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Copyright

GUAVA is released under the GNU General Public License (GPL). This file is part ofGUAVA,
though as documentation it is released under the GNU Free Documentation License (see
http://www.gnu.org/licenses/licenses.html#FDL).
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GUAVA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
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General Public License for more details.

You should have received a copy of the GNU General Public License along withGUAVA; if not, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details, seehttp://www.fsf.org/licenses/gpl.html.

Acknowledgements

GUAVA was originally written by Jasper Cramwinckel, Erik Roijackers, and Reinald Baart in the early-to-mid
1990’s as a final project during their study of Mathematics at the Delft University of Technology, Department
of Pure Mathematics, under the direction of Professor Juriaan Simonis. This work was continued in Aachen,
at Lehrstuhl D fur Mathematik. In version 1.3, new functions were added by Eric Minkes, also from Delft
University of Technology.

JC, ER and RB would like to thank theGAP people at the RWTH Aachen for their support, A.E. Brouwer
for his advice and J. Simonis for his supervision.

TheGAP 4 version ofGUAVA (versions 1.4 and 1.5) was created by Lea Ruscio and (since 2001, starting
with version 1.6) is currently maintained by David Joyner, who (with the help of several students) has added
several new functions. For further details, see the CHANGES file in theGUAVA directory, also available at
http://cadigweb.ew.usna.edu/˜wdj/gap/GUAVA/CHANGES.guava.

This documentation was prepared with theGAPDoc package of Frank L̈ubeck and Max Neunḧoffer. The
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Chapter 1

Introduction

1.1 Introduction to the GUAVA package

This is the manual of theGAP packageGUAVA that provides implementations of some routines de-
signed for the construction and analysis of in the theory of error-correcting codes.

The functions can be divided into three subcategories:

• Construction of codes:GUAVA can construct unrestricted, linear and cyclic codes. Information
about the code, such as operations applicable to the code, is stored in a record-like data structure
called aGAP object.

• Manipulations of codes: Manipulation transforms one code into another, or constructs a new
code from two codes. The new code can profit from the data in the record of the old code(s), so
in these cases calculation time decreases.

• Computations of information about codes:GUAVA can calculate important parameters of codes
quickly. The results are stored in the codes’ object components.

Except for the automorphism group and isomorphism testing functions, which make use of J.S.
Leon’s programs (see [Leo91] and the documentation in the ’src’ subdirectory of the ’guava’ directory
for some details),GUAVA is written in theGAP language, and runs on any system supportingGAP4.3
and above. Several algorithms that need the speed were integrated in theGAP kernel.

Good general references for error-correcting codes and the technical terms in this manual are
MacWilliams and Sloane [MS83] Huffman and Pless [HP03].

1.2 Installing GUAVA

To installGUAVA (as aGAP 4 Package) unpack the archive file in a directory in the ‘pkg’ hierarchy
of your version ofGAP 4.

After unpackingGUAVA theGAP-only part ofGUAVA is installed. The parts ofGUAVA depending
on J. Leon’s backtrack programs package (for computing automorphism groups) are only available in
a UNIX environment, where you should proceed as follows: Go to the newly created ‘guava’ directory
and call‘./configure /gappath’ where/gappath is the path to theGAP home directory. So for
example, if you install the package in the main ‘pkg’ directory call

./configure ../..

9
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This will fetch the architecture type for whichGAP has been compiled last and create a ‘Makefile’.
Now call

make

to compile the binary and to install it in the appropriate place. (For a windows machine with CYGWIN
installed - seehttp://www.cygwin.com/ - instructions for compiling Leon’s binaries are likely to be
similar to those above. On a 64-bit SUSE linux computer, instead of the configure command above -
which will only compile the 32-bit binary - type

./configure ../.. --enable-libsuffix=64
make

to compile Leon’s program as a 64 bit native binary. This may also work for other 64-bit linux
distributions as well.)

This completes the installation ofGUAVA for a single architecture. If you use this installation
of GUAVA on different hardware platforms you will have to compile the binary for each platform
separately.

1.3 Loading GUAVA

After starting upGAP, theGUAVA package needs to be loaded. LoadGUAVA by typing at theGAP
prompt:

Example
gap> LoadPackage( "guava", "2.0", false );

If GUAVA isn’t already in memory, it is loaded and the author information is displayed. If you are a
frequent user ofGUAVA, you might consider putting this line in your ‘.gaprc’ file.

http://www.cygwin.com/


Chapter 2

Codewords

Let GF(q) denote a finite field withq (a prime power) elements. Acodeis a subsetC of some finite-
dimensional vector spaceV overGF(q). Thelengthof C is the dimension ofV. Usually,V = GF(q)n

and the length is the number of coordinate entries. WhenC is itself a vector space overGF(q) then it
is called alinear codeand thedimensionof C is its dimension as a vector space overGF(q).

In GUAVA, a ‘codeword’ is aGAP record, with one of its components being an element inV.
Likewise, a ‘code’ is aGAP record, with one of its components being a subset (or subspace with given
basis, ifC is linear) ofV.

Example
gap> C:=RandomLinearCode(20,10,GF(4));
a [20,10,?] randomly generated code over GF(4)
gap> c:=Random(C);
[ 1 a 0 0 0 1 1 aˆ2 0 0 a 1 1 1 a 1 1 a a 0 ]
gap> NamesOfComponents(C);
[ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",

"GeneratorMat", "name", "Basis", "NiceFreeLeftModule", "Dimension",
"Representative", "ZeroImmutable" ]

gap> NamesOfComponents(c);
[ "VectorCodeword", "WordLength", "treatAsPoly" ]
gap> c!.VectorCodeword;
[ immutable compressed vector length 20 over GF(4) ]
gap> Display(last);
[ Z(2ˆ2), Z(2ˆ2), Z(2ˆ2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2, 0*Z(2), Z(2ˆ2), Z(2ˆ2),

Z(2)ˆ0, Z(2ˆ2)ˆ2, 0*Z(2), 0*Z(2), Z(2ˆ2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2ˆ2)ˆ2,
Z(2)ˆ0, 0*Z(2) ]

gap> C!.Dimension;
10

Mathematically, a ‘codeword’ is an element of a codeC, but in GUAVA the Codeword and
VectorCodeword commands have implementations which do not check if the codeword belongs toC
(i.e., are independent of the code itself). They exist primarily to make it easier for the user to construct
a the associatedGAP record. Using these commands, one can enter into aGAP both a codewordc
(belonging toC) and a received wordr (not belonging toC) using the same command. The user can
input codewords in different formats (as strings, vectors, and polynomials), and output information is
formatted in a readable way.

A codewordc in a linear codeC arises in practice by an initial encoding of a ’block’ messagem,
adding enough redundancy to recoverm afterc is transmitted via a ’noisy’ communication medium.

11
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In GUAVA, for linear codes, the mapm 7−→ c is computed using the commandc:=m*C and recovering
m from c is obtained by the commandInformationWord(c,C). These commands are explained more
below.

Many operations are available on codewords themselves, although codewords also work together
with codes (see chapter3 on Codes).

The first section describes how codewords are constructed (seeCodeword (2.1.1) andIsCodeword
(2.1.3)). Sections2.2 and2.3 describe the arithmetic operations applicable to codewords. Section
2.4describe functions that convert codewords back to vectors or polynomials (seeVectorCodeword
(2.4.1) andPolyCodeword (2.4.2)). Section2.5 describe functions that change the way a codeword
is displayed (seeTreatAsVector (2.5.1) andTreatAsPoly (2.5.2)). Finally, Section2.6describes a
function to generate a null word (seeNullWord (2.6.1)) and some functions for extracting properties
of codewords (seeDistanceCodeword (2.6.2), Support (2.6.3) andWeightCodeword (2.6.4)).

2.1 Construction of Codewords

2.1.1 Codeword

♦ Codeword( obj[, n][,][F] ) (function)

Codeword returns a codeword or a list of codewords constructed fromobj. The objectobj can be
a vector, a string, a polynomial or a codeword. It may also be a list of those (even a mixed list).

If a numbern is specified, all constructed codewords have lengthn. This is the only way to make
sure that all elements ofobj are converted to codewords of the same length. Elements ofobj that are
longer thann are reduced in length by cutting of the last positions. Elements ofobj that are shorter
thann are lengthened by adding zeros at the end. If non is specified, each constructed codeword is
handled individually.

If a Galois fieldF is specified, all codewords are constructed over this field. This is the only way
to make sure that all elements ofobj are converted to the same fieldF (otherwise they are converted
one by one). Note that all elements ofobj must have elements overF or over ‘Integers’. Converting
from one Galois field to another is not allowed. If noF is specified, vectors or strings with integer
elements will be converted to the smallest Galois field possible.

Note that a significant speed increase is achieved ifF is specified, even when all elements ofobj
already have elements overF.

Every vector inobj can be a finite field vector overF or a vector over ‘Integers’. In the last case,
it is converted toF or, if omitted, to the smallest Galois field possible.

Every string inobj must be a string of numbers, without spaces, commas or any other characters.
These numbers must be from 0 to 9. The string is converted to a codeword overF or, if F is omitted,
over the smallest Galois field possible. Note that since all numbers in the string are interpreted as one-
digit numbers, Galois fields of size larger than 10 are not properly represented when using strings. In
fact, no finite field of size larger than 11 arises in this fashion at all.

Every polynomial inobj is converted to a codeword of lengthn or, if omitted, of a length dictated
by the degree of the polynomial. IfF is specified, a polynomial inobj must be overF.

Every element ofobj that is already a codeword is changed to a codeword of lengthn. If no n
was specified, the codeword doesn’t change. IfF is specified, the codeword must have base fieldF.

Example
gap> c := Codeword([0,1,1,1,0]);
[ 0 1 1 1 0 ]
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gap> VectorCodeword( c );
[ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, 0*Z(2) ]
gap> c2 := Codeword([0,1,1,1,0], GF(3));
[ 0 1 1 1 0 ]
gap> VectorCodeword( c2 );
[ 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, 0*Z(3) ]
gap> Codeword([c, c2, "0110"]);
[ [ 0 1 1 1 0 ], [ 0 1 1 1 0 ], [ 0 1 1 0 ] ]
gap> p := UnivariatePolynomial(GF(2), [Z(2)ˆ0, 0*Z(2), Z(2)ˆ0]);
Z(2)ˆ0+x_1ˆ2
gap> Codeword(p);
xˆ2 + 1

This command can also be called using the syntaxCodeword(obj,C). In this format, the elements
of obj are converted to elements of the same ambient vector space as the elements of a codeC. The
commandCodeword(c,C) is the same as callingCodeword(c,n,F), wheren is the word length ofC
and theF is the ground field ofC.

Example
gap> C := WholeSpaceCode(7,GF(5));
a cyclic [7,7,1]0 whole space code over GF(5)
gap> Codeword(["0220110", [1,1,1]], C);
[ [ 0 2 2 0 1 1 0 ], [ 1 1 1 0 0 0 0 ] ]
gap> Codeword(["0220110", [1,1,1]], 7, GF(5));
[ [ 0 2 2 0 1 1 0 ], [ 1 1 1 0 0 0 0 ] ]
gap> C:=RandomLinearCode(10,5,GF(3));
a linear [10,5,1..3]3..5 random linear code over GF(3)
gap> Codeword("1000000000",C);
[ 1 0 0 0 0 0 0 0 0 0 ]
gap> Codeword("1000000000",10,GF(3));
[ 1 0 0 0 0 0 0 0 0 0 ]

2.1.2 CodewordNr

♦ CodewordNr( C, list ) (function)

CodewordNr returns a list of codewords ofC. list may be a list of integers or a single integer. For
each integer oflist, the corresponding codeword ofC is returned. The correspondence of a number
i with a codeword is determined as follows: if a list of elements ofC is available, theith element is
taken. Otherwise, it is calculated by multiplication of theith information vector by the generator matrix
or generator polynomial, where the information vectors are ordered lexicographically. In particular,
the returned codeword(s) could be a vector or a polynomial. SoCodewordNr(C, i) is equal to
AsSSortedList(C)[i], described in the next chapter. The latter function first calculates the set of
all the elements ofC and then returns theith element of that set, whereas the former only calculates
the ith codeword.

Example
gap> B := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> c := CodewordNr(B, 4);
xˆ22 + xˆ20 + xˆ17 + xˆ14 + xˆ13 + xˆ12 + xˆ11 + xˆ10
gap> R := ReedSolomonCode(2,2);
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a cyclic [2,1,2]1 Reed-Solomon code over GF(3)
gap> AsSSortedList(R);
[ [ 0 0 ], [ 1 1 ], [ 2 2 ] ]
gap> CodewordNr(R, [1,3]);
[ [ 0 0 ], [ 2 2 ] ]

2.1.3 IsCodeword

♦ IsCodeword( obj ) (function)

IsCodeword returns ‘true’ if obj, which can be an object of arbitrary type, is of the codeword
type and ‘false’ otherwise. The function will signal an error ifobj is an unbound variable.

Example
gap> IsCodeword(1);
false
gap> IsCodeword(ReedMullerCode(2,3));
false
gap> IsCodeword("11111");
false
gap> IsCodeword(Codeword("11111"));
true

2.2 Comparisons of Codewords

2.2.1 =

♦ =( c1, c2 ) (function)

The equality operatorc1 = c2 evaluates to ‘true’ if the codewordsc1 andc2 are equal, and to
‘false’ otherwise. Note that codewords are equal if and only if their base vectors are equal. Whether
they are represented as a vector or polynomial has nothing to do with the comparison.

Comparing codewords with objects of other types is not recommended, although it is possible. If
c2 is the codeword, the other objectc1 is first converted to a codeword, after which comparison is
possible. This way, a codeword can be compared with a vector, polynomial, or string. Ifc1 is the
codeword, then problems may arise ifc2 is a polynomial. In that case, the comparison always yields
a ‘false’, because the polynomial comparison is called.

The equality operator is also denotedEQ, andEQ(c1,c2) is the same asc1 = c2. There is also
an inequality operator,< >, or not EQ.

Example
gap> P := UnivariatePolynomial(GF(2), Z(2)*[1,0,0,1]);
Z(2)ˆ0+x_1ˆ3
gap> c := Codeword(P, GF(2));
xˆ3 + 1
gap> P = c; # codeword operation
true
gap> c2 := Codeword("1001", GF(2));
[ 1 0 0 1 ]
gap> c = c2;
true
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gap> C:=HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c1:=Random(C);
[ 1 0 0 1 1 0 0 ]
gap> c2:=Random(C);
[ 0 1 0 0 1 0 1 ]
gap> EQ(c1,c2);
false
gap> not EQ(c1,c2);
true

2.3 Arithmetic Operations for Codewords

2.3.1 +

♦ +( c1, c2 ) (function)

The following operations are always available for codewords. The operands must have a common
base field, and must have the same length. No implicit conversions are performed.

The operator+ evaluates to the sum of the codewordsc1 andc2.
Example

gap> C:=RandomLinearCode(10,5,GF(3));
a linear [10,5,1..3]3..5 random linear code over GF(3)
gap> c:=Random(C);
[ 1 0 2 2 2 2 1 0 2 0 ]
gap> Codeword(c+"2000000000");
[ 0 0 2 2 2 2 1 0 2 0 ]
gap> Codeword(c+"1000000000");

The last command return aGAP ERROR since the ‘codeword’ whichGUAVA associates to
”1000000000” belongs toGF(2) and notGF(3).

2.3.2 -

♦ -( c1, c2 ) (function)

Similar to addition: the operator- evaluates to the difference of the codewordsc1 andc2.

2.3.3 +

♦ +( v, C ) (function)

The operatorv+C evaluates to the coset code of codeC after adding a ‘codeword’v to all codewords
in C. Note that ifc∈C then mathematicallyc+C = C but GUAVA only sees them equal assets. See
CosetCode (6.1.15).

Note that the commandC+v returns the same output as the commandv+C.
Example

gap> C:=RandomLinearCode(10,5);
a [10,5,?] randomly generated code over GF(2)
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gap> c:=Random(C);
[ 0 0 0 0 0 0 0 0 0 0 ]
gap> c+C;
[ add. coset of a [10,5,?] randomly generated code over GF(2) ]
gap> c+C=C;
true
gap> IsLinearCode(c+C);
false
gap> v:=Codeword("100000000");
[ 1 0 0 0 0 0 0 0 0 ]
gap> v+C;
[ add. coset of a [10,5,?] randomly generated code over GF(2) ]
gap> C=v+C;
false
gap> C := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] ], GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> Elements(C);
[ [ 0 0 0 0 ], [ 0 1 0 0 ], [ 1 0 0 0 ], [ 1 1 0 0 ] ]
gap> v:=Codeword("0011");
[ 0 0 1 1 ]
gap> C+v;
[ add. coset of a linear [4,2,4]1 code defined by generator matrix over GF(2) ]
gap> Elements(C+v);
[ [ 0 0 1 1 ], [ 0 1 1 1 ], [ 1 0 1 1 ], [ 1 1 1 1 ] ]

In general, the operations just described can also be performed on codewords expressed as vectors,
strings or polynomials, although this is not recommended. The vector, string or polynomial is first
converted to a codeword, after which the normal operation is performed. For this to go right, make
sure that at least one of the operands is a codeword. Further more, it will not work when the right
operand is a polynomial. In that case, the polynomial operations (FiniteFieldPolynomialOps) are
called, instead of the codeword operations (CodewordOps).

Some other code-oriented operations with codewords are described in3.2.

2.4 Functions that Convert Codewords to Vectors or Polynomials

2.4.1 VectorCodeword

♦ VectorCodeword( obj ) (function)

Hereobj can be a code word or a list of code words. This function returns the corresponding
vectors over a finite field.

Example
gap> a := Codeword("011011");;
gap> VectorCodeword(a);
[ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, Z(2)ˆ0 ]

2.4.2 PolyCodeword

♦ PolyCodeword( obj ) (function)
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PolyCodeword returns a polynomial or a list of polynomials over a Galois field, converted from
obj. The objectobj can be a codeword, or a list of codewords.

Example
gap> a := Codeword("011011");;
gap> PolyCodeword(a);
x_1+x_1ˆ2+x_1ˆ4+x_1ˆ5

2.5 Functions that Change the Display Form of a Codeword

2.5.1 TreatAsVector

♦ TreatAsVector( obj ) (function)

TreatAsVector adapts the codewords inobj to make sure they are printed as vectors.obj may
be a codeword or a list of codewords. Elements ofobj that are not codewords are ignored. After this
function is called, the codewords will be treated as vectors. The vector representation is obtained by
using the coefficient list of the polynomial.

Note that thisonly changes the way a codeword isprinted. TreatAsVector returns nothing, it
is called only for its side effect. The functionVectorCodeword converts codewords to vectors (see
VectorCodeword (2.4.1)).

Example
gap> B := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> c := CodewordNr(B, 4);
xˆ22 + xˆ20 + xˆ17 + xˆ14 + xˆ13 + xˆ12 + xˆ11 + xˆ10
gap> TreatAsVector(c);
gap> c;
[ 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 ]

2.5.2 TreatAsPoly

♦ TreatAsPoly( obj ) (function)

TreatAsPoly adapts the codewords inobj to make sure they are printed as polynomials.obj may
be a codeword or a list of codewords. Elements ofobj that are not codewords are ignored. After this
function is called, the codewords will be treated as polynomials. The finite field vector that defines
the codeword is used as a coefficient list of the polynomial representation, where the first element of
the vector is the coefficient of degree zero, the second element is the coefficient of degree one, etc,
until the last element, which is the coefficient of highest degree.

Note that thisonly changes the way a codeword isprinted. TreatAsPoly returns nothing, it is
called only for its side effect. The functionPolyCodeword converts codewords to polynomials (see
PolyCodeword (2.4.2)).

Example
gap> a := Codeword("00001",GF(2));
[ 0 0 0 0 1 ]
gap> TreatAsPoly(a); a;
xˆ4
gap> b := NullWord(6,GF(4));
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[ 0 0 0 0 0 0 ]
gap> TreatAsPoly(b); b;
0

2.6 Other Codeword Functions

2.6.1 NullWord

♦ NullWord( n, F ) (function)

Other uses:NullWord( n ) (defaultF = GF(2)) andNullWord( C ). NullWord returns a code-
word of lengthn over the fieldF of only zeros. The integern must be greater then zero. If only a code
C is specified,NullWord will return a null word with both the word length and the Galois field ofC.

Example
gap> NullWord(8);
[ 0 0 0 0 0 0 0 0 ]
gap> Codeword("0000") = NullWord(4);
true
gap> NullWord(5,GF(16));
[ 0 0 0 0 0 ]
gap> NullWord(ExtendedTernaryGolayCode());
[ 0 0 0 0 0 0 0 0 0 0 0 0 ]

2.6.2 DistanceCodeword

♦ DistanceCodeword( c1, c2 ) (function)

DistanceCodeword returns the Hamming distance fromc1 to c2. Both variables must be code-
words with equal word length over the same Galois field. The Hamming distance between two words
is the number of places in which they differ. As a result,DistanceCodeword always returns an integer
between zero and the word length of the codewords.

Example
gap> a := Codeword([0, 1, 2, 0, 1, 2]);; b := NullWord(6, GF(3));;
gap> DistanceCodeword(a, b);
4
gap> DistanceCodeword(b, a);
4
gap> DistanceCodeword(a, a);
0

2.6.3 Support

♦ Support( c ) (function)

Support returns a set of integers indicating the positions of the non-zero entries in a codewordc.

Example
gap> a := Codeword("012320023002");; Support(a);
[ 2, 3, 4, 5, 8, 9, 12 ]
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gap> Support(NullWord(7));
[ ]

The support of a list with codewords can be calculated by taking the union of the individual supports.
The weight of the support is the length of the set.

Example
gap> L := Codeword(["000000", "101010", "222000"], GF(3));;
gap> S := Union(List(L, i -> Support(i)));
[ 1, 2, 3, 5 ]
gap> Length(S);
4

2.6.4 WeightCodeword

♦ WeightCodeword( c ) (function)

WeightCodeword returns the weight of a codewordc, the number of non-zero entries inc. As a
result,WeightCodeword always returns an integer between zero and the word length of the codeword.

Example
gap> WeightCodeword(Codeword("22222"));
5
gap> WeightCodeword(NullWord(3));
0
gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> Minimum(List(AsSSortedList(C){[2..Size(C)]}, WeightCodeword ) );
3



Chapter 3

Codes

A codeis a set of codewords (recall a codeword inGUAVA is simply a sequence of elements of a
finite field GF(q), whereq is a prime power). We call these theelementsof the code. Depending on
the type of code, a codeword can be interpreted as a vector or as a polynomial. This is explained in
more detail in Chapter2.

In GUAVA, codes can be a set specified by its elements (this will be called anunrestricted code),
by a generator matrix listing a set of basis elements (for a linear code) or by a generator polynomial
(for a cyclic code).

Any code can be defined by its elements. If you like, you can give the code a name.
Example

gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF(2)

An (n,M,d) code is a code with wordlength n, size Mandminimum distance d. If the minimum
distance has not yet been calculated, the lower bound and upper bound are printed (except in the case
where the code is a random linear codes, where these are not printed for efficiency reasons). So

a (4,3,1..4)2..4 code over GF(2)

means a binary unrestricted code of length 4, with 3 elements and the minimum distance is greater
than or equal to 1 and less than or equal to 4 and the covering radius is greater than or equal to 2 and
less than or equal to 4.

Example
gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF(2)
gap> MinimumDistance(C);
2
gap> C;
a (4,3,2)2..4 example code over GF(2)

If the set of elements is a linear subspace ofGF(q)n, the code is calledlinear. If a code is linear, it
can be defined by itsgenerator matrixor parity check matrix. By definition, the rows of the generator
matrix is a basis for the code (as a vector space overGF(q)). By definition, the rows of the parity
check matrix is a basis for the dual space of the code,

C∗ = {v∈ GF(q)n | v·c = 0, f or all c ∈C}.

20
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Example
gap> G := GeneratorMatCode([[1,0,1],[0,1,2]], "demo code", GF(3) );
a linear [3,2,1..2]1 demo code over GF(3)

So a linear[n,k,d]r code is a code with wordlength n, dimension k, minimum distance dandcovering
radius r.

If the code is linear and all cyclic shifts of its codewords (regarded asn-tuples) are again code-
words, the code is calledcyclic. All elements of a cyclic code are multiples of the monic polynomial
modulo a polynomialxn−1, wheren is the word length of the code. Such a polynomial is called a
generator polynomialThe generator polynomial must dividexn−1 and its quotient is called acheck
polynomial. Multiplying a codeword in a cyclic code by the check polynomial yields zero (modulo
the polynomialxn−1). In GUAVA, a cyclic code can be defined by either its generator polynomial or
check polynomial.

Example
gap> G := GeneratorPolCode(Indeterminate(GF(2))+Z(2)ˆ0, 7, GF(2) );
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)

It is possible thatGUAVA does not know that an unrestricted code is in fact linear. This situation occurs
for example when a code is generated from a list of elements with the functionElementsCode (see
ElementsCode (5.1.1)). By calling the functionIsLinearCode (seeIsLinearCode (3.3.4)), GUAVA
tests if the code can be represented by a generator matrix. If so, the code record and the operations
are converted accordingly.

Example
gap> L := Z(2)*[ [0,0,0], [1,0,0], [0,1,1], [1,1,1] ];;
gap> C := ElementsCode( L, GF(2) );
a (3,4,1..3)1 user defined unrestricted code over GF(2)
# so far, GUAVA does not know what kind of code this is
gap> IsLinearCode( C );
true # it is linear
gap> C;
a linear [3,2,1]1 user defined unrestricted code over GF(2)

Of course the same holds for unrestricted codes that in fact are cyclic, or codes, defined by a generator
matrix, that actually are cyclic.

Codes are printed simply by giving a small description of their parameters, the word length, size
or dimension and perhaps the minimum distance, followed by a short description and the base field of
the code. The functionDisplay gives a more detailed description, showing the construction history
of the code.

GUAVA doesn’t place much emphasis on the actual encoding and decoding processes; some al-
gorithms have been included though. Encoding works simply by multiplying an information vector
with a code, decoding is done by the functionsDecode or Decodeword. For more information about
encoding and decoding, see sections3.2and3.10.1.

Example
gap> R := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> w := [ 1, 0, 1, 1 ] * R;
[ 1 0 0 1 1 0 0 1 ]
gap> Decode( R, w );
[ 1 0 1 1 ]
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gap> Decode( R, w + "10000000" ); # One error at the first position
[ 1 0 1 1 ] # Corrected by Guava

Sections3.1 and 3.2 describe the operations that are available for codes. Section3.3 describe
the functions that tests whether an object is a code and what kind of code it is (seeIsCode,
IsLinearCode (3.3.4) and IsCyclicCode) and various other boolean functions for codes. Sec-
tion 3.4describe functions about equivalence and isomorphism of codes (seeIsEquivalent (3.4.1),
CodeIsomorphism (3.4.2) andAutomorphismGroup (3.4.3)). Section3.5 describes functions that
work ondomains(see Chapter ”Domains and their Elements” in theGAP Reference Manual). Sec-
tion 3.6 describes functions for printing and displaying codes. Section3.7 describes functions
that return the matrices and polynomials that define a code (seeGeneratorMat (3.7.1), CheckMat
(3.7.2), GeneratorPol (3.7.3), CheckPol (3.7.4), RootsOfCode (3.7.5)). Section3.8describes func-
tions that return the basic parameters of codes (seeWordLength (3.8.1), Redundancy (3.8.2) and
MinimumDistance (3.8.3)). Section3.9describes functions that return distance and weight distribu-
tions (seeWeightDistribution (3.9.1), InnerDistribution (3.9.2), OuterDistribution (3.9.4)
andDistancesDistribution (3.9.3)). Section3.10describes functions that are related to decod-
ing (seeDecode (3.10.1), Decodeword (3.10.2), Syndrome (3.10.7), SyndromeTable (3.10.8) and
StandardArray (3.10.9)). In Chapters5 and6 which follow, we describe functions that generate and
manipulate codes.

3.1 Comparisons of Codes

3.1.1 =

♦ =( C1, C2 ) (function)

The equality operatorC1 = C2 evaluates to ‘true’ if the codesC1 andC2 are equal, and to ‘false’
otherwise.

The equality operator is also denotedEQ, andEq(C1,C2) is the same asC1 = C2. There is also
an inequality operator,< >, or not EQ.

Note that codes are equal if and only if their set of elements are equal. Codes can also be compared
with objects of other types. Of course they are never equal.

Example
gap> M := [ [0, 0], [1, 0], [0, 1], [1, 1] ];;
gap> C1 := ElementsCode( M, GF(2) );
a (2,4,1..2)0 user defined unrestricted code over GF(2)
gap> M = C1;
false
gap> C2 := GeneratorMatCode( [ [1, 0], [0, 1] ], GF(2) );
a linear [2,2,1]0 code defined by generator matrix over GF(2)
gap> C1 = C2;
true
gap> ReedMullerCode( 1, 3 ) = HadamardCode( 8 );
true
gap> WholeSpaceCode( 5, GF(4) ) = WholeSpaceCode( 5, GF(2) );
false

Another way of comparing codes isIsEquivalent, which checks if two codes are equivalent (see
IsEquivalent (3.4.1)). By the way, this calledCodeIsomorphism. For the current version of
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GUAVA, unless one of the codes is unrestricted, this calls Leon’s C program (which only works for
binary linear codes and only on a unix/linux computer).

3.2 Operations for Codes

3.2.1 +

♦ +( C1, C2 ) (function)

The operator ‘+’ evaluates to the direct sum of the codesC1 andC2. SeeDirectSumCode (6.2.1).

Example
gap> C1:=RandomLinearCode(10,5);
a [10,5,?] randomly generated code over GF(2)
gap> C2:=RandomLinearCode(9,4);
a [9,4,?] randomly generated code over GF(2)
gap> C1+C2;
a linear [10,9,1]0..10 unknown linear code over GF(2)

3.2.2 *

♦ *( C1, C2 ) (function)

The operator ‘*’ evaluates to the direct product of the codesC1 andC2. SeeDirectProductCode
(6.2.3).

Example
gap> C1 := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] ], GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> C2 := GeneratorMatCode( [ [0,0,1, 1], [0,0,0, 1] ], GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> C1*C2;
a linear [16,4,1]4..12 direct product code

3.2.3 *

♦ *( m, C ) (function)

The operatorm*C evaluates to the element ofC belonging to information word (’message’)m. Here
m may be a vector, polynomial, string or codeword or a list of those. This is the way to do encoding
in GUAVA. C must be linear, because inGUAVA, encoding by multiplication is only defined for linear
codes. IfC is a cyclic code, this multiplication is the same as multiplying an information polynomialm
by the generator polynomial ofC. If C is a linear code, it is equal to the multiplication of an information
vectorm by a generator matrix ofC.

To invert this, use the functionInformationWord (seeInformationWord (3.2.4), which simply
calls the functionDecode).

Example
gap> C := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] ], GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> m:=Codeword("11");
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[ 1 1 ]
gap> m*C;
[ 1 1 0 0 ]

3.2.4 InformationWord

♦ InformationWord( c, C ) (function)

Here C is a linear code andc is a codeword in it. The commandInformationWord returns
the message word (or ’information digits’)m satisfyingc=m*C. This command simply callsDecode,
providedc in C is true. Otherwise, it returns an error.

To invert this, use the encoding function* (see* (3.2.3)).

Example
gap> C:=HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c:=Random(C);
[ 0 0 0 1 1 1 1 ]
gap> InformationWord(C,c);
[ 0 1 1 1 ]
gap> c:=Codeword("1111100");
[ 1 1 1 1 1 0 0 ]
gap> InformationWord(C,c);
"ERROR: codeword must belong to code"
gap> C:=NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> c:=Random(C);
[ 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 ]
gap> InformationWord(C,c);
"ERROR: code must be linear"

3.3 Boolean Functions for Codes

3.3.1 in

♦ in( c, C ) (function)

The commandc in C evaluates to ‘true’ ifC contains the codeword or list of codewords specified
by c. Of course,c andC must have the same word lengths and base fields.

Example
gap> C:= HammingCode( 2 );; eC:= AsSSortedList( C );
[ [ 0 0 0 ], [ 1 1 1 ] ]
gap> eC[2] in C;
true
gap> [ 0 ] in C;
false
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3.3.2 IsSubset

♦ IsSubset( C1, C2 ) (function)

The commandIsSubset(C1,C2) returns ‘true’ ifC2 is a subcode ofC1, i.e. if C1 contains all the
elements ofC2.

Example
gap> IsSubset( HammingCode(3), RepetitionCode( 7 ) );
true
gap> IsSubset( RepetitionCode( 7 ), HammingCode( 3 ) );
false
gap> IsSubset( WholeSpaceCode( 7 ), HammingCode( 3 ) );
true

3.3.3 IsCode

♦ IsCode( obj ) (function)

IsCode returns ‘true’ ifobj, which can be an object of arbitrary type, is a code and ‘false’ other-
wise. Will cause an error ifobj is an unbound variable.

Example
gap> IsCode( 1 );
false
gap> IsCode( ReedMullerCode( 2,3 ) );
true

3.3.4 IsLinearCode

♦ IsLinearCode( obj ) (function)

IsLinearCode checks if objectobj (not necessarily a code) is a linear code. If a code has already
been marked as linear or cyclic, the function automatically returns ‘true’. Otherwise, the function
checks if a basisG of the elements ofobj exists that generates the elements ofobj. If so, G is
recorded as a generator matrix ofobj and the function returns ‘true’. If not, the function returns
‘false’.

Example
gap> C := ElementsCode( [ [0,0,0],[1,1,1] ], GF(2) );
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> IsLinearCode( C );
true
gap> IsLinearCode( ElementsCode( [ [1,1,1] ], GF(2) ) );
false
gap> IsLinearCode( 1 );
false

3.3.5 IsCyclicCode

♦ IsCyclicCode( obj ) (function)
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IsCyclicCode checks if the objectobj is a cyclic code. If a code has already been marked as
cyclic, the function automatically returns ‘true’. Otherwise, the function checks if a polynomialg
exists that generates the elements ofobj. If so, g is recorded as a generator polynomial ofobj and
the function returns ‘true’. If not, the function returns ‘false’.

Example
gap> C := ElementsCode( [ [0,0,0], [1,1,1] ], GF(2) );
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> # GUAVA does not know the code is cyclic
gap> IsCyclicCode( C ); # this command tells GUAVA to find out
true
gap> IsCyclicCode( HammingCode( 4, GF(2) ) );
false
gap> IsCyclicCode( 1 );
false

3.3.6 IsPerfectCode

♦ IsPerfectCode( C ) (function)

IsPerfectCode(C) returns ‘true’ ifC is a perfect code. IfC⊂ GF(q)n then, by definition, this
means that for some positive integert, the spaceGF(q)n is covered by non-overlapping spheres of
(Hamming) radiust centered at the codewords inC. For a code with odd minimum distanced = 2t +1,
this is the case when every word of the vector space ofC is at distance at mostt from exactly one
element ofC. Codes with even minimum distance are never perfect.

In fact, a code that is not ”trivially perfect” (the binary repetition codes of odd length, the codes
consisting of one word, and the codes consisting of the whole vector space), and does not have the
parameters of a Hamming or Golay code, cannot be perfect (see section 1.12 in [HP03]).

Example
gap> H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> IsPerfectCode( H );
true
gap> IsPerfectCode( ElementsCode([[1,1,0],[0,0,1]],GF(2)) );
true
gap> IsPerfectCode( ReedSolomonCode( 6, 3 ) );
false
gap> IsPerfectCode( BinaryGolayCode() );
true

3.3.7 IsMDSCode

♦ IsMDSCode( C ) (function)

IsMDSCode(C) returns true ifC is a maximum distance separable (MDS) code. A linear[n,k,d]-
code of lengthn, dimensionk and minimum distanced is an MDS code ifk= n−d+1, in other words
if C meets the Singleton bound (seeUpperBoundSingleton (7.1.1)). An unrestricted(n,M,d) code
is calledMDS if k = n−d+1, with k equal to the largest integer less than or equal to the logarithm
of M with baseq, the size of the base field ofC.



GUAVA 27

Well-known MDS codes include the repetition codes, the whole space codes, the even weight
codes (these are the onlybinaryMDS codes) and the Reed-Solomon codes.

Example
gap> C1 := ReedSolomonCode( 6, 3 );
a cyclic [6,4,3]2 Reed-Solomon code over GF(7)
gap> IsMDSCode( C1 );
true # 6-3+1 = 4
gap> IsMDSCode( QRCode( 23, GF(2) ) );
false

3.3.8 IsSelfDualCode

♦ IsSelfDualCode( C ) (function)

IsSelfDualCode(C) returns ‘true’ ifC is self-dual, i.e. whenC is equal to its dual code (see also
DualCode (6.1.13)). A code is self-dual if it contains all vectors that its elements are orthogonal to. If
a code is self-dual, it automatically is self-orthogonal (seeIsSelfOrthogonalCode (3.3.9)).

If C is a non-linear code, it cannot be self-dual (the dual code is always linear), so ‘false’ is
returned. A linear code can only be self-dual when its dimensionk is equal to the redundancyr.

Example
gap> IsSelfDualCode( ExtendedBinaryGolayCode() );
true
gap> C := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> DualCode( C ) = C;
true

3.3.9 IsSelfOrthogonalCode

♦ IsSelfOrthogonalCode( C ) (function)

IsSelfOrthogonalCode(C) returns ‘true’ if C is self-orthogonal. A code isself-orthogonalif
every element ofC is orthogonal to all elements ofC, including itself. (In the linear case, this simply
means that the generator matrix ofC multiplied with its transpose yields a null matrix.)

Example
gap> R := ReedMullerCode(1,4);
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> IsSelfOrthogonalCode(R);
true
gap> IsSelfDualCode(R);
false

3.4 Equivalence and Isomorphism of Codes

3.4.1 IsEquivalent

♦ IsEquivalent( C1, C2 ) (function)
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We say thatC1 is permutation equivalentto C2 if C1 can be obtained fromC2 by carrying out
column permutations.IsEquivalent returns true ifC1 andC2 are equivalent codes. At this time,
IsEquivalent only handlesbinary codes. (The external unix/linux programDESAUTO from J. S.
Leon is called byIsEquivalent.) Of course, ifC1 andC2 are equal, they are also equivalent.

Note that the algorithm isvery slowfor non-linear codes.
More generally, we say thatC1 is equivalentto C2 if C1 can be obtained fromC2 by carrying out

column permutations and a permutation of the alphabet.

Example
gap> x:= Indeterminate( GF(2) );; pol:= xˆ3+x+1;
Z(2)ˆ0+x_1+x_1ˆ3
gap> H := GeneratorPolCode( pol, 7, GF(2));
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> H = HammingCode(3, GF(2));
false
gap> IsEquivalent(H, HammingCode(3, GF(2)));
true # H is equivalent to a Hamming code
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7)

3.4.2 CodeIsomorphism

♦ CodeIsomorphism( C1, C2 ) (function)

If the two codesC1 and C2 are permutation equivalent codes (seeIsEquivalent (3.4.1)),
CodeIsomorphism returns the permutation that transformsC1 into C2. If the codes are not equiv-
alent, it returns ‘false’.

At this time,IsEquivalent only computes isomorphisms betweenbinary codes on a linux/unix
computer (since it calls Leon’s C programDESAUTO).

Example
gap> x:= Indeterminate( GF(2) );; pol:= xˆ3+x+1;
Z(2)ˆ0+x_1+x_1ˆ3
gap> H := GeneratorPolCode( pol, 7, GF(2));
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7)
gap> PermutedCode(H, (3,4)(5,6,7)) = HammingCode(3, GF(2));
true

3.4.3 AutomorphismGroup

♦ AutomorphismGroup( C ) (function)

AutomorphismGroup returns the automorphism group of a linear codeC. For a binary code,
the automorphism group is the largest permutation group of degreen such that each permutation
applied to the columns ofC again yieldsC. GUAVA calls the external programDESAUTO written
by J. S. Leon, if it exists, to compute the automorphism group. If Leon’s program is not com-
piled on the system (and in the default directory) then it calls instead the much slower program
PermutationAutomorphismGroup.
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See Leon [Leo82] for a more precise description of the method, and theguava/src/leon/doc
subdirectory for for details about Leon’s C programs.

The functionPermutedCode permutes the columns of a code (seePermutedCode (6.1.4)).

Example
gap> R := RepetitionCode(7,GF(2));
a cyclic [7,1,7]3 repetition code over GF(2)
gap> AutomorphismGroup(R);
Sym( [ 1 .. 7 ] )

# every permutation keeps R identical
gap> C := CordaroWagnerCode(7);
a linear [7,2,4]3 Cordaro-Wagner code over GF(2)
gap> AsSSortedList(C);
[ [ 0 0 0 0 0 0 0 ], [ 0 0 1 1 1 1 1 ], [ 1 1 0 0 0 1 1 ], [ 1 1 1 1 1 0 0 ] ]
gap> AutomorphismGroup(C);
Group([ (3,4), (4,5), (1,6)(2,7), (1,2), (6,7) ])
gap> C2 := PermutedCode(C, (1,6)(2,7));
a linear [7,2,4]3 permuted code
gap> AsSSortedList(C2);
[ [ 0 0 0 0 0 0 0 ], [ 0 0 1 1 1 1 1 ], [ 1 1 0 0 0 1 1 ], [ 1 1 1 1 1 0 0 ] ]
gap> C2 = C;
true

3.4.4 PermutationAutomorphismGroup

♦ PermutationAutomorphismGroup( C ) (function)

PermutationAutomorphismGroup returns the permutation automorphism group of a linear code
C. This is the largest permutation group of degreen such that each permutation applied to the columns
of C again yieldsC. It is written in GAP, so is much slower thanAutomorphismGroup.

WhenC is binaryPermutationAutomorphismGroup doesnot call AutomorphismGroup, even
though they agree mathematically in that case. This wayPermutationAutomorphismGroup can be
called on any platform which runs GAP.

The older name for this command,PermutationGroup, will become obsolete in the next version
of GAP.

Example
gap> R := RepetitionCode(3,GF(3));
a cyclic [3,1,3]2 repetition code over GF(3)
gap> G:=PermutationAutomorphismGroup(R);
Group([ (), (1,3), (1,2,3), (2,3), (1,3,2), (1,2) ])
gap> G=SymmetricGroup(3);
true

3.5 Domain Functions for Codes

These are someGAP functions that work on ‘Domains’ in general. Their specific effect on ‘Codes’ is
explained here.
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3.5.1 IsFinite

♦ IsFinite( C ) (function)

IsFinite is an implementation of theGAP domain functionIsFinite. It returns true for a code
C.

Example
gap> IsFinite( RepetitionCode( 1000, GF(11) ) );
true

3.5.2 Size

♦ Size( C ) (function)

Size returns the size ofC, the number of elements of the code. If the code is linear, the size of the
code is equal toqk, whereq is the size of the base field ofC andk is the dimension.

Example
gap> Size( RepetitionCode( 1000, GF(11) ) );
11
gap> Size( NordstromRobinsonCode() );
256

3.5.3 LeftActingDomain

♦ LeftActingDomain( C ) (function)

LeftActingDomain returns the base field of a codeC. Each element ofC consists of elements of
this base field. If the base field isF , and the word length of the code isn, then the codewords are
elements ofFn. If C is a cyclic code, its elements are interpreted as polynomials with coefficients over
F .

Example
gap> C1 := ElementsCode([[0,0,0], [1,0,1], [0,1,0]], GF(4));
a (3,3,1..3)2..3 user defined unrestricted code over GF(4)
gap> LeftActingDomain( C1 );
GF(2ˆ2)
gap> LeftActingDomain( HammingCode( 3, GF(9) ) );
GF(3ˆ2)

3.5.4 Dimension

♦ Dimension( C ) (function)

Dimension returns the parameterk of C, the dimension of the code, or the number of information
symbols in each codeword. The dimension is not defined for non-linear codes;Dimension then
returns an error.

Example
gap> Dimension( NullCode( 5, GF(5) ) );
0
gap> C := BCHCode( 15, 4, GF(4) );
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a cyclic [15,9,5]3..4 BCH code, delta=5, b=1 over GF(4)
gap> Dimension( C );
9
gap> Size( C ) = Size( LeftActingDomain( C ) ) ˆ Dimension( C );
true

3.5.5 AsSSortedList

♦ AsSSortedList( C ) (function)

AsSSortedList (as strictly sorted list) returns an immutable, duplicate free list of the elements
of C. For a finite fieldGF(q) generated by powers ofZ(q), the ordering on

GF(q) = {0,Z(q)0,Z(q),Z(q)2, ...Z(q)q−2}

is that determined by the exponentsi. These elements are of the type codeword (seeCodeword (2.1.1)).
Note that for large codes, generating the elements may be very time- and memory-consuming. For
generating a specific element or a subset of the elements, useCodewordNr (seeCodewordNr (2.1.2)).

Example
gap> C := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList( C );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 1 1 ], [ 0 1 1 0 1 ], [ 0 1 1 1 0 ],
[ 1 0 0 1 1 ], [ 1 0 1 0 1 ], [ 1 0 1 1 0 ], [ 1 1 0 0 1 ], [ 1 1 0 1 0 ],
[ 1 1 1 0 0 ], [ 1 1 1 1 1 ] ]

gap> CodewordNr( C, [ 1, 2 ] );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ] ]

3.6 Printing and Displaying Codes

3.6.1 Print

♦ Print( C ) (function)

Print prints information aboutC. This is the same as typing the identifierC at theGAP-prompt.
If the argument is an unrestricted code, information in the form

a (n,M,d)r ... code over GF(q)

is printed, wheren is the word length,M the number of elements of the code,d the minimum distance
andr the covering radius.

If the argument is a linear code, information in the form

a linear [n,k,d]r ... code over GF(q)

is printed, wheren is the word length,k the dimension of the code,d the minimum distance andr the
covering radius.

Except for codes produced byRandomLinearCode, if d is not yet known, it is displayed in the
form
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lowerbound..upperbound

and if r is not yet known, it is displayed in the same way. For certain ranges ofn, the values of
lowerbound andupperbound are obtained from tables.

The functionDisplay gives more information. SeeDisplay (3.6.3).

Example
gap> C1 := ExtendedCode( HammingCode( 3, GF(2) ) );
a linear [8,4,4]2 extended code
gap> Print( "This is ", NordstromRobinsonCode(), ". \n");
This is a (16,256,6)4 Nordstrom-Robinson code over GF(2).

3.6.2 String

♦ String( C ) (function)

String returns information aboutC in a string. This function is used byPrint.

Example
gap> x:= Indeterminate( GF(3) );; pol:= xˆ2+1;
x_1ˆ2+Z(3)ˆ0
gap> Factors(pol);
[ x_1ˆ2+Z(3)ˆ0 ]
gap> H := GeneratorPolCode( pol, 8, GF(3));
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> String(H);
"a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)"

3.6.3 Display

♦ Display( C ) (function)

Display prints the method of construction of codeC. With this history, in most cases an equal or
equivalent code can be reconstructed. IfC is an unmanipulated code, the result is equal to output of
the functionPrint (seePrint (3.6.1)).

Example
gap> Display( RepetitionCode( 6, GF(3) ) );
a cyclic [6,1,6]4 repetition code over GF(3)
gap> C1 := ExtendedCode( HammingCode(2) );;
gap> C2 := PuncturedCode( ReedMullerCode( 2, 3 ) );;
gap> Display( LengthenedCode( UUVCode( C1, C2 ) ) );
a linear [12,8,2]2..4 code, lengthened with 1 column(s) of
a linear [11,8,1]1..2 U U+V construction code of
U: a linear [4,1,4]2 extended code of

a linear [3,1,3]1 Hamming (2,2) code over GF(2)
V: a linear [7,7,1]0 punctured code of

a cyclic [8,7,2]1 Reed-Muller (2,3) code over GF(2)
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3.7 Generating (Check) Matrices and Polynomials

3.7.1 GeneratorMat

♦ GeneratorMat( C ) (function)

GeneratorMat returns a generator matrix ofC. The code consists of all linear combinations of
the rows of this matrix.

If until now no generator matrix ofC was determined, it is computed from either the parity check
matrix, the generator polynomial, the check polynomial or the elements (if possible), whichever is
available.

If C is a non-linear code, the function returns an error.
Example

gap> GeneratorMat( HammingCode( 3, GF(2) ) );
[ [ an immutable GF2 vector of length 7],
[ an immutable GF2 vector of length 7],
[ an immutable GF2 vector of length 7],
[ an immutable GF2 vector of length 7] ]

gap> Display(last);
1 1 1 . . . .
1 . . 1 1 . .
. 1 . 1 . 1 .
1 1 . 1 . . 1
gap> GeneratorMat( RepetitionCode( 5, GF(25) ) );
[ [ Z(5)ˆ0, Z(5)ˆ0, Z(5)ˆ0, Z(5)ˆ0, Z(5)ˆ0 ] ]
gap> GeneratorMat( NullCode( 14, GF(4) ) );
[ ]

3.7.2 CheckMat

♦ CheckMat( C ) (function)

CheckMat returns a parity check matrix ofC. The code consists of all words orthogonal to each
of the rows of this matrix. The transpose of the matrix is a right inverse of the generator matrix. The
parity check matrix is computed from either the generator matrix, the generator polynomial, the check
polynomial or the elements ofC (if possible), whichever is available.

If C is a non-linear code, the function returns an error.
Example

gap> CheckMat( HammingCode(3, GF(2) ) );
[ [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ],
[ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0, Z(2)ˆ0 ],
[ Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ] ]

gap> Display(last);
. . . 1 1 1 1
. 1 1 . . 1 1
1 . 1 . 1 . 1
gap> CheckMat( RepetitionCode( 5, GF(25) ) );
[ [ Z(5)ˆ0, Z(5)ˆ2, 0*Z(5), 0*Z(5), 0*Z(5) ],
[ 0*Z(5), Z(5)ˆ0, Z(5)ˆ2, 0*Z(5), 0*Z(5) ],
[ 0*Z(5), 0*Z(5), Z(5)ˆ0, Z(5)ˆ2, 0*Z(5) ],
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[ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)ˆ0, Z(5)ˆ2 ] ]
gap> CheckMat( WholeSpaceCode( 12, GF(4) ) );
[ ]

3.7.3 GeneratorPol

♦ GeneratorPol( C ) (function)

GeneratorPol returns the generator polynomial ofC. The code consists of all multiples of the
generator polynomial moduloxn−1, wheren is the word length ofC. The generator polynomial is
determined from either the check polynomial, the generator or check matrix or the elements ofC (if
possible), whichever is available.

If C is not a cyclic code, the function returns ‘false’.

Example
gap> GeneratorPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)ˆ0+x_1
gap> GeneratorPol( WholeSpaceCode( 4, GF(2) ) );
Z(2)ˆ0
gap> GeneratorPol( NullCode( 7, GF(3) ) );
-Z(3)ˆ0+x_1ˆ7

3.7.4 CheckPol

♦ CheckPol( C ) (function)

CheckPol returns the check polynomial ofC. The code consists of all polynomialsf with

f ·h≡ 0 (modxn−1),

whereh is the check polynomial, andn is the word length ofC. The check polynomial is computed
from the generator polynomial, the generator or parity check matrix or the elements ofC (if possible),
whichever is available.

If C if not a cyclic code, the function returns an error.

Example
gap> CheckPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)ˆ0+x_1+x_1ˆ2
gap> CheckPol(WholeSpaceCode(4, GF(2)));
Z(2)ˆ0+x_1ˆ4
gap> CheckPol(NullCode(7,GF(3)));
Z(3)ˆ0

3.7.5 RootsOfCode

♦ RootsOfCode( C ) (function)

RootsOfCode returns a list of all zeros of the generator polynomial of a cyclic codeC. These are
finite field elements in the splitting field of the generator polynomial,GF(qm), m is the multiplicative
order of the size of the base field of the code, modulo the word length.
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The reverse process, constructing a code from a set of roots, can be carried out by the function
RootsCode (seeRootsCode (5.5.3)).

Example
gap> C1 := ReedSolomonCode( 16, 5 );
a cyclic [16,12,5]3..4 Reed-Solomon code over GF(17)
gap> RootsOfCode( C1 );
[ Z(17), Z(17)ˆ2, Z(17)ˆ3, Z(17)ˆ4 ]
gap> C2 := RootsCode( 16, last );
a cyclic [16,12,5]3..4 code defined by roots over GF(17)
gap> C1 = C2;
true

3.8 Parameters of Codes

3.8.1 WordLength

♦ WordLength( C ) (function)

WordLength returns the parametern of C, the word length of the elements. Elements of cyclic
codes are polynomials of maximum degreen−1, as calculations are carried out moduloxn−1.

Example
gap> WordLength( NordstromRobinsonCode() );
16
gap> WordLength( PuncturedCode( WholeSpaceCode(7) ) );
6
gap> WordLength( UUVCode( WholeSpaceCode(7), RepetitionCode(7) ) );
14

3.8.2 Redundancy

♦ Redundancy( C ) (function)

Redundancy returns the redundancyr of C, which is equal to the number of check symbols in each
element. IfC is not a linear code the redundancy is not defined andRedundancy returns an error.

If a linear codeC has dimensionk and word lengthn, it has redundancyr = n−k.

Example
gap> C := TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> Redundancy(C);
5
gap> Redundancy( DualCode(C) );
6

3.8.3 MinimumDistance

♦ MinimumDistance( C ) (function)
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MinimumDistance returns the minimum distance ofC, the largest integerd with the property that
every element ofC has at least a Hamming distanced (seeDistanceCodeword (2.6.2)) to any other
element ofC. For linear codes, the minimum distance is equal to the minimum weight. This means
that d is also the smallest positive value withw[d + 1] 6= 0, wherew = (w[1],w[2], ...,w[n]) is the
weight distribution ofC (seeWeightDistribution (3.9.1)). For unrestricted codes,d is the smallest
positive value withw[d + 1] 6= 0, wherew is the inner distribution ofC (seeInnerDistribution
(3.9.2)).

For codes with only one element, the minimum distance is defined to be equal to the word length.
For linear codesC, the algorithm used is the following: After replacingC by a permutation equiva-

lentC’, one may assume the generator matrix has the following formG= (Ik |A), for somek×(n−k)
matrixA. If A = 0 then returnd(C) = 1. Next, find the minimum distance of the code spanned by the
rows ofA. Call this distanced(A). Note thatd(A) is equal to the the Hamming distanced(v,0) where
v is some proper linear combination ofi distinct rows ofA. Returnd(C) = d(A)+ i, wherei is as in
the previous step.

This command may also be called using the syntaxMinimumDistance(C, w). In this form,
MinimumDistance returns the minimum distance of a codewordw to the codeC, also called thedis-
tance fromw to C. This is the smallest valued for which there is an elementc of the codeC which is
at distanced from w. Sod is also the minimum value for whichD[d+1] 6= 0, whereD is the distance
distribution ofw to C (seeDistancesDistribution (3.9.3)).

Note thatw must be an element of the same vector space as the elements ofC. w does not neces-
sarily belong to the code (if it does, the minimum distance is zero).

Example
gap> C := MOLSCode(7);; MinimumDistance(C);
3
gap> WeightDistribution(C);
[ 1, 0, 0, 24, 24 ]
gap> MinimumDistance( WholeSpaceCode( 5, GF(3) ) );
1
gap> MinimumDistance( NullCode( 4, GF(2) ) );
4
gap> C := ConferenceCode(9);; MinimumDistance(C);
4
gap> InnerDistribution(C);
[ 1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]
gap> C := MOLSCode(7);; w := CodewordNr( C, 17 );
[ 3 3 6 2 ]
gap> MinimumDistance( C, w );
0
gap> C := RemovedElementsCode( C, w );; MinimumDistance( C, w );
3 # so w no longer belongs to C

See also theGUAVA commands relating to bounds on the minimum distance in section7.1.

3.8.4 MinimumDistanceLeon

♦ MinimumDistanceLeon( C ) (function)

MinimumDistanceLeon returns the “probable” minimum distancedLeon of a linear binary codeC,
using an implementation of Leon’s probabilistic polynomial time algorithm. Briefly: LetC be a linear
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code of dimensionk overGF(q) as above. The algorithm has input parameterss andρ, wheres is an
integer between 2 andn−k, andρ is an integer between 2 andk.

• Find a generator matrixG of C.

• Randomly permute the columns ofG.

• Perform Gaussian elimination on the permuted matrix to obtain a new matrix of the following
form:

G = (Ik |Z |B)

with Z a k× s matrix. If (Z,B) is the zero matrix then return 1 for the minimum distance. If
Z = 0 but notB then either choose another permutation of the rows ofC or return ‘method fails’.

• SearchZ for at mostρ rows that lead to codewords of weight less thanρ.

• For these codewords, compute the weight of the whole word inC. Return this weight.

(See for example J. S. Leon, [Leo88] for more details.) Sometimes (as is the case inGUAVA) this
probabilistic algorithm is repeated several times and the most commonly occurring value is taken.

Example
gap> C:=RandomLinearCode(50,22,GF(2));
a [50,22,?] randomly generated code over GF(2)
gap> MinimumDistanceLeon(C); time;
6
211
gap> MinimumDistance(C); time;
6
1204

3.8.5 DecreaseMinimumDistanceUpperBound

♦ DecreaseMinimumDistanceUpperBound( C, t, m ) (function)

DecreaseMinimumDistanceUpperBound is an implementation of the algorithm for the minimum
distance of a linear binary codeC by Leon [Leo88]. This algorithm tries to find codewords with small
minimum weights. The parametert is at least 1 and less than the dimension ofC. The best results are
obtained if it is close to the dimension of the code. The parameterm gives the number of runs that the
algorithm will perform.

The result returned is a record with two fields; the first,mindist, gives the lowest
weight found, andword gives the corresponding codeword. (This was implemented before
MinimumDistanceLeon but independently. The older manual had given the command incor-
rectly, so the command was only found after reading all the*.gi files in the GUAVA li-
brary. Though bothMinimumDistance and MinimumDistanceLeon often run much faster than
DecreaseMinimumDistanceUpperBound, DecreaseMinimumDistanceUpperBound appears to be
more accurate thanMinimumDistanceLeon.)

Example
gap> C:=RandomLinearCode(5,2,GF(2));
a [5,2,?] randomly generated code over GF(2)
gap> DecreaseMinimumDistanceUpperBound(C,1,4);
rec( mindist := 3, word := [ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ] )
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gap> MinimumDistance(C);
3
gap> C:=RandomLinearCode(8,4,GF(2));
a [8,4,?] randomly generated code over GF(2)
gap> DecreaseMinimumDistanceUpperBound(C,3,4);
rec( mindist := 2,
word := [ Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0 ] )

gap> MinimumDistance(C);
2

3.8.6 MinimumDistanceRandom

♦ MinimumDistanceRandom( C, num, s ) (function)

MinimumDistanceRandom returns an upper bound for the minimum distancedrandom of a linear
binary codeC, using a probabilistic polynomial time algorithm. Briefly: LetC be a linear code of
dimensionk over GF(q) as above. The algorithm has input parametersnumands, wheres is an
integer between 2 andn−1, andnumis an integer greater than or equal to 1.

• Find a generator matrixG of C.

• Randomly permute the columns ofG, writtenGp..

•

G = (A,B)

with A ak×s matrix. If A is the zero matrix then return ‘method fails’.

• SearchA for at most 5 rows that lead to codewords, in the codeCA with generator matrixA, of
minimum weight.

• For these codewords, use the associated linear combination to compute the weight of the whole
word inC. Return this weight and codeword.

This probabilistic algorithm is repeatednum times (with different random permutations of the rows of
G each time) and the weight and codeword of the lowest occurring weight is taken.

Example
gap> C:=RandomLinearCode(60,20,GF(2));
a [60,20,?] randomly generated code over GF(2)
gap> #mindist(C);time;
gap> #mindistleon(C,10,30);time; #doesn’t work well
gap> a:=MinimumDistanceRandom(C,10,30);time; # done 10 times -with fastest time!!

This is a probabilistic algorithm which may return the wrong answer.
[ 12, [ 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 ] ]
130
gap> a[2] in C;
true
gap> b:=DecreaseMinimumDistanceUpperBound(C,10,1); time; #only done once!
rec( mindist := 12, word := [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2),
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Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2),
0*Z(2), Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2),
Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2),
0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2),
0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2),
0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2) ] )

649
gap> Codeword(b!.word) in C;
true
gap> MinimumDistance(C);time;
12
196
gap> c:=MinimumDistanceLeon(C);time;
12
66
gap> C:=RandomLinearCode(30,10,GF(3));
a [30,10,?] randomly generated code over GF(3)
gap> a:=MinimumDistanceRandom(C,10,10);time;

This is a probabilistic algorithm which may return the wrong answer.
[ 13, [ 0 0 0 1 0 0 0 0 0 0 1 0 2 2 1 1 0 2 2 0 1 0 2 1 0 0 0 1 0 2 ] ]
229
gap> a[2] in C;
true
gap> MinimumDistance(C);time;
9
45
gap> c:=MinimumDistanceLeon(C);
Code must be binary. Quitting.
0
gap> a:=MinimumDistanceRandom(C,1,29);time;

This is a probabilistic algorithm which may return the wrong answer.
[ 10, [ 0 0 1 0 2 0 2 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 2 2 2 0 ] ]
53

3.8.7 CoveringRadius

♦ CoveringRadius( C ) (function)

CoveringRadius returns thecovering radiusof a linear codeC. This is the smallest numberr
with the property that each elementv of the ambient vector space ofC has at most a distancer to the
codeC. So for each vectorv there must be an elementc of C with d(v,c) ≤ r. The smallest covering
radius of any[n,k] binary linear code is denotedt(n,k). A binary linear code with reasonable small
covering radius is called acovering code.

If C is a perfect code (seeIsPerfectCode (3.3.6)), the covering radius is equal tot, the num-
ber of errors the code can correct, whered = 2t + 1, with d the minimum distance ofC (see
MinimumDistance (3.8.3)).

If there exists a function calledSpecialCoveringRadius in the ‘operations’ field of the code,
then this function will be called to compute the covering radius of the code. At the moment, no
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code-specific functions are implemented.
If the length ofBoundsCoveringRadius (seeBoundsCoveringRadius (7.2.1)), is 1, then the

value in

C.boundsCoveringRadius

is returned. Otherwise, the function

C.operations.CoveringRadius

is executed, unless the redundancy ofC is too large. In the last case, a warning is issued.
The algorithm used to compute the covering radius is the following. First,CosetLeadersMatFFE

is used to compute the list of coset leaders (which returns a codeword in each coset ofGF(q)n/C of
minimum weight). ThenWeightVecFFE is used to compute the weight of each of these coset leaders.
The program returns the maximum of these weights.

Example
gap> H := RandomLinearCode(10, 5, GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> CoveringRadius(H);
3
gap> H := HammingCode(4, GF(2));; IsPerfectCode(H);
true
gap> CoveringRadius(H);
1 # Hamming codes have minimum distance 3
gap> CoveringRadius(ReedSolomonCode(7,4));
3
gap> CoveringRadius( BCHCode( 17, 3, GF(2) ) );
3
gap> CoveringRadius( HammingCode( 5, GF(2) ) );
1
gap> C := ReedMullerCode( 1, 9 );;
gap> CoveringRadius( C );
CoveringRadius: warning, the covering radius of
this code cannot be computed straightforward.
Try to use IncreaseCoveringRadiusLowerBound( code ).
(see the manual for more details).
The covering radius of code lies in the interval:
[ 240 .. 248 ]

See also theGUAVA commands relating to bounds on the minimum distance in section7.2.

3.8.8 SetCoveringRadius

♦ SetCoveringRadius( C, intlist ) (function)

SetCoveringRadius enables the user to set the covering radius herself, instead of lettingGUAVA
compute it. Ifintlist is an integer,GUAVA will simply put it in the ‘boundsCoveringRadius’ field.
If it is a list of integers, however, it will intersect this list with the ‘boundsCoveringRadius’ field, thus
taking the best of both lists. If this would leave an empty list, the field is set tointlist. Because
some other computations use the covering radius of the code, it is important that the entered value is
not wrong, otherwise new results may be invalid.
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Example
gap> C := BCHCode( 17, 3, GF(2) );;
gap> BoundsCoveringRadius( C );
[ 3 .. 4 ]
gap> SetCoveringRadius( C, [ 2 .. 3 ] );
gap> BoundsCoveringRadius( C );
[ [ 2 .. 3 ] ]

3.9 Distributions

3.9.1 WeightDistribution

♦ WeightDistribution( C ) (function)

WeightDistribution returns the weight distribution ofC, as a vector. Theith element of this
vector contains the number of elements ofC with weighti−1. For linear codes, the weight distribution
is equal to the inner distribution (seeInnerDistribution (3.9.2)). If w is the weight distribution of
a linear codeC, it must have the zero codeword, sow[1] = 1 (one word of weight 0).

Some codes, such as the Hamming codes, have precomputed weight distributions. For others, the
program WeightDistribution calls the GAP programDistancesDistributionMatFFEVecFFE, which
is written in C. See alsoCodeWeightEnumerator.

Example
gap> WeightDistribution( ConferenceCode(9) );
[ 1, 0, 0, 0, 0, 18, 0, 0, 0, 1 ]
gap> WeightDistribution( RepetitionCode( 7, GF(4) ) );
[ 1, 0, 0, 0, 0, 0, 0, 3 ]
gap> WeightDistribution( WholeSpaceCode( 5, GF(2) ) );
[ 1, 5, 10, 10, 5, 1 ]

3.9.2 InnerDistribution

♦ InnerDistribution( C ) (function)

InnerDistribution returns the inner distribution ofC. The ith element of the vector contains
the average number of elements ofC at distancei−1 to an element ofC. For linear codes, the inner
distribution is equal to the weight distribution (seeWeightDistribution (3.9.1)).

Supposew is the inner distribution ofC. Thenw[1] = 1, because each element ofC has exactly
one element at distance zero (the element itself). The minimum distance ofC is the smallest value
d > 0 with w[d+1] 6= 0, because a distance between zero andd never occurs. SeeMinimumDistance
(3.8.3).

Example
gap> InnerDistribution( ConferenceCode(9) );
[ 1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]
gap> InnerDistribution( RepetitionCode( 7, GF(4) ) );
[ 1, 0, 0, 0, 0, 0, 0, 3 ]
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3.9.3 DistancesDistribution

♦ DistancesDistribution( C, w ) (function)

DistancesDistribution returns the distribution of the distances of all elements ofC to a code-
word w in the same vector space. Theith element of the distance distribution is the number of code-
words ofC that have distancei − 1 to w. The smallest valued with w[d + 1] 6= 0, is defined as the
distance toC (seeMinimumDistance (3.8.3)).

Example
gap> H := HadamardCode(20);
a (20,40,10)6..8 Hadamard code of order 20 over GF(2)
gap> c := Codeword("10110101101010010101", H);
[ 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 ]
gap> DistancesDistribution(H, c);
[ 0, 0, 0, 0, 0, 1, 0, 7, 0, 12, 0, 12, 0, 7, 0, 1, 0, 0, 0, 0, 0 ]
gap> MinimumDistance(H, c);
5 # distance to H

3.9.4 OuterDistribution

♦ OuterDistribution( C ) (function)

The functionOuterDistribution returns a list of lengthqn, whereq is the size of the base field
of C andn is the word length. The elements of the list consist of pairs, the first coordinate being
an element ofGF(q)n (this is a codeword type) and the second coordinate being a distribution of
distances to the code (a list of integers). This table isvery large, and forn > 20 it will not fit in the
memory of most computers. The functionDistancesDistribution (seeDistancesDistribution
(3.9.3)) can be used to calculate one entry of the list.

Example
gap> C := RepetitionCode( 3, GF(2) );
a cyclic [3,1,3]1 repetition code over GF(2)
gap> OD := OuterDistribution(C);
[ [ [ 0 0 0 ], [ 1, 0, 0, 1 ] ], [ [ 1 1 1 ], [ 1, 0, 0, 1 ] ],
[ [ 0 0 1 ], [ 0, 1, 1, 0 ] ], [ [ 1 1 0 ], [ 0, 1, 1, 0 ] ],
[ [ 1 0 0 ], [ 0, 1, 1, 0 ] ], [ [ 0 1 1 ], [ 0, 1, 1, 0 ] ],
[ [ 0 1 0 ], [ 0, 1, 1, 0 ] ], [ [ 1 0 1 ], [ 0, 1, 1, 0 ] ] ]

gap> WeightDistribution(C) = OD[1][2];
true
gap> DistancesDistribution( C, Codeword("110") ) = OD[4][2];
true

3.10 Decoding Functions

3.10.1 Decode

♦ Decode( C, r ) (function)

Decode decodesr (a ’received word’) with respect to codeC and returns the ‘message word’ (i.e.,
the information digits associated to the codewordc∈C closest tor). Herer can be aGUAVA codeword
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or a list of codewords. First, possible errors inr are corrected, then the codeword is decoded to an
information codeword m(and not an element ofC). If the code record has a field ‘specialDecoder’, this
special algorithm is used to decode the vector. Hamming codes and BCH codes have such a special
algorithm. (The algorithm used for BCH codes is the Sugiyama algorithm described, for example, in
section 5.4.3 of [HP03]. Work in progress:special decoders are now being written for the generalized
Reed-Solomon code.) IfC is linear and no special decoder field has been set then syndrome decoding
is used. Otherwise (whenC is non-linear), no decoding algorithms have been implemented and an
error is returned.

A special decoder can be created by defining a function

C!.SpecialDecoder := function(C, r) ... end;

The function uses the argumentsC (the code record itself) andr (a vector of the codeword type) to
decoder to an information vector. A normal decoder would take a codewordr of the same word
length and field asC, and would return an information vector of lengthk, the dimension ofC. The user
is not restricted to these normal demands though, and can for instance define a decoder for non-linear
codes.

Encoding is done by multiplying the information vector with the code (see3.2).
Example

gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := "1010"*C; # encoding
[ 1 0 1 1 0 1 0 ]
gap> Decode(C, c); # decoding
[ 1 0 1 0 ]
gap> Decode(C, Codeword("0010101"));
[ 1 1 0 1 ] # one error corrected
gap> C!.SpecialDecoder := function(C, c)
> return NullWord(Dimension(C));
> end;
function ( C, c ) ... end
gap> Decode(C, c);
[ 0 0 0 0 ] # new decoder always returns null word

3.10.2 Decodeword

♦ Decodeword( C, r ) (function)

Decodeword decodesr (a ’received word’) with respect to codeC and returns the codewordc∈C
closest tor. Herer can be aGUAVA codeword or a list of codewords. If the code record has a field
‘specialDecoder’, this special algorithm is used to decode the vector. Hamming codes, generalized
Reed-Solomon codes, and BCH codes have such a special algorithm. (The algorithm used for BCH
codes is the Sugiyama algorithm described, for example, in section 5.4.3 of [HP03]. The algorithm
used for generalized Reed-Solomon codes is the “interpolation algorithm” described for example in
chapter 5 of [JH04].) If C is linear and no special decoder field has been set then syndrome decoding is
used. Otherwise, whenC is non-linear, the nearest neighbor algorithm has been implemented (which
should only be used for small-sized codes).

Example
gap> C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
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gap> c := "1010"*C; # encoding
[ 1 0 1 1 0 1 0 ]
gap> Decodeword(C, c); # decoding
[ 1 0 1 1 0 1 0 ]
gap>
gap> R:=PolynomialRing(GF(11),["t"]);
GF(11)[t]
gap> P:=List([1,3,4,5,7],i->Z(11)ˆi);
[ Z(11), Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ5, Z(11)ˆ7 ]
gap> C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2 generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3
gap> c:=Random(C);
[ 0 9 6 2 1 ]
gap> v:=Codeword("09620");
[ 0 9 6 2 0 ]
gap> GeneralizedReedSolomonDecoderGao(C,v);
[ 0 9 6 2 1 ]
gap> Decodeword(C,v); # calls the special interpolation decoder
[ 0 9 6 2 1 ]
gap> G:=GeneratorMat(C);
[ [ Z(11)ˆ0, 0*Z(11), 0*Z(11), Z(11)ˆ8, Z(11)ˆ9 ],
[ 0*Z(11), Z(11)ˆ0, 0*Z(11), Z(11)ˆ0, Z(11)ˆ8 ],
[ 0*Z(11), 0*Z(11), Z(11)ˆ0, Z(11)ˆ3, Z(11)ˆ8 ] ]

gap> C1:=GeneratorMatCode(G,GF(11));
a linear [5,3,1..3]2 code defined by generator matrix over GF(11)
gap> Decodeword(C,v); # calls syndrome decoding
[ 0 9 6 2 1 ]

3.10.3 GeneralizedReedSolomonDecoderGao

♦ GeneralizedReedSolomonDecoderGao( C, r ) (function)

GeneralizedReedSolomonDecoderGao decodesr (a ’received word’) to a codewordc∈C in a
generalized Reed-Solomon codeC (seeGeneralizedReedSolomonCode (5.6.2)), closest tor. Here
r must be aGUAVA codeword. If the code record does not have name ‘generalized Reed-Solomon
code’ then an error is returned. Otherwise, the Gao decoder [Gao] is used to computec.

For long codes, this method is faster in practice than the interpolation method used in
Decodeword.

Example
gap> R:=PolynomialRing(GF(11),["t"]);
GF(11)[t]
gap> P:=List([1,3,4,5,7],i->Z(11)ˆi);
[ Z(11), Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ5, Z(11)ˆ7 ]
gap> C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2 generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3
gap> c:=Random(C);
[ 0 9 6 2 1 ]
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gap> v:=Codeword("09620");
[ 0 9 6 2 0 ]
gap> GeneralizedReedSolomonDecoderGao(C,v);
[ 0 9 6 2 1 ]

3.10.4 GeneralizedReedSolomonListDecoder

♦ GeneralizedReedSolomonListDecoder( C, r, tau ) (function)

GeneralizedReedSolomonListDecoder implements Sudans list-decoding algorithm (see sec-
tion 12.1 of [JH04]) for “low rate” Reed-Solomon codes. It returns the list of all codewords in C which
are a distance of at mosttau from r (a ’received word’).C must be a generalized Reed-Solomon code
C (seeGeneralizedReedSolomonCode (5.6.2)) andr must be aGUAVA codeword.

Example
gap> F:=GF(16);
GF(2ˆ4)
gap>
gap> a:=PrimitiveRoot(F);; b:=aˆ7;; bˆ4+bˆ3+1;
0*Z(2)
gap> Pts:=List([0..14],i->bˆi);
[ Z(2)ˆ0, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ14, Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ13, Z(2ˆ2), Z(2ˆ4)ˆ12, Z(2ˆ4)ˆ4,
Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ3, Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ9, Z(2ˆ4), Z(2ˆ4)ˆ8 ]

gap> x:=X(F);;
gap> R1:=PolynomialRing(F,[x]);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing(F,[x,y]);;
gap> C:=GeneralizedReedSolomonCode(Pts,3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
gap> MinimumDistance(C); ## 6 error correcting
13
gap> z:=Zero(F);;
gap> r:=[z,z,z,z,z,z,z,z,bˆ6,bˆ2,bˆ5,bˆ14,b,bˆ7,bˆ11];;
gap> r:=Codeword(r);
[ 0 0 0 0 0 0 0 0 aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2 ]
gap> cs:=GeneralizedReedSolomonListDecoder(C,r,2); time;
[ [ 0 aˆ9 aˆ3 aˆ13 aˆ6 aˆ10 aˆ11 a aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2 ],
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ]

250
gap> c1:=cs[1]; c1 in C;
[ 0 aˆ9 aˆ3 aˆ13 aˆ6 aˆ10 aˆ11 a aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2 ]
true
gap> c2:=cs[2]; c2 in C;
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
true
gap> WeightCodeword(c1-r);
7
gap> WeightCodeword(c2-r);
7



GUAVA 46

3.10.5 NearestNeighborGRSDecodewords

♦ NearestNeighborGRSDecodewords( C, v, dist ) (function)

NearestNeighborGRSDecodewords finds all generalized Reed-Solomon codewords within dis-
tancedist from v and the associated polynomial, using “brute force”. Input:v is a received vector (a
GUAVA codeword),C is a GRS code,dist ¿ 0 is the distance fromv to search inC. Output: a list of
pairs[c, f (x)], wherewt(c−v)≤ dist−1 andc = ( f (x1), ..., f (xn)).

Example
gap> F:=GF(16);
GF(2ˆ4)
gap> a:=PrimitiveRoot(F);; b:=aˆ7; bˆ4+bˆ3+1;
Z(2ˆ4)ˆ7
0*Z(2)
gap> Pts:=List([0..14],i->bˆi);
[ Z(2)ˆ0, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ14, Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ13, Z(2ˆ2), Z(2ˆ4)ˆ12,
Z(2ˆ4)ˆ4, Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ3, Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ9, Z(2ˆ4),
Z(2ˆ4)ˆ8 ]

gap> x:=X(F);;
gap> R1:=PolynomialRing(F,[x]);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing(F,[x,y]);;
gap> C:=GeneralizedReedSolomonCode(Pts,3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
gap> MinimumDistance(C); # 6 error correcting
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=[z,z,z,z,z,z,z,z,bˆ6,bˆ2,bˆ5,bˆ14,b,bˆ7,bˆ11];; # 7 errors
gap> r:=Codeword(r);
[ 0 0 0 0 0 0 0 0 aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2 ]
gap> cs:=NearestNeighborGRSDecodewords(C,r,7);
[ [ [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ], 0*Z(2) ],
[ [ 0 aˆ9 aˆ3 aˆ13 aˆ6 aˆ10 aˆ11 a aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2 ], x_1+Z(2)ˆ0 ] ]

3.10.6 NearestNeighborDecodewords

♦ NearestNeighborDecodewords( C, v, dist ) (function)

NearestNeighborDecodewords finds all codewords in a linear codeC within distancedist from
v, using “brute force”. Input:v is a received vector (aGUAVA codeword),C is a linear code,dist ¿ 0
is the distance fromv to search inC. Output: a list ofc∈C, wherewt(c−v)≤ dist−1.

Example
gap> F:=GF(16);
GF(2ˆ4)
gap> a:=PrimitiveRoot(F);; b:=aˆ7; bˆ4+bˆ3+1;
Z(2ˆ4)ˆ7
0*Z(2)
gap> Pts:=List([0..14],i->bˆi);
[ Z(2)ˆ0, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ14, Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ13, Z(2ˆ2), Z(2ˆ4)ˆ12,
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Z(2ˆ4)ˆ4, Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ3, Z(2ˆ2)ˆ2, Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ9, Z(2ˆ4),
Z(2ˆ4)ˆ8 ]

gap> x:=X(F);;
gap> R1:=PolynomialRing(F,[x]);;
gap> vars:=IndeterminatesOfPolynomialRing(R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing(F,[x,y]);;
gap> C:=GeneralizedReedSolomonCode(Pts,3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF(16)
gap> MinimumDistance(C);
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=[z,z,z,z,z,z,z,z,bˆ6,bˆ2,bˆ5,bˆ14,b,bˆ7,bˆ11];;
gap> r:=Codeword(r);
[ 0 0 0 0 0 0 0 0 aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2 ]
gap> cs:=NearestNeighborDecodewords(C,r,7);
[ [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ],
[ 0 aˆ9 aˆ3 aˆ13 aˆ6 aˆ10 aˆ11 a aˆ12 aˆ14 aˆ5 aˆ8 aˆ7 aˆ4 aˆ2 ] ]

3.10.7 Syndrome

♦ Syndrome( C, v ) (function)

Syndrome returns the syndrome of wordv with respect to a linear codeC. v is a codeword in the
ambient vector space ofC. If v is an element ofC, the syndrome is a zero vector. The syndrome can
be used for looking up an error vector in the syndrome table (seeSyndromeTable (3.10.8)) that is
needed to correct an error inv.

A syndrome is not defined for non-linear codes.Syndrome then returns an error.
Example

gap> C := HammingCode(4);
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> v := CodewordNr( C, 7 );
[ 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 ]
gap> Syndrome( C, v );
[ 0 0 0 0 ]
gap> Syndrome( C, Codeword( "000000001100111" ) );
[ 1 1 1 1 ]
gap> Syndrome( C, Codeword( "000000000000001" ) );
[ 1 1 1 1 ] # the same syndrome: both codewords are in the same

# coset of C

3.10.8 SyndromeTable

♦ SyndromeTable( C ) (function)

SyndromeTable returns asyndrome tableof a linear codeC, consisting of two columns. The
first column consists of the error vectors that correspond to the syndrome vectors in the second col-
umn. These vectors both are of the codeword type. After calculating the syndrome of a wordv with
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Syndrome (seeSyndrome (3.10.7)), the error vector needed to correctv can be found in the syndrome
table. Subtracting this vector fromv yields an element ofC. To make the search for the syndrome as
fast as possible, the syndrome table is sorted according to the syndrome vectors.

Example
gap> H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> SyndromeTable(H);
[ [ [ 0 0 0 ], [ 0 0 ] ], [ [ 1 0 0 ], [ 0 1 ] ],
[ [ 0 1 0 ], [ 1 0 ] ], [ [ 0 0 1 ], [ 1 1 ] ] ]

gap> c := Codeword("101");
[ 1 0 1 ]
gap> c in H;
false # c is not an element of H
gap> Syndrome(H,c);
[ 1 0 ] # according to the syndrome table,

# the error vector [ 0 1 0 ] belongs to this syndrome
gap> c - Codeword("010") in H;
true # so the corrected codeword is

# [ 1 0 1 ] - [ 0 1 0 ] = [ 1 1 1 ],
# this is an element of H

3.10.9 StandardArray

♦ StandardArray( C ) (function)

StandardArray returns the standard array of a codeC. This is a matrix with elements of the
codeword type. It hasqr rows andqk columns, whereq is the size of the base field ofC, r = n−k is
the redundancy ofC, andk is the dimension ofC. The first row contains all the elements ofC. Each
other row contains words that do not belong to the code, with in the first column their syndrome vector
(seeSyndrome (3.10.7)).

A non-linear code does not have a standard array.StandardArray then returns an error.
Note that calculating a standard array can be very time- and memory- consuming.

Example
gap> StandardArray(RepetitionCode(3));
[ [ [ 0 0 0 ], [ 1 1 1 ] ], [ [ 0 0 1 ], [ 1 1 0 ] ],
[ [ 0 1 0 ], [ 1 0 1 ] ], [ [ 1 0 0 ], [ 0 1 1 ] ] ]

3.10.10 PermutationDecode

♦ PermutationDecode( C, v ) (function)

PermutationDecode performs permutation decoding when possible and returns original vector
and prints ’fail’ when not possible.

This uses AutomorphismGroup in the binary case, and (the slower)
PermutationAutomorphismGroup otherwise, to compute the permutation automorphism groupP
of C. The algorithm runs through the elementsp of P checking if the weight ofH(p · v) is less than
(d− 1)/2. If it is then the vectorp · v is used to decodev: assumingC is in standard form then
c = p−1Em is the decoded word, wherem is the information digits part ofp · v. If no suchp exists
then “fail” is returned. See, for example, section 10.2 of Huffman and Pless [HP03] for more details.
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Example
gap> C0:=HammingCode(3,GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> G0:=GeneratorMat(C0);;
gap> G := List(G0, ShallowCopy);;
gap> PutStandardForm(G);
()
gap> Display(G);
1 . . . . 1 1
. 1 . . 1 . 1
. . 1 . 1 1 .
. . . 1 1 1 1
gap> H0:=CheckMat(C0);;
gap> Display(H0);
. . . 1 1 1 1
. 1 1 . . 1 1
1 . 1 . 1 . 1
gap> c0:=Random(C0);
[ 0 0 0 1 1 1 1 ]
gap> v01:=c0[1]+Z(2)ˆ2;;
gap> v1:=List(c0, ShallowCopy);;
gap> v1[1]:=v01;;
gap> v1:=Codeword(v1);
[ 1 0 0 1 1 1 1 ]
gap> c1:=PermutationDecode(C0,v1);
[ 0 0 0 1 1 1 1 ]
gap> c1=c0;
true



Chapter 4

Coding theory functions in the GAP
kernel

This chapter will recall from the GAP manual the GAP coding theory functions, some of which are
partially written in C. The main functions areAClosestVectorCombinationsMatFFEVecFFE,
AClosestVectorCombinationsMatFFEVecFFECoords, CosetLeadersMatFFE,
DistancesDistributionMatFFEVecFFE, DistancesDistributionVecFFEsVecFFE,
DistanceVecFFE, and WeightVecFFE. These are declared in the GAP library file ’listcoef.gd’
and implemented in ’listcoef.gi’.

4.1 Distance functions

4.1.1 AClosestVectorCombinationsMatFFEVecFFE

♦ AClosestVectorCombinationsMatFFEVecFFE( mat, F, vec, r, st ) (function)

This command runs through theF-linear combinations of the vectors in the rows of the matrixmat
that can be written as linear combinations of exactlyr rows (that is without using zero as a coefficient)
and returns a vector from these that is closest to the vectorvec. The length of the rows ofmat and
the length ofvec must be equal, and all elements must lie inF. The rows ofmat must be linearly
independent. If it finds a vector of distance at mostst, which must be a nonnegative integer, then it
stops immediately and returns this vector.

Example
gap> F:=GF(3);;
gap> x:= Indeterminate( F );; pol:= xˆ2+1;
x_1ˆ2+Z(3)ˆ0
gap> C := GeneratorPolCode(pol,8,F);
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> v:=Codeword("12101111");
[ 1 2 1 0 1 1 1 1 ]
gap> v:=VectorCodeword(v);
[ Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0 ]
gap> G:=GeneratorMat(C);
[ [ Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ],

50
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[ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0 ] ]

gap> AClosestVectorCombinationsMatFFEVecFFE(G,F,v,1,1);
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0 ]

4.1.2 AClosestVectorComb..MatFFEVecFFECoords

♦ AClosestVectorComb..MatFFEVecFFECoords( mat, F, vec, r, st ) (function)

AClosestVectorCombinationsMatFFEVecFFECoords returns a two element list containing (a)
the same closest vector as inAClosestVectorCombinationsMatFFEVecFFE, and (b) a vectorv with
exactlyr non-zero entries, such thatv∗mat is the closest vector.

Example
gap> F:=GF(3);;
gap> x:= Indeterminate( F );; pol:= xˆ2+1;
x_1ˆ2+Z(3)ˆ0
gap> C := GeneratorPolCode(pol,8,F);
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> v:=Codeword("12101111"); v:=VectorCodeword(v);;
[ 1 2 1 0 1 1 1 1 ]
gap> G:=GeneratorMat(C);;
gap> AClosestVectorCombinationsMatFFEVecFFECoords(G,F,v,1,1);
[ [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0 ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0 ] ]

4.1.3 DistancesDistributionMatFFEVecFFE

♦ DistancesDistributionMatFFEVecFFE( vecs, vec ) (function)

DistancesDistributionMatFFEVecFFE returns the distances distribution of the vectorvec to
the vectors in the listvecs. All vectors must have the same length, and all elements must lie in a
common field. The distances distribution is a listd of lengthLength(vec)+1, such that the valued[i]
is the number of vectors in vecs that have distancei +1 tovec.

Example
gap> v:=[ Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0 ];;
gap> vecs:=[ [ Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0 ] ];;
gap> DistancesDistributionMatFFEVecFFE(vecs,GF(3),v);
[ 0, 4, 6, 60, 109, 216, 192, 112, 30 ]

4.1.4 DistancesDistributionVecFFEsVecFFE

♦ DistancesDistributionVecFFEsVecFFE( vecs, vec ) (function)
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DistancesDistributionVecFFEsVecFFE returns the distances distribution of the vectorvec to
the vectors in the listvecs. All vectors must have the same length, and all elements must lie in a
common field. The distances distribution is a listd of lengthLength(vec)+1, such that the valued[i]
is the number of vectors invecs that have distancei +1 tovec.

Example
gap> v:=[ Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0 ];;
gap> vecs:=[ [ Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0 ] ];;
gap> DistancesDistributionVecFFEsVecFFE(vecs,v);
[ 0, 0, 0, 0, 0, 4, 0, 1, 1 ]

4.2 Other functions

4.2.1 WeightVecFFE

♦ WeightVecFFE( vec ) (function)

WeightVecFFE returns the weight of the finite field vectorvec, i.e. the number of nonzero entries.

Example
gap> v:=[ Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0 ];;
gap> WeightVecFFE(v);
7

4.2.2 DistanceVecFFE

♦ DistanceVecFFE( vec1, vec2 ) (function)

TheHamming metriconGF(q)n is the function

dist((v1, ...,vn),(w1, ...,wn)) = |{i ∈ [1..n] | vi 6= wi}|.

This is also called the (Hamming) distance betweenv = (v1, ...,vn) and w = (w1, ...,wn).
DistanceVecFFE returns the distance between the two vectorsvec1 and vec2, which must have
the same length and whose elements must lie in a common field. The distance is the number of places
wherevec1 andvec2 differ.

Example
gap> v1:=[ Z(3)ˆ0, Z(3), Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0 ];;
gap> v2:=[ Z(3), Z(3)ˆ0, Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0, Z(3)ˆ0 ];;
gap> DistanceVecFFE(v1,v2);
2



Chapter 5

Generating Codes

In this chapter we describe functions for generating codes.
Section5.1describes functions for generating unrestricted codes.
Section5.2describes functions for generating linear codes.
Section5.3 describes functions for constructing certain covering codes, such as the Gabidulin

codes.
Section5.4describes functions for constructing the Golay codes.
Section5.5describes functions for generating cyclic codes.
Section5.6 describes functions for generating codes as the image of an evaluation map applied

to a space of functions. For example, generalized Reed-Solomon codes and toric codes are described
there.

5.1 Generating Unrestricted Codes

In this section we start with functions that creating code from user defined matrices or special matrices
(seeElementsCode (5.1.1), HadamardCode (5.1.2), ConferenceCode (5.1.3) andMOLSCode (5.1.4)).
These codes are unrestricted codes; they may later be discovered to be linear or cyclic.

The next functions generate random codes (seeRandomCode (5.1.5)) and the Nordstrom-Robinson
code (seeNordstromRobinsonCode (5.1.6)), respectively.

Finally, we describe two functions for generating Greedy codes. These are codes that contructed
by gathering codewords from a space (seeGreedyCode (5.1.7) andLexiCode (5.1.8)).

5.1.1 ElementsCode

♦ ElementsCode( L[, name,] F ) (function)

ElementsCode creates an unrestricted code of the list of elementsL, in the fieldF. L must be a
list of vectors, strings, polynomials or codewords.name can contain a short description of the code.

If L contains a codeword more than once, it is removed from the list and aGAP set is returned.
Example

gap> M := Z(3)ˆ0 * [ [1, 0, 1, 1], [2, 2, 0, 0], [0, 1, 2, 2] ];;
gap> C := ElementsCode( M, "example code", GF(3) );
a (4,3,1..4)2 example code over GF(3)
gap> MinimumDistance( C );
4

53
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gap> AsSSortedList( C );
[ [ 0 1 2 2 ], [ 1 0 1 1 ], [ 2 2 0 0 ] ]

5.1.2 HadamardCode

♦ HadamardCode( H[, t] ) (function)

The four forms this command can take areHadamardCode(H,t), HadamardCode(H),
HadamardCode(n,t), andHadamardCode(n).

In the case when the argumentsH andt are both given,HadamardCode returns a Hadamard code
of thetth kind from the Hadamard matrixH In case onlyH is given,t = 3 is used.

By definition, a Hadamard matrix is a square matrixH with H ·HT = −n · In, wheren is the size
of H. The entries ofH are either 1 or -1.

The matrixH is first transformed into a binary matrixAn by replacing the 1’s by 0’s and the−1’s
by 1s).

The Hadamard matrix of thefirst kind(t = 1) is created by using the rows ofAn as elements, after
deleting the first column. This is a(n−1,n,n/2) code. We use this code for creating the Hadamard
code of thesecond kind(t = 2), by adding all the complements of the already existing codewords. This
results in a(n−1,2n,n/2−1) code. Thethird kind (t = 3) is created by using the rows ofAn (without
cutting a column) and their complements as elements. This way, we have an(n,2n,n/2)-code. The
returned code is generally an unrestricted code, but forn = 2r , the code is linear.

The commandHadamardCode(n,t) returns a Hadamard code with parametern of the tth kind.
For the commandHadamardCode(n), t = 3 is used.

When called in these forms,HadamardCode first creates a Hadamard matrix (seeHadamardMat
(7.3.4)), of sizen and then follows the same procedure as described above. Therefore the same
restrictions with respect ton as for Hadamard matrices hold.

Example
gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
gap> HadamardCode( H4, 1 );
a (3,4,2)1 Hadamard code of order 4 over GF(2)
gap> HadamardCode( H4, 2 );
a (3,8,1)0 Hadamard code of order 4 over GF(2)
gap> HadamardCode( H4 );
a (4,8,2)1 Hadamard code of order 4 over GF(2)
gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
gap> C := HadamardCode( 4 );
a (4,8,2)1 Hadamard code of order 4 over GF(2)
gap> C = HadamardCode( H4 );
true

5.1.3 ConferenceCode

♦ ConferenceCode( H ) (function)

ConferenceCode returns a code of lengthn−1 constructed from a symmetric ’conference matrix’
H. A conference matrixH is a symmetric matrix of ordern, which satisfiesH ·HT = ((n−1) · I , with
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n≡ 2 (mod 4). The rows of12(H + I + J), 1
2(−H + I + J), plus the zero and all-ones vectors form

the elements of a binary non-linear(n−1,2n,(n−2)/2) code.
GUAVA constructs a symmetric conference matrix of ordern+ 1 (n≡ 1 (mod 4)) and uses the

rows of that matrix, plus the zero and all-ones vectors, to construct a binary non-linear(n,2(n+
1),(n−1)/2)-code.

Example
gap> H6 := [[0,1,1,1,1,1],[1,0,1,-1,-1,1],[1,1,0,1,-1,-1],
> [1,-1,1,0,1,-1],[1,-1,-1,1,0,1],[1,1,-1,-1,1,0]];;
gap> C1 := ConferenceCode( H6 );
a (5,12,2)1..4 conference code over GF(2)
gap> IsLinearCode( C1 );
false
gap> C2 := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList( C2 );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 1 1 ], [ 0 1 1 0 1 ], [ 0 1 1 1 0 ],
[ 1 0 0 1 1 ], [ 1 0 1 0 1 ], [ 1 0 1 1 0 ], [ 1 1 0 0 1 ], [ 1 1 0 1 0 ],
[ 1 1 1 0 0 ], [ 1 1 1 1 1 ] ]

5.1.4 MOLSCode

♦ MOLSCode( [n,] q ) (function)

MOLSCode returns an(n,q2,n−1) code overGF(q). The code is created fromn−2 ’Mutually
Orthogonal Latin Squares’ (MOLS) of sizeq× q. The default forn is 4. GUAVA can construct a
MOLS code forn−2≤ q. Hereq must be a prime power,q> 2. If there are non−2 MOLS, an error
is signalled.

Since each of then−2 MOLS is aq×q matrix, we can create a code of sizeq2 by listing in each
code element the entries that are in the same position in each of the MOLS. We precede each of these
lists with the two coordinates that specify this position, making the word length becomen.

The MOLS codes are MDS codes (seeIsMDSCode (3.3.7)).
Example

gap> C1 := MOLSCode( 6, 5 );
a (6,25,5)3..4 code generated by 4 MOLS of order 5 over GF(5)
gap> mols := List( [1 .. WordLength(C1) - 2 ], function( nr )
> local ls, el;
> ls := NullMat( Size(LeftActingDomain(C1)), Size(LeftActingDomain(C1)) );
> for el in VectorCodeword( AsSSortedList( C1 ) ) do
> ls[IntFFE(el[1])+1][IntFFE(el[2])+1] := el[nr + 2];
> od;
> return ls;
> end );;
gap> AreMOLS( mols );
true
gap> C2 := MOLSCode( 11 );
a (4,121,3)2 code generated by 2 MOLS of order 11 over GF(11)
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5.1.5 RandomCode

♦ RandomCode( n, M, F ) (function)

RandomCode returns a random unrestricted code of sizeM with word lengthn overF. M must be
less than or equal to the number of elements in the spaceGF(q)n.

The function RandomLinearCode returns a random linear code (seeRandomLinearCode
(5.2.11)).

Example
gap> C1 := RandomCode( 6, 10, GF(8) );
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> MinimumDistance(C1);
3
gap> C2 := RandomCode( 6, 10, GF(8) );
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> C1 = C2;
false

5.1.6 NordstromRobinsonCode

♦ NordstromRobinsonCode( ) (function)

NordstromRobinsonCode returns a Nordstrom-Robinson code, the best code with word length
n = 16 and minimum distanced = 6 overGF(2). This is a non-linear(16,256,6) code.

Example
gap> C := NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> OptimalityCode( C );
0

5.1.7 GreedyCode

♦ GreedyCode( L, d, F ) (function)

GreedyCode returns a Greedy code with design distanced over the finite fieldF. The code is
constructed using the greedy algorithm on the list of vectorsL. (The greedy algorithm checks each
vector inL and adds it to the code if its distance to the current code is greater than or equal tod. It is
obvious that the resulting code has a minimum distance of at leastd.

Greedy codes are often linear codes.
The functionLexiCode creates a greedy code from a basis instead of an enumerated list (see

LexiCode (5.1.8)).
Example

gap> C1 := GreedyCode( Tuples( AsSSortedList( GF(2) ), 5 ), 3, GF(2) );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C2 := GreedyCode( Permuted( Tuples( AsSSortedList( GF(2) ), 5 ),
> (1,4) ), 3, GF(2) );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C1 = C2;
false
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5.1.8 LexiCode

♦ LexiCode( n, d, F ) (function)

In this format,Lexicode returns a lexicode with word lengthn, design distanced over F. The
code is constructed using the greedy algorithm on the lexicographically ordered list of all vectors of
lengthn overF. Every time a vector is found that has a distance to the current code of at leastd, it is
added to the code. This results, obviously, in a code with minimum distance greater than or equal to
d.

Another syntax which one can use isLexiCode( B, d, F ). When called in this format,
LexiCode uses the basisB instead of the standard basis.B is a matrix of vectors overF. The code is
constructed using the greedy algorithm on the list of vectors spanned byB, ordered lexicographically
with respect toB.

Note that binary lexicodes are always linear.

Example
gap> C := LexiCode( 4, 3, GF(5) );
a (4,17,3..4)2..4 lexicode over GF(5)
gap> B := [ [Z(2)ˆ0, 0*Z(2), 0*Z(2)], [Z(2)ˆ0, Z(2)ˆ0, 0*Z(2)] ];;
gap> C := LexiCode( B, 2, GF(2) );
a linear [3,1,2]1..2 lexicode over GF(2)

The functionGreedyCode creates a greedy code that is not restricted to a lexicographical order (see
GreedyCode (5.1.7)).

5.2 Generating Linear Codes

In this section we describe functions for constructing linear codes. A linear code always has a gener-
ator or check matrix.

The first two functions generate linear codes from the generator matrix (GeneratorMatCode
(5.2.1)) or check matrix (CheckMatCode (5.2.3)). All linear codes can be constructed with these
functions.

The next functions we describe generate some well-known codes, like Hamming codes
(HammingCode (5.2.4)), Reed-Muller codes (ReedMullerCode (5.2.5)) and the extended Golay codes
(ExtendedBinaryGolayCode (5.4.2) andExtendedTernaryGolayCode (5.4.4)).

A large and powerful family of codes are alternant codes. They are obtained by a small modi-
fication of the parity check matrix of a BCH code (seeAlternantCode (5.2.6), GoppaCode (5.2.7),
GeneralizedSrivastavaCode (5.2.8) andSrivastavaCode (5.2.9)).

Finally, we describe a function for generating random linear codes (seeRandomLinearCode
(5.2.11)).

5.2.1 GeneratorMatCode

♦ GeneratorMatCode( G[, name,] F ) (function)

GeneratorMatCode returns a linear code with generator matrixG. G must be a matrix over finite
field F. name can contain a short description of the code. The generator matrix is the basis of the
elements of the code. The resulting code has word lengthn, dimensionk if G is a k× n-matrix.
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If GF(q) is the field of the code, the size of the code will beqk. Before printing the information
[n,k,d1..d2]r1..r2 about the code to the screen usingViewObj (an undocumented internalGUAVA
command), upper and lower estimates for the minimum distance and covering radius are computed.
These estimates are obtained as follows: first, ifn andq are not too big,GUAVA searches though the
tables in the ‘tbl’ subdirectory for best-known upper bounds. This can be time-consuming. Otherwise,
GUAVA simply callsBoundsMinimumDistance andBoundsCoveringRadius.

If the generator matrix does not have full row rank, the linearly dependent rows are removed.
This is done by theGAP functionBaseMat and results in an equal code. The generator matrix can be
retrieved with the functionGeneratorMat (seeGeneratorMat (3.7.1)).

Example
gap> G := Z(3)ˆ0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := GeneratorMatCode( G, GF(3) );
a linear [5,3,1..2]1..2 code defined by generator matrix over GF(3)
gap> C2 := GeneratorMatCode( IdentityMat( 5, GF(2) ), GF(2) );
a linear [5,5,1]0 code defined by generator matrix over GF(2)
gap> GeneratorMatCode( List( AsSSortedList( NordstromRobinsonCode() ),
> x -> VectorCodeword( x ) ), GF( 2 ) );
a linear [16,11,1..4]2 code defined by generator matrix over GF(2)
# This is the smallest linear code that contains the N-R code

5.2.2 GeneratorMatCodeNC

♦ GeneratorMatCodeNC( G, F ) (function)

GeneratorMatCodeNC returns a linear codeC with generator matrixG. This command is the same
asGeneratorMatCode, except that (1) it does not compute upper and lower bounds for the minimum
distance or covering radius forC, and (2) it does not allow for an optional argumentname. This
command is much faster thanGeneratorMatCode in some cases.

5.2.3 CheckMatCode

♦ CheckMatCode( H[, name,] F ) (function)

CheckMatCode returns a linear code with check matrixH. H must be a matrix over Galois field
F. [name. can contain a short description of the code. The parity check matrix is the transposed of
the nullmatrix of the generator matrix of the code. Therefore,c ·HT = 0 wherec is an element of the
code. IfH is ar×n-matrix, the code has word lengthn, redundancyr and dimensionn− r.

If the check matrix does not have full row rank, the linearly dependent rows are removed. This is
done by theGAP functionBaseMat. and results in an equal code. The check matrix can be retrieved
with the functionCheckMat (seeCheckMat (3.7.2)).

Example
gap> G := Z(3)ˆ0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := CheckMatCode( G, GF(3) );
a linear [5,2,1..2]2..3 code defined by check matrix over GF(3)
gap> CheckMat(C1);
[ [ Z(3)ˆ0, 0*Z(3), Z(3)ˆ0, Z(3), 0*Z(3) ],
[ 0*Z(3), Z(3)ˆ0, Z(3), Z(3)ˆ0, Z(3)ˆ0 ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, Z(3), Z(3)ˆ0 ] ]
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gap> C2 := CheckMatCode( IdentityMat( 5, GF(2) ), GF(2) );
a cyclic [5,0,5]5 code defined by check matrix over GF(2)

5.2.4 HammingCode

♦ HammingCode( r, F ) (function)

HammingCode returns a Hamming code with redundancyr overF. A Hamming code is a single-
error-correcting code. The parity check matrix of a Hamming code has all nonzero vectors of lengthr
in its columns, except for a multiplication factor. The decoding algorithm of the Hamming code (see
Decode (3.10.1)) makes use of this property.

If q is the size of its fieldF, the returned Hamming code is a linear[(qr −1)/(q−1),(qr −1)/(q−
1)− r,3] code.

Example
gap> C1 := HammingCode( 4, GF(2) );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := HammingCode( 3, GF(9) );
a linear [91,88,3]1 Hamming (3,9) code over GF(9)

5.2.5 ReedMullerCode

♦ ReedMullerCode( r, k ) (function)

ReedMullerCode returns a binary ’Reed-Muller code’R(r, k) with dimensionk and orderr.
This is a code with length 2k and minimum distance 2k−r (see for example, section 1.10 in [HP03]).
By definition, therth order binary Reed-Muller code of lengthn = 2m, for 0≤ r ≤ m, is the set of all
vectorsf , where f is a Boolean function which is a polynomial of degree at mostr.

Example
gap> ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

SeeGeneralizedReedMuller (??) for a more general construction.

5.2.6 AlternantCode

♦ AlternantCode( r, Y[, alpha,] F ) (function)

AlternantCode returns an ’alternant code’, with parametersr, Y andalpha (optional).F denotes
the (finite) base field. Here,r is the design redundancy of the code.Y andalpha are both vectors
of lengthn from which the parity check matrix is constructed. The check matrix has the formH =
([a j

i yi ]), where 0≤ j ≤ r − 1, 1≤ i ≤ n, and where[...] is as inVerticalConversionFieldMat
(7.3.9)). If no alpha is specified, the vector[1,a,a2, ..,an−1] is used, wherea is a primitive element
of a Galois fieldF.
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Example
gap> Y := [ 1, 1, 1, 1, 1, 1, 1];; a := PrimitiveUnityRoot( 2, 7 );;
gap> alpha := List( [0..6], i -> aˆi );;
gap> C := AlternantCode( 2, Y, alpha, GF(8) );
a linear [7,3,3..4]3..4 alternant code over GF(8)

5.2.7 GoppaCode

♦ GoppaCode( G, L ) (function)

GoppaCode returns a Goppa codeC from Goppa polynomialg, having coefficients in a Galois Field
GF(q). L must be a list of elements inGF(q), that are not roots ofg. The word length of the code
is equal to the length ofL. The parity check matrix has the formH = ([a j

i /G(ai)])0≤ j≤deg(g)−1, ai∈L,
whereai ∈ L and [...] is as inVerticalConversionFieldMat (7.3.9), so H has entries inGF(q),
q = pm. It is known thatd(C)≥ deg(g)+1, with a better bound in the binary case providedg has no
multiple roots. See Huffman and Pless [HP03] section 13.2.2, and MacWilliams and Sloane [MS83]
section 12.3, for more details.

One can also callGoppaCode using the syntaxGoppaCode(g,n). When called with parametern,
GUAVA constructs a listL of lengthn, such that no element ofL is a root ofg.

This is a special case of an alternant code.
Example

gap> x:=Indeterminate(GF(8),"x");
x
gap> L:=Elements(GF(8));
[ 0*Z(2), Z(2)ˆ0, Z(2ˆ3), Z(2ˆ3)ˆ2, Z(2ˆ3)ˆ3, Z(2ˆ3)ˆ4, Z(2ˆ3)ˆ5, Z(2ˆ3)ˆ6 ]
gap> g:=xˆ2+x+1;
xˆ2+x+Z(2)ˆ0
gap> C:=GoppaCode(g,L);
a linear [8,2,5]3 Goppa code over GF(2)
gap> xx := Indeterminate( GF(2), "xx" );;
gap> gg := xxˆ2 + xx + 1;; L := AsSSortedList( GF(8) );;
gap> C1 := GoppaCode( gg, L );
a linear [8,2,5]3 Goppa code over GF(2)
gap> y := Indeterminate( GF(2), "y" );;
gap> h := yˆ2 + y + 1;;
gap> C2 := GoppaCode( h, 8 );
a linear [8,2,5]3 Goppa code over GF(2)
gap> C1=C2;
true
gap> C=C1;
true

5.2.8 GeneralizedSrivastavaCode

♦ GeneralizedSrivastavaCode( a, w, z[, t,] F ) (function)

GeneralizedSrivastavaCode returns a generalized Srivastava code with parametersa, w, z,
t. a = {a1, ...,an} andw = {w1, ...,ws} are lists ofn+ s distinct elements ofF = GF(qm), z is a
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list of lengthn of nonzero elements ofGF(qm). The parametert determines the designed distance:
d≥ st+1. The check matrix of this code is the form

H = ([
zi

(ai −w j)k ]),

1≤ k≤ t, where[...] is as inVerticalConversionFieldMat (7.3.9). We use this definition ofH to
define the code. The default fort is 1. The original Srivastava codes (seeSrivastavaCode (5.2.9))
are a special caset = 1, zi = aµ

i , for someµ.
Example

gap> a := Filtered( AsSSortedList( GF(2ˆ6) ), e -> e in GF(2ˆ3) );;
gap> w := [ Z(2ˆ6) ];; z := List( [1..8], e -> 1 );;
gap> C := GeneralizedSrivastavaCode( a, w, z, 1, GF(64) );
a linear [8,2,2..5]3..4 generalized Srivastava code over GF(2)

5.2.9 SrivastavaCode

♦ SrivastavaCode( a, w[, mu,] F ) (function)

SrivastavaCodereturns a Srivastava code with parametersa, w (and optionallymu). a =
{a1, ...,an} and w = {w1, ...,ws} are lists ofn+ s distinct elements ofF = GF(qm). The default
for mu is 1. The Srivastava code is a generalized Srivastava code, in whichzi = amu

i for somemu and
t = 1.

J. N. Srivastava introduced this code in 1967, though his work was not published. See Helgert
[Hel72] for more details on the properties of this code. Related reference: G. Roelofsen, ON GOPPA

AND GENERALIZED SRIVASTAVA CODESPhD thesis, Dept. Math. and Comp. Sci., Eindhoven Univ.
of Technology, the Netherlands, 1982.

Example
gap> a := AsSSortedList( GF(11) ){[2..8]};;
gap> w := AsSSortedList( GF(11) ){[9..10]};;
gap> C := SrivastavaCode( a, w, 2, GF(11) );
a linear [7,5,3]2 Srivastava code over GF(11)
gap> IsMDSCode( C );
true # Always true if F is a prime field

5.2.10 CordaroWagnerCode

♦ CordaroWagnerCode( n ) (function)

CordaroWagnerCode returns a binary Cordaro-Wagner code. This is a code of lengthn and
dimension 2 having the best possible minimum distanced. This code is just a little bit less trivial than
RepetitionCode (seeRepetitionCode (5.5.10)).

Example
gap> C := CordaroWagnerCode( 11 );
a linear [11,2,7]5 Cordaro-Wagner code over GF(2)
gap> AsSSortedList(C);
[ [ 0 0 0 0 0 0 0 0 0 0 0 ], [ 0 0 0 0 1 1 1 1 1 1 1 ],
[ 1 1 1 1 0 0 0 1 1 1 1 ], [ 1 1 1 1 1 1 1 0 0 0 0 ] ]
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5.2.11 RandomLinearCode

♦ RandomLinearCode( n, k, F ) (function)

RandomLinearCode returns a random linear code with word lengthn, dimensionk over fieldF.
The method used is to first construct ak×n matrix of the block form(I ,A), whereI is ak×k identity
matrix andA is ak× (n−k) matrix constructed usingRandom(F) repeatedly. Then the columns are
permuted using a randomly selected element ofSymmetricGroup(n).

To create a random unrestricted code, useRandomCode (seeRandomCode (5.1.5)).
Example

gap> C := RandomLinearCode( 15, 4, GF(3) );
a [15,4,?] randomly generated code over GF(3)
gap> Display(C);
a linear [15,4,1..6]6..10 random linear code over GF(3)

The methodGUAVA chooses to output the result of aRandomLinearCode command is different than
other codes. For example, the bounds on the minimum distance is not displayed. Howeer, you can
use theDisplay command to print this information. This new display method was added in version
1.9 to speed up the command (ifn is about 80 andk about 40, for example, the time it took to look up
and/or calculate the bounds on the minimum distance was too long).

5.2.12 OptimalityCode

♦ OptimalityCode( C ) (function)

In general this command is no longer accurate, since the tables have not been updated since 1998.
See the web sitehttp://www.win.tue.nl/˜aeb/voorlincod.html for more recent data.

OptimalityCode returns the difference between the smallest known upper bound and the actual
size of the code. Note that the value of the functionUpperBound is not always equal to the actual
upper boundA(n,d) thus the result may not be equal to 0 even if the code is optimal!

OptimalityLinearCode is similar but applies only to linear codes.

5.2.13 BestKnownLinearCode

♦ BestKnownLinearCode( n, k, F ) (function)

In general this command is no longer accurate, since the tables have not been updated since 1998.
See the web sitehttp://www.win.tue.nl/˜aeb/voorlincod.html for more recent data.

BestKnownLinearCode returns the best known (as of 1998) linear code of lengthn, dimensionk
over fieldF. The function uses the tables described in sectionBoundsMinimumDistance (7.1.12) to
construct this code.

This command can also be called using the syntaxBestKnownLinearCode( rec ), whererec
must be a record containing the fields ‘lowerBound’, ‘upperBound’ and ‘construction’. It uses the
information in this field to construct a code. This form is meant to be used together with the func-
tion BoundsMinimumDistance (seeBoundsMinimumDistance (7.1.12)), if the bounds are already
calculated.

http://www.win.tue.nl/~aeb/voorlincod.html
http://www.win.tue.nl/~aeb/voorlincod.html
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Example
gap> C1 := BestKnownLinearCode( 23, 12, GF(2) );
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> C1 = BinaryGolayCode();
true
gap> Display( BestKnownLinearCode( 8, 4, GF(4) ) );
a linear [8,4,4]2..3 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]3 repetition code over GF(4)
V: a cyclic [4,1,4]3 repetition code over GF(4)
gap> C := BestKnownLinearCode(131,47);
a linear [131,47,28..32]23..68 shortened code
gap> bounds := BoundsMinimumDistance( 20, 17, GF(4) );
rec( n := 20, k := 17, q := 4,
references := rec( HM := [ "%T this reference is unknown, for more info",

"%T contact A.E. Brouwer (aeb@cwi.nl)" ] ),
construction := [ [Operation "ShortenedCode"],

[ [ [Operation "HammingCode"], [ 3, 4 ] ], [ 1 ] ] ], lowerBound := 3,
lowerBoundExplanation := [ "Lb(20,17)=3, by shortening of:",

"Lb(21,18)=3, reference: HM" ], upperBound := 3,
upperBoundExplanation :=

[ "Ub(20,17)=3, otherwise construction B would contradict:",
"Ub(3,1)=3, repetition code" ] )

gap> C := BestKnownLinearCode( bounds );
a linear [20,17,3]2 shortened code
gap> C = BestKnownLinearCode( 20, 17, GF(4) );
true

5.3 Gabidulin Codes

These five binary, linear codes are derived from an article by Gabidulin, Davydov and Tombak
[GDT91]. All these codes are defined by check matrices. Exact definitions can be found in the
article. The Gabidulin code, the enlarged Gabidulin code, the Davydov code, the Tombak code, and
the enlarged Tombak code, correspond with theorem 1, 2, 3, 4, and 5, respectively in the article.

Like the Hamming codes, these codes have fixed minimum distance and covering radius, but can
be arbitrarily long.

5.3.1 GabidulinCode

♦ GabidulinCode( m, w1, w2 ) (function)

GabidulinCode yields a code of length 5 . 2m−2−1, redundancy 2m−1, minimum distance 3
and covering radius 2.w1 andw2 should be elements ofGF(2m−2).

5.3.2 EnlargedGabidulinCode

♦ EnlargedGabidulinCode( m, w1, w2, e ) (function)
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EnlargedGabidulinCode yields a code of length 7. 2m−2−2, redundancy 2m, minimum distance
3 and covering radius 2.w1 andw2 are elements ofGF(2m−2). e is an element ofGF(2m).

5.3.3 DavydovCode

♦ DavydovCode( r, v, ei, ej ) (function)

DavydovCode yields a code of length 2v +2r−v−3, redundancyr, minimum distance 4 and cov-
ering radius 2.v is an integer between 2 andr −2. ei andej are elements ofGF(2v) andGF(2r−v),
respectively.

5.3.4 TombakCode

♦ TombakCode( m, e, beta, gamma, w1, w2 ) (function)

TombakCode yields a code of length 15·2m−3−3, redundancy 2m, minimum distance 4 and cov-
ering radius 2.e is an element ofGF(2m). beta andgamma are elements ofGF(2m−1). w1 andw2 are
elements ofGF(2m−3).

5.3.5 EnlargedTombakCode

♦ EnlargedTombakCode( m, e, beta, gamma, w1, w2, u ) (function)

EnlargedTombakCode yields a code of length 23·2m−4−3, redundancy 2m−1, minimum dis-
tance 4 and covering radius 2. The parametersm, e, beta, gamma, w1 and w2 are defined as in
TombakCode. u is an element ofGF(2m−1).

Example
gap> GabidulinCode( 4, Z(4)ˆ0, Z(4)ˆ1 );
a linear [19,12,3]2 Gabidulin code (m=4) over GF(2)
gap> EnlargedGabidulinCode( 4, Z(4)ˆ0, Z(4)ˆ1, Z(16)ˆ11 );
a linear [26,18,3]2 enlarged Gabidulin code (m=4) over GF(2)
gap> DavydovCode( 6, 3, Z(8)ˆ1, Z(8)ˆ5 );
a linear [13,7,4]2 Davydov code (r=6, v=3) over GF(2)
gap> TombakCode( 5, Z(32)ˆ6, Z(16)ˆ14, Z(16)ˆ10, Z(4)ˆ0, Z(4)ˆ1 );
a linear [57,47,4]2 Tombak code (m=5) over GF(2)
gap> EnlargedTombakCode( 6, Z(32)ˆ6, Z(16)ˆ14, Z(16)ˆ10,
> Z(4)ˆ0, Z(4)ˆ0, Z(32)ˆ23 );
a linear [89,78,4]2 enlarged Tombak code (m=6) over GF(2)

5.4 Golay Codes

“ The Golay code is probably the most important of all codes for both practical and theoretical reasons.
” ([ MS83], pg. 64). Though born in Switzerland, M. J. E. Golay (1902-1989) worked for the US
Army Labs for most of his career. For more information on his life, see his obit in the June 1990 IEEE
Information Society Newsletter.
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5.4.1 BinaryGolayCode

♦ BinaryGolayCode( ) (function)

BinaryGolayCode returns a binary Golay code. This is a perfect[23,12,7] code. It is also cyclic,
and has generator polynomialg(x) = 1+ x2 + x4 + x5 + x6 + x10 + x11. Extending it results in an
extended Golay code (seeExtendedBinaryGolayCode (5.4.2)). There’s also the ternary Golay code
(seeTernaryGolayCode (5.4.3)).

Example
gap> C:=BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> ExtendedBinaryGolayCode() = ExtendedCode(BinaryGolayCode());
true
gap> IsPerfectCode(C);
true
gap> IsCyclicCode(C);
true

5.4.2 ExtendedBinaryGolayCode

♦ ExtendedBinaryGolayCode( ) (function)

ExtendedBinaryGolayCode returns an extended binary Golay code. This is a[24,12,8] code.
Puncturing in the last position results in a perfect binary Golay code (seeBinaryGolayCode (5.4.1)).
The code is self-dual.

Example
gap> C := ExtendedBinaryGolayCode();
a linear [24,12,8]4 extended binary Golay code over GF(2)
gap> IsSelfDualCode(C);
true
gap> P := PuncturedCode(C);
a linear [23,12,7]3 punctured code
gap> P = BinaryGolayCode();
true
gap> IsCyclicCode(C);
false

5.4.3 TernaryGolayCode

♦ TernaryGolayCode( ) (function)

TernaryGolayCode returns a ternary Golay code. This is a perfect[11,6,5] code. It is also
cyclic, and has generator polynomialg(x) = 2+x2+2x3+x4+x5. Extending it results in an extended
Golay code (seeExtendedTernaryGolayCode (5.4.4)). There’s also the binary Golay code (see
BinaryGolayCode (5.4.1)).

Example
gap> C:=TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
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gap> ExtendedTernaryGolayCode() = ExtendedCode(TernaryGolayCode());
true
gap> IsCyclicCode(C);
true

5.4.4 ExtendedTernaryGolayCode

♦ ExtendedTernaryGolayCode( ) (function)

ExtendedTernaryGolayCode returns an extended ternary Golay code. This is a[12,6,6] code.
Puncturing this code results in a perfect ternary Golay code (seeTernaryGolayCode (5.4.3)). The
code is self-dual.

Example
gap> C := ExtendedTernaryGolayCode();
a linear [12,6,6]3 extended ternary Golay code over GF(3)
gap> IsSelfDualCode(C);
true
gap> P := PuncturedCode(C);
a linear [11,6,5]2 punctured code
gap> P = TernaryGolayCode();
true
gap> IsCyclicCode(C);
false

5.5 Generating Cyclic Codes

The elements of a cyclic codeC are all multiples of a (’generator’) polynomialg(x), where calculations
are carried out moduloxn−1. Therefore, as polynomials inx, the elements always have degree less
thann. A cyclic code is an ideal in the ringF [x]/(xn−1) of polynomials moduloxn−1. The unique
monic polynomial of least degree that generatesC is called thegenerator polynomialof C. It is a
divisor of the polynomialxn−1.

Thecheck polynomialis the polynomialh(x) with g(x)h(x) = xn−1. Therefore it is also a divisor
of xn−1. The check polynomial has the property that

c(x)h(x)≡ 0 (modxn−1),

for every codewordc(x) ∈C.
The first two functions described below generate cyclic codes from a given generator or check

polynomial. All cyclic codes can be constructed using these functions.
Two of the Golay codes already described are cyclic (seeBinaryGolayCode (5.4.1) and

TernaryGolayCode (5.4.3)). For example, theGUAVA record for a binary Golay code contains the
generator polynomial:

Example
gap> C := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> NamesOfComponents(C);
[ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",
"GeneratorMat", "GeneratorPol", "Dimension", "Redundancy", "Size", "name",
"lowerBoundMinimumDistance", "upperBoundMinimumDistance", "WeightDistribution",
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"boundsCoveringRadius", "MinimumWeightOfGenerators",
"UpperBoundOptimalMinimumDistance" ]

gap> C!.GeneratorPol;
x_1ˆ11+x_1ˆ10+x_1ˆ6+x_1ˆ5+x_1ˆ4+x_1ˆ2+Z(2)ˆ0

Then functions that generate cyclic codes from a prescribed set of roots of the generator polynomial
are described, including the BCH codes (seeRootsCode (5.5.3), BCHCode (5.5.4), ReedSolomonCode
(5.5.5) andQRCode (5.5.6)).

Finally we describe the trivial codes (seeWholeSpaceCode (5.5.8), NullCode (5.5.9),
RepetitionCode (5.5.10)), and the commandCyclicCodes which lists all cyclic codes
(CyclicCodes (5.5.11)).

5.5.1 GeneratorPolCode

♦ GeneratorPolCode( g, n[, name,] F ) (function)

GeneratorPolCode creates a cyclic code with a generator polynomialg, word lengthn, overF.
name can contain a short description of the code.

If g is not a divisor ofxn−1, it cannot be a generator polynomial. In that case, a code is created
with generator polynomialgcd(g,xn−1), i.e. the greatest common divisor ofg andxn−1. This is a
valid generator polynomial that generates the ideal(g). SeeGenerating Cyclic Codes (5.5).

Example
gap> x:= Indeterminate( GF(2) );; P:= xˆ2+1;
Z(2)ˆ0+xˆ2
gap> C1 := GeneratorPolCode(P, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( C1 );
Z(2)ˆ0+x
gap> C2 := GeneratorPolCode( x+1, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( C2 );
Z(2)ˆ0+x

5.5.2 CheckPolCode

♦ CheckPolCode( h, n[, name,] F ) (function)

CheckPolCode creates a cyclic code with a check polynomialh, word lengthn, overF. name can
contain a short description of the code (as a string).

If h is not a divisor ofxn−1, it cannot be a check polynomial. In that case, a code is created with
check polynomialgcd(h,xn− 1), i.e. the greatest common divisor ofh andxn− 1. This is a valid
check polynomial that yields the same elements as the ideal(h). See5.5.

Example
gap> x:= Indeterminate( GF(3) );; P:= xˆ2+2;
-Z(3)ˆ0+x_1ˆ2
gap> H := CheckPolCode(P, 7, GF(3));
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> CheckPol(H);
-Z(3)ˆ0+x_1
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gap> Gcd(P, X(GF(3))ˆ7-1);
-Z(3)ˆ0+x_1

5.5.3 RootsCode

♦ RootsCode( n, list ) (function)

This is the generalization of the BCH, Reed-Solomon and quadratic residue codes (seeBCHCode
(5.5.4), ReedSolomonCode (5.5.5) andQRCode (5.5.6)). The user can give a length of the coden and
a prescribed set of zeros. The argumentlist must be a valid list of primitiventh roots of unity in a
splitting fieldGF(qm). The resulting code will be over the fieldGF(q). The function will return the
largest possible cyclic code for which the listlist is a subset of the roots of the code. From this list,
GUAVA calculates the entire set of roots.

This command can also be called with the syntaxRootsCode( n, list, q ). In this second
form, the second argument is a list of integers, ranging from 0 ton−1. The resulting code will be
over a fieldGF(q). GUAVA calculates a primitiventh root of unity,α, in the extension field ofGF(q).
It uses the set of the powers ofα in the list as a prescribed set of zeros.

Example
gap> a := PrimitiveUnityRoot( 3, 14 );
Z(3ˆ6)ˆ52
gap> C1 := RootsCode( 14, [ aˆ0, a, aˆ3 ] );
a cyclic [14,7,3..6]3..7 code defined by roots over GF(3)
gap> MinimumDistance( C1 );
4
gap> b := PrimitiveUnityRoot( 2, 15 );
Z(2ˆ4)
gap> C2 := RootsCode( 15, [ b, bˆ2, bˆ3, bˆ4 ] );
a cyclic [15,7,5]3..5 code defined by roots over GF(2)
gap> C2 = BCHCode( 15, 5, GF(2) );
true

5.5.4 BCHCode

♦ BCHCode( n[, b,] delta, F ) (function)

The functionBCHCode returns a ’Bose-Chaudhuri-Hockenghem code’ (orBCH codefor short).
This is the largest possible cyclic code of lengthn over fieldF, whose generator polynomial has zeros

ab,ab+1, ...,ab+delta−2,

wherea is a primitiventh root of unity in the splitting fieldGF(qm), b is an integer 0≤ b≤ n−delta+
1 andm is the multiplicative order ofq modulon. (The integers{b, ...,b+delta−2} typically lie in
the range{1, ...,n−1}.) Default value forb is 1, though the algorithm allowsb = 0. The lengthn of
the code and the sizeq of the field must be relatively prime. The generator polynomial is equal to the
least common multiple of the minimal polynomials of

ab,ab+1, ...,ab+delta−2.
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The set of zeroes of the generator polynomial is equal to the union of the sets

{ax | x∈Ck},

whereCk is thekth cyclotomic coset ofq modulon andb≤ k≤ b+delta−2 (seeCyclotomicCosets
(7.5.13)).

Special cases areb = 1 (resulting codes are called ’narrow-sense’ BCH codes), andn = qm−1
(known as ’primitive’ BCH codes).GUAVA calculates the largest value ofd for which the BCH code
with designed distanced coincides with the BCH code with designed distancedelta. This distance
d is called theBose distanceof the code. The true minimum distance of the code is greater than or
equal to the Bose distance.

Printed are the designed distance (to be precise, the Bose distance)d, and the starting powerb.
The Sugiyama decoding algorithm has been implemented for this code (seeDecode (3.10.1)).

Example
gap> C1 := BCHCode( 15, 3, 5, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> DesignedDistance( C1 );
7
gap> C2 := BCHCode( 23, 2, GF(2) );
a cyclic [23,12,5..7]3 BCH code, delta=5, b=1 over GF(2)
gap> DesignedDistance( C2 );
5
gap> MinimumDistance(C2);
7

SeeRootsCode (5.5.3) for a more general construction.

5.5.5 ReedSolomonCode

♦ ReedSolomonCode( n, d ) (function)

ReedSolomonCode returns a ’Reed-Solomon code’ of lengthn, designed distanced. This code
is a primitive narrow-sense BCH code over the fieldGF(q), whereq = n+ 1. The dimension of an
RS code isn− d + 1. According to the Singleton bound (seeUpperBoundSingleton (7.1.1)) the
dimension cannot be greater than this, so the true minimum distance of an RS code is equal tod and
the code is maximum distance separable (seeIsMDSCode (3.3.7)).

Example
gap> C1 := ReedSolomonCode( 3, 2 );
a cyclic [3,2,2]1 Reed-Solomon code over GF(4)
gap> IsCyclicCode(C1);
true
gap> C2 := ReedSolomonCode( 4, 3 );
a cyclic [4,2,3]2 Reed-Solomon code over GF(5)
gap> RootsOfCode( C2 );
[ Z(5), Z(5)ˆ2 ]
gap> IsMDSCode(C2);
true

SeeGeneralizedReedSolomonCode (5.6.2) for a more general construction.
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5.5.6 QRCode

♦ QRCode( n, F ) (function)

QRCode returns a quadratic residue code. IfF is a fieldGF(q), thenq must be a quadratic residue
modulon. That is, anx exists withx2 ≡ q (modn). Both n andq must be primes. Its generator
polynomial is the product of the polynomialsx− ai . a is a primitiventh root of unity, andi is an
integer in the set of quadratic residues modulon.

Example
gap> C1 := QRCode( 7, GF(2) );
a cyclic [7,4,3]1 quadratic residue code over GF(2)
gap> IsEquivalent( C1, HammingCode( 3, GF(2) ) );
true
gap> IsCyclicCode(C1);
true
gap> IsCyclicCode(HammingCode( 3, GF(2) ));
false
gap> C2 := QRCode( 11, GF(3) );
a cyclic [11,6,4..5]2 quadratic residue code over GF(3)
gap> C2 = TernaryGolayCode();
true

5.5.7 FireCode

♦ FireCode( g, b ) (function)

FireCode constructs a (binary) Fire code.g is a primitive polynomial of degreem, and a factor
of xr −1. b an integer 0≤ b≤ m not divisible byr, that determines the burst length of a single error
burst that can be corrected. The argumentg can be a polynomial with base ringGF(2), or a list
of coefficients inGF(2). The generator polynomial of the code is defined as the product ofg and
x2b−1 +1.

Here is the general definition of ’Fire code’, named after P. Fire, who introduced these codes
in 1959 in order to correct burst errors. First, a definition. IfF = GF(q) and f ∈ F [x] then we
say f hasorder e if f (x)|(xe− 1). A Fire codeis a cyclic code overF with generator polynomial
g(x) = (x2t−1−1)p(x), wherep(x) does not dividex2t−1−1 and satisfiesdeg(p(x)) ≥ t. The length
of such a code is the order ofg(x). Non-binary Fire codes have not been implemented.

.
Example

gap> x:= Indeterminate( GF(2) );; G:= xˆ3+xˆ2+1;
Z(2)ˆ0+xˆ2+xˆ3
gap> Factors( G );
[ Z(2)ˆ0+xˆ2+xˆ3 ]
gap> C := FireCode( G, 3 );
a cyclic [35,27,1..4]2..6 3 burst error correcting fire code over GF(2)
gap> MinimumDistance( C );
4 # Still it can correct bursts of length 3
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5.5.8 WholeSpaceCode

♦ WholeSpaceCode( n, F ) (function)

WholeSpaceCode returns the cyclic whole space code of lengthn overF. This code consists of all
polynomials of degree less thann and coefficients inF.

Example
gap> C := WholeSpaceCode( 5, GF(3) );
a cyclic [5,5,1]0 whole space code over GF(3)

5.5.9 NullCode

♦ NullCode( n, F ) (function)

NullCode returns the zero-dimensional nullcode with lengthn over F. This code has only one
word: the all zero word. It is cyclic though!

Example
gap> C := NullCode( 5, GF(3) );
a cyclic [5,0,5]5 nullcode over GF(3)
gap> AsSSortedList( C );
[ [ 0 0 0 0 0 ] ]

5.5.10 RepetitionCode

♦ RepetitionCode( n, F ) (function)

RepetitionCode returns the cyclic repetition code of lengthn over F. The code has as many
elements asF, because each codeword consists of a repetition of one of these elements.

Example
gap> C := RepetitionCode( 3, GF(5) );
a cyclic [3,1,3]2 repetition code over GF(5)
gap> AsSSortedList( C );
[ [ 0 0 0 ], [ 1 1 1 ], [ 2 2 2 ], [ 4 4 4 ], [ 3 3 3 ] ]
gap> IsPerfectCode( C );
false
gap> IsMDSCode( C );
true

5.5.11 CyclicCodes

♦ CyclicCodes( n, F ) (function)

CyclicCodes returns a list of all cyclic codes of lengthn overF. It constructs all possible gen-
erator polynomials from the factors ofxn−1. Each combination of these factors yields a generator
polynomial after multiplication.

Example
gap> CyclicCodes(3,GF(3));
[ a cyclic [3,3,1]0 enumerated code over GF(3),
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a cyclic [3,2,1..2]1 enumerated code over GF(3),
a cyclic [3,1,3]2 enumerated code over GF(3),
a cyclic [3,0,3]3 enumerated code over GF(3) ]

5.5.12 NrCyclicCodes

♦ NrCyclicCodes( n, F ) (function)

The functionNrCyclicCodes calculates the number of cyclic codes of lengthn over fieldF.

Example
gap> NrCyclicCodes( 23, GF(2) );
8
gap> codelist := CyclicCodes( 23, GF(2) );
[ a cyclic [23,23,1]0 enumerated code over GF(2),
a cyclic [23,22,1..2]1 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,0,23]23 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2),
a cyclic [23,1,23]11 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2) ]

gap> BinaryGolayCode() in codelist;
true
gap> RepetitionCode( 23, GF(2) ) in codelist;
true
gap> CordaroWagnerCode( 23 ) in codelist;
false # This code is not cyclic

5.6 Evaluation Codes

5.6.1 EvaluationCode

♦ EvaluationCode( P, L, R ) (function)

Input: F is a finite field,L is a list of rational functions inR= F [x1, ...,xr ], P is a list ofn points in
F r at which all of the functions inL are defined.
Output: The ’evaluation code’C, which is the image of the evalation map

EvalP : span(L)→ Fn,

given by f 7−→ ( f (p1), ..., f (pn)), whereP = {p1, ..., pn} and f ∈ L. The generator matrix ofC is
G = ( fi(p j)) fi∈L,p j∈P.

This command returns a ”record” objectC with several extra components (type
NamesOfComponents(C) to see them all): C!.points (namely P), C!.basis (namely L), and
C!.ring (namelyR).

Example
gap> F:=GF(11);
GF(11)
gap> R := PolynomialRing(F,["x","y"]);
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PolynomialRing(..., [ x, y ])
gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1];; y:=indets[2];;
gap> L:=[xˆ2*y,x*y,xˆ5,xˆ4,xˆ3,xˆ2,x,xˆ0];;
gap> Pts:=[ [ Z(11)ˆ9, Z(11) ], [ Z(11)ˆ8, Z(11) ], [ Z(11)ˆ7, 0*Z(11) ],

[ Z(11)ˆ6, 0*Z(11) ], [ Z(11)ˆ5, 0*Z(11) ], [ Z(11)ˆ4, 0*Z(11) ],
[ Z(11)ˆ3, Z(11) ], [ Z(11)ˆ2, 0*Z(11) ], [ Z(11), 0*Z(11) ], [ Z(11)ˆ0, 0*Z(11) ],
[ 0*Z(11), Z(11) ] ];;

gap> C:=EvaluationCode(Pts,L,R);
a linear [11,8,1..3]2..3 evaluation code over GF(11)
gap> MinimumDistance(C);
3

5.6.2 GeneralizedReedSolomonCode

♦ GeneralizedReedSolomonCode( P, k, R ) (function)

Input: R=F[x], whereF is a finite field,k is a positive integer,P is a list ofn points inF .
Output: TheC which is the image of the evaluation map

EvalP : F [x]k → Fn,

given by f 7−→ ( f (p1), ..., f (pn)), whereP = {p1, ..., pn} ⊂ F and f ranges over the spaceF [x]k of
all polynomials of degree less thank.

This command returns a ”record” objectC with several extra components (type
NamesOfComponents(C) to see them all): C!.points (namely P), C!.degree (namely k),
andC!.ring (namelyR).

This code can be decoded usingDecodeword, which applies the special decoder method (the
interpolation method), or usingGeneralizedReedSolomonDecoderGao which applies an algorithm
of S. Gao (seeGeneralizedReedSolomonDecoderGao (3.10.3)). This code has a special decoder
record which implements the interpolation algorithm described in section 5.2 of Justesen and Hoholdt
[JH04]. SeeDecode (3.10.1) andDecodeword (3.10.2) for more details.

The weighted version has implemented with the option
GeneralizedReedSolomonCode(P,k,R,wts), where wts = [v1, ...,vn] is a sequence ofn non-
zero elements from the base fieldF of R. See also the generalized Reed–Solomon codeGRSk(P,V)
described in [MS83], p.303.

Work in progress: The list-decoding algorithm of Sudan-Guraswami (described in section 12.1 of
[JH04]) should be implemented. SeeGeneralizedReedSolomonListDecoder (3.10.4).

Example
gap> R:=PolynomialRing(GF(11),["t"]);
GF(11)[t]
gap> P:=List([1,3,4,5,7],i->Z(11)ˆi);
[ Z(11), Z(11)ˆ3, Z(11)ˆ4, Z(11)ˆ5, Z(11)ˆ7 ]
gap> C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2 generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3
gap> V:=[Z(11)ˆ0,Z(11)ˆ0,Z(11)ˆ0,Z(11)ˆ0,Z(11)];
[ Z(11)ˆ0, Z(11)ˆ0, Z(11)ˆ0, Z(11)ˆ0, Z(11) ]
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gap> C:=GeneralizedReedSolomonCode(P,3,R,V);
a linear [5,3,1..3]2 weighted generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3

SeeEvaluationCode (5.6.1) for a more general construction.

5.6.3 GeneralizedReedMullerCode

♦ GeneralizedReedMullerCode( Pts, r, F ) (function)

GeneralizedReedMullerCode returns a ’Reed-Muller code’C with length |Pts| and orderr.
One considers (a) a basis of monomials for the vector space overF = GF(q) of all polynomials in
F [x1, ...,xd] of degree at mostr, and (b) a setPtsof points inFd. The generator matrix of the asso-
ciatedReed-Muller code Cis G = ( f (p)) f∈B,p∈Pts. This codeC is constructed using the command
GeneralizedReedMullerCode(Pts,r,F). WhenPts is the set of allqd points inFd then the com-
mandGeneralizedReedMuller(d,r,F) yields the code. WhenPts is the set of all(q−1)d points
with no coordinate equal to 0 then this is can be constructed using theToricCode command (as a
special case).

This command returns a ”record” objectC with several extra components (type
NamesOfComponents(C) to see them all): C!.points (namely Pts) and C!.degree (namely
r).

Example
gap> Pts:=ToricPoints(2,GF(5));
[ [ Z(5)ˆ0, Z(5)ˆ0 ], [ Z(5)ˆ0, Z(5) ], [ Z(5)ˆ0, Z(5)ˆ2 ], [ Z(5)ˆ0, Z(5)ˆ3 ],
[ Z(5), Z(5)ˆ0 ], [ Z(5), Z(5) ], [ Z(5), Z(5)ˆ2 ], [ Z(5), Z(5)ˆ3 ],
[ Z(5)ˆ2, Z(5)ˆ0 ], [ Z(5)ˆ2, Z(5) ], [ Z(5)ˆ2, Z(5)ˆ2 ], [ Z(5)ˆ2, Z(5)ˆ3 ],
[ Z(5)ˆ3, Z(5)ˆ0 ], [ Z(5)ˆ3, Z(5) ], [ Z(5)ˆ3, Z(5)ˆ2 ], [ Z(5)ˆ3, Z(5)ˆ3 ] ]

gap> C:=GeneralizedReedMullerCode(Pts,2,GF(5));
a linear [16,6,1..11]6..10 generalized Reed-Muller code over GF(5)

SeeEvaluationCode (5.6.1) for a more general construction.

5.6.4 AffinePointsOnCurve

♦ AffinePointsOnCurve( f, R, E ) (function)

AffinePointsOnCurve(f,R,E) returns the points(x,y)∈E2 satisyingf (x,y) = 0, wheref is an
element ofR= F [x,y].

Example
gap> F:=GF(11);;
gap> R := PolynomialRing(F,["x","y"]);
PolynomialRing(..., [ x, y ])
gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1];; y:=indets[2];;
gap> P:=AffinePointsOnCurve(yˆ2-xˆ11+x,R,F);
[ [ Z(11)ˆ9, 0*Z(11) ], [ Z(11)ˆ8, 0*Z(11) ], [ Z(11)ˆ7, 0*Z(11) ],
[ Z(11)ˆ6, 0*Z(11) ], [ Z(11)ˆ5, 0*Z(11) ], [ Z(11)ˆ4, 0*Z(11) ],
[ Z(11)ˆ3, 0*Z(11) ], [ Z(11)ˆ2, 0*Z(11) ], [ Z(11), 0*Z(11) ],
[ Z(11)ˆ0, 0*Z(11) ], [ 0*Z(11), 0*Z(11) ] ]
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5.6.5 OnePointAGCode

♦ OnePointAGCode( f, P, m, R ) (function)

Input: f is a polynomial in R=F[x,y], whereF is a finite field,m is a positive integer (the multiplic-
ity of the ‘point at infinity’ ∞ on the curvef (x,y) = 0), P is a list ofn points on the curve overF .
Output: TheC which is the image of the evaluation map

EvalP : L(m·∞)→ Fn,

given by f 7−→ ( f (p1), ..., f (pn)), wherepi ∈ P. HereL(m·∞) denotes the Riemann-Roch space of
the divisorm·∞ on the curve. This has a basis consisting of monomialsxiy j , where(i, j) range over
a polygon depending onm and f (x,y). For more details on the Riemann-Roch space of the divisor
m·∞ see Proposition III.10.5 in Stichtenoth [Sti93].

This command returns a ”record” objectC with several extra components (type
NamesOfComponents(C) to see them all): C!.points (namely P), C!.multiplicity (namely
m), C!.curve (namelyf) andC!.ring (namelyR).

Example
gap> F:=GF(11);
GF(11)
gap> R := PolynomialRing(F,["x","y"]);
PolynomialRing(..., [ x, y ])
gap> indets := IndeterminatesOfPolynomialRing(R);
[ x, y ]
gap> x:=indets[1]; y:=indets[2];
x
y
gap> P:=AffinePointsOnCurve(yˆ2-xˆ11+x,R,F);;
gap> C:=OnePointAGCode(yˆ2-xˆ11+x,P,15,R);
a linear [11,8,1..0]2..3 one-point AG code over GF(11)
gap> MinimumDistance(C);
4
gap> Pts:=List([1,2,4,6,7,8,9,10,11],i->P[i]);;
gap> C:=OnePointAGCode(yˆ2-xˆ11+x,PT,10,R);
a linear [9,6,1..4]2..3 one-point AG code over GF(11)
gap> MinimumDistance(C);
4

SeeEvaluationCode (5.6.1) for a more general construction.

5.6.6 ToricPoints

♦ ToricPoints( n, F ) (function)

ToricPoints(n,F) returns the points in(F×)n.

Example
gap> ToricPoints(2,GF(5));
[ [ Z(5)ˆ0, Z(5)ˆ0 ], [ Z(5)ˆ0, Z(5) ], [ Z(5)ˆ0, Z(5)ˆ2 ],
[ Z(5)ˆ0, Z(5)ˆ3 ], [ Z(5), Z(5)ˆ0 ], [ Z(5), Z(5) ], [ Z(5), Z(5)ˆ2 ],
[ Z(5), Z(5)ˆ3 ], [ Z(5)ˆ2, Z(5)ˆ0 ], [ Z(5)ˆ2, Z(5) ], [ Z(5)ˆ2, Z(5)ˆ2 ],
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[ Z(5)ˆ2, Z(5)ˆ3 ], [ Z(5)ˆ3, Z(5)ˆ0 ], [ Z(5)ˆ3, Z(5) ],
[ Z(5)ˆ3, Z(5)ˆ2 ], [ Z(5)ˆ3, Z(5)ˆ3 ] ]

5.6.7 ToricCode

♦ ToricCode( L, F ) (function)

This function returns the toric codes as in D. Joyner [Joy04] (see also J. P. Hansen [Han99]). This
is a truncated (generalized) Reed-Muller code. HereL is a list of integral vectors andF is the finite
field. The size ofF must be different from 2.

This command returns a record objectC with an extra component (typeNamesOfComponents(C)
to see them all):C!.exponents (namelyL).

Example
gap> C:=ToricCode([[1,0],[3,4]],GF(3));
a linear [4,1,4]2 toric code over GF(3)
gap> Display(GeneratorMat(C));
1 1 2 2
gap> Elements(C);
[ [ 0 0 0 0 ], [ 1 1 2 2 ], [ 2 2 1 1 ] ]

SeeEvaluationCode (5.6.1) for a more general construction.



Chapter 6

Manipulating Codes

In this chapter we describe several functionsGUAVA uses to manipulate codes. Some of the best codes
are obtained by starting with for example a BCH code, and manipulating it.

In some cases, it is faster to perform calculations with a manipulated code than to use the original
code. For example, if the dimension of the code is larger than half the word length, it is generally
faster to compute the weight distribution by first calculating the weight distribution of the dual code
than by directly calculating the weight distribution of the original code. The size of the dual code is
smaller in these cases.

BecauseGUAVA keeps all information in a code record, in some cases the information can be
preserved after manipulations. Therefore, computations do not always have to start from scratch.

In Section 6.1, we describe functions that take a code with certain parameters, modify it
in some way and return a different code (seeExtendedCode (6.1.1), PuncturedCode (6.1.2),
EvenWeightSubcode (6.1.3), PermutedCode (6.1.4), ExpurgatedCode (6.1.5), AugmentedCode
(6.1.6), RemovedElementsCode (6.1.7), AddedElementsCode (6.1.8), ShortenedCode (6.1.9),
LengthenedCode (6.1.10), ResidueCode (6.1.11), ConstructionBCode (6.1.12), DualCode
(6.1.13), ConversionFieldCode (6.1.14), ConstantWeightSubcode (6.1.16), StandardFormCode
(6.1.17) and CosetCode (6.1.15)). In Section6.2, we describe functions that generate a new
code out of two codes (seeDirectSumCode (6.2.1), UUVCode (6.2.2), DirectProductCode (6.2.3),
IntersectionCode (6.2.4) andUnionCode (6.2.5)).

6.1 Functions that Generate a New Code from a Given Code

6.1.1 ExtendedCode

♦ ExtendedCode( C[, i] ) (function)

ExtendedCode extends the codeC i times and returns the result.i is equal to 1 by default. Ex-
tending is done by adding a parity check bit after the last coordinate. The coordinates of all codewords
now add up to zero. In the binary case, each codeword has even weight.

The word length increases byi. The size of the code remains the same. In the binary case, the
minimum distance increases by one if it was odd. In other cases, that is not always true.

A cyclic code in general is no longer cyclic after extending.

Example
gap> C1 := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)

77
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gap> C2 := ExtendedCode( C1 );
a linear [8,4,4]2 extended code
gap> IsEquivalent( C2, ReedMullerCode( 1, 3 ) );
true
gap> List( AsSSortedList( C2 ), WeightCodeword );
[ 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8 ]
gap> C3 := EvenWeightSubcode( C1 );
a linear [7,3,4]2..3 even weight subcode

To undo extending, callPuncturedCode (see PuncturedCode (6.1.2)). The function
EvenWeightSubcode (seeEvenWeightSubcode (6.1.3)) also returns a related code with only even
weights, but without changing its word length.

6.1.2 PuncturedCode

♦ PuncturedCode( C ) (function)

PuncturedCode puncturesC in the last column, and returns the result. Puncturing is done simply
by cutting off the last column from each codeword. This means the word length decreases by one.
The minimum distance in general also decrease by one.

This command can also be called with the syntaxPuncturedCode( C, L ). In this case,
PuncturedCode puncturesC in the columns specified byL, a list of integers. All columns speci-
fied byL are omitted from each codeword. Ifl is the length ofL (so the number of removed columns),
the word length decreases byl . The minimum distance can also decrease byl or less.

Puncturing a cyclic code in general results in a non-cyclic code. If the code is punctured in all
the columns where a word of minimal weight is unequal to zero, the dimension of the resulting code
decreases.

Example
gap> C1 := BCHCode( 15, 5, GF(2) );
a cyclic [15,7,5]3..5 BCH code, delta=5, b=1 over GF(2)
gap> C2 := PuncturedCode( C1 );
a linear [14,7,4]3..5 punctured code
gap> ExtendedCode( C2 ) = C1;
false
gap> PuncturedCode( C1, [1,2,3,4,5,6,7] );
a linear [8,7,1]1 punctured code
gap> PuncturedCode( WholeSpaceCode( 4, GF(5) ) );
a linear [3,3,1]0 punctured code # The dimension decreased from 4 to 3

ExtendedCode extends the code again (seeExtendedCode (6.1.1)), although in general this does not
result in the old code.

6.1.3 EvenWeightSubcode

♦ EvenWeightSubcode( C ) (function)

EvenWeightSubcode returns the even weight subcode ofC, consisting of all codewords ofC with
even weight. IfC is a linear code and contains words of odd weight, the resulting code has a dimension
of one less. The minimum distance always increases with one if it was odd. IfC is a binary cyclic
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code, andg(x) is its generator polynomial, the even weight subcode either has generator polynomial
g(x) (if g(x) is divisible byx−1) org(x) · (x−1) (if no factorx−1 was present ing(x)). So the even
weight subcode is again cyclic.

Of course, if all codewords ofC are already of even weight, the returned code is equal toC.

Example
gap> C1 := EvenWeightSubcode( BCHCode( 8, 4, GF(3) ) );
an (8,33,4..8)3..8 even weight subcode
gap> List( AsSSortedList( C1 ), WeightCodeword );
[ 0, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4, 6, 4, 4, 8, 6, 4, 6, 8, 4, 4,
4, 6, 4, 6, 8, 4, 6, 8 ]

gap> EvenWeightSubcode( ReedMullerCode( 1, 3 ) );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

ExtendedCode also returns a related code of only even weights, but without reducing its dimension
(seeExtendedCode (6.1.1)).

6.1.4 PermutedCode

♦ PermutedCode( C, L ) (function)

PermutedCode returnsC after column permutations.L (in GAP disjoint cycle notation) is the
permutation to be executed on the columns ofC. If C is cyclic, the result in general is no longer
cyclic. If a permutation results in the same code asC, this permutation belongs to the automorphism
group ofC (seeAutomorphismGroup (3.4.3)). In any case, the returned code is equivalent toC (see
IsEquivalent (3.4.1)).

Example
gap> C1 := PuncturedCode( ReedMullerCode( 1, 4 ) );
a linear [15,5,7]5 punctured code
gap> C2 := BCHCode( 15, 7, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 = C1;
false
gap> p := CodeIsomorphism( C1, C2 );
( 2, 4,14, 9,13, 7,11,10, 6, 8,12, 5)
gap> C3 := PermutedCode( C1, p );
a linear [15,5,7]5 permuted code
gap> C2 = C3;
true

6.1.5 ExpurgatedCode

♦ ExpurgatedCode( C, L ) (function)

ExpurgatedCode expurgates the codeC¿ by throwing away codewords in listL. C must be a linear
code.L must be a list of codeword input. The generator matrix of the new code no longer is a basis
for the codewords specified byL. Since the returned code is still linear, it is very likely that, besides
the words ofL, more codewords ofC are no longer in the new code.
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Example
gap> C1 := HammingCode( 4 );; WeightDistribution( C1 );
[ 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap> L := Filtered( AsSSortedList(C1), i -> WeightCodeword(i) = 3 );;
gap> C2 := ExpurgatedCode( C1, L );
a linear [15,4,3..4]5..11 code, expurgated with 7 word(s)
gap> WeightDistribution( C2 );
[ 1, 0, 0, 0, 14, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

This function does not work on non-linear codes. For removing words from a non-linear code, use
RemovedElementsCode (seeRemovedElementsCode (6.1.7)). For expurgating a code of all words of
odd weight, use ‘EvenWeightSubcode’ (seeEvenWeightSubcode (6.1.3)).

6.1.6 AugmentedCode

♦ AugmentedCode( C, L ) (function)

AugmentedCode returnsC after augmenting.C must be a linear code,L must be a list of codeword
inputs. The generator matrix of the new code is a basis for the codewords specified byL as well as the
words that were already in codeC. Note that the new code in general will consist of more words than
only the codewords ofC and the wordsL. The returned code is also a linear code.

This command can also be called with the syntaxAugmentedCode(C). When called without a list
of codewords,AugmentedCode returnsC after adding the all-ones vector to the generator matrix.C
must be a linear code. If the all-ones vector was already in the code, nothing happens and a copy of the
argument is returned. IfC is a binary code which does not contain the all-ones vector, the complement
of all codewords is added.

Example
gap> C31 := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> C32 := AugmentedCode(C31,["00000011","00000101","00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)
gap> C32 = ReedMullerCode( 2, 3 );
true
gap> C1 := CordaroWagnerCode(6);
a linear [6,2,4]2..3 Cordaro-Wagner code over GF(2)
gap> Codeword( [0,0,1,1,1,1] ) in C1;
true
gap> C2 := AugmentedCode( C1 );
a linear [6,3,1..2]2..3 code, augmented with 1 word(s)
gap> Codeword( [1,1,0,0,0,0] ) in C2;
true

The functionAddedElementsCode adds elements to the codewords instead of adding them to the
basis (seeAddedElementsCode (6.1.8)).

6.1.7 RemovedElementsCode

♦ RemovedElementsCode( C, L ) (function)
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RemovedElementsCode returns codeC after removing a list of codewordsL from its elements.L
must be a list of codeword input. The result is an unrestricted code.

Example
gap> C1 := HammingCode( 4 );; WeightDistribution( C1 );
[ 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap> L := Filtered( AsSSortedList(C1), i -> WeightCodeword(i) = 3 );;
gap> C2 := RemovedElementsCode( C1, L );
a (15,2013,3..15)2..15 code with 35 word(s) removed
gap> WeightDistribution( C2 );
[ 1, 0, 0, 0, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap> MinimumDistance( C2 );
3 # C2 is not linear, so the minimum weight does not have to

# be equal to the minimum distance

Adding elements to a code is done by the functionAddedElementsCode (seeAddedElementsCode
(6.1.8)). To remove codewords from the base of a linear code, useExpurgatedCode (see
ExpurgatedCode (6.1.5)).

6.1.8 AddedElementsCode

♦ AddedElementsCode( C, L ) (function)

AddedElementsCode returns codeC after adding a list of codewordsL to its elements.L must be
a list of codeword input. The result is an unrestricted code.

Example
gap> C1 := NullCode( 6, GF(2) );
a cyclic [6,0,6]6 nullcode over GF(2)
gap> C2 := AddedElementsCode( C1, [ "111111" ] );
a (6,2,1..6)3 code with 1 word(s) added
gap> IsCyclicCode( C2 );
true
gap> C3 := AddedElementsCode( C2, [ "101010", "010101" ] );
a (6,4,1..6)2 code with 2 word(s) added
gap> IsCyclicCode( C3 );
true

To remove elements from a code, useRemovedElementsCode (seeRemovedElementsCode (6.1.7)).
To add elements to the base of a linear code, useAugmentedCode (seeAugmentedCode (6.1.6)).

6.1.9 ShortenedCode

♦ ShortenedCode( C[, L] ) (function)

ShortenedCode( C ) returns the codeC shortened by taking a cross section. IfC is a linear code,
this is done by removing all codewords that start with a non-zero entry, after which the first column is
cut off. If C was a[n,k,d] code, the shortened code generally is a[n−1,k−1,d] code. It is possible
that the dimension remains the same; it is also possible that the minimum distance increases.

If C is a non-linear code,ShortenedCode first checks which finite field element occurs most often
in the first column of the codewords. The codewords not starting with this element are removed from
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the code, after which the first column is cut off. The resulting shortened code has at least the same
minimum distance asC.

This command can also be called using the syntaxShortenedCode(C,L). When called in this
format, ShortenedCode repeats the shortening process on each of the columns specified byL. L
therefore is a list of integers. The column numbers inL are the numbers as they are before the
shortening process. IfL hasl entries, the returned code has a word length ofl positions shorter than
C.

Example
gap> C1 := HammingCode( 4 );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := ShortenedCode( C1 );
a linear [14,10,3]2 shortened code
gap> C3 := ElementsCode( ["1000", "1101", "0011" ], GF(2) );
a (4,3,1..4)2 user defined unrestricted code over GF(2)
gap> MinimumDistance( C3 );
2
gap> C4 := ShortenedCode( C3 );
a (3,2,2..3)1..2 shortened code
gap> AsSSortedList( C4 );
[ [ 0 0 0 ], [ 1 0 1 ] ]
gap> C5 := HammingCode( 5, GF(2) );
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
gap> C6 := ShortenedCode( C5, [ 1, 2, 3 ] );
a linear [28,23,3]2 shortened code
gap> OptimalityLinearCode( C6 );
0

The functionLengthenedCode lengthens the code again (only for linear codes), seeLengthenedCode
(6.1.10). In general, this is not exactly the inverse function.

6.1.10 LengthenedCode

♦ LengthenedCode( C[, i] ) (function)

LengthenedCode( C ) returns the codeC lengthened.C must be a linear code. First, the all-ones
vector is added to the generator matrix (seeAugmentedCode (6.1.6)). If the all-ones vector was already
a codeword, nothing happens to the code. Then, the code is extendedi times (seeExtendedCode
(6.1.1)). i is equal to 1 by default. IfC was an[n,k] code, the new code generally is a[n+ i,k+ 1]
code.

Example
gap> C1 := CordaroWagnerCode( 5 );
a linear [5,2,3]2 Cordaro-Wagner code over GF(2)
gap> C2 := LengthenedCode( C1 );
a linear [6,3,2]2..3 code, lengthened with 1 column(s)

ShortenedCode’ shortens the code, seeShortenedCode (6.1.9). In general, this is not exactly the
inverse function.
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6.1.11 ResidueCode

♦ ResidueCode( C[, c] ) (function)

The functionResidueCode takes a codewordc of C (if c is omitted, a codeword of minimal weight
is used). It removes this word and all its linear combinations from the code and then punctures the code
in the coordinates wherec is unequal to zero. The resulting code is an[n−w,k−1,d−bw∗(q−1)/qc]
code.C must be a linear code andc must be non-zero. Ifc is not in then no change is made toC.

Example
gap> C1 := BCHCode( 15, 7 );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 := ResidueCode( C1 );
a linear [8,4,4]2 residue code
gap> c := Codeword( [ 0,0,0,1,0,0,1,1,0,1,0,1,1,1,1 ], C1);;
gap> C3 := ResidueCode( C1, c );
a linear [7,4,3]1 residue code

6.1.12 ConstructionBCode

♦ ConstructionBCode( C ) (function)

The functionConstructionBCode takes a binary linear codeC and calculates the minimum dis-
tance of the dual ofC (seeDualCode (6.1.13)). It then removes the columns of the parity check matrix
of C where a codeword of the dual code of minimal weight has coordinates unequal to zero. The re-
sulting matrix is a parity check matrix for an[n−dd,k−dd+1,≥ d] code, wheredd is the minimum
distance of the dual ofC.

Example
gap> C1 := ReedMullerCode( 2, 5 );
a linear [32,16,8]6 Reed-Muller (2,5) code over GF(2)
gap> C2 := ConstructionBCode( C1 );
a linear [24,9,8]5..10 Construction B (8 coordinates)
gap> BoundsMinimumDistance( 24, 9, GF(2) );
rec( n := 24, k := 9, q := 2, references := rec( ),
construction := [ [ Operation "UUVCode" ],

[ [ [ Operation "UUVCode" ], [ [ [ Operation "DualCode" ],
[ [ [ Operation "RepetitionCode" ], [ 6, 2 ] ] ] ],

[ [ Operation "CordaroWagnerCode" ], [ 6 ] ] ] ],
[ [ Operation "CordaroWagnerCode" ], [ 12 ] ] ] ], lowerBound := 8,

lowerBoundExplanation := [ "Lb(24,9)=8, u u+v construction of C1 and C2:",
"Lb(12,7)=4, u u+v construction of C1 and C2:",
"Lb(6,5)=2, dual of the repetition code",
"Lb(6,2)=4, Cordaro-Wagner code", "Lb(12,2)=8, Cordaro-Wagner code" ],

upperBound := 8,
upperBoundExplanation := [ "Ub(24,9)=8, otherwise construction B would

contradict:", "Ub(18,4)=8, Griesmer bound" ] )
# so C2 is optimal

6.1.13 DualCode

♦ DualCode( C ) (function)
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DualCode returns the dual code ofC. The dual code consists of all codewords that are orthogonal
to the codewords ofC. If C is a linear code with generator matrixG, the dual code has parity check
matrix G (or if C has parity check matrixH, the dual code has generator matrixH). So if C is a linear
[n,k] code, the dual code ofC is a linear[n,n−k] code. IfC is a cyclic code with generator polynomial
g(x), the dual code has the reciprocal polynomial ofg(x) as check polynomial.

The dual code is always a linear code, even ifC is non-linear.
If a codeC is equal to its dual code, it is calledself-dual.

Example
gap> R := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> RD := DualCode( R );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> R = RD;
true
gap> N := WholeSpaceCode( 7, GF(4) );
a cyclic [7,7,1]0 whole space code over GF(4)
gap> DualCode( N ) = NullCode( 7, GF(4) );
true

6.1.14 ConversionFieldCode

♦ ConversionFieldCode( C ) (function)

ConversionFieldCode returns codeC after converting its field. If the field ofC is GF(qm), the
returned code has fieldGF(q). Each symbol of every codeword is replaced by a concatenation of
m symbols fromGF(q). If C is an(n,M,d1) code, the returned code is a(n ·m,M,d2) code, where
d2 > d1.

See alsoHorizontalConversionFieldMat (7.3.10).
Example

gap> R := RepetitionCode( 4, GF(4) );
a cyclic [4,1,4]3 repetition code over GF(4)
gap> R2 := ConversionFieldCode( R );
a linear [8,2,4]3..4 code, converted to basefield GF(2)
gap> Size( R ) = Size( R2 );
true
gap> GeneratorMat( R );
[ [ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ] ]
gap> GeneratorMat( R2 );
[ [ Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2) ],
[ 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ] ]

6.1.15 CosetCode

♦ CosetCode( C, w ) (function)

CosetCode returns the coset of a codeC with respect to wordw. w must be of the codeword type.
Then,w is added to each codeword ofC, yielding the elements of the new code. IfC is linear andw is
an element ofC, the new code is equal toC, otherwise the new code is an unrestricted code.

Generating a coset is also possible by simply adding the wordw to C. See3.2.
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Example
gap> H := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c := Codeword("1011011");; c in H;
false
gap> C := CosetCode(H, c);
a (7,16,3)1 coset code
gap> List(AsSSortedList(C), el-> Syndrome(H, el));
[ [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ],
[ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ],
[ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ] ]

# All elements of the coset have the same syndrome in H

6.1.16 ConstantWeightSubcode

♦ ConstantWeightSubcode( C, w ) (function)

ConstantWeightSubcode returns the subcode ofC that only has codewords of weightw. The
resulting code is a non-linear code, because it does not contain the all-zero vector.

This command also can be called with the syntaxConstantWeightSubcode(C) In this format,
ConstantWeightSubcode returns the subcode ofC consisting of all minimum weight codewords of
C.

ConstantWeightSubcode first checks if Leon’s binarywtdist exists on your computer (in the
default directory). If it does, then this program is called. Otherwise, the constant weight subcode is
computed using a GAP program which checks each codeword inC to see if it is of the desired weight.

Example
gap> N := NordstromRobinsonCode();; WeightDistribution(N);
[ 1, 0, 0, 0, 0, 0, 112, 0, 30, 0, 112, 0, 0, 0, 0, 0, 1 ]
gap> C := ConstantWeightSubcode(N, 8);
a (16,30,6..16)5..8 code with codewords of weight 8
gap> WeightDistribution(C);
[ 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0 ]
gap> eg := ExtendedTernaryGolayCode();; WeightDistribution(eg);
[ 1, 0, 0, 0, 0, 0, 264, 0, 0, 440, 0, 0, 24 ]
gap> C := ConstantWeightSubcode(eg);
a (12,264,6..12)3..6 code with codewords of weight 6
gap> WeightDistribution(C);
[ 0, 0, 0, 0, 0, 0, 264, 0, 0, 0, 0, 0, 0 ]

6.1.17 StandardFormCode

♦ StandardFormCode( C ) (function)

StandardFormCode returnsC after putting it in standard form. IfC is a non-linear code, this means
the elements are organized using lexicographical order. This means they form a legalGAP ‘Set’.

If C is a linear code, the generator matrix and parity check matrix are put in standard form. The
generator matrix then has an identity matrix in its left part, the parity check matrix has an identity
matrix in its right part. AlthoughGUAVA always puts both matrices in a standard form usingBaseMat,
this never alters the code.StandardFormCode even applies column permutations if unavoidable, and
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thereby changes the code. The column permutations are recorded in the construction history of the
new code (seeDisplay (3.6.3)). C and the new code are of course equivalent.

If C is a cyclic code, its generator matrix cannot be put in the usual upper triangular form, because
then it would be inconsistent with the generator polynomial. The reason is that generating the elements
from the generator matrix would result in a different order than generating the elements from the
generator polynomial. This is an unwanted effect, and thereforeStandardFormCode just returns a
copy ofC for cyclic codes.

Example
gap> G := GeneratorMatCode( Z(2) * [ [0,1,1,0], [0,1,0,1], [0,0,1,1] ],
> "random form code", GF(2) );
a linear [4,2,1..2]1..2 random form code over GF(2)
gap> Codeword( GeneratorMat( G ) );
[ [ 0 1 0 1 ], [ 0 0 1 1 ] ]
gap> Codeword( GeneratorMat( StandardFormCode( G ) ) );
[ [ 1 0 0 1 ], [ 0 1 0 1 ] ]

6.1.18 PiecewiseConstantCode

♦ PiecewiseConstantCode( part, wts[, F] ) (function)

PiecewiseConstantCode returns a code with lengthn = ∑ni , wherepart=[n1, . . . ,nk]. wts is a
list of constraints w= (w1, ...,wk), each of lengthk, where 0≤wi ≤ ni . The default field isGF(2).

A constraint is a list of integers, and a wordc = (c1, . . . ,ck) (according topart, i.e., eachci is a
subword of lengthni) is in the resulting code if and only if, for some constraintw∈ wts, ‖ci‖ = wi

for all 1≤ i ≤ k, where‖...‖ denotes the Hamming weight.
An example might make things clearer:

Example
gap> PiecewiseConstantCode( [ 2, 3 ],
> [ [ 0, 0 ], [ 0, 3 ], [ 1, 0 ], [ 2, 2 ] ],
> GF(2) );
a (5,7,1..5)1..5 piecewise constant code over GF(2)
gap> AsSSortedList(last);
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 0 0 ], [ 1 0 0 0 0 ], [ 1 1 0 1 1 ],
[ 1 1 1 0 1 ], [ 1 1 1 1 0 ] ]

The first constraint is satisfied by codeword 1, the second by codeword 2, the third by codewords 3
and 4, and the fourth by codewords 5, 6 and 7.

6.2 Functions that Generate a New Code from Two Given Codes

6.2.1 DirectSumCode

♦ DirectSumCode( C1, C2 ) (function)

DirectSumCode returns the direct sum of codesC1 andC2. The direct sum code consists of every
codeword ofC1 concatenated by every codeword ofC2. Therefore, ifCi was a(ni ,Mi ,di) code, the
result is a(n1 +n2,M1∗M2,min(d1,d2)) code.
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If both C1 andC2 are linear codes, the result is also a linear code. If one of them is non-linear, the
direct sum is non-linear too. In general, a direct sum code is not cyclic.

Performing a direct sum can also be done by adding two codes (see Section3.2). Another often
used method is the ‘u, u+v’-construction, described inUUVCode (6.2.2).

Example
gap> C1 := ElementsCode( [ [1,0], [4,5] ], GF(7) );;
gap> C2 := ElementsCode( [ [0,0,0], [3,3,3] ], GF(7) );;
gap> D := DirectSumCode(C1, C2);;
gap> AsSSortedList(D);
[ [ 1 0 0 0 0 ], [ 1 0 3 3 3 ], [ 4 5 0 0 0 ], [ 4 5 3 3 3 ] ]
gap> D = C1 + C2; # addition = direct sum
true

6.2.2 UUVCode

♦ UUVCode( C1, C2 ) (function)

UUVCode returns the so-called(u‖u+ v) construction applied toC1 andC2. The resulting code
consists of every codewordu of C1 concatenated by the sum ofu and every codewordv of C2. If C1
andC2 have different word lengths, sufficient zeros are added to the shorter code to make this sum
possible. IfCi is a(ni ,Mi ,di) code, the result is an(n1 +max(n1,n2),M1 ·M2,min(2·d1,d2)) code.

If both C1 andC2 are linear codes, the result is also a linear code. If one of them is non-linear, the
UUV sum is non-linear too. In general, a UUV sum code is not cyclic.

The functionDirectSumCode returns another sum of codes (seeDirectSumCode (6.2.1)).
Example

gap> C1 := EvenWeightSubcode(WholeSpaceCode(4, GF(2)));
a cyclic [4,3,2]1 even weight subcode
gap> C2 := RepetitionCode(4, GF(2));
a cyclic [4,1,4]2 repetition code over GF(2)
gap> R := UUVCode(C1, C2);
a linear [8,4,4]2 U U+V construction code
gap> R = ReedMullerCode(1,3);
true

6.2.3 DirectProductCode

♦ DirectProductCode( C1, C2 ) (function)

DirectProductCode returns the direct product of codesC1 andC2. Both must be linear codes.
SupposeCi has generator matrixGi . The direct product ofC1 andC2 then has the Kronecker product
of G1 andG2 as the generator matrix (see theGAP commandKroneckerProduct).

If Ci is a[ni ,ki ,di ] code, the direct product then is an[n1 ·n2,k1 ·k2,d1 ·d2] code.
Example

gap> L1 := LexiCode(10, 4, GF(2));
a linear [10,5,4]2..4 lexicode over GF(2)
gap> L2 := LexiCode(8, 3, GF(2));
a linear [8,4,3]2..3 lexicode over GF(2)
gap> D := DirectProductCode(L1, L2);
a linear [80,20,12]20..45 direct product code
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6.2.4 IntersectionCode

♦ IntersectionCode( C1, C2 ) (function)

IntersectionCode returns the intersection of codesC1 andC2. This code consists of all code-
words that are both inC1 andC2. If both codes are linear, the result is also linear. If both are cyclic,
the result is also cyclic.

Example
gap> C := CyclicCodes(7, GF(2));
[ a cyclic [7,7,1]0 enumerated code over GF(2),
a cyclic [7,6,1..2]1 enumerated code over GF(2),
a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,0,7]7 enumerated code over GF(2),
a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2),
a cyclic [7,1,7]3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2) ]

gap> IntersectionCode(C[6], C[8]) = C[7];
true

Thehull of a linear code is the intersection of the code with its dual code. In other words, the hull of
C is IntersectionCode(C, DualCode(C)).

6.2.5 UnionCode

♦ UnionCode( C1, C2 ) (function)

UnionCode returns the union of codesC1 andC2. This code consists of the union of all codewords
of C1 andC2 and all linear combinations. Therefore this function works only for linear codes. The
functionAddedElementsCode can be used for non-linear codes, or if the resulting code should not
include linear combinations. SeeAddedElementsCode (6.1.8). If both arguments are cyclic, the result
is also cyclic.

Example
gap> G := GeneratorMatCode([[1,0,1],[0,1,1]]*Z(2)ˆ0, GF(2));
a linear [3,2,1..2]1 code defined by generator matrix over GF(2)
gap> H := GeneratorMatCode([[1,1,1]]*Z(2)ˆ0, GF(2));
a linear [3,1,3]1 code defined by generator matrix over GF(2)
gap> U := UnionCode(G, H);
a linear [3,3,1]0 union code
gap> c := Codeword("010");; c in G;
false
gap> c in H;
false
gap> c in U;
true

6.2.6 ExtendedDirectSumCode

♦ ExtendedDirectSumCode( L, B, m ) (function)
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The extended direct sum construction is described in section V of Graham and Sloane [GS85].
The resulting code consists ofm copies ofL, extended by repeating the codewords ofB m times.

SupposeL is an[nL,kL]rL code, andB is an[nL,kB]rB code (non-linear codes are also permitted).
The length ofB must be equal to the length ofL. The length of the new code isn= mnL, the dimension
(in the case of linear codes) isk≤ mkL +kB, and the covering radius isr ≤ bmΨ(L,B)c, with

Ψ(L,B) = max
u∈F

nL
2

1
2kB ∑

v∈B

d(L,v+u).

However, this computation will not be executed, because it may be too time consuming for large
codes.

If L ⊆ B, andL andB are linear codes, the last copy ofL is omitted. In this case the dimension is
k = mkL +(kB−kL).

Example
gap> c := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := WholeSpaceCode( 7, GF(2) );
a cyclic [7,7,1]0 whole space code over GF(2)
gap> e := ExtendedDirectSumCode( c, d, 3 );
a linear [21,15,1..3]2 3-fold extended direct sum code

6.2.7 AmalgamatedDirectSumCode

♦ AmalgamatedDirectSumCode( c1, c2[, check] ) (function)

AmalgamatedDirectSumCode returns the amalgamated direct sum of the codesc1 andc2. The
amalgamated direct sum code consists of all codewords of the form(u‖0‖v) if (u‖0) ∈ c1 and
(0‖v) ∈ c2 and all codewords of the form(u‖1‖v) if (u‖1) ∈ c1 and(1‖v) ∈ c2. The result is a
code with lengthn = n1 +n2−1 and sizeM ≤ M1 ·M2/2.

If both codes are linear, they will first be standardized, with information symbols in the last and
first coordinates of the first and second code, respectively.

If c1 is a normal code (seeIsNormalCode (7.4.5)) with the last coordinate acceptable (see
IsCoordinateAcceptable (7.4.3)), andc2 is a normal code with the first coordinate acceptable,
then the covering radius of the new code isr ≤ r1 + r2. However, checking whether a code is normal
or not is a lot of work, and almost all codes seem to be normal. Therefore, an optioncheck can be
supplied. Ifcheck is true, then the codes will be checked for normality. Ifcheck is false or omitted,
then the codes will not be checked. In this case it is assumed that they are normal. Acceptability of
the last and first coordinate of the first and second code, respectively, is in the last case also assumed
to be done by the user.

Example
gap> c := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := ReedMullerCode( 1, 4 );
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> e := DirectSumCode( c, d );
a linear [23,9,3]7 direct sum code
gap> f := AmalgamatedDirectSumCode( c, d );;
gap> MinimumDistance( f );;
gap> CoveringRadius( f );;



GUAVA 90

gap> f;
a linear [22,8,3]7 amalgamated direct sum code

6.2.8 BlockwiseDirectSumCode

♦ BlockwiseDirectSumCode( C1, L1, C2, L2 ) (function)

BlockwiseDirectSumCode returns a subcode of the direct sum ofC1 andC2. The fields ofC1
andC2 must be same. The listsL1 andL2 are two equally long with elements from the ambient vector
spaces ofC1 andC2, respectively,or L1 andL2 are two equally long lists containing codes. The union
of the codes inL1 andL2 must beC1 andC2, respectively.

In the first case, the blockwise direct sum code is defined as

bds=
[

1≤i≤`

(C1 +(L1)i)⊕ (C2 +(L2)i),

where` is the length ofL1 andL2, and⊕ is the direct sum.
In the second case, it is defined as

bds=
[

1≤i≤`

((L1)i ⊕ (L2)i).

The length of the new code isn = n1 +n2.

Example
gap> C1 := HammingCode( 3, GF(2) );;
gap> C2 := EvenWeightSubcode( WholeSpaceCode( 6, GF(2) ) );;
gap> BlockwiseDirectSumCode( C1, [[ 0,0,0,0,0,0,0 ],[ 1,0,1,0,1,0,0 ]],
> C2, [[ 0,0,0,0,0,0 ],[ 1,0,1,0,1,0 ]] );
a (13,1024,1..13)1..2 blockwise direct sum code



Chapter 7

Bounds on codes, special matrices and
miscellaneous functions

In this chapter we describe functions that determine bounds on the size and minimum distance of
codes (Section7.1), functions that determine bounds on the size and covering radius of codes (Section
7.2), functions that work with special matricesGUAVA needs for several codes (see Section7.3), and
constructing codes or performing calculations with codes (see Section7.5).

7.1 Distance bounds on codes

This section describes the functions that calculate estimates for upper bounds on the size and minimum
distance of codes. Several algorithms are known to compute a largest number of words a code can
have with given length and minimum distance. It is important however to understand that in some
cases the true upper bound is unknown. A code which has a size equalto the calculated upper bound
may not have been found. However, codes that have a larger size do not exist.

A second way to obtain bounds is a table. InGUAVA, an extensive table is implemented for linear
codes overGF(2), GF(3) andGF(4). It contains bounds on the minimum distance for given word
length and dimension. For binary codes, it contains entries for word length less than or equal to 257.
For codes overGF(3) andGF(4), it contains entries for word length less than or equal to 130.

Firstly, we describe functions that compute specific upper bounds on the code size
(seeUpperBoundSingleton (7.1.1), UpperBoundHamming (7.1.2), UpperBoundJohnson (7.1.3),
UpperBoundPlotkin (7.1.4), UpperBoundElias (7.1.5) andUpperBoundGriesmer (7.1.6)).

Next we describe a function that computesGUAVA’s best upper bound on the code size (see
UpperBound (7.1.7)).

Then we describe two functions that compute a lower and upper bound on the minimum distance
of a code (seeLowerBoundMinimumDistance (7.1.8) andUpperBoundMinimumDistance (7.1.11)).

Finally, we describe a function that returns a lower and upper bound on the minimum distance with
given parameters and a description of how the bounds were obtained (seeBoundsMinimumDistance
(7.1.12)).

7.1.1 UpperBoundSingleton

♦ UpperBoundSingleton( n, d, q ) (function)

91
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UpperBoundSingleton returns the Singleton bound for a code of lengthn, minimum distanced
over a field of sizeq. This bound is based on the shortening of codes. By shortening an(n,M,d) code
d−1 times, an(n−d+1,M,1) code results, withM ≤ qn−d+1 (seeShortenedCode (6.1.9)). Thus

M ≤ qn−d+1.

Codes that meet this bound are calledmaximum distance separable(seeIsMDSCode (3.3.7)).
Example

gap> UpperBoundSingleton(4, 3, 5);
25
gap> C := ReedSolomonCode(4,3);; Size(C);
25
gap> IsMDSCode(C);
true

7.1.2 UpperBoundHamming

♦ UpperBoundHamming( n, d, q ) (function)

The Hamming bound (also known as thesphere packing bound) returns an upper bound on the
size of a code of lengthn, minimum distanced, over a field of sizeq. The Hamming bound is obtained
by dividing the contents of the entire spaceGF(q)n by the contents of a ball with radiusb(d−1)/2c.
As all these balls are disjoint, they can never contain more than the whole vector space.

M ≤ qn

V(n,e)
,

whereM is the maxmimum number of codewords andV(n,e) is equal to the contents of a ball of
radiuse (seeSphereContent (7.5.9)). This bound is useful for small values ofd. Codes for which
equality holds are calledperfect(seeIsPerfectCode (3.3.6)).

Example
gap> UpperBoundHamming( 15, 3, 2 );
2048
gap> C := HammingCode( 4, GF(2) );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size( C );
2048

7.1.3 UpperBoundJohnson

♦ UpperBoundJohnson( n, d ) (function)

The Johnson bound is an improved version of the Hamming bound (seeUpperBoundHamming
(7.1.2)). In addition to the Hamming bound, it takes into account the elements of the space outside the
balls of radiusearound the elements of the code. The Johnson bound only works for binary codes.

Example
gap> UpperBoundJohnson( 13, 5 );
77
gap> UpperBoundHamming( 13, 5, 2);
89 # in this case the Johnson bound is better
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7.1.4 UpperBoundPlotkin

♦ UpperBoundPlotkin( n, d, q ) (function)

The functionUpperBoundPlotkin calculates the sum of the distances of all ordered pairs of
different codewords. It is based on the fact that the minimum distance is at most equal to the average
distance. It is a good bound if the weights of the codewords do not differ much. It results in:

M ≤ d
d− (1−1/q)n

,

whereM is the maximum number of codewords. In this case,d must be larger than(1−1/q)n, but by
shortening the code, the cased〈(1−1/q)n is covered.

Example
gap> UpperBoundPlotkin( 15, 7, 2 );
32
gap> C := BCHCode( 15, 7, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> Size(C);
32
gap> WeightDistribution(C);
[ 1, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 1 ]

7.1.5 UpperBoundElias

♦ UpperBoundElias( n, d, q ) (function)

The Elias bound is an improvement of the Plotkin bound (seeUpperBoundPlotkin (7.1.4)) for
large codes. Subcodes are used to decrease the size of the code, in this case the subcode of all
codewords within a certain ball. This bound is useful for large codes with relatively small minimum
distances.

Example
gap> UpperBoundPlotkin( 16, 3, 2 );
12288
gap> UpperBoundElias( 16, 3, 2 );
10280
gap> UpperBoundElias( 20, 10, 3 );
16255

7.1.6 UpperBoundGriesmer

♦ UpperBoundGriesmer( n, d, q ) (function)

The Griesmer bound is valid only for linear codes. It is obtained by counting the number of equal
symbols in each row of the generator matrix of the code. By omitting the coordinates in which all
rows have a zero, a smaller code results. The Griesmer bound is obtained by repeating this proces
until a trivial code is left in the end.
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Example
gap> UpperBoundGriesmer( 13, 5, 2 );
64
gap> UpperBoundGriesmer( 18, 9, 2 );
8 # the maximum number of words for a linear code is 8
gap> Size( PuncturedCode( HadamardCode( 20, 1 ) ) );
20 # this non-linear code has 20 elements

7.1.7 UpperBound

♦ UpperBound( n, d, q ) (function)

UpperBound returns the best known upper boundA(n,d) for the size of a code of lengthn,
minimum distanced over a field of sizeq. The functionUpperBound first checks for trivial cases
(like d = 1 or n = d), and if the value is in the built-in table. Then it calculates the minimum
value of the upper bound using the methods of Singleton (seeUpperBoundSingleton (7.1.1)),
Hamming (seeUpperBoundHamming (7.1.2)), Johnson (seeUpperBoundJohnson (7.1.3)), Plotkin
(seeUpperBoundPlotkin (7.1.4)) and Elias (seeUpperBoundElias (7.1.5)). If the code is binary,
A(n,2· `−1) = A(n+1,2· `), so theUpperBound takes the minimum of the values obtained from all
methods for the parameters(n,2· `−1) and(n+1,2· `).

Example
gap> UpperBound( 10, 3, 2 );
85
gap> UpperBound( 25, 9, 8 );
1211778792827540

7.1.8 LowerBoundMinimumDistance

♦ LowerBoundMinimumDistance( C ) (function)

In this form,LowerBoundMinimumDistance returns a lower bound for the minimum distance of
codeC.

This command can also be called using the syntaxLowerBoundMinimumDistance( n, k, F ).
In this form,LowerBoundMinimumDistance returns a lower bound for the minimum distance of the
best known linear code of lengthn, dimensionk over fieldF. It uses the mechanism explained in
section7.1.12.

Example
gap> C := BCHCode( 45, 7 );
a cyclic [45,23,7..9]6..16 BCH code, delta=7, b=1 over GF(2)
gap> LowerBoundMinimumDistance( C );
7 # designed distance is lower bound for minimum distance
gap> LowerBoundMinimumDistance( 45, 23, GF(2) );
10
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7.1.9 LowerBoundGilbertVarshamov

♦ LowerBoundGilbertVarshamov( n, d, q ) (function)

This is the lower bound due (independently) to Gilbert and Varshamov. It says that for each
n and d, there exists a linear code having lengthn and minimum distanced at least of size
qn−1/SphereContent(n−1,d−2,GF(q)).

Example
gap> LowerBoundGilbertVarshamov(3,2,2);
4
gap> LowerBoundGilbertVarshamov(3,3,2);
1
gap> LowerBoundMinimumDistance(3,3,2);
1
gap> LowerBoundMinimumDistance(3,2,2);
2

7.1.10 LowerBoundSpherePacking

♦ LowerBoundSpherePacking( n, d, q ) (function)

This is the lower bound due (independently) to Gilbert and Varshamov. It says that for eachn and
r, there exists an unrestricted code at least of sizeqn/SphereContent(n,d,GF(q)) minimum distance
d.

Example
gap> LowerBoundSpherePacking(3,2,2);
2
gap> LowerBoundSpherePacking(3,3,2);
1

7.1.11 UpperBoundMinimumDistance

♦ UpperBoundMinimumDistance( C ) (function)

In this form,UpperBoundMinimumDistance returns an upper bound for the minimum distance of
codeC. For unrestricted codes, it just returns the word length. For linear codes, it takes the minimum
of the possibly known value from the method of construction, the weight of the generators, and the
value from the table (see7.1.12).

This command can also be called using the syntaxUpperBoundMinimumDistance( n, k, F ).
In this form,UpperBoundMinimumDistance returns an upper bound for the minimum distance of the
best known linear code of lengthn, dimensionk over fieldF. It uses the mechanism explained in
section7.1.12.

Example
gap> C := BCHCode( 45, 7 );;
gap> UpperBoundMinimumDistance( C );
9
gap> UpperBoundMinimumDistance( 45, 23, GF(2) );
11



GUAVA 96

7.1.12 BoundsMinimumDistance

♦ BoundsMinimumDistance( n, k, F ) (function)

The functionBoundsMinimumDistance calculates a lower and upper bound for the minimum
distance of an optimal linear code with word lengthn, dimensionk over fieldF. The function returns
a record with the two bounds and an explenation for each bound. The functionDisplay can be used
to show the explanations.

The values for the lower and upper bound are obtained from a table.GUAVA has ta-
bles containing lower and upper bounds forq = 2(n ≤ 257),3,4(n ≤ 130). (Current as
of 1998.) These tables were derived from the table of Brouwer and Verhoeff. (See
http://www.win.tue.nl/˜aeb/voorlincod.html.) For codes over other fields and for larger word
lengths, trivial bounds are used.

The resulting record can be used in the functionBestKnownLinearCode (see
BestKnownLinearCode (5.2.13)) to construct a code with minimum distance equal to the lower
bound.

Example
gap> bounds := BoundsMinimumDistance( 7, 3 );; DisplayBoundsInfo( bounds );
an optimal linear [7,3,d] code over GF(2) has d=4
------------------------------------------------------------------------------
Lb(7,3)=4, by shortening of:
Lb(8,4)=4, u u+v construction of C1 and C2:
Lb(4,3)=2, dual of the repetition code
Lb(4,1)=4, repetition code
------------------------------------------------------------------------------
Ub(7,3)=4, Griesmer bound
# The lower bound is equal to the upper bound, so a code with
# these parameters is optimal.
gap> C := BestKnownLinearCode( bounds );; Display( C );
a linear [7,3,4]2..3 shortened code of
a linear [8,4,4]2 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]2 repetition code over GF(2)
V: a cyclic [4,1,4]2 repetition code over GF(2)

7.2 Covering radius bounds on codes

7.2.1 BoundsCoveringRadius

♦ BoundsCoveringRadius( C ) (function)

BoundsCoveringRadius returns a list of integers. The first entry of this list is the maximum of
some lower bounds for the covering radius ofC, the last entry the minimum of some upper bounds of
C.

If the covering radius of C is known, a list of length 1 is returned.
BoundsCoveringRadius makes use of the functionsGeneralLowerBoundCoveringRadius
andGeneralUpperBoundCoveringRadius.

Example
gap> BoundsCoveringRadius( BCHCode( 17, 3, GF(2) ) );
[ 3 .. 4 ]

http://www.win.tue.nl/~aeb/voorlincod.html
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gap> BoundsCoveringRadius( HammingCode( 5, GF(2) ) );
[ 1 ]

7.2.2 IncreaseCoveringRadiusLowerBound

♦ IncreaseCoveringRadiusLowerBound( C[, stopdist][,][startword] ) (function)

IncreaseCoveringRadiusLowerBound tries to increase the lower bound of the covering radius
of C. It does this by means of a probabilistic algorithm. This algorithm takes a random word inGF(q)n

(or startword if it is specified), and, by changing random coordinates, tries to get as far fromC as
possible. If changing a coordinate finds a word that has a larger distance to the code than the previous
one, the change is made permanent, and the algorithm starts all over again. If changing a coordinate
does not find a coset leader that is further away from the code, then the change is made permanent
with a chance of 1 in 100, if it gets the word closer to the code, or with a chance of 1 in 10, if the word
stays at the same distance. Otherwise, the algorithm starts again with the same word as before.

If the algorithm did not allow changes that decrease the distance to the code, it might get stuck in
a sub-optimal situation (the coset leader corresponding to such a situation - i.e. no coordinate of this
coset leader can be changed in such a way that we get at a larger distance from the code - is called an
orphan).

If the algorithm finds a word that has distancestopdist to the code, it ends and returns that word,
which can be used for further investigations.

The variableInfoCoveringRadius can be set toPrint to print the maximum distance reached
so far every 1000 runs. The algorithm can be interrupted withCTRL-C, allowing the user to look at
the word that is currently being examined (called ‘current’), or to change the chances that the new
word is made permanent (these are called ‘staychance’ and ‘downchance’). If one of these variables
is i, then it corresponds with ai in 100 chance.

At the moment, the algorithm is only useful for codes with small dimension, where small means
that the elements of the code fit in the memory. It works with larger codes, however, but when you use
it for codes with large dimension, you should beverypatient. If running the algorithm quitsGAP (due
to memory problems), you can change the global variableCRMemSize to a lower value. This might
cause the algorithm to run slower, but without quittingGAP. The only way to find out the best value
of CRMemSize is by experimenting.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> IncreaseCoveringRadiusLowerBound(C,10);
Number of runs: 1000 best distance so far: 3
Number of runs: 2000 best distance so far: 3
Number of changes: 100
Number of runs: 3000 best distance so far: 3
Number of runs: 4000 best distance so far: 3
Number of runs: 5000 best distance so far: 3
Number of runs: 6000 best distance so far: 3
Number of runs: 7000 best distance so far: 3
Number of changes: 200
Number of runs: 8000 best distance so far: 3
Number of runs: 9000 best distance so far: 3
Number of runs: 10000 best distance so far: 3
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Number of changes: 300
Number of runs: 11000 best distance so far: 3
Number of runs: 12000 best distance so far: 3
Number of runs: 13000 best distance so far: 3
Number of changes: 400
Number of runs: 14000 best distance so far: 3
user interrupt at...
#
# used ctrl-c to break out of execution
#
... called from
IncreaseCoveringRadiusLowerBound( code, -1, current ) called from
function( arguments ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> current;
[ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ]
brk>
gap> CoveringRadius(C);
3

7.2.3 ExhaustiveSearchCoveringRadius

♦ ExhaustiveSearchCoveringRadius( C ) (function)

ExhaustiveSearchCoveringRadius does an exhaustive search to find the covering radius ofC.
Every time a coset leader of a coset with weightw is found, the function tries to find a coset leader
of a coset with weightw+ 1. It does this by enumerating all words of weightw+ 1, and checking
whether a word is a coset leader. The start weight is the current known lower bound on the covering
radius.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> ExhaustiveSearchCoveringRadius(C);
Trying 3 ...
[ 3 .. 5 ]
gap> CoveringRadius(C);
3

7.2.4 GeneralLowerBoundCoveringRadius

♦ GeneralLowerBoundCoveringRadius( C ) (function)

GeneralLowerBoundCoveringRadius returns a lower bound on the covering radius ofC. It uses
as many functions which names start withLowerBoundCoveringRadius as possible to find the best
known lower bound (at least thatGUAVA knows of) together with tables for the covering radius of
binary linear codes with length not greater than 64.
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Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> GeneralLowerBoundCoveringRadius(C);
2
gap> CoveringRadius(C);
3

7.2.5 GeneralUpperBoundCoveringRadius

♦ GeneralUpperBoundCoveringRadius( C ) (function)

GeneralUpperBoundCoveringRadius returns an upper bound on the covering radius ofC. It
uses as many functions which names start withUpperBoundCoveringRadius as possible to find the
best known upper bound (at least thatGUAVA knows of).

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> GeneralUpperBoundCoveringRadius(C);
4
gap> CoveringRadius(C);
3

7.2.6 LowerBoundCoveringRadiusSphereCovering

♦ LowerBoundCoveringRadiusSphereCovering( n, M[, F,] false ) (function)

This command can also be called using the syntaxLowerBoundCoveringRadiusSphereCovering(
n, r, [F,] true ). If the last argument ofLowerBoundCoveringRadiusSphereCovering is
false, then it returns a lower bound for the covering radius of a code of sizeM and lengthn.
Otherwise, it returns a lower bound for the size of a code of lengthn and covering radiusr.

F is the field over which the code is defined. IfF is omitted, it is assumed that the code is over
GF(2). The bound is computed according to the sphere covering bound:

M ·Vq(n, r)≥ qn

whereVq(n, r) is the size of a sphere of radiusr in GF(q)n.
Example

gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusSphereCovering(10,32,GF(2),false);
2
gap> LowerBoundCoveringRadiusSphereCovering(10,3,GF(2),true);
6
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7.2.7 LowerBoundCoveringRadiusVanWee1

♦ LowerBoundCoveringRadiusVanWee1( n, M[, F,] false ) (function)

This command can also be called using the syntaxLowerBoundCoveringRadiusVanWee1( n,
r, [F,] true ). If the last argument ofLowerBoundCoveringRadiusVanWee1 is false, then it
returns a lower bound for the covering radius of a code of sizeM and lengthn. Otherwise, it returns a
lower bound for the size of a code of lengthn and covering radiusr.

F is the field over which the code is defined. IfF is omitted, it is assumed that the code is over
GF(2).

The Van Wee bound is an improvement of the sphere covering bound:

M ·

{
Vq(n, r)−

(n
r

)
dn−r

r+1e

(⌈
n+1
r +1

⌉
− n+1

r +1

)}
≥ qn

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusVanWee1(10,32,GF(2),false);
2
gap> LowerBoundCoveringRadiusVanWee1(10,3,GF(2),true);
6

7.2.8 LowerBoundCoveringRadiusVanWee2

♦ LowerBoundCoveringRadiusVanWee2( n, M, false ) (function)

This command can also be called using the syntaxLowerBoundCoveringRadiusVanWee2( n, r
[,true] ). If the last argument ofLowerBoundCoveringRadiusVanWee2 is false, then it returns
a lower bound for the covering radius of a code of sizeM and lengthn. Otherwise, it returns a lower
bound for the size of a code of lengthn and covering radiusr.

This bound only works for binary codes. It is based on the following inequality:

M ·
((

V2(n,2)− 1
2(r +2)(r−1)

)
V2(n, r)+ εV2(n, r−2)

)
(V2(n,2)− 1

2(r +2)(r−1)+ ε)
≥ 2n,

where

ε =
(

r +2
2

)⌈(
n− r +1

2

)
/

(
r +2

2

)⌉
−

(
n− r +1

2

)
.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);



GUAVA 101

32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusVanWee2(10,32,false);
2
gap> LowerBoundCoveringRadiusVanWee2(10,3,true);
7

7.2.9 LowerBoundCoveringRadiusCountingExcess

♦ LowerBoundCoveringRadiusCountingExcess( n, M, false ) (function)

This command can also be called withLowerBoundCoveringRadiusCountingExcess( n, r
[,true] ). If the last argument ofLowerBoundCoveringRadiusCountingExcess is false, then it
returns a lower bound for the covering radius of a code of sizeM and lengthn. Otherwise, it returns a
lower bound for the size of a code of lengthn and covering radiusr.

This bound only works for binary codes. It is based on the following inequality:

M · (ρV2(n, r)+ εV2(n, r−1))≥ (ρ+ ε)2n,

where

ε = (r +1)
⌈

n+1
r +1

⌉
− (n+1)

and

ρ =
{

n−3+ 2
n, if r = 2

n− r−1, if r ≥ 3.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusCountingExcess(10,32,false);
0
gap> LowerBoundCoveringRadiusCountingExcess(10,3,true);
7

7.2.10 LowerBoundCoveringRadiusEmbedded1

♦ LowerBoundCoveringRadiusEmbedded1( n, M, false ) (function)

This command can also be called withLowerBoundCoveringRadiusEmbedded1( n, r
[,true] ). If the last argument ofLowerBoundCoveringRadiusEmbedded1 is ’false’, then it re-
turns a lower bound for the covering radius of a code of sizeM and lengthn. Otherwise, it returns a
lower bound for the size of a code of lengthn and covering radiusr.
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This bound only works for binary codes. It is based on the following inequality:

M ·
(

V2(n, r)−
(

2r
r

))
≥ 2n−A(n,2r +1)

(
2r
r

)
,

whereA(n,d) denotes the maximal cardinality of a (binary) code of lengthn and minimum distance
d. The functionUpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbedded1 is better than
LowerBoundCoveringRadiusEmbedded2, sometimes it is the other way around.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusEmbedded1(10,32,false);
2
gap> LowerBoundCoveringRadiusEmbedded1(10,3,true);
7

7.2.11 LowerBoundCoveringRadiusEmbedded2

♦ LowerBoundCoveringRadiusEmbedded2( n, M, false ) (function)

This command can also be called withLowerBoundCoveringRadiusEmbedded2( n, r
[,true] ). If the last argument ofLowerBoundCoveringRadiusEmbedded2 is ’false’, then it re-
turns a lower bound for the covering radius of a code of sizeM and lengthn. Otherwise, it returns a
lower bound for the size of a code of lengthn and covering radiusr.

This bound only works for binary codes. It is based on the following inequality:

M ·
(

V2(n, r)− 3
2

(
2r
r

))
≥ 2n−2A(n,2r +1)

(
2r
r

)
,

whereA(n,d) denotes the maximal cardinality of a (binary) code of lengthn and minimum distance
d. The functionUpperBound is used to compute this value.

Sometimes LowerBoundCoveringRadiusEmbedded1 is better than
LowerBoundCoveringRadiusEmbedded2, sometimes it is the other way around.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
6
gap> LowerBoundCoveringRadiusEmbedded2(10,32,false);
2
gap> LowerBoundCoveringRadiusEmbedded2(10,3,true);
7
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7.2.12 LowerBoundCoveringRadiusInduction

♦ LowerBoundCoveringRadiusInduction( n, r ) (function)

LowerBoundCoveringRadiusInduction returns a lower bound for the size of a code with length
n and covering radiusr.

If n = 2r +2 andr ≥ 1, the returned value is 4.
If n = 2r +3 andr ≥ 1, the returned value is 7.
If n = 2r +4 andr ≥ 4, the returned value is 8.
Otherwise, 0 is returned.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> LowerBoundCoveringRadiusInduction(15,6);
7

7.2.13 UpperBoundCoveringRadiusRedundancy

♦ UpperBoundCoveringRadiusRedundancy( C ) (function)

UpperBoundCoveringRadiusRedundancy returns the redundancy ofC as an upper bound for the
covering radius ofC. C must be a linear code.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusRedundancy(C);
10

7.2.14 UpperBoundCoveringRadiusDelsarte

♦ UpperBoundCoveringRadiusDelsarte( C ) (function)

UpperBoundCoveringRadiusDelsarte returns an upper bound for the covering radius ofC. This
upper bound is equal to the external distance ofC, this is the minimum distance of the dual code, ifC
is a linear code.

This is described in Theorem 11.3.3 of [HP03].
Example

gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusDelsarte(C);
13
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7.2.15 UpperBoundCoveringRadiusStrength

♦ UpperBoundCoveringRadiusStrength( C ) (function)

UpperBoundCoveringRadiusStrength returns an upper bound for the covering radius ofC.
First the code is punctured at the zero coordinates (i.e. the coordinates where all codewords have

a zero). If the remaining code hasstrength1 (i.e. each coordinate contains each element of the field
an equal number of times), then it returnsq−1

q m+(n−m) (whereq is the size of the field andm is the
length of punctured code), otherwise it returnsn. This bound works for all codes.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusStrength(C);
7

7.2.16 UpperBoundCoveringRadiusGriesmerLike

♦ UpperBoundCoveringRadiusGriesmerLike( C ) (function)

This function returns an upper bound for the covering radius ofC, which must be linear, in a
Griesmer-like fashion. It returns

n−
k

∑
i=1

⌈
d
qi

⌉
Example

gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusGriesmerLike(C);
9

7.2.17 UpperBoundCoveringRadiusCyclicCode

♦ UpperBoundCoveringRadiusCyclicCode( C ) (function)

This function returns an upper bound for the covering radius ofC, which must be a cyclic code. It
returns

n−k+1−
⌈

w(g(x))
2

⌉
,

whereg(x) is the generator polynomial ofC.

Example
gap> C:=CyclicCodes(15,GF(2))[3];
a cyclic [15,12,1..2]1..3 enumerated code over GF(2)
gap> CoveringRadius(C);
3
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gap> UpperBoundCoveringRadiusCyclicCode(C);
3

7.3 Special matrices inGUAVA

This section explains functions that work with special matricesGUAVA needs for several codes.
Firstly, we describe some matrix generating functions (seeKrawtchoukMat (7.3.1), GrayMat

(7.3.2), SylvesterMat (7.3.3), HadamardMat (7.3.4) andMOLS (7.3.11)).
Next we describe two functions regarding a standard form of matrices (seePutStandardForm

(7.3.6) andIsInStandardForm (7.3.7)).
Then we describe functions that return a matrix after a manipulation (seePermutedCols (7.3.8),

VerticalConversionFieldMat (7.3.9) andHorizontalConversionFieldMat (7.3.10)).
Finally, we describe functions that do some tests on matrices (seeIsLatinSquare (7.3.12) and

AreMOLS (7.3.13)).

7.3.1 KrawtchoukMat

♦ KrawtchoukMat( n, q ) (function)

KrawtchoukMat returns then+1 byn+1 matrixK = (ki j ) defined byki j = Ki( j) for i, j = 0, ...,n.
Ki( j) is the Krawtchouk number (seeKrawtchouk (7.5.10)). n must be a positive integer andq a prime
power. The Krawtchouk matrix is used in theMacWilliams identities, defining the relation between
the weight distribution of a code of lengthn over a field of sizeq, and its dual code. Each call to
KrawtchoukMat returns a new matrix, so it is safe to modify the result.

Example
gap> PrintArray( KrawtchoukMat( 3, 2 ) );
[ [ 1, 1, 1, 1 ],
[ 3, 1, -1, -3 ],
[ 3, -1, -1, 3 ],
[ 1, -1, 1, -1 ] ]

gap> C := HammingCode( 3 );; a := WeightDistribution( C );
[ 1, 0, 0, 7, 7, 0, 0, 1 ]
gap> n := WordLength( C );; q := Size( LeftActingDomain( C ) );;
gap> k := Dimension( C );;
gap> qˆ( -k ) * KrawtchoukMat( n, q ) * a;
[ 1, 0, 0, 0, 7, 0, 0, 0 ]
gap> WeightDistribution( DualCode( C ) );
[ 1, 0, 0, 0, 7, 0, 0, 0 ]

7.3.2 GrayMat

♦ GrayMat( n, F ) (function)

GrayMat returns a list of all different vectors (seeGAP’s Vectors command) of lengthn over the
field F, using Gray ordering.n must be a positive integer. This order has the property that subsequent
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vectors differ in exactly one coordinate. The first vector is always the null vector. Each call toGrayMat
returns a new matrix, so it is safe to modify the result.

Example
gap> GrayMat(3);
[ [ 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)ˆ0 ],
[ 0*Z(2), Z(2)ˆ0, Z(2)ˆ0 ], [ 0*Z(2), Z(2)ˆ0, 0*Z(2) ],
[ Z(2)ˆ0, Z(2)ˆ0, 0*Z(2) ], [ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ],
[ Z(2)ˆ0, 0*Z(2), Z(2)ˆ0 ], [ Z(2)ˆ0, 0*Z(2), 0*Z(2) ] ]

gap> G := GrayMat( 4, GF(4) );; Length(G);
256 # the length of a GrayMat is always $qˆn$
gap> G[101] - G[100];
[ 0*Z(2), 0*Z(2), Z(2)ˆ0, 0*Z(2) ]

7.3.3 SylvesterMat

♦ SylvesterMat( n ) (function)

SylvesterMat returns then×nSylvester matrix of ordern. This is a special case of the Hadamard
matrices (seeHadamardMat (7.3.4)). For this construction,n must be a power of 2. Each call to
SylvesterMat returns a new matrix, so it is safe to modify the result.

Example
gap> PrintArray(SylvesterMat(2));
[ [ 1, 1 ],
[ 1, -1 ] ]

gap> PrintArray( SylvesterMat(4) );
[ [ 1, 1, 1, 1 ],
[ 1, -1, 1, -1 ],
[ 1, 1, -1, -1 ],
[ 1, -1, -1, 1 ] ]

7.3.4 HadamardMat

♦ HadamardMat( n ) (function)

HadamardMat returns a Hadamard matrix of ordern. This is ann×n matrix with the property
that the matrix multiplied by its transpose returnsn times the identity matrix. This is only possible
for n = 1,n = 2 or in cases wheren is a multiple of 4. If the matrix does not exist or is not known (as
of 1998),HadamardMat returns an error. A large number of construction methods is known to create
these matrices for different orders.HadamardMat makes use of two construction methods (among
which the Sylvester construction – seeSylvesterMat (7.3.3)). These methods cover most of the
possible Hadamard matrices, although some special algorithms have not been implemented yet. The
following orders less than 100 do not yet have an implementation for a Hadamard matrix inGUAVA:
28,36,52,76,92.

Example
gap> C := HadamardMat(8);; PrintArray(C);
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ],
[ 1, -1, 1, -1, 1, -1, 1, -1 ],
[ 1, 1, -1, -1, 1, 1, -1, -1 ],
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[ 1, -1, -1, 1, 1, -1, -1, 1 ],
[ 1, 1, 1, 1, -1, -1, -1, -1 ],
[ 1, -1, 1, -1, -1, 1, -1, 1 ],
[ 1, 1, -1, -1, -1, -1, 1, 1 ],
[ 1, -1, -1, 1, -1, 1, 1, -1 ] ]

gap> C * TransposedMat(C) = 8 * IdentityMat( 8, 8 );
true

7.3.5 VandermondeMat

♦ VandermondeMat( X, a ) (function)

The functionVandermondeMat returns the(a+ 1)× n matrix of powersx j
i whereX is a list of

elements of a field,X = {x1, ...,xn}, anda is a non-negative integer.

Example
gap> M:=VandermondeMat([Z(5),Z(5)ˆ2,Z(5)ˆ0,Z(5)ˆ3],2);
[ [ Z(5)ˆ0, Z(5), Z(5)ˆ2 ], [ Z(5)ˆ0, Z(5)ˆ2, Z(5)ˆ0 ],
[ Z(5)ˆ0, Z(5)ˆ0, Z(5)ˆ0 ], [ Z(5)ˆ0, Z(5)ˆ3, Z(5)ˆ2 ] ]

gap> Display(M);
1 2 4
1 4 1
1 1 1
1 3 4

7.3.6 PutStandardForm

♦ PutStandardForm( M[, idleft] ) (function)

We say that ak×n matrix is instandard formif it is equal to the block matrix(I | A), for some
k× (n− k) matrix A and whereI is thek× k identity matrix. It follows from a basis result in linear
algebra that, after a possible permutation of the columns, using elementary row operations, every
matrix can be reduced to standard form.PutStandardForm puts a matrixM in standard form, and
returns the permutation needed to do so.idleft is a boolean that sets the position of the identity
matrix inM. (The default foridleft is ‘true’.) If idleft is set to ‘true’, the identity matrix is put on
the left side ofM. Otherwise, it is put at the right side. (This option is useful when putting a check
matrix of a code into standard form.) The functionBaseMat also returns a similar standard form, but
does not apply column permutations. The rows of the matrix still span the same vector space after
BaseMat, but after callingPutStandardForm, this is not necessarily true.

Example
gap> M := Z(2)*[[1,0,0,1],[0,0,1,1]];; PrintArray(M);
[ [ Z(2), 0*Z(2), 0*Z(2), Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2), Z(2) ] ]

gap> PutStandardForm(M); # identity at the left side
(2,3)
gap> PrintArray(M);
[ [ Z(2), 0*Z(2), 0*Z(2), Z(2) ],
[ 0*Z(2), Z(2), 0*Z(2), Z(2) ] ]

gap> PutStandardForm(M, false); # identity at the right side
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(1,4,3)
gap> PrintArray(M);
[ [ 0*Z(2), Z(2), Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2), 0*Z(2), Z(2) ] ]

7.3.7 IsInStandardForm

♦ IsInStandardForm( M[, idleft] ) (function)

IsInStandardForm determines ifM is in standard form. idleft is a boolean that indicates
the position of the identity matrix inM, as inPutStandardForm (seePutStandardForm (7.3.6)).
IsInStandardForm checks if the identity matrix is at the left side ofM, otherwise if it is at the right
side. The elements ofM may be elements of any field.

Example
gap> IsInStandardForm(IdentityMat(7, GF(2)));
true
gap> IsInStandardForm([[1, 1, 0], [1, 0, 1]], false);
true
gap> IsInStandardForm([[1, 3, 2, 7]]);
true
gap> IsInStandardForm(HadamardMat(4));
false

7.3.8 PermutedCols

♦ PermutedCols( M, P ) (function)

PermutedCols returns a matrixM with a permutationP applied to its columns.
Example

gap> M := [[1,2,3,4],[1,2,3,4]];; PrintArray(M);
[ [ 1, 2, 3, 4 ],
[ 1, 2, 3, 4 ] ]

gap> PrintArray(PermutedCols(M, (1,2,3)));
[ [ 3, 1, 2, 4 ],
[ 3, 1, 2, 4 ] ]

7.3.9 VerticalConversionFieldMat

♦ VerticalConversionFieldMat( M, F ) (function)

VerticalConversionFieldMat returns the matrixM with its elements converted from a field
F = GF(qm), q prime, to a fieldGF(q). Each element is replaced by its representation over the latter
field, placed vertically in the matrix, using theGF(p)-vector space isomorphism

[...] : GF(q)→ GF(p)m,

with q = pm.
If M is a k by n matrix, the result is ak ·m× n matrix, since each element ofGF(qm) can be

represented inGF(q) usingm elements.
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Example
gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[ [ Z(3ˆ2), Z(3ˆ2)ˆ5 ],
[ Z(3ˆ2)ˆ5, Z(3ˆ2) ] ]

gap> DefaultField( Flat(M) );
GF(3ˆ2)
gap> VCFM := VerticalConversionFieldMat( M, GF(9) );; PrintArray(VCFM);
[ [ 0*Z(3), 0*Z(3) ],
[ Z(3)ˆ0, Z(3) ],
[ 0*Z(3), 0*Z(3) ],
[ Z(3), Z(3)ˆ0 ] ]

gap> DefaultField( Flat(VCFM) );
GF(3)

A similar function is HorizontalConversionFieldMat (seeHorizontalConversionFieldMat
(7.3.10)).

7.3.10 HorizontalConversionFieldMat

♦ HorizontalConversionFieldMat( M, F ) (function)

HorizontalConversionFieldMat returns the matrixM with its elements converted from a field
F = GF(qm), q prime, to a fieldGF(q). Each element is replaced by its representation over the latter
field, placed horizontally in the matrix.

If M is ak×n matrix, the result is ak×m×n·mmatrix. The new word length of the resulting code
is equal ton·m, because each element ofGF(qm) can be represented inGF(q) usingmelements. The
new dimension is equal tok×m because the new matrix should be a basis for the same number of
vectors as the old one.

ConversionFieldCode uses horizontal conversion to convert a code (seeConversionFieldCode
(6.1.14)).

Example
gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[ [ Z(3ˆ2), Z(3ˆ2)ˆ5 ],
[ Z(3ˆ2)ˆ5, Z(3ˆ2) ] ]

gap> DefaultField( Flat(M) );
GF(3ˆ2)
gap> HCFM := HorizontalConversionFieldMat(M, GF(9));; PrintArray(HCFM);
[ [ 0*Z(3), Z(3)ˆ0, 0*Z(3), Z(3) ],
[ Z(3)ˆ0, Z(3)ˆ0, Z(3), Z(3) ],
[ 0*Z(3), Z(3), 0*Z(3), Z(3)ˆ0 ],
[ Z(3), Z(3), Z(3)ˆ0, Z(3)ˆ0 ] ]

gap> DefaultField( Flat(HCFM) );
GF(3)

A similar function isVerticalConversionFieldMat (seeVerticalConversionFieldMat (7.3.9)).

7.3.11 MOLS

♦ MOLS( q[, n] ) (function)
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MOLS returns a list ofn Mutually Orthogonal Latin Squares(MOLS). A Latin squareof orderq is
a q×q matrix whose entries are from a setFq of q distinct symbols (GUAVA uses the integers from 0
to q) such that each row and each column of the matrix contains each symbol exactly once.

A set of Latin squares is a set of MOLS if and only if for each pair of Latin squares in this set,
every ordered pair of elements that are in the same position in these matrices occurs exactly once.

n must be less thanq. If n is omitted, two MOLS are returned. Ifq is not a prime power, at most
2 MOLS can be created. For all values ofq with q > 2 andq 6= 6, a list of MOLS can be constructed.
However,GUAVA does not yet construct MOLS forq≡ 2 (mod 4). If it is not possible to construct
n MOLS, the function returns ‘false’.

MOLS are used to createq-ary codes (seeMOLSCode (5.1.4)).

Example
gap> M := MOLS( 4, 3 );;PrintArray( M[1] );
[ [ 0, 1, 2, 3 ],
[ 1, 0, 3, 2 ],
[ 2, 3, 0, 1 ],
[ 3, 2, 1, 0 ] ]

gap> PrintArray( M[2] );
[ [ 0, 2, 3, 1 ],
[ 1, 3, 2, 0 ],
[ 2, 0, 1, 3 ],
[ 3, 1, 0, 2 ] ]

gap> PrintArray( M[3] );
[ [ 0, 3, 1, 2 ],
[ 1, 2, 0, 3 ],
[ 2, 1, 3, 0 ],
[ 3, 0, 2, 1 ] ]

gap> MOLS( 12, 3 );
false

7.3.12 IsLatinSquare

♦ IsLatinSquare( M ) (function)

IsLatinSquare determines if a matrixM is a Latin square. For a Latin square of sizen×n, each
row and each column contains all the integers 1, . . . ,n exactly once.

Example
gap> IsLatinSquare([[1,2],[2,1]]);
true
gap> IsLatinSquare([[1,2,3],[2,3,1],[1,3,2]]);
false

7.3.13 AreMOLS

♦ AreMOLS( L ) (function)

AreMOLS determines ifL is a list of mutually orthogonal Latin squares (MOLS). For each pair of
Latin squares in this list, the function checks if each ordered pair of elements that are in the same
position in these matrices occurs exactly once. The functionMOLS creates MOLS (seeMOLS (7.3.11)).
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Example
gap> M := MOLS(4,2);
[ [ [ 0, 1, 2, 3 ], [ 1, 0, 3, 2 ], [ 2, 3, 0, 1 ], [ 3, 2, 1, 0 ] ],
[ [ 0, 2, 3, 1 ], [ 1, 3, 2, 0 ], [ 2, 0, 1, 3 ], [ 3, 1, 0, 2 ] ] ]

gap> AreMOLS(M);
true

7.4 Some functions related to the norm of a code

In this section, some functions that can be used to compute the norm of a code and to decide upon
its normality are discussed. Typically, these are applied to binary linear codes. The definitions of this
section were introduced in Graham and Sloane [GS85].

7.4.1 CoordinateNorm

♦ CoordinateNorm( C, coord ) (function)

CoordinateNorm returns the norm ofC with respect to coordinatecoord. If Ca = {c∈C | ccoord =
a}, then the norm ofC with respect tocoord is defined as

max
v∈GF(q)n

q

∑
a=1

d(x,Ca),

with the convention thatd(x,Ca) = n if Ca is empty.
Example

gap> CoordinateNorm( HammingCode( 3, GF(2) ), 3 );
3

7.4.2 CodeNorm

♦ CodeNorm( C ) (function)

CodeNorm returns the norm ofC. Thenormof a code is defined as the minimum of the norms for
the respective coordinates of the code. In effect, for each coordinateCoordinateNorm is called, and
the minimum of the calculated numbers is returned.

Example
gap> CodeNorm( HammingCode( 3, GF(2) ) );
3

7.4.3 IsCoordinateAcceptable

♦ IsCoordinateAcceptable( C, coord ) (function)

IsCoordinateAcceptable returns ‘true’ if coordinatecoord of C is acceptable. A coordinate is
calledacceptableif the norm of the code with respect to that coordinate is not more than two times
the covering radius of the code plus one.
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Example
gap> IsCoordinateAcceptable( HammingCode( 3, GF(2) ), 3 );
true

7.4.4 GeneralizedCodeNorm

♦ GeneralizedCodeNorm( C, subcode1, subscode2, ..., subcodek ) (function)

GeneralizedCodeNorm returns thek-norm ofC with respect tok subcodes.
Example

gap> c := RepetitionCode( 7, GF(2) );;
gap> ham := HammingCode( 3, GF(2) );;
gap> d := EvenWeightSubcode( ham );;
gap> e := ConstantWeightSubcode( ham, 3 );;
gap> GeneralizedCodeNorm( ham, c, d, e );
4

7.4.5 IsNormalCode

♦ IsNormalCode( C ) (function)

IsNormalCode returns ‘true’ ifC is normal. A code is callednormalif the norm of the code is not
more than two times the covering radius of the code plus one. Almost all codes are normal, however
some (non-linear) abnormal codes have been found.

Often, it is difficult to find out whether a code is normal, because it involves computing the cover-
ing radius. However,IsNormalCode uses much information from the literature (in particular, [GS85])
about normality for certain code parameters.

Example
gap> IsNormalCode( HammingCode( 3, GF(2) ) );
true

7.5 Miscellaneous functions

In this section we describe several functionsGUAVA uses for constructing codes or performing calcu-
lations with codes.

In this section, some new miscellaneous functions are described, including weight enumerators,
the MacWilliams-transform and affinity and almost affinity of codes.

7.5.1 CodeWeightEnumerator

♦ CodeWeightEnumerator( C ) (function)

CodeWeightEnumerator returns a polynomial of the following form:

f (x) =
n

∑
i=0

Aix
i ,
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whereAi is the number of codewords inC with weight i.
Example

gap> CodeWeightEnumerator( ElementsCode( [ [ 0,0,0 ], [ 0,0,1 ],
> [ 0,1,1 ], [ 1,1,1 ] ], GF(2) ) );
xˆ3 + xˆ2 + x + 1
gap> CodeWeightEnumerator( HammingCode( 3, GF(2) ) );
xˆ7 + 7*xˆ4 + 7*xˆ3 + 1

7.5.2 CodeDistanceEnumerator

♦ CodeDistanceEnumerator( C, w ) (function)

CodeDistanceEnumerator returns a polynomial of the following form:

f (x) =
n

∑
i=0

Bix
i ,

whereBi is the number of codewords with distancei to w.
If w is a codeword, thenCodeDistanceEnumerator returns the same polynomial as

CodeWeightEnumerator.
Example

gap> CodeDistanceEnumerator( HammingCode( 3, GF(2) ),[0,0,0,0,0,0,1] );
xˆ6 + 3*xˆ5 + 4*xˆ4 + 4*xˆ3 + 3*xˆ2 + x
gap> CodeDistanceEnumerator( HammingCode( 3, GF(2) ),[1,1,1,1,1,1,1] );
xˆ7 + 7*xˆ4 + 7*xˆ3 + 1 # ‘[1,1,1,1,1,1,1]’ $\in$ ‘HammingCode( 3, GF(2 ) )’

7.5.3 CodeMacWilliamsTransform

♦ CodeMacWilliamsTransform( C ) (function)

CodeMacWilliamsTransform returns a polynomial of the following form:

f (x) =
n

∑
i=0

Cix
i ,

whereCi is the number of codewords with weighti in thedualcode ofC.
Example

gap> CodeMacWilliamsTransform( HammingCode( 3, GF(2) ) );
7*xˆ4 + 1

7.5.4 IsSelfComplementaryCode

♦ IsSelfComplementaryCode( C ) (function)

IsSelfComplementaryCode returns ‘true’ if

v∈ code⇒ 1−v∈ code,

where 1 is the all-one word of lengthn.
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Example
gap> IsSelfComplementaryCode( HammingCode( 3, GF(2) ) );
true
gap> IsSelfComplementaryCode( EvenWeightSubcode(
> HammingCode( 3, GF(2) ) ) );
false

7.5.5 IsAffineCode

♦ IsAffineCode( C ) (function)

IsAffineCode returns ‘true’ ifC is an affine code. A code is calledaffineif it is an affine space.
In other words, a code is affine if it is a coset of a linear code.

Example
gap> IsAffineCode( HammingCode( 3, GF(2) ) );
true
gap> IsAffineCode( CosetCode( HammingCode( 3, GF(2) ),
> [ 1, 0, 0, 0, 0, 0, 0 ] ) );
true
gap> IsAffineCode( NordstromRobinsonCode() );
false

7.5.6 IsAlmostAffineCode

♦ IsAlmostAffineCode( C ) (function)

IsAlmostAffineCode returns ‘true’ ifC is an almost affine code. A code is calledalmost affine
if the size of any punctured code ofC is qr for somer, whereq is the size of the alphabet of the code.
Every affine code is also almost affine, and every code overGF(2) andGF(3) that is almost affine is
also affine.

Example
gap> code := ElementsCode( [ [0,0,0], [0,1,1], [0,2,2], [0,3,3],
> [1,0,1], [1,1,0], [1,2,3], [1,3,2],
> [2,0,2], [2,1,3], [2,2,0], [2,3,1],
> [3,0,3], [3,1,2], [3,2,1], [3,3,0] ],
> GF(4) );;
gap> IsAlmostAffineCode( code );
true
gap> IsAlmostAffineCode( NordstromRobinsonCode() );
false

7.5.7 IsGriesmerCode

♦ IsGriesmerCode( C ) (function)
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IsGriesmerCode returns ‘true’ ifC, which must be a linear code, is Griesmer code, and ‘false’
otherwise. A code is calledGriesmerif its length satisfies

n = g[k,d] =
k−1

∑
i=0

d d
qi e.

Example
gap> IsGriesmerCode( HammingCode( 3, GF(2) ) );
true
gap> IsGriesmerCode( BCHCode( 17, 2, GF(2) ) );
false

7.5.8 CodeDensity

♦ CodeDensity( C ) (function)

CodeDensity returns thedensityof C. The density of a code is defined as

M ·Vq(n, t)
qn ,

whereM is the size of the code,Vq(n, t) is the size of a sphere of radiust in GF(qn) (which may be
computed usingSphereContent), t is the covering radius of the code andn is the length of the code.

Example
gap> CodeDensity( HammingCode( 3, GF(2) ) );
1
gap> CodeDensity( ReedMullerCode( 1, 4 ) );
14893/2048

7.5.9 SphereContent

♦ SphereContent( n, t, F ) (function)

SphereContent returns the content of a ball of radiust around an arbitrary element of the
vectorspaceFn. This is the cardinality of the set of all elements ofFn that are at distance (see
DistanceCodeword (2.6.2) less than or equal tot from an element ofFn.

In the context of codes, the function is used to determine if a code is perfect. A code isperfectif
spheres of radiust around all codewords contain exactly the whole vectorspace, wheret is the number
of errors the code can correct.

Example
gap> SphereContent( 15, 0, GF(2) );
1 # Only one word with distance 0, which is the word itself
gap> SphereContent( 11, 3, GF(4) );
4984
gap> C := HammingCode(5);
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
#the minimum distance is 3, so the code can correct one error
gap> ( SphereContent( 31, 1, GF(2) ) * Size(C) ) = 2 ˆ 31;
true
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7.5.10 Krawtchouk

♦ Krawtchouk( k, i, n, q ) (function)

Krawtchouk returns the Krawtchouk numberKk(i). q must be a prime power,n must be a positive
integer,k must be a non-negative integer less then or equal ton and i can be any integer. (See
KrawtchoukMat (7.3.1)). This number is the value atx = i of the polynomial

Kn,q
k (x) =

n

∑
j=0

(−1) j(q−1)k− jb(x, j)b(n−x,k− j),

whereb(v,u) = u!/(v!(v−u)!) is the binomial coefficient ifu,v are integers. For more properties of
these polynomials, see [MS83].

Example
gap> Krawtchouk( 2, 0, 3, 2);
3

7.5.11 PrimitiveUnityRoot

♦ PrimitiveUnityRoot( F, n ) (function)

PrimitiveUnityRoot returns a primitiven-th root of unity in an extension field ofF. This is a
finite field elementa with the propertyan = 1 in F, andn is the smallest integer such that this equality
holds.

Example
gap> PrimitiveUnityRoot( GF(2), 15 );
Z(2ˆ4)
gap> lastˆ15;
Z(2)ˆ0
gap> PrimitiveUnityRoot( GF(8), 21 );
Z(2ˆ6)ˆ3

7.5.12 ReciprocalPolynomial

♦ ReciprocalPolynomial( P ) (function)

ReciprocalPolynomial returns thereciprocal of polynomialP. This is a polynomial with co-
efficients ofP in the reverse order. So ifP = a0 + a1X + ... + anXn, the reciprocal polynomial is
P′ = an +an−1X + ...+a0Xn.

This command can also be called using the syntaxReciprocalPolynomial( P , n ). In this
form, the number of coefficients ofP is assumed to be less than or equal ton+1 (with zero coefficients
added in the highest degrees, if necessary). Therefore, the reciprocal polynomial also has degree
n+1.

Example
gap> P := UnivariatePolynomial( GF(3), Z(3)ˆ0 * [1,0,1,2] );
Z(3)ˆ0+x_1ˆ2-x_1ˆ3
gap> RecP := ReciprocalPolynomial( P );
-Z(3)ˆ0+x_1+x_1ˆ3
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gap> ReciprocalPolynomial( RecP ) = P;
true
gap> P := UnivariatePolynomial( GF(3), Z(3)ˆ0 * [1,0,1,2] );
Z(3)ˆ0+x_1ˆ2-x_1ˆ3
gap> ReciprocalPolynomial( P, 6 );
-x_1ˆ3+x_1ˆ4+x_1ˆ6

7.5.13 CyclotomicCosets

♦ CyclotomicCosets( q, n ) (function)

CyclotomicCosets returns the cyclotomic cosets ofq (modn). q and n must be relatively
prime. Each of the elements of the returned list is a list of integers that belong to one cyclotomic
coset. Aq-cyclotomic coset ofs (modn) is a set of the form{s,sq,sq2, ...,sqr−1}, wherer is the
smallest positive integer such thatsqr − s is 0 (modn). In other words, each coset contains all
multiplications of the coset representative byq (modn). The coset representative is the smallest
integer that isn’t in the previous cosets.

Example
gap> CyclotomicCosets( 2, 15 );
[ [ 0 ], [ 1, 2, 4, 8 ], [ 3, 6, 12, 9 ], [ 5, 10 ],
[ 7, 14, 13, 11 ] ]

gap> CyclotomicCosets( 7, 6 );
[ [ 0 ], [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] ]

7.5.14 WeightHistogram

♦ WeightHistogram( C[, h] ) (function)

The functionWeightHistogram plots a histogram of weights in codeC. The maximum length of
a column ish. Default value forh is 1/3 of the size of the screen. The number that appears at the top
of the histogram is the maximum value of the list of weights.

Example
gap> H := HammingCode(2, GF(5));
a linear [6,4,3]1 Hamming (2,5) code over GF(5)
gap> WeightDistribution(H);
[ 1, 0, 0, 80, 120, 264, 160 ]
gap> WeightHistogram(H);
264----------------

*
*
*
*
* *

* * *
* * * *
* * * *

+--------+--+--+--+--
0 1 2 3 4 5 6
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7.5.15 CoefficientToPolynomial

♦ CoefficientToPolynomial( coeffs, R ) (function)

The functionCoefficientToPolynomial returns the degreed− 1 polynomialc0 + c1x+ ... +
cd−1xd−1, wherecoeffs is a list of elements of a field,coe f f s= {c0, ...,cd−1}, andR is a univariate
polynomial ring.

Example
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> coeffs:=Z(11)ˆ0*[1,2,3,4];
[ Z(11)ˆ0, Z(11), Z(11)ˆ8, Z(11)ˆ2 ]
gap> CoefficientToPolynomial(coeffs,R1);
Z(11)ˆ2*aˆ3+Z(11)ˆ8*aˆ2+Z(11)*a+Z(11)ˆ0

7.5.16 DegreesMonomialTerm

♦ DegreesMonomialTerm( m, R ) (function)

The functionDegreesMonomialTerm returns the list of degrees to which each variable in the
multivariate polynomial ringR occurs in the monomialm, wherecoeffs is a list of elements of a
field.

Example
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[ a, b ]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [ a, b ])
gap> c:=X(F,"c",var2);
c
gap> var3:=Concatenation(var2,[c]);
[ a, b, c ]
gap> R3:=PolynomialRing(F,var3);
PolynomialRing(..., [ a, b, c ])
gap> m:=bˆ3*cˆ7;
bˆ3*cˆ7
gap> DegreesMonomialTerm(m,R3);
[ 0, 3, 7 ]

7.5.17 DivisorsMultivariatePolynomial

♦ DivisorsMultivariatePolynomial( f, R ) (function)
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The functionDivisorsMultivariatePolynomial returns the list of polynomial divisors off
in the multivariate polynomial ringR with coefficients in a field. This program uses a simple but
slow algorithm (see Joachim von zur Gathen, Jürgen Gerhard, [vzGG03], exercise 16.10) which first
converts the multivariate polynomialf to an associated univariate polynomialf ∗, thenFactors f ∗,
and finally converts these univariate factors back into the multivariate polynomial factors off. Since
Factors is non-deterministic,DivisorsMultivariatePolynomial is non-deterministic as well.

Example
gap> R2:=PolynomialRing(GF(3),["x1","x2"]);
PolynomialRing(..., [ x1, x2 ])
gap> vars:=IndeterminatesOfPolynomialRing(R2);
[ x1, x2 ]
gap> x2:=vars[2];
x2
gap> x1:=vars[1];
x1
gap> f:=x1ˆ3+x2ˆ3;;
gap> DivisorsMultivariatePolynomial(f,R2);
[ x1+x2, x1+x2, x1+x2 ]
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AClosestVectorCombinationsMatFFEVecFFE,
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AddedElementsCode, 81
affine code,114
AffinePointsOnCurve, 74
AlternantCode, 59
AmalgamatedDirectSumCode, 89
AreMOLS, 110
AsSSortedList, 31
AugmentedCode, 80
AutomorphismGroup, 28

BCHCode, 68
BestKnownLinearCode, 62
BinaryGolayCode, 65
BlockwiseDirectSumCode, 90
Bose distance,69
bound, Gilbert-Varshamov lower,94
bound, sphere packing lower,95
bounds, Elias,93
bounds, Griesmer,93
bounds, Hamming,92
bounds, Johnson,92
bounds, Plotkin,92
bounds, Singleton,91
bounds, sphere packing bound,92
BoundsCoveringRadius, 96
BoundsMinimumDistance, 96

check polynomial,21, 66
CheckMat, 33
CheckMatCode, 58
CheckPol, 34
CheckPolCode, 67
code,20
code,(n,M,d), 20
code,[n,k,d]r, 21
code, alternant,59
code, Bose-Chaudhuri-Hockenghem,68
code, conference,54
code, Cordaro-Wagner,61
code, cyclic,21
code, Davydov,64
code, element test,24
code, elements of,20
code, evaluation,72
code, Fire,70
code, Gabidulin,63
code, Golay (binary),64
code, Golay (ternary),65
code, Goppa (classical),60
code, greedy,56
code, Hadamard,54
code, Hamming,59
code, linear,20
code, maximum distance separable,27
code, Nordstrom-Robinson,56
code, perfect,26
code, Reed-Muller,59
code, Reed-Solomon,69
code, self-dual,27
code, self-orthogonal,27
code, Srivastava,60
code, subcode,25
code, Tombak,64
code, toric,76
code, unrestricted,20
CodeDensity, 115
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CodeDistanceEnumerator, 113
CodeIsomorphism, 28
CodeMacWilliamsTransform, 113
CodeNorm, 111
codes, addition,23
codes, decoding,24
codes, direct sum,23
codes, encoding,23
codes, product,23
CodeWeightEnumerator, 112
Codeword, 12
CodewordNr, 13
codewords, addition,15
codewords, cosets,15
codewords, subtraction,15
CoefficientToPolynomial, 118
conference matrix,55
ConferenceCode, 54
ConstantWeightSubcode, 85
ConstructionBCode, 83
ConversionFieldCode, 84
CoordinateNorm, 111
CordaroWagnerCode, 61
coset,15
CosetCode, 84
covering code,39
CoveringRadius, 39
CyclicCodes, 71
CyclotomicCosets, 117

DavydovCode, 64
Decode, 42
Decodeword, 43
DecreaseMinimumDistanceUpperBound, 37
DegreesMonomialTerm, 118
density of a code,115
Dimension, 30
DirectProductCode, 87
DirectSumCode, 86
Display, 32
distance,41
DistanceCodeword, 18
DistancesDistribution, 42
DistancesDistributionMatFFEVecFFE, 51
DistancesDistributionVecFFEsVecFFE,

51
DistanceVecFFE, 52

DivisorsMultivariatePolynomial, 118
DualCode, 83

ElementsCode, 53
encoder map,23
EnlargedGabidulinCode, 63
EnlargedTombakCode, 64
equivalent codes,27
EvaluationCode, 72
EvenWeightSubcode, 78
ExhaustiveSearchCoveringRadius, 98
ExpurgatedCode, 79
ExtendedBinaryGolayCode, 65
ExtendedCode, 77
ExtendedDirectSumCode, 88
ExtendedTernaryGolayCode, 66
external distance,103

FireCode, 70

GabidulinCode, 63
Gary code,105
GeneralizedCodeNorm, 112
GeneralizedReedMullerCode, 74
GeneralizedReedSolomonCode, 73
GeneralizedReedSolomonDecoderGao, 44
GeneralizedReedSolomonListDecoder, 45
GeneralizedSrivastavaCode, 60
GeneralLowerBoundCoveringRadius, 98
GeneralUpperBoundCoveringRadius, 99
generator polynomial,21, 66
GeneratorMat, 33
GeneratorMatCode, 57
GeneratorMatCodeNC, 58
GeneratorPol, 34
GeneratorPolCode, 67
GoppaCode, 60
GrayMat, 105
GreedyCode, 56
Griesmer code,114

Hadamard matrix,54, 106
HadamardCode, 54
HadamardMat, 106
Hamming metric,52
HammingCode, 59
HorizontalConversionFieldMat, 109
hull, 88
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in, 24
IncreaseCoveringRadiusLowerBound, 97
information bits,24
InformationWord, 24
InnerDistribution, 41
IntersectionCode, 88
IsAffineCode, 114
IsAlmostAffineCode, 114
IsCode, 25
IsCodeword, 14
IsCoordinateAcceptable, 111
IsCyclicCode, 25
IsEquivalent, 27
IsFinite, 30
IsGriesmerCode, 114
IsInStandardForm, 108
IsLatinSquare, 110
IsLinearCode, 25
IsMDSCode, 26
IsNormalCode, 112
IsPerfectCode, 26
IsSelfComplementaryCode, 113
IsSelfDualCode, 27
IsSelfOrthogonalCode, 27
IsSubset, 25

Krawtchouk, 116
KrawtchoukMat, 105

Latin square,109
LeftActingDomain, 30
length,20
LengthenedCode, 82
LexiCode, 57
linear code,11
LowerBoundCoveringRadiusCountingExcess,

101
LowerBoundCoveringRadiusEmbedded1,

101
LowerBoundCoveringRadiusEmbedded2,

102
LowerBoundCoveringRadiusInduction,

103
LowerBoundCoveringRadiusSphereCovering,

99
LowerBoundCoveringRadiusVanWee1, 100
LowerBoundCoveringRadiusVanWee2, 100

LowerBoundGilbertVarshamov, 95
LowerBoundMinimumDistance, 94
LowerBoundSpherePacking, 95

MacWilliams transform,113
maximum distance separable,92
MDS, 27
minimum distance,20
MinimumDistance, 35
MinimumDistanceLeon, 36
MinimumDistanceRandom, 38
MOLS, 109
MOLSCode, 55
mutually orthogonal Latin squares,109

NearestNeighborDecodewords, 46
NearestNeighborGRSDecodewords, 46
NordstromRobinsonCode, 56
norm of a code,111
normal code,112
not =,14, 22
NrCyclicCodes, 72
NullCode, 71
NullWord, 18

OnePointAGCode, 75
OptimalityCode, 62
order of polynomial,70
OuterDistribution, 42

Parity check,77
parity check matrix,20
perfect,92, 115
permutation equivalent codes,27
PermutationAutomorphismGroup, 29
PermutationDecode, 48
PermutationGroup,29
PermutedCode, 79
PermutedCols, 108
PiecewiseConstantCode, 86
PolyCodeword, 16
PrimitiveUnityRoot, 116
Print, 31
PuncturedCode, 78
PutStandardForm, 107

QRCode, 70

RandomCode, 56
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RandomLinearCode, 62
reciprocal polynomial,116
ReciprocalPolynomial, 116
Redundancy, 35
ReedMullerCode, 59
ReedSolomonCode, 69
RemovedElementsCode, 80
RepetitionCode, 71
ResidueCode, 83
RootsCode, 68
RootsOfCode, 34

self-dual,84
self-orthogonal,27
SetCoveringRadius, 40
ShortenedCode, 81
Size, 30
size,20
SphereContent, 115
SrivastavaCode, 61
standard form,107
StandardArray, 48
StandardFormCode, 85
strength,104
String, 32
Support, 18
SylvesterMat, 106
Syndrome, 47
syndrome table,48
SyndromeTable, 47

TernaryGolayCode, 65
TombakCode, 64
ToricCode, 76
ToricPoints, 75
TreatAsPoly, 17
TreatAsVector, 17

UnionCode, 88
UpperBound, 94
UpperBoundCoveringRadiusCyclicCode,

104
UpperBoundCoveringRadiusDelsarte, 103
UpperBoundCoveringRadiusGriesmerLike,

104
UpperBoundCoveringRadiusRedundancy,

103
UpperBoundCoveringRadiusStrength, 104

UpperBoundElias, 93
UpperBoundGriesmer, 93
UpperBoundHamming, 92
UpperBoundJohnson, 92
UpperBoundMinimumDistance, 95
UpperBoundPlotkin, 93
UpperBoundSingleton, 91
UUVCode, 87

VandermondeMat, 107
VectorCodeword, 16
VerticalConversionFieldMat, 108
ViewObj, 58

weight enumerator polynomial,112
WeightCodeword, 19
WeightDistribution, 41
WeightHistogram, 117
WeightVecFFE, 52
WholeSpaceCode, 71
WordLength, 35


