).
Example

gap> UpperBoundHamming( 15, 3, 2 );

2048

gap> C := HammingCode( 4, GF(2) );

a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size( C );

2048

7.1.3 UpperBoundJohnson

Q UpperBoundJohnson( n, d ) (function)

The Johnson bound is an improved version of the Hamming boundufgeeBoundHamming
(7.1.2). In addition to the Hamming bound, it takes into account the elements of the space outside the

balls of radiuse around the elements of the code. The Johnson bound only works for binary codes.
Example

gap> UpperBoundJohnson( 13, 5 );

77

gap> UpperBoundHamming( 13, 5, 2);

89 # in this case the Johnson bound is better




GUAVA 93

7.1.4 UpperBoundPlotkin

Q UpperBoundPlotkin( n, d, q ) (function)

The functionUpperBoundPlotkin calculates the sum of the distances of all ordered pairs of
different codewords. It is based on the fact that the minimum distance is at most equal to the average
distance. It is a good bound if the weights of the codewords do not differ much. It results in:

d
<—
M ama—yan

whereM is the maximum number of codewords. In this caseust be larger thaflL — 1/q)n, but by
shortening the code, the cadg1— 1/qg)nis covered.

Example

gap> UpperBoundPlotkin( 15, 7, 2 );

32

gap> C := BCHCode( 15, 7, GF(2) );

a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> Size(C);

32

gap> WeightDistribution (C);

(1, 0, 0, 0, O, 0, 0, 15, 15, 0, O, O, 0, 0, 0, 1]

7.1.5 UpperBoundElias

Q UpperBoundElias( n, d, q ) (function)

The Elias bound is an improvement of the Plotkin bound (8gerBoundPlotkin (7.1.4) for
large codes. Subcodes are used to decrease the size of the code, in this case the subcode of all
codewords within a certain ball. This bound is useful for large codes with relatively small minimum
distances.

Example
gap> UpperBoundPlotkin( 16, 3, 2 );
12288
gap> UpperBoundElias( 16, 3, 2 );
10280
gap> UpperBoundElias( 20, 10, 3 );
16255
7.1.6 UpperBoundGriesmer
{Q UpperBoundGriesmer( n, d, q ) (function)

The Griesmer bound is valid only for linear codes. It is obtained by counting the number of equal
symbols in each row of the generator matrix of the code. By omitting the coordinates in which all
rows have a zero, a smaller code results. The Griesmer bound is obtained by repeating this proces
until a trivial code is left in the end.
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Example
gap> UpperBoundGriesmer( 13, 5, 2 );
64
gap> UpperBoundGriesmer( 18, 9, 2 );
8 # the maximum number of words for a linear code is 8
gap> Size( PuncturedCode( HadamardCode( 20, 1 ) ) );
20 # this non-linear code has 20 elements
7.1.7 UpperBound
Q UpperBound( n, d, q ) (function)

UpperBound returns the best known upper bouAdn,d) for the size of a code of length,
minimum distancel over a field of sizeg. The functionupperBound first checks for trivial cases
(like d =1 or n=d), and if the value is in the built-in table. Then it calculates the minimum
value of the upper bound using the methods of Singleton {(g@erBoundSingleton (7.1.1),
Hamming (se@pperBoundHamming (7.1.2), Johnson (se®pperBoundJohnson (7.1.3), Plotkin
(seeUpperBoundPlotkin (7.1.4) and Elias (se@pperBoundElias (7.1.9). If the code is binary,
A(n,2-¢—1)=A(n+1,2-/), so theUpperBound takes the minimum of the values obtained from alll
methods for the parametefis, 2- ¢ — 1) and(n+1,2-¢).

Example

gap> UpperBound( 10, 3, 2 );
85

gap> UpperBound( 25, 9, 8 );
1211778792827540

7.1.8 LowerBoundMinimumDistance

{ LowerBoundMinimumDistance( C ) (function)

In this form, LowerBoundMinimumDistance returns a lower bound for the minimum distance of
codec.

This command can also be called using the syntaxrBoundMinimumDistance( n, k, F ).
In this form, LowerBoundMinimumDistance returns a lower bound for the minimum distance of the
best known linear code of length dimensionk over fieldr. It uses the mechanism explained in
section7.1.12
Example

gap> C := BCHCode( 45, 7 );

a cyclic [45,23,7..9]16..16 BCH code, delta=7, b=l over GF(2)
gap> LowerBoundMinimumDistance( C );

7 # designed distance is lower bound for minimum distance
gap> LowerBoundMinimumDistance( 45, 23, GF(2) );

10
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7.1.9 LowerBoundGilbertVarshamov

{Q LowerBoundGilbertVarshamov( n, d, q ) (function)

This is the lower bound due (independently) to Gilbert and Varshamov. It says that for each
n and d, there exists a linear code having lengthand minimum distancel at least of size
g"1/SphereConterih— 1,d — 2, GF(q)).
Example
gap> LowerBoundGilbertVarshamov(3,2,2);
4
gap> LowerBoundGilbertVarshamov (3, 3,2);
1
gap> LowerBoundMinimumDistance(3,3,2);
1
gap> LowerBoundMinimumDistance(3,2,2);
2

7.1.10 LowerBoundSpherePacking

{ LowerBoundSpherePacking( n, d, q ) (function)

This is the lower bound due (independently) to Gilbert and Varshamov. It says that far aadh
r, there exists an unrestricted code at least of §iZ& phereConterih,d, GF(q)) minimum distance
d.

Example

gap> LowerBoundSpherePacking(3,2,2);
2
gap> LowerBoundSpherePacking(3,3,2);
1

7.1.11 UpperBoundMinimumDistance

Q UpperBoundMinimumDistance ( C ) (function)

In this form,UpperBoundMinimumDistance returns an upper bound for the minimum distance of
codec. For unrestricted codes, it just returns the word length. For linear codes, it takes the minimum
of the possibly known value from the method of construction, the weight of the generators, and the
value from the table (se&1.19.

This command can also be called using the syftag¢rBoundMinimumDistance ( n, k, F ).

In this form,UpperBoundMinimumDistance returns an upper bound for the minimum distance of the
best known linear code of length dimensionk over fieldr. It uses the mechanism explained in
section7.1.12

Example

gap> C := BCHCode( 45, 7 );;

gap> UpperBoundMinimumDistance( C );

9

gap> UpperBoundMinimumDistance( 45, 23, GF(2) );
11
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7.1.12 BoundsMinimumDistance

¢ BoundsMinimumDistance( n, k, F ) (function)

The functionBoundsMinimumDistance calculates a lower and upper bound for the minimum
distance of an optimal linear code with word lengttdimensiork over fieldr. The function returns
a record with the two bounds and an explenation for each bound. The fundétiphay can be used
to show the explanations.

The values for the lower and upper bound are obtained from a talgIAVA has ta-
bles containing lower and upper bounds fgr= 2(n < 257),3,4(n < 130). (Current as
of 1998.) These tables were derived from the table of Brouwer and Verhoeff. (See
http://www.win.tue.nl/ aeb/voorlincod.html.) For codes over other fields and for larger word
lengths, trivial bounds are used.

The resulting record can be wused in the functigkestKnownLinearCode (see
BestKnownLinearCode (5.2.13) to construct a code with minimum distance equal to the lower
bound.

Example
gap> bounds := BoundsMinimumDistance( 7, 3 );; DisplayBoundsInfo( bounds );
an optimal linear [7,3,d] code over GF(2) has d=4

Lb(7,3)=4, by shortening of:

Lb(8,4)=4, u utv construction of Cl and C2:
Lb(4,3)=2, dual of the repetition code
Lb(4,1)=4, repetition code

Ub(7,3)=4, Griesmer bound
# The lower bound is equal to the upper bound, so a code with
# these parameters is optimal.
gap> C := BestKnownLinearCode( bounds );; Display( C );
a linear [7,3,4]2..3 shortened code of
a linear [8,4,4]2 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of
a cyclic [4,1,4]2 repetition code over GF(2)
V: a cyclic [4,1,4]2 repetition code over GF(2)

7.2 Covering radius bounds on codes

7.2.1 BoundsCoveringRadius

¢ BoundsCoveringRadius( C ) (function)

BoundsCoveringRadius returns a list of integers. The first entry of this list is the maximum of
some lower bounds for the covering radiuscpthe last entry the minimum of some upper bounds of
C.

If the covering radius of ¢ is known, a list of length 1 is returned.
BoundsCoveringRadius makes use of the functiongenerallowerBoundCoveringRadius

andGeneralUpperBoundCoveringRadius.

Example
gap> BoundsCoveringRadius( BCHCode( 17, 3, GF(2) ) );
[ 3 .. 4]
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gap> BoundsCoveringRadius( HammingCode( 5, GF(2) ) );
[ 1]

7.2.2 IncreaseCoveringRadiusLowerBound

{Q IncreaseCoveringRadiusLowerBound( C[, stopdist][,][startword] ) (function)

IncreaseCoveringRadiusLowerBound tries to increase the lower bound of the covering radius
of . It does this by means of a probabilistic algorithm. This algorithm takes a random waf )"

(or startword if it is specified), and, by changing random coordinates, tries to get as farcfrasn
possible. If changing a coordinate finds a word that has a larger distance to the code than the previous
one, the change is made permanent, and the algorithm starts all over again. If changing a coordinate
does not find a coset leader that is further away from the code, then the change is made permanent
with a chance of 1 in 100, if it gets the word closer to the code, or with a chance of 1 in 10, if the word
stays at the same distance. Otherwise, the algorithm starts again with the same word as before.

If the algorithm did not allow changes that decrease the distance to the code, it might get stuck in
a sub-optimal situation (the coset leader corresponding to such a situation - i.e. no coordinate of this
coset leader can be changed in such a way that we get at a larger distance from the code - is called an
orphan.

If the algorithm finds a word that has distangepdist to the code, it ends and returns that word,
which can be used for further investigations.

The variableInfoCoveringRadius can be set te@rint to print the maximum distance reached
so far every 1000 runs. The algorithm can be interrupted witkL-C, allowing the user to look at
the word that is currently being examined (called ‘current’), or to change the chances that the new
word is made permanent (these are called ‘staychance’ and ‘downchance’). If one of these variables
isi, then it corresponds withian 100 chance.

At the moment, the algorithm is only useful for codes with small dimension, where small means
that the elements of the code fit in the memory. It works with larger codes, however, but when you use
it for codes with large dimension, you should®rypatient. If running the algorithm quitSAP (due
to memory problems), you can change the global varigRlensize to a lower value. This might
cause the algorithm to run slower, but without quittagP. The only way to find out the best value
of CRMemSize is by experimenting.

Example
gap> C:=RandomLinearCode(10,5,GF (2));

a [10,5,?] randomly generated code over GF(2)
gap> IncreaseCoveringRadiusLowerBound(C,10);
Number of runs: 1000 best distance so far: 3

w

Number of runs: 2000 best distance so far:
Number of changes: 100

Number of runs: 3000 best distance so far:
Number of runs: 4000 best distance so far:
Number of runs: 5000 best distance so far:
Number of runs: 6000 best distance so far:

w W w w Ww

Number of runs: 7000 best distance so far:
Number of changes: 200

Number of runs: 8000 best distance so far:
Number of runs: 9000 best distance so far: 3
Number of runs: 10000 best distance so far: 3

w
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Number of changes: 300
Number of runs: 11000 best distance so far: 3
Number of runs: 12000 best distance so far: 3
Number of runs: 13000 best distance so far: 3
Number of changes: 400
Number of runs: 14000 best distance so far: 3
user interrupt at...

#

# used ctrl-c to break out of execution

#

. called from

IncreaseCoveringRadiusLowerBound( code, -1, current ) called from
function( arguments ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’'quit;’ to quit to outer loop, or
you can 'return;’ to continue
brk> current;

[ Z2(2)°0, 2(2)°0, Zz(2)"0, Z(2)°0, 0*Z(2), Z(2)°0, 0*Z(2), Z(2)"0, 0*Z2(2), Z(2)"0 ]
brk>
gap> CoveringRadius (C);
3

7.2.3 ExhaustiveSearchCoveringRadius

Q ExhaustiveSearchCoveringRadius( C ) (function)

ExhaustiveSearchCoveringRadius does an exhaustive search to find the covering radias of
Every time a coset leader of a coset with weighis found, the function tries to find a coset leader
of a coset with weightv+ 1. It does this by enumerating all words of weight- 1, and checking
whether a word is a coset leader. The start weight is the current known lower bound on the covering
radius.

Example
gap> C:=RandomLinearCode(10,5,GF (2));

a [10,5,?] randomly generated code over GF(2)
gap> ExhaustiveSearchCoveringRadius (C);

Trying 3 ...

[ 3 ..5]

gap> CoveringRadius (C);

3

7.2.4 GeneralLowerBoundCoveringRadius

{ GenerallLowerBoundCoveringRadius( C ) (function)

GeneralLowerBoundCoveringRadius returns a lower bound on the covering radius oft uses
as many functions which names start withwerBoundCoveringRadius as possible to find the best
known lower bound (at least th&UAVA knows of) together with tables for the covering radius of
binary linear codes with length not greater than 64.
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Example

gap> C:=RandomLinearCode (10,5,GF (2));

a [10,5,?] randomly generated code over GF(2)
gap> GeneralLowerBoundCoveringRadius (C);

2

gap> CoveringRadius (C);

3

7.2.5 GeneralUpperBoundCoveringRadius

Q GeneralUpperBoundCoveringRadius( C ) (function)

GeneralUpperBoundCoveringRadius returns an upper bound on the covering radius.ofit
uses as many functions which names start WitberBoundCoveringRadius as possible to find the

best known upper bound (at least tiGaiAVA knows of).
Example

gap> C:=RandomLinearCode(10,5,GF (2));

a [10,5,?] randomly generated code over GF(2)
gap> GeneralUpperBoundCoveringRadius (C);

4

gap> CoveringRadius (C);

3

7.2.6 LowerBoundCoveringRadiusSphereCovering

{ LowerBoundCoveringRadiusSphereCovering( n, M[, F,] false ) (function)

This command can also be called using the syntaxrBoundCoveringRadiusSphereCovering (
n, r, [F,] true ). If the last argument of.owerBoundCoveringRadiusSphereCovering IS
false, then it returns a lower bound for the covering radius of a code of isiand lengthn.
Otherwise, it returns a lower bound for the size of a code of lengthd covering radius.

F is the field over which the code is defined.rlfs omitted, it is assumed that the code is over
GF(2). The bound is computed according to the sphere covering bound:

M-Vy(n,r) > q"

whereVgy(n,r) is the size of a sphere of radiugn GF(q)".
Example

gap> C:=RandomLinearCode(10,5,GF (2));

a [10,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusSphereCovering(10,32,GF(2), false);
2

gap> LowerBoundCoveringRadiusSphereCovering(10,3,GF (2),true);

6




GUAVA 100

7.2.7 LowerBoundCoveringRadiusVanWeel

{ LowerBoundCoveringRadiusVanWeel ( n, M[, F,] false ) (function)

This command can also be called using the syntawerBoundCoveringRadiusVanWeel ( n,
r, [F,] true ). If the last argument of.owerBoundCoveringRadiusVanWeel iS false, then it
returns a lower bound for the covering radius of a code ofisiaed lengthh. Otherwise, it returns a
lower bound for the size of a code of lengttand covering radius.

F is the field over which the code is defined.rlis omitted, it is assumed that the code is over
GF(2).

The Van Wee bound is an improvement of the sphere covering bound:

M.{Vq(n,r)— [&1 (“‘iﬂ _ ?Ii)} >

Example

gap> C:=RandomLinearCode (10,5,GF (2));

a [10,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusVanWeel (10,32,GF (2),false);
2

gap> LowerBoundCoveringRadiusVanWeel (10, 3,GF (2),true);

6

7.2.8 LowerBoundCoveringRadiusVanWee?2

{ LowerBoundCoveringRadiusVanWee2 ( n, M, false ) (function)

This command can also be called using the syntaxrBoundCoveringRadiusVanWee2 ( n, r
[,true] ). If the last argument afowerBoundCoveringRadiusVanWee?2 iS false, then it returns
a lower bound for the covering radius of a code of siznd lengthn. Otherwise, it returns a lower
bound for the size of a code of lengttand covering radius.

This bound only works for binary codes. It is based on the following inequality:

M. ((V2(n,2) = 3(r +2)(r — 1)) Va(n,r) +€Va(n,r —2))
(Vo(n,2) = 3(r+2)(r —1) +¢)

(DT

Example

> 2"

where

gap> C:=RandomLinearCode(10,5,GF (2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
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32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusVanWee?2 (10,32, false);
2

gap> LowerBoundCoveringRadiusVanWee2 (10, 3, true);

7

7.2.9 LowerBoundCoveringRadiusCountingExcess

{ LowerBoundCoveringRadiusCountingExcess( n, M, false ) (function)

This command can also be called withwerBoundCoveringRadiusCountingExcess( n, r
[,true] ). If the last argument afowerBoundCoveringRadiusCountingExcess iS false, then it
returns a lower bound for the covering radius of a code ofsiaed lengthh. Otherwise, it returns a
lower bound for the size of a code of lengtland covering radius.

This bound only works for binary codes. It is based on the following inequality:

M- (pVa(n,r) +eVa(n,r —1)) > (p+¢)2",

where 1
n+
= 1| — | — 1
e=(r+ >L+J (n+1)

and

n-3+2, ifr=2
n—r—1, if r >3.

Example

gap> C:=RandomLinearCode (10,5,GF (2));

a [10,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusCountingExcess (10,32, false);
0

gap> LowerBoundCoveringRadiusCountingExcess (10, 3,true);

7

7.2.10 LowerBoundCoveringRadiusEmbeddedl1

{ LowerBoundCoveringRadiusEmbeddedl ( n, M, false ) (function)

This command can also be called withowerBoundCoveringRadiusEmbeddedl ( n, r
[,true] ). If the last argument ofowerBoundCoveringRadiusEmbeddedl is 'false’, then it re-
turns a lower bound for the covering radius of a code of giaad lengthn. Otherwise, it returns a
lower bound for the size of a code of lengtland covering radius.
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This bound only works for binary codes. It is based on the following inequality:

M - <V2(n,r) _ <2rr>> >2"—A(n,2r +1) <2rr>7

whereA(n,d) denotes the maximal cardinality of a (binary) code of lengind minimum distance
d. The functionUpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbeddedl is better than
LowerBoundCoveringRadiusEmbedded2, sometimes it is the other way around.
Example

gap> C:=RandomLinearCode(10,5,GF (2));

a [10,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusEmbeddedl (10,32, false);
2

gap> LowerBoundCoveringRadiusEmbeddedl (10, 3, true);

7

7.2.11 LowerBoundCoveringRadiusEmbedded2

Q LowerBoundCoveringRadiusEmbedded2 ( n, M, false ) (function)

This command can also be called withowerBoundCoveringRadiusEmbedded2( n, r
[,true] ). If the last argument of.owerBoundCoveringRadiusEmbedded? is 'false’, then it re-
turns a lower bound for the covering radius of a code of gizad lengthm. Otherwise, it returns a
lower bound for the size of a code of lengitand covering radius.

This bound only works for binary codes. It is based on the following inequality:

M- (Vz(n,r) - g <2rr)> > 2" 2A(n,2r +1) (2:)’

whereA(n,d) denotes the maximal cardinality of a (binary) code of lengind minimum distance
d. The functionUpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbeddedl is better than
LowerBoundCoveringRadiusEmbedded2, sometimes it is the other way around.
Example

gap> C:=RandomLinearCode(15,5,GF (2));

a [15,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

6

gap> LowerBoundCoveringRadiusEmbedded2 (10,32, false);
2

gap> LowerBoundCoveringRadiusEmbedded2 (10,3, true);

7
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7.2.12 LowerBoundCoveringRadiusinduction

{ LowerBoundCoveringRadiusInduction( n, r ) (function)

LowerBoundCoveringRadiusInduction returns a lower bound for the size of a code with length
n and covering radius.

If n=2r+2andr > 1, the returned value is 4.

If n=2r+3andr > 1, the returned value is 7.

If n=2r +4 andr > 4, the returned value is 8.

Otherwise, 0 is returned.

Example

gap> C:=RandomLinearCode (15,5,GF (2));

a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> LowerBoundCoveringRadiusInduction (15,6);
7

7.2.13 UpperBoundCoveringRadiusRedundancy

{ UpperBoundCoveringRadiusRedundancy( C ) (function)

UpperBoundCoveringRadiusRedundancy returns the redundancy ofas an upper bound for the
covering radius of. ¢ must be a linear code.

Example

gap> C:=RandomLinearCode(15,5,GF (2));

a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> UpperBoundCoveringRadiusRedundancy (C) ;

10

7.2.14 UpperBoundCoveringRadiusDelsarte

Q UpperBoundCoveringRadiusDelsarte( C ) (function)

UpperBoundCoveringRadiusDelsarte returns an upper bound for the covering radius.ofhis

upper bound is equal to the external distance,dhis is the minimum distance of the dual code; if
is a linear code.

This is described in Theorem 11.3.3 6ff03.

Example

gap> C:=RandomLinearCode(15,5,GF (2));

a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> UpperBoundCoveringRadiusDelsarte (C);

13
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7.2.15 UpperBoundCoveringRadiusStrength

Q UpperBoundCoveringRadiusStrength( C ) (function)

UpperBoundCoveringRadiusStrength returns an upper bound for the covering radius.of

First the code is punctured at the zero coordinates (i.e. the coordinates where all codewords have
a zero). If the remaining code hasengthl (i.e. each coordinate contains each element of the field
an equal number of times), then it retuﬂﬂgier (n—m) (whereq is the size of the field anehis the
length of punctured code), otherwise it retumd his bound works for all codes.

Example

gap> C:=RandomLinearCode(15,5,GF (2));

a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> UpperBoundCoveringRadiusStrength (C);

7

7.2.16 UpperBoundCoveringRadiusGriesmerLike

{ UpperBoundCoveringRadiusGriesmerLike( C ) (function)

This function returns an upper bound for the covering radius, offhich must be linear, in a
Griesmer-like fashion. It returns )
d
3[4
&1

Example

gap> C:=RandomLinearCode(15,5,GF (2));

a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> UpperBoundCoveringRadiusGriesmerLike (C);
9

7.2.17 UpperBoundCoveringRadiusCyclicCode

¢ UpperBoundCoveringRadiusCyclicCode( C ) (function)

This function returns an upper bound for the covering radiugs wfhich must be a cyclic code. It

returns W(g)
n—k+1-— [Zw

whereg(x) is the generator polynomial af

Example

gap> C:=CyclicCodes (15,GF(2)) [3];

a cyclic [15,12,1..2]1..3 enumerated code over GF(2)
gap> CoveringRadius (C);

3
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gap> UpperBoundCoveringRadiusCyclicCode (C);
3

7.3 Special matrices iInGUAVA

This section explains functions that work with special matri@gavA needs for several codes.

Firstly, we describe some matrix generating functions (eeevtchoukMat (7.3.1), GrayMat
(7.3.2, sylvesterMat (7.3.3, HadamardMat (7.3.4 andmoLs (7.3.1D).

Next we describe two functions regarding a standard form of matrices(seeandardForm
(7.3.9 andIsInStandardForm (7.3.7).

Then we describe functions that return a matrix after a manipulatiorpéseetedcCols (7.3.9,
VerticalConversionFieldMat (7.3.9 andHorizontalConversionFieldMat (7.3.10Q).

Finally, we describe functions that do some tests on matricesi¢geg inSquare (7.3.19 and
AreMOLS (7.3.13).

7.3.1 KrawtchoukMat

Q KrawtchoukMat ( n, q ) (function)

KrawtchoukMat returns then+ 1 byn+ 1 matrixK = (k;j) defined byk;; = K;(j) fori, j=0,...,n.
Ki(j) is the Krawtchouk number (s@eawt chouk (7.5.10). n must be a positive integer and prime
power. The Krawtchouk matrix is used in tMacWilliams identitiesdefining the relation between
the weight distribution of a code of lengthover a field of sizey, and its dual code. Each call to
KrawtchoukMat returns a new matrix, so it is safe to modify the result.

Example

gap> PrintArray( KrawtchoukMat( 3, 2 ) );
[ [ 1, 1, 1, 11,

[ 3, 1, -1, -31,

[ 3, -1, -1, 31,

[ 1, -1, 1, -111]
gap> C := HammingCode( 3 );; a := WeightDistribution( C );
(1, 0, 0, 7, 7, 0, 0, 1]
gap> n := WordLength( C );; q := Size( LeftActingDomain( C ) );;
gap> k := Dimension( C );;
gap> q°( -k ) * KrawtchoukMat( n, g ) * a;
(1, 0, 0, O, 7, 0, 0, 0]
gap> WeightDistribution( DualCode( C ) );
(1, 0, 0, O, 7, 0, 0, 0]

7.3.2 GrayMat

Q GrayMat ( n, F ) (function)

GrayMat returns a list of all different vectors (S&AP’s Vectors command) of length over the
field F, using Gray orderinga must be a positive integer. This order has the property that subsequent
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vectors differ in exactly one coordinate. The first vector is always the null vector. Each eadljigat
returns a new matrix, so it is safe to modify the result.

Example

gap> GrayMat (3);

[ [ 0*z(2), 0*Z2(2), O*Z( ) 1, [ 0%Z(2), 0*Z(2), Z(2)°0 1,
[ 0%Z(2), 2(2)70, Z(2)°0 1, [ 0*Z( 2 Z(2)°0, 0*z(2) 1,
[()OZ()OO*Z()],[Z() Z2(2)°0, 2(2)°0 1,
[ 2(2)70, 0*Z2(2), 2(2)70 ] [Z()”, 0%z (2), 0*2(2) 1 ]

gap> G := GrayMat( 4, GF(4) );; Length(G);
256 # the length of a GrayMat is always $g°n$
gap> G[101] - G[100];

[ 0*Z(2), 0*z(2), Z2(2)°0, 0*z(2) ]

7.3.3 SylvesterMat

Q SylvesterMat ( n ) (function)

SylvesterMat returns then x n Sylvester matrix of ordet. This is a special case of the Hadamard
matrices (seeladamardMat (7.3.4). For this constructionn must be a power of 2. Each call to
SylvesterMat returns a new matrix, so it is safe to modify the result.

Example
gap> PrintArray (SylvesterMat (2));
cr 1, 11,
[ 1, -1711
gap> PrintArray( SylvesterMat (4) );
[ 1, 1, 1, 11,
[ 1, -1, 1, -1171,
[ ll l/ _l/ -1 }I
[ 1, -1, -1, 117 ]
7.3.4 HadamardMat
¢ HadamardMat ( n ) (function)

HadamardMat returns a Hadamard matrix of order This is ann x n matrix with the property
that the matrix multiplied by its transpose retuensmes the identity matrix. This is only possible
forn=1n=2 orin cases whereis a multiple of 4. If the matrix does not exist or is not known (as
of 1998),HadamardMat returns an error. A large number of construction methods is known to create
these matrices for different order§adamardMat makes use of two construction methods (among
which the Sylvester construction — seglvesterMat (7.3.3). These methods cover most of the
possible Hadamard matrices, although some special algorithms have not been implemented yet. The
following orders less than 100 do not yet have an implementation for a Hadamard magtijaim.:
28,36,52,76,92.
Example
gap> C := HadamardMat (8);; PrintArray(C);
rr 1, 1, 1, 1, 1, 1, 1, 11,
(1, -1, 1, -1, 1, -1, 1, ~-11,
( 1, 1, -1, -1, 1, 1, -1, -11,
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[ 1, -1, -1, 1, 1, -1, -1, 1]
[ 1, 1, 1, 1, -1, -1, -1, -1
[ 1, -1, 1, -1, -1, 1, -1, 117,
[ 1, i, -1, -1, -1, -1, 1, 1]
[ 1, -1, -1, 1, -1, 1, 1, =111

gap> C * TransposedMat (C) = 8 * IdentityMat( 8, 8 );
true

7.3.5 VandermondeMat

{) VandermondeMat ( X, a ) (function)

The functionvandermondeMat returns the(a+ 1) x n matrix of powersxij wherex is a list of
elements of a fieldX = {x4,...,X»}, anda is a non-negative integer.

Example
gap> M:=VandermondeMat ([Z(5),2(5)"2,Z(5)"0,Z(5)"3]1,2);
[ [ 2(5)70, Z2(5), Z2(5)"2 1, [ Z(5) Z(5)A2, z(5)°0 1,
[ Z(5)70, Z2(5)70, 2(5)°0 1, [ Z(5 ) 0, 2(5)73, 2(5)7"2 ] 1]
gap> Display (M);
1214
141
111
134
7.3.6 PutStandardForm
{ PutStandardForm( M[, idleft] ) (function)

We say that & x n matrix is instandard formf it is equal to the block matriX! | A), for some
k x (n—k) matrix A and wherd is thek x k identity matrix. It follows from a basis result in linear
algebra that, after a possible permutation of the columns, using elementary row operations, every
matrix can be reduced to standard foreutStandardForm puts a matrixv in standard form, and
returns the permutation needed to do sdleft is a boolean that sets the position of the identity
matrix inM. (The default foridleft is ‘true’.) If idleft is set to ‘true’, the identity matrix is put on
the left side of4. Otherwise, it is put at the right side. (This option is useful when putting a check
matrix of a code into standard form.) The functimseMat also returns a similar standard form, but
does not apply column permutations. The rows of the matrix still span the same vector space after
BaseMat, but after callingput StandardForm, this is not necessarily true.

Example
gap> M := Z(2)*[[1,0,0,1],[0,0,1,11];; PrintArray(M);
[0 Z(2) 0*z(2), 0*Z(2), Z2(2) 1,
[ 0*z(2), 0*z2(2), Z(2), Z2(2) 11
gap> PutStandardForm(M); # identity at the left side
(2,3)

gap> PrintArray (M) ;
[0 z(2), 0*2(2), 0*z(2), z(2) 1,
[ 0*Z(2), Z2(2), 0*z2(2),
gap> PutStandardForm(M, false); # identity at the right side
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(1,4,3)

gap> PrintArray (M) ;

[ [ 0*2(2), Z(2), Z(2), 0*z2(2) 1,
[ 0*z(2), Z2(2), 0*72(2), Z2(2) 11

7.3.7 IsInStandardForm

{ IsInStandardForm( M[, idleft] ) (function)

IsInStandardForm determines ifM is in standard form. idleft is a boolean that indicates
the position of the identity matrix i, as inPutStandardForm (SeePutStandardForm (7.3.6).
IsInStandardForm checks if the identity matrix is at the left side lof otherwise if it is at the right
side. The elements of may be elements of any field.

Example
gap> IsInStandardForm(IdentityMat (7, GF(2)));
true

gap> IsInStandardForm([[1, 1, 0], [1, 0, 111, false);
true

gap> IsInStandardForm([[1, 3, 2, 71]);

true

gap> IsInStandardForm(HadamardMat (4));

false

7.3.8 PermutedCols

{ PermutedCols( M, P ) (function)

PermutedCols returns a matrixt with a permutatiorr applied to its columns.
Example
gap> M := [[1,2,3,4]1,11,2,3,411;; PrintArray(M);
(tr 1 2, 3 41,

[ 1 2, 3 41711
gap> PrintArray (PermutedCols (M, (1,2,3)));
([ 3 1, 2, 417,

[ 3, 1, 2, 4711

7.3.9 \erticalConversionFieldMat
{ VerticalConversionFieldMat ( M, F ) (function)
VerticalConversionFieldMat returns the matrixt with its elements converted from a field

F = GF(gM), g prime, to a fieldGF(q). Each element is replaced by its representation over the latter
field, placed vertically in the matrix, using ti&= (p)-vector space isomorphism

[..]: GF(q) — GF(p)™,

with g = p™.
If M is ak by n matrix, the result is &- mx n matrix, since each element &F(g™) can be
represented iGF(q) usingm elements.
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Example
gap> M := Z(9)*[[1 ] [2,11]1;; PrintArray(M);
[ Z2(3°2), ( "2)°5 1,

[ Z2(372)75, ( 2) 11
gap> DefaultField( Flat (M) );
GF (372)
gap> VCFM := VerticalConversionFieldMat ( M, GF(9) );; PrintArray (VCFM);
[ [ 0*z(3), 0*Z(3) I,
[ Z(3)70, z(3) 1,
[ 0%z(3), 0*2(3) I,
[ Z(3), Z(3)°0 1] 1]
gap> DefaultField( Flat (VCFM) );
GF (3)

A similar function isHorizontalConversionFieldMat (SeeHorizontalConversionFieldMat

(7.3.10).

7.3.10 HorizontalConversionFieldMat

{ HorizontalConversionFieldMat ( M, F ) (function)

HorizontalConversionFieldMat returns the matrixt with its elements converted from a field
F = GF(gM), g prime, to a fieldGF(q). Each element is replaced by its representation over the latter
field, placed horizontally in the matrix.

If Mis ak x nmatrix, the result is & x mx n-mmatrix. The new word length of the resulting code
is equal ton-m, because each element®F (q™) can be represented GF(q) usingmelements. The
new dimension is equal tbx m because the new matrix should be a basis for the same number of
vectors as the old one.

ConversionFieldCode uses horizontal conversion to convert a code (se@ersionFieldCode

(6.1.19).

Example
gap> M := Z2(9)*[[1,2],[2,11];; PrintArray(M);
[ Z2(3°2), (A) 51,

[ Z(372)75, Z2(37°2) 1]
gap> DefaultField( Flat (M) );
GF(372)
gap> HCFM := HorizontalConversionFieldMat (M, GF(9));; PrintArray (HCFM);
[ [ 0%2(3), Z(3)70, 0*Z(3), Z2(3) 1,
[ Z(3)70, Z(3)70, Z(3), z(3) 1,
[ 0*z(3), Z2(3), 0*Z2(3), z(3)°0 1],
[ Z2(3), Z(3), Z(3)70, Z(3)°0 1 1]
gap> DefaultField( Flat (HCFM) );
GF (3)

A similar function isverticalConversionFieldMat (Se€VerticalConversionFieldMat (7.3.9).

7.3.11 MOLS

QO MOLS( g, n] ) (function)



GUAVA 110

MOLS returns a list oh Mutually Orthogonal Latin SquargOLS). A Latin squareof orderqg is
agx g matrix whose entries are from a $gtof g distinct symbols GUAVA uses the integers from 0
to g) such that each row and each column of the matrix contains each symbol exactly once.

A set of Latin squares is a set of MOLS if and only if for each pair of Latin squares in this set,
every ordered pair of elements that are in the same position in these matrices occurs exactly once.
n must be less thag. If n is omitted, two MOLS are returned. dfis not a prime power, at most

2 MOLS can be created. For all valuesqpivith g > 2 andq # 6, a list of MOLS can be constructed.
However,GUAVA does not yet construct MOLS foy=2 (mod 4). If it is not possible to construct
n MOLS, the function returns ‘false’.
MOLS are used to createary codes (seBoLSCode (5.1.4).

Example

gap> M := MOLS( 4, 3 );;PrintArray( M[1] );
Lt o, 1, 2, 31,

[ 1, 0, 3, 21,

[ 2, 3, 0, 117,

[ 3, 2, 1, 01711
gap> PrintArray( M[2] );
(r o 2, 3 11,

[ 1, 3, 2, 01,

[ 2, 0, 1, 31,

[ 3, 1, 0, 211
gap> PrintArray( M[3] );
(r o 3 1, 21,

[ 1, 2, 0, 31,

[ 2, 1, 3, 01,

[ 3, 0, 2, 111
gap> MOLS( 12, 3 );
false

7.3.12 IsLatinSquare

{ IsLatinSquare( M ) (function)

IsLatinSquare determines if a matrix is a Latin square. For a Latin square of size n, each
row and each column contains all the integers 1 n exactly once.

Example
gap> IsLatinSquare([[1,2]1,[2,111);

true

gap> IsLatinSquare([[1,2,31,12,3,11,11,3,211);
false

7.3.13 AreMOLS
O AreMOLS( L ) (function)
AreMOLS determines ifi is a list of mutually orthogonal Latin squares (MOLS). For each pair of

Latin squares in this list, the function checks if each ordered pair of elements that are in the same
position in these matrices occurs exactly once. The funetias creates MOLS (seeoLs (7.3.11).
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Example
gap> M := MOLS (4,2);
rrro, 1,2, 31, 11,0, 3 21, 12,3, 0 11, 113 2,1, 01 1,
rro, 2,3 11,111, 3 2,01, 12,01, 31, [3,1, 0, 27111
gap> AreMOLS (M) ;
true

7.4 Some functions related to the norm of a code

In this section, some functions that can be used to compute the norm of a code and to decide upon
its normality are discussed. Typically, these are applied to binary linear codes. The definitions of this
section were introduced in Graham and Slogag§j.

7.4.1 CoordinateNorm

{ CoordinateNorm( C, coord ) (function)
CoordinateNorm returns the norm of with respect to coordinateord. If C; = {c € C | Ceoord =
a}, then the norm of with respect taoord is defined as
q

max d(x,Ca),
veGF(q)na; (G

with the convention thad(x,C,) = nif Cy is empty.

Example
gap> CoordinateNorm( HammingCode( 3, GF(2) ), 3 );
3
7.4.2 CodeNorm
Q) CodeNorm( C ) (function)

CodeNorm returns the norm of. Thenormof a code is defined as the minimum of the norms for
the respective coordinates of the code. In effect, for each coordinatelinateNorm is called, and

the minimum of the calculated numbers is returned.
Example
gap> CodeNorm( HammingCode( 3, GF(2) ) );

3

7.4.3 IsCoordinateAcceptable
{Q IsCoordinateAcceptable( C, coord ) (function)
IsCoordinateAcceptable returns ‘true’ if coordinateoord of C is acceptable. A coordinate is

calledacceptabldf the norm of the code with respect to that coordinate is not more than two times
the covering radius of the code plus one.
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Example
gap> IsCoordinateAcceptable( HammingCode( 3, GF(2) ), 3 );
true
7.4.4 GeneralizedCodeNorm
{) GeneralizedCodeNorm( C, subcodel, subscode2, ..., subcodek ) (function)

GeneralizedCodeNorm returns thek-norm ofc with respect tk subcodes.
Example
gap> ¢ := RepetitionCode( 7, GF(2) );;

gap> ham := HammingCode( 3, GF(2) );;

gap> d := EvenWeightSubcode( ham );;

gap> e := ConstantWeightSubcode( ham, 3 );;
gap> GeneralizedCodeNorm( ham, c, d, e );

4

7.4.5 IsNormalCode

{) IsNormalCode( C ) (function)

IsNormalCode returns ‘true’ ifC is normal. A code is calledormalif the norm of the code is not
more than two times the covering radius of the code plus one. Almost all codes are normal, however
some (non-linear) abnormal codes have been found.

Often, it is difficult to find out whether a code is normal, because it involves computing the cover-
ing radius. HowevelrlsNormalCode uses much information from the literature (in particul&sgg)
about normality for certain code parameters.

Example
gap> IsNormalCode ( HammingCode( 3, GF(2) ) );
true

7.5 Miscellaneous functions

In this section we describe several functi@isAvA uses for constructing codes or performing calcu-
lations with codes.

In this section, some new miscellaneous functions are described, including weight enumerators,
the MacWilliams-transform and affinity and almost affinity of codes.

7.5.1 CodeWeightEnumerator

{ CodeWeightEnumerator( C ) (function)

CodeWeightEnumerator returns a polynomial of the following form:
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whereA is the number of codewords inwith weighti.

Example
gap> CodeWeightEnumerator ( ElementsCode( [ [ 0,0,0 1, [ 0,0,1 1],
>[00,1,11], [ 1,1,1 11, GF(2) ) );
x"3+x"2 +x+1
gap> CodeWeightEnumerator ( HammingCode( 3, GF(2) ) );
x"7T + T*x"4 + T*x"3 + 1
7.5.2 CodeDistanceEnumerator
Q CodeDistanceEnumerator( C, w ) (function)

CodeDistanceEnumerator returns a polynomial of the following form:

f(x) = iiBixi,

whereB; is the number of codewords with distande w.
If w is a codeword, thenCodeDistanceEnumerator returns the same polynomial as
CodeWeightEnumerator.

Example
gap> CodeDistanceEnumerator ( HammingCode( 3, GF(2) ),[0,0,0,0,0,0,1] );

x"6 + 3*x"5 + 4*x"4 + 4*x"3 4+ 3*x72 + x

gap> CodeDistanceEnumerator ( HammingCode( 3, GF(2) ),[1,1,1,1,1,1,1]1 );

x"7 + 7T*x"4 + 7T*x"3 + 1 % ‘[1,1,1,1,1,1,1]" $\in$ ‘HammingCode( 3, GF(2 ) )’

7.5.3 CodeMacWilliamsTransform

{) CodeMacWilliamsTransform( C ) (function)

CodeMacWilliamsTransform returns a polynomial of the following form:
n .
f(x) = Z)Cix',
i=

whereC; is the number of codewords with weight thedual code ofc.
Example
gap> CodeMacWilliamsTransform( HammingCode( 3, GF(2) ) );
Trx" 4+ 1

7.5.4 IsSelfComplementaryCode

{ IsSelfComplementaryCode( C ) (function)

IsSelfComplementaryCode returns ‘true’ if
v e code= 1—ve code

where 1 is the all-one word of length
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Example

114

gap> IsSelfComplementaryCode( HammingCode( 3, GF(2) ) );
true

gap> IsSelfComplementaryCode ( EvenWeightSubcode (

> HammingCode( 3, GF(2) ) ) );

false

7.5.5 IsAffineCode

{ IsAffineCode( C )

(function)

IsAffineCode returns ‘true’ ifC is an affine code. A code is calledfineif it is an affine space.

In other words, a code is affine if it is a coset of a linear code.

Example
gap> IsAffineCode( HammingCode( 3, GF(2) ) );
true
gap> IsAffineCode( CosetCode( HammingCode( 3, GF(2) ),
>[1, 0, 0, 0, 0, 0, O 1) );
true
gap> IsAffineCode( NordstromRobinsonCode() );
false

7.5.6 IsAlmostAffineCode

{ IsAlmostAffineCode( C )

(function)

IsAlmostAffineCode returns ‘true’ ifC is an almost affine code. A code is callelnost affine
if the size of any punctured code ois g for somer, whereq is the size of the alphabet of the code.
Every affine code is also almost affine, and every code G¥2) andGF(3) that is almost affine is

also affine.
Example

gap> code := ElementsCode( [ [0,0,0], [0,1, 1], [0,2,27,
> (10,11, I11,1,01, [1,2,3],
> (2,0,21, 12,1,31, 12,2,0],
> [ 0,31, (3,1,21, [3,2,1],
> 4) )ii
gap> IsAlmostAffineCode( code );
true
gap> IsAlmostAffineCode( NordstromRobinsonCode () );
false

7.5.7 1sGriesmerCode

{ IsGriesmerCode( C )

(function)
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IsGriesmerCode returns ‘true’ ifC, which must be a linear code, is Griesmer code, and ‘false’
otherwise. A code is calle@riesmerif its length satisfies

k—1 d
i< d
Example
gap> IsGriesmerCode( HammingCode( 3, GF(2) ) );
true
gap> IsGriesmerCode( BCHCode( 17, 2, GF(2) ) );
false
7.5.8 CodeDensity
Q) CodeDensity( C ) (function)

CodeDensity returns thedensityof c. The density of a code is defined as
qn
whereM is the size of the cod#&/(n,t) is the size of a sphere of raditsn GF(q") (which may be

computed usingphereContent), t is the covering radius of the code amis the length of the code.
Example
gap> CodeDensity( HammingCode( 3, GF(2) ) );
1

gap> CodeDensity( ReedMullerCode( 1, 4 ) );
14893/2048

)

7.5.9 SphereContent

{ SphereContent ( n, t, F ) (function)

SphereContent returns the content of a ball of radigsaround an arbitrary element of the
vectorspace=". This is the cardinality of the set of all elements ot that are at distance (see
DistanceCodeword (2.6.2 less than or equal tofrom an element oF".

In the context of codes, the function is used to determine if a code is perfect. A cpelddstif
spheres of radiusaround all codewords contain exactly the whole vectorspace, wisetlee number

of errors the code can correct.
Example

gap> SphereContent ( 15, 0, GF(2) );

1 # Only one word with distance 0, which is the word itself
gap> SphereContent ( 11, 3, GF(4) );

4984

gap> C := HammingCode (5);

a linear [31,26,3]1 Hamming (5,2) code over GF(2)

#the minimum distance is 3, so the code can correct one error
gap> ( SphereContent( 31, 1, GF(2) ) * Size(C) ) =2 = 31;
true
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7.5.10 Krawtchouk

O Krawtchouk ( k, 1, n, gq ) (function)

Krawtchouk returns the Krawtchouk numbBgk(i). g must be a prime power, must be a positive
integer,k must be a non-negative integer less then or equal &md i can be any integer. (See
KrawtchoukMat (7.3.7). This number is the value at=i of the polynomial

n

Kedx) = S (=1))(q—1)*Ib(x, j)b(n—x,k— j),
K (X) ,Zo( ) (a—1)"b(x, j)b(n—xk—])

whereb(v,u) = u! /(vI(v—u)!) is the binomial coefficient iti, v are integers. For more properties of
these polynomials, se#583.

Example

gap> Krawtchouk( 2, 0, 3, 2);
3

7.5.11 PrimitiveUnityRoot

Q PrimitiveUnityRoot ( F, n ) (function)

PrimitiveUnityRoot returns a primitiven-th root of unity in an extension field af. This is a
finite field element with the propertya” = 1 inF, andn is the smallest integer such that this equality
holds.

Example

gap> PrimitiveUnityRoot ( GF(2), 15 );
Z(2°4)

gap> last”15;

Z2(2)°0

gap> PrimitiveUnityRoot ( GF(8), 21 );
Z(276)"3

7.5.12 ReciprocalPolynomial

Q ReciprocalPolynomial ( P ) (function)

ReciprocalPolynomial returns thereciprocal of polynomialp. This is a polynomial with co-
efficients ofp in the reverse order. So B = ap+ aiX + ... +anX", the reciprocal polynomial is
P =ap+an_1X+...+agX".

This command can also be called using the syRtsxiprocalPolynomial ( P , n ). In this
form, the number of coefficients efis assumed to be less than or equaltel (with zero coefficients
added in the highest degrees, if necessary). Therefore, the reciprocal polynomial also has degree
n+ 1.
Example
gap> P := UnivariatePolynomial ( GF(3), Z(3)°0 * [1,0,1,2] );
Z(3)70+x_1"2-x_1"3
gap> RecP := ReciprocalPolynomial( P );
-7Z(3)"0+x_1+x_1"3
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gap> ReciprocalPolynomial( RecP ) = P;

true

gap> P := UnivariatePolynomial ( GF(3), Z(3)°0 * [1,0,1,2] );
Z(3)"0+x_1"2-x_1"3

gap> ReciprocalPolynomial( P, 6 );

-x_173+x_1744x_1"6

7.5.13 CyclotomicCosets

Q CyclotomicCosets( g, n ) (function)

CyclotomicCosets returns the cyclotomic cosets gf (modn). g andn must be relatively
prime. Each of the elements of the returned list is a list of integers that belong to one cyclotomic
coset. Ag-cyclotomic coset o6 (modn) is a set of the forn{s,sq s, ...,sq ~}, wherer is the
smallest positive integer such thedf —sis 0 (modn). In other words, each coset contains all
multiplications of the coset representative dpy (modn). The coset representative is the smallest
integer that isn’t in the previous cosets.

Example

gap> CyclotomicCosets( 2, 15 );

rro1l1, 11,2, 42381, [3 6,12, 91, [ 5, 10 17,
[ 7, 14, 13, 11 ] ]

gap> CyclotomicCosets( 7, 6 );

(rol, 111, 121,031,141, 1511

7.5.14 WeightHistogram

Q WeightHistogram( C[, h] ) (function)

The functionweightHistogram plots a histogram of weights in code The maximum length of
a column isn. Default value fom is 1/3 of the size of the screen. The number that appears at the top
of the histogram is the maximum value of the list of weights.

Example

gap> H := HammingCode (2, GF(5));

a linear [6,4,3]1 Hamming (2,5) code over GF (5)
gap> WeightDistribution (H);

[ 1, 0, 0, 80, 120, 264, 160 ]

gap> WeightHistogram (H);

264—————=———mm
*
*
*
*
* *
* * *
* * * *
* * * *
e

01 2 3 4 5 6
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7.5.15 CoefficientToPolynomial

Q CoefficientToPolynomial ( coeffs, R ) (function)

The functionCoefficientToPolynomial returns the degred — 1 polynomialco + ciX+ ... +
cq_1¥971, wherecoef£s is a list of elements of a field;oe f fs= {co,...,C4—1}, @andR is a univariate
polynomial ring.

Example

gap> F:=GF(11);

GF (11)

gap> Rl:=PolynomialRing (F, ["a"]);;

gap> varl:=IndeterminatesOfPolynomialRing(R1l);; a:=varl[l];;
gap> coeffs:=7(11)"0*[1,2,3,4];

[ Z2(11)°0, Z(11), Z(11)"8, Z(11)"2 ]

gap> CoefficientToPolynomial (coeffs,R1);
Z(11)"2*a"3+7(11) "8*a"2+Z (11) *a+Z (11) "0

7.5.16 DegreesMonomialTerm

Q]DegreesMonomialTerm( m, R ) (function)

The functionDegreesMonomialTerm returns the list of degrees to which each variable in the
multivariate polynomial ringR occurs in the monomiah, wherecoeffs is a list of elements of a
field.

Example

gap> F:=GF(11);

GF(11)

gap> Rl:=PolynomialRing(F, ["a"]);;
gap> varl:=IndeterminatesOfPolynomialRing(R1l);; a:=varl[l];;
gap> b:=X(F,"b",varl);

b

gap> var2:=Concatenation(varl, [b]);
[ a, b]

gap> R2:=PolynomialRing (F,var2);
PolynomialRing (..., [ a, b 1)

gap> c:=X(F,"c",var2);

c

gap> var3:=Concatenation(varz, [c]);
[ a, b, ¢ ]

gap> R3:=PolynomialRing (F,var3);
PolynomialRing (..., [ a, b, c 1)
gap> m:=b"3*c"7;

b*3*c”™7

gap> DegreesMonomialTerm (m,R3);
[0, 3, 71

7.5.17 DivisorsMultivariatePolynomial

{ DivisorsMultivariatePolynomial( f, R ) (function)
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The functiondDivisorsMultivariatePolynomial returns the list of polynomial divisors of

in the multivariate polynomial ring with coefficients in a field. This program uses a simple but
slow algorithm (see Joachim von zur Gathdirgén Gerhard \zGG03, exercise 16.10) which first

converts the multivariate polynomialto an associated univariate polynomfdl thenractors f*,
and finally converts these univariate factors back into the multivariate polynomial factorsSoice
Factors is hon-deterministichivisorsMultivariatePolynomial iS non-deterministic as well.

Example

gap> R2:=PolynomialRing (GF (3), ["x1","x2"]);
PolynomialRing (..., [ x1, %2 ])

gap> vars:=IndeterminatesOfPolynomialRing (R2);
[ x1, x2 ]

gap> x2:=vars[2];

X2

gap> xl:=vars[l];

x1

gap> f:=x1"3+x2"3;;

gap> DivisorsMultivariatePolynomial (f,R2);
[ x1+x2, x1+x2, x1+x2 ]
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