NQ

A GAP 4 Package
computing nilpotent factor groups of finitely presented groups

Based on the ANU Nilpotent Quotient Program
Version 2.0

December 2002

Werner Nickel

Werner Nickel
— Email: nickel@mathematik.tu-darmstadt.de
— Homepagehttp://www.mathematik.tu-darmstadt.de/ nickel
— Address: Fachbereich Mathematik, AG 2
TU Darmstadt
Schlossgartenstr. 7
64289 Darmstadt
Germany

mailto:// nickel@mathematik.tu-darmstadt.de
http://www.mathematik.tu-darmstadt.de/~nickel

NQ 2

Copyright

(© 1992-2002 Werner Nickel.

Acknowledgements

The development of this program was started while the author was supported by an Australian National Uni-
versity PhD scholarship and an Overseas Postgraduate Research Scholarship.

Further development of this program was done with support from the DFG-Schwerpunkt-Projekt "Algo-
rithmische Zahlentheorie und Algebra™.

Over the years a number of people have made useful suggestions that found their way into the code: Mike
Newman, Michael Vaughan-Lee, Joachim Néséx, Charles Sims.

I thank Volkmar Felsch and Joachim Néiger for their careful examination of the package prior to its

release for GAP 4.
This documentation was prepared with th&PDoc package by Frankilbeck and Max Neuriffer.

Contents

1 Introduction

2 General remarks

2.1 Commutators and the Lower Central Series.

2.2 Nilpotentgroups

2.3 Nilpotentpresentations
2.4 Asketchofthealgorithm

2.5 Identical Relations . .

2.6 EXPression TreeS. v v i i it e e e e e e e e e e e

2.7 Aword about the implementation.

2.8 The input format of the

standalone.

The Functions of the Package

3.1 Nilpotent Quotients of Finitely Presented Groups.
3.1.1 NilpotentQuotient e
3.1.2 NilpotentEngelQuotient.
3.1.3 NgEpimorphismNilpotentQuotient.
3.1.4 LowerCentralFactors

3.2 EXpressionTrees. e

3.2.1 EXPressionTrees. o i i e e e e
3.2.2 EvaluateExpTree.

3.3 Auxiliary Functions. .
3.3.1 NgReadOutput

3.3.2 NgStringFpGroup e e e e
3.3.3 NQStringEXpTrees. o o 0
3.3.4 NgElementaryDivisSors.

3.4 Global Variables

3.4.1 NgRuntime. .

3.4.2 NgDefaultOptions
3.4.3 NgGlobalVvariables.

3.5 DiagnosticOutput

4 Examples
4.1 Right Engel elements

5 Installation of the Package

11
11
11
13
14
15
16
16
16
17
17
17
18
18
19
19
19
19
20

21
21

23

Chapter 1

Introduction

This package provides an interface betweaP 4 and the Australian National University Nilpotent
Quotient Program (ANU NQ). The ANU NQ was implemented as part of the author’'s work towards
his PhD at the Australian National University, hence the name of the program. The program takes
as input a finite presentation of a group and successively computes factor groups modulo the terms
of the lower central series of the group. These factor groups are computed in terms of polycyclic
presentations.

The ANU NQ is implemented in the programming language C. The implementation has been
developed in a Unix environment and Unix is currently the only operating system supported. It runs
on a number of different Unix versions, e.g. Solaris and Linux.

For integer matrix computations it relies on the GNU MPNUOZ package and requires this
package to be installed on your system.

This package relies on the functionality for polycyclic groups provided bysie packagepoly-
cyclic [ENOZ and requires the packagelycyclic to be installed as @AP package on your computer
system.

Comments, bug reports and suggestions are very welcome.

This manual contains references to parts of @ Reference Manual which are typeset in a
slightly idiosyncratic way. The following example shows how such references are printed: 'For further
information on creating a free group seeeGroup (Reference: FreeGroup.” The text in bold face
refers to theGAP Reference Manual.

Each item in the list of references at the end of this manual is followed by a list of numbers that
specify the pages of the manual where the reference occurs.

Chapter 2

General remarks

In this chapter we define notation used throughout this manual and recollect basic facts about nilpotent
groups. We also provide some background information about the functionality implemented in this
package.

2.1 Commutators and the Lower Central Series

Thecommutatoiof two elements; andh, of a groupG is the elemenltqlhglhlhz and is denoted by
[h1, ho]. It satisfies the equatiamh, = hyh; [hy, hy] and can be interpreted as the correction term that
has to be introduced into a word if two elements of a group are interchanged. Iterated commutators
are written inleft-normed fashionfhy, hy, ..., hn_1,hy] = [[h1,hg, ..., hn_1], hy].

Thelower central serie®f G is defined inductively ag (G) = G,yi(G) = [yi—-1(G),G] fori > 2.
Each term in the lower central series is a normal (even fully invariant) subgro@p e factors of
the lower central series are abelian groups. On each factor the induced adBaisodonjugation is
the trivial action.

The factory(G)/yk+1(G) is generated by the elemerits hlyk:1(G), whereg runs through a
set of (representatives of) generators @&fty,(G) andh runs through a set of (representatives of)
generators foyk_1(G)/Yk(G). Therefore, each factor of the lower central series is finitely generated
if Gis finitely generated.

If one factor of the lower central series is finite, then all subsequent factors are finite. Then the
exponent of th&+ 1-th factor is a divisor of the exponent of tkeh factor of the lower central series.
In particular, the exponents of all factors of the lower central series are bounded by the exponent of
the first finite factor of the lower central series.

2.2 Nilpotent groups

A groupG is callednilpotentif there is a positive integer such that al(c+ 1)-fold commutators are

trivial in G. The smallest integer with this property is called thigpotency classf G. In terms of the

lower central series a grop# 1 has nilpotency clagsif and only if y¢(G) # 1 andy.1(G) = 1.
Examples of nilpotent groups are finipegroups, the group of unitriangular matrices over a ring

with one and the factor groups of a free group modulo the terms of its lower central series.
Finiteness of a nilpotent group can be decided by the group’s commutator factor group. A nilpotent

group is finite if and only if its commutator factor group is finite. A group whose commutator factor

group is finite can only have finite nilpotent quotient groups.

5

NQ 6

By refining the lower central series of a finitely generated nilpotent group one can obtain a
(sub)normal serie®&; > G, > ... > Gy.1 = 1 with cyclic (central) factors. Therefore, every finitely
generated nilpotent group jmlycyclic Such gpolycyclic seriegives rise to a polycyclic generating
sequence by choosing a generaofor each cyclic factoG;/G;1. Let| be the set of indices such
that G;/Gi1 is finite. A simple induction argument shows that every element of the group can be
written uniquely as aormal word @1 ...ad with integerse and 0< g <m fori €.

2.3 Nilpotent presentations

From a polycyclic generating sequence one can obtgiolygcyclic presentatioffior the group. The
following set of power and commutator relations is a defining set of relations.pdiver relations
expressaim in terms of the generatogs, 1, . ..,a, whenevelG; /G;, is finite with ordemrm;. Thecom-
mutator relationsare obtained by expressinfgj, ;] for j > i as a word in the generatoas, 1, ..., an.
If the polycyclic series is obtained from refining the lower central series, [dyea] is even a word
inaj;1,...,an. Inthis case we obtain a nilpotent presentation.

To be more precise, @ilpotent presentatiofis given on a finite number of generat@s .. ., an.
Let| be the set of indices such that/G; 1 is finite. Letm be the order 06;/G; 1 fori € 1. Then a
nilpotent presentation has the form

(@...,an|a"™ = wi(ait1,...,an) fori e l; [aj,a] = Wij(@j+1,...,a) for 1 <i < j <n)

Here,wij (a,...,an) denotes a group word in the generatags . . , an.

In a group given by a polycyclic presentation each element in the group can be writtanrass
word a‘il ...ahwithg € Zand 0< e < m fori €l. A procedure calledollectioncan be used to
convert an arbitrary word in the generators into an equivalent normal word. In general, the resulting
normal word need not be unique. The result of collecting a word may depend on the steps chosen
during the collection procedure. A polycyclic presentation with the property that two different normal
words are never equivalent is callednsistent A polycyclic presentation derived from a polycyclic
series as above is consistent. The following example shows an inconsistent polycyclic presentation

(a,b| a? b? = b?)

asb = baa= ab’a = a?b* = b* which impliesb® = 1. Here we have the equivalent normal wobds

and the empty word. It can be proved that consistency can be checked by collecting a finite number
of words in the given generating set in two essentially different ways and checking if the resulting
normal forms are the same in both cases. See Chapter 9 of the oo®] for an introduction to
polycyclic groups and polycyclic presentations.

For computations in a polycyclic group one chooses a consistent polycyclic presentation as it
offers a simple solution to the word problem: Equality between two words is decided by collecting
both words to their respective normal forms and comparing the normal forms. Nilpotent groups and
nilpotent presentations are special cases of polycyclic groups and polycyclic presentations. Nilpotent
presentations allow specially efficient collection methods. The padkageyclic provides algorithms
to compute with polycyclic groups given by a polycyclic presentation.

However, inconsistent nilpotent presentations arise naturally in the nilpotent quotient algorithm.
There is an algorithm based on the test words for consistency mentioned above to modify the arising
inconsistent presentations suitably to obtain a consistent one for the same group.

NQ 7

2.4 A sketch of the algorithm

The input for the ANU NQ in its simplest form is a finite presentatiojR) for a groupG. The

first step of the algorithm determines a nilpotent presentation for the commutator quot&nt lois

is a presentation of the class-1 quotient@f Call its generatorsy,...,aq4. It also determines a
homomorphism of5 onto the commutator quotient and describes it by specifying the image of each
generator irX as a word in the;.

For the general step assume that the algorithm has computed a nilpotent presentation for the class-
¢ quotient of G and thatay,...,aq are the generators introduced in the first step of the algorithm.
Furthermore, there is a map from X into the clasgiotient describing the epimorphism fra&onto
G/Ye+1(G).

Let by,..bx be the generators from the last step of the algorithm, the computation of
Ye(G)/Ye+1(G). This means thabs,...bx generatey:(G)/yc+1(G). Then the commutatorh;, ;]
generatge.1(G)/Ye+2(G). The algorithm introduces new, central generaggraéto the presentation,
adds the relationfbj, &) = ¢;; and modifies the existing relations by appending suitable words in the
Gij, calledtails, to the right hand sides of the power and commutator relations. The resulting pre-
sentation is a nilpotent presentation for thippotent coverf G/y;,1(G). The nilpotent cover is the
largest central extension @/y..1(G) generated byl elements. It is is uniquely determined up to
isomorphism.

The resulting presentation of the nilpotent cover is in general inconsistent. Consistency is achieved
by running the consistency test. This results in relations among the genexatehsch can be used
to eliminate some of those generators or introduce power relations. After this has been done we have
a consistent nilpotent presentation for the nilpotent covés % 1(G).

Furthermore, the nilpotent cover need not satisfy the relatiol® oh other words, the epimor-
phism fromG ontoG/y.+1(G) cannot be lifted to an epimorphism onto the nilpotent cover. Applying
the epimorphism to each relator@fand collecting the resulting words of the nilpotent cover yields a
set of words in the;;. This gives further relations between thewhich leads to further eliminations
or modifications of the power relations for thg.

After this, the inductive step of the ANU NQ is complete and a consistent nilpotent presentation
for G/y.+2(G) is obtained together with an epimorphism fr@wnto the clasge+ 1) quotient.

Chapter 11 of the bookJim94 discusses a nilpotent quotient algorithm. A description of the
implementation in the ANU NQ is contained iNic96]

2.5 Identical Relations

Let w be a word in free generators,...,x,. A group G satisfies the relatiow = 1 identically if
each map fronxy, ..., x, into G mapsw to the identity element db. We also say thab satisfies the
identical relation w= 1 or satisfies théaw w= 1. In slight abuse of notation, we call the elements
X1,...,X%n identicalgenerators.

Common examples of identical relations are: A group of nilpotency class atmsagisfies the
law [x1,...,X+1] = 1. A group that satisfies the laji,y, ...,y] = 1 wherey occursn-times, is called
ann-Engel group. A group that satisfies the lafv= 1 is a group of exponert

To describe finitely presented groups that satisfy one or more laws, we extend a common nota-
tion for finitely presented groups by specifying the identical generators as part of the generator list,
separated from the group generators by a semicolon: For example

(a,b,c;x, VX, [X,Y,Y,Y])

NQ 8

is a group on 3 generatogsb, ¢ of exponent 5 satisfying the 3rd Engel law. The presentation above
is equivalent to a presentation on 3 generators with an infinite set of relators, where the set of relators
consists of all fifth powers of words in the generators and all commutptoty, y] wherex andy run
through all words in the generatad, c. The standalone programme accepts the notation introduced
above as a description of its input. ®AP 4 finitely presented groups are specified in a different way,
seeNilpotentQuotient (3.1.]) for a description.

This notation can also be used in words that mix group and identical generators as in the following
example:

(a,b,c;x|[x,c], [a x,X,X])

The first relator specifies a law which says thabmmutes with all elements of the group. The second
turnsainto a third right Engel element.

An elementa is calleda right n-th Engel elementr a right n-Engel elemenif it satisfies the
commutator lawja, x,...,x] = 1 where the identical generatgroccursn-times. Likewise, an ele-
mentb is called arleft n-th Engel elemerdr left n-Engel elemerit it satisfies the commutator law
[x,b,b,...b] = 1.

Let G be a nilpotent group. The@ satisfies a given law if the law is satisfied by a certain finite set
of instances given by Higman’s Lemma, sekg59]. The ANU NQ uses Higman’s Lemma to obtain
a finite presentation for groups that satisfy one or several identical relations.

2.6 Expression Trees

Expressions involving commutators play an important role in the context of nilpotent groups. Ex-
panding an iterated commutator produces a complicated and long expression. For example,

x,y.Z =y x tyxz x ty xyz

Evaluating a commutatda, b] is done efficiently by computing the equatitiva) ~tab. Therefore, for
each commutator we need to perform two multiplications and one inversion. Evaliatirg) needs
four multiplications and two inversions. Evaluation of an iterated commutator mvdbmponents
takes & — 1 multiplications andah— 1 inversions. The expression on the right hand side above needs 9
multiplications and 5 inversions which is clearly much more expensive than evaluating the commutator
directly.

Assuming that no cancellations occur, expanding an iterated commutator with n components pro-
duces a word with1 — 2"~1 _ 2 factors half of which are inverses. A similar effect occurs whenever
a compact expression is expanded into a word in generators and inverses, for ebednfple

Therefore, itis important not to expand expressions into a word in generators and inverses. For this
purpose we provide a mechanism which we call lesqgression treesAn expression tree preserves
the structure of a given expression. It is a (binary) tree in which each node is assigned an operation
and whose leaves are generators of a free group or integers. For example, the exjiegsian
is stored as a tree whose top node is a commutator node. The right subtree is just a generator node
(corresponding t@). The left subtree is a power node whose subtrees are a product node on the left
and an integer node on the right. An expression tree can involve products, powers, conjugates and
commutators. However, the list of available operations can be extended.

Evaluation of an expression tree is done recursively and requires as many operations as there
are nodes in the tree. An expression tree can be evaluated in a specific group by the function
EvaluateExpTree (3.2.2.

NQ 9

A presentation specified by expression trees is a record with the comparents-ators and
.relations. See sectiof.2for a description of the functions that produce and manipulate expression
trees.

Example
gap> RequirePackage("ng");
true
gap> gens := ExpressionTrees(2);
[x1, x2]

gap> rl := LeftNormedComm([gens[l],gens[2],gens[2]]);
Comm(x1, x2, X2)

gap> r2 := LeftNormedComm([gens[l],gens[2],gens[2],gens[1]]);
Comm(x1, x2, x2, x1)
gap> pres := rec(generators := gens, relations := [rl,r2]);
rec(generators := [x1, x2],

relations := [Comm(x1, x2, x2), Comm(x1, x2, x2, x1)])

2.7 A word about the implementation

The ANU NQ is written in C, but not in ANSI C. | hope to make one of the next versions ANSI
compliable. However, it uses a fairly restricted subset of the language so that it should be easy to
compile it in new environments. The code is 64-bit clean. If you have difficulties with porting it to a
new environment, let me know and I'll be happy to assist if time permits.

The program has two collectors: a simple collector from the left as describédindg] and a
combinatorial from the left collector as described WiLP0]. The combinatorial collector is always
faster than the simple collector, therefore, it is the collector used by this package by default. This can
be changed by modifying the global variablgbe faultOptions (3.4.2.

In a polycyclic group with generators that do not have power relations, exponents may become
arbitrarily large. Experience shows that this happens rarely in the computations done by the ANU NQ.
Exponents are represented by 32-bit integers. The collectors perform an overflow check and abort the
computation if an overflow occurred. In a GNU environment the program can be compiled using the
‘long long’ 64-bit integer type. For this uncomment the relevant line in src/Makefile and recompile
the program.

As part of the step that enforces consistency and the relations of the group, the ANU NQ performs
computations with integer matrices and converts them to Hermite Normal Form. The algorithm used
here is a variation of the Kanan-Bachem algorithm based on the GNU multiple precision package
GNU MP [GNUO0Z. Experience shows that the integer matrices are usually fairly sparse and Kanan-
Bachem seems to be sufficient in this context. However, the implementation might benefit from a more
efficient strategy for computing Hermite Normal Forms. This is a topic for further investigations.

As the program does not compute the Smith Normal Form for each factor of the lower central
series but the Hermite Normal Form, it does not necessarily obtain a minimal generating set for each
factor of the lower central series. The following is a simple example of this behaviour. We take the
presentation

(%Y =y)
The group is clearly isomorphic to the additive group of the integers. Applying the ANU NQ to this
presentation gives the following nilpotent presentation:

(A,B|A? = B, [B,A))

NQ 10

A nilpotent presentation on a minimal generating set would be the presentation of the free group on
one generator:

(Al

2.8 The input format of the standalone

The input format for finite presentations resembles the way many people write down a presentation
on paper. Here are some examples of presentations that the ANU NQ accepts:

<a, b | > # free group of rank 2
<a, b, c; x, v |

[a,b,c], # a left normed commutator
[(b,c,c,c]”6, # another one raised to a power
a"2 = ¢c"-3*a"2*c"3, # a relation

a” (b*c) = a, # a conjugate relation

(a*[b, (a*c)]) "6, # something that looks complicated
(X, ¥, Y, Y, Y]y # an identical relation
[c,x,%x,%X,X,X] # ¢ is a fifth right Engel element

>

A presentation starts with<’ followed by a list of generators separated by commas. Generator names
are strings that contain only upper and lower case letters, digits, dots and underscores and that do not
start with a digit. The list of generator names is separated from the list of relators/relations by the
symbol . The list of generators can be followed by a list of identical generators separated by a
semicolon. Relators and relations are separated by commas and can be mixed arbitrarily. Parentheses
can be used in order to group subexpressions together. Square brackets can be used in order to form left
normed commutators. The symbols ™" and " can be used to form products and powers, respectively.
The presentation finishes with the symbpl” A comment starts with the symbol '# and finishes
at the end of the line. The file src/presentation.c contains a complete grammar for the presentations
accepted by the ANU NQ.

Typically, the input for the standalone is put into a file by using a standard text editor. The file
can be passed as an argument to the funatidrpotentQuotient (3.1.7). It is also possible to
put a presentation in the standalone’s input format into a string and use the string as argument for
NilpotentQuotient (3.1.1).

Chapter 3

The Functions of the Package

3.1 Nilpotent Quotients of Finitely Presented Groups

3.1.1 NilpotentQuotient

Q NilpotentQuotient ([output-file,] fp-group[, id-gens][,][c]) (function)
{Q NilpotentQuotient ([output-file,] input-file[, c]) (function)

The parametefp—group is either a finitely presented group or a record specifying a presentation
by expression trees (see sectihf). The parameternput-file is a string specifying the name of a
file containing a finite presentation in the input format (cf. sec8d) of the ANU NQ. Such a file
can be prepared by a text editor or with the help of the funatig#t ringFpGroup (3.3.2.

Let G be the group defined byp-group or the group defined innput-file. The function
computes a nilpotent presentation 8fy..1(G) if the optional parameter is specified. Ifc is not
given, then the function attempts to compute the largest nilpotent quoti€éhaaofl it will terminate
only if G has a largest nilpotent quotient. See secH8difor a possibility to follow the progress of the
computation.

The optional argumerniid-gens is a list of generators of the free group underlying the finitely pre-
sented groufip-group. The generators in this list are treated as identical generators. Consequently,
all relations of thefp-group involving these generators are treated as identical relations for these
generators.

In addition to the arguments explained above, the function accepts the following options as shown
in the first example below:

e group This option can be used instead of the paramgteroup.

e input_string This option can be used to specify a finitely presented group by a string in the
input format of the standalone program.

e input_file This option specifies a file with input for the standalone program.

e output_file This option specifies a file for the output of the standalone.

e idgens This options specifies a list of identical generators.

e class This option specifies the nilpotency class up to which the nilpotent quotient will be

computed.

11

NQ 12

The following example computes the class-5 quotient of the free group on two generators.
Example

gap> F := FreeGroup(2);

<free group on the generators [f1, f2]>

gap> ## Equivalent to: NilpotentQuotient(: group := F, class := 5);
gap> ## NilpotentQuotient(F : class := 5);

gap> H := NilpotentQuotient(F, 5);

Pcp-group with orders [O, 0, 0, O, O, O, O, O, 0O, 0O, O, O, O, O]
gap> lcs := LowerCentralSeries(H);;

gap> for i in [1..5] do Print(lcs[i] / lecs[i+l], "\n"); od;
Pcp-group with orders [0, 0]

Pcp-group with orders [0]

Pcp-group with orders [0, 0]

Pcp-group with orders [0, 0, 0]
Pcp-group with orders [0, 0, 0, 0, 0, 0]

Note that the lower central series in the example is part of the data returned by the standalone program.
Therefore, the execution of the function LowerCentralSeries takes no time.

The next example computes the class-4 quotient of the infinite dihedral group. The group is
soluble but not nilpotent. The first factor of its lower central series is a Klein four group and all the
other factors are cyclic or order 2.

Example

gap> F := FreeGroup(2);

<free group on the generators [f1, f2 1>
gap> G := F / [F.172, F.2°2];

<fp group on the generators [fl, f2]>
gap> H := NilpotentQuotient(G, 4);
Pcp-group with orders [2, 2, 2, 2, 2]
gap> lcs := LowerCentralSeries(H);;
gap> for i in [1..Length(lcs)-1] do

> Print (AbelianInvariants(lcs([i] / lcs[i+1]), "\n");
> od;

[2, 2]

In the following example identical generators are used in order to express the fact that the group is
nilpotent of class 3. A group is nilpotent of class 3 if it satisfies the identical relatioxp, X3, x4 = 1

(cf. Section2.5). The result is the free nilpotent group of class 3 on two generators.
Example

gap> F := FreeGroup("a", "b", "w", "x", "y", "z");
<free group on the generators [a, b, w, x, y, z 1>

gap> G := F / [LeftNormedComm([F.3,F.4,F.5,F.6]) 1;

<fp group of size infinity on the generators [a, b, w, x, y, z]>

gap> ## The following is equivalent to:

NQ 13
gap> ## NilpotentQuotient(G : idgens := [F.3,F.4,F.5,F.6]);
gap> H := NilpotentQuotient(G, [F.3,F.4,F.5,F.6]);
Pcp-group with orders [0, 0, 0, 0, 0]
gap> NilpotencyClassOfGroup (H);
3
gap> LowerCentralSeries (H);
[Pcp-group with orders [0, 0, 0, 0, 0], Pcp-group with orders [0, 0, 0 1,
Pcp-group with orders [0, 0], Pcp-group with orders []]

The following example uses expression trees in order to specify the third Engel law for the free group

on 3 generators.

Example
gap> et := ExpressionTrees(5);
[x1, x2, x3, x4, x5]
gap> comm := LeftNormedComm([et[1l], et[2], et[2], et[2]]);
Comm(x1, x2, x2, X2)
gap> G := rec(generators := et, relations := [comm]);
rec(generators := [x1, x2, x3, x4, x5],
relations := [Comm(x1, x2, x2, X2) 1)
gap> H := NilpotentQuotient(G : idgens := [et[l],et[2]]);
Pcp-group with orders [O, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, 2, 4, 2, 2,
0, 6, 6, 0, 0, 2, 10, 10, 10]
gap> TorsionSubgroup(H);
Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 10, 10, 10]
gap> lcs := LowerCentralSeries(H);;
gap> NilpotencyClassOfGroup(H);
5
gap> for i in [1..5] do Print(lcs[i] / lecs[i+l], "\n"); od;
Pcp-group with orders [0, 0, 0]
Pcp-group with orders [0, 0, 0]
Pcp-group with orders [O, 0, O, 0, 0, 0, 0, 0]
Pcp-group with orders [2, 4, 2, 2, 0, 6, 6, 0, 0, 2]
Pcp-group with orders [10, 10, 10]
gap> for i in [1..5] do Print(AbelianInvariants(lcs[i]/lcs[i+1]), "\n"); od;
[0, 0, 0]
[0, 0, 0]
(o0 0, 0, 0, 0, 0, 0, 0]
[2, 2, 2, 2,2, 2, 2, 0,0, 0]
[10, 10, 10]

The example above also shows that the relative orders of an abelian polycyclic group need not be the
abelian invariants (elementary divisors) of the group. Each zero corresponds to a generator of infinite

order. The number of zeroes is always correct.

3.1.2 NilpotentEngelQuotient

{Q NilpotentEngelQuotient ([output-file,] fp-group, n[, id-gens][,][c])
{Q NilpotentEngelQuotient ([output-file,] input-file, n[, c])

(function)

(function)

NQ 14

This function is a special version @f 1potentQuotient (3.1.1) which enforces tha-th Engel
identity on the nilpotent quotients of the group specifiedtbygroup or by input-file. It accepts
the same options a& 1potentQuotient.

The Engel condition can also be enforced by using identical generators and the Engel law and
NilpotentQuotient (3.1.1). See the examples there.

The following example computes the relatively free fifth Engel group on two generators, deter-
mines its (normal) torsion subgroup and computes the corresponding quotient group. The quotient
modulo the torsion subgroup is torsion-free. Therefore, there is a nilpotent presentation without power
relations. The example computes a nilpotent presentation for the torsion free factor group through the
upper central series. The factors of the upper central series in a torsion free group are torsion free. In
this way one obtains a set of generators of infinite order and the resulting nilpotent presentation has
no power relations.

Example

gap> G := NilpotentEngelQuotient (FreeGroup(2), 5);

Pcp-group with orders [O, 0, O, O, O, O, O, O, O, O, O, O, O, O, 3, 0, 10,
0, 0, 30, 0, 3, 3, 10, 2, 0, 6, 0, 0, 30, 2, 0, 9, 3, 5, 2, 6, 2, 10, 5, 5,
2, 0, 3, 3, 3, 3, 3, 5, 5, 3, 31

gap> NilpotencyClassOfGroup (G);

9

gap> T := TorsionSubgroup(G);

Pcp-group with orders [3, 3, 2, 2, 3, 3, 2, 9, 3, 5, 2, 3, 2, 10, 5, 2, 3,
3, 3, 3, 3, 5, 5, 3, 3]

gap> IsAbelian(T);

true

gap> AbelianInvariants(T);

[3 3,3 3,3,3, 3, 3, 30, 30, 30, 180, 180]

gap> H := G / T;

Pcp-group with orders [O, 0, O, O, O, O, O, O, O, O, O, O, O, O, 3, 0, 10,
0, 0, 30, 0, 5,0, 2, 0, 0, 10, 0, 2, 5, 0]

gap> H := PcpGroupBySeries(UpperCentralSeries(H), "snf");

Pcp-group with orders [0, 0, 0, 0, 0, 0, 0, 0, 0O, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0]

gap> ucs := UpperCentralSeries(H);;

gap> for i in [1..NilpotencyClassOfGroup (H)] do

> Print (ucs[i]/ucs[i+1], "\n");

> od;

Pcp-group with orders

Pcp-group with orders

Pcp-group with orders

Pcp-group with orders

Pcp-group with orders

Pcp-group with orders

Pcp-group with orders

Pcp-group with orders

~
o

~ ~ ~

O O O O O O O O
~

~

~
O O O O o O

3.1.3 NqgEpimorphismNilpotentQuotient

O NgEpimorphismNilpotentQuotient ([output-file,] fp-group[, id-gens][,][c])
(function)

NQ 15

This function computes an epimorphism from the grdBpgiven by the finite presentation
fp-group onto G/ye+1(G). If c is not given, then the largest nilpotent quotient®is computed
and an epimorphism fror® onto the largest nilpotent quotient &. If G does not have a largest
nilpotent quotient, the function will not terminatedfs not given.

The optional argumeritd-gens is a list of generators of the free group underlying the finitely pre-
sented groufp-group. The generators in this list are treated as identical generators. Consequently,
all relations of thefp-group involving these generators are treated as identical relations for these
generators.

If identical generators are specified, then the epimorphism returned maps the group generated by
the ‘non-identical’ generators onto the nilpotent factor group. See the last example below.

The function understands the same options as the fungtiopotentQuotient (3.1.1).
Example

gap> F := FreeGroup(3);

<free group on the generators [f1, £f2, £3]>

gap> phi := NgEpimorphismNilpotentQuotient(F, 5);

[f1, f2, £3 1 —> [g1, g2, g3]

gap> Image(phi, LeftNormedComm([F.3, F.2, F.1]));
gl2

gap> F := FreeGroup("a", "b");

<free group on the generators [a, b]>

gap> G :=F / [F.1"2, F.2"2 1;

<fp group on the generators [a, b 1>

gap> phi := NgEpimorphismNilpotentQuotient(G, 4);
la, b1l —>1[9gl, 92]

gap> Image(phi, Comm(G.1,G.2));
g3*g4d

gap> F := FreeGroup("a", "b", "u",
<free group on the generators [a, b, u, v, x]>

gap> a :=F.1;; b :=F.2;; u :=F.3;; v :=F.4;; x :=F.5;;

gap> G := F / [x°5, LeftNormedComm([u,v,v,v]) 1;

<fp group of size infinity on the generators [a, b, u, v, x]>

gap> phi := NgEpimorphismNilpotentQuotient(G : idgens:=[u,v,x], class:=5);
[a bl -—>1[gl, g2]

gap> U := Source (phi);

Group([a, b])

gap> ImageElm(phi, LeftNormedComm([U.1*U.2, U.2°-1,U0.2°-1,U0.2°-1,1));

id

"V", "X");

Note that the last epimorphism is a map from the group generateaddnd b onto the nilpotent
quotient. The identical generators are used only to formulate the identical relator. They are not
generators of the group. Also note that the left-normed commutator above is mapped to the identity
asG satisfies the specified identical law.

3.1.4 LowerCentralFactors

Q LowerCentralFactors(...) (function)

NQ 16

This function accepts the same arguments and optionslastentQuotient (3.1.1) and returns
a list containing the abelian invariants of the central factors in the lower central series of the specified
group.
Example
gap> LowerCentralFactors(FreeGroup(2), 6);

tcto, 03, 013, 00,013, 000071, [0, 0 0,0, 001,
(o, 0, 0,0, 0,0, 0,0, 07]

3.2 Expression Trees

3.2.1 ExpressionTrees

{Q ExpressionTrees(m[, prefix]) (function)
Q ExpressionTrees(strl, str2, str3, ...) (function)

The argumenth must be a positive integer. The function returns a list witbxpression tree
symbols named x1, x2,... The optional parameterfix must be a string and is used instead af
present.

Alternatively, the function can be executed with a list of strings1, str2, It returns a list of
symbols with these strings as hames.

The following operations are defined for expression trees: multiplication, inversion, exponentia-
tion, forming commutators, forming conjugates.
Example

gap> t := ExpressionTrees(3);

[x1, x2, x3]

gap> tree := Comm(t[1], t[2])"3/LeftNormedComm([t[1],t[2],t[3],t[1]1]);
Comm(x1, x2)"3/Comm(x1, x2, x3, x1)

gap> t := ExpressionTrees("a", "b", "x");

[a, b, x]

gap> tree := Comm(t[1], t[2])"3/LeftNormedComm([t[1],t[2],t[3],t[1]]);
Comm(a, b)"3/Comm(a, b, x, a)

3.2.2 EvaluateExpTree

{Q EvaluateExpTree(tree, symbols, values) (function)

The argumentree is an expression tree followed by the list of those symbglsools from
which the expression tree is built up. The argumeiitues is a list containing a constant for each
symbol. The function substitutes each value for the corresponding symbol and computes the resulting

value fortree.
Example

gap> F := FreeGroup(3);

<free group on the generators [fl1, £2, £f3]>

gap> t := ExpressionTrees("a", "b", "x");

[a, b, x]

gap> tree := Comm(t[1], t[2])"3/LeftNormedComm([t[1],t([2],t[3],t[1]1]);
Comm(a, b)"3/Comm(a, b, x, a)

NQ 17

gap> EvaluateExpTree(tree, t, GeneratorsOfGroup(F));
f17-1*f27 -1 f1*f2%f1 7 1% £2° -1 f1*£2*f1 " -1*£27-1*f1*£2*f1"-1*£3"-1*£2°-1*f1"
RS VS R ACER R RS /AN Rl B R D/ R N R RN Rl DV A R C R R AN Rl DV R R /R i

3.3 Auxiliary Functions

3.3.1 NgReadOutput

Q NgReadOutput (stream) (function)

The only argumengtream is an output stream of the ANU NQ. The function reads the stream
and returns a record that has a component for each global variable used in the output of the ANU NQ,
seeNgGlobalVariables (3.4.3.

3.3.2 NqStringFpGroup

{Q NgStringFpGroup (fp-group[, idgens]) (function)

The function takes a finitely presented graigp-group and returns a string in the input format of
the ANU NQ. If the listidgens is present, then it must contain generators of the free group under-
lying the finitely presented grougreeGroupOfFpGroup (Reference: FreeGroupOfFpGroup. The
generators indgens are treated as identical generators.

Example

gap> F := FreeGroup(2);

<free group on the generators [fl, f2]>
gap> G :=F / [F.1"2, F.272, (F.1*F.2)"4];
<fp group on the generators [fl, f2]>
gap> NgStringFpGroup(G);

"< x1, %2 |\n x1°2,\n x2°2,\n x1*x2*x1*x2*x1*x2*x1*x2\n>\n"
gap> Print(last);
< x1, x2 |

x1°2,

x2"2,

X1*x2*x1*x2*x1*x2*x1*%X2
>
gap> PrintTo("dihedral", last);
gap> ## The following is equivalent to:
gap> ## NilpotentQuotient (: input_file := "dihedral");
gap> NilpotentQuotient ("dihedral");
Pcp-group with orders [2, 2, 2]
gap> Exec("rm dihedral");
gap> F := FreeGroup (3);

<free group on the generators [fl, f2, £f3]>

gap> H := F / [LeftNormedComm([F.2,F.1,F.1]),

> LeftNormedComm([F.2,F.1,F.2]), F.3°7 1;
<fp group on the generators [f1, f2, £3]>

gap> str := NgStringFpGroup(H, [F.3]);

NQ 18

"< x1, x2; %3 |\n x1"-1*x2"-1*x1*x2*x1"-1*x2"-1*x1"-1*x2*x1"2,\n x17-1*x\
2°-1*x1*x2"-1*x1"-1*x2*x1*x2,\n x377\n>\n"

gap> NilpotentQuotient (: input_string := str);

Pcp-group with orders [7, 7, 7]

3.3.3 NqgStringexpTrees

O NgStringExpTrees (fp-group[, idgens]) (function)

The function takes a finitely presented grofip-group given in terms of expression trees and
returns a string in the input format of the ANU NQ. If the listgens is present, then it must contain
a sublist of the generators of the presentation. The generatdrégims are treated as identical

generators.
Example

gap> x := ExpressionTrees(2);
[x1, x2]
gap> rels := [x[1]"2, x[2]"2, (x[1]1*x[2])"5];
[X172, %272, (x1*x2)"5]
gap> NgStringExpTrees(rec(generators := x, relations := rels));
"< x1, %2 |\n x1°2,\n x2°2,\n (x1*x2) "5\n>\n"
gap> Print (last);
< x1, x2 |
x1°2,
x2"2,
(x1*x2) "5
>
gap> X := ExpressionTrees(3);
[x1, x2, x3]
gap> rels := [LeftNormedComm([x[2],x[1],x[1]]),
> LeftNormedComm ([x[2],x[1],x[2]]), x[3]1°7 1;
[Comm(x2, x1, x1), Comm(x2, x1, x2), x3°7]
gap> NgStringExpTrees(rec(generators := x, relations := rels));
"< x1, %2, %3 |\n [%2, x1, x1 1,\n [x2, x1, x2 1,\n x377\n>\n"
gap> Print(last);
< x1, x2, x3 |
[%2, x1, x1 1,
[x2, x1, x2 1,
x377

3.3.4 NqgElementaryDivisors

O NgElementaryDivisors(int-mat) (function)

The functionElementaryDivisorsMat (Reference: ElementaryDivisorsMaj only returns the
non-zero elementary divisors of an integer matrix. This function computes the elementary divisors

NQ 19

of int-mat and adds the appropriate number of zeroes in order to make it easier to recognize the
isomorphism type of the abelian group presented by the integer matrix. At the same time ones are
stripped from the list of elementary divisors.

3.4 Global Variables

3.4.1 NgRuntime

¢ NgRuntime (global variable)

This variable contains the number of milliseconds of runtime of the last call of ANU NQ.
Example
gap> NilpotentEngelQuotient (FreeGroup(2), 5);

Pcp-group with orders [O, 0, O, O, O, O, O, 0, O, O, O, O, O, O, 3, 0, 10,
o, 0, 30, 0, 3, 3, 10, 2, 0, 6, 0, 0, 30, 2, 0, 9, 3, 5, 2, 6, 2, 10, 5, 5,
2, 0, 3, 3,3, 3,3,5 5,3, 3]

gap> NgRuntime;

18200

3.4.2 NqgDefaultOptions

{ NgDefaultOptions (global variable)

This variable contains a list of strings which are the standard command line options passed to the
ANU NQ in each call. Modifying this variable can be used to pass additional options to the ANU NQ.

Example

gap> NgDefaultOptions;
["79"1 "7p", ",c“, llisll]

The option-g causes the ANU NQ to produce output@P-format. The option-p prevents the
ANU NQ from listing the pc-presentation of the nilpotent quotient at the end of the calculation. The
option - invokes the combinatorial collector. The optiea is effective only in conjunction with
options for computing with Engel identities and instructs the ANU NQ to use only semigroup words
in the generators as instances of an Engel law.

3.4.3 NqgGlobalVariables

Q NgGlobalVariables (global variable)

This variable contains a list of strings with the names of the global variables that are used in the
output stream of the ANU NQ. While the output stream is read, these global variables are assigned
new values. To avoid overwriting these variables in case they contain values, their contents is saved
before reading the output stream and restored afterwards.

NQ 20

3.5 Diagnostic Output

While the standalone program is running it can be asked to display progress information. This is done

by setting the info classnfoNQ to 1 via the functiorset InfoLevel (Reference: SetinfoLevel.
Example
gap> NilpotentQuotient (FreeGroup(2),5);
Pcp-group with orders [O, 0, 0, O, O, O, O, O, 0, O, O, O, O, O]
gap> SetInfolevel (InfoNQ, 1);

gap> NilpotentQuotient (FreeGroup(2),5);

#I Class 1: 2 generators with relative orders
#I Class 1 generators with relative orders:
#I Class 2 generators with relative orders:
#I Class 4: 3 generators with relative orders:
#I Class 5: 6 generators with relative orders:
Pcp-group with orders [0, O, O, 0, O, 0, O, O,
gap> SetInfolevel (InfoNQ, 0);

a1 w N
O O O O O O

Chapter 4

Examples

4.1 Right Engel elements

An old problem in the context of Engel elements is the question: Is a nigiigel element lefh-
Engel? It is known that the answer is no. For details about the history of the problerhs@4 [In

this paper the authors show that for- 4 there are nilpotent groups with rightEngel elements no
power of which is a lefb-Engel element. The insight was based on computations with the ANU NQ
which we reproduce here. We also show the case$5

Example
gap> RequirePackage("ng");
true
gap> ## SetInfolevel(InfoNQ, 1);
gap> ##
gap> ## setup calculation
gap> ##
gap> et := ExpressionTrees("a", "b", "x");
[a, b, x]
gap> a := et[1l];; b := et[2];; x := et[3];;
gap>
gap> ##
gap> ## define the group for n = 2,3,4,5
gap> ##
gap>
gap> rengel := LeftNormedComm([a,x,x]);
Comm(a, %, x)
gap> G := rec(generators := et, relations := [rengel]);
rec(generators := [a, b, x], relations := [Comm(a, x, x)])
gap> ## The following is equivalent to:
gap> ## NilpotentQuotient(: input_string := NgStringExpTrees(G, [x]))
gap> H := NilpotentQuotient(G, [x]);
Pcp-group with orders [0, 0, 0]
gap> LeftNormedComm([H.2,H.1,H.1]);
id
gap> LeftNormedComm([H.1,H.2,H.2]);
id

This shows that each right 2-Engel element in a finitely generated nilpotent group is a left 2-Engel
element. Note that the group above is the largest nilpotent group generated by two elements, one of

21

NQ 22

which is right 2-Engel. Every nilpotent group generated by an arbitrary element and a right 2-Engel
element is a homomorphic image of the gratip

Example
gap> rengel := LeftNormedComm([a,x,x,x]);
Comm(a, %X, X, X)
gap> G := rec(generators := et, relations := [rengel]);
rec(generators := [a, b, relations := [Comm(a, x, x, x)])

X 1,
gap> H := NilpotentQuotient(G, [x]);
Pcp-group with orders [O, 0, O, 0, 0, 4, 2, 2]
gap> LeftNormedComm([H.1,H.2,H.2,H.2]);

id

gap> h := LeftNormedComm([H.2,H.1,H.1,H.1]);
g6~ 2*g7*g8

gap> Order(h);

4

The elemenh has order 4. In a nilpotent group without 2-torsion a right 3-Engel element is left
3-Engel.

Example
gap> rengel := LeftNormedComm([a,x,X,%X,x]);
Comm(a, x, X, X, X)
gap> G := rec(generators := et, relations := [rengel]);
rec(generators := [a, b, x], relations := [Comm(a, X, X, X, x)])
gap> H := NilpotentQuotient(G, [x]);
Pcp-group with orders [O, O, 0, O, O, O, O, O, 2, 0, 12, O, 5, 10, 2, 0, 30,

5 2, 5, 5,5, 51
gap> LeftNormedComm([H.1,H.2,H.2,H.2,H.2]);
id
gap> h := LeftNormedComm([H.2,H.1,H.1,H.1,H.1]);
g9*gl072*%gl1”10*gl2°5*gl3"2*gl4"8*gl5*gl6”"6*gl7"10*gl8*g20"4*g21"4*g22"2*g23"2
gap> Order(h);
60

The previous calculation shows that in a nilpotent group withoBtZ2torsion a right 4-Engel element
is left 4-Engel.

Example
gap> rengel := LeftNormedComm([a,x,X,%X,x,X]);
Comm(a, X, X, X, X, X)
gap> G := rec(generators := et, relations := [rengel]);
rec(generators := [a, b, x], relations := [Comm(a, X, X, X, X, x) 1)

gap> H := NilpotentQuotient(G, [x], 9);

Pcp-group with orders [O, 0, O, O, O, O, O, O, O, O, O, O, O, O, 6, 0, 30,
6, 0, 30, 0, 3, 6, 0, 0, 10, 30, 0, O, O, 0, 30, 30, O, O, 3, 6, 5, 2, O,
2, 408, 2, o0, 0, 0, 10, 10, 30, 10, 0, 0O, O, 3, 3, 3, 2, 204, 6, 6, 0, 10,
10, 10, 2, 2, 2, 0, 300, 0, 0, 18]

gap> LeftNormedComm([H.1,H.2,H.2,H.2,H.2,H.2]);

id

gap> h := LeftNormedComm([H.2,H.1,H.1,H.1,H.1,H.1]);;

gap> Order(h);

infinity

Finally, we see that in a torsion-free group a right 5-Engel element need not be a left 5-Engel element.

Chapter 5

Installation of the Package

Installation of the package requires the GNU multiple precision library (GNU GIRUO0Z). If this
library is not available on your system, it has to be installed first. A copy of GNU MP can be obtained
via anonymous ftp from many file servers around the world, for example:. swox.com/gmp/.

Installation of the ANU NQ is done in two steps. First the configure script is run:
Installation

./configure

Among other things it will check whether it succeeds in locating the GNU MP library and the corre-

sponding include files. If configure reports no problems, the next step is to start the compilation:
Installation

make

If the configure script told you that it could not find the GNU MP include files or the GNU MP
libraries, you have to run make with additional parameters. For example, if you have installed GNU

MP yourself in your home directory, you would type something like the following
Installation
make GNU_MP_INC=/home/me/gmp-4.1.1 GNU_MP_LIB=/home/me/gmp-4.1.1/.1ibs

A compiled version of the program named ‘nq’ is then placed into the directorybwmrhplicated
name>'. The <complicated nante component encodes the operating system and the compiler used.
This allows you to compile NQ on several architectures sharing the same files system.

If there are any warnings or even fatal error messages during the compilation process, please send
a copy to the address at the end of this document together with information about your operating
system, the compiler you used and any changes you might have made to the source code. | will have
a look at your problems and try to fix them.

After the compilation is finished you can check if the ANU NQ is running properly on your
system. Simply type

Installation

make test

The file runs some computations and compares their output with the output files in the directory
‘examples’. If testNg reports any errors, please follow the instruction that testNq prints out.

The installation is completed by compiling the manual of the package. This is done from within
GAP.

23

NQ

Installation

24

gap> NgBuildManual () ;
Composing XML document
Parsing XML document
Checking XML structure
LaTeX version and calling latex and pdflatex:
writing LaTeX file, 3 x latex, bibtex and makeindex, 2 x pdflatex, dvips
Text version .
#I first run, collecting cross references, index, toc, bib and so on .
#I table of contents complete.
#I producing the index .
#I reading bibliography data files
#I writing bibliography .
#I second run through document
Writing manual.six file
And finally the HIML version .
#I first run, collecting cross references, index, toc, bib and so on .
#I table of contents complete.
#I producing the index .
#I reading bibliography data files
#I writing bibliography .
#I second run through document
gap> ?NilpotentQuotient
Help: several entries match this topic - type ?2 to get match [2]

[1] ANU NQ: NilpotentQuotient

[2] ANU NQ: NilpotentQuotient

[3] Reference: NilpotentQuotientOfFpLieAlgebra
gap~>

References

[ENO2]

[GNU02]
[Hig59]

[LGS90]

[Nic96]

[NN94]

[Sim94]

[VL90]

Bettina Eick and Werner Nickel. Polycyclic. http://www.mathematik.tu-
darmstadt.de/ nickel/polycyclic2002. 4

GNU MP. http://www.swox.com/gmp/, 20024, 9, 23

G. Higman. Some remarks on varieties of groupsart. J. Math. Oxforgd2(10):165-178,
1959. 8

C.R. Leedham-Green and L.H. Soicher. Collection from the left and other stratelyies.
Symbolic Comput9(5 & 6):665-675, 19909

Werner Nickel. Computing nilpotent quotients of finitely presented groupssdomet-
ric and Computational Perspectives on Infinite Groupslume 25 ofDimacs Series in
Discrete Mathematics and Theoretical Computer Sciepages 175-191, 1996/

M. F. Newman and Werner Nickel. Engel elements in groulds.Pure Appl. Algebra’,
96:39-45, 1994.21

C. C. Sims. Computation with Finitely Presented Group&€ambridge University Press,
1994. 6,7

M.R. Vaughan-Lee. Collection from the left. Symbolic Comput9:725-733, 19909

25

Index

class5 polycyclic, 6

commutatorb polycyclic generating sequendg,
commutator relationg polycyclic presentatior§
consistentp power relationp
EvaluateExpTree, 16 right Engel element§

expression tree$§,
ExpressionTrees, 16

identical generatoi]
identical relationy

law, 7

left Engel element3
left-normed commutatoh
lower central serie
LowerCentralFactors, 15

nilpotency classs

nilpotent,5

nilpotent presentatiorg
Nilpotent Quotient Packagé,l
NilpotentEngelQuotient, 13
NilpotentQuotient, 11
NgDefaultOptions, 19
NgElementaryDivisors, 18
NgEpimorphismNilpotentQuotient, 14
NgGlobalVariables, 19
NgReadOutput, 17
NqRuntime, 19
NgStringExpTrees, 18
NgStringFpGroup, 17

options,11
class,11
group,11
idgens,11
inputfile, 11
input.string,11
ouputfile, 11

26

