STDLIB

version 1.14

Typeset in $L A T_{E} X$ from SGML source using the D ocBuilder-0.9 D ocument System.

Contents

1 STD LIB Reference Manual 1
1.1 STDLIB 53
1.2 base64 54
1.3 beam_lib 55
1.4 C 63
1.5 calendar 67
1.6 dets 72
1.7 dict 88
1.8 digraph 93
1.9 digraph_utils 100
1.10 epp 104
1.11 erl_eval 106
1.12 erl_expand_records 109
1.13 erl_id_trans 110
1.14 erl_internal 111
1.15 erl_lint 113
1.16 erl_parse 115
1.17 erl_pp 118
1.18 erl_scan 121
1.19 erl_tar 123
1.20 ets 129
1.21 file_sorter 150
1.22 filelib 155
1.23 filename 158
1.24 gb_sets 164
1.25 gb_trees 170
1.26 gen_event 175
1.27 gen_fsm 185
1.28 gen_server 196
1.29 io 205
1.30 io_lib 216
1.31 lib 220
1.32 lists 222
1.33 log_mf_h 237
1.34 math 238
1.35 ms_transform 240
1.36 orddict 251
1.37 ordsets 256
1.38 pg 259
1.39 pool 261
1.40 proc_lib 263
1.41 proplists 268
1.42 qlc 273
1.43 queue 290
1.44 random 294
1.45 regexp 296
1.46 sets 301
1.47 shell 304
1.48 shell_default 314
1.49 slave 315
1.50 sofs 318
1.51 string 341
1.52 supervisor 347
1.53 supervisor_bridge 354
1.54 sys 357
1.55 timer 364
1.56 win32reg 368
1.57 zip 372

STDLIB Reference Manual

Short Summaries

- Application STD LIB [page 53] - The STD LIB A pplication
- Erlang M odule base64 [page 54] - Implements base 64 encode and decode, see RFC2045.
- Erlang M odule beam_lib [page 55] - An Interface To the BEAM File Format
- Erlang M odule c [page 63] - Command Interface M odule
- Erlang M odule calendar [page 67] - Local and universal time, day-of-the-week, date and time conversions
- Erlang M odule dets [page 72] - A Disk Based Term Storage
- Erlang M odule dict [page 88] - Key-Value D ictionary
- Erlang M odule digraph [page 93] - D irected G raphs
- Erlang M odule digraph_utils [page 100] - Algorithms for Directed G raphs
- Erlang M odule epp [page 104] - A n Erlang C ode Preprocessor
- Erlang M odule erl_eval [page 106] - The Erlang M eta Interpreter
- Erlang M odule erl_expand_records [page 109] - Expands Records in a M odule
- Erlang M odule erl_id_trans [page 110] - A n Identity Parse Transform
- Erlang M odule erl_internal [page 111] - Internal Erlang D efinitions
- Erlang M odule erl_lint [page 113] - The Erlang Code Linter
- Erlang M odule erl_parse [page 115] - The Erlang Parser
- Erlang M odule erl_pp [page 118] - The Erlang Pretty Printer
- Erlang M odule erl_scan [page 121] - The Erlang Token Scanner
- Erlang M odule erl_tar [page 123] - Unix 'tar' utility for reading and writing tar archives
- Erlang M odule ets [page 129] - Built-In Term Storage
- Erlang M odule file_sorter [page 150] - File Sorter
- Erlang M odule filelib [page 155] - File utilities, such as wildcard matching of filenames
- Erlang M odule filename [page 158] - Filename M anipulation Functions
- Erlang M odule gb_sets [page 164] - General Balanced Trees
- Erlang M odule gb_trees [page 170] - General Balanced Trees
- Erlang M odule gen_event [page 175] - Generic Event H andling Behaviour
- Erlang M odule gen_fsm [page 185] - Generic Finite State M achine Behaviour
- Erlang M odule gen_server [page 196] - Generic Server Behaviour
- Erlang M odule io [page 205] - Standard IO Server Interface Functions
- Erlang M odule io_lib [page 216] - IO Library Functions
- Erlang M odule lib [page 220] - A number of useful library functions
- Erlang M odule lists [page 222] - List Processing Functions
- Erlang M odule log_mf_h [page 237] - An Event Handler which Logs Events to D isk
- Erlang M odule math [page 238] - M athematical Functions
- Erlang M odule ms_transform [page 240] - Parse_transform that translates fun syntax into match specifications.
- Erlang M odule orddict [page 251] - Key-Value Dictionary as O rdered List
- Erlang M odule ordsets [page 256] - Functions for M anipulating Sets as O rdered Lists
- Erlang M odule pg [page 259] - Distributed, N amed Process Groups
- Erlang M odule pool [page 261] - Load Distribution Facility
- Erlang M odule proc_lib [page 263] - Functions for asynchronous and synchronous start of processes adhering to the OTP design principles.
- Erlang M odule proplists [page 268] - Support functions for property lists
- Erlang M odule qlc [page 273] - Q uery Interface to M nesia, ETS, D ets, etc
- Erlang M odule queue [page 290] - Abstract D ata Type for FIFO Q ueues
- Erlang M odule random [page 294] - Pseudo random number generation
- Erlang M odule regexp [page 296] - Regular Expression Functions for Strings
- Erlang M odule sets [page 301] - Functions for Set M anipulation
- Erlang M odule shell [page 304] - The Erlang Shell
- Erlang M odule shell_default [page 314] - Customizing the Erlang Environment
- Erlang M odule slave [page 315] - Functions to Starting and Controlling Slave N odes
- Erlang M odule sofs [page 318] - Functions for M anipulating Sets of Sets
- Erlang M odule string [page 341] - String Processing Functions
- Erlang M odule supervisor [page 347] - Generic Supervisor Behaviour
- Erlang M odule supervisor_bridge [page 354] - Generic Supervisor Bridge Behaviour.
- Erlang M odule sys [page 357] - A Functional Interface to System M essages
- Erlang M odule timer [page 364] - Timer Functions
- Erlang M odule win32reg [page 368] - win32reg provides access to the registry on Windows
- Erlang M odule zip [page 372] - Utility for reading and creating 'zip' arhcives.

STDLIB

No functions are exported.

base64

The following functions are exported:

- encode(Data) -> Base64
[page 54] Encodes data into base64.
- encode_to_string(Data) -> Base64String
[page 54] Encodes data into base64.
- decode(Base64) -> Data
[page 54] D ecodes a base64 encoded string to data.
- decode_to_string(Base64) -> DataString [page 54] D ecodes a base64 encoded string to data.
- mime_decode(Base64) -> Data
[page 54] D ecodes a base64 encoded string to data.
- mime_decode_string(Base64) -> DataString
[page 54] D ecodes a base64 encoded string to data.

beam_lib

The following functions are exported:

- chunks(Beam, [ChunkRef]) -> \{ok, \{Module, [ChunkData]\}\} | \{error, beam_lib, Reason\}
[page 58] Read selected chunks from a BEAM file or binary
- chunks(Beam, [ChunkRef], [Option]) -> \{ok, \{Module, [ChunkResult]\}\} | \{error, beam_lib, Reason\}
[page 58] Read selected chunks from a BEAM file or binary
- version(Beam) -> \{ok, \{Module, [Version] \}\} | \{error, beam_lib, Reason\}
[page 58] Read the BEA M file's module version
- md5(Beam) -> \{ok, \{Module, MD5\}\} | \{error, beam_lib, Reason\} [page 59] Read the BEA M file's module version
- info(Beam) -> [\{Item, Info\}] | \{error, beam_lib, Reason1\} [page 59] Information about a BEAM file
- cmp(Beam1, Beam2) -> ok | \{error, beam_lib, Reason\} [page 60] Compare two BEAM files
- cmp_dirs(Dir1, Dir2) -> \{Only1, Only2, Different\} | \{error, beam_lib, Reason1\}
[page 60] Compare the BEAM files in two directories
- diff_dirs(Dir1, Dir2) -> ok | \{error, beam_lib, Reason1\} [page 60] Compare the BEAM files in two directories
- strip(Beam1) -> \{ok, \{Module, Beam2\}\} | \{error, beam_lib, Reason1\} [page 60] Removes chunks not needed by the loader from a BEAM file
- strip_files(Files) -> \{ok, [\{Module, Beam2\}]\} | \{error, beam_lib, Reason1\}
[page 60] Removes chunks not needed by the loader from BEAM files
- strip_release(Dir) -> \{ok, [\{Module, Filename] \}\} | \{error, beam_lib, Reason1\}
[page 61] Removes chunks not needed by the loader from all BEAM files of a release
- format_error(Reason) -> Chars [page 61] Return an English description of a BEAM read error reply
- crypto_key_fun(CryptoKeyFun) -> ok | \{error, Reason\} [page 61] Register a fun that provides a crypto key
- clear_crypto_key_fun() -> \{ok, Result\} [page 62] U nregister the current crypto key fun

C

The following functions are exported:

- bt(Pid) -> void()
[page 63] Stack backtrace for a process
- c(File) -> \{ok, Module\} | error [page 63] C ompile and load code in a file
- c(File, Options) -> \{ok, Module\} | error [page 63] Compile and load code in a file
- cd(Dir) -> void() [page 63] Change working directory
- flush() -> void() [page 64] Flush any messages sent to the shell
- help() -> void() [page 64] H elp information
- i() -> void()
[page 64] Information about the system
- ni() -> void()
[page 64] Information about the system
- i(X, Y, Z) -> void()
[page 64] Information about pid $<$ X .Y.Z $>$
- l(Module) -> void()
[page 64] Load or reload module
- lc(Files) -> ok
[page 64] Compile a list of files
- ls() -> void() [page 64] List files in the current directory
- ls(Dir) -> void() [page 64] List files in a directory
- m() -> void()
[page 65] W hich modules are loaded
- m(Module) -> void() [page 65] Information about a module
- memory() -> [\{Type, Size\}] [page 65] M emory allocation information
- memory(Type) -> Size [page 65] M emory allocation information
- memory([Type]) -> [\{Type, Size\}] [page 65] M emory allocation information
- nc(File) -> \{ok, Module\} | error [page 65] Compile and load code in a file on all nodes
- nc(File, Options) -> \{ok, Module\} | error [page 65] C ompile and load code in a file on all nodes
- nl(Module) -> void() [page 65] Load module on all nodes
- pid(X, Y, Z) -> pid() [page 65] Convert X, Y, Z to a pid
- pwd() -> void()
[page 66] Print working directory
- q() -> void() [page 66] Quit - shorthand for init:stop()
- regs() -> void() [page 66] Information about registered processes
- nregs() -> void() [page 66] Information about registered processes
- xm(ModSpec) -> void() [page 66] C ross reference check a module
- y(File) -> YeccRet [page 66] G enerate an LALR-1 parser
- y(File, Options) -> YeccRet [page 66] Generate an LALR-1 parser

calendar

The following functions are exported:

- date_to_gregorian_days(Date) -> Days [page 68] Compute the number of days from year 0 up to the given date
- date_to_gregorian_days(Year, Month, Day) -> Days [page 68] Compute the number of days from year 0 up to the given date
- datetime_to_gregorian_seconds(\{Date, Time\}) -> Seconds [page 68] Compute the number of seconds from year 0 up to the given date and time
- day_of_the_week(Date) -> DayNumber [page 68] C ompute the day of the week
- day_of_the_week(Year, Month, Day) -> DayNumber [page 68] C ompute the day of the week
- gregorian_days_to_date(Days) -> Date [page 68] Compute the date given the number of gregorian days
- gregorian_seconds_to_datetime(Seconds) -> \{Date, Time\} [page 68] Compute the date given the number of gregorian days
- is_leap_year(Year) -> bool() [page 68] Check if a year is a leap year
- last_day_of_the_month(Year, Month) -> int() [page 68] Compute the number of days in a month
- local_time() -> \{Date, Time\} [page 69] Compute local time
- local_time_to_universal_time(\{Date1, Time1\}) -> \{Date2, Time2\} [page 69] C onvert from local time to universal time (deprecated)
- local_time_to_universal_time_dst(\{Date1, Time1\}) -> [\{Date, Time\}] [page 69] Convert from local time to universal time(s)
- now_to_local_time(Now) -> \{Date, Time\} [page 69] Convert now to local date and time
- now_to_universal_time(Now) -> \{Date, Time\} [page 70] Convert now to date and time
- now_to_datetime(Now) -> \{Date, Time\} [page 70] Convert now to date and time
- seconds_to_daystime(Seconds) -> \{Days, Time\} [page 70] Compute days and time from seconds
- seconds_to_time(Seconds) -> Time [page 70] Compute time from seconds
- time_difference(T1, T2) -> \{Days, Time\} [page 70] Compute the difference between two times (deprecated)
- time_to_seconds(Time) -> Seconds [page 70] Compute the number of seconds since midnight up to the given time
- universal_time() -> \{Date, Time\}
[page 70] Compute universal time
- universal_time_to_local_time(\{Date1, Time1\}) -> \{Date2, Time2\} [page 71] Convert from universal time to local time
- valid_date(Date) -> bool()
[page 71] Check if a date is valid
- valid_date(Year, Month, Day) -> bool()
[page 71] Check if a date is valid

dets

The following functions are exported:

- all() -> [Name]
[page 73] Return a list of the names of all open D ets tables on this node.
- bchunk(Name, Continuation) -> \{Continuation2, Data\} |
'\$end_of_table' | \{error, Reason\}
[page 73] Return a chunk of objects stored in a D ets table.
- close(Name) -> ok | \{error, Reason\} [page 74] C lose a D ets table.
- delete(Name, Key) -> ok | \{error, Reason\} [page 74] D elete all objects with a given key from a D ets table.
- delete_all_objects(Name) -> ok | \{error, Reason\} [page 74] D elete all objects from a D ets table.
- delete_object(Name, Object) -> ok | \{error, Reason\} [page 74] D elete a given object from a D ets table.
- first(Name) -> Key | '\$end_of_table' [page 74] Return the first key stored in a D ets table.
- foldl(Function, Acc0, Name) $->$ Acc1 | \{error, Reason\} [page 75] Fold a function over a D ets table.
- foldr(Function, Acc0, Name) -> Acc1 | \{error, Reason\} [page 75] Fold a function over a D ets table.
- from_ets(Name, EtsTab) -> ok | \{error, Reason\} [page 75] Replace the objects of a D ets table with the objects of an Ets table.
- info(Name) -> InfoList | undefined [page 75] Return information about a Dets table.
- info(Name, Item) -> Value | undefined [page 76] Return the information associated with a given item for a D ets table.
- init_table(Name, InitFun [, Options]) -> ok | \{error, Reason\} [page 76] Replace all objects of a D ets table.
- insert (Name, Objects) -> ok | \{error, Reason\} [page 77] Insert one or more objects into a D ets table.
- insert_new(Name, Objects) -> Bool [page 77] Insert one or more objects into a D ets table.
- is_compatible_bchunk_format(Name, BchunkFormat) -> Bool [page 78] Test compatibility of a table's chunk data.
- is_dets_file(FileName) -> Bool | \{error, Reason\} [page 78] Test for a D ets table.
- lookup(Name, Key) -> [Object] | \{error, Reason\} [page 78] Return all objects with a given key stored in a D ets table.
- match(Continuation) -> \{[Match], Continuation2\} | '\$end_of_table' | \{error, Reason\}
[page 78] M atch a chunk of objects stored in a D ets table and return a list of variable bindings.
- match(Name, Pattern) -> [Match] | \{error, Reason\} [page 79] M atch the objects stored in a D ets table and return a list of variable bindings.
- match(Name, Pattern, N) $->$ \{ [Match], Continuation\} | '\$end_of_table' | \{error, Reason\}
[page 79] M atch the first chunk of objects stored in a D ets table and return a list of variable bindings.
- match_delete(Name, Pattern) -> N | \{error, Reason\} [page 79] D elete all objects that match a given pattern from a D ets table.
- match_object(Continuation) -> \{[Object], Continuation2\} ।
'\$end_of_table' | \{error, Reason\}
[page 80] M atch a chunk of objects stored in a D ets table and return a list of objects.
- match_object(Name, Pattern) -> [Object] | \{error, Reason\} [page 80] M atch the objects stored in a D ets table and return a list of objects.
- match_object(Name, Pattern, N) -> \{[Object], Continuation\} | '\$end_of_table' | \{error, Reason\}
[page 80] M atch the first chunk of objects stored in a D ets table and return a list of objects.
- member (Name, Key) -> Bool | \{error, Reason\} [page 81] Test for occurrence of a key in a D ets table.
- next(Name, Key1) -> Key2 | '\$end_of_table' [page 81] Return the next key in a D ets table.
- open_file(Filename) -> \{ok, Reference\} | \{error, Reason\} [page 81] O pen an existing D ets table.
- open_file(Name, Args) -> \{ok, Name\} | \{error, Reason\} [page 81] O pen a D ets table.
- pid2name(Pid) -> \{ok, Name\} | undefined [page 83] Return the name of the D ets table handled by a pid.
- repair_continuation(Continuation, MatchSpec) -> Continuation2 [page 83] Repair a continuation from select/1 or select/3.
- safe_fixtable(Name, Fix)
[page 83] Fix a D ets table for safe traversal.
- select(Continuation) -> \{Selection, Continuation2\} | '\$end_of_table' | \{error, Reason\}
[page 84] A pply a match specification to some objects stored in a D ets table.
- select(Name, MatchSpec) -> Selection | \{error, Reason\} [page 84] A pply a match specification to all objects stored in a D ets table.
- select(Name, MatchSpec, N) -> \{Selection, Continuation\} | '\$end_of_table' | \{error, Reason\} [page 84] A pply a match specification to the first chunk of objects stored in a D ets table.
- select_delete(Name, MatchSpec) -> N | \{error, Reason\} [page 85] D elete all objects that match a given pattern from a D ets table.
- slot(Name, I) -> '\$end_of_table' | [Object] | \{error, Reason\} [page 85] Return the list of objects associated with a slot of a D ets table.
- sync(Name) -> ok | \{error, Reason\} [page 85] Ensure that all updates made to a D ets table are written to disk.
- table(Name [, Options]) -> QueryHandle [page 86] Return a Q LC query handle.
- to_ets(Name, EtsTab) -> EtsTab | \{error, Reason\} [page 86] Insert all objects of a D ets table into an Ets table.
- traverse(Name, Fun) -> Return | \{error, Reason\} [page 87] A pply a function to all or some objects stored in a D ets table.
- update_counter(Name, Key, Increment) -> Result [page 87] U pdate a counter object stored in a D ets table.

dict

The following functions are exported:

- append(Key, Value, Dict1) -> Dict2 [page 88] A ppend a value to keys in a dictionary
- append_list(Key, ValList, Dict1) -> Dict2
[page 88] A ppend new values to keys in a dictionary
- erase(Key, Dict1) -> Dict2
[page 88] Erase a key from a dictionary
- fetch(Key, Dict) -> Value [page 89] Look-up values in a dictionary
- fetch_keys(Dict) -> Keys [page 89] Return all keys in a dictionary
- filter(Pred, Dict1) -> Dict2 [page 89] C hoose elements which satisfy a predicate
- find(Key, Dict) -> \{ok, Value\} | error [page 89] Search for a key in a dictionary
- fold(Fun, Acc0, Dict) -> Acc1 [page 89] Fold a function over a dictionary
- from_list(List) -> Dict [page 89] Convert a list of pairs to a dictionary
- is_key(Key, Dict) -> bool() [page 90] Test if a key is in a dictionary
- map(Fun, Dict1) -> Dict2 [page 90] M ap a function over a dictionary
- merge(Fun, Dict1, Dict2) -> Dict3 [page 90] M erge two dictionaries
- new() -> dictionary() [page 90] Create a dictionary
- store(Key, Value, Dict1) -> Dict2 [page 90] Store a value in a dictionary
- to_list(Dict) -> List [page 90] Convert a dictionary to a list of pairs
- update(Key, Fun, Dict1) -> Dict2 [page 91] U pdate a value in a dictionary
- update(Key, Fun, Initial, Dict1) -> Dict2 [page 91] Update a value in a dictionary
- update_counter (Key, Increment, Dict1) -> Dict2 [page 91] Increment a value in a dictionary

digraph

The following functions are exported:

- add_edge(G, E, V1, V2, Label) -> edge() | \{error, Reason\} [page 93] Add an edge to a digraph.
- add_edge(G, V1, V2, Label) -> edge() | \{error, Reason\} [page 93] Add an edge to a digraph.
- add_edge(G, V1, V2) -> edge() | \{error, Reason\} [page 93] Add an edge to a digraph.
- add_vertex(G, V, Label) -> vertex() [page 94] Add or modify a vertex of a digraph.
- add_vertex(G, V) -> vertex()
[page 94] Add or modify a vertex of a digraph.
- add_vertex(G) -> vertex()
[page 94] Add or modify a vertex of a digraph.
- del_edge(G, E) -> true [page 94] D elete an edge from a digraph.
- del_edges(G, Edges) -> true [page 94] D elete edges from a digraph.
- del_path(G, V1, V2) -> true [page 94] D elete paths from a digraph.
- del_vertex(G, V) -> true [page 95] D elete a vertex from a digraph.
- del_vertices(G, Vertices) -> true [page 95] D elete vertices from a digraph.
- delete(G) -> true [page 95] D elete a digraph.
- edge (G, E) -> \{E, V1, V2, Label\} | false [page 95] Return the vertices and the label of an edge of a digraph.
- edges(G) -> Edges [page 95] Return all edges of a digraph.
- edges(G, V) -> Edges
[page 95] Return the edges emanating from or incident on a vertex of a digraph.
- get_cycle(G, V) -> Vertices | false [page 96] Find one cycle in a digraph.
- get_path(G, V1, V2) -> Vertices | false [page 96] Find one path in a digraph.
- get_short_cycle(G, V) -> Vertices | false [page 96] Find one short cycle in a digraph.
- get_short_path(G, V1, V2) -> Vertices | false [page 96] Find one short path in a digraph.
- in_degree (G, V) -> integer() [page 97] Return the in-degree of a vertex of a digraph.
- in_edges(G, V) -> Edges [page 97] Return all edges incident on a vertex of a digraph.
- in_neighbours(G, V) -> Vertices [page 97] Return all in-neighbours of a vertex of a digraph.
- info(G) -> InfoList
[page 97] Return information about a digraph.
- new() -> digraph()
[page 98] Return a protected empty digraph, where cycles are allowed.
- new(Type) -> digraph() | \{error, Reason\}
[page 98] Create a new empty digraph.
- no_edges (G) -> integer () >= 0 [page 98] Return the number of edges of the a digraph.
- no_vertices(G) -> integer() >= 0 [page 98] Return the number of vertices of a digraph.
- out_degree(G, V) -> integer()
[page 98] Return the out-degree of a vertex of a digraph.
- out_edges (G, V) -> Edges [page 98] Return all edges emanating from a vertex of a digraph.
- out_neighbours(G, V) -> Vertices
[page 98] Return all out-neighbours of a vertex of a digraph.
- vertex (G, V) -> \{V, Label\} | false
[page 99] Return the label of a vertex of a digraph.
- vertices(G) -> Vertices
[page 99] Return all vertices of a digraph.

digraph_utils

The following functions are exported:

- components(Digraph) -> [Component] [page 101] Return the components of a digraph.
- condensation(Digraph) -> CondensedDigraph [page 101] Return a condensed graph of a digraph.
- cyclic_strong_components(Digraph) -> [StrongComponent] [page 101] Return the cyclic strong components of a digraph.
- is_acyclic(Digraph) -> bool() [page 101] Check if a digraph is acyclic.
- loop_vertices(Digraph) -> Vertices [page 101] Return the vertices of a digraph included in some loop.
- postorder(Digraph) -> Vertices [page 102] Return the vertices of a digraph in post-order.
- preorder (Digraph) -> Vertices [page 102] Return the vertices of a digraph in pre-order.
- reachable(Vertices, Digraph) -> Vertices [page 102] Return the vertices reachable from some vertices of a digraph.
- reachable_neighbours(Vertices, Digraph) -> Vertices [page 102] Return the neighbours reachable from some vertices of a digraph.
- reaching(Vertices, Digraph) -> Vertices [page 102] Return the vertices that reach some vertices of a digraph.
- reaching_neighbours(Vertices, Digraph) -> Vertices [page 102] Return the neighbours that reach some vertices of a digraph.
- strong_components(Digraph) -> [StrongComponent] [page 103] Return the strong components of a digraph.
- subgraph(Digraph, Vertices [, Options]) -> Subgraph | \{error, Reason\}
[page 103] Return a subgraph of a digraph.
- topsort(Digraph) -> Vertices | false [page 103] Return a topological sorting of the vertices of a digraph.

epp

The following functions are exported:

- open(FileName, IncludePath) -> \{ok,Epp\} | \{error, ErrorDescriptor\} [page 104] O pen a file for preprocessing
- open(FileName, IncludePath, PredefMacros) -> \{ok, Epp\} | \{error, ErrorDescriptor
[page 104] O pen a file for preprocessing
- close(Epp) -> ok [page 104] Close the preprocessing of the file associated with Epp
- parse_erl_form(Epp) -> \{ok, AbsForm\} | \{eof, Line\} | \{error, ErrorInfo\}
[page 104] Return the next Erlang form from the opened Erlang source file
- parse_file(FileName, IncludePath, PredefMacro) -> \{ok, [Form] \} | \{error,OpenError\} [page 104] Preprocesse and parse an Erlang source file
erl_eval
The following functions are exported:
- exprs(Expressions, Bindings) -> \{value, Value, NewBindings\} [page 106] Evaluate expressions
- exprs(Expressions, Bindings, LocalFunctionHandler) -> \{value, Value, NewBindings\}
[page 106] Evaluate expressions
- exprs(Expressions, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> \{value, Value, NewBindings\} [page 106] Evaluate expressions
- expr(Expression, Bindings) -> \{ value, Value, NewBindings \} [page 106] Evaluate expression
- expr(Expression, Bindings, LocalFunctionHandler) -> \{ value, Value, NewBindings \}
[page 106] Evaluate expression
- expr(Expression, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> \{ value, Value, NewBindings \} [page 106] Evaluate expression
- expr_list(ExpressionList, Bindings) -> \{ValueList, NewBindings\} [page 107] Evaluate a list of expressions
- expr_list(ExpressionList, Bindings, LocalFunctionHandler) -> \{ValueList, NewBindings\} [page 107] Evaluate a list of expressions
- expr_list(ExpressionList, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> \{ValueList, NewBindings $\}$ [page 107] Evaluate a list of expressions
- new_bindings() -> BindingStruct [page 107] Return a bindings structure
- bindings(BindingStruct) -> Bindings [page 107] Return bindings
- binding(Name, BindingStruct) -> Binding [page 107] Return bindings
- add_binding(Name, Value, Bindings) -> BindingStruct [page 107] Add a binding
- del_binding(Name, Bindings) -> BindingStruct [page 107] D elete a binding

erl_expand_records

The following functions are exported:

- module(AbsForms, CompileOptions) -> AbsForms [page 109] Expand all records in a module

erl_id_trans

The following functions are exported:

- parse_transform(Forms, Options) -> Forms [page 110] Transform Erlang forms

erl_internal

The following functions are exported:

- bif(Name, Arity) -> bool()
[page 111] Test for an Erlang BIF
- guard_bif(Name, Arity) -> bool() [page 111] Test for an Erlang BIF allowed in guards
- type_test(Name, Arity) -> bool() [page 111] Test for a valid type test
- arith_op(OpName, Arity) -> bool() [page 111] Test for an arithmetic operator
- bool_op(OpName, Arity) -> bool() [page 111] Test for a Boolean operator
- comp_op(OpName, Arity) -> bool() [page 112] Test for a comparison operator
- list_op(OpName, Arity) -> bool() [page 112] Test for a list operator
- send_op(OpName, Arity) -> bool() [page 112] Test for a send operator
- op_type(OpName, Arity) -> Type [page 112] Return operator type
erl_lint
The following functions are exported:
- module(AbsForms) -> \{ok,Warnings\} | \{error,Errors,Warnings\} [page 113] Check a module for errors
- module(AbsForms, FileName) -> \{ok,Warnings\} | \{error,Errors,Warnings\}
[page 113] Check a module for errors
- module(AbsForms, FileName, CompileOptions) -> \{ok,Warnings\} | \{error, Errors,Warnings\}
[page 113] Check a module for errors
- is_guard_test(Expr) -> bool() [page 114] Test for a guard test
- format_error(ErrorDescriptor) -> Chars [page 114] Format an error descriptor

erl_parse

The following functions are exported:

- parseform(Tokens) -> \{ok, AbsForm\} | \{error, ErrorInfo\} [page 115] Parse an Erlang form
- parse_exprs(Tokens) -> \{ok, Expr_list\} | \{error, ErrorInfo\} [page 115] Parse Erlang expressions
- parse_term(Tokens) -> \{ok, Term\} | \{error, ErrorInfo\} [page 115] Parse an Erlang term
- format_error(ErrorDescriptor) -> Chars [page 116] Format an error descriptor
- tokens(AbsTerm) -> Tokens [page 116] G enerate a list of tokens for an expression
- tokens(AbsTerm, MoreTokens) -> Tokens [page 116] Generate a list of tokens for an expression
- normalise(AbsTerm) -> Data [page 116] Convert abstract form to an Erlang term
- abstract(Data) -> AbsTerm [page 116] Convert an Erlang term into an abstract form
erl_pp
The following functions are exported:
- form(Form) -> DeepCharList [page 118] Pretty print a form
- form(Form, HookFunction) -> DeepCharList [page 118] Pretty print a form
- attribute(Attribute) -> DeepCharList [page 118] Pretty print an attribute
- attribute(Attribute, HookFunction) -> DeepCharList [page 118] Pretty print an attribute
- function(Function) -> DeepCharList [page 118] Pretty print a function
- function(Function, HookFunction) -> DeepCharList [page 118] Pretty print a function
- guard(Guard) -> DeepCharList [page 118] Pretty print a guard
- guard(Guard, HookFunction) -> DeepCharList [page 118] Pretty print a guard
- exprs(Expressions) -> DeepCharList [page 119] Pretty print Expressions
- exprs(Expressions, HookFunction) -> DeepCharList [page 119] Pretty print Expressions
- exprs(Expressions, Indent, HookFunction) -> DeepCharList [page 119] Pretty print Expressions
- expr(Expression) -> DeepCharList [page 119] Pretty print one Expression
- expr(Expression, HookFunction) -> DeepCharList [page 119] Pretty print one Expression
- expr(Expression, Indent, HookFunction) -> DeepCharList [page 119] Pretty print one Expression
- expr(Expression, Indent, Precedence, HookFunction) ->-> DeepCharList
[page 119] Pretty print one Expression

erl_scan

The following functions are exported:

- string(CharList,StartLine]) -> \{ok, Tokens, EndLine\} | Error [page 121] Scan a string and returns the Erlang tokens
- string(CharList) -> \{ok, Tokens, EndLine\} | Error [page 121] Scan a string and returns the Erlang tokens
- tokens(Continuation, CharList, StartLine) ->Return [page 121] Re-entrant scanner
- reserved_word(Atom) -> bool() [page 122] Test for a reserved word
- format_error(ErrorDescriptor) -> string() [page 122] Format an error descriptor
erl_tar
The following functions are exported:
- add(TarDescriptor, Filename, Options) -> RetValue [page 124] Add a file to an open tar file
- add(TarDescriptor, Filename, NameInArchive, Options) -> RetValue [page 124] Add a file to an open tar file
- close(TarDescriptor) [page 124] Close an open tar file
- create(Name, FileList) ->RetValue [page 124] C reate a tar archive
- create(Name, FileList, OptionList) [page 125] Create a tar archive with options
- extract(Name) -> RetValue [page 125] Extract all files from a tar file
- extract(Name, OptionList) [page 125] Extract files from a tar file
- format_error(Reason) -> string() [page 126] Convert error term to a readable string
- open(Name, OpenModeList) -> RetValue [page 126] O pen a tar file.
- table(Name) -> RetValue [page 127] Retrieve the name of all files in a tar file
- table(Name, Options) [page 127] Retrieve name and information of all files in a tar file
- t(Name)
[page 127] Print the name of each file in a tar file
- tt (Name)
[page 127] Print name and information for each file in a tar file

ets

The following functions are exported:

- all() -> [Tab]
[page 130] Return a list of all ETS tables.
- delete(Tab) -> true [page 130] D elete an entire ETS table.
- delete(Tab, Key) -> true
[page 130] D elete all objects with a given key from an ETS table.
- delete_all_objects(Tab) -> true [page 130] D elete all objects in an ETS table.
- delete_object(Tab,Object) -> true [page 130] D eletes a specific from an ETS table.
- file2tab(Filename) -> \{ok,Tab\} | \{error,Reason\} [page 131] Read an ETS table from a file.
- first(Tab) -> Key | '\$end_of_table' [page 131] Return the first key in an ETS table.
- fixtable(Tab, true|false) -> true | false [page 131] Fix an ETS table for safe traversal (obsolete).
- foldl(Function, Acc0, Tab) -> Acc1 [page 131] Fold a function over an ETS table
- foldr(Function, Acc0, Tab) -> Acc1 [page 131] Fold a function over an ETS table
- from_dets(Tab, DetsTab) -> Tab [page 132] Fill an ETS table with objects from a D ets table.
- fun2ms(LiteralFun) -> MatchSpec [page 132] Pseudo function that transforms fun syntax to a match_spec.
- i() -> void()
[page 133] Display information about all ETS tables on tty.
- i(Tab) -> void()
[page 133] Browse an ETS table on tty.
- info(Tab) -> [\{Item, Value\}] | undefined [page 133] Return information about an ETS table.
- info(Tab, Item) -> Value | undefined [page 134] Return the information associated with given item for an ETS table.
- init_table(Name, InitFun) -> true [page 134] Replace all objects of an ETS table.
- insert(Tab, ObjectOrObjects) -> true [page 135] Insert an object into an ETS table.
- insert_new(Tab, ObjectOrObjects) -> bool() [page 135] Insert an object into an ETS table if the key is not already present.
- is_compiled_ms(Term) -> bool() [page 135] Checks if an Erlang term is the result of ets:match_spec_compile
- last(Tab) -> Key | '\$end_of_table'
[page 136] Return the last key in an ETS table of type ordered_set.
- lookup(Tab, Key) -> [Object] [page 136] Return all objects with a given key in an ETS table.
- lookup_element(Tab, Key, Pos) -> Elem [page 136] Return the Pos:th element of all objects with a given key in an ETS table.
- match(Tab, Pattern) -> [Match]
[page 137] M atch the objects in an ETS table against a pattern.
- match(Tab, Pattern, Limit) -> \{[Match], Continuation\} | '\$end_of_table' [page 137] M atch the objects in an ETS table against a pattern and returns part of the answers.
- match(Continuation) -> \{[Match], Continuation\} | '\$end_of_table' [page 138] Continues matching objects in an ETS table.
- match_delete(Tab, Pattern) -> true
[page 138] D elete all objects which match a given pattern from an ETS table.
- match_object(Tab, Pattern) -> [Object]
[page 138] M atch the objects in an ETS table against a pattern.
- match_object(Tab, Pattern, Limit) -> \{[Match], Continuation\} | '\$end_of_table'
[page 138] M atch the objects in an ETS table against a pattern and returns part of the answers.
- match_object(Continuation) -> \{[Match], Continuation\} |
'\$end_of_table'
[page 139] Continues matching objects in an ETS table.
- match_spec_compile(MatchSpec) -> CompiledMatchSpec [page 139] Compiles a match specification into its internal representation
- match_spec_run(List,CompiledMatchSpec) -> list() [page 139] Performs matching, using a compiled match_spec, on a list of tuples
- member(Tab, Key) -> true | false [page 140] Tests for occurrence of a key in an ETS table
- new(Name, Options) -> tid() [page 140] Create a new ETS table.
- next(Tab, Key1) -> Key2 | '\$end_of_table' [page 141] Return the next key in an ETS table.
- prev(Tab, Key1) -> Key2 | '\$end_of_table' [page 141] Return the previous key in an ETS table of type ordered_set.
- rename(Tab, Name) -> Name [page 142] Rename a named ETS table.
- repair_continuation(Continuation, MatchSpec) -> Continuation [page 142] Repair a continuation from ets:select/1 or ets:select/3 that has passed through external representation
- safe_fixtable(Tab, truelfalse) -> true [page 143] Fix an ETS table for safe traversal.
- select(Tab, MatchSpec) -> [Match] [page 144] M atch the objects in an ETS table against a match_spec.
- select(Tab, MatchSpec, Limit) -> \{[Match], Continuation\} | '\$end_of_table' [page 145] M atch the objects in an ETS table against a match_spec and returns part of the answers.
- select(Continuation) -> \{[Match], Continuation\} | '\$end_of_table' [page 145] Continue matching objects in an ETS table.
- select_delete(Tab, MatchSpec) -> NumDeleted [page 145] M atch the objects in an ETS table against a match_spec and deletes objects where the match_spec returns 'true'
- select_count(Tab, MatchSpec) -> NumMatched [page 146] M atch the objects in an ETS table against a match_spec and returns the number of objects for which the match_spec returned 'true'
- slot(Tab, I) -> [Object] | '\$end_of_table' [page 146] Return all objects in a given slot of an ETS table.
- tab2file(Tab, Filename) -> ok | \{error, Reason\} [page 146] D ump an ETS table to a file.
- tab2list(Tab) -> [Object]
[page 147] Return a list of all objects in an ETS table.
- table(Tab [, Options]) -> QueryHandle [page 147] Return a Q LC query handle.
- test_ms(Tuple, MatchSpec) -> \{ok, Result\} | \{error, Errors\} [page 148] Test a match_spec for use in ets:select/2.
- to_dets(Tab, DetsTab) -> Tab [page 148] Fill a D ets table with objects from an ETS table.
- update_counter (Tab, Key, \{Pos,Incr,Threshold,SetValue\}) -> Result [page 148] U pdate a counter object in an ETS table.
- update_counter(Tab, Key, \{Pos,Incr\}) -> Result [page 148] U pdate a counter object in an ETS table.
- update_counter(Tab, Key, Incr) -> Result [page 148] U pdate a counter object in an ETS table.

file_sorter

The following functions are exported:

- sort(FileName) -> Reply [page 153] Sort terms on files.
- sort(Input, Output) -> Reply [page 153] Sort terms on files.
- sort(Input, Output, Options) -> Reply [page 153] Sort terms on files.
- keysort(KeyPos, FileName) -> Reply [page 153] Sort terms on files by key.
- keysort(KeyPos, Input, Output) -> Reply [page 153] Sort terms on files by key.
- keysort(KeyPos, Input, Output, Options) -> Reply [page 153] Sort terms on files by key.
- merge(FileNames, Output) -> Reply [page 153] M erge terms on files.
- merge(FileNames, Output, Options) -> Reply [page 153] M erge terms on files.
- keymerge(KeyPos, FileNames, Output) -> Reply [page 154] M erge terms on files by key.
- keymerge(KeyPos, FileNames, Output, Options) -> Reply [page 154] M erge terms on files by key.
- check(FileName) -> Reply [page 154] Check whether terms on files are sorted.
- check(FileNames, Options) -> Reply [page 154] Check whether terms on files are sorted.
- keycheck(KeyPos, FileName) -> CheckReply [page 154] Check whether terms on files are sorted by key.
- keycheck(KeyPos, FileNames, Options) -> Reply [page 154] Check whether terms on files are sorted by key.

filelib

The following functions are exported:

- ensure_dir(Name) -> ok | \{error, Reason\} [page 155] Ensure that all parent directories for a file or directory exist.
- file_size(Filename) -> integer() [page 155] Return the size in bytes of the file.
- fold_files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut [page 155] Fold over all files matching a regular expression.
- is_dir(Name) -> true | false [page 155] Test whether N ame refer to a directory or not
- is_file(Name) -> true | false [page 155] Test whether N ame refer to a file or directory.
- is_regular(Name) -> true | false [page 156] Test whether N ame refer to a (regular) file.
- last_modified(Name) -> \{\{Year, Month, Day\},\{Hour, Min, Sec \}\} [page 156] Return the local date and time when a file was last modified.
- wildcard(Wildcard) -> list() [page 156] M atch filenames using U nix-style wildcards.
- wildcard(Wildcard, Cwd) -> list() [page 157] M atch filenames using U nix-style wildcards startin at a specified directory.

filename

The following functions are exported:

- absname(Filename) -> string()
[page 158] Convert a filename to an absolute name, relative the working directory
- absname(Filename, Dir) -> string()
[page 159] Convert a filename to an absolute name, relative a specified directory
- absname_join(Dir, Filename) -> string()
[page 159] Join an absolute directory with a relative filename
- basename(Filename) -> string() [page 159] Return the last component of a filename
- basename(Filename, Ext) -> string() [page 159] Return the last component of a filename, stripped of the specified extension
- dirname(Filename) -> string() [page 160] Return the directory part of a path name
- extension(Filename) -> string() [page 160] Return the file extension
- flatten(Filename) -> string() [page 160] Convert a filename to a flat string
- join(Components) -> string() [page 161] Join a list of filename components with directory separators
- join(Name1, Name2) -> string() [page 161] Join two filename components with directory separators
- nativename(Path) -> string()
[page 161] Return the native form of a file path
- pathtype(Path) -> absolute | relative | volumerelative [page 161] Return the type of a path
- rootname(Filename) -> string() [page 162] Remove a filename extension
- rootname(Filename, Ext) -> string() [page 162] Remove a filename extension
- split(Filename) -> Components [page 162] Split a filename into its path components
- find_src (Beam) -> \{SourceFile, Options\} [page 162] Find the filename and compiler options for a module
- find_src(Beam, Rules) -> \{SourceFile, Options\} [page 162] Find the filename and compiler options for a module

gb_sets

The following functions are exported:

- add(Element, Set1) -> Set2 [page 165] Add a (possibly existing) element to a gb_set
- add_element(Element, Set1) -> Set2 [page 165] Add a (possibly existing) element to a gb_set
- balance(Set1) -> Set2 [page 165] Rebalance tree representation of a gb_set
- delete(Element, Set1) -> Set2 [page 165] Remove an element from a gb_set
- delete_any(Element, Set1) -> Set2 [page 165] Remove a (possibly non-existing) element from a gb_set
- del_element(Element, Set1) -> Set2 [page 165] Remove a (possibly non-existing) element from a gb_set
- difference (Set1, Set2) -> Set3 [page 165] Return the difference of two gb_sets
- subtract (Set1, Set2) -> Set3 [page 166] Return the difference of two gb_sets
- empty() -> Set [page 166] Return an empty gb_set
- new() -> Set [page 166] Return an empty gb_set
- filter (Pred, Set1) -> Set2 [page 166] Filter gb_set elements
- fold(Function, Acc0, Set) -> Acc1 [page 166] Fold over gb_set elements
- from_list(List) -> Set [page 166] Convert a list into a gb_set
- from_ordset(List) -> Set [page 166] M ake a gb_set from an ordset list
- insert(Element, Set1) -> Set2 [page 166] Add a new element to a gb_set
- intersection(Set1, Set2) -> Set3 [page 167] Return the intersection of two gb_sets
- intersection(SetList) -> Set [page 167] Return the intersection of a list of gb_sets
- is_empty(Set) -> bool() [page 167] Test for empty gb_set
- is_member(Element, Set) -> bool() [page 167] Test for membership of a gb_set
- is_element(Element, Set) -> bool() [page 167] Test for membership of a gb_set
- is_set(Set) -> bool() [page 167] Test for a gb_set
- is_subset(Set1, Set2) -> bool() [page 167] Test for subset
- iterator (Set) -> Iter [page 167] Return an iterator for a gb_set
- largest(Set) -> term() [page 168] Return largest element
- next(Iter1) -> \{Element, Iter2 | none\} [page 168] Traverse a gb_set with an iterator
- singleton(Element) -> gb_set() [page 168] Return a gb_set with one element
- size(Set) -> int() [page 168] Return the number of elements in a gb_set
- smallest (Set) -> term() [page 168] Return smallest element
- take_largest (Set1) -> \{Element, Set2\} [page 168] Extract largest element
- take_smallest(Set1) -> \{Element, Set2\} [page 168] Extract smallest element
- to_list(Set) -> List [page 169] Convert a gb_set into a list
- union(Set1, Set2) -> Set3 [page 169] Return the union of two gb_sets
- union(SetList) -> Set [page 169] Return the union of a list of gb_sets

gb_trees

The following functions are exported:

- balance(Tree1) -> Tree2 [page 170] Rebalance a tree
- delete(Key, Tree1) -> Tree2 [page 170] Remove a node from a tree
- delete_any(Key, Tree1) -> Tree2 [page 171] Remove a (possibly non-existing) node from a tree
- empty() -> Tree
[page 171] Return an empty tree
- enter (Key, Val, Tree1) -> Tree2
[page 171] Insert or update key with value in a tree
- from_orddict(List) -> Tree [page 171] M ake a tree from an orddict
- get(Key, Tree) -> Val [page 171] Look up a key in a tree, if present
- lookup(Key, Tree) -> \{value, Val\} | none [page 171] Look up a key in a tree
- insert(Key, Val, Tree1) -> Tree2 [page 172] Insert a new key and value in a tree
- is_defined(Key, Tree) -> bool() [page 172] Test for membership of a tree
- is_empty(Tree) -> bool() [page 172] Test for empty tree
- iterator(Tree) -> Iter [page 172] Return an iterator for a tree
- keys(Tree) -> [Key] [page 172] Return a list of the keys in a tree
- largest(Tree) -> \{Key, Val\} [page 172] Return largest key and value
- next(Iter1) -> \{Key, Val, Iter2 [page 172] Traverse a tree with an iterator
- size(Tree) -> int() [page 173] Return the number of nodes in a tree
- smallest(Tree) -> \{Key, Val\} [page 173] Return smallest key and value
- take_largest(Tree1) -> \{Key, Val, Tree2\} [page 173] Extract largest key and value
- take_smallest(Tree1) -> \{Key, Val, Tree2\} [page 173] Extract smallest key and value
- to_list(Tree) -> [\{Key, Val\}] [page 173] Convert a tree into a list
- update (Key, Val, Tree1) -> Tree2 [page 173] U pdate a key to new value in a tree
- values(Tree) -> [Val] [page 174] Return a list of the values in a tree

gen_event

The following functions are exported:

- start_link() -> Result
[page 176] Create a generic event manager process in a supervision tree.
- start_link(EventMgrName) -> Result
[page 176] Create a generic event manager process in a supervision tree.
- start() -> Result
[page 176] Create a stand-alone event manager process.
- start(EventMgrName) -> Result [page 176] Create a stand-alone event manager process.
- add_handler(EventMgrRef, Handler, Args) -> Result [page 176] Add an event handler to a generic event manager.
- add_sup_handler (EventMgrRef, Handler, Args) -> Result [page 177] Add a supervised event handler to a generic event manager.
- notify(EventMgrRef, Event) -> ok [page 178] N otify an event manager about an event.
- sync_notify(EventMgrRef, Event) -> ok [page 178] N otify an event manager about an event.
- call(EventMgrRef, Handler, Request) -> Result [page 178] M ake a synchronous call to a generic event manager.
- call(EventMgrRef, Handler, Request, Timeout) -> Result [page 178] M ake a synchronous call to a generic event manager.
- delete_handler(EventMgrRef, Handler, Args) -> Result [page 179] D elete an event handler from a generic event manager.
- swap_handler(EventMgrRef, \{Handler1,Args1\}, \{Handler2,Args2\}) -> Result
[page 179] Replace an event handler in a generic event manager.
- swap_sup_handler(EventMgrRef, \{Handler1,Args1\}, \{Handler2,Args2\}) -> Result
[page 180] Replace an event handler in a generic event manager.
- which_handlers(EventMgrRef) -> [Handler] [page 180] Return all event handlers installed in a generic event manager.
- stop(EventMgrRef) -> ok [page 181] Terminate a generic event manager.
- Module:init(InitArgs) -> \{ok,State\} [page 181] Initialize an event handler.
- Module:handle_event(Event, State) -> Result [page 181] H andle an event.
- Module:handle_call (Request, State) -> Result [page 182] H andle a synchronous request.
- Module:handle_info(Info, State) -> Result [page 182] H andle an incoming message.
- Module:terminate(Arg, State) -> term() [page 183] Clean up before deletion.
- Module:code_change (OldVsn, State, Extra) -> \{ok, NewState\} [page 183] U pdate the internal state during upgrade/downgrade.

gen_fsm

The following functions are exported:

- start_link(Module, Args, Options) -> Result [page 186] Create a gen_fsm process in a supervision tree.
- start_link(FsmName, Module, Args, Options) -> Result [page 186] Create a gen_fsm process in a supervision tree.
- start(Module, Args, Options) -> Result [page 187] Create a stand-alone gen_fsm process.
- start(FsmName, Module, Args, Options) -> Result [page 187] Create a stand-alone gen_fsm process.
- send_event(FsmRef, Event) -> ok [page 187] Send an event asynchronously to a generic FSM .
- send_all_state_event(FsmRef, Event) -> ok [page 188] Send an event asynchronously to a generic FSM.
- sync_send_event(FsmRef, Event) -> Reply
[page 188] Send an event synchronously to a generic FSM.
- sync_send_event(FsmRef, Event, Timeout) -> Reply [page 188] Send an event synchronously to a generic FSM.
- sync_send_all_state_event(FsmRef, Event) -> Reply [page 188] Send an event syncronously to a generic FSM .
- sync_send_all_state_event(FsmRef, Event, Timeout) -> Reply [page 188] Send an event syncronously to a generic FSM.
- reply(Caller, Reply) -> true [page 189] Send a reply to a caller.
- send_event_after(Time, Event) -> Ref [page 189] Send a delayed event internally in a generic FSM.
- start_timer(Time, Msg) -> Ref [page 189] Send a timeout event internally in a generic FSM.
- cancel_timer(Ref) -> RemainingTime | false [page 190] Cancel an internal timer in a generic FSM.
- enter_loop(Module, Options, StateName, StateData) [page 190] Enter the gen_fsm receive loop
- enter_loop(Module, Options, StateName, StateData, FsmName) [page 190] Enter the gen_fsm receive loop
- enter_loop(Module, Options, StateName, StateData, Timeout) [page 190] Enter the gen_fsm receive loop
- enter_loop(Module, Options, StateName, StateData, FsmName, Timeout) [page 190] Enter the gen_fsm receive loop
- Module:init(Args) -> Result
[page 191] Initialize process and internal state name and state data.
- Module:StateName(Event, StateData) -> Result [page 192] Handle an asynchronous event.
- Module:handle_event(Event, StateName, StateData) -> Result [page 192] H andle an asynchronous event.
- Module:StateName(Event, From, StateData) -> Result [page 193] H andle a synchronous event.
- Module:handle_sync_event(Event, From, StateName, StateData) -> Result [page 193] H andle a synchronous event.
- Module:handle_info(Info, StateName, StateData) -> Result [page 194] H andle an incoming message.
- Module:terminate (Reason, StateName, StateData) [page 194] Clean up before termination.
- Module:code_change(OldVsn, StateName, StateData, Extra) -> \{ok, NextStateName, NewStateData\}
[page 195] U pdate the internal state data during upgrade/downgrade.

gen_server

The following functions are exported:

- start_link(Module, Args, Options) -> Result [page 196] C reate a gen_server process in a supervision tree.
- start_link(ServerName, Module, Args, Options) -> Result [page 196] Create a gen_server process in a supervision tree.
- start(Module, Args, Options) -> Result [page 197] C reate a stand-alone gen_server process.
- start(ServerName, Module, Args, Options) -> Result [page 197] C reate a stand-alone gen_server process.
- call(ServerRef, Request) -> Reply [page 198] M ake a synchronous call to a generic server.
- call(ServerRef, Request, Timeout) -> Reply [page 198] M ake a synchronous call to a generic server.
- multi_call(Name, Request) -> Result [page 199] M ake a synchronous call to several generic servers.
- multi_call(Nodes, Name, Request) -> Result [page 199] M ake a synchronous call to several generic servers.
- multi_call(Nodes, Name, Request, Timeout) -> Result [page 199] M ake a synchronous call to several generic servers.
- cast(ServerRef, Request) -> ok [page 200] Send an asynchronous request to a generic server.
- abcast(Name, Request) -> abcast [page 200] Send an asynchronous request to several generic servers.
- abcast(Nodes, Name, Request) -> abcast [page 200] Send an asynchronous request to several generic servers.
- reply(Client, Reply) -> true [page 200] Send a reply to a client.
- enter_loop(Module, Options, State) [page 201] Enter the gen_server receive loop
- enter_loop(Module, Options, State, ServerName)
[page 201] Enter the gen_server receive loop
- enter_loop(Module, Options, State, Timeout) [page 201] Enter the gen_server receive loop
- enter_loop(Module, Options, State, ServerName, Timeout) [page 201] Enter the gen_server receive loop
- Module:init(Args) -> Result [page 202] Initialize process and internal state.
- Module:handle_call(Request, From, State) -> Result [page 202] H andle a synchronous request.
- Module:handle_cast(Request, State) -> Result [page 203] H andle an asynchronous request.
- Module:handle_info(Info, State) -> Result [page 203] H andle an incoming message.
- Module:terminate(Reason, State) [page 203] Clean up before termination.
- Module:code_change(OldVsn, State, Extra) -> \{ok, NewState\} [page 204] U pdate the internal state during upgrade/downgrade.

io

The following functions are exported:

- put_chars([IoDevice,] IoData) -> ok [page 205] W rite a list of characters
- nl([IoDevice]) -> ok [page 205] W rite a newline
- get_chars([IoDevice,] Prompt, Count) -> string() | eof [page 205] Read a specified number of characters
- get_line([IoDevice,] Prompt) -> string() | eof [page 206] Read a line
- setopts([IoDevice,] Opts) -> ok | \{error, Reason\} [page 206] Set options
- write([IoDevice,] Term) -> ok [page 206] W rite a term
- read([IoDevice,] Prompt) -> Result [page 207] Read a term
- read(IoDevice, Prompt, StartLine) -> Result [page 207] Read a term
- fwrite(Format) -> [page 207] W rite formatted output
- fwrite([IoDevice,] Format, Data) -> ok [page 207] W rite formatted output
- format(Format) -> [page 207] W rite formatted output
- format([IoDevice,] Format, Data) -> ok [page 207] W rite formatted output
- fread([IoDevice,] Prompt, Format) -> Result [page 211] Read formatted input
- scan_erl_exprs(Prompt) -> [page 213] Read and tokenize Erlang expressions
- scan_erl_exprs([IoDevice,] Prompt, StartLine) -> Result [page 213] Read and tokenize Erlang expressions
- scan_erl_form(Prompt) -> [page 213] Read and tokenize an Erlang form
- scan_erl_form([IoDevice,] Prompt, StartLine) -> Result [page 213] Read and tokenize an Erlang form
- parse_erl_exprs(Prompt) -> [page 214] Read, tokenize and parse Erlang expressions
- parse_erl_exprs([IoDevice,] Prompt, StartLine) -> Result [page 214] Read, tokenize and parse Erlang expressions
- parse_erl_form(Prompt) ->
[page 214] Read, tokenize and parse an Erlang form
- parse_erl_form([IoDevice,] Prompt, StartLine) -> Result [page 214] Read, tokenize and parse an Erlang form

io_lib

The following functions are exported:

- nl() -> chars()
[page 216] W rite a newline
- write(Term) -> [page 216] W rite a term
- write(Term, Depth) -> chars() [page 216] W rite a term
- print(Term) ->
[page 216] Pretty print a term
- print(Term, Column, LineLength, Depth) -> chars() [page 216] Pretty print a term
- fwrite(Format, Data) -> [page 217] W rite formatted output
- format(Format, Data) -> chars() [page 217] W rite formatted output
- fread(Format, String) -> Result [page 217] Read formatted input
- fread(Continuation, String, Format) -> Return [page 217] Re-entrant formatted reader
- write_atom(Atom) -> chars() [page 218] W rite an atom
- write_string(String) -> chars() [page 218] W rite a string
- write_char(Integer) -> chars() [page 218] W rite a character
- indentation(String, StartIndent) -> int() [page 218] Indentation after printing string
- char_list(Term) -> bool() [page 219] Test for a list of characters
- deep_char_list(Term) -> bool() [page 219] Test for a deep list of characters
- printable_list(Term) -> bool() [page 219] Test for a list of printable characters
lib
The following functions are exported:
- flush_receive() -> void() [page 220] Flush messages
- error_message(Format, Args) -> ok [page 220] Print error message
- progname() -> atom() [page 220] Return name of Erlang start script
- nonl(String1) -> String2
[page 220] Remove last newline
- send (To, Msg)
[page 220] Send a message
- sendw(To, Msg)
[page 221] Send a message and wait for an answer

lists

The following functions are exported:

- all(Pred, List) -> bool() [page 222] Return true if all elements in the list satisfy Pred
- any (Pred, List) -> bool() [page 222] Return true if any of the elements in the list satisfies Pred
- append(ListOfLists) -> List1
[page 222] A ppend a list of lists
- append(List1, List2) -> List3 [page 222] A ppend two lists
- concat(Things) -> string() [page 223] C oncatenate a list of atoms
- delete(Elem, List1) -> List2 [page 223] Delete an element from a list
- dropwhile(Pred, List1) -> List2
[page 223] Drop elements from a list while a predicate is true
- duplicate(N, Elem) -> List [page 223] Make N copies of element
- filter(Pred, List1) -> List2 [page 224] Choose elements which satisfy a predicate
- flatlength(DeepList) -> int() [page 224] Length of flattened deep list
- flatmap(Fun, List1) -> List2 [page 224] M ap and flatten in one pass
- flatten(DeepList) -> List [page 224] Flatten a deep list
- flatten(DeepList, Tail) -> List [page 224] Flatten a deep list
- foldl(Fun, Acc0, List) -> Acc1 [page 224] Fold a function over a list
- foldr(Fun, Acc0, List) -> Acc1 [page 225] Fold a function over a list
- foreach(Fun, List) -> void() [page 225] A pply a function to each element of a list
- keydelete(Key, N, TupleList1) -> TupleList2 [page 225] D elete an element from a list of tuples
- keymap(Fun, N, TupleList1) -> TupleList2 [page 226] M ap a function over a list of tuples
- keymember(Key, N, TupleList) -> bool() [page 226] Test for membership of a list of tuples
- keymerge(N, TupleList1, TupleList2) -> TupleList3 [page 226] M erge two key-sorted lists of tuples
- keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2 [page 226] Replace an element in a list of tuples
- keysearch(Key, N, TupleList) -> \{value, Tuple\} | false [page 227] Search for an element in a list of tuples
- keysort(N, TupleList1) -> TupleList2 [page 227] Sort a list of tuples
- last(List) -> Last [page 227] Return last element in a list
- map(Fun, List1) -> List2 [page 227] M ap a function over a list
- mapfoldl(Fun, Acc0, List1) -> \{List2, Acc1\} [page 227] Map and fold in one pass
- mapfoldr(Fun, Acc0, List1) -> \{List2, Acc1\} [page 228] M ap and fold in one pass
- max(List) -> Max
[page 228] Return maximum element of a list
- member(Elem, List) -> bool()
[page 228] Test for membership of a list
- merge(ListOfLists) -> List1 [page 228] M erge a list of sorted lists
- merge(List1, List2) -> List3 [page 228] M erge two sorted lists
- merge(Fun, List1, List2) -> List3 [page 229] M erge two sorted list
- merge3(List1, List2, List3) -> List4 [page 229] M erge three sorted lists
- min(List) -> Min [page 229] Return minimum element of a list
- nth(N, List) -> Elem [page 229] Return the N th element of a list
- nthtail(N, List1) -> Tail
[page 229] Return the N th tail of a list
- partition(Pred, List) -> \{Satisfying, NonSatisfying\} [page 230] Partition a list into two lists based on a predicate
- prefix(List1, List2) -> bool() [page 230] Test for list prefix
- reverse(List1) -> List2 [page 230] Reverse a list
- reverse(List1, Tail) -> List2
[page 230] Reverse a list appending a tail
- seq(From, To) -> Seq [page 231] G enerate a sequence of integers
- seq(From, To, Incr) -> Seq [page 231] G enerate a sequence of integers
- sort(List1) -> List2 [page 231] Sort a list
- sort(Fun, List1) -> List2 [page 231] Sort a list
- split(N, List1) -> \{List2, List3\} [page 231] Split a list into two lists
- splitwith(Pred, List) -> \{List1, List2\} [page 231] Split a list into two lists based on a predicate
- sublist(List1, Len) -> List2
[page 232] Return a sub-list of a certain length, starting at the first position
- sublist(List1, Start, Len) -> List2 [page 232] Return a sub-list starting at a given position and with a given number of elements
- subtract(List1, List2) -> List3
[page 232] Subtract the element in one list from another list
- suffix(List1, List2) -> bool()
[page 233] Test for list suffix
- sum(List) -> number()
[page 233] Return sum of elements in a list
- takewhile(Pred, List1) -> List2
[page 233] Take elements from a list while a predicate is true
- ukeymerge(N, TupleList1, TupleList2) -> TupleList3 [page 233] M erge two key-sorted lists of tuples, removing duplicates
- ukeysort(N, TupleList1) -> TupleList2
[page 233] Sort a list of tuples, removing duplicates
- umerge(ListOfLists) -> List1
[page 233] M erge a list of sorted lists, removing duplicates
- umerge(List1, List2) -> List3
[page 234] M erge two sorted lists, removing duplicates
- umerge(Fun, List1, List2) -> List3 [page 234] M erge two sorted lists, removing duplicates
- umerge3(List1, List2, List3) -> List4 [page 234] M erge three sorted lists, removing duplicates
- unzip(List1) -> \{List2, List3\}
[page 234] Unzip a list of two-tuples into two lists
- unzip3(List1) -> \{List2, List3, List4\} [page 234] Unzip a list of three-tuples into three lists
- usort(List1) -> List2 [page 235] Sort a list, removing duplicates
- usort(Fun, List1) -> List2 [page 235] Sort a list, removing duplicates
- zip(List1, List2) -> List3 [page 235] Zip two lists into a list of two-tuples
- zip3(List1, List2, List3) -> List4 [page 235] Zip three lists into a list of three-tuples
- zipwith(Combine, List1, List2) -> List3 [page 236] Zip two lists into one list according to a fun
- zipwith3(Combine, List1, List2, List3) -> List4 [page 236] Zip three lists into one list according to a fun

log_mf_h

The following functions are exported:

- init(Dir, MaxBytes, MaxFiles) [page 237] Initiate the event handler
- init(Dir, MaxBytes, MaxFiles, Pred) -> Args [page 237] Initiate the event handler

math

The following functions are exported:

- pi() -> float()
[page 238] A useful number
- $\sin (\mathrm{X})$
[page 238] Diverse math functions
- $\cos (\mathrm{X})$
[page 238] Diverse math functions
- $\tan (X)$
[page 238] Diverse math functions
- $\operatorname{asin}(\mathrm{X})$
[page 238] Diverse math functions
- $\operatorname{acos(X)}$
[page 238] Diverse math functions
- $\operatorname{atan}(X)$
[page 238] Diverse math functions
- $\operatorname{atan} 2(\mathrm{Y}, \mathrm{X})$
[page 238] Diverse math functions
- $\sinh (X)$
[page 238] Diverse math functions
- cosh(X)
[page 238] Diverse math functions
- $\tanh (X)$
[page 238] Diverse math functions
- asinh (X)
[page 238] Diverse math functions
- acosh(X)
[page 238] Diverse math functions
- atanh (X)
[page 238] Diverse math functions
- $\exp (\mathrm{X})$
[page 238] Diverse math functions
- $\log (X)$
[page 238] Diverse math functions
- $\log 10(X)$
[page 238] Diverse math functions
- pow (X, Y)
[page 238] Diverse math functions
- sqrt(X)
[page 238] Diverse math functions
- $\operatorname{erf}(X)$-> float()
[page 239] Error function.
- erfc(X) -> float()
[page 239] A nother error function

ms_transform

The following functions are exported:

- parse_transform(Forms, Dptions) -> Forms
[page 249] Transforms Erlang abstract format containing calls to ets/dbg:fun2ms into literal match specifications.
- transform_from_shell(Dialect,Clauses,BoundEnvironment) -> term() [page 249] U sed when transforming fun's created in the shell into match_specifications.
- format_error(Errcode) -> ErrMessage [page 250] Error formatting function as required by the parse_transform interface.

orddict

The following functions are exported:

- append(Key, Value, Orddict1) -> Orddict2
[page 251] A ppend a value to keys in a dictionary
- append_list(Key, ValList, Orddict1) -> Orddict2
[page 251] A ppend new values to keys in a dictionary
- erase(Key, Orddict1) -> Orddict2
[page 251] Erase a key from a dictionary
- fetch(Key, Orddict) -> Value [page 252] Look-up values in a dictionary
- fetch_keys(Orddict) -> Keys [page 252] Return all keys in a dictionary
- filter(Pred, Orddict1) -> Orddict2 [page 252] Choose elements which satisfy a predicate
- find(Key, Orddict) -> \{ok, Value\} | error [page 252] Search for a key in a dictionary
- fold(Fun, Acc0, Orddict) -> Acc1 [page 252] Fold a function over a dictionary
- from_list(List) -> Orddict [page 252] C onvert a list of pairs to a dictionary
- is_key(Key, Orddict) -> bool() [page 253] Test if a key is in a dictionary
- map(Fun, Orddict1) -> Orddict2 [page 253] Map a function over a dictionary
- merge(Fun, Orddict1, Orddict2) -> Orddict3 [page 253] M erge two dictionaries
- new() -> ordered_dictionary() [page 253] C reate a dictionary
- store(Key, Value, Orddict1) -> Orddict2 [page 253] Store a value in a dictionary
- to_list(Orddict) -> List [page 253] Convert a dictionary to a list of pairs
- update(Key, Fun, Orddict1) -> Orddict2 [page 254] Update a value in a dictionary
- update(Key, Fun, Initial, Orddict1) -> Orddict2 [page 254] U pdate a value in a dictionary
- update_counter(Key, Increment, Orddict1) -> Orddict2 [page 254] Increment a value in a dictionary

ordsets

The following functions are exported:

- new() -> Ordset [page 256] Return an empty set
- is_set (Ordset) -> bool() [page 256] Test for an Ordset
- size(Ordset) -> int()
[page 256] Return the number of elements in a set
- to_list(Ordset) -> List [page 256] Convert an Ordset into a list
- from_list(List) -> Ordset [page 257] Convert a list into an Ordset
- is_element(Element, Ordset) -> bool() [page 257] Test for membership of an Ordset
- add_element(Element, Ordset1) -> Ordset2 [page 257] Add an element to an Ordset
- del_element(Element, Ordset1) -> Ordset2 [page 257] Remove an element from an Ordset
- union(Ordset1, Ordset2) -> Ordset3 [page 257] Return the union of two Ordsets
- union(OrdsetList) -> Ordset [page 257] Return the union of a list of Ordsets
- intersection(Ordset1, Ordset2) -> Ordset3 [page 257] Return the intersection of two Ordsets
- intersection(OrdsetList) -> Ordset [page 258] Return the intersection of a list of Ordsets
- subtract(Ordset1, Ordset2) -> Ordset3 [page 258] Return the difference of two Ordsets
- is_subset(Ordset1, Ordset2) -> bool() [page 258] Test for subset
- fold(Function, Acc0, Ordset) -> Acc1 [page 258] Fold over set elements
- filter(Pred, Ordset1) -> Set2
[page 258] Filter set elements

pg

The following functions are exported:

- create(PgName) -> ok | \{error, Reason\} [page 259] Create an empty group
- create(PgName, Node) -> ok | \{error, Reason\} [page 259] Create an empty group on another node
- join(PgName, Pid) -> Members [page 259] Join a pid to a process group
- send(PgName, Msg) -> void() [page 260] Send a message to all members of a process group
- esend(PgName, Msg) -> void()
[page 260] Send a message to all members of a process group, except ourselves
- members(PgName) -> Members
[page 260] Return a list of all members of a process group
pool
The following functions are exported:
- start(Name) ->
[page 261] >Start a new pool
- start(Name, Args) -> Nodes [page 261] >Start a new pool
- attach(Node) -> allready_attached | attached [page 261] Ensure that a pool master is running
- stop() -> stopped
[page 262] Stop the pool and kill all the slave nodes
- get_nodes() -> Nodes [page 262] Return a list of the current member nodes of the pool
- pspawn(Mod, Fun, Args) -> pid()
[page 262] Spawn a process on the pool node with expected lowest future load
- pspawn_link(Mod, Fun, Args) -> pid()
[page 262] Spawn and link to a process on the pool node with expected lowest future load
- get_node() -> node()
[page 262] Return the node with the expected lowest future load
proc_lib
The following functions are exported:
- spawn(Fun) -> pid()
[page 263] Spawn a new process.
- spawn(Node, Fun) -> pid()
[page 263] Spawn a new process.
- spawn(Module, Function, Args) -> pid() [page 263] Spawn a new process.
- spawn(Node, Module, Function, Args) -> pid() [page 263] Spawn a new process.
- spawn_link(Fun) -> pid()
[page 263] Spawn and link to a new process.
- spawn_link(Node, Fun) -> pid()
[page 263] Spawn and link to a new process.
- spawn_link(Module, Function, Args) -> pid() [page 263] Spawn and link to a new process.
- spawn_link(Node, Module, Function, Args) -> pid()
[page 264] Spawn and link to a new process.
- spawn_opt(Fun, SpawnOpts) -> pid()
[page 264] Spawn a new process with given options.
- spawn_opt(Node, Fun, SpawnOpts) -> pid()
[page 264] Spawn a new process with given options.
- spawn_opt(Module, Function, Args, SpawnOpts) -> pid() [page 264] Spawn a new process with given options.
- spawn_opt(Node, Module, Func, Args, SpawnOpts) -> pid() [page 264] Spawn a new process with given options.
- start(Module, Function, Args) -> Ret [page 264] Start a new process synchronously.
- start(Module, Function, Args, Time) -> Ret [page 264] Start a new process synchronously.
- start(Module, Function, Args, Time, SpawnOpts) -> Ret [page 264] Start a new process synchronously.
- start_link(Module, Function, Args) -> Ret [page 264] Start a new process synchronously.
- start_link(Module, Function, Args, Time) -> Ret [page 264] Start a new process synchronously.
- start_link(Module, Function, Args, Time, SpawnOpts) -> Ret [page 264] Start a new process synchronously.
- init_ack(Parent, Ret) -> void()
[page 265] U sed by a process when it has started.
- init_ack(Ret) -> void()
[page 265] U sed by a process when it has started.
- format(CrashReport) -> string() [page 266] Format a crash report.
- initial_call(Process) -> \{Module,Function,Args $\}$ | Fun | false [page 266] Extract the initial call of a proc_lib spawned process.
- translate_initial_call(Process) -> \{Module,Function,Arity\} | Fun [page 266] Extract and translate the initial call of a proc_lib spawned process.
- hibernate(Module, Function, Args)
[page 267] H ibernate a process until a message is sent to it

proplists

The following functions are exported:

- append_values(Key, List) -> List [page 268]
- compact(List) -> List [page 268]
- delete(Key, List) -> List [page 268]
- expand(Expansions, List) -> List [page 268]
- get_all_values(Key, List) -> [term()] [page 269]
- get_bool(Key, List) -> bool() [page 269]
- get_keys(List) -> [term()] [page 269]
- get_value(Key, List) -> term() [page 270]
- get_value(Key, List, Default) -> term() [page 270]
- is_defined(Key, List) -> bool() [page 270]
- lookup(Key, List) -> none | tuple() [page 270]
- lookup_all(Key, List) -> [tuple()] [page 270]
- normalize(List, Stages) -> List [page 270]
- property(Property) -> Property [page 271]
- property(Key, Value) -> Property [page 271]
- split(List, Keys) -> \{Lists, Rest\} [page 271]
- substitute_aliases(Aliases, List) -> List [page 272]
- substitute_negations(Negations, List) -> List [page 272]
- unfold(List) -> List [page 272]

qlc

The following functions are exported:

- append (QHL) -> QH
[page 280] Return a query handle.
- append (QH1, QH2) -> QH3
[page 280] Return a query handle.
- cursor(QueryHandleOrList [, Options]) -> QueryCursor [page 280] Create a query cursor.
- delete_cursor(QueryCursor) -> ok [page 281] D elete a query cursor.
- eval(QueryHandleOrList [, Options]) -> Answers | Error [page 281] Return all answers to a query.
- e(QueryHandleOrList [, Options]) -> Answers [page 281] Return all answers to a query.
- fold(Function, Acc0, QueryHandleOrList [, Options]) -> Acc1 | Error [page 281] Fold a function over the answers to a query.
- format_error(Error) -> Chars [page 281] Return an English description of a an error tuple.
- info(QueryHandleOrList [, Options]) -> Info [page 282] Return code describing a query handle.
- keysort(KeyPos, QH1 [, SortOptions]) -> QH2 [page 283] Return a query handle.
- next_answers(QueryCursor [, NumberOfAnswers]) -> Answers | Error [page 283] Return some or all answers to a query.
- q(QueryListComprehension [, Options]) -> QueryHandle [page 283] Return a handle for a query list comprehension.
- sort(QH1 [, SortOptions]) -> QH2 [page 286] Return a query handle.
- string_to_handle(QueryString [, Options [, Bindings]]) -> QueryHandle | Error [page 286] Return a handle for a query list comprehension.
- table(TraverseFun, Options) -> QueryHandle [page 287] Return a query handle for a table.

queue

The following functions are exported:

- cons(Item, Q1) -> Q2
[page 290] Insert an item at the head of a queue
- daeh(Q) -> Item
[page 290] Return the last item of a queue
- from_list(L) -> queue()
[page 290] Convert a list to a queue
- head(Q) -> Item
[page 290] Return the item at the head of a queue
- in(Item, Q1) -> Q2
[page 290] Insert an item at the tail of a queue
- in_r (Item, Q1) -> Q2
[page 291] Insert an item at the head of a queue
- init(Q1) -> Q2
[page 291] Remove the last item from a queue
- is_empty(Q) -> true | false [page 291] Test if a queue is empty
- join(Q1, Q2) -> Q3
[page 291] Join two queues
- lait(Q1) -> Q2
[page 291] Remove the last item from a queue
- last(Q) -> Item [page 291] Return the last item of a queue
- len(Q) -> N [page 291] G et the length of a queue
- new() -> Q
[page 292] Create a new empty FIFO queue
- out(Q1) -> Result
[page 292] Remove the head item from a queue
- out_r(Q1) -> Result
[page 292] Remove the last item from a queue
- reverse(Q1) -> Q2
[page 292] Reverse a queue
- snoc(Q1, Item) -> Q2
[page 292] Insert an item at the end of a queue
- split(N, Q1) -> \{Q2, Q3\}
[page 292] Split a queue in two
- tail(Q1) -> Q2
[page 292] Remove the head item from a queue
- to_list(Q) -> list()
[page 293] Convert a queue to a list

random

The following functions are exported:

- seed() -> ran()
[page 294] Seeds random number generation with default values
- seed(A1, A2, A3) -> ran()
[page 294] Seeds random number generator
- seedo() -> ran()
[page 294] Return default state for random number generation
- uniform()-> float()
[page 294] Return a random float
- uniform(N) -> int()
[page 294] Return a random integer
- uniform_s(State0) -> \{float(), State1\} [page 295] Return a random float
- uniform_s(N, State0) -> \{int(), State1\}
[page 295] Return a random integer

regexp

The following functions are exported:

- match(String, RegExp) -> MatchRes [page 296] M atch a regular expression
- firstmatch(String, RegExp) -> MatchRes [page 296] M atch a regular expression
- matches(String, RegExp) -> MatchRes [page 296] M atch a regular expression
- sub(String, RegExp, New) -> SubRes [page 297] Substitute the first occurrence of a regular expression
- gsub(String, RegExp, New) -> SubRes [page 297] Substitute all occurrences of a regular expression
- split(String, RegExp) -> SplitRes [page 297] Split a string into fields
- sh_to_awk(ShRegExp) -> AwkRegExp [page 298] Convert an sh regular expression into an awK one
- parse (RegExp) -> ParseRes [page 298] Parse a regular expression
- format_error(ErrorDescriptor) -> Chars [page 298] Format an error descriptor
sets
The following functions are exported:
- new() -> Set [page 301] Return an empty set
- is_set(Set) -> bool() [page 301] Test for an Set
- size(Set) -> int() [page 301] Return the number of elements in a set
- to_list(Set) -> List [page 301] Convert an Set into a list
- from_list(List) -> Set [page 302] Convert a list into an Set
- is_element(Element, Set) -> bool() [page 302] Test for membership of an Set
- add_element(Element, Set1) -> Set2 [page 302] Add an element to an Set
- del_element(Element, Set1) -> Set2 [page 302] Remove an element from an Set
- union(Set1, Set2) -> Set3 [page 302] Return the union of two Sets
- union(SetList) -> Set [page 302] Return the union of a list of Sets
- intersection(Set1, Set2) -> Set3 [page 302] Return the intersection of two Sets
- intersection(SetList) -> Set [page 303] Return the intersection of a list of Sets
- subtract(Set1, Set2) -> Set3
[page 303] Return the difference of two Sets
- is_subset(Set1, Set2) -> bool()
[page 303] Test for subset
- fold(Function, Acc0, Set) -> Acc1 [page 303] Fold over set elements
- filter(Pred, Set1) -> Set2 [page 303] Filter set elements

shell

The following functions are exported:

- history(N) -> integer()
[page 312] Sets the number of previous commands to keep
- results(N) -> integer()
[page 312] Sets the number of previous commands to keep
- start_restricted(Module) -> ok | \{error, Reason\}
[page 313] Exits a normal shell and starts a restricted shell.
- stop_restricted() -> ok
[page 313] Exits a restricted shell and starts a normal shell.

shell_default

No functions are exported.

slave

The following functions are exported:

- start(Host) ->
[page 315] Start a slave node on a host
- start(Host, Name) ->
[page 315] Start a slave node on a host
- start (Host, Name, Args) -> \{ok, Node\} | \{error, Reason\} [page 315] Start a slave node on a host
- start_link(Host) ->
[page 316] Start and link to a slave node on a host
- start_link(Host, Name) ->
[page 316] Start and link to a slave node on a host
- start_link(Host, Name, Args) -> \{ok, Node\} | \{error, Reason\} [page 316] Start and link to a slave node on a host
- stop(Node) -> ok
[page 317] Stop (kill) a node
- pseudo([Master | ServerList]) -> ok [page 317] Start a number of pseudo servers
- pseudo(Master, ServerList) -> ok [page 317] Start a number of pseudo servers
- relay(Pid)
[page 317] Run a pseudo server

sofs

The following functions are exported:

- a_function(Tuples [, Type]) -> Function [page 322] Create a function.
- canonical_relation(SetOfSets) -> BinRel [page 322] Return the canonical map.
- composite(Function1, Function2) -> Function3 [page 322] Return the composite of two functions.
- constant_function(Set, AnySet) -> Function [page 322] Create the function that maps each element of a set onto another set.
- converse(BinRel1) -> BinRel2 [page 323] Return the converse of a binary relation.
- difference(Set1, Set2) -> Set3 [page 323] Return the difference of two sets.
- digraph_to_family (Graph [, Type]) -> Family [page 323] Create a family from a directed graph.
- domain(BinRel) -> Set
[page 323] Return the domain of a binary relation.
- drestriction(BinRel1, Set) -> BinRel2
[page 323] Return a restriction of a binary relation.
- drestriction(SetFun, Set1, Set2) -> Set3 [page 324] Return a restriction of a relation.
- empty_set() -> Set
[page 324] Return the untyped empty set.
- extension(BinRel1, Set, AnySet) -> BinRel2 [page 324] Extend the domain of a binary relation.
- family(Tuples [, Type]) -> Family [page 325] C reate a family of subsets.
- family_difference(Family1, Family2) -> Family3 [page 325] Return the difference of two families.
- family_domain(Family1) -> Family2 [page 325] Return a family of domains.
- family_field(Family1) -> Family2 [page 325] Return a family of fields.
- family_intersection(Family1) -> Family2 [page 326] Return the intersection of a family of sets of sets.
- family_intersection(Family1, Family2) -> Family3 [page 326] Return the intersection of two families.
- family_projection(SetFun, Family1) -> Family2 [page 326] Return a family of modified subsets.
- family_range(Family1) -> Family2 [page 326] Return a family of ranges.
- family_specification(Fun, Family1) -> Family2 [page 327] Select a subset of a family using a predicate.
- family_to_digraph (Family [, GraphType]) -> Graph [page 327] Create a directed graph from a family.
- family_to_relation(Family) -> BinRel [page 327] Create a binary relation from a family.
- family_union(Family1) -> Family2 [page 328] Return the union of a family of sets of sets.
- family_union(Family1, Family2) -> Family3 [page 328] Return the union of two families.
- field(BinRel) -> Set [page 328] Return the field of a binary relation.
- from_external(ExternalSet, Type) -> AnySet [page 328] C reate a set.
- from_sets(ListOfSets) -> Set [page 328] Create a set out of a list of sets.
- from_sets(TupleOfSets) -> Ordset [page 328] Create an ordered set out of a tuple of sets.
- from_term(Term [, Type]) -> AnySet [page 329] C reate a set.
- image(BinRel, Set1) -> Set2
[page 330] Return the image of a set under a binary relation.
- intersection(SetOfSets) -> Set [page 330] Return the intersection of a set of sets.
- intersection(Set1, Set2) -> Set3 [page 330] Return the intersection of two sets.
- intersection_of_family (Family) -> Set [page 330] Return the intersection of a family.
- inverse(Function1) -> Function2 [page 330] Return the inverse of a function.
- inverse_image(BinRel, Set1) -> Set2 [page 331] Return the inverse image of a set under a binary relation.
- is_a_function(BinRel) -> Bool [page 331] Test for a function.
- is_disjoint(Set1, Set2) -> Bool [page 331] Test for disjoint sets.
- is_empty_set(AnySet) -> Bool [page 331] Test for an empty set.
- is_equal(AnySet1, AnySet2) -> Bool [page 331] Test two sets for equality.
- is_set(AnySet) -> Bool [page 331] Test for an unordered set.
- is_sofs_set(Term) -> Bool [page 332] Test for an unordered set.
- is_subset(Set1, Set2) -> Bool [page 332] Test two sets for subset.
- is_type(Term) -> Bool [page 332] Test for a type.
- join(Relation1, I, Relation2, J) -> Relation3 [page 332] Return the join of two relations.
- multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2 [page 332] Return the multiple relative product of a tuple of binary relations and a relation.
- no_elements(ASet) -> NoElements [page 333] Return the number of elements of a set.
- partition(SetOfSets) -> Partition [page 333] Return the coarsest partition given a set of sets.
- partition(SetFun, Set) -> Partition [page 333] Return a partition of a set.
- partition(SetFun, Set1, Set2) $->\{\operatorname{Set} 3, \operatorname{Set} 4\}$ [page 333] Return a partition of a set.
- partition_family (SetFun, Set) -> Family [page 334] Return a family indexing a partition.
- product(TupleOfSets) -> Relation [page 334] Return the Cartesian product of a tuple of sets.
- product(Set1, Set2) -> BinRel [page 334] Return the Cartesian product of two sets.
- projection(SetFun, Set1) -> Set2 [page 335] Return a set of substituted elements.
- range(BinRel) -> Set
[page 335] Return the range of a binary relation.
- relation(Tuples [, Type]) -> Relation [page 335] C reate a relation.
- relation_to_family(BinRel) -> Family [page 335] Create a family from a binary relation.
- relative_product(TupleOfBinRels [, BinRel1]) -> BinRel2 [page 336] Return the relative product of a tuple of binary relations and a binary relation.
- relative_product(BinRel1, BinRel2) -> BinRel3 [page 336] Return the relative product of two binary relations.
- relative_product1(BinRel1, BinRel2) -> BinRel3 [page 336] Return the relative_product of two binary relations.
- restriction(BinRel1, Set) -> BinRel2 [page 336] Return a restriction of a binary relation.
- restriction(SetFun, Set1, Set2) -> Set3 [page 337] Return a restriction of a set.
- set(Terms [, Type]) -> Set [page 337] Create a set of atoms or any type of sets.
- specification(Fun, Set1) -> Set2 [page 337] Select a subset using a predicate.
- strict_relation(BinRel1) -> BinRel2 [page 337] Return the strict relation corresponding to a given relation.
- substitution(SetFun, Set1) -> Set2 [page 338] Return a function with a given set as domain.
- symdiff(Set1, Set2) -> Set3
[page 338] Return the symmetric difference of two sets.
- symmetric_partition(Set1, Set2) -> \{Set3, Set4, Set5\} [page 339] Return a partition of two sets.
- to_external(AnySet) -> ExternalSet [page 339] Return the elements of a set.
- to_sets(ASet) -> Sets [page 339] Return a list or a tuple of the elements of set.
- type(AnySet) -> Type [page 339] Return the type of a set.
- union(SetOfSets) -> Set [page 339] Return the union of a set of sets.
- union(Set1, Set2) -> Set3 [page 339] Return the union of two sets.
- union_of_family(Family) -> Set [page 340] Return the union of a family.
- weak_relation(BinRel1) -> BinRel2 [page 340] Return the weak relation corresponding to a given relation.

string

The following functions are exported:

- len(String) -> Length [page 341] Return the length of a string
- equal(String1, String2) -> bool() [page 341] Test string equality
- concat(String1, String2) -> String3 [page 341] Concatenate two strings
- chr(String, Character) -> Index [page 341] Return the index of the first/last occurrence of Character in String
- rchr (String, Character) -> Index
[page 341] Return the index of the first/last occurrence of Character in String
- str(String, SubString) -> Index [page 341] Find the index of a substring
- rstr(String, SubString) -> Index [page 341] Find the index of a substring
- span(String, Chars) -> Length [page 342] Span characters at start of string
- cspan(String, Chars) -> Length [page 342] Span characters at start of string
- substr(String, Start) -> SubString [page 342] Return a substring of String
- substr(String, Start, Length) -> Substring
[page 342] Return a substring of String
- tokens(String, SeparatorList) -> Tokens [page 342] Split string into tokens
- chars(Character, Number) -> String [page 342] Returns a string consisting of numbers of characters
- chars(Character, Number, Tail) -> String [page 342] Returns a string consisting of numbers of characters
- copies(String, Number) -> Copies [page 343] Copy a string
- words(String) -> Count [page 343] Count blank separated words
- words(String, Character) -> Count [page 343] Count blank separated words
- sub_word(String, Number) -> Word [page 343] Extract subword
- sub_word(String, Number, Character) -> Word [page 343] Extract subword
- strip(String) -> Stripped [page 343] Strip leading or trailing characters
- strip(String, Direction) -> Stripped [page 343] Strip leading or trailing characters
- strip(String, Direction, Character) -> Stripped [page 343] Strip leading or trailing characters
- left(String, Number) -> Left [page 344] Adjust left end of string
- left(String, Number, Character) -> Left [page 344] A djust left end of string
- right(String, Number) -> Right [page 344] A djust right end of string
- right(String, Number, Character) -> Right [page 344] A djust right end of string
- centre(String, Number) -> Centered [page 344] Center a string
- centre(String, Number, Character) -> Centered [page 344] Center a string
- sub_string(String, Start) -> SubString [page 344] Extract a substring
- sub_string(String, Start, Stop) -> SubString [page 345] Extract a substring
- to_float(String) -> \{Float,Rest \} | \{error,Reason\} [page 345] Returns a float whose text representation is the integers (A SCII values) in String.
- to_integer(String) -> \{Int,Rest \} | \{error,Reason\} [page 345] Returns an integer whose text representation is the integers (A SCII values) in String.
- to_lower (String) -> Result [page 346] C onvert case of string (ISO/IEC 8859-1)
- to_lower (Char) -> CharResult [page 346] C onvert case of string (ISO /IEC 8859-1)
- to_upper (String) -> Result [page 346] C onvert case of string (ISO/IEC 8859-1)
- to_upper (Char) -> CharResult [page 346] C onvert case of string (ISO/IEC 8859-1)

supervisor

The following functions are exported:

- start_link(Module, Args) -> Result [page 349] Create a supervisor process.
- start_link(SupName, Module, Args) -> Result [page 349] Create a supervisor process.
- start_child(SupRef, ChildSpec) -> Result [page 350] Dynamically add a child process to a supervisor.
- terminate_child(SupRef, Id) -> Result [page 350] Terminate a child process belonging to a supervisor.
- delete_child(SupRef, Id) -> Result [page 351] Delete a child specification from a supervisor.
- restart_child(SupRef, Id) -> Result [page 351] Restart a terminated child process belonging to a supervisor.
- which_children(SupRef) -> [\{Id,Child,Type,Modules\}] [page 352] Return information about all children specifications and child processes belonging to a supervisor.
- check_childspecs([ChildSpec]) -> Result [page 352] Check if child specifications are syntactically correct.
- Module:init(Args) -> Result
[page 353] Return a supervisor specification.

supervisor_bridge

The following functions are exported:

- start_link(Module, Args) -> Result [page 354] C reate a supervisor bridge process.
- start_link(SupBridgeName, Module, Args) -> Result [page 354] Create a supervisor bridge process.
- Module:init(Args) -> Result [page 355] Initialize process and start subsystem.
- Module:terminate(Reason, State)
[page 355] Clean up and stop subsystem.

sys

The following functions are exported:

- \log (Name, Flag)
[page 358] Log system events in memory
- \log (Name,Flag,Timeout) -> ok | \{ok, [system_event()]\} [page 358] Log system events in memory
- log_to_file(Name,Flag) [page 358] Log system events to the specified file
- log_to_file(Name,Flag,Timeout) -> ok | \{error, open_file\} [page 358] Log system events to the specified file
- statistics(Name,Flag)
[page 358] Enable or disable the collections of statistics
- statistics(Name,Flag,Timeout) -> ok | \{ok, Statistics\} [page 358] Enable or disable the collections of statistics
- trace(Name,Flag) [page 359] Print all system events on standard_io
- trace(Name,Flag,Timeout) -> void()
[page 359] Print all system events on standard_io
- no_debug (Name)
[page 359] Turn off debugging
- no_debug(Name,Timeout) -> void()
[page 359] Turn off debugging
- suspend (Name)
[page 359] Suspend the process
- suspend(Name,Timeout) -> void() [page 359] Suspend the process
- resume (Name)
[page 359] Resume a suspended process
- resume(Name,Timeout) -> void() [page 359] Resume a suspended process
- change_code(Name, Module, OldVsn, Extra) [page 359] Send the code change system message to the process
- change_code(Name, Module, OldVsn, Extra, Timeout) -> ok | \{error, Reason\}
[page 359] Send the code change system message to the process
- get_status(Name)
[page 359] Get the status of the process
- get_status (Name, Timeout) -> \{status, Pid, \{module, Mod\}, [PDict, SysState, Parent, Dbg, Misc]\}
[page 359] Get the status of the process
- install (Name, \{Func,FuncState\})
[page 360] Install a debug function in the process
- install (Name, \{Func, FuncState\}, Timeout) [page 360] Install a debug function in the process
- remove (Name, Func)
[page 360] Remove a debug function from the process
- remove(Name,Func,Timeout) -> void() [page 360] Remove a debug function from the process
- debug_options(Options) -> [dbg_opt()] [page 361] Convert a list of options to a debug structure
- get_debug(Item,Debug, Default) -> term() [page 361] Get the data associated with a debug option
- handle_debug([dbg_opt()],FormFunc,Extra,Event) -> [dbg_opt()] [page 361] G enerate a system event
- handle_system_msg(Msg,From,Parent,Module, Debug, Misc) [page 361] Take care of system messages
- print_log(Debug) -> void()
[page 362] Print the logged events in the debug structure
- Mod:system_continue (Parent, Debug, Misc) [page 362] Called when the process should continue its execution
- Mod:system_terminate (Reason, Parent, Debug, Misc) [page 362] C alled when the process should terminate
- Mod:system_code_change(Misc, Module, OldVsn, Extra) -> \{ok, NMisc\} [page 362] Called when the process should perform a code change

timer

The following functions are exported:

- start() -> ok
[page 364] Start a global timer server (named timer_server).
- apply_after(Time, Module, Function, Arguments) -> \{ok, Tref \} । \{error, Reason\}
[page 364] A pply Module: Function(Arguments) after a specified Time.
- send_after(Time, Pid, Message) -> \{ok, TRef $\}$ | \{error, Reason\} [page 364] Send Message to Pid after a specified Time.
- send_after(Time, Message) -> \{ok, TRef \} | \{error,Reason\} [page 364] Send Message to Pid after a specified Time.
- exit_after(Time, Pid, Reason1) -> \{ok, TRef $\}$ | \{error, Reason2\} [page 365] Send an exit signal with Reason after a specified Time.
- exit_after(Time, Reason1) -> \{ok, TRef \} | \{error, Reason2\} [page 365] Send an exit signal with Reason after a specified Time.
- kill_after (Time, Pid)-> \{ok, TRef \} | \{error, Reason2\} [page 365] Send an exit signal with Reason after a specified Time.
- kill_after(Time) -> \{ok, TRef \} | \{error, Reason2\} [page 365] Send an exit signal with Reason after a specified Time.
- apply_interval(Time, Module, Function, Arguments) -> \{ok, TRef $\}$ | \{error, Reason\}
[page 365] Evaluate Module:Function(Arguments) repeatedly at intervals of Time.
- send_interval(Time, Pid, Message) -> \{ok, TRef $\}$ | \{error, Reason\} [page 365] Send Message repeatedly at intervals of Time.
- send_interval(Time, Message) -> \{ok, TRef \} | \{error, Reason\} [page 365] Send Message repeatedly at intervals of Time.
- cancel(TRef) -> \{ok, cancel\} | \{error, Reason\} [page 365] Cancel a previously requested timeout identified by TRef.
- sleep(Time) -> ok [page 365] Suspend the calling process for Time amount of milliseconds.
- tc(Module, Function, Arguments) -> \{Time, Value\} [page 366] M easure the real time it takes to evaluate apply (Module, Function, Arguments)
- now_diff(T2, T1) -> Tdiff [page 366] Calculate time difference between now/0 timestamps
- seconds(Seconds) -> Milliseconds [page 366] Convert Seconds to Milliseconds.
- minutes(Minutes) -> Milliseconds [page 366] Converts Minutes to Milliseconds.
- hours(Hours) -> Milliseconds [page 366] Convert Hours to Milliseconds.
- hms(Hours, Minutes, Seconds) -> Milliseconds [page 366] Convert Hours+Minutes+Seconds to Milliseconds.

win32reg

The following functions are exported:

- change_key(RegHandle, Key) -> ReturnValue [page 369] M ove to a key in the registry
- change_key_create (RegHandle, Key) -> ReturnValue [page 369] M ove to a key, create it if it is not there
- close(RegHandle)-> ReturnValue [page 369] C lose the registry.
- current_key(RegHandle) -> ReturnValue [page 369] Return the path to the current key.
- delete_key (RegHandle) -> ReturnValue [page 369] D elete the current key
- delete_value(RegHandle, Name) -> ReturnValue [page 370] D elete the named value on the current key.
- expand(String) -> ExpandedString [page 370] Expand a string with environment variables
- format_error(ErrorId) -> ErrorString [page 370] Convert an PO SIX errorcode to a string
- open(OpenModeList)-> ReturnValue [page 370] O pen the registry for reading or writing
- set_value(RegHandle, Name, Value) -> ReturnValue [page 370] Set value at the current registry key with specified name.
- sub_keys(RegHandle) -> ReturnValue [page 371] G et subkeys to the current key.
- value(RegHandle, Name) -> ReturnValue [page 371] Get the named value on the current key.
- values(RegHandle) -> ReturnValue [page 371] G et all values on the current key.
zip
The following functions are exported:
- zip(Name, FileList) -> RetValue [page 373] C reate a zip archive with options
- zip(Name, FileList, Options) -> RetValue [page 373] Create a zip archive with options
- create(Name, FileList) -> RetValue [page 373] C reate a zip archive with options
- create(Name, FileList, Options) -> RetValue [page 373] C reate a zip archive with options
- unzip(Archive) -> RetValue [page 374] Extract files from a zip archive
- unzip(Archive, Options) -> RetValue [page 374] Extract files from a zip archive
- extract(Archive) -> RetValue [page 374] Extract files from a zip archive
- extract(Archive, Options) -> RetValue [page 374] Extract files from a zip archive
- list_dir(Archive) -> RetValue [page 375] Retrieve the name of all files in a zip archive
- list_dir(Archive, Options)
[page 375] Retrieve the name of all files in a zip archive
- table(Archive) -> RetValue
[page 375] Retrieve the name of all files in a zip archive
- table(Archive, Options)
[page 375] Retrieve the name of all files in a zip archive
- t(Archive)
[page 375] Print the name of each file in a zip archive
- tt(Archive)
[page 375] Print name and information for each file in a zip archive
- zip_open(Archive) -> \{ok, ZipHandle\} | \{error, Reason\} [page 375] O pen an archive and return a handle to it
- zip_open(Archive, Options) -> \{ok, ZipHandle\} | \{error, Reason\} [page 376] O pen an archive and return a handle to it
- zip_list_dir(ZipHandle) -> Result | \{error, Reason\} [page 376] Return a table of files in open zip archive
- zip_get(ZipHandle) -> \{ok, Result\} | \{error, Reason\} [page 376] Extract files from an open archive
- zip_get(FileName, ZipHandle) -> \{ok, Result\} | \{error, Reason\} [page 376] Extract files from an open archive
- zip_close(ZipHandle) -> ok | \{error, einval\} [page 376] Close an open archive

STDLIB

A pplication

The STDLIB is mandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel and STD LIB. The STDLIB application contains no services.

Configuration

The following configuration parameters are defined for the STD LIB application. See $\operatorname{app}(4)$ for more information about configuration parameters.
shell_esc = icl | abort This parameter can be used to alter the behaviour of the Erlang shell when ${ }^{\wedge} \mathrm{G}$ is pressed.
restricted_shell $=$ module() This parameter can be used to run the Erlang shell in restricted mode.
shell_history_length $=$ integer () $>=0$ This parameter can be used to determine how many commands are saved by the Erlang shell.
shell_saved_results $=$ integer ()$>=0$ This parameter can be used to determine how many results are saved by the Erlang shell.

See Also

[app(4)], [application(3)], shell(3) [page 304],

base64

Erlang M odule

Implements base 64 encode and decode, see RFC 2045.

Exports

```
encode(Data) -> Base64
encode_to_string(Data) -> Base64String
```

Types:

- D ata = string() | binary()
- Base64 = binary()
- Base64String = string()

Encodes a plain A SCII string into base64. The result will be 33\% larger than the data.

```
decode(Base64) -> Data
decode_to_string(Base64) -> DataString
mime_decode(Base64) -> Data
mime_decode_string(Base64) -> DataString
```

Types:

- Base64 = string() | binary()
- D ata = binary ()
- D ataString = string()

D ecodes a base64 encoded string to plain ASCII. The string should only consist of characters in the base64 set, see RFC 4648. mime_decode/1 and mime_decode_to_string/1 strips away illegal characters, while decode/1 and decode_to_string/1 fails if an illegal charactrer is found.

beam_lib

Erlang M odule
beam_lib provides an interface to files created by the BEA M compiler ("BEAM files"). The format used, a variant of "EA IFF 1985" Standard for Interchange Format Files, divides data into chunks.

C hunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are referenced by names (atoms) rather than identifiers (strings). The names recognized and the corresponding identifiers are:

- abstract_code ("Abst")
- attributes ("Attr")
- compile_info ("CInf")
- exports ("ExpT")
- labeled_exports ("ExpT")
- imports ("ImpT")
- indexed_imports ("ImpT")
- locals ("LocT")
- labeled_locals ("LocT")
- atoms ("Atom")

Debug Information/Abstract Code

The option debug_info can be given to the compiler (see [compile(3)]) in order to have debug information in the form of abstract code (see [The A bstract Format] in ERTS U ser's Guide) stored in the abstract_code chunk. Tools such as D ebugger and X ref require the debug information to be included.

W arning:

Source code can be reconstructed from the debug information. Use encrypted debug information (see below) to prevent this.

The debug information can also be removed from BEAM files using strip/1 [page 60], strip_files/1 [page 60] and/or strip_release/1 [page 61].
Reconstructing source code
Here is an example of how to reconstruct source code from the debug information in a BEAM file Beam:

```
\(\left\{o k,\left\{\_,\left[\left\{a b s t r a c t \_c o d e,\left\{\_, A C\right\}\right\}\right]\right\}\right\}=\) beam_lib:chunks (Beam, [abstract_code]).
io:fwrite("~s~n", [erl_prettypr:format(erl_syntax:form_list(AC))]).
```

Encrypted debug information
The debug information can be encrypted in order to keep the source code secret, but still being able to use tools such as X ref or D ebugger.
To use encrypted debug information, a key must be provided to the compiler and beam_lib. The key is given as a string and it is recommended that it contains at least 32 characters and that both upper and lower case letters as well as digits and special characters are used.
The default type - and currently the only type - of crypto algorithm is des3_cbc, three rounds of DES. The key string will be scrambled using erlang:md5/1 to generate the actual keys used for des3_cbc.

N ote:

As far as we know when by the time of writing, it is infeasible to break des3_cbc encryption without any knowledge of the key. Therefore, as long as the key is kept safe and is unguessable, the encrypted debug information should be safe from intruders.

There are two ways to provide the key:

1. Use the compiler option \{debug_info, Key\}, see [compile(3)], and the function crypto_key_fun/1 [page 61] to register a fun which returns the key whenever beam_lib needs to decrypt the debug information.
If no such fun is registered, beam_lib will instead search for a .erlang. crypt file, see below.
2. Store the key in a text file named .erlang. crypt.

In this case, the compiler option encrypt_debug_info can be used, see
[compile(3)].
.erlang.crypt
beam_lib searches for .erlang. crypt in the current directory and then the home directory for the current user. If the file is found and contains a key, beam_lib will implicitly create a crypto key fun and register it.

The .erlang. crypt file should contain a single list of tuples:
\{debug_info, Mode, Module, Key\}
Mode is the type of crypto algorithm; currently, the only allowed value thus is des3_cbc. Module is either an atom, in which case Key will only be used for the module Module, or [], in which case Key will be used for all modules. Key is the non-empty key string.
The Key in the first tuple where both Mode and Module matches will be used.
Here is an example of an .erlang. crypt file that returns the same key for all modules:
[\{debug_info, des3_cbc, [], "\%>7\}|pc/DM6Cga*68\$Mw]L\#\&_Gejr]G^"\}].
And here is a slightly more complicated example of an .erlang. crypt which provides one key for the module t, and another key for all other modules:
[\{debug_info, des3_cbc, t, "My KEY"\},
\{debug_info, des3_cbc, [], "\%>7\}|pc/DM6Cga*68\$Mw]L\#\&_Gejr]G^"\}].

N ote:

Do not use any of the keys in these examples. Use your own keys.

DATA TYPES

```
beam() -> Module | Filename | binary()
    Module = atom()
    Filename = string() | atom()
```

Each of the functions described below accept either the module name, the filename, or a binary containing the beam module.

```
chunkdata() = {ChunkId, DataB} | {ChunkName, DataT}
    ChunkId = chunkid()
    DataB = binary()
    {ChunkName, DataT} =
            {abstract_code, AbstractCode}
            | {attributes, [{Attribute, [AttributeValue]}]}
            | {compile_info, [{InfoKey, [InfoValue]}]}
            | {exports, [{Function, Arity}]}
            | {labeled_exports, [{Function, Arity, Label}]}
            | {imports, [{Module, Function, Arity}]}
            | {indexed_imports, [{Index, Module, Function, Arity}]}
            | {locals, [{Function, Arity}]}]}
            | {labeled_locals, [{Function, Arity, Label}]}]}
            | {atoms, [{integer(), atom()}]}
    AbstractCode = {AbstVersion, Forms} | no_abstract_code
        AbstVersion = atom()
    Attribute = atom()
    AttributeValue = term()
    Module = Function = atom()
    Arity = int()
    Label = int()
```

It is not checked that the forms conform to the abstract format indicated by AbstVersion. no_abstract_code means that the "Abst" chunk is present, but empty. The list of attributes is sorted on Attribute, and each attribute name occurs once in the list. The attribute values occur in the same order as in the file. The lists of functions are also sorted.

```
chunkid() = "Abst" | "Attr" | "CInf"
    | "ExpT" | "ImpT" | "LocT"
    | "Atom"
chunkname() = abstract_code | attributes | compile_info
    | exports | labeled_exports
    | imports | indexed_imports
```

```
    | locals | labeled_locals
    | atoms
chunkref() = chunkname() | chunkid()
```


Exports

chunks(Beam, [ChunkRef]) -> \{ok, \{Module, [ChunkData] \}\} | \{error, beam_lib, Reason\}
Types:

- Beam = beam()
- ChunkRef = chunkref()
- M odule = atom()
- ChunkD ata = chunkdata()
- Reason $=\{$ unknown_chunk, Filename, atom() $\}$
- I \{key_missing_or_invalid, Filename, abstract_code\}
- | Reason1 - see info/1
- Filename = string()

Reads chunk data for selected chunks refs. The order of the returned list of chunk data is determined by the order of the list of chunks references.
chunks(Beam, [ChunkRef], [Option]) -> \{ok, \{Module, [ChunkResult]\}\} | \{error, beam_lib, Reason\}

Types:

- Beam = beam()
- ChunkRef = chunkref()
- M odule = atom()
- Option = allow_missing_chunks
- ChunkResult = \{chunkref(), ChunkC ontents\} । \{chunkref(), missing_chunk \}
- Reason $=\{$ missing_chunk, Filename, atom() $\}$
- | \{key_missing_or_invalid, Filename, abstract_code\}
- | Reason1 - see info/1
- Filename = string()

Reads chunk data for selected chunks refs. The order of the returned list of chunk data is determined by the order of the list of chunks references.

By default, if any requested chunk is missing in Beam, an error tuple is returned. H owever, if the option allow_missing_chunks has been given, a result will be returned even if chunks are missing. In the result list, any missing chunks will be represented as \{ChunkRef, missing_chunk\}. N ote, however, that if the "Atom" chunk if missing, that is considered a fatal error and the return value will be an error tuple.

```
version(Beam) -> {ok, {Module, [Version]}} | {error, beam_lib, Reason}
```

Types:

- Beam = beam()
- M odule $=$ atom($)$
- Version = term()
- Reason - see chunks/2

Returns the module version(s). A version is defined by the module attribute-vsn(Vsn). If this attribute is not specified, the version defaults to the checksum of the module. N ote that if the version Vsn is not a list, it is made into one, that is $\{o k,\{$ Module, $[\mathrm{Vsn}]\}\}$ is returned. If there are several -vsn module attributes, the result is the concatenated list of versions. Examples:

```
1> beam_lib:version(a). \% -vsn(1).
\{ok, \(\{\mathrm{a},[1]\}\}\)
\(2>\) beam_lib:version(b). \% -vsn([1]).
\(\{o k,\{b,[1]\}\}\)
3> beam_lib:version(c). \% -vsn([1]). -vsn(2).
\{ok, \(\{\mathrm{c},[1,2]\}\}\)
4> beam_lib:version(d). \% no -vsn attribute
\(\{\mathrm{ok},\{\mathrm{d},[275613208176997377698094100858909383631]\}\}\)
```

md5(Beam) -> \{ok, \{Module, MD5\}\} | \{error, beam_lib, Reason\}

Types:

- Beam = beam()
- M odule = atom()
- MD5 = binary()
- Reason - see chunks/2

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not included).

```
info(Beam) -> [{Item, Info}] | {error, beam_lib, Reason1}
```

Types:

- Beam = beam()
- Item, Info - see below
- Reason1 = \{chunk_too_big, Filename, C hunkId, ChunkSize, FileSize\}
- I \{invalid_beam_file, Filename, Pos\}
- I \{invalid_chunk, Filename, C hunkId\}
- I \{missing_chunk, Filename, Chunkld\}
- I \{not_a_beam_file, Filename\}
- I \{file_error, Filename, Posix\}
- Filename = string()
- Chunkld = chunkid()
- ChunkSize = FileSize = int()
- Pos = int()
- Posix $=$ posix() - see file(3)

Returns a list containing some information about a BEAM file as tuples \{Item, Info\}:
\{file, Filename\} | \{binary, Binary\} The name (string) of the BEAM file, or the binary from which the information was extracted.
\{module, Module\} The name (atom) of the module.
\{chunks, [\{ChunkId, Pos, Size $\}]\}$ For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

```
cmp(Beam1, Beam2) -> ok | {error, beam_lib, Reason}
```

Types:

- Beam1 = Beam2 = beam()
- Reason $=\{$ modules_different, M odule1, M odule2 $\}$
- I \{chunks_different, ChunkId\}
- | Reason1 - see info/1
- Module1 = M odule2 = atom()
- Chunkld = chunkid()

Compares the contents of two BEAM files. If the module names are the same, and the chunks with the identifiers "Code", "ExpT", "ImpT", "StrT", and "Atom" have the same contents in both files, ok is returned. O therwise an error message is returned.

```
cmp_dirs(Dir1, Dir2) -> {Only1, Only2, Different} | {error, beam_lib, Reason1}
```

Types:

- Dir1 = Dir2 = string() | atom()
- Different = [\{Filename1, Filename2\}]
- Only1 = O nly2 = [Filename]
- Filename = Filename1 = Filename2 = string()
- Reason1 = \{not_a_directory, term()\} । - see info/1

The cmp_dirs/2 function compares the BEAM files in two directories. O nly files with extension " . beam" are compared. BEAM files that exist in directory Dir1 (Dir2) only are returned in Only1 (Only2). BEAM files that exist on both directories but are considered different by cmp/2 are returned as pairs \{Filename1, Filename2\} where Filename1 (Filename2) exists in directory Dir1 (Dir2).
diff_dirs(Dir1, Dir2) -> ok | \{error, beam_lib, Reason1\}
Types:

- Dir1 = Dir2 = string() । atom()
- Reason1 = \{not_a_directory, term()\} | - see info/1

The diff_dirs/2 function compares the BEAM files in two directories the way cmp_dirs/2 does, but names of files that exist in only one directory or are different are presented on standard output.
strip(Beam1) -> \{ok, \{Module, Beam2\}\} | \{error, beam_lib, Reason1\}
Types:

- Beam1 = Beam2 = beam()
- M odule = atom()
- Reason1 - see info/1

The strip/1 function removes all chunks from a BEAM file except those needed by the loader. In particular, the debug information (abstract_code chunk) is removed.

```
strip_files(Files) -> {ok, [{Module, Beam2}]} | {error, beam_lib, Reason1}
```

Types:

- Files = [Beam1]
- Beam1 = beam()
- M odule = atom()
- Beam2 = beam()
- Reason1 - see info/1

The strip_files/1 function removes all chunks except those needed by the loader from BEAM files. In particular, the debug information (abstract_code chunk) is removed. The returned list contains one element for each given file name, in the same order as in Files.

```
strip_release(Dir) -> {ok, [{Module, Filename]}} | {error, beam_lib, Reason1}
```

Types:

- Dir = string() | atom()
- M odule = atom()
- Filename = string()
- Reason1 = \{not_a_directory, term()\} I - see info/1

The strip_release/1 function removes all chunks except those needed by the loader from the BEAM files of a release. Dir should be the installation root directory. For example, the current OTP release can be stripped with the call beam_lib:strip_release(code:root_dir()).
format_error(Reason) -> Chars
Types:

- Reason - see other functions
- Chars = [char() | Chars]

Given the error returned by any function in this module, the function format_error returns a descriptive string of the error in English. For file errors, the function file:format_error (Posix) should be called.

```
crypto_key_fun(CryptoKeyFun) -> ok | {error, Reason}
```

Types:

- CryptoKeyFun = fun() - see below
- Reason = badfun \| exists । term()

The crypto_key_fun/1 function registers a unary fun that will be called if beam_lib needs to read an abstract_code chunk that has been encrypted. The fun is held in a process that is started by the function.
If there already is a fun registered when attempting to register a fun, \{error, exists \} is returned.
The fun must handle the following arguments:
CryptoKeyFun(init) -> ok | \{ok, NewCryptoKeyFun\} | \{error, Term\}

Called when the fun is registered, in the process that holds the fun. H ere the crypto key fun can do any necessary initializations. If \{ok, NewCryptoKeyFun\} is returned then NewCryptoKeyFun will be registered instead of CryptoKeyFun. If $\{$ error, Term $\}$ is returned, the registration is aborted and crypto_key_fun/1 returns \{error, Term\} as well.

CryptoKeyFun(\{debug_info, Mode, Module, Filename\}) -> Key
Called when the key is needed for the module Module in the file named Filename. Mode is the type of crypto al gorithm; currently, the only possible value thus is des3_cbc. The call should fail (raise an exception) if there is no key available.

```
CryptoKeyFun(clear) -> term()
```

C alled before the fun is unregistered. Here any cleaning up can be done. The return value is not important, but is passed back to the caller of clear_crypto_key_fun/0 as part of its return value.
clear_crypto_key_fun() -> \{ok, Result $\}$
Types:

- Result = undefined \mid term()

Unregisters the crypto key fun and terminates the process holding it, started by crypto_key_fun/1.
The clear_crypto_key_fun/1 either returns \{ok, undefined $\}$ if there was no crypto key fun registered, or $\{\mathrm{ok}, \mathrm{Term}\}$, where Term is the return value from CryptoKeyFun(clear), see crypto_key_fun/1.

C
 Erlang M odule

The c module enables users to enter the short form of some commonly used commands.

N ote:

These functions are are intended for interactive use in the Erlang shell only. The module prefix may be omitted.

Exports

```
bt(Pid) -> void()
```

Types:

- Pid $=$ pid()

Stack backtrace for a process. Equivalent to erlang: process_display (Pid, backtrace).
$c(F i l e)->\{o k, ~ M o d u l e\} \mid$ error
c (File, Options) $->$ \{ok, Module $\}$ | error
Types:

- File = name() - see filename(3)
- O ptions = [O pt] - see compile:file/2
c/1,2 compiles and then purges and loads the code for a file. Options defaults to []. Compilation is equivalent to:

```
compile:file(File, Options ++ [report_errors, report_warnings])
```

N ote that purging the code means that any processes lingering in old code for the module are killed without warning. See code/3 for more information.

```
cd(Dir) -> void()
```

Types:

- Dir = name() - see filename(3)

C hanges working directory to Dir, which may be a relative name, and then prints the name of the new working directory.

```
2> cd("../erlang").
/home/ron/erlang
```

flush() -> void()

Flushes any messages sent to the shell.

```
help() -> void()
```

Displays help information: all valid shell internal commands, and commands in this module.
i() -> void()
ni() -> void()
i/0 displays information about the system, listing information about all processes. ni/0 does the same, but for all nodes the network.
i(X, Y, Z) -> void()
Types:

- $X=Y=Z=\operatorname{int}()$

Displays information about a process, Equivalent to process_info(pid(X, Y, Z)), but location transparent.
l(Module) -> void()
Types:

- M odule = atom()

Purges and loads, or reloads, a module by calling code: purge (Module) followed by code:load_file(Module).

N ote that purging the code means that any processes lingering in old code for the module are killed without warning. See code/3 for more information.
lc(Files) -> ok
Types:

- Files = [File]
- File = name() - see filename(3)

Compiles a list of files by calling compile:file(File, [report_errors, report_warnings]) for each File in Files.
ls() -> void()
Lists files in the current directory.
ls(Dir) -> void()
Types:

- Dir = name() - see filename(3)

Lists files in directory Dir.
m() -> void()

Displays information about the loaded modules, including the files from which they have been loaded.
m(Module) -> void()
Types:

- M odule = atom()

Displays information about Module.
memory() -> [\{Type, Size $\}]$
Types:

- Type, Size - see erlang:memory/0

Memory allocation information. Equivalent to erlang:memory/0.

```
memory(Type) -> Size
memory([Type]) -> [{Type, Size}]
```

Types:

- Type, Size - see erlang:memory/0

Memory allocation information. Equivalent to erlang:memory/1.
nc(File) -> \{ok, Module $\}$ | error
nc(File, Options) -> \{ok, Module\} | error
Types:

- File = name() - see filename(3)
- Options = [O pt] - see compile:file/2

C ompiles and then loads the code for a file on all nodes. Options defaults to []. Compilation is equivalent to:
compile:file(File, Opts ++ [report_errors, report_warnings])
nl(Module) -> void()
Types:

- M odule = atom()

Loads Module on all nodes.
$\operatorname{pid}(X, Y, Z)->\operatorname{pid}()$
Types:

- $X=Y=Z=\operatorname{int}()$

C onverts $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ to the $\mathrm{pid}<\mathrm{X} . \mathrm{Y} . \mathrm{Z}>$. This function should only be used when debugging.

```
pwd() -> void()
```

Prints the name of the working directory.
q() -> void()
This function is shorthand for init: stop(), that is, it causes the node to stop in a controlled fashion.
regs() -> void()
nregs() -> void()
regs/0 displays information about all registered processes. nregs/0 does the same, but for all nodes in the network.
xm(ModSpec) $->$ void()
Types:

- M odSpec = M odule | Filename
- M odule = atom()
- Filename = string()

This function finds undefined functions, unused functions, and calls to deprecated functions in a module by calling xref:m/1.
y(File) -> YeccRet
Types:

- File = name() - see filename(3)
- YeccRet $=-$ see yecc:file/2

Generates an LALR-1 parser. Equivalent to:
yecc:file(File)
y(File, Options) -> YeccRet
Types:

- File = name() - see filename(3)
- O ptions, YeccRet $=-$ see yecc:file/2

Generates an LALR-1 parser. Equivalent to:

```
yecc:file(File, Options)
```


See Also

[compile(3)], filename(3) [page 158], [erlang(3)], [yecc(3)], [xref(3)]

calendar

Erlang M odule

This module provides computation of local and universal time, day-of-the-week, and several time conversion functions.

Time is local when it is adjusted in accordance with the current time zone and daylight saving. Time is universal when it reflects the time at longitude zero, without any adjustment for daylight saving. Universal Coordinated Time (UTC) time is also called Greenwich M ean Time (GMT).

The time functions local_time/0 and universal_time/0 provided in this module both return date and time. The reason for this is that separate functions for date and time may result in a date/time combination which is displaced by 24 hours. This happens if one of the functions is called before midnight, and the other after midnight. This problem also applies to the Erlang BIFs date/0 and time/0, and their use is strongly discouraged if a reliable date/time stamp is required.
All dates conform to the Gregorian calendar. This calendar was introduced by Pope G regory XIII in 1582 and was used in all Catholic countries from this year. Protestant parts of Germany and the N etherlands adopted it in 1698, England followed in 1752, and Russia in 1918 (the O ctober revolution of 1917 took place in November according to the G regorian calendar).
The Gregorian calendar in this module is extended back to year 0 . For a given date, the gregorian days is the number of days up to and including the date specified. Similarly, the gregorian seconds for a given date and time, is the the number of seconds up to and including the specified date and time.
For computing differences between epochs in time, use the functions counting gregorian days or seconds. If epochs are given as local time, they must be converted to universal time, in order to get the correct value of the elapsed time between epochs. U se of the function time_difference/2 is discouraged.

DATA TYPES

```
date() = {Year, Month, Day}
    Year = int()
    Month = 1..12
    Day = 1..31
Year cannot be abbreviated. Example: 93 denotes year 93, not 1993.
Valid range depends on the underlying OS.
The date tuple must denote a valid date.
time() = {Hour, Minute, Second}
    Hour = 0.. 23
    Minute = Second = 0. . 59
```


Exports

date_to_gregorian_days(Date) -> Days
date_to_gregorian_days(Year, Month, Day) -> Days
Types:

- Date = date()
- Days = int()

This function computes the number of gregorian days starting with year 0 and ending at the given date.
datetime_to_gregorian_seconds(\{Date, Time\}) -> Seconds
Types:

- D ate = date()
- Time = time()
- Seconds = int()

This function computes the number of gregorian seconds starting with year 0 and ending at the given date and time.
day_of_the_week(Date) -> DayNumber
day_of_the_week(Year, Month, Day) -> DayNumber
Types:

- D ate = date()
- D ayN umber = $1 . .7$

This function computes the day of the week given Year, Month and Day. The return value denotes the day of the week as 1: M onday, 2: Tuesday, and so on.
gregorian_days_to_date(Days) -> Date
Types:

- Days = int()
- D ate = date()

This function computes the date given the number of gregorian days.
gregorian_seconds_to_datetime(Seconds) -> \{Date, Time\}
Types:

- Seconds = int()
- D ate = date()
- Time = time()

This function computes the date and time from the given number of gregorian seconds.
is_leap_year(Year) -> bool()
This function checks if a year is a leap year.
last_day_of_the_month(Year, Month) -> int()

This function computes the number of days in a month.

```
local_time() -> \{Date, Time\}
```

Types:

- D ate = date()
- Time = time()

This function returns the local time reported by the underlying operating system.
local_time_to_universal_time(\{Date1, Time1\}) $->$ \{Date2, Time2\}
This function converts from local time to Universal C oordinated Time (UTC). Date1 must refer to a local date after Jan 1, 1970.

Warning:

This function is deprecated. Use local_time_to_universal_time_dst/1 instead, as it gives a more correct and complete result. Especially for the period that does not exist since it gets skipped during the switch to daylight saving time, this function still returns a result.

```
local_time_to_universal_time_dst({Date1, Time1}) -> [{Date, Time}]
```

Types:

- D atel = D ate = date()
- Time1 = Time = time()

This function converts from local time to Universal Coordinated Time (UTC). Date1 must refer to a local date after Jan 1, 1970.
The return value is a list of 0,1 or 2 possible UTC times:
[] For a local \{Date1, Time1\} during the period that is skipped when switching to daylight saving time, there is no corresponding UTC since the local time is illegal it has never happened.
[DstDateTimeUTC, DateTimeUTC] For a local \{Date1, Time1\} during the period that is repeated when switching from daylight saving time, there are two corresponding UTCs. O ne for the first instance of the period when daylight saving time is still active, and one for the second instance.
[DateTimeUTC] For all other local times there is only one corresponding UTC.
now_to_local_time(Now) -> \{Date, Time\}
Types:

- Now - see erlang:now/0
- D ate = date()
- Time = time()

This function returns local date and time converted from the return value from erlang: now().

```
now_to_universal_time(Now) -> {Date, Time}
now_to_datetime(Now) -> {Date, Time}
```

Types:

- N ow - see erlang:now/0
- D ate = date()
- Time = time()

This function returns U niversal Coordinated Time (UTC) converted from the return value from erlang: now ().
seconds_to_daystime(Seconds) -> \{Days, Time\}
Types:

- Seconds = D ays = int()
- Time = time()

This function transforms a given number of seconds into days, hours, minutes, and seconds. The Time part is always non-negative, but Days is negative if the argument Seconds is.
seconds_to_time(Seconds) -> Time
Types:

- Seconds = int() < 86400
- Time = time()

This function computes the time from the given number of seconds. Seconds must be less than the number of seconds per day (86400).
time_difference(T1, T2) $->$ \{Days, Time\}
This function returns the difference between two \{Date, Time\} tuples. T2 should refer to an epoch later than T1.

W arning:

This function is obsolete. Use the conversion functions for gregorian days and seconds instead.
time_to_seconds(Time) -> Seconds
Types:

- Time = time()
- Seconds = int()

This function computes the number of seconds since midnight up to the specified time.
universal_time() -> \{Date, Time\}
Types:

- Date = date()
- Time = time()

This function returns the U niversal Coordinated Time (UTC) reported by the underlying operating system. Local time is returned if universal time is not available.

```
universal_time_to_local_time({Date1, Time1}) -> {Date2, Time2}
    Types:
    - D ate1 = Date2 = date()
    - Time1 = Time2 = time()
```

This function converts from U niversal C oordinated Time (UTC) to local time. Date1 must refer to a date after Jan 1, 1970.

```
valid_date(Date) -> bool()
```

valid_date(Year, Month, Day) -> bool()

Types:

- D ate = date()

This function checks if a date is a valid.

Leap Years

The notion that every fourth year is a leap year is not completely true. By the G regorian rule, a year Y is a leap year if either of the following rules is valid:

- Y is divisible by 4 , but not by 100 ; or
- Y is divisible by 400.

A ccordingly, 1996 is a leap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF localtime/0. U niversal time is computed from the BIF universaltime/0.

The following facts apply:

- there are 86400 seconds in a day
- there are 365 days in an ordinary year
- there are 366 days in a leap year
- there are 1461 days in a 4 year period
- there are 36524 days in a 100 year period
- there are 146097 days in a 400 year period
- there are 719528 days between Jan 1, 0 and Jan 1, 1970.

dets
Erlang M odule

The module dets provides a term storage on file. The stored terms, in this module called objects, are tuples such that one element is defined to be the key. A D ets table is a collection of objects with the key at the same position stored on a file.

Dets is used by the M nesia application, and is provided as is for users who are interested in an efficient storage of Erlang terms on disk only. M any applications just need to store some terms in a file. M nesia adds transactions, queries, and distribution. The size of Dets files cannot exceed 2 G B. If larger tables are needed, M nesia's table fragmentation can be used.

There are three types of D ets tables: set, bag and duplicate_bag. A table of type set has at most one object with a given key. If an object with a key already present in the table is inserted, the existing object is overwritten by the new object. A table of type bag has zero or more different objects with a given key. A table of type duplicate_bag has zero or more possibly matching objects with a given key.
Dets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a table has not been properly closed, D ets will automatically repair the table. This can take a substantial time if the table is large. A D ets table is closed when the process which opened the table terminates. If several Erlang processes (users) open the same D ets table, they will share the table. The table is properly closed when all users have either terminated or closed the table. D ets tables are not properly closed if the Erlang runtime system is terminated abnormally.

N ote:

A -C command abnormally terminates an Erlang runtime system in a U nix environment with a break-handler.

Since all operations performed by Dets are disk operations, it is important to realize that a single look-up operation involves a series of disk seek and read operations. For this reason, the D ets functions are much slower than the corresponding Ets functions, although D ets exports a similar interface.

Dets organizes data as a linear hash list and the hash list grows gracefully as more data is inserted into the table. Space management on the file is performed by what is called a buddy system. The current implementation keeps the entire buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up. The only way to defragment a table is to close it and then open it again with the repair option set to force.
It is worth noting that the ordered_set type present in Ets is not yet implemented by Dets, neither is the limited support for concurrent updates which makes a sequence of first and next calls safe to use on fixed Ets tables. Both these features will be implemented by Dets in a future release of Erlang/OTP. Until then, the M nesia
application (or some user implemented method for locking) has to be used to implement safe concurrency. Currently, no library of Erlang/OTP has support for ordered disk based term storage.
Two versions of the format used for storing objects on file are supported by Dets. The first version, 8 , is the format always used for tables created by OTP R7 and earlier. The second version, 9 , is the default version of tables created by OTP R8 (and later OTP releases). OTP R8 can create version 8 tables, and convert version 8 tables to version 9 , and vice versa, upon request.
All Dets functions return \{error, Reason\} if an error occurs (first/1 and next/2 are exceptions, they exit the process with the error tuple). If given badly formed arguments, all functions exit the process with a badarg message.
Types

```
access() = read | read_write
auto_save() = infinity | int()
bindings_cont() = tuple()
bool() = true | false
file() = string()
int() = integer() >= 0
keypos() = integer() >= 1
name() = atom() | ref()
no_slots() = integer() >= 0 | default
object() = tuple()
object_cont() = tuple()
select_cont() = tuple()
type() = bag | duplicate_bag | set
version() = 8 | 9 | default
```


Exports

```
all() -> [Name]
```

Types:

- Name = name()

Returns a list of the names of all open tables on this node.
bchunk(Name, Continuation) -> \{Continuation2, Data\} | '\$end_of_table' | \{error,
Reason\}
Types:

- Name = name()
- Continuation = start \mid cont()
- Continuation2 $=$ cont()
- D ata = binary() | tuple()

Returns a list of objects stored in a table. The exact representation of the returned objects is not public. The lists of data can be used for initializing a table by giving the value bchunk to the format option of the init_table/3 function. The M nesia application uses this function for copying open tables.
U nless the table is protected using safe_fixtable/2, calls to bchunk/2 may not work as expected if concurrent updates are made to the table.
The first time bchunk/2 is called, an initial continuation, the atom start, must be provided.

The bchunk/2 function returns a tuple \{Continuation2, Data\}, where Data is a list of objects. Continuation2 is another continuation which is to be passed on to a subsequent call to bchunk/2. With a series of calls to bchunk/2 it is possible to extract all objects of the table.
bchunk/2 returns '\$end_of_table' when all objects have been returned, or \{error, Reason\} if an error occurs.

```
close(Name) -> ok | {error, Reason}
```

Types:

- N ame = name()

Closes a table. O nly processes that have opened a table are allowed to close it.
All open tables must be closed before the system is stopped. If an attempt is made to open a table which has not been properly closed, D ets automatically tries to repair the table.

```
delete(Name, Key) -> ok | {error, Reason}
Types:
```

- N ame = name()

D eletes all objects with the key Key from the table Name.

```
delete_all_objects(Name) -> ok | {error, Reason}
```

Types:

- N ame = name()

Deletes all objects from a table in almost constant time. H owever, if the table if fixed, delete_all_objects (T) is equivalent to match_delete (T, '_').
delete_object(Name, Object) -> ok | \{error, Reason\}
Types:

- N ame = name()
- O bject = object()

D eletes all instances of a given object from a table. If a table is of type bag or duplicate_bag, the delete/2 function cannot be used to delete only some of the objects with a given key. This function makes this possible.

```
first(Name) -> Key | '$end_of_table'
```

Types:

- Key = term()
- Name = name()

Returns the first key stored in the table Name according to the table's internal order, or '\$end_of_table' if the table is empty.
U nless the table is protected using safe_fixtable/2, subsequent calls to next/2 may not work as expected if concurrent updates are made to the table.
Should an error occur, the process is exited with an error tuple \{error, Reason\}. The reason for not returning the error tuple is that it cannot be distinguished from a key.
There are two reasons why first/1 and next/2 should not be used: they are not very efficient, and they prevent the use of the key '\$end_of_table' since this atom is used to indicate the end of the table. If possible, the match, match_object, and select functions should be used for traversing tables.

```
foldl(Function, Acc0, Name) -> Acc1 | {error, Reason}
```

Types:

- Function $=$ fun(O bject, $A c c l n$) $->$ AccO ut
- $\mathrm{AccO}=\mathrm{Accl}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()
- Name = name()
- O bject = object()

C alls Function on successive elements of the table Name together with an extra argument AccIn. The order in which the elements of the table are traversed is unspecified. Function must return a new accumulator which is passed to the next call. Acc0 is returned if the table is empty.

```
foldr(Function, Acc0, Name) -> Acc1 | {error, Reason}
```

Types:

- Function $=$ fun(O bject, $A c c I n$) $->A c c O$ ut
- $\mathrm{Acc0}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term ()
- N ame = name()
- O bject = object()

C alls Function on successive elements of the table Name together with an extra argument AccIn. The order in which the elements of the table are traversed is unspecified. Function must return a new accumulator which is passed to the next call. Acc0 is returned if the table is empty.

```
from_ets(Name, EtsTab) -> ok | {error, Reason}
```

Types:

- Name = name()
- EtsTab = -see ets(3)-

D eletes all objects of the table Name and then inserts all the objects of the Ets table EtsTab. The order in which the objects are inserted is not specified. Since ets:safe_fixtable/2 is called the Ets table must be public or owned by the calling process.

```
info(Name) -> InfoList | undefined
```


Types:

- N ame = name()
- InfoList = [\{Item, Value\}]

Returns information about the table Name as a list of $\{$ Item, Value $\}$ tuples:

- \{file_size, int() \}, the size of the file in bytes.
- \{filename, file()\}, the name of the file where objects are stored.
- \{keypos, keypos()\}, the position of the key.
- \{size, int() \}, the number of objects stored in the table.
- \{type, type()\}, the type of the table.
info(Name, Item) -> Value | undefined

Types:

- N ame = name()

Returns the information associated with Item for the table Name. In addition to the \{Item, Value\} pairs defined for info/1, the following items are allowed:

- \{access, access() \}, the access mode.
- \{auto_save, auto_save()\}, the auto save interval.
- \{bchunk_format, binary()\}, an opaque binary describing the format of the objects returned by bchunk/2. The binary can be used as argument to is_compatible_chunk_format/2. O nly available for version 9 tables.
- \{hash, H ash\}. Describes which BIF is used to calculate the hash values of the objects stored in the D ets table. Possible values of H ash are hash, which implies that the erlang:hash/2 BIF is used, phash, which implies that the erlang: phash/2 BIF is used, and phash2, which implies that the erlang: phash2/1 BIF is used.
- \{memory, int() \}, the size of the file in bytes. The same value is associated with the item file_size.
- \{no_keys, int() \}, the number of different keys stored in the table. O nly available for version 9 tables.
- \{no_objects, int() \}, the number of objects stored in the table.
- \{no_slots, \{Min, Used, Max\}\}, the number of slots of the table. Min is the minimum number of slots, Used is the number of currently used slots, and Max is the maximum number of slots. O nly available for version 9 tables.
- \{owner, pid() \}, the pid of the process that handles requests to the D ets table.
- \{ram_file, bool()\}, whether the table is kept in RAM.
- \{safe_fixed, SafeFixed\}. If the table is fixed, SafeFixed is a tuple \{FixedAtTime, [\{Pid, RefCount $\}]\}$. FixedAtTime is the time when the table was first fixed, and Pid is the pid of the process that fixes the table RefCount times. There may be any number of processes in the list. If the table is not fixed, SafeFixed is the atom false.
- \{version, int()\}, the version of the format of the table.

```
init_table(Name, InitFun [, Options]) -> ok | {error, Reason}
```


Types:

- N ame = atom()
- InitFun = fun(Arg) -> Res
- Arg = read I close
- Res = end_of_input | \{[object()], InitFun\} | \{Data, InitFun\} | term()
- D ata = binary() | tuple()

Replaces the existing objects of the table Name with objects created by calling the input function InitFun, see below. The reason for using this function rather than calling insert $/ 2$ is that of efficiency. It should be noted that the input functions are called by the process that handles requests to the D ets table, not by the calling process.
When called with the argument read the function InitFun is assumed to return end_of_input when there is no more input, or \{Objects, Fun\}, where Objects is a list of objects and Fun is a new input function. A ny other value Value is returned as an error \{error, \{init_fun, Value\}\}. Each input function will be called exactly once, and should an error occur, the last function is called with the argument close, the reply of which is ignored.
If the type of the table is set and there is more than one object with a given key, one of the objects is chosen. This is not necessarily the last object with the given key in the sequence of objects returned by the input functions. Extra objects should be avoided, or the file will be unnecessarily fragmented. This holds also for duplicated objects stored in tables of type duplicate_bag.
It is important that the table has a sufficient number of slots for the objects. If not, the hash list will start to grow when init_table/2 returns which will significantly slow down access to the table for a period of time. The minimum number of slots is set by the open_file/2 option min_no_slots and returned by the info/2 item no_slots. See also the min_no_slots option below.
The Options argument is a list of $\{\mathrm{Key}, \mathrm{Val}\}$ tuples where the following values are allowed:

- \{min_no_slots, no_slots()\}. Specifies the estimated number of different keys that will be stored in the table. The open_file option with the same name is ignored unless the table is created, and in that case performance can be enhanced by supplying an estimate when initializing the table.
- \{format, Format . Specifies the format of the objects returned by the function InitFun. If Format is term (the default), InitFun is assumed to return a list of tuples. If Format is bchunk, InitFun is assumed to return Data as returned by bchunk/2. This option overrides the min_no_slots option.

```
insert(Name, Objects) -> ok | {error, Reason}
    Types:
    - N ame = name()
    - O bjects = object() | [object()]
    Inserts one or more objects into the table Name. If there already exists an object with a
    key matching the key of some of the given objects and the table type is set, the old
    object will be replaced.
insert_new(Name, Objects) -> Bool
```

Types:

- N ame = name()
- O bjects = object() । [object()]
- Bool = bool()

Inserts one or more objects into the table Name. If there already exists some object with a key matching the key of any of the given objects the table is not updated and false is returned, otherwise the objects are inserted and true returned.

```
is_compatible_bchunk_format(Name, BchunkFormat) -> Bool
```

Types:

- N ame = name()
- BchunkFormat = binary ()
- Bool = bool()

Returns true if it would be possible to initialize the table Name, using init_table/3 with the option \{format, bchunk\}, with objects read with bchunk/2 from some table T such that calling info(T, bchunk_format) returns BchunkFormat.
is_dets_file(FileName) -> Bool | \{error, Reason\}
Types:

- FileN ame = file()
- Bool = bool()

Returns true if the file FileName is a D ets table, false otherwise.
lookup(Name, Key) -> [Object] | \{error, Reason\}
Types:

- Key = term()
- N ame = name()
- O bject = object()

Returns a list of all objects with the key Key stored in the table Name. For example:

```
2> dets:open_file(abc, [{type, bag}]).
{ok,abc}
3> dets:insert(abc, {1,2,3}).
ok
4> dets:insert(abc, {1,3,4}).
ok
5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]
```

If the table is of type set, the function returns either the empty list or a list with one object, as there cannot be more than one object with a given key. If the table is of type bag or duplicate_bag, the function returns a list of arbitrary length.
N ote that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not reflected.

```
match(Continuation) -> {[Match], Continuation2} | '$end_of_table' | {error, Reason}
```

Types:

- Continuation $=$ C ontinuation2 $=$ bindings_cont()
- M atch $=[$ term($)$]
M atches some objects stored in a table and returns a non-empty list of the bindings that match a given pattern in some unspecified order. The table, the pattern, and the number of objects that are matched are all defined by Continuation, which has been returned by a prior call to match/1 or match/3.

W hen all objects of the table have been matched, '\$end_of_table' is returned.

```
match(Name, Pattern) -> [Match] | {error, Reason}
```

Types:

- N ame = name()
- Pattern = tuple()
- M atch $=[$ term ()$]$

Returns for each object of the table Name that matches Pattern a list of bindings in some unspecified order. See ets(3) [page 129] for a description of patterns. If the keypos'th element of Pattern is unbound, all objects of the table are matched. If the keypos'th element is bound, only the objects with the right key are matched.
match(Name, Pattern, N) $->$ \{[Match], Continuation\} | '\$end_of_table' | \{error, Reason $\}$
Types:

- Name = name()
- Pattern = tuple()
- $N=$ default | int()
- M atch $=[$ term ()$]$
- Continuation = bindings_cont()

M atches some or all objects of the table Name and returns a non-empty list of the bindings that match Pattern in some unspecified order. See ets(3) [page 129] for a description of patterns.
A tuple of the bindings and a continuation is returned, unless the table is empty, in which case '\$end_of_table' is returned. The continuation is to be used when matching further objects by calling match/1.
If the keypos'th element of Pattern is bound, all objects of the table are matched. If the keypos'th element is unbound, all objects of the table are matched, N objects at a time, until at least one object matches or the end of the table has been reached. The default, indicated by giving N the value default, is to let the number of objects vary depending on the sizes of the objects. If Name is a version 9 table, all objects with the same key are always matched at the same time which implies that more than N objects may sometimes be matched.
The table should always be protected using safe_fixtable/2 before calling match/3, or errors may occur when calling match/1.

```
match_delete(Name, Pattern) -> N | {error, Reason}
```

Types:

- N ame = name()
- $N=\operatorname{int}()$
- Pattern = tuple()

D eletes all objects that match Pattern from the table Name, and returns the number of deleted objects. See ets(3) [page 129] for a description of patterns.
If the keypos'th element of Pattern is bound, only the objects with the right key are matched.

```
match_object(Continuation) -> {[Object], Continuation2} | '$end_of_table' | {error,
```

 Reason\}
 Types:

- Continuation $=$ C ontinuation2 $=$ object_cont()
- O bject = object()

Returns a non-empty list of some objects stored in a table that match a given pattern in some unspecified order. The table, the pattern, and the number of objects that are matched are all defined by Continuation, which has been returned by a prior call to match_object/1 or match_object/3.
When all objects of the table have been matched, '\$end_of_table' is returned.
match_object(Name, Pattern) -> [Object] | \{error, Reason\}
Types:

- N ame = name()
- Pattern = tuple()
- O bject = object()

Returns a list of all objects of the table Name that match Pattern in some unspecified order. See ets(3) [page 129] for a description of patterns.
If the keypos'th element of Pattern is unbound, all objects of the table are matched. If the keypos'th element of Pattern is bound, only the objects with the right key are matched.
Using the match_object functions for traversing all objects of a table is more efficient than calling first/1 and next/2 or slot/2.
match_object(Name, Pattern, N) -> \{[Object], Continuation\} | '\$end_of_table' | \{error, Reason\}

Types:

- N ame = name()
- Pattern = tuple()
- $N=$ default । int()
- O bject = object()
- C ontinuation = object_cont()

M atches some or all objects stored in the table Name and returns a non-empty list of the objects that match Pattern in some unspecified order. See ets(3) [page 129] for a description of patterns.
A list of objects and a continuation is returned, unless the table is empty, in which case '\$end_of_table' is returned. The continuation is to be used when matching further objects by calling match_object/1.
If the keypos'th element of Pattern is bound, all objects of the table are matched. If the keypos'th element is unbound, all objects of the table are matched, N objects at a time, until at least one object matches or the end of the table has been reached. The default, indicated by giving N the value default, is to let the number of objects vary depending on the sizes of the objects. If Name is a version 9 table, all matching objects with the same key are always returned in the same reply which implies that more than N objects may sometimes be returned.

The table should always be protected using safe_fixtable/2 before calling match_object/3, or errors may occur when calling match_object/1.
member (Name, Key) -> Bool | \{error, Reason\}
Types:

- N ame = name()
- Key = term()
- Bool = bool()

Works like lookup/2, but does not return the objects. The function returns true if one or more elements of the table has the key Key, false otherwise.

```
next(Name, Key1) -> Key2 | '$end_of_table'
```

Types:

- N ame = name()
- Key1 = Key2 = term()

Returns the key following Key1 in the table Name according to the table's internal order, or '\$end_of_table' if there is no next key.
Should an error occur, the process is exited with an error tuple \{error, Reason\}.
Use first/1 to find the first key in the table.
open_file(Filename) $->$ \{ok, Reference\} | \{error, Reason\}
Types:

- FileN ame = file()
- Reference = ref()

O pens an existing table. If the table has not been properly closed, the error \{error, need_repair $\}$ is returned. The returned reference is to be used as the name of the table. This function is most useful for debugging purposes.
open_file(Name, Args) $->$ \{ok, Name\} | \{error, Reason\}
Types:

- Name = atom()

O pens a table. An empty D ets table is created if no file exists.
The atom Name is the name of the table. The table name must be provided in all subsequent operations on the table. The name can be used by other processes as well, and several process can share one table.

If two processes open the same table by giving the same name and arguments, then the table will have two users. If one user closes the table, it still remains open until the second user closes the table.

The Args argument is a list of $\{$ Key, Val $\}$ tuples where the following values are allowed:

- \{access, access()\}. It is possible to open existing tables in read-only mode. A table which is opened in read-only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash. The default value is read_write.
- \{auto_save, auto_save()\}, the auto save interval. If the interval is an integer Time, the table is flushed to disk whenever it is not accessed for Time milliseconds. A table that has been flushed will require no reparation when reopened after an uncontrolled emulator halt. If the interval is the atom infinity, auto save is disabled. The default value is 180000 (3 minutes).
- \{estimated_no_objects, int()\}. Equivalent to the min_no_slots option.
- $\{f i l e, f i l e()\}$, the name of the file to be opened. The default value is the name of the table.
- \{max_no_slots, no_slots() \}, the maximum number of slots that will be used. The default value is 2 M , and the maximal value is 32 M . N ote that a higher value may increase the fragmentation of the table, and conversely, that a smaller value may decrease the fragmentation, at the expense of execution time. O nly available for version 9 tables.
- \{min_no_slots, no_slots() \}. A pplication performance can be enhanced with this flag by specifying, when the table is created, the estimated number of different keys that will be stored in the table. The default value as well as the minimum value is 256 .
- \{keypos, keypos()\}, the position of the element of each object to be used as key. The default value is 1 . The ability to explicitly state the key position is most convenient when we want to store Erlang records in which the first position of the record is the name of the record type.
- \{ram_file, bool() \}, whether the table is to be kept in RAM. Keeping the table in RAM may sound like an anomaly, but can enhance the performance of applications which open a table, insert a set of objects, and then close the table. When the table is closed, its contents are written to the disk file. The default value is false.
- \{repair, Value\}. Value can be either a bool() or the atom force. The flag specifies whether the D ets server should invoke the automatic file reparation algorithm. The default is true. If false is specified, there is no attempt to repair the file and \{error, need_repair\} is returned if the table needs to be repaired. The value force means that a reparation will take place even if the table has been properly closed. This is how to convert tables created by older versions of STDLIB. An example is tables hashed with the deprecated erlang:hash/2 BIF. Tables created with D ets from a STD LIB version of 1.8.2 and later use the erlang: phash/2 function or the erlang: phash2/1 function, which is preferred. The repair option is ignored if the table is already open.
- \{type, type () \}, the type of the table. The default value is set.
- \{version, version() \}, the version of the format used for the table. The default value is 9 . Tables on the format used before OTP R8 can be created by giving the value 8 . A version 8 table can be converted to a version 9 table by giving the options \{version, 9$\}$ and \{repair, force\}.

```
pid2name(Pid) -> {ok, Name} | undefined
```

Types:

- Name = name()
- $\operatorname{Pid}=$ pid()

Returns the name of the table given the pid of a process that handles requests to a table, or undefined if there is no such table.
This function is meant to be used for debugging only.
repair_continuation(Continuation, MatchSpec) -> Continuation2
Types:

- Continuation $=$ C ontinuation2 $=$ select_cont()
- M atchSpec = match_spec()

This function can be used to restore an opaque continuation returned by select/3 or select/1 if the continuation has passed through external term format (been sent between nodes or stored on disk).
The reason for this function is that continuation terms contain compiled match specifications and therefore will be invalidated if converted to external term format. G iven that the original match specification is kept intact, the continuation can be restored, meaning it can once again be used in subsequent select/1 calls even though it has been stored on disk or on another node.
See also ets (3) for further explanations and examples.

N ote:

This function is very rarely needed in application code. It is used by M nesia to implement distributed select/3 and select/1 sequences. A normal application would either use M nesia or keep the continuation from being converted to external format.
The reason for not having an external representation of compiled match specifications is performance. It may be subject to change in future releases, while this interface will remain for backward compatibility.
safe_fixtable(Name, Fix)
Types:

- N ame = name()
- Fix = bool()

If Fix is true, the table Name is fixed (once more) by the calling process, otherwise the table is released. The table is also released when a fixing process terminates.
If several processes fix a table, the table will remain fixed until all processes have released it or terminated. A reference counter is kept on a per process basis, and N consecutive fixes require N releases to release the table.
It is not guaranteed that calls to first/1, next/2, select and match functions work as expected even if the table has been fixed; the limited support for concurrency implemented in Ets has not yet been implementeded in D ets. Fixing a table currently only disables resizing of the hash list of the table.
If objects have been added while the table was fixed, the hash list will start to grow when the table is released which will significantly slow down access to the table for a period of time.

```
select(Continuation) -> {Selection, Continuation2} | '$end_of_table' | {error,
    Reason}
    Types:
    - Continuation = Continuation2 = select_cont()
    - Selection = [term()]
```

 A pplies a match specification to some objects stored in a table and returns a non-empty
 list of the results. The table, the match specification, and the number of objects that are
 matched are all defined by Continuation, which has been returned by a prior call to
 select/1 or select/3.
 When all objects of the table have been matched, '\$end_of_table' is returned.
 select(Name, MatchSpec) -> Selection | \{error, Reason\}

Types:

- N ame = name()
- M atchSpec = match_spec()
- Selection = [term()]

Returns the results of applying the match specification MatchSpec to all or some objects stored in the table Name. The order of the objects is not specified. See the ERTS U ser's Guide for a description of match specifications.
If the keypos'th element of MatchSpec is unbound, the match specification is applied to all objects of the table. If the keypos'th element is bound, the match specification is applied to the objects with the right key(s) only.
Using the select functions for traversing all objects of a table is more efficient than calling first/1 and next/2 or slot/2.
select(Name, MatchSpec, N) $->$ \{Selection, Continuation\} | '\$end_of_table' | \{error, Reason\}

Types:

- N ame = name()
- M atchSpec $=$ match_spec ()
- $N=$ default । int()
- Selection = [term()]
- C ontinuation = select_cont()

Returns the results of applying the match specification MatchSpec to some or all objects stored in the table Name. The order of the objects is not specified. See the ERTS U ser's Guide for a description of match specifications.
A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty, in which case '\$end_of_table' is returned. The continuation is to be used when matching further objects by calling select/1.
If the keypos'th element of MatchSpec is bound, the match specification is applied to all objects of the table with the right key(s). If the keypos'th element of MatchSpec is unbound, the match specification is applied to all objects of the table, n objects at a time, until at least one object matches or the end of the table has been reached. The default, indicated by giving N the value default, is to let the number of objects vary depending on the sizes of the objects. If Name is a version 9 table, all objects with the same key are always handled at the same time which implies that the match specification may be applied to more than N objects.
The table should always be protected using safe_fixtable/2 before calling select/3, or errors may occur when calling select/1.

```
select_delete(Name, MatchSpec) -> N | \{error, Reason\}
    Types:
    - N ame = name()
    - M atchSpec \(=\) match_spec()
    - \(N=\operatorname{int}()\)
```

 D eletes each object from the table Name such that applying the match specification
 MatchSpec to the object returns the value true. See the ERTS U ser's Guide for a
 description of match specifications. Returns the number of deleted objects.
 If the keypos'th element of MatchSpec is bound, the match specification is applied to
 the objects with the right \(k e y(s)\) only.
 slot(Name, I) -> '\$end_of_table' | [Object] | \{error, Reason\}
Types:
- Name = name()
- I = int()
- O bject = object()
The objects of a table are distributed among slots, starting with slot 0 and ending with
slot n . This function returns the list of objects associated with slot I. If I is greater than
n '\$end_of_table' is returned.
sync(Name) -> ok | \{error, Reason\}

Types:

- N ame = name()

Ensures that all updates made to the table Name are written to disk. This also applies to tables which have been opened with the ram_file flag set to true. In this case, the contents of the RAM file are flushed to disk.
N ote that the space management data structures kept in RAM , the buddy system, is also written to the disk. This may take some time if the table is fragmented.

```
table(Name [, Options]) -> QueryHandle
```

Types:

- N ame = name()
- QueryH andle = -a query handle, see qlc(3)-
- Options = [Option] | Option
- Option = \{n_objects, Limit $\}$ I \{traverse, TraverseM ethod\}
- Limit $=$ default \mid integer() $>=1$
- TraverseM ethod = first_next | select | \{select, M atchSpec\}
- M atchSpec = match_spec()

Returns a QLC (Q uery List Comprehension) query handle. The module qlc implements a query language aimed mainly at M nesia but Ets tables, D ets tables, and lists are also recognized by QLC as sources of data. Calling dets:table/ 1,2 is the means to make the D ets table Name usable to QLC.
When there are only simple restrictions on the key position QLC uses dets:1ookup/2 to look up the keys, but when that is not possible the whole table is traversed. The option traverse determines how this is done:

- first_next. The table is traversed one key at a time by calling dets:first/1 and dets:next/2.
- select. The table is traversed by calling dets:select/3 and dets:select/1. The option n_objects determines the number of objects returned (the third argument of select/3). The match specification (the second argument of select/3) is assembled by Q LC: simple filters are translated into equivalent match specifications while more complicated filters have to be applied to all objects returned by select/3 given a match specification that matches all objects.
- \{select, MatchSpec\}. A sfor select the table is traversed by calling dets:select/3 and dets:select/1. The difference is that the match specification is explicitly given. This is how to state match specifications that cannot easily be expressed within the syntax provided by Q LC.

The following example uses an explicit match specification to traverse the table:

```
\(1>\) dets:open_file(t, []),
dets:insert(t, \([\{1, a\},\{2, b\},\{3, c\},\{4, d\}])\),
\(\overline{M S}=\) ets:fun2ms(fun(\{X,Y\}) when \((X>1)\) or \((X<5)->\{Y\}\) end),
QH1 = dets:table(t, [\{traverse, \{select, MS\}\}]).
```

An example with implicit match specification:
$2>\mathrm{QH} 2=\mathrm{qlc}: \mathrm{q}([\{\mathrm{Y}\}| |\{\mathrm{X}, \mathrm{Y}\}<-\operatorname{dets}: \operatorname{table}(\mathrm{t}),(\mathrm{X}>1)$ or $(\mathrm{X}<5)])$.
The latter example is in fact equivalent to the former which can be verified using the function qlc:info/1:

```
3> qlc:info(QH1) =:= qlc:info(QH2).
true
qlc:info/1 returns information about a query handle, and in this case identical
information is returned for the two query handles.
to_ets(Name, EtsTab) -> EtsTab | {error, Reason}
```

Types:

- Name = name()
- EtsTab $=$-see ets(3)-

Inserts the objects of the D ets table Name into the Ets table EtsTab. The order in which the objects are inserted is not specified. The existing objects of the Ets table are kept unless overwritten.

```
traverse(Name, Fun) -> Return | {error, Reason}
```

Types:

- Fun = fun(0 bject) $->$ FunReturn
- FunReturn = continue । \{continue, Val $\}$ । \{done, Value\}
- $\mathrm{Val}=$ Value $=$ term()
- N ame = name()
- O bject $=$ object()
- Return = [term()]

A pplies Fun to each object stored in the table Name in some unspecified order. Different actions are taken depending on the return value of Fun. The following Fun return values are allowed:
continue Continue to perform the traversal. For example, the following function can be used to print out the contents of a table:
fun(X) -> io:format("~p~n", [X]), continue end.
\{continue, Val\} C ontinue the traversal and accumulate Val. The following function is supplied in order to collect all objects of a table in a list:
fun(X) $->$ \{continue, $X\}$ end.
\{done, Value\} Terminate the traversal and return [Value | Acc].
A ny other value returned by Fun terminates the traversal and is immediately returned.
update_counter (Name, Key, Increment) -> Result
Types:

- Name = name()
- Key = term()
- Increment $=\{$ Pos, Incr $\}$ | Incr
- Pos = Incr = Result = integer ()

U pdates the object with key Key stored in the table Name of type set by adding Incr to the element at the Pos:th position. The new counter value is returned. If no position is specified, the element directly following the key is updated.

This functions provides a way of updating a counter, without having to look up an object, update the object by incrementing an element and insert the resulting object into the table again.

See Also

ets(3) [page 129], mnesia(3), qlc(3) [page 273]

dict

Erlang M odule

Dict implements a Key - Value dictionary. The representation of a dictionary is not defined.

This module provides exactly the same interface as the module orddict. O ne difference is that while this module considers two keys as different if they do not match (=:=), orddict considers two keys as different if and only if they do not compare equal (==).

DATA TYPES

dictionary()

as returned by new/0

Exports

append(Key, Value, Dict1) -> Dict2
Types:

- Key = Value = term()
- Dict1 = Dict2 = dictionary ()

This function appends a new Value to the current list of values associated with Key. An exception is generated if the initial value associated with Key is not a list of values.
append_list(Key, ValList, Dict1) -> Dict2
Types:

- ValList = [Value]
- Key = Value = term()
- Dict1 = Dict2 = dictionary()

This function appends a list of values ValList to the current list of values associated with Key. An exception is generated if the initial value associated with Key is not a list of values.

```
erase(Key, Dict1) -> Dict2
```

Types:

- Key = term()
- Dict1 = Dict2 = dictionary()

This function erases all items with a given key from a dictionary.

```
fetch(Key, Dict) -> Value
```

Types:

- Key = Value = term()
- Dict = dictionary()

This function returns the value associated with Key in the dictionary Dict. fetch assumes that the Key is present in the dictionary and an exception is generated if Key is not in the dictionary.
fetch_keys(Dict) -> Keys
Types:

- Dict = dictionary()
- Keys = [term()]

This function returns a list of all keys in the dictionary.
filter (Pred, Dict1) -> Dict2
Types:

- Pred = fun(Key, Value) $->$ bool()
- Key = Value = term()
- Dict1 = Dict2 = dictionary ()

Dict2 is a dictionary of all keys and values in Dict1 for which Pred(Key, Value) is true.
find(Key, Dict) $->$ \{ok, Value $\}$ | error
Types:

- Key = Value = term()
- Dict = dictionary ()

This function searches for a key in a dictionary. Returns \{ok, Value $\}$ where Value is the value associated with Key, or error if the key is not present in the dictionary.
fold(Fun, Acc0, Dict) -> Acc1
Types:

- Fun = fun(Key, Value, Accln) $->$ A ccO ut
- Key = Value = term()
- $\mathrm{Acc0}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()
- Dict = dictionary()

Calls Fun on successive keys and values of Dict together with an extra argument Acc (short for accumulator). Fun must return a new accumulator which is passed to the next call. Acc0 is returned if the list is empty. The evaluation order is undefined.

```
from_list(List) -> Dict
```

Types:

$$
\text { - List }=[\{\text { Key, Value }\}]
$$

- Dict = dictionary ()

This function converts the key/value list List to a dictionary.
is_key(Key, Dict) -> bool()
Types:

- Key = term()
- Dict = dictionary()

This function tests if Key is contained in the dictionary Dict.
map(Fun, Dict1) -> Dict2
Types:

- Fun = fun(Key, Value1) -> Value2
- Key = Valuel = Value2 = term()
- Dict1 = Dict2 = dictionary()
map calls Func on successive keys and values of Dict to return a new value for each key. The evaluation order is undefined.

```
merge(Fun, Dict1, Dict2) -> Dict3
```

Types:

- Fun = fun(Key, Value1, Value2) -> Value
- Key $=$ Valuel $=$ Value2 $=$ Value3 $=$ term()
- Dict1 = Dict2 = Dict3 = dictionary ()
merge merges two dictionaries, Dict1 and Dict2, to create a new dictionary. All the Key - Value pairs from both dictionaries are included in the new dictionary. If a key occurs in both dictionaries then Fun is called with the key and both values to return a new value. merge could be defined as:

```
merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
                                    update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
                end, D2, D1).
```

but is faster.
new() -> dictionary()
This function creates a new dictionary.
store(Key, Value, Dict1) -> Dict2
Types:

- Key = Value = term()
- Dict1 = Dict2 = dictionary()

This function stores a Key - Value pair in a dictionary. If the Key already exists in Dict1, the associated value is replaced by value.
to_list(Dict) -> List
Types:

- Dict $=$ dictionary ()
- List $=[\{$ Key, Value $\}]$

This function converts the dictionary to a list representation.

```
update(Key, Fun, Dict1) -> Dict2
    Types:
                            - Key = term()
                            - Fun = fun(Value1) -> Value2
                            - Value1 = Value2 = term()
                            - Dict1 = D ict2 = dictionary()
                            Update the a value in a dictionary by calling Fun on the value to get a new value. An
                            exception is generated if Key is not present in the dictionary.
update(Key, Fun, Initial, Dict1) -> Dict2
Types:
    - Key = Initial = term()
    - Fun = fun(Valuel) -> Value2
    - Value1 = Value2 = term()
    - Dict1 = Dict2 = dictionary()
    U pdate the a value in a dictionary by calling Fun on the value to get a new value. If Key
        is not present in the dictionary then Initial will be stored as the first value. For
        example append/3 could be defined as:
        append(Key, Val, D) ->
            update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).
update_counter(Key, Increment, Dict1) -> Dict2
    Types:
    - Key = term()
    - Increment = number()
    - Dict1 = D ict2 = dictionary()
    A dd Increment to the value associated with Key and store this value. If Key is not
        present in the dictionary then Increment will be stored as the first value.
        This could be defined as:
        update_counter(Key, Incr, D) ->
        update(Key, fun (Old) -> Old + Incr end, Incr, D).
        but is faster.
```


Notes

The functions append and append_list are included so we can store keyed values in a list accumulator. For example:

```
> DO = dict:new(),
    D1 = dict:store(files, [], DO),
    D2 = dict:append(files, f1, D1),
    D3 = dict:append(files, f2, D2),
    D4 = dict:append(files, f3, D3),
    dict:fetch(files, D4).
[f1,f2,f3]
```

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing the result.

The function fetch should be used if the key is known to be in the dictionary, otherwise find.

See Also

gb_trees(3) [page 170], orddict(3) [page 251]

digraph

Erlang M odule

The digraph module implements a version of labeled directed graphs. W hat makes the graphs implemented here non-proper directed graphs is that multiple edges between vertices are allowed. H owever, the customary definition of directed graphs will be used in the text that follows.
A directed graph (or just "digraph") is a pair (V,E) of a finite set V of vertices and a finite set E of directed edges (or just "edges"). The set of edges E is a subset of $V V$ (the C artesian product of V with itself). In this module, V is allowed to be empty; the so obtained unique digraph is called the empty digraph. Both vertices and edges are represented by unique Erlang terms.
Digraphs can be annotated with additional information. Such information may be attached to the vertices and to the edges of the digraph. A digraph which has been annotated is called a labeled digraph, and the information attached to a vertex or an edge is called a label. Labels are Erlang terms.
A n edge $e=(v, w)$ is said to emanate from vertex v and to be incident on vertex w. The out-degree of a vertex is the number of edges emanating from that vertex. The in-degree of a vertex is the number of edges incident on that vertex. If there is an edge emanating from v and incident on w, then w is is said to be an out-neighbour of v, and v is said to be an in-neighbour of w. A path P from $v[1]$ to $v[k]$ in a digraph (V, E) is a non-empty sequence $v[1], v[2], \ldots, v[k]$ of vertices in V such that there is an edge ($v[i], v[i+1]$) in E for $1<=\mathrm{i}<k$. The length of the path P is $k-1$. P is simple if all vertices are distinct, except that the first and the last vertices may be the same. P is a cycle if the length of P is not zero and $v[1]=v[k]$. A loop is a cycle of length one. A simple cycle is a path that is both a cycle and simple. An acyclic digraph is a digraph that has no cycles.

Exports

```
add_edge(G, E, V1, V2, Label) -> edge() | {error, Reason}
add_edge(G, V1, V2, Label) -> edge() | {error, Reason}
add_edge(G, V1, V2) -> edge() | {error, Reason}
```

Types:

- $G=\operatorname{digraph}()$
- $\mathrm{E}=\mathrm{edge}()$
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Label = label()
- Reason = \{bad_edge, Path $\}$ | \{bad_vertex, V \}
- Path = [vertex()]
add_edge/5 creates (or modifies) the edge E of the digraph G , using Label as the (new) label [page 93] of the edge. The edge is emanating [page 93] from V1 and incident [page 93] on V2. Returns E.
add_edge ($\mathrm{G}, \mathrm{V} 1, \mathrm{~V} 2$, Label) is equivalent to add_edge ($\mathrm{G}, \mathrm{E}, \mathrm{V} 1, \mathrm{~V} 2$, Label), where E is a created edge. Tuples on the form ['\$e'|N], where N is an integer $>=1$, are used for representing the created edges.
add_edge ($\mathrm{G}, \mathrm{V} 1, \mathrm{~V} 2$) is equivalent to add_edge ($\mathrm{G}, \mathrm{V} 1, \mathrm{~V} 2,[\mathrm{l}$).
If the edge would create a cycle in an acyclic digraph [page 93], then \{error, \{bad_edge, Path\}\} is returned. If either of V1 or V2 is not a vertex of the digraph G , then $\{$ error, $\{$ bad_vertex, V$\}\}$ is returned, $\mathrm{V}=\mathrm{V} 1$ or $\mathrm{V}=\mathrm{V} 2$.
add_vertex(G, V, Label) -> vertex()
add_vertex (G, V) -> vertex()
add_vertex(G) -> vertex()
Types:
- $G=$ digraph()
- V = vertex()
- Label = label()
add_vertex/3 creates (or modifies) the vertex V of the digraph G, using Label as the (new) label [page 93] of the vertex. Returns V .
add_vertex (G, V) is equivalent to add_vertex ($G, V,[]$).
add_vertex/1 creates a vertex using the empty list as label, and returns the created vertex. Tuples on the form [$\left.{ }^{\prime} \$ \mathrm{v}^{\prime} \mid \mathrm{N}\right]$, where N is an integer $>=1$, are used for representing the created vertices.
del_edge(G, E) -> true
Types:
- G = digraph()
- $\mathrm{E}=\mathrm{edge}($)

Deletes the edge E from the digraph G .
del_edges(G, Edges) -> true
Types:

- G = digraph()
- Edges = [edge()]

Deletes the edges in the list Edges from the digraph G.
del_path(G, V1, V2) -> true
Types:

- $G=$ digraph()
- V1 = V 2 = vertex()

D eletes edges from the digraph G until there are no paths [page 93] from the vertex V1 to the vertex V2.
A sketch of the procedure employed: Find an arbitrary simple path [page 93] $\mathrm{v}[1], \mathrm{v}[2], \ldots, \mathrm{v}[\mathrm{k}]$ from V 1 to V 2 in G . Remove all edges of G emanating [page 93] from $\mathrm{v}[\mathrm{i}$] and incident [page 93] to $\mathrm{v}[\mathrm{i}+1$] for $1<=\mathrm{i}<\mathrm{k}$ (including multiple edges). Repeat until there is no path between V1 and V2.
del_vertex (G, V) -> true
Types:

- $G=\operatorname{digraph}()$
- $\mathrm{V}=$ vertex ()

D eletes the vertex V from the digraph G. A ny edges emanating [page 93] from V or incident [page 93] on v are also deleted.

```
del_vertices(G, Vertices) -> true
```

Types:

- $G=\operatorname{digraph}()$
- Vertices = [vertex ()$]$

D eletes the vertices in the list Vertices from the digraph G .

```
delete(G) -> true
```

Types:

- $G=\operatorname{digraph}()$

D eletes the digraph G. This call is important because digraphs are implemented with Ets. There is no garbage collection of Ets tables. The digraph will, however, be deleted if the process that created the digraph terminates.

```
edge(G, E) -> {E, V1, V2, Label} | false
```

Types:

- $G=\operatorname{digraph}()$
- $\mathrm{E}=$ edge()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Label = label()

Returns $\{\mathrm{E}, \mathrm{V} 1, \mathrm{~V} 2$, Label $\}$ where Label is the label [page 93] of the edge E emanating [page 93] from V1 and incident [page 93] on V2 of the digraph G. If there is no edge E of the digraph G, then false is returned.

```
edges(G) -> Edges
```

Types:

- $G=$ digraph()
- Edges $=[$ edge($)$]

Returns a list of all edges of the digraph G, in some unspecified order.

```
edges(G, V) -> Edges
```

Types:

- $G=\operatorname{digraph}()$
- V = vertex()
- Edges = [edge()]

Returns a list of all edges emanating [page 93] from or incident [page 93] on v of the digraph G , in some unspecified order.

```
get_cycle(G, V) -> Vertices | false
```

Types:

- $G=$ digraph()
- V1 = V 2 = vertex()
- Vertices = [vertex()]

If there is a simple cycle [page 93] of length two or more through the vertex V , then the cycle is returned as a list [V , . . . , V] of vertices, otherwise if there is a loop [page 93] through V , then the loop is returned as a list [V]. If there are no cycles through V , then false is returned.
get_path/3 is used for finding a simple cycle through v.
get_path(G, V1, V2) -> Vertices | false
Types:

- $G=$ digraph ()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Vertices = [vertex ()]

Tries to find a simple path [page 93] from the vertex V1 to the vertex V2 of the digraph G. Returns the path as a list [V1, . . . , V2] of vertices, or false if no simple path from V1 to V2 of length one or more exists.
The digraph G is traversed in a depth-first manner, and the first path found is returned.

```
get_short_cycle(G, V) -> Vertices | false
```

Types:

- $G=$ digraph()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Vertices = [vertex ()]

Tries to find an as short as possible simple cycle [page 93] through the vertex V of the digraph G. Returns the cycle as a list [V, ..., V] of vertices, or false if no simple cycle through V exists. N ote that a loop [page 93] through V is returned as the list [V, V]. get_short_path/3 is used for finding a simple cycle through V.
get_short_path(G, V1, V2) -> Vertices | false
Types:

- $G=$ digraph()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Vertices = [vertex ()]

Tries to find an as short as possible simple path [page 93] from the vertex V1 to the vertex V2 of the digraph G. Returns the path as a list [V1, . . . , V2] of vertices, or false if no simple path from V1 to V2 of length one or more exists.
The digraph G is traversed in a breadth-first manner, and the first path found is returned.

```
in_degree(G, V) -> integer()
```

Types:

- $G=$ digraph()
- $\mathrm{V}=$ vertex ()

Returns the in-degree [page 93] of the vertex V of the digraph G.
in_edges (G, V) -> Edges
Types:

- $G=\operatorname{digraph}()$
- $\mathrm{V}=$ vertex ()
- Edges = [edge($)$]

Returns a list of all edges incident [page 93] on V of the digraph G, in some unspecified order.

```
in_neighbours(G, V) -> Vertices
```

Types:

- $G=\operatorname{digraph}()$
- $\mathrm{V}=$ vertex()
- Vertices $=[$ vertex ()$]$

Returns a list of all in-neighbours [page 93] of V of the digraph G, in some unspecified order.

```
info(G) -> InfoList
```

Types:

- $G=\operatorname{digraph}()$
- InfoList = [\{cyclicity, Cyclicity\}, \{memory, NoWords\}, $\{$ protection, Protection\}]
- Cyclicity = cyclic I acyclic
- Protection = protected | private
- NoWords = integer () >=0

Returns a list of $\{$ Tag, Value $\}$ pairs describing the digraph G . The following pairs are returned:

- \{cyclicity, Cyclicity\}, where Cyclicity is cyclic or acyclic, according to the options given to new.
- \{memory, NoWords\}, where NoWords is the number of words allocated to the ets tables.
- \{protection, Protection\}, where Protection is protected or private, according to the options given to new.
new() -> digraph()
Equivalent to new ([]).
new(Type) -> digraph() | \{error, Reason\}
Types:
- Type = [cyclic | acyclic | private \| protected]
- Reason $=\{$ unknown_type, term() $\}$

Returns an empty digraph [page 93] with properties according to the options in Type:
cyclic Allow cycles [page 93] in the digraph (default).
acyclic The digraph is to be kept acyclic [page 93].
protected Other processes can read the digraph (default).
private The digraph can be read and modified by the creating process only.
If an unrecognized type option T is given, then $\{$ error, $\{$ unknown_type,$T\}\}$ is returned.
no_edges(G) -> integer() $>=0$
Types:

- G = digraph()

Returns the number of edges of the digraph G.
no_vertices(G) -> integer() >= 0
Types:

- $G=$ digraph ()

Returns the number of vertices of the digraph G.
out_degree(G, V) -> integer ()
Types:

- $G=$ digraph()
- $\mathrm{V}=\operatorname{vertex}()$

Returns the out-degree [page 93] of the vertex V of the digraph G.
out_edges(G, V) -> Edges
Types:

- $G=$ digraph()
- V = vertex()
- Edges $=[$ edge($)$]

Returns a list of all edges emanating [page 93] from V of the digraph G, in some unspecified order.
out_neighbours(G, V) -> Vertices
Types:

- G = digraph()
- $\mathrm{V}=$ vertex ()
- Vertices = [vertex ()$]$

Returns a list of all out-neighbours [page 93] of V of the digraph G, in some unspecified order.
vertex (G, V) $->\{V$, Label $\} \mid$ false
Types:

- $G=\operatorname{digraph}()$
- V = vertex()
- Label = label()

Returns $\{\mathrm{V}$, Label $\}$ where Label is the label [page 93] of the vertex V of the digraph G , or false if there is no vertex V of the digraph G.

```
vertices(G) -> Vertices
```

Types:

- $G=\operatorname{digraph}()$
- Vertices = [vertex ()]

Returns a list of all vertices of the digraph G , in some unspecified order.

See Also

digraph_utils(3) [page 100], ets(3) [page 129]

digraph_utils

Erlang M odule

The digraph_utils module implements some algorithms based on depth-first traversal of directed graphs. See the digraph module for basic functions on directed graphs.
A directed graph (or just "digraph") is a pair (V,E) of a finite set V of vertices and a finite set E of directed edges (or just "edges"). The set of edges E is a subset of $V V$ (the Cartesian product of V with itself).
Digraphs can be annotated with additional information. Such information may be attached to the vertices and to the edges of the digraph. A digraph which has been annotated is called a labeled digraph, and the information attached to a vertex or an edge is called a label.
An edge $e=(v, w)$ is said to emanate from vertex v and to be incident on vertex w. If there is an edge emanating from v and incident on w, then w is is said to be an out-neighbour of v. A path P from $v[1]$ to $v[k]$ in a digraph (V, E) is a non-empty sequence $\mathrm{v}[1], \mathrm{v}[2], \ldots, \mathrm{V}[\mathrm{k}]$ of vertices in V such that there is an edge ($\mathrm{v}[\mathrm{i}], \mathrm{v}[\mathrm{i}+1]$) in E for $1<=i<k$. The length of the path P is $k-1$. P is a cycle if the length of P is not zero and $v[1]$ $=\mathrm{v}[\mathrm{k}]$. A loop is a cycle of length one. An acyclic digraph is a digraph that has no cycles.
A depth-first traversal of a directed digraph can be viewed as a process that visits all vertices of the digraph. Initially, all vertices are marked as unvisited. The traversal starts with an arbitrarily chosen vertex, which is marked as visited, and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that vertex in the same fashion, until there is no edge leading to an unvisited vertex. At that point the process backtracks, and the traversal continues as long as there are unexamined edges. If there remain unvisited vertices when all edges from the first vertex have been examined, some hitherto unvisited vertex is chosen, and the process is repeated.
A partial ordering of a set S is a transitive, antisymmetric and reflexive relation between the objects of S . The problem of topological sorting is to find a total ordering of S that is a superset of the partial ordering. A digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is equivalent to a relation E on V (we neglect the fact that the version of directed graphs implemented in the digraph module allows multiple edges between vertices). If the digraph has no cycles of length two or more, then the reflexive and transitive closure of E is a partial ordering.
A subgraph G ' of G is a digraph whose vertices and edges form subsets of the vertices and edges of G . G ' is maximal with respect to a property P if all other subgraphs that include the vertices of G^{\prime} do not have the property P. A strongly connected component is a maximal subgraph such that there is a path between each pair of vertices. A connected component is a maximal subgraph such that there is a path between each pair of vertices, considering all edges undirected.

Exports

```
components(Digraph) -> [Component]
    Types:
    - Digraph = digraph()
    - Component = [vertex()]
    Returns a list of connected components [page 100]. Each component is represented by
    its vertices. The order of the vertices and the order of the components are arbitrary.
    Each vertex of the digraph Digraphoccurs in exactly one component.
condensation(Digraph) -> CondensedDigraph
    Types:
    - Digraph \(=\) C ondensedD igraph \(=\) digraph()
    C reates a digraph where the vertices are the strongly connected components [page 100]
        of Digraph as returned by strong_components/1. If \(X\) and \(Y\) are strongly connected
        components, and there exist vertices \(x\) and \(y\) in \(X\) and \(Y\) respectively such that there is
        an edge emanating [page 100] from \(x\) and incident [page 100] on \(y\), then an edge
        emanating from \(X\) and incident on \(Y\) is created.
        The created digraph has the same type as Digraph. All vertices and edges have the
        default label [page 100] [].
        Each and every cycle [page 100] is included in some strongly connected component,
        which implies that there always exists a topological ordering [page 100] of the created
        digraph.
cyclic_strong_components(Digraph) -> [StrongComponent]
    Types:
    - Digraph = digraph()
    - StrongC omponent = [vertex()]
    Returns a list of strongly connected components [page 100]. Each strongly component
    is represented by its vertices. The order of the vertices and the order of the components
    are arbitrary. O nly vertices that are included in some cycle [page 100] in Digraph are
    returned, otherwise the returned list is equal to that returned by strong_components \(/ 1\).
is_acyclic(Digraph) -> bool()
Types:
- Digraph = digraph()
Returns true if and only if the digraph Digraph is acyclic [page 100].
loop_vertices(Digraph) -> Vertices
Types:
- Digraph = digraph()
- Vertices \(=[\) vertex ()\(]\)
Returns a list of all vertices of Digraph that are included in some loop [page 100].
```

```
postorder(Digraph) -> Vertices
    Types:
    - Digraph = digraph()
    - Vertices = [vertex()]
    Returns all vertices of the digraph Digraph. The order is given by a depth-first traversal
        [page 100] of the digraph, collecting visited vertices in postorder. M ore precisely, the
        vertices visited while searching from an arbitrarily chosen vertex are collected in
        postorder, and all those collected vertices are placed before the subsequently visited
        vertices.
preorder(Digraph) -> Vertices
    Types:
    - Digraph = digraph()
    - Vertices = [ vertex()]
    Returns all vertices of the digraph Digraph. The order is given by a depth-first traversal
        [page 100] of the digraph, collecting visited vertices in pre-order.
reachable(Vertices, Digraph) -> Vertices
```

 Types:
 - Digraph = digraph()
 - Vertices = [vertex()]
 Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path [page 100] in Digraph from some vertex of Vertices to the vertex. In particular, since paths may have length zero, the vertices of Vertices are included in the returned list.

```
reachable_neighbours(Vertices, Digraph) -> Vertices
```

Types:

- Digraph = digraph()
- Vertices $=[$ vertex ()$]$

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path [page 100] in Digraph of length one or more from some vertex of Vertices to the vertex. A s a consequence, only those vertices of Vertices that are included in some cycle [page 100] are returned.
reaching(Vertices, Digraph) -> Vertices
Types:

- Digraph = digraph()
- Vertices = [vertex ()$]$

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path [page 100] from the vertex to some vertex of Vertices. In particular, since paths may have length zero, the vertices of Vertices are included in the returned list.
reaching_neighbours(Vertices, Digraph) -> Vertices
Types:

- Digraph = digraph()
- Vertices = [vertex ()$]$

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path [page 100] of length one or more from the vertex to some vertex of Vertices. A s a consequence, only those vertices of Vertices that are included in some cycle [page 100] are returned.

```
strong_components(Digraph) -> [StrongComponent]
```

Types:

- Digraph = digraph()
- StrongC omponent = [vertex()]

Returns a list of strongly connected components [page 100]. Each strongly component is represented by its vertices. The order of the vertices and the order of the components are arbitrary. Each vertex of the digraph Digraph occurs in exactly one strong component.
subgraph(Digraph, Vertices [, Options]) -> Subgraph | \{error, Reason\}
Types:

- Digraph = Subgraph = digraph()
- O ptions = [\{type, SubgraphType\}, \{keep_labels, bool() \}]
- Reason $=\{$ invalid_option, term() \} । \{unknown_type, term() \}
- SubgraphType = inherit I type()
- Vertices = [vertex()]

C reates a maximal subgraph [page 100] of Digraph having as vertices those vertices of Digraph that are mentioned in Vertices.
If the value of the option type is inherit, which is the default, then the type of Digraph is used for the subgraph as well. O therwise the option value of type is used as argument to digraph:new/1.
If the value of the option keep_labels is true, which is the default, then the labels [page 100] of vertices and edges of Digraph are used for the subgraph as well. If the value is false, then the default label, [], is used for the subgraph's vertices and edges. subgraph(Digraph, Vertices) is equivalent to subgraph(Digraph, Vertices, []).
topsort(Digraph) -> Vertices | false
Types:

- Digraph = digraph()
- Vertices = [vertex ()$]$

Returns a topological ordering [page 100] of the vertices of the digraph Digraph if such an ordering exists, false otherwise. For each vertex in the returned list, there are no out-neighbours [page 100] that occur earlier in the list.

See Also

digraph(3) [page 93]

epp

Erlang M odule

The Erlang code preprocessor includes functions which are used by compile to preprocess macros and include files before the actual parsing takes place.

Exports

```
open(FileName, IncludePath) -> {ok,Epp} | {error, ErrorDescriptor}
open(FileName, IncludePath, PredefMacros) -> {ok,Epp} | {error, ErrorDescriptor}
```

Types:

- FileN ame = atom() | string()
- IncludePath = [DirectoryN ame]
- DirectoryN ame = atom() | string()
- PredefM acros = [\{atom(),term() \}]
- Epp = pid() - handle to the epp server
- ErrorD escriptor = term()

O pens a file for preprocessing.
close(Epp) -> ok
Types:

- Epp = pid() - handle to the epp server

Closes the preprocessing of a file.
parse_erl_form(Epp) -> \{ok, AbsForm\} | \{eof, Line\} | \{error, ErrorInfo\}
Types:

- Epp = pid()
- A bsForm = term()
- Line = integer()
- Errorlnfo = see separate description below.

Returns the next Erlang form from the opened Erlang source file. The tuple \{eof, Line $\}$ is returned at end-of-file. The first form corresponds to an implicit attribute $-f i l e(F i l e, 1) .$, where File is the name of the file.
parse_file(FileName, IncludePath, PredefMacro) -> \{ok, [Form] | \{error, OpenError \}
Types:

- FileN ame = atom() | string()
- IncludePath = [D irectoryN ame]
- DirectoryN ame = atom() | string()
- PredefM acros = [a atom(),term() \}]
- Form = term() - same as returned by erl_parse:parse_form

Preprocesses and parses an Erlang source file. Note that the tuple \{eof, Line\} returned at end-of-file is included as a "form".

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the following format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:

```
apply(Module, format_error, ErrorDescriptor)
```


See Also

erl_parse(3) [page 115]

erl_eval
Erlang M odule

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by erl_parse, the Erlang parser, or a call to io:parse_erl_exprs/2.

Exports

```
exprs(Expressions, Bindings) -> {value, Value, NewBindings}
exprs(Expressions, Bindings, LocalFunctionHandler) -> {value, Value, NewBindings}
exprs(Expressions, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) ->
    {value, Value, NewBindings}
```

 Types:
 - Expressions = as returned by erl_parse or io:parse_erl_exprs/2
 - Bindings = as returned by bindings/1
 - LocalFunctionH andler = \{value, Func\} I \{eval, Func\} I none
 - N onlocalFunctionH andler = \{value, Func \(\}\) । none
 Evaluates Expressions with the set of bindings Bindings, where Expressions is a
 sequence of expressions (in abstract syntax) of a type which may be returned by
 io:parse_erl_exprs/2. See below for an explanation of how and when to use the
 arguments LocalFunctionHandler and NonlocalFunctionHandler.
 Returns \{value, Value, NewBindings\}
 expr(Expression, Bindings) -> \{ value, Value, NewBindings \}
expr(Expression, Bindings, LocalFunctionHandler) $->$ \{ value, Value, NewBindings \}
expr(Expression, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> \{ value,
Value, NewBindings \}
Types:
- Expression = as returned by io:parse_erl_form/2, for example
- Bindings = as returned by bindings/1
- LocalFunctionH andler = \{value, Func\} I \{eval, Func\} I none
- N onlocalFunctionH andler = \{value, Func $\}$ I none
Evaluates Expression with the set of bindings Bindings. Expression is an expression
(in abstract syntax) of a type which may be returned by io: parse_erl_form/2. See
below for an explanation of how and when to use the arguments
LocalFunctionHandler and NonlocalFunctionHandler.
Returns \{value, Value, NewBindings \}.

```
expr_list(ExpressionList, Bindings) -> {ValueList, NewBindings}
expr_list(ExpressionList, Bindings, LocalFunctionHandler) -> {ValueList, NewBindings}
expr_list(ExpressionList, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) ->
    {ValueList, NewBindings}
    Evaluates a list of expressions in parallel, using the same initial bindings for each
    expression. Attempts are made to merge the bindings returned from each evaluation.
    This function is useful in the LocalFunctionHandler. See below.
    Returns {ValueList, NewBindings}.
new_bindings() -> BindingStruct
    Returns an empty binding structure.
bindings(BindingStruct) -> Bindings
Returns the list of bindings contained in the binding structure.
binding(Name, BindingStruct) -> Binding
Returns the binding of Name in BindingStruct.
add_binding(Name, Value, Bindings) -> BindingStruct
Adds the binding Name = Value to Bindings. Returns an updated binding structure.
del_binding(Name, Bindings) -> BindingStruct
```

Removes the binding of Name in Bindings. Returns an updated binding structure.

Local Function Handler

D uring evaluation of a function, no calls can be made to local functions. An undefined function error would be generated. H owever, the optional argument LocalFunctionHandler may be used to define a function which is called when there is a call to a local function. The argument can have the following formats:
\{value, Func $\}$ This defines a local function handler which is called with:
Func (Name, Arguments)
Name is the name of the local function (an atom) and Arguments is a list of the evaluated arguments. The function handler returns the value of the local function. In this case, it is not possible to access the current bindings. To signal an error, the function handler just calls exit/1 with a suitable exit value.
\{eval, Func\} This defines a local function handler which is called with:
Func(Name, Arguments, Bindings)
Name is the name of the local function (an atom), Arguments is a list of the unevaluated arguments, and Bindings are the current variable bindings. The function handler returns:
\{value, Value, NewBindings\}

Value is the value of the local function and NewBindings are the updated variable bindings. In this case, the function handler must itself evaluate all the function arguments and manage the bindings. To signal an error, the function handler just calls exit/1 with a suitable exit value.
none There is no local function handler.

Non-local Function Handler

The optional argument NonlocalFunctionHandler may be used to define a function which is called in the following cases: a functional object (fun) is called; a built-in function is called; a function is called using the M : F syntax, where M and F are atoms or expressions; an operator O / A is called (this is handled as a call to the function erlang: Op/A). Exceptions are calls to erlang: apply/2,3; neither of the function handlers will be called for such calls. The argument can have the following formats:
\{value, Func $\}$ This defines an nonlocal function handler which is called with:
Func(FuncSpec, Arguments)
FuncSpec is the name of the function on the form \{Module, Function\} or a fun, and Arguments is a list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the function handler just calls exit/1 with a suitable exit value.
none There is no nonlocal function handler.

N ote:

For calls such as erlang: apply (Fun, Args) or erlang: apply (Module, Function, Args) the call of the non-local function handler corresponding to the call to erlang:apply/2,3itself-Func(\{erlang, apply\}, [Fun, Args]) or Func(\{erlang, apply\}, [Module, Function, Args])-will never take place. The non-local function handler will however be called with the evaluated arguments of the call to erlang: apply/2, 3: Func (Fun, Args) or Func (\{Module, Function\}, Args) (assuming that \{Module, Function\} is not \{erlang, apply\}).

The nonlocal function handler argument is probably not used as frequently as the local function handler argument. A possible use is to call exit/1 on calls to functions that for some reason are not allowed to be called.

Bugs

The evaluator is not complete. receive cannot be handled properly. A ny undocumented functions in erl_eval should not be used.

erl_expand_records

Erlang M odule

Exports

module(AbsForms, CompileOptions) -> AbsForms
Types:

- AbsForms = [term()]
- CompileO ptions = [term()]

Expands all records in a module. The returned module has no references to records, neither attributes nor code.

See Also

The [abstract format] documentation in ERTS User's G uide

erl_id_trans

Erlang M odule

This module performs an identity parse transformation of Erlang code. It is included as an example for users who may wish to write their own parse transformers. If the option \{parse_transform, Module\} is passed to the compiler, a user written function parse_transform/ 2 is called by the compiler before the code is checked for errors.

Exports

```
parse_transform(Forms, Options) -> Forms
```


Types:

- Forms = [erlang_form()]
- O ptions = [compiler_options()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original Erlang code is then transformed into other Erlang code.

N ote:

Programmers are strongly advised not to engage in parse transformations and no support is offered for problems encountered.

See Also

erl_parse(3) [page 115], compile(3).

erl_internal

Erlang M odule

This module defines Erlang BIFs, guard tests and operators. This module is only of interest to programmers who manipulate Erlang code.

Exports

```
bif(Name, Arity) -> bool()
```

Types:

- Name = atom()
- Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is automatically recognized by the compiler, otherwise false.
guard_bif(Name, Arity) -> bool()
Types:

- $\mathrm{Name}=$ atom()
- Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is allowed in guards, otherwise false.
type_test(Name, Arity) -> bool()
Types:

- $\mathrm{Name}=$ atom()
- Arity = integer()

Returns true if Name/Arity is a valid Erlang type test, otherwise false.
arith_op(OpName, Arity) -> bool()
Types:

- OpName = atom()
- Arity = integer()

Returns true if OpName/Arity is an arithmetic operator, otherwise false.
bool_op(OpName, Arity) -> bool()
Types:

- OpName = atom()
- A rity = integer()

Returns true if OpName/Arity is a Boolean operator, otherwise false.
comp_op(OpName, Arity) -> bool()
Types:

- OpN ame = atom()
- A rity = integer()

Returns true if OpName/Arity is a comparison operator, otherwise false.
list_op(OpName, Arity) -> bool()
Types:

- O pN ame = atom()
- Arity = integer()

Returns true if OpName/Arity is a list operator, otherwise false.
send_op(OpName, Arity) -> bool()
Types:

- OpN ame = atom()
- Arity = integer()

Returns true if OpName/Arity is a send operator, otherwise false.
op_type (OpName, Arity) -> Type
Types:

- OpN ame = atom()
- A rity = integer()
- Type = arith | bool \| comp \| list \| send

Returns the Type of operator that OpName/Arity belongs to, or generates a function_clause error if it is not an operator at all.

erl_lint
 Erlang M odule

This module is used to check Erlang code for illegal syntax and other bugs. It also warns against coding practices which are not recommended.
The errors detected include:

- redefined and undefined functions
- unbound and unsafe variables
- illegal record usage.

Warnings include:

- unused functions and imports
- unused variables
- variables imported into matches
- variables exported from if/case/receive
- variables shadowed in lambdas and list comprehensions.

Some of the warnings are optional, and can be turned on by giving the appropriate option, described below.
The functions in this module are invoked automatically by the Erlang compiler and there is no reason to invoke these functions separately unless you have written your own Erlang compiler.

Exports

```
module(AbsForms) -> {ok,Warnings} | {error,Errors,Warnings}
module(AbsForms, FileName) -> {ok,Warnings} | {error,Errors,Warnings}
module(AbsForms, FileName, CompileOptions) -> {ok,Warnings} | {error,Errors,Warnings}
Types:
- AbsForms = [term()]
- FileN ame = FileN ame2 = atom() | string()
- Warnings = Errors = [ FFilename2,[ErrorInfo] \(\}]\)
- Errorlnfo = see separate description below.
- CompileO ptions = [term()]
This function checks all the forms in a module for errors. It returns:
\{ok,Warnings \} There were no errors in the module.
\{error, Errors, Warnings\} There were errors in the module.
```

Since this module is of interest only to the maintainers of the compiler, and to avoid having the same description in two places to avoid the usual maintainence nightmare, the elements of Options that control the warnings are only described in [compile(3)].
The AbsForms of a module which comes from a file that is read through epp, the Erlang pre-processor, can come from many files. This means that any references to errors must include the file name (see epp(3) [page 104], or parser erl_parse(3) [page 115] The warnings and errors returned have the following format:

```
[{FileName2,[ErrorInfo]}]
```

The errors and warnings are listed in the order in which they are encountered in the forms. This means that the errors from one file may be split into different entries in the list of errors.

```
is_guard_test(Expr) -> bool()
```

Types:

- Expr = term()

This function tests if Expr is a legal guard test. Expr is an Erlang term representing the abstract form for the expression. erl_parse: parse_exprs (Tokens) can be used to generate a list of Expr.
format_error(ErrorDescriptor) -> Chars
Types:

- ErrorD escriptor = errordesc()
- Chars = [char() | C hars]

Takes an ErrorDescriptor and returns a string which describes the error or warning. This function is usually called implicitly when processing an ErrorInfo structure (see below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the following format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:

```
apply(Module, format_error, ErrorDescriptor)
```


See Also

erl_parse(3) [page 115], epp(3) [page 104]

erl_parse

Erlang M odule

This module is the basic Erlang parser which converts tokens into the abstract form of either forms (i.e., top-level constructs), expressions, or terms. The A bstract Format is described in the ERTS U ser's Guide. N ote that a token list must end with the dot token in order to be acceptable to the parse functions (see erl_scan).

Exports

```
parse_form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}
    Types:
    - Tokens = [Token]
    - Token ={Tag,Line} | {Tag,Line,term()}
    - Tag = atom()
    - AbsForm = term()
    - ErrorInfo = see section Error Information below.
    This function parses Tokens as if it were a form. It returns:
    {ok, AbsForm} The parsing was successful. AbsForm is the abstract form of the parsed
        form.
    {error, ErrorInfo} An error occurred.
parse_exprs(Tokens) -> {ok, Expr_list} | {error, ErrorInfo}
    Types:
    - Tokens = [Token]
    - Token ={Tag,Line} | {Tag,Line,term()}
    - Tag = atom()
    - Expr_list = [A bsExpr]
    - AbsExpr = term()
    - ErrorInfo = see section Error Information below.
    This function parses Tokens as if it were a list of expressions. It returns:
    {ok, Expr_list} The parsing was successful. Expr_list is a list of the abstract forms
        of the parsed expressions.
    {error, ErrorInfo} An error occurred.
parse_term(Tokens) -> {ok, Term} | {error, ErrorInfo}
```

Types:

- Tokens = [Token]
- Token = \{Tag,Line\} | \{Tag,Line,term() $\}$
- Tag = atom()
- Term = term()
- Errorl nfo = see section Error Information below.

This function parses Tokens as if it were a term. It returns:
\{ok, Term $\}$ The parsing was successful. Term is the Erlang term corresponding to the token list.
\{error, ErrorInfo\} An error occurred.

```
format_error(ErrorDescriptor) -> Chars
```

Types:

- ErrorD escriptor = errordesc()
- Chars = [char() | C hars]

Uses an ErrorDescriptor and returns a string which describes the error. This function is usually called implicitly when an Error Info structure is processed (see below).
tokens(AbsTerm) -> Tokens
tokens(AbsTerm, MoreTokens) -> Tokens
Types:

- Tokens = M oreTokens = [Token]
- Token $=\{$ Tag,Line $\}$ । $\{$ Tag,Line,term() $\}$
- Tag = atom()
- A bsTerm = term()
- ErrorInfo = see section Error Information below.

This function generates a list of tokens representing the abstract form AbsTerm of an expression. Optionally, it appends Moretokens.
normalise(AbsTerm) -> Data
Types:

- A bsTerm = D ata = term()

Converts the abstract form AbsTerm of a term into a conventional Erlang data structure (i.e., the term itself). This is the inverse of abstract/1.

```
abstract(Data) -> AbsTerm
```

Types:

- D ata $=\mathrm{A}$ bsTerm = term()

Converts the Erlang data structure Data into an abstract form of type AbsTerm. This is the inverse of normalise/1.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:
apply(Module, format_error, ErrorDescriptor)

See Also

io(3) [page 205], erl_scan(3) [page 121], ERTS U ser's Guide

erl_pp
 Erlang M odule

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the form is wrong.
All functions can have an optional argument which specifies a hook that is called if an attempt is made to print an unknown form.

Exports

```
form(Form) -> DeepCharList
form(Form, HookFunction) -> DeepCharList
```

Types:

- Form = term()
- H ookFunction = see separate description below.
- D eepC harList = [char()।D eepC harList]

Pretty prints a Form which is an abstract form of a type which is returned by erl_parse:parse_form.

```
attribute(Attribute) -> DeepCharList
attribute(Attribute, HookFunction) -> DeepCharList
```

Types:

- A ttribute = term()
- H ookFunction = see separate description below.
- D eepC harList = [char() ID eepC harList]

The same as form, but only for the attribute Attribute.

```
function(Function) -> DeepCharList
function(Function, HookFunction) -> DeepCharList
```

Types:

- Function = term()
- H ookFunction = see separate description below.
- D eepC harList = [char() ID eepC harList]

The same as form, but only for the function Function.

```
guard(Guard) -> DeepCharList
guard(Guard, HookFunction) -> DeepCharList
```

Types:

- Form = term()
- HookFunction = see separate description below.
- D eepC harList $=[\operatorname{char}() \mid$ D eepCharList $]$

The same as form, but only for the guard test Guard.

```
exprs(Expressions) -> DeepCharList
exprs(Expressions, HookFunction) -> DeepCharList
exprs(Expressions, Indent, HookFunction) -> DeepCharList
```

Types:

- Expressions = term()
- H ookFunction = see separate description below.
- Indent = integer()
- D eepCharList $=[$ char() |D eepC harList]

The same as form, but only for the sequence of expressions in Expressions.

```
expr(Expression) -> DeepCharList
expr(Expression, HookFunction) -> DeepCharList
expr(Expression, Indent, HookFunction) -> DeepCharList
expr(Expression, Indent, Precedence, HookFunction) ->-> DeepCharList
Types:
- Expression = term()
```

- H ookFunction = see separate description below.
- Indent = integer()
- Precedence =
- D eepCharList $=[$ char($) \mid$ D eepCharList $]$

This function prints one expression. It is useful for implementing hooks (see below).

Unknown Expression Hooks

The optional argument HookFunction, shown in the functions described above, defines a function which is called when an unknown form occurs where there should be a valid expression. It can have the following formats:

Function The hook function is called by:

```
Function(Expr,
                                    CurrentIndentation,
                                    CurrentPrecedence,
                                    HookFunction)
```

none There is no hook function
The called hook function should return a (possibly deep) list of characters. expr/4 is useful in a hook.
If CurrentIndentation is negative, there will be no line breaks and only a space is used as a separator.

Bugs

It should be possible to have hook functions for unknown forms at places other than expressions.

See Also

io(3) [page 205], erl_parse(3) [page 115], erl_eval(3) [page 106]

erl_scan
 Erlang M odule

This module contains functions for tokenizing characters into Erlang tokens.

Exports

```
string(CharList,StartLine]) -> {ok, Tokens, EndLine} | Error
string(CharList) -> {ok, Tokens, EndLine} | Error
Types:
- CharList = string()
- StartLine \(=\) EndLine \(=\) Line \(=\) integer ()
- Tokens \(=[\{\) atom (), Line \(\} \mid\{\) atom (), Line,term( \()\}]\)
- Error \(=\{\) error, Errorlnfo, EndLine \(\}\)
```

Takes the list of characters CharList and tries to scan (tokenize) them. Returns \{ok, Tokens, EndLine\}, where Tokens are the Erlang tokens from CharList. EndLine is the last line where a token was found.

StartLine indicates the initial line when scanning starts. string/1 is equivalent to string (CharList,1).
\{error, ErrorInfo, EndLine\} is returned if an error occurs. EndLine indicates where the error occurred.

```
tokens(Continuation, CharList, StartLine) ->Return
```

Types:

- Return $=$ \{done, Result, LeftO verChars $\}$ | \{more, Continuation\}
- Continuation = [] \| string()
- CharList = string()
- StartLine = EndLine = integer()
- Result $=\{0 k$, Tokens, EndLine $\}$ । \{eof, EndLine $\}$
- Tokens $=[$ atom(),Line $\} \mid\{$ atom(),Line,term() $\}]$

This is the re-entrant scanner which scans characters until a dot ('.' whitespace) has been reached. It returns:
\{done, Result, LeftOverChars \} This return indicates that there is sufficient input data to get an input. Result is:
\{ok, Tokens, EndLine\} The scanning was successful. Tokens is the list of tokens including dot.
\{eof, EndLine\} End of file was encountered before any more tokens.
\{error, ErrorInfo, EndLine\} An error occurred.
\{more, Continuation\} M ore data is required for building a term. Continuation must be passed in a new call to tokens/3 when more data is available.
reserved_word(Atom) -> bool()
Returns true if Atom is an Erlang reserved word, otherwise false.
format_error(ErrorDescriptor) -> string()
Types:

- ErrorD escriptor = errordesc()

Takes an ErrorDescriptor and returns a string which describes the error or warning. This function is usually called implicitly when processing an ErrorInfo structure (see below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the following format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:
apply(Module, format_error, ErrorDescriptor)

Notes

The continuation of the first call to the re-entrant input functions must be []. Refer to Armstrong, Virding and Williams, 'Concurrent Programming in Erlang', Chapter 13, for a complete description of how the re-entrant input scheme works.

See Also

io(3) [page 205], erl_parse(3) [page 115]

erl_tar
Erlang M odule

The erl_tar module archives and extract files to and from a tar file. The tar file format is the PO SIX extended tar file format specified in IEEE Std 1003.1 and ISO /IEC 9945-1. That is the same format as used by tar program on Solaris, but is not the same as used by the GNU tar program.

By convention, the name of a tar file should end in ".tar". To abide to the convention, you'll need to add ". tar" yourself to the name.
Tar files can be created in one operation using the create/2 [page 125] or create/3 [page 125] function.
Alternatively, for more control, the open [page 127], add/3,4 [page 124], and close/ 1 [page 124] functions can be used.
To extract all files from a tar file, use the extract/ 1 [page 125] function. To extract only some files or to be able to specify some more options, use the extract/2 [page 126] function.
To return a list of the files in a tar file, use either the table/ 1 [page 127] or table/2 [page 127] function. To print a list of files to the Erlang shell, use either the $\mathrm{t} / 1$ [page 127] or $\mathrm{tt} / 1$ [page 128] function.
To convert an error term returned from one of the functions above to a readable message, use the format_error/1 [page 126] function.

LIMITATIONS

For maximum compatibility, it is safe to archive files with names up to 100 characters in length. Such tar files can generally be extracted by any tar program.
If filenames exceed 100 characters in length, the resulting tar file can only be correctly extracted by a PO SIX -compatible tar program (such as Solaris tar), not by G NU tar.
File have longer names than 256 bytes cannot be stored at all.
The filename of the file a symbolic link points is always limited to 100 characters.

Exports

```
add(TarDescriptor, Filename, Options) -> RetValue
```

Types:

- TarD escriptor = term()
- Filename = filename()
- Options = [O ption]
- Option = dereference। verbose
- RetValue $=o k \mid\{$ error, $\{$ Filename, Reason $\}\}$
- Reason = term()

The add/3 function adds a file to a tar file that has been opened for writing by open/1 [page 127].
dereference By default, symbolic links will be stored as symbolic links in the tar file. Use the dereference option to override the default and store the file that the symbolic link points to into the tar file. verbose Print an informational message about the file being added.

```
add(TarDescriptor, Filename, NameInArchive, Options) -> RetValue
```

Types:

- TarD escriptor = term()
- Filename = filename()
- N amel nA rchive = filename()
- Options = [O ption]
- O ption = dereferencel verbose
- RetValue =ok|\{error,\{Filename,Reason\}\}
- Reason = term()

The add/4 function adds a file to a tar file that has been opened for writing by open/1 [page 127]. It accepts the same options as add/3 [page 124].
NameInArchive is the name under which the file will be stored in the tar file. That is the name that the file will get when it will be extracted from the tar file.

```
close(TarDescriptor)
```

Types:

- TarD escriptor = term()

The close/1 function closes a tar file opened by open/1 [page 127].
create(Name, FileList) ->RetValue
Types:

- N ame = filename()
- FileList = [filename()]
- RetValue $=$ ok \mid \{error, $\{$ N ame, Reason $\}\}<$ V $>$ Reason $=$ term()

The create/2 function creates a tar file and archives the files whose names are given in FileList into it.

```
create(Name, FileList, OptionList)
```

Types:

- N ame = filename()
- FileList = [filename()]
- OptionList = [Option]
- Option = compressed \mid cooked \mid dereference \mid verbose
- RetValue $=0$ k \mid error, $\{\mathrm{N}$ ame, Reason $\}\}<\mathrm{V}>$ Reason $=$ term()

The create/3 function creates a tar file and archives the files whose names are given in FileList into it.
The options in OptionList modify the defaults as follows.
compressed The entire tar file will be compressed, as if it has been run through the gzip program. To abide to the convention that a compressed tar file should end in ".tar.gz" or ".tgz", you'll need to add the appropriate extension yourself.
cooked By default, the open/2 function will open the tar file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. A dding cooked to the mode list will override the default and open the tar file without the raw option. dereference By default, symbolic links will be stored as symbolic links in the tar file. Use the dereference option to override the default and store the file that the symbolic link points to into the tar file.
verbose Print an informational message about each file being added.
extract(Name) $->$ RetValue
Types:

- N ame = filename()
- RetValue $=0$ l \mid error, $\{\mathrm{N}$ ame, Reason $\}\}$
- Reason = term()

The extract/1 function extracts all files from a tar archive.
If the Name argument is given as "\{binary, Binary $\}$ ", the contents of the binary is assumed to be a tar archive.
If the Name argument is given as " $\{\mathrm{file}, \mathrm{Fd}\}$ ", Fd is assumed to be a file descriptor returned from the file: open/2 function.
O therwise, Name should be a filename.
extract(Name, OptionList)
Types:

- Name $=$ filename() | $\{$ binary,Binary $\}$ । \{file,Fd $\}$
- Binary = binary ()
- $\mathrm{Fd}=$ file_descriptor()
- OptionList = [O ption]
- Option $=\{$ cwd,Cwd\}|\{files,FileList $\} \mid$ keep_old_files \mid verbose
- Cwd = [dirname()]
- FileList = [filename()]
- RetValue $=o k \mid\{$ error, $\{$ Name, Reason $\}\}$
- Reason = term()

The extract/2 function extracts files from a tar archive.
If the Name argument is given as "\{binary, Binary\}", the contents of the binary is assumed to be a tar archive.
If the Name argument is given as "\{file, Fd\}", Fd is assumed to be a file descriptor returned from the file:open/2 function.

O therwise, Name should be a filename.
The following options modify the defaults for the extraction as follows.
\{cwd, Cwd\} Files with relative filenames will by default be extracted to the current working directory. Given the $\{$ cwd , Cwd $\}$ option, the extract/ 2 function will extract into the directory Cwd instead of to the current working directory.
\{files,FileList\} By default, all files will be extracted from the tar file. Given the \{files, Files\} option, the extract/2 function will only extract the files whose names are included in FileList.
compressed G iven the compressed option, the extract/2 function will uncompress the file while extracting If the tar file is not actually compressed, the compressed will effectively be ignored.
cooked By default, the open/2 function will open the tar file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. A dding cooked to the mode list will override the default and open the tar file without the raw option.
keep_old_files By default, all existing files with the same name as file in the tar file will be overwritten Given the keep_old_files option, the extract/2 function will not overwrite any existing files.
verbose Print an informational message as each file is being extracted.

```
format_error(Reason) -> string()
```

Types:

- Reason = term()

The format_error/1 converts an error reason term to a human-readable error message string.
open(Name, OpenModeList) -> RetValue
Types:

- N ame = filename()
- O penM odeL ist = [O penM ode]
- M ode $=$ read \mid write \mid compressed \mid cooked
- RetV alue $=\{$ ok,TarD escriptor $\} \mid\{$ error, $\{$ N ame, Reason $\}\}<\mathrm{V}>$ TarD escriptor $=$ term()
- Reason = term()

The open/2 function opens a tar file.
By convention, the name of a tar file should end in ". tar". To abide to the convention, you'll need to add ". tar" yourself to the name.
N ote that there is currently no function for reading from an opened tar file, meaning that opening a tar file for reading is not very useful.
Except for read and write (which are mutually exclusive), the following atoms may be added to OpenModeList:
compressed The entire tar file will be compressed, as if it has been run through the gzip program. To abide to the convention that a compressed tar file should end in ". tar.gz" or ". tgz", you'll need to add the appropriate extension yourself.
cooked By default, the open/2 function will open the tar file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. A dding cooked to the mode list will override the default and open the tar file without the raw option.

Use the add/3,4 [page 124] functions to add one file at the time into an opened tar file. W hen you are finished adding files, use the close [page 124] function to close the tar file.

Warning:

The TarDescriptor term is not a file descriptor. You should not rely on the specific contents of the TarDescriptor term, as it may change in future versions as more features are added to the erl_tar module.

```
table(Name) -> RetValue
```

Types:

- N ame = filename()
- RetValue $=\{0 k,[$ string ()$]\} \mid\{$ error, $\{\mathrm{N}$ ame, Reason $\}\}$
- Reason = term()

The table/1 function retrieves the names of all files in the tar file Name.

```
table(Name, Options)
```

Types:

- N ame = filename()

The table/2 function retrieves the names of all files in the tar file Name.

```
t(Name)
```

Types:

- N ame = filename()

The $t / 1$ function prints the names of all files in the tar file Name to the Erlang shell. (Similar to "tart".)

Types:

- N ame = filename()

The $t t / 1$ function prints names and information about all files in the tar file Name to the Erlang shell. (Similar to "tartv".)

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large quantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of ordered_set, see below, access time is proportional to the logarithm of the number of objects stored).

D ata is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. W hen the process terminates, the table is automatically destroyed. Every table has access rights set at creation.
Tables are divided into four different types, set, ordered_set, bag and duplicate_bag. A set or ordered_set table can only have one object associated with each key. A bag or duplicate_bag can have many objects associated with each key.

The number of tables stored at one Erlang node is limited. The current default limit is approximately 1400 tables. The upper limit can be increased by setting the environment variable ERL_MAX_ETS_TABLES before starting the Erlang runtime system (i.e. with the -env option to erl/werl). The actual limit may be slightly higher than the one specified, but never lower.
N ote that there is no automatic garbage collection for tables. Even if there are no references to a table from any process, it will not automatically be destroyed unless the owner process terminates. It can be destroyed explicitly by using delete/1.

Some implementation details:

- In the current implementation, every object insert and look-up operation results in one copy of the object.
- This module provides very limited support for concurrent updates. No locking is available, but the safe_fixtable/2 function can be used to guarantee that a sequence of first/1 and next/2 calls will traverse the table without errors even if another process (or the same process) simultaneously deletes or inserts objects in the table.
- '\$end_of_table' should not be used as a key since this atom is used to mark the end of the table when using first/next.

A lso worth noting is the subtle difference between matching and comparing equal, which is demonstrated by the different table types set and ordered_set. Two Erlang terms match if they are of the same type and have the same value, so that 1 matches 1 , but not 1.0 (as 1.0 is a float () and not an integer ()). Two Erlang terms compare equal if they either are of the same type and value, or if both are numeric types and extend to the same value, so that 1 compares equal to both 1 and 1.0. The ordered_set works on the Erlang term order and there is no defined order between an integer () and a float () that extends to the same value, hence the key 1 and the key 1.0 are regarded as equal in an ordered_set table.

In general, the functions below will exit with reason badarg if any argument is of the wrong format, or if the table identifier is invalid.

Match Specifications

Some of the functions uses a match specification, match_spec. A brief explanation is given in select/2 [page 144]. For a detailed description, see the chapter " M atch specifications in Erlang" in ERTS U ser's G uide.

DATA TYPES

```
match_spec()
    a match specification, see above
tid()
    a table identifier, as returned by new/2
```


Exports

```
all() -> [Tab]
```

Types:

- Tab = tid() । atom()

Returns a list of all tables at the node. N amed tables are given by their names, unnamed tables are given by their table identifiers.
delete(Tab) -> true
Types:

- Tab = tid() । atom()

Deletes the entire table Tab.
delete(Tab, Key) -> true
Types:

- Tab = tid() । atom()
- Key = term()

Deletes all objects with the key Key from the table Tab.
delete_all_objects(Tab) -> true
Types:

- Tab = tid() । atom()

Delete all objects in the ETS table Tab. The deletion is atomic.
delete_object(Tab,Object) -> true
Types:

- Tab = tid() । atom()
- O bject = tuple()

D elete the exact object Object from the ETS table, leaving objects with the same key but other differences (useful for type bag).

```
file2tab(Filename) -> {ok,Tab} | {error,Reason}
```

Types:

- Filename = string() | atom()
- Tab = tid() । atom()
- Reason = term()

Reads a file produced by tab2file/2 and creates the corresponding table Tab.

```
first(Tab) -> Key | '$end_of_table'
```

Types:

- Tab = tid() | atom()
- Key = term()

Returns the first key Key in the table Tab. If the table is of the ordered_set type, the first key in Erlang term order will be returned. If the table is of any other type, the first key according to the table's internal order will be returned. If the table is empty, '\$end_of_table' will be returned.
Use next/2 to find subsequent keys in the table.
fixtable(Tab, true|false) -> true | false
Types:

- Tab = tid() | atom()

W arning:

The function is retained for backwards compatibility only. Use safe_fixtable/2 instead.

Fixes a table for safe traversal. The function is primarily used by the M nesia D BMS to implement functions which allow write operations in a table, although the table is in the process of being copied to disk or to another node. It does not keep track of when and how tables are fixed.
foldl(Function, Acc0, Tab) -> Acc1
Types:

- Function $=$ fun($\mathrm{A}, \mathrm{AccIn})->\mathrm{AccO}$ ut
- Tab = tid() | atom()
- $\mathrm{AccO}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()

Acc0 is returned if the table is empty. This function is similar to lists: foldl/3. The order in which the elements of the table are traversed is unspecified, except for tables of type ordered_set, for which they are traversed first to last.
foldr(Function, Acc0, Tab) -> Acc1
Types:

- Function $=$ fun($A, A \operatorname{ccl} n)->A c c O$ ut
- Tab $=$ tid() । atom()
- $\mathrm{AccO}=\mathrm{Accl}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term ()

Acc0 is returned if the table is empty. This function is similar to lists: foldr/3. The order in which the elements of the table are traversed is unspecified, except for tables of type ordered_set, for which they are traversed last to first.
from_dets(Tab, DetsTab) -> Tab
Types:

- Tab = tid() । atom()
- D etsTab = atom()

Fills an already created ETS table with the objects in the already opened D ets table named DetsTab. The existing objects of the ETS table are kept unless overwritten.
fun2ms(LiteralFun) -> MatchSpec
Types:

- LiteralFun - see below
- M atchSpec $=$ match_spec ()

Pseudo function that by means of a parse_transform translates LiteralFun typed as parameter in the function call to a match_spec [page 130]. With "literal" is meant that the fun needs to textually be written as the parameter of the function, it cannot be held in a variable which in turn is passed to the function).
The parse transform is implemented in the module ms_transform and the source must include the file ms_transform.hrl in stdlib for this pseudo function to work. Failing to include the hrl file in the source will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line -include_lib("stdlib/include/ms_transform.hrl"). to the source file.
The fun is very restricted, it can take only a single parameter (the object to match): a sole variable or a tuple. It needs to use the is_X X X guard tests. Language constructs that have no representation in a match_spec (like if, case, receive etc) are not allowed.
The return value is the resulting match_spec.
Example:

$$
1>\text { ets:fun2ms(fun(\{M,N\}) when } N>3->M \text { end). }
$$ [\{\{'\$1','\$2'\},[\{'>','\$2',3\}],['\$1']\}]

Variables from the environment can be imported, so that this works:
$\underline{X=3}$.
3
$3>$ ets:fun2ms(fun(\{M,N\}) when $N>X->M$ end).
[\{\{'\$1', '\$2'\},[\{'>','\$2',\{const, 3\}\}],['\$1']\}]

The imported variables will be replaced by match_spec const expressions, which is consistent with the static scoping for Erlang funs. Local or global function calls can not be in the guard or body of the fun however. Calls to builtin match_spec functions of course is allowed:

```
4> ets:fun2ms(fun({M,N}) when N > X, is_atomm(M) -> M end).
Error: fun containing local Erlang function calls
('is_atomm' called in guard) cannot be translated into match_spec
{error,transform_error}
5> ets:fun2ms(fun({M,N}) when N > X, is_atom(M) -> M end).
[{{'$1','$2'},[{'>','$2',{const,3}},{is_atom,'$1'}],['$1']}]
```

As can be seen by the example, the function can be called from the shell too. The fun needs to be literally in the call when used from the shell as well. O ther means than the parse_transform are used in the shell case, but more or less the same restrictions apply (the exception being records, as they are not handled by the shell).

Warning:

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime (with a badarg). The module ets actually exports a function with this name, but it should never really be called except for when using the function in the shell. If the parse_transform is properly applied by including the ms_transform. hrl header file, compiled code will never call the function, but the function call is replaced by a literal match_spec.

For more information, see ms_transform(3) [page 240].
i() -> void()
Displays information about all ETS tables on tty.

```
i(Tab) -> void()
```

Types:

- Tab = tid() । atom()

Browses the table Tab on tty.

```
info(Tab) -> [{Item, Value}] | undefined
```

Types:

- Tab = tid() । atom()
- Item = atom(), see below
- Value = term(), see below

Returns information about the table Tab as a list of \{Item, Value\} tuples.

W arning:

In Erlang/OTP R10B and earlier releases, this function erroneously returned a tuple. This has now been corrected.

- Item=memory, Value=int()

The number of words allocated to the table.

- Item=owner, Value=pid()

The pid of the owner of the table.

- Item=name, Value=atom()

The name of the table.

- Item=size, Value=int()

The number of objects inserted in the table.

- Item=node, Value=atom()

The node where the table is stored. This field is no longer meaningful as tables cannot be accessed from other nodes.

- Item=named_table, Value=true|false Indicates if the table is named or not.
- Item=type, Value=set|ordered_set|bag|duplicate_bag The table type.
- Item=keypos, Value=int()

The key position.

- Item=protection, Value=public|protected|private The table access rights.
info(Tab, Item) -> Value | undefined
Types:
- Tab = tid() । atom()
- Item, V alue - see below

Returns the information associated with Item for the table Tab. In addition to the \{Item, Value\} pairs defined for info/1, the following items are allowed:

- Item=fixed, Value=true|false Indicates if the table is fixed by any process or not.
- Item=safe_fixed, Value=\{FirstFixed,Info\}|false

If the table has been fixed using safe_fixtable/2, the call returns a tuple where FirstFixed is the time when the table was first fixed by a process, which may or may not be one of the processes it is fixed by right now.
Info is a possibly empty lists of tuples \{Pid, RefCount \}, one tuple for every process the table is fixed by right now. RefCount is the value of the reference counter, keeping track of how many times the table has been fixed by the process. If the table never has been fixed, the call returns false.
init_table(Name, InitFun) -> true
Types:

- N ame = atom()
- InitFun = fun(Arg) -> Res
- Arg = read । close
- Res = end_of_input \| \{[object()], InitFun\} | term()

Replaces the existing objects of the table Tab with objects created by calling the input function InitFun, see below. This function is provided for compatibility with the dets module, it is not more efficient than filling a table by using ets:insert/2.
When called with the argument read the function InitFun is assumed to return end_of_input when there is no more input, or \{Objects, Fun\}, where Objects is a list of objects and Fun is a new input function. A ny other value Value is returned as an error \{error, \{init_fun, Value\}\}. Each input function will be called exactly once, and should an error occur, the last function is called with the argument close, the reply of which is ignored.
If the type of the table is set and there is more than one object with a given key, one of the objects is chosen. This is not necessarily the last object with the given key in the sequence of objects returned by the input functions. This holds also for duplicated objects stored in tables of type duplicate_bag.

```
insert(Tab, ObjectOrObjects) -> true
```

Types:

- Tab = tid() । atom()
- O bjectO rO bjects = tuple() । [tuple()]

Inserts the object or all of the objects in the list ObjectOrObjects into the table Tab. If the table is a set and the key of the inserted objects matches the key of any object in the table, the old object will be replaced. If the table is an ordered_set and the key of the inserted object compares equal to the key of any object in the table, the old object is also replaced. If the list contains more than one object with matching keys and the table is a set, one will be inserted, which one is not defined. The same thing holds for ordered_set, but will also happen if the keys compare equal.

```
insert_new(Tab, ObjectOrObjects) -> bool()
```

Types:

- Tab = tid() । atom()
- O bjectO rO bjects = tuple() । [tuple()]

This function works exactly like insert/2, with the exception that instead of overwriting objects with the same key (in the case of set or ordered_set) or adding more objects with keys already existing in the table (in the case of bag and duplicate_bag), it simply returns false. If ObjectOrObjects is a list, the function checks every key prior to inserting anything. N othing will be inserted if not all keys present in the list are absent from the table.

```
is_compiled_ms(Term) -> bool()
```

Types:

- Term = term()

This function is used to check if a term is a valid compiled match_spec [page 130]. The compiled match_spec is an opaque datatype which can not be sent between Erlang nodes nor be stored on disk. A ny attempt to create an external representation of a compiled match_spec will result in an empty binary $(\ll \gg)$. A s an example, the following expression:
ets:is_compiled_ms(ets:match_spec_compile([\{'_', [],[true]\}])).
will yield true, while the following expressions:

```
MS = ets:match_spec_compile([{'_',[],[true]}]),
Broken = binary_to_term(term_to_binary(MS)),
ets:is_compiled_ms(Broken).
```

will yield false, as the variable Broken will contain a compiled match_spec that has passed through external representation.

N ote:

The fact that compiled match_specs has no external representation is for performance reasons. It may be subject to change in future releases, while this interface will still remain for backward compatibility reasons.

```
last(Tab) -> Key | '$end_of_table'
    Types:
- Tab = tid() | atom()
- Key = term()
Returns the last key Key according to Erlang term order in the table Tab of the ordered_set type. If the table is of any other type, the function is synonymous to first/2. If the table is empty, '\$end_of_table' is returned.
Use prev/2 to find preceding keys in the table.
lookup(Tab, Key) -> [Object]
```

Types:

- Tab = tid() | atom()
- Key = term()
- O bject = tuple()

Returns a list of all objects with the key Key in the table Tab.
In the case of set, bag and duplicate_bag, an object is returned only if the given key matches the key of the object in the table. If the table is an ordered_set however, an object is returned if the key given compares equal to the key of an object in the table. The difference being the same as between $=:=$ and $==$. As an example, one might insert an object with the integer() 1 as a key in an ordered_set and get the object returned as a result of doing a lookup/2 with the float () 1.0 as the key to search for.

If the table is of type set or ordered_set, the function returns either the empty list or a list with one element, as there cannot be more than one object with the same key. If the table is of type bag or duplicate_bag, the function returns a list of arbitrary length.
N ote that the time order of object insertions is preserved; The first object inserted with the given key will be first in the resulting list, and so on.
Insert and look-up times in tables of type set, bag and duplicate_bag are constant, regardless of the size of the table. For the ordered_set data-type, time is proportional to the (binary) logarithm of the number of objects.
lookup_element(Tab, Key, Pos) -> Elem
Types:

- Tab $=$ tid() । atom()
- Key = term()
- Pos = int()
- Elem = term() | [term()]

If the table Tab is of type set or ordered_set, the function returns the Pos:th element of the object with the key Key.
If the table is of type bag or duplicate_bag, the functions returns a list with the Pos:th element of every object with the key Key.
If no object with the key Key exists, the function will exit with reason badarg.
The difference between set, bag and duplicate_bag on one hand, and ordered_set on the other, regarding the fact that ordered_set's view keys as equal when they compare equal whereas the other table types only regard them equal when they match, naturally holds for lookup_element as well as for lookup.
match(Tab, Pattern) -> [Match]
Types:

- Tab = tid() I atom()
- Pattern = tuple()
- M atch = [term()]
M atches the objects in the table Tab against the pattern Pattern.
A pattern is a term that may contain:
- bound parts (Erlang terms),
- ', ' which matches any Erlang term, and
- pattern variables: '\$N' where $\mathrm{N}=0,1, \ldots$

The function returns a list with one element for each matching object, where each element is an ordered list of pattern variable bindings. A n example:

```
6> ets:match(T, '$1'). % Matches every object in the table
    [[{rufsen,dog,7}], [{brunte,horse,5}],[{ludde, dog,5}]]
7> ets:match(T, {'_',dog,'$1'}).
[[7], [5]]
8> ets:match(T, {'_',cow,'$1'}).
[]
```

If the key is specified in the pattern, the match is very efficient. If the key is not specified, i.e. if it is a variable or an underscore, the entire table must be searched. The search time can be substantial if the table is very large.
On tables of the ordered_set type, the result is in the same order as in a first/next traversal.

```
match(Tab, Pattern, Limit) -> {[Match],Continuation} | '$end_of_table'
```

Types:

- Tab = tid() । atom()
- Pattern = tuple()
- M atch $=[$ term()]
- Continuation $=$ term()

Works like ets:match/2 but only returns a limited (Limit) number of matching objects. The Continuation term can then be used in subsequent calls to ets:match/1 to get the next chunk of matching objects. This is a space efficient way to work on objects in a table which is still faster than traversing the table object by object using ets:first/1 and ets:next/1.
'\$end_of_table' is returned if the table is empty.
match(Continuation) -> \{[Match], Continuation $\}$ | '\$end_of_table'
Types:

- M atch $=[$ term($)$]
- C ontinuation = term()

Continues a match started with ets:match/3. The next chunk of the size given in the initial ets:match/3 call is returned together with a new Continuation that can be used in subsequent calls to this function.
'\$end_of_table' is returned when there are no more objects in the table.
match_delete(Tab, Pattern) -> true
Types:

- Tab = tid() । atom()
- Pattern = tuple()

D eletes all objects which match the pattern Pattern from the table Tab. See match/2 for a description of patterns.
match_object(Tab, Pattern) -> [Object]
Types:

- Tab = tid() | atom()
- Pattern = O bject = tuple()

M atches the objects in the table Tab against the pattern Pattern. See match/2 for a description of patterns. The function returns a list of all objects which match the pattern.
If the key is specified in the pattern, the match is very efficient. If the key is not specified, i.e. if it is a variable or an underscore, the entire table must be searched. The search time can be substantial if the table is very large.
On tables of the ordered_set type, the result is in the same order as in a first/next traversal.

```
match_object(Tab, Pattern, Limit) -> \{[Match], Continuation\} | '\$end_of_table'
```

Types:

- Tab = tid() । atom()
- Pattern = tuple()
- M atch = [term()]
- Continuation = term()

Works like ets:match_object/2 but only returns a limited (Limit) number of matching objects. The Continuation term can then be used in subsequent calls to ets:match_object/1 to get the next chunk of matching objects. This is a space efficient way to work on objects in a table which is still faster than traversing the table object by object using ets:first/1 and ets:next/1.
'\$end_of_table' is returned if the table is empty.
match_object(Continuation) -> \{[Match], Continuation\} | '\$end_of_table'
Types:

- M atch $=[$ term($)$]
- Continuation $=$ term()

C ontinues a match started with ets:match_object/3. The next chunk of the size given in the initial ets: match_object/3 call is returned together with a new Continuation that can be used in subsequent calls to this function.
'\$end_of_table' is returned when there are no more objects in the table.

```
match_spec_compile(MatchSpec) -> CompiledMatchSpec
```

Types:

- M atchSpec = match_spec()
- CompiledM atchSpec = comp_match_spec()

This function transforms a match_spec [page 130] into an internal representation that can be used in subsequent calls to ets:match_spec_run/2. The internal representation is opaque and can not be converted to external term format and then back again without losing its properties (meaning it can not be sent to a process on another node and still remain a valid compiled match_spec, nor can it be stored on disk). The validity of a compiled match_spec can be checked using ets:is_compiled_ms/1.
If the term MatchSpec can not be compiled (does not represent a valid match_spec), a badarg fault is thrown.

N ote:

This function has limited use in normal code, it is used by D ets to perform the dets:select operations.

```
match_spec_run(List,CompiledMatchSpec) -> list()
```

Types:

- List = [tuple()]
- CompiledM atchSpec = comp_match_spec()

This function executes the matching specified in a compiled match_spec [page 130] on a list of tuples. The CompiledMatchSpec term should be the result of a call to ets:match_spec_compile/1 and is hence the internal representation of the match_spec one wants to use.
The matching will be executed on each element in List and the function returns a list containing all results. If an element in List does not match, nothing is returned for that element. The length of the result list is therefore equal or less than the the length of the parameter List. The two calls in the following example will give the same result (but certainly not the same execution time...):

```
Table = ets:new...
MatchSpec = ....
% The following call...
ets:match_spec_run(ets:tab2list(Table),
ets:match_spec_compile(MatchSpec)),
% ...will give the same result as the more common (and more efficient)
ets:select(Table,MatchSpec),
```


N ote:

This function has limited use in normal code, it is used by Dets to perform the dets : select operations and by M nesia during transactions.
member (Tab, Key) -> true | false
Types:

- Tab = tid() । atom()
- Key = term()

Works like lookup/2, but does not return the objects. The function returns true if one or more elements in the table has the key Key, false otherwise.

```
new(Name, Options) -> tid()
```

Types:

- N ame = atom()
- Options = [O ption]
- Option = Type \| Access \| named_table \| \{keypos,Pos\}
- Type = set | ordered_set | bag | duplicate_bag
- A ccess = public \| protected \| private
- Pos = int()

Creates a new table and returns a table identifier which can be used in subsequent operations. The table identifier can be sent to other processes so that a table can be shared between different processes within a node.
The parameter Options is a list of atoms which specifies table type, access rights, key position and if the table is named or not. If one or more options are left out, the default values are used. This means that not specifying any options ([]) is the same as specifying [set, protected, $\{$ keypos, 1$\}$].

- set The table is a set table - one key, one object, no order among objects. This is the default table type.
- ordered_set The table is a ordered_set table - one key, one object, ordered in Erlang term order, which is the order implied by the < and > operators. Tables of this type have a somewhat different behavior in some situations than tables of the other types. M ost notably the ordered_set tables regard keys as equal when they compare equal, not only when they match. This means that to an ordered_set, the integer () 1 and the float () 1.0 are regarded as equal. This also means that the key used to lookup an element not necessarily matches the key in the elements returned, if float ()'s and integer ()'s are mixed in keys of a table.
- bag The table is a bag table which can have many objects, but only one instance of each object, per key.
- duplicate_bag The table is a duplicate_bag table which can have many objects, including multiple copies of the same object, per key.
- public Any process may read or write to the table.
- protected The owner process can read and write to the table. Other processes can only read the table. This is the default setting for the access rights.
- private O nly the owner process can read or write to the table.
- named_table If this option is present, the name Name is associated with the table identifier. The name can then be used instead of the table identifier in subsequent operations.
- \{keypos, Pos $\}$ Specfies which element in the stored tuples should be used as key. By default, it is the first element, i.e. Pos=1. H owever, this is not always appropriate. In particular, we do not want the first element to be the key if we want to store Erlang records in a table.
N ote that any tuple stored in the table must have at least Pos number of elements.

```
next(Tab, Key1) -> Key2 | '$end_of_table'
```

Types:

- Tab = tid() | atom()
- Key1 = Key2 = term()

Returns the next key Key2, following the key Key1 in the table Tab. If the table is of the ordered_set type, the next key in Erlang term order is returned. If the table is of any other type, the next key according to the table's internal order is returned. If there is no next key, '\$end_of_table' is returned.
Use first/1 to find the first key in the table.
Unless a table of type set, bag or duplicate_bag is protected using safe_fixtable/2, see below, a traversal may fail if concurrent updates are made to the table. If the table is of type ordered_set, the function returns the next key in order, even if the object does no longer exist.
prev(Tab, Key1) -> Key2 | '\$end_of_table'
Types:

- Tab = tid() । atom()
- Key1 = Key2 = term()

Returns the previous key Key2, preceding the key Key1 according the Erlang term order in the table Tab of the ordered_set type. If the table is of any other type, the function is synonymous to next/2. If there is no previous key, '\$end_of_table' is returned.
Use last/1 to find the last key in the table.
rename(Tab, Name) -> Name
Types:

- Tab = N ame = atom()

Renames the named table Tab to the new name Name. A fterwards, the old name can not be used to access the table. Renaming an unnamed table has no effect.

```
repair_continuation(Continuation, MatchSpec) -> Continuation
```

Types:

- C ontinuation = term()
- M atchSpec = match_spec()

This function can be used to restore an opaque continuation returned by ets: select/3 or ets: select/1 if the continuation has passed through external term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match_specs and therefore will be invalidated if converted to external term format. Given that the original match_spec is kept intact, the continuation can be restored, meaning it can once again be used in subsequent ets: select/1 calls even though it has been stored on disk or on another node.
As an example, the following seqence of calls will fail:
T=ets:new ($x,[]$),
$\left\{_{-}, C\right\}=$ ets:select(T,ets:fun2ms(fun(\{N,_\}=A)
when (N rem 10) $=:=0$->
A
end), 10),
Broken = binary_to_term(term_to_binary(C)), ets:select(Broken).
...while the follow ing sequence will work:
T=ets:new ($\mathrm{x},[\mathrm{l}$) ,
MS = ets:fun2ms(fun(\{N,_\}=A)
when (N rem 10) =:= 0 ->
A
end),
\{_, C\} = ets:select(T,MS,10),
Broken = binary_to_term(term_to_binary(C)), ets:select(ets:repair_continuation(Broken, MS)).
...as the call to ets:repair_continuation/2 will reestablish the (deliberately) invalidated continuation Broken.

N ote:

This function is very rarely needed in application code. It is used by M nesia to implement distributed select/3 and select/1 sequences. A normal application would either use M nesia or keep the continuation from being converted to external format.
The reason for not having an external representation of a compiled match_spec is performance. It may be subject to change in future releases, while this interface will remain for backward compatibility.

```
safe_fixtable(Tab, true|false) -> true
```

Types:

- Tab = tid() । atom()

Fixes a table of the set, bag or duplicate_bag table type for safe traversal.
A process fixes a table by calling safe_fixtable (Tab, true). The table remains fixed until the process releases it by calling safe_fixtable (Tab,false), or until the process terminates.
If several processes fix a table, the table will remain fixed until all processes have released it (or terminated). A reference counter is kept on a per process basis, and N consecutive fixes requires N releases to actually release the table.
When a table is fixed, a sequence of first/1 and next/2 calls are guaranteed to succeed even if objects are removed during the traversal. A n example:

```
clean_all_with_value(Tab,X) ->
    safe_fixtable(Tab,true),
    clean_all_with_value(Tab,X,ets:first(Tab)),
    safe_fixtable(Tab,false).
clean_all_with_value(Tab,X,'$end_of_table') ->
    true;
clean_all_with_value(Tab,X,Key) ->
    case ets:lookup(Tab,Key) of
            [{Key,X}] ->
                ets:delete(Tab,Key);
            _ ->
                true
    end,
    clean_all_with_value(Tab,X,ets:next(Tab,Key)).
```

N ote that no deleted objects are actually removed from a fixed table until it has been released. If a process fixes a table but never releases it, the memory used by the deleted objects will never be freed. The performance of operations on the table will also degrade significantly.
Use info/2 to retrieve information about which processes have fixed which tables. A system with a lot of processes fixing tables may need a monitor which sends alarms when tables have been fixed for too long.

N ote that for tables of the ordered_set type, safe_fixtable/2 is not necessary as calls to first/1 and next/2 will always succeed.

```
select(Tab, MatchSpec) -> [Match]
```

Types:

- Tab = tid() | atom()
- M atch = term()
- M atchSpec $=$ match_spec()
M atches the objects in the table Tab using a match_spec [page 130]. This is a more general call than the ets:match/2 and ets:match_object/2 calls. In its simplest forms the match_specs look like this:
- M atchSpec $=[M$ atchFunction $]$
- M atchFunction $=\{M$ atchH ead, [G uard], [Result] $\}$
- M atchH ead = "Pattern as in ets:match"
- Guard $=$ \{"G uardtest name", ...\}
- Result = "Term construct"

This means that the match_spec is always a list of one or more tuples (of arity 3). The tuples first element should be a pattern as described in the documentation of ets:match/2. The second element of the tuple should be a list of 0 or more guard tests (described below). The third element of the tuple should be a list containing a description of the value to actually return. In almost all normal cases the list contains exactly one term which fully describes the value to return for each object.
The return value is constructed using the "match variables" bound in the M atchH ead or using the special match variables '\$_' (the whole matching object) and '\$\$' (all match variables in a list), so that the following ets:match/2 expression:

```
ets:match(Tab,{'$1','$2','$3'})
```

is exactly equivalent to:

```
ets:select(Tab,[{{'$1','$2','$3'},[],['$$']}])
```

- and the following ets:match_object/2 call:
ets:match_object(Tab,\{'\$1','\$2', '\$1'\})
is exactly equivalent to

```
ets:select(Tab,[{{'$1','$2','$1'},[],['$_']}])
```

Composite terms can be constructed in the Result part either by simply writing a list, so that this code:

```
ets:select(Tab,[{{'$1','$2','$3'},[],['$$']}])
```

gives the same output as:

```
ets:select(Tab,[{{'$1','$2','$3'},[],[['$1','$2','$3']]}])
```

i.e. all the bound variables in the match head as a list. If tuples are to be constructed, one has to write a tuple of arity 1 with the single element in the tuple being the tuple one wants to construct (as an ordinary tuple could be mistaken for a Guard). Therefore the following call:

```
ets:select(Tab,[{{'$1','$2', '$1'},[],['$_']}])
```

gives the same output as:

```
ets:select(Tab,[{{'$1','$2','$1'},[],[{{'$1','$2','$3'}}]}])
```

- this syntax is equivalent to the syntax used in the trace patterns (see [dbg(3)]).

The Guards are constructed as tuples where the first element is the name of the test and the rest of the elements are the parameters of the test. To check for a specific type (say a list) of the element bound to the match variable '\$1', one would write the test as \{is_list, ' $\$ 1$ ' $\}$. If the test fails, the object in the table will not match and the next MatchFunction (if any) will be tried. M ost guard tests present in Erlang can be used, but only the new versions prefixed is_ are allowed (like is_float, is_atom etc).

The Guard section can also contain logic and arithmetic operations, which are written with the same syntax as the guard tests (prefix notation), so that a guard test written in Erlang looking like this:

```
is_integer(X), is_integer(Y), X + Y < 4711
```

is expressed like this (X replaced with '\$1' and Y with '\$2'):
[\{is_integer, ' $\$ 1$ '\}, $\left.\left\{i s _i n t e g e r, ~ ' \$ 2 '\right\}, ~\{'<', ~\{'+', ~ ' \$ 1 ', ~ ' \$ 2 '\}, ~ 4711\}\right]$

```
select(Tab, MatchSpec, Limit) -> {[Match],Continuation} | '$end_of_table'
```

Types:

- Tab = tid() | atom()
- M atch $=$ term()
- M atchSpec = match_spec()
- Continuation $=$ term()

Works like ets: select/2 but only returns a limited (Limit) number of matching objects. The Continuation term can then be used in subsequent calls to ets: select/1 to get the next chunk of matching objects. This is a space efficient way to work on objects in a table which is still faster than traversing the table object by object using ets:first/1 and ets:next/1.
'\$end_of_table' is returned if the table is empty.

```
select(Continuation) -> {[Match],Continuation} | '$end_of_table'
```

Types:

- M atch = term()
- Continuation = term()

C ontinues a match started with ets: select/3. The next chunk of the size given in the initial ets:select/3 call is returned together with a new Continuation that can be used in subsequent calls to this function.
'\$end_of_table' is returned when there are no more objects in the table.
select_delete(Tab, MatchSpec) -> NumDeleted
Types:

- Tab = tid() । atom()
- O bject = tuple()
- M atchSpec = match_spec()
- N umD eleted = integer()

M atches the objects in the table Tab using a match_spec [page 130]. If the match_spec returns true for an object, that object is removed from the table. For any other result from the match_spec the object is retained. This is a more general call than the ets:match_delete/2 call.
The function returns the number of objects actually deleted from the table.

N ote:

The match_spec has to return the atom true if the object is to be deleted. No other return value will get the object deleted, why one can not use the same match specification for looking up elements as for deleting them.

```
select_count(Tab, MatchSpec) -> NumMatched
```

Types:

- Tab = tid() । atom()
- O bject = tuple()
- M atchSpec = match_spec()
- N umM atched $=$ integer ()

M atches the objects in the table Tab using a match_spec [page 130]. If the match_spec returns true for an object, that object considered a match and is counted. For any other result from the match_spec the object is not considered a match and is therefore not counted.

The function could be described as a match_delete/2 that does not actually delete any elements, but only counts them.
The function returns the number of objects matched.

```
slot(Tab, I) -> [Object] | '$end_of_table'
Types:
- Tab = tid() | atom()
- I = int()
- Object = tuple()
This function is mostly for debugging purposes, N ormally one should use first/next or last/prev instead.
```

Returns all objects in the I:th slot of the table Tab. A table can be traversed by repeatedly calling the function, starting with the first slot $\mathrm{I}=0$ and ending when '\$end_of_table' is returned. The function will fail with reason badarg if the I argument is out of range.
Unless a table of type set, bag or duplicate_bag is protected using safe_fixtable/2, see above, a traversal may fail if concurrent updates are made to the table. If the table is of type ordered_set, the function returns a list containing the I:th object in Erlang term order.

```
tab2file(Tab, Filename) -> ok | {error,Reason}
```

Types:

- Tab $=$ tid() । atom()
- Filename = string() | atom()
- Reason = term()

D umps the table Tab to the file Filename. The implementation of this function is not efficient.

```
tab2list(Tab) -> [Object]
```

Types:

- Tab = tid() | atom()
- O bject = tuple()

Returns a list of all objects in the table Tab.
table(Tab [, Options]) -> QueryHandle
Types:

- Tab = tid() । atom()
- QueryH andle = -a query handle, see qlc(3)-
- Options = [O ption] | Option
- O ption = \{n_objects, N O bjects\} । \{traverse, TraverseM ethod\}
- NO bjects = default । integer () >0
- TraverseM ethod = first_next \| last_prev \| select \| \{select, M atchSpec\}
- M atchSpec = match_spec()

Returns a Q LC (Q uery List Comprehension) query handle. The module qlc implements a query language aimed mainly at M nesia but ETS tables, D ets tables, and lists are also recognized by QLC as sources of data. Calling ets:table/1, 2 is the means to make the ETS table Tab usable to Q LC.

W hen there are only simple restrictions on the key position Q LC uses ets:lookup/2 to look up the keys, but when that is not possible the whole table is traversed. The option traverse determines how this is done:

- first_next. The table is traversed one key at a time by calling ets:first/1 and ets:next/2.
- last_prev. The table is traversed one key at a time by calling ets:last/1 and ets:prev/2.
- select. The table is traversed by calling ets: select/3 and ets:select/1. The option n_objects determines the number of objects returned (the third argument of select/3); the default is to return 100 objects at a time. The match_spec [page 130] (the second argument of select/3) is assembled by Q LC : simple filters are translated into equivalent match_specs while more complicated filters have to be applied to all objects returned by select/3 given a match_spec that matches all objects.
- \{select, MatchSpec\}. As for select the table is traversed by calling ets: select/3 and ets: select/1. The difference is that the match_spec is explicitly given. This is how to state match_specs that cannot easily be expressed within the syntax provided by Q LC.

The following example uses an explicit match_spec to traverse the table:

$$
\begin{aligned}
& 9>\text { ets:insert }(T a b=\text { ets:new }(t,[]),[\{1, \mathrm{a}\},\{2, \mathrm{~b}\},\{3, \mathrm{c}\},\{4, \mathrm{~d}\}]), \\
& \mathrm{MS}=\text { ets:fun2ms }(\text { fun }(\{\mathrm{X}, \mathrm{Y}\}) \text { when }(X>1) \text { or }(X<5)->\{\mathrm{Y}\} \text { end }), \\
& \text { QH1 = ets:table(Tab, }[\{\text { traverse, }\{\text { select, MS }\}\}]) .
\end{aligned}
$$

An example with implicit match_spec:

```
10> QH2 = qlc:q([{Y} || {X,Y}<- ets:table(Tab), (X > 1) or (X < 5)]).
```

The latter example is in fact equivalent to the former which can be verified using the function qlc:info/1:

```
11> qlc:info(QH1)=:= qlc:info(QH2).
true
```

qlc:info/1 returns information about a query handle, and in this case identical information is returned for the two query handles.

```
test_ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
```

Types:

- Tuple = tuple()
- M atchSpec = match_spec()
- Result = term()
- Errors $=[$ [warning lerror, string() $\}$]

This function is a utility to test a match_spec [page 130] used in calls to ets: select/2. The function both tests MatchSpec for "syntactic" correctness and runs the match_spec against the object Tuple. If the match_spec contains errors, the tuple \{error, Errors\} is returned where Errors is a list of natural language descriptions of what was wrong with the match_spec. If the match_spec is syntactically OK, the function returns \{ok, Term $\}$ where Term is what would have been the result in a real ets: select/2 call or false if the match_spec does not match the object Tuple.
This is a useful debugging and test tool, especially when writing complicated ets:select/2 calls.
to_dets(Tab, DetsTab) -> Tab
Types:

- Tab = tid() | atom()
- D etsTab = atom()

Fills an already created/opened D ets table with the objects in the already opened ETS table named Tab. The D ets table is emptied before the objects are inserted.
update_counter(Tab, Key, \{Pos,Incr, Threshold,SetValue\}) -> Result
update_counter (Tab, Key, \{Pos,Incr\}) -> Result
update_counter(Tab, Key, Incr) -> Result
Types:

- Tab = tid() । atom()
- Key = term()
- $\operatorname{Pos}=\operatorname{Incr}=$ Threshold $=$ SetValue $=$ Result $=\operatorname{int}()$

This function provides an efficient way to update a counter, without the hassle of having to look up an object, update the object by incrementing an element and insert the resulting object into the table again. (The update is done atomically; i.e. no process can access the ets table in the middle of the operation.)
It will destructively update the object with key Key in the table Tab by adding Incr to the element at the Pos:th position. The new counter value is returned. If no position is specified, the element directly following the key (<keypos>+1) is updated.
If a Threshold is specified, the counter will be reset to the value SetValue if the following conditions occur:

- The Incr is not negative ($>=0$) and the result would be greater than $(>)$ Threshold
- The Incr is negative (<0) and the result would be less than $(<)$ Threshold

The given Key is used to identify the object by either matching the key of an object in a set table, or compare equal to the key of an object in an ordered_set table (see lookup/2 [page 136] and new/2 [page 140] for details on the difference).
The function will fail with reason badarg if:

- the table is not of type set or ordered_set,
- no object with the right key exists,
- the object has the wrong arity,
- the element to update is not an integer,
- the element to update is also the key, or,
- any of Pos, Incr, Threshold or SetValue is not an integer

file_sorter

Erlang M odule

The functions of this module sort terms on files, merge already sorted files, and check files for sortedness. C hunks containing binary terms are read from a sequence of files, sorted internally in memory and written on temporary files, which are merged producing one sorted file as output. M erging is provided as an optimization; it is faster when the files are already sorted, but it always works to sort instead of merge.
On a file, a term is represented by a header and a binary. Two options define the format of terms on files:

- \{header, HeaderLength\}. H eaderLength determines the number of bytes preceding each binary and containing the length of the binary in bytes. Default is 4. The order of the header bytes is defined as follows: if B is a binary containing a header only, the size Size of the binary is calculated as
<Size:HeaderLength/unit:8> = B.
- \{format, Format \}. The format determines the function that is applied to binaries in order to create the terms that will be sorted. The default value is binary_term, which is equivalent to funbinary_to_term/1. The value binary is equivalent to fun(X) $->X$ end, which means that the binaries will be sorted as they are. This is the fastest format. If Format is term, io:read/2 is called to read terms. In that case only the default value of the header option is allowed. The format option also determines what is written to the sorted output file: if Format is term then io: format/3 is called to write each term, otherwise the binary prefixed by a header is written. N ote that the binary written is the same binary that was read; the results of applying the Format function are thrown away as soon as the terms have been sorted. Reading and writing terms using the io module is very much slower than reading and writing binaries.

O ther options are:

- \{order, Order\}. The default is to sort terms in ascending order, but that can be changed by the value descending or by giving an ordering function Fun. Fun (A, B) should return true if A comes before B in the ordering, false otherwise. Using an ordering function will slow down the sort considerably. The keysort, keymerge and keycheck functions do not accept ordering functions.
- \{unique, bool()\}. When sorting or merging files, only the first of a sequence of terms that compare equal is output if this option is set to true. The default value is false which implies that all terms that compare equal are output. When checking files for sortedness, a check that no pair of consecutive terms compares equal is done if this option is set to true.
- \{tmpdir, TempDirectory\}. The directory where temporary files are put can be chosen explicitly. The default, implied by the value "", is to put temporary files on the same directory as the sorted output file. If output is a function (see below), the directory returned by file:get_cwd() is used instead. The names of temporary files are derived from the Erlang nodename (node()), the process identifier of the current Erlang emulator (os: getpid()), and a timestamp (erlang:now()); a typical name would be fs_mynode@myhost_1763_1043_337000_266005.17, where 17 is a sequence number. Existing files will be overwritten. Temporary files are deleted unless some uncaught EXIT signal occurs.
- \{compressed, bool() \}. Temporary files and the output file may be compressed. The default value false implies that written files are not compressed. Regardless of the value of the compressed option, compressed files can always be read. N ote that reading and writing compressed files is significantly slower than reading and writing uncompressed files.
- \{size, Size\}. By default approximately 512*1024 bytes read from files are sorted internally. This option should rarely be needed.
- \{no_files, NoFiles\}. By default 16 files are merged at a time. This option should rarely be needed.

To summarize, here is the syntax of the options:

- Options = [Option] | Option
- Option $=$ \{header, HeaderLength $\}$ |format, Format \mid \{order, Order $\}$ | \{unique, bool()\} | \{tmpdir, TempDirectory\} | \{compressed, bool()\} | \{size, Size\} | \{no_files, NoFiles\}
- HeaderLength $=\operatorname{int}()>0$
- Format = binary_term | term | binary | FormatFun
- FormatFun $=$ fun(Binary) $->$ Term
- Order = ascending | descending | OrderFun
- OrderFun = fun(Term, Term) -> bool()
- TempDirectory = "" | file_name()
- Size $=$ int() $>=0$
- NoFiles = int() > 1

A s an alternative to sorting files, a function of one argument can be given as input. When called with the argument read the function is assumed to return end_of_input or \{end_of_input, Value\}\} when there is no more input (Value is explained below), or \{Objects, Fun\}, where Objects is a list of binaries or terms depending on the format and Fun is a new input function. A ny other value is immediately returned as value of the current call to sort or keysort. Each input function will be called exactly once, and should an error occur, the last function is called with the argument close, the reply of which is ignored.
A function of one argument can be given as output. The results of sorting or merging the input is collected in a non-empty sequence of variable length lists of binaries or terms depending on the format. The output function is called with one list at a time, and is assumed to return a new output function. A ny other return value is immediately returned as value of the current call to the sort or merge function. Each output function is called exactly once. W hen some output function has been applied to all of the results or an error occurs, the last function is called with the argument close, and the reply is
returned as value of the current call to the sort or merge function. If a function is given as input and the last input function returns \{end_of_input, Value \}, the function given as output will be called with the argument \{value, Value\}. This makes it easy to initiate the sequence of output functions with a value calculated by the input functions
As an example, consider sorting the terms on a disk log file. A function that reads chunks from the disk log and returns a list of binaries is used as input. The results are collected in a list of terms.

```
sort(Log) ->
    {ok, _} = disk_log:open([{name,Log}, {mode,read_only}]),
    Input = input(Log, start),
    Output = output([]),
    Reply = file_sorter:sort(Input, Output, {format,term}),
    ok = disk_log:close(Log),
    Reply.
input(Log, Cont) ->
    fun(close) ->
            ok;
        (read) ->
            case disk_log:chunk(Log, Cont) of
                    {error, Reason} ->
                {error, Reason};
                    {Cont2, Terms} ->
                            {Terms, input(Log, Cont2)};
                    {Cont2, Terms, _Badbytes} ->
                                    {Terms, input(Log, Cont2)};
                    eof ->
                    end_of_input
            end
    end.
output(L) ->
    fun(close) ->
        lists:append(lists:reverse(L));
        (Terms) ->
            output([Terms | L])
    end.
```

Further examples of functions as input and output can be found at the end of the file_sorter module; the term format is implemented with functions.
The possible values of Reason returned when an error occurs are:

- bad_object, \{bad_object, FileName\}. Applying the format function failed for some binary, or the key(s) could not be extracted from some term.
- \{bad_term, FileName\}. io:read/2 failed to read some term.
- \{file_error, FileName, Reason2\}. See file(3) for an explanation of Reason2.
- \{premature_eof, FileName\}. End-of-file was encountered inside some binary term.

Types

```
Binary = binary()
FileName = file_name()
FileNames = [FileName]
ICommand = read | close
IReply = end_of_input | {end_of_input, Value} | {[Object], Infun} | InputReply
Infun = fun(ICommand) -> IReply
Input = FileNames | Infun
InputReply = Term
KeyPos = int() > 0 | [int() > 0]
OCommand = {value, Value} | [Object] | close
OReply = Outfun | OutputReply
Object = Term | Binary
Outfun = fun(OCommand) -> OReply
Output = FileName | Outfun
OutputReply = Term
Term = term()
Value = Term
```


Exports

```
sort(FileName) -> Reply
sort(Input, Output) -> Reply
sort(Input, Output, Options) -> Reply
Types:
- Reply =ok \| \{error, Reason\} | InputReply | O utputReply
Sorts terms on files.
sort (FileName) is equivalent to sort ([FileName], FileName).
sort(Input, Output) is equivalent to sort(Input, Output, []).
keysort(KeyPos, FileName) -> Reply
keysort(KeyPos, Input, Output) -> Reply
keysort(KeyPos, Input, Output, Options) -> Reply
```

Types:

- Reply =ok \| \{error, Reason\} \| InputReply | O utputReply

Sorts tuples on files. The sort is performed on the element(s) mentioned in KeyPos. If two tuples compare equal on one element, next element according to KeyPos is compared. The sort is stable.
keysort(N, FileName) is equivalent to keysort(N, [FileName], FileName).
keysort(N, Input, Output) is equivalent to keysort(N, Input, Output, []).
merge(FileNames, Output) -> Reply
merge(FileNames, Output, Options) -> Reply
Types:

- Reply =ok I \{error, Reason\} | O utputReply

M erges terms on files. Each input file is assumed to be sorted.
merge(FileNames, Output) is equivalent to merge(FileNames, Output, []).
keymerge(KeyPos, FileNames, Output) -> Reply
keymerge(KeyPos, FileNames, Output, Options) -> Reply
Types:

- Reply = ok | \{error, Reason\} | O utputReply

M erges tuples on files. Each input file is assumed to be sorted on key(s).
keymerge (KeyPos, FileNames, Output) is equivalent to keymerge (KeyPos, FileNames, Output, []).

```
check(FileName) -> Reply
check(FileNames, Options) -> Reply
```

Types:

- Reply $=\{$ ok, [Result] $\}$ | \{error, Reason $\}$
- Result $=\{$ FileN ame, TermPosition, Term $\}$
- TermPosition $=\operatorname{int}()>1$

Checks files for sortedness. If a file is not sorted, the first out-of-order element is returned. The first term on a file has position 1.
check(FileName) is equivalent to check([FileName], []).
keycheck(KeyPos, FileName) -> CheckReply
keycheck(KeyPos, FileNames, Options) -> Reply
Types:

- Reply $=\{0 \mathrm{ok},[$ Result $]\}$ । $\{$ error, Reason $\}$
- Result $=\{$ FileN ame, TermPosition, Term $\}$
- TermPosition $=\operatorname{int}()>1$

Checks files for sortedness. If a file is not sorted, the first out-of-order element is returned. The first term on a file has position 1.
keycheck (KeyPos, FileName) is equivalent to keycheck(KeyPos, [FileName], []).

filelib

Erlang M odule

This module contains utilities on a higher level than the file module.

Exports

```
ensure_dir(Name) -> ok | {error, Reason}
```

Types:

- Name = filename() । dirname()
- Reason = posix() - see file(3)

The ensure_dir/1 function ensures that all parent directories for the given file or directory name Name exist, trying to create them if necessary.
Returns ok if all parent directories already exist or could be created, or \{error, Reason\} if some parent directory does not exist and could not be created for some reason.

```
file_size(Filename) -> integer()
```

The file_size function returns the size of the given file.
fold_files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
Types:

- Dir = dirname()
- RegExp = regexp()
- Recursive = truelfalse
- Fun $=$ fun(F, Accln) $->$ AccO ut
- $\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term($)$

The fold_files/5 function folds the function Fun over all (regular) files Fin the directory Dir that match the regular expression RegExp. If Recursive is true all sub-directories to Dir are processed. The match is tried on just the filename without the directory part.

```
is_dir(Name) -> true | false
```

Types:

- Name = filename() | dirname()

The is_dir/1 function returns true if Name refers to a directory, and false otherwise.

```
is_file(Name) -> true | false
```

Types:

- N ame = filename() | dirname()

The is_file/1 function returns true if Name refers to a file or a directory, and false otherwise.

```
is_regular(Name) -> true | false
```

Types:

- N ame = filename()

The is_regular/1 function returns true if Name refers to a file (regular file), and false otherwise.
last_modified(Name) -> \{\{Year, Month, Day\},\{Hour,Min, Sec \}\}
Types:

- N ame = filename() । dirname()

The last_modified/1 function returns the date and time the given file or directory was last modified.

```
wildcard(Wildcard) -> list()
```

Types:

- Wildcard = filename() । dirname()

The wildcard/1 function returns a list of all files that match Unix-style wildcard-string Wildcard.

The wildcard string looks like an ordinary filename, except that certain "wildcard characters" are interpreted in a special way. The following characters are special:
? M atches one character.

* M atches any number of characters up to the end of the filename, the next dot, or the next slash.
$\{$ Item,...\} Alternation. M atches one of the alternatives.
O ther characters represent themselves. O nly filenames that have exactly the same character in the same position will match. (M atching is case-sensitive; i.e. "a" will not match "A").

N ote that multiple "*" characters are allowed (as in Unix wildcards, but opposed to Windows/D O S wildcards).
Examples:
The following examples assume that the current directory is the top of an Erlang/OTP installation.

To find all . beam files in all applications, the following line can be used:

```
filelib:wildcard("lib/*/ebin/*.beam").
```

To find either .erl or .hrl in all applications src directories, the following

```
filelib:wildcard("lib/*/src/*.?rl")
```

or the following line

```
filelib:wildcard("lib/*/src/*.{erl,hrl}")
```

can be used.
To find all .hrl files in either src or include directories, use: filelib:wildcard("lib/*/\{src,include\}/*.hrl").

To find all .erl or .hrl files in either src or include directories, use: filelib:wildcard("lib/*/\{src,include\}/*.\{erl,hrl\}")
wildcard(Wildcard, Cwd) -> list()
Types:

- Wildcard = filename() | dirname()
- Cwd = dirname()

The wildcard/2 function works like wildcard/1, except that instead of the actual working dirctory, Cwd will be used.

filename

Erlang M odule

The module filename provides a number of useful functions for analyzing and manipulating file names. These functions are designed so that the Erlang code can work on many different platforms with different formats for file names. W ith file name is meant all strings that can be used to denote a file. They can be short relative names like foo.erl, very long absolute name which include a drive designator and directory names like D: \usr/local \bin\erl/lib\tools\foo.erl, or any variations in between.
In Windows, all functions return file names with forward slashes only, even if the arguments contain back slashes. Use join/1 to normalize a file name by removing redundant directory separators.

DATA TYPES

```
name() = string() | atom() | DeepList
    DeepList = [char() | atom() | DeepList]
```


Exports

```
absname(Filename) -> string()
```

Types:

- Filename = name()

Converts a relative Filename and returns an absolute name. No attempt is made to create the shortest absolute name, because this can give incorrect results on file systems which allow links.

Unix examples:

```
1> pwd().
"/usr/local"
2> filename:absname("foo").
"/usr/local/foo"
3> filename:absname("../x").
"/usr/local/../x"
4> filename:absname("/").
"/"
```

W indows examples:

1> pwd().
"D:/usr/local"
2> filename:absname("foo").
"D:/usr/local/foo"
3> filename:absname("../x").
"D:/usr/local/../x"
4> filename:absname("/").
"D:/"
absname(Filename, Dir) -> string()
Types:

- Filename = name()
- Dir = string()

This function works like absname/1, except that the directory to which the file name should be made relative is given explicitly in the Dir argument.

```
absname_join(Dir, Filename) -> string()
```

Types:

- Dir = string()
- Filename = name()

Joins an absolute directory with a relative filename. Similar to join/2, but on platforms with tight restrictions on raw filename length and no support for symbolic links (read: $\mathrm{V} \times$ Works), leading parent directory components in Filename are matched against trailing directory components in Dir so they can be removed from the result minimizing its length.

```
basename(Filename) -> string()
```

Types:

- Filename = name()

Returns the last component of Filename, or Filename itself if it does not contain any directory separators.

5> filename:basename("foo").
"foo"
6> filename:basename("/usr/foo").
"foo"
$7>$ filename:basename("/").
[]
basename(Filename, Ext) -> string()
Types:

- Filename $=$ Ext $=$ name()

Returns the last component of Filename with the extension Ext stripped. This function should be used to remove a specific extension which might, or might not, be there. Use rootname (basename(Filename)) to remove an extension that exists, but you are not sure which one it is.

```
8> filename:basename("~/src/kalle.erl", ".erl").
"kalle"
9> filename:basename("~/src/kalle.beam", ".erl").
"kalle.beam"
10> filename:basename("~/src/kalle.old.erl", ".erl").
"kalle.old"
11> filename:rootname(filename:basename("~/src/kalle.erl")).
"kalle"
12> filename:rootname(filename:basename("~/src/kalle.beam")).
"kalle"
```

dirname(Filename) -> string()

Types:

- Filename = name()

Returns the directory part of Filename.

```
13> filename:dirname("/usr/src/kalle.erl").
```

"/usr/src"
14> filename:dirname("kalle.erl").
"."
5> filename:dirname("
usr
src/kalle.erl"). \% Windows
"/usr/src"
extension(Filename) -> string()

Types:

- Filename = name()

Returns the file extension of Filename, including the period. Returns an empty string if there is no extension.

```
15> filename:extension("foo.erl").
".erl"
16> filename:extension("beam.src/kalle").
[]
```

flatten(Filename) -> string()

Types:

- Filename = name()

Converts a possibly deep list filename consisting of characters and atoms into the corresponding flat string filename.

```
join(Components) -> string()
    Types:
    - Components = [string()]
    Joins a list of file name Components with directory separators. If one of the elements of
    Components includes an absolute path, for example "/xxx", the preceding elements, if
    any, are removed from the result.
    The result is "normalized":
    - Redundant directory separators are removed.
    - In W indows, all directory separators are forward slashes and the drive letter is in
    lower case.
17> filename:join(["/usr", "local", "bin"]).
"/usr/local/bin"
18> filename:join(["a/b///c/"]).
"a/b/c"
6> filename:join(["B:a\\b///c/"]). % Windows
"b:a/b/c"
```

```
join(Name1, Name2) -> string()
```

join(Name1, Name2) -> string()
Types:
- Name1 = Name2 = string()
Joins two file name components with directory separators. Equivalent to join([Name1,
Name2]).
nativename(Path) -> string()
Types:
- Path = string()
Converts Path to a form accepted by the command shell and native applications on the
current platform. On W indows, forward slashes is converted to backward slashes. On
all platforms, the name is normalized as done by join/1.
19> filename:nativename("/usr/local/bin/"). % Unix
"/usr/local/bin"
7> filename:nativename("/usr/local/bin/"). % Windows
"
usr
local
bin"
pathtype(Path) -> absolute | relative | volumerelative
Returns the type of path, one of absolute, relative, or volumerelative.
absolute The path name refers to a specific file on a specific volume.
Unix example: /usr/local/bin
W indows example: D:/usr/local/bin

```
relative The path name is relative to the current working directory on the current volume
Example: foo/bar, ../src
volumerelative The path name is relative to the current working directory on a specified volume, or it is a specific file on the current working volume. W indows example: D:bar.erl, /bar/foo.erl
```

rootname(Filename) -> string()
rootname(Filename, Ext) -> string()

```

Types:
- Filename = Ext = name()

Remove a filename extension. rootname/2 works as rootname/1, except that the extension is removed only if it is Ext.

20> filename:rootname("/beam.src/kalle").
/beam.src/kalle"
21> filename:rootname("/beam.src/foo.erl").
"/beam.src/foo"
22> filename:rootname("/beam.src/foo.erl", ".erl").
"/beam.src/foo"
23> filename:rootname("/beam.src/foo.beam", ".erl").
"/beam.src/foo.beam"
split(Filename) -> Components
Types:
- Filename = name()
- Components = [string()]

Returns a list whose elements are the path components of Filename.
```

24> filename:split("/usr/local/bin").

```
["/", "usr", "local", "bin"]
25> filename:split("foo/bar").
["foo", "bar"]
26> filename:split("a:\\msdev\\include").
["a:/","msdev", "include"]
find_src(Beam) -> \{SourceFile, Options\}
find_src(Beam, Rules) -> \{SourceFile, Options

Types:
- Beam = M odule | Filename
- M odule = atom()
- Filename = string() । atom()
- SourceFile = string()
- Options = [Opt]
- Opt \(=\{\mathrm{i}\), string() \(\}\) | \{outdir, string() \(\} \mid\{\mathrm{d}\), atom() \(\}\)

Finds the source filename and compiler options for a module. The result can be fed to compile:file/2 in order to compile the file again.
The Beam argument, which can be a string or an atom, specifies either the module name or the path to the source code, with or without the ". erl" extension. In either case, the module must be known by the code server, i.e. code : which (Module) must succeed.
Rules describes how the source directory can be found, when the object code directory is known. It is a list of tuples \{BinSuffix, SourceSuffix\} and is interpreted as follows: If the end of the directory name where the object is located matches BinSuffix, then the source code directory has the same name, but with BinSuffix replaced by SourceSuffix. Rules defaults to:
[\{"", ""\}, \{"ebin", "src"\}, \{"ebin", "esrc"\}]
If the source file is found in the resulting directory, then the function returns that location together with Options. O therwise, the next rule is tried, and so on.
The function returns \{SourceFile, Options \(\}\). SourceFile is the absolute path to the source file without the ". erl" extension. Options include the options which are necessary to recompile the file with compile:file/2, but excludes options such as report or verbose which do not change the way code is generated. The paths in the \{outdir, Path\} and \{i, Path\} options are guaranteed to be absolute.

\section*{gb_sets}

Erlang M odule

A n implementation of ordered sets using Prof. Arne A ndersson's G eneral Balanced Trees. This can be much more efficient than using ordered lists, for larger sets, but depends on the application.

\section*{Complexity note}
 where S is the largest given set, depending on which is fastest for any particular function call. For operating on sets of almost equal size, this implementation is about 3 times slower than using ordered-list sets directly. For sets of very different sizes, however, this solution can be arbitrarily much faster; in practical cases, often between 10 and 100 times. This implementation is particularly suited for accumulating elements a few at a time, building up a large set (more than 100-200 elements), and repeatedly testing for membership in the current set.
As with normal tree structures, lookup (membership testing), insertion and deletion have logarithmic complexity.

\section*{Compatibility}

All of the following functions in this module also exist and do the same thing in the sets and ordsets modules. That is, by only changing the module name for each call, you can try out different set representations.
- add_element/2
- del_element/2
- filter/2
- fold/3
- from_list/1
- intersection/1
- intersection/2
- is_element/2
- is_set/1
- is_subset/2
- new/0
- size/1
- subtract/2
- to_list/1
- union/1
- union/2

\section*{DATA TYPES}
```

gb_set() = a GB set

```

\section*{Exports}
```

add(Element, Set1) -> Set2
add_element(Element, Set1) -> Set2
Types:
- Element = term()
- Set1 = Set2 = gb_set()
Returns a new gb_set formed from Set1 with Element inserted. If Element is already an
element in Set1, nothing is changed.
balance(Set1) -> Set2
Types:
- Set1 = Set2 = gb_set()
Rebalances the tree representation of Set1. N ote that this is rarely necessary, but may
be motivated when a large number of elements have been deleted from the tree without
further insertions. Rebalancing could then be forced in order to minimise lookup times,
since deletion only does not rebalance the tree.
delete(Element, Set1) -> Set2

```
    Types:
    - Element = term()
    - Set1 = Set2 = gb_set()

Returns a new gb_set formed from Set1 with Element removed. A ssumes that Element is present in Set1.
```

delete_any(Element, Set1) -> Set2
del_element(Element, Set1) -> Set2

```

Types:
- Element = term()
- Set1 = Set2 = gb_set()

Returns a new gb_set formed from Set1 with Element removed. If Element is not an element in Set1, nothing is changed.
difference(Set1, Set2) -> Set3
```

subtract(Set1, Set2) -> Set3

```

Types:
- Set1 \(=\) Set2 \(=\) Set \(3=\) gb_set()

Returns only the elements of Set1 which are not also elements of Set2.
empty() -> Set
new() \(->\) Set
Types:
- Set = gb_set()

Returns a new empty gb_set.
filter (Pred, Set1) -> Set2
Types:
- Pred = fun (E) -> bool()
- \(\mathrm{E}=\) term()
- Set1 = Set2 = gb_set()

Filters elements in Set1 using predicate function Pred.
fold(Function, Acc0, Set) -> Acc1
Types:
- Function \(=\) fun ( \(\mathrm{E}, \mathrm{A}\) ccln) \(->\mathrm{AccO}\) ut
- \(\mathrm{Acc0}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term()
- \(\mathrm{E}=\) term()
- Set = gb_set()

Folds Function over every element in Set returning the final value of the accumulator.
from_list(List) -> Set
Types:
- List = [term()]
- Set = gb_set()

Returns a gb_set of the elements in List, where List may be unordered and contain duplicates.
from_ordset(List) -> Set
Types:
- List \(=[\) term( \()\) ]
- Set = gb_set()

Turns an ordered-set list List into a gb_set. The list must not contain duplicates.
insert(Element, Set1) -> Set2
Types:
- Element = term()
- Set1 = Set2 = gb_set()

Returns a new gb_set formed from Set1 with Element inserted. Assumes that Element is not present in Set1.
```

intersection(Set1, Set2) -> Set3

```

Types:
- Set1 = Set2 = Set3 = gb_set()

Returns the intersection of Set1 and Set2.
```

intersection(SetList) -> Set

```

Types:
- SetList = [gb_set()]
- Set = gb_set()

Returns the intersection of the non-empty list of gb_sets.
```

is_empty(Set) -> bool()

```

Types:
- Set = gb_set()

Returns true if Set is an empty set, and false otherwise.
is_member(Element, Set) -> bool()
is_element(Element, Set) -> bool()
Types:
- Element = term()
- Set = gb_set()

Returns true if Element is an element of Set, otherwise false.
```

is_set(Set) -> bool()

```

Types:
- Set = gb_set()

Returns true if Set appears to be a gb_set, otherwise false.
```

is_subset(Set1, Set2) -> bool()

```

Types:
- Set1 = Set2 = gb_set()

Returns true when every element of Set1 is also a member of Set2, otherwise false.
```

iterator(Set) -> Iter

```

Types:
- Set = gb_set()
- Iter = term()

Returns an iterator that can be used for traversing the entries of Set; see next/1. The implementation of this is very efficient; traversing the whole set using next/1 is only slightly slower than getting the list of all elements using to_list/1 and traversing that. The main advantage of the iterator approach is that it does not require the complete list of all elements to be built in memory at one time.
```

largest(Set) -> term()

```

Types:
- Set = gb_set()

Returns the largest element in Set. A ssumes that Set is nonempty.
```

next(Iter1) -> {Element, Iter2 | none}

```

Types:
- Iter1 = Iter2 = Element = term()

Returns \{Element, Iter2\} where Element is the smallest element referred to by the iterator Iter1, and Iter2 is the new iterator to be used for traversing the remaining elements, or the atom none if no elements remain.
```

singleton(Element) -> gb_set()

```

Types:
- Element = term()

Returns a gb_set containing only the element Element.
```

size(Set) -> int()

```

Types:
- Set = gb_set()

Returns the number of elements in Set.
smallest (Set) -> term()
Types:
- Set = gb_set()

Returns the smallest element in Set. Assumes that Set is nonempty.
```

take_largest(Set1) -> {Element, Set2}

```

Types:
- Set1 = Set2 = gb_set()
- Element = term()

Returns \{Element, Set2\}, where Element is the largest element in Set1, and Set2 is this set with Element deleted. A ssumes that Set1 is nonempty.
take_smallest(Set1) -> \{Element, Set2\}
Types:
- Set1 = Set2 = gb_set()
- Element = term()

Returns \{Element, Set2\}, where Element is the smallest element in Set1, and Set2 is this set with Element deleted. Assumes that Set1 is nonempty.
```

to_list(Set) -> List

```

Types:
- Set = gb_set()
- List \(=[\) term( \()\) ]

Returns the elements of Set as a list.
union(Set1, Set2) -> Set3
Types:
- Set1 \(=\) Set2 \(=\) Set3 \(=\) gb_set ()

Returns the merged (union) gb_set of Set1 and Set2.
```

union(SetList) -> Set

```

Types:
- SetList = [gb_set()]
- Set = gb_set()

Returns the merged (union) gb_set of the list of gb_sets.

\section*{SEE ALSO}
gb_trees(3) [page 170], ordsets(3) [page 256], sets(3) [page 301]

\section*{gb_trees}

Erlang M odule

An efficient implementation of Prof. Arne A ndersson's G eneral Balanced Trees. These have no storage overhead compared to unbalaced binary trees, and their performance is in general better than AVL trees.

\section*{Data structure}

D ata structure:
- \{Size, Tree\}, where 'Tree' is composed of nodes of the form:
- \{Key, Value, Smaller, Bigger\}, and the "empty tree" node:
- nil.

There is no attempt to balance trees after deletions. Since deletions do not increase the height of a tree, this should be OK.
O riginal balance condition \(\mathrm{h}(\mathrm{T})<=\operatorname{ceil}(\mathrm{c} * \log (\mathrm{IT} \mid))\) has been changed to the similar (but not quite equivalent) condition 2 ~ \(\mathrm{h}(\mathrm{T})<=|\mathrm{T}|^{\wedge} \mathrm{c}\). This should also be OK.
Performance is comparable to the AVL trees in the Erlang book (and faster in general due to less overhead); the difference is that deletion works for these trees, but not for the book's trees. Behaviour is logaritmic (as it should be).

\section*{DATA TYPES}
```

gb_tree() = a GB tree

```

\section*{Exports}
```

balance(Tree1) -> Tree2

```

Types:
- Treel = Tree2 = gb_tree()

Rebalances Tree1. N ote that this is rarely necessary, but may be motivated when a large number of nodes have been deleted from the tree without further insertions. Rebalancing could then be forced in order to minimise lookup times, since deletion only does not rebalance the tree.
```

delete(Key, Tree1) -> Tree2

```

Types:
- Key = term()
- Tree1 = Tree2 = gb_tree()

Removes the node with key Key from Tree1; returns new tree. A ssumes that the key is present in the tree, crashes otherwise.
```

delete_any(Key, Tree1) -> Tree2

```

Types:
- Key = term()
- Treel = Tree2 = gb_tree()

Removes the node with key Key from Tree1 if the key is present in the tree, otherwise does nothing; returns new tree.
empty() -> Tree
Types:
- Tree = gb_tree()

Returns a new empty tree
enter(Key, Val, Tree1) -> Tree2
Types:
- Key = Val = term()
- Tree1 = Tree2 = gb_tree()

Inserts Key with value Val into Tree1 if the key is not present in the tree, otherwise updates Key to value Val in Tree1. Returns the new tree.
from_orddict(List) -> Tree
Types:
- List \(=[\{\) Key, Val \(\}]\)
- Key = Val = term()
- Tree = gb_tree()

Turns an ordered list List of key-value tuples into a tree. The list must not contain duplicate keys.
get (Key, Tree) -> Val
Types:
- Key = Val = term()
- Tree = gb_tree()

Retrieves the value stored with Key in Tree. Assumes that the key is present in the tree, crashes otherwise.
lookup(Key, Tree) \(->\) \{value, Val\} | none
Types:
- Key = Val = term()
- Tree = gb_tree()

Looks up Key in Tree; returns \{value, Val\}, or none if Key is not present.
```

insert(Key, Val, Tree1) -> Tree2

```

Types:
- Key = Val = term()
- Treel = Tree2 = gb_tree()

Inserts Key with value Val into Tree1; returns the new tree. A ssumes that the key is not present in the tree, crashes otherwise.
is_defined(Key, Tree) -> bool()
Types:
- Tree = gb_tree()

Returns true if Key is present in Tree, otherwise false.
is_empty(Tree) -> bool()
Types:
- Tree = gb_tree()

Returns true if Tree is an empty tree, and false otherwise.
```

iterator(Tree) -> Iter

```

Types:
- Tree = gb_tree()
- Iter = term()

Returns an iterator that can be used for traversing the entries of Tree; see next/1. The implementation of this is very efficient; traversing the whole tree using next/1 is only slightly slower than getting the list of all elements using to_list/1 and traversing that. The main advantage of the iterator approach is that it does not require the complete list of all elements to be built in memory at one time.
```

keys(Tree) -> [Key]

```

Types:
- Tree = gb_tree()
- Key = term()

Returns the keys in Tree as an ordered list.
largest(Tree) -> \{Key, Val \(\}\)
Types:
- Tree = gb_tree()
- Key = Val = term()

Returns \{Key, Val\}, where Key is the largest key in Tree, and Val is the value associated with this key. A ssumes that the tree is nonempty.
next(Iter1) -> \{Key, Val, Iter2

Types:
- Iter1 = Iter2 = Key = Val = term()

Returns \{Key, Val, Iter2\} where Key is the smallest key referred to by the iterator Iter1, and Iter2 is the new iterator to be used for traversing the remaining nodes, or the atom none if no nodes remain.
size(Tree) -> int()
Types:
- Tree = gb_tree()

Returns the number of nodes in Tree.
```

smallest(Tree) -> {Key, Val}

```

Types:
- Tree = gb_tree()
- Key = Val = term()

Returns \{Key, Val\}, where Key is the smallest key in Tree, and Val is the value associated with this key. A ssumes that the tree is nonempty.
```

take_largest(Tree1) -> {Key, Val, Tree2}

```

Types:
- Tree1 = Tree2 = gb_tree()
- Key = Val = term()

Returns \{Key, Val, Tree2\}, where Key is the largest key in Tree1, Val is the value associated with this key, and Tree2 is this tree with the corresponding node deleted. A ssumes that the tree is nonempty.
```

take_smallest(Tree1) -> {Key, Val, Tree2}

```

Types:
- Tree1 = Tree2 = gb_tree()
- Key = Val = term()

Returns \{Key, Val, Tree2\}, where Key is the smallest key in Tree1, Val is the value associated with this key, and Tree2 is this tree with the corresponding node deleted. A ssumes that the tree is nonempty.
```

to_list(Tree) -> [{Key, Val}]

```

Types:
- Tree = gb_tree()
- Key = Val = term()

C onverts a tree into an ordered list of key-value tuples.
update(Key, Val, Tree1) -> Tree2
Types:
- Key = Val = term()
- Tree1 \(=\) Tree2 \(=\) gb_tree()

U pdates Key to value Val in Tree1; returns the new tree. A ssumes that the key is present in the tree.
values(Tree) -> [Val]
Types:
- Tree = gb_tree()
- Val = term()

Returns the values in Tree as an ordered list, sorted by their corresponding keys. Duplicates are not removed.

\section*{SEE ALSO}
gb_sets(3) [page 164], dict(3) [page 88]

\section*{gen_event}

Erlang M odule

A behaviour module for implementing event handling functionality. The OTP event handling model consists of a generic event manager process with an arbitrary number of event handlers which are added and deleted dynamically.
A \(n\) event manager implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. It will also fit into an OTP supervision tree. Refer to OTP D esign Principles for more information.
Each event handler is implemented as a callback module exporting a pre-defined set of functions. The relationship betw een the behaviour functions and the callback functions can be illustrated as follows:
```

gen_event module Callback module
--------------- ---------------
gen_event:start_link
gen_event:add_handler
gen_event:add_suphandler -----> Module:init/1
gen_event:notify
gen_event:sync_notify -----> Module:handle_event/2
gen_event:call -----> Module:handle_call/2

- -----> Module:handle_info/2
gen_event:delete_handler -----> Module:terminate/2
gen_event:swap_handler
gen_event:swap_sup_handler -----> Module1:terminate/2
Module2:init/1
gen_event:which_handlers -----> -
gen_event:stop -----> Module:terminate/2
-----> Module:code_change/3

```

Since each event handler is one callback module, an event manager will have several callback modules which are added and deleted dynamically. Therefore gen_event is more tolerant of callback module errors than the other behaviours. If a callback function for an installed event handler fails with Reason, or returns a bad value Term, the event manager will not fail. It will delete the event handler by calling the callback function

Module:terminate/2 (see below), giving as argument \{error, \{'EXIT', Reason\}\} or \{error , Term\}, respectively. No other event handler will be affected.
The sys module can be used for debugging an event manager.
N ote that an event manager does trap exit signals automatically.
U nless otherwise stated, all functions in this module fail if the specified event manager does not exist or if bad arguments are given.

\section*{Exports}
```

start_link() -> Result
start_link(EventMgrName) -> Result

```

\section*{Types:}
- EventM grN ame = \{local, N ame \(\}\) । \(\{\) global, N ame \(\}\)
- N ame \(=\) atom()
- Result \(=\{0 \mathrm{ok}\), Pid \(\}\) । \(\{\) error, \(\{\) already_started, Pid \(\}\}\)
- Pid = pid()

Creates an event manager process as part of a supervision tree. The function should be called, directly or indirectly, by the supervisor. It will, among other things, ensure that the event manager is linked to the supervisor.
If EventMgrName=\{local, Name\}, the event manager is registered locally as Name using register/2. If EventMgrName \(=\{\) global, Name \(\}\), the event manager is registered globally as Name using global: register_name/2. If no name is provided, the event manager is not registered.
If the event manager is successfully created the function returns \(\{0 \mathrm{k}\), Pid \(\}\), where Pid is the pid of the event manager. If there already exists a process with the specified EventMgrName the function returns \{error, \{already_started, Pid\}\}, where Pid is the pid of that process.
```

start() -> Result

```
start(EventMgrName) -> Result
Types:
- EventM grN ame = \{local, N ame \(\}\) । \(\{\) global, N ame \(\}\)
- N ame = atom()
- Result \(=\{0 \mathrm{ok}\), Pid \(\}\) । \(\{\) error, \(\{\) already_started, Pid \(\}\}\)
- Pid = pid()

Creates a stand-alone event manager process, i.e. an event manager which is not part of a supervision tree and thus has no supervisor.
See start_link/0,1 for a description of arguments and return values.
add_handler(EventMgrRef, Handler, Args) -> Result
Types:
- EventM gr = N ame \| \{N ame,Node\} \| \{global, N ame\} | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom ()
- Handler \(=\) M odule \(\mid\{\) M odule, \(I d\}\)
- M odule \(=\) atom ()
- Id = term()
- A rgs = term()
- Result = ok I \{'EX IT',Reason\} I term()
- Reason = term()

Adds a new event handler to the event manager EventMgrRef. The event manager will call Module: init/1 to initiate the event handler and its internal state.
EventMgrRef can be:
- the pid,
- Name, if the event manager is locally registered,
- \{Name, Node\}, if the event manager is locally registered at another node, or
- \{global, Name \(\}\), if the event manager is globally registered.

Handler is the name of the callback module Module or a tuple \{Module, Id \}, where Id is any term. The \{Module, Id \} representation makes it possible to identify a specific event handler when there are several event handlers using the same callback module. Args is an arbitrary term which is passed as the argument to Module:init/1.
If Module:init/1 returns a correct value, the event manager adds the event handler and this function returns ok. If Module:init/1 fails with Reason or returns an unexpected value Term, the event handler is ignored and this function returns \{'EXIT', Reason \(\}\) or Term, respectively.
add_sup_handler(EventMgrRef, Handler, Args) -> Result
Types:
- EventM gr = N ame \| \{Name, N ode\} \| \{global, N ame\} | pid()
- \(\mathrm{Name}=\mathrm{N}\) ode \(=\) atom( \()\)
- H andler \(=\mathrm{M}\) odule I \{M odule,Id\}
- M odule = atom()
- Id = term()
- Args = term()
- Result = ok \| \{'EXIT', Reason\} | term()
- Reason = term()

Adds a new event handler in the same way as add_handler/3 but will also supervise the connection between the event handler and the calling process.
- If the calling process later terminates with Reason, the event manager will delete the event handler by calling Module:terminate/2 with \{stop, Reason\} as argument.
- If the event handler later is deleted, the event manager sends a message\{gen_event_EXIT, Handler, Reason\} to the calling process. Reason is one of the following:
- normal, if the event handler has been removed due to a call to delete_handler/3, or remove_handler has been returned by a callback function (see below).
- shutdown, if the event handler has been removed because the event manager is terminating.
- \{swapped, NewHandler, Pid\}, if the process Pid has replaced the event handler with another event handler NewHandler using a call to swap_handler/3 or swap_sup_handler/3.
- a term, if the event handler is removed due to an error. W hich term depends on the error.

See add_handler/3 for a description of the arguments and return values.
```

notify(EventMgrRef, Event) -> ok
sync_notify(EventMgrRef, Event) -> ok

```

Types:
- EventM grRef = Name \| \{Name,N ode\} | \{global,Name\} | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom ()
- Event = term()

Sends an event notification to the event manager EventMgrRef. The event manager will call Module:handle_event/2 for each installed event handler to handle the event. notify is asynchronous and will return immediately after the event notification has been sent. sync_notify is synchronous in the sense that it will return ok after the event has been handled by all event handlers.
See add_handler/3 for a description of EventMgrRef.
Event is an arbitrary term which is passed as one of the arguments to Module:handle_event/2.
notify will not fail even if the specified event manager does not exist, unless it is specified as Name.
```

call(EventMgrRef, Handler, Request) -> Result
call(EventMgrRef, Handler, Request, Timeout) -> Result

```

Types:
- EventM grRef \(=\mathrm{N}\) ame । \(\{\mathrm{N}\) ame, N ode \(\}\) | \{global, Name\(\}\) | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Handler \(=\) M odule \(I\) \(\{\) M odule, \(I d\}\)
- M odule = atom()
- Id = term()
- Request \(=\) term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Result = Reply I \{error,Error\}
- Reply = term()
- Error = bad_module I \{'EXIT',Reason\} I term()
- Reason = term()

M akes a synchronous call to the event handler Handler installed in the event manager EventMgrRef by sending a request and waiting until a reply arrives or a timeout occurs. The event manager will call Module:handle_call/2 to handle the request.
See add_handler/3 for a description of EventMgrRef and Handler.
Request is an arbitrary term which is passed as one of the arguments to Module:handle_call/2.
Timeout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply is received within the specified time, the function call fails.
The return value Reply is defined in the return value of Module:handle_call/2. If the specified event handler is not installed, the function returns \{error, bad_module\}. If the callback function fails with Reason or returns an unexpected value Term, this function returns \{error, \{'EXIT', Reason\}\} or \{error, Term \}, respectively.
delete_handler(EventMgrRef, Handler, Args) -> Result

\section*{Types:}
- EventM grRef = Name \| \{Name,Node\} \| \{global,Name\} | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Handler = M odule I \(\{\) M odule,Id \(\}\)
- M odule = atom()
- Id = term()
- Args = term()
- Result \(=\) term() | \{error,module_not_found \} | \{'EXIT',Reason\}
- Reason = term()

D eletes an event handler from the event manager EventMgrRef. The event manager will call Module:terminate/2 to terminate the event handler.
See add_handler/3 for a description of EventMgrRef and Handler.
Args is an arbitrary term which is passed as one of the arguments to Module:terminate/2.
The return value is the return value of Module: terminate/2. If the specified event handler is not installed, the function returns \{error, module_not_found \}. If the callback function fails with Reason, the function returns \{ 'EXIT', Reason\}.
swap_handler(EventMgrRef, \{Handler1,Args1\}, \{Handler2,Args2\}) -> Result
Types:
- EventM grRef \(=\) N ame \| \(\{\) Name, N ode \(\}\) । \{global, Name\(\}\) | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- H andler1 \(=\mathrm{H}\) andler2 \(=\) M odule I \{ Module, Id \(\}\)
- M odule = atom()
- Id = term()
- \(\operatorname{Args1}=\) A rgs2 \(=\) term ()
- Result \(=\) ok \(\mid\) \{error,Error \(\}\)
- Error \(=\left\{{ }^{\prime}\right.\) EXIT', Reason \(\}\) I term()
- Reason = term()

Replaces an old event handler with a new event handler in the event manager EventMgrRef.
See add_handler/3 for a description of the arguments.
First the old event handler Handler1 is deleted. The event manager calls Module1:terminate(Args1, ...), where Module1 is the callback module of Handler1, and collects the return value.
Then the new event handler Handler2 is added and initiated by calling Module2: init (\{Args2, Term\}), where Module2 is the callback module of Handler2 and Term the return value of Module1: terminate/2. This makes it possible to transfer information from Handler1 to Handler2.
The new handler will be added even if the the specified old event handler is not installed in which case Term=error, or if Module1:terminate/2 fails with Reason in which case Term \(=\{\) 'EXIT', Reason \(\}\). The old handler will be deleted even if Module2:init/1 fails. If there was a supervised connection between Handler1 and a process Pid, there will be a supervised connection between Handler2 and Pid instead.
If Module2:init/1 returns a correct value, this function returns ok. If Module2:init/1 fails with Reason or returns an unexpected value Term, this this function returns \{error, \{'EXIT', Reason\}\} or \{error, Term\}, respectively.
swap_sup_handler(EventMgrRef, \{Handler1,Args1\}, \{Handler2,Args2\}) -> Result
Types:
- EventM grRef = Name \| \{Name,N ode\} | \{global,Name\} | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom ()
- H andler \(1=\mathrm{H}\) andler \(2=\mathrm{M}\) odule I \{ M odule, Id\(\}\)
- M odule = atom()
- Id = term()
- A rgs1 = A rgs2 = term()
- Result =ok I \{error,Error\}
- Error \(=\{\) 'EXIT',Reason \(\}\) I term()
- Reason = term()

Replaces an event handler in the event manager EventMgrRef in the same way as swap_handler/3 but will also supervise the connection between Handler2 and the calling process.
See swap_handler/3 for a description of the arguments and return values.
```

which_handlers(EventMgrRef) -> [Handler]

```

\section*{Types:}
- EventM grRef = Name । \{Name, N ode\} | \{global, N ame \(\}\) | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- H andler \(=\mathrm{M}\) odule I \{M odule,Id \(\}\)
- M odule = atom()
- Id = term()

Returns a list of all event handlers installed in the event manager EventMgrRef.
See add_handler/3 for a description of EventMgrRef and Handler.
stop(EventMgrRef) -> ok
Types:
- EventM grRef \(=\) Name \| \(\{N\) ame, \(N\) ode \(\}\) । \(\{\) global, \(N\) ame \(\} \mid\) pid()
- \(\mathrm{Name}=\mathrm{N}\) ode \(=\) atom()

Terminates the event manager EventMgrRef. Before terminating, the event manager will call Module:terminate (stop, ...) for each installed event handler.
See add_handler/3 for a description of the argument.

\section*{CALLBACK FUNCTIONS}

The following functions should be exported from a gen_event callback module.

\section*{Exports}
```

Module:init(InitArgs) -> {ok,State}
Types:
- InitA rgs = A rgs | {A rgs,Term}
- Args = Term = term()
- State = term()
W henever a new event handler is added to an event manager, this function is called to initialize the event handler.
If the event handler is added due to a call to gen_event: add_handler/3 or gen_event: add_sup_handler/3, InitArgs is the Args argument of these functions. If the event handler is replacing another event handler due to a call to gen_event:swap_handler/3 or gen_event: swap_sup_handler/3, or due to a swap return tuple from one of the other callback functions, InitArgs is a tuple \{Args, Term \} where Args is the argument provided in the function call/return tuple and Term is the result of terminating the old event handler, see gen_event: swap_handler/3.
The function should return $\{\mathrm{ok}$, State $\}$ where State is the initial internal state of the event handler.

```
```

Module:handle_event(Event, State) -> Result

```
```

Module:handle_event(Event, State) -> Result

```

Types:
- Event = term()
- State = term()
- Result \(=\{0 k, N\) ew State \(\}\)
- | \{swap_handler,A rgs1,N ewState,H andler2,A rgs2\} | remove_handler
- N ewState = term()
- Args1 = A rgs2 = term()
- H andler2 = M odule2 I \{M odule2,Id \}
- M odule2 = atom()
- Id = term()

Whenever an event manager receives an event sent using gen_event:notify/2 or gen_event: sync_notify/2, this function is called for each installed event handler to handle the event.
Event is the Event argument of notify/sync_notify.
State is the internal state of the event handler.
If the function returns \(\{0 \mathrm{k}\), NewState \(\}\) the event handler will remain in the event manager with the possible updated internal state NewState.
If the function returns \{swap_handler, Args1, NewState, Handler2, Args2\} the event handler will be replaced by Handler2 by first calling
Module:terminate (Args1,NewState) and then Module2:init(\{Args2,Term\}) where Term is the return value of Module:terminate/2. See gen_event: swap_handler/3 for more information.
If the function returns remove_handler the event handler will be deleted by calling Module:terminate(removehandler,State).

Module:handle_call(Request, State) -> Result
Types:
- Request = term()
- State = term()
- Result \(=\{0 k\), Reply,N ewState \(\}\)
- I \{swap_handler,Reply,A rgs1,N ew State,H andler2,A rgs2\}
- I \{remove_handler, Reply\}
- Reply = term()
- N ewState = term()
- Args1 = A rgs2 = term()
- H andler2 \(=\mathrm{M}\) odule2 \(\mid\) \{ odule2,Id \(\}\)
- M odule2 = atom()
- Id = term()

Whenever an event manager receives a request sent using gen_event: call/3, 4, this function is called for the specified event handler to handle the request.
Request is the Request argument of call.
State is the internal state of the event handler.
The return values are the same as for handle_event/2 except they also contain a term Reply which is the reply given back to the client as the return value of call.

Module:handle_info(Info, State) -> Result
Types:
- Info = term()
- State = term()
- Result \(=\{\) ok,N ewState \(\}\)
- | \{swap_handler,A rgs1,N ewState,H andler2,A rgs2\} | remove_handler
- N ewState = term()
- A rgs1 = A rgs2 = term( )
- H andler2 \(=\) M odule2 \(\mid\) \{ odule2,Id \(\}\)
- M odule2 = atom()
- \(\operatorname{ld}=\) term ()

This function is called for each installed event handler when an event manager receives any other message than an event or a synchronous request (or a system message).
Info is the received message.
See Module: handle_event/2 for a description of State and possible return values.
Module:terminate(Arg, State) \(->\) term()
Types:
- Arg = A rgs | \{stop,Reason\} | stop | remove_handler
- I \{error, \{'EX IT',Reason\}\} I \{error,Term \(\}\)
- Args \(=\) Reason \(=\) Term \(=\) term()

Whenever an event handler is deleted from an event manager, this function is called. It should be the opposite of Module:init/1 and do any necessary cleaning up.
If the event handler is deleted due to a call to gen_event: delete_handler, gen_event: swap_handler/3 or gen_event: swap_sup_handler/3, Arg is the Args argument of this function call.
\(\operatorname{Arg}=\{\) stop, Reason \(\}\) if the event handler has a supervised connection to a process which has terminated with reason Reason.
Arg=stop if the event handler is deleted because the event manager is terminating.
Arg=removehandler if the event handler is deleted because another callback function has returned remove_handler or \{remove_handler, Reply\}.
Arg \(=\{\) error , Term \(\}\) if the event handler is deleted because a callback function returned an unexpected value Term, or Arg=\{error, \(\{\) 'EXIT', Reason \(\}\}\) if a callback function failed.
State is the internal state of the event handler.
The function may return any term. If the event handler is deleted due to a call to gen_event: delete_handler, the return value of that function will be the return value of this function. If the event handler is to be replaced with another event handler due to a swap, the return value will be passed to the init function of the new event handler. O therwise the return value is ignored.

Module:code_change(OldVsn, State, Extra) -> \{ok, NewState\}
Types:
- \(O \operatorname{ldV}\) sn \(=\mathrm{V}\) sn । \(\{\) down, V sn\}
- V sn = term()
- State \(=\) N ew State \(=\) term()
- Extra = term()

This function is called for an installed event handler which should update its internal state during a release upgrade/downgrade, i.e. when the instruction \{update, Module, Change, . . .\} where Change \(=\{\) advanced, Extra \(\}\) is given in the . appup file. See OTP D esign Principles for more information.
In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, 01dVsn is \{down, Vsn\}. Vsn is defined by the vsn attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the checksum of the BEAM file.
State is the internal state of the event handler.
Extra is passed as-is from the \{advanced, Extra\} part of the update instruction.
The function should return the updated internal state.

\section*{SEE ALSO}
supervisor(3) [page 347], sys(3) [page 357]

\section*{gen_fsm}

Erlang M odule

\begin{abstract}
A behaviour module for implementing a finite state machine. A generic finite state machine process (gen_fsm) implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. It will also fit into an OTP supervision tree. Refer to [OTP D esign Principles] for more information.
\end{abstract}

A gen_fsm assumes all specific parts to be located in a callback module exporting a pre-defined set of functions. The relationship between the behaviour functions and the callback functions can be illustrated as follows:
\begin{tabular}{|c|c|}
\hline gen_fsm module & Callback module \\
\hline gen_fsm:start_link & -----> Module:init/1 \\
\hline gen_fsm: send_event & -----> Module:StateName/2 \\
\hline gen_fsm: send_all_state_event & -----> Module:handle_event/3 \\
\hline gen_fsm: sync_send_event & -----> Module:StateName/3 \\
\hline gen_fsm: sync_send_all_state_event & -----> Module:handle_sync_event/4 \\
\hline - & -----> Module:handle_info/3 \\
\hline - & -----> Module:terminate/3 \\
\hline - & -----> Module: code_change/4 \\
\hline
\end{tabular}

If a callback function fails or returns a bad value, the gen_fsm will terminate.
The sys module can be used for debugging a gen_fsm.
\(N\) ote that a gen_fsm does not trap exit signals automatically, this must be explicitly initiated in the callback module.
U nless otherwise stated, all functions in this module fail if the specified gen_fsm does not exist or if bad arguments are given.

\section*{Exports}
```

start_link(Module, Args, Options) -> Result
start_link(FsmName, Module, Args, Options) -> Result

```

Types:
- FsmN ame \(=\{\) local, N ame \(\}\) | \(\{\) global,GlobalN ame \(\}\)
- N ame = atom()
- G lobalN ame = term()
- M odule = atom()
- A rgs = term()
- Options = [O ption]
- Option = \{debug,Dbgs\} | \{timeout,Time\} | \{spawn_opt,SO pts\}
- Dbgs = [D bg]
- Dbg = trace । log \| statistics
- | \{log_to_file,FileN ame\} | \{install,\{Func,FuncState\}\}
- SO pts = [SO pt]
- SO pt - see erlang:spawn_opt/2,3,4,5
- Result \(=\{\) ok,Pid \(\}\) | ignore \| \(\{\) error,Error \(\}\)
- \(\operatorname{Pid}=\) pid()
- Error \(=\{\) already_started, Pid \(\}\) | term()

Creates a gen_fsm process as part of a supervision tree. The function should be called, directly or indirectly, by the supervisor. It will, among other things, ensure that the gen_fsm is linked to the supervisor.
The gen_fsm process calls Module :init/1 to initialize. To ensure a synchronized start-up procedure, start_link/3,4 does not return until Module:init/1 has returned.
If FsmName=\{local, Name\}, the gen_fsm is registered locally as Name using register/2. If FsmName=\{global, GlobalName \}, the gen_fsm is registered globally as GlobalName using global:register_name/2. If no name is provided, the gen_fsm is not registered.
Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the option \{timeout, Time\} is present, the gen_fsm is allowed to spend Time milliseconds initializing or it will be terminated and the start function will return \{error, timeout \(\}\).
If the option \(\{\) debug, Dbgs \} is present, the corresponding sys function will be called for each item in Dbgs. See sys(3) [page 357].
If the option \{spawn_opt, SOpts\} is present, SOpts will be passed as option list to the spawn_opt BIF which is used to spawn the gen_fsm process. See [erlang(3)].

\section*{N ote:}

Using the spawn option monitor is currently not allowed, but will cause the function to fail with reason badarg.

If the gen_fsm is successfully created and initialized the function returns \{ok, Pid\}, where Pid is the pid of the gen_fsm. If there already exists a process with the specified

FsmName, the function returns \{error, \{already_started, Pid\}\} where Pid is the pid of that process.
If Module:init/1 fails with Reason, the function returns \{error, Reason\}. If
Module:init/1 returns \{stop, Reason\} or ignore, the process is terminated and the function returns \{error, Reason\} or ignore, respectively.
```

start(Module, Args, Options) -> Result
start(FsmName, Module, Args, Options) -> Result

```

Types:
- FsmN ame \(=\{\) local, N ame \(\}\) । \(\{\) global,G lobal N ame \(\}\)
- \(\mathrm{Name}=\) atom()
- G lobalN ame = term()
- M odule = atom()
- Args = term()
- Options = [O ption]
- Option = \{debug,D bgs\} | \{timeout,Time\} | \{spawn_opt,SO pts\}
- Dbgs = [D bg]
- \(D b g=\) trace \(|\log |\) statistics
- I \{log_to_file,FileN ame\} | \{install, \(\{\) Func,FuncState \(\}\}\)
- SO pts = [term()]
- Result \(=\{\) ok,Pid \(\}\) | ignore \| \{error,Error \(\}\)
- \(\operatorname{Pid}=\) pid()
- Error \(=\{\) already_started,Pid \(\}\) | term()

C reates a stand-alone gen_fsm process, i.e. a gen_fsm which is not part of a supervision tree and thus has no supervisor.
See start_link/3,4 [page 186] for a description of arguments and return values.
send_event(FsmRef, Event) -> ok
Types:
- FsmRef \(=\mathrm{N}\) ame \| \(\{\mathrm{N}\) ame, N ode \(\}\) | \{global,GlobalN ame \(\}\) | pid()
- \(\mathrm{Name}=\mathrm{N}\) ode \(=\) atom( \()\)
- G lobal N ame \(=\) term()
- Event = term()

Sends an event asynchronously to the gen_fsm FsmRef and returns ok immediately. The gen_fsm will call Module: StateName/2 to handle the event, where StateName is the name of the current state of the gen_fsm.
FsmRef can be:
- the pid,
- Name, if the gen_fsm is locally registered,
- \{Name, Node \}, if the gen_fsm is locally registered at another node, or
- \{global, GlobalName\}, if the gen_fsm is globally registered.

Event is an arbitrary term which is passed as one of the arguments to Module:StateName/2.
```

send_all_state_event(FsmRef, Event) -> ok

```

Types:
- FsmRef \(=\) Name | \(\{N\) ame, \(N\) ode \(\}\) | \{global,G lobalName\} | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- GlobalN ame = term()
- Event = term()

Sends an event asynchronously to the gen_fsm FsmRef and returns ok immediately. The gen_fsm will call Module:handle_event/3 to handle the event.
See send_event/2 [page 187] for a description of the arguments.
The difference between send_event and send_all_state_event is which callback function is used to handle the event. This function is useful when sending events that are handled the same way in every state, as only one handle_event clause is needed to handle the event instead of one clause in each state name function.
```

sync_send_event(FsmRef, Event) -> Reply
sync_send_event(FsmRef, Event, Timeout) -> Reply

```

Types:
- FsmRef \(=\mathrm{N}\) ame \| \(\{\mathrm{N}\) ame, N ode \(\}\) | \{global, Global Name\(\} \mid \operatorname{pid}()\)
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Global N ame = term()
- Event = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reply = term()

Sends an event to the gen_fsm FsmRef and waits until a reply arrives or a timeout occurs. The gen_fsm will call Module: StateName/3 to handle the event, where StateName is the name of the current state of the gen_fsm.
See send_event/2 [page 187] for a description of FsmRef and Event.
Timeout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply is received within the specified time, the function call fails.
The return value Reply is defined in the return value of Module: StateName/3.
In the case where the gen_fsm terminates during the handling of the event and the caller is linked to the gen_fsm and trapping exits, the exit message is removed from the caller's receive queue before the function call fails.
This behaviour is retained for backwards compatibility only and may change in the future. N ote that if the gen_fsm crashes in between calls, a linked process must take care of the exit message anyway.
Warning: Under certain circumstances (e.g. FsmRef = \{Name, Node\}, and Node goes down) the exit message cannot be removed.
sync_send_all_state_event (FsmRef, Event) -> Reply
sync_send_all_state_event(FsmRef, Event, Timeout) -> Reply
Types:
- FsmRef \(=\) Name | \(\{N\) ame, \(N\) ode \(\}\) | \{global,G lobalN ame \(\}\) | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- GlobalN ame = term()
- Event = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reply = term()

Sends an event to the gen_fsm FsmRef and waits until a reply arrives or a timeout occurs. The gen_fsm will call Module: handle_sync_event/4 to handle the event.
See send_event/2 [page 187] for a description of FsmRef and Event. See sync_send_event/3 [page 188] for a description of Timeout and Reply.
See send_all_state_event/2 [page 188] for a discussion about the difference between sync_send_event and sync_send_all_state_event.
reply(Caller, Reply) -> true
Types:
- Caller - see below
- Reply = term()

This function can be used by a gen_fsm to explicitly send a reply to a client process that called sync_send_event/2,3 [page 188] or sync_send_all_state_event/2,3 [page 188], when the reply cannot be defined in the return value of Module:State/3 or Module:handle_sync_event/4.
Caller must be the From argument provided to the callback function. Reply is an arbitrary term, which will be given back to the client as the return value of sync_send_event/2,3 or sync_send_all_state_event/2,3.
send_event_after(Time, Event) -> Ref
Types:
- Time = integer()
- Event = term()
- Ref = reference()

Sends a delayed event internally in the gen_fsm that calls this function after Time ms. Returns immediately a reference that can be used to cancel the delayed send using cancel_timer/1 [page 190].
The gen_fsm will call Module:StateName/2 to handle the event, where StateName is the name of the current state of the gen_fsm at the time the delayed event is delivered.
Event is an arbitrary term which is passed as one of the arguments to Module: StateName/2.
start_timer (Time, Msg) -> Ref
Types:
- Time = integer()
- M sg = term()
- Ref = reference()

Sends a timeout event internally in the gen_fsm that calls this function after Time ms. Returns immediately a reference that can be used to cancel the timer using cancel_timer/1 [page 190].
The gen_fsm will call Module:StateName/2 to handle the event, where StateName is the name of the current state of the gen_fsm at the time the timeout message is delivered.
Msg is an arbitrary term which is passed in the timeout message, \{timeout, Ref, Msg\}, as one of the arguments to Module: StateName/2.
```

cancel_timer(Ref) -> RemainingTime | false

```

Types:
- Ref = reference()
- RemainingTime = integer()

Cancels an internal timer referred by Ref in the gen_fsm that calls this function.
Ref is a reference returned from send_event_after/2 [page 189] or start_timer/2 [page 189].
If the timer has already timed out, but the event not yet been delivered, it is cancelled as if it had not timed out, so there will be no false timer event after returning from this function.

Returns the remaining time in ms until the timer would have expired if Ref referred to an active timer, false otherwise.
```

enter_loop(Module, Options, StateName, StateData)
enter_loop(Module, Options, StateName, StateData, FsmName)
enter_loop(Module, Options, StateName, StateData, Timeout)
enter_loop(Module, Options, StateName, StateData, FsmName, Timeout)

```

Types:
- M odule \(=\) atom ()
- Options = [Option]
- Option = \{debug, Dbgs \(\}\)
- \(\mathrm{Dbgs}=[\mathrm{D}\) bg]
- \(\mathrm{Dbg}=\) trace \(|\log |\) statistics
- | \{log_to_file,FileN ame\} | \{install,\{Func,FuncState\}\}
- StateN ame = atom()
- StateD ata = term()
- \(\operatorname{FsmN}\) ame \(=\{\) local, N ame \(\}\) । \(\{\) global, Global N ame \(\}\)
- N ame = atom()
- GlobalN ame = term()
- Timeout = int() | infinity
\(M\) akes an existing process into a gen_fsm. D oes not return, instead the calling process will enter the gen_fsm receive loop and become a gen_fsm process. The process must have been started using one of the start functions in proc_lib, see proc_lib(3) [page 263]. The user is responsible for any initialization of the process, including registering a name for it.

This function is useful when a more complex initialization procedure is needed than the gen_fsm behaviour provides.
Module, Options and FsmName have the same meanings as when calling start[_link]/3,4 [page 186]. H owever, if FsmName is specified, the process must have been registered accordingly before this function is called.
StateName, StateData and Timeout have the same meanings as in the return value of M odule:init/1 [page 191]. Also, the callback module Module does not need to export an init/1 function.
Failure: If the calling process was not started by a proc_lib start function, or if it is not registered according to FsmName.

\section*{CALLBACK FUNCTIONS}

The following functions should be exported from a gen_fsm callback module. In the description, the expression state name is used to denote a state of the state machine. state data is used to denote the internal state of the Erlang process which implements the state machine.

\section*{Exports}
```

Module:init(Args) -> Result

```

Types:
- Args = term()
- Return \(=\{\) ok,StateN ame,StateD ata \(\}\) । \(\{0 k\), StateN ame,StateD ata,Timeout \(\}\)
- | \{stop,Reason\} | ignore
- StateN ame = atom()
- StateD ata = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = term()

W henever a gen_fsm is started using gen_fsm:start/3,4 [page 187] or gen_fsm:start_link/3,4 [page 186], this function is called by the new process to initialize. Args is the Args argument provided to the start function.
If initialization is successful, the function should return \{ok, StateName, StateData\} or \{ok, StateName, StateData, Timout \(\}\), where StateName is the initial state name and StateData the initial state data of the gen_fsm.
If an integer timout value is provided, a timout will occur unless an event or a message is received within Timeout milliseconds. A timout is represented by the atom timeout and should be handled by the Module:StateName/2 callback functions. The atom inifinity can be used to wait indefinitely, this is the default value.

If something goes wrong during the initialization the function should return \{stop, Reason\}, where Reason is any term, or ignore.

Module:StateName(Event, StateData) -> Result
Types:
- Event = timeout । term()
- StateD ata = term()
- Result \(=\{\) next_state, \(N\) extStateN ame,N ewStateD ata \(\}\) \{next_state,N extStateN ame,N ewStateD ata,Timeout \}
- I \{stop,Reason,N ewStateD ata\}
- N extStateN ame = atom()
- N ewStateD ata = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = term()

There should be one instance of this function for each possible state name. W henever a gen_fsm receives an event sent using gen_fsm:send_event/2 [ page 187], the instance of this function with the same name as the current state name StateName is called to handle the event. It is also called if a timeout occurs.
Event is either the atom timeout, if a timeout has occured, or the Event argument provided to send_event/2.
StateData is the state data of the gen_fsm.
If the function returns \{next_state, NextStateName, NewStateData\} or \{next_state, NextStateName, NewStateData, Timeout \}, the gen_fsm will continue executing with the current state name set to NextStateName and with the possibly updated state data NewStateData. See Module:init/1 for a description of Timeout. If the function returns \{stop, Reason, NewStateData\}, the gen_fsm will call Module:terminate(Reason, NewStateData) and terminate.
```

Module:handle_event(Event, StateName, StateData) -> Result

```

Types:
- Event = term()
- StateN ame = atom()
- StateD ata = term()
- Result = \{next_state,N extStateN ame,N ewStateD ata \(\}\) \{next_state,N extStateN ame,N ewStateD ata,Timeout \(\}\)
- I \{stop,Reason,N ewStateD ata\}
- N extStateN ame = atom()
- \(N\) ewStateD ata \(=\) term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = term()

W henever a gen_fsm receives an event sent using gen_fsm:send_all_state_event/2 [page 188], this function is called to handle the event.
StateName is the current state name of the gen_fsm.
See Module:StateName/2 for a description of the other arguments and possible return values.
```

Module:StateName(Event, From, StateData) -> Result
Types:
- Event = term()
- From = {pid(),Tag}
- StateD ata = term()
- Result = {reply,R eply,N extStateN ame,N ewStateD ata} |
{reply,Reply,N extStateN ame,N ewStateD ata,Timeout}
- | {next_state,N extStateN ame,N ewStateD ata} |
{next_state,N extStateN ame,N ewStateD ata,T imeout}
- I {stop,Reason,Reply,N ewStateD ata} I {stop,Reason,N ewStateD ata}
- Reply = term()
- N extStateN ame = atom()
- N ewStateD ata = term()
- Timeout =int()>0 | infinity
- Reason = normal | term()

```
There should be one instance of this function for each possible state name. W henever a gen_fsm receives an event sent using gen_fsm:sync_send_event/2,3 [page 188], the instance of this function with the same name as the current state name StateName is called to handle the event.

Event is the Event argument provided to sync_send_event.
From is a tuple \{Pid,Tag\} where Pid is the pid of the process which called sync_send_event/2,3 and Tag is a unique tag.
StateData is the state data of the gen_fsm.
If the function returns \{reply, Reply, NextStateName, NewStateData\} or \{reply, Reply, NextStateName, NewStateData, Timeout \}, Reply will be given back to From as the return value of sync_send_event/2,3. The gen_fsm then continues executing with the current state name set to NextStateName and with the possibly updated state data NewStateData. See Module:init/1 for a description of Timeout.
If the function returns \{next_state, NextStateName, NewStateData\} or \{next_state, NextStateName, NewStateData, Timeout \}, the gen_fsm will continue executing in NextStateName with NewStateData. A ny reply to From must be given explicitly using gen_fsm:reply/2 [page 189].
If the function returns \{stop, Reason, Reply, NewStateData\}, Reply will be given back to From. If the function returns \{stop, Reason, NewStateData\}, any reply to From must be given explicitly using gen_fsm:reply/2. The gen_fsm will then call
Module: terminate(Reason,NewStateData) and terminate.

Module:handle_sync_event(Event, From, StateName, StateData) -> Result
Types:
- Event = term()
- From = \{pid(),Tag\}
- StateN ame = atom()
- StateD ata = term()
- Result = \{reply,Reply,N extStateN ame,N ewStateD ata\} | \{reply,Reply,N extStateN ame,N ewStateD ata,Timeout\}
- | \{next_state, N extStateN ame,N ewStateD ata\} | \{next_state,N extStateN ame,N ewStateD ata,Timeout
- I \{stop,Reason,Reply,N ewStateD ata\} I \{stop,Reason,N ewStateD ata\}
- Reply = term()
- \(N\) extStateN ame = atom()
- N ewStateD ata \(=\) term()
- Timeout \(=\) int() \(>0\) । infinity
- Reason = term()

Whenever a gen_fsm receives an event sent using gen_fsm:sync_send_all_state_event/2,3 [page 188], this function is called to handle the event.
StateName is the current state name of the gen_fsm.
See Module:StateName/3 for a description of the other arguments and possible return values.

Module:handle_info(Info, StateName, StateData) -> Result
Types:
- Info = term()
- StateN ame = atom()
- StateD ata = term()
- Result \(=\{\) next_state, \(N\) extStateN ame,N ewStateD ata \(\}\) \{next_state,N extStateN ame,N ewStateD ata,Timeout\}
- I \{stop,R eason,N ewStateD ata\}
- \(N\) extStateN ame = atom()
- \(N\) ewStateD ata \(=\) term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = normal । term()

This function is called by a gen_fsm when it receives any other message than a synchronous or asynchronous event (or a system message).
Info is the received message.
See Module:StateName/2 for a description of the other arguments and possible return values.

Module:terminate(Reason, StateName, StateData)
Types:
- Reason = normal | shutdown | term()
- StateN ame = atom()
- StateD ata = term()

This function is called by a gen_fsm when it is about to terminate. It should be the opposite of Module:init/1 and do any necessary cleaning up. When it returns, the gen_fsm terminates with Reason. The return value is ignored.
Reason is a term denoting the stop reason, StateName is the current state name, and StateData is the state data of the gen_fsm.
Reason depends on why the gen_fsm is terminating. If it is because another callback function has returned a stop tuple \(\{\) stop, . . \}, Reason will have the value specified in that tuple. If it is due to a failure, Reason is the error reason.

If the gen_fsm is part of a supervision tree and is ordered by its superviser to terminate, this function will be called with Reason=shutdown if the following conditions apply:
- the gen_fsm has been set to trap exit signals, and
- the shutdown strategy as defined in the supervisor's child specification is an integer timeout value, not brutal_kill.

O therwise, the gen_fsm will be immediately terminated.
N ote that for any other reason than normal or shutdown, the gen_fsm is assumed to terminate due to an error and an error report is issued using [error_logger:format/2].
```

Module:code_change(OldVsn, StateName, StateData, Extra) -> {ok, NextStateName,
NewStateData}
Types:
- OldV sn = V sn | {down, V sn}
- V sn = term()
- StateN ame = N extStateN ame = atom()
- StateD ata = N ewStateD ata = term()
- Extra = term()
This function is called by a gen_fsm when it should update its internal state data during
a release upgrade/downgrade, i.e. when the instruction {update,Module, Change, . . . }
where Change={advanced, Extra} is given in the appup file. See [OTP D esign
Principles].
In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is
{down,Vsn}. Vsn is defined by the vsn attribute(s) of the old version of the callback
module Module. If no such attribute is defined, the version is the checksum of the
BEAM file.
StateName is the current state name and StateData the internal state data of the
gen_fsm.
Extra is passed as-is from the {advanced, Extra} part of the update instruction.
The function should return the new current state name and updated internal data.

```
    SEE ALSO
    gen_event(3) [page 175], gen_server(3) [page 196], supervisor(3) [page 347],
    proc_lib(3) [page 263], sys(3) [page 357]

\section*{gen_server}

Erlang M odule

A behaviour module for implementing the server of a client-server relation. A generic server process (gen_server) implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. It will also fit into an OTP supervision tree. Refer to [OTP D esign Principles] for more information.
A gen_server assumes all specific parts to be located in a callback module exporting a pre-defined set of functions. The relationship between the behaviour functions and the callback functions can be illustrated as follows:
```

$\begin{array}{ll}\text { gen_server module } & \text { Callback module } \\ \text { genserver:start link _-----> } & \text { Module:init/1 }\end{array}$
gen_server:multi_call -----> Module:handle_call/3
gen_server:cast
gen_server:abcast -----> Module:handle_cast/2

- -----> Module:handle_info/2
- -----> Module:terminate/2
- -----> Module:code_change/3

```

If a callback function fails or returns a bad value, the gen_server will terminate.
The sys module can be used for debugging a gen_server.
N ote that a gen_server does not trap exit signals automatically, this must be explicitly initiated in the callback module.

Unless otherwise stated, all functions in this module fail if the specified gen_server does not exist or if bad arguments are given.

\section*{Exports}
```

start_link(Module, Args, Options) -> Result
start_link(ServerName, Module, Args, Options) -> Result

```

Types:
- ServerN ame \(=\{\) local, N ame \(\} \mid\) \{global,GlobalN ame \(\}\)
- N ame = atom()
- GlobalN ame = term()
- M odule = atom()
- Args = term()
- Options = [O ption]
- Option \(=\{\) debug, \(\operatorname{Dbgs}\}\) | \{timeout,Time\} । \{spawn_opt,SO pts\}
- Dbgs = [D bg]
- D bg = trace \| log | statistics \| \{log_to_file,FileN ame\} | \{install, \{Func,FuncState\}\}
- SO pts = [term( )]
- Result \(=\{0 \mathrm{ok}, \mathrm{Pid}\}\) । ignore । \(\{\) error,Error \(\}\)
- Pid \(=\) pid()
- Error \(=\{\) already_started, Pid \(\}\) । term()

C reates a gen_server process as part of a supervision tree. The function should be called, directly or indirectly, by the supervisor. It will, among other things, ensure that the gen_server is linked to the supervisor.
The gen_server process calls Module:init/1 to initialize. To ensure a synchronized start-up procedure, start_link/3,4 does not return until Module:init/1 has returned.
If ServerName=\{local, Name\} the gen_server is registered locally as Name using register/2. If ServerName=\{global, GlobalName \(\}\) the gen_server is registered globally as GlobalName using global:register_name/2. If no name is provided, the gen_server is not registered.
Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the option \(\{\) timeout, Time \(\}\) is present, the gen_server is allowed to spend Time milliseconds initializing or it will be terminated and the start function will return \{error, timeout \(\}\).
If the option \{debug, Dbgs \} is present, the corresponding sys function will be called for each item in Dbgs. See sys(3) [page 357].
If the option \{spawn_opt, SOpts\} is present, SOpts will be passed as option list to the spawn_opt BIF which is used to spawn the gen_server. See [erlang(3)].

\section*{N ote:}

Using the spawn option monitor is currently not allowed, but will cause the function to fail with reason badarg.

If the gen_server is successfully created and initialized the function returns \(\{\mathrm{ok}, \mathrm{Pid}\}\), where Pid is the pid of the gen_server. If there already exists a process with the specified ServerName the function returns \{error, \{already_started, Pid\}\}, where Pid is the pid of that process.
If Module:init/ 1 fails with Reason, the function returns \{error, Reason\}. If Module:init/1 returns \{stop, Reason\} or ignore, the process is terminated and the function returns \{error, Reason\} or ignore, respectively.
```

start(Module, Args, Options) -> Result
start(ServerName, Module, Args, Options) -> Result

```

Types:
- ServerN ame \(=\{\) local, N ame \(\} \mid\) \{global,GlobalN ame \(\}\)
- N ame = atom()
- G lobalN ame = term()
- M odule = atom()
- A rgs = term()
- Options = [O ption]
- Option = \{debug,D bgs\} | \{timeout,Time\} | \{spawn_opt,SO pts\}
- Dbgs = [D bg]
- Dbg = trace \| log | statistics | \{log_to_file,FileN ame\} | \{install,\{Func,FuncState\}\}
- SO pts = [term()]
- Result \(=\{0 k\), Pid \(\}\) | ignore \| \{error,Error \(\}\)
- \(\operatorname{Pid}=\) pid()
- Error = \{already_started,Pid \(\}\) । term()

Creates a stand-alone gen_server process, i.e. a gen_server which is not part of a supervision tree and thus has no supervisor.
See start_link/3,4 [page 196] for a description of arguments and return values.
```

call(ServerRef, Request) -> Reply
call(ServerRef, Request, Timeout) -> Reply

```

\section*{Types:}
- ServerR ef = N ame | \{N ame, N ode\} | \{global,G lobalN ame\} \| pid()
- N ode = atom()
- Global N ame = term()
- Request = term()
- Timeout \(=\operatorname{int}()>0 \quad\) infinity
- Reply = term()

M akes a synchronous call to the gen_server ServerRef by sending a request and waiting until a reply arrives or a timout occurs. The gen_server will call Module:handle_call/3 to handle the request.

ServerRef can be:
- the pid,
- Name, if the gen_server is locally registered,
- \{Name, Node\}, if the gen_server is locally registered at another node, or
- \{global, GlobalName\}, if the gen_server is globally registered.

Request is an arbitrary term which is passed as one of the arguments to Module:handle_call/3.

Timeout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom infinity to wait indefinitely. D efault value is 5000. If no reply is received within the specified time, the function call fails.
The return value Reply is defined in the return value of Module: handle_call/3.
The call may fail for several reasons, including timeout and the called gen_server dying before or during the call.

There is a special case for backwards compatibility. If
- the client is linked to the gen server, and
- the client is trapping exits, and
- the gen_server terminates while handling the request
then the exit message is removed from the client's receive queue before the function call fails. This special-case behaviour may be removed in the future because it is inconsistent with the behaviour when a gen_server dies between calls and also because the exit message cannot be removed in some circumstances, for instance when ServerRef \(=\{\) Name, Node \(\}\) and Node goes down.
```

multi_call(Name, Request) -> Result

```
multi_call(Nodes, Name, Request) \(->\) Result
multi_call(Nodes, Name, Request, Timeout) \(->\) Result

Types:
- Nodes = [ N ode]
- Node = atom()
- Name = atom()
- Request \(=\) term()
- Timeout \(=\) int ()\(>=0\) । infinity
- Result \(=\{\) Replies,BadN odes \(\}\)
- Replies \(=[\) \{Node,Reply \(\}]\)
- Reply = term()
- BadN odes = [N ode]

M akes a synchronous call to all gen_servers locally registered as Name at the specified nodes by first sending a request to every node and then waiting for the replies. The gen_servers will call Module:handle_call/3 to handle the request.
The function returns a tuple \{Replies, BadNodes\} where Replies is a list of \{Node, Reply\} and BadNodes is a list of node that either did not exist, or where the gen_server Name did not exist or did not reply.
Nodes is a list of node names to which the request should be sent. D efault value is the list of all known nodes [node()|nodes()].

Name is the locally registered name of each gen_server.
Request is an arbitrary term which is passed as one of the arguments to Module:handle_call/3.
Timeout is an integer greater than zero which specifies how many milliseconds to wait for each reply, or the atom infinity to wait indefinitely. D efault value is infinity. If no reply is received from a node within the specified time, the node is added to BadNodes.
When a reply Reply is received from the gen_server at a node Node, \{Node, Reply \(\}\) added to Replies. Reply is defined in the return value of Module:handle_call/3.

\section*{Warning:}

If one of the nodes is running Erlang/OTP R6B or older, and the gen_server is not started when the requests are sent, but starts within 2 seconds, this function waits the whole Timeout, which may be infinity.
This problem does not exist if all nodes are running Erlang/OTP R7B or later.

This function does not read out any exit messages like call/2,3 does.
The previously undocumented functions safe_multi_call/2,3,4 were removed in OTP R7B/Erlang 5.0 since this function is now safe, except in the case mentioned above.

To avoid that late answers (after the timeout) pollutes the caller's message queue, a middleman process is used to do the actual calls. Late answers will then be discarded when they arrive to a terminated process.
cast(ServerRef, Request) -> ok
Types:
- ServerRef \(=\mathrm{N}\) ame \| \(\{\mathrm{N}\) ame, N ode\} \| \{global,GlobalName\} | pid()
- N ode = atom()
- G lobal N ame = term()
- Request = term()

Sends an asynchronous request to the gen_server ServerRef and returns ok immediately, ignoring if the destination node or gen_server does not exist. The gen_server will call Module: handle_cast/2 to handle the request.
See call/2,3 [page 198] for a description of ServerRef.
Request is an arbitrary term which is passed as one of the arguments to Module:handle_cast/2.
abcast(Name, Request) -> abcast
abcast(Nodes, Name, Request) \(->\) abcast
Types:
- N odes = [ N ode]
- N ode = atom()
- N ame = atom()
- Request = term()

Sends an asynchronous request to the gen_servers locally registered as Name at the specified nodes. The function returns immediately and ignores nodes that does not exist, or where the gen_server Name does not exist. The gen_servers will call Module:handle_cast/2 to handle the request.
See multi_call/2,3,4 [page 199] for a description of the arguments.
reply(Client, Reply) -> true
Types:
- Client - see below
- Reply = term()

This function can be used by a gen_server to explicitly send a reply to a client that called call/ 2,3 or multi_call/ \(2,3,4\), when the reply cannot be defined in the return value of Module:handle_call/3.
Client must be the From argument provided to the callback function. Reply is an arbitrary term, which will be given back to the client as the return value of call/2,3 or multi_call/2,3,4.
```

enter_loop(Module, Options, State)
enter_loop(Module, Options, State, ServerName)
enter_loop(Module, Options, State, Timeout)
enter_loop(Module, Options, State, ServerName, Timeout)

```

Types:
- M odule = atom()
- O ptions = [O ption]
- Option = \{debug, D bgs \(\}\)
- \(\operatorname{Dbgs}=[\mathrm{Dbg}]\)
- Dbg = trace । \(\log \mid\) statistics
- I \{log_to_file,FileN ame\} | \{install, \{Func,FuncState\}\}
- State = term()
- ServerN ame \(=\{\) local, N ame \(\}\) । \(\{\) global,GlobalN ame \(\}\)
- \(\mathrm{Name}=\) atom()
- G lobal N ame \(=\) term()
- Timeout = int() । infinity
\(M\) akes an existing process into a gen_server. D oes not return, instead the calling process will enter the gen_server receive loop and become a gen_server process. The process must have been started using one of the start functions in proc_lib, see proc_lib(3) [page 263]. The user is responsible for any initialization of the process, including registering a name for it.
This function is useful when a more complex initalization procedure is needed than the gen_server behaviour provides.
Module, Options and ServerName have the same meanings as when calling gen_server:start[ _link]/3,4 [page 196]. H owever, if ServerName is specified, the process must have been registered accordingly before this function is called.
State and Timeout have the same meanings as in the return value of M odule:init/1 [page 202]. A lso, the callback module Module does not need to export an init/1 function.
Failure: If the calling process was not started by a proc_lib start function, or if it is not registered according to ServerName.

\section*{CALLBACK FUNCTIONS}

The following functions should be exported from a gen_server callback module.

\section*{Exports}

Module:init(Args) -> Result
Types:
- A rgs = term()
- Result \(=\{0 k\), State \(\}\) । \(\{0 k\), State,Timeout \(\}\)
- I \{stop,Reason\} | ignore
- State = term()
- Timeout \(=\operatorname{int}()>=0\) । infinity
- Reason = term()

Whenever a gen_server is started using gen_server:start/3,4 [page 197] or gen_server:start_link/3.4 [page 196], this function is called by the new process to initialize.

Args is the Args argument provided to the start function.
If the initialization is successful, the function should return \(\{0 \mathrm{k}\), State \(\}\) or \{ok, State, Timout \}, where State is the internal state of the gen_server.
If an integer timout value is provided, a timout will occur unless a request or a message is received within Timeout milliseconds. A timout is represented by the atom timeout which should be handled by the handle_info/2 callback function. The atom inifinity can be used to wait indefinitely, this is the default value.
If something goes wrong during the initialization the function should return \{stop, Reason\} where Reason is any term, or ignore.

Module:handle_call(Request, From, State) -> Result
Types:
- Request = term()
- From \(=\{\) pid( \()\), Tag \(\}\)
- State = term()
- Result \(=\{r e p l y, R e p l y, N\) ewState \(\}\) I \{reply,Reply,N ewState,Timeout \(\}\)
- I \{noreply,N ewState\} I \{noreply,N ewState,Timeout\}
- I \{stop,Reason,Reply,N ewState\} I \{stop,Reason,N ewState\}
- Reply = term()
- N ewState \(=\) term ()
- Timeout \(=\operatorname{int}()>=0\) । infinity
- Reason = term()

W henever a gen_server receives a request sent using gen_server:call/2,3 [page 198] or gen_server:multi_call/2,3,4 [page 199], this function is called to handle the request.
Request is the Request argument provided to call or multi_call.
From is a tuple \{Pid,Tag\} where Pid is the pid of the client and Tag is a uniquetag. State is the internal state of the gen_server.
If the function returns \{reply, Reply, NewState \(\}\) or
\{reply, Reply, NewState, Timout \}, Reply will be given back to From as the return value of call/2,3 or included in the return value of multi_call/2, 3,4 . The gen_server
then continues executing with the possibly updated internal state NewState. See Module:init/1 for a description of Timeout.
If the functions returns \{noreply, NewState\} or \{noreply, NewState, Timeout \}, the gen_server will continue executing with NewState. A ny reply to From must be given explicitly using gen_server:reply/2 [page 200].
If the function returns \{stop, Reason, Reply, NewState\}, Reply will be given back to From. If the function returns \{stop, Reason, NewState\}, any reply to From must be given explicitly using gen_server:reply/2. The gen_server will then call Module:terminate (Reason, NewState) and terminate.

Module:handle_cast(Request, State) -> Result
Types:
- Request = term()
- State = term()
- Result \(=\{\) noreply,N ewState \(\}\) I \(\{\) noreply,N ewState,Timeout \(\}\)
- I \{stop,Reason,N ewState\}
- N ewState \(=\) term()
- Timeout \(=\operatorname{int}()>=0\) | infinity
- Reason = term()

W henever a gen_server receives a request sent using gen_server:cast/2 [page 200] or gen_server:abcast/2,3 [page 200], this function is called to handle the request.
See Module: handle_call/3 for a description of the arguments and possible return values.

Module:handle_info(Info, State) -> Result
Types:
- Info = timeout | term()
- State = term()
- Result = \{noreply,N ewState\} I \{noreply,N ewState,Timeout \(\}\)
- I \{stop,Reason,N ewState\}
- N ewState \(=\) term ()
- Timeout \(=\operatorname{int}()>=0\) । infinity
- Reason = normal । term()

This function is called by a gen_server when a timeout occurs or when it receives any other message than a synchronous or asynchronous request (or a system message).
Info is either the atom timeout, if a timeout has occured, or the received message. See Module: handle_call/3 for a description of the other arguments and possible return values.

Module:terminate(Reason, State)
Types:
- Reason = normal | shutdown | term()
- State = term()

This function is called by a gen_server when it is about to terminate. It should be the opposite of Module:init/1 and do any necessary cleaning up. When it returns, the gen_server terminates with Reason. The return value is ignored.
Reason is a term denoting the stop reason and State is the internal state of the gen_server.
Reason depends on why the gen_server is terminating. If it is because another callback function has returned a stop tuple \(\{\) stop,..\(\}\), Reason will have the value specified in that tuple. If it is due to a failure, Reason is the error reason.
If the gen_server is part of a supervision tree and is ordered by its supervisor to terminate, this function will be called with Reason=shutdown if the following conditions apply:
- the gen_server has been set to trap exit signals, and
- the shutdown strategy as defined in the supervisor's child specification is an integer timeout value, not brutal_kill.

O therwise, the gen_server will be immediately terminated.
N ote that for any other reason than normal or shutdown, the gen_server is assumed to terminate due to an error and an error report is issued using [error_logger:format/2].

Module:code_change(OldVsn, State, Extra) \(->\) \{ok, NewState \(\}\)
Types:
- OldV sn = V sn I \{down, V sn\}
- V sn = term()
- State \(=\) N ewState \(=\) term()
- Extra = term()

This function is called by a gen_server when it should update its internal state during a release upgrade/downgrade, i.e. when the instruction \{update, Module, Change, . . .\} where Change \(=\{\) advanced, Extra \(\}\) is given in the appup file. See [OTP D esign Principles] for more information.
In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, 01dVsn is \{down, Vsn\}. Vsn is defined by the vsn attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the checksum of the BEAM file.
State is the internal state of the gen_server.
Extra is passed as-is from the \{advanced, Extra\} part of the update instruction.
The function should return the updated internal state.

\section*{SEE ALSO}
gen_event(3) [page 175], gen_fsm(3) [page 185], supervisor(3) [page 347], proc_lib(3) [page 263], sys(3) [page 357]

\section*{io}

Erlang M odule

This module provides an interface to standard Erlang IO servers. The output functions all return ok if they are successful, or exit if they are not.
In the following description, all functions have an optional parameter IoDevice. If included, it must be the pid of a process which handles the IO protocols. N ormally, it is the IoDevice returned by [file:open/2].
For a description of the IO protocols refer to Armstrong, Virding and Williams, 'Concurrent Programming in Erlang', Chapter 13, unfortunately now very outdated, but the general principles still apply.

\section*{DATA TYPES}
```

io_device()
as returned by file:open/2, a process handling IO protocols

```

\section*{Exports}
```

put_chars([IoDevice,] IoData) -> ok
Types:
- IoD evice = io_device()
- IoD ata = iodata() - see erlang(3)
W rites the characters of IoData to the standard output (IoDevice).
nl([IoDevice]) -> ok

```
    Types:
    - IoD evice = io_device()
    W rites new line to the standard output (IoDevice).
get_chars([IoDevice,] Prompt, Count) -> string() | eof
    Types:
    - IoD evice = io_device()
    - Prompt = atom() | string()
    - Count = int()

Reads Count characters from standard input (IoDevice), prompting it with Prompt. It returns:

String The input characters. eof End of file was encountered.
get_line([IoDevice,] Prompt) -> string() | eof
Types:
- IoD evice = io_device()
- Prompt = atom() | string()

Reads a line from the standard input (IoDevice), prompting it with Prompt. It returns:
String The characters in the line terminated by a LF (or end of file). eof End of file was encountered.
```

setopts([IoDevice,] Opts) -> ok | {error, Reason}

```

Types:
- IoD evice = io_device()
- Opts = [O pt]
- Opt = binary । list
- Reason = term()

Set options for standard input/output (IoDevice). Possible options are:
binary Makes get_chars/2,3 and get_line/1,2 return binaries instead of lists of chars.
list \(M\) akes get_chars/2,3 and get_line/1,2 return lists of chars, which is the default.
expand_fun Provide a function for tab-completion (expansion) like the erlang shell. This function is called when the user presses the Tab key. The expansion is active when calling line-reading functions such as get_line/1, 2 .
The function is called with the current line, upto the cursor, as a reversed string. It should return a three-tuple: \{yes|no, string(), [string(), ...]\}. The first element gives a beep if no, otherwise the expansion is silent, the second is a string that will be entered at the cursor position, and the third is a list of possible expansions. If this list is non-empty, the list will be printed and the current input line will be written once again.
Trivial example (beep on anything except empty line, which is expanded to "quit"):
```

fun("") -> {yes, "quit", []};
(_) -> {no, "", ["quit"]} end

```

\section*{N ote:}

The binary option does not work against IO servers on remote nodes running an older version of Erlang/OTP than R9C.
```

write([IoDevice,] Term) -> ok

```

Types:
- loD evice = io_device()
- Term = term()

W rites the term Term to the standard output (IoDevice).
```

read([IoDevice,] Prompt) -> Result
Types:
- IoD evice = io_device()
- Prompt = atom() | string()
- Result = {ok, Term} | eof | {error, Errorlnfo}
- Term = term()
- ErrorInfo - see section Error Information below
Reads a term Term from the standard input (IoDevice), prompting it with Prompt. It
returns:
{ok, Term} The parsing was succesfful.
eof End of file was encountered.
{error, ErrorInfo} The parsing failed.
read(IoDevice, Prompt, StartLine) -> Result

```
    Types:
    - IoDevice = io_device()
    - Prompt \(=\) atom () | string()
    - StartL ine = int()
    - Result \(=\) \{ok, Term, EndLine \(\}\) । \{eof, EndLine \(\}\) । \{error, Errorlnfo, EndLine\}
    - Term = term()
    - EndLine = int()
    - ErrorInfo - see section Error Information below
    Reads a term Term from IoDevice, prompting it with Prompt. Reading starts at line
    number StartLine. It returns:
    \{ok, Term, EndLine\} The parsing was successful.
    \{eof, EndLine\} End of file was encountered.
    \{error, ErrorInfo, EndLine\} The parsing failed.
fwrite(Format) ->
fwrite([IoDevice,] Format, Data) -> ok
format (Format) ->
format([IoDevice,] Format, Data) \(->\) ok
    Types:
    - IoD evice = io_device()
    - Format \(=\) atom() | string() | binary()
    - D ata \(=[\) term ()\(]\)

W rites the items in Data ([]) on the standard output (IoDevice) in accordance with Format. Format contains plain characters which are copied to the output device, and control sequences for formatting, see below. If Format is an atom or a binary, it is first converted to a list with the aid of atom_to_list/1 or binary_to_list/1.
```

1> io:fwrite("Hello world!~n", []).
Hello world!
ok

```

The general format of a control sequence is \({ }^{\sim}\) F.P. PadC. The character C determines the type of control sequence to be used, \(F\) and \(P\) are optional numeric arguments. If \(F, P\), or Pad is *, the next argument in Data is used as the numeric value of \(F\) or \(P\).
\(F\) is the field width of the printed argument. A negative value means that the argument will be left justified within the field, otherwise it will be right justified. If no field width is specified, the required print width will be used. If the field width specified is too small, then the whole field will be filled with \(*\) characters.
\(P\) is the precision of the printed argument. A default value is used if no precision is specified. The interpretation of precision depends on the control sequences. Unless otherwise specified, the argument within is used to determine print width.
Pad is the padding character. This is the character used to pad the printed representation of the argument so that it conforms to the specified field width and precision. O nly one padding character can be specified and, whenever applicable, it is used for both the field width and precision. The default padding character is ' ' (space).
The following control sequences are available:
~ The character ~ is written.
c The argument is a number that will be interpreted as an ASCII code. The precision is the number of times the character is printed and it defaults to the field width, which in turn defaults to 1 . The following example illustrates:
```

2> io:fwrite("|~10.5c|~-10.5c|~5c| ~ n", [\$a, \$b, \$c]).
| aaaaa|bbbbb |ccccc|
ok

```
f The argument is a float which is written as [-] ddd. ddd, where the precision is the number of digits after the decimal point. The default precision is 6 and it cannot be less than 1.
e The argument is a float which is written as [-]d.ddde+-ddd, where the precision is the number of digits written. The default precision is 6 and it cannot be less than 2.
g The argument is a float which is written as f , if it is \(>=0.1\) and \(<10000.0\). \(O\) therw ise, it is written in the e format. The precision is the number of significant digits. It defaults to 6 and should not be less than 2 . If the absolute value of the float does not allow it to be written in the \(f\) format with the desired number of significant digits, it is also written in the e format.
\(s\) Prints the argument with the string syntax. The argument is an [I/O list], a binary, or an atom. The characters are printed without quotes. In this format, the printed argument is truncated to the given precision and field width. This format can be used for printing any object and truncating the output so it fits a specified field:
```

3> io:fwrite("| ~10w| ~n", [{hey, hey, hey}]).
|**********|
ok
4> io:fwrite("|~10s|~n", [io_lib:write({hey, hey, hey})]).
|{hey,hey,h|
ok

```
w W rites data with the standard syntax. This is used to output Erlang terms. A toms are printed within quotes if they contain embedded non-printable characters, and floats are printed in the default \(g\) format.
p W rites the data with standard syntax in the same way as \({ }^{\sim}{ }_{w}\), but breaks terms whose printed representation is longer than one line into many lines and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings. For example:
```

5> T = [{attributes,[[{id,age,1.50000},{mode,explicit},
{typename,"INTEGER"}], [{id,cho},{mode,explicit},{typename,'Cho'}]]},
{typename,'Person'},{tag,{'PRIVATE',3}},{mode,implicit}].
6> io:fwrite("~ w~n", [T]).
[{attributes,[[{id,age,1.50000},{mode,explicit},{typename,
[73,78,84,69,71,69, 82]}],[{id,cho},{mode,explicit},{typena
me,'Cho'}]]},{typename,'Person'},{tag,{'PRIVATE',3}},{mode
,implicit}]
ok
7> io:fwrite("~62p~n", [T]).
[{attributes,[[{id,age,1.50000},
{mode, explicit},
{typename,"INTEGER"}],
[{id,cho},{mode, explicit},{typename,'Cho'}]]},
{typename,'Person'},
{tag,{'PRIVATE',3}},
{mode,implicit}]
ok

```

The field width specifies the maximum line length. It defaults to 80. The precision specifies the initial indentation of the term. It defaults to the number of characters printed on this line in the same call to io:fwrite or io:format. For example, using T above:
```

8> io:fwrite("Here T = ~62p~n", [T]).
Here T = [{attributes,[[{id,age,1.50000},
{mode, explicit},
{typename,"INTEGER"}],
[{id,cho},
{mode,explicit},
{typename,'Cho'}]]},
{typename,'Person'},
{tag,{'PRIVATE',3}},
{mode,implicit}]

```
ok

W W rites data in the same way as \({ }^{\text {w }}\), but takes an extra argument which is the maximum depth to which terms are printed. A nything below this depth is replaced with . . . . For example, using T above:

9> io:fwrite("~W~n", [T,9]).
[\{attributes, [[\{id,age,1.50000\},\{mode,explicit\},\{typename, ...\}], [\{id, cho\},\{mode,...\},\{...\}]]\},\{typename, 'Person'\},\{t ag, \(\{\) 'PRIVATE', 3\(\}\},\{\) mode,implicit \(\}]\)
ok

If the maximum depth has been reached, then it is impossible to read in the resultant output. Also, the , . . . form in a tuple denotes that there are more elements in the tuple but these are below the print depth.
P W rites data in the same way as \({ }^{\sim}\) p, but takes an extra argument which is the maximum depth to which terms are printed. A nything below this depth is replaced with . . . . For example:
```

10> io:fwrite("~62P~n", [T,9]).
[{attributes,[[{id,age,1.50000},
{mode,explicit},
{typename,...}],
[{id,cho},{mode,...},{...}]]},
{typename,'Person'},
{tag,{'PRIVATE',3}},
{mode,implicit}]
ok

```

B W rites an integer in base 2..36, the default base is 10. A leading dash is printed for negative integers. The precision field selects base. For example:
```

11> io:fwrite("~.16B~n", [31]).
1F
ok
12> io:fwrite("~.2B~n", [-19]).
-10011
ok
13> io:fwrite("~.36B~n", [5*36+35]).
5Z
ok

```

X Like B, but takes an extra argument that is a prefix to insert before the number, but after the leading dash, if any.
The prefix can be a possibly deep list of characters or an atom.
```

14> io:fwrite("~ X~n", [31,"10\#"]).
10\#31
ok
15> io:fwrite("~.16X~n", [-31,"0x"]).
-0x1F
ok

```
\# Like B, but prints the number with an Erlang style '\#-separated base prefix.
```

16> io:fwrite("~.10\#~n", [31]).
10\#31
ok
17> io:fwrite("~.16\#~n", [-31]).
-16\#1F
ok

```
b Like B, but prints lowercase letters.
x Like x , but prints lowercase letters.
+ Like \#, but prints lowercase letters.
n W rites a new line.
i Ignores the next term.
Returns:
ok The formatting succeeded.
If an error occurs, there is no output. For example:
```

18> io:fwrite("~s ~w ~i ~w ~ c ~ n",['abc def', 'abc def', {foo, 1},{foo, 1}, 65]).
ok
19> io:fwrite("~s", [65]).
** exited: {badarg,[{io,format,[<0.22.0>,"~s","A"]},
{erl_eval,do_apply,5},
{shell, exprs,6},
{shell,eval_loop,3}]} **

```

In this example, an attempt was made to output the single character '65' with the aid of the string formatting directive "~ s ".
The two functions fwrite and format are identical. The old name format has been retained for backwards compatibility, while the new name fwrite has been added as a logical complement to fread.
```

fread([IoDevice,] Prompt, Format) -> Result
Types:
- IoD evice = io_device()
- Prompt = atom() | string()
- Format = string()

```
- Result \(=\{\) ok, Terms \(\}\) | eof \(\mid\) \{error, What \(\}\)
- Terms = [term()]
- W hat = term()

Reads characters from the standard input (IoDevice), prompting it with Prompt. Interprets the characters in accordance with Format. Format contains control sequences which directs the interpretation of the input.
Format may contain:
- W hite space characters (SPACE, TAB and NEWLINE) which cause input to be read to the next non-white space character.
- O rdinary characters which must match the next input character.
- Control sequences, which have the general format \({ }^{\sim} * F C\). The character \(*\) is an optional return suppression character. It provides a method to specify a field which is to be omitted. \(F\) is the field width of the input field and \(C\) determines the type of control sequence.
U nless otherwise specified, leading white-space is ignored for all control sequences. An input field cannot be more than one line wide. The following control sequences are available:
~ A single ~ is expected in the input.
d A decimal integer is expected.
u A n unsigned integer in base \(2 . .36\) is expected. The field width parameter is used to specify base. Leading white-space characters are not skipped.
- An optional sign character is expected. A sign character '-' gives the return value -1 . Sign character ' + ' or none gives 1 . The field width parameter is ignored. Leading white-space characters are not skipped.
\# A n integer in base \(2 . .36\) with Erlang-style base prefix (for example "16\#ffff") is expected.
f A floating point number is expected. It must follow the Erlang floating point number syntax.
s A string of non-white-space characters is read. If a field width has been specified, this number of characters are read and all trailing white-space characters are stripped. An Erlang string (list of characters) is returned.
a Similar to s , but the resulting string is converted into an atom.
c The number of characters equal to the field width are read (default is 1) and returned as an Erlang string. H owever, leading and trailing white-space characters are not omitted as they are with s. All characters are returned.
1 Returns the number of characters which have been scanned up to that point, including white-space characters.

It returns:
\{ok, Terms \} The read was successful and Terms is the list of successfully matched and read items.
eof End of file was encountered.
\{error, What \(\}\) The read operation failed and the parameter What gives a hint about the error.

Examples:
```

20> io:fread('enter>', "~ f ~ f ~ f").
enter>1.9 35.5e3 15.0
{ok,[1.90000,3.55000e+4,15.0000]}
21> io:fread('enter>', "~10f~d").
enter> 5.67899
{ok, [5.67800, 99]}
22> io:fread('enter>', ":~10s:~10c:").
enter>:
{ok, ["alan", " joe㣙]}
scan_erl_exprs(Prompt) ->
scan_erl_exprs([IoDevice,] Prompt, StartLine) -> Result
Types:

- IoD evice = io_device()
- Prompt = atom() | string()
- StartLine = int()
- Result = {ok, Tokens, EndLine} | {eof, EndLine} | {error, ErrorInfo, EndLine}
- Tokens - see erl_scan(3)
- EndLine = int()
- ErrorInfo - see section Error Information below
Reads data from the standard input (IoDevice), prompting it with Prompt. Reading
starts at line number StartLine (1). The data is tokenized as if it were a sequence of
Erlang expressions until a final '.' is reached. This token is also returned. It returns:
{ok, Tokens, EndLine} The tokenization succeeded.
{eof, EndLine} End of file was encountered.
{error, ErrorInfo, EndLine} A n error occurred.

```

\section*{Example:}
```

23> io:scan_erl_exprs('enter>').

```
23> io:scan_erl_exprs('enter>').
enter>abc(), "hey".
enter>abc(), "hey".
{ok,[{atom,1,abc},{'(',1},{')', 1},{',',1},{string,1,"hey"},{dot,1}],2}
{ok,[{atom,1,abc},{'(',1},{')', 1},{',',1},{string,1,"hey"},{dot,1}],2}
24> io:scan_erl_exprs('enter>').
24> io:scan_erl_exprs('enter>').
enter>1.0er.
enter>1.0er.
{error,{1,erl_scan,{illegal,float}},2}
{error,{1,erl_scan,{illegal,float}},2}
scan_erl_form(Prompt) ->
scan_erl_form([IoDevice,] Prompt, StartLine) -> Result
Types:
- IoD evice = io_device()
- Prompt = atom() | string()
- StartLine = int()
- Result \(=\{\) ok, Tokens, EndLine \(\} \mid\) \{eof, EndLine\} \(\mid\) \{error, ErrorInfo, EndLine \(\}\)
- Tokens - see erl_scan(3)
- EndLine = int()
```


- Errorlnfo - see section Error Information below

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts reading at line number StartLine (1). The data is tokenized as if it were an Erlang form - one of the valid Erlang expressionsin an Erlang source file - until a final '.' is reached. This last token is also returned. The return values are the same as for scan_erl_exprs/1,2,3 above.

```
parse_erl_exprs(Prompt) ->
parse_erl_exprs([IoDevice,] Prompt, StartLine) -> Result
Types:
- IoD evice = io_device()
- Prompt \(=\) atom() | string()
- StartLine = int()
- Result = \{ok, Expr_list, EndLine\} I \{eof, EndLine\} I \{error, ErrorInfo, EndLine\}
- Expr_list - see erl_parse(3)
- EndLine = int()
- Errorlnfo - see section Error Information below
Reads data from the standard input (IoDevice), prompting it with Prompt. Starts reading at line number StartLine (1). The data is tokenized and parsed as if it were a sequence of Erlang expressions until a final '.' is reached. It returns:
\{ok, Expr_list, EndLine\} The parsing was successful.
\{eof, EndLine\} End of file was encountered.
\{error, ErrorInfo, EndLine\} An error occurred.
Example:
```

```
25> io:parse_erl_exprs('enter>').
```

25> io:parse_erl_exprs('enter>').
enter>abc(), "hey".
enter>abc(), "hey".
{ok, [{call,1,{atom,1,abc},[]},{string,1,"hey"}],2}
{ok, [{call,1,{atom,1,abc},[]},{string,1,"hey"}],2}
26> io:parse_erl_exprs ('enter>').
26> io:parse_erl_exprs ('enter>').
enter>abc("hey".
enter>abc("hey".
{error,{1,erl_parse,["syntax error before: ",[").'"]]},2}

```
{error,{1,erl_parse,["syntax error before: ",[").'"]]},2}
```

parse_erl_form(Prompt) ->
parse_erl_form([IoDevice,] Prompt, StartLine) -> Result

Types:

- IoD evice = io_device()
- Prompt = atom() | string()
- StartLine = int()
- Result $=\{0 \mathrm{ok}, \mathrm{A}$ bsForm, EndLine $\}$ । \{eof, EndLine\} | \{error, ErrorInfo, EndLine\}
- A bsForm - see erl_parse(3)
- EndLine = int()
- Errorlnfo - see section Error Information below

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts reading at line number StartLine (1). The data is tokenized and parsed as if it were an Erlang form - one of the valid Erlang expressions in an Erlang source file - until a final '.' is reached. It returns:
\{ok, AbsForm, EndLine\} The parsing was successful.
\{eof, EndLine\} End of file was encountered.
\{error, ErrorInfo, EndLine\} An error occurred.

Standard Input/Output

All Erlang processes have a default standard IO device. This device is used when no IoDevice argument is specified in the above function calls. H owever, it is sometimes desirable to use an explicit IoDevice argument which refers to the default IO device. This is the case with functions that can access either a file or the default IO device. The atom standard_io has this special meaning. The following example illustrates this:

```
27> io:read('enter>').
enter>foo.
{ok,foo}
28> io:read(standard_io, 'enter>').
enter>bar.
{ok,bar}
```

There is always a process registered under the name of user. This can be used for sending output to the user.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:
apply(Module, format_error, ErrorDescriptor)

io_lib

Erlang M odule

This module contains functions for converting to and from strings (lists of characters). They are used for implementing the functions in the io module. There is no guarantee that the character lists returned from some of the functions are flat, they can be deep lists. lists: flatten/1 can be used for flattening deep lists.

DATA TYPES

```
chars() = [char() | chars()]
```


Exports

```
nl() -> chars()
```

Returns a character list which represents a new line character.

```
write(Term) ->
write(Term, Depth) -> chars()
```

Types:

- Term = term()
- Depth = int()

Returns a character list which represents Term. The Depth (-1) argument controls the depth of the structures written. W hen the specified depth is reached, everything below this level is replaced by "...". For example:

```
1> lists:flatten(io_lib:write(\{1, [2],[3],[4,5],6,7,8,9\})).
"\{1,[2],[3], [4,5],6,7,8,9\}"
\(2>\) lists:flatten(io_lib:write(\{1, [2], [3], [4,5],6,7,8,9\}, 5)).
"\{1, [2], [3], [...],...\}"
```

```
print(Term) ->
print(Term, Column, LineLength, Depth) -> chars()
```

Types:

- Term = term()
- Column = LineL enght $=$ D epth $=\operatorname{int}()$

A lso returns a list of characters which represents Term, but breaks representations which are longer than one line into many lines and indents each line sensibly. It also tries to detect and output lists of printable characters as strings. Column is the starting column (1), LineLength the maximum line length (80), and Depth (-1) the maximum print depth.

```
fwrite(Format, Data) ->
format(Format, Data) -> chars()
    Types:
    - Format = atom() | string() | binary()
    - D ata = [term()]
    Returns a character list which represents Data formatted in accordance with Format.
    See io:fwrite/1,2,3 [page 207] for a detailed description of the available formatting
    options. A fault is generated if there is an error in the format string or argument list.
fread(Format, String) -> Result
    Types:
    - Format = String = string()
    - Result = {ok, InputList, LeftO verC hars} | {more, RestFormat, N chars, InputStack}
        | {error, W hat}
    - InputList = chars()
    - LeftO verC hars = string()
    - RestFormat = string()
    - N chars = int()
    - InputStack = chars()
    - W hat = term()
    Tries to read String in accordance with the control sequences in Format. See io:fread/3
    [page 211] for a detailed description of the available formatting options. It is assumed
    that String contains whole lines. It returns:
    {ok, InputList, LeftOverChars} The string was read. InputList is the list of
        successfully matched and read items, and LeftOverChars are the input characters
        not used.
    {more, RestFormat, Nchars, InputStack} The string was read, but more input is
        needed in order to complete the original format string. RestFormat is the
        remaining format string, NChars the number of characters scanned, and
        InputStack is the reversed list of inputs matched up to that point.
    {error, What} The read operation failed and the parameter What gives a hint about
        the error.
    Example:
    3> io_lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
    {ok,[15.6000,1.73000e-5,24.5000],[]}
fread(Continuation, String, Format) -> Return
    Types:
```

- Continuation $=$ see below
- String = Format = string()
- Return $=$ \{done, Result, LeftO verChars $\}$ I \{more, Continuation\}
- Result $=\{0 \mathrm{k}$, InputList $\}$ | eof । \{error, What $\}$
- InputList = chars()
- W hat = term()()
- LeftO verC hars = string()

This is the re-entrant formatted reader. The continuation of the first call to the functions must be []. Refer to Armstrong, Virding, Williams, 'C oncurrent Programming in Erlang', Chapter 13 for a complete description of how the re-entrant input scheme works.
The function returns:
\{done, Result, LeftOverChars\} The input is complete. The result is one of the following:
\{ok, InputList \} The string was read. InputList is the list of successfully matched and read items, and Left0verChars are the remaining characters.
eof End of file has been encountered. LeftOverChars are the input characters not used.
\{error, What\} An error occurred and the parameter what gives a hint about the error.
\{more, Continuation\} M ore data is required to build a term. Continuation must be passed to fread/3, when more data becomes available.

```
write_atom(Atom) -> chars()
```

Types:

- A tom = atom()

Returns the list of characters needed to print the atom Atom.

```
write_string(String) -> chars()
```

Types:

- String = string()

Returns the list of characters needed to print String as a string.

```
write_char(Integer) -> chars()
```

Types:

- Integer = int()

Returns the list of characters needed to print a character constant.

```
indentation(String, StartIndent) -> int()
```

Types:

- String = string()
- StartIndent $=\operatorname{int}()$

Returns the indentation if String has been printed, starting at StartIndent.

```
char_list(Term) -> bool()
    Types:
    - Term = term()
    Returns true if Term is a flat list of characters, otherwise it returns false.
deep_char_list(Term) -> bool()
    Types:
    - Term = term()
    Returns true if Term is a, possibly deep, list of characters, otherwise it returns false.
printable_list(Term) -> bool()
    Types:
    - Term = term()
    Returns true if Term is a flat list of printable characters, otherwise it returns false.
```


lib

Erlang M odule

W arning:

This module is retained for compatibility. It may disappear without warning in a future release.

Exports

```
flush_receive() -> void()
```

Flushes the message buffer of the current process.
error_message(Format, Args) -> ok
Types:

- Format = atom() | string() | binary()
- A rgs = [term()]

Prints error message Args in accordance with Format. Similar to io: format/2, see io(3) [page 207].
progname() -> atom()
Returns the name of the script that started the current Erlang session.
nonl(String1) -> String2
Types:

- String1 = String2 = string()

Removes the last newline character, if any, in String1.
send (To, Msg)
Types:

- To = pid() | N ame । \{N ame, N ode $\}$
- N ame $=\mathrm{N}$ ode $=$ atom($)$
- M sg = term()

This function to makes it possible to send a message using the apply/3 BIF.

```
sendw(To, Msg)
    Types:
    - To = pid() | N ame | {N ame,N ode}
    - Name=N ode= atom()
    - M sg = term()
    As send/2, but waits for an answer. It is implemented as follows:
    sendw(To, Msg) ->
        To ! {self(),Msg},
        receive
            Reply -> Reply
        end.
```

The message returned is not necessarily a reply to the message sent.

lists

Erlang M odule

This module contains functions for list processing. The functions are organized in two groups: those in the first group perform a particular operation on one or more lists, whereas those in the second group are higher-order functions, using a fun as argument to perform an operation on one list.

U nless otherwise stated, all functions assume that position numbering starts at 1. That is, the first element of a list is at position 1.

Exports

```
all(Pred, List) -> bool()
```

Types:

- Pred = fun(Elem) -> bool()
- Elem = term()
- List $=[$ term($)$]

Returns true if Pred(Elem) returns true for all elements Elem in List, otherwise false.
any(Pred, List) -> bool()
Types:

- Pred $=$ fun(Elem) $->$ bool ()
- Elem = term()
- List $=[$ term($)$]

Returns true if Pred(Elem) returns true for at least one element Elem in List.

```
append(ListOfLists) -> List1
```

Types:

- ListO fLists = [List]
- List $=$ Listl $=[$ term($)$]

Returns a list in which all the sub-lists of ListOfLists have been appended. For example:
$>$ lists:append([[1, 2, 3], [a, b], [4, 5, 6]]). $[1,2,3, a, b, 4,5,6]$
append(List1, List2) -> List3

```
    Types:
    - List1 = List2 = List3 = [term()]
    Returns a new list List3 which is made from the elements of List1 followed by the
        elements of List2. For example:
    > "abcdef" lists:append("abc", "def").
    lists:append(A, B) is equivalent to A ++ B.
concat(Things) -> string()
    Types:
    - Things = [Thing]
    - Thing = atom() | integer() | float() | string()
    C oncatenates the text representation of the elements of Things. The elements of
        Things can be atoms, integers, floats or strings.
        > "dists:concat([doc, '/', file, '.', 3]).
delete(Elem, List1) -> List2
    Types:
    - Elem = term()
    - List1 = List2 = [term()]
    Returns a copy of List1 where the first element matching Elem is deleted, if there is
    such an element.
dropwhile(Pred, List1) -> List2
    Types:
    - Pred = fun(Elem) -> bool()
    - Elem = term()
    - List1 = List2 = [term()]
    D rops elements Elem from List1 while Pred(Elem) returns true and returns the
        remaining list.
duplicate(N, Elem) -> List
    Types:
    - N = int()
    - Elem = term()
    - List = [term()]
    Returns a list which contains N copies of the term Elem. For example:
    > lists:duplicate(5, xx).
    [xx,xx, xx, xx, xx]
```

```
filter(Pred, List1) -> List2
```


Types:

- Pred $=$ fun(Elem) $->$ bool()
- Elem = term()
- List1 = List2 = [term($)$]

List2 is a list of all elements Elem in List1 for which Pred(Elem) returns true.
flatlength(DeepList) -> int()
Types:

- D eepList $=[$ term() | D eepList $]$

Equivalent to length(flatten(DeepList)), but more efficient.
flatmap(Fun, List1) -> List2
Types:

- Fun $=$ fun(A) $->[B]$
- List1 = [A]
- List2 $=[B]$
- $\mathrm{A}=\mathrm{B}=$ term()

Takes a function from As to lists of BS, and a list of AS (List1) and produces a list of BS by applying the function to every element in List1 and appending the resulting lists. That is, flatmap behaves as if it had been defined as follows:
flatmap(Fun, List1) ->
append(map(Fun, List1))
Example:
$>$ lists:flatmap(fun(X)->[X,X] end, [a,b,c]).
[a,a,b,b,c,c]
flatten(DeepList) -> List
Types:

- D eepList $=[$ term() | D eepList]
- List $=[$ term($)$]

Returns a flattened version of DeepList.
flatten(DeepList, Tail) -> List
Types:

- D eepList $=$ [term() | D eepList]
- Tail $=$ List $=[$ term ()$]$

Returns a flattened version of DeepList with the tail Tail appended.
foldl(Fun, Acc0, List) -> Acc1
Types:

- Fun = fun(Elem, A ccln) -> A ccO ut
- Elem = term()
- $\mathrm{AccO}=\mathrm{Acc} 1=\mathrm{AccIn}=\mathrm{AccO}$ ut $=$ term()
- List $=[$ term($)$]

Calls Fun(Elem, AccIn) on successive elements A of List, starting with AccIn == Acc0. Fun/2 must return a new accumulator which is passed to the next call. The function returns the final value of the accumulator. Acc0 is returned if the list is empty. For example:
$>$ lists:foldl(fun(X, Sum) $->X+$ Sum end, $0,[1,2,3,4,5]$).
15
$>$ lists:foldl(fun(X, Prod) $->$ X * Prod end, 1, [1,2,3,4,5]). 120
foldr(Fun, Acc0, List) -> Acc1
Types:

- Fun = fun(Elem, Accln) -> AccO ut
- Elem = term()
- $\mathrm{Acc} 0=\mathrm{Acc} 1=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()
- List $=[$ term ()$]$

Like foldl/3, but the list is traversed from right to left. For example:
$>P=$ fun(A, AccIn) $->$ io:format("~p ", [A]), AccIn end.
\#Fun<erl_eval.12.2225172>
$>$ lists:foldl(P, void, $[1,2,3]$).
123 void
> lists:foldr(P, void, [1,2,3]).
321 void
foldl/3 is tail recursive and would usually be preferred to foldr/3.
foreach(Fun, List) -> void()
Types:

- Fun $=$ fun(Elem) $->$ void()
- Elem = term()
- List $=[$ term($)$]

C alls Fun(Elem) for each element Elem in List. This function is used for its side effects and the evaluation order is defined to be the same as the order of the elements in the list.
keydelete(Key, N, TupleList1) -> TupleList2
Types:

- Key = term()
- $\mathrm{N}=1$..size(Tuple)
- TupleList1 =TupleList2 = [Tuple]
- Tuple = tuple()

Returns a copy of TupleList1 where the first occurrence of a tuple whose nth element compares equal to Key is deleted, if there is such a tuple.
keymap(Fun, N, TupleList1) -> TupleList2
Types:

- Fun = fun(Term1) -> Term2
- Term1 = Term2 = term()
- $N=1$..size(Tuple)
- TupleList1 = TupleList2 = [tuple()]

Returns a list of tuples where, for each tuple in TupleList1, the Nth element Term1 of the tuple has been replaced with the result of calling Fun(Term1).
Examples:

```
> Fun = fun(Atom) -> atom_to_list(Atom) end.
#Fun<erl_eval.6.10732646>
2> lists:keymap(Fun, 2, [{name,jane, 22},{name,lizzie,20},{name,lydia,15}]).
[{name,"jane", 22},{name,"lizzie", 20},{name,"lydia", 15}]
```

keymember (Key, N, TupleList) -> bool()
Types:

- Key = term()
- $\mathrm{N}=1$..size(Tuple)
- TupleList = [Tuple]
- Tuple = tuple()

Returns true if there is a tuple in TupleList whose nth element compares equal to Key, otherwise false.
keymerge(N , TupleList1, TupleList2) -> TupleList3
Types:

- $N=1$..size(Tuple)
- TupleList1 $=$ TupleList2 $=$ TupleList3 $=$ [Tuple]
- Tuple = tuple()

Returns the sorted list formed by merging TupleList1 and TupleList2. The merge is performed on the nth element of each tuple. Both TupleList1 and TupleList2 must be key-sorted prior to evaluating this function. When two tuples compare equal, the tuple from TupleList1 is picked before the tuple from TupleList2.
keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2
Types:

- Key = term()
- $\mathrm{N}=1$..size(Tuple)
- TupleList1 $=$ TupleList2 $=$ [Tuple]
- N ewTuple = Tuple = tuple()

Returns a copy of TupleList1, where the first occurrence of a tuple whose nth element compares equal to Key is replaced with NewTuple, if there is such a tuple.
keysearch(Key, N, TupleList) -> \{value, Tuple\} | false
Types:

- Key = term()
- $\mathrm{N}=1$..size(Tuple)
- TupleList = [Tuple]
- Tuple = tuple()

Searches the list of the tuples TupleList for a tuple whose nth element compares equal to Key. Returns \{value, Tuple\} if such a tuple is found, otherwise false.

```
keysort(N, TupleList1) -> TupleList2
```

Types:

- $\mathrm{N}=1$..size(Tuple)
- TupleList1 =TupleList2 = [Tuple]
- Tuple = tuple()

Returns a list containing the sorted elements of the list TupleList1. Sorting is performed on the nth element of the tuples.
last(List) -> Last
Types:

- List $=[$ term($)$], length $($ List $)>0$
- Last = term()

Returns the last element in List.
map(Fun, List1) -> List2
Types:

- Fun = fun(A) $->B$
- List1 = [A]
- List2 = [B]
- $\mathrm{A}=\mathrm{B}=$ term()

Takes a function from As to BS, and a list of As and produces a list of Bs by applying the function to every element in the list. This function is used to obtain the return values. The evaluation order is implementation dependent.
mapfoldl(Fun, Acc0, List1) $->\{$ List2, Acc1 $\}$
Types:

- Fun $=$ fun $(A, A \subset c I n)->\{B, A c c O u t\}$
- $\mathrm{AccO}=\mathrm{Acc} 1=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()
- List1 = [A]
- List2 $=[B]$
- $A=B=$ term()
mapfold combines the operations of map/2 and foldl/3 into one pass. An example, summing the elements in a list and double them at the same time:
$>\frac{\text { lists:mapfoldl(fun(X, Sum) }->\{2 * X, \text { X+Sum }\} \text { end, }}{0,[1,2,3,4,5]) .}$
$\left\{\left[\frac{2,4,6,8,10], 15\}}{}\right.\right.$
mapfoldr(Fun, Acc0, List1) -> \{List2, Acc1\}
Types:
- Fun $=$ fun($A, A \operatorname{ccI} n)->\{B, A c c O$ ut $\}$
- $\mathrm{Acc0}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term ()
- Listl = [A]
- List2 $=[\mathrm{B}]$
- $A=B=\operatorname{term}()$
mapfold combines the operations of map/2 and foldr/3 into one pass.
max(List) -> Max
Types:
- List $=[$ term($)$], length $($ List $)>0$
- Max = term()

Returns the first element of List that compares greater than or equal to all other elements of List.
member(Elem, List) -> bool()
Types:

- Elem = term()
- List $=[$ term($)$]

Returns true if Elem matches some element of List, otherwise false.
merge(List0fLists) -> List1
Types:

- ListO fLists = [List]
- List $=$ List1 $=[$ term ()$]$

Returns the sorted list formed by merging all the sub-lists of ListOfLists. All sub-lists must be sorted prior to evaluating this function. W hen two elements compare equal, the element from the sub-list with the lowest position in ListOfLists is picked before the other element.
merge(List1, List2) -> List3
Types:

- List1 $=$ List2 $=$ List3 $=[$ term($)$]

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted prior to evaluating this function. W hen two elements compare equal, the element from List1 is picked before the element from List2.

```
merge(Fun, List1, List2) -> List3
    Types:
    - Fun = fun(A, B) -> bool()
    - List1 = [A]
    - List2 = [B]
    - List3 = [A | B]
    - A = B = term()
    Returns the sorted list formed by merging List1 and List2. Both List1 and List2
        must be sorted according to the ordering function Fun prior to evaluating this function.
        Fun(A, B) should return true if A comes before B in the ordering, false otherwise.
        W hen two elements compare equal, the element from List1 is picked before the
        element from List2.
merge3(List1, List2, List3) -> List4
    Types:
    - List1 = List2 = List3 = List4 = [term()]
    Returns the sorted list formed by merging List1, List2 and List3. All of List1, List2
        and List3 must be sorted prior to evaluating this function. W hen two elements
        compare equal, the element from List1, if there is such an element, is picked before
        the other element, otherwise the element from List2 is picked before the element from
        List3.
min(List) -> Min
    Types:
    - List =[term()], length(List) >0
    - M in = term()
    Returns the first element of List that compares less than or equal to all other elements
    of List.
nth(N, List) -> Elem
    Types:
    - N = 1..length(List)
    - List = [term()]
    - Elem = term()
    Returns the Nth element of List. For example:
    > lists:nth(3, [a, b, c, d, e]).
    c
nthtail(N, List1) -> Tail
    Types:
```

- $N=0$..length(List1)
- Listl = Tail $=[$ term($)$]

Returns the nth tail of List, that is, the sublist of List starting at $\mathrm{N}+1$ and continuing up to the end of the list. For example:
> lists:nthtail(3, [a, b, c, d, e]).
[d,e]
$>\mathrm{tl}(\mathrm{tl}(\mathrm{tl}([\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}])))$.
[d,e]
$>$ lists:nthtail(0, [a, b, c, d, e]).
[a,b, c, d, e]
> lists:nthtail(5, [a, b, c, d, e]).
[]
partition(Pred, List) -> \{Satisfying, NonSatisfying\}
Types:

- Pred = fun(Elem) $->$ bool()
- Elem = term()
- List $=$ Satisfying $=$ N onSatisfying $=[$ term()]

Partitions List into two lists, where the first list contains all elements for which Pred (Elem) returns true, and the second list contains all elements for which Pred(Elem) returnsfalse.
Examples:
$>$ lists:partition(fun(A) $->A$ rem $2==1$ end, $[1,2,3,4,5,6,7]$).
$\{[1,3,5,7],[2,4,6]\}$
$>$ lists:partition(fun(A) $->$ is_atom (A) end, [a,b,1, c, d, 2, 3, 4, e]).
$\{[a, b, c, d, e],[1,2,3,4]\}$

See also splitwith/2 for a different way to partition a list.
prefix(List1, List2) -> bool()
Types:

- List1 = List2 = [term()]

Returns true if List1 is a prefix of List2, otherwise false.

```
reverse(List1) -> List2
```

Types:

- List1 = List2 = [term($)$]

Returns a list with the top level elements in List1 in reverse order.

```
reverse(List1, Tail) -> List2
```

Types:

- List1 $=$ Tail $=$ List2 $=[$ term($)$]

Returns a list with the top level elements in List1 in reverse order, with the tail Tail appended. For example:

$$
\begin{aligned}
& >\text { lists:reverse([1, 2, 3, 4], [a, b, c]). } \\
& {[4,3,2,1, a, b, c]}
\end{aligned}
$$

```
seq(From, To) -> Seq
seq(From, To, Incr) -> Seq
```

 Types:
 - From = To = Incr = int()
 - Seq \(=[\operatorname{int}()]\)
 Returns a sequence of integers which starts with From and contains the successive
 results of adding Incr to the previous element, until To has been reached or passed (in
 the latter case, To is not an element of the sequence). Incr defaults to 1.
 Failure: If To<From and Incr is positive, or if To>From and Incr is negative, or if
 Incr==0 and From/=To.
 Examples:
 \(>{ }_{[1,2,3,4,5,6,7,8,9,10]}\)
 \(>\) lists:seq(1, 20, 3).
 \([1,4,7,10,13,16,19]\)
 \(>\) lists:seq(1, 1, 0).
 [1]
 sort(List1) -> List2
Types:
- List1 $=$ List2 $=[$ term()]
Returns a list containing the sorted elements of List1.
sort(Fun, List1) -> List2
Types:
- Fun = fun(Elem1, Elem2) $->$ bool()
- Elem1 = Elem2 = term()
- List1 = List2 = [term()]
Returns a list containing the sorted elements of List1, according to the ordering
function Fun. Fun(A, B) should return true if A comes before B in the ordering, false
otherwise.
split(N, List1) -> \{List2, List3\}

Types:

- $\mathrm{N}=0$..length(List1)
- List1 $=$ List2 $=$ List3 $=[$ term($)$]

Splits List1 into List2 and List3. List2 contains the first N elements and List3 the rest of the elements (the Nth tail).
splitwith(Pred, List) -> \{List1, List2\}

Types:

- Pred = fun(Elem) -> bool()
- Elem = term()
- List $=$ List1 $=$ List2 $=[$ term($)]$

Partitions List into two lists according to Pred. splitwith/2 behaves as if it is defined as follows:

```
splitwith(Pred, List) ->
    {takewhile(Pred, List), dropwhile(Pred, List)}.
```

Examples:
$>$ lists:splitwith(fun(A) $->$ A rem $2==1$ end, $[1,2,3,4,5,6,7]$).
$\{[1],[2,3,4,5,6,7]\}$
$>$ lists:splitwith(fun(A) -> is_atom(A) end, [a,b,1,c,d,2,3,4,e]).
$\{[a, b],[1, c, d, 2,3,4, e]\}$

See also partition/2 for a different way to partition a list.

```
sublist(List1, Len) -> List2
```

Types:

- List1 $=$ List2 $=[$ term($)]$
- Len $=\operatorname{int}()$

Returns the sub-list of List1 starting at position 1 and with (max) Len elements. It is not an error for Len to exceed the length of the list - in that case the whole list is returned.
sublist(List1, Start, Len) -> List2
Types:

- List1 = List2 = [term()]
- Start $=1$.. (length $($ List1 $)+1)$
- Len = int()

Returns the sub-list of List1 starting at Start and with (max) Len elements. It is not an error for Start+Len to exceed the length of the list.
$>$ lists:sublist $([1,2,3,4], 2,2)$.
$[2,3]$
$>$ lists:sublist $([1,2,3,4], 2,5)$.
$[2,3,4]$
$>$ lists:sublist $([1,2,3,4], 5,2)$.
[]
subtract(List1, List2) -> List3
Types:

- List1 $=$ List2 $=$ List3 $=[$ term()]

Returns a new list List3 which is a copy of List1, subjected to the following procedure: for each element in List2, its first occurrence in List1 is deleted. For example:

```
    > lists:subtract("123212", "212").
    "312".
    lists:subtract(A,B) is equivalent to A -- B.
suffix(List1, List2) -> bool()
Returns true if List1 is a suffix of List2, otherwise false.
sum(List) -> number()
Types:
- List = [number()]
Returns the sum of the elements in List.
```

```
takewhile(Pred, List1) -> List2
```

takewhile(Pred, List1) -> List2
Types:

- Pred $=$ fun(Elem) $->$ bool()
- Elem = term()
- List1 $=$ List2 $=[$ term($)]$
Takes elements Elem from List1 while Pred(Elem) returns true, that is, the function returns the longest prefix of the list for which all elements satisfy the predicate.

```
```

ukeymerge(N, TupleList1, TupleList2) -> TupleList3

```
ukeymerge(N, TupleList1, TupleList2) -> TupleList3
Types:
- \(N=1\)..size(Tuple)
- TupleList1 =TupleList2 = TupleList3 = [Tuple]
- Tuple = tuple()
Returns the sorted list formed by merging TupleList1 and TupleList2. The merge is performed on the nth element of each tuple. Both TupleList1 and TupleList2 must be key-sorted without duplicates prior to evaluating this function. When two tuples compare equal, the tuple from TupleList1 is picked and the one from TupleList2 deleted.
```

```
ukeysort(N, TupleList1) -> TupleList2
```

ukeysort(N, TupleList1) -> TupleList2
Types:

- $\mathrm{N}=1$..size(Tuple)
- TupleList1 =TupleList2 = [Tuple]
- Tuple = tuple()
Returns a list containing the sorted elements of the list TupleList1 where all but the first tuple of the tuples comparing equal have been deleted. Sorting is performed on the nth element of the tuples.
umerge(List0fLists) -> List1
Types:
- ListO fLists = [List]

```
- List \(=\) List1 \(=[\) term( \()]\)

Returns the sorted list formed by merging all the sub-lists of ListOfLists. All sub-lists must be sorted and contain no duplicates prior to evaluating this function. W hen two elements compare equal, the element from the sub-list with the lowest position in ListOfLists is picked and the other one deleted.
```

umerge(List1, List2) -> List3

```

Types:
- List1 \(=\) List2 \(=\) List3 \(=[\) term( \()\) ]

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted and contain no duplicates prior to evaluating this function. W hen two elements compare equal, the element from List1 is picked and the one from List2 deleted.
umerge(Fun, List1, List2) -> List3
Types:
- Fun \(=\) fun(A, \(B)->\operatorname{bool}()\)
- List1 = [A]
- List2 = [B]
- List3 = [A | B]
- \(\mathrm{A}=\mathrm{B}=\operatorname{term}()\)

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted according to the ordering function Fun and contain no duplicates prior to evaluating this function. Fun (A, B) should return true if A comes before B in the ordering, false otherwise. When two elements compare equal, the element from List1 is picked and the one from List2 deleted.
```

umerge3(List1, List2, List3) -> List4

```

\section*{Types:}
- List1 \(=\) List2 \(=\) List3 \(=\) List4 \(=[\) term( \()\) ]

Returns the sorted list formed by merging List1, List2 and List3. All of List1, List2 and List3 must be sorted and contain no duplicates prior to evaluating this function. When two elements compare equal, the element from List1 is picked if there is such an element, otherwise the element from List2 is picked, and the other one deleted.
```

unzip(List1) -> {List2, List3}

```

Types:
- List1 \(=[\{X, Y\}]\)
- List2 \(=[\mathrm{X}]\)
- List3 \(=[Y]\)
- \(X=Y=\operatorname{term}()\)
"U nzips" a list of two-tuples into two lists, where the first list contains the first element of each tuple, and the second list contains the second element of each tuple.
```

unzip3(List1) -> {List2, List3, List4}

```

Types:
- List1 \(=[\{X, Y, Z\}]\)
- List2 \(=[\mathrm{X}]\)
- List3 = [Y]
- List4 = [Z]
- \(X=Y=Z=\) term()
"Unzips" a list of three-tuples into three lists, where the first list contains the first element of each tuple, the second list contains the second element of each tuple, and the third list contains the third element of each tuple.
```

usort(List1) -> List2

```

Types:
- List1 = List2 = [term()]

Returns a list containing the sorted elements of List1 where all but the first element of the elements comparing equal have been deleted.
```

usort(Fun, List1) -> List2

```

Types:
- Fun = fun(Elem1, Elem2) -> bool()
- Elem1 = Elem2 = term()
- List1 = List2 = [term()]

Returns a list which contains the sorted elements of List1 where all but the first element of the elements comparing equal according to the ordering function Fun have been deleted. Fun (A, B) should return true if A comes before B in the ordering, false otherwise.
zip(List1, List2) -> List3
Types:
- List1 = [X]
- List2 \(=[\mathrm{Y}]\)
- List3 \(=[\{X, Y\}]\)
- \(X=Y=\) term()
"Zips" two lists of equal length into one list of two-tuples, where the first element of each tuple is taken from the first list and the second element is taken from corresponding element in the second list.
zip3(List1, List2, List3) -> List4
Types:
- List1 \(=[\mathrm{X}]\)
- List2 \(=[\mathrm{Y}]\)
- List3 \(=[\mathrm{Z}]\)
- List3 \(=[\{X, Y, Z\}]\)
- \(X=Y=Z=\operatorname{term}()\)
"Zips" three lists of equal length into one list of three-tuples, where the first element of each tuple is taken from the first list, the second element is taken from corresponding element in the second list, and the third element is taken from the corresponding element in the third list.
```

zipwith(Combine, List1, List2) -> List3

```

Types:
- Combine \(=\) fun \((X, Y)->T\)
- List1 = [X]
- List2 \(=[\mathrm{Y}]\)
- List3 \(=[\mathrm{T}]\)
- \(\mathrm{X}=\mathrm{Y}=\mathrm{T}=\operatorname{term}()\)

Combine the elements of two lists of equal length into one list. For each pair \(\mathrm{X}, \mathrm{Y}\) of list elements from the two lists, the element in the result list will be Combine ( \(\mathrm{X}, \mathrm{Y}\) ). zipwith(fun(X, Y) \(->\{X, Y\}\) end, List1, List2) is equivalent to zip(List1, List2).
Examples:
\(>\) lists:zipwith(fun(X, Y) \(->X+Y\) end, \([1,2,3],[4,5,6])\).
[5,7,9]
zipwith3(Combine, List1, List2, List3) -> List4
Types:
- Combine \(=\) fun \((X, Y, Z)->T\)
- List1 = [X]
- List2 \(=[\mathrm{Y}]\)
- List3 \(=[Z]\)
- List4 = [T]
- \(\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\mathrm{T}=\) term()

Combine the elements of three lists of equal length into one list. For each triple \(\mathrm{X}, \mathrm{Y}\), \(Z\) of list elements from the three lists, the element in the result list will be Combine ( \(X\), Y, Z).
zipwith3(fun(X, Y, Z) \(->\{X, Y, Z\}\) end, List1, List2, List3) is equivalent to zip3(List1, List2, List3).
Examples:
\(>\) lists:zipwith3(fun(X, Y, Z) \(->\mathrm{X}+\mathrm{Y}+\mathrm{Z}\) end, \([1,2,3]\), \([4,5,6],[7,8,9])\). [12,15,18]
\(>\) lists:zipwith3(fun(X, Y, Z) \(->\) [X,Y,Z] end, [a,b, c], [x,y,z], [1, 2, 3]). [[a,x,1],[b,y,2],[c,z,3]]

\section*{log_mf_h}

Erlang M odule

The log_mf_h is a gen_event handler module which can be installed in any gen_event process. It logs onto disk all events which are sent to an event manager. Each event is written as a binary which makes the logging very fast. H owever, a tool such as the Report Browser (rb) must be used in order to read the files. The events are written to multiple files. W hen all files have been used, the first one is re-used and overwritten. The directory location, the number of files, and the size of each file are configurable. The directory will include one file called index, and report files \(1,2, \ldots .\).

\section*{Exports}
```

init(Dir, MaxBytes, MaxFiles)
init(Dir, MaxBytes, MaxFiles, Pred) -> Args

```

Types:
- D ir = string()
- M axBytes = integer()
- MaxFiles \(=0<\) integer ()\(<256\)
- Pred \(=\) fun(Event) \(->\) boolean()
- Event = term()
- Args = args()

Initiates the event handler. This function returns Args, which should be used in a call to gen_event:add_handler (EventMgr, log_mf_h, Args).
Dir specifies which directory to use for the log files. MaxBytes specifies the size of each individual file. MaxFiles specifies how many files are used. Pred is a predicate function used to filter the events. If no predicate function is specified, all events are logged.

\section*{See Also}
gen_event(3) [page 175], rb(3)

\section*{math}

Erlang M odule

This module provides an interface to a number of mathematical functions.

\section*{N ote:}

N ot all functions are implemented on all platforms. In particular, the erf/1 and erfc/1 functions are not implemented on Windows.

\section*{Exports}
```

pi() -> float()
A useful number.

```
\(\sin (X)\)
\(\cos (X)\)
\(\tan (X)\)
\(\operatorname{asin}(X)\)
\(\operatorname{acos}(\mathrm{X})\)
\(\operatorname{atan}(\mathrm{X})\)
\(\operatorname{atan} 2(\mathrm{Y}, \mathrm{X})\)
\(\sinh (X)\)
\(\cosh (X)\)
\(\tanh\) (X)
\(\operatorname{asinh}(X)\)
\(\operatorname{acosh}(\mathrm{X})\)
\(\operatorname{atanh}(X)\)
\(\exp (X)\)
\(\log (X)\)
\(\log 10(X)\)
pow (X, Y)
sqrt(X)

Types:
- \(\mathrm{X}=\mathrm{Y}=\) number()

A collection of math functions which return floats. A rguments are numbers.
```

erf(X) -> float()
Types:
- X = number()
Returns the error function of X, where
erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.
erfc(X) -> float()
Types:
- X = number()
erfc(X) returns 1.0 - erf(X),computed by methods that avoid cancellation for large
X.

```

\section*{Bugs}

A s these are the C library, the bugs are the same.

\title{
ms_transform
}

Erlang M odule

This module implements the parse_transform that makes calls to ets and dbg:fun2ms/1 translate into literal match specifications. It also implements the back end for the same functions when called from the Erlang shell.
The translations from fun's to match_specs is accessed through the two "pseudo functions" ets:fun2ms/1 and dbg:fun2ms/1.
A ctually this introduction is more or less an introduction to the whole concept of match specifications. Since everyone trying to use ets: select or dbg seems to end up reading this page, it seems in good place to explain a little more than just what this module does.
There are some caveats one should be aware of, please read through the whole manual page if it's the first time you're using the transformations.
\(M\) atch specifications are used more or less as filters. They resemble usual Erlang matching in a list comprehension or in a fun used in conjunction with lists: foldl etc. The syntax of pure match specifications is somewhat awkward though, as they are made up purely by Erlang terms and there is no syntax in the language to make the match specifications more readable.
As the match specifications execution and structure is quite like that of a fun, it would for most programmers be more straight forward to simply write it using the familiar fun syntax and having that translated into a match specification automatically. Of course a real fun is more powerful than the match specifications allow, but bearing the match specifications in mind, and what they can do, it's still more convenient to write it all as a fun. This module contains the code that simply translates the fun syntax into match_spec terms.
Let's start with an ets example. Using ets: select and a match specification, one can filter out rows of a table and construct a list of tuples containing relevant parts of the data in these rows. Of course one could use ets : foldl instead, but the select call is far more efficient. Without the translation, one has to struggle with writing match specifications terms to accommodate this, or one has to resort to the less powerful ets: match (_object) calls, or simply give up and use the more inefficient method of ets: foldl. U sing the ets: fun2ms transformation, a ets: select call is at least as easy to write as any of the alternatives.
As an example, consider a simple table of employees:
```

-record(emp, {empno, %Employee number as a string, the key
surname, %Surname of the employee
givenname, %Given name of employee
dept, %Department one of {dev,sales,prod,adm}
empyear}). %Year the employee was employed

```

We create the table using:
ets:new(emp_tab, [\{keypos,\#emp.empno\}, named_table,ordered_set]).

Let's also fill it with some randomly chosen data for the examples:
```

[{emp,"011103","Black","Alfred",sales, 2000},
{emp,"041231","Doe","John",prod,2001},
{emp,"052341","Smith","John", dev, 1997},
{emp,"076324","Smith","Ella",sales,1995},
{emp,"122334","Weston", "Anna", prod, 2002},
{emp,"535216","Chalker","Samuel",adm, 1998},
{emp,"789789","Harrysson", "Joe", adm, 1996},
{emp,"963721","Scott","Juliana",dev, 2003},
{emp,"989891","Brown","Gabriel",prod,1999}]

```

N ow, the amount of data in the table is of course to small to justify complicated ets searches, but on real tables, using select to get exactly the data you want will increase efficiency remarkably.
Lets say for example that we'd want the employee numbers of everyone in the sales department. O ne might use ets:match in such a situation:
```

1> ets:match(emp_tab, {'_', '\$1', '_', '_', sales, '_'}).
[["011103"], ["076324"]]

```

Even though ets:match does not require a full match specification, but a simpler type, it's still somewhat unreadable, and one has little control over the returned result, it's always a list of lists. OK, one might use ets:foldl or ets:foldr instead:
```

ets:foldr(fun(\#emp{empno = E, dept = sales},Acc) -> [E | Acc];
(_,Acc) -> Acc
end,
[],
emp_tab).

```

Running that would result in ["011103", "076324"], which at least gets rid of the extra lists. The fun is also quite straightforward, so the only problem is that all the data from the table has to be transferred from the table to the calling process for filtering. That's inefficient compared to the ets:match call where the filtering can be done "inside" the emulator and only the result is transferred to the process. Remember that ets tables are all about efficiency, if it wasn't for efficiency all of ets could be implemented in Erlang, as a process receiving requests and sending answers back. O ne uses ets because one wants performance, and therefore one wouldn't want all of the table transferred to the process for filtering. OK, let's look at a pure ets: select call that does what the ets: foldr does:
```

ets:select(emp_tab,[{\#emp{empno = '\$1', dept = sales, _='_'},[],['\$1']}]).

```

Even though the record syntax is used, it's still somewhat hard to read and even harder to write. The first element of the tuple, \#emp \(\{\) empno \(=\) ' \(\$ 1\) ', dept \(=\) sales, \(=\) ' - ' \(\}\) tells what to match, elements not matching this will not be returned at all, as in the ets:match example. The second element, the empty list is a list of guard expressions, which we need none, and the third element is the list of expressions constructing the return value (in ets this almost always is a list containing one single term). In our case ' \(\$ 1\) ' is bound to the employee number in the head (first element of tuple), and hence it is the employee number that is returned. The result is ["011103", "076324"], just as in the ets:foldr example, but the result is retrieved much more efficiently in terms of execution speed and memory consumption.
We have one efficient but hardly readable way of doing it and one inefficient but fairly readable (at least to the skilled Erlang programmer) way of doing it. W ith the use of
ets: fun2ms, one could have something that is as efficient as possible but still is written as a filter using the fun syntax:
```

-include_lib("stdlib/include/ms_transform.hrl").
% ...
ets:select(emp_tab, ets:fun2ms(
fun(\#emp{empno = E, dept = sales}) ->
E
end)).

```

This may not be the shortest of the expressions, but it requires no special knowledge of match specifications to read. The fun's head should simply match what you want to filter out and the body returns what you want returned. As long as the fun can be kept within the limits of the match specifications, there is no need to transfer all data of the table to the process for filtering as in the ets: foldr example. In fact it's even easier to read then the ets:foldr example, as the select call in itself discards anything that doesn't match, while the fun of the foldr call needs to handle both the elements matching and the ones not matching.
It's worth noting in the above ets:fun2ms example that one needs to include ms_transform.hrl in the source code, as this is what triggers the parse transformation of the ets: fun 2 ms call to a valid match specification. This also implies that the transformation is done at compile time (except when called from the shell of course) and therefore will take no resources at all in runtime. So although you use the more intuitive fun syntax, it gets as efficient in runtime as writing match specifications by hand.
Let's look at some more ets examples. Let's say one wants to get all the employee numbers of any employee hired before the year 2000. Using ets:match isn't an alternative here as relational operators cannot be expressed there. O nce again, an ets: foldr could do it (slowly, but correct):
```

ets:foldr(fun(\#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc
end,
[],
emp_tab).

```

The result will be ["052341", "076324", "535216", "789789", "989891"], as expected. Now the equivalent expression using a handwritten match specification would look something like this:
```

ets:select(emp_tab,[{\#emp{empno = '\$1', empyear = '\$2', _='_'},
[{'<', '\$2', 2000}],
['\$1']}]).

```

This gives the same result, the [\{'<', '\$2', 2000\}] is in the guard part and therefore discards anything that does not have a empyear (bound to ' \(\$ 2\) ' in the head) less than 2000, just as the guard in the foldl example. Lets jump on to writing it using ets:fun2ms
```

-include_lib("stdlib/include/ms_transform.hrl").
% ...
ets:select(emp_tab, ets:fun2ms(
fun(\#emp{empno = E, empyear = Y}) when Y < 2000 ->
E
end)).

```

O bviously readability is gained by using the parse transformation.
I'll show some more examples without the tiresome comparing-to-alternatives stuff. Let's say we'd want the whole object matching instead of only one element. We could of course assign a variable to every part of the record and build it up once again in the body of the fun, but it's easier to do like this:
```

ets:select(emp_tab, ets:fun2ms(
fun(Obj = \#emp{empno = E, empyear = Y})
when Y < 2000 ->
Obj
end)).

```

Just as in ordinary Erlang matching, you can bind a variable to the whole matched object using a "match in then match", i.e. \(a=\). Unfortunately this is not general in fun's translated to match specifications, only on the "top level", i.e. matching the whole object arriving to be matched into a separate variable, is it allowed. For the one's used to writing match specifications by hand, I'll have to mention that the variable A will simply be translated into '\$_'. It's not general, but it has very common usage, why it is handled as a special, but useful, case. If this bothers you, the pseudo function object also returns the whole matched object, see the part about caveats and limitations below.
Let's do something in the fun's body too: Let's say that someone realizes that there are a few people having an employee number beginning with a zero ( 0 ), which shouldn't be allowed. All those should have their numbers changed to begin with a one (1) instead and one wants the list [ \(\{<01 \mathrm{l}\) empno>, \(<\) New empno \(>\}\) ] created:
```

ets:select(emp_tab, ets:fun2ms(
fun(\#emp{empno = [\$0 | Rest] }) ->
{[\$0|Rest],[\$1|Rest]}
end)).

```

A s a matter of fact, this query hit's the feature of partially bound keys in the table type ordered_set, so that not the whole table need be searched, only the part of the table containing keys beginning with 0 is in fact looked into.
The fun of course can have several clauses, so that if one could do the following: For each employee, if he or she is hired prior to 1997, return the tuple \{inventory, <employee number>\}, for each hired 1997 or later, but before 2001, return \{rookie, <employee number>\}, for all others return \{newbie, <employee number>\}. All except for the ones named Smith as they would be affronted by anything other than the tag guru and that is also what's returned for their numbers; \{guru, <employee number \(>\}\) :
```

ets:select(emp_tab, ets:fun2ms(
fun(\#emp{empno = E, surname = "Smith" }) ->
{guru,E};
(\#emp{empno = E, empyear = Y}) when Y < 1997 ->
{inventory, E};

```
```

 (#emp{empno = E, empyear = Y}) when Y > 2001 ->
 {newbie, E};
 (#emp{empno = E, empyear = Y}) -> % 1997 -- 2001
 {rookie, E}
 end)).

```

The result will be:
```

[\{rookie,"011103"\},
\{rookie,"041231"\},
\{guru,"052341"\},
\{guru,"076324"\},
\{newbie,"122334"\},
\{rookie,"535216"\},
\{inventory,"789789"\},
\{newbie,"963721"\},
\{rookie,"989891"\}]

```
and so the Smith's will be happy...
So, what more can you do? Well, the simple answer would be; look in the documentation of match specifications in ERTS users guide. H owever let's briefly go through the most useful "built in functions" that you can use when the fun is to be translated into a match specification by ets:fun2ms (it's worth mentioning, although it might be obvious to some, that calling other functions than the one's allowed in match specifications cannot be done. No "usual" Erlang code can be executed by the fun being translated by fun2ms, the fun is after all limited exactly to the power of the match specifications, which is unfortunate, but the price one has to pay for the execution speed of an ets:select compared to ets:foldl/foldr).

The head of the fun is obviously a head matching (or mismatching) one parameter, one object of the table we select from. The object is always a single variable (can be _) or a tuple, as that's what's in ets, dets and mnesia tables (the match specification returned by ets:fun2ms can of course be used with dets:select and mnesia:select as well as with ets:select). The use of = in the head is allowed (and encouraged) on the top level.
The guard section can contain any guard expression of Erlang. Even the "old" type test are allowed on the toplevel of the guard (integer (X) instead of is_integer(X)). As the new type tests (the is_ tests) are in practice just guard bif's they can also be called from within the body of the fun, but so they can in ordinary Erlang code. Also arithmetics is allowed, as well as ordinary guard bif's. Here's a list of bif's and expressions:
- The type tests: is_atom, is_constant, is_float, is_integer, is_list, is_number, is_pid, is_port, is_reference, is_tuple, is_binary, is_function, is_record
- The boolean operators: not, and, or, andalso, orelse
- The relational operators: \(>,>=,<,=<,=:=,==,=/=, /=\)
- A rithmetics: +, -, *, div, rem
- Bitwise operators: band, bor, bxor, bnot, bsl, bsr
- The guard bif's: abs, element, hd, length, node, round, size, tl, trunc, self
- The obsolete type test (only in guards): atom, constant, float, integer, list, number, pid, port, reference, tuple, binary, function, record

Contrary to the fact with "handwritten" match specifications, the is_record guard works as in ordinary Erlang code.
Semicolons (; ) in guards are allowed, the result will be (as expected) one
"match_spec-clause" for each semicolon-separated part of the guard. The semantics beeing identical to the Erlang semantics.
The body of the fun is used to construct the resulting value. W hen selecting from tables one usually just construct a suiting term here, using ordinary Erlang term construction, like tuple parentheses, list brackets and variables matched out in the head, possibly in conjunction with the occasional constant. Whatever expressions are allowed in guards are also allowed here, but there are no special functions except object and bindings (see further down), which returns the whole matched object and all known variable bindings respectively.
The dbg variants of match specifications have an imperative approach to the match specification body, the ets dialect hasn't. The fun body for ets:fun2ms returns the result without side effects, and as matching ( \(=\) ) in the body of the match specifications is not allowed (for performance reasons) the only thing left, more or less, is term construction...
Let's move on to the dbg dialect, the slightly different match specifications translated by dbg:fun2ms.
The same reasons for using the parse transformation applies to dbg, maybe even more so as filtering using Erlang code is simply not a good idea when tracing (except afterwards, if you trace to file). The concept is similar to that of ets: fun2ms except that you usually use it directly from the shell (which can also be done with ets:fun2ms).
Let's manufacture a toy module to trace on
```

-module(toy).
-export([start/1, store/2, retrieve/1]).
start(Args) ->
toy_table = ets:new(toy_table,Args).
store(Key, Value) ->
ets:insert(toy_table,{Key,Value}).
retrieve(Key) ->
[{Key, Value}] = ets:lookup(toy_table,Key),
Value.

```

D uring model testing, the first test bails out with a \{badmatch, 16\} in \{toy , start, 1\}, why?
We suspect the ets call, as we match hard on the return value, but want only the particular new call with toy_table as first parameter. So we start a default tracer on the node:
```

1> dbg:tracer().

```
\{ok,<0.88.0>\}

A nd so we turn on call tracing for all processes, we are going to make a pretty restrictive trace pattern, so there's no need to call trace only a few processes (it usually isn't):
```

2> dbg:p(all,call).
{ok, [{matched,nonode@nohost, 25}]}

```

It's time to specify the filter. We want to view calls that resemble
ets:new(toy_table,<something>):
3> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> true end)).
\{ok, [\{matched, nonode@nohost, 1\}, \{saved,1\}]\}
As can be seen, the fun's used with dbg:fun2ms takes a single list as parameter instead of a single tuple. The list matches a list of the parameters to the traced function. A single variable may also be used of course. The body of the fun expresses in a more imperative way actions to be taken if the fun head (and the guards) matches. I return true here, but it's only because the body of a fun cannot be empty, the return value will be discarded.

When we run the test of our module now, we get the following trace output:
```

(<0.86.0>) call ets:new(toy_table,[ordered_set])

```

Let's play we haven't spotted the problem yet, and want to see what ets:new returns. We do a slightly different trace pattern:
```

4> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> return_trace() end)).

```

Resulting in the following trace output when we run the test:
```

(<0.86.0>) call ets:new(toy_table,[ordered_set])
(<0.86.0>) returned from ets:new/2 -> 24

```

The call to return_trace, makes a trace message appear when the function returns. It applies only to the specific function call triggering the match specification (and matching the head/guards of the match specification). This is the by far the most common call in the body of a dbg match specification.
As the test now fails with \{badmatch, 24\(\}\), it's obvious that the badmatch is because the atom toy_table does not match the number returned for an unnamed table. So we spotted the problem, the table should be named and the arguments supplied by our test program does not include named_table. We rewrite the start function to:
```

start(Args) ->
toy_table = ets:new(toy_table,[named_table |Args]).

```

And with the same tracing turned on, we get the following trace output:
```

(<0.86.0\rangle) call ets:new(toy_table,[named_table,ordered_set])
(<0.86.0>) returned from ets:new/2 -> toy_table

```

Very well. Let's say the module now passes all testing and goes into the system. A fter a while someone realizes that the table toy_table grows while the system is running and that for some reason there are a lot of elements with atom's as keys. You had expected only integer keys and so does the rest of the system. Well, obviously not all of the system. You turn on call tracing and try to see calls to your module with an atom as the key:
1> dbg:tracer().
\{ok,<0.88.0>\}
2> dbg:p(all, call).
\{ok, [\{matched, nonode@nohost,25\}]\}
3> dbg:tpl(toy,store, dbg:fun2ms(fun([A,_]) when is_atom(A) -> true end)). \{ok, [\{matched, nonode@nohost,1\},\{saved,1\}]\}

We use dbg:tpl here to make sure to catch local calls (let's say the module has grown since the smaller version and we're not sure this inserting of atoms is not done locally...). W hen in doubt always use local call tracing.
Let's say nothing happens when we trace in this way. O ur function is never called with these parameters. We make the conclusion that someone else (some other module) is doing it and we realize that we must trace on ets:insert and want to see the calling function. The calling function may be retrieved using the match specification function caller and to get it into the trace message, one has to use the match spec function message. The filter call looks like this (looking for calls to ets:insert):
```

4> dbg:tpl(ets,insert,dbg:fun2ms(fun([toy_table,{A,_}]) when is_atom(A) ->
message(caller())
end)).

```
\{ok, [\{matched, nonode@nohost, 1\}, \{saved, 2\}]\}

The caller will now appear in the "additional message" part of the trace output, and so after a while, the following output comes:
```

(<0.86.0>) call ets:insert(toy_table,{garbage,can}) ({evil_mod,evil_fun,2})

```

You have found out that the function evil_fun of the module evil_mod, with arity 2, is the one causing all this trouble.
This was just a toy example, but it illustrated the most used calls in match specifications for dbg The other, more esotherical calls are listed and explained in the \(U\) sers guide of the ERTS application, they really are beyond the scope of this document.
To end this chatty introduction with something more precise, here follows some parts about caveats and restrictions concerning the fun's used in conjunction with ets:fun2ms and dbg:fun2ms:

\section*{Warning:}

To use the pseudo functions triggering the translation, one has to include the header file ms_transform.hrl in the source code. Failure to do so will possibly result in runtime errors rather than compile time, as the expression may be valid as a plain Erlang program without translation.

\section*{W arning:}

The fun has to be literally constructed inside the parameter list to the pseudo functions. The fun cannot be bound to a variable first and then passed to ets: fun 2 ms or dbg:fun2ms, i.e this will work: ets:fun2ms(fun(A) \(->A\) end) but not this: \(F=\) fun(A) \(\rightarrow\) A end, ets: fun2ms(F). The later will result in a compile time error if the header is included, otherwise a runtime error. Even if the later construction would ever appear to work, it really doesn't, so don't ever use it.

Several restrictions apply to the fun that is being translated into a match_spec. To put it simple you cannot use anything in the fun that you cannot use in a match_spec. This means that, among others, the following restrictions apply to the fun itself:
- Functions written in Erlang cannot be called, neither local functions, global functions or real fun's
- Everything that is written as a function call will be translated into a match_spec call to a builtin function, so that the call is_list (X) will be translated to \{'is_list', '\$1'\} ('\$1' is just an example, the numbering may vary). If one tries to call a function that is not a match_spec builtin, it will cause an error.
- Variables occurring in the head of the fun will be replaced by match_spec variables in the order of occurrence, so that the fragment fun (\{A, B, C\}) will be replaced by \(\{’ \$ 1\), ' \(\$ 2\) ', ' \(\$ 3\) ' \(\}\) etc. Every occurrence of such a variable later in the match_spec will be replaced by a match_spec variable in the same way, so that the fun fun( \(\{A, B\}\) ) when is_atom \((A) ~->B\) end will be translated into [\{\{'\$1','\$2'\}, [\{is_atom, '\$1'\}], ['\$2']\}].
- Variables that are not appearing in the head are imported from the environment and made into match_spec const expressions. Example from the shell:
```

1> X = 25.
25
2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{'\$1','\$2'}, [{'>', '\$1',{const, 25}}], ['\$2']}]

```
- \(M\) atching with = cannot be used in the body. It can only be used on the top level in the head of the fun. Example from the shell again:
```

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{'\$1',['\$2'|'\$3']},[{'>','\$1','$2'}],['$_']}]
2> ets:fun2ms(fun({A,[B|C]=D}) when A > B -> D end).
Error: fun with head matching ('=' in head) cannot be translated into
match_spec
{error,transform_error}
3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).
Error: fun with body matching ('=' in body) is illegal as match_spec
{error,transform_error}

```

All variables are bound in the head of a match_spec, so the translator can not allow multiple bindings. The special case when matching is done on the top level makes the variable bind to '\$_' in the resulting match_spec, it is to allow a more natural access to the whole matched object. The pseudo function object () could be used instead, see below. The following expressions are translated equally:
```

ets:fun2ms(fun({a,_} = A) -> A end).
ets:fun2ms(fun({a,_}) -> object() end).

```
- The special match_spec variables '\$_' and '\$*' can be accessed through the pseudo functions object() (for '\$_') and bindings() (for '\$*'). as an example, one could translate the following ets:match_object/2 call to a ets: select call:
```

ets:match_object(Table, {'\$1',test,'\$2'}).

```
...is the same as...
```

ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).

```
(This was just an example, in this simple case the former expression is probably preferable in terms of readability). The ets: select/2 call will conceptually look like this in the resulting code:
```

ets:select(Table, [{{'\$1',test,'$2'},[],['$_']}]).

```
\(M\) atching on the top level of the fun head might feel like a more natural way to access '\$_', see above.
- Term constructions/literals are translated as much as is needed to get them into valid match_specs, so that tuples are made into match_spec tuple constructions (a one element tuple containing the tuple) and constant expressions are used when importing variables from the environment. Records are also translated into plain tuple constructions, calls to element etc. The guard test is_record/2 is translated into match_spec code using the three parameter version that's built into match_specs, so that is_record ( \(\mathrm{A}, \mathrm{t}\) ) is translated into \{is_record, ' \(\$ 1\) ', \(\mathrm{t}, 5\) \} given that the record size of record type \(t\) is 5 .
- Language constructions like case, if, catch etc that are not present in match_specs are not allowed.
- If the header file ms_transform.hrl is not included, the fun won't be translated, which may result in a runtime error (depending on if the fun is valid in a pure Erlang context). Be absolutely sure that the header is included when using ets and dbg : fun2ms/1 in compiled code.
- If the pseudo function triggering the translation is ets: fun2ms/1, the fun's head must contain a single variable or a single tuple. If the pseudo function is dbg : fun \(2 \mathrm{~ms} / 1\) the fun's head must contain a single variable or a single list.

The translation from fun's to match_specs is done at compile time, so runtime performance is not affected by using these pseudo functions. The compile time might be somewhat longer though.
For more information about match_specs, please read about them in ERTS users guide.

\section*{Exports}
parse_transform(Forms,_Options) -> Forms
Types:
- Forms = Erlang abstract code format, see the erl_parse module description
- _O ptions = O ption list, required but not used

Implements the actual transformation at compile time. This function is called by the compiler to do the source code transformation if and when the ms_transform.hrl header file is included in your source code. See the ets and dbg:fun2ms/1 function manual pages for documentation on how to use this parse_transform, see the match_spec chapter in ERTS users guide for a description of match specifications.
transform_from_shell(Dialect, Clauses,BoundEnvironment) -> term()
Types:
- Dialect = ets \| dbg
- Clauses = Erlang abstract form for a single fun
- BoundEnvironment \(=[\{\) atom( \()\), term() \(\}\), ...], list of variable bindings in the shell environment
Implements the actual transformation when the fun2ms functions are called from the shell. In this case the abstract form is for one single fun (parsed by the Erlang shell), and all imported variables should be in the key-value list passed as BoundEnvironment. The result is a term, normalized, i.e. not in abstract format.
format_error(Errcode) -> ErrMessage
Types:
- Errcode = term()
- ErrM essage = string()

Takes an error code returned by one of the other functions in the module and creates a textual description of the error. Fairly uninteresting function actually.

\section*{orddict}

Erlang M odule

Orddict implements a Key - Value dictionary. An orddict is a representation of a dictionary, where a list of pairs is used to store the keys and values. The list is ordered after the keys.
This module provides exactly the same interface as the module dict but with a defined representation. O ne difference is that while dict considers two keys as different if they do not match ( \(=:=\) ), this module considers two keys as different if and only if they do not compare equal \((==)\).

\section*{DATA TYPES}
```

ordered_dictionary()
as returned by new/0

```

\section*{Exports}
```

append(Key, Value, Orddict1) -> Orddict2

```

Types:
- Key = Value = term()
- O rddict1 = Orddict2 = ordered_dictionary()

This function appends a new value to the current list of values associated with Key. An exception is generated if the initial value associated with Key is not a list of values.
append_list(Key, ValList, Orddict1) -> Orddict2
Types:
- ValList = [Value]
- Key = Value = term()
- O rddict1 = Orddict2 = ordered_dictionary()

This function appends a list of values ValList to the current list of values associated with Key. A n exception is generated if the initial value associated with Key is not a list of values.
```

erase(Key, Orddict1) -> Orddict2

```

Types:
- Key = term()
- Orddict1 \(=\) O rddict2 \(=\) ordered_dictionary()

This function erases all items with a given key from a dictionary.
fetch(Key, Orddict) -> Value
Types:
- Key = Value = term()
- O rddict = ordered_dictionary()

This function returns the value associated with Key in the dictionary Orddict. fetch assumes that the Key is present in the dictionary and an exception is generated if Key is not in the dictionary.
fetch_keys(Orddict) -> Keys
Types:
- O rddict = ordered_dictionary()
- Keys = [term()]

This function returns a list of all keys in the dictionary.
filter(Pred, Orddict1) -> Orddict2
Types:
- Pred = fun(Key, Value) -> bool()
- Key = Value = term()
- Orddict1 = O rddict2 = ordered_dictionary()

Orddict2 is a dictionary of all keys and values in Orddict1 for which Pred (Key, Value) is true.
find(Key, Orddict) \(->\) \{ok, Value \(\}\) | error
Types:
- Key = Value = term()
- Orddict = ordered_dictionary()

This function searches for a key in a dictionary. Returns \{ok, Value \(\}\) where Value is the value associated with Key, or error if the key is not present in the dictionary.
fold(Fun, Acc0, Orddict) -> Acc1
Types:
- Fun = fun(Key, Value, A ccln) -> AccO ut
- Key = Value = term()
- \(\mathrm{Acc0}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term()
- O rddict = ordered_dictionary()

Calls Fun on successive keys and values of Orddict together with an extra argument Acc (short for accumulator). Fun must return a new accumulator which is passed to the next call. Acc0 is returned if the list is empty. The evaluation order is undefined.
from_list(List) -> Orddict
Types:
- List \(=[\{\) Key, Value \(\}]\)
- O rddict = ordered_dictionary()

This function converts the key/value list List to a dictionary.
is_key(Key, Orddict) -> bool()
Types:
- Key = term()
- Orddict = ordered_dictionary()

This function tests if Key is contained in the dictionary Orddict.
map(Fun, Orddict1) \(->\) Orddict2
Types:
- Fun = fun(Key, Value1) -> Value2
- Key = Value1 = Value2 = term()
- Orddict1 = O rddict2 = ordered_dictionary()
map calls Func on successive keys and values of Orddict to return a new value for each key. The evaluation order is undefined.
```

merge(Fun, Orddict1, Orddict2) -> Orddict3

```

Types:
- Fun = fun(Key, Value1, Value2) -> Value
- Key \(=\) Value1 \(=\) Value2 \(=\) Value3 \(=\) term()
- Orddict1 = Orddict2 = O rddict3 = ordered_dictionary()
merge merges two dictionaries, Orddict1 and Orddict2, to create a new dictionary. All the Key - Value pairs from both dictionaries are included in the new dictionary. If a key occurs in both dictionaries then Fun is called with the key and both values to return a new value. merge could be defined as:
```

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

```
but is faster.
new() -> ordered_dictionary()
This function creates a new dictionary.
```

store(Key, Value, Orddict1) -> Orddict2

```

Types:
- Key = Value = term( )
- Orddict1 = Orddict2 = ordered_dictionary()

This function stores a Key - Value pair in a dictionary. If the Key already exists in Orddict1, the associated value is replaced by Value.
```

to_list(Orddict) -> List

```

Types:
- Orddict = ordered_dictionary()
- List \(=[\{\) Key, Value \(\}]\)

This function converts the dictionary to a list representation.
update(Key, Fun, Orddict1) \(->\) Orddict2
Types:
- Key = term()
- Fun = fun(Value1) -> Value2
- Valuel = Value2 = term()
- Orddict1 = O rddict2 = ordered_dictionary()

Update the a value in a dictionary by calling Fun on the value to get a new value. An exception is generated if Key is not present in the dictionary.
update(Key, Fun, Initial, Orddict1) -> Orddict2
Types:
- Key = Initial = term()
- Fun = fun(Value1) -> Value2
- Valuel = Value2 =term()
- Orddict1 = O rddict2 = ordered_dictionary()

Update the a value in a dictionary by calling Fun on the value to get a new value. If Key is not present in the dictionary then Initial will be stored as the first value. For example append \(/ 3\) could be defined as:
```

append(Key, Val, D) ->
update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).

```
update_counter(Key, Increment, Orddict1) -> Orddict2

Types:
- Key = term()
- Increment = number()
- O rddict1 = O rddict2 = ordered_dictionary()

Add Increment to the value associated with Key and store this value. If Key is not present in the dictionary then Increment will be stored as the first value.
This could be defined as:
```

update_counter(Key, Incr, D) ->
update(Key, fun (Old) -> Old + Incr end, Incr, D).

```
but is faster.

\section*{Notes}

The functions append and append_list are included so we can store keyed values in a list accumulator. For example:
```

> DO = orddict:new(),
D1 = orddict:store(files, [], DO),
D2 = orddict:append(files, f1, D1),
D3 = orddict:append(files, f2, D2),
D4 = orddict:append(files, f3, D3),
orddict:fetch(files, D4).
[f1,f2,f3]

```

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing the result.
The function fetch should be used if the key is known to be in the dictionary, otherwise find.

\section*{See Also}
dict(3) [page 88], gb_trees(3) [page 170]

\section*{ordsets}

Erlang M odule

Sets are collections of elements with no duplicate elements. An ordset is a representation of a set, where an ordered list is used to store the elements of the set. An ordered list is more efficient than an unordered list.

This module provides exactly the same interface as the module sets but with a defined representation. O ne difference is that while sets considers two elements as different if they do not match ( \(=:=\) ), this module considers two elements as different if and only if they do not compare equal \((==)\).

\section*{DATA TYPES}

\section*{ordered_set()}
as returned by new/0

\section*{Exports}
```

new() -> Ordset

```

Types:
- O rdset = ordered_set()

Returns a new empty ordered set.
is_set(Ordset) -> bool()
Types:
- O rdset = term()

Returns true if Ordset is an ordered set of elements, otherwise false.
```

size(Ordset) -> int()

```

Types:
- O rdset = term()

Returns the number of elements in Ordset.
```

to_list(Ordset) -> List

```

Types:
- O rdset = ordered_set()
- List = [term()]

Returns the elements of Ordset as a list.
```

from_list(List) -> Ordset

```

Types:
- List \(=[\) term( \()\) ]
- O rdset = ordered_set()

Returns an ordered set of the elements in List.
is_element(Element, Ordset) -> bool()
Types:
- Element = term()
- O rdset = ordered_set()

Returns true if Element is an element of Ordset, otherwise false.
add_element(Element, Ordset1) \(->\) Ordset2
Types:
- Element = term()
- Ordset1 \(=\) O rdset2 \(=\) ordered_set()

Returns a new ordered set formed from Ordset1 with Element inserted.
del_element(Element, Ordset1) -> Ordset2
Types:
- Element = term()
- Ordset1 \(=0\) rdset2 \(=\) ordered_set()

Returns Ordset1, but with Element removed.
union(Ordset1, Ordset2) -> Ordset3
Types:
- Ordset1 = O rdset2 = Ordset3 = ordered_set()

Returns the merged (union) set of Ordset1 and Ordset2.
```

union(OrdsetList) -> Ordset

```

Types:
- O rdsetList = [ordered_set()]
- Ordset = ordered_set()

Returns the merged (union) set of the list of sets.
intersection(Ordset1, Ordset2) -> Ordset3
Types:
- O rdset1 = Ordset2 = O rdset3 = ordered_set()

Returns the intersection of Ordset1 and Ordset2.
intersection(OrdsetList) -> Ordset
Types:
- OrdsetList = [ordered_set()]
- Ordset = ordered_set()

Returns the intersection of the non-empty list of sets.
subtract(Ordset1, Ordset2) -> Ordset3
Types:
- Ordset1 = O rdset2 = O rdset3 = ordered_set()

Returns only the elements of Ordset1 which are not also elements of Ordset2.
is_subset(Ordset1, Ordset2) -> bool()
Types:
- O rdset1 \(=0\) rdset2 \(=\) ordered_set()

Returns true when every element of Ordset1 is also a member of Ordset2, otherwise false.
fold(Function, Acc0, Ordset) -> Acc1
Types:
- Function \(=\) fun ( \(E, A \operatorname{ccl} n\) ) \(->A c c O\) ut
- \(\mathrm{AccO}=\mathrm{Accl}=\mathrm{A} c \mathrm{ln}=\mathrm{AccO}\) ut \(=\) term()
- O rdset = ordered_set()

Fold Function over every element in Ordset returning the final value of the accumulator.
filter(Pred, Ordset1) -> Set2
Types:
- Pred \(=\) fun (E) \(->\) bool()
- Set1 = Set2 = ordered_set()

Filter elements in Set1 with boolean function Fun.

\section*{See Also}
gb_sets(3) [page 164], sets(3) [page 301]

\section*{pg \\ Erlang M odule}

This (experimental) module implements process groups. A process group is a group of processes that can be accessed by a common name. For example, a group named foobar can include a set of processes as members of this group and they can be located on different nodes.

W hen messages are sent to the named group, all members of the group receive the message. The messages are serialized. If the process P1 sends the message m1 to the group, and process P2 simultaneously sends message M 2 , then all members of the group receive the two messages in the same order. If members of a group terminate, they are automatically removed from the group.
This module is not complete. The module is inspired by the ISIS system and the causal order protocol of the ISIS system should also be implemented. At the moment, all messages are serialized by sending them through a group master process.

\section*{Exports}
```

create(PgName) -> ok | {error, Reason}

```

Types:
- PgN ame = term()
- Reason = already_created \| term()

C reates an empty group named PgName on the current node.
create(PgName, Node) \(->\) ok | \{error, Reason\}
Types:
- PgN ame = term()
- Node = node()
- Reason = already_created | term()

C reates an empty group named PgName on the node Node.
join(PgName, Pid) -> Members
Types:
- PgN ame = term()
- \(\operatorname{Pid}=\) pid()
- M embers \(=[\) pid ()\(]\)

Joins the pid Pid to the process group PgName. Returns a list of all old members of the group.
send (PgName, Msg) -> void()
Types:
- \(\operatorname{PgN}\) ame \(=\mathrm{M}\) sg \(=\) term()

Sends the tuple \{pg_message, From, PgName, Msg\} to all members of the process group PgName.
Failure: \(\{\) badarg, \(\{\) PgName, Msg \(\}\}\) if PgName is not a process group (a globally registered name).
esend(PgName, Msg) -> void()
Types:
- \(\operatorname{PgN}\) ame \(=\mathrm{M}\) sg \(=\) term()

Sends the tuple \{pg_message, From, PgName, Msg\} to all members of the process group PgName, except ourselves.
Failure: \(\{\) badarg, \(\{\) PgName, Msg \(\}\}\) if PgName is not a process group (a globally registered name).
members(PgName) -> Members
Types:
- PgN ame = term()
- M embers = [pid()]

Returns a list of all members of the process group PgName.

\section*{pool}

\author{
Erlang M odule
}
pool can be used to run a set of Erlang nodes as a pool of computational processors. It is organized as a master and a set of slave nodes and includes the following features:
- The slave nodes send regular reports to the master about their current load.
- Queries can be sent to the master to determine which node will have the least load.

The BIF statistics (run_queue) is used for estimating future loads. It returns the length of the queue of ready to run processes in the Erlang runtime system.
The slave nodes are started with the slave module. This effects, tty IO, file IO, and code loading.
If the master node fails, the entire pool will exit.

\section*{Exports}
```

start(Name) ->
start(Name, Args) -> Nodes

```

Types:
- Name = atom()
- Args = string()
- Nodes = [node()]

Starts a new pool. The file .hosts.erlang is read to find host names where the pool nodes can be started. See section Files [page 262] below. The start-up procedure fails if the file is not found.
The slave nodes are started with slave: start/2, 3 , passing along Name and, if provided, Args. Name is used as the first part of the node names, Args is used to specify command line arguments. See slave(3) [page 315].
A ccess rights must be set so that all nodes in the pool have the authority to access each other.
The function is synchronous and all the nodes, as well as all the system servers, are running when it returns a value.
```

attach(Node) -> allready_attached | attached

```

Types:
- Node = node()

This function ensures that a pool master is running and includes Node in the pool master's pool of nodes.
stop() -> stopped
Stops the pool and kills all the slave nodes.
get_nodes() -> Nodes
Types:
- N odes = [node( \()\) ]

Returns a list of the current member nodes of the pool.
pspawn(Mod, Fun, Args) -> pid()
Types:
- \(\operatorname{Mod}=\) Fun = atom()
- Args = [term()]

Spawns a process on the pool node which is expected to have the lowest future load.
pspawn_link(Mod, Fun, Args) -> pid()
Types:
- \(\operatorname{Mod}=\) Fun \(=\) atom()
- Args = [term()]

Spawn links a process on the pool node which is expected to have the lowest future load.
```

get_node() -> node()

```

Returns the node with the expected lowest future load.

\section*{Files}
.hosts.erlang is used to pick hosts where nodes can be started. See [net_adm(3)] for information about format and location of this file.
\$HOME/.erlang.slave. out. HOST is used for all additional IO that may come from the slave nodes on standard IO. If the start-up procedure does not work, this file may indicate the reason.

\section*{proc_lib \\ Erlang M odule}

This module is used to start processes adhering to the [OTP D esign Principles]. Specifically, the functions in this module are used by the OTP standard behaviors (gen_server, gen_fsm, ...) when starting new processes. The functions can also be used to start special processes, user defined processes which comply to the OTP design principles. See [Sys and Proc_Lib] in OTP Design Principles for an example.
Some useful information is initialized when a process starts. The registered names, or the process identifiers, of the parent process, and the parent ancestors, are stored together with information about the function initially called in the process.
While in "plain Erlang" a process is said to terminate normally only for the exit reason normal, a process started using proc_lib is also said to terminate normally if it exits with reason shutdown. This is the reason used when an application (supervision tree) is stopped.
When a process started using proc_lib terminates abnormally - that is, with another exit reason than normal or shutdown - a crash report is generated, which is written to terminal by the default SASL event handler. That is, the crash report is normally only visible if the SASL application is started. See [sas((6)] and [SASL User's G uide].
The crash report contains the previously stored information such as ancestors and initial function, the termination reason, and information regarding other processes which terminate as a result of this process terminating.

\section*{Exports}
```

spawn(Fun) -> pid()
spawn(Node, Fun) -> pid()
spawn(Module, Function, Args) -> pid()
spawn(Node, Module, Function, Args) -> pid()

```

Types:
- Node = node()
- Fun = fun() -> void()
- M odule = Function = atom( )
- Args = [term()]

Spawns a new process and initializes it as described above. The process is spawned using the [spawn] BIFs.
```

spawn_link(Fun) -> pid()
spawn_link(Node, Fun) -> pid()
spawn_link(Module, Function, Args) -> pid()

```
```

spawn_link(Node, Module, Function, Args) -> pid()

```

Types:
- N ode = node()
- Fun = fun() -> void()
- M odule = Function = atom()
- A rgs = [term()]

Spawns a new process and initializes it as described above. The process is spawned using the [spawn_link] BIFs
```

spawn_opt(Fun, SpawnOpts) -> pid()
spawn_opt(Node, Fun, SpawnOpts) -> pid()
spawn_opt(Module, Function, Args, SpawnOpts) -> pid()
spawn_opt(Node, Module, Func, Args, SpawnOpts) -> pid()

```

Types:
- N ode = node()
- Fun = fun() -> void()
- M odule = Function = atom()
- A rgs = [term( )]
- SpawnO pts - see erlang:spawn_opt/2,3,4,5

Spawns a new process and initializes it as described above. The process is spawned using the [spawn_opt] BIFs.

\section*{N ote:}

Using the spawn option monitor is currently not allowed, but will cause the function to fail with reason badarg.
```

start(Module, Function, Args) -> Ret
start(Module, Function, Args, Time) -> Ret
start(Module, Function, Args, Time, SpawnOpts) -> Ret
start_link(Module, Function, Args) -> Ret
start_link(Module, Function, Args, Time) -> Ret
start_link(Module, Function, Args, Time, SpawnOpts) -> Ret
Types:

- M odule $=$ Function $=$ atom()
- A rgs = [term()]
- Time $=$ int ()$>=0$ । infinity
- SpawnO pts - see erlang:spawn_opt/2,3,4,5
- Ret = term() । \{error, Reason\}

```

Starts a new process synchronously. Spawns the process and waits for it to start. When the process has started, it must call init_ack(Parent,Ret) [page 265] or init_ack(Ret) [page 265], where Parent is the process that evaluates this function. At this time, Ret is returned.
If the start_link/ \(3,4,5\) function is used and the process crashes before it has called init_ack \(/ 1,2\), \(\{\) error, Reason \(\}\) is returned if the calling process traps exits. If Time is specified as an integer, this function waits for Time milliseconds for the new process to call init_ack, or \{error, timeout \} is returned, and the process is killed.
The SpawnOpts argument, if given, will be passed as the last argument to the spawn_opt/2,3,4,5 BIF.

\section*{N ote:}

Using the spawn option monitor is currently not allowed, but will cause the function to fail with reason badarg.
```

init_ack(Parent, Ret) -> void()
init_ack(Ret) -> void()

```

Types:
- Parent = pid()
- Ret = term()

This function must used by a process that has been started by a start[_link]/3,4,5 [page 264] function. It tells Parent that the process has initialized itself, has started, or has failed to initialize itself.
The init_ack/1 function uses the parent value previously stored by the start function used.
If this function is not called, the start function will return an error tuple (if a link and/or a timeout is used) or hang otherwise.
The following example illustrates how this function and proc_lib:start_link/3 are used.
```

-module(my_proc).
-export([start_link/0]).
-export([init/1]).
start_link() ->
proc_lib:start_link(my_proc, init, [self()]).
init(Parent) ->
case do_initialization() of
ok ->
proc_lib:init_ack(Parent, {ok, self()});
{error, Reason} ->
exit(Reason)
end,
loop().

```
format(CrashReport) -> string()

\section*{Types:}
- C rashReport = term()

This function can be used by a user defined event handler to format a crash report. The crash report is sent using error_logger: error_report (crash_report, CrashReport). That is, the event to be handled is of the format \{error_report, GL, \{Pid, crash_report, CrashReport \}\} where GL is the group leader pid of the process Pid which sent the crash report.
initial_call(Process) -> \{Module,Function, Args \(\}\) | Fun | false
Types:
- Process \(=\operatorname{pid}() \mid\{X, Y, Z\}\) | Proclnfo
- \(X=Y=Z=\operatorname{int}()\)
- Proclnfo = term()
- M odule \(=\) Function \(=\) atom()
- A rgs = [term( )]
- Fun = fun() -> void()

Extracts the initial call of a process that was started using one of the spawn or start functions described above. Process can either be a pid, an integer tuple (from which a pid can be created), or the process information of a process Pid fetched through an erlang: process_info(Pid) function call.
```

translate_initial_call(Process) -> {Module,Function,Arity} | Fun

```

Types:
- Process \(=\operatorname{pid}()|\{X, Y, Z\}|\) Proclnfo
- \(X=Y=Z=i n t()\)
- Proclnfo = term()
- M odule \(=\) Function \(=\) atom ()
- Arity = int()
- Fun = fun() \(->\) void()

This function is used by the c:i/0 and c:regs/0 functions in order to present process information.
Extracts the initial call of a process that was started using one of the spawn or start functions described above, and translates it to more useful information. Process can either be a pid, an integer tuple (from which a pid can be created), or the process information of a process Pid fetched through an erlang: process_info(Pid) function call.
If the initial call is to one of the system defined behaviors such as gen_server or gen_event, it is translated to more useful information. If a gen_server is spawned, the returned Module is the name of the callback module and Function is init (the function that initiates the new server).

A supervisor and a supervisor_bridge are also gen_server processes. In order to return information that this process is a supervisor and the name of the call-back module, Module is supervisor and Function is the name of the supervisor callback module. Arity is 1 since the init/1 function is called initially in the callback module.

By default, \(\{\) proc_lib, init_p, 5\(\}\) is returned if no information about the initial call can be found. It is assumed that the caller knows that the process has been spaw ned with the proc_lib module.
hibernate(Module, Function, Args)
Types:
- M odule \(=\) Function = atom()
- Args = [term()]

This function does the same as (and does call) the BIF [hibernate/3], but ensures that exception handling and logging continues to work as expected when the process wakes up. Always use this function instead of the BIF for processes started using proc_lib functions.

\section*{SEE ALSO}
[error_logger(3)]

\section*{proplists}

Erlang M odule

Property lists are ordinary lists containing entries in the form of either tuples, whose first elements are keys used for lookup and insertion, or atoms, which work as shorthand for tuples \{Atom, true\}. (O ther terms are allowed in the lists, but are ignored by this module.) If there is more than one entry in a list for a certain key, the first occurrence normally overrides any later (irrespective of the arity of the tuples).
Property lists are useful for representing inherited properties, such as options passed to a function where a user may specify options overriding the default settings, object properties, annotations, etc.

\section*{Exports}
```

append_values(Key, List) -> List
Types:
- Key = term()
- List = [term()]
Similar to get_all_values/2, but each value is wrapped in a list unless it is already
itself a list, and the resulting list of lists is concatenated. This is often useful for
"incremental" options; e.g., append_values (a, [{a, [1,2]}, {b, 0}, {a, 3}, {c,
-1}, {a, [4]}]) will return the list [1, 2, 3,4].
compact(List) -> List
Types:
- List = [term()]
M inimizes the representation of all entries in the list. This is equivalent to
[property(P) || P <- List].
See also: property/1, unfold/1.
delete(Key, List) -> List
Types:
- Key = term()
- List = [term()]
Deletes all entries associated with Key from List.
expand(Expansions, List) -> List
Types:

```
- Key = term()
- Expansions \(=[\{\) Property, \([\) term ()\(]\}]\)
- Property = atom() | tuple()

Expands particular properties to corresponding sets of properties (or other terms). For each pair \{Property, Expansion\} in Expansions, if E is the first entry in List with the same key as Property, and E and Property have equivalent normal forms, then E is replaced with the terms in Expansion, and any following entries with the same key are deleted from List.

For example, the following expressions all return [fie, bar, baz, fum]:
```

expand([{foo, [bar, baz]}],
[fie, foo, fum])
expand([{{foo, true}, [bar, baz]}],
[fie, foo, fum])
expand([{{foo, false}, [bar, baz]}],
[fie, {foo, false}, fum])

```

However, no expansion is done in the following call:
```

expand([{{foo, true}, [bar, baz]}],
[{foo, false}, fie, foo, fum])

```
because \{foo, false\} shadows foo.
N ote that if the original property term is to be preserved in the result when expanded, it must be included in the expansion list. The inserted terms are not expanded recursively. If Expansions contains more than one property with the same key, only the first occurrance is used.

See also: normalize/2.
```

get_all_values(Key, List) -> [term()]

```

Types:
- Key = term()
- List \(=[\) term( \()\) ]

Similar to get_value/2, but returns the list of values for all entries \{Key, Value\} in List. If no such entry exists, the result is the empty list.
See also: get_value/2.
```

get_bool(Key, List) -> bool()

```

Types:
- Key = term()
- List \(=[\) term( \()\) ]

Returns the value of a boolean key/value option. If lookup (Key, List) would yield \{Key, true\}, this function returns true; otherwise false is returned.
See also: get_value/2, lookup/2.
```

get_keys(List) -> [term()]

```

Types:
- List \(=[\) term( \()\) ]

Returns an unordered list of the keys used in List, not containing duplicates.
```

get_value(Key, List) -> term()
Types:
- Key = term()
- List = [term()]
Equivalent to get_value(Key, List, undefined).
get_value(Key, List, Default) -> term()
Types:
- Key = term()
- D efault = term()
- List = [term()]
Returns the value of a simple key/value property in List. If lookup(Key, List) would
yield {Key, Value}, this function returns the corresponding Value, otherwise Default is returned.
See also: get_all_values/2, get_bool/2, get_value/1, lookup/2.

```
```

is_defined(Key, List) -> bool()

```
is_defined(Key, List) -> bool()
Types:
- Key = term()
- List \(=[\) term( \()\) ]
Returns true if List contains at least one entry associated with Key, otherwise false is returned.
lookup(Key, List) -> none | tuple()
Types:
- Key = term()
- List \(=[\) term( \()\) ]
Returns the first entry associated with Key in List, if one exists, otherwise returns none. For an atom \(A\) in the list, the tuple \(\{\mathrm{A}\), true \(\}\) is the entry associated with A .
See also: get_bool/2, get_value/2, lookup_all/2.
lookup_all(Key, List) -> [tuple()]
```

Types:

- Key = term()
- List = [term()]

Returns the list of all entries associated with Key in List. If no such entry exists, the result is the empty list.

See also: lookup/2.
normalize(List, Stages) -> List
Types:

- List $=[$ term($)$]
- Stages = [O peration]
- O peration $=$ \{aliases, Aliases\} | \{negations, Negations\} | \{expand, Expansions\}
- Aliases $=[\{$ Key, Key $\}]$
- Negations = [\{Key, Key\}]
- Key = term()
- Expansions = [\{Property, [term()]\}]
- Property = atom() | tuple()

Passes List through a sequence of substitution/expansion stages. For an aliases operation, the function substitute_aliases/2 is applied using the given list of aliases; for a negations operation, substitute_negations/2 is applied using the given negation list; for an expand operation, the function expand/2 is applied using the given list of expansions. The final result is automatically compacted (cf. compact/1).
Typically you want to substitute negations first, then aliases, then perform one or more expansions (sometimes you want to pre-expand particular entries before doing the main expansion). You might want to substitute negations and/or aliases repeatedly, to allow such forms in the right-hand side of aliases and expansion lists.
See also: compact/1, expand/2, substitute_aliases/2, substitute_negations/2.

```
property(Property) -> Property
    Types:
    - Property = atom() | tuple()
```

C reates a normal form (minimal) representation of a property. If Property is \{Key, true $\}$ where Key is an atom, this returns Key, otherwise the whole term Property is returned.
See also: property/2.

```
property(Key, Value) -> Property
```

Types:

- Key = term()
- Value = term()
- Property = atom() | tuple()

C reates a normal form (minimal) representation of a simple key/value property. Returns Key if Value is true and Key is an atom, otherwise a tuple $\{$ Key, Value $\}$ is returned.
See also: property/1.

```
split(List, Keys) -> {Lists, Rest}
```

Types:

- List $=[$ term($)$]
- Keys = [term()]
- Lists $=[[$ term ()$]]$
- Rest $=[$ term($)]$

Partitions List into a list of sublists and a remainder. Lists contains one sublist for each key in Keys, in the corresponding order. The relative order of the elements in each sublist is preserved from the original List. Rest contains the elements in List that are not associated with any of the given keys, also with their original relative order preserved.
Example: split([$\{\mathrm{c}, 2\},\{\mathrm{e}, 1\}, \mathrm{a},\{\mathrm{c}, 3,4\}, \mathrm{d},\{\mathrm{b}, 5\}, \mathrm{b}],[\mathrm{a}, \mathrm{b}, \mathrm{c}])$
returns
$\{[[a],[\{b, 5\}, b],[\{c, 2\},\{c, 3,4\}]],[\{e, 1\}, d]\}$

```
substitute_aliases(Aliases, List) -> List
```

Types:

- Aliases $=[\{$ Key, Key $\}]$
- Key = term()
- List $=[$ term($)]$

Substitutes keys of properties. For each entry in List, if it is associated with some key K1 such that $\{\mathrm{K} 1, \mathrm{~K} 2\}$ occurs in Aliases, the key of the entry is changed to Key2. If the same K1 occurs more than once in Aliases, only the first occurrence is used.
Example: substitute_aliases([\{color, colour $\}]$, L) will replace all tuples \{color, ...\} in L with $\{$ colour, ... \}, and all atoms color with colour.
See also: normalize/2, substitute_negations/2.
substitute_negations(Negations, List) -> List
Types:

- Negations = [\{Key, Key $\}$]
- Key = term()
- List $=[$ term($)]$

Substitutes keys of boolean-valued properties and simultaneously negates their values. For each entry in List, if it is associated with some key K1 such that \{K1, K2\} occurs in Negations, then if the entry was $\{\mathrm{K} 1$, true $\}$ it will be replaced with $\{\mathrm{K} 2$, false $\}$, otherwise it will be replaced with $\{\mathrm{K} 2$, true $\}$, thus changing the name of the option and simultaneously negating the value given by get_bool (List). If the same K1 occurs more than once in Negations, only the first occurrence is used.
Example: substitute_negations ([\{no_foo, foo\}], L) will replace any atom no_foo or tuple \{no_foo, true\} in L with \{foo, false\}, and any other tuple \{no_foo, ... \} with $\{$ foo, true $\}$.
See also: get_bool/2, normalize/2, substitute_aliases/2.

```
unfold(List) -> List
```

Types:

- List = [term()]

Unfolds all occurences of atoms in List to tuples \{Atom, true $\}$.

The qlc module provides a query interface to M nesia, $E T S$, D ets and other data structures that implement an iterator style traversal of objects.

Overview

The qlc module implements a query interface to Q LC tables. Typical QLC tables are ETS, D ets, and M nesia tables. There is also support for user defined tables, see the Implementing a Q LC table [page 278] section. A query is stated using Q uery List C omprehensions (QLCs). These are similar to ordinary list comprehensions as described in the Erlang Reference M anual and Programming Examples except that variables introduced in patterns cannot be used in list expressions. The answers to a query are determined by data in QLC tables that fulfill the constraints expressed by the QLCs of the query.
QLCsshould not be confused with the language construct query ListComprehension end used by M nemosyne. The qlc module recognizes the first argument of every call to $\mathrm{qlc}: \mathrm{q} / 1,2$ as QLC s , and nothing else. The semantics are very different: M nemosyne uses ideas borrowed from Prolog while the QLCs introduced in this module are all Erlang. In fact, in the absence of optimizations and options such as cache and unique (see below), every QLC free of QLC tables evaluates to the same list of answers as the identical ordinary list comprehension. It is the aim of this module to replace M nemosyne and to be more versatile by means of QLC tables.
While ordinary list comprehensions evaluate to lists, calling qlc:q/1,2 [page 283] returns a Q uery H andle. To obtain all the answers to a query, qlc:eval/ 1,2 [page 281] should be called with the query handle as first argument. Query handles are essentially functions created in the module calling $q / 1,2$. A s the functions refer to the module's code, one should be careful not to keep query handles too long if the module's code is to be replaced. Code replacement is described in the [Erlang Reference M anual]. The list of answers can also be traversed in chunks by use of a Q uery Cursor. Q uery cursors are created by calling qlc:cursor/1,2 [page 280] with a query handle as first argument. Query cursors are essentially Erlang processes. O ne answer at a time is sent from the query cursor process to the process that created the cursor.

Syntax

Syntactically Q LCs have the same parts as ordinary list comprehensions:
[Expression || Qualifier1, Qualifier2, ...]

Expression (the template) is an arbitrary Erlang expression. Q ualifiers are either filters or generators. Filters are Erlang expressions returning bool (). G enerators have the form Pattern<-ListExpression, where ListExpression is an expression evaluating to a query handle or a list. Q uery handles are returned from qlc:table/2, qlc:append/1,2, qlc:sort/1,2, qlc:keysort/2,3, qlc:q/1,2, and qlc:string_to_handle/1,2,3.

Evaluation

The evaluation of a query handle begins by the inspection of options and the collection of information about tables. A s a result qualifiers are modified during the optimization phase. N ext all list expressions are evaluated. If a cursor has been created evaluation takes place in the cursor process. For those list expressions that are Q LCs, the list expressions of the Q LCs' generators are evaluated as well. O ne has to be careful if list expressions have side effects since the order in which list expressions are evaluated is unspecified. Finally the answers are found by evaluating the qualifiers from left to right, backtracking when some filter returns false, or collecting the template when all filters return true.
Filters that do not return bool () but fail are handled differently depending on their syntax: if the filter is a guard it returns false, otherwise the query evaluation fails. This behavior makes it possible for Q LC to do some optimizations without affecting the meaning of a query. For example, when some position of a table is compared to one or more constants, only the objects with matching values are candidates for further evaluation. The other objects are guaranteed to make the filter return false, but never fail. The (small) set of candidate objects can often be found by looking up some key values of the table or by traversing the table using a match specification. It is necessary to place the guard filters immediately after the table's generator, otherwise it could happen that some table object that would make the query evaluation fail is excluded by looking up a key or running a match specification.

J oin

Q LC supports fast join of two query handles. Fast join is possible if some position (P1) of one query handler is compared to or matched against some position (P2) of another query handle. Two fast join methods have been implemented:

- Lookup join traverses all objects of one query handle and finds objects of the other handle (a Q LC table) such that the values at P1 and P2 match. Q LC does not create any indices but looks up values using the key position and the indexed positions of the Q LC table.
- Merge join sorts the objects of each query handle if necessary and filters out objects where the values at P1 and P2 do not compare equal. If there are many objects with the same value of P2 a temporary file will be used for the equivalence classes.

Q LC warns at compile time if a query list comprehension combines Q LC handles in such a way that more than one join is possible. In other words, there is no query planner that can choose a good order between possible join operations. It is up to the user to order the joins by introducing query handles.

The join is to be expressed as a guard filter. The filter must be placed immediately after the two joined generators, possibly after guard filters that use variables from no other generators but the two joined generators. Q LC inspects the operands of $=:=/ 2,==/ 2$,
is_record/2, element/2, and logical operators (and/2, or/2, andalso/2, orelse/2, xor/2) when determining which joins to consider.

Common options

The following options are accepted by cursor/2, eval/2, fold/4, and info/2:

- \{cache_all, CacheAll\} where CacheAll is equal to ets or list adds a \{cache, CacheAll\} option to every list expression of the query except tables and lists. D efault is \{cache_all, no\}. The option cache_all is equivalent to \{cache_all, ets\}.
- \{max_list_size, MaxListSize\} where MaxListSize is the size in bytes of terms on the external format. If the accumulated size of collected objects exceeds MaxListSize the objects are written onto a temporary file. This option is used by the $\{$ cache, list $\}$ option as well as by the merge join method. D efault is 512*1024 bytes.
- \{tmpdir, TempDirectory\} sets the directory used by merge join for temporary files and by the \{cache, list\} option. The option also overrides the $<c>$ tmpdir option of keysort/3 and sort/2. The default value is " " which means that the directory returned by file:get_cwd() is used.
- \{unique_all, true\} adds a \{unique, true\} option to every list expression of the query. D efault is \{unique_all, false\}. The option unique_all is equivalent to \{unique_all, true\}.

Common data types

- QueryCursor $=$ \{qlc_cursor, term() \}
- QueryHandle $=\{q l c$ handle, term() $\}$
- QueryHandleOrList = QueryHandle | list()
- Answers = [Answer]
- Answer = term()
- AbstractExpression = -parse trees for Erlang expressions, see the [abstract format] documentation in ERTS U ser's G uide-
- MatchExpression = -matchspecifications, see the [match specification] documentation in the ERTS U ser's G uide and ms_transform(3) [page 240]-
- SpawnOptions $=$ default | spawn_options()
- SortOptions = [SortOption] | SortOption
- SortOption = \{compressed, bool()\} | \{no_files, NoFiles\} | \{order, Order\} | \{size, Size\} | \{tmpdir, TempDirectory\} | \{unique, bool()\} -see file_sorter(3) [page 150]-
- Order = ascending | descending | OrderFun
- OrderFun = fun(Term, Term) -> bool()
- TempDirectory = "" | filename()
- Size $=$ int() > 0
- NoFiles = int() > 1

```
- KeyPos = int() > 0 | [int() > 0]
- MaxListSize = int() >= 0
- bool() = true | false
- Cache = ets | list | no
- filename() = -see filename(3) [page 158]-
- spawn_options() = -see [ erlang(3)]-
```


Getting started

As already mentioned queries are stated in the list comprehension syntax as described in the [Erlang Reference M anual]. In the following some familiarity with list comprehensions is assumed. There are examples in [Programming Examples] that can get you started. It should be stressed that list comprehensions do not add any computational power to the language; anything that can be done with list comprehensions can also be done without them. But they add a syntax for expressing simple search problems which is compact and clear once you get used to it.
M any list comprehension expressions can be evaluated by the qlc module. Exceptions are expressions such that variables introduced in patterns (or filters) are used in some generator later in the list comprehension. A s an example consider an implementation of lists:append(L): [X || Y <- L, X <- Y]. Y is introduced in the first generator and used in the second. The ordinary list comprehension is normally to be preferred when there is a choice as to which to use. O ne difference is that qlc : eval/1, 2 collects answers in a list which is finally reversed, while list comprehensions collect answers on the stack which is finally unwound.
What the qle module primarily adds to list comprehensions is that data can be read from Q LC tables in small chunks. A QLC table is created by calling qlc:table/2. U sually qlc: table/2 is not called directly from the query but via an interface function of some data structure. There are a few examples of such functions in Erlang/OTP: mnesia:table/1,2,ets:table/1,2, and dets:table/1,2. For a given data structure there can be several functions that create Q LC tables, but common for all these functions is that they return a query handle created by qlc: table/2. Using the QLC tables provided by OTP is probably sufficient in most cases, but for the more advanced user the section Implementing a Q LC table [page 278] describes the implementation of a function calling qlc: table/2.
Besides qlc: table/2 there are other functions that return query handles. They might not be used as often as tables, but are useful from time to time. qlc: append traverses objects from several tables or lists after each other. If, for instance, you want to traverse all answers to a query QH and then finish off by a term \{finished\}, you can do that by calling qlc: append (QH, [\{finished\}]). append first returns all objects of QH , then \{finished\}. If there is one tuple \{finished $\}$ among the answers to QH it will be returned twice from append.
As another example, consider concatenating the answers to two queries QH1 and QH2 while removing all duplicates. The means to accomplish this is to use the unique option:
qlc:q([X || X <- qlc:append(QH1, QH2)], \{unique, true\})

The cost is substantial: every returned answer will be stored in an ETS table. Before returning an answer it is looked up in the ETS table to check if it has already been returned. Without the unique options all answers to Q H 1 would be returned followed by all answers to QH2. The unique options keeps the order between the remaining answers.
If the order of the answers is not important there is the alternative to sort the answers uniquely:
qlc:sort(qlc:q([X || X <- qlc:append(QH1, QH2)], \{unique, true\})).
This query also removes duplicates but the answers will be sorted. If there are many answers temporary files will be used. N ote that in order to get the first unique answer all answers have to be found and sorted.
To return just a few answers cursors can be used. The following code returns no more than five answers using an ETS table for storing the unique answers:

```
C = qlc:cursor(qlc:q([X || X <- qlc:append(QH1, QH2)],{unique,true})),
R = qlc:next_answers(C, 5),
ok = qlc:delete_cursor(C),
R.
```

Q uery list comprehensions are convenient for stating constraints on data from two or more tables. An example that does a natural join on two query handles on position 2 :

```
qlc:q([{X1,X2,X3,Y1} ||
    {X1,X2,X3} <- QH1,
    {Y1,Y2} <- QH2,
    X2 =:= Y2])
```

Q LC will evaluate this differently depending on the query handles QH1 and QH2. If, for example, X 2 is matched against the key of a Q LC table the lookup join method will traverse the objects of QH2 while looking up key values in the table. On the other hand, if neither X 2 nor Y 2 is matched against the key or an indexed position of a Q LC table, the merge join method will make sure that QH1 and QH2 are both sorted on position 2 and next do the join by traversing the objects one by one.
The join option can be used to force Q LC to use a certain join method. For the rest of this section it is assumed that the excessively slow join method called "nested loop" has been chosen:

```
qlc:q([{X1,X2,X3,Y1} ||
    {X1,X2,X3} <- QH1,
    {Y1,Y2} <- QH2,
    X2 =:= Y2],
    {join, nested_loop})
```

In this case the filter will be applied to every possible pair of answers to QH 1 and QH 2 , one at a time. If there are M answers to QH 1 and N answers to QH 2 the filter will be run $\mathrm{M} * \mathrm{~N}$ times.
If Q H 2 is a call to the function for gb_trees as defined in the Implementing a Q LC table [page 278] section, gb_table:table/1, the iterator for the gb-tree will be initiated for each answer to QH1 after which the objects of the gb-tree will be returned one by one. This is probably the most efficient way of traversing the table in that case since it takes minimal computational power to get the following object. But if QH2 is not a table but a more complicated Q LC, it can be more efficient use some RAM memory for collecting the answers in a cache, particularly if there are only a few answers. It must then be assumed that evaluating QH 2 has no side effects so that the
meaning of the query does not change if QH 2 is evaluated only once. O ne way of caching the answers is to evaluate QH2 first of all and substitute the list of answers for QH2 in the query. A nother way is to use the cache option. It is stated like this:

```
QH2' = qlc:q([X || X <- QH2], {cache, ets})
or just
QH2' = qlc:q([X || X <- QH2], cache)
```

The effect of the cache option is that when the generator QH 2 ' is run the first time every answer is stored in an ETS table. W hen next answer of Q H 1 is tried, answers to QH2' are copied from the ETS table which is very fast. As for the unique option the cost is a possibly substantial amount of RAM memory. The $\{$ cache, list $\}$ option offers the possibility to store the answers in a list on the process heap. While this has the potential of being faster than ETS tables since there is no need to copy answers from the table it can often result in slower evaluation due to more garbage collections of the process' heap as well as increased RAM memory consumption due to bigger heaps. A nother drawback with cache lists is that if the size of the list exceeds a limit a temporary file will be used. Reading the answers from a file is very much slower than copying them from an ETS table. But if the available RAM memory is scarce setting the limit [page 275] to some low value is an alternative.
There is an option cache_all that can be set to ets or list when evaluating a query. It adds a cache or \{cache, list \} option to every list expression except QLC tables and lists on all levels of the query. This can be used for testing if caching would improve efficiency at all. If the answer is yes further testing is needed to pinpoint the generators that should be cached.

Implementing a QLC table

As an example of how to use the qlc:table/2 [page 283] function the implementation of a Q LC table for the gb_trees [page 170] module is given:

```
-module(gb_table).
-import(gb_trees, [iterator/1, lookup/2, next/1]).
-export([table/1]).
table(T) ->
    TF = fun() -> qlc_next(next(iterator(T))) end,
    InfoFun = fun(num_of_objects) -> size(T);
                    (keypos) -> 1;
                    (_) -> undefined
            end,
    LookupFun =
        fun(1, Ks) ->
            lists:flatmap(fun(K) ->
                        case gb_trees:lookup(K, T) of
                        {value, V} -> [{K,V}];
                        none -> []
                        end
                                end, Ks)
        end,
```

```
    FormatFun =
        fun(all) ->
            Vals = a_few(T),
            {gb_trees, from_orddict, [Vals]};
        ({lookup, 1, KeyValues}) ->
            ValsS = io_lib:format("gb_trees:from_orddict(~w)",
                                    [a_few(T)]),
            io_lib:format("lists:flatmap(fun(K) -> "
                                    "case gb_trees:lookup(K, ~s) of "
                                    "{value, V} -> [{K,V}];none -> [] end "
                                    "end, ~w)",
                                    [ValsS, KeyValues])
    end,
qlc:table(TF, [{info_fun, InfoFun}, {format_fun, FormatFun},
                {lookup_fun, LookupFun}]).
qlc_next({X, V, S}) ->
    [{X,V} | fun() -> qlc_next(next(S)) end];
qlc_next(none) ->
    [].
a_few(T) ->
    a_few(iterator(T), 7).
a_few(_I, 0) ->
    more;
a_few(IO, N) ->
    case next(IO) of
        {X, V, I} ->
            [{X,V} | a_few(I, N-1)];
        none ->
            []
    end.
```

TF is the traversal function. The qlc module requires that there is a way of traversing all objects of the data structure; in gb_trees there is an iterator function suitable for that purpose. N ote that for each object returned a new fun is created. A slong as the list is not terminated by [] it is assumed that the tail of the list is a nullary function and that calling the function returns further objects (and functions).
The lookup function is optional. It is assumed that the lookup function always finds values much faster than it would take to traverse the table. The first argument is the position of the key. Since qlc_next returns the objects as $\{$ Key,Value $\}$ pairs the position is 1 . N ote that the lookup function should return $\{$ Key,Value $\}$ pairs, just as the traversal function does.

The format function is also optional. It is called by qlc:info to give feedback at runtime of how the query will be evaluated. O ne should try to give as good feedback as possible without showing too much details. In the example at most 7 objects of the table are shown. The format function handles two cases: all means that all objects of the table will be traversed; \{lookup,1,KeyValues \} means that the lookup function will be used for looking up key values.
Whether the whole table will be traversed or just some keys looked up depends on how the query is stated. If the query has the form
qlc:q([T \| P <- LE, F])
and P is a tuple, the qlc module analyzes P and F in compile time to find positions of the tuple P that are matched or compared to constants. If such a position at runtime turns out to be the key position, the lookup function can be used, otherwise all objects of the table have to be traversed. It is the info function InfoFun that returns the key position. There can be indexed positions as well, also returned by the info function. An index is an extra table that makes lookup on some position fast. M nesia maintains indices upon request, thereby introducing so called secondary keys. The key is always preferred before secondary keys regardless of the number of constants to look up.

Exports

append (QHL) -> QH
Types:

- $\mathrm{QHL}=$ [QueryH andleO rList]
- QH = QueryH andle

Returns a query handle. When evaluating the query handle QH all answers to the first query handle in QHL is returned followed by all answers to the rest of the query handles in QHL.
append (QH1, QH2) -> QH3
Types:

- QH1 $=$ Q H $2=$ Q ueryH andleO rList
- QH3 = Q ueryH andle

Returns a query handle. W hen evaluating the query handle QH3 all answers to QH1 are returned followed by all answers to QH2.
append(QH1, QH2) is equivalent to append ([QH1, QH2]).
cursor(QueryHandleOrList [, Options]) -> QueryCursor
Types:

- Options = [Option] | Option
- Option = \{cache_all, C ache\} \| cache_all \| \{max_list_size, MaxListSize\} | \{spawn_options, SpawnO ptions\} | \{tmpdir, TempD irectory\} | \{unique_all, bool()\} | unique_all
Creates a query cursor and makes the calling process the owner of the cursor. The cursor is to be used as argument to next_answers $/ 1,2$ and (eventually) delete_cursor/1. Calls erlang: spawn_opt to spawn and link a process which will evaluate the query handle. The value of the option spawn_options is used as last argument when calling spawn_opt. The default value is [link].

```
1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
QC = qlc:cursor(QH),
qlc:next_answers(QC, 1).
[{a,1}]
2> qlc:next_answers(QC, 1).
[{a,2}]
3> qlc:next_answers(QC, all_remaining).
[{b,1},{b,2}]
4> qlc:delete_cursor(QC).
ok
delete_cursor(QueryCursor) -> ok
D eletes a query cursor. O nly the owner of the cursor can delete the cursor.
```

```
eval(QueryHandleOrList [, Options]) -> Answers | Error
```

eval(QueryHandleOrList [, Options]) -> Answers | Error
e(QueryHandleOrList [, Options]) -> Answers
e(QueryHandleOrList [, Options]) -> Answers
Types:
- Options = [O ption] | Option
- Option = {cache_all, C ache} | cache_all | {max_list_size, M axListSize} | {tmpdir,
TempD irectory} | {unique_all, bool()} | unique_all
- Error = {error, module(), Reason}
- Reason =-as returned by file_sorter(3)-
Evaluates a query handle in the calling process and collects all answers in a list.
1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
qlc:eval(QH).
[{a,1},{a,2},{b,1},{b,2}]
fold(Function, Acc0, QueryHandleOrList [, Options]) -> Acc1 | Error
Types:

- Function = fun(A nswer, Accln) $->\mathrm{AccO}$ ut
- $\mathrm{AccO}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()
- Options = [O ption] | Option
- Option = \{cache_all, C ache\} | cache_all | \{max_list_size, MaxListSize\} | \{tmpdir, TempD irectory\} | \{unique_all, bool()\} | unique_all
- Error = \{error, module(), Reason $\}$
- Reason =-as returned by file_sorter(3)-
Calls Function on successive answers to the query handle together with an extra argument AccIn. The query handle and the function are evaluated in the calling process. Function must return a new accumulator which is passed to the next call. Acc0 is returned if there are no answers to the query handle.
$1>\mathrm{QH}=[1,2,3,4,5,6]$,
$\frac{\text { qlc: }}{21}$ fold(fun(X, Sum) $->X+$ Sum end, $\left.0, \mathrm{QH}\right)$.
format_error(Error) -> Chars

```

Types:
- Error \(=\{\) error, module(), term() \(\}\)
- Chars = [char() | C hars]

Returns a descriptive string in English of an error tuple returned by some of the functions of the qle module or the parse transform. This function is mainly used by the compiler invoking the parse transform.
info(QueryHandleOrList [, Options]) -> Info
Types:
- Options = [O ption] | Option
- Option = EvalO ption । ReturnO ption
- EvalO ption = \{cache_all, C ache\} | cache_all | \{max_list_size, M axListSize\} |
\{tmpdir, TempD irectory\} | \{unique_all, bool()\} | unique_all
- ReturnO ption \(=\{\) flat, bool ()\(\}\) | \{format, Format \(\}\) | \{n_elements, N Elements\}
- Format = abstract_code । string
- N Elements = infinity \(\mid \operatorname{int}()>0\)
- Info = AbstractExpression | string()

Returns information about a query handle. The information describes the simplifications and optimizations that are the results of preparing the query for evaluation. This function is probably useful mostly during debugging.
The information has the form of an Erlang expression where Q LCs most likely occur. Depending on the format functions of mentioned QLC tables it may not be absolutely accurate.

The default is to return a sequence of Q LCs in a block, but if the option \{flat,false \} is given, one single Q LC is returned. The default is to return a string, but if the option \{format, abstract_code\} is given, abstract code is returned instead. The default is to return all elements in lists, but if the \{n_elements, NElements\} option is given, only a limited number of elements are returned.
```

1> QH = qlc:q([{X,Y} || X <- [x,y], Y <- [a,b]]),
io:format("~s~n", [qlc:info(QH, unique_all)]).
begin
V1 = qlc:q([SQV || SQV <- [x,y]], [{unique,true}]),
V2 = qlc:q([SQV || SQV <- [a,b]], [{unique,true}]),
qlc:q([{X,Y} || X <- V1, Y <- V2], [{unique,true}])
end

```

In this example two simple Q LCs have been inserted just to hold the \{unique, true \} option.
```

1> E1 = ets:new(e1, []),
E2 = ets:new(e2, []),
true = ets:insert(E1, [{1,a},{2,b}]),
true = ets:insert(E2, [{a,1},{b,2}]),
Q = qlc:q([{X,Z,W} ||
{X,Z}<- ets:table(E1),
{W, Y}<- ets:table(E2),
X =:= Y]),
io:format("~s~n", [qlc:info(Q)]).
begin
V1 = qlc:q([PO || PO = {W,Y} <- ets:table(18)]),
V2 =

```
```

 qlc:q([[G1|G2] ||
 G2 <- V1,
 G1 <- ets:table(17),
 element(2, G1) =:= element(1, G2)],
 [{join,lookup}]),
 qlc:q([{X,Z,W} || [{X,Z}|{W,Y}]<- V2, X =:= Y])
 end

```

In this example the query list comprehension V2 has been inserted to show the joined generators and the join method chosen. A convention is used for lookup join: the first generator (G2) is the one traversed, the second one (G1) is the table where constants are looked up.
```

keysort(KeyPos, QH1 [, SortOptions]) -> QH2

```

Types:
- Q H \(1=\) Q ueryH andleO rList
- Q H2 \(=\) QueryH andle

Returns a query handle. When evaluating the query handle QH2 the answers to the query handle QH1 are sorted by file_sorter:keysort/4 [page 150] according to the options. The sorter will use temporary files only if QH1 does not evaluate to a list and the size of the binary representation of the answers exceeds Size bytes, where size is the value of the size option.
next_answers(QueryCursor [, NumberOfAnswers]) -> Answers | Error
Types:
- NumberO fA nswers = all_remaining । \(\operatorname{int}()>0\)
- Error \(=\) \{error, module(), Reason \(\}\)
- Reason =-as returned by file_sorter(3)-

Returns some or all of the remaining answers to a query cursor. O nly the owner of Cursor can retrieve answers.
The optional argument NumberOfAnswersdetermines the maximum number of answers returned. The default value is 10 . If less than the requested number of answers is returned, subsequent calls to next_answers will return [].
q(QueryListComprehension [, Options]) -> QueryHandle
Types:
- Q ueryListC omprehension = -literal query list comprehension-
- Options = [O ption] | Option
- Option \(=\{\) max_lookup, M axLookup \(\} \mid\) \{cache, Cache\(\} \mid\) cache \| \{join, Join\} | \{lookup, Lookup\} I \{unique, bool()\} I unique
- MaxLookup \(=\operatorname{int}()>=0\) । infinity
- Join = any | lookup | merge | nested_loop
- Lookup = bool() I any

Returns a query handle for a query list comprehension. The query list comprehension must be the first argument to qlc:q/1,2 or it will be evaluated as an ordinary list comprehension. It is also necessary to add the line
```

-include_lib("stdlib/include/qlc.hrl").

```
to the source file. This causes a parse transform to substitute a fun for the query list comprehension. The (compiled) fun will be called when the query handle is evaluated.
When calling qlc:q/1,2 from the Erlang shell the parse transform is automatically called. W hen this happens the fun substituted for the query list comprehension is not compiled but will be evaluated by erl_eval (3). This is also true when expressions are evaluated by means of file:eval/1, 2 or in the debugger.
To be very explicit, this will not work:
```

A = [X || {X} <- [{1},{2}]],
QH = qlc:q(A),

```

The variable a will be bound to the evaluated value of the list comprehension ( \([1,2]\) ). The compiler complains with an error message ("argument is not a query list comprehension"); the shell process stops with a badarg reason.
The \{cache, ets\} option can be used to cache the answers to a query list comprehension. The answers are stored in one ETS table for each cached query list comprehension. W hen a cached query list comprehension is evaluated again, answers are fetched from the table without any further computations. A s a consequence, when all answers to a cached query list comprehension have been found, the ETS tables used for caching answers to the query list comprehension's qualifiers can be emptied. The option cache is equivalent to \{cache, ets\}.
The \{cache, list \(\}\) option can be used to cache the answers to a query list comprehension just like \{cache, ets\}. The difference is that the answers are kept in a list (on the process heap). If the answers would occupy more than a certain amount of RAM memory a temporary file is used for storing the answers. The option max_list_size sets the limit in bytes and the temporary file is put on the directory set by the tmpdir option.
The cache option has no effect if it is known that the query list comprehension will be evaluated at most once. This is always true for the top-most query list comprehension and also for the list expression of the first generator in a list of qualifiers. N ote that in the presence of side effects in filters or callback functions the answers to query list comprehensions can be affected by the cache option.
The \{unique, true option can be used to remove duplicate answers to a query list comprehension. The unique answers are stored in one ETS table for each query list comprehension. The table is emptied every time it is known that there are no more answers to the query list comprehension. The option unique is equivalent to \{unique, true\}. If the unique option is combined with the \{cache, ets\} option, two ETS tables are used, but the full answers are stored in one table only. If the unique option is combined with the \{cache, list \(\}\) option the answers are sorted twice using keysort/3; once to remove duplicates, and once to restore the order.
The cache and unique options apply not only to the query list comprehension itself but also to the results of looking up constants, running match specifications, and joining handles.
```

1> Q = qlc:q([{A,X,Z,W} ||
A<- [a,b,c],
{X,Z}<-[{a,1},{b,4},{c,6}],
{W,Y}<-[{2,a},{3,b},{4,c}],
X =:= Y],
{cache, list}),

```
```

io:format("~s~n", [qlc:info(Q)]).
V1 =
qlc:q([P0 ||
$P 0=\{X, Z\}<-q l c: \operatorname{keysort}(1,[\{a, 1\},\{b, 4\},\{c, 6\}],[])])$,
V2 =
qlc:q([PO ||
$P 0=\{W, Y\}<-q l c: \operatorname{keysort}(2,[\{2, a\},\{3, b\},\{4, c\}],[])])$,
V3 =
qlc:q([[G1|G2] ||
G1 <- V1, G2 <- V2, element(1, G1) == element(2, G2)],
[\{join, merge\},\{cache,list\}]),
qlc:q([\{A,X,Z,W\}||A <- [a,b,c], [\{X,Z\}|\{W,Y\}]<-V3,X=:=Y])
end

```

In this example the cached results of the merge join are traversed for each value of A. \(N\) ote that without the cache option the join would have been carried out three times, once for each value of \(A\)
sort/1,2 and keysort/2,3 can also be used for caching answers and for removing duplicates. W hen sorting answers are cached in a list, possibly stored on a temporary file, and no ETS tables are used.
Sometimes (see qlc:table/2 [page 288] below) traversal of tables can be done by looking up key values, which is assumed to be fast. U nder certain (rare) circumstances it could happen that there are too many key values to look up. The \{max_lookup, MaxLookup \} option can then be used to limit the number of lookups: if more than MaxLookup lookups would be required no lookups are done but the table traversed instead. The default value is infinity which means that there is no limit on the number of keys to look up.
```

1> T = gb_trees:empty(),
QH = qlc:q([X || {{X,Y},-} <- gb_table:table(T),
((X =:= 1) or (X =:= 2)),
((Y =:= a) or (Y =:= b) or (Y =:= c))]),
io:format("~s~n", [qlc:info(QH)]).
ets:match_spec_run(
lists:flatmap(fun(K) ->
case
gb_trees:lookup(K,
gb_trees:from_orddict([]))
of
{value,v} ->
[{K,V}];
none ->
[]
end
end,
[{1,a},{1,b},{1,c},{2,a},{2,b},{2,c}]),
ets:match_spec_compile([{{{'\$1','\$2'},'_'},
[{'andalso',
{'or',
{'=:=','\$1',1},
{'=:=','\$1',2}},
{'or',

```
\[
\begin{aligned}
& \text { \{'or', } \\
& \left\{{ }^{\prime}=:=\text {, }, \$ 2^{\prime}, a\right\} \text {, } \\
& \text { \{'=:=', '\$2', b\}\}, } \\
& \left.\left.\left.\left\{'=:=', ' \$ 2^{\prime}, c\right\}\right\}\right\}\right] \text {, } \\
& \text { ['\$1'] \}])) }
\end{aligned}
\]

In this example using the gb_table module from the Implementing a Q LC table [page 278] section there are six keys to look up: \(\{1, a\},\{1, b\},\{1, c\},\{2, a\},\{2, b\}\), and \(\{2, c\}\). The reason is that the two elements of the key \(\{X, Y\}\) are matched separately. The \{lookup, true \(\}\) option can be used to ensure that QLC will look up constants in some Q LC table. If there are more than one Q LC table among the generators' list expressions, constants have to be looked up in at least one of the tables. The evaluation of the query fails if there are no constants to look up. This option is useful in situations when it would be unacceptable to traverse all objects in some table. Setting the lookup option to false ensures that no constants will be looked up ( \(\{\) max_lookup, 0\(\}\) has the same effect). The default value is any which means that constants will be looked up whenever possible.
The \(\{\) join, Join \(\}\) option can be used to ensure that a certain join method will be used: \{join, lookup\} invokes the lookup join method; \{join, merge\} invokes the merge join method; and \{join, nested_loop\} invokes the method of matching every pair of objects from two handles. The last method is mostly very slow. The evaluation of the query fails if Q LC cannot carry out the chosen join method. The default value is any which means that some fast join method will be used if possible.
sort(QH1 [, SortOptions]) -> QH2
Types:
- QHI = Q ueryH andleO rList
- QH2 = QueryH andle

Returns a query handle. When evaluating the query handle QH2 the answers to the query handle QH1 are sorted by file_sorter:sort/3 [page 150] according to the options.
The sorter will use temporary files only if QH1 does not evaluate to a list and the size of the binary representation of the answers exceeds Size bytes, where size is the value of the size option.
string_to_handle(QueryString [, Options [, Bindings]]) -> QueryHandle | Error
Types:
- QueryString = string ()
- Options = [O ption] | Option
- Option \(=\{\) max_lookup, \(M\) axLookup \(\}\) | \{cache, Cache\} \| cache I \{join, Join\} | \{lookup, Lookup\} । \{unique, bool()\} I unique
- MaxLookup \(=\operatorname{int}()>=0\) । infinity
- Join = any | lookup | merge \| nested_loop
- Lookup = bool() I any
- Bindings =-as returned by erl_eval:bindings/1-
- Error = \{error, module(), Reason \(\}\)
- Reason = -ErrorInfo as returned by erl_scan:string/1 or erl_parse:parse_exprs/1-

A string version of qlc:q/1, 2. When the query handle is evaluated the fun created by the parse transform is interpreted by erl_eval (3). The query string is to be one single query list comprehension terminated by a period.
```

1> L = [1,2,3],
Bs = erl_eval:add_binding('L', L, erl_eval:new_bindings()),
QH = qlc:string_to_handle("[X+1 || X <- L].", [], Bs),
qlc:eval(QH).
[2,3,4]

```

This function is probably useful mostly when called from outside of Erlang, for instance from a driver written in C .
```

table(TraverseFun, Options) -> QueryHandle

```

Types:
- TraverseFun = TraverseFun0 । TraverseFun1
- TraverseFun0 = fun() -> TraverseR esult
- TraverseFun1 = fun(M atchExpression) -> TraverseR esult
- TraverseR esult = O bjects I term()
- O bjects = [] । [term() | O bjectList]
- O bjectList = TraverseFun0। O bjects
- Options = [Option] | Option
- Option \(=\{\) format_fun, FormatFun\} | \{info_fun, InfoFun\} | \{lookup_fun, LookupFun\} I \{parent_fun, ParentFun\} I \{post_fun, PostFun\} I \{pre_fun, PreFun\}
- FormatFun = undefined । fun(SelectedO bjects) \(->\) FormatedTable
- SelectedO bjects = all । \{match_spec, M atchExpression\} I \{lookup, \{Position, Keys\}\}
- FormatedTable \(=\{\) M od, Fun, Args \(\}\) | A bstractExpression | character_list()
- InfoFun = undefined । fun(InfoTag) -> InfoValue
- InfoTag = indices | is_unique_objects | keypos | num_of_objects
- InfoValue = undefined । term()
- LookupFun = undefined । fun(Position, Keys) -> LookupResult
- LookupResult \(=[\) term ()\(]\) । term()
- ParentFun = undefined । fun () \(->\) ParentFunValue
- PostFun = undefined I fun() \(->\) void()
- PreFun = undefined । fun([PreArg]) -> void()
- PreArg \(=\{\) parent_value, ParentFunValue \(\}\) I \{stop_fun, StopFun\}
- ParentFunValue = undefined । term()
- StopFun = undefined । fun() -> void()
- Position \(=\operatorname{int}()>0\)
- Keys = [term()]
- \(\operatorname{Mod}=\) Fun \(=\) atom( \()\)
- Args = [term()]

Returns a query handle for a Q LC table. In Erlang/OTP there is support for ETS, D ets and M nesia tables, but it is also possible to turn many other data structures into Q LC tables. The way to accomplish this is to let function(s) in the module implementing the data structure create a query handle by calling qlc:table/2. The different ways to traverse the table as well as properties of the table are handled by callback functions provided as options to qlc:table/2.

The callback function TraverseFun is used for traversing the table. It is to return a list of objects terminated by either [] or a nullary fun to be used for traversing the not yet traversed objects of the table. A ny other return value is immediately returned as value of the query evaluation. Unary TraverseFuns are to accept a match specification as argument. The match specification is created by the parse transform by analyzing the pattern of the generator calling qlc:table/2 and filters using variables introduced in the pattern. If the parse transform cannot find a match specification equivalent to the pattern and filters, TraverseFun will be called with a match specification returning every object. M odules that can utilize match specifications for optimized traversal of tables should call qlc: table/2 with a unary TraverseFun while other modules can provide a nullary TraverseFun. ets:table/2 is an example of the former; gb_table: table/1 in the Implementing a Q LC table [page 278] section is an example of the latter.
PreFun is a unary callback function that is called once before the table is read for the first time. If the call fails, the query evaluation fails. Similarly, the nullary callback function PostFun is called once after the table was last read. The return value, which is caught, is ignored. If PreFun has been called for a table, PostFun is guaranteed to be called for that table, even if the evaluation of the query fails for some reason. The order in which pre (post) functions for different tables are evaluated is not specified. O ther table access than reading, such as calling InfoFun, is assumed to be OK at any time. The argument PreArgs is a list of tagged values. Currently there are two tags, parent_value and stop_fun, used by \(M\) nesia for managing transactions. The value of parent_value is the value returned by ParentFun, or undefined if there is no ParentFun. ParentFun is called once just before the call of PreFun in the context of the process calling eval, fold, or cursor. The value of stop_fun is a nullary fun that deletes the cursor if called from the parent, or undef ined if there is no cursor.

The binary callback function LookupFun is used for looking up objects in the table. The first argument Position is the key position or an indexed position and the second argument Keys is a sorted list of unique values. The return value is to be a list of all objects (tuples) such that the element at Position is a member of Keys. A ny other return value is immediately returned as value of the query evaluation. LookupFun is called instead of traversing the table if the parse transform at compile time can find out that the filters match and compare the element at Position in such a way that only Keys need to be looked up in order to find all potential answers. The key position is obtained by calling InfoFun (keypos) and the indexed positions by calling InfoFun(indices). If the key position can be used for lookup it is always chosen, otherwise the indexed position requiring the least number of lookups is chosen. If there is a tie between two indexed positions the one occurring first in the list returned by InfoFun is chosen. Positions requiring more than max_lookup [page 285] lookups are ignored.
The unary callback function InfoFun is to return information about the table. undefined should be returned if the value of some tag is unknown:
- indices. Returns a list of indexed positions, a list of positive integers.
- is_unique_objects. Returns true if the objects returned by TraverseFun are unique.
- keypos. Returns the position of the table's key, a positive integer.
- is_sorted_key. Returns true if the objects returned by TraverseFun are sorted on the key.
- num_of_objects. Returns the number of objects in the table, a non-negative integer.

The unary callback function FormatFun is used by qlc:info/1,2 for displaying the call that created the table's query handle. The default value undef ined is displayed as a call to '\$MOD' : '\$FUN'/0, otherwise it is up to FormatFun to present the selected objects in a suitable way. If a character list is chosen for presentation it must be an Erlang expression that can be scanned and parsed (a trailing dot will be added by qlc:info though). The argument to FormatFun describes the optimizations done as a result of analyzing the filter(s). The possible values are:
- \{lookup, Position, Keys \(\}\). LookupFun is used for looking up objects in the table.
- \{match_spec, MatchExpression\}. No way of finding all possible answers by looking up keys was found, but the filters could be transformed into a match specification. All answers are found by calling TraverseFun(MatchExpression).
- all. No optimization was found. A match specification matching all objects will be used if TraverseFun is unary.

See ets(3) [page 147], dets(3) [page 86] and [mnesia(3)] for the various options recognized by table/1, 2 in respective module.

\section*{See Also}
dets(3) [page 72], [ Erlang Reference \(M\) anual], erl_eval(3) [page 106], [erlang(3)], ets(3) [page 129], [file(3)], file_sorter(3) [page 150], [mnemosyne(3)], [mnesia(3)], [ Programming Examples], shell(3) [page 304]

\section*{queue}

Erlang M odule

This module implements FIFO queues in an efficient manner.
All operations has an amortised \(O\) (1) running time, except len/1, reverse/1, join/2 and split/2 that probably are \(\mathrm{O}(\mathrm{n})\).

\section*{Exports}
```

cons(Item, Q1) -> Q2

```

Types:
- Item = term()
- \(\mathrm{Q} 1=\mathrm{Q} 2\) = queue()

Inserts Item at the head of queue Q1. Returns the new queue Q2.
daeh (Q) -> Item
The same as last (Q) and the opposite of head (Q).
from_list(L) -> queue()
Types:
- L = list()

Returns a queue containing the items in \(L\), in the same order - the head item of the list will be the head item of the queue.
```

head(Q) -> Item

```

Types:
- Item = term()
- \(\mathrm{Q}=\) queue()

Returns Item from the head of queue Q.
Fails with reason empty if \(Q\) is empty.
in(Item, Q1) -> Q2
Types:
- Item = term()
- \(\mathrm{Q} 1=\mathrm{Q} 2=\) queue()

Inserts Item at the tail of queue Q1. Returns a new queue Q2. This is the same as \(\operatorname{snoc}(\) Q1, Item).
in_r(Item, Q1) -> Q2
Types:
- Item = term()
- \(\mathrm{Q} 1=\mathrm{Q} 2\) = queue()

Inserts Item at the head of queue Q1. Returns a new queue Q2. This is the same as cons(Item, Q1).
init(Q1) -> Q2
Types:
- Item = term()
- Q 1 = Q 2 = queue()

Returns a queue Q2 that is the result of removing the last item from Q1. This is the opposite of tail(Q1).
Fails with reason empty if Q1 is empty.
is_empty(Q) -> true | false
Types:
- \(\mathrm{Q}=\) queue()

Tests if \(Q\) is empty and returns true if so and false otherwise.
join(Q1, Q2) -> Q3
Types:
- \(\mathrm{Q} 1=\mathrm{Q} 2=\mathrm{Q} 3=\) queue()

Returns a queue Q3 that is the result of joining Q1 and Q2 with Q1 before (at the head) Q2.
lait(Q1) -> Q2
The same as init(Q1) and the opposite of tail(Q1).
last(Q) -> Item
Types:
- Item = term()
- \(\mathrm{Q}=\) queue()

Returns the last item of queue Q. This is the opposite of head (Q).
Fails with reason empty if \(Q\) is empty.
len(Q) -> N
Types:
- Q = queue()
- \(\mathrm{N}=\) integer ()

Calculates and returns the length of queue Q.
```

new() -> Q

```

Types:
- \(\mathrm{Q}=\) queue()

Returns an empty queue.
```

out(Q1) -> Result

```

Types:
- Result \(=\{\{\) value, Item \(\}, ~ Q 2\} \mid\{\) empty, Q 1\(\}\)
- Q1 \(1=\) Q 2 = queue()

Removes the head item from the queue Q1. Returns the tuple \(\{\{\) value, Item \(\}, \mathrm{Q} 2\}\), where Item is the item removed and Q2 is the new queue. If Q1 is empty, the tuple \{empty, Q1\} is returned.
```

out_r(Q1) -> Result

```

Types:
- Result \(=\{\{\) value, Item \(\}, ~ Q 2\} \mid\{e m p t y, ~ Q ~ 1\}\)
- Q1 = Q 2 = queue()

Removes the last item from the queue Q1. Returns the tuple \(\{\{\) value, Item \(\}, \mathrm{Q} 2\}\), where Item is the item removed and Q2 is the new queue. If Q1 is empty, the tuple \{empty, Q1\} is returned.
```

reverse(Q1) -> Q2

```

Types:
- Q 1 = Q 2 = queue()

Returns a queue Q2 that contains the items of Q1 in the reverse order.
\(\operatorname{snoc}(\) Q1, Item) -> Q2
Types:
- Item = term()
- Q1 = Q 2 = queue()

Inserts Item as the last item of queue Q1. Returns the new queue Q2. This is the opposite of cons (Item, Q1).
split(N, Q1) -> \{Q2, Q3\}
Types:
- \(\mathrm{N}=\) integer()
- \(\mathrm{Q} 1=\mathrm{Q} 2=\mathrm{Q} 3=\) queue()

Splits Q1 into a queue Q2 of length \(N\) with items from the head end, and a queue Q3 with the rest of the items.
tail(Q1) -> Q2

\section*{Types:}
- Item = term()
- Q1 \(1=\) Q 2 = queue()

Returns a queue Q2 that is the result of removing the head item from Q1.
Fails with reason empty if Q1 is empty.
```

to_list(Q) -> list()

```

Types:
- \(\mathrm{Q}=\) queue()

Returns a list of the items in the queue, with the head item of the queue as the head of the list.

\section*{random}

Erlang M odule

Random number generator. The method is attributed to B.A. Wichmann and I.D.H ill, in 'A \(n\) efficient and portable pseudo-random number generator', Journal of A pplied Statistics. A S183. 1982. A lso Byte M arch 1987.

The current algorithm is a modification of the version attributed to Richard A O 'Keefe in the standard Prolog library.
Every time a random number is requested, a state is used to calculate it, and a new state produced. The state can either be implicit (kept in the process dictionary) or be an explicit argument and return value. In this implementation, the state (the type ran()) consists of a tuple of three integers.

\section*{Exports}
```

seed() -> ran()

```

Seeds random number generation with default (fixed) values in the process dictionary, and returns the old state.
```

seed(A1, A2, A3) -> ran()

```

Types:
- \(\mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3=\operatorname{int}()\)

Seeds random number generation with integer values in the process dictionary, and returns the old state.

O ne way of obtaining a seed is to use the BIF now/0:
```

{A1,A2,A3} = now(),
random:seed(A1, A2, A3),
...

```
```

seedO() -> ran()

```

Returns the default state.
uniform()-> float()
Returns a random float uniformly distributed between 0.0 and 1.0, updating the state in the process dictionary.
```

uniform(N) -> int()

```

Types:
- \(\mathrm{N}=\operatorname{int}()\)

Given an integer \(\mathrm{N}>=1\), uniform/1 returns a random integer uniformly distributed between 1 and N , updating the state in the process dictionary.
```

uniform_s(State0) -> {float(), State1}

```

Types:
- State0 = Statel = ran()

Given a state, uniform_s/1returns a random float uniformly distributed between 0.0 and 1.0, and a new state.
uniform_s(N, State0) -> \{int(), State1\}
Types:
- \(N=i n t()\)
- State0 = Statel = ran()

Given an integer \(N>=1\) and a state, uniform_s/2 returns a random integer uniformly distributed between 1 and \(N\), and a new state.

\section*{Note}

Some of the functions use the process dictionary variable random_seed to remember the current seed.

If a process calls uniform/0 or uniform/1 without setting a seed first, seed/0 is called automatically.

\section*{regexp}

Erlang M odule

This module contains functions for regular expression matching and substitution.

\section*{Exports}
```

match(String, RegExp) -> MatchRes

```

Types:
- String = RegExp = string()
- M atchRes \(=\{\) match,Start,Length \(\}\) | nomatch I \{error,errordesc() \(\}\)
- Start = Length = integer()

Finds the first, longest match of the regular expression RegExp in String. This function searches for the longest possible match and returns the first one found if there are several expressions of the same length. It returns as follows:
\{match, Start, Length\} if the match succeeded. Start is the starting position of the match, and Length is the length of the matching string.
nomatch if there were no matching characters.
\{error, Error\} if there was an error in RegExp.
first_match(String, RegExp) -> MatchRes
Types:
- String = RegExp = string()
- M atchRes \(=\{\) match,Start,Length \(\} \mid\) nomatch \(\mid\{\) error,errordesc ()\(\}\)
- Start = Length = integer ()

Finds the first match of the regular expression RegExp in String. This call is usually faster than match and it is also a useful way to ascertain that a match exists. It returns as follows:
\{match, Start, Length\} if the match succeeded. Start is the starting position of the match and Length is the length of the matching string.
nomatch if there were no matching characters.
\{error, Error\} if there was an error in RegExp.
matches(String, RegExp) -> MatchRes
Types:
- String \(=\) RegExp \(=\) string ()
- \(M\) atchRes \(=\{\) match, \(M\) atches \(\}\) । error, errordesc ()\(\}\)
- \(M\) atches \(=\) list()

Finds all non-overlapping matches of the expression RegExp in String. It returns as follows:
\{match, Matches \} if the regular expression was correct. The list will be empty if there was no match. Each element in the list looks like \{Start, Length\}, where Start is the starting position of the match, and Length is the length of the matching string.
\{error, Error \} if there was an error in RegExp.
```

sub(String, RegExp, New) -> SubRes

```

Types:
- String = RegExp = N ew = string()
- SubRes = \{ok,N ewString,RepCount \(\}\) | \{error,errordesc() \}
- RepCount = integer()

Substitutes the first occurrence of a substring matching RegExp in String with the string New. A \& in the string New is replaced by the matched substring of String. \\& puts a literal \& into the replacement string. It returns as follows:
\{ok, NewString, RepCount \} if RegExp is correct. RepCount is the number of replacements which have been made (this will be either 0 or 1 ).
\{error, Error\} if there is an error in RegExp.
gsub(String, RegExp, New) -> SubRes
Types:
- String = RegExp = N ew = string()
- SubRes \(=\{\) ok,N ewString,RepCount \(\}\) । \(\{\) error,errordesc() \(\}\)
- RepC ount = integer()

The same as sub, except that all non-overlapping occurrences of a substring matching RegExp in String are replaced by the string New. It returns:
\{ok,NewString, RepCount \} if RegExp is correct. RepCount is the number of replacements which have been made.
\{error, Error\} if there is an error in RegExp.
```

split(String, RegExp) -> SplitRes

```

Types:
- String = RegExp = string ()
- SubRes \(=\{\) ok,FieldList \(\}\) | \(\{\) error,errordesc() \(\}\)
- Fieldlist = [string()]

String is split into fields (sub-strings) by the regular expression RegExp.
If the separator expression is " " (a single space), then the fields are separated by blanks and/or tabs and leading and trailing blanks and tabs are discarded. For all other values of the separator, leading and trailing blanks and tabs are not discarded. It returns:
\{ok, FieldList \(\}\) to indicate that the string has been split up into the fields of FieldList.
\{error, Error\} if there is an error in RegExp.
sh_to_awk(ShRegExp) -> AwkRegExp
Types:
- ShRegExp A wkRegExp = string()
- SubRes \(=\{0 \mathrm{ok}, \mathrm{N}\) ewString,RepCount \(\}\) । \(\{\) error,errordesc() \(\}\)
- RepCount = integer()

Converts the sh type regular expression ShRegExp into a full AWK regular expression. Returns the converted regular expression string. sh expressions are used in the shell for matching file names and have the following special characters:
* matches any string including the null string.
? matches any single character.
[...] matches any of the enclosed characters. Character ranges are specified by a pair of characters separated by a -. If the first character after [ is a !, then any character not enclosed is matched.

It may sometimes be more practical to use sh type expansions as they are simpler and easier to use, even though they are not as powerful.
```

parse(RegExp) -> ParseRes

```

Types:
- RegExp = string()
- ParseRes \(=\{0 k, R E\}\) | \(\{\) error,errordesc ()\(\}\)

Parses the regular expression RegExp and builds the internal representation used in the other regular expression functions. Such representations can be used in all of the other functions instead of a regular expression string. This is more efficient when the same regular expression is used in many strings. It returns:
\{ok, RE\(\}\) if RegExp is correct and RE is the internal representation.
\{error, Error\} if there is an error in RegExpString.
```

format_error(ErrorDescriptor) -> Chars

```

Types:
- ErrorD escriptor = errordesc()
- Chars = [char() | C hars]

Returns a string which describes the error ErrorDescriptor returned when there is an error in a regular expression.

\section*{Regular Expressions}

The regular expressions allowed here is a subset of the set found in egrep and in the AWK programming language, as defined in the book, The AWK Programming Language, by A. V. Aho, B. W. Kernighan, P. J. Weinberger. They are composed of the following characters:
c matches the non-metacharacter c.
\c matches the escape sequence or literal character c.
. matches any character.
- matches the beginning of a string.
\$ matches the end of a string.
[abc... ] character class, which matches any of the characters abc . . . C haracter ranges are specified by a pair of characters separated by a -.
[ \({ }^{\prime}\) abc... ] negated character class, which matches any character except abc....
\(\mathbf{r} 1 \mid \mathbf{r} 2\) alternation. It matches either r1 or r2.
r1r2 concatenation. It matches \(r 1\) and then \(r 2\).
\(\mathbf{r}+\) matches one or more rs.
\(\mathbf{r}^{*}\) matches zero or more rs.
\(\mathbf{r}\) ? matches zero or one rs.
(r) grouping. It matches \(r\).

The escape sequences allowed are the same as for Erlang strings:
\b backspace
\f form feed
\(\backslash \mathrm{n}\) newline (line feed)
\r carriage return
\t tab
\e escape
\v vertical tab
\s space
\d delete
\ddd the octal value ddd
\c any other character literally, for example \\ for backslash, \" for ")
To make these functions easier to use, in combination with the function io: get_line which terminates the input line with a new line, the \(\$\) characters also matches a string ending with " . . . \n". The following examples define Erlang data types:
```

Atoms [a-z] [0-9a-zA-Z] *
Variables [A-Z_] [0-9a-zA-Z_]*
Floats $(\backslash+\mid-) ?[0-9]+\backslash .[0-9]+((E \mid e)(\backslash+\mid-) ?[0-9]+) ?$

```

Regular expressions are written as Erlang strings when used with the functions in this module. This means that any \(\backslash\) or " characters in a regular expression string must be written with \as they are also escape characters for the string. For example, the regular expression string for Erlang floats is:
" (\\+|-)? [0-9]+\\. [0-9]+((E|e)(\\+|-)?[0-9]+)?".
It is not really necessary to have the escape sequences as part of the regular expression syntax as they can always be generated directly in the string. They are included for completeness and can they can also be useful when generating regular expressions, or when they are entered other than with Erlang strings.

\section*{sets}

Erlang M odule

Sets are collections of elements with no duplicate elements. The representation of a set is not defined.
This module provides exactly the same interface as the module ordsets but with a defined representation. O ne difference is that while this module considers two elements as different if they do not match ( \(=:=\) ), ordsets considers two elements as different if and only if they do not compare equal (==).

\section*{DATA TYPES}
```

set()

```
    as returned by new/0

\section*{Exports}
```

new() -> Set

```

Types:
- Set = set()

Returns a new empty set.
is_set (Set) -> bool()
Types:
- Set = term()

Returns true if Set is a set of elements, otherwise false.
```

size(Set) -> int()

```

Types:
- Set = term()

Returns the number of elements in Set.
```

to_list(Set) -> List

```

Types:
- Set = set()
- List \(=[\) term( \()\) ]

Returns the elements of Set as a list.
from_list(List) -> Set
Types:
- List \(=[\) term( \()\) ]
- Set = set()

Returns an set of the elements in List.
is_element(Element, Set) -> bool()
Types:
- Element = term()
- Set = set()

Returns true if Element is an element of Set, otherwise false.
add_element(Element, Set1) -> Set2
Types:
- Element = term()
- Set1 = Set2 = set()

Returns a new set formed from Set1 with Element inserted.
del_element(Element, Set1) -> Set2
Types:
- Element = term()
- Set1 = Set2 = set()

Returns Set1, but with Element removed.
```

union(Set1, Set2) -> Set3

```

Types:
- Set \(1=\) Set \(2=\) Set \(3=\operatorname{set}()\)

Returns the merged (union) set of Set1 and Set2.
union(SetList) -> Set
Types:
- SetList \(=[\operatorname{set}()]\)
- Set = set()

Returns the merged (union) set of the list of sets.
```

intersection(Set1, Set2) -> Set3

```

Types:
- Set1 \(=\) Set2 \(=\) Set3 \(=\) set()

Returns the intersection of Set1 and Set2.
```

intersection(SetList) -> Set
Types:
- SetList =[set()]
- Set = set()
Returns the intersection of the non-empty list of sets.
subtract(Set1, Set2) -> Set3

```
    Types:
    - Set1 \(=\) Set2 \(=\) Set \(3=\operatorname{set}()\)
    Returns only the elements of Set1 which are not also elements of Set2.
is_subset(Set1, Set2) -> bool()
    Types:
    - Set1 \(=\) Set2 \(=\operatorname{set}()\)

Returns true when every element of Set1 is also a member of Set2, otherwise false.
fold(Function, Acc0, Set) -> Acc1

Types:
- Function \(=\) fun ( \(\mathrm{E}, \mathrm{AccIn}\) ) \(->\mathrm{AccO}\) ut
- \(\mathrm{AccO}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term ()
- Set = set()

Fold Function over every element in Set returning the final value of the accumulator.
filter (Pred, Set1) -> Set2
Types:
- Pred \(=\) fun ( E ) \(->\) bool()
- Set1 \(=\) Set2 \(=\operatorname{set}()\)

Filter elements in Set1 with boolean function Fun.

\section*{See Also}
ordsets(3) [page 256], gb_sets(3) [page 164]

\author{
shell \\ Erlang M odule
}

The module shell implements an Erlang shell.
The shell is a user interface program for entering expression sequences. The expressions are evaluated and a value is returned. A history mechanism saves previous commands and their values, which can then be incorporated in later commands. H ow many commands and results to save can be determined by the user, either interactively, by calling shell:history/1 and shell:results/1, or by setting the application configuration parameters shell_history_length and shell_saved_results for the application stdlib.
Variable bindings, and local process dictionary changes which are generated in user expressions are preserved, and the variables can be used in later commands to access their values. The bindings can also be forgotten so the variables can be re-used.
The special shell commands all have the syntax of (local) function calls. They are evaluated as normal function calls and many commands can be used in one expression sequence.
If a command (local function call) is not recognized by the shell, an attempt is first made to find the function in the module user_default, where customized local commands can be placed. If found, then the function is evaluated. O therwise, an attempt is made to evaluate the function in the module shell_def ault. The module user_default must be explicitly loaded.
The shell also permits the user to start multiple concurrent jobs. A job can be regarded as a set of processes which can communicate with the shell.
There is some support for reading and printing records in the shell. D uring compilation record expressions are translated to tuple expressions. In runtime it is not known whether a tuple actually represents a record. N or are the record definitions used by compiler available at runtime. So in order to read the record syntax and print tuples as records when possible, record definitions have to be maintained by the shell itself. The shell commands for reading, defining, forgetting, listing, and printing records are described below. N ote that each job has its own set of record definitions. To facilitate matters record definitions in the modules shell_default and user_default (if loaded) are read each time a new job is started. For instance, adding the line
-include_lib("kernel/include/file.hrl").
to user_default makes the definition of file_info readily available in the shell.
The shell runs in two modes:
- Normal (possibly restricted) mode, in which commands can be edited and expressions evaluated.
- Job Control M ode JCL, in which jobs can be started, killed, detached and connected.

O nly the currently connected job can 'talk' to the shell.

\section*{Shell Commands}
b() Prints the current variable bindings.
\(f()\) Removes all variable bindings.
\(f(X)\) Removes the binding of variable \(X\).
\(h()\) Prints the history list.
history ( \(N\) ) Sets the number of previous commands to keep in the history list to \(N\).
The previous number is returned. The default number is 20.
results ( N ) Sets the number of results from previous commands to keep in the history list to N . The previous number is returned. The default number is 20.
\(e(N)\) Repeats the command \(N\), if \(N\) is positive. If it is negative, the Nth previous command is repeated (i.e., e \((-1)\) repeats the previous command).
\(\mathrm{v}(\mathrm{N})\) U ses the return value of the command N in the current command, if N is positive. If it is negative, the return value of the nth previous command is used (i.e., v ( -1 ) uses the value of the previous command).
help() Evaluates shell_default:help().
c(File) Evaluates shell_default:c(File). This compiles and loads code in File and purges old versions of code, if necessary. A ssumes that the file and module names are the same.
rd(RecordName, RecordDefinition) Defines a record in the shell. RecordName is an atom and RecordDefinition lists the field names and the default values. U sually record definitions are made known to the shell by use of the rr commands described below, but sometimes it is handy to define records on the fly.
rf () Removes all record definitions, then reads record definitions from the modules shell_default and user_default (if loaded). Returns the names of the records defined.
rf (RecordNames) Removes selected record definitions. RecordNames is a record name or a list of record names. Use ' -' to remove all record definitions.
rl() Prints all record definitions.
rl (RecordNames) Prints selected record definitions. RecordNames is a record name or a list of record names.
rp(Term) Prints a term using the record definitions known to the shell. All of Term is printed; the depth is not limited as is the case when a return value is printed.
rr (Module) Reads record definitions from a module's BEAM file. If there are no record definitions in the BEA M file, the source file is located and read instead. Returns the names of the record definitions read. Module is an atom.
rr (Wildcard) Reads record definitions from files. Existing definitions of any of the record names read are replaced. Wildcard is a wildcard string as defined in filelib(3) but not an atom.
rr(WildcardOrModule, RecordNames) Reads record definitions from files but discards record names not mentioned in RecordNames (a record name or a list of record names).
rr(WildcardOrModule, RecordNames, Options) Reads record definitions from files. The compiler options \{i,Dir\}, \{d, Macro\}, and \{d,Macro, Value \(\}\) are recognized and used for setting up the include path and macro definitions. Use '_' as value of RecordNames to read all record definitions.

\section*{Example}

The following example is a long dialogue with the shell. Commands starting with \(>\) are inputs to the shell. All other lines are output from the shell. All commands in this example are explained at the end of the dialogue. .
```

strider 1> erl
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]
Eshell V5.3 (abort with `G)
1> Str = "abcd".
"abcd"
2> L = length(Str).
4
3> Descriptor = {L, list_to_atom(Str)}.
{4,abcd}
4> L.
4
5> b().
Descriptor = {4,abcd}
L = 4
Str = "abcd"
ok
6> f(L).
ok
7> b().
Descriptor = {4,abcd}
Str = "abcd"
ok
8> f(L).
** 1: variable 'L' is unbound **
9> {L, -} = Descriptor.
{4,abcd}
10> L.
4
11> {P, Q, R} = Descriptor.
** exited: {{badmatch,{4,abcd}},[{erl_eval, expr,3}]}
12> P.
** 1: variable 'P' is unbound **
13> Descriptor.
{4,abcd}
14> {P, Q} = Descriptor.
{4,abcd}
15> P.
4
16> f().
ok
17> put(aa, hello).
undefined
18> get(aa).
hello
19> Y = test1:demo(1).
1 1

```
```

20> get().
[{a,,worked}]
21> put(aa, hello).
worked
22> Z = test1:demo(2).
=ERROR REPORT==== 19-Feb-2003::10:04:14 ===
Error in process <0.40.0> with exit value: {{badmatch,1},[{test1,demo,1},
{erl_eval,expr,4},{shell,eval_loop,2}]}
** exited: {{badmatch,1},
[{test1,demo,1},{erl_eval,expr,4},{shell,eval_loop, 2}]} **
23> Z.
** 1: variable 'Z' is unbound **
24> get(aa).
hello
25> erase(), put(aa, hello).
undefined
26> spawn(test1, demo, [1]).
<0.57.0>
27> get(aa).
hello
28> io:format("hello hello\n").
hello hello
ok
29> e(28).
hello hello
ok
30> v(28).
ok
31> c(ex).
{ok,ex}
32> rr(ex).
[rec]
33> rl(rec).
-record(rec, {a,
b = val()}).
ok
34> \#rec{}.
** exited: {undef,[{shell_default,val, []},
{erl_eval,do_apply,5},
{erl_eval,expr_list,6},
{erl_eval,expr,5},
{shell,eval_loop,2}]} **
35> \#rec{b = 3}.
{rec,undefined,3}
36> rp(v(-1)).
\#rec{a = undefined,
b = 3}
ok
37> rd(rec, {f = orddict:new()}).
rec
38> rp(\#rec{}).
\#rec{f = []}

```
```

ok
39> rd(rec, {c}), A.
** 1: variable 'A' is unbound **
40> rp(\#rec{}).
\#rec{c = undefined}
ok
41> test1:loop(0).
Hello Number: O
Hello Number: 1
Hello Number: 2
Hello Number: 3
User switch command
--> i
--> c
.
.
Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exited: killed **
42> halt().
strider 2>

```

\section*{Comments}

Command 1 sets the variable Str to the string "abcd".
Command 2 sets L to the length of the string evaluating the BIF atom_to_list.
Command 3 builds the tuple Descriptor.
Command 4 prints the value of the variable L.
Command 5 evaluates the internal shell command b (), which is an abbreviation of "bindings". This prints the current shell variables and their bindings. The ok at the end is the return value of the \(b\) () function.
Command \(6 \mathrm{f}(\mathrm{L})\) evaluates the internal shell command \(\mathrm{f}(\mathrm{L})\) (abbreviation of "forget"). The value of the variable \(L\) is removed.
Command 7 prints the new bindings.
Command 8 shows that L is no longer bound to a value.
Command 9 performs a pattern matching operation on Descriptor, binding a new value to L .
Command 10 prints the current value of \(L\).
Command 11 tries to match \(\{P, Q, R\}\) against Descriptor which is \(\{4, a b c\}\). The match fails and none of the new variables become bound. The printout starting with "** exited:" is not the value of the expression (the expression had no value because its evaluation failed), but rather a warning printed by the system to inform the user that an error has occurred. The values of the other variables (L, Str, etc.) are unchanged.

Commands 12 and 13 show that \(P\) is unbound because the previous command failed, and that Descriptor has not changed.
Commands 14 and 15 show a correct match where \(P\) and \(Q\) are bound.
C ommand 16 clears all bindings.
The next few commands assume that test1: demo (X) is defined in the following way:
```

demo(X) ->
put(aa, worked),
X = 1,
X + 10.

```

Commands 17 and 18 set and inspect the value of the item aa in the process dictionary.
C ommand 19 evaluates test1: demo(1). The evaluation succeeds and the changes made in the process dictionary become visible to the shell. The new value of the dictionary item aa can be seen in command 20.
Commands 21 and 22 change the value of the dictionary item aa to hello and call test1: demo (2). Evaluation fails and the changes made to the dictionary in test1: demo (2), before the error occurred, are discarded.

C ommands 23 and 24 show that z was not bound and that the dictionary item aa has retained its original value.
Commands 25,26 and 27 show the effect of evaluating test1: demo(1) in the background. In this case, the expression is evaluated in a newly spawned process. A ny changes made in the process dictionary are local to the newly spawned process and therefore not visible to the shell.

C ommands 28, 29 and 30 use the history facilities of the shell.
Command 29 is e(28). This re-evaluates command 28 . Command 30 is v (28). This uses the value (result) of command 28 . In the cases of a pure function (a function with no side effects), the result is the same. For a function with side effects, the result can be different.
The next few commands show some record manipulation. It is assumed that ex.erl defines a record like this:
```

-record(rec, {a, b = val()}).
val() ->
3.

```

Commands 31 and 32 compiles the file ex.erl and reads the record definitions in ex.beam. If the compiler did not output any record definitions on the BEAM file, rr (ex) tries to read record definitions from the source file instead.

Command 33 prints the definition of the record named rec.
C ommand 34 tries to create a rec record, but fails since the function val/0 is undefined. Command 35 shows the workaround: explicitly assign values to record fields that cannot otherwise be initialized.
Command 36 prints the newly created record using record definitions maintained by the shell.

C ommand 37 defines a record directly in the shell. The definition replaces the one read from the file ex. beam.

C ommand 38 creates a record using the new definition, and prints the result.

Command 39 and 40 show that record definitions are updated as side effects. The evaluation of the command fails but the definition of rec has been carried out.

For the next command, it is assumed that test1:loop(N) is defined in the following way:
```

loop(N) ->
io:format("Hello Number: ~ w~n", [N]),
loop(N+1).

```

Command 41 evaluates test1:loop(0), which puts the system into an infinite loop. At this point the user types Control G, which suspends output from the current process, which is stuck in a loop, and activates JCL mode. In JCL mode the user can start and stop jobs.
In this particular case, the i command ("interrupt") is used to terminate the looping program, and the c command is used to connect to the shell again. Since the process was running in the background before we killed it, there will be more printouts before the "** exited: killed **" message is shown.

The halt () command exits the Erlang runtime system.

\section*{J CL Mode}

W hen the shell starts, it starts a single evaluator process. This process, together with any local processes which it spawns, is referred to as a job. O nly the current job, which is said to be connected, can perform operations with standard IO. All other jobs, which are said to be detached, are blocked if they attempt to use standard IO.

All jobs which do not use standard IO run in the normal way.
The shell escape key \({ }^{\text {} G}\) ( C ontrol \(G\) ) detaches the current job and activates JCL mode. The JCL mode prompt is "-->". If "?" is entered at the prompt, the following help message is displayed:
```

--> ?
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s - start local shell
[node] - start remote shell
q - quit Erlang
| h - this message

```

The JCL commands have the following meaning:
c [nn] Connects to job number \(<\mathrm{nn}>\) or the current job. The standard shell is resumed. O perations which use standard IO by the current job will be interleaved with user inputs to the shell.
i [nn] Stops the current evaluator process for job number nn or the current job, but does not kill the shell process. A ccordingly, any variable bindings and the process dictionary will be preserved and the job can be connected again. This command can be used to interrupt an endless loop.
k [nn] Kills job number nn or the current job. All spawned processes in the job are killed, provided they have not evaluated the group_leader/1 BIF and are located on the local machine. Processes spawned on remote nodes will not be killed.
j Lists all jobs. A list of all known jobs is printed. The current job name is prefixed with ' \({ }^{\prime}\) '.
s Starts a new job. This will be assigned the new index [nn] which can be used in references.
r [node] Starts a remote job on node. This is used in distributed Erlang to allow a shell running on one node to control a number of applications running on a network of nodes.
q Q uits Erlang. N ote that this option is disabled if Erlang is started with the ignore break, +Bi, system flag (which may be useful e.g. when running a restricted shell, see below).
? Displays this message.
It is possible to alter the behavior of shell escape by means of the stdlib application variable shell_esc. The value of the variable can be either jcl (erl -stdlib shell_esc jcl) or abort (erl -stdlib shell_esc abort). The first option sets ^G to activate JCL mode (which is also default behavior). The latter sets \({ }^{\wedge} \mathrm{G}\) to terminate the current shell and start a new one. JCL mode cannot be invoked when shell_esc is set to abort.
If you want an Erlang node to have a remote job active from the start (rather than the default local job), you start Erlang with the -remsh flag. Example: erl -sname this_node -remsh other_node@other_host

\section*{Restricted Shell}

The shell may be started in a restricted mode. In this mode, the shell evaluates a function call only if allowed. This feature makes it possible to, for example, prevent a user from accidentally calling a function from the prompt that could harm a running system (useful in combination with the the system flag +Bi).
W hen the restricted shell evaluates an expression and encounters a function call or an operator application, it calls a callback function (with information about the function call in question). This callback function returns true to let the shell go ahead with the evaluation, or false to abort it. There are two possible callback functions for the user to implement:
```

local_allowed(Func, ArgList, State) -> {true,NewState} |
{false,NewState}

```
to determine if the call to the local function Func with arguments ArgList should be allowed.
```

non_local_allowed(FuncSpec, ArgList, State) -> {true,NewState} |
{false,NewState} | {{redirect,NewFuncSpec,NewArgList},NewState}
to determine if the call to non-local function FuncSpec ({Module,Func} or a fun) with
arguments ArgList should be allowed. The return value
{redirect,NewFuncSpec,NewArgList} can be used to let the shell evaluate some other
function than the one specified by FuncSpec and ArgList.

```

These callback functions are in fact called from local and non-local evaluation function handlers, described in the erl_eval [page 106] manual page. (A rguments in ArgList are evaluated before the callback functions are called).

The State argument is a tuple \{ShellState, ExprState\}. The return value NewState has the same form. This may be used to carry a state betw een calls to the callback functions. D ata saved in ShellState lives through an entire shell session. D ata saved in ExprState lives only through the evaluation of the current expression.
There are two ways to start a restricted shell session:
- Use the stdlib application variable restricted_shell and specify, as its value, the name of the callback module. Example (with callback functions implemented in callback_mod.erl): \$ erl -stdlib restricted_shell callback_mod
- From a normal shell session, call function shell:start_restricted/1. This exits the current evaluator and starts a new one in restricted mode.
\(N\) otes:
- When restricted shell mode is activated or deactivated, new jobs started on the node will run in restricted or normal mode respectively.
- If restricted mode has been enabled on a particular node, remote shells connecting to this node will also run in restricted mode.
- The callback functions cannot be used to allow or disallow execution of functions called from compiled code (only functions called from expressions entered at the shell prompt).

Errors when loading the callback module is handled in different ways depending on how the restricted shell is activated:
- If the restricted shell is activated by setting the kernel variable during emulator startup and the callback module cannot be loaded, a default restricted shell allowing only the commands q() and init: stop () is used as fallback.
- If the restricted shell is activated using shell:start_restricted/1 and the callback module cannot be loaded, an error report is sent to the error logger and the call returns \{error, Reason\}.

\section*{Exports}
history(N) -> integer()
Types:
- \(\mathrm{N}=\) integer()

Sets the number of previous commands to keep in the history list to N . The previous number is returned. The default number is 20.
```

results(N) -> integer()

```

Types:
- \(\mathrm{N}=\) integer()

Sets the number of results from previous commands to keep in the history list to N. The previous number is returned. The default number is 20.
start_restricted(Module) -> ok | \{error, Reason\}
Types:
- M odule = atom()
- Reason = atom()

Exits a normal shell and starts a restricted shell. Module specifies the callback module for the functions local_allowed/3 and non_local_allowed/3. The function is meant to be called from the shell.
If the callback module cannot be loaded, an error tuple is returned. The Reason in the error tuple is the one returned by the code loader when trying to load the code of the callback module.
stop_restricted() -> ok
Exits a restricted shell and starts a normal shell. The function is meant to be called from the shell.

\section*{shell_default}

Erlang M odule

The functions in shell_default are called when no module name is given in a shell command.

C onsider the following shell dialogue:
1 > lists:reverse("abc").
"cba"
\(2>c\) (foo).
\{ok, foo \}
In command one, the module lists is called. In command two, no module name is specified. The shell searches the modules user_default followed by shell_default for the function foo/1.
shell_default is intended for "system wide" customizations to the shell. user_default is intended for "local" or individual user customizations.

\section*{Hint}

To add your own commands to the shell, create a module called user_default and add the commands you want. Then add the following line as the first line in your .erlang file in your home directory.
```

code:load_abs("\$PATH/user_default").

```
\$PATH is the directory where your user_default module can be found.

\section*{slave \\ Erlang M odule}

This module provides functions for starting Erlang slave nodes. All slave nodes which are started by a master will terminate automatically when the master terminates. All TTY output produced at the slave will be sent back to the master node. File I/O is done via the master.

Slave nodes on other hosts than the current one are started with the program rsh. The user must be allowed to rsh to the remote hosts without being prompted for a password. This can be arranged in a number of ways (refer to the rsh documentation for details). A slave node started on the same host as the master inherits certain environment values from the master, such as the current directory and the environment variables. For what can be assumed about the environment when a slave is started on another host, read the documentation for the rsh program.
A \(n\) alternative to the rsh program can be specified on the command line to erl as follows: -rsh Program.
The slave node should use the same file system at the master. At least, Erlang/OTP should be installed in the same place on both computers and the same version of Erlang should be used.
Currently, a node running on Windows NT can only start slave nodes on the host on which it is running.
The master node must be alive.

\section*{Exports}
```

start(Host) ->
start(Host, Name) ->
start(Host, Name, Args) -> {ok, Node} | {error, Reason}

```

Types:
- Host = N ame = atom()
- Args = string()
- Node = node()
- Reason = timeout | no_rsh \| \{already_running, Node\}

Starts a slave node on the host Host. H ost names need not necessarily be specified as fully qualified names; short names can also be used. This is the same condition that applies to names of distributed Erlang nodes.
The name of the started node will be Name@Host. If no name is provided, the name will be the same as the node which executes the call (with the exception of the host name part of the node name).
The slave node resets its user process so that all terminal I/O which is produced at the slave is automatically relayed to the master. Also, the file process will be relayed to the master.
The Args argument is used to set erl command line arguments. If provided, it is passed to the new node and can be used for a variety of purposes. See [erl(1)]
As an example, suppose that we want to start a slave node at host \(H\) with the node name Name@H, and we also want the slave node to have the following properties:
- directory Dir should be added to the code path;
- the M nesia directory should be set to m;
- the unix DISPLAY environment variable should be set to the display of the master node.

The following code is executed to achieve this:
```

E = " -env DISPLAY " ++ net_adm:localhost() ++ ":0 ",
Arg = "-mnesia_dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).

```

If successful, the function returns \(\{o k\), Node \(\}\), where Node is the name of the new node. O therwise it returns \{error, Reason\}, where Reason can be one of:
timeout The master node failed to get in contact with the slave node. This can happen in a number of circumstances:
- Erlang/OTP is not installed on the remote host
- the file system on the other host has a different structure to the the master
- the Erlang nodes have different cookies.
no_rsh There is no rsh program on the computer.
\{already_running, Node\} A node with the name Name@Host already exists.
```

start_link(Host) ->
start_link(Host, Name) ->
start_link(Host, Name, Args) -> {ok, Node} | {error, Reason}

```

Types:
- Host = N ame = atom()
- A rgs = string()
- N ode = node()
- Reason = timeout \| no_rsh \| \{already_running, Node\}

Starts a slave node in the same way as start/ \(1,2,3\), except that the slave node is linked to the currently executing process. If that process terminates, the slave node also terminates.
See start/1,2,3 for a description of arguments and return values.
```

stop(Node) -> ok

```

Types:
- Node = node()

Stops (kills) a node.
```

pseudo([Master | ServerList]) -> ok

```

Types:
- M aster = node()
- ServerList = [atom()]

Calls pseudo (Master, ServerList). If we want to start a node from the command line and set up a number of pseudo servers, an Erlang runtime system can be started as follows:
```

% erl -name abc -s slave pseudo klacke@super x --

```
```

pseudo(Master, ServerList) -> ok

```

Types:
- M aster = node()
- ServerList = [atom()]

Starts a number of pseudo servers. A pseudo server is a server with a registered name which does absolutely nothing but pass on all message to the real server which executes at a master node. A pseudo server is an intermediary which only has the same registered name as the real server.

For example, if we have started a slave node N and want to execute pxw graphics code on this node, we can start the server pxw_server as a pseudo server at the slave node. The following code illustrates:
```

rpc:call(N, slave, pseudo, [node(), [pxw_server]]).

```
relay(Pid)
Types:
- Pid \(=\) pid()

Runs a pseudo server. This function never returns any value and the process which executes the function will receive messages. All messages received will simply be passed on to Pid.

\author{
sofs \\ Erlang M odule
}

The sofs module implements operations on finite sets and relations represented as sets. Intuitively, a set is a collection of elements; every element belongs to the set, and the set contains every element.

Given a set \(A\) and a sentence \(S(x)\), where \(x\) is a free variable, a new set \(B\) whose elements are exactly those elements of \(A\) for which \(S(x)\) holds can be formed, this is denoted \(B=\{x i n A: S(x)\}\). Sentences are expressed using the logical operators "for some" (or "there exists"), "for all", "and", "or", "not". If the existence of a set containing all the specified elements is known (as will always be the case in this module), we write \(B=\{x: S(x)\}\).
The unordered set containing the elements \(a, b\) and \(c\) is denoted \(\{a, b, c\}\). This notation is not to be confused with tuples. The ordered pair of \(a\) and \(b\), with first coordinate \(a\) and second coordinate \(b\), is denoted ( \(a, b\) ). An ordered pair is an ordered set of two elements. In this module ordered sets can contain one, two or more elements, and parentheses are used to enclose the elements. Unordered sets and ordered sets are orthogonal, again in this module; there is no unordered set equal to any ordered set.

The set that contains no elements is called the empty set. If two sets A and B contain the same elements, then \(A\) is equal to \(B\), denoted \(A=B\). Two ordered sets are equal if they contain the same number of elements and have equal elements at each coordinate. If a set \(A\) contains all elements that \(B\) contains, then \(B\) is a subset of \(A\). The union of two sets \(A\) and \(B\) is the smallest set that contains all elements of \(A\) and all elements of \(B\). The intersection of two sets \(A\) and \(B\) is the set that contains all elements of \(A\) that belong to \(B\). Two sets are disjoint if their intersection is the empty set. The difference of two sets A and \(B\) is the set that contains all elements of \(A\) that do not belong to \(B\). The symmetric difference of two sets is the set that contains those element that belong to either of the two sets, but not both. The union of a collection of sets is the smallest set that contains all the elements that belong to at least one set of the collection. The intersection of a non-empty collection of sets is the set that contains all elements that belong to every set of the collection.
The \(C\) artesian product of two sets \(X\) and \(Y\), denoted \(X Y\), is the set \(\{a\) : \(a=(x, y)\) for some xinX and for some yinY \(\}\). A relation is a subset of \(X Y\). Let \(R\) be a relation. The fact that \((x, y)\) belongs to \(R\) is written as \(x R y\). Since relations are sets, the definitions of the last paragraph (subset, union, and so on) apply to relations as well. The domain of \(R\) is the set \(\{x\) : \(x R y\) for some yin \(Y\}\). The range of \(R\) is the set \(\{y\) : \(x R y\) for some \(x i n X\}\). The converse of \(R\) is the set \(\{a\) : \(a=(y, x)\) for some \((x, y) \operatorname{inR}\}\). If \(A\) is a subset of \(X\), then the image of \(A\) under \(R\) is the set \(\{y\) : \(x R y\) for some \(x i n A\}\), and if \(B\) is a subset of \(Y\), then the inverse image of \(B\) is the set \(\{x\) : \(x R y\) for some yin \(B\}\). If \(R\) is a relation from \(X\) to \(Y\) and \(S\) is a relation from \(Y\) to \(Z\), then the relative product of \(R\) and \(S\) is the relation \(T\) from \(X\) to \(Z\) defined so that \(x T z\) if and only if there exists an element \(y\) in \(Y\) such that \(x R y\) and \(y S z\). The restriction of \(R\) to \(A\) is the set \(S\) defined so that \(x S y\) if and only if there exists an element \(x\) in \(A\) such that \(x R y\). If \(S\) is a restriction of \(R\) to \(A\), then \(R\) is an extension of \(S\) to \(X\). If \(X=Y\) then we call \(R\) a relation in \(X\). The field of a relation \(R\) in \(X\) is the union of
the domain of \(R\) and the range of \(R\). If \(R\) is a relation in \(X\), and if \(S\) is defined so that \(x S y\) if \(x R y\) and not \(x=y\), then \(S\) is the strict relation corresponding to \(R\), and vice versa, if \(S\) is a relation in \(X\), and if \(R\) is defined so that \(x R y\) if \(x S y\) or \(x=y\), then \(R\) is the weak relation corresponding to \(S\). A relation \(R\) in \(X\) is reflexive if \(x R x\) for every element \(x\) of \(X\); it is symmetric if \(x R y\) implies that \(y R x\); and it is transitive if \(x R y\) and \(y R z\) imply that \(x R z\).
A function \(F\) is a relation, a subset of \(X Y\), such that the domain of \(F\) is equal to \(X\) and such that for every \(x\) in \(X\) there is a unique element \(y\) in \(Y\) with ( \(x, y\) ) in \(F\). The latter condition can be formulated as follows: if \(x F y\) and \(x F z\) then \(y=z\). In this module, it will not be required that the domain of \(F\) be equal to \(X\) for a relation to be considered a function. Instead of writing ( \(x, y\) ) inF or \(x F y\), we write \(F(x)=y\) when \(F\) is a function, and say that \(F\) maps \(x\) onto \(y\), or that the value of \(F\) at \(x\) is \(y\). Since functions are relations, the definitions of the last paragraph (domain, range, and so on) apply to functions as well. If the converse of a function \(F\) is a function \(F^{\prime}\), then \(F^{\prime}\) is called the inverse of \(F\). The relative product of two functions F1 and F2 is called the composite of F1 and F2 if the range of F1 is a subset of the domain of F2.
Sometimes, when the range of a function is more important than the function itself, the function is called a family. The domain of a family is called the index set, and the range is called the indexed set. If \(x\) is a family from I to \(X\), then \(x[i]\) denotes the value of the function at index \(i\). The notation "a family in \(X\) " is used for such a family. When the indexed set is a set of subsets of a set \(X\), then we call \(x\) a family of subsets of \(X\). If \(x\) is a family of subsets of \(X\), then the union of the range of \(x\) is called the union of the family \(x\). If \(x\) is non-empty (the index set is non-empty), the intersection of the family \(x\) is the intersection of the range of \(x\). In this module, the only families that will be considered are families of subsets of some set \(X\); in the following the word "family" will be used for such families of subsets.
A partition of a set \(X\) is a collection \(S\) of non-empty subsets of \(X\) whose union is \(X\) and whose elements are pairwise disjoint. A relation in a set is an equivalence relation if it is reflexive, symmetric and transitive. If \(R\) is an equivalence relation in \(X\), and \(x\) is an element of \(X\), the equivalence class of \(x\) with respect to \(R\) is the set of all those elements \(y\) of \(X\) for which \(x R y\) holds. The equivalence classes constitute a partitioning of \(X\).
C onversely, if \(C\) is a partition of \(X\), then the relation that holds for any two elements of \(X\) if they belong to the same equivalence class, is an equivalence relation induced by the partition \(C\). If \(R\) is an equivalence relation in \(X\), then the canonical map is the function that maps every element of \(X\) onto its equivalence class.
Relations as defined above (as sets of ordered pairs) will from now on be referred to as binary relations. We call a set of ordered sets ( \(x[1], \ldots, x[n]\) ) an ( \(n\)-ary) relation, and say that the relation is a subset of the Cartesian product \(X[1] \ldots X[n]\) where \(x[i]\) is an element of \(X[i], 1<=i<=n\). The projection of an \(n\)-ary relation \(R\) onto coordinate \(i\) is the set \(\{x[i]\) : \((x[1], \ldots, x[i], \ldots, x[n])\) in \(R\) for some \(x[j] \operatorname{in} X[j], 1<=j<=n\) and not \(i=j\}\). The projections of a binary relation \(R\) onto the first and second coordinates are the domain and the range of \(R\) respectively. The relative product of binary relations can be generalized to \(n\)-ary relations as follows. Let TR be an ordered set ( \(R[1], \ldots, R[n]\) ) of binary relations from \(X\) to \(Y[i]\) and \(S\) a binary relation from ( \(Y[1] \ldots Y[n]\) ) to \(Z\). The relative product of \(T R\) and \(S\) is the binary relation \(T\) from \(X\) to \(Z\) defined so that \(x T z\) if and only if there exists an element \(y[i]\) in \(Y[i]\) for each \(1<=\mathrm{i}<=n\) such that \(x R[i] y[i]\) and \((y[1], \ldots, y[n]) S z\). N ow let TR be a an ordered set ( \(R[1], \ldots, R[n]\) ) of binary relations from \(X[i]\) to \(Y[i]\) and \(S\) a subset of \(X[1] \ldots X[n]\). The multiple relative product of TR and and \(S\) is defined to be the set \(\{z: z=((x[1], \ldots, x[n]),(y[1], \ldots, y[n]))\) for some ( \(x[1], \ldots, x[n]\) )inS and for some ( \(x[i], y[i]\) ) in \(R[i], 1<=i<=n\}\). The natural join of an \(n\)-ary relation \(R\) and an \(m\)-ary relation \(S\) on coordinate \(i\) and \(j\) is defined to be the set \(\{z\) :
\(z=(x[1], \ldots, x[n], y[1], \ldots, y[j-1], y[j+1], \ldots, y[m])\) for some \((x[1], \ldots, x[n])\) inR and for some ( \(y[1], \ldots, y[m]\) )inS such that \(x[i]=y[j]\}\).
The sets recognized by this module will be represented by elements of the relation Sets, defined as the smallest set such that:
- for every atom T except ' \({ }^{\prime}\) ' and for every term \(\mathrm{X},(\mathrm{T}, \mathrm{X})\) belongs to Sets (atomic sets);
- (['_'],[]) belongs to Sets (the untyped empty set);
- for every tuple \(T=\{T[1], \ldots, T[n]\}\) and for every tuple \(X=\{X[1], \ldots, X[n]\}\), if ( \(\mathrm{T}[\mathrm{i}], \mathrm{X}[\mathrm{i}]\) ) belongs to Sets for every \(1<=\mathrm{i}<=\mathrm{n}\) then ( \(T, X\) ) belongs to Sets (ordered sets);
- for every term \(T\), if \(X\) is the empty list or a non-empty sorted list [ \(X[1], \ldots, X[n]\) ] without duplicates such that ( \(T, X[i]\) ) belongs to Sets for every \(1<=i<=n\), then ( \([\mathrm{T}], \mathrm{X}\) ) belongs to Sets (typed unordered sets).

An external set is an element of the range of Sets. A type is an element of the domain of Sets. If \(S\) is an element ( \(T, X\) ) of Sets, then \(T\) is a valid type of \(X, T\) is the type of \(S\), and \(X\) is the external set of \(S\). from_term/2 [page 329] creates a set from a type and an Erlang term turned into an external set.
The actual sets represented by Sets are the elements of the range of the function Set from Sets to Erlang terms and sets of Erlang terms:
- Set(T,Term)=Term, where \(T\) is an atom;
- \(\operatorname{Set}(\{T[1], \ldots, T[n]\},\{X[1], \ldots, X[n]\})=(\operatorname{Set}(T[1], X[1]), \ldots, \operatorname{Set}(T[n], X[n])) ;\)
- \(\operatorname{Set}([T],[X[1], \ldots, X[n]])=\{\operatorname{Set}(T, X[1]), \ldots, \operatorname{Set}(T, X[n])\}\);
- \(\operatorname{Set}([T],[])=\{ \}\).

When there is no risk of confusion, elements of Sets will be identified with the sets they represent. For instance, if \(U\) is the result of calling union/2 with \(S 1\) and \(S 2\) as arguments, then U is said to be the union of S 1 and S 2 . A more precise formulation would be that \(\operatorname{Set}(\mathrm{U})\) is the union of \(\operatorname{Set}(\mathrm{S} 1)\) and \(\operatorname{Set}(\mathrm{S} 2)\).

The types are used to implement the various conditions that sets need to fulfill. As an example, consider the relative product of two sets \(R\) and \(S\), and recall that the relative product of \(R\) and \(S\) is defined if \(R\) is a binary relation to \(Y\) and \(S\) is a binary relation from Y . The function that implements the relative product, relative_product/2 [page 336], checks that the arguments represent binary relations by matching [ \(\{A, B\}\) ] against the type of the first argument (Arg1 say), and [ \(\{C, D\}]\) against the type of the second argument ( Arg 2 say). The fact that \([\{A, B\}]\) matches the type of \(A r g 1\) is to be interpreted as \(A\) rgl representing a binary relation from \(X\) to \(Y\), where \(X\) is defined as all sets Set \((x)\) for some element \(x\) in Sets the type of which is \(A\), and similarly for \(Y\). In the same way \(\mathrm{Arg2}\) is interpreted as representing a binary relation from W to Z . Finally it is checked that \(B\) matches \(C\), which is sufficient to ensure that \(W\) is equal to \(Y\). The untyped empty set is handled separately: its type, ['_'], matches the type of any unordered set.

A few functions of this module (drestriction/3, family_projection/2, partition/2, partition_family/2, projection/2, restriction/3, substitution/2) accept an Erlang function as a means to modify each element of a given unordered set. Such a function, called SetFun in the following, can be specified as a functional object (fun), a tuple \{external, Fun\}, or an integer. If SetFun is specified as a fun, the fun is applied to each element of the given set and the return value is
assumed to be a set. If SetFun is specified as a tuple \{external, Fun\}, Fun is applied to the external set of each element of the given set and the return value is assumed to be an external set. Selecting the elements of an unordered set as external sets and assembling a new unordered set from a list of external sets is in the present implementation more efficient than modifying each element as a set. H owever, this optimization can only be utilized when the elements of the unordered set are atomic or ordered sets. It must also be the case that the type of the elements matches some clause of Fun (the type of the created set is the result of applying Fun to the type of the given set), and that Fun does nothing but selecting, duplicating or rearranging parts of the elements. Specifying a SetFun as an integer I is equivalent to specifying \{external, fun \((X)->\) element \((I, X)\}\), but is to be preferred since it makes it possible to handle this case even more efficiently. Examples of SetFuns:
```

{sofs, union}
fun(S) -> sofs:partition(1, S) end
{external, fun(A) -> A end}
{external, fun({A,_,C}) -> {C,A} end}
{external, fun({-,{-,C}}) -> C end}
{external, fun({-,{-,{-,E}=C}}) -> {E,{E,C}} end}

```
2

The order in which a SetFun is applied to the elements of an unordered set is not specified, and may change in future versions of sofs.
The execution time of the functions of this module is dominated by the time it takes to sort lists. W hen no sorting is needed, the execution time is in the worst case proportional to the sum of the sizes of the input arguments and the returned value. A few functions execute in constant time: from_external, is_empty_set, is_set, is_sofs_set, to_external, type.
The functions of this module exit the process with a badarg, bad_function, or type_mismatch message when given badly formed arguments or sets the types of which are not compatible.
Types
```

anyset() = -an unordered, ordered or atomic set-
binary_relation() = -a binary relation-
bool() = true | false
external_set() = -an external set-
family() = -a family (of subsets)-
function() = -a function-
ordset() = -an ordered set-
relation() = -an n-ary relation-
set() = -an unordered set-
set_of_sets() = -an unordered set of set()-
set_fun() = integer() >= 1
| {external, fun(external_set()) -> external_set()}
| fun(anyset()) -> anyset()
spec_fun() = {external, fun(external_set()) -> bool()}
| fun(anyset()) -> bool()
type() = -a type-

```

\section*{Exports}
a_function(Tuples [, Type]) -> Function
Types:
- Function = function()
- Tuples = [tuple( \()\) ]
- Type = type()

Creates a function [page 319]. a_function ( \(F, T\) ) is equivalent to from_term ( \(F\), T), if the result is a function. If no type [page 320] is explicitly given, [\{atom, atom\}] is used as type of the function.
canonical_relation(SetOfSets) -> BinRel
Types:
- BinRel = binary_relation()
- SetO fSets = set_of_sets()

Returns the binary relation containing the elements ( E, Set) such that Set belongs to SetO fSets and \(E\) belongs to Set. If SetO fSets is a partition [page 319] of a set \(X\) and \(R\) is the equivalence relation in \(X\) induced by SetO fSets, then the returned relation is the canonical map [page 319] from \(X\) onto the equivalence classes with respect to \(R\).
\(1>\) Ss = sofs:from_term([[a,b],[b,c]]), CR = sofs:canonical_relation(Ss), sofs:to_external(CR). \(\overline{[\{a,[a, b]\},\{b,[a, b]\},\{b,[b, c]\},\{c,[b, c]\}]}\)
```

composite(Function1, Function2) -> Function3

```

Types:
- Function1 \(=\) Function2 \(=\) Function3 \(=\) function()

Returns the composite [page 319] of the functions Function1 and Function2.
```

1> F1 = sofs:a_function([\{a, 1$\},\{b, 2\},\{c, 2\}]$),
F2 = sofs:a_function([\{1, x\}, $\{2, y\},\{3, z\}])$,
F = sofs:composite(F1, F2),
sofs:to_external(F).
$[\{a, x\},\{b, y\},\{c, y\}]$
constant_function(Set, AnySet) -> Function

```

Types:
- A nySet = anyset()
- Function = function()
- Set = set()

Creates the function [page 319] that maps each element of the set Set onto A nySet.
```

1> S = sofs:set([a,b]),
E = sofs:from_term(1),
R = sofs:constant_function(S, E),
sofs:to_external(R).
[{a,1},{b,1}]
converse(BinRel1) -> BinRel2
Types:

- BinRel1 = BinRel2 = binary_relation()
Returns the converse [page 318] of the binary relation BinRel1.
$1>\mathrm{R} 1=\operatorname{sofs}:$ relation $([\{1, a\},\{2, b\},\{3, a\}])$,
R2 = sofs:converse(R1),
sofs:to_external(R2).
$[\{a, 1\},\{a, 3\},\{b, 2\}]$
difference(Set1, Set2) -> Set3
Types:
- Set1 $=$ Set $2=$ Set $3=\operatorname{set}()$
Returns the difference [page 318] of the sets Set1 and Set2.
digraph_to_family(Graph [, Type]) -> Family
Types:
- Graph = digraph() -see digraph(3)-
- Family = family()
- Type = type()
C reates a family [page 319] from the directed graph Graph. Each vertex a of Graph is represented by a pair ($a,\{b[1], \ldots, b[n]\}$) where the $b[i]$'s are the out-neighbours of a. If no type is explicitly given, [\{atom,[atom] $\}]$ is used as type of the family. It is assumed that Type is a valid type [page 320] of the external set of the family.
If G is a directed graph, it holds that the vertices and edges of G are the same as the vertices and edges of family_to_digraph (digraph_to_family (G)).

```
```

domain(BinRel) -> Set

```
domain(BinRel) -> Set
Types:
- BinRel = binary_relation()
- Set \(=\operatorname{set}()\)
Returns the domain [page 318] of the binary relation BinRel.
\(1>R=\) sofs:relation([\{1, \(a\},\{1, b\},\{2, b\},\{2, c\}])\),
S = sofs:domain(R),
sofs:to_external(S).
[1,2]
drestriction(BinRel1, Set) -> BinRel2
Types:
```

- BinRel1 $=$ BinRel2 $=$ binary_relation()
- Set = set()

Returns the difference between the binary relation BinRel1 and the restriction [page 318] of BinRel1 to Set.
$1>$ R1 = sofs:relation($[\{1, a\},\{2, b\},\{3, c\}])$,
S = sofs:set([2,4,6]),
R2 = sofs:drestriction(R1, S),
sofs:to_external (R2).
$[\{1, a\},\{3, c\}]$
drestriction(R, S) is equivalent to difference(R, restriction (R, S)).
drestriction(SetFun, Set1, Set2) -> Set3
Types:

- SetFun = set_fun()
- Set1 $=$ Set2 $=$ Set $3=\operatorname{set}()$

Returns a subset of Set1 containing those elements that do not yield an element in Set2 as the result of applying SetFun.

```
1> SetFun = {external, fun({A,B,C}) -> {B,C} end},
R1 = sofs:relation([{a,aa,1},{b,bb,2},{c,cc,3}]),
R2 = sofs:relation([{bb,2},{cc,3},{dd,4}]),
R3 = sofs:drestriction(SetFun, R1, R2),
sofs:to_external(R3).
[{a,aa,1}]
```

drestriction($\mathrm{F}, \mathrm{S} 1, \mathrm{~S} 2$) is equivalent to difference(S 1 , restriction($\mathrm{F}, \mathrm{S} 1, \mathrm{~S} 2$)).
empty_set() -> Set
Types:

- Set = set()

Returns the untyped empty set [page 320]. empty_set () is equivalent to from_term([], ['_']).
extension(BinRel1, Set, AnySet) -> BinRel2
Types:

- AnySet = anyset()
- BinRel1 = BinRel2 = binary_relation()
- Set = set()

Returns the extension [page 318] of BinRel1 such that for each element E in Set that does not belong to the domain [page 318] of BinRel1, BinRel2 contains the pair (E,A nySet).

```
1> S = sofs:set([b,c]),
A = sofs:empty_set(),
R = sofs:family([{a,[1,2]},{b,[3]}]),
X = sofs:extension(R, S, A),
sofs:to_external(X).
[{a,[1,2]},{b,[3]},{c,[]}]
```

```
family(Tuples [, Type]) -> Family
```


Types:

- Family = family()
- Tuples = [tuple()]
- Type = type()

C reates a family of subsets [page 319]. family (F, T) is equivalent to from_term (F, T), if the result is a family. If no type [page 320] is explicitly given, [\{atom, [atom] \}] is used as type of the family.

```
family_difference(Family1, Family2) -> Family3
```

Types:

- Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 319], then Family3 the family such that the index set is equal to the index set of Family1, and Family $3[i]$ is the difference between Family1[i] and Family2[i] if Family2 maps i, Family1[i] otherwise.
$1>\mathrm{F} 1=$ sofs:family $([\{a,[1,2]\},\{b,[3,4]\}])$,
$\mathrm{F} 2=$ sofs: $\mathrm{family}([\{\mathrm{b},[4,5]\},\{c,[6,7]\}])$,
F3 = sofs:family_difference(F1, F2),
sofs:to_external(F3).
$[\{a,[1,2]\},\{b,[3]\}]$
family_domain(Family1) -> Family2
Types:

- Family1 = Family2 = family()

If Family1 is a family [page 319] and Family1[i] is a binary relation for every i in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the domain [page 318] of Family1[i].
$1>\operatorname{FR}=$ sofs: $\operatorname{from} t \operatorname{erm}([\{a,[\{1, a\},\{2, b\},\{3, c\}]\},\{b,[]\},\{c,[\{4, d\},\{5, e\}]\}])$, $F=$ sofs:family_domain(FR),
sofs:to_external(F).
$[\{a,[1,2,3]\},\{b,[]\},\{c,[4,5]\}]$
family_field(Family1) -> Family2
Types:

- Family1 = Family2 = family()

If Family1 is a family [page 319] and Family1[i] is a binary relation for every in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the field [page 318] of Family1[i].
$1>\operatorname{FR}=$ sofs: $\operatorname{from} \operatorname{term}([\{a,[\{1, a\},\{2, b\},\{3, c\}]\},\{b,[]\},\{c,[\{4, d\},\{5, e\}]\}])$, $F=$ sofs:family_field(FR), sofs:to_external(F).
$[\{a,[1,2,3, a, b, c]\},\{b,[]\},\{c,[4,5, d, e]\}]$
family_field(Family1) is equivalent to family_union(family_domain(Family1), family_range(Family1)).
family_intersection(Family1) -> Family2
Types:

- Family1 = Family2 = family()

If Family1 is a family [page 319] and Family1[i] is a set of sets for every i in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the intersection [page 318] of Family1[i].
If Family1[i] is an empty set for some i, then the process exits with a badarg message.
$1>$ F1 = sofs:from_term ([\{a, $[[1,2,3],[2,3,4]]\},\{b,[[x, y, z],[x, y]]\}])$,
F2 = sofs:family_intersection(F1),
sofs:to_external(F2).
$\overline{[\{a,[2,3]\},\{b,[x, y]\}]}$
family_intersection(Family1, Family2) -> Family3
Types:

- Family1 = Family2 = Family3 = family ()

If Family1 and Family2 are families [page 319], then Family3 is the family such that the index set is the intersection of Family1's and Family2's index sets, and Family3[i] is the intersection of Family1[i] and Family2[i].

```
1> F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),
F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),
F3 = sofs:family_intersection(F1, F2),
sofs:to_external(F3).
[{b,[4]},{c,[]}]
```

family_projection(SetFun, Family1) -> Family2

Types:

- SetFun = set_fun()
- Family1 = Family2 = family()
- Set = set()

If Family1 is a family [page 319] then Family2 is the family with the same index set as Family1 such that Family2[i] is the result of calling SetFun with Family1[i] as argument.
$1>\mathrm{F} 1=\operatorname{sofs}: \operatorname{from} \operatorname{term}([\{\mathrm{a},[[1,2],[2,3]]\},\{b,[[]]\}])$,
F2 = sofs:family_projection(\{sofs, union\}, F1),
sofs:to_external(F2).
$[\{a,[1,2,3]\},\{b,[]\}]$
family_range(Family1) -> Family2
Types:

- Family1 = Family2 = family ()

If Family1 is a family [page 319] and Family1[i] is a binary relation for every i in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the range [page 318] of Family1[i].

```
    1> FR = sofs: from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),
F= sofs:family_range(FR),
sofs:to_external(F).
[{a,[a,b,c]},{b,[]},{c,[d, e] ]]
family_specification(Fun, Family1) -> Family2
Types:
- Fun = spec_fun()
- Family1 = Family2 = family()
If Family1 is a family [page 319], then Family2 is the restriction [page 318] of Family1
to those elements i of the index set for which Fun applied to Familyl[i] returns true. If
Fun is a tuple {external, Fun2}, Fun2 is applied to the external set [page 320] of
Family1[i], otherwise Fun is applied to Family1[i].
1> F1 = sofs:family([{a,[1,2,3]},{b,[1,2]},{c,[1]}]),
SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,
F2 = sofs:family_specification(SpecFun, F1),
sofs:to_external(F2).
[{b,[1,2]}]
family_to_digraph(Family [, GraphType]) -> Graph
Types:
- Graph = digraph()
- Family = family()
- G raphType = -see digraph(3)-
C reates a directed graph from the family [page 319] Family. For each pair
(a,{b[1],\ldots,b[n]}) of Family, the vertex a as well the edges (a,b[i]) for 1<=i<=n are
added to a newly created directed graph.
If no graph type is given, digraph:new/1 is used for creating the directed graph,
otherwise the G raphType argument is passed on as second argument to digraph:new/2.
It F is a family, it holds that F is a subset of
digraph_to_family(family_to_digraph(F),type(F)). Equality holds if
union_of_family(F) is a subset of domain(F).
Creating a cycle in an acyclic graph exits the process with a cyclic message.
```

```
family_to_relation(Family) -> BinRel
```

family_to_relation(Family) -> BinRel
Types:

- Family = family()
- BinRel = binary_relation()
If Family is a family [page 319], then BinRel is the binary relation containing all pairs (i, x) such that i belongs to the index set of Family and x belongs to Family[$i]$.
$1>\mathrm{F}=\operatorname{sofs}:$ family $([\{a,[]\},\{b,[1]\},\{c,[2,3]\}])$,
$R=$ sofs:family_to_relation(F),
sofs:to_external(R).
$[\{b, 1\},\{c, 2\},\{c, 3\}]$

```
```

family_union(Family1) -> Family2

```

Types:
- Family1 = Family2 = family()

If Family1 is a family [page 319] and Family1[i] is a set of sets for each in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the union [page 318] of Family1[i].
\(1>\) F1 \(=\) sofs:from_term \(([\{a,[[1,2],[2,3]]\},\{b,[[]]\}])\),
F2 = sofs:family_union(F1),
sofs:to_external(F2).
\([\{a,[1,2,3]\},\{b,[]\}]\)
family_union(F) is equivalent to family_projection(\{sofs, union\},F).
family_union(Family1, Family2) -> Family3
Types:
- Family1 = Family2 = Family3 = family ()

If Family1 and Family2 are families [page 319], then Family3 is the family such that the index set is the union of Family1's and Family2's index sets, and Family3[i] is the union of Family1[i] and Family2[i] if both maps i, Family1[i] or Family2[i] otherwise.
\(1>\operatorname{F1}=\operatorname{sofs}: \operatorname{family}([\{a,[1,2]\},\{b,[3,4]\},\{c,[5,6]\}])\),
\(\mathrm{F} 2=\operatorname{sofs:family}([\{\mathrm{b},[4,5]\},\{\mathrm{c},[7,8]\},\{\mathrm{d},[9,10]\}])\),
F3 = sofs:family_union(F1, F2),
sofs:to_external(F3).
\([\{a,[1,2]\},\{b,[3,4,5]\},\{c,[5,6,7,8]\},\{d,[9,10]\}]\)
field(BinRel) -> Set
Types:
- BinRel = binary_relation()
- Set = set()

Returns the field [page 318] of the binary relation BinRel.
\(1>R=\) sofs:relation([\{1,a\},\{1,b\},\{2,b\},\{2,c\}]),
S = sofs:field(R),
sofs:to_external(S).
\([1,2, a, b, c]\)
field \((R)\) is equivalent to union(domain(R), range(R)).
from_external(ExternalSet, Type) -> AnySet
Types:
- ExternalSet = external_set()
- AnySet = anyset()
- Type = type()

Creates a set from the external set [page 320] ExternalSet and the type [page 320] Type. It is assumed that Type is a valid type [page 320] of ExternalSet.
from_sets(ListOfSets) -> Set

Types:
- Set = set()
- ListO fSets = [anyset()]

Returns the unordered set [page 320] containing the sets of the list ListO fSets.
1> S1 = sofs:relation ( \([\{\mathrm{a}, 1\},\{\mathrm{b}, 2\}]\) ),
\(\mathrm{S} 2=\) sofs:relation([\{x,3\},\{y,4\}]),
S = sofs:from_sets([S1,S2]),
sofs:to_external(S).
\([[\{a, 1\},\{b, 2\}],[\{x, 3\},\{y, 4\}]]\)
from_sets (TupleOfSets) -> Ordset
Types:
- O rdset = ordset()
- TupleO fSets = tuple-of(anyset())

Returns the ordered set [page 320] containing the sets of the non-empty tuple TupleO fSets.
from_term(Term [, Type]) -> AnySet
Types:
- AnySet = anyset()
- Term = term()
- Type = type()

C reates an element of Sets [page 320] by traversing the term Term, sorting lists, removing duplicates and deriving or verifying a valid type [page 320] for the so obtained external set. An explicitly given type [ page 320] Type can be used to limit the depth of the traversal; an atomic type stops the traversal, as demonstrated by this example where "foo" and \{"foo"\} are left unmodified:
```

1> S = sofs:from_term([{{"foo"},[1,1]},{"foo",[2,2]}], [{atom,[atom]}]),
sofs:to_external(S).
[{{"foo"},[1]},{"foo", [2]}]

```
from_term can be used for creating atomic or ordered sets. The only purpose of such a set is that of later building unordered sets since all functions in this module that do anything operate on unordered sets. Creating unordered sets from a collection of ordered sets may be the way to go if the ordered sets are big and one does not want to waste heap by rebuilding the elements of the unordered set. A \(n\) example showing that a set can be built "layer by layer":
```

1> A = sofs:from_term(a),
S = sofs:set([1,2,3]),
P1 = sofs:from_sets({A,S}),
P2 = sofs:from_term({b,[6,5,4]}),
Ss = sofs:from_sets([P1,P2]),
sofs:to_external(Ss).
[{a,[1,2,3]},{b,[4,5,6]}]

```

O ther functions that create sets are from_external/2 and from_sets/1. Special cases of from_term/2 are a_function/1,2, empty_set/0, family/1,2, relation/1,2, and set/1,2.
```

image(BinRel, Set1) -> Set2

```

Types:
- BinRel = binary_relation()
- Set1 \(=\) Set2 \(=\operatorname{set}()\)

Returns the image [page 318] of the set Set1 under the binary relation BinRel.
\(1>R=\) sofs:relation([\{1, \(a\},\{2, b\},\{2, c\},\{3, d\}])\), S1 = sofs:set([1,2]),
S2 = sofs:image(R, S1),
sofs:to_external(S2).
[a,b, c]
intersection(SetOfSets) -> Set
Types:
- Set = set()
- SetO fSets = set_of_sets()

Returns the intersection [page 318] of the set of sets SetO fSets.
Intersecting an empty set of sets exits the process with a badarg message.
intersection(Set1, Set2) -> Set3
Types:
- Set \(1=\) Set \(2=\) Set3 \(=\operatorname{set}()\)

Returns the intersection [page 318] of Set1 and Set2.
```

intersection_of_family(Family) -> Set

```

Types:
- Family = family()
- Set = set()

Returns the intersection of the family [page 319] Family.
Intersecting an empty family exits the process with a badarg message.
\(1>F=\) sofs:family \(([\{a,[0,2,4]\},\{b,[0,1,2]\},\{c,[2,3]\}])\), \(\mathrm{S}=\) sofs:intersection_of_family(F),
sofs:to_external(S).
[2]
inverse(Function1) -> Function2
Types:
- Function1 = Function2 = function()

Returns the inverse [page 319] of the function Function1.
```

 1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
 R2 = sofs:inverse(R1),
 sofs:to_external(R2).
 [{a,1},{b,2},{c,3}]
 inverse_image(BinRel, Set1) -> Set2
Types:
- BinRel = binary_relation()
- Set1 = Set2 = set()
Returns the inverse image [page 318] of Set1 under the binary relation BinRel.
1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 = sofs:set([c,d,e]),
S2 = sofs:inverse_image(R, S1),
sofs:to_external(S2).
[2,3]
is_a_function(BinRel) -> Bool
Types:
- Bool = bool()
- BinRel = binary_relation()
Returns true if the binary relation BinRel is a function [page 319] or the untyped
empty set, false otherwise.
is_disjoint(Set1, Set2) -> Bool
Types:

- Bool = bool()
- Set1 = Set2 = set()
Returns true if Set1 and Set2 are disjoint [page 318], false otherwise.

```
```

is_empty_set(AnySet) -> Bool

```
is_empty_set(AnySet) -> Bool
Types:
- A nySet = anyset()
- Bool = bool()
Returns true if Set is an empty unordered set, false otherwise.
is_equal (AnySet1, AnySet2) -> Bool
Types:
- AnySet1 = AnySet2 \(=\) anyset()
- Bool = bool()
Returns true if the A nySet1 and A nySet2 are equal [page 318], false otherwise.
```

```
is_set(AnySet) -> Bool
```

is_set(AnySet) -> Bool
Types:

```
- A nySet = anyset()
- Bool = bool()

Returns true if AnySet is an unordered set [page 320], and false if A nySet is an ordered set or an atomic set.
```

is_sofs_set(Term) -> Bool

```

Types:
- Bool = bool()
- Term = term()

Returns true if Term is an unordered set [page 320], an ordered set or an atomic set, false otherwise.
```

is_subset(Set1, Set2) -> Bool

```

Types:
- Bool = bool()
- Set1 = Set2 = set()

Returns true if Set1 is a subset [page 318] of Set2, false otherwise.
```

is_type(Term) -> Bool

```

Types:
- Bool = bool()
- Term = term()

Returns true if the term Term is a type [page 320].
```

join(Relation1, I, Relation2,
J) -> Relation3

```

Types:
- Relation1 \(=\) Relation2 \(=\) Relation3 \(=\) relation()
- I \(=\) J \(=\) integer ()\(>0\)

Returns the natural join [page 319] of the relations Relation1 and Relation2 on coordinates I and J.

1> R1 = sofs:relation( \([\{a, x, 1\},\{b, y, 2\}])\),
\(\mathrm{R} 2=\operatorname{sofs:relation([\{ 1,f,g\} ,\{ 1,h,i\} ,\{ 2,3,4\} ])\text {,},~,~}\)
J = sofs:join(R1, 3, R2, 1),
sofs:to_external(J).
\([\{a, x, 1, f, g\},\{a, x, 1, h, i\},\{b, y, 2,3,4\}]\)
```

multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2

```

Types:
- TupleO fBinRels = tuple-of(BinRel)
- BinRel \(=\) BinRel1 \(=\) BinRel2 \(=\) binary_relation()

If TupleO fBinRels is a non-empty tuple \(\{R[1], \ldots, R[n]\}\) of binary relations and BinRel 1 is a binary relation, then BinRel2 is the multiple relative product [page 319] of the ordered set ( \(\mathrm{R}[\mathrm{i}], \ldots, \mathrm{R}[\mathrm{n}]\) ) and BinRel.
```

1> Ri = sofs:relation([{a,1},{b,2},{c,3}]),
R = sofs:relation([{a,b},{b,c},{c,a}]),
MP = sofs:multiple_relative_product({Ri, Ri}, R),
sofs:to_external(sofs:range(MP)).
[{1,2},{2,3},{3,1}]
no_elements(ASet) -> NoElements

```
Types:
- A Set = set() | ordset()
- N oElements = integer ( ) >=0
Returns the number of elements of the ordered or unordered set A Set.
partition(SetOfSets) -> Partition

Types:
- SetO fSets = set_of_sets()
- Partition = set()

Returns the partition [page 319] of the union of the set of sets SetO fSets such that two elements are considered equal if they belong to the same elements of SetO fSets.
```

1> Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),
Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),
P = sofs:partition(sofs:union(Sets1, Sets2)),
sofs:to_external(P).
[[a],[b, c],[d],[e,f],[g],[h,i], [j]]
partition(SetFun, Set) -> Partition

```

Types:
- SetFun = set_fun()
- Partition = set()
- Set = set()

Returns the partition [page 319] of Set such that two elements are considered equal if the results of applying SetFun are equal.
\(1>\) Ss = sofs:from_term([[a], [b], [c,d],[e,f]]),
SetFun = fun(S) -> sofs:from_term(sofs:no_elements(S)) end, \(\mathrm{P}=\) sofs: partition(SetFun, Ss), sofs:to_external(P).
[[[a], [b]],[[c,d],[e,f]]]
partition(SetFun, Set1, Set2) \(->\{\operatorname{Set} 3, \operatorname{Set} 4\}\)
Types:
- SetFun = set_fun()
- Set1 \(=\) Set2 \(=\) Set3 \(=\) Set \(4=\operatorname{set}()\)

Returns a pair of sets that, regarded as constituting a set, forms a partition [page 319] of Set1. If the result of applying SetFun to an element of Set1 yields an element in Set2, the element belongs to Set3, otherwise the element belongs to Set4.
```

 1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
 S = sofs:set([2,4,6]),
{R2,R3} = sofs:partition(1, R1, S),
{sofs:to_external(R2),sofs:to_external(R3)}.
{[{2,b}],[{1,a},{3,c}]}
partition(F,S1,S2) is equivalent to {restriction(F,S1,S2),
drestriction(F,S1,S2)}.
partition_family(SetFun, Set) -> Family
Types:

- Family = family()
- SetFun = set_fun()
- Set = set()
Returns the family [page 319] Family where the indexed set is a partition [page 319] of Set such that two elements are considered equal if the results of applying SetFun are the same value i. This i is the index that Family maps onto the equivalence class [page 319].

```
```

1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),

```
1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),
SetFun = {external, fun({A,_,C,_}) -> {A,C} end},
SetFun = {external, fun({A,_,C,_}) -> {A,C} end},
F = sofs:partition_family(SetFun, S),
F = sofs:partition_family(SetFun, S),
sofs:to_external(F).
sofs:to_external(F).
[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]
[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]
product(TupleOfSets) -> Relation
Types:
- Relation = relation()
- TupleO fSets = tuple-of(set())
Returns the C artesian product [page 319] of the non-empty tuple of sets TupleO fSets. If ( \(x[1], \ldots, x[n]\) ) is an element of the \(n\)-ary relation Relation, then \(x[i]\) is drawn from element i of TupleO fSets.
```

```
1> S1 = sofs:set([a,b]),
```

1> S1 = sofs:set([a,b]),
S2 = sofs:set([1,2]),
S2 = sofs:set([1,2]),
S3 = sofs:set([x,y]),
S3 = sofs:set([x,y]),
P3 = sofs:product({S1,S2,S3}),
P3 = sofs:product({S1,S2,S3}),
sofs:to_external(P3).
sofs:to_external(P3).
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]
product(Set1, Set2) -> BinRel

```

Types:
- BinRel = binary_relation()
- Set1 = Set2 = set()

Returns the C artesian product [page 318] of Set1 and Set2.
```

1> S1 = sofs:set([1,2]),
S2 = sofs:set([a,b]),
R = sofs:product(S1, S2),
sofs:to_external(R).
[{1,a},{1,b},{2,a},{2,b}]

```
product \((S 1, S 2)\) is equivalent to product \((\{S 1, S 2\})\).
```

projection(SetFun, Set1) -> Set2
Types:
- SetFun = set_fun()
- Set1 = Set2 = set()
Returns the set created by substituting each element of Set1 by the result of applying SetFun to the element. [page 319] of Set1 onto coordinate i.
$1>$ S1 = sofs:from_term $([\{1, a\},\{2, b\},\{3, a\}])$,
$\mathrm{S} 2=$ sofs:projection(2, S1),
sofs:to_external(S2).
[a,b]
range(BinRel) -> Set

```

If SetFun is a number \(\mathrm{i}>=1\) and Set1 is a relation, then the returned set is the projection

Types:
- BinRel = binary_relation()
- Set = set()

Returns the range [page 318] of the binary relation BinRel.
\(1>R=\) sofs:relation([\{1, \(a\},\{1, b\},\{2, b\},\{2, c\}])\),
\(S=\) sofs:range(R),
sofs:to_external(S).
[a,b, c]
```

relation(Tuples [, Type]) -> Relation

```

Types:
- \(\mathrm{N}=\) integer()
- Type = N | type()
- Relation = relation()
- Tuples = [tuple()]

Creates a relation [page 318]. relation ( \(R, T\) ) is equivalent to from_term ( \(R, T\) ), if \(T\) is a type [page 320] and the result is a relation. If Type is an integer \(N\), then
[\{atom, . . . , atom \(\}]\) ), where the size of the tuple is \(N\), is used as type of the relation. If no type is explicitly given, the size of the first tuple of Tuples is used if there is such a tuple. relation([]) is equivalent to relation([],2).
relation_to_family(BinRel) -> Family
Types:
- Family = family ()
- BinRel = binary_relation()

Returns the family [page 319] Family such that the index set is equal to the domain [page 318] of the binary relation BinRel, and Family[i] is the image [page 318] of the set of \(i\) under BinRel.
```

1> R = sofs:relation([{b,1},{c,2},{c,3}]),
F = sofs:relation_to_family(R),
sofs:to_external(F).
[{b,[1]},{c,[2,3]}]
relative_product(TupleOfBinRels [, BinRel1]) -> BinRel2
Types:

- TupleO fBinRels = tuple-of(BinRel)
- BinRel = BinRel1 = BinRel2 = binary_relation()
If TupleO fBinRels is a non-empty tuple $\{R[1], \ldots, R[n]\}$ of binary relations and BinRel 1 is a binary relation, then BinRel2 is the relative product [page 319] of the ordered set ($R[i], \ldots, R[n]$) and BinRel1.
If BinRel 1 is omitted, the relation of equality between the elements of the Cartesian product [page 319] of the ranges of $R[i]$, rangeR[1]...rangeR[n], is used instead (intuitively, nothing is "lost").
$1>\operatorname{TR}=$ sofs:relation $([\{1, a\},\{1, a a\},\{2, b\}])$,
R1 = sofs:relation([\{1,u\},\{2,v\},\{3,c\}]),
R2 = sofs:relative_product(\{TR, R1\}),
sofs:to_external(R2).
$\overline{[\{1,\{a, u\}\},\{1,\{a a, u\}\}},\{2,\{b, v\}\}]$
N ote that relative_product($\{\mathrm{R} 1\}, \mathrm{R} 2$) is different from relative_product ($\mathrm{R} 1, \mathrm{R} 2$); the tuple of one element is not identified with the element itself.

```
```

relative_product(BinRel1, BinRel2) -> BinRel3

```
relative_product(BinRel1, BinRel2) -> BinRel3
Types:
- BinRel1 = BinRel2 = BinRel3 = binary_relation()
Returns the relative product [page 318] of the binary relations BinRel1 and BinRel2.
```

```
relative_product1(BinRel1, BinRel2) -> BinRel3
```

relative_product1(BinRel1, BinRel2) -> BinRel3
Types:

- BinRel1 $=$ BinRel $2=$ BinRel $3=$ binary_relation()
Returns the relative product [page 318] of the converse [page 318] of the binary relation BinRell and the binary relation BinRel2.
$1>\mathrm{R} 1=$ sofs:relation $([\{1, a\},\{1, a \mathrm{a}\},\{2, \mathrm{~b}\}])$,
$\mathrm{R} 2=$ sofs:relation([\{1,u\},\{2,v\},\{3,c\}]),
R3 = sofs:relative_product1(R1, R2),
sofs:to_external(R3).
$[\{a, u\},\{a a, u\},\{b, v\}]$
relative_product1(R1,R2) is equivalent to relative_product (converse(R1), R2).
restriction(BinRel1, Set) -> BinRel2

```

Types:
- BinRel1 = BinRel2 = binary_relation()
- Set = set()

Returns the restriction [page 318] of the binary relation BinRel1 to Set.
```

 1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
 S = sofs:set([1,2,4]),
 R2 = sofs:restriction(R1, S),
 sofs:to_external(R2).
 [{1,a},{2,b}]
 restriction(SetFun, Set1, Set2) -> Set3
Types:
- SetFun = set_fun()
- Set1 = Set2 = Set3 = set()
Returns a subset of Set1 containing those elements that yield an element in Set2 as the
result of applying SetFun.
1> S1 = sofs:relation([{1,a},{2,b},{3,c}]),
S2 = sofs:set([b,c,d]),
S3 = sofs:restriction(2, S1, S2),
sofs:to_external(S3).
[{2,b},{3,c}]
set(Terms [, Type]) -> Set
Types:
- Set = set()
- Terms = [term()]
- Type = type()
C reates an unordered set [page 320]. set (L,T) is equivalent to from_term(L,T), if the
result is an unordered set. If no type [page 320] is explicitly given, [atom] is used as
type of the set.

```
```

specification(Fun, Set1) -> Set2

```
specification(Fun, Set1) -> Set2
    Types:
    Types:
    - Fun = spec_fun()
    - Fun = spec_fun()
    - Set1 = Set2 = set()
    - Set1 = Set2 = set()
    Returns the set containing every element of Set1 for which Fun returns true. If Fun is a
    tuple {external,Fun2}, Fun2 is applied to the external set [page 320] of each element,
    otherwise Fun is applied to each element.
    1> R1 = sofs:relation([{a,1},{b,2}]),
R2 = sofs:relation([{x,1},{x,2},{y,3}]),
S1 = sofs:from_sets([R1,R2]),
S2 = sofs:specification({sofs,is_a_function}, S1),
sofs:to_external(S2).
[[{a,1},{b,2}]]
strict_relation(BinRel1) -> BinRel2
```

Types:

- BinRel1 $=$ BinRel2 $=$ binary_relation()

Returns the strict relation [page 319] corresponding to the binary relation BinRel1.

```
    1> R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}]),
R2 = sofs:strict_relation(R1),
sofs:to_external(R2).
[{1,2},{2,1}]
substitution(SetFun, Set1) -> Set2
Types:
- SetFun = set_fun()
- Set1 = Set2 = set()
Returns a function, the domain of which is Set1. The value of an element of the domain is the result of applying SetFun to the element.
```

```
1> L = [{a,1},{b,2}].
```

1> L = [{a,1},{b,2}].
[{a,1},{b,2}]
[{a,1},{b,2}]
2> sofs:to_external(sofs:projection(1,sofs:relation(L))).
2> sofs:to_external(sofs:projection(1,sofs:relation(L))).
[a,b]
[a,b]
3> sofs:to_external(sofs:substitution(1,sofs:relation(L))).
3> sofs:to_external(sofs:substitution(1,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]
[{{a,1},a},{{b,2},b}]
4> SetFun = {external, fun({A,_}=E) -> {E,A} end},
4> SetFun = {external, fun({A,_}=E) -> {E,A} end},
sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).
sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]
[{{a,1},a},{{b,2},b}]
The relation of equality between the elements of $\{a, b, c\}$:

```
```

1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),

```
1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),
sofs:to_external(I).
[{a,a},{b,b},{c,c}]
```

Let SetO fSets be a set of sets and BinRel a binary relation. The function that maps each element Set of SetO fSets onto the image [page 318] of Set under BinRel is returned by this function:

```
images(SetOfSets, BinRel) ->
    Fun = fun(Set) -> sofs:image(BinRel, Set) end,
    sofs:substitution(Fun, SetOfSets).
```

Here might be the place to reveal something that was more or less stated before, namely that external unordered sets are represented as sorted lists. As a consequence, creating the image of a set under a relation R may traverse all elements of R (to that comes the sorting of results, the image). In images $/ 2$, BinRel will be traversed once for each element of SetO fSets, which may take too long. The following efficient function could be used instead under the assumption that the image of each element of SetO fSets under BinRel is non-empty:

```
images2(SetOfSets, BinRel) ->
    CR = sofs:canonical_relation(SetOfSets),
    R = sofs:relative_product1(CR, BinRel),
    sofs:relation_to_family(R).
```

symdiff(Set1, Set2) -> Set3

Types:

- Set1 $=$ Set2 $=$ Set $3=\operatorname{set}()$

Returns the symmetric difference [page 318] (or the Boolean sum) of Set1 and Set2.

```
1> S1 = sofs:set([1,2,3]),
S2 = sofs:set([2,3,4]),
P = sofs:symdiff(S1, S2),
sofs:to_external(P).
[1,4]
symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5}
Types:
- Set1 = Set2 = Set3 = Set4 = Set5 = set()
Returns a triple of sets: Set3 contains the elements of Set1 that do not belong to Set2; Set4 contains the elements of Set1 that belong to Set2; Set5 contains the elements of Set2 that do not belong to Set1.
to_external(AnySet) -> ExternalSet
Types:
- ExternalSet = external_set()
- AnySet = anyset()
Returns the external set [page 320] of an atomic, ordered or unordered set.
to_sets (ASet) -> Sets
Types:
- A Set = set() | ordset()
- Sets = tuple_of(A nySet) | [A nySet]
Returns the elements of the ordered set A Set as a tuple of sets, and the elements of the unordered set A Set as a sorted list of sets without duplicates.
type(AnySet) -> Type
Types:
- AnySet = anyset()
- Type = type()
Returns the type [page 320] of an atomic, ordered or unordered set.
```

```
union(SetOfSets) -> Set
```

union(SetOfSets) -> Set
Types:

- Set = set()
- SetO fSets = set_of_sets()
Returns the union [page 318] of the set of sets SetO fSets.
union(Set1, Set2) -> Set3
Types:
- Set1 $=$ Set $2=$ Set $3=\operatorname{set}()$
Returns the union [page 318] of Set1 and Set2.

```
union_of_family(Family) -> Set
Types:
- Family = family ()
- Set = set()

Returns the union of the family [ page 319] Family.
\(1>F=\) sofs:family \(([\{a,[0,2,4]\},\{b,[0,1,2]\},\{c,[2,3]\}])\), S = sofs:union_of_family(F),
sofs:to_external(S).
[0,1,2,3,4]
weak_relation(BinRel1) -> BinRel2
Types:
- BinRel1 = BinRel2 = binary_relation()

Returns a subset \(S\) of the weak relation [page 319] W corresponding to the binary relation BinRel1. Let \(F\) be the field [page 318] of BinRel1. The subset \(S\) is defined so that \(x S y\) if \(x W\) y for some \(x\) in \(F\) and for some \(y\) in \(F\).
\(1>\mathrm{R} 1=\) sofs:relation \(([\{1,1\},\{1,2\},\{3,1\}])\),
R2 = sofs:weak_relation(R1),
sofs:to_external(R2).
\([\{1,1\},\{1,2\},\{2,2\},\{3,1\},\{3,3\}]\)

\section*{See Also}
dict(3) [page 88], digraph(3) [page 93], orddict(3) [page 251], ordsets(3) [page 256], sets(3) [page 301]

\section*{string}

Erlang M odule

This module contains functions for string processing.

\section*{Exports}
```

len(String) -> Length
Types:
- String = string()
- Length = integer()
Returns the number of characters in the string.
equal(String1, String2) -> bool()
Types:
- String1 = String2 = string()
Tests whether two strings are equal. Returns true if they are, otherwise false.
concat(String1, String2) -> String3
Types:
- String1 = String2 = String3 = string()
C oncatenates two strings to form a new string. Returns the new string.
chr(String, Character) -> Index
rchr(String, Character) -> Index
Types:

- String = string()
- Character = char()
- Index = integer()
Returns the index of the first/last occurrence of Character in String. 0 is returned if Character does not occur.
str (String, SubString) -> Index
rstr(String, SubString) -> Index
Types:
- String $=$ SubString $=$ string ()

```
- Index = integer()

Returns the position where the first/last occurrence of SubString begins in String. 0 is returned if SubString does not exist in String. For example:
```

> string:str(" Hello Hello World World ", "Hello World").

```

8
```

span(String, Chars) -> Length
cspan(String, Chars) -> Length

```

Types:
- String \(=\) Chars \(=\) string()
- Length = integer()

Returns the length of the maximum initial segment of String, which consists entirely of characters from (not from) Chars.
For example:
```

> string:span("\t abcdef", " \t").
5
> string:cspan("\t abcdef", " \t").
0

```
```

substr(String, Start) -> SubString
substr(String, Start, Length) -> Substring

```

Types:
- String \(=\) SubString \(=\) string ()
- Start = Length = integer()

Returns a substring of String, starting at the position Start, and ending at the end of the string or at length Length.
For example:
```

> substr("Hello World", 4, 5).

```
"lo Wo"
tokens(String, SeparatorList) -> Tokens
Types:
- String \(=\) SeparatorList \(=\) string ()
- Tokens = [ string()]

Returns a list of tokens in String, separated by the characters in SeparatorList.
For example:
> tokens("abc defxxghix jkl", "x ").
["abc", "def", "ghi", "jkl"]
chars(Character, Number) -> String
chars(Character, Number, Tail) -> String
Types:
- C haracter \(=\) char()
```

 - N umber = integer()
 - String = string()
 Returns a string consisting of Number of characters Character. O ptionally, the string
 can end with the string Tail.
 copies(String, Number) -> Copies
Types:
- String = Copies = string()
- N umber = integer()
Returns a string containing String repeated Number times.

```
```

words(String) -> Count

```
words(String) -> Count
words(String, Character) -> Count
words(String, Character) -> Count
    Types:
    - String = string()
    - Character = char()
    - Count = integer()
    Returns the number of words in String, separated by blanks or Character.
    For example:
    > words(" Hello old boy!", $o).
    4
sub_word(String, Number) -> Word
sub_word(String, Number, Character) -> Word
Types:
- String \(=\) Word \(=\) string()
- Character = char()
- N umber = integer()
Returns the word in position Number of String. Words are separated by blanks or Characters.
For example:
> string:sub_word(" Hello old boy !",3,\$o).
"ld b"
strip(String) -> Stripped
strip(String, Direction) -> Stripped
strip(String, Direction, Character) -> Stripped
Types:
- String \(=\) Stripped \(=\) string ()
- Direction = left \| right \| both
- Character \(=\operatorname{char}(\) )
```

Returns a string, where leading and/or trailing blanks or a number of Character have been removed. Direction can be left, right, or both and indicates from which direction blanks are to be removed. The function strip/1 is equivalent to strip(String, both).
For example:
> string:strip("...Hello.....", both, \$.).
"Hello"
left(String, Number) -> Left
left(String, Number, Character) -> Left
Types:

- String = Left = string()
- Character = char
- N umber = integer ()

Returns the String with the length adjusted in accordance with Number. The left margin is fixed. If the length (String) < Number, String is padded with blanks or Characters.
For example:
> string:left("Hello",10,\$.).
"Hello....."
right(String, Number) -> Right
right(String, Number, Character) -> Right
Types:

- String $=$ Right $=$ string ()
- C haracter = char
- N umber = integer ()

Returns the String with the length adjusted in accordance with Number. The right margin is fixed. If the length of (String) < Number, String is padded with blanks or Characters.

For example:
> string:right("Hello", 10, \$.).
"......Hello"
centre(String, Number) -> Centered
centre(String, Number, Character) -> Centered
Types:

- String $=$ Centered $=$ string ()
- C haracter = char
- N umber = integer()

Returns a string, where String is centred in the string and surrounded by blanks or characters. The resulting string will have the length Number.

```
sub_string(String, Start) -> SubString
```

```
sub_string(String, Start, Stop) -> SubString
    Types:
    - String = SubString = string()
    - Start = Stop = integer()
    Returns a substring of String, starting at the position Start to the end of the string, or
        to and including the Stop position.
        For example:
    sub_string("Hello World", 4, 8).
    "lo Wo"
to_float(String) -> {Float,Rest} | {error,Reason}
    Types:
    - String = string()
    - Float = float()
    - Rest = string()
    - Reason = no_float | not_a_list
    A rgument String is expected to start with a valid text represented float (the digits being ASCII values). Remaining characters in the string after the float are returned in Rest.
Example:
```

```
> {F1,Fs} = string:to_float("1.0-1.0e-1"),
```

> {F1,Fs} = string:to_float("1.0-1.0e-1"),
> {F2,[]} = string:to_float(Fs),
> {F2,[]} = string:to_float(Fs),
> F1+F2.
> F1+F2.
0.900000
0.900000
> string:to_float("3/2=1.5").
> string:to_float("3/2=1.5").
{error,no_float}
{error,no_float}
> string:to_float("-1.5eX").
> string:to_float("-1.5eX").
{-1.50000,"eX"}
{-1.50000,"eX"}
to_integer(String) -> {Int,Rest} | {error,Reason}
Types:

- String = string()
- Int = integer()
- Rest = string()
- Reason = no_integer | not_a_list
A rgument String is expected to start with a valid text represented integer (the digits being A SCII values). Remaining characters in the string after the integer are returned in Rest.
Example:

```
```

> {I1,Is} = string:to_integer("33+22"),
> {I2,[]} = string:to_integer(Is),
> I1-I2.
11
> string:to_integer("0.5").
{0,".5"}
> string:to_integer("x=2").
{error,no_integer}

```
```

to_lower(String) -> Result
to_lower(Char) -> CharResult
to_upper(String) -> Result
to_upper(Char) -> CharResult

```

Types:
- String = Result = string()
- Char = C harResult =integer()

The given string or character is case-converted. N ote that the supported character set is ISO /IEC 8859-1 (a.k.a. Latin 1), all values outside this set is unchanged

\section*{Notes}

Some of the general string functions may seem to overlap each other. The reason for this is that this string package is the combination of two earlier packages and all the functions of both packages have been retained.
The regular expression functions have been moved to their own module regexp (see regexp(3) [page 296]). The old entry points still exist for backwards compatibility, but will be removed in a future release so that users are encouraged to use the module regexp.

\section*{N ote:}

A ny undocumented functions in string should not be used.

\title{
supervisor \\ Erlang M odule
}

A behaviour module for implementing a supervisor, a process which supervises other processes called child processes. A child process can either be another supervisor or a worker process. Worker processes are normally implemented using one of the gen_event, gen_fsm, or gen_server behaviours. A supervisor implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. Supervisors are used to build an hierarchical process structure called a supervision tree, a nice way to structure a fault tolerant application. Refer to OTP D esign Principles for more information.
A supervisor assumes the definition of which child processes to supervise to be located in a callback module exporting a pre-defined set of functions.
U nless otherwise stated, all functions in this module will fail if the specified supervisor does not exist or if bad arguments are given.

\section*{Supervision Principles}

The supervisor is responsible for starting, stopping and monitoring its child processes. The basic idea of a supervisor is that it should keep its child processes alive by restarting them when necessary.
The children of a supervisor is defined as a list of child specifications. W hen the supervisor is started, the child processes are started in order from left to right according to this list. When the supervisor terminates, it first terminates its child processes in reversed start order, from right to left.
A supervisor can have one of the following restart strategies:
- one_for_one - if one child process terminates and should be restarted, only that child process is affected.
- one_for_all - if one child process terminates and should be restarted, all other child processes are terminated and then all child processes are restarted.
- rest_for_one - if one child process terminates and should be restarted, the 'rest' of the child processes - i.e. the child processes after the terminated child process in the start order - are terminated. Then the terminated child process and all child processes after it are restarted.
- simple_one_for_one - a simplified one_for_one supervisor, where all child processes are dynamically added instances of the same process type, i.e. running the same code.
The functions terminate_child/2, delete_child/2 and restart_child/2 are invalid for simple_one_for_one supervisors and will return \{error, simple_one_for_one\} if the specified supervisor uses this restart strategy.

To prevent a supervisor from getting into an infinite loop of child process terminations and restarts, a maximum restart frequency is defined using two integer values MaxR and MaxT. If more than MaxR restarts occur within MaxT seconds, the supervisor terminates all child processes and then itself.
This is the type definition of a child specification:
```

child_spec() = {Id,StartFunc,Restart,Shutdown,Type,Modules}
Id = term()
StartFunc = {M,F,A}
M = F = atom()
A = [term()]
Restart = permanent | transient | temporary
Shutdown = brutal_kill | int()>=0 | infinity
Type = worker | supervisor
Modules = [Module] | dynamic
Module = atom()

```
- Id is a name that is used to identify the child specification internally by the supervisor.
- StartFunc defines the function call used to start the child process. It should be a module-function-arguments tuple \(\{\mathrm{M}, \mathrm{F}, \mathrm{A}\}\) used as apply (M, F, A).

The start function must create and link to the child process, and should return \{ok, Child \(\}\) or \(\{o k\), Child, Info \(\}\) where Child is the pid of the child process and Info an arbitrary term which is ignored by the supervisor.

The start function can also return ignore if the child process for some reason cannot be started, in which case the child specification will be kept by the supervisor but the non-existing child process will be ignored.

If something goes wrong, the function may also return an error tuple
\{error, Error\}.
N ote that the start_link functions of the different behaviour modules fulfill the above requirements.
- Restart defines when a terminated child process should be restarted. A permanent child process should always be restarted, a temporary child process should never be restarted and a transient child process should be restarted only if it terminates abnormally, i.e. with another exit reason than normal.
- Shutdown defines how a child process should be terminated. brutal_kill means the child process will be unconditionally terminated using exit (Child, kill). An integer timeout value means that the supervisor will tell the child process to terminate by calling exit (Child, shutdown) and then wait for an exit signal with reason shutdown back from the child process. If no exit signal is received within the specified time, the child process is unconditionally terminated using exit(Child,kill).
If the child process is another supervisor, Shutdown should be set to infinity to give the subtree ample time to shutdown.
Important note on simpleone-for-one supervisors: The dynamically created child processes of a simple-one-for-one supervisor are not explicitly killed, regardless of
shutdown strategy, but are expected to terminate when the supervisor does (that is, when an exit signal from the parent process is received).
\(N\) ote that all child processes implemented using the standard OTP behavior modules automatically adhere to the shutdown protocol.
- Type specifies if the child process is a supervisor or a worker.
- Modules is used by the release handler during code replacement to determine which processes are using a certain module. As a rule of thumb Modules should be a list with one element [Module], where Module is the callback module, if the child process is a supervisor, gen_server or gen_fsm. If the child process is an event manager (gen_event) with a dynamic set of callback modules, Modules should be dynamic. See 0 TP D esign Principles for more information about release handling.
- Internally, the supervisor also keeps track of the pid Child of the child process, or undefined if no pid exists.

\section*{Exports}
start_link(Module, Args) -> Result
start_link(SupName, Module, Args) -> Result
Types:
- SupN ame = \{local, N ame \(\}\) । \(\{\) global, N ame \(\}\)
- \(\mathrm{Name}=\) atom()
- M odule = atom()
- Args = term()
- Result \(=\{0 \mathrm{ok}\), Pid \(\}\) | ignore \| \(\{\) error,Error \(\}\)
- \(\operatorname{Pid}=\) pid()
- Error \(=\{\) already_started,Pid \(\}\}\) | shutdown | term()

C reates a supervisor process as part of a supervision tree. The function will, among other things, ensure that the supervisor is linked to the calling process (its supervisor).
The created supervisor process calls Module:init/1 to find out about restart strategy, maximum restart frequency and child processes. To ensure a synchronized start-up procedure, start_link/2,3 does not return until Module:init/1 has returned and all child processes have been started.
If SupName=\{local, Name \(\}\) the supervisor is registered locally as Name using register/2. If SupName \(=\{\) global, Name \(\}\) the supervisor is registered globally as Name using global:register_name/2. If no name is provided, the supervisor is not registered.
Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the supervisor and its child processes are successfully created (i.e. if all child process start functions return \(\{0 \mathrm{k}\), Child \(\},\{o k\), Child, Info, or ignore) the function returns \{ok, Pid\}, where Pid is the pid of the supervisor. If there already exists a process with the specified SupName the function returns \{error, \{already_started, Pid\}\}, where Pid is the pid of that process.
If Module:init/1 returns ignore, this function returns ignore as well and the supervisor terminates with reason normal. If Module: init/1 fails or returns an
incorrect value, this function returns \{error, Term\} where Term is a term with information about the error, and the supervisor terminates with reason Term.
If any child process start function fails or returns an error tuple or an erroneous value, the function returns \{error, shutdown \(\}\) and the supervisor terminates all started child processes and then itself with reason shutdown.
```

start_child(SupRef, ChildSpec) -> Result
Types:

- SupRef $=$ Name | \{Name, Node $\}$ | \{global, N ame $\} \mid$ pid ()
- N ame $=\mathrm{N}$ ode $=$ atom()
- C hildSpec = child_spec() | [term()]
- Result $=\{0 k$, Child $\}$ I \{ok,Child,Info $\}$ | \{error,Error $\}$
- Child = pid() । undefined
- Info = term()
- Error = already_present I \{already_started,Child\} I term()

```

Dynamically adds a child specification to the supervisor SupRef which starts the corresponding child process.

SupRef can be:
- the pid,
- Name, if the supervisor is locally registered,
- \{Name, Node\}, if the supervisor is locally registered at another node, or
- \{global, Name \(\}\), if the supervisor is globally registered.

ChildSpec should be a valid child specification (unless the supervisor is a simple_one_for_one supervisor, see below). The child process will be started by using the start function as defined in the child specification.
If the case of a simple_one_for_one supervisor, the child specification defined in Module:init/1 will be used and ChildSpec should instead be an arbitrary list of terms List. The child process will then be started by appending List to the existing start function arguments, i.e. by calling apply (M, F, A++List) where \(\{\mathrm{M}, \mathrm{F}, \mathrm{A}\}\) is the start function defined in the child specification.
If there already exists a child specification with the specified Id, ChildSpec is discarded and the function returns \{error, already present \(\}\) or
 is running or not.
If the child process start function returns \(\{0 \mathrm{k}\), Child \(\}\) or \(\{o k\), Child, Info \(\}\), the child specification and pid is added to the supervisor and the function returns the same value. If the child process start function returns ignore, the child specification is added to the supervisor, the pid is set to undefined and the function returns \{ok, undefined\}.
If the child process start function returns an error tuple or an erroneous value, or if it fails, the child specification is discarded and the function returns \{error, Error\} where Error is a term containing information about the error and child specification.
terminate_child(SupRef, Id) -> Result
Types:
- SupRef \(=\) Name | \(\{N\) ame, \(N\) ode \(\}\) | \{global, \(N\) ame \(\} \mid\) pid ()
- Name \(=\) Node \(=\) atom ()
- Id = term()
- Result = ok | \{error,Error\}
- Error = not_found I simple_one_for_one

Tells the supervisor SupRef to terminate the child process corresponding to the child specification identified by Id. The process, if there is one, is terminated but the child specification is kept by the supervisor. This means that the child process may be later be restarted by the supervisor. The child process can also be restarted explicitly by calling restart_child/2. Use delete_child/2 to remove the child specification.
See start_child/2 for a description of SupRef.
If successful, the function returns ok. If there is no child specification with the specified Id, the function returns \{error, not_found \}.
```

delete_child(SupRef, Id) -> Result

```

Types:

- Name = N ode = atom()
- Id = term()
- Result =ok | \{error,Error\}
- Error = running | not_found \| simple_one_for_one

Tells the supervisor SupRef to delete the child specification identified by Id. The corresponding child process must not be running, use terminate_child/2 to terminate it.

See start_child/2 for a description of SupRef.
If successful, the function returns ok. If the child specification identified by Id exists but the corresponding child process is running, the function returns \{error, running\}. If the child specification identified by Id does not exist, the function returns \{error, not_found\}.
```

restart_child(SupRef, Id) -> Result

```

Types:
- SupRef \(=\mathrm{N}\) ame | \(\{\mathrm{N}\) ame, N ode \(\}\) | \(\{\) global, N ame \(\}\) | pid()
- Name = N ode = atom()
- Id = term()
- Result \(=\{0 \mathrm{k}, \mathrm{C}\) hild \(\} \mid\) \{ok,Child,Info \(\} \mid\) error,Error \(\}\)
- Child \(=\) pid() | undefined
- Error = running | not_found | simple_one_for_one | term()

Tells the supervisor SupRef to restart a child process corresponding to the child specification identified by Id. The child specification must exist and the corresponding child process must not be running.
See start_child/2 for a description of SupRef.
If the child specification identified by Id does not exist, the function returns
\{error, not_found\}. If the child specification exists but the corresponding process is already running, the function returns \{error, running\}.
If the child process start function returns \(\{o k\), Child \(\}\) or \(\{o k\), Child, Info \(\}\), the pid is added to the supervisor and the function returns the same value.

If the child process start function returns ignore, the pid remains set to undefined and the function returns \(\{o k\), undefined \(\}\).
If the child process start function returns an error tuple or an erroneous value, or if it fails, the function returns \{error, Error\} where Error is a term containing information about the error.
which_children(SupRef) -> [\{Id,Child,Type, Modules \(\}\) ]
Types:
- SupRef \(=\mathrm{N}\) ame \| \(\{\mathrm{N}\) ame, N ode \(\}\) | \{global, N ame \(\} \mid \operatorname{pid}()\)
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Id = term() | undefined
- Child \(=\) pid() । undefined
- Type = worker I supervisor
- M odules = [M odule] | dynamic
- M odule = atom()

Returns a list with information about all child specifications and child processes belonging to the supervisor SupRef.
See start_child/2 for a description of SupRef.
The information given for each child specification/process is:
- Id - as defined in the child specification or undefined in the case of a simple_one_for_one supervisor.
- Child - the pid of the corresponding child process, or undefined if there is no such process.
- Type - as defined in the child specification.
- Modules - as defined in the child specification.
check_childspecs([ChildSpec]) -> Result
Types:
- ChildSpec =child_spec()
- Result =ok I \{error,Error\}
- Error = term()

This function takes a list of child specification as argument and returns ok if all of them are syntactically correct, or \{error , Error \(\}\) otherwise.

\section*{CALLBACK FUNCTIONS}

The following functions should be exported from a supervisor callback module.

\section*{Exports}

\section*{Module:init(Args) -> Result}

Types:
- Args = term()
- Result \(=\{0 \mathrm{ok},\{\{\) RestartStrategy,M axR,MaxT \},[ChildSpec] \(\}\}\) । ignore
- RestartStrategy = one_for_all | one_for_one | rest_for_one | simple_one_for_one
- \(M a x R=M a x T=\operatorname{int}()>=0\)
- ChildSpec = child_spec()

W henever a supervisor is started using supervisor: start_link/2,3, this function is called by the new process to find out about restart strategy, maximum restart frequency and child specifications.

Args is the Args argument provided to the start function.
RestartStrategy is the restart strategy and MaxR and MaxT defines the maximum restart frequency of the supervisor. [ChildSpec] is a list of valid child specifications defining which child processes the supervisor should start and monitor. See the discussion about Supervision Principles above.
\(N\) ote that when the restart strategy is simple_one_for_one, the list of child specifications must be a list with one child specification only. (The Id is ignored). No child process is then started during the initialization phase, but all children are assumed to be started dynamically using supervisor: start_child/2.
The function may also return ignore.

\section*{SEE ALSO}
gen_event(3) [page 175], gen_fsm(3) [page 185], gen_server(3) [page 196], sys(3) [page 357]

\section*{supervisor_bridge}

Erlang M odule

A behaviour module for implementing a supervisor_bridge, a process which connects a subsystem not designed according to the OTP design principles to a supervision tree. The supervisor_bridge sits between a supervisor and the subsystem. It behaves like a real supervisor to its own supervisor, but has a different interface than a real supervisor to the subsystem. Refer to OTP D esign Principles for more information.
A supervisor_bridge assumes the functions for starting and stopping the subsystem to be located in a callback module exporting a pre-defined set of functions.

The sys module can be used for debugging a supervisor_bridge.
U nless otherwise stated, all functions in this module will fail if the specified supervisor_bridge does not exist or if bad arguments are given.

\section*{Exports}
```

start_link(Module, Args) -> Result
start_link(SupBridgeName, Module, Args) -> Result

```

Types:
- SupBridgeN ame = \{local, N ame \(\}\) | \(\{\) global, Name \}
- N ame = atom()
- M odule = atom()
- A rgs = term()
- Result \(=\{0 k\), Pid \(\}\) | ignore \| \{error,Error \(\}\)
- \(\operatorname{Pid}=\) pid()
- Error = \{already_started,Pid \} I term()

Creates a supervisor_bridge process, linked to the calling process, which calls Module:init/1 to start the subsystem. To ensure a synchronized start-up procedure, this function does not return until Module : init/1 has returned.
If SupBridgeName=\{local, Name \(\}\) the supervisor_bridge is registered locally as Name using register/2. If SupBridgeName=\{global, Name \(\}\) the supervisor_bridge is registered globally as Name using global:register_name/2. If no name is provided, the supervisor_bridge is not registered. If there already exists a process with the specified SupBridgeName the function returns \{error, \{already_started, Pid\} \}, where Pid is the pid of that process.
Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the supervisor_bridge and the subsystem are successfully started the function returns \{ok, Pid\}, where Pid is is the pid of the supervisor_bridge.

If Module:init/1 returns ignore, this function returns ignore as well and the supervisor_bridge terminates with reason normal. If Module:init/1 fails or returns an error tuple or an incorrect value, this function returns \{error, Term \} where Term is a term with information about the error, and the supervisor_bridge terminates with reason Term.

\section*{CALLBACK FUNCTIONS}

The following functions should be exported from a supervisor_bridge callback module.

\section*{Exports}
```

Module:init(Args) -> Result
Types:
- Args = term()
- Result = {ok,Pid,State} | ignore | {error,Error}
- Pid = pid()
- State = term()
- Error = term()

```
    W henever a supervisor_bridge is started using supervisor_bridge: start_link/2,3,
        this function is called by the new process to start the subsystem and initialize.
        Args is the Args argument provided to the start function.
        The function should return \(\{o k\), Pid,State \(\}\) where Pid is the pid of the main process
        in the subsystem and State is any term.
        If later Pid terminates with a reason Reason, the supervisor bridge will terminate with
        reason Reason as well. If later the supervisor_bridge is stopped by its supervisor with
        reason Reason, it will call Module:terminate (Reason, State) to terminate.
        If something goes wrong during the initialization the function should return
        \{error, Error\} where Error is any term, or ignore.
Module:terminate(Reason, State)
    Types:
    - Reason = shutdown | term()
    - State = term()

This function is called by the supervisor_bridge when it is about to terminate. It should be the opposite of Module:init/1 and stop the subsystem and do any necessary cleaning up. The return value is ignored.
Reason is shutdown if the supervisor_bridge is terminated by its supervisor. If the supervisor_bridge terminates because a a linked process (apart from the main process of the subsystem) has terminated with reason Term, Reason will be Term.
State is taken from the return value of Module:init/1.

\section*{SEE ALSO}
supervisor(3) [page 347], sys(3) [page 357]

\section*{SyS \\ Erlang M odule}

This module contains functions for sending system messages used by programs, and messaged used for debugging purposes.
Functions used for implementation of processes should also understand system messages such as debugging messages and code change. These functions must be used to implement the use of system messages for a process; either directly, or through standard behaviours, such as gen_server.
The following types are used in the functions defined below:
- Name \(=\operatorname{pid}() \mid\) atom() | \{global, atom()\}
- Timeout \(=\) int () \(>=0\) | infinity
- system_event () = \{in, Msg\} | \{in, Msg, From \(\mid\) \{out, Msg, To\} | term()

The default timeout is 5000 ms , unless otherwise specified. The timeout defines the time period to wait for the process to respond to a request. If the process does not respond, the function evaluates exit (\{timeout, \(\{\mathrm{M}, \mathrm{F}, \mathrm{A}\}\}\) ).
The functions make reference to a debug structure. The debug structure is a list of dbg_opt (). dbg_opt () is an internal data type used by the handle_system_msg/6 function. No debugging is performed if it is an empty list.

\section*{System Messages}

Processes which are not implemented as one of the standard behaviours must still understand system messages. There are three different messages which must be understood:
- Plain system messages. These are received as \{system, From, Msg\}. The content and meaning of this message are not interpreted by the receiving process module. W hen a system message has been received, the function sys:handle_system_msg/6 is called in order to handle the request.
- Shutdown messages. If the process traps exits, it must be able to handle an shut-down request from its parent, the supervisor. The message \{ 'EXIT', Parent, Reason \(\}\) from the parent is an order to terminate. The process must terminate when this message is received, normally with the same Reason as Parent.
- There is one more message which the process must understand if the modules used to implement the process change dynamically during runtime. A \(n\) example of such a process is the gen_event processes. This message is \{get_modules, From\}. The reply to this message is From ! \{modules, Modules\}, where Modules is a list of the currently active modules in the process.
This message is used by the release handler to find which processes execute a certain module. The process may at a later time be suspended and ordered to perform a code change for one of its modules.

\section*{System Events}

When debugging a process with the functions of this module, the process generates system_events which are then treated in the debug function. For example, trace formats the system events to the tty.
There are three predefined system events which are used when a process receives or sends a message. The process can also define its own system events. It is always up to the process itself to format these events.

\section*{Exports}
```

log(Name,Flag)
log(Name,Flag,Timeout) -> ok | {ok, [system_event()]}

```

Types:
- Flag = true \| \{true, N \} \| false \| get | print
- \(\mathrm{N}=\) integer ( ) >0

Turns the logging of system events \(\mathrm{O} n\) or Off . If \(\mathrm{O} n\), a maximum of \(N\) events are kept in the debug structure (the default is 10). If Flag is get, a list of all logged events is returned. If Flag is print, the logged events are printed to standard_io. The events are formatted with a function that is defined by the process that generated the event (with a call to sys:handle_debug/4).
```

log_to_file(Name,Flag)
log_to_file(Name,Flag,Timeout) -> ok | {error, open_file}

```

Types:
- Flag = FileN ame । false
- FileN ame = string()

Enables or disables the logging of all system events in textual format to the file. The events are formatted with a function that is defined by the process that generated the event (with a call to sys:handle_debug/4).
```

statistics(Name,Flag)
statistics(Name,Flag,Timeout) -> ok | {ok, Statistics}

```

Types:
- Flag = true I false I get
- Statistics \(=[\{\) start_time, \(\{\mathrm{D}\) ate1, Timel \(\}\},\{\) current_time, \(\{\mathrm{D}\) ate, Time2 \(\}\}\), \{reductions, integer()\}, \{messages_in, integer()\}, \{messages_out, integer() \}]
- D atel \(=\) D ate2 \(=\{\) Year, \(M\) onth, \(D\) ay \(\}\)
- Time1 \(=\) Time2 \(=\{\) H our, \(\mathrm{Min}, \mathrm{Sec}\}\)

Enables or disables the collection of statistics. If Flag is get, the statistical collection is returned.
```

trace(Name,Flag)
trace(Name,Flag,Timeout) -> void()

```

Types:
- Flag = boolean()

Prints all system events on standard_io. The events are formatted with a function that is defined by the process that generated the event (with a call to sys:handle_debug/4).
```

no_debug(Name)
no_debug(Name,Timeout) -> void()

```

Turns off all debugging for the process. This includes functions that have been installed explicitly with the install function, for example triggers.
```

suspend(Name)
suspend(Name,Timeout) -> void()

```

Suspends the process. W hen the process is suspended, it will only respond to other system messages, but not other messages.
```

resume(Name)
resume(Name,Timeout) -> void()

```

Resumes a suspended process.
```

change_code(Name, Module, OldVsn, Extra)
change_code(Name, Module, OldVsn, Extra, Timeout) -> ok | {error, Reason}

```

Types:
- OldV sn = undefined I term()
- M odule = atom()
- Extra = term()

Tells the process to change code. The process must be suspended to handle this message. The Extra argument is reserved for each process to use as its own. The function Mod:system_code_change/4 is called. OldVsn is the old version of the Module.
```

get_status(Name)
get_status(Name,Timeout) -> {status, Pid, {module, Mod}, [PDict, SysState, Parent,
Dbg, Misc]}
Types:
- PDict = [{Key, Value}]
- SysState = running | suspended
- Parent = pid()

```
- \(\operatorname{Dbg}=[\) dbg_opt() \()]\)
- M isc = term()

Gets the status of the process.
```

install(Name,{Func,FuncState})
install(Name,{Func,FuncState},Timeout)

```

Types:
- Func = dbg_fun()
- dbg_fun() \(=\) fun(FuncState, Event, ProcState) \(->\) done । N ewFuncState
- FuncState = term()
- Event = system_event()
- ProcState = term()
- N ewFuncState = term()

This function makes it possible to install other debug functions than the ones defined above. An example of such a function is a trigger, a function that waits for some special event and performs some action when the event is generated. This could, for example, be turning on low level tracing.
Func is called whenever a system event is generated. This function should return done, or a new func state. In the first case, the function is removed. It is removed if the function fails.
remove (Name, Func)
remove(Name, Func, Timeout) \(->\) void()
Types:
- Func = dbg_fun()

Removes a previously installed debug function from the process. Func must be the same as previously installed.

\section*{Process Implementation Functions}

The following functions are used when implementing a special process. This is an ordinary process which does not use a standard behaviour, but a process which understands the standard system messages.

\section*{Exports}
debug_options(Options) -> [dbg_opt()]
Types:
- O ptions = [O pt]
- O pt = trace | log | statistics \| \{log_to_file, FileN ame\} | \{install, \{Func, FuncState\}\}
- Func = dbg_fun()
- FuncState = term()

This function can be used by a process that initiates a debug structure from a list of options. The values of the Opt argument are the same as the corresponding functions.
```

get_debug(Item,Debug,Default) -> term()

```

Types:
- Item \(=\log\) | statistics
- Debug = [dbg_opt()]
- D efault = term()

This function gets the data associated with a debug option. Def ault is returned if the Item is not found. Can be used by the process to retrieve debug data for printing before it terminates.
handle_debug([dbg_opt()],FormFunc, Extra, Event) -> [dbg_opt()]
Types:
- FormFunc = dbg_fun()
- Extra = term()
- Event = system_event()

This function is called by a process when it generates a system event. FormFunc is a formatting function which is called as FormFunc (Device, Event, Extra) in order to print the events, which is necessary if tracing is activated. Extra is any extra information which the process needs in the format function, for example the name of the process.
handle_system_msg(Msg, From, Parent, Module, Debug, Misc)
Types:
- \(\mathrm{Msg}=\) term()
- From = pid()
- Parent = pid()
- M odule = atom()
- D ebug = [dbg_opt()]
- M isc = term()

This function is used by a process module that wishes to take care of system messages. The process receives a \{system, From, Msg\} message and passes the Msg and From to this function.
This function never returns. It calls the function Module: system_continue (Parent, nDebug, Misc) where the process continues the execution, or
Module:system_terminate (Reason, Parent, Debug, Misc) if the process should terminate. The Module must export system_continue/3, system_terminate/4, and system_code_change/4 (see below).
The Misc argument can be used to save internal data in a process, for example its state. It is sent to Module: system_continue/3 or Module: system_terminate/4
```

print_log(Debug) -> void()

```

Types:
- Debug = [dbg_opt()]

Prints the logged system events in the debug structure using FormFunc as defined when the event was generated by a call to handle_debug/4.

Mod:system_continue (Parent, Debug, Misc)
Types:
- Parent = pid()
- D ebug = [dbg_opt()]
- M isc \(=\) term ()

This function is called from sys:handle_system_msg/6 when the process should continue its execution (for example after it has been suspended). This function never returns.

Mod:system_terminate(Reason, Parent, Debug, Misc)
Types:
- Reason = term()
- Parent = pid()
- Debug = [dbg_opt()]
- M isc = term()

This function is called from sys:handle_system_msg/6 when the process should terminate. For example, this function is called when the process is suspended and its parent orders shut-down. It gives the process a chance to do a clean-up. This function never returns.

Mod:system_code_change(Misc, Module, OldVsn, Extra) \(->\) \{ok, NMisc \(\}\)
Types:
- M isc = term()
- OldV sn = undefined । term()
- M odule = atom()
- Extra = term()
- N M isc = term()

C alled from sys:handle_system_msg/6 when the process should perform a code change. The code change is used when the internal data structure has changed. This function converts the Misc argument to the new data structure. OldVsn is the vsn attribute of the old version of the Module. If no such attribute was defined, the atom undefined is sent.

\section*{timer}

Erlang M odule

This module provides useful functions related to time. Unless otherwise stated, time is always measured in milliseconds. All timer functions return immediately, regardless of work carried out by another process.

Successful evaluations of the timer functions yield return values containing a timer reference, denoted TRef below. By using cancel/1, the returned reference can be used to cancel any requested action. A TRef is an Erlang term, the contents of which must not be altered.

The timeouts are not exact, but should be at least as long as requested.

\section*{Exports}
```

start() -> ok

```

Starts the timer server. N ormally, the server does not need to be started explicitly. It is started dynamically if it is needed. This is useful during development, but in a target system the server should be started explicitly. U se configuration parameters for kernel for this.
```

apply_after(Time, Module, Function, Arguments) -> {ok, Tref} | {error, Reason}

```

Types:
- Time = integer() in Milliseconds
- M odule \(=\) Function \(=\) atom ()
- A rguments = [term()]

Evaluates apply (M, F, A) after Time amount of time has elapsed. Returns \{ok, TRef \}, or \{error, Reason\}.
send_after(Time, Pid, Message) -> \{ok, TRef\} | \{error,Reason\}
send_after(Time, Message) -> \{ok, TRef\} | \{error, Reason\}
Types:
- Time = integer() in Milliseconds
- Pid = pid() । atom()
- M essage = term()
- Result \(=\{0\), TRef \(\}\) | \(\{\) error, Reason \(\}\)
send_after/3 Evaluates Pid ! Message after Time amount of time has elapsed. (Pid can also be an atom of a registered name.) Returns \{ok, TRef \}, or \{error, Reason\}.
send_after/2 Same as send_after (Time, self(), Message).
```

exit_after(Time, Pid, Reason1) -> {ok, TRef} | {error,Reason2}
exit_after(Time, Reason1) -> {ok, TRef} | {error,Reason2}
kill_after(Time, Pid)-> {ok, TRef} | {error,Reason2}
kill_after(Time) -> {ok, TRef} | {error,Reason2}

```

Types:
- Time = integer() in milliseconds
- Pid = pid() । atom()
- Reason1 = Reason2 = term()
exit_after/3 Send an exit signal with reason Reason1 to Pid Pid. Returns \{ok, TRef \}, or \{error, Reason2\}.
exit_after/2 Same as exit_after (Time, self(), Reason1).
kill_after/2 Same as exit_after (Time, Pid, kill). kill_after/1 Same as exit_after(Time, self(), kill).
```

apply_interval(Time, Module, Function, Arguments) -> {ok, TRef} | {error, Reason}

```
    Types:
- Time = integer() in milliseconds
- M odule = Function = atom()
- A rguments = [term()]

Evaluates apply (Module, Function, Arguments) repeatedly at intervals of Time. Returns \{ok, TRef \}, or \{error, Reason\}.
```

send_interval(Time, Pid, Message) -> {ok, TRef} | {error, Reason}

```
send_interval(Time, Message) -> \{ok, TRef \} | \{error, Reason\}

Types:
- Time = integer() in milliseconds
- Pid = pid() | atom()
- M essage = term()
- Reason = term()
send_interval/3 Evaluates Pid ! Message repeatedly after Time amount of time has elapsed. (Pid can also be an atom of a registered name.) Returns \{ok, TRef \(\}\) or \{error, Reason\}.
send_interval/2 Same as send_interval(Time, self(), Message).
cancel(TRef) -> \{ok, cancel\} | \{error, Reason\}
C ancels a previously requested timeout. TRef is a unique timer reference returned by the timer function in question. Returns \{ok, cancel\}, or \{error, Reason\} when TRef is not a timer reference.
sleep(Time) -> ok

Types:
- Time = integer() in milliseconds

Suspends the process calling this function for Time amount of milliseconds and then returns ok. N aturally, this function does not return immediately.
tc(Module, Function, Arguments) \(->\) \{Time, Value \(\}\)
Types:
- M odule \(=\) Function \(=\) atom()
- A rguments = [term( \()\) ]
- Time = integer() in microseconds
- Value = term()

Evaluates apply (Module, Function, Arguments) and measures the elapsed real time. Returns \{Time, Value\}, where Time is the elapsed real time in microseconds, and Value is what is returned from the apply.
now_diff(T2, T1) -> Tdiff
Types:
- T1 = T2 = \{M egaSecs, Secs, M icroSecs \(\}\)
- Tdiff \(=\) M egaSecs \(=\) Secs \(=\) M icroSecs \(=\) integer ()

Calculates the time difference Tdiff \(=\mathrm{T} 2-\mathrm{T} 1\) in microseconds, where T 1 and T 2 probably are timestamp tuples returned from erlang: now/0.
```

seconds(Seconds) -> Milliseconds

```

Returns the number of milliseconds in Seconds.
minutes(Minutes) -> Milliseconds
Return the number of milliseconds in Minutes.
hours(Hours) -> Milliseconds
Returns the number of milliseconds in Hours.
hms(Hours, Minutes, Seconds) -> Milliseconds
Returns the number of milliseconds in Hours + Minutes + Seconds.

\section*{Examples}

This example illustrates how to print out "H ello World!" in 5 seconds:
```

1> timer:apply_after(5000, io, format, ["~nHello World!~n", []]).
{ok,TRef}
Hello World!
2>

```

The following coding example illustrates a process which performs a certain action and if this action is not completed within a certain limit, then the process is killed.
```

Pid = spawn(mod, fun, [foo, bar]),
%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill_after(timer:seconds(10), Pid),
%% We change our mind...
timer:cancel(R),

```

\section*{WARNING}

A timer can always be removed by calling cancel/1.
A \(n\) interval timer, i.e. a timer created by evaluating any of the functions apply_interval/4, send_interval/3, and send_interval/2, is linked to the process towards which the timer performs its task.

A one-shot timer, i.e. a timer created by evaluating any of the functions apply_after/4, send_after/3, send_after/2, exit_after/3, exit_after/2, kill_after/2, and kill_after/1 is not linked to any process. Hence, such a timer is removed only when it reaches its timeout, or if it is explicitly removed by a call to cancel/1.

\section*{win32reg}

Erlang M odule
win32reg provides read and write access to the registry on Windows. It is essentially a port driver wrapped around the W in32 API calls for accessing the registry.
The registry is a hierarchical database, used to store various system and software information in Windows. It is available in Windows 95 and W indows NT. It contains installation data, and is updated by installers and system programs. The Erlang installer updates the registry by adding data that Erlang needs.
The registry contains keys and values. Keys are like the directories in a file system, they form a hierarchy. Values are like files, they have a name and a value, and also a type.
Paths to keys are left to right, with sub-keys to the right and backslash between keys. (Remember that backslashes must be doubled in Erlang strings.) C ase is preserved but not significant. Example:
"\\hkey_local_machine\\software\\\Ericsson\\Erlang\\5.0" is the key for the installation data for the latest Erlang release.
There are six entry points in the W indows registry, top level keys. They can be abbreviated in the win32reg module as:
\begin{tabular}{ll} 
Abbrev. & \begin{tabular}{l} 
Registry key \\
\(=======\)
\end{tabular} \\
hkcr & HKEY_CLASSES_ROOT \\
current_user & HKEY_CURRENT_USER \\
hkcu & HKEY_CURRENT_USER \\
local_machine & HKEY_LOCAL_MACHINE \\
hklm & HKEY_LOCAL_MACHINE \\
users & HKEY_USERS \\
hku & HKEY_USERS \\
current_config & HKEY_CURRENT_CONFIG \\
hkcc & HKEY_CURRENT_CONFIG \\
dyn_data & HKEY_DYN_DATA \\
hkdd & HKEY_DYN_DATA
\end{tabular}

The key above could be written as "\\hklm\\software\\ericsson\\erlang\\5.0". The win32reg module uses a current key. It works much like the current directory. From the current key, values can be fetched, sub-keys can be listed, and so on.
U nder a key, any number of named values can be stored. They have name, and types, and data.
Currently, the win32reg module supports storing only the following types:
REG _DWORD, which is an integer, REG _SZ which is a string and REG _BIN ARY which is a binary. O ther types can be read, and will be returned as binaries.
There is also a "default" value, which has the empty string as name. It is read and written with the atom default instead of the name.

Some registry values are stored as strings with references to environment variables, e.g. "\%SystemRoot\%Windows". SystemRoot is an environment variable, and should be replaced with its value. A function expand/1 is provided, so that environment variables surrounded in \% can be expanded to their values.
For additional information on the Windows registry consult the Win32 Programmer's Reference.

\section*{Exports}
```

change_key(RegHandle, Key) -> ReturnValue
Types:
- RegH andle = term()
- Key = string()
C hanges the current key to another key. Works like cd. The key can be specified as a
relative path or as an absolute path, starting with \.
change_key_create(RegHandle, Key) -> ReturnValue
Types:

- RegH andle = term()
- Key = string()
C reates a key, or just changes to it, if it is already there. Works like a combination of mkdir and cd. Calls the Win32 API function RegCreateKeyEx ().
The registry must have been opened in write-mode.
close(RegHandle)-> ReturnValue
Types:
- RegH andle = term()
C loses the registry. A fter that, the RegHandle cannot be used.
current_key(RegHandle) $->$ ReturnValue
Types:
- RegH andle = term()
- ReturnValue $=\{0$ ok, string ()$\}$
Returns the path to the current key. This is the equivalent of pwd.
N ote that the current key is stored in the driver, and might be invalid (e.g. if the key has been removed).
delete_key(RegHandle) -> ReturnValue
Types:
- RegH andle = term()
- ReturnValue $=0$ K I $\{$ error, Errorld $\}$

```

Deletes the current key, if it is valid. Calls the Win32 A PI function RegDeleteKey (). N ote that this call does not change the current key, (unlike change_key_create/2.) This means that after the call, the current key is invalid.
```

delete_value(RegHandle, Name) -> ReturnValue

```

Types:
- RegH andle = term()
- ReturnValue =ok I \(\{\) error, Errorld \(\}\)

Deletes a named value on the current key. The atom default is used for the the default value.
The registry must have been opened in write-mode.
```

expand(String) -> ExpandedString

```

Types:
- String = string()
- ExpandedString = string()

Expands a string containing environment variables between percent characters.
A nything between two \% is taken for a environment variable, and is replaced by the value. Two consecutive \% is replaced by one \%.
A variable name that is not in the environment, will result in an error.
```

format_error(ErrorId) -> ErrorString

```

Types:
- Errorld = atom()
- ErrorString = string()

Convert an PO SIX errorcode to a string (by calling erl_posix_msg:message).
open(OpenModeList)-> ReturnValue
Types:
- O penM odeL ist = [ O penM ode]
- O penM ode = read । write

O pens the registry for reading or writing. The current key will be the root (HKEY_CLASSES_ROOT). The read flag in the mode list can be omitted.
Use change_key/2 with an absolute path after open.
```

set_value(RegHandle, Name, Value) -> ReturnValue

```

Types:
- \(N\) ame = string() | default
- Value = string() | integer() | binary()

Sets the named (or default) value to value. Calls the Win32 API function
RegSetValueEx (). The value can be of three types, and the corresponding registry type will be used. Currently the types supported are: REG_DWORD for integers, REG_SZ for strings and REG_BINARY for binaries. O ther types cannot currently be added or changed.
The registry must have been opened in write-mode.
```

sub_keys(RegHandle) -> ReturnValue

```

Types:
- ReturnValue = \{ok, SubKeys \(\}\) | \(\{\) error, Errorld \(\}\)
- SubKeys = [SubKey]
- SubKey = string()

Returns a list of subkeys to the current key. Calls the Win32 API function EnumRegKeysEx().
Avoid calling this on the root keys, it can be slow.
```

value(RegHandle, Name) -> ReturnValue

```

Types:
- Name = string() | default
- ReturnValue \(=\{0 \mathrm{ok}\), Value \(\}\)
- Value = string() | integer() | binary()

Retrieves the named value (or default) on the current key. Registry values of type REG_SZ, are returned as strings. Type REG_DWORD values are returned as integers. All other types are returned as binaries.
```

values(RegHandle) -> ReturnValue

```

Types:
- ReturnValue \(=\{0 k\), ValuePairs \(\}\)
- ValuePairs = [ValuePair]
- ValuePair = \(\{\mathrm{N}\) ame, Value \(\}\)
- \(N\) ame = string \(\mid\) default
- Value = string() | integer() | binary()

Retrieves a list of all values on the current key. The values have types corresponding to the registry types, see value. C alls the Win32 API function EnumRegValuesEx().

\section*{SEE ALSO}

Win32 Programmer's Reference (from M icrosoft)
erl_posix_msg
The Windows 95 Registry (book from O'Reilly)

\section*{zip \\ Erlang M odule}

The zip module archives and extract files to and from a zip archive. The zip format is specified by the "ZIP A ppnote.txt" file available on PKW are's website www.pkware.com. The zip module supports zip archive versions up to 6.1. However, password-protection and Zip64 is not supported.
By convention, the name of a zip file should end in ". zip". To abide to the convention, you'll need to add ".zip" yourself to the name.
Zip archives are created with the zip/2 [page 373] or the zip/3 [page 373] function. (They are also available as create, to resemble the erl_tar module.)
To extract files from a zip archive, use the unzip/1 [page 374] or the unzip/2 [page 374] function. (They are also available as extract.)
To return a list of the files in a zip archive, use the list_dir/1 [page 375] or the list_dir/2 [page 375] function. (They are also available as table.)
To print a list of files to the Erlang shell, use either the \(\mathrm{t} / 1\) [page 375] or \(\mathrm{tt} / 1\) [page 375] function.
In some cases, it is desirable to open a zip archive, and to unzip files from it file by file, without having to reopen the archive. The functions zip_open [page 376], zip_get [page 376], zip_list_dir [page 376] and zip_close [page 376] do this.

\section*{LIMITATIONS}

Zip64 archives are not currently supported.
Password-protected and encrypted archives are not currently supported
O nly the DEFLATE (zlib-compression) and the STORE (uncompressed data) zip methods are supported.
The size of the archive is limited to 2 G -byte ( 32 bits).
Comments for indivudal files is not supported when creating zip archives. The zip archive comment for the whole zip archive is supported.
There is currently no support for altering an existing zip archive. To add or remove a file from an archive, the whole archive must be recreated.

DATA TYPES
zip_file()
The record zip_file contains the following fields.
name \(=\) string () the name of the file
info = file_info() file info as in [file:read_file_info/1]
commenct \(=\) string ( \()\) the comment for the file in the zip archive
offset \(=\) integer () the offset of the file in the zip archive (used internally)
comp_size \(=\) integer () the compressed size of the file (the uncompressed size is
found in info)
zip_comment
The record zip_comment just contains the archive comment for a zip archive comment \(=\operatorname{string}()\) the comment for the zip archive

\section*{Exports}
```

zip(Name, FileList) -> RetValue
zip(Name, FileList, Options) -> RetValue
create(Name, FileList) -> RetValue
create(Name, FileList, Options) -> RetValue
Types:

```
- N ame = filename()
- FileList \(=\) [FileSpec]
- FileSpec = filename() | \{filename(), binary()
- Options = [O ption]
- Option = memory | cooked \| verbose \| \{comment, Comment \(\} \mid\{c w d, C W D\}\)
- Comment = CWD = string()
- RetValue \(=\{0 k, N a m e\}\) । \(\{0 \mathrm{k},\{\mathrm{N}\) ame, binary \(\}\}\) | \{error, Reason \(\}\)
- Reason = term()

The zip function creates a zip archive containing the files specified in FileList.
As synonyms, the functions create/2 and create/3 are provided, to make it resemble the erl_tar module.
The file-list is a list of files, with paths relative to the current directory, they will be stored with this path in the archive. Files may also be specified with data in binaries, to create an archive directly from data.
Files will be compressed using the DEFLATE compression, as described in the A ppnote.txt file. However, files will be stored without compression if they already are compressed. The zip/2 and zip/3 checks the file extension to see whether the file should be stored without compression. Files with the following extensions are not compressed: .Z, .zip, .zoo, .arc, .lzh, .arj.
The following options are available:
cooked By default, the open/2 function will open the zip file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. Adding cooked to the mode list will override the default and open the zip file without the raw option. The same goes for the files added.
verbose Print an informational message about each file being added.
memory The output will not be to a file, but instead as a tuple \{FileName, binary() \}. The binary will be a full zip archive with header, and can be extracted with for instance unzip/2.
\{comment, Comment \} Add a comment to the zip-archive.
\{cwd, CWD\} Use the given directory as current directory, it will be prepended to file names when adding them, although it will not be in the zip-archive. (A cting like a file:set_cwd/1, but without changing the global cwd property.)
```

unzip(Archive) -> RetValue
unzip(Archive, Options) -> RetValue
extract(Archive) -> RetValue
extract(Archive, Options) -> RetValue

```

Types:
- N ame = filename() | binary()
- Options = [O ption]
- O ption = \{files, FileList\} | keep_old_files \| verbose \| memory \| \{file_filter, FileFilter\}

I \{cwd, CWD \}
- FileList =[filename()]
- FileFilter = fun(ZipFile) -> true । false
- CWD = string()
- ZipFile = zip_file()
- RetValue =ok | \{error, Reason\} | \{error, \{Name, Reason\}\}
- Reason = term()

The unzip/1 function extracts all files from a zip archive. The unzip/2 function provides options to extract some files, and more.
If the Archive argument is given as a binary, the contents of the binary is assumed to be a zip archive, otherwise it should be a filename.
The following options are available:
\{files, FileList \(\}\) By default, all files will be extracted from the zip archive. With the \(\{\) files, Files \(\}\) option, the unzip/2 function will only extract the files whose names are included in FileList.
cooked By default, the open/2 function will open the zip file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. Adding cooked to the mode list will override the default and open zip file without the raw option. The same goes for the files extracted.
keep_old_files By default, all existing files with the same name as file in the zip archive will be overwritten. With the keep_old_files option, the unzip/2 function will not overwrite any existing files. Not that even with the memory option given, which means that no files will be overwritten, files existing will be excluded from the result.
verbose Print an informational message as each file is being extracted.
memory Instead of extracting to the current directory, the memory option will give the result as a list of tuples \{Filename, Binary \(\}\), where Binary is a binary containing the extracted data of the file named Filename in the zip archive.
\{cwd, CWD\} U se the given directory as current directory, it will be prepended to file names when extracting them from the zip-archive. (Acting like a file:set_cwd/1, but without changing the global cwd property.)
```

list_dir(Archive) -> RetValue
list_dir(Archive, Options)
table(Archive) -> RetValue
table(Archive, Options)

```

Types:
- Archive = filename() | binary ()
- RetValue \(=\{\) ok, \([\) Comment, Files \(]\}\) | error, Reason \(\}\)
- Comment = zip_comment()
- Files = [zip_file()]
- Options = [O ption]
- Option = cooked
- Reason = term()

The list_dir/1 function retrieves the names of all files in the zip archive Archive. The list_dir/2 function provides options.
A s synonyms, the functions table/2 and table/3 are provided, to make it resemble the erl_tar module.
The result value is the tuple \(\{o k\), List \(\}\), where List contains the zip archive comment as the first element.
The following options are available:
cooked By default, the open/2 function will open the zip file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. A dding cooked to the mode list will override the default and open zip file without the raw option.
```

t(Archive)

```

Types:
- Archive = filename() | binary() | ZipH andle
- ZipH andle \(=\operatorname{pid}()\)

The t/1 function prints the names of all files in the zip archive Archive to the Erlang shell. (Similar to "tart".)
```

tt(Archive)

```

Types:
- N ame = filename() । binary()

The \(t t / 1\) function prints names and information about all files in the zip archive Archive to the Erlang shell. (Similar to "tar tv".)
zip_open(Archive) -> \{ok, ZipHandle\} | \{error, Reason\}
```

zip_open(Archive, Options) -> {ok, ZipHandle} | {error, Reason}

```

Types:
- N ame = filename() । binary()
- Options = [O ption]
- Options = cooked \(\mid\) memory \(\mid\{c w d, C W D\}\)
- CWD = string()
- ZipH andle = pid()

The zip_open function opens a zip archive, and reads and saves its directory. This means that subsequently reading files from the archive will be faster than unzipping files one at a time with unzip.
The archive must be closed with zip_close/1.
```

zip_list_dir(ZipHandle) -> Result | {error, Reason}

```

Types:
- Result = [ZipC omment, ZipFile...]
- ZipComment = \#zip_comment \(\}\)
- ZipFile = \#zip_file\{\}
- ZipH andle = pid()

The zip_list_dir/1 function returns the file list of an open zip archive.
zip_get(ZipHandle) \(->\) \{ok, Result \(\}\) \{error, Reason\}
zip_get(FileName, ZipHandle) -> \{ok, Result\} | \{error, Reason\}
Types:
- N ame = filename() । binary() | ZipH andle
- ZipH andle = pid()

The zip_get function extracts one or all files from an open archive.
The files will be unzipped to memory or to file, depending on the options given to the zip_open function when the archive was opened.
zip_close(ZipHandle) -> ok | \{error, einval\}
Types:
- ZipH andle \(=\operatorname{pid}()\)

The zip_close/1 function closes a zip archive, previously opened with zip_open. All resources are closed, and the handle should not be used after closing.

\section*{Index of Modules and Functions}

M odules are typed in this way.
Functions are typed in this way.
a_function/2
sofs, 322
abcast/2
gen_server , 200
abcast/3
gen_server , 200
absname/1
filename, 158
absname/2
filename, 159
absname_join/2
filename, 159
abstract/1
erl_parse, 116
\(\operatorname{acos} / 1\)
math , 238
\(\operatorname{acosh} / 1\)
math , 238
add/2
gb_sets , 165
add/3
erl_tar , 124
add/4
erl_tar , 124
add_binding/3
erl_eval , 107
add_edge/3
digraph , 93
add_edge/4
digraph , 93
add_edge/5
digraph , 93
add_element/2
gb_sets, 165
ordsets, 257
sets, 302
add_handler/3
gen_event, 176
add_sup_handler/3
gen_event, 177
add_vertex/1
digraph , 94
add_vertex/2
digraph , 94
add_vertex/3
digraph , 94
all/0
dets, 73
ets, 130
all/2
lists, 222
any/2
lists, 222
append/1
lists, 222
qlc, 280
append/2
lists, 222
qlc, 280
append/3
dict, 88
orddict, 251
append_list/3
dict, 88
orddict, 251
append_values/2
proplists, 268
apply_after/4 timer , 364
apply_interval/4 timer, 365
arith_op/2 erl_internal , 111
asin/1 math , 238
asinh/1 math , 238
atan/1 math, 238
atan2/2 math , 238
atanh/1 math , 238
attach/1 pool, 261
attribute/1 erl_pp, 118
attribute/2 erl_pp, 118
balance/1 gb_sets, 165 gb_trees, 170
base64
decode/1, 54
decode_to_string/1,54 encode/1, 54 encode_to_string/1,54 mime_decode/1, 54 mime_decode_string/1, 54
basename/1 filename, 159
basename/2 filename, 159
bchunk/2 dets, 73
beam_lib
chunks/2, 58
chunks/3, 58 clear_crypto_key_fun/0,62 cmp/2, 60
cmp_dirs/2, 60 crypto_key_fun/1, 61
diff_dirs/2,60
format_error/1,61
info/1, 59
md5/1, 59
strip/1,60
strip_files/1,60
strip_release/1,61
version/1,58
bif/2
erl_internal, 111
binding/2
erl_eval , 107
bindings/1
erl_eval , 107
bool_op/2
erl_internal , 111
bt/1
c, 63
c
bt/1, 63
c/1, 63
c/2, 63
cd/1, 63
flush/0, 64
help/0, 64
i/0, 64
i/3, 64
1/1, 64
lc/1, 64
ls/0, 64
ls/1, 64
m/0, 65
m/1, 65
memory/0, 65
memory/1, 65
\(\mathrm{nc} / 1,65\)
\(\mathrm{nc} / 2,65\)
ni/0, 64
nl/1, 65
nregs/0, 66
pid/3, 65
pwd/0, 66
q/0, 66
regs/0, 66
xm/1, 66
y/1, 66
y/2, 66
c/1
c, 63
c/2
c, 63
calendar
date_to_gregorian_days/1,68
date_to_gregorian_days/3, 68
datetime_to_gregorian_seconds/2,68
day_of_the_week/1, 68
day_of_the_week/3, 68
gregorian_days_to_date/1,68
gregorian_seconds_to_datetime/1, 68
is_leap_year/1, 68
last_day_of_the_month/2, 68
local_time/0, 69
local_time_to_universal_time/2, 69
local_time_to_universal_time_dst/2, 69
now_to_datetime/1,70
now_to_local_time/1,69
now_to_universal_time/1, 70
seconds_to_daystime \(/ 1,70\)
seconds_to_time/1,70
time_difference \(/ 2,70\)
time_to_seconds/1,70
universal_time/0, 70
universal_time_to_local_time/2, 71
valid_date/1, 71
valid_date/3, 71
call/2
gen_server , 198
call/3
gen_event, 178
gen_server , 198
call/4
gen_event, 178
cancel/1
timer, 365
cancel_timer/1
gen_fsm, 190
canonical_relation/1
sofs, 322
cast/2
gen_server, 200
cd/1
c, 63
centre/2
string, 344
centre/3
string, 344
change_code/4
sys, 359
change_code/5 sys, 359
change_key/2
win32reg, 369
change_key_create/2
win32reg, 369
char_list/1
io_lib, 219
chars/2
string, 342
chars/3
string, 342
check/1
file_sorter , 154
check/2
file_sorter , 154
check_childspecs/1
supervisor, 352
chr/2
string, 341
chunks/2
beam_lib, 58
chunks/3
beam_lib, 58
clear_crypto_key_fun/0
beam_lib, 62
close/1
dets, 74
epp, 104
erl_tar, 124
win32reg, 369
cmp/2
beam_lib, 60
cmp_dirs/2
beam_lib, 60
comp_op/2
erl_internal , 112
compact/1
proplists, 268
components/1
digraph_utils, 101
composite/2
sofs, 322
concat/1
lists, 223
concat/2
string, 341
condensation/1
digraph_utils, 101
cons/2
queue, 290
constant_function/2
sofs, 322
converse/1
sofs, 323
copies/2
string, 343
\(\cos / 1\)
math , 238
cosh/1
math , 238
create/1
pg, 259
create/2
erl_tar, 124
pg, 259
zip, 373
create/3
erl_tar, 125
zip, 373
crypto_key_fun/1
beam_lib, 61
cspan/2
string , 342
current_key/1
win32reg, 369
cursor/2
qle , 280
cyclic_strong_components/1
digraph_utils, 101
daeh/1
queue, 290
date_to_gregorian_days/1
calendar , 68
date_to_gregorian_days/3
calendar, 68
datetime_to_gregorian_seconds/2
calendar , 68
day_of_the_week/1
calendar , 68
day_of_the_week/3
calendar , 68
debug_options/1
sys, 361
decode/1
base64, 54
decode_to_string/1
base64, 54
deep_char_list/1
io_lib, 219
del_binding/2
erl_eval , 107
del_edge/2
digraph, 94
del_edges/2
digraph , 94
del_element/2
gb_sets, 165
ordsets, 257
sets, 302
del_path/3
digraph, 94
del_vertex/2
digraph , 95
del_vertices/2
digraph , 95
delete/1
digraph, 95
ets, 130
delete/2
dets, 74
ets, 130
gb_sets, 165
gb_trees, 170
lists, 223
proplists, 268
delete_all_objects/1
dets, 74
ets, 130
delete_any/2
gb_sets, 165
gb_trees, 171
delete_child/2
supervisor, 351
delete_cursor/1
qlc, 281
delete_handler/3
gen_event, 179
delete_key/1
win32reg, 369
delete_object/2
dets, 74
ets, 130
delete_value/2
win32reg, 370
dets
all/0, 73
bchunk/2, 73
close/1, 74
delete/2, 74
delete_all_objects/1,74
delete_object/2, 74
first/1, 74
foldl/3, 75
foldr/3, 75
from_ets/2, 75
info/1, 75
info/2, 76
init_table/3, 76
insert/2, 77
insert_new/2, 77
is_compatible_bchunk_format/2, 78
is_dets_file/1, 78
lookup/2, 78
match/1, 78
match/2, 79
match/3, 79
match_delete/2, 79
match_object/1, 80
match_object/2, 80
match_object/3, 80
member/2, 81
next/2, 81
open_file/1,81
open_file/2, 81
pid2name/1, 83
repair_continuation/2, 83
safe_fixtable/2, 83
select/1, 84
select/2, 84
select/3, 84
select_delete/2, 85
slot/2, 85
sync/1, 85
table/2, 86
to_ets/2, 86
traverse/2, 87
update_counter/3,87
dict
append/3, 88
append_list/3, 88
erase/2, 88
fetch/2, 89
fetch_keys/1, 89
filter/2, 89
find/2, 89
fold/3, 89
from_list/1, 89
is_key/2, 90
map/2, 90
merge/3, 90
new/0, 90
store/3, 90
to_list/1, 90
update/3, 91
update/4, 91
update_counter/3,91
diff_dirs/2
beam_lib, 60
difference/2
gb_sets, 165
sofs, 323
digraph
add_edge/3, 93
add_edge/4, 93
add_edge/5, 93
add_vertex/1, 94
add_vertex/2, 94
add_vertex/3, 94
del_edge/2, 94
del_edges/2,94
del_path/3, 94
del_vertex/2, 95
del_vertices/2, 95
delete/1, 95
edge/2, 95
edges/1, 95
edges/2, 95
get_cycle/2,96
get_path/3, 96
get_short_cycle/2,96
get_short_path/3, 96
in_degree/2, 97
in_edges/2, 97
in_neighbours/2, 97
info/1, 97
new/0, 98
new/1, 98
no_edges/1, 98
no_vertices/1, 98
out_degree/2, 98
out_edges/2, 98
out_neighbours/2, 98
vertex/2, 99
vertices/1,99
digraph_to_family/2
sofs, 323
digraph_utils
components/1, 101
condensation/1, 101
cyclic_strong_components/1,101
is_acyclic/1,101
loop_vertices/1,101
postorder/1, 102
preorder/1, 102
reachable/2, 102
reachable_neighbours \(/ 2,102\)
reaching/2, 102
reaching_neighbours/2,102
strong_components/1,103
subgraph/3, 103
topsort/1, 103
dirname/1
filename , 160
domain/1
sofs, 323
drestriction/2
sofs, 323
drestriction/3
sofs, 324
dropwhile/2
lists, 223
duplicate/2
lists, 223
e/2
qlc, 281
edge/2
digraph , 95
edges/1
digraph , 95
edges/2
digraph , 95
empty/0
gb_sets, 166
gb_trees, 171
empty_set/0
sofs, 324
encode/1
base64, 54
encode_to_string/1
base64, 54
ensure_dir/1
filelib, 155
enter/3
gb_trees, 171
enter_loop/3
gen_server, 201
enter_loop/4
gen_fsm, 190
gen_server, 201
enter_loop/5
gen_fsm, 190
gen_server, 201
enter_loop/6
gen_fsm , 190
epp
close/1, 104
open/2, 104
open/3, 104
parse_erl_form/1,104
parse_file/3, 104
equal/2
string, 341
erase/2
dict, 88
orddict, 251
erf/1
math , 239
erfc/1
math , 239
erl_eval
add_binding/3, 107
binding/2, 107
bindings/1, 107
del_binding/2, 107
expr/2, 106
expr/3, 106
expr/4, 106
expr_list/2, 107
expr_list/3, 107
expr_list/4, 107
exprs/2, 106
exprs/3, 106
exprs/4, 106
new_bindings/0, 107
erl_expand_records
module/2, 109
erl_id_trans
parse_transform/2, 110
erl_internal
arith_op/2, 111
bif/2, 111
bool_op/2, 111
comp_op/2, 112
guard_bif/2,111
list_op/2, 112
op_type/2, 112
send_op/2, 112
type_test/2, 111
erl_lint
format_error/1, 114
is_guard_test/1, 114
module/1, 113
module/2, 113
module/3, 113
erl_parse
abstract/1, 116
format_error/1, 116
normalise/1, 116
parse_exprs/1,115
parse_form/1, 115
parse_term/1, 115
tokens/1, 116
tokens/2, 116
erl_pp
attribute/1, 118
attribute/2, 118
expr/1, 119
expr/2, 119
expr/3, 119
expr/4, 119
exprs/1,119
exprs/2, 119
exprs/3, 119
form/1, 118
form/2, 118
function/1, 118
function/2, 118
guard/1, 118
guard/2, 118
erl_scan
format_error/1, 122
reserved_word/1, 122
string/1, 121
string/2, 121
tokens/3, 121
erl_tar
add/3, 124
add/4, 124
close/1, 124
create/2, 124
create/3, 125
extract/1, 125
extract/2, 125
format_error/1, 126
open/2, 126
t/1, 127
table/1, 127
table/2, 127
tt/1, 127
error_message/2
lib, 220
esend/2
\(p g, 260\)
ets
all/0, 130
delete/1, 130
delete/2, 130
delete_all_objects/1, 130
delete_object/2, 130
file2tab/1, 131
first/1, 131
fixtable/2, 131
foldl/3, 131
foldr/3, 131
from_dets/2, 132
fun2ms/1, 132
i/0, 133
i/1, 133
info/1, 133
info/2, 134
init_table/2, 134
insert/2, 135
insert_new/2, 135
is_compiled_ms/1,135
last/1, 136
lookup/2, 136
lookup_element/3, 136
match/1, 138
match/2, 137
match/3, 137
match_delete/2, 138
match_object/1, 139
match_object/2, 138
match_object/3, 138
match_spec_compile/1, 139
match_spec_run/2, 139
member/2, 140
new/2, 140
next/2, 141
prev/2, 141
rename/2, 142
repair_continuation/2, 142
safe_fixtable/2,143
select/1, 145
select/2, 144
select/3, 145
select_count/2, 146
select_delete/2, 145
slot/2, 146
tab2file/2, 146
tab2list/1, 147
table/2, 147
test_ms/2, 148
to_dets/2, 148
update_counter/3, 148
update_counter/4, 148
update_counter/6, 148
eval/2
qlc, 281
exit_after/2
timer , 365
exit_after/3
timer , 365
\(\exp / 1\)
math , 238
expand/1
win32reg, 370
expand/2
proplists, 268
expr/1
erl_pp, 119
expr/2
erl_eval , 106
erl_pp , 119
expr/3
erl_eval , 106
erl_pp, 119
expr/4
erl_eval, 106
erl_pp, 119
expr_list/2
erl_eval, 107
expr_list/3
erl_eval, 107
expr_list/4
erl_eval , 107
exprs/1
erl_pp , 119
exprs/2
erl_eval, 106
erl_pp , 119
exprs/3
erl_eval, 106
erl_pp, 119
exprs/4
erl_eval , 106
extension/1
filename, 160
extension/3
sofs, 324
extract/1
erl_tar, 125
zip, 374
extract/2
erl_tar, 125
zip, 374
family/2
sofs, 325
family_difference/2 sofs, 325
family_domain/1 sofs, 325
family_field/1
sofs, 325
family_intersection/1 sofs, 326
family_intersection/2 sofs, 326
family_projection/2 sofs, 326
family_range/1 sofs, 326
family_specification/2 sofs, 327
family_to_digraph/2 sofs, 327
family_to_relation/1 sofs, 327
family_union/1 sofs, 328
family_union/2 sofs, 328
fetch/2
dict, 89
orddict, 252
fetch_keys/1 dict, 89 orddict, 252
field/1 sofs, 328
file2tab/1
ets, 131
file_size/1 filelib, 155
file_sorter
check/1, 154
check/2, 154
keycheck/2, 154
keycheck/3, 154
keymerge/3, 154
keymerge/4, 154
keysort/2, 153
keysort/3, 153
keysort/4, 153
merge/2, 153
merge/3, 153
sort/1, 153
sort/2, 153
sort/3, 153
filelib
ensure_dir/1, 155
file_size/1, 155
fold_files/5, 155
is_dir/1, 155
is_file/1, 155
is_regular/1, 156
last_modified/1, 156
wildcard/1, 156
wildcard/2, 157
filename
absname/1, 158
absname/2, 159
absname_join/2, 159
basename/1, 159
basename/2, 159
dirname/1, 160
extension/1,160
find_src/1, 162
find_src/2, 162
flatten/1, 160
join/1, 161
join/2, 161
nativename/1, 161
pathtype/1,161
rootname/1, 162
rootname/2, 162
split/1, 162
filter/2
dict, 89
gb_sets, 166
lists, 224
orddict, 252
ordsets, 258
sets, 303
find/2
dict, 89
orddict, 252
find_src/1
filename, 162
find_src/2
filename, 162
first/1
dets, 74
ets, 131
first_match/2
regexp, 296
fixtable/2
ets, 131
flatlength/1
lists, 224
flatmap/2
lists, 224
flatten/1
filename, 160
lists, 224
flatten/2
lists, 224
flush/0
c, 64
flush_receive/0 lib, 220
fold/3
dict, 89
gb_sets, 166
orddict, 252
ordsets, 258
sets, 303
fold/4
qlc, 281
fold_files/5
filelib, 155
foldl/3
dets, 75
ets, 131
lists, 224
foldr/3
dets, 75
ets, 131
lists, 225
foreach/2
lists, 225
form/1
erl_pp, 118
form/2 erl_pp, 118
format/1
io, 207 proc_lib, 266
format/2
io_lib, 217
format/3
io , 207
format_error/1
beam_lib, 61
erl_lint, 114
erl_parse, 116
erl_scan, 122
erl_tar, 126
ms_transform , 250
qlc, 281
regexp, 298
win32reg, 370
fread/2
io_lib, 217
fread/3
io, 211
io_lib, 217
from_dets/2
ets, 132
from_ets/2
dets, 75
from_external/2
sofs, 328
from_list/1
dict, 89
gb_sets, 166
orddict, 252
ordsets, 257
queue, 290
sets, 302
from_orddict/1
gb_trees, 171
from_ordset/1
gb_sets, 166
from_sets/1
sofs, 328, 329
from_term/2
sofs, 329
fun2ms/1
ets, 132
function/1
erl_pp, 118
function/2
erl_pp, 118
fwrite/1
io , 207
fwrite/2
io_lib, 217
fwrite/3
io , 207
gb_sets
add/2, 165
add_element/2, 165
balance/1, 165
del_element/2, 165
delete/2, 165
delete_any/2, 165
difference/2, 165
empty/0, 166
filter/2, 166
fold/3, 166
from_list/1, 166
from_ordset/1, 166
insert/2, 166
intersection/1, 167
intersection/2, 167
is_element/2, 167
is_empty/1,167
is_member/2, 167
is_set/1, 167
is_subset/2, 167
iterator/1,167
largest/1, 168
new/0, 166
next/1, 168
singleton/1, 168
size/1, 168
smallest/1, 168
subtract/2, 166
take_largest/1, 168
take_smallest/1, 168
to_list/1, 169
union/1, 169
union/2, 169
gb_trees
balance/1, 170
delete/2, 170
delete_any/2, 171
empty/0, 171
enter/3, 171
from_orddict/1,171
get/2, 171
insert/3, 172
is_defined/2, 172
is_empty/1,172
iterator/1, 172
keys/1, 172
largest/1, 172
lookup/2, 171
next/1, 172
size/1, 173
smallest/1,173
take_largest/1,173
take_smallest/1, 173
to_list/1, 173
update/3, 173
values/1, 174
gen_event
add_handler/3, 176
add_sup_handler/3, 177
call/3, 178
call/4, 178
delete_handler/3,179
Module:code_change/3, 183
Module:handle_call/2, 182
Module:handle_event/2, 181
Module:handle_info/2, 182
Module:init/1, 181
Module:terminate/2,183
notify/2, 178
start/0, 176
start/1, 176
start_link/0, 176
start_link/1, 176
stop/1, 181
swap_handler/5, 179
swap_sup_handler/5, 180
sync_notify/2, 178
which_handlers/1,180
gen_fsm
cancel_timer/1, 190
enter_loop/4, 190
enter_loop/5, 190
enter_loop/6, 190
Module: code_change/4, 195
Module:handle_event/3, 192
Module:handle_info/3, 194
Module:handle_sync_event/4, 193
Module:init/1, 191
Module:StateName/2, 192
Module:StateName/3, 193
Module:terminate/3, 194
reply/2, 189
send_all_state_event/2, 188
send_event/2, 187
send_event_after/2,189
start/3, 187
start/4, 187
start_link/3, 186
start_link/4, 186
start_timer/2, 189
sync_send_all_state_event/2, 188
sync_send_all_state_event/3, 188
sync_send_event/2, 188
sync_send_event/3, 188
gen_server
abcast/2, 200
abcast/3, 200
call/2, 198
call/3, 198
cast/2, 200
enter_loop/3, 201
enter_loop/4, 201
enter_loop/5, 201
Module:code_change/3, 204
Module:handle_call/3, 202
Module:handle_cast/2, 203
Module:handle_info/2, 203
Module:init/1, 202
Module:terminate/2, 203
multi_call/2, 199
multi_call/3, 199
multi_call/4, 199
reply/2, 200
start/3, 197
start/4, 197
start_link/3, 196
start_link/4, 196
get/2
gb_trees, 171
get_all_values/2
proplists, 269
get_bool/2
proplists, 269
get_chars/3
io, 205
get_cycle/2
digraph, 96
get_debug/3
sys, 361
get_keys/1
proplists, 269
get_line/2
io , 206
get_node/0
pool, 262
get_nodes/0
pool, 262
```

get_path/3
digraph ,96
get_short_cycle/2
digraph , }9
get_short_path/3
digraph , }9
get_status/1
sys, 359
get_status/2
sys, 359
get_value/2
proplists,270
get_value/3
proplists, 270
gregorian_days_to_date/1
calendar, 68
gregorian_seconds_to_datetime/1
calendar , 68
gsub/3
regexp,297
guard/1
erl_pp,118
guard/2
erl_pp,118
guard_bif/2
erl_internal , 111
handle_debug/1
sys, 361
handle_system_msg/6
sys,361
head/1
queue, 290
help/0
c,64
hibernate/3
proc_lib,267
history/1
shell, 312
hms/3
timer , 366
hours/1
timer , 366

```
i/0
c, 64
ets, 133
i/1
ets, 133
i/3
c, 64
image/2
sofs, 330
in/2
queue, 290
in_degree/2
digraph, 97
in_edges/2
digraph , 97
in_neighbours/2
digraph , 97
in_r/2
queue, 291
indentation/2
io_lib, 218
info/1
beam_lib, 59
dets, 75
digraph, 97
ets, 133
info/2
dets, 76
ets, 134
qlc , 282
init/1
queue, 291
init/3
log_mf_h , 237
init/4
log_mf_h , 237
init_ack/1
proc_lib, 265
init_ack/2
proc_lib, 265
init_table/2
ets, 134
init_table/3 dets, 76
initial_call/1
proc_lib, 266
insert/2
dets, 77
ets, 135
gb_sets, 166
insert/3
gb_trees, 172
insert_new/2
dets, 77
ets, 135
install/3
sys, 360
install/4
sys, 360
intersection/1
gb_sets, 167
ordsets, 258
sets, 303
sofs, 330
intersection/2
gb_sets, 167
ordsets, 257
sets, 302
sofs, 330
intersection_of_family/1 sofs, 330
inverse/1
sofs, 330
inverse_image/2
sofs, 331
io
format/1, 207
format/3, 207
fread/3, 211
fwrite/1, 207
fwrite/3, 207
get_chars/3, 205
get_line/2, 206
nl/1, 205
parse_erl_exprs/1, 214
parse_erl_exprs/3, 214
parse_erl_form/1, 214
parse_erl_form/3, 214
put_chars/2, 205
read/2, 207
read/3, 207
scan_erl_exprs/1,213
scan_erl_exprs/3, 213
scan_erl_form/1, 213
scan_erl_form/3, 213
setopts/2, 206
write/2, 206
io_lib
char_list/1, 219
deep_char_list/1, 219
format/2, 217
fread/2, 217
fread/3, 217
fwrite/2, 217
indentation/2, 218
nl/0, 216
print/1, 216
print/4, 216
printable_list/1, 219
write/1, 216
write/2, 216
write_atom/1, 218
write_char/1, 218
write_string/1, 218
is_a_function/1
sofs, 331
is_acyclic/1
digraph_utils, 101
is_compatible_bchunk_format/2
dets, 78
is_compiled_ms/1
ets, 135
is_defined/2
gb_trees, 172
proplists, 270
is_dets_file/1
dets, 78
is_dir/1
filelib, 155
is_disjoint/2
sofs, 331
is_element/2
gb_sets, 167
ordsets, 257
sets, 302
is_empty/1
gb_sets, 167
gb_trees, 172
queue, 291
is_empty_set/1 sofs, 331
is_equal/2
sofs, 331
is_file/1
filelib, 155
is_guard_test/1
erl_lint, 114
is_key/2
dict, 90
orddict, 253
is_leap_year/1
calendar, 68
is_member/2
gb_sets, 167
is_regular/1 filelib, 156
is_set/1
gb_sets, 167
ordsets, 256
sets, 301
sofs, 331
is_sofs_set/1 sofs, 332
is_subset/2
gb_sets, 167
ordsets, 258
sets, 303
sofs, 332
is_type/1
sofs, 332
iterator/1
gb_sets, 167
gb_trees, 172
join/1
filename , 161
join/2
filename, 161
pg, 259
queue, 291
join/4
sofs, 332
keycheck/2
file_sorter, 154
keycheck/3
file_sorter , 154
keydelete/3
lists, 225
keymap/3
lists , 226
keymember/3
lists, 226
keymerge/3
file_sorter , 154
lists, 226
keymerge/4
file_sorter , 154
keyreplace/4
lists, 226
keys/1
gb_trees, 172
keysearch/3
lists, 227
keysort/2
file_sorter , 153
lists, 227
keysort/3
file_sorter , 153
qle, 283
keysort/4
file_sorter , 153
kill_after/1
timer, 365
kill_after/2
timer, 365

1/1
c, 64
lait/1
queue, 291
largest/1
gb_sets, 168
gb_trees, 172
last/1
ets, 136
lists, 227
queue, 291
last_day_of_the_month/2
calendar, 68
last_modified/1
filelib, 156
lc/1
c, 64
left/2
string, 344
left/3
string , 344
len/1
queue, 291
string, 341
lib
error_message/2, 220
flush_receive/0, 220
nonl/1, 220
progname/0, 220
send/2, 220
sendw/2, 221
list_dir/1
zip, 375
list_dir/2
zip , 375
list_op/2
erl_internal , 112
lists
all/2, 222
any/2, 222
append/1, 222
append/2, 222
concat/1, 223
delete/2, 223
dropwhile/2, 223
duplicate/2, 223
filter/2, 224
flatlength/1, 224
flatmap/2, 224
flatten/1, 224
flatten/2, 224
foldl/3, 224
foldr/3, 225
foreach/2, 225
keydelete/3, 225
keymap/3, 226
keymember/3, 226
keymerge/3, 226
keyreplace/4, 226
keysearch/3, 227
keysort/2, 227
last/1, 227
map/2, 227
mapfoldl/3, 227
mapfoldr/3, 228
max/1, 228
member/2, 228
merge/1, 228
merge/2, 228
merge/3, 229
merge3/3, 229
min/1, 229
nth/2, 229
nthtail/2, 229
partition/2, 230
prefix/2, 230
reverse/1, 230
reverse/2, 230
seq/2, 231
seq/3, 231
sort/1, 231
sort/2, 231
split/2, 231
splitwith/2, 231
sublist/2, 232
sublist/3, 232
subtract/2, 232
suffix/2, 233
sum/1, 233
takewhile/2, 233
ukeymerge/3, 233
ukeysort/2, 233
umerge/1, 233
umerge/2, 234
umerge/3, 234
umerge3/3, 234
unzip/1, 234
unzip3/1, 234
usort/1, 235
usort/2, 235
zip/2, 235
zip3/3, 235
zipwith/3, 236
zipwith3/4, 236
local_time/0
calendar, 69
local_time_to_universal_time/2
calendar , 69
local_time_to_universal_time_dst/2
calendar, 69
\(\log / 1\)
math , 238
\(\log / 2\)
sys, 358
\(\log / 3\)
sys, 358
\(\log 10 / 1\)
math , 238
log_mf_h
init/3, 237
init/4, 237
log_to_file/2
sys, 358
log_to_file/3
sys, 358
lookup/2
dets, 78
ets, 136
gb_trees, 171
proplists, 270
lookup_all/2
proplists, 270
lookup_element/3 ets, 136
loop_vertices/1 digraph_utils, 101
1s/0
c, 64
ls/1
C, 64
m/0
c, 65
m/1
c, 65
map/2
dict, 90
lists, 227
orddict, 253
mapfoldl/3
lists, 227
mapfoldr/3
lists, 228
match/1
dets, 78
ets, 138
match/2
dets, 79
ets, 137
regexp, 296
match/3
dets, 79
ets, 137
match_delete/2
dets, 79
ets, 138
match_object/1
dets, 80
ets, 139
match_object/2
dets, 80
ets, 138
match_object/3
dets, 80
ets, 138
match_spec_compile/1
ets, 139
match_spec_run/2
ets, 139
matches/2
regexp, 296
math
\(\operatorname{acos} / 1,238\)
acosh/1, 238
asin/1, 238
asinh/1, 238
atan/1, 238
\(\operatorname{atan} 2 / 2,238\)
atanh/1, 238
cos/1, 238
cosh/1, 238
erf/1, 239
erfc/1, 239
exp/1, 238
\(\log / 1,238\)
log10/1, 238
pi/0, 238
pow/2, 238
\(\sin / 1,238\)
sinh/1, 238
sqrt/1, 238
tan/1, 238
tanh/1, 238
\(\max / 1\)
lists, 228
md5/1
beam_lib, 59
member/2
dets, 81
ets, 140
lists, 228
members/1
\(p g, 260\)
memory/0
c, 65
memory/1
c, 65
merge/1
lists , 228
merge/2
file_sorter, 153
lists, 228
merge/3
dict, 90
file_sorter, 153
lists, 229
orddict, 253
merge3/3
lists, 229
mime_decode/1
base64, 54
mime_decode_string/1
base64, 54
\(\min / 1\)
lists, 229
minutes/1
timer , 366
Mod: system_code_change/4 sys, 362

Mod:system_continue/3 sys, 362

Mod:system_terminate/4 sys, 362
module/1
erl_lint , 113
module/2
erl_expand_records, 109 erl_lint, 113
module/3
erl_lint, 113
Module:code_change/3
gen_event, 183
gen_server, 204
Module:code_change/4 gen_fsm, 195

Module:handle_call/2 gen_event, 182
Module:handle_call/3 gen_server , 202

Module:handle_cast/2 gen_server , 203

Module:handle_event/2 gen_event, 181

Module:handle_event/3 gen_fsm , 192
Module:handle_info/2 gen_event, 182 gen_server , 203

Module:handle_info/3 gen_fsm, 194

Module:handle_sync_event/4 gen_fsm, 193

Module:init/1
gen_event, 181
gen_fsm, 191
gen_server, 202
supervisor, 353
supervisor_bridge, 355
Module:StateName/2 gen_fsm , 192

Module:StateName/3 gen_fsm, 193
Module:terminate/2
gen_event, 183
gen_server, 203
supervisor_bridge, 355
Module:terminate/3 gen_fsm , 194
ms_transform
format_error/1, 250
parse_transform/2, 249
transform_from_shell/3, 249
multi_call/2
gen_server , 199
multi_call/3
gen_server, 199
multi_call/4
gen_server , 199
multiple_relative_product/2
sofs, 332
nativename/1
filename , 161
nc/1
c, 65
\(\mathrm{nc} / 2\)
c, 65
new/0
dict, 90
digraph, 98
gb_sets, 166
orddict, 253
ordsets, 256
queue, 292
sets, 301
new/1
digraph , 98
new/2
ets, 140
new_bindings/0
erl_eval, 107
next/1
gb_sets, 168
gb_trees, 172
next/2
dets, 81
ets, 141
next_answers/2
qlc, 283
ni/0
c, 64
nl/0
io_lib, 216
nl/1
c, 65
io, 205
no_debug/1
sys, 359
no_debug/2
sys, 359
no_edges/1
digraph, 98
no_elements/1
sofs, 333
no_vertices/1
digraph , 98
nonl/1
lib, 220
normalise/1
erl_parse, 116
normalize/2
proplists, 270
notify/2
gen_event, 178
now_diff/2
timer , 366
now_to_datetime/1
calendar, 70
now_to_local_time/1
calendar , 69
now_to_universal_time/1
calendar , 70
nregs/0
c, 66
nth/2
lists, 229
nthtail/2
lists, 229
op_type/2
erl_internal, 112
open/1
win32reg, 370
open/2
epp, 104
erl_tar, 126
open/3
epp, 104
open_file/1
dets, 81
open_file/2
dets, 81
orddict
append/3, 251
append_list/3, 251
erase/2, 251
fetch/2, 252
fetch_keys/1, 252
filter/2, 252
find/2, 252
fold/3, 252
from_list/1, 252
is_key/2, 253
map/2, 253
merge/3, 253
new/0, 253
store/3, 253
to_list/1, 253
update/3, 254
update/4, 254
update_counter/3, 254
ordsets
add_element/2, 257
del_element/2, 257
filter/2, 258
fold/3, 258
from_list/1, 257
intersection/1, 258
intersection/2, 257
is_element/2, 257
is_set/1, 256
is_subset/2, 258
new/0, 256
size/1, 256
subtract/2, 258
to_list/1, 256
union/1, 257
union/2, 257
out/1
queue, 292
out_degree/2
digraph , 98
out_edges/2
digraph , 98
out_neighbours/2
digraph , 98
out_r/1
queue, 292
parse/1
regexp, 298
parse_erl_exprs/1
io , 214
parse_erl_exprs/3
io, 214
parse_erl_form/1
epp, 104
io , 214
parse_erl_form/3
io , 214
parse_exprs/1
erl_parse, 115
parse_file/3
epp , 104
parse_form/1
erl_parse, 115
parse_term/1
erl_parse, 115
parse_transform/2
erl_id_trans, 110
ms_transform, 249
partition/1
sofs, 333
partition/2
lists, 230
sofs, 333
partition/3
sofs, 333
partition_family/2
sofs, 334
pathtype/1
filename , 161
pg
create/1, 259
create/2, 259
esend/2, 260
join/2, 259
members/1, 260
send/2, 260
pi/0
math , 238
pid/3
c, 65
pid2name/1
dets, 83
pool
attach/1, 261
get_node/0, 262
get_nodes/0, 262
pspawn/3, 262
pspawn_link/3, 262
start/1, 261
start/2, 261
stop/0, 262
postorder/1
digraph_utils, 102
pow/2
math , 238
prefix/2
lists, 230
preorder/1 digraph_utils, 102
prev/2
ets, 141
print/1 io_lib, 216
print/4
io_lib, 216
print_log/1
sys, 362
printable_list/1
io_lib, 219
proc_lib
format/1, 266
hibernate/3, 267
init_ack/1, 265
init_ack/2, 265
initial_call/1,266
spawn/1, 263
spawn/2, 263
spawn/3, 263
spawn/4, 263
spawn_link/1, 263
spawn_link/2, 263
spawn_link/3, 263
spawn_link/4, 264
spawn_opt/2, 264
spawn_opt/3, 264
spawn_opt/4, 264
spawn_opt/5, 264
start/3, 264
start/4, 264
start/5, 264
start_link/3, 264
start_link/4, 264
start_link/5, 264
translate_initial_call/1, 266
product/1
sofs, 334
product/2
sofs, 334
progname/0
lib, 220
projection/2
sofs, 335
property/1
proplists, 271
property/2
proplists, 271
proplists
append_values/2, 268
compact/1, 268
delete/2, 268
expand/2, 268
get_all_values/2, 269
get_bool/2, 269
get_keys/1, 269
get_value/2, 270
get_value/3, 270
is_defined/2, 270
lookup/2, 270
lookup_all/2, 270
normalize/2, 270
property/1, 271
property/2, 271
split/2, 271
substitute_aliases/2, 272
substitute_negations/2, 272
unfold/1, 272
pseudo/1
slave, 317
pseudo/2
slave, 317
pspawn/3
pool, 262
pspawn_link/3 pool, 262
put_chars/2
io , 205
pwd/0
c, 66
q/0
c, 66
q/2
qlc, 283
qlc
append/1, 280
append/2, 280
cursor/2, 280
delete_cursor/1, 281
e/2, 281
eval/2, 281
fold/4, 281
format_error/1, 281
info/2, 282
keysort/3, 283
next_answers/2, 283
q/2, 283
sort/2, 286
string_to_handle/3, 286
table/2, 287
queue
cons/2, 290
daeh/1, 290
from_list/1, 290
head/1, 290
in/2, 290
in_r/2, 291
init/1, 291
is_empty/1, 291
join/2, 291
lait/1, 291
last/1, 291
len/1, 291
new/0, 292
out/1, 292
out_r/1, 292
reverse/1, 292
snoc/2, 292
split/2, 292
tail/1, 292
to_list/1, 293

\section*{random}
seed/0, 294
seed/3, 294
seed0/0, 294
uniform/0, 294
uniform/1, 294
uniform_s/1, 295
uniform_s/2, 295
range/1
sofs, 335
rchr/2
string, 341
reachable/2
digraph_utils, 102
reachable_neighbours/2 digraph_utils, 102
reaching/2 digraph_utils, 102
reaching_neighbours/2 digraph_utils, 102
read/2 io , 207
read/3 io , 207
regexp
first_match/2, 296
format_error/1, 298
gsub/3, 297
match/2, 296
matches/2, 296
parse/1, 298 sh_to_awk/1, 298 split/2, 297 sub/3, 297
regs/0
c, 66
relation/2 sofs, 335
relation_to_family/1 sofs, 335
relative_product/2 sofs, 336
relative_product1/2 sofs, 336
relay/1
slave, 317
remove/2
sys, 360
remove/3
sys, 360
rename/2
ets, 142
repair_continuation/2
dets, 83
ets, 142
reply/2
gen_fsm , 189
gen_server, 200
reserved_word/1
erl_scan , 122
restart_child/2
supervisor, 351
restriction/2
sofs, 336
restriction/3
sofs, 337
results/1
shell , 312
resume/1
sys, 359
resume/2
sys, 359
reverse/1
lists, 230
queue, 292
reverse/2
lists, 230
right/2
string, 344
right/3
string , 344
rootname/1
filename , 162
rootname/2
filename , 162
rstr/2
string, 341
safe_fixtable/2
dets, 83
ets, 143
scan_erl_exprs/1
io, 213
scan_erl_exprs/3
io , 213
scan_erl_form/1 io , 213
scan_erl_form/3 io , 213
seconds/1
timer , 366
seconds_to_daystime/1
calendar , 70
seconds_to_time/1 calendar , 70
seed/0
random , 294
seed/3
random , 294
seed0/0
random , 294
select/1
dets, 84
ets , 145
select/2
dets, 84
ets, 144
select/3
dets, 84
ets , 145
select_count/2
ets , 146
select_delete/2
dets, 85
ets , 145
send/2
lib , 220
pg , 260
send_after/2
timer, 364
send_after/3
timer, 364
send_all_state_event/2 gen_fsm , 188
send_event/2
gen_fsm , 187
send_event_after/2
gen_fsm , 189
send_interval/2
timer, 365
send_interval/3
timer, 365
send_op/2
erl_internal, 112
sendw/2
lib , 221
seq/2
lists , 231
seq/3
lists, 231
set/2
sofs, 337
set_value/3
win32reg, 370
setopts/2
io , 206
sets
add_element/2, 302
del_element/2, 302
filter/2, 303
fold \(/ 3,303\)
from_list/1, 302
intersection/1,303
intersection/2, 302
is_element/2, 302
is_set/1, 301
is_subset/2, 303
new/0, 301
size/1, 301
subtract/2, 303
to_list/1, 301
union/1, 302
union/2, 302
sh_to_awk/1
regexp, 298
shell
history/1, 312
results/1, 312
start_restricted/1,313
stop_restricted/0, 313
sin/1
math , 238
singleton/1
gb_sets, 168
sinh/1
math, 238
size/1
gb_sets, 168
gb_trees, 173
ordsets, 256
sets, 301
slave
pseudo/1, 317
pseudo/2, 317
relay/1, 317
start/1, 315
start/2, 315
start/3, 315
start_link/1, 316
start_link/2, 316
start_link/3, 316
stop/1, 317
sleep/1
timer , 365
slot/2
dets, 85
ets, 146
smallest/1
gb_sets, 168
gb_trees, 173
snoc/2
queue, 292
sofs
a_function/2, 322
canonical_relation/1, 322
composite/2, 322
constant_function/2, 322
converse/1, 323
difference/2, 323
digraph_to_family/2, 323
domain/1, 323
drestriction/2, 323
drestriction/3, 324
empty_set/0, 324
extension/3, 324
family/2, 325
family_difference/2, 325
family_domain/1, 325
family_field/1, 325
family_intersection/1, 326
family_intersection/2, 326
family_projection/2, 326
family_range/1, 326
family_specification/2, 327
family_to_digraph/2, 327
family_to_relation/1, 327
family_union/1,328
family_union/2, 328
field/1, 328
from_external/2, 328
from_sets/1, 328, 329
from_term/2, 329
image/2, 330
intersection/1,330
intersection/2, 330
intersection_of_family/1, 330
inverse/1, 330
inverse_image/2, 331
is_a_function/1, 331
is_disjoint/2, 331
is_empty_set/1,331
is_equal/2, 331
is_set/1,331
is_sofs_set/1, 332
is_subset/2, 332
is_type/1, 332
join/4, 332
multiple_relative_product/2, 332
no_elements/1, 333
partition/1, 333
partition/2, 333
partition/3, 333
partition_family/2, 334
product/1, 334
product/2, 334
projection/2, 335
range/1, 335
relation/2, 335
relation_to_family/1, 335
relative_product/2, 336
relative_product1/2, 336
restriction/2, 336
restriction/3, 337
set/2, 337
specification/2, 337
strict_relation/1, 337
substitution/2, 338
symdiff/2, 338
symmetric_partition/2, 339
to_external/1, 339
to_sets/1, 339
type/1, 339
union/1, 339
union/2, 339
union_of_family/1, 340
weak_relation/1, 340
sort/1
file_sorter , 153
lists, 231
sort/2
file_sorter , 153
lists, 231
qlc, 286
sort/3
file_sorter , 153
span/2
string , 342
spawn/1
proc_lib, 263
spawn/2
proc_lib, 263
spawn/3
proc_lib, 263
spawn/4
proc_lib, 263
spawn_link/1
proc_lib, 263
spawn_link/2
proc_lib, 263
spawn_link/3
proc_lib, 263
spawn_link/4
proc_lib, 264
spawn_opt/2
proc_lib, 264
spawn_opt/3
proc_lib, 264
spawn_opt/4
proc_lib, 264
spawn_opt/5
proc_lib, 264
specification/2 sofs, 337
split/1
filename, 162
split/2
lists, 231
proplists, 271
queue, 292
regexp, 297
splitwith/2
lists, 231
sqrt/1
math , 238
start/0
gen_event, 176
timer, 364
start/1
gen_event, 176
pool, 261
slave, 315
start/2
pool, 261
slave, 315
start/3
gen_fsm , 187
gen_server, 197
proc_lib, 264
slave, 315
start/4
gen_fsm , 187
gen_server, 197
proc_lib, 264
start/5 proc_lib, 264
start_child/2
supervisor, 350
start_link/0 gen_event, 176
start_link/1
gen_event, 176
slave , 316
start_link/2
slave, 316
supervisor, 349
supervisor_bridge, 354
start_link/3
gen_fsm , 186
gen_server, 196
proc_lib, 264
slave, 316
supervisor, 349
supervisor_bridge, 354
start_link/4
gen_fsm, 186
gen_server, 196
proc_lib, 264
start_link/5
proc_lib, 264
start_restricted/1
shell, 313
start_timer/2
gen_fsm , 189
statistics/2
sys, 358
statistics/3
sys, 358
stop/0
pool, 262
stop/1
gen_event, 181
slave, 317
stop_restricted/0
shell, 313
store/3
dict, 90
orddict, 253
str/2
string, 341
strict_relation/1
sofs, 337
string
centre/2, 344
centre/3, 344
chars/2, 342
chars \(/ 3,342\)
chr/2, 341
concat/2, 341
copies/2, 343
cspan/2, 342
equal/2, 341
left/2, 344
left/3, 344
len/1, 341
rchr/2, 341
right/2, 344
right/3, 344
rstr/2, 341
span/2, 342
str/2, 341
strip/1, 343
strip/2, 343
strip/3, 343
sub_string/2, 344
sub_string/3, 345
sub_word/2, 343
sub_word/3, 343
substr/2, 342
substr/3, 342
to_float/1, 345
to_integer/1, 345
to_lower/1, 346
to_upper/1, 346
tokens/2, 342
words/1, 343
words/2, 343
string/1
erl_scan , 121
string/2
erl_scan , 121
string_to_handle/3
qlc, 286
strip/1
beam_lib, 60
string , 343
strip/2
string, 343
strip/3
string, 343
strip_files/1
beam_lib, 60
strip_release/1
beam_lib, 61
strong_components/1
digraph_utils, 103
sub/3
regexp, 297
sub_keys/1
win32reg, 371
sub_string/2
string , 344
sub_string/3
string, 345
sub_word/2
string, 343
sub_word/3
string, 343
subgraph/3
digraph_utils, 103
sublist/2
lists, 232
sublist/3
lists, 232
substitute_aliases/2
proplists, 272
substitute_negations/2 proplists, 272
substitution/2 sofs, 338
substr/2
string, 342
substr/3
string, 342
subtract/2
gb_sets, 166
lists, 232
ordsets, 258
sets, 303
suffix/2
lists, 233
sum/1
lists, 233
supervisor
check_childspecs/1, 352
delete_child/2, 351
Module:init/1, 353
restart_child/2, 351
start_child/2, 350
start_link/2, 349
start_link/3, 349
terminate_child/2, 350
which_children/1, 352
supervisor_bridge
Module:init/1, 355
Module:terminate/2, 355
start_link/2, 354
start_link/3, 354
suspend/1
sys, 359
suspend/2
sys, 359
swap_handler/5
gen_event, 179
swap_sup_handler/5
gen_event, 180
symdiff/2
sofs, 338
symmetric_partition/2 sofs, 339
sync/1 dets, 85
sync_notify/2
gen_event, 178
sync_send_all_state_event/2 gen_fsm , 188
sync_send_all_state_event/3
gen_fsm, 188
sync_send_event/2
gen_fsm , 188
sync_send_event/3
gen_fsm, 188
sys
change_code/4, 359
change_code/5, 359
debug_options/1, 361
get_debug/3, 361
get_status/1, 359
get_status/2, 359
handle_debug/1, 361
handle_system_msg/6, 361
install/3, 360
install/4, 360
\(\log / 2,358\)
\(\log / 3,358\)
log_to_file/2, 358
log_to_file/3, 358
Mod: system_code_change/4, 362
Mod: system_continue/3, 362
Mod:system_terminate/4, 362
no_debug/1, 359
no_debug/2, 359
print_log/1, 362
remove/2, 360
remove/3, 360
resume/1, 359
resume/2, 359
statistics/2, 358
statistics \(/ 3,358\)
suspend/1, 359
suspend/2, 359
trace/2, 359
trace/3, 359
erl_tar , 127
zip, 375
tab2file/2
ets, 146
tab2list/1
ets, 147
table/1
erl_tar , 127
zip, 375
table/2
dets, 86
erl_tar , 127
ets, 147
qlc, 287
zip, 375
tail/1
queue, 292
take_largest/1
gb_sets, 168
gb_trees, 173
take_smallest/1
gb_sets, 168
gb_trees, 173
takewhile/2
lists, 233
\(\tan / 1\)
math , 238
\(\tanh / 1\) math , 238
tc/3
timer , 366
terminate_child/2
supervisor, 350
test_ms/2
ets, 148
time_difference/2
calendar , 70
time_to_seconds/1
calendar , 70
timer
apply_after/4, 364
apply_interval/4, 365
cancel/1, 365
exit_after \(/ 2,365\)
exit_after/3, 365
hms / 3, 366
hours/1, 366
kill_after/1, 365
kill_after/2, 365
minutes \(/ 1,366\)
now_diff/2, 366
seconds \(/ 1,366\)
send_after/2, 364
send_after/3, 364
send_interval/2, 365
send_interval/3, 365
sleep/1, 365
start/0, 364
tc/3, 366
to_dets/2
ets, 148
to_ets/2
dets, 86
to_external/1
sofs, 339
to_float/1
string, 345
to_integer/1
string, 345
to_list/1
dict, 90
gb_sets, 169
gb_trees, 173
orddict, 253
ordsets, 256
queue, 293
sets, 301
to_lower/1
string, 346
to_sets/1
sofs, 339
to_upper/1
string , 346
tokens/1
erl_parse, 116
tokens/2
erl_parse, 116
string, 342
tokens/3
erl_scan , 121
topsort/1
digraph_utils, 103
trace/2
sys, 359
trace/3
sys, 359
transform_from_shell/3
ms_transform, 249
translate_initial_call/1
proc_lib, 266
traverse/2
dets, 87
tt/1
erl_tar, 127
zip, 375
type/1
sofs, 339
type_test/2
erl_internal , 111
ukeymerge/3
lists, 233
ukeysort/2
lists , 233
umerge/1
lists , 233
umerge/2
lists, 234
umerge/3
lists , 234
umerge3/3
lists, 234
unfold/1
proplists, 272
uniform/0
random , 294
uniform/1
random , 294
uniform_s/1
random, 295
uniform_s/2
random, 295
union/1
gb_sets, 169
ordsets, 257
sets, 302
sofs, 339
union/2
gb_sets, 169
ordsets, 257
sets, 302
sofs, 339
union_of_family/1
sofs, 340
universal_time/0
calendar , 70
universal_time_to_local_time/2
calendar, 71
unzip/1
lists, 234
zip, 374
unzip/2
zip, 374
unzip3/1
lists, 234
update/3
dict, 91
gb_trees, 173
orddict, 254
update/4
dict, 91
orddict, 254
update_counter/3
dets, 87
dict, 91
ets, 148
orddict, 254
update_counter/4
ets, 148
update_counter/6
ets, 148
usort/1
lists, 235
usort/2
lists , 235
valid_date/1
calendar , 71
valid_date/3
calendar, 71
value/2
win32reg, 371
values/1
gb_trees, 174
win32reg, 371
version/1
beam_lib, 58
vertex/2
digraph, 99
vertices/1
digraph , 99
weak_relation/1
sofs, 340
which_children/1
supervisor, 352
which_handlers/1
gen_event, 180
wildcard/1
filelib, 156
wildcard/2
filelib, 157
win32reg
change_key/2, 369
change_key_create/2, 369
close/1, 369
current_key/1, 369
delete_key/1, 369
delete_value/2, 370
expand/1, 370
format_error/1, 370
open/1, 370
set_value/3, 370
sub_keys/1,371
value/2, 371
values/1, 371
words/1
string, 343
words/2
string, 343
write/1
io_lib, 216
write/2
io , 206
io_lib, 216
write_atom/1
io_lib, 218
```

write_char/1
io_lib, 218
write_string/1
io_lib, 218
xm/1
c,66
y/1
c,66
y/2
c,66
zip
create/2,373
create/3,373
extract/1,374
extract/2,374
list_dir/1,375
list_dir/2, 375
t/1,375
table/1, 375
table/2, 375
tt/1, 375
unzip/1,374
unzip/2,374
zip/2,373
zip/3,373
zip_close/1,376
zip_get/1,376
zip_get/2,376
zip_list_dir/1,376
zip_open/1,375
zip_open/2,376
zip/2
lists, 235
zip,373
zip/3
zip,373
zip3/3
lists, 235
zip_close/1
zip,376
zip_get/1
zip,376
zip_get/2
zip , }37
zip_list_dir/1

```
zip, 376
zip_open/1
zip, 375
zip_open/2
zip , 376
zipwith/3
lists, 236
zipwith3/4
lists , 236```

