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Abstract

The title “LAGUNA” stands for “Lie AlGebras and UNits of group Algebras”. This is the new name of the
GAP4 packageLAG, which is thus replaced byLAGUNA.

LAGUNA extends theGAP functionality for computations in group rings. Besides computing some general
properties and attributes of group rings and their elements,LAGUNA is able to perform two main kinds of
computations. Namely, it can verify whether a group algebra of a finite group satisfies certain Lie properties;
and it can calculate the structure of the normalized unit group of a group algebra of a finitep-group over the
field of p elements.
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Chapter 1

Introduction

1.1 General aims

LAGUNA – Lie AlGebras and UNits of group Algebras – is the new name of theGAP4 package
LAG. TheLAG package arose as a byproduct of the third author’s PhD thesis [Ros97]. Its first version
was ported toGAP4 and was brought into the standardGAP4 package format during his visit to St.
Andrews in September 1998.

The main objective ofLAG is to deal with Lie algebras associated with some associative algebras,
and, in particular, Lie algebras of group algebras. UsingLAG it is possible to verify some properties
or calculate certain Lie ideals of such Lie algebras very efficiently, due to their special structure. In
the current version ofLAGUNA the main part of the Lie algebra functionality is heavily built on the
previousLAG releases.

The GAP4 packageLAGUNA also extends theGAP functionality for calculations with units of
modular group algebras. In particular, using this package, one can check whether an element of such
a group algebra is invertible.LAGUNA also contains an implementation of an efficient algorithm
to calculate the (normalized) unit group of the group algebra of a finitep-group over the field ofp
elements. Thus, the present version ofLAGUNA provides a part of the functionality of theSISYPHOS
program, which was developed by Martin Wursthorn to study the modular isomorphism problem; see
[Wur93].

The corresponding functions ofLAGUNA use the same algorithmic and theoretical approach as
those inSISYPHOS. The reason why we reimplemented the normalised unit group algorithms in the
LAGUNA package is thatSISYPHOS has no interface toGAP4, and, even inGAP3, it is cumbersome
to use theSISYPHOS output for further computation with the normalised unit group. For instance,
usingSISYPHOS with its GAP3 interface, it is difficult to embed a finitep-group into the normalized
unit group of its group algebra over the field ofp elements, but this can easily be done withLAGUNA.

1.2 General computations in group rings

TheLAGUNA package provides a set of functions to carry out some basic computations with a group
ring and its elements. Among other things,LAGUNA provides elementary functions to compute such
basic notions as support, length, trace and augmentation of an element. For modular group algebras
of finite p-groupsLAGUNA is able to calculate the power-structure of the augmentation ideal, which
is useful for the construction of the normalised unit group; see Sections4.1–4.3for more details.

6
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1.3 Computations in the normalized unit group

One of the aims of theLAGUNA package is to carry out efficient computations in the normalised
unit group of the group algebraFG of a finite p-groupG over the fieldF of p elements. IfU is
the unit group ofFG then it is easy to see thatU is the direct product ofF∗ andV(FG), where
F∗ is the multiplicative group ofF , andV(FG) is the group of normalised units. A unit ofFG of
the formα1 · g1 + α2 · g2 + · · ·+ αk · gk with αi ∈ F andgi ∈ G is said to be normalised if the sum
α1 + α2 + · · ·+ αk is equal to 1.

It is well-known that the normalised unit groupV has order|F ||G|−1, and soV is a finitep-group.
Thus computingV efficiently means to compute a polycyclic presentation forV. For the theory of
polycyclic presentations refer to [Sim94, Chapter 9]. For this computation we use an algorithm that
was also used in theSISYPHOS package. For a brief description see Chapter3. The functions that
compute the structure of the normalised unit group are described in Section4.4.

1.4 Computing Lie properties of the group algebra

The functions that are used to compute Lie properties ofp-modular group algebras were already
included in the previous versions ofLAG. The bracket operation[·, ·] on a p-modular group algebra
FG is defined by[a,b] = ab−ba. It is well-known and very easy to check that(FG,+, [·, ·]) is a Lie
algebra. Then we may ask what kind of Lie algebra properties are satisfied byFG. The results in
[LR86], [PPS73], and [Ros00] give fast, practical algorithms to check whether the Lie algebraFG is
abelian, nilpotent, soluble, centre-by-metabelian, etc. The functions that implement these algorithms
are described in Section4.5.

1.5 Installation and system requirements

LAGUNA does not use external binaries and, therefore, works without restrictions on the type of the
operation system. It is designed forGAP4.4 and no compatibility with previous releases ofGAP4 is
guaranteed.

To use the LAGUNA online help it is necessary to install theGAP4 package GAP-
Doc by Frank L̈ubeck and Max Neunḧoffer, which is available from theGAP site or from
http://www.math.rwth-aachen.de/˜Frank.Luebeck/GAPDoc/.

LAGUNA is distributed in standard formats (zoo, tar.gz, tar.bz2, -win.zip) and
can be obtained fromhttp://ukrgap.exponenta.ru/laguna.htm. To unpack the archive
laguna-3.2.2.zoo you need the programunzoo, which can be obtained from theGAP homepage
http://www.gap-system.org/ (see section ‘Distribution’). To installLAGUNA, copy this archive
into thepkg subdirectory of yourGAP4.4 installation. The subdirectorylaguna will be created in the
pkg directory after the following command:

unzoo -x laguna-3.2.2.zoo

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/
http://ukrgap.exponenta.ru/laguna.htm
http://www.gap-system.org/


Chapter 2

A sample calculation with LAGUNA

Before explaining the theory behind theLAGUNA package we present a sample calculation to show
the reader whatLAGUNA is able to compute. We will carry out some calculations in the group algebra
of the dihedral group of order 16 over the field of two elements. First we create this modular group
algebra.

Example

gap> K := GF( 2 );
GF(2)
gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> KG := GroupRing( K, G );
<algebra-with-one over GF(2), with 4 generators>

The group algebraKG has some properties and attributes that are direct consequences of its definition.
These can be checked very quickly.

Example

gap> IsGroupAlgebra( KG );
true
gap> IsPModularGroupAlgebra( KG );
true
gap> IsFModularGroupAlgebra( KG );
true
gap> UnderlyingGroup( KG );
<pc group of size 16 with 4 generators>
gap> LeftActingDomain( KG );
GF(2)

SinceKG is naturally a group algebra, the information provided byLeftActingDomain can also be
obtained using two other functions as follows.

Example
gap> UnderlyingRing( KG );
GF(2)
gap> UnderlyingField( KG );
GF(2)

8
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Let us construct a certain element of the group algebra. For example, we take a minimal generating
system of the groupG and find the corresponding elements inKG.

Example

gap> MinimalGeneratingSet( G );
[ f1, f2 ]
gap> l := List( last, g -> gˆEmbedding( G, KG ) );
[ (Z(2)ˆ0)*f1, (Z(2)ˆ0)*f2 ]

Now we construct an elementx as follows.
Example

gap> a :=l[1]; b:=l[2]; # a and b are images of group generators in KG
(Z(2)ˆ0)*f1
(Z(2)ˆ0)*f2
gap> e := One( KG ); # for convenience, we denote the identity by e
(Z(2)ˆ0)*<identity> of ...
gap> x := ( e + a ) * ( e + b );
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2

We may investigate some of the basic properties of our element.
Example

gap> Support( x );
[ <identity> of ..., f1, f2, f1*f2 ]
gap> CoefficientsBySupport( x );
[ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ]
gap> Length( x );
4
gap> TraceOfMagmaRingElement( x );
Z(2)ˆ0

We can also calculate the augmentation ofx, which is defined as the sum of its coefficients.
Example

gap> Augmentation( x );
0*Z(2)
gap> IsUnit( KG, x );
false

Since the augmentation ofx is zero,x is not invertible, but1+x is. This is again very easy to check.
Example

gap> y := e + x;
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> IsUnit( KG, y );
true

LAGUNA can calculate the inverse of1+x very quickly.
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Example

gap> yˆ-1;
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f1*f3+(
Z(2)ˆ0)*f1*f4+(Z(2)ˆ0)*f2*f4+(Z(2)ˆ0)*f1*f2*f4+(Z(2)ˆ0)*f2*f3*f4+(Z(2)ˆ
0)*f1*f2*f3*f4
gap> y * yˆ-1;
(Z(2)ˆ0)*<identity> of ...

We may also want to check whethery is symmetric, that is, whether it is invariant under the classical
involution; or whether it is unitary, that is, whether the classical involution invertsy. We find thaty is
neither.

Example

gap> Involution( y );
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f2*f3*f4
gap> y = Involution( y );
false
gap> IsSymmetric( y );
false
gap> y * Involution( y );
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f2*f3*f4
gap> IsUnitary( y );
false

Now we calculate some important ideals ofKG. First we obtain the augmentation ideal which is the
set of elements with augmentation zero. In our case the augmentation ideal ofKG coincides with the
radical ofKG, and this is taken into account inLAGUNA.

Example

gap> AugmentationIdeal( KG );
<two-sided ideal in <algebra-with-one of dimension 16 over GF(2)>,

(dimension 15)>
gap> RadicalOfAlgebra( KG ) = AugmentationIdeal( KG );
true

It is well-known that the augmentation ideal ofKG is a nilpotent ideal. Using Jennings’ theory on
dimension subgroups, we can obtain its nilpotency index without immediate calculation of its powers.
This is implemented inLAGUNA.

Example
gap> AugmentationIdealNilpotencyIndex( KG );
9
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On the other hand, we can also calculate the powers of the augmentation ideal.
Example

gap> AugmentationIdealPowerSeries( KG );
[ <algebra of dimension 15 over GF(2)>, <algebra of dimension 13 over GF(2)>,

<algebra of dimension 11 over GF(2)>, <algebra of dimension 9 over GF(2)>,
<algebra of dimension 7 over GF(2)>, <algebra of dimension 5 over GF(2)>,
<algebra of dimension 3 over GF(2)>, <algebra of dimension 1 over GF(2)>,
<algebra over GF(2)> ]

We see that the length of this list is exactly the nilpotency index of the augmentation ideal ofKG.
Now let’s work with the unit group ofKG. First we calculate the normalized unit group, which is

the set of elements with augmentation one. The generators of the unit group are obtained as explained
in Chapter3. This can be computed very quickly, but further computation with this group is very
inefficient.

Example

gap> V := NormalizedUnitGroup( KG );
<group of size 32768 with 15 generators>

In order to make our computation in the normalised unit group efficient, we calculate a power-
commutator presentation for this group.

Example

gap> W := PcNormalizedUnitGroup( KG );
<pc group of size 32768 with 15 generators>;

GAP has many efficient and practical algorithms for groups given by a power-commutator presenta-
tion. In order to use these algorithms to carry out computation in the normalised unit group, we need to
set up isomorphisms between the outputs ofNormalizedUnitGroup andPcNormalizedUnitGroup.

The first isomorphism mapsNormalizedUnitGroup(KG) onto the polycyclically presented
PcNormalizedUnitGroup(PC). Let’s find the images of the elements of the groupG in W.

Example

gap> t := NaturalBijectionToPcNormalizedUnitGroup( KG );
MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size
32768 with 15 generators>, function( x ) ... end )
gap> List( AsList( G ), x -> ( xˆEmbedding( G, KG ) )ˆt );
[ <identity> of ..., f2, f1, f3, f7, f1*f2*f3, f2*f3, f2*f7, f1*f3, f1*f7, f3*f7,

f1*f2*f7, f1*f2*f3*f7, f2*f3*f7, f1*f3*f7, f1*f2 ]

The second isomorphism is the inverse of the first.
Example

gap> f := NaturalBijectionToNormalizedUnitGroup( KG );
[ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15 ] ->
[ (Z(2)ˆ0)*f2, (Z(2)ˆ0)*f1, (Z(2)ˆ0)*f3, (Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2,

(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f2*f3, (Z(2)ˆ0)*f1+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f1*f3,
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(Z(2)ˆ0)*f4, (Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f1*f3+(
Z(2)ˆ0)*f2*f3+(Z(2)ˆ0)*f1*f2*f3, (Z(2)ˆ0)*f2+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f2*f4,

(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f1*f4, (Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f3*f4,
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f1*f4+(Z(2)ˆ
0)*f2*f4+(Z(2)ˆ0)*f1*f2*f4, (Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(Z(2)ˆ
0)*f2*f3+(Z(2)ˆ0)*f2*f4+(Z(2)ˆ0)*f3*f4+(Z(2)ˆ0)*f2*f3*f4,

(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f1*f3+(Z(2)ˆ0)*f1*f4+(Z(2)ˆ
0)*f3*f4+(Z(2)ˆ0)*f1*f3*f4, (Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(
Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f1*f3+(Z(2)ˆ0)*f1*f4+(Z(2)ˆ0)*f2*f3+(Z(2)ˆ0)*f2*f4+(
Z(2)ˆ0)*f3*f4+(Z(2)ˆ0)*f1*f2*f3+(Z(2)ˆ0)*f1*f2*f4+(Z(2)ˆ0)*f1*f3*f4+(Z(2)ˆ
0)*f2*f3*f4+(Z(2)ˆ0)*f1*f2*f3*f4 ]

For example, we may calculate the conjugacy classes of the groupW, and then map their representatives
back into the group algebra.

Example

gap> cc := ConjugacyClasses( W );;
gap> Length( cc );
848
gap> Representative( cc[ Length( cc ) ] );
f1*f2*f4*f6*f12*f15
gap> lastˆf;
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f1*f3+(
Z(2)ˆ0)*f1*f4+(Z(2)ˆ0)*f2*f3+(Z(2)ˆ0)*f2*f4+(Z(2)ˆ0)*f3*f4+(Z(2)ˆ0)*f1*f2*f3+(Z(2)ˆ
0)*f1*f3*f4

Having a power-commutator presentation of the normalised unit group, we may use the full power of
theGAP functionality for such groups. For example, the lower central series can be calculated very
quickly.

Example

gap> LowerCentralSeries( W );
[ <pc group of size 32768 with 15 generators>,

Group([ f3, f5*f8*f10*f12*f13*f14*f15, f6*f8*f12*f14*f15, f7, f9*f12, f10*f14,
f11*f13, f13*f14, f14*f15 ]),

Group([ f7, f9*f12, f10*f15, f11*f15, f13*f15, f14*f15 ]),
Group([ f11*f15, f13*f15, f14*f15 ]), Group([ <identity> of ... ]) ]

Let’s now compute, for instance, a minimal system of generators of the centre of the normalised unit
group. Fist we carry out the computation in the group which is determined by the power-commutator
presentation, then we map the result into our group algebra.

Example

gap> C := Centre( W );
Group([ f3*f5*f13*f15, f7, f15, f13*f15, f14*f15, f11*f13*f14*f15 ])
gap> m := MinimalGeneratingSet( C );
[ f11, f13, f14, f15, f3*f5*f13*f15 ]
gap> List( m, g -> gˆf );
[ (Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f3*f4, (Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(
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Z(2)ˆ0)*f2*f3+(Z(2)ˆ0)*f2*f4+(Z(2)ˆ0)*f3*f4+(Z(2)ˆ0)*f2*f3*f4,
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f1*f3+(Z(2)ˆ0)*f1*f4+(Z(2)ˆ
0)*f3*f4+(Z(2)ˆ0)*f1*f3*f4, (Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(
Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f1*f3+(Z(2)ˆ0)*f1*f4+(Z(2)ˆ0)*f2*f3+(Z(2)ˆ0)*f2*f4+(
Z(2)ˆ0)*f3*f4+(Z(2)ˆ0)*f1*f2*f3+(Z(2)ˆ0)*f1*f2*f4+(Z(2)ˆ0)*f1*f3*f4+(Z(2)ˆ
0)*f2*f3*f4+(Z(2)ˆ0)*f1*f2*f3*f4, (Z(2)ˆ0)*f1+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ
0)*f1*f3+(Z(2)ˆ0)*f1*f4+(Z(2)ˆ0)*f2*f3+(Z(2)ˆ0)*f2*f4+(Z(2)ˆ0)*f1*f2*f3+(Z(2)ˆ
0)*f1*f2*f4+(Z(2)ˆ0)*f1*f3*f4+(Z(2)ˆ0)*f1*f2*f3*f4 ]

We finish our example by calculating some properties of the Lie algebra associated withKG. This
example needs no further explanation.

Example

gap> L := LieAlgebra( KG );
<Lie algebra of dimension 16 over GF(2)>
gap> D := LieDerivedSubalgebra( L );
<Lie algebra of dimension 9 over GF(2)>
gap> LC := LieCentre( L );
<Lie algebra of dimension 7 over GF(2)>
gap> LieLowerNilpotencyIndex( KG );
5
gap> LieUpperNilpotencyIndex( KG );
5
gap> IsLieAbelian( L );
false
gap> IsLieSolvable( L );
true
gap> IsLieMetabelian( L );
false
gap> IsLieCentreByMetabelian( L );
true



Chapter 3

The basic theory behindLAGUNA

In this chapter we describe the theory that is behind the algorithms used byLAGUNA.

3.1 Notation and definitions

Let G be a group andF a field. Then thegroup algebra FGconsists of the set of formal linear
combinations of the form

∑
g∈G

αgg, αg ∈ F

where all but finitely many of theαg are zero. The group algebraFG is anF-algebra with the obvious
operations. Clearly, dimFG = |G|.

Theaugmentation homomorphismχ : FG→ F is defined by

χ

(
∑
g∈G

αgg

)
= ∑

g∈G

αg.

It is easy to see thatχ is indeed a homomorphism ontoF . The kernel ofχ is called theaugmentation
ideal of FG. The augmentation ideal is denotedA(FG), or simplyA when there is no danger of con-
fusion. It follows from the isomorphism theorems that dimA(FG) = dimFG−1 = |G|−1. Another
way to write the augmentation ideal is

A(FG) =

{
∑
g∈G

αgg | ∑
g∈G

αg = 0

}
.

An invertible element ofFG is said to be aunit. Clearly the elements ofG and the non-zero
elements ofF are units. The set of units inFG is a group with respect to the multiplication ofFG.
Theunit groupof FG is denotedU(FG) or simplyU when there is no risk of confusion. A unitu is
said to benormalisedif χ(u) = 1. The set of normalised units forms a subgroup of the unit group, and
is referred to as thenormalised unit group. The normalised unit group ofFG is denotedV(FG), or
simplyV. It is easy to prove thatU(FG) = F∗×V(FG) whereF∗ denotes the multiplicative group
of F .

14
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3.2 p-modular group algebras

A group algebraFG is said to bep-modular ifF is the field of characteristicp, andG is a finite p-
group. A lot of information about the structure ofp-modular group algebras can be found in [HB82,
Chapter VIII]. In ap-modular group algebra we have that an elementu is a unit if and only ifχ(u) 6= 0.
Hence the normalised unit groupV consists of all elements ofFG with augmentation 1. In other words
V is a coset of the augmentation ideal, namelyV = 1+A. This also implies that|V|= |A|= |F ||G|−1,
and soV is a finitep-group.

One of the aims of theLAGUNA package is to compute a power-commutator presentation
for the normalised unit group in the case whenG is a finite p-group andF is a field of p el-
ements. Such a presentation is given by generatorsy1, . . . ,y|G|−1 and two types of relations:
yp

i = (yi+1)αi,i+1 · · ·(y|G|−1)αi,|G|−1 for 1≤ i ≤ |G| −1, and[y j ,yi ] = (y j+1)α j,i, j+1 · · ·(y|G|−1)α j,i,|G|−1 for
1≤ i< j ≤ |G| −1, where the exponentsαi,k andαi, j,k are elements of the set{0, . . . , p−1}. Hav-
ing such a presentation, it is possible to carry out efficient computations in the finitep-groupV; see
[Sim94, Chapter 9].

3.3 Polycyclic generating set forV

Let G be a finitep-group andF the field ofp elements. Our aim is to construct a power-commutator
presentation forV = V(FG). We noted earlier thatV = 1+A, whereA is the augmentation ideal. We
use this piece of information and construct a polycyclic generating set forV using a suitable basis for
A. Before constructing this generating set, we note thatA is a nilpotent ideal inFG. In other words
there is somec such thatAc 6= 0 butAc+1 = 0. Hence we can consider the following series of ideals
in A:

ABA2B · · ·BAcBAc+1 = 0.

It is clear that a quotientAi/Ai+1of this chain has trivial multiplication, that is, such a quotient is a
nil-ring. The chainAi gives rise to a series of normal subgroups inV:

V = 1+AB1+A2B · · ·B1+AcB1+Ac+1 = 1.

It is easy to see that the chain 1+Ai is central, that is,(1+Ai)/(1+Ai+1)≤ Z((1+A)/(1+Ai+1)).
Now we show how to compute a basis forAi that gives a polycyclic generating set for 1+Ai . Let

G = G1BG2B · · ·BGkBGk+1 = 1

be theJennings seriesof G. That is,Gi+1 = [Gi ,G]G j p where j is the smallest non-negative integer
such thatj ≥ i/p. For all i ≤ k select elementsxi,1, . . . ,xi,l i of Gi such that{xi,1Gi+1, . . . ,xi,l i Gi+1} is
a minimal generating set for the elementary abelian groupGi/Gi+1. For the Jennings series it may
happen thatGi = Gi+1 for somei. In this case we choose an empty generating set for the quotient
Gi/Gi+1 andl i = 0. Then the setx1,1, . . . ,x1,l1, . . . ,xk,1, . . . ,xk,lk is said to be adimension basisfor G.
Theweightof a dimension basis elementxi, j is i.

A non-empty product

u = (x1,1−1)α1,1 · · ·(x1,l1−1)α1,l1 · · ·(xk,1−1)αk,1 · · ·(xk,lk−1)αk,lk

where 0≤ αi, j ≤ p−1 is said to bestandard. Clearly, a standard product is an element of the aug-
mentation idealA. The weight of the standard productu is

k

∑
i=1

i(αi,1 + · · ·+ αi,l i ).
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The total number of standard products is|G|−1 .

LEMMA ([HB82, Theorem VIII.2.6]). Fori ≤ c, the setSi of standard products of weight at least
i forms a basis forAi . Moreover, the set 1+ Si = {1+ s | s∈ Si} is a polycyclic generating set for
1+Ai . In particular 1+S1 is a polycyclic generating set forV.

A basis forA consisting of the standard products is referred to as aweighted basis. Note that a
weighted basis is a basis for the augmentation ideal, and not for the whole group algebra.

Let x1, . . . ,x|G|−1 denote the standard products where we choose the indices so that the weight of
xi is not larger than the weight ofxi+1 for all i, and setyi = 1+ xi . Then every elementv of V can be
uniquely written in the form

v = yα1
1 · · ·(y|G|−1)α|G|−1, α1, . . . ,α|G|−1 ∈ {0, . . . , p−1}.

This expression is called thecanonical formof v. We note that by adding a generator ofF∗ to the set
y1, . . . ,y|G|−1| we can obtain a polycyclic generating set for the unit groupU .

3.4 Computing the canonical form

We show how to compute the canonical form of a normalised unit with respect to the polycyclic
generating sety1, . . . ,y|G|−1. We use the following elementary lemma.

LEMMA . Let i ≤ c and suppose thatw∈Ai . Assume thatxsi ,xsi+1 . . . ,xr i are the standard products
with weight i and forsi ≤ j ≤ r i sety j = 1+x j . Then for allαsi , . . . ,αr i ∈ {0, . . . , p−1} we have that

w≡ αsi xsi + · · ·+ αr i xr i mod Ai+1

if an only if
1+w≡ (ysi )

αsi · · ·(yr i )
αri mod 1+Ai+1.

Suppose thatw is an element of the augmentation idealA and 1+ w is a normalised unit. Let
x1, . . . ,xr1 be the standard products of weight 1, and lety1, . . . ,yr1 be the corresponding elements in
the polycyclic generating set. Then using the previous lemma, we findα1, . . . ,αr1 such that

w≡ α1x1 + · · ·+ αr1xr1 mod A2,

and so
1+w≡ (y1)α1 · · ·(yr1)

αr1 mod 1+A2.

Now we have that 1+ w = (y1)α1 · · ·(yr1)
αr1(1 + w2) for some w2 ∈ A2. Then suppose that

xs2,xs2+1, . . . ,xr2 are the standard products of weight 2. We findαs2, . . . ,αr2 such that

w2≡ αs2xs2 + · · ·+ αr2xr2 mod A3.

Then the lemma above implies that

1+w2≡ (ys2)
αs2 · · ·(yr2)

αr2 mod 1+A3.

Thus 1 + w2 = (ys2)
αs2 · · ·(yr2)

αr2(1 + w3) for some w3 ∈ A3, and so 1+ w =
(y1)α1 · · ·(yr1)

αr1(ys2)
αs2 · · ·(yr2)

αr2(1 + w3). We repeat this process, and afterc steps we obtain
the canonical form for the element 1+w.
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3.5 Computing a power commutator presentation forV

Using the procedure in the previous section, it is easy to compute a power commutator presentation
for the normalized unit groupV of a p-modular group algebra over the field ofp elements. First we
compute the polycyclic generating sequencey1, . . . ,y|G|−1 as in Section3.3. Then for eachyi and for
eachy j , yi such thati< j we compute the canonical form foryp

i and[y j ,yi ] as described in Section3.4.
Once a power-commutator presentation forV is constructed, it is easy to obtain a polycyclic

presentation for the unit groupU by adding an extra central generatory corresponding to a generator
of the cyclic groupF∗ and enforcing thatyp−1 = 1.

3.6 Verifying Lie properties of FG

If FG is a group algebra then one can consider the Lie bracket operation defined by[a,b] = ab−ba.
Then it is well-known thatFG with respect to the scalar multiplication, the addition, and the bracket
operation becomes a Lie algebra overF . This Lie algebra is also denotedFG. Some Lie properties
of such Lie algebras can be computed very efficiently. In particular, it can be verified whether the Lie
algebraFG is nilpotent, soluble, metabelian, centre-by-metabelian. Fast algorithms that achieve these
goals are described in [LR86], [PPS73], and [Ros00].



Chapter 4

LAGUNA functions

4.1 General functions for group algebras

4.1.1 IsGroupAlgebra

♦ IsGroupAlgebra( KG ) (property)

A group ring over a field is called a group algebra. For a group ringKG, IsGroupAlgebra returns
true, if the underlying ring ofKG is a field;false is returned otherwise. This property will be set
automatically for every group ring created by the functionGroupRing.

Example

gap> IsGroupAlgebra( GroupRing( GF( 2 ), DihedralGroup( 16 ) ) );
true
gap> IsGroupAlgebra( GroupRing( Integers, DihedralGroup( 16 ) ) );
false

4.1.2 IsFModularGroupAlgebra

♦ IsFModularGroupAlgebra( KG ) (property)

A group algebraKG over a fieldK is calledmodular, if the characteristic of the fieldK divides the
order of some element inG. For a group algebraKG of a finite groupG, IsModularGroupAlgebra
returnstrue, if KG is modular according to this definition;false is returned otherwise. This property
will be set automatically for every group algebra, created by the functionGroupRing.

Example

gap> IsFModularGroupAlgebra( GroupRing( GF( 2 ), SymmetricGroup( 6 ) ) );
true
gap> IsFModularGroupAlgebra( GroupRing( GF( 2 ), CyclicGroup( 3 ) ) );
false

18
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4.1.3 IsPModularGroupAlgebra

♦ IsPModularGroupAlgebra( KG ) (property)

A group algebraKG is said to bep-modular, ifK is a field of characteristicp andG is a finite
p-group for the same primep. For a group algebraKG of a finite groupG, IsPModularGroupAlgebra
returnstrue, if KG is p-modular according to this definition;false is returned otherwise. This
property will be set automatically for every group algebra, created by the functionGroupRing.

Example

gap> IsPModularGroupAlgebra( GroupRing( GF( 2 ), DihedralGroup( 16 ) ) );
true
gap> IsPModularGroupAlgebra( GroupRing( GF( 2 ), SymmetricGroup( 6 ) ) );
false

4.1.4 UnderlyingGroup (of a group ring)

♦ UnderlyingGroup( KG ) (attribute)

Returns: the underlying group of a group ring
This attribute stores the underlying group of a group ringKG. In fact, it refers to the attribute

UnderlyingMagma which returns the same result, and was introduced for group rings for convenience,
and for teaching purposes.

Example

gap> KG := GroupRing( GF ( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> G := UnderlyingGroup( KG );
<pc group of size 16 with 4 generators>

4.1.5 UnderlyingRing

♦ UnderlyingRing( KG ) (attribute)

Returns: the underlying ring of a group ring
This attribute stores the underlying ring of a group ringKG. In fact, it refers to the attribute

LeftActingDomain which returns the same result, and was introduced for group rings for conve-
nience, and for teaching purposes.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> UnderlyingRing( KG );
GF(2)



LAGUNA 20

4.1.6 UnderlyingField

♦ UnderlyingField( KG ) (attribute)

Returns: the underlying field of a group algebra
This attribute stores the underlying field of a group algebraKG. In fact, it refers to the attribute

LeftActingDomain which returns the same result, and was introduced for group algebras for conve-
nience, and for teaching purposes.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> UnderlyingField( KG );
GF(2)

4.2 Operations with group algebra elements

4.2.1 Support

♦ Support( x ) (attribute)

Returns: support of x as a list of elements of the underlying group
Returns the support of a group ring elementx. The support of a non-zero elementx = α1 ·g1+α2 ·

g2 + · · ·+ αk ·gk of a group ring is the list of elementsgi ∈G for which the coefficientαi is non-zero.
The support of the zero element of a group ring is defined to be the empty list. This method is also
applicable to elements of magma rings.

Example

# First we create an element x to use in in the series of examples.
# We map the minimal generating system of the group G to its group algebra
# and denote their images as a and b
gap> l := List( MinimalGeneratingSet( G ), g -> gˆEmbedding( G, KG ) );
[ (Z(2)ˆ0)*f1, (Z(2)ˆ0)*f2 ]
gap> a := l[1]; b := l[2]; e := One( KG ); # we denote the identity by e
(Z(2)ˆ0)*f1
(Z(2)ˆ0)*f2
(Z(2)ˆ0)*<identity> of ...
gap> x := ( e + a ) * ( e + b );
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> Support( x );
[ <identity> of ..., f1, f2, f1*f2 ]

4.2.2 CoefficientsBySupport

♦ CoefficientsBySupport( x ) (attribute)

Returns: coefficients of support elements as list of elements of the underlying ring
Returns a list that contains the coefficients corresponding to the elements ofSupport( x ) in the

same order as the elements appear inSupport( x ). This method is also applicable to elements of
magma rings.
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Example

gap> x;
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> CoefficientsBySupport( x );
[ Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0, Z(2)ˆ0 ]

4.2.3 TraceOfMagmaRingElement

♦ TraceOfMagmaRingElement( x ) (attribute)

Returns: an element of the underlying ring
Returns the trace of a group ring elementx. By definition, the trace of an elementx = α1 ·1+α2 ·

g2 + · · ·+ αk ·gk is equal toα1, that is, the coefficient of the identity element inG. The trace of the
zero element is zero. This method is also applicable to elements of magma rings.

Example

gap> x;
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> TraceOfMagmaRingElement( x );
Z(2)ˆ0

4.2.4 Length

♦ Length( x ) (attribute)

The length of an element of a group ringx is defined as the number of elements in its support.
This method is also applicable to elements of magma rings.

Example

gap> x;
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> Length( x );
4

4.2.5 Augmentation

♦ Augmentation( x ) (attribute)

Returns: the sum of coefficients of a group ring element
The augmentation of a group ring elementx = α1 · g1 + α2 · g2 + · · ·+ αk · gk is the sum of its

coefficientsα1 + α2 + · · ·+ αk. The method is also applicable to elements of magma rings.
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Example

gap> x;
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> Augmentation( x );
0*Z(2)

4.2.6 Involution

♦ Involution( x, f ) (operation)

♦ Involution( x ) (operation)

Returns: an element of a group ring
Let KG be a group ring and letf be a mappingG→G, such thatf 2 is the identity mapping onG.

Then the involution ofKG induced byf is defined byα1 ·g1+α2 ·g2+ · · ·+αk ·gk 7→ α1 · f (g1)+α2 ·
f (g2) + · · ·+ αk · f (gk). This method returns the image ofx under the involution ofKG with respect
to f.

In the second form the function returns the result of the so-called classical involution, which is the
involution induced by the mapx 7→ x−1.

Example

gap> x;
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> Involution( x );
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f2*f3*f4
# let’s check the action of involution on elements from the group G
gap> l := List( MinimalGeneratingSet( G ), g -> gˆEmbedding( G, KG ) );
[ (Z(2)ˆ0)*f1, (Z(2)ˆ0)*f2 ]
gap> List( l, Involution );
[ (Z(2)ˆ0)*f1, (Z(2)ˆ0)*f2*f3*f4 ]
gap> List( l, g -> gˆ-1 );
[ (Z(2)ˆ0)*f1, (Z(2)ˆ0)*f2*f3*f4 ]

4.2.7 IsSymmetric

♦ IsSymmetric( x ) (attribute)

An element of a group ring is calledsymmetricif it is fixed under the classical involution. This
property is checked here.

Example

gap> IsSymmetric( x );
false
gap> IsSymmetric( x * Involution( x ) );
true
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4.2.8 IsUnitary

♦ IsUnitary( x ) (attribute)

A unit of a group ring is called unitary if the classical involution inverts it. This property is checked
here.

Example

gap> IsUnitary(x);
false
# let’s check that elements of the group G are unitary
gap> l:=List(MinimalGeneratingSet(G),g -> gˆEmbedding(G,KG));
[ (Z(2)ˆ0)*f1, (Z(2)ˆ0)*f2 ]
gap> List(l,IsUnitary);
[ true, true ]

4.2.9 IsUnit

♦ IsUnit( KG, x ) (method)

♦ IsUnit( x ) (method)

This method improves a standardGAP functionality for modular group algebras.
In the first form the method returnstrue if x is an invertible element of the modular group algebra

KG andfalse otherwise. This can be done very quickly by checking whether the augmentation of the
elementx is non-zero.

In the second formLAGUNA first constructs the groupH generated by the support ofx, and, if this
group is a finitep-group, then checks whether the coefficients ofx belong to a fieldF of characteristic
p. If this is the case, thenIsUnit( FH, x ) is called; otherwise, standardGAP method is used.

Example

gap> x;
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> IsUnit( KG, x ); # clearly, is not a unit due to augmentation zero
false
gap> y := One( KG ) + x; # this should give a unit
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> IsUnit( KG, y );
true

4.2.10 InverseOp

♦ InverseOp( x ) (method)

Returns: the inverse element of an element of a group ring
This method improves a standardGAP functionality for modular group algebras. It calculates the

inverse of a group algebra element. The user can also invoke this function by typingxˆ-1 .
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Example

gap> y;
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> yˆ-1;
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f4+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f1*f3+(
Z(2)ˆ0)*f1*f4+(Z(2)ˆ0)*f2*f4+(Z(2)ˆ0)*f1*f2*f4+(Z(2)ˆ0)*f2*f3*f4+(Z(2)ˆ
0)*f1*f2*f3*f4
gap> y * yˆ-1;
(Z(2)ˆ0)*<identity> of ...

4.3 Important attributes of group algebras

4.3.1 AugmentationHomomorphism

♦ AugmentationHomomorphism( KG ) (attribute)

Returns: a homomorphism from a group ring to the underlying ring
The mapping which maps an element of a group ringKG to its augmentation is a homomorphism

from KG onto the ringK; seeAugmentation (4.2.5). This attribute stores this homomorphism for the
group ringKG.

Please note that for calculation of the augmentation of an element of a group ring the
user is strongly recommended to useAugmentation (4.2.5) which works much faster than
AugmentationHomomorphism.

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> e := Embedding( G,FG );
<mapping: SymmetricGroup( [ 1 .. 3 ] ) -> AlgebraWithOne( GF(2), ... ) >
gap> x := (1,2)ˆe; y := (1,3)ˆe;
Z(2)ˆ0*(1,2)
Z(2)ˆ0*(1,3)
gap> a := AugmentationHomomorphism( FG );
[ Z(2)ˆ0*(1,2,3), Z(2)ˆ0*(1,2) ] -> [ Z(2)ˆ0, Z(2)ˆ0 ]
gap> xˆa; yˆa; ( x + y )ˆa; # this is slower
Z(2)ˆ0
Z(2)ˆ0
0*Z(2)
gap> Augmentation(x); Augmentation(y); Augmentation( x + y ); # this is faster
Z(2)ˆ0
Z(2)ˆ0
0*Z(2)
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4.3.2 AugmentationIdeal

♦ AugmentationIdeal( KG ) (attribute)

Returns: an ideal of a group ring
If KG is a group ring, then its augmentation idealA is generated by all elements of the formg−1,

whereg ∈ G \ { 1 }. The augmentation ideal consists of all elements ofFG with augmentation 0;
seeAugmentation (4.2.5). This method changes a standardGAP functionality for modular group
algebras and returns the augmentation ideal of a modular group algebraKG.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> AugmentationIdeal( KG );
<two-sided ideal in <algebra-with-one of dimension 16 over GF(2)>, (dimension 15)>

4.3.3 RadicalOfAlgebra

♦ RadicalOfAlgebra( KG ) (attribute)

Returns: an ideal of a group algebra
This method improves a standardGAP functionality for modular group algebras of finitep-groups.

Since in this case the radical of the group algebra coincides with its augmentation ideal, this method
simply checks if the algebraKG is a p-modular group algebra, and, if yes, it returns the augmentation
ideal; otherwise, the standardGAP method will be used.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> RadicalOfAlgebra( KG );
<two-sided ideal in <algebra-with-one of dimension 16 over GF(2)>, (dimension 15)>
gap> RadicalOfAlgebra( KG ) = AugmentationIdeal( KG );
true

4.3.4 WeightedBasis

♦ WeightedBasis( KG ) (attribute)

Returns: a record of two components: weighted basis elements and their weights
The argumentKG must be ap-modular group algebra.
For a group algebraKG, let A denote the augmentation ideal, and assume thatc is the smallest

number such thatAc = 0. Then a weighted basis ofKG is some basisb1, . . . ,bn for the augmentation
idealA, for which there are indicesi1 = 1, . . . , ic−1 such thatbik, . . . ,bn is a basis forAk. The weight
of an elementbi of a weighted basis is the unique integerw such thatbi belongs tow-th power ofA
but does not belong to its(w+1)-th power.

Note that this function actually constructs a basis for theaugmentation idealof KG and not forKG
itself. Since the augmentation ideal has co-dimension 1 inKG, a basis forKG can be easily obtained by
adjoining the identity element of the group.

The method returns a record whose basis entry is the basis and the weights entry is a list of the
corresponding weights the of basis elements. See Section3.3for more details.
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Example

gap> KG := GroupRing( GF( 2 ), ElementaryAbelianGroup( 4 ) );
<algebra-with-one over GF(2), with 2 generators>
gap> WeightedBasis( KG );
rec(

weightedBasis := [ (Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f2, (Z(2)ˆ0)*<identity> of\
...+(Z(2)ˆ0)*f1, (Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ

0)*f1*f2 ], weights := [ 1, 1, 2 ] )

4.3.5 AugmentationIdealPowerSeries

♦ AugmentationIdealPowerSeries( KG ) (attribute)

Returns: a list of ideals of a group algebra
The argumentKG is a p-modular group algebra. The method returns a list whose elements are the

terms of the augmentation ideal filtration ofKG, that isAugmentationIdealPowerSeries(A)[i] is
the i-th power of the augmentation ideal ofKG.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> AugmentationIdealPowerSeries( KG );
[ <algebra of dimension 15 over GF(2)>, <algebra of dimension 13 over GF(2)>,

<algebra of dimension 11 over GF(2)>, <algebra of dimension 9 over GF(2)>,
<algebra of dimension 7 over GF(2)>, <algebra of dimension 5 over GF(2)>,
<algebra of dimension 3 over GF(2)>, <algebra of dimension 1 over GF(2)>,
<algebra over GF(2)> ]

gap> Length(last);
9

4.3.6 AugmentationIdealNilpotencyIndex

♦ AugmentationIdealNilpotencyIndex( KG ) (attribute)

For thep-modular group algebraKG the method returns the smallest numbern such thatAn = 0,
whereA is the augmentation ideal ofKG. This can be done using Jenning’s theory without the explicit
calculations of the powers of the augmentation ideal.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> AugmentationIdealNilpotencyIndex( KG );
9
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4.3.7 AugmentationIdealOfDerivedSubgroupNilpotencyIndex

♦ AugmentationIdealOfDerivedSubgroupNilpotencyIndex( KG ) (attribute)

For thep-modular group algebraKG this attribute stores the nilpotency index of the augmentation
ideal ofKG′ whereG′ denotes the derived subgroup ofG.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> AugmentationIdealOfDerivedSubgroupNilpotencyIndex( KG );
4
gap> D := DerivedSubgroup( G );
Group([ f3, f4 ])
gap> KD := GroupRing( GF( 2 ), D );
<algebra-with-one over GF(2), with 2 generators>
gap> AugmentationIdealNilpotencyIndex( KD );
4

4.4 Computations with the unit group

4.4.1 NormalizedUnitGroup

♦ NormalizedUnitGroup( KG ) (attribute)

Returns: a group generated by group algebra elements
Determines the normalized unit group of ap-modular group algebraKG over the field ofp el-

ements. Returns the normalized unit group as the group generated by certain elements ofKG; see
Section3.3for more details.

For efficient computations the user is recommended to usePcNormalizedUnitGroup (4.4.2).

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> V := NormalizedUnitGroup( KG );
<group of size 32768 with 15 generators>
gap> u := GeneratorsOfGroup( V )[4];
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2

4.4.2 PcNormalizedUnitGroup

♦ PcNormalizedUnitGroup( KG ) (attribute)

Returns: a group given by power-commutator presentation
The argument KG is a p-modular group algebra over the field ofp elements.

PcNormalizedUnitGroup returns the normalized unit group ofKG given by a power-commutator
presentation. The generators in this polycyclic presentation correspond to the weighted basis elements
of KG. For more details, see Section3.3.
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Example

gap> W := PcNormalizedUnitGroup( KG );
<pc group of size 32768 with 15 generators>
gap> w := GeneratorsOfGroup( W )[4];
f4

4.4.3 NaturalBijectionToPcNormalizedUnitGroup

♦ NaturalBijectionToPcNormalizedUnitGroup( KG ) (attribute)

Returns: a homomorphism of groups
The normalised unit group of ap-modular group algebraKG over the field ofp elements can be

computed using two methods, namelyNormalizedUnitGroup (4.4.1) andPcNormalizedUnitGroup
(4.4.2). These two methods return two different objects, and they can be used for different types of
computations. The elements ofNormalizedUnitGroup(KG) are represented in their natural group
algebra representation, and hence they can easily be identified in the group algebra. However,
the more quickly constructedNormalizedUnitGroup(KG) is often not suitable for further fast cal-
culations. Hence one will have to usePcNormalizedUnitGroup(KG) if one wants to find some
group theoretic properties of the normalized unit group. This method returns the bijection from
NormalizedUnitGroup(KG) ontoPcNormalizedUnitGroup(KG). This bijection can be used to map
the result of a computation inPcNormalizedUnitGroup(KG) into NormalizedUnitGroup(KG).

Example

gap> f := NaturalBijectionToPcNormalizedUnitGroup( KG );
MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size
32768 with 15 generators>, function( x ) ... end )
gap> u := GeneratorsOfGroup( V )[4];;
gap> uˆf;
f4
gap> GeneratorsOfGroup( V )[4]ˆf = GeneratorsOfGroup( W )[4];
true

4.4.4 NaturalBijectionToNormalizedUnitGroup

♦ NaturalBijectionToNormalizedUnitGroup( KG ) (attribute)

Returns: a homomorphism of groups
For ap-modular group algebraKG over the field ofp elements this function returns the inverse of

the mappingNaturalBijectionToPcNormalizedUnitGroup (4.4.3)
Example

gap> t := NaturalBijectionToNormalizedUnitGroup(KG);;
gap> w := GeneratorsOfGroup(W)[4];;
gap> wˆt;
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2
gap> GeneratorsOfGroup( W )[4]ˆt = GeneratorsOfGroup( V )[4];
true
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4.4.5 Units

♦ Units( KG ) (attribute)

Returns: the unit group of a group ring
This improves a standardGAP functionality for modular group algebras of finitep-groups over

the field of p elements. It returns the unit group ofKG as a direct product ofUnits(K) and
NormalizedUnitGroup(KG), where the latter is generated by certain elements ofKG; see Chapter
3 for more details.

Example

gap> U := Units( KG );
<group of size 32768 with 15 generators>
# now elements of U are already in KG
gap> GeneratorsOfGroup( U )[5];
(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f2*f3
# in the next example the direct product structure is more clear
gap> FH := GroupRing( GF(3), SmallGroup(27,3) );
<algebra-with-one over GF(3), with 3 generators>
gap> T := Units( FH );
<group of size 5083731656658 with 27 generators>
gap> x := GeneratorsOfGroup( T )[1];
Tuple( [ Z(3), (Z(3)ˆ0)*<identity> of ... ] )
gap> x in FH;
false
gap> x[1] * x[2] in FH;
true # this is the way to get the corresponding element of FH

4.4.6 PcUnits

♦ PcUnits( KG ) (attribute)

Returns: a group given by power-commutator presentation
Returns the unit group ofKG as a direct product ofUnits(K) andPcNormalizedUnitGroup(KG),

where the latter is a group given by a polycyclic presentation. See Section3.4for more details.

Example

gap> W := PcUnits( KG );
<pc group of size 32768 with 15 generators>
gap> GeneratorsOfGroup( W )[5];
f5
# in the next example the direct product structure is more clear
gap> FH := GroupRing( GF(3), SmallGroup(27,3) );
<algebra-with-one over GF(3), with 3 generators>
gap> T := PcUnits(FH);
<group of size 5083731656658 with 27 generators>
gap> x := GeneratorsOfGroup( T )[2];
Tuple( [ Z(3)ˆ0, f1 ] )
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4.4.7 IsGroupOfUnitsOfMagmaRing

♦ IsGroupOfUnitsOfMagmaRing( U ) (property)

This property will be automatically settrue, if U is a group generated by some units of a magma
ring, includingUnits(KG) and NormalizedUnitgroup(KG). Otherwise this property will not be
bound.

Example

gap> IsGroupOfUnitsOfMagmaRing( NormalizedUnitGroup( KG ) );
true
gap> IsGroupOfUnitsOfMagmaRing( Units( KG ) );
true

4.4.8 IsUnitGroupOfGroupRing

♦ IsUnitGroupOfGroupRing( U ) (property)

This property will be automatically settrue, if U is the unit group of ap-modular group algebra,
obtained either byUnits(KG) or byPcUnits(KG). Otherwise this property will not be bound.

Example

gap> IsUnitGroupOfGroupRing( Units( KG ) );
true
gap> IsUnitGroupOfGroupRing( PcUnits( KG ) );
true

4.4.9 IsNormalizedUnitGroupOfGroupRing

♦ IsNormalizedUnitGroupOfGroupRing( U ) (property)

This property will be automatically settrue, if U is the normalized unit group of ap-modular
group algebra, obtained either byNormalizedUnitGroup(KG) or byPcNormalizedUnitGroup(KG).
Otherwise this property will not be bound.

Example

gap> IsNormalizedUnitGroupOfGroupRing( NormalizedUnitGroup( KG ) );
true
gap> IsNormalizedUnitGroupOfGroupRing( PcNormalizedUnitGroup( KG ) );
true

4.4.10 UnderlyingGroupRing

♦ UnderlyingGroupRing( U ) (attribute)

Returns: a group ring
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If U is the (normalized) unit group of ap-modular group algebraKG obtained us-
ing one of the functions Units(KG), PcUnits(KG), NormalizedUnitGroup(KG) or
PcNormalizedUnitGroup(KG), then the attributeUnderlyingGroupRing storesKG.

Example

gap> UnderlyingGroupRing( Units( KG ) );
<algebra-with-one of dimension 16 over GF(2)>
gap> UnderlyingGroupRing( PcUnits( KG ) );
<algebra-with-one of dimension 16 over GF(2)>
gap> UnderlyingGroupRing( NormalizedUnitGroup( KG ) );
<algebra-with-one of dimension 16 over GF(2)>
gap> UnderlyingGroupRing( PcNormalizedUnitGroup( KG ) );
<algebra-with-one of dimension 16 over GF(2)>

4.4.11 GroupBases

♦ GroupBases( KG ) (attribute)

Returns: a list of lists of group rings elements
The subgroupB of the normalized unit group of the group algebraKG is called agroup basis, if

the elements ofB are linearly independent over the fieldK andKB = KG. If KG is a p-modular group
algebra, thenGroupBases returns a list of representatives of the conjugacy classes of the group bases
of the group algebraKG in its normalised unit group.

Example

gap> D8 := DihedralGroup( 8 );
<pc group of size 8 with 3 generators>
gap> K := GF(2);
GF(2)
gap> KD8 := GroupRing( GF( 2 ), D8 );
<algebra-with-one over GF(2), with 3 generators>
gap> gb := GroupBases( KD8 );;
gap> Length( gb );
32
gap> gb[1];
[ (Z(2)ˆ0)*<identity> of ..., (Z(2)ˆ0)*f3, (Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f2*f3+(Z(2)ˆ

0)*f1*f2*f3, (Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f1*f2*f3,
(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f2*f3+(Z(2)ˆ
0)*f1*f2*f3, (Z(2)ˆ0)*f2+(Z(2)ˆ0)*f1*f3+(Z(2)ˆ0)*f2*f3,

(Z(2)ˆ0)*<identity> of ...+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f3+(Z(2)ˆ0)*f1*f2+(Z(2)ˆ0)*f2*f3,
(Z(2)ˆ0)*f1+(Z(2)ˆ0)*f2+(Z(2)ˆ0)*f2*f3 ]

gap> Length( last );
8
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4.5 The Lie algebra of a group algebra

4.5.1 LieAlgebraByDomain

♦ LieAlgebraByDomain( A ) (method)

This method takes an associative algebra as its argument, and constructs its associated Lie alge-
bra in which the product is the bracket operation:[a,b] = ab−ba. It is recommended that the user
never calls this method. The Lie algebra for an associative algebra should normally be created us-
ing LieAlgebra( A ). WhenLieAlgebra is first invoked, it constructs the Lie algebra forA using
LieAlgebraByDomain. After that it stores this Lie algebra and simply returns it ifLieAlgebra is
called again.

Example

gap> M := MatrixAlgebra( GF( 3 ), 3 );
( GF(3)ˆ[ 3, 3 ] )
gap> L := LieAlgebra( M );
<Lie algebra over GF(3)>

4.5.2 IsLieAlgebraByAssociativeAlgebra

♦ IsLieAlgebraByAssociativeAlgebra( L ) (Category)

This category signifies that the Lie algebraL was constructed as the Lie algebra associated with
an associative algebra (this piece of information cannot be obtained later).

Example

gap> M := MatrixAlgebra( GF( 3 ), 3 );
( GF(3)ˆ[ 3, 3 ] )
gap> L := LieAlgebra( M );
<Lie algebra over GF(3)>
gap> IsLieAlgebraByAssociativeAlgebra( L );
true

4.5.3 UnderlyingAssociativeAlgebra

♦ UnderlyingAssociativeAlgebra( L ) (attribute)

Returns: the underlying associative algebra of a Lie algebra
If a Lie algebraL is constructed from an associative algebra, then it remembers this underlying

associative algebra as one of its attributes.

Example

gap> M := MatrixAlgebra( GF( 3 ), 3 );
<algebra-with-one over GF(3), with 2 generators>
gap> L := LieAlgebra( M );
<Lie algebra over GF(3)>
gap> UnderlyingAssociativeAlgebra( L );
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( GF(3)ˆ[ 3, 3 ] )
gap> last = M;
true

4.5.4 NaturalBijectionToLieAlgebra

♦ NaturalBijectionToLieAlgebra( A ) (attribute)

Returns: a mapping
The natural linear bijection between the (isomorphic, but not equal) underlying vector spaces of

an associative algebraA and its associated Lie algebra is stored as an attribute ofA. Note that this is a
vector space isomorphism between two algebras, but not an algebra isomorphism.

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> t := NaturalBijectionToLieAlgebra( FG );
MappingByFunction( <algebra-with-one over GF(2), with
2 generators>, <Lie algebra over GF(
2)>, <Operation "LieObject">, function( y ) ... end )
gap> a := Random( FG );
(Z(2)ˆ0)*(1,2,3)+(Z(2)ˆ0)*(1,3,2)+(Z(2)ˆ0)*(1,3)
gap> a * a; # product in the associative algebra
(Z(2)ˆ0)*()+(Z(2)ˆ0)*(1,2,3)+(Z(2)ˆ0)*(1,3,2)
gap> b := aˆt;
LieObject( (Z(2)ˆ0)*(1,2,3)+(Z(2)ˆ0)*(1,3,2)+(Z(2)ˆ0)*(1,3) )
gap> b * b; # product in the Lie algebra (commutator) ...
LieObject( <zero> of ... ) # ... must be zero!

4.5.5 NaturalBijectionToAssociativeAlgebra

♦ NaturalBijectionToAssociativeAlgebra( L ) (attribute)

This is the inverse of the previous linear bijection, stored as an attribute of the Lie algebraL.
Example

gap> G := SymmetricGroup(3); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> s := NaturalBijectionToAssociativeAlgebra( L );
MappingByFunction( <Lie algebra over GF(2)>, <algebra-with-one over GF(
2), with 2 generators>, function( y ) ... end, <Operation "LieObject"> )
gap> InverseGeneralMapping( s ) = NaturalBijectionToLieAlgebra( FG );
true
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4.5.6 IsLieAlgebraOfGroupRing

♦ IsLieAlgebraOfGroupRing( L ) (property)

If a Lie algebraL is constructed from an associative algebra which happens to be in fact a group
ring, it has many nice properties that can be used for fast algorithms, so this information is stored as a
property.

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> IsLieAlgebraOfGroupRing( L );
true

4.5.7 UnderlyingGroup (of Lie algebra of a group ring)

♦ UnderlyingGroup( L ) (attribute)

Returns: the underlying group
The underlying group of a Lie algebraL that is constructed from a group ring is defined as the

underlying group of this group ring; seeUnderlyingGroup (4.1.4).

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> UnderlyingGroup( L );
Sym( [ 1 .. 3 ] )
gap> LeftActingDomain( L );
GF(2)

4.5.8 Embedding

♦ Embedding( U, L ) (operation)

Returns: a mapping, which is a composition of two mappings
Let FG be a group ring, letU be a submagma ofG, and letL be the Lie algebra associated with

FG. ThenEmbedding(U, L ) returns the obvious mapping fromU to L (as the composition of the
mappingsEmbedding( U, FG ) andNaturalBijectionToLieAlgebra( FG )).
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Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF(2)
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> f := Embedding( G, L );
CompositionMapping( MappingByFunction( <algebra-with-one over GF(2), with
2 generators>, <Lie algebra over GF(
2)>, <Operation "LieObject">, function( y ) ... end ), <mapping: SymmetricGrou\
p( [ 1 .. 3 ] ) -> AlgebraWithOne( GF(2), ... ) > )
gap> (1,2)ˆf + (1,3)ˆf;
LieObject( (Z(2)ˆ0)*(1,2)+(Z(2)ˆ0)*(1,3) )

4.5.9 LieCentre

♦ LieCentre( L ) (method)

Returns: a Lie algebra
The centre of the Lie algebra associated with a group ring corresponds to the centre of the under-

lying group ring, and it can be calculated very fast by considering the conjugacy classes of the group.
This method returns the centre ofL using this idea.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> C := LieCentre( L );
<Lie algebra of dimension 28 over GF(2)>
gap> D := LieDerivedSubalgebra( L );
<Lie algebra of dimension 228 over GF(2)>
gap> c := Dimension( C ); d := Dimension( D ); l := Dimension( L );
28
228
256
gap> c + d = l;
true # This is always the case for Lie algebras of group algebras!

4.5.10 LieDerivedSubalgebra

♦ LieDerivedSubalgebra( L ) (method)

Returns: a Lie algebra
If L is the Lie algebra associated with a group ring, then this method returns the Lie derived

subalgebra ofL. This can be done very fast using the conjugacy classes of the underlying group.
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Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> C := LieCentre( L );
<Lie algebra of dimension 28 over GF(2)>
gap> D := LieDerivedSubalgebra( L );
<Lie algebra of dimension 228 over GF(2)>
gap> l := Dimension( L ); c := Dimension( C ); d := Dimension( D );
256
28
228
gap> c + d = l;
true # This is always the case for Lie algebras of group algebras!

4.5.11 IsLieAbelian

♦ IsLieAbelian( L ) (method)

The Lie algebraL of an associative algebraA is Lie abelian, if and only ifA is abelian, so this
method refers toIsAbelian( A ).

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G);
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> IsAbelian( G );
false
gap> IsAbelian( L ); # This command should never be used for Lie algebras!
true # It gives a result, but (probably) not the desired one.
gap> IsLieAbelian( L ); # Instead, IsLieAbelian is the correct command.
false

4.5.12 IsLieSolvable

♦ IsLieSolvable( L ) (method)

In [PPS73] Passi, Passman, and Sehgal have classified all groupsG such that the Lie algebra as-
sociated with the group ring is solvable. This method uses their classification, making it considerably
faster than the more elementary method which just calculates Lie commutators.
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Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> IsLieSolvable( L ); # This is very fast.
true
gap> List( LieDerivedSeries( L ), Dimension ); # This is very slow.
[ 256, 228, 189, 71, 0 ]

4.5.13 IsLieNilpotent

♦ IsLieNilpotent( L ) (method)

In [PPS73] Passi, Passman, and Sehgal have classified all groupsG such that the Lie algebra
associated with the group ring is Lie nilpotent. This method uses their classification, making it con-
siderably faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> IsLieNilpotent( L ); # This is very fast.
true
gap> List( LieLowerCentralSeries( L ), Dimension ); # This is very slow.
[ 256, 228, 222, 210, 191, 167, 138, 107, 76, 54, 29, 15, 6, 0 ]

4.5.14 IsLieMetabelian

♦ IsLieMetabelian( L ) (property)

In [LR86] Levin and Rosenberger have classified all groupsG such that the Lie algebra associated
with the group ring is Lie metabelian. This method uses their classification, making it considerably
faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>
<algebra-with-one over GF(2), with 8 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> IsLieMetabelian( L );
false
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4.5.15 IsLieCentreByMetabelian

♦ IsLieCentreByMetabelian( L ) (property)

In [Ros02] the third author of this package classified all groupsG such that the Lie algebra asso-
ciated with the group ring is Lie centre-by-metabelian. This method uses the classification, making it
considerably faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> IsLieMetabelian( L );
false
gap> IsLieCentreByMetabelian( L );
true

4.5.16 CanonicalBasis

♦ CanonicalBasis( L ) (method)

Returns: basis of a Lie algebra
The canonical basis of a group algebraFG is formed by the elements ofG. In this methodL is the

Lie algebra associated with a group algebraFG, and the method returns the images of the elements of
G in L.

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> B := CanonicalBasis( L );
CanonicalBasis( <Lie algebra of dimension 6 over GF(2)> )
gap> Elements( B );
[ LieObject( Z(2)ˆ0*() ), LieObject( Z(2)ˆ0*(2,3) ),

LieObject( Z(2)ˆ0*(1,2) ), LieObject( Z(2)ˆ0*(1,2,3) ),
LieObject( Z(2)ˆ0*(1,3,2) ), LieObject( Z(2)ˆ0*(1,3) ) ]

4.5.17 IsBasisOfLieAlgebraOfGroupRing

♦ IsBasisOfLieAlgebraOfGroupRing( B ) (property)

A basisB has this property if the preimages of the basis vectors in the group algebra form a group.
It can be verified if a basis has this property. This is important for the speed of the calculation of the
structure constants table; seeStructureConstantsTable (4.5.18).
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Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 ] )
<algebra-with-one over GF(2), with 2 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> B := CanonicalBasis( L );
CanonicalBasis( <Lie algebra of dimension 6 over GF(2)> )
gap> IsBasisOfLieAlgebraOfGroupRing( B );
true

4.5.18 StructureConstantsTable

♦ StructureConstantsTable( B ) (method)

A very fast implementation for calculating the structure constants table for the Lie algebraL
associated with a group ring with respect to its canonical basisB using its special structure; see
CanonicalBasis (4.5.16).

Example

gap> G := CyclicGroup( 2 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 2 with 1 generators>
<algebra-with-one over GF(2), with 1 generators>
gap> L := LieAlgebra( FG );
<Lie algebra over GF(2)>
gap> B := CanonicalBasis( L );
CanonicalBasis( <Lie algebra of dimension 2 over GF(2)> )
gap> StructureConstantsTable( B );
[ [ [ [ ], [ ] ], [ [ ], [ ] ] ], [ [ [ ], [ ] ], [ [ ], [ ] ] ], -1,

0*Z(2) ]

4.5.19 LieUpperNilpotencyIndex

♦ LieUpperNilpotencyIndex( KG ) (attribute)

In a modular group algebraKG the upper Lie power seriesis defined as follows:KG(1) = KG,
KG(n+1) is the associative ideal, generated by[KG(n),KG]. The upper Lie nilpotency indextL(G) of
the group algebraKG is defined to be the smallest numbern such thatKG(n) = 0. It can be calculated
very fast using Lie dimension subgroups [Sha91], that is, using only information about the underlying
group; seeLieDimensionSubgroups (4.6.4). This is why it is stored as an attribute of the group
algebraKG rather than that of its associated Lie algebra.
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Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> LieUpperNilpotencyIndex( KG );
5

4.5.20 LieLowerNilpotencyIndex

♦ LieLowerNilpotencyIndex( KG ) (attribute)

In a modular group algebraKG the lower Lie power seriesis defined as follows:KG[n] is the
associative ideal, generated by all (left-normed) Lie-products[x1,x2, . . . ,xn], xi ∈ KG. The lower Lie
nilpotency indextL(G) of the group algebraKG is defined to be the minimal smallestn such that
KG[n] = 0. In [Du92] the Jennings’ conjecture was proved, which means that the nilpotency class of
the normalized unit group of the modular group algebraKG is equal totL(G)−1.

This allows to express lower Lie nilpotency index via the nilpotency class of the normalized unit
group, and with its polycyclic presentation, provided byLAGUNA, this will be faster than elementary
calculations with Lie commutators. As the previous attribute, this index is also stored as an attribute
of the group algebraKG.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> LieLowerNilpotencyIndex( KG );
5

4.6 Other commands

4.6.1 SubgroupsOfIndexTwo

♦ SubgroupsOfIndexTwo( G ) (attribute)

Returns a list of subgroups ofGwith index two. Such subgroups are important for the investigation
of the Lie structure of the group algebraKG in the case when the underlying fieldK has characteristic
2.

Example

gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> SubgroupsOfIndexTwo( G );
[ Group([ f1, f1*f3, f1*f4, f1*f3*f4 ]), Group([ f2, f2*f3, f2*f4, f2*f3*f4 ]),

Group([ f1*f2, f1*f2*f3, f1*f2*f4, f1*f2*f3*f4 ]) ]
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4.6.2 DihedralDepth

♦ DihedralDepth( U ) (method)

For a finite 2-groupU, the function returns itsdihedral depth, which is defined to be the maximal
numberd such thatU contains a subgroup isomorphic to the dihedral group of order 2d+1.

Example

gap> KD8 := GroupRing( GF(2), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> UD8 := PcNormalizedUnitGroup( KD8 );
<pc group of size 128 with 7 generators>
gap> DihedralDepth( UD8 );
2

4.6.3 DimensionBasis

♦ DimensionBasis( G ) (method)

Returns:
For a finitep-groupG, returns its Jennings basis as it was described in Section3.3.

Example

gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> DimensionBasis( G );
rec( dimensionBasis := [ f1, f2, f3, f4 ], weights := [ 1, 1, 2, 4 ] )

4.6.4 LieDimensionSubgroups

♦ LieDimensionSubgroups( G ) (attribute)

Returns:
For a finitep-groupG, returns the series of its Lie dimension subgroups. Them-th Lie dimension

subgroupD(m) is the intersection of the groupG and 1+ KG(m), whereKG(m) is them-th term of the
upper Lie power series ofKG; seeLieUpperNilpotencyIndex (4.5.19)

Example

gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> LieDimensionSubgroups( G );
[ <pc group of size 16 with 4 generators>, Group([ f3, f4 ]), Group([ f4 ]),

Group([ <identity> of ... ]) ]

4.6.5 LAGInfo

♦ LAGInfo (info class)
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LAGInfo is a special Info class for LAGUNA algorithms. It has 5 levels: 0, 1 (default), 2, 3 and
4. To change info level tok, use commandSetInfoLevel(LAGInfo, k).

Example

gap> SetInfoLevel( LAGInfo, 2 );
gap> KD8 := GroupRing( GF( 2 ), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> UD8 := PcNormalizedUnitGroup( KD8 );
#I LAGInfo: Computing the pc normalized unit group ...
#I LAGInfo: Calculating weighted basis ...
#I LAGInfo: Calculating dimension basis ...
#I LAGInfo: dimension basis finished !
#I LAGInfo: Weighted basis finished !
#I LAGInfo: Computing the augmentation ideal filtration...
#I LAGInfo: Filtration finished !
#I LAGInfo: finished, converting to PcGroup
<pc group of size 128 with 7 generators>

4.6.6 LAGUNABuildManual

♦ LAGUNABuildManual( ) (function)

This function is used to build the manual in the following formats: DVI, PDF, PS, HTML and
text for online help. We recommend that the user should have a recent and fairly complete TEX
distribution. SinceLAGUNA is distributed together with its manual, it is not necessary for the user to
use this function. Normally it is intended to be used by the developers only. This is the only function
of LAGUNA which requires UNIX/Linux environment.

4.6.7 LAGUNABuildManualHTML

♦ LAGUNABuildManualHTML( ) (function)

This fuction is used to build the manual only in HTML format. This does not depend on the
availability of the TEX installation and works under Windows and MacOS as well. SinceLAGUNA is
distributed together with its manual, it is not necessary for the user to use this function. Normally it is
intended to be used by the developers only.
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