STDLIB

version 1.13

Typeset in $\triangle T_{E} X$ from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 STD LIB Reference Manual 1
1.1 beam_lib 49
1.2 C 55
1.3 calendar 59
1.4 dets 65
1.5 dict 81
1.6 digraph 85
1.7 digraph_utils 92
1.8 epp 96
1.9 erl_eval 98
1.10 erl_id_trans 101
1.11 erl_internal 102
1.12 erl_lint 104
1.13 erl_parse 106
1.14 erl_pp 109
1.15 erl_scan 112
1.16 erl_tar 114
1.17 ets 120
1.18 file_sorter 140
1.19 filelib 145
1.20 filename 148
1.21 gb_sets 153
1.22 gb_trees 157
1.23 gen_event 160
1.24 gen_fsm 170
1.25 gen_server 180
1.26 io 189
1.27 io_lib 198
1.28 lib 201
1.29 lists 202
1.30 log_mf_h 216
1.31 math 217
1.32 ms_transform 219
1.33 orddict 230
1.34 ordsets 231
1.35 pg 232
1.36 pool 233
1.37 proc_lib 235
1.38 proplists 240
1.39 qlc 245
1.40 queue 259
1.41 random 263
1.42 regexp 265
1.43 sets 270
1.44 shell 273
1.45 shell_default 282
1.46 slave 283
1.47 sofs 286
1.48 string 309
1.49 supervisor 315
1.50 supervisor_bridge 322
1.51 sys 325
1.52 timer 332
1.53 win32reg 336

STDLIB Reference Manual

Short Summaries

- Erlang M odule beam_lib [page 49] - An interface to the BEAM file format
- Erlang M odule c [page 55] - Command Interface M odule
- Erlang M odule calendar [page 59] - Local and universal time, day-of-the-week, date and time conversions
- Erlang M odule dets [page 65] - A Disk Based Term Storage
- Erlang M odule dict [page 81] - Key-Value D ictionary
- Erlang M odule digraph [page 85] - D irected G raphs
- Erlang M odule digraph_utils [page 92] - Algorithms for D irected G raphs
- Erlang M odule epp [page 96] - An Erlang C ode Preprocessor
- Erlang M odule erl_eval [page 98] - The Erlang M eta Interpreter
- Erlang M odule erl_id_trans [page 101] - A n Identity Parse Transform
- Erlang M odule erl_internal [page 102] - Internal Erlang D efinitions
- Erlang M odule erl_lint [page 104] - The Erlang Code Linter
- Erlang M odule erl_parse [page 106] - The Erlang Parser
- Erlang M odule erl_pp [page 109] - The Erlang Pretty Printer
- Erlang M odule erl_scan [page 112] - The Erlang Token Scanner
- Erlang M odule erl_tar [page 114] - Unix 'tar' utility for reading and writing tar archives
- Erlang M odule ets [page 120] - Built-In Term Storage
- Erlang M odule file_sorter [page 140] - File Sorter
- Erlang M odule filelib [page 145] - File utilities, such as wildcard matching of filenames
- Erlang M odule filename [page 148] - File N ame M anipulation Functions
- Erlang M odule gb_sets [page 153] - General Balanced Trees
- Erlang M odule gb_trees [page 157] - General Balanced Trees
- Erlang M odule gen_event [page 160] - Generic Event H andling Behaviour
- Erlang M odule gen_fsm [page 170] - Generic Finite State M achine Behaviour
- Erlang M odule gen_server [page 180] - G eneric Server Behaviour
- Erlang M odule io [page 189] - Standard I/O Server Interface Functions
- Erlang M odule io_lib [page 198] - IO Library Functions
- Erlang M odule lib [page 201] - Interface M odule
- Erlang M odule lists [page 202] - List Processing Functions
- Erlang M odule log_mf_h [page 216] - An Event H andler which Logs Events to Disk
- Erlang M odule math [page 217] - M athematical Functions
- Erlang M odule ms_transform [page 219] - Parse_transform that translates fun syntax into match specifications.
- Erlang M odule orddict [page 230] - Key-Value Dictionary as O rdered List
- Erlang M odule ordsets [page 231] - Functions for M anipulating Sets as O rdered Lists
- Erlang M odule pg [page 232] - Distributed, N amed Process Groups
- Erlang M odule pool [page 233] - Load Distribution Facility
- Erlang M odule proc_lib [page 235] - Plug-in Replacements for spawn/1,2,3,4, spawn_link/1,2,3,4, and spawn_opt/2,3,4,5.
- Erlang M odule proplists [page 240] - Support functions for property lists
- Erlang M odule qlc [page 245] - Q uery Interface to M nesia, ETS, D ets, etc
- Erlang M odule queue [page 259] - A bstract D ata Type for FIFO Q ueues
- Erlang M odule random [page 263] - Pseudo random number generation
- Erlang M odule regexp [page 265] - Regular Expression Functions for Strings
- Erlang M odule sets [page 270] - Functions for Set M anipulation
- Erlang M odule shell [page 273] - The Erlang Shell
- Erlang M odule shell_default [page 282] - Customizing the Erlang Environment
- Erlang M odule slave [page 283] - Functions to Starting and Controlling Slave Nodes
- Erlang M odule sofs [page 286] - Functions for M anipulating Sets of Sets
- Erlang M odule string [page 309] - String Processing Functions
- Erlang M odule supervisor [page 315] - Generic Supervisor Behaviour.
- Erlang M odule supervisor_bridge [page 322] - Generic Supervisor Bridge Behaviour.
- Erlang M odule sys [page 325] - A Functional Interface to System M essages
- Erlang M odule timer [page 332] - Timer Functions
- Erlang M odule win32reg [page 336] - win32reg provides access to the registry on Windows
beam_lib
The following functions are exported:
- chunks(FileNameOrBinary, [ChunkRef]) -> \{ok, \{Module, [ChunkData] \}\} | \{error, Module, Reason\}
[page 51] Read selected chunks from a BEAM file or binary
- version(FileNameOrBinary) -> \{ok, \{Module, Version\}\} | \{error, Module, Reason\}
[page 51] Read the BEAM file's module version
- info(FileNameOrBinary) -> [SourceRef, \{module, Module\}, \{chunks, [ChunkInfo]\}] | \{error, Module, Reason\}
[page 51] Return some information about a BEAM file
- cmp(FileNameOrBinary, FileNameOrBinary) -> ok | \{error, Module, Reason\}
[page 51] Compare two BEAM files
- cmp_dirs(Directory1, Directory2) -> \{Only1, Only2, Different\} | \{error, Module, Reason\}
[page 52] C ompare the BEAM files in two directories
- diff_dirs(Directory1, Directory2) -> ok | \{error, Module, Reason\} [page 52] Compares the BEAM files in two directories
- strip(FileNameOrBinary) -> \{ok, \{Module, FileNameOrBinary\}\} | \{error, Module, Reason\}
[page 52] Removes chunks not needed by the loader from a BEAM file
- strip_files(Files) -> \{ok, [\{Module, FileNameOrBinary]\}\} | \{error, Module, Reason\}
[page 52] Removes chunks not needed by the loader from BEAM files
- strip_release(Directory) -> \{ok, [\{Module, FileName]\}\} | \{error, Module, Reason\}
[page 53] Removes chunks not needed by the loader from all BEAM files of a release
- format_error(Error) -> character_list()
[page 53] Return an English description of a BEAM read error reply
- crypto_key_fun(CryptoKeyFun) -> ok I \{error, Reason\} [page 53] Register a fun that provides a crypto key
- clear_crypto_key_fun() -> \{ok, Result $\}$
[page 54] U nregister the current crypto key fun

C

The following functions are exported:

- bt(Pid) -> void()
[page 55] Evaluate erlang: process_display(Pid, backtrace)
- c(File) -> CompileResult
[page 55] C ompile a file
- c(File, Flags) -> CompileResult
[page 55] C ompile a file
- cd(Dir) -> void()
[page 55] C hange directory
- flush() -> void()
[page 56] Flush the shell message queue
- help() -> void() [page 56] D isplay help information
- i() -> void()
[page 56] D isplay system information
- i(X, Y, Z) -> void()
[page 56] Evaluate process_info(pid(X, Y, Z))
- 1 (Module) $->$ void()
[page 56] Load code into the system
- lc(ListOfFiles) -> Result [page 56] Compile several files
- ls() -> void() [page 56] List files
- ls(Dir) -> void() [page 56] List files in Dir
- m() -> void() [page 56] List all loaded modules
- m(Module) -> void()
[page 57] D isplay information about a module
- memory() -> MemoryInformation
[page 57] Returns memory information on dynamically allocated memory
- memory(MemoryTypeSpecification) -> MemoryInformation
[page 57] Returns memory information on dynamically allocated memory
- nc(File) -> void()
[page 57] Compile file and loads it on multiple nodes
- nc(File, Flags) -> void()
[page 57] Compile file and loads it on multiples nodes
- ni() -> void()
[page 57] Display network information
- nl(Module) -> void()
[page 57] Load module in a network
- nregs() -> void()
[page 57] Display registered processes on all nodes
- pid(X, Y, Z) -> pid()
[page 57] M ake a Pid
- pwd() -> void()
[page 58] Print current working directory
- q() -> void()
[page 58] Stop the Erlang node
- regs() -> void()
[page 58] D isplay registered processes
- xm(ModSpec) -> void()
[page 58] Cross reference check a module

calendar

The following functions are exported:

- date_to_gregorian_days(Year, Month, Day) -> Days [page 59] C ompute the number of days from year 0 up to the given date.
- date_to_gregorian_days(Date) -> Days [page 59] Compute the number of days from year 0 up to the given date.
- datetime_to_gregorian_seconds(DateTime) -> Seconds [page 59] Compute the number of seconds from year 0 up to the given date and time.
- day_of_the_week(Date) -> DayNumber [page 60] C ompute the day of the week
- day_of_the_week(Year, Month, Day) -> DayNumber [page 60] C ompute the day of the week
- gregorian_days_to_date(Days) -> Date [page 60] Compute the date given the number of gregorian days.
- gregorian_seconds_to_datetime(Secs) -> DateTime [page 60] Compute the date given the number of gregorian days.
- is_leap_year(Year) -> bool() [page 60] C heck if a year is a leap year.
- last_day_of_the_month(Year, Month) -> int() [page 60] Compute the number of days in a month
- local_time() -> \{Date, Time\} [page 61] Compute local time
- local_time_to_universal_time(\{Date, Time\}) -> \{Date, Time\} [page 61] C onvert from local time to universal time.
- local_time_to_universal_time_dst(DateTime) -> [DateTimeUTC] [page 61] Convert from local time to universal time(s).
- now_to_local_time(Now) -> \{Date, Time\} [page 61] Convert now to local date and time
- now_to_universal_time(Now) -> \{Date, Time\} [page 62] Convert now to date and time
- now_to_datetime(Now) -> \{Date, Time\} [page 62] Convert now to date and time
- seconds_to_daystime(Secs) -> \{Days, Time\} [page 62] Compute a days and time from seconds.
- seconds_to_time(Secs) -> Time [page 62] Compute time from seconds.
- time_difference(T1, T2) -> Tdiff [page 62] C ompute the difference between two times
- time_to_seconds(Time) -> Secs [page 63] Compute the number of seconds since midnight up to the given time.
- universal_time() -> \{Date, Time\} [page 63] C ompute universal time
- universal_time_to_local_time(\{Date, Time\}) -> \{Date, Time\} [page 63] C onvert from universal time to local time.
- valid_date(Date) -> bool()
[page 63] Check if a date is valid
- valid_date(Year, Month, Day) -> bool() [page 63] Check if a date is valid

dets

The following functions are exported:

- all() -> [Name]
[page 66] Return a list of the names of all open D ets tables on this node.
- bchunk(Name, Continuation) -> \{Continuation2, Data\} । '\$end_of_table' | \{error, Reason\} [page 66] Return a chunk of objects stored in a D ets table.
- close(Name) -> ok | \{error, Reason\} [page 67] Close a D ets table.
- delete (Name, Key) -> ok | \{error, Reason\} [page 67] D elete all objects with a given key from a D ets table.
- delete_all_objects(Name) -> ok | \{error, Reason\} [page 67] D elete all objects from a D ets table.
- delete_object(Name, Object) -> ok | \{error, Reason\} [page 67] D elete a given object from a D ets table.
- first(Name) -> Key | '\$end_of_table' [page 67] Return the first key stored in a D ets table.
- foldl(Function, Acc0, Name) $->$ Acc1 | \{error, Reason\} [page 68] Fold a function over a D ets table.
- foldr(Function, Acc0, Name) -> Acc1 | \{error, Reason\} [page 68] Fold a function over a D ets table.
- from_ets(Name, EtsTab) -> ok | \{error, Reason\} [page 68] Replace the objects of a D ets table with the objects of an Ets table.
- info(Name) -> InfoList | undefined [page 68] Return information about a D ets table.
- info(Name, Item) -> Value | undefined [page 69] Return the information associated with a given item for a D ets table.
- init_table(Name, InitFun [, Options]) -> ok | \{error, Reason\} [page 69] Replace all objects of a Dets table.
- insert(Name, Objects) -> ok | \{error, Reason\} [page 70] Insert one or more objects into a D ets table.
- insert_new(Name, Objects) -> Bool [page 70] Insert one or more objects into a D ets table.
- is_compatible_bchunk_format(Name, BchunkFormat) -> Bool [page 71] Test compatibility of a table's chunk data.
- is_dets_file(FileName) -> Bool | \{error, Reason\} [page 71] Test for a D ets table.
- lookup(Name, Key) -> [Object] | \{error, Reason\} [page 71] Return all objects with a given key stored in a D ets table.
- match(Continuation) -> \{[Match], Continuation2\} | '\$end_of_table' | \{error, Reason\}
[page 71] M atch a chunk of objects stored in a Dets table and return a list of variable bindings.
- match(Name, Pattern) -> [Match] | \{error, Reason\} [page 72] M atch the objects stored in a D ets table and return a list of variable bindings.
- match(Name, Pattern, N) -> \{[Match], Continuation\} | '\$end_of_table' | \{error, Reason\}
[page 72] M atch the first chunk of objects stored in a D ets table and return a list of variable bindings.
- match_delete(Name, Pattern) -> N | \{error, Reason\} [page 72] D elete all objects that match a given pattern from a D ets table.
- match_object(Continuation) -> \{[Object], Continuation2\} | '\$end_of_table' | \{error, Reason\}
[page 73] M atch a chunk of objects stored in a D ets table and return a list of objects.
- match_object(Name, Pattern) -> [Object] | \{error, Reason\} [page 73] M atch the objects stored in a D ets table and return a list of objects.
- match_object(Name, Pattern, N) -> \{[Object], Continuation\} | '\$end_of_table' | \{error, Reason\}
[page 73] M atch the first chunk of objects stored in a D ets table and return a list of objects.
- member (Name, Key) -> Bool | \{error, Reason\} [page 74] Test for occurrence of a key in a D ets table.
- next (Name, Key1) -> Key2 | '\$end_of_table' [page 74] Return the next key in a D ets table.
- open_file(Filename) -> \{ok, Reference\} \| \{error, Reason\} [page 74] O pen an existing Dets table.
- open_file(Name, Args) -> \{ok, Name\} | \{error, Reason\} [page 74] O pen a D ets table.
- pid2name(Pid) -> \{ok, Name\} | undefined [page 76] Return the name of the D ets table handled by a pid.
- repair_continuation(Continuation, MatchSpec) -> Continuation2 [page 76] Repair a continuation from select/1 or select/3.
- safefixtable(Name, Fix)
[page 76] Fix a D ets table for safe traversal.
- select(Continuation) -> \{Selection, Continuation2\} | '\$end_of_table' | \{error, Reason\}
[page 77] A pply a match specification to some objects stored in a D ets table.
- select(Name, MatchSpec) -> Selection | \{error, Reason\} [page 77] A pply a match specification to all objects stored in a D ets table.
- select(Name, MatchSpec, N) -> \{Selection, Continuation\} | '\$end_of_table' | \{error, Reason\}
[page 77] A pply a match specification to the first chunk of objects stored in a D ets table.
- select_delete(Name, MatchSpec) -> N | \{error, Reason\} [page 78] D elete all objects that match a given pattern from a D ets table.
- slot(Name, I) -> '\$end_of_table' | [Object] | \{error, Reason\} [page 78] Return the list of objects associated with a slot of a D ets table.
- sync(Name) -> ok | \{error, Reason\} [page 78] Ensure that all updates made to a D ets table are written to disk.
- table(Name [, Options]) -> QueryHandle [page 78] Return a Q LC query handle.
- to_ets(Name, EtsTab) -> EtsTab | \{error, Reason\} [page 79] Insert all objects of a D ets table into an Ets table.
- traverse(Name, Fun) -> Return | \{error, Reason\} [page 80] A pply a function to all or some objects stored in a D ets table.
- update_counter (Name, Key, Increment) -> Result [page 80] U pdate a counter object stored in a D ets table.

dict

The following functions are exported:

- append(Key, Value, Dict1) -> Dict2 [page 81] A ppend a value to keys in a dictionary
- append_list(Key, ValList, Dict1) -> Dict2
[page 81] A ppend new values to keys in a dictionary
- erase(Key, Dict1) -> Dict2
[page 81] Erase a key from a dictionary
- fetch(Key, Dict) -> Value [page 81] Look-up values in a dictionary
- fetch_keys(Dict) -> Keys [page 82] Return all keys in a dictionary
- filter(Pred, Dict1) -> Dict2 [page 82] Choose elements which satisfy a predicate
- find(Key, Dict) -> Result [page 82] Searche for a key in a dictionary
- fold(Function, Acc0, Dict) -> Acc1 [page 82] Fold a function over a dictionary
- from_list(List) -> Dict [page 82] Convert a list of pairs to a dictionary
- is_key(Key, Dict) -> bool() [page 82] Test if a key is in a dictionary.
- map(Func, Dict1) -> Dict2 [page 82] M ap a function over a dictionary
- merge(Func, Dict1, Dict2) -> Dict3 [page 83] M erge two dictionaries
- new() -> dictionary() [page 83] C reate a dictionary
- store(Key, Value, Dict1) -> Dict2 [page 83] Store a value in a dictionary
- to_list(Dict) -> List [page 83] Convert a dictionary to a list of pairs
- update(Key, Function, Dict) -> Dict [page 83] U pdate a value in a dictionary
- update(Key, Function, Initial, Dict) -> Dict [page 84] U pdate a value in a dictionary
- update_counter(Key, Increment, Dict) -> Dict [page 84] Increment a value in a dictionary

digraph

The following functions are exported:

- add_edge(G, E, V1, V2, Label) -> edge() | \{error, Reason\} [page 85] Add an edge to a digraph.
- add_edge(G, V1, V2, Label) -> edge() | \{error, Reason\} [page 85] Add an edge to a digraph.
- add_edge(G, V1, V2) -> edge() | \{error, Reason\} [page 85] Add an edge to a digraph.
- add_vertex(G, V, Label) -> vertex() [page 86] A dd or modify a vertex of a digraph.
- add_vertex(G, V) -> vertex()
[page 86] A dd or modify a vertex of a digraph.
- add_vertex(G) -> vertex()
[page 86] A dd or modify a vertex of a digraph.
- del_edge(G, E) -> true [page 86] D elete an edge from a digraph.
- del_edges(G, Edges) -> true [page 86] D elete edges from a digraph.
- del_path(G, V1, V2) -> true [page 86] D elete paths from a digraph.
- del_vertex (G, V) -> true [page 87] D elete a vertex from a digraph.
- del_vertices(G, Vertices) -> true [page 87] D elete vertices from a digraph.
- delete(G) -> true [page 87] D elete a digraph.
- edge(G, E) -> \{E, V1, V2, Label\} | false [page 87] Return the vertices and the label of an edge of a digraph.
- edges(G) -> Edges
[page 87] Return all edges of a digraph.
- edges(G, V) -> Edges [page 87] Return the edges emanating from or incident on a vertex of a digraph.
- get_cycle(G, V) -> Vertices | false [page 88] Find one cycle in a digraph.
- get_path(G, V1, V2) -> Vertices \mid false [page 88] Find one path in a digraph.
- get_short_cycle(G, V) -> Vertices | false [page 88] Find one short cycle in a digraph.
- get_short_path(G, V1, V2) -> Vertices | false [page 88] Find one short path in a digraph.
- in_degree(G, V) -> integer() [page 89] Return the in-degree of a vertex of a digraph.
- in_edges(G, V) -> Edges
[page 89] Return all edges incident on a vertex of a digraph.
- in_neighbours(G, V) -> Vertices [page 89] Return all in-neighbours of a vertex of a digraph.
- info(G) -> InfoList
[page 89] Return information about a digraph.
- new() -> digraph()
[page 90] Return a protected empty digraph, where cycles are allowed.
- new(Type) -> digraph() | \{error, Reason\}
[page 90] C reate a new empty digraph.
- no_edges(G) $->$ integer () $>=0$ [page 90] Return the number of edges of the a digraph.
- no_vertices(G) -> integer() >= 0 [page 90] Return the number of vertices of a digraph.
- out_degree(G, V) -> integer()
[page 90] Return the out-degree of a vertex of a digraph.
- out_edges(G, V) -> Edges [page 90] Return all edges emanating from a vertex of a digraph.
- out_neighbours(G, V) -> Vertices
[page 90] Return all out-neighbours of a vertex of a digraph.
- vertex (G, V) $->\{V$, Label $\}$ | false [page 91] Return the label of a vertex of a digraph.
- vertices(G) -> Vertices [page 91] Return all vertices of a digraph.

digraph_utils

The following functions are exported:

- components(Digraph) -> [Component] [page 93] Return the components of a digraph.
- condensation(Digraph) -> CondensedDigraph [page 93] Return a condensed graph of a digraph.
- cyclic_strong_components(Digraph) -> [StrongComponent] [page 93] Return the cyclic strong components of a digraph.
- is_acyclic(Digraph) -> bool() [page 93] Check if a digraph is acyclic.
- loop_vertices(Digraph) -> Vertices [page 93] Return the vertices of a digraph included in some loop.
- postorder(Digraph) -> Vertices [page 94] Return the vertices of a digraph in post-order.
- preorder (Digraph) -> Vertices [page 94] Return the vertices of a digraph in pre-order.
- reachable(Vertices, Digraph) -> Vertices [page 94] Return the vertices reachable from some vertices of a digraph.
- reachable_neighbours(Vertices, Digraph) -> Vertices [page 94] Return the neighbours reachable from some vertices of a digraph.
- reaching(Vertices, Digraph) -> Vertices
[page 94] Return the vertices that reach some vertices of a digraph.
- reaching_neighbours(Vertices, Digraph) -> Vertices [page 94] Return the neighbours that reach some vertices of a digraph.
- strong_components(Digraph) -> [StrongComponent] [page 95] Return the strong components of a digraph.
- subgraph(Digraph, Vertices [, Options]) -> Subgraph | \{error, Reason\}
[page 95] Return a subgraph of a digraph.
- topsort(Digraph) -> Vertices | false [page 95] Return a topological sorting of the vertices of a digraph.

epp

The following functions are exported:

- open(FileName, IncludePath) -> \{ok, Epp\} | \{error, ErrorDescriptor\} [page 96] O pen a file for preprocessing
- open(FileName, IncludePath, PredefMacros) -> \{ok, Epp\} | \{error, ErrorDescriptor\}
[page 96] O pen a file for preprocessing
- close(Epp) -> ok
[page 96] C lose the preprocessing of the file associated with Epp
- parse_erl_form(Epp) -> \{ok, AbsForm $\}$ \{eof, Line\} | \{error, ErrorInfo\}
[page 96] Return the next Erlang form from the opened Erlang source file
- parse_file(FileName,IncludePath, PredefMacro) -> \{ok, [Form] \} | \{error, OpenError\}
[page 96] Preprocesse and parse an Erlang source file
erl_eval
The following functions are exported:
- exprs(Expressions, Bindings) -> \{value, Value, NewBindings\} [page 98] Evaluate expressions
- exprs(Expressions, Bindings, LocalFunctionHandler) -> \{value, Value, NewBindings\}
[page 98] Evaluate expressions
- exprs(Expressions, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> \{value, Value, NewBindings\}
[page 98] Evaluate expressions
- expr(Expression, Bindings) $->$ \{ value, Value, NewBindings \} [page 98] Evaluate expression
- expr(Expression, Bindings, LocalFunctionHandler) -> \{ value, Value, NewBindings \}
[page 98] Evaluate expression
- expr(Expression, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> \{ value, Value, NewBindings \} [page 98] Evaluate expression
- expr_list(ExpressionList, Bindings) -> \{ValueList, NewBindings\} [page 99] Evaluate a list of expressions
- expr_list(ExpressionList, Bindings, LocalFunctionHandler) -> \{ValueList, NewBindings\}
[page 99] Evaluate a list of expressions
- expr_list(ExpressionList, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> \{ValueList, NewBindings\} [page 99] Evaluate a list of expressions
- new_bindings() -> BindingStruct [page 99] Return a bindings structure
- bindings(BindingStruct) -> Bindings [page 99] Return bindings
- binding(Name, BindingStruct) -> Binding [page 99] Return bindings
- add_binding(Name, Value, Bindings) -> BindingStruct [page 99] Add a binding
- del_binding(Name, Bindings) -> BindingStruct [page 99] D elete a binding

erl_id_trans

The following functions are exported:

- parse_transform(Forms, Options) -> Forms [page 101] Transform Erlang forms

erl_internal

The following functions are exported:

- bif (Name, Arity) -> bool()
[page 102] Test for an Erlang BIF
- guard_bif(Name, Arity) -> bool() [page 102] Test for an Erlang BIF allowed in guards
- type_test(Name, Arity) -> bool() [page 102] Test for a valid type test
- arith_op(OpName, Arity) -> bool() [page 102] Test for an arithmetic operator
- bool_op(OpName, Arity) -> bool() [page 102] Test for a Boolean operator
- comp_op(OpName, Arity) -> bool() [page 103] Test for a comparison operator
- list_op(OpName, Arity) -> bool() [page 103] Test for a list operator
- send_op(OpName, Arity) -> bool() [page 103] Test for a send operator
- op_type (OpName, Arity) -> Type
[page 103] Return operator type

erl_lint

The following functions are exported:

- module(AbsForms) -> \{ok,Warnings\} | \{error, Errors,Warnings\}
[page 104] Check a module for errors
- module(AbsForms, FileName) -> \{ok,Warnings\} । \{error,Errors,Warnings\}
[page 104] Check a module for errors
- module(AbsForms, FileName, CompileOptions) -> \{ok,Warnings\} | \{error,Errors,Warnings\}
[page 104] Check a module for errors
- is_guard_test(Expr) -> bool() [page 105] Test for a guard test
- format_error(ErrorDescriptor) -> string() [page 105] Format an error descriptor

erl_parse

The following functions are exported:

- parse_form(Tokens) -> \{ok, AbsForm $\}$ \{error, ErrorInfo\} [page 106] Parse an Erlang form
- parse_exprs(Tokens) -> \{ok, Expr_list\} | \{error, ErrorInfo\} [page 106] Parse Erlang expressions
- parse_term(Tokens) -> \{ok, Term\} | \{error, ErrorInfo\} [page 106] Parse an Erlang term
- format_error(ErrorDescriptor) -> string() [page 107] Format an error descriptor
- tokens(AbsTerm) -> Tokens [page 107] G enerate a list of tokens for an expression
- tokens(AbsTerm, MoreTokens) -> Tokens [page 107] Generate a list of tokens for an expression
- normalise(AbsTerm) -> Data [page 107] Convert abstract form to an Erlang term
- abstract(Data) -> AbsTerm [page 107] Convert an Erlang term into an abstract form
erl_pp
The following functions are exported:
- form(Form) -> DeepCharList [page 109] Pretty print a form
- form(Form, HookFunction) -> DeepCharList [page 109] Pretty print a form
- attribute(Attribute) -> DeepCharList [page 109] Pretty print an attribute
- attribute(Attribute, HookFunction) -> DeepCharList [page 109] Pretty print an attribute
- function(Function) -> DeepCharList [page 109] Pretty print a function
- function(Function, HookFunction) -> DeepCharList [page 109] Pretty print a function
- guard(Guard) -> DeepCharList [page 109] Pretty print a guard
- guard(Guard, HookFunction) -> DeepCharList [page 109] Pretty print a guard
- exprs(Expressions) -> DeepCharList [page 110] Pretty print Expressions
- exprs(Expressions, HookFunction) -> DeepCharList [page 110] Pretty print Expressions
- exprs(Expressions, Indent, HookFunction) -> DeepCharList [page 110] Pretty print Expressions
- expr(Expression) -> DeepCharList [page 110] Pretty print one Expression
- expr(Expression, HookFunction) -> DeepCharList [page 110] Pretty print one Expression
- expr(Expression, Indent, HookFunction) -> DeepCharList [page 110] Pretty print one Expression
- expr(Expression, Indent, Precedence, HookFunction) ->-> DeepCharList [page 110] Pretty print one Expression

erl_scan

The following functions are exported:

- string(CharList,StartLine]) -> \{ok, Tokens, EndLine\} | Error [page 112] Scan a string and returns the Erlang tokens
- string(CharList) -> \{ok, Tokens, EndLine\} | Error [page 112] Scan a string and returns the Erlang tokens
- tokens(Continuation, CharList, StartLine) ->Return [page 112] Re-entrant scanner
- reserved_word(Atom) -> bool() [page 113] Test for a reserved word
- format_error(ErrorDescriptor) -> string() [page 113] Format an error descriptor
erl_tar
The following functions are exported:
- add(TarDescriptor, Filename, Options) -> RetValue [page 115] Add a file to an open tar file
- add(TarDescriptor, Filename, NameInArchive, Options) -> RetValue [page 115] Add a file to an open tar file
- close(TarDescriptor)
[page 115] Close an open tar file
- create(Name, FileList) ->RetValue [page 115] C reate a tar archive
- create(Name, FileList, OptionList) [page 116] Create a tar archive with options
- extract(Name) -> RetValue [page 116] Extract all files from a tar file
- extract(Name, OptionList) [page 116] Extract files from a tar file
- format_error(Reason) -> string() [page 117] Convert error term to a readable string
- open(Name, OpenModeList) -> RetValue [page 117] O pen a tar file.
- table(Name) -> RetValue [page 118] Retrieve the name of all files in a tar file
- table(Name, Options) [page 118] Retrieve name and information of all files in a tar file
- t(Name)
[page 118] Print the name of each file in a tar file
- tt(Name)
[page 118] Print name and information for each file in a tar file

ets

The following functions are exported:

- all() -> [Tab]
[page 121] Return a list of all ETS tables.
- delete(Tab) -> true [page 121] D elete an entire ETS table.
- delete(Tab, Key) -> true [page 121] D elete all objects with a given key from an ETS table.
- delete_all_objects(Tab) -> true [page 121] D elete all objects in an ETS table.
- delete_object(Tab,Object) -> true [page 121] D eletes a specific from an ETS table.
- file2tab(Filename) -> \{ok,Tab\} | \{error,Reason\} [page 121] Read an ETS table from a file.
- first(Tab) -> Key | '\$end_of_table' [page 121] Return the first key in an ETS table.
- fixtable(Tab, true|false) -> true | false [page 122] Fix an ETS table for safe traversal (obsolete).
- foldl(Function, Acc0, Tab) -> Acc1 [page 122] Fold a function over an ETS table
- foldr(Function, Acc0, Tab) -> Acc1 [page 122] Fold a function over an ETS table
- from_dets(Tab, DetsTab) -> Tab [page 122] Fill an ETS table with objects from a D ets table.
- fun2ms(LiteralFun) -> MatchSpec [page 123] Pseudo function that transforms fun syntax to match_spec.
- i() -> void() [page 124] D isplay information about all ETS tables on tty.
- i(Tab) -> void() [page 124] Browse an ETS table on tty.
- info(Tab) -> [\{Item, Value\}] | undefined [page 124] Return information about an ETS table.
- info(Tab, Item) -> Value | undefined [page 125] Return the information associated with given item for an ETS table.
- init_table(Name, InitFun) -> true [page 125] Replace all objects of an ETS table.
- insert(Tab, ObjectOrObjects) -> true [page 125] Insert an object into an ETS table.
- insert_new(Tab, ObjectOrObjects) -> bool() [page 126] Insert an object into an ETS table if the key is not already present.
- is_compiled_ms(Term) -> bool() [page 126] Checks if an erlang term is the result of ets:match_spec_compile
- last(Tab) -> Key | '\$end_of_table'
[page 126] Return the last key in an ETS table of type ordered_set.
- lookup(Tab, Key) -> [Object] [page 127] Return all objects with a given key in an ETS table.
- lookup_element(Tab, Key, Pos) -> Elem [page 127] Return the Pos:th element of all objects with a given key in an ETS table.
- match(Tab, Pattern) -> [Match]
[page 127] M atch the objects in an ETS table against a pattern.
- match(Tab, Pattern, Limit) -> \{[Match], Continuation\} | '\$end_of_table' [page 128] M atch the objects in an ETS table against a pattern and returns part of the answers.
- match(Continuation) -> \{[Match],Continuation\} | '\$end_of_table' [page 128] Continues matching objects in an ETS table.
- match_delete(Tab, Pattern) -> true
[page 128] D elete all objects which match a given pattern from an ETS table.
- match_object(Tab, Pattern) -> [Object]
[page 128] M atch the objects in an ETS table against a pattern.
- match_object(Tab, Pattern, Limit) -> \{[Match], Continuation\} |
'\$end_of_table'
[page 129] M atch the objects in an ETS table against a pattern and returns part of the answers.
- match_object(Continuation) -> \{[Match], Continuation\} |
'\$end_of_table'
[page 129] Continues matching objects in an ETS table.
- match_spec_compile(MatchSpec) -> CompiledMatchSpec [page 129] Compiles a match specification into its internal representation
- match_spec_run(List,CompiledMatchSpec) -> list() [page 130] Performs matching, using a compiled match_spec, on a list of tuples
- member (Tab, Key) -> true | false
[page 130] Tests for occurrence of a key in an ETS table
- new(Name, Options) -> tid() [page 131] Create a new ETS table.
- next(Tab, Key1) -> Key2 | '\$end_of_table' [page 131] Return the next key in an ETS table.
- prev(Tab, Key1) -> Key2 | '\$end_of_table' [page 132] Return the previous key in an ETS table of type ordered_set.
- rename(Tab, Name) -> Name [page 132] Rename a named ETS table.
- repair_continuation(Continuation, MatchSpec) -> Continuation [page 132] Repair a continuation from ets:select/1 or ets:select/3 that has passed through external representation
- safe_fixtable(Tab, truelfalse) -> true [page 133] Fix an ETS table for safe traversal.
- select(Tab, MatchSpec) -> [Object] [page 134] M atch the objects in an ETS table against a match_spec.
- select(Tab, MatchSpec, Limit) $->$ \{ [Match], Continuation $\}$ '\$end_of_table' [page 135] M atch the objects in an ETS table against a match_spec and returns part of the answers.
- select(Continuation) -> \{[Match], Continuation\} | '\$end_of_table' [page 136] Continues matching objects in an ETS table.
- select_delete(Tab, MatchSpec) -> NumDeleted [page 136] M atch the objects in an ETS table against a match_spec and deletes objects where the match_spec returns 'true'
- select_count(Tab, MatchSpec) -> NumMatched [page 136] M atch the objects in an ETS table against a match_spec and returns the number of objects for which the match_spec returned 'true'
- slot(Tab, I) -> [Object] | '\$end_of_table' [page 136] Return all objects in a given slot of an ETS table.
- tab2file(Tab, Filename) -> ok | \{error, Reason\} [page 137] Dump an ETS table to a file.
- tab2list(Tab) -> [Object] [page 137] Return a list of all objects in an ETS table.
- table(Tab [, Options]) -> QueryHandle [page 137] Return a Q LC query handle.
- test_ms(Tuple, MatchSpec) -> \{ok, Result\} | \{error, Errors\} [page 138] Test a match_spec for use in ets:select/2.
- to_dets(Tab, DetsTab) -> Tab [page 138] Fill a D ets table with objects from an ETS table.
- update_counter(Tab, Key, \{Pos,Incr,Threshold,SetValue\}) -> Result [page 139] U pdate a counter object in an ETS table.
- update_counter(Tab, Key, \{Pos,Incr\}) -> Result [page 139] Update a counter object in an ETS table.
- update_counter(Tab, Key, Incr) -> Result [page 139] U pdate a counter object in an ETS table.

file_sorter

The following functions are exported:

- sort(FileName) -> Reply [page 143] Sort terms on files.
- sort(Input, Output) -> Reply [page 143] Sort terms on files.
- sort(Input, Output, Options) -> Reply [page 143] Sort terms on files.
- keysort(KeyPos, FileName) -> Reply [page 143] Sort terms on files by key.
- keysort(KeyPos, Input, Output) -> Reply [page 143] Sort terms on files by key.
- keysort(KeyPos, Input, Output, Options) -> Reply [page 143] Sort terms on files by key.
- merge(FileNames, Output) -> Reply [page 143] M erge terms on files.
- merge(FileNames, Output, Options) -> Reply [page 143] M erge terms on files.
- keymerge(KeyPos, FileNames, Output) -> Reply [page 144] M erge terms on files by key.
- keymerge(KeyPos, FileNames, Output, Options) -> Reply [page 144] M erge terms on files by key.
- check(FileName) -> Reply [page 144] Check whether terms on files are sorted.
- check(FileNames, Options) -> Reply [page 144] Check whether terms on files are sorted.
- keycheck(KeyPos, FileName) -> CheckReply [page 144] Check whether terms on files are sorted by key.
- keycheck(KeyPos, FileNames, Options) -> Reply [page 144] Check whether terms on files are sorted by key.

filelib

The following functions are exported:

- ensure_dir(Name) -> true
[page 145] Ensure that all parent directories needed to create Name exists.
- file_size(Filename) -> integer()
[page 145] Return the size in bytes of the file.
- fold_files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut [page 145] Fold over all files matching a regular expression.
- is_dir(Name) -> true | false [page 145] Test whether N ame refer to a directory or not
- is_file(Name) -> true | false [page 145] Test whether N ame refer to a file or directory.
- is_regular(Name) -> true | false [page 146] Test whether N ame refer to a (regular) file.
- last_modified(Name) -> \{\{Year, Month, Day \},\{Hour, Min, Sec \}\} [page 146] Return the local date and time when a file was last modified.
- wildcard(Wildcard) -> list() [page 146] M atch filenames using U nix-style wildcards.
- wildcard(Wildcard, Cwd) -> list()
[page 147] M atch filenames using Unix-style wildcards startin at a specified directory.

filename

The following functions are exported:

- absname(Filename) -> Absname
[page 148] Convert a relative Filename to an absolute name
- absname(Filename, Directory) -> Absname
[page 148] Convert the relative Filename to an absolute name, based on Directory.
- absname_join(Directory, Filename) -> Absname [page 149] Join an absolute directory with a relative filename.
- basename(Filename)
[page 149] Return the part of the Filename after the last directory separator
- basename(Filename,Ext) -> string() [page 149] Return the last component of Filename with Extstripped
- dirname(Filename) -> string() [page 150] Return the directory part of a path name
- extension(Filename) -> string() | [page 150] Return the file extension
- flatten(Filename) -> string() [page 150] Convert a filename to a flat string
- join(Components) -> string() [page 150] Join a list of file name Components with directory separators
- join(Name1, Name2) -> string() [page 150] Join two file name components with directory separators.
- nativename(Path) -> string()
[page 151] Return the native form of a file Path
- pathtype(Path) -> absolute | relative | volumerelative [page 151] Return the type of a Path
- rootname(Filename) -> string() [page 151] Return all characters in Filename, except the extension.
- rootname(Filename, Ext) -> string()
[page 151] Return all characters in Filename, except the extension.
- split(Filename) -> Components [page 152] Return a list whose elements are the file name components of Filename.
- find_src(Module) -> \{SourceFile, Options\} [page 152] Find the Filename and compilation options for a compiled Module.
- find_src(Module, Rules) -> \{SourceFile, Options\}
[page 152] Find the Filename and compilation options for a compiled Module.

gb_sets

The following functions are exported:

- empty()
[page 154] create an empty set
- new()
[page 154] create an empty set
- is_empty(S)
[page 154] check if empty
- size(S)
[page 154] get number of elements
- singleton(X)
[page 154] new set with one element
- is_member (X, S)
[page 154] check for member
- is_element(X, S)
[page 154] check for member
- insert(X, S)
[page 154] insert new element
- add(X, S)
[page 154] add element
- add_element(X, S)
[page 154] add element
- delete(X, S)
[page 154] delete element
- delete_any (X, T)
[page 154] remove key if present
- del_element(X, T)
[page 155] remove key if present
- balance(S)
[page 155] rebalance tree representation
- union(S1, S2)
[page 155] union of set
- union(Ss)
[page 155] union of list of sets
- intersection(S1, S2)
[page 155] intersection of sets
- intersection(Ss) [page 155] intersection of list of sets
- difference(S1, S2) [page 155] calculuate difference of sets
- subtract(S1, S2)
[page 155] calculate difference of sets
- is_subset(S1, S2)
[page 155] check for subset
- to_list(S)
[page 155] get list from set
- from_list(List) [page 155] make set from list
- from_ordset(L)
[page 156] make set from ordset
- smallest(S)
[page 156] return smallest element
- largest(S)
[page 156] return largest element
- take_smallest(S)
[page 156] extract smallest element
- take_largest(S)
[page 156] extract largest element
- iterator(S)
[page 156] make iterator on set
- next (T)
[page 156] traverse with iterator
- filter (P, S)
[page 156] filter with predicate
- fold(F, A, S)
[page 156] fold with fun
- is_set(S)
[page 156] test whether a term appears to be a set.

gb_trees

The following functions are exported:

- empty ()
[page 157] returns empty tree
- is_empty(T)
[page 157] true if tree is empty
- size(T)
[page 157] number of nodes in tree
- lookup(X, T)
[page 157] looks up key in tree
- get(X, T)
[page 157] retrieves value stored with key
- insert (X, V, T)
[page 158] inserts key and value in tree
- update (X, V, T)
[page 158] updates key to new value
- enter(X, V, T)
[page 158] inserts or updates key with value
- delete(X, T)
[page 158] removes key
- delete_any (X, T)
[page 158] removes key if present
- balance(T)
[page 158] rebalance tree
- is_defined(X, T)
[page 158] check if key exist
- keys(T)
[page 158] keys as list
- values(T)
[page 158] values as list
- to_list(T)
[page 158] keys and values as tuple-list
- from_orddict(L)
[page 158] make tree from orddict
- smallest(T)
[page 159] return smallest key and value
- largest(T)
[page 159] return smallest key and value
- take_smallest(T)
[page 159] extract smallest key and value
- take_largest(T)
[page 159] extract smallest key and value
- iterator(T)
[page 159] get iterator on tree
- next (S)
[page 159] iterate using iterator

gen_event

The following functions are exported:

- start_link() -> Result [page 161] C reate a generic event manager process in a supervision tree.
- start_link(EventMgrName) -> Result [page 161] C reate a generic event manager process in a supervision tree.
- start() -> Result [page 161] Create a stand-alone event manager process.
- start(EventMgrName) -> Result
[page 161] Create a stand-alone event manager process.
- add_handler(EventMgrRef, Handler, Args) -> Result [page 161] Add an event handler to a generic event manager.
- add_sup_handler(EventMgrRef, Handler, Args) -> Result [page 162] Add a supervised event handler to a generic event manager.
- notify(EventMgrRef, Event) -> ok [page 163] N otify an event manager about an event.
- sync_notify(EventMgrRef, Event) -> ok [page 163] N otify an event manager about an event.
- call(EventMgrRef, Handler, Request) -> Result [page 163] M ake a synchronous call to a generic event manager.
- call(EventMgrRef, Handler, Request, Timeout) -> Result [page 163] M ake a synchronous call to a generic event manager.
- delete_handler(EventMgrRef, Handler, Args) -> Result [page 164] D elete an event handler from a generic event manager.
- swaphandler(EventMgrRef, \{Handler1,Args1\}, \{Handler2,Args2\}) -> Result
[page 164] Replace an event handler in a generic event manager.
- swap_sup_handler(EventMgrRef, \{Handler1,Args1\}, \{Handler2,Args2\}) -> Result
[page 165] Replace an event handler in a generic event manager.
- which_handlers(EventMgrRef) -> [Handler]
[page 165] Return all event handlers installed in a generic event manager.
- stop(EventMgrRef) -> ok [page 166] Terminate a generic event manager.
- Module:init(InitArgs) -> \{ok,State\} [page 166] Initialize an event handler.
- Module:handle_event(Event, State) -> Result [page 166] H andle an event.
- Module:handle_call(Request, State) -> Result [page 167] H andle a synchronous request.
- Module:handle_info(Info, State) -> Result [page 167] H andle an incoming message.
- Module:terminate(Arg, State) -> term() [page 168] Clean up before deletion.
- Module:code_change(OldVsn, State, Extra) -> \{ok, NewState\} [page 168] U pdate the internal state during upgrade/downgrade.

gen_fsm

The following functions are exported:

- start_link(Module, Args, Options) -> Result [page 171] Create a gen_fsm process in a supervision tree.
- start_link(FsmName, Module, Args, Options) -> Result [page 171] Create a gen_fsm process in a supervision tree.
- start(Module, Args, Options) -> Result [page 171] Create a stand-alone gen_fsm process.
- start(FsmName, Module, Args, Options) -> Result [page 172] C reate a stand-alone gen_fsm process.
- send_event(FsmRef, Event) -> ok [page 172] Send an event asynchronously to a generic FSM .
- send_all_state_event(FsmRef, Event) -> ok [page 172] Send an event asynchronously to a generic FSM .
- sync_send_event(FsmRef, Event) -> Reply
[page 173] Send an event synchronously to a generic FSM.
- sync_send_event(FsmRef, Event, Timeout) -> Reply [page 173] Send an event synchronously to a generic FSM.
- sync_send_all_state_event(FsmRef, Event) -> Reply [page 173] Send an event syncronously to a generic FSM .
- sync_send_all_state_event(FsmRef, Event, Timeout) -> Reply [page 173] Send an event syncronously to a generic FSM .
- reply(Caller, Reply) -> true [page 174] Send a reply to a caller.
- send_event_after(Time, Event) -> Ref [page 174] Send a delayed event internally in a generic FSM .
- start_timer(Time, Msg) -> Ref [page 174] Send a timeout event internally in a generic FSM.
- cancel_timer (Ref) -> RemainingTime | false [page 174] C ancel an internal timer in a generic FSM .
- Module:init(Args) -> Result [page 175] Initialize process and internal state name and state data.
- Module:StateName(Event, StateData) -> Result [page 175] H andle an asynchronous event.
- Module:handle_event(Event, StateName, StateData) -> Result [page 176] H andle an asynchronous event.
- Module:StateName(Event, From, StateData) -> Result [page 176] H andle a synchronous event.
- Module:handle_sync_event(Event, From, StateName, StateData) -> Result
[page 177] H andle a synchronous event.
- Module:handle_info(Info, StateName, StateData) -> Result [page 178] H andle an incoming message.
- Module:terminate(Reason, StateName, StateData) [page 178] Clean up before termination.
- Module:code_change(OldVsn, StateName, StateData, Extra) -> \{ok, NextStateName, NewStateData\}
[page 179] Update the internal state data during upgrade/downgrade.

gen_server

The following functions are exported:

- start_link(Module, Args, Options) -> Result [page 180] C reate a gen_server process in a supervision tree.
- start_link(ServerName, Module, Args, Options) -> Result [page 180] C reate a gen_server process in a supervision tree.
- start(Module, Args, Options) -> Result [page 181] C reate a stand-alone gen_server process.
- start(ServerName, Module, Args, Options) -> Result [page 181] C reate a stand-alone gen_server process.
- call(ServerRef, Request) -> Reply [page 182] M ake a synchronous call to a generic server.
- call(ServerRef, Request, Timeout) -> Reply [page 182] M ake a synchronous call to a generic server.
- multi_call(Name, Request) -> Result [page 183] M ake a synchronous call to several generic servers.
- multi_call(Nodes, Name, Request) -> Result [page 183] M ake a synchronous call to several generic servers.
- multi_call(Nodes, Name, Request, Timeout) -> Result [page 183] M ake a synchronous call to several generic servers.
- cast(ServerRef, Request) -> ok [page 184] Send an asynchronous request to a generic server.
- abcast(Name, Request) -> abcast [page 184] Send an asynchronous request to several generic servers.
- abcast(Nodes, Name, Request) -> abcast [page 184] Send an asynchronous request to several generic servers.
- reply(Client, Reply) -> true [page 184] Send a reply to a client.
- enter_loop(Module, Options, State, ServerName, Timeout) -> [page 184] Enters the gen_server receive loop.
- enter_loop(Module, Options, State, Timeout) -> [page 185] Enters the gen_server receive loop.
- enter_loop(Module, Options, State, ServerName) -> [page 185] Enters the gen_server receive loop.
- Module:init(Args) -> Result [page 185] Initialize process and internal state.
- Module:handle_call(Request, From, State) -> Result [page 186] H andle a synchronous request.
- Module:handle_cast (Request, State) -> Result [page 186] H andle an asynchronous request.
- Module:handle_info(Info, State) -> Result [page 187] H andle an incoming message.
- Module:terminate (Reason, State) [page 187] Clean up before termination.
- Module:code_change (OldVsn, State, Extra) -> \{ok, NewState\} [page 188] U pdate the internal state during upgrade/dow ngrade.
io
The following functions are exported:
- put_chars([IoDevice,] Chars) [page 189] W rite characters to standard output
- nl([IoDevice]) [page 189] O utput a newline
- get_chars([IoDevice,] Prompt, Count) [page 189] Read characters from standard input
- get_line([IoDevice,] Prompt)
[page 189] Read a line from standard input
- setopts([IoDevice,] OptList)
[page 189] Set options for standard input/output
- write([IoDevice,] Term) [page 190] W rite a term
- read([IoDevice,] Prompt) [page 190] Read a term
- fwrite(Format) [page 190] W rite formatted output
- format (Format) [page 190] W rite formatted output
- fwrite([IoDevice,] Format, Arguments) [page 190] W rite formatted output
- format([IoDevice,] Format, Arguments) [page 190] W rite formatted output
- fread([IoDevice,] Prompt, Format) [page 194] Read formatted input
- scan_erl_exprs (Prompt) [page 195] Read Erlang tokens
- scan_erl_exprs([IoDevice,] Prompt, StartLine) [page 195] Read Erlang tokens
- scan_erl_form (Prompt) [page 195] Read Erlang tokens
- scan_erl_form(IoDevice, Prompt[, StartLine]) [page 195] Read Erlang tokens
- parse_erl_exprs(Prompt) [page 196] Read Erlang expressions
- parse_erl_exprs(IoDevice, Prompt[, StartLine]) [page 196] Read Erlang expressions
- parse_erl_form (Prompt) [page 196] Read Erlang form
- parse_erl_form(IoDevice, Prompt[, StartLine]) [page 196] Read Erlang form
io_lib
The following functions are exported:
- nl() [page 198] Return a newline
- write(Term)
[page 198] W rite a term
- write(Term, Depth)
[page 198] W rite a term
- print(Term)
[page 198] Pretty print a term
- print(Term, Column, LineLength, Depth) [page 198] Pretty print a term
- fwrite(Format, Data) [page 198] List formatted output
- format (Format, Data) [page 198] List formatted output
- fread(Format, String) [page 198] List formatted input
- fread(Continuation, CharList, Format) [page 199] Re-entrant formatted reader
- write_atom(Atom)
[page 199] Return an atom
- write_string(String) [page 199] Return a string
- write_char(Integer) [page 199] Return a character
- indentation(String, StartIndent) [page 199] Indentation after printing string
- char_list(CharList) -> bool() [page 199] Test for a list of characters
- deep_char_list(CharList) [page 200] Test for a deep list of characters
- printable_list(CharList)
[page 200] Test for a list of printable characters
lib
The following functions are exported:
- flush_receive() -> void() [page 201] Flush messages
- error_message(Format, Args) [page 201] Print error message
- progname() -> atom() [page 201] Return Erlang starter
- nonl(List1)
[page 201] Remove last newline
- send(To, Msg)
[page 201] Send a message
- sendw(To, Msg)
[page 201] Send a message and waits fo an answer
lists
The following functions are exported:
- append(ListOfLists) -> List1 [page 202] A ppend a list of lists
- append(List1, List2) -> List3 [page 202] A ppend two lists
- concat(Things) -> string() [page 203] Concatenate a list of atoms
- delete(Element, List1) -> List2 [page 203] D elete an element in a list
- duplicate(N, Element) -> List [page 203] M ake N copies of element
- flatlength(DeepList) -> int() [page 203] Length of flattened deep list
- flatten(DeepList) -> List [page 203] Flatten a deep list
- flatten(DeepList, Tail) -> List [page 203] Flatten a deep list
- keydelete(Key, N, TupleList1) -> TupleList2 [page 204] D elete a tuple for a tuple list
- keymember(Key, N, TupleList) -> bool() [page 204] Test for a key in a list of tuples
- keymerge($\mathrm{N}, \mathrm{List1}, \mathrm{List2)}$ [page 204] M erge two key-sorted lists
- keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2 [page 204] Replace tuple in tuple list
- keysearch(Key, N, TupleList) -> Result [page 204] Extract value of key in a list of tuples
- keysort(N, List1) -> List2 [page 204] Sort a list by key
- last(List) -> Element [page 205] Return last element in a list
- max (List) -> Max
[page 205] Return maximum element of list
- member (Element, List) -> bool() [page 205] Test for membership of a list
- merge(ListOfLists) -> List1
[page 205] M erge a list of sorted lists
- merge(List1, List2) -> List3 [page 205] M erge two sorted lists
- merge(Fun, List1, List2) -> List [page 205] M erge two sorted list
- merge3(List1, List2, List3) -> List4 [page 206] M erge three sorted lists
- min(List) -> Min [page 206] Return minimum element of list
- nth(N, List) -> Element [page 206] Extract element from a list
- nthtail(N, List1) -> List2 [page 206] Return the N 'th tail in List1
- prefix(List1, List2) -> bool() [page 206] Test for list prefix
- reverse(List1) -> List2 [page 206] Reverse a list
- reverse(List1, List2) -> List3 [page 207] Reverse a list appending a tail
- seq(From, To) -> [int()] [page 207] G enerate a sequence of integers
- seq(From, To, Incr) -> [int()] [page 207] G enerate a sequence of integers
- sort(List1) -> List2 [page 207] Sort a list
- sort(Fun, List1) -> List2 [page 207] Sort a list
- sublist(List, N) -> List1 [page 207] Return the first N elements of List
- sublist(List1, Start, Length) -> List2 [page 208] Return a sub-list of list
- subtract(List1, List2) -> List3 [page 208] Subtract the element in one list from another list
- suffix(List1, List2) -> bool() [page 208] Test for list suffix
- sum(List) -> number() [page 208] Return sum of elements in a list
- ukeymerge(N, List1, List2)
[page 208] M erge two key-sorted lists and remove consecutive duplicates
- ukeysort(N, List1) -> List2
[page 208] Sort a list by key and remove consecutive duplicates
- umerge(ListOfLists) -> List1
[page 209] M erge a list of sorted lists without duplicates
- umerge(List1, List2) -> List3 [page 209] M erge two sorted lists without duplicates
- umerge(Fun, List1, List2) -> List [page 209] M erge two sorted lists without duplicates
- umerge3(List1, List2, List3) -> List4
[page 209] M erge three sorted lists without duplicates
- unzip(List1) -> \{List2,List3\} [page 209] Unzip a list of two-tuples into two lists
- unzip3(List1) -> \{List2,List3,List4\} [page 210] Unzip a list of three-tuples into three lists
- usort(List1) -> List2 [page 210] Sort a list and remove duplicates
- usort (Fun, List1) -> List2 [page 210] Sort a list and remove duplicates
- zip(List1, List2) -> List3 [page 210] Zip two lists into a list of two-tuples
- zip3(List1, List2, List3) -> List4 [page 210] Zip two lists into a list of two-tuples
- zipwith(Combine, List1, List2) -> List3 [page 211] Zip two lists into a list of two-tuples according to Pred
- zipwith3(Combine, List1, List2, List3) -> List4 [page 211] Zip two lists into a list of two-tuples according to Pred
- all(Pred, List) -> bool() [page 211] Return true if all elements in the list satisfy Pred
- any(Pred, List) -> bool() [page 212] Return true if any of the elements X in the list satisfies Pred (X)
- dropwhile(Pred, List1) -> List2 [page 212] D rop elements from List1 while Pred is true
- filter(Pred, List1) -> List2 [page 212] Choose elements which satisfy a predicate
- flatmap(Function, List1) -> Element [page 212] M ap and flatten in one pass
- foldl(Function, Acc0, List) -> Acc1 [page 212] Fold a function over a list
- foldr(Function, Acc0, List) -> Acc1 [page 212] Fold a function over a list
- foreach(Function, List) -> void() [page 213] A pply function to each element of a list
- map(Func, List1) -> List2 [page 213] M ap a function over a list
- mapfoldl(Function, Acc0, List1) -> \{List2, Acc\} [page 213] M ap and fold in one pass
- mapfoldr(Function, Acc0, List1) -> \{List2, Acc\} [page 213] M ap and fold in one pass
- partition(Pred, List) -> \{Satisfying, NonSatisfying\} [page 214] Partition elements into two lists based on a predicate
- split(N, List) -> \{List1, List2\} [page 214] Partition List into one list of length N and one with the rest of the elements
- splitwith(Pred, List) -> \{List1, List2\} [page 214] Partition List1 into two lists according to Pred
- takewhile(Pred, List1) -> List2 [page 214] Take elements from Listl while Pred is true

log_mf_h

The following functions are exported:

- init(Dir, MaxBytes, MaxFiles)
[page 216] Initiate the event handler
- init(Dir, MaxBytes, MaxFiles, Pred) -> Args [page 216] Initiate the event handler

math

The following functions are exported:

- pi() -> float()
[page 217] A useful number
- $\sin (X)$
[page 217] Diverse math functions
- $\cos (\mathrm{X})$
[page 217] Diverse math functions
- $\tan (X)$
[page 217] Diverse math functions
- $\operatorname{asin}(X)$
[page 217] Diverse math functions
- acos(X)
[page 217] Diverse math functions
- $\operatorname{atan}(X)$
[page 217] Diverse math functions
- $\operatorname{atan2(Y,~X)~}$
[page 217] Diverse math functions
- $\sinh (X)$
[page 217] Diverse math functions
- $\cosh (\mathrm{X})$
[page 217] Diverse math functions
- $\tanh (X)$
[page 217] Diverse math functions
- asinh (X)
[page 217] Diverse math functions
- $\operatorname{acosh}(\mathrm{X})$
[page 217] Diverse math functions
- atanh (X)
[page 217] Diverse math functions
- $\exp (\mathrm{X})$
[page 217] Diverse math functions
- $\log (X)$
[page 217] Diverse math functions
- $\log 10(\mathrm{X})$
[page 217] Diverse math functions
- pow (X, Y)
[page 217] Diverse math functions
- sqrt(X)
[page 217] Diverse math functions
- $\operatorname{erf}(\mathrm{X})$-> float() [page 218] Error function.
- erfc(X) -> float()
[page 218] A nother error function

ms_transform

The following functions are exported:

- parse_transform(Forms,_Options) -> Forms [page 228] Transforms Erlang abstract format containing calls to ets/dbg:fun2ms into literal match specifications.
- transform_from_shell(Dialect, Clauses,BoundEnvironment) -> term() [page 228] U sed when transforming fun's created in the shell into match_specifications.
- format_error (Errcode) -> ErrMessage [page 229] Error formatting function as required by the parse_transform interface.

orddict

No functions are exported.

ordsets

No functions are exported.

pg

The following functions are exported:

- create (PgName)
[page 232] Create an empty group
- create(PgName, Node)
[page 232] Create an epmty group on a node
- join(PgName, Pid)
[page 232] Join a Pid to a process group
- send(Pgname, Message)
[page 232] Send a message tuple to all members of a process group
- esend(PgName, Mess)
[page 232] Send a message tuple to all members of a process group except the current node
- members (PgName)
[page 232] >Return a list of the current members in the process group
pool
The following functions are exported:
- start(Name)
[page 233] >Start a new pool
- start(Name, Args)
[page 233] >Start a new pool
- attach(Node)
[page 233] Ensure that a pool master is running
- stop()
[page 233] Stop the pool and kill all the slave nodes
- get_nodes()
[page 234] Return a list of the current member nodes of the pool
- pspawn(Mod, Fun, Args)
[page 234] Spawn a process on the expected lowest future loaded pool node
- pspawn_link(Mod, Fun, Args)
[page 234] Spawn links a process on the expected lowest future loaded pool node
- get_node()
[page 234] Return the node ID of the expected lowest future loaded node
- new_node(Host, Name)
[page 234] Start a new node and attach it to an already existing pool
proc_lib
The following functions are exported:
- spawn(Fun) -> Pid
[page 235] Spawn a new process.
- spawn(Node,Fun) -> Pid
[page 235] Spawn a new process.
- spawn(Module,Func,Args) -> Pid
[page 235] Spawn a new process.
- spawn(Node, Module,Func,Args) -> Pid [page 235] Spawn a new process.
- spawn_link(Fun) -> Pid
[page 235] Spawn a new process and set a link.
- spawn_link(Node,Fun) -> Pid
[page 235] Spawn a new process and set a link.
- spawn_link(Module,Func,Args) -> Pid
[page 235] Spawn a new process and set a link.
- spawn_link(Node, Module,Func,Args) -> Pid [page 235] Spawn a new process and set a link.
- spawn_opt(Fun,Opts) -> Pid
[page 236] Spawn a new process with given options.
- spawn_opt(Node,Fun,Opts) -> Pid
[page 236] Spawn a new process with given options.
- spawn_opt (Module, Func, Args,Opts) -> Pid [page 236] Spawn a new process with given options.
- spawn_opt (Node, Module, Func, Args, Opts) -> Pid [page 236] Spawn a new process with given options.
- start (Module,Func,Args) -> Ret [page 236] Start a new process synchronously.
- start (Module,Func,Args,Time) -> Ret [page 236] Start a new process synchronously.
- start (Module, Func,Args,Time, SpawnOpts) $->$ Ret [page 236] Start a new process synchronously.
- start_link(Module,Func,Args) -> Ret [page 236] Start a new process synchronously.
- start_link(Module,Func,Args,Time) -> Ret [page 236] Start a new process synchronously.
- start_link(Module,Func,Args, Time, SpawnOpts) -> Ret [page 236] Start a new process synchronously.
- init_ack(Parent, Ret) -> void() [page 237] U sed by a process when it has started.
- init_ack(Ret) -> void() [page 237] U sed by a process when it has started.
- format(CrashReport) -> string() [page 237] Format a crash report.
- initial_call(PidOrPinfo) $->$ \{Module,Function,Args \mid Fun | false [page 238] Extract the initial call of a proc_lib spawned process.
- translate_initial_call(PidOrPinfo) -> \{Module,Function,Arity\} | Fun [page 238] Extract and translate the initial call of a proc_lib spawned process.
- hibernate(Module, Function, Arguments)
[page 238] H ibernate the current process until a message is sent to it

proplists

The following functions are exported:

- append_values(Key, List) -> List [page 240]
- compact(List) -> List [page 240]
- delete(Key, List) -> List [page 240]
- expand(Expansions, List) -> List [page 240]
- get_all_values(Key, List) -> [term()] [page 241]
- get_bool(Key, List) -> bool() [page 241]
- get_keys(List) -> [term()] [page 241]
- get_value(Key, List) -> term() [page 242]
- get_value(Key, List, Default) -> term() [page 242]
- is_defined(Key, List) -> bool() [page 242]
- lookup(Key, List) -> none | tuple() [page 242]
- lookup_all(Key, List) -> [tuple()] [page 242]
- normalize(List, Stages) -> List [page 242]
- property(Property) -> Property [page 243]
- property(Key, Value) -> Property [page 243]
- split(List, Keys) -> \{Lists, Rest $\}$ [page 243]
- substitute_aliases(Aliases, List) -> List [page 244]
- substitute_negations(Negations, List) -> List [page 244]
- unfold(List) -> List [page 244]

qlc

The following functions are exported:

- append (QHL) -> QH [page 251] Return a query handle.
- append (QH1, QH2) -> QH3
[page 251] Return a query handle.
- cursor(QueryHandleOrList [, Options]) -> QueryCursor [page 251] Create a query cursor.
- delete_cursor(QueryCursor) -> ok [page 251] D elete a query cursor.
- eval(QueryHandleOrList [, Options]) -> Answers | Error [page 251] Return all answers to a query.
- e(QueryHandleOrList [, Options]) -> Answers [page 251] Return all answers to a query.
- fold(Function, Acc0, QueryHandleOrList [, Options]) -> Acc1 | Error [page 252] Fold a function over the answers to a query.
- format_error(Error) -> FormatedError [page 252] Return an English description of a an error tuple.
- info(QueryHandleOrList [, Options]) -> Info [page 252] Return code describing a query handle.
- keysort(KeyPos, QH1 [, SortOptions]) -> QH2 [page 253] Return a query handle.
- next_answers(QueryCursor [, NumberOfAnswers]) -> Answers | Error [page 253] Return some or all answers to a query.
- q(QueryListComprehension [, Options]) -> QueryHandle [page 254] Return a handle for a query list comprehension.
- sort(QH1 [, SortOptions]) -> QH2 [page 255] Return a query handle.
- string_to_handle(QueryString [, Options [, Bindings]]) -> QueryHandle | Error [page 255] Return a handle for a query list comprehension.
- table(TraverseFun, Options) -> QueryHandle [page 256] Return a query handle for a table.

queue

The following functions are exported:

- cons(Item, Q1) -> Q2
[page 259] Insert an item at the head of a queue
- daeh(Q) -> Item [page 259] Return the last item of a queue
- from_list(L) -> queue() [page 259] Convert a list to a queue
- head(Q) -> Item [page 259] Return the item at the head of a queue
- in(Item, Q1) -> Q2
[page 259] Insert an item at the tail of a queue
- in_r (Item, Q1) -> Q2
[page 260] Insert an item at the head of a queue
- init(Q1) -> Q2
[page 260] Remove the last item from a queue
- is_empty(Q) -> true | false [page 260] Test if a queue is empty
- join(Q1, Q2) -> Q3
[page 260] Join two queues
- lait(Q1) -> Q2 [page 260] Remove the last item from a queue
- last(Q) -> Item [page 260] Return the last item of a queue
- len(Q) -> N [page 260] G et the length of a queue
- new() -> Q
[page 261] Create a new empty FIFO queue
- out(Q1) -> Result
[page 261] Remove the head item from a queue
- out_r(Q1) -> Result
[page 261] Remove the last item from a queue
- reverse(Q1) -> Q2
[page 261] Reverse a queue
- snoc(Q1, Item) -> Q2
[page 261] Insert an item at the end of a queue
- split(N, Q1) -> \{Q2, Q3\}
[page 261] Split a queue in two
- tail(Q1) -> Q2
[page 261] Remove the head item from a queue
- to_list(Q) -> list()
[page 262] Convert a queue to a list

random

The following functions are exported:

- seed() -> ran()
[page 263] Seeds random number generation with default values
- seed(A1, A2, A3) -> ran()
[page 263] Seeds random number generator
- seed0() -> ran()
[page 263] Return default state for random number generation
- uniform()-> float()
[page 263] Return a random float
- uniform(N) -> int()
[page 263] Return a random integer
- uniform_s(State0) -> \{float(), State1\} [page 264] Return a random float
- uniform_s (N, State0) -> \{int(), State1\} [page 264] Return a random integer
regexp
The following functions are exported:
- match(String, RegExp) -> MatchRes [page 265] M atch a regular expression
- first_match(String, RegExp) -> MatchRes [page 265] M atch a regular expression
- matches (String, RegExp) -> MatchRes [page 265] M atch a regular expression
- sub(String, RegExp, New) -> SubRes [page 266] Substitute the first occurrence of a regular expression
- gsub(String, RegExp, New) -> SubRes [page 266] Substitute all occurrences of a regular expression
- split(String, RegExp) -> SplitRes [page 266] Split a string into fields
- sh_to_awk(ShRegExp) -> AwkRegExp [page 267] Convert an sh regular expression into an AWK one
- parse (RegExp) -> ParseRes [page 267] Parse a regular expression
- format_error(ErrorDescriptor) -> string() [page 267] Format an error descriptor

sets

The following functions are exported:

- new() -> Set [page 270] Return an empty set
- is_set(Set) -> bool() [page 270] Test for an Set
- size(Set) -> int()
[page 270] Return the number of elements in a set
- to_list(Set) -> List [page 270] Convert an Set into a list
- from_list(List) -> Set [page 270] Convert a list into an Set
- is_element(Element, Set) -> bool() [page 270] Test for membership of an Set
- add_element(Element, Set1) -> Set2 [page 271] Add an element to an Set
- del_element(Element, Set1) -> Set2 [page 271] Remove an element from an Set
- union(Set1, Set2) -> Set3 [page 271] Return the union of two Sets
- union(SetList) -> Set [page 271] Return the union of a list of Sets
- intersection(Set1, Set2) -> Set3 [page 271] Return the intersection of two Sets
- intersection(SetList) -> Set [page 271] Return the intersection of a list of Sets
- subtract(Set1, Set2) -> Set3 [page 271] Return the difference of two Sets
- is_subset(Set1, Set2) -> bool() [page 272] Test for subset
- fold(Function, Acc0, Set) -> Acc1 [page 272] Fold over set elements
- filter (Pred, Set1) -> Set2 [page 272] Filter set elements
shell
The following functions are exported:
- history(N) -> integer()
[page 281] Sets the number of previous commands to keep
- results(N) -> integer()
[page 281] Sets the number of previous commands to keep
- start_restricted(Module) -> ok
[page 281] Exits a normal shell and starts a restricted shell.
- stop_restricted() -> ok
[page 281] Exits a restricted shell and starts a normal shell.

shell_default

N o functions are exported.

slave

The following functions are exported:

- start(Host)
[page 283] Start a slave node at H ost
- start_link(Host)
[page 283] Start a slave node at H ost
- start(Host, Name)
[page 283] Start a slave node at Host called N ame@H ost
- start_link(Host, Name)
[page 284] Start a slave node at H ost called N ame@H ost
- start(Host, Name, Args) -> \{ok, Node\} | \{error, ErrorInfo\} [page 284] Start a slave node at Host called Name@Host and passes Args to new node
- start_link(Host, Name, Args)
[page 284] Start a slave node at Host called N ame@H ost
- stop(Node)
[page 285] Stop (kill) a node
- pseudo([Master | ServerList])
[page 285] Start a number of pseudo servers
- pseudo(Master, ServerList)
[page 285] Start a number of pseudo servers
- relay(Pid)
[page 285] Run a pseudo server

sofs

The following functions are exported:

- a_function(Tuples [, Type]) -> Function [page 290] Create a function.
- canonical_relation(SetOfSets) -> BinRel [page 290] Return the canonical map.
- composite(Function1, Function2) -> Function3 [page 290] Return the composite of two functions.
- constant_function(Set, AnySet) -> Function [page 290] C reate the function that maps each element of a set onto another set.
- converse(BinRel1) -> BinRel2 [page 291] Return the converse of a binary relation.
- difference(Set1, Set2) -> Set3 [page 291] Return the difference of two sets.
- digraph_to_family (Graph [, Type]) -> Family [page 291] Create a family from a directed graph.
- domain(BinRel) -> Set [page 291] Return the domain of a binary relation.
- drestriction(BinRel1, Set) -> BinRel2 [page 291] Return a restriction of a binary relation.
- drestriction(SetFun, Set1, Set2) -> Set3 [page 292] Return a restriction of a relation.
- empty_set() -> Set [page 292] Return the untyped empty set.
- extension(BinRel1, Set, AnySet) -> BinRel2 [page 292] Extend the domain of a binary relation.
- family(Tuples [, Type]) -> Family [page 293] Create a family of subsets.
- family_difference(Family1, Family2) -> Family3 [page 293] Return the difference of two families.
- family_domain(Family1) -> Family2 [page 293] Return a family of domains.
- family_field(Family1) -> Family2 [page 293] Return a family of fields.
- family_intersection(Family1) -> Family2 [page 294] Return the intersection of a family of sets of sets.
- family_intersection(Family1, Family2) -> Family3 [page 294] Return the intersection of two families.
- family_projection(SetFun, Family1) -> Family2 [page 294] Return a family of modified subsets.
- family_range(Family1) -> Family2 [page 294] Return a family of ranges.
- family_specification(Fun, Family1) -> Family2 [page 295] Select a subset of a family using a predicate.
- family_to_digraph(Family [, GraphType]) -> Graph [page 295] C reate a directed graph from a family.
- family_to_relation(Family) -> BinRel [page 295] C reate a binary relation from a family.
- family_union(Family1) -> Family2 [page 296] Return the union of a family of sets of sets.
- family_union(Family1, Family2) -> Family3 [page 296] Return the union of two families.
- field(BinRel) -> Set [page 296] Return the field of a binary relation.
- from_external(ExternalSet, Type) -> AnySet [page 296] Create a set.
- from_sets(ListOfSets) -> Set [page 296] Create a set out of a list of sets.
- from_sets(TupleOfSets) -> Ordset [page 296] Create an ordered set out of a tuple of sets.
- from_term(Term [, Type]) -> AnySet [page 297] C reate a set.
- image(BinRel, Set1) -> Set2 [page 298] Return the image of a set under a binary relation.
- intersection(SetOfSets) -> Set [page 298] Return the intersection of a set of sets.
- intersection(Set1, Set2) -> Set3 [page 298] Return the intersection of two sets.
- intersection_of_family (Family) -> Set [page 298] Return the intersection of a family.
- inverse(Function1) -> Function2 [page 298] Return the inverse of a function.
- inverse_image(BinRel, Set1) -> Set2 [page 299] Return the inverse image of a set under a binary relation.
- is_a_function(BinRel) -> Bool [page 299] Test for a function.
- is_disjoint(Set1, Set2) -> Bool [page 299] Test for disjoint sets.
- is_empty_set(AnySet) -> Bool [page 299] Test for an empty set.
- is_equal(AnySet1, AnySet2) -> Bool [page 299] Test two sets for equality.
- is_set(AnySet) -> Bool [page 299] Test for an unordered set.
- is_sofs_set(Term) -> Bool [page 300] Test for an unordered set.
- is_subset(Set1, Set2) -> Bool [page 300] Test two sets for subset.
- is_type(Term) -> Bool [page 300] Test for a type.
- join(Relation1, I, Relation2, J) -> Relation3 [page 300] Return the join of two relations.
- multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2 [page 300] Return the multiple relative product of a tuple of binary relations and a relation.
- no_elements(ASet) -> NoElements [page 301] Return the number of elements of a set.
- partition(SetOfSets) -> Partition [page 301] Return the coarsest partition given a set of sets.
- partition(SetFun, Set) -> Partition [page 301] Return a partition of a set.
- partition(SetFun, Set1, Set2) $->$ \{Set3, Set4\} [page 301] Return a partition of a set.
- partition_family(SetFun, Set) -> Family [page 302] Return a family indexing a partition.
- product(TupleOfSets) -> Relation [page 302] Return the Cartesian product of a tuple of sets.
- product(Set1, Set2) -> BinRel [page 302] Return the Cartesian product of two sets.
- projection(SetFun, Set1) -> Set2 [page 303] Return a set of substituted elements.
- range(BinRel) -> Set
[page 303] Return the range of a binary relation.
- relation(Tuples [, Type]) -> Relation [page 303] Create a relation.
- relation_to_family(BinRel) -> Family [page 303] Create a family from a binary relation.
- relative_product(TupleOfBinRels [, BinRel1]) -> BinRel2 [page 304] Return the relative product of a tuple of binary relations and a binary relation.
- relative_product(BinRel1, BinRel2) -> BinRel3 [page 304] Return the relative product of two binary relations.
- relative_product1(BinRel1, BinRel2) -> BinRel3 [page 304] Return the relative_product of two binary relations.
- restriction(BinRel1, Set) -> BinRel2 [page 304] Return a restriction of a binary relation.
- restriction(SetFun, Set1, Set2) -> Set3 [page 305] Return a restriction of a set.
- set(Terms [, Type]) -> Set [page 305] Create a set of atoms or any type of sets.
- specification(Fun, Set1) -> Set2
[page 305] Select a subset using a predicate.
- strict_relation(BinRel1) -> BinRel2 [page 305] Return the strict relation corresponding to a given relation.
- substitution(SetFun, Set1) -> Set2
[page 306] Return a function with a given set as domain.
- symdiff(Set1, Set2) -> Set3
[page 306] Return the symmetric difference of two sets.
- symmetric_partition(Set1, Set2) -> \{Set3, Set4, Set5\}
[page 307] Return a partition of two sets.
- to_external(AnySet) -> ExternalSet [page 307] Return the elements of a set.
- to_sets(ASet) -> Sets [page 307] Return a list or a tuple of the elements of set.
- type(AnySet) -> Type [page 307] Return the type of a set.
- union(SetOfSets) -> Set [page 307] Return the union of a set of sets.
- union(Set1, Set2) -> Set3 [page 307] Return the union of two sets.
- union_of_family(Family) -> Set [page 308] Return the union of a family.
- weak_relation(BinRel1) -> BinRel2 [page 308] Return the weak relation corresponding to a given relation.

string

The following functions are exported:

- len(String) -> Length [page 309] Return the length of a string
- equal(String1, String2) -> bool() [page 309] Test string equality
- concat(String1, String2) -> String3 [page 309] Concatenate two strings
- chr(String, Character) -> Index [page 309] Return the index of the first/last occurrence of Character in String
- rchr (String, Character) -> Index [page 309] Return the index of the first/last occurrence of Character in String
- str(String, SubString) -> Index [page 309] Find the index of a substring
- rstr(String, SubString) -> Index [page 309] Find the index of a substring
- span(String, Chars) -> Length [page 310] Span characters at start of string
- cspan(String, Chars) -> Length [page 310] Span characters at start of string
- substr(String, Start) -> SubString [page 310] Return a substring of String
- substr(String, Start, Length) -> Substring [page 310] Return a substring of String
- tokens(String, SeparatorList) -> Tokens [page 310] Split string into tokens
- chars(Character, Number) -> String [page 310] Returns a string consisting of numbers of characters
- chars(Character, Number, Tail) -> String [page 310] Returns a string consisting of numbers of characters
- copies(String, Number) -> Copies [page 311] Copy a string
- words(String) -> Count [page 311] Count blank separated words
- words(String, Character) -> Count [page 311] Count blank separated words
- sub_word(String, Number) -> Word [page 311] Extract subword
- sub_word(String, Number, Character) -> Word [page 311] Extract subword
- strip(String) -> Stripped [page 311] Strip leading or trailing characters
- strip(String, Direction) -> Stripped [page 311] Strip leading or trailing characters
- strip(String, Direction, Character) -> Stripped [page 311] Strip leading or trailing characters
- left(String, Number) -> Left [page 312] Adjust left end of string
- left(String, Number, Character) -> Left [page 312] Adjust left end of string
- right(String, Number) -> Right [page 312] Adjust right end of string
- right(String, Number, Character) -> Right [page 312] Adjust right end of string
- centre(String, Number) -> Centered [page 312] Center a string
- centre(String, Number, Character) -> Centered [page 312] Center a string
- sub_string(String, Start) -> SubString [page 312] Extract a substring
- sub_string(String, Start, Stop) -> SubString [page 313] Extract a substring
- to_float(String) -> \{Float,Rest $\}$ | \{error,Reason\} [page 313] Returns a float whose text representation is the integers (A SCII values) in String.
- to_integer (String) -> \{Int,Rest\} | \{error,Reason\} [page 313] Returns an integer whose text representation is the integers (A SCII values) in String.

supervisor

The following functions are exported:

- start_link(Module, Args) -> Result [page 317] Create a supervisor process.
- start_link(SupName, Module, Args) -> Result [page 317] Create a supervisor process.
- start_child(SupRef, ChildSpec) -> Result [page 318] D ynamically add a child process to a supervisor.
- terminate_child(SupRef, Id) -> Result [page 318] Terminate a child process belonging to a supervisor.
- delete_child(SupRef, Id) -> Result [page 319] D elete a child specification from a supervisor.
- restart_child(SupRef, Id) -> Result [page 319] Restart a terminated child process belonging to a supervisor.
- which_children(SupRef) -> [\{Id,Child,Type,Modules\}] [page 320] Return information about all children specifications and child processes belonging to a supervisor.
- check_childspecs([ChildSpec]) -> Result [page 320] Check if child specifications are syntactically correct.
- Module:init(Args) -> Result [page 321] Return a supervisor specification.

supervisor_bridge

The following functions are exported:

- start_link(Module, Args) -> Result [page 322] Create a supervisor bridge process.
- start_link(SupBridgeName, Module, Args) -> Result [page 322] Create a supervisor bridge process.
- Module:init(Args) -> Result [page 323] Initialize process and start subsystem.
- Module:terminate(Reason, State) [page 323] Clean up and stop subsystem.

sys

The following functions are exported:

- \log (Name,Flag)
[page 326] Log system events in memory
- log(Name,Flag,Timeout) -> ok | \{ok, [system_event()]\} [page 326] Log system events in memory
- log_to_file (Name,Flag)
[page 326] Log system events to the specified file
- log_to_file(Name,Flag,Timeout) -> ok | \{error, open_file\} [page 326] Log system events to the specified file
- statistics(Name,Flag)
[page 326] Enable or disable the collections of statistics
- statistics(Name,Flag,Timeout) -> ok | \{ok, Statistics\} [page 326] Enable or disable the collections of statistics
- trace (Name,Flag)
[page 327] Print all system events on standard_io
- trace(Name,Flag,Timeout) -> void() [page 327] Print all system events on standard_io
- no_debug (Name)
[page 327] Turn off debugging
- no_debug(Name,Timeout) -> void() [page 327] Turn off debugging
- suspend (Name)
[page 327] Suspend the process
- suspend(Name,Timeout) -> void() [page 327] Suspend the process
- resume (Name)
[page 327] Resume a suspended process
- resume(Name,Timeout) -> void() [page 327] Resume a suspended process
- change_code(Name, Module, OldVsn, Extra)
[page 327] Send the code change system message to the process
- change_code(Name, Module, OldVsn, Extra, Timeout) -> ok I \{error, Reason\}
[page 327] Send the code change system message to the process
- get_status (Name)
[page 327] G et the status of the process
- get_status (Name, Timeout) -> \{status, Pid, \{module, Mod\}, [PDict, SysState, Parent, Dbg, Misc]\}
[page 327] G et the status of the process
- install (Name, \{Func, FuncState\})
[page 328] Install a debug function in the process
- install (Name, \{Func, FuncState\},Timeout) [page 328] Install a debug function in the process
- remove(Name,Func)
[page 328] Remove a debug function from the process
- remove(Name,Func,Timeout) -> void()
[page 328] Remove a debug function from the process
- debug_options(Options) -> [dbg_opt()] [page 329] Convert a list of options to a debug structure
- get_debug(Item,Debug, Default) -> term() [page 329] G et the data associated with a debug option
- handle_debug([dbg_opt()],FormFunc, Extra, Event) -> [dbg_opt()] [page 329] G enerate a system event
- handle_system_msg(Msg,From,Parent, Module,Debug,Misc) [page 329] Take care of system messages
- print_log(Debug) -> void() [page 330] Print the logged events in the debug structure
- Mod:system_continue(Parent, Debug, Misc) [page 330] Called when the process should continue its execution
- Mod:system_terminate(Reason, Parent, Debug, Misc) [page 330] Called when the process should terminate
- Mod:system_code_change(Misc, Module, OldVsn, Extra) -> \{ok, NMisc\} [page 330] Called when the process should perform a code change

timer

The following functions are exported:

- start() -> ok [page 332] Start a global timer server (named timer_server).
- apply_after(Time, Module, Function, Arguments) -> \{ok, Tref\} | \{error, Reason\}
[page 332] A pply Module:Function(Arguments) after a specified Time.
- send_after(Time, Pid, Message) -> \{ok, TRef $\}$ | \{error, Reason\} [page 332] Send Message to Pid after a specified Time.
- send_after(Time, Message) -> \{ok, TRef \} | \{error, Reason\} [page 332] Send Message to Pid after a specified Time.
- exit_after (Time, Pid, Reason1) -> \{ok, TRef $\}$ | \{error, Reason2\} [page 333] Send an exit signal with Reason after a specified Time.
- exit_after(Time, Reason1) -> \{ok, TRef \} | \{error, Reason2\} [page 333] Send an exit signal with Reason after a specified Time.
- kill_after (Time, Pid)-> \{ok, TRef $\}$ | \{error, Reason2\} [page 333] Send an exit signal with Reason after a specified Time.
- kill_after(Time) -> \{ok, TRef $\}$ | \{error, Reason2\} [page 333] Send an exit signal with Reason after a specified Time.
- apply_interval(Time, Module, Function, Arguments) -> \{ok, TRef \} | \{error, Reason\}
[page 333] Evaluate Module: Function(Arguments) repeatedly at intervals of Time.
- send_interval(Time, Pid, Message) -> \{ok, TRef $\}$ \{error, Reason\} [page 333] Send Message repeatedly at intervals of Time.
- send_interval(Time, Message) -> \{ok, TRef \} | \{error, Reason\} [page 333] Send Message repeatedly at intervals of Time.
- cancel(TRef) -> \{ok, cancel\} | \{error, Reason\} [page 333] Cancel a previously requested timeout identified by TRef.
- sleep(Time) -> ok [page 333] Suspend the calling process for Time amount of milliseconds.
- tc(Module, Function, Arguments) -> \{Time, Value\}
[page 334] M easure the real time it takes to evaluate apply (Module, Function, Arguments)
- now_diff(T2, T1) -> \{Time, Value\} [page 334] C alculate time difference between now/0 timestamps
- seconds(Seconds) -> Milliseconds [page 334] Convert Seconds to Milliseconds.
- minutes(Minutes) -> Milliseconds [page 334] Converts Minutes to Milliseconds.
- hours(Hours) -> Milliseconds [page 334] Convert Hours to Milliseconds.
- hms(Hours, Minutes, Seconds) -> Milliseconds [page 334] Convert Hours+Minutes+Seconds to Milliseconds.

win32reg

The following functions are exported:

- change_key (RegHandle, Key) -> ReturnValue [page 337] M ove to a key in the registry
- change_key_create (RegHandle, Key) -> ReturnValue [page 337] M ove to a key, create it if it is not there
- close(RegHandle)-> ReturnValue [page 337] Close the registry.
- current_key (RegHandle) -> ReturnValue [page 337] Return the path to the current key.
- delete_key(RegHandle) -> ReturnValue [page 337] D elete the current key
- delete_value(RegHandle, Name) -> ReturnValue [page 338] D elete the named value on the current key.
- expand(String) -> ExpandedString [page 338] Expand a string with environment variables
- format_error(ErrorId) -> ErrorString [page 338] Convert an PO SIX errorcode to a string
- open(OpenModeList)-> ReturnValue [page 338] O pen the registry for reading or writing
- set_value(RegHandle, Name, Value) -> ReturnValue [page 338] Set value at the current registry key with specified name.
- sub_keys(RegHandle) -> ReturnValue [page 339] G et subkeys to the current key.
- value(RegHandle, Name) -> ReturnValue [page 339] G et the named value on the current key.
- values(RegHandle) -> ReturnValue [page 339] G et all values on the current key.

beam_lib

Erlang M odule
beam_lib provides an interface to files created by the BEAM compiler ("BEAM files"). The format used, a variant of "EA IFF 1985" Standard for Interchange Format Files, divides data into chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are referenced by names (atoms) rather than identifiers (strings). The names recognized and the corresponding identifiers are abstract_code ("A bst"), attributes ("Attr"), compile_info ("CInf"), exports ("ExpT"), labeled_exports ("ExpT"), imports ("ImpT"), indexed_imports ("ImpT"), locals ("LocT"), labeled_locals ("LocT"), and atoms ("A tom").
The syntax of the compound term (ChunkData) is as follows:

- ChunkData $=\{$ ChunkId, binary() $\}$ | \{abstract_code, AbstractCode $\}$ \{attributes, [\{Attribute, [AttributeValue]\}]\} | \{compile_info, [\{InfoKey, [InfoValue] \}]\} | \{exports, [\{Function, Arity\}]\} | \{labeled_exports, [\{Function, Arity, Label\}]\} | \{imports, [\{Module, Function, Arity\}]\} | \{indexed_imports, [\{Index, Module, Function, Arity\}]\} | \{locals, [\{Function, Arity\}]\}]\} | \{labeled_locals, [\{Function, Arity, Label $\}]\}]\}$ | atoms, [\{integer(), atom() $\}]\}$
- ChunkRef = ChunkId | ChunkName
- ChunkName = abstract_code | attributes | compile_info | exports | labeled_exports | imports | indexed_imports | locals | labeled_locals | atoms
- ChunkId = string()
- AbstractCode $=\{$ AbstVersion, forms()\} | no_abstract_code
- AbstVersion $=$ atom()
- Attribute = atom()
- AttributeValue $=$ term ()
- Module $=$ Function $=$ atom()
- Arity $=$ integer () >= 0
- Label $=$ integer () $>=0$

The list of attributes is sorted on Attribute, and each attribute name occurs once in the list. The attribute values occur in the same order as on the file. The lists of functions are also sorted. It is not checked that the forms conform to the abstract format indicated by AbstVersion.
no_abstract_code means that the "A bst" chunk is present, but empty.
Each of the functions described below accept either a filename or a binary containing a beam module.

ENCRYPTED ABSTRACT CODE

The abstract code can be encrypted in order to keep the source code secret, but still be able to use tools such as X ref or D ebugger. See [compile] for how to encrypt the abstract code.

To enable tools to use the abstract code, the key must be made available for beam_lib. There are two ways to provide the key.

U se the function crypto_key_fun/1 [page 53] to register a fun that will be called whenever beam_lib needs to decrypt the abstract code.
Store the key in a text file named .erlang. crypt located in either the current directory or the home directory for the current user. beam_lib will search for and read the .erlang. crypt file if no crypto fun has been registered using crypto_key_fun/1 [page 53]. If the file exists and contains a key, beam_lib will implicitly create a crypto key fun and register it.

The .erlang. crypt file should define a single list. The elements of the list should be tuples looking like this:

```
{debug_info, Mode, Module, Key}
```

Mode is the type of key; currently, the only allowed value is des3_cbc. Module is either an atom, in which case Key will only be used for the module Module, or [], in which case Key will be used for all modules. Key is a non-empty list.
The Key in the first tuple where both Mode and Module matches will be used.
Here is an example of an .erlang. crypt file that returns the same key for all modules:
[\{debug_info, des3_cbc, [], "\%>7\}|pc/DM6Cga*68\$Mw]L\#\&_Gejr]G^"\}].
A nd here is a slightly more complicated example of an .erlang.crypt which provides one key for the module t, and another key for all other modules:

```
[{debug_info, des3_cbc, t, "My KEY"},
    {debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].
```


N ote:

D o NOT use any of the keys in these examples. Use your own keys.

Exports

chunks(FileNameOrBinary, [ChunkRef]) -> \{ok, \{Module, [ChunkData]\}\} | \{error, Module, Reason $\}$
Types:

- FileN ameO rBinary = string() | atom() | binary()
- Reason = \{unknown_chunk, FileN ame, atom()\} \| \{key_missing_or_invalid, FileN ame, abstract_code\} I -see info/1-
The chunks $/ 2$ function reads chunk data for selected chunks. The order of the returned list of chunk data is determined by the order of the list of chunks references; if each chunk data were replaced by the tag, the result would be the given list.
version(FileNameOrBinary) -> \{ok, \{Module, Version\}\} | \{error, Module, Reason\}
Types:
- FileN ameO rBinary = string() | atom() | binary()
- Version = [term()]
- Reason = -see chunks/2-

The version/1 function returns the module version(s) found in a BEAM file.
info(FileNameOrBinary) -> [SourceRef, \{module, Module\}, \{chunks, [ChunkInfo]\}] |
\{error, Module, Reason\}
Types:

- FileN ame = string() । atom()
- FileN ameO rBinary = FileN ame \| binary ()
- SourceR ef $=\{$ file, FileN ame $\}$ । binary, binary ()$\}$
- ChunkInfo $=\{$ ChunkId, StartPosition, Size $\}$
- StartPosition $=$ integer ()>0
- Size $=$ integer ()$>=0$
- Reason $=$ \{chunk_too_big, FileN ame, ChunkId, ChunkSize, FileSize\} \mid \{invalid_beam_file, FileN ame, FilePosition\} । \{invalid_chunk, FileN ame, ChunkId\} | \{missing_chunk, FileN ame, ChunkId\} \| \{not_a_beam_file, FileN ame\} | \{file_error, FileN ame, FileError\}
The info/1 function extracts some information about a BEA M file: the file name, the module name, and for each chunk the identifier as well as the position and size in bytes of the chunk data.

```
cmp(FileNameOrBinary, FileNameOrBinary) -> ok | {error, Module, Reason}
    Types:
    - FileN ame = string() | atom()
    - FileN ameO rBinary = FileN ame | binary()
    - Reason = {modules_different, M odule, M odule} | {chunks_different, C hunkld} |
        -see info/1-
```

The cmp/2 function compares the contents of two BEAM files. If the module names are the same, and the chunks with the identifiers "Code", "ExpT", "ImpT", "StrT", and "A tom" have the same contents in both files, ok is returned. O therwise an error message is returned.

```
cmp_dirs(Directory1, Directory2) -> {Only1, Only2, Different} | {error, Module,
    Reason}
```


Types:

- Directory1 = Directory2 = string() | atom()
- Different = [\{FileN ame1, FileN ame2\}]
- Only1 = O nly2 = [FileN ame]
- FileN ame $=$ FileN ame1 $=$ FileN ame2 $=$ string()
- Reason $=$-see info/1-

The cmp_dirs/2 function compares the BEAM files in two directories. O nly files with extension ".beam" are compared. BEAM files that exist in directory Directory1 (Directory2) only are returned in Only1 (Only2). BEAM files that exist on both directories but are considered different by cmp/2 are returned as pairs \{FileName1, FileName2\} where FileName1 (FileName2) exists in directory Directory1 (Directory2).

```
diff_dirs(Directory1, Directory2) -> ok | {error, Module, Reason}
```

Types:

- Directory1 = Directory2 = string() | atom()
- Reason = -see info/1-

The diff_dirs/2 function compares the BEAM files in two directories the way cmp_dirs/2 does, but names of files that exist in only one directory or are different are presented on standard output.
strip(FileNameOrBinary) -> \{ok, \{Module, FileNameOrBinary\}\} | \{error, Module, Reason\}

Types:

- FileN ame = string() । atom()
- FileN ameO rBinary = FileN ame \| binary()
- Reason =-see info/1-

The strip/1 function removes all chunks from a BEAM file except those needed by the loader. In particular, the abstract code is removed. The module name found in the file and the file name, possibly with the ".beam" extension added, are returned.

```
strip_files(Files) -> {ok, [{Module, FileNameOrBinary]}} | {error, Module, Reason}
```

Types:

- Files $=$ [FileN ameO rBinary $]$
- FileN ame = string() । atom()
- FileN ameO rBinary = FileN ame \| binary()
- Reason =-see info/1-

The strip_files/1 function removes all chunks except those needed by the loader from BEAM files. In particular, the abstract code is removed. The returned list contains one element for each given file name, ordered as the given list. The list element is a pair of the module name found in the file and the file name, the latter possibly with the ".beam" extension added.

```
strip_release(Directory) -> {ok, [{Module, FileName]}} | {error, Module, Reason}
```

Types:

- Directory = string() । atom()
- FileN ame = string()
- Reason = -see info/1-

The strip_release/1 function removes all chunks except those needed by the loader from the BEAM files of a release. Directory should be the installation root directory. For example, the current OTP release can be stripped with the call beam_lib:strip_release (code:root_dir()). The returned list contains module names and file names of stripped files.

```
format_error(Error) -> character_list()
```

Given the error returned by any function in this module, the function format_error returns a descriptive string of the error in English. For file errors, the function format_error/1 in the file module is called.
crypto_key_fun(CryptoKeyFun) -> ok | \{error, Reason\}
Types:

- CryptoKeyFun = fun()
- Reason = badfun । exists । term()

The crypto_key_fun/1 function registers a unary fun that will be called if beam_lib needs to read an abstract_code chunk that has been encrypted. (The fun will be held in a process that will be started by crypto_key_fun/1.)
If there already is a fun registered when attempting to register a fun, \{error, exists\} will be returned.
The fun will be called with one argument. The fun must be prepared to be called with the following arguments:

- init: Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any necessary initializations. Allowed return values: ok, \{ok, NewCryptoKeyFun\} (NewCryptoKeyFun will be registered instead of CryptoKeyFun), or \{error, Reason\} (the registration will be aborted and crypto_key_fun/1 will return \{error, Reason\}, where Reason can be any term).
- \{debug_info, Mode, Module, Filename\}: Called when the key is needed for module Module in file Filename. Mode describes the method of encryption; currently the only allowed value is des3_cbc. The fun should return the key as list of characters or fail if there is no key available.
- clear: C alled just before the fun is unregistered. Do any needed cleanup here. The return value is not important, but will be passed back to the caller of clear_crypto_key_fun/0.

```
clear_crypto_key_fun() -> {ok, Result}
```

Types:

- Result = undefined । term()

Unregisters the crypto key fun and terminates the process that was started by crypto_key_fun/1.
The clear_crypto_key_fun/1 either returns \{ok, undefined $\}$ if there was no crypto key fun registered, or $\{$ ok, Term $\}$, where Term is the return value from the crypto key fun called with the argument clear.

C Erlang M odule

The c module enables users to enter the short form of some commonly used commands. These functions are are intended for interactive use in the Erlang shell.

Exports

```
bt(Pid) -> void()
```

Types:

- Pid = pid()

This function evaluates erlang: process_display (Pid, backtrace).
c(File) -> CompileResult
This function is equivalent to:
compile:file(File, [report_errors, report_warnings])
c(File, Flags) -> CompileResult
Types:

- File $=$ atom() | string()
- CompileResult = \{ok, M oduleN ame $\}$ । error
- M oduleN ame = atom()
- Flags = [Flag]

This function calls the following function and then purges and loads the code for the file:
compile:file(File, Flags ++ [report_errors, report_warnings])
If the module corresponding to File is being interpreted, then int: is called with the same arguments and the module is loaded into the interpreter. N ote that int:i only recognizes a subset of the options recognized by compile:file.
Extreme care should be exercised when using this command to change running code which is executing. The expected result may not be obtained.
Refer to compiler manual pages for a description of the individual compiler flags.

```
cd(Dir) -> void()
```

Types:

- $\operatorname{Dir}=\operatorname{atom}()$ | string()

This function changes the current working directory to Dir, and then prints the new working directory.

```
flush() -> void()
```

This function flushes all messages in the shell message queue.
help() -> void()
This function displays help about the shell and about the command interface module.
i() -> void()
This function provides information about the current state of the system. This call uses the BIFs processes () and process_info/1 to examine the current state of the system. (The code is a good introduction to these two BIFs).
i(X, Y, Z) -> void()
Types:

- $X=Y=Z=\operatorname{int}()$

This function evaluates process_info(pid (X, Y, Z)).
l(Module) -> void()
Types:

- M odule = atom() | string()

This function evaluates code: purge (Module) followed by code:load_module(Module). It reloads the module.
lc(ListOfFiles) -> Result
Types:

- ListO fFiles = [File]
- File = atom() | string()
- Result = [CompileResult]
- CompileResult = \{ok, M oduleN ame\} | error
- M oduleN ame = atom()

This function compiles several files by calling c (File) for each file in ListOfFiles.

```
ls() -> void()
```

This function lists all files in the current directory.
ls(Dir) -> void()
Types:

- Dir = atom() | string()

This function lists all files in the directory Dir.
m() -> void()

This function lists the modules which have been loaded and the files from which they have been loaded.
m(Module) -> void()
Types:

- M odule $=$ atom ()

This function lists information about Module.
memory() -> MemoryInformation
The same as erlang:memory/0, see the erlang(3) man page.
memory (MemoryTypeSpecification) -> MemoryInformation
The same as erlang:memory/1, see the erlang (3) man page.
nc(File) $->$ void()
Types:

- File $=$ atom() | string ()

This function compiles File and loads it on all nodes in an Erlang nodes network.
nc(File, Flags) $->$ void()
Types:

- File = atom() | string()
- Flags = [Flag]

This function compiles File with the additional compiler flags Flags and loads it on all nodes in an Erlang nodes network. Refer to the compile manual pages for a description of Flags.
ni() -> void()
This function does the same as i(), but for all nodes in the network.
nl(Module) -> void()
Types:

- M odule = atom()

This function loads Module on all nodes in an Erlang nodes network.
nregs() -> void()
This function is the same as regs(), but on all nodes in the system.
pid(X, Y, Z) -> pid()
Types:

- $X=Y=Z=\operatorname{int}()$

This function converts the integers X, Y, and Z to the Pid $<X . Y$. Z $>$. It saves typing and the use of list_to_pid/1. This function should only be used when debugging.
pwd() $->\operatorname{void}()$
This function prints the current working directory.
q() $->\operatorname{void}()$
This function is shorthand for init: stop (), i.e., it causes the node to stop in a controlled fashion.
regs() -> void()
This function displays formatted information about all registered processes in the system.
xm(ModSpec) $->\operatorname{void}()$
Types:

- M odSpec = M odule \mid File
- M odule = atom()
- File = string()

This function finds undefined functions and unused functions in a module by calling xref:m/1.

See Also

erlang(3)

calendar
 Erlang M odule

This module provides computation of local and universal time, day-of-the-week, and several time conversion functions.
Time is local when it is adjusted in accordance with the current time zone and daylight saving. Time is universal when it reflects the time at longitude zero, without any adjustment for daylight saving. Universal C oordinated Time (UTC) time is also called Greenwich M ean Time (GMT).
The time functions local_time/0 and universal_time/0 provided in this module both return date and time. The reason for this is that separate functions for date and time may result in a date/time combination which is displaced by 24 hours. This happens if one of the functions is called before midnight, and the other after midnight. This problem also applies to the Erlang BIFs date/0 and time/0, and their use is strongly discouraged if a reliable date/time stamp is required.
All dates conform to the G regorian calendar. This calendar was introduced by Pope Gregory X III in 1582 and was used in all Catholic countries from this year. Protestant parts of Germany and the N etherlands adopted it in 1698, England followed in 1752, and Russia in 1918 (the O ctober revolution of 1917 took place in N ovember according to the G regorian calendar).
The Gregorian calendar in this module is extended back to year 0 . For a given date, the gregorian days is the number of days up to and including the date specified. Similarly, the gregorian seconds for a given date and time, is the the number of seconds up to and including the specified date and time.
For computing differences between epochs in time, use the functions counting gregorian days or seconds. If epochs are given as local time, they must be converted to universal time, in order to get the correct value of the elapsed time between epochs. U se of the function time_difference $/ 2$ is discouraged.

Exports

```
date_to_gregorian_days(Year, Month, Day) -> Days
date_to_gregorian_days(Date) -> Days
```

Types:

- D ate $=\{$ Year, M onth, D ay $\}$
- Year = M onth = D ay = D ays = int()

This function computes the number of gregorian days starting with year 0 and ending at the given date.

```
datetime_to_gregorian_seconds(DateTime) -> Seconds
```

Types:

- D ateTime $=\{$ date(), time() $\}$
- date() $=\{$ Year, M onth, Day $\}$
- time() $=\{$ H our, M inute, Second $\}$
- Year $=$ M onth $=$ Day $=$ H our $=$ M inute $=$ Second $=$ Seconds $=\operatorname{int}()$

This function computes the number of gregorian seconds starting with year 0 and ending at the given date and time.
day_of_the_week(Date) -> DayNumber
day_of_the_week(Year, Month, Day) -> DayNumber
Types:

- D ate $=\{$ Year, M onth, D ay $\}$
- Year = M onth = D ay = DayN umber = int()

This function computes the day of the week given Year, Month and Day. The return value denotes the day of the week as follows:

```
Monday = 1, Tuesday = 2, ..., Sunday = 7
```

Year cannot be abbreviated and a value of 93 denotes the year 93, and not the year 1993. Month is the month number with January $=1$. Day is an integer in the range 1 and the number of days in the month Month of the year Year.

```
gregorian_days_to_date(Days) -> Date
```

Types:

- D ate $=\{$ Year, M onth, D ay $\}$
- Year $=$ M onth $=$ D ay $=$ D ays $=\operatorname{int}()$

This function computes the date given the number of gregorian days.

```
gregorian_seconds_to_datetime(Secs) -> DateTime
```

Types:

- D ateTime $=\{$ date(), time ()$\}$
- date() $=\{$ Year, M onth, Day $\}$
- time ()$=\{$ H our, Minute, Second $\}$
- Year $=$ M onth $=$ D ay $=$ H our $=$ M inute $=$ Second $=$ D ays $=$ int ()

This function computes the date and time from the given number of gregorian seconds.

```
is_leap_year(Year) -> bool()
```

Types:

- Year = int()

This function checks if a year is a leap year.
last_day_of_the_month(Year, Month) -> int()
Types:

- Year $=$ M onth $=\operatorname{int}()$

This function computes the number of days in a month.

```
local_time() -> \{Date, Time\}
```

Types:

- D ate $=\{$ Year, M onth, D ay $\}$
- Time $=\{$ H our, Minute, Second $\}$
- Year $=$ M onth $=$ D ay $=$ H our $=$ M inute $=$ Second $=$ int()

This function returns the local time reported by the underlying operating system.
local_time_to_universal_time(\{Date, Time\}) $->$ \{Date, Time $\}$
Types:

- D ate $=\{$ Year, M onth, D ay $\}$
- Time $=\{$ H our, Minute, Second $\}$
- Year $=$ M onth $=$ D ay $=$ H our $=$ M inute $=$ Second $=$ int()

This function converts from local time to U niversal C oordinated Time (UTC). Date must refer to a local date after Jan 1, 1970.

Warning:

This function is deprecated. U se local_time_to_universal_time_dst/1 instead, as it gives a more correct and complete result. Especially for the period that does not exist since it gets skipped during the switch to daylight saving time, this function still returns a result.
local_time_to_universal_time_dst(DateTime) -> [DateTimeUTC]
Types:

- D ateTime $=$ D ateTimeU TC $\{$ D ate, Time $\}$
- D ate $=\{$ Year, M onth, D ay $\}$
- Time $=\{$ H our, M inute, Second $\}$
- Year $=$ M onth $=$ D ay $=$ H our $=$ M inute $=$ Second $=$ int()

This function converts from local time to Universal C oordinated Time (UTC). Date must refer to a local date after Jan 1, 1970.
The return value is a list of 0,1 or 2 possible UTC times:
[] For a local DateTime during the period that is skipped when switching to daylight saving time, there is no corresponding UTC since the local time is illegal - it has never happened.
[DstDateTimeUTC, DateTimeUTC] For a local DateTime during the period that is repeated when switching from daylight saving time, there are two corresponding UTCs. O ne for the first instance of the period when daylight saving time is still active, and one for the second instance.
[DateTimeUTC] For all other local times there is only one corresponding UTC.

```
now_to_local_time(Now) -> {Date, Time}
```

Types:

- N ow $=\{$ M egaSecs, Secs, M icroSecs $\}$
- D ate $=\{$ Year, M onth, D ay $\}$
- Time $=\{$ H our, M inute, Second $\}$
- M egaSecs $=$ Secs $=$ M illiSecs $=\operatorname{int}()$
- Year $=$ M onth $=$ D ay $=$ H our $=$ M inute $=$ Second $=\operatorname{int}()$

This function returns local date and time converted from the return value from erlang:now().

```
now_to_universal_time(Now) -> {Date, Time}
```

now_to_datetime(Now) -> \{Date, Time\}

Types:

- N ow $=\{$ M egaSecs, Secs, M icroSecs $\}$
- D ate $=\{$ Year, M onth, D ay $\}$
- Time $=\{$ H our, M inute, Second $\}$
- M egaSecs = Secs = M illiSecs = int()
- Year $=$ M onth $=$ Day $=$ H our $=$ M inute $=$ Second $=$ int ()

This function returns U niversal Coordinated Time (UTC) converted from the return value from erlang: now().

```
seconds_to_daystime(Secs) -> {Days, Time}
```

Types:

- Time() $=\{$ Hour, M inute, Second $\}$
- Hour = M inute = Second = D ays = int ()

This function transforms a given number of seconds into days, hours, minutes, and seconds. The Time part is always non-negative, but Days is negative if the argument Secs is.
seconds_to_time(Secs) -> Time
Types:

- Time() $=\{$ Hour, M inute, Second $\}$
- Hour $=$ M inute $=$ Second $=$ Secs $=\operatorname{int}()$

This function computes the time from the given number of seconds. Secs must be less than the number of seconds per day.
time_difference(T1, T2) -> Tdiff
Types:

- T1 $=$ T2 $=\{$ D ate, Time $\}$
- Tdiff $=\{$ D ay, $\{$ H our, M inute, Second $\}\}$
- D ate $=\{$ Year, M onth, D ay $\}$
- Time $=\{$ H our, M inute, Second $\}$
- Year $=$ M onth $=$ Day $=$ H our $=$ Minute $=$ Second $=\operatorname{int}()$

This function returns the difference between two \{Date, Time\} structures. T2 should refer to an epoch later than T1.

This function is obsolete. Use the conversion functions for gregorian days and seconds instead.
time_to_seconds(Time) -> Secs
Types:

- Time() $=\{$ H our, Minute, Second $\}$
- Hour $=$ M inute $=$ Second $=$ Secs $=\operatorname{int}()$

This function computes the number of seconds since midnight up to the specified time.

```
universal_time() -> {Date, Time}
```

Types:

- D ate $=\{$ Year, M onth, D ay $\}$
- Time $=\{$ H our, M inute, Second $\}$
- Year $=$ M onth $=$ D ay $=$ H our $=$ M inute $=$ Second $=$ int()

This function returns the U niversal Coordinated Time (UTC) reported by the underlying operating system. Local time is returned if universal time is not available.

```
universal_time_to_local_time({Date, Time}) -> {Date, Time}
```

Types:

- D ate $=\{$ Year, M onth, D ay $\}$
- Time $=\{$ H our, Minute, Second $\}$
- Year $=$ M onth $=$ D ay $=$ H our $=$ M inute $=$ Second $=i n t()$

This function converts from Universal C oordinated Time (UTC) to local time. Date must refer to a date after Jan 1, 1970.

```
valid_date(Date) -> bool()
valid_date(Year, Month, Day) -> bool()
```

Types:

- D ate $=\{$ Year, M onth, D ay $\}$
- Year $=$ M onth $=$ D ay $=\operatorname{int}($)

This function checks if a date is a valid.

Leap Years

The notion that every fourth year is a leap year is not completely true. By the G regorian rule, a year Y is a leap year if either of the following rules is valid:

- Y is divisible by 4 , but not by 100 ; or
- Y is divisible by 400.

A ccordingly, 1996 is a leap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF localtime/O. U niversal time is computed from the BIF universaltime/0.

The following facts apply:

- there are 86400 seconds in a day
- there are 365 days in an ordinary year
- there are 366 days in a leap year
- there are 1461 days in a 4 year period
- there are 36524 days in a 100 year period
- there are 146097 days in a 400 year period
- there are 719528 days between Jan 1, 0 and Jan 1, 1970.

dets
Erlang M odule

The module dets provides a term storage on file. The stored terms, in this module called objects, are tuples such that one element is defined to be the key. A D ets table is a collection of objects with the key at the same position stored on a file.
D ets is used by the M nesia application, and is provided as is for users who are interested in an efficient storage of Erlang terms on disk only. M any applications just need to store some terms in a file. M nesia adds transactions, queries, and distribution. The size of Dets files cannot exceed 2 GB . If larger tables are needed, M nesia's table fragmentation can be used.

There are three types of Dets tables: set, bag and duplicate_bag. A table of type set has at most one object with a given key. If an object with a key already present in the table is inserted, the existing object is overwritten by the new object. A table of type bag has zero or more different objects with a given key. A table of type duplicate_bag has zero or more possibly equal objects with a given key.
D ets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a table has not been properly closed, D ets will automatically repair the table. This can take a substantial time if the table is large. A D ets table is closed when the process which opened the table terminates. If several Erlang processes (users) open the same D ets table, they will share the table. The table is properly closed when all users have either terminated or closed the table. D ets tables are not properly closed if the Erlang runtime system is terminated abnormally.

N ote:

A -C command abnormally terminates an Erlang runtime system in a Unix environment with a break-handler.

Since all operations performed by D ets are disk operations, it is important to realize that a single look-up operation involves a series of disk seek and read operations. For this reason, the D ets functions are much slower than the corresponding Ets functions, although D ets exports a similar interface.
D ets organizes data as a linear hash list and the hash list grows gracefully as more data is inserted into the table. Space management on the file is performed by what is called a buddy system. The current implementation keeps the entire buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up. The only way to defragment a table is to close it and then open it again with the repair option set to force.
It is worth noting that the ordered_set type present in Ets is not yet implemented by D ets, neither is the limited support for concurrent updates which makes a sequence of first and next calls safe to use on fixed Ets tables. Both these features will be implemented by D ets in a future release of Erlang/OTP. Until then, the M nesia
application (or some user implemented method for locking) has to be used to implement safe concurrency. Currently, no library of Erlang/OTP has support for ordered disk based term storage.
Two versions of the format used for storing objects on file are supported by Dets. The first version, 8 , is the format always used for tables created by OTP R 7 and earlier. The second version, 9 , is the default version of tables created by OTP R8 (and later OTP releases). OTP R8 can create version 8 tables, and convert version 8 tables to version 9 , and vice versa, upon request.
All D ets functions return \{error, Reason\} if an error occurs (first/1 and next/2 are exceptions, they exit the process with the error tuple). If given badly formed arguments, all functions exit the process with a badarg message.
Types

```
access() = read | read_write
auto_save() = infinity | int()
bindings_cont() = tuple()
bool() = true | false
file() = string()
int() = integer() >= 0
keypos() = integer() >= 1
name() = atom() | ref()
no_slots() = integer() >= 0 | default
object() = tuple()
object_cont() = tuple()
select_cont() = tuple()
type() = bag | duplicate_bag | set
version() = 8 | 9 | default
```


Exports

all() -> [Name]
Types:

- Name = name()

Returns a list of the names of all open tables on this node.
bchunk(Name, Continuation) -> \{Continuation2, Data\} | '\$end_of_table' | \{error,
Reason\}
Types:

- N ame = name()
- Continuation $=$ start $\mid \operatorname{cont}()$
- Continuation2 $=$ cont()
- D ata = binary () | tuple()

Returns a list of objects stored in a table. The exact representation of the returned objects is not public. The lists of data can be used for initializing a table by giving the value bchunk to the format option of the init_table/3 function. The M nesia application uses this function for copying open tables.
Unless the table is protected using safe_fixtable/2, calls to bchunk/2 may not work as expected if concurrent updates are made to the table.
The first time bchunk/2 is called, an initial continuation, the atom start, must be provided.
The bchunk/2 function returns a tuple \{Continuation2, Data\}, where Data is a list of objects. Continuation2 is another continuation which is to be passed on to a subsequent call to bchunk/2. With a series of calls to bchunk/2 it is possible to extract all objects of the table.
bchunk/2 returns '\$end_of_table' when all objects have been returned, or \{error, Reason\} if an error occurs.

```
close(Name) -> ok | {error, Reason}
```

Types:

- N ame = name()

C loses a table. O nly processes that have opened a table are allowed to close it.
All open tables must be closed before the system is stopped. If an attempt is made to open a table which has not been properly closed, D ets automatically tries to repair the table.
delete(Name, Key) -> ok | \{error, Reason\}
Types:

- Name = name()

D eletes all objects with the key Key from the table Name.

```
delete_all_objects(Name) -> ok | {error, Reason}
```

Types:

- N ame = name()

D eletes all objects from a table in almost constant time. H owever, if the table if fixed, delete_all_objects (T) is equivalent to match_delete (T, , _').
delete_object(Name, Object) -> ok | \{error, Reason\}
Types:

- Name = name()
- O bject = object()

D eletes all instances of a given object from a table. If a table is of type bag or duplicate_bag, the delete/2 function cannot be used to delete only some of the objects with a given key. This function makes this possible.

```
first(Name) -> Key | '$end_of_table'
```

Types:

- Key = term()
- N ame = name()

Returns the first key stored in the table Name according to the table's internal order, or '\$end_of_table' if the table is empty.
U nless the table is protected using safe_fixtable/2, subsequent calls to next/2 may not work as expected if concurrent updates are made to the table.
Should an error occur, the process is exited with an error tuple \{error, Reason\}. The reason for not returning the error tuple is that it cannot be distinguished from a key.
There are two reasons why first/1 and next/2 should not be used: they are not very efficient, and they prevent the use of the key '\$end_of_table' since this atom is used to indicate the end of the table. If possible, the match, match_object, and select functions should be used for traversing tables.

```
foldl(Function, Acc0, Name) -> Acc1 | {error, Reason}
    Types:
    - Function = fun(O bject, Accln) -> AccO ut
    - Acc0 = Acc1 = A ccln = AccO ut = term()
    - N ame = name()
    - O bject = object()
    Calls Function on successive elements of the table Name together with an extra
        argument AccIn. The order in which the elements of the table are traversed is
        unspecified. Function must return a new accumulator which is passed to the next call.
        Acc0 is returned if the table is empty.
foldr(Function, Acc0, Name) -> Acc1 | {error, Reason}
```

Types:

- Function $=$ fun(O bject, $A c c I n$) $->A c c O$ ut
- $\mathrm{AccO}=\mathrm{Acc1}=\mathrm{AccIn}=\mathrm{AccO}$ ut $=$ term()
- N ame = name()
- O bject = object()

Calls Function on successive elements of the table Name together with an extra argument AccIn. The order in which the elements of the table are traversed is unspecified. Function must return a new accumulator which is passed to the next call. Acc0 is returned if the table is empty.

```
from_ets(Name, EtsTab) -> ok | {error, Reason}
```

Types:

- N ame = name()
- EtsTab $=$-see ets(3)-

Deletes all objects of the table Name and then inserts all the objects of the Ets table EtsTab. The order in which the objects are inserted is not specified. Since ets: safe_fixtable/2 is called the Ets table must be public or owned by the calling process.

```
info(Name) -> InfoList | undefined
```


Types:

- Name = name()
- InfoList = [\{Item, Value\}]

Returns information about the table Name as a list of \{Item, Value $\}$ tuples:

- \{file_size, int() \}, the size of the file in bytes.
- \{filename, file()\}, the name of the file where objects are stored.
- \{keypos, keypos() \}, the position of the key.
- \{size, int() \}, the number of objects stored in the table.
- \{type, type()\}, the type of the table.

```
info(Name, Item) -> Value | undefined
```

Types:

- Name = name()

Returns the information associated with Item for the table Name. In addition to the \{Item, Value\} pairs defined for info/1, the following items are allowed:

- \{access, access() \}, the access mode.
- \{auto_save, auto_save() \}, the auto save interval.
- \{bchunk_format, binary()\}, an opaque binary describing the format of the objects returned by bchunk/2. The binary can be used as argument to is_compatible_chunk_format/2. O nly available for version 9 tables.
- \{hash, H ash\}. Describes which BIF is used to calculate the hash values of the objects stored in the Dets table. Possible values of H ash are hash, which implies that the erlang: hash/2 BIF is used, phash, which implies that the erlang: phash/2 BIF is used, and phash2, which implies that the erlang: phash2/1 BIF is used.
- \{memory, int() \}, the size of the file in bytes. The same value is associated with the item file_size.
- \{no_keys, int() \}, the number of different keys stored in the table. O nly available for version 9 tables.
- \{no_objects, int() \}, the number of objects stored in the table.
- \{no_slots, $\{$ Min, Used, Max\}\}, the number of slots of the table. Min is the minimum number of slots, Used is the number of currently used slots, and Max is the maximum number of slots. O nly available for version 9 tables.
- \{owner, pid()\}, the pid of the process that handles requests to the Dets table.
- \{ram_file, bool()\}, whether the table is kept in RAM.
- \{safe_fixed, SafeFixed\}. If the table is fixed, SafeFixed is a tuple \{FixedAtTime, [\{Pid, RefCount $\}]\}$. FixedAtTime is the time when the table was first fixed, and Pid is the pid of the process that fixes the table RefCount times. There may be any number of processes in the list. If the table is not fixed, SafeFixed is the atom false.
- \{version, int() \}, the version of the format of the table.

```
init_table(Name, InitFun [, Options]) -> ok | {error, Reason}
```

Types:

- N ame = atom()
- InitFun = fun(Arg) $->$ Res
- Arg = read \| close
- Res = end_of_input \| \{[object()], InitFun\} \| \{D ata, InitFun\} \| term()
- D ata = binary() | tuple()

Replaces the existing objects of the table Name with objects created by calling the input function InitFun, see below. The reason for using this function rather than calling insert/2 is that of efficiency. It should be noted that the input functions are called by the process that handles requests to the D ets table, not by the calling process.
W hen called with the argument read the function InitFun is assumed to return end_of_input when there is no more input, or \{Objects, Fun\}, where Objects is a list of objects and Fun is a new input function. A ny other value Value is returned as an error \{error, \{init_fun, Value\}\}. Each input function will be called exactly once, and should an error occur, the last function is called with the argument close, the reply of which is ignored.
If the type of the table is set and there is more than one object with a given key, one of the objects is chosen. This is not necessarily the last object with the given key in the sequence of objects returned by the input functions. Extra objects should be avoided, or the file will be unnecessarily fragmented. This holds also for duplicated objects stored in tables of type duplicate_bag.
It is important that the table has a sufficient number of slots for the objects. If not, the hash list will start to grow when init_table/2 returns which will significantly slow down access to the table for a period of time. The minimum number of slots is set by the open_file/2 option min_no_slots and returned by the info/2 item no_slots. See also the min_no_slots option below.
The Options argument is a list of $\{\mathrm{Key}, \mathrm{Val}\}$ tuples where the following values are allowed:

- \{min_no_slots, no_slots() \}. Specifies the estimated number of different keys that will be stored in the table. The open_file option with the same name is ignored unless the table is created, and in that case performance can be enhanced by supplying an estimate when initializing the table.
- \{format, Format $\}$. Specifies the format of the objects returned by the function InitFun. If Format is term (the default), InitFun is assumed to return a list of tuples. If Format is bchunk, InitFun is assumed to return Data as returned by bchunk/2. This option overrides the min_no_slots option.

```
insert(Name, Objects) -> ok | {error, Reason}
```

Types:

- N ame = name()
- O bjects = object() | [object()]

Inserts one or more objects into the table Name. If there already exists an object with the same key as some of the given objects and the table type is set, the old object will be replaced.

```
insert_new(Name, Objects) -> Bool
```

Types:

- N ame = name()
- O bjects = object() । [object()]
- Bool = bool()

Inserts one or more objects into the table Name. If there already exists an object with the same key as some of the given objects the table is not updated and false is returned, otherwise the objects are inserted and true returned.
is_compatible_bchunk_format(Name, BchunkFormat) -> Bool
Types:

- N ame = name()
- BchunkFormat $=$ binary ()
- Bool = bool()

Returns true if it would be possible to initialize the table Name, using init_table/3 with the option \{format, bchunk\}, with objects read with bchunk/2 from some table T such that calling info($\mathrm{T}, \mathrm{bchunk}$ _format) returns BchunkFormat.

```
is_dets_file(FileName) -> Bool | {error, Reason}
```

Types:

- FileN ame = file()
- Bool = bool()

Returns true if the file FileName is a D ets table, false otherwise.

```
lookup(Name, Key) -> [Object] | {error, Reason}
```

Types:

- Key = term()
- N ame = name()
- O bject = object()

Returns a list of all objects with the key Key stored in the table Name. For example:

```
2> dets:open_file(abc, [{type, bag}]).
{ok,abc}
3> dets:insert(abc, {1,2,3}).
ok
4> dets:insert(abc, {1,3,4}).
ok
5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]
```

If the table is of type set, the function returns either the empty list or a list with one object, as there cannot be more than one object with a given key. If the table is of type bag or duplicate_bag, the function returns a list of arbitrary length.
N ote that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not reflected.
match(Continuation) -> \{[Match], Continuation2\} |'\$end_of_table' | \{error, Reason\}
Types:

- Continuation $=$ Continuation2 $=$ bindings_cont()
- M atch $=[$ term ()$]$
M atches some objects stored in a table and returns a list of the bindings that match a given pattern in some unspecified order. The table, the pattern, and the number of objects that are matched are all defined by Continuation, which has been returned by a prior call to match/1 or match/3.
When all objects of the table have been matched, '\$end_of_table' is returned.

```
match(Name, Pattern) -> [Match] | {error, Reason}
```

Types:

- N ame = name()
- Pattern = tuple()
- M atch $=$ [term($)$]

Returns for each object of the table Name that matches Pattern a list of bindings in some unspecified order. See ets(3) [page 120] for a description of patterns. If the keypos'th element of Pattern is unbound, all objects of the table are matched. If the keypos'th element is bound, only the objects with the right key are matched.

```
match(Name, Pattern, N) -> {[Match], Continuation} | '$end_of_table' | {error,
    Reason}
Types:
```

- Name = name()
- Pattern = tuple()
- $N=$ default । int()
- M atch $=[$ term ()$]$
- Continuation = bindings_cont()

M atches some or all objects of the table Name and returns a list of the bindings that match Pattern in some unspecified order. See ets(3) [page 120] for a description of patterns.
A tuple of the bindings and a continuation is returned, unless the table is empty, in which case '\$end_of_table' is returned. The continuation is to be used when matching further objects by calling match/1.
If the keypos'th element of Pattern is bound, all objects of the table are matched. If the keypos'th element is unbound, all objects of the table are matched, N objects at a time. The default, indicated by giving n the value default, is to let the number of objects vary depending on the sizes of the objects. If Name is a version 9 table, all objects with the same key are always matched at the same time which implies that more than N objects may sometimes be matched.

The table should always be protected using safe_fixtable/2 before calling match/3, or errors may occur when calling match/1.

```
match_delete(Name, Pattern) -> N | {error, Reason}
```

Types:

- N ame = name()
- $N=\operatorname{int}()$
- Pattern = tuple()

D eletes all objects that match Pattern from the table Name, and returns the number of deleted objects. See ets(3) [page 120] for a description of patterns.
If the keypos'th element of Pattern is bound, only the objects with the right key are matched.
match_object(Continuation) -> \{[Object], Continuation2\} | '\$end_of_table' | \{error, Reason\}

Types:

- Continuation $=$ Continuation2 $=$ object_cont()
- O bject = object()

Returns a list of some objects stored in a table that match a given pattern in some unspecified order. The table, the pattern, and the number of objects that are matched are all defined by Continuation, which has been returned by a prior call to match_object/1 or match_object/3.
W hen all objects of the table have been matched, '\$end_of_table' is returned.

```
match_object(Name, Pattern) -> [Object] | {error, Reason}
```

Types:

- Name = name()
- Pattern = tuple()
- O bject = object()

Returns a list of all objects of the table Name that match Pattern in some unspecified order. See ets(3) [page 120] for a description of patterns.
If the keypos'th element of Pattern is unbound, all objects of the table are matched. If the keypos'th element of Pattern is bound, only the objects with the right key are matched.
Using the match_object functions for traversing all objects of a table is more efficient than calling first/1 and next/2 or slot/2.

```
match_object(Name, Pattern, N) -> {[Object], Continuation} | '$end_of_table' | {error,
```

 Reason\}
 Types:

- Name = name()
- Pattern = tuple()
- $N=$ default | int()
- O bject = object()
- Continuation $=$ object_cont()
M atches some or all objects stored in the table Name and returns a list of the objects that match Pattern in some unspecified order. See ets(3) [page 120] for a description of patterns.
A list of objects and a continuation is returned, unless the table is empty, in which case '\$end_of_table' is returned. The continuation is to be used when matching further objects by calling match_object/1.
If the keypos'th element of Pattern is bound, all objects of the table are matched. If the keypos'th element is unbound, all objects of the table are matched, N objects at a time. The default, indicated by giving n the value default, is to let the number of objects vary depending on the sizes of the objects. If Name is a version 9 table, all matching objects with the same key are always returned in the same reply which implies that more than N objects may sometimes be returned.
The table should always be protected using safe_fixtable/2 before calling match_object/3, or errors may occur when calling match_object/1.

```
member(Name, Key) -> Bool | {error, Reason}
```

Types:

- N ame = name()
- Key = term()
- Bool = bool()

Works like lookup/2, but does not return the objects. The function returns true if one or more elements of the table has the key Key, false otherwise.

```
next(Name, Key1) -> Key2 | '\$end_of_table'
```

Types:

- N ame = name()
- Key1 = Key2 = term()

Returns the key following Key1 in the table Name according to the table's internal order, or '\$end_of_table' if there is no next key.
Should an error occur, the process is exited with an error tuple \{error, Reason\}.
Use first/ 1 to find the first key in the table.
open_file(Filename) -> \{ok, Reference\} | \{error, Reason\}
Types:

- FileN ame = file()
- Reference = ref()

O pens an existing table. If the table has not been properly closed, the error \{error, need_repair\} is returned. The returned reference is to be used as the name of the table. This function is most useful for debugging purposes.
open_file(Name, Args) -> \{ok, Name\} | \{error, Reason\}
Types:

- N ame = atom()

O pens a table. An empty D ets table is created if no file exists.
The atom Name is the name of the table. The table name must be provided in all subsequent operations on the table. The name can be used by other processes as well, and several process can share one table.
If two processes open the same table by giving the same name and arguments, then the table will have two users. If one user closes the table, it still remains open until the second user closes the table.

The Args argument is a list of $\{$ Key, Val $\}$ tuples where the following values are allowed:

- \{access, access()\}. It is possible to open existing tables in read-only mode. A table which is opened in read-only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash. The default value is read_write.
- \{auto_save, auto_save()\}, the auto save interval. If the interval is an integer Time, the table is flushed to disk whenever it is not accessed for Time milliseconds. A table that has been flushed will require no reparation when reopened after an uncontrolled emulator halt. If the interval is the atom infinity, auto save is disabled. The default value is 180000 (3 minutes).
- \{estimated_no_objects, int() \}. Equivalent to the min_no_slots option.
- \{file, file()\}, the name of the file to be opened. The default value is the name of the table.
- \{max_no_slots, no_slots()\}, the maximum number of slots that will be used. The default value is 2 M , and the maximal value is 32 M . N ote that a higher value may increase the fragmentation of the table, and conversely, that a smaller value may decrease the fragmentation, at the expense of execution time. O nly available for version 9 tables.
- \{min_no_slots, no_slots() \}. Application performance can be enhanced with this flag by specifying, when the table is created, the estimated number of different keys that will be stored in the table. The default value as well as the minimum value is 256 .
- \{keypos, keypos() \}, the position of the element of each object to be used as key. The default value is 1 . The ability to explicitly state the key position is most convenient when we want to store Erlang records in which the first position of the record is the name of the record type.
- \{ram_file, bool() \}, whether the table is to be kept in RAM. Keeping the table in RAM may sound like an anomaly, but can enhance the performance of applications which open a table, insert a set of objects, and then close the table. W hen the table is closed, its contents are written to the disk file. The default value is false.
- \{repair, Value\}. Value can be either a bool() or the atom force. The flag specifies whether the D ets server should invoke the automatic file reparation algorithm. The default is true. If false is specified, there is no attempt to repair the file and \{error, need_repair\} is returned if the table needs to be repaired. The value force means that a reparation will take place even if the table has been properly closed. This is how to convert tables created by older versions of STDLIB. A n example is tables hashed with the deprecated erlang:hash/2 BIF. Tables created with D ets from a STD LIB version of 1.8.2 and later use the erlang: phash/2 function or the erlang:phash2/1 function, which is preferred. The repair option is ignored if the table is already open.
- \{type, type () \}, the type of the table. The default value is set.
- \{version, version()\}, the version of the format used for the table. The default value is 9. Tables on the format used before OTP R8 can be created by giving the value 8 . A version 8 table can be converted to a version 9 table by giving the options $\{$ version, 9$\}$ and \{repair, force $\}$.

```
pid2name(Pid) -> {ok, Name} | undefined
```

Types:

- N ame = name()
- Pid $=$ pid()

Returns the name of the table given the pid of a process that handles requests to a table, or undefined if there is no such table.
This function is meant to be used for debugging only.
repair_continuation(Continuation, MatchSpec) -> Continuation2
Types:

- Continuation $=$ Continuation2 $=$ select_cont()
- M atchSpec = match_spec()

This function can be used to restore an opaque continuation returned by select/3 or select/1 if the continuation has passed through external term format (been sent between nodes or stored on disk).
The reason for this function is that continuation terms contain compiled match specifications and therefore will be invalidated if converted to external term format. Given that the original match specification is kept intact, the continuation can be restored, meaning it can once again be used in subsequent select/1 calls even though it has been stored on disk or on another node.

See also ets (3) for further explanations and examples.

N ote:

This function is very rarely needed in application code. It is used by M nesia to implement distributed select/3 and select/1 sequences. A normal application would either use M nesia or keep the continuation from being converted to external format.
The reason for not having an external representation of compiled match specifications is performance. It may be subject to change in future releases, while this interface will remain for backward compatibility.
safe_fixtable(Name, Fix)
Types:

- N ame = name()
- Fix = bool()

If Fix is true, the table Name is fixed (once more) by the calling process, otherwise the table is released. The table is also released when a fixing process terminates.
If several processes fix a table, the table will remain fixed until all processes have released it or terminated. A reference counter is kept on a per process basis, and N consecutive fixes require N releases to release the table.
It is not guaranteed that calls to first/1, next/2, select and match functions work as expected even if the table has been fixed; the limited support for concurrency implemented in Ets has not yet been implementeded in Dets. Fixing a table currently only disables resizing of the hash list of the table.
If objects have been added while the table was fixed, the hash list will start to grow when the table is released which will significantly slow down access to the table for a period of time.

```
select(Continuation) -> {Selection, Continuation2} | '$end_of_table' | {error,
    Reason}
    Types:
```

 - Continuation \(=\) Continuation2 \(=\) select_cont()
 - Selection = [term()]
 Returns the results of applying a match specification to some objects stored in a table. The table, the match specification, and the number of objects that are matched are all defined by Continuation, which has been returned by a prior call to select/1 or select/3.
When all objects of the table have been matched, '\$end_of_table' is returned.

```
select(Name, MatchSpec) -> Selection | {error, Reason}
```

Types:

- Name = name()
- M atchSpec = match_spec()
- Selection = [term()]

Returns the results of applying the match specification MatchSpec to all or some objects stored in the table Name. The order of the objects is not specified. See the ERTS User's Guide for a description of match specifications.
If the keypos'th element of MatchSpec is unbound, the match specification is applied to all objects of the table. If the keypos'th element is bound, the match specification is applied to the objects with the right key(s) only.
Using the select functions for traversing all objects of a table is more efficient than calling first/1 and next/2 or slot/2.

```
select(Name, MatchSpec, N) -> {Selection, Continuation} | '$end_of_table' | {error,
    Reason}
    Types:
```

 - Name = name()
 - M atchSpec = match_spec()
 - \(N=\) default | int()
 - Selection = [term()]
 - Continuation = select_cont()
 Returns the results of applying the match specification MatchSpec to some or all objects stored in the table Name. The order of the objects is not specified. See the ERTS U ser's Guide for a description of match specifications.
A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty, in which case '\$end_of_table' is returned. The continuation is to be used when matching further objects by calling select/1.
If the keypos'th element of MatchSpec is bound, the match specification is applied to all objects of the table with the right key(s). If the keypos'th element of MatchSpec is unbound, the match specification is applied to all objects of the table, N objects at a time. The default, indicated by giving n the value default, is to let the number of objects vary depending on the sizes of the objects. If Name is a version 9 table, all objects with the same key are always handled at the same time which implies that the match specification may be applied to more than N objects.
The table should always be protected using safe_fixtable/2 before calling select/3, or errors may occur when calling select/1.

```
select_delete(Name, MatchSpec) -> N | {error, Reason}
```

Types:

- N ame = name()
- M atchSpec $=$ match_spec()
- $\mathrm{N}=\operatorname{int}()$

Deletes each object from the table Name such that applying the match specification MatchSpec to the object returns the value true. See the ERTS U ser's Guide for a description of match specifications. Returns the number of deleted objects.
If the keypos'th element of MatchSpec is bound, the match specification is applied to the objects with the right key(s) only.

```
slot(Name, I) -> '$end_of_table' | [Object] | {error, Reason}
```

Types:

- N ame = name()
- I = int()
- O bject = object()

The objects of a table are distributed among slots, starting with slot 0 and ending with slot n. This function returns the list of objects associated with slot I. If I is greater than n '\$end_of_table' is returned.

```
sync(Name) -> ok | {error, Reason}
```

Types:

- N ame = name()

Ensures that all updates made to the table Name are written to disk. This also applies to tables which have been opened with the ram_file flag set to true. In this case, the contents of the RAM file are flushed to disk.
N ote that the space management data structures kept in RAM, the buddy system, is also written to the disk. This may take some time if the table is fragmented.

```
table(Name [, Options]) -> QueryHandle
```


Types:

- Name = name()
- QueryH andle = -a query handle, see qlc(3)-
- Options = [O ption] | Option
- Option $=\{$ n_objects, Limit $\}$ । $\{$ traverse, TraverseM ethod $\}$
- Limit = default | integer () >=1
- TraverseM ethod = first_next | select \| \{select, M atchSpec\}
- M atchSpec = match_spec()

Returns a Q LC (Q uery List Comprehension) query handle. The module qlc implements a query language aimed mainly at M nesia but Ets tables, D ets tables, and lists are also recognized by Q LC as sources of data. Calling dets:table/1, 2 is the means to make the D ets table Name usable to Q LC.
W hen there are only simple restrictions on the key position Q LC uses dets:lookup/2 to look up the keys, but when that is not possible the whole table is traversed. The option traverse determines how this is done:

- first_next. The table is traversed one key at a time by calling dets:first/1 and dets:next/2.
- select. The table is traversed by calling dets: select/3 and dets:select/1. The option n_objects determines the number of objects returned (the third argument of select/3). The match specification (the second argument of select/3) is assembled by Q LC: simple filters are translated into equivalent match specifications while more complicated filters have to be applied to all objects returned by select/3 given a match specification that matches all objects.
- \{select, MatchSpec\}. As for select the table is traversed by calling dets:select/3 and dets:select/1. The difference is that the match specification is explicitly given. This is how to state match specifications that cannot easily be expressed within the syntax provided by QLC.

The following example uses an explicit match specification to traverse the table:

```
1> dets:open_file(t, []),
dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = dets:table(t, [{traverse, {select, MS}}]).
```

A n example with implicit match specification:

$$
2>\mathrm{QH} 2=\mathrm{qlc}: q([\{\mathrm{Y}\} \|\{X, Y\}<-\operatorname{dets}: \operatorname{table}(\mathrm{t}),(\mathrm{X}>1) \text { or }(\mathrm{X}<5)]) .
$$

The latter example is in fact equivalent to the former which can be verified using the function qlc:info/1:

```
3> qlc:info(QH1) =:= qlc:info(QH2).
```

true
qlc:info/1 returns information about a query handle, and in this case identical information is returned for the two query handles.

```
to_ets(Name, EtsTab) -> EtsTab | {error, Reason}
Types:
```

- N ame = name()
- EtsTab $=$-see ets(3)-

Inserts the objects of the D ets table Name into the Ets table EtsTab. The order in which the objects are inserted is not specified. The existing objects of the Ets table are kept unless overwritten.
traverse(Name, Fun) -> Return | \{error, Reason\}
Types:

- Fun = fun(O bject) $->$ FunReturn
- FunReturn = continue I \{continue, Val\} I \{done, Value\}
- $\mathrm{Val}=$ Value $=$ term()
- N ame = name()
- O bject = object()
- Return = [term()]

A pplies Fun to each object stored in the table Name in some unspecified order. Different actions are taken depending on the return value of Fun. The following Fun return values are allowed:
continue Continue to perform the traversal. For example, the following function can be used to print out the contents of a table:

```
        fun(X) -> io:format("~p~n", [X]), continue end.
```

\{continue, Val\} C ontinue the traversal and accumulate Val. The following function is supplied in order to collect all objects of a table in a list:
fun(X) $->\{$ continue, $X\}$ end.
\{done, Value\} Terminate the traversal and return [Value | Acc].
A ny other value returned by Fun terminates the traversal and is immediately returned.

```
update_counter(Name, Key, Increment) -> Result
```

Types:

- N ame = name()
- Key = term()
- Increment = \{Pos, Incr\} \| Incr
- Pos = Incr = Result = integer()

U pdates the object with key Key stored in the table Name of type set by adding Incr to the element at the Pos:th position. The new counter value is returned. If no position is specified, the element directly following the key is updated.
This functions provides a way of updating a counter, without having to look up an object, update the object by incrementing an element and insert the resulting object into the table again.

See Also

ets(3) [page 120], mnesia(3), qlc(3) [page 245]

dict
 Erlang M odule

Dict implements a Key - Value dictionary. The representation of a dictionary is not defined.

Exports

append(Key, Value, Dict1) -> Dict2
Types:

- Key = Value = term()
- Dict1 = Dict2 = dictionary()

This function appends a new Value to the current list of values associated with Key. An exception is generated if the initial value associated with Key is not a list of values.
append_list(Key, ValList, Dict1) -> Dict2
Types:

- ValList $=$ [Value]
- Key = Value = [term()]
- Dict1 = Dict2 = dictionary ()

This function appends a list of values ValList to the current list of values associated with Key. A n exception is generated if the initial value associated with Key is not a list of values.
erase(Key, Dict1) -> Dict2
Types:

- Key = term()
- Dict1 = Dict2 = dictionary()

This function erases all items with a given key from a dictionary.
fetch(Key, Dict) $->$ Value
Types:

- Key = Value = term()
- Dict = dictionary ()

This function returns the value associated with Key in the dictionary Dict. fetch assumes that the Key is present in the dictionary and an exception is generated if Key is not in the dictionary.

```
fetch_keys(Dict) -> Keys
```

Types:

- Dict = dictionary()
- Keys = [term()]

This function returns a list of all keys in the dictionary.
filter(Pred, Dict1) -> Dict2
Types:

- Pred = fun(Key, Value) $->$ bool()
- Dict1 = Dict2 = dictionary()

Dict2 is a dictionary of all keys and values in Dict1 for which Pred (Key, Value) is true.
find(Key, Dict) -> Result
Types:

- Key = term()
- Dict = dictionary()
- Result $=\{0 k$, Value $\}$ | error

This function searches for a key in a dictionary. Returns $\{\mathrm{ok}$, Value $\}$ where Value is the value associated with Key, or error if the key is not present in the dictionary.
fold(Function, Acc0, Dict) -> Acc1
Types:

- Function = fun(Key, Value, Accln) $->$ A ccO ut
- $\mathrm{Acc0}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()
- Dict = dictionary()

Calls Function on successive keys and values of Dict together with an extra argument Acc (short for accumulator). Function must return a new accumulator which is passed to the next call. Acc0 is returned if the list is empty. The evaluation order is undefined.

```
from_list(List) -> Dict
```

Types:

- List $=[\{$ Key, Value $\}]$
- Dict = dictionary()

This function converts the key/value list List to a dictionary.
is_key(Key, Dict) -> bool()
Types:

- Key = term()
- Dict = dictionary()

This function tests if Key is contained in the dictionary Dict
map(Func, Dict1) -> Dict2

Types:

- Func = fun(Key, Value) -> Value
- Dict1 = Dict2 = dictionary()
map calls Func on successive keys and values of Dict to return a new value for each key. The evaluation order is undefined.

```
merge(Func, Dict1, Dict2) -> Dict3
```

Types:

- Func = fun(Key, Value1, Value2) -> Value
- D ict1 = D ict2 = D ict3 = dictionary ()
merge merges two dictionaries, Dict1 and Dict2, to create a new dictionary. All the Key - Value pairs from both dictionaries are included in the new dictionary. If a key occurs in both dictionaries then Func is called with the key and both values to return a new value. merge could be defined as:
merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D) end, D2, D1).
but is faster.

```
new() -> dictionary()
```

This function creates a new dictionary.
store(Key, Value, Dict1) -> Dict2
Types:

- Key = Value = term()
- Dict1 = Dict2 = dictionary ()

This function stores a Key - Value pair in a dictionary. If the Key already exists in Dict1, the associated value is replaced by Value.

```
to_list(Dict) -> List
```

Types:

- Dict = dictionary()
- List = [\{Key, Value\}]

This function converts the dictionary to a list representation.
update(Key, Function, Dict) $->$ Dict
Types:

- Key = term()
- Function = fun(Value) $->$ Value
- Dict = dictionary()

U pdate the a value in a dictionary by calling Function on the value to get a new value. An exception is generated if Key is not present in the dictionary.
update(Key, Function, Initial, Dict) -> Dict
Types:

- Key = Initial = term()
- Function = fun(Value) -> Value
- Dict = dictionary()

Update the a value in a dictionary by calling Function on the value to get a new value. If Key is not present in the dictionary then Initial will be stored as the first value. For example we could define append/3 as:

```
append(Key, Val, D) ->
    update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).
update_counter(Key, Increment, Dict) -> Dict
```

Types:

- Key = term()
- Increment = number()
- Dict = dictionary()

Add Increment to the value associated with Key and store this value. If Key is not present in the dictionary then Increment will be stored as the first value.
This is could have been defined as:

```
update_counter(Key, Incr, D) ->
    update(Key, fun (Old) -> Old + Incr end, Incr, D).
but is faster.
```


Notes

The functions append and append_list are included so we can store keyed values in a list accumulator. For example:

```
> DO = dict:new(),
    D1 = dict:store(files, [], DO),
    D2 = dict:append(files, f1, D1),
    D3 = dict:append(files, f2, D2),
    D4 = dict:append(files, f3, D3),
    dict:fetch(files, D4).
[f1,f2,f3]
```

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing the result.
The function fetch should be used if the key is known to be in the dictionary, otherwise find.

See Also

gb_trees(3) [page 157], orddict(3) [page 230]

digraph
Erlang M odule

The digraph module implements a version of labeled directed graphs. W hat makes the graphs implemented here non-proper directed graphs is that multiple edges between vertices are allowed. H owever, the customary definition of directed graphs will be used in the text that follows.
A directed graph (or just "digraph") is a pair (V, E) of a finite set V of vertices and a finite set E of directed edges (or just "edges"). The set of edges E is a subset of $V V$ (the C artesian product of V with itself). In this module, V is allowed to be empty; the so obtained unique digraph is called the empty digraph. Both vertices and edges are represented by unique Erlang terms.
Digraphs can be annotated with additional information. Such information may be attached to the vertices and to the edges of the digraph. A digraph which has been annotated is called a labeled digraph, and the information attached to a vertex or an edge is called a label. Labels are Erlang terms.
A n edge $e=(v, w)$ is said to emanate from vertex v and to be incident on vertex w. The out-degree of a vertex is the number of edges emanating from that vertex. The in-degree of a vertex is the number of edges incident on that vertex. If there is an edge emanating from v and incident on w, then w is is said to be an out-neighbour of v, and v is said to be an in-neighbour of w. A path P from $v[1]$ to $v[k]$ in a digraph (V, E) is a non-empty sequence $v[1], v[2], \ldots, v[k]$ of vertices in V such that there is an edge ($v[i], v[i+1]$) in E for $1<=\mathrm{i}<k$. The length of the path P is $k-1$. P is simple if all vertices are distinct, except that the first and the last vertices may be the same. P is a cycle if the length of P is not zero and $v[1]=v[k]$. A loop is a cycle of length one. A simple cycle is a path that is both a cycle and simple. An acyclic digraph is a digraph that has no cycles.

Exports

```
add_edge(G, E, V1, V2, Label) -> edge() | {error, Reason}
add_edge(G, V1, V2, Label) -> edge() | {error, Reason}
add_edge(G, V1, V2) -> edge() | {error, Reason}
```

Types:

- $G=\operatorname{digraph}()$
- $E=$ edge()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Label = label()
- Reason = \{bad_edge, Path $\}$ | \{bad_vertex, V \}
- Path = [vertex()]
add_edge $/ 5$ creates (or modifies) the edge E of the digraph G, using Label as the (new) label [page 85] of the edge. The edge is emanating [page 85] from V1 and incident [page 85] on V2. Returns E.
add_edge ($\mathrm{G}, \mathrm{V} 1, \mathrm{~V} 2$, Label) is equivalent to add_edge ($\mathrm{G}, \mathrm{E}, \mathrm{V} 1, \mathrm{~V} 2$, Label), where E is a created edge. Tuples on the form ['\$e'|N], where N is an integer $>=1$, are used for representing the created edges.
add_edge ($\mathrm{G}, \mathrm{V} 1, \mathrm{~V} 2$) is equivalent to add_edge ($\mathrm{G}, \mathrm{V} 1, \mathrm{~V} 2,[\mathrm{l}$).
If the edge would create a cycle in an acyclic digraph [page 85], then \{error, \{bad_edge, Path\}\} is returned. If either of V1 or V2 is not a vertex of the digraph G , then $\{$ error, $\{$ bad_vertex, V$\}\}$ is returned, $\mathrm{V}=\mathrm{V} 1$ or $\mathrm{V}=\mathrm{V} 2$.
add_vertex(G, V, Label) -> vertex()
add_vertex (G, V) -> vertex()
add_vertex (G) -> vertex()
Types:
- $G=$ digraph()
- $\mathrm{V}=$ vertex()
- Label $=\operatorname{label}()$
add_vertex/3 creates (or modifies) the vertex V of the digraph G , using Label as the (new) label [page 85] of the vertex. Returns V .
add_vertex (G, V) is equivalent to add_vertex ($\mathrm{G}, \mathrm{V},[\mathrm{l}$).
add_vertex/1 creates a vertex using the empty list as label, and returns the created vertex. Tuples on the form ['\$v'|N], where N is an integer $>=1$, are used for representing the created vertices.
del_edge(G, E) -> true
Types:
- $G=$ digraph ()
- $E=$ edge()

Deletes the edge E from the digraph G .
del_edges(G, Edges) -> true
Types:

- G = digraph()
- Edges = [edge()]

D eletes the edges in the list Edges from the digraph G.
del_path(G, V1, V2) -> true
Types:

- G = digraph()
- V1 = V 2 = vertex()

D eletes edges from the digraph G until there are no paths [page 85] from the vertex V1 to the vertex V2.
A sketch of the procedure employed: Find an arbitrary simple path [page 85] $\mathrm{v}[1], \mathrm{V}[2], \ldots, \mathrm{V}[\mathrm{k}]$ from V 1 to V 2 in G . Remove all edges of G emanating [page 85] from $v[i]$ and incident [page 85] to $v[i+1]$ for $1<=\mathrm{i}<\mathrm{k}$ (including multiple edges). Repeat until there is no path between V1 and V2.
del_vertex (G, V) -> true
Types:

- $G=\operatorname{digraph}()$
- $\mathrm{V}=$ vertex ()

D eletes the vertex v from the digraph G. A ny edges emanating [page 85] from v or incident [page 85] on V are also deleted.

```
del_vertices(G, Vertices) -> true
```

Types:

- $G=\operatorname{digraph}()$
- Vertices = [vertex()]

D eletes the vertices in the list Vertices from the digraph G.

```
delete(G) -> true
```

Types:

- $G=\operatorname{digraph}()$

D eletes the digraph G. This call is important because digraphs are implemented with Ets. There is no garbage collection of Ets tables. The digraph will, however, be deleted if the process that created the digraph terminates.

```
edge(G, E) -> {E, V1, V2, Label} | false
```

Types:

- $G=$ digraph()
- $\mathrm{E}=$ edge()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Label = label()

Returns $\{\mathrm{E}, \mathrm{V} 1, \mathrm{~V} 2$, Label $\}$ where Label is the label [page 85] of the edge E emanating [page 85] from V1 and incident [page 85] on V2 of the digraph G. If there is no edge E of the digraph G, then false is returned.

```
edges(G) -> Edges
```

Types:

- $G=\operatorname{digraph}()$
- Edges = [edge()]

Returns a list of all edges of the digraph G , in some unspecified order.

```
edges(G, V) -> Edges
```

Types:

- $G=$ digraph()
- V = vertex()
- Edges = [edge()]

Returns a list of all edges emanating [page 85] from or incident [page 85] on v of the digraph G, in some unspecified order.

```
get_cycle(G, V) -> Vertices | false
```

Types:

- $G=$ digraph()
- V1 = V 2 = vertex()
- Vertices = [vertex()]

If there is a simple cycle [page 85] of length two or more through the vertex V , then the cycle is returned as a list [V , . . . , V] of vertices, otherwise if there is a loop [page 85] through v , then the loop is returned as a list [v]. If there are no cycles through v , then false is returned.
get_path/3 is used for finding a simple cycle through v.
get_path(G, V1, V2) -> Vertices | false
Types:

- $G=$ digraph()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Vertices $=[$ vertex ()$]$

Tries to find a simple path [page 85] from the vertex V1 to the vertex V2 of the digraph G. Returns the path as a list [V1, . . . V2] of vertices, or false if no simple path from V1 to V2 of length one or more exists.
The digraph G is traversed in a depth-first manner, and the first path found is returned.

```
get_short_cycle(G, V) -> Vertices | false
```

Types:

- $G=$ digraph ()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Vertices = [vertex ()$]$

Tries to find an as short as possible simple cycle [page 85] through the vertex V of the digraph G . Returns the cycle as a list $[\mathrm{V}, \ldots, \mathrm{V}]$ of vertices, or false if no simple cycle through V exists. N ote that a loop [page 85] through v is returned as the list [V, V]. get_short_path/3 is used for finding a simple cycle through v.
get_short_path(G, V1, V2) -> Vertices | false
Types:

- $G=$ digraph()
- $\mathrm{V} 1=\mathrm{V} 2=\operatorname{vertex}()$
- Vertices $=[$ vertex ()$]$

Tries to find an as short as possible simple path [page 85] from the vertex V1 to the vertex V2 of the digraph G. Returns the path as a list [V1, . . ., V2] of vertices, or false if no simple path from V1 to V2 of length one or more exists.
The digraph G is traversed in a breadth-first manner, and the first path found is returned.

```
in_degree(G, V) -> integer()
```

Types:

- $G=$ digraph ()
- V = vertex()

Returns the in-degree [page 85] of the vertex V of the digraph G.
in_edges(G, V) -> Edges
Types:

- $G=\operatorname{digraph}()$
- $\mathrm{V}=$ vertex()
- Edges = [edge()]

Returns a list of all edges incident [page 85] on v of the digraph G, in some unspecified order.

```
in_neighbours(G, V) -> Vertices
```

Types:

- $G=\operatorname{digraph}()$
- $\mathrm{V}=$ vertex ()
- Vertices $=[$ vertex ()$]$

Returns a list of all in-neighbours [page 85] of V of the digraph G, in some unspecified order.

```
info(G) -> InfoList
```

Types:

- G = digraph()
- InfoList = [\{cyclicity, Cyclicity\}, \{memory, NoWords\}, \{protection, Protection\}]
- Cyclicity = cyclic \mid acyclic
- Protection = public \| protected । private
- NoWords $=$ integer ()$>=0$

Returns a list of $\{\mathrm{Tag}$, Value $\}$ pairs describing the digraph G. The following pairs are returned:

- \{cyclicity, Cyclicity\}, where Cyclicity is cyclic or acyclic, according to the options given to new.
- \{memory, NoWords\}, where NoWords is the number of words allocated to the ets tables.
- \{protection, Protection\}, where Protection is public, protected or private, according to the options given to new.
new() -> digraph()
Equivalent to new([]).
new(Type) -> digraph() | \{error, Reason\}
Types:
- Type = [cyclic \| acyclic | public \| private \| protected]
- Reason $=\{$ unknown_type, term() $\}$

Returns an empty digraph [page 85] with properties according to the options in Type:
cyclic Allow cycles [page 85] in the digraph (default).
acyclic The digraph is to be kept acyclic [page 85].
public The digraph may be read and modified by any process.
protected Other processes can only read the digraph (default).
private The digraph can be read and modified by the creating process only.
If an unrecognized type option T is given, then $\{$ error, $\{$ unknown_type, $T\}\}$ is returned.
no_edges(G) $->$ integer () $>=0$
Types:

- $G=\operatorname{digraph}()$

Returns the number of edges of the digraph G.
no_vertices(G) -> integer() >= 0
Types:

- G = digraph()

Returns the number of vertices of the digraph G.
out_degree(G, V) -> integer()
Types:

- G = digraph()
- V = vertex()

Returns the out-degree [page 85] of the vertex V of the digraph G.
out_edges(G, V) -> Edges
Types:

- $G=$ digraph()
- V = vertex()
- Edges = [edge()]

Returns a list of all edges emanating [page 85] from V of the digraph G, in some unspecified order.
out_neighbours(G, V) -> Vertices
Types:

- $G=\operatorname{digraph}()$
- $\mathrm{V}=$ vertex ()
- Vertices = [vertex ()$]$

Returns a list of all out-neighbours [page 85] of V of the digraph G, in some unspecified order.

```
vertex(G, V) -> {V, Label} | false
    Types:
    - G = digraph()
    - V = vertex()
    - Label = label()
    Returns {V,Label} where Label is the label [page 85] of the vertex V of the digraph G,
    or false if there is no vertex V of the digraph G.
vertices(G) -> Vertices
    Types:
```

 - \(G=\operatorname{digraph}()\)
 - Vertices = [vertex ()]
 Returns a list of all vertices of the digraph \(G\), in some unspecified order.

See Also

digraph_utils(3) [page 92], ets(3) [page 120]

digraph_utils

Erlang M odule

The digraph_utils module implements some al gorithms based on depth-first traversal of directed graphs. See the digraph module for basic functions on directed graphs.
A directed graph (or just "digraph") is a pair (V, E) of a finite set V of vertices and a finite set E of directed edges (or just "edges"). The set of edges E is a subset of V V (the Cartesian product of V with itself).
Digraphs can be annotated with additional information. Such information may be attached to the vertices and to the edges of the digraph. A digraph which has been annotated is called a labeled digraph, and the information attached to a vertex or an edge is called a label.
An edge $e=(v, w)$ is said to emanate from vertex v and to be incident on vertex w. If there is an edge emanating from v and incident on w, then w is is said to be an out-neighbour of v. A path P from $v[1]$ to $v[k]$ in a digraph (V, E) is a non-empty sequence $v[1], v[2], \ldots, v[k]$ of vertices in V such that there is an edge $(v[i], v[i+1])$ in E for $1<=\mathrm{i}<k$. The length of the path P is $\mathrm{k}-1$. P is a cycle if the length of P is not zero and $\mathrm{v}[1]$ $=v[k]$. A loop is a cycle of length one. An acyclic digraph is a digraph that has no cycles.
A depth-first traversal of a directed digraph can be viewed as a process that visits all vertices of the digraph. Initially, all vertices are marked as unvisited. The traversal starts with an arbitrarily chosen vertex, which is marked as visited, and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that vertex in the same fashion, until there is no edge leading to an unvisited vertex. At that point the process backtracks, and the traversal continues as long as there are unexamined edges. If there remain unvisited vertices when all edges from the first vertex have been examined, some hitherto unvisited vertex is chosen, and the process is repeated.
A partial ordering of a set S is a transitive, antisymmetric and reflexive relation between the objects of S. The problem of topological sorting is to find a total ordering of S that is a superset of the partial ordering. A digraph $G=(V, E)$ is equivalent to a relation E on V (we neglect the fact that the version of directed graphs implemented in the digraph module allows multiple edges between vertices). If the digraph has no cycles of length two or more, then the reflexive and transitive closure of E is a partial ordering.
A subgraph G^{\prime} of G is a digraph whose vertices and edges form subsets of the vertices and edges of G. G^{\prime} is maximal with respect to a property P if all other subgraphs that include the vertices of G' do not have the property P. A strongly connected component is a maximal subgraph such that there is a path between each pair of vertices. A connected component is a maximal subgraph such that there is a path between each pair of vertices, considering all edges undirected.

Exports

```
components(Digraph) -> [Component]
    Types:
    - Digraph = digraph()
    - Component = [vertex()]
    Returns a list of connected components [page 92]. Each component is represented by
    its vertices. The order of the vertices and the order of the components are arbitrary.
    Each vertex of the digraph Digraphoccurs in exactly one component.
condensation(Digraph) -> CondensedDigraph
    Types:
    - Digraph = C ondensedD igraph = digraph()
    C reates a digraph where the vertices are the strongly connected components [page 92]
    of Digraph as returned by strong_components/1. If }X\mathrm{ and }Y\mathrm{ are strongly connected
    components, and there exist vertices }x\mathrm{ and }y\mathrm{ in }X\mathrm{ and }Y\mathrm{ respectively such that there is
    an edge emanating [page 92] from }x\mathrm{ and incident [page 92] on }y\mathrm{ , then an edge
    emanating from }X\mathrm{ and incident on }Y\mathrm{ is created.
    The created digraph has the same type as Digraph. All vertices and edges have the
    default label [page 92] [].
    Each and every cycle [page 92] is included in some strongly connected component,
    which implies that there always exists a topological ordering [page 92] of the created
    digraph.
```

cyclic_strong_components(Digraph) -> [StrongComponent]

Types:

- Digraph = digraph()
- StrongC omponent = [vertex()]

Returns a list of strongly connected components [page 92]. Each strongly component is represented by its vertices. The order of the vertices and the order of the components are arbitrary. O nly vertices that are included in some cycle [page 92] in Digraph are returned, otherwise the returned list is equal to that returned by strong_components $/ 1$.

```
is_acyclic(Digraph) -> bool()
```

Types:

- Digraph = digraph()

Returns true if and only if the digraph Digraph is acyclic [page 92].
loop_vertices(Digraph) -> Vertices
Types:

- Digraph = digraph()
- Vertices $=[$ vertex ()$]$

Returns a list of all vertices of Digraph that are included in some loop [page 92].

```
postorder(Digraph) -> Vertices
```

Types:

- Digraph = digraph()
- Vertices = [vertex()]

Returns all vertices of the digraph Digraph. The order is given by a depth-first traversal [page 92] of the digraph, collecting visited vertices in postorder. M ore precisely, the vertices visited while searching from an arbitrarily chosen vertex are collected in postorder, and all those collected vertices are placed before the subsequently visited vertices.

```
preorder(Digraph) -> Vertices
```

Types:

- Digraph = digraph()
- Vertices $=[$ vertex ()$]$

Returns all vertices of the digraph Digraph. The order is given by a depth-first traversal [page 92] of the digraph, collecting visited vertices in pre-order.

```
reachable(Vertices, Digraph) -> Vertices
```

Types:

- Digraph = digraph()
- Vertices = [vertex ()$]$

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path [page 92] in Digraph from some vertex of Vertices to the vertex. In particular, since paths may have length zero, the vertices of Vertices are included in the returned list.

```
reachable_neighbours(Vertices, Digraph) -> Vertices
```

Types:

- Digraph = digraph()
- Vertices = [vertex ()$]$

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path [page 92] in Digraph of length one or more from some vertex of Vertices to the vertex. As a consequence, only those vertices of Vertices that are included in some cycle [page 92] are returned.

```
reaching(Vertices, Digraph) -> Vertices
```

Types:

- Digraph = digraph()
- Vertices $=[$ vertex ()$]$

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path [page 92] from the vertex to some vertex of Vertices. In particular, since paths may have length zero, the vertices of Vertices are included in the returned list.
reaching_neighbours(Vertices, Digraph) -> Vertices
Types:

- Digraph = digraph()
- Vertices $=[$ vertex ()$]$

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path [page 92] of length one or more from the vertex to some vertex of Vertices. As a consequence, only those vertices of Vertices that are included in some cycle [page 92] are returned.

```
strong_components(Digraph) -> [StrongComponent]
```

Types:

- Digraph = digraph()
- StrongC omponent = [vertex()]

Returns a list of strongly connected components [page 92]. Each strongly component is represented by its vertices. The order of the vertices and the order of the components are arbitrary. Each vertex of the digraph Digraph occurs in exactly one strong component.
subgraph(Digraph, Vertices [, Options]) -> Subgraph | \{error, Reason\}
Types:

- Digraph = Subgraph = digraph()
- O ptions = [\{type, SubgraphType\}, \{keep_labels, bool()\}]
- Reason $=\{$ invalid_option, term() $\}$ | \{unknown_type, term() \}
- SubgraphType = inherit I type()
- Vertices = [vertex ($)$]

C reates a maximal subgraph [page 92] of Digraph having as vertices those vertices of Digraph that are mentioned in Vertices.
If the value of the option type is inherit, which is the default, then the type of Digraph is used for the subgraph as well. O therwise the option value of type is used as argument to digraph:new/1.
If the value of the option keep_labels is true, which is the default, then the labels [page 92] of vertices and edges of Digraph are used for the subgraph as well. If the value is false, then the default label, [], is used for the subgraph's vertices and edges. subgraph(Digraph, Vertices) is equivalent to subgraph(Digraph, Vertices, []).

```
topsort(Digraph) -> Vertices | false
```

Types:

- Digraph = digraph()
- Vertices = [vertex ()]

Returns a topological ordering [page 92] of the vertices of the digraph Digraph if such an ordering exists, false otherwise. For each vertex in the returned list, there are no out-neighbours [page 92] that occur earlier in the list.

See Also

digraph(3) [page 85]

epp

Erlang M odule

The Erlang code preprocessor includes functions which are used by compile to preprocess macros and include files before the actual parsing takes place.

Exports

```
open(FileName, IncludePath) -> {ok,Epp} | {error, ErrorDescriptor}
open(FileName, IncludePath, PredefMacros) -> {ok,Epp} | {error, ErrorDescriptor}
```

Types:

- FileN ame = atom() | string()
- IncludePath = [D irectoryN ame]
- DirectoryN ame = atom() | string()
- PredefM acros = [\{atom(),term() $\}$]
- Epp = pid() - handle to the epp server
- ErrorD escriptor = term()

O pens a file for preprocessing.
close(Epp) -> ok
Types:

- Epp = pid() - handle to the epp server

Closes the preprocessing of a file.
parse_erl_form(Epp) -> \{ok, AbsForm\} | \{eof, Line\} | \{error, ErrorInfo\}
Types:

- Epp = pid()
- A bsForm = term()
- Line = integer()
- ErrorInfo = see separate description below.

Returns the next Erlang form from the opened Erlang source file. The tuple \{eof, Line\} is returned at end-of-file. The first form corresponds to an implicit attribute -file (File, 1)., where File is the name of the file.

```
parse_file(FileName,IncludePath,PredefMacro) -> {ok,[Form]} | {error,OpenError}
```

Types:

- FileN ame = atom() | string()
- IncludePath = [D irectoryN ame]
- DirectoryN ame = atom() | string()
- PredefM acros = [\{atom(),term() \}]
- Form = term() - same as returned by erl_parse:parse_form

Preprocesses and parses an Erlang source file. Note that the tuple \{eof, Line\} returned at end-of-file is included as a "form".

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the following format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:
apply(Module, format_error, ErrorDescriptor)

See Also

erl_parse(3) [page 106]

erl_eval
Erlang M odule

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by erl_parse, the Erlang parser, or a call to io:parse_erl_exprs/2.

Exports

```
exprs(Expressions, Bindings) -> {value, Value, NewBindings}
exprs(Expressions, Bindings, LocalFunctionHandler) -> {value, Value, NewBindings}
exprs(Expressions, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) ->
    {value, Value, NewBindings}
```

 Types:
 - Expressions = as returned by erl_parse or io:parse_erl_exprs/2
 - Bindings = as returned by bindings/1
 - LocalFunctionH andler = \{value, Func\} । \{eval, Func\} । none
 - N onlocalFunctionH andler \(=\{\) value, Func \(\}\) । none
 Evaluates Expressions with the set of bindings Bindings, where Expressions is a
 sequence of expressions (in abstract syntax) of a type which may be returned by
 io: parse_erl_exprs/2. See below for an explanation of how and when to use the
 arguments LocalFunctionHandler and NonlocalFunctionHandler.
 Returns \{value, Value, NewBindings
 expr(Expression, Bindings) $->$ \{ value, Value, NewBindings \}
expr(Expression, Bindings, LocalFunctionHandler) $->$ \{ value, Value, NewBindings \}
expr(Expression, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> \{ value,
Value, NewBindings \}
Types:
- Expression = as returned by io:parse_erl_form/2, for example
- Bindings = as returned by bindings/1
- LocalFunctionH andler = \{value, Func\} । \{eval, Func\} । none
- N onlocalFunctionH andler $=\{$ value, Func $\}$ । none
Evaluates Expression with the set of bindings Bindings. Expression is an expression
(in abstract syntax) of a type which may be returned by io:parse_erl_form/2. See
below for an explanation of how and when to use the arguments
LocalFunctionHandler and NonlocalFunctionHandler.
Returns \{value, Value, NewBindings \}.

```
expr_list(ExpressionList, Bindings) -> {ValueList, NewBindings}
expr_list(ExpressionList, Bindings, LocalFunctionHandler) -> {ValueList, NewBindings}
expr_list(ExpressionList, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) ->
    {ValueList, NewBindings}
    Evaluates a list of expressions in parallel, using the same initial bindings for each
    expression. Attempts are made to merge the bindings returned from each evaluation.
    This function is useful in the LocalFunctionHandler. See below.
    Returns {ValueList, NewBindings}.
new_bindings() -> BindingStruct
Returns an empty binding structure.
bindings(BindingStruct) -> Bindings
Returns the list of bindings contained in the binding structure.
binding(Name, BindingStruct) -> Binding
Returns the binding of Name in BindingStruct.
add_binding(Name, Value, Bindings) -> BindingStruct
Adds the binding Name = Value to Bindings. Returns an updated binding structure.
```

```
del_binding(Name, Bindings) -> BindingStruct
```

```
del_binding(Name, Bindings) -> BindingStruct
```

Removes the binding of Name in Bindings. Returns an updated binding structure.

Local Function Handler

D uring evaluation of a function, no calls can be made to local functions. An undefined function error would be generated. H owever, the optional argument LocalFunctionHandler may be used to define a function which is called when there is a call to a local function. The argument can have the following formats:
\{value, Func $\}$ This defines a local function handler which is called with:
Func (Name, Arguments)
Name is the name of the local function (an atom) and Arguments is a list of the evaluated arguments. The function handler returns the value of the local function. In this case, it is not possible to access the current bindings. To signal an error, the function handler just calls exit/1 with a suitable exit value.
\{eval, Func $\}$ This defines a local function handler which is called with:
Func (Name, Arguments, Bindings)
Name is the name of the local function (an atom), Arguments is a list of the unevaluated arguments, and Bindings are the current variable bindings. The function handler returns:

```
{value,Value,NewBindings}
```

Value is the value of the local function and NewBindings are the updated variable bindings. In this case, the function handler must itself evaluate all the function arguments and manage the bindings. To signal an error, the function handler just calls exit/1 with a suitable exit value.
none There is no local function handler.

Non-local Function Handler

The optional argument NonlocalFunctionHandler may be used to define a function which is called in the following cases: a functional object (fun) is called; a built-in function is called; a function is called using the M : F syntax, where M and F are atoms or expressions. Exceptions are function calls in guard tests and calls to erlang: apply/2,3; neither of the function handlers will be called for such calls. The argument can have the following formats:
\{value, Func\} This defines an nonlocal function handler which is called with:
Func (FuncSpec, Arguments)
FuncSpec is the name of the function on the form \{Module, Function\} or a fun, and Arguments is a list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the function handler just calls exit/1 with a suitable exit value.
none There is no nonlocal function handler.
The nonlocal function handler argument is probably not used as frequently as the local function handler argument. A possible use is to call exit/1 on calls to functions that for some reason are not allowed to be called.

Bugs

The evaluator is not complete. receive cannot be handled properly.
Any undocumented functions in erl_eval should not be used.

erl_id_trans

Erlang M odule

This module performs an identity parse transformation of Erlang code. It is included as an example for users who may wish to write their own parse transformers. If the option \{parse_transform, Module\} is passed to the compiler, a user written function parse_transform/2 is called by the compiler before the code is checked for errors.

Exports

```
parse_transform(Forms, Options) -> Forms
```

Types:

- Forms = [erlang_form()]
- Options = [compiler_options()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original Erlang code is then transformed into other Erlang code.

N ote:

Programmers are strongly advised not to engage in parse transformations and no support is offered for problems encountered.

See Also

erl_parse(3) [page 106], compile(3).

erl_internal

Erlang M odule

This module defines Erlang BIFs, guard tests and operators. This module is only of interest to programmers who manipulate Erlang code.

Exports

bif(Name, Arity) -> bool()
Types:

- N ame = atom()
- Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is automatically recognized by the compiler, otherwise false.
guard_bif(Name, Arity) -> bool()
Types:

- Name = atom()
- Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is allowed in guards, otherwise false.
type_test(Name, Arity) -> bool()
Types:

- N ame = atom()
- A rity = integer()

Returns true if Name/Arity is a valid Erlang type test, otherwise false.
arith_op(OpName, Arity) -> bool()
Types:

- OpN ame = atom()
- Arity = integer()

Returns true if OpName/Arity is an arithmetic operator, otherwise false.
bool_op(OpName, Arity) -> bool()
Types:

- OpN ame = atom()
- Arity = integer()

Returns true if OpName/Arity is a Boolean operator, otherwise false.
comp_op(OpName, Arity) -> bool()
Types:

- $\mathrm{OpName}=\operatorname{atom}()$
- Arity = integer()

Returns true if OpName/Arity is a comparison operator, otherwise false.
list_op(OpName, Arity) -> bool()
Types:

- OpN ame = atom()
- Arity = integer()

Returns true if OpName/Arity is a list operator, otherwise false.
send_op(OpName, Arity) -> bool()
Types:

- OpName = atom()
- Arity = integer()

Returns true if OpName/Arity is a send operator, otherwise false.
op_type(OpName, Arity) -> Type
Types:

- OpName = atom()
- Arity = integer()
- Type = arith | bool | comp \| list | send

Returns the Type of operator that OpName/Arity belongs to, or generates a function_clause error if it is not an operator at all.

erl_lint

Erlang M odule

This module is used to check Erlang code for illegal syntax and other bugs. It also warns against coding practices which are not recommended.
The errors detected include:

- redefined and undefined functions
- unbound and unsafe variables
- illegal record usage.

Warnings include:

- unused functions and imports
- variables imported into matches
- variables exported from if/case/receive
- variables shadowed in lambdas and list comprehensions.

Some of the warnings are optional, and can be turned on by giving the appropriate option, described below.

The functions in this module are invoked automatically by the Erlang compiler and there is no reason to invoke these functions separately unless you have written your own Erlang compiler.

Exports

```
module(AbsForms) -> {ok,Warnings} | {error,Errors,Warnings}
module(AbsForms, FileName) -> {ok,Warnings} | {error,Errors,Warnings}
module(AbsForms, FileName, CompileOptions) -> {ok,Warnings} | {error,Errors,Warnings}
```

Types:

- A bsForms = [term()]
- FileN ame = FileN ame2 = atom() | string()
- Warnings = Errors $=[$ FFilename2,[ErrorInfo] $\}]$
- ErrorInfo = see separate description below.
- CompileO ptions = [term()]

This function checks all the forms in a module for errors. It returns:
\{ok, Warnings\} There were no errors in the module.
\{error, Errors, Warnings\} There were errors in the module.

Since this module is of interest only to the maintainers of the compiler, and to avoid having the same description in two places to avoid the usual maintainence nightmare, the elements of Options that control the warnings are only described in the manual page for the compile module.
The AbsForms of a module which comes from a file that is read through epp, the Erlang pre-processor, can come from many files. This means that any references to errors must include the file name (see epp(3) [page 96], or parser erl_parse(3) [page 106] The warnings and errors returned have the following format:

```
[{FileName2,[ErrorInfo]}]
```

The errors and warnings are listed in the order in which they are encountered in the forms. This means that the errors from one file may be split into different entries in the list of errors.

```
is_guard_test(Expr) -> bool()
```

Types:

- Expr = term()

This function tests if Expr is a legal guard test. Expr is an Erlang term representing the abstract form for the expression. erl_parse: parse_exprs (Tokens) can be used to generate a list of Expr.
format_error (ErrorDescriptor) -> string()
Types:

- ErrorD escriptor = errordesc()

Takes an ErrorDescriptor and returns a string which describes the error or warning. This function is usually called implicitly when processing an ErrorInfo structure (see below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the following format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:

```
apply(Module, format_error, ErrorDescriptor)
```


See Also

erl_parse(3) [page 106], epp(3) [page 96]

erl_parse

Erlang M odule

This module is the basic Erlang parser which converts tokens into the abstract form of either forms (i.e., top-level constructs), expressions, or terms. The A bstract Format is described in the ERTS User's Guide. N ote that a token list must end with the dot token in order to be acceptable to the parse functions (see erl_scan).

Exports

```
parse_form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}
    Types:
    - Tokens = [Token]
    - Token ={Tag,Line} | {Tag,Line,term()}
    - Tag = atom()
    - A bsForm = term()
    - Errorlnfo = see section Error Information below.
    This function parses Tokens as if it were a form. It returns:
    {ok, AbsForm} The parsing was successful. AbsForm is the abstract form of the parsed form.
\{error, ErrorInfo\} An error occurred.
```

```
parse_exprs(Tokens) -> {ok, Expr_list} | {error, ErrorInfo}
```

parse_exprs(Tokens) -> {ok, Expr_list} | {error, ErrorInfo}
Types:

- Tokens = [Token]
- Token $=\{$ Tag,Line $\}$ । $\{$ Tag,Line,term() $\}$
- Tag = atom()
- Expr_list = [AbsExpr]
- A bsExpr = term()
- Errorlnfo = see section Error Information below.
This function parses Tokens as if it were a list of expressions. It returns:
\{ok, Expr_list $\}$ The parsing was successful. Expr_list is a list of the abstract forms of the parsed expressions.
\{error, ErrorInfo\} An error occurred.
parse_term(Tokens) -> \{ok, Term\} | \{error, ErrorInfo\}

```
```

Types:

- Tokens = [Token]
- Token = {Tag,Line} | {Tag,Line,term()}
- Tag = atom()
- Term = term()
- ErrorInfo = see section Error Information below.
This function parses Tokens as if it were a term. It returns:
\{ok, Term\} The parsing was successful. Term is the Erlang term corresponding to the token list.
\{error, ErrorInfo\} An error occurred.
format_error(ErrorDescriptor) -> string()
Types:
- ErrorD escriptor = errordesc()
U ses an ErrorDescriptor and returns a string which describes the error. This function is usually called implicitly when an ErrorInfo structure is processed (see below).

```
```

tokens(AbsTerm) -> Tokens

```
tokens(AbsTerm) -> Tokens
tokens(AbsTerm, MoreTokens) -> Tokens
tokens(AbsTerm, MoreTokens) -> Tokens
Types:
- Tokens \(=\) M oreTokens \(=\) [Token]
- Token \(=\{\) Tag,Line \(\}\) । \(\{\) Tag,Line,term() \(\}\)
- Tag = atom()
- AbsTerm = term()
- ErrorInfo = see section Error Information below.
This function generates a list of tokens representing the abstract form AbsTerm of an expression. O ptionally, it appends Moretokens.
normalise(AbsTerm) -> Data
Types:
- AbsTerm = D ata = term()
Converts the abstract form AbsTerm of a term into a conventional Erlang data structure (i.e., the term itself). This is the inverse of abstract/1.
```

```
abstract(Data) -> AbsTerm
```

abstract(Data) -> AbsTerm
Types:

- D ata $=$ A bsTerm $=$ term()
C onverts the Erlang data structure Data into an abstract form of type AbsTerm. This is the inverse of normalise/1.

```

\section*{Error Information}

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:
apply(Module, format_error, ErrorDescriptor)

\section*{See Also}
io(3) [page 189], erl_scan(3) [page 112], ERTS U ser's G uide

\section*{erl_pp \\ Erlang M odule}

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the form is wrong.
All functions can have an optional argument which specifies a hook that is called if an attempt is made to print an unknown form.

\section*{Exports}
```

form(Form) -> DeepCharList
form(Form, HookFunction) -> DeepCharList

```

Types:
- Form = term()
- HookFunction \(=\) see separate description below.
- D eepCharList \(=[\) char( \() \mid\) D eepCharList \(]\)

Pretty prints a Form which is an abstract form of a type which is returned by erl_parse:parse_form.
```

attribute(Attribute) -> DeepCharList
attribute(Attribute, HookFunction) -> DeepCharList

```

Types:
- Attribute = term()
- HookFunction = see separate description below.
- D eepCharList \(=\) [ char() |D eepCharList]

The same as form, but only for the attribute Attribute.
```

function(Function) -> DeepCharList
function(Function, HookFunction) -> DeepCharList
Types:

- Function = term()
- H ookFunction = see separate description below.
- D eepC harList $=[\operatorname{char}() \mid$ D eepCharList]
The same as form, but only for the function Function.

```
```

guard(Guard) -> DeepCharList

```
guard(Guard) -> DeepCharList
guard(Guard, HookFunction) -> DeepCharList
```

guard(Guard, HookFunction) -> DeepCharList

```

Types:
- Form = term()
- H ookFunction = see separate description below.
- D eepC harList = [char() |D eepC harList]

The same as form, but only for the guard test Guard.
```

exprs(Expressions) -> DeepCharList
exprs(Expressions, HookFunction) -> DeepCharList
exprs(Expressions, Indent, HookFunction) -> DeepCharList

```

Types:
- Expressions = term()
- H ookFunction = see separate description below.
- Indent = integer()
- D eepC harList = [char() |D eepC harList]

The same as form, but only for the sequence of expressions in Expressions.
```

expr(Expression) -> DeepCharList
expr(Expression, HookFunction) -> DeepCharList
expr(Expression, Indent, HookFunction) -> DeepCharList
expr(Expression, Indent, Precedence, HookFunction) ->-> DeepCharList

```

Types:
- Expression = term()
- H ookFunction = see separate description below.
- Indent = integer()
- Precedence =
- DeepCharList \(=[\) char( \() \mid\) D eepC harList \(]\)

This function prints one expression. It is useful for implementing hooks (see below).

\section*{Unknown Expression Hooks}

The optional argument HookFunction, shown in the functions described above, defines a function which is called when an unknown form occurs where there should be a valid expression. It can have the following formats:

Function The hook function is called by:
```

Function(Expr,
CurrentIndentation,
CurrentPrecedence,
HookFunction)

```
none There is no hook function
The called hook function should return a (possibly deep) list of characters. expr/4 is useful in a hook.
If CurrentIndentation is negative, there will be no line breaks and only a space is used as a separator.

\section*{Bugs}

It should be possible to have hook functions for unknown forms at places other than expressions.

\section*{See Also}
io(3) [page 189], erl_parse(3) [page 106], erl_eval(3) [page 98]

\section*{erl_scan}

Erlang M odule

This module contains functions for tokenizing characters into Erlang tokens.

\section*{Exports}
```

string(CharList,StartLine]) -> {ok, Tokens, EndLine} | Error

```
string(CharList) -> \{ok, Tokens, EndLine\} | Error

Types:
- CharList = string()
- StartLine \(=\) EndLine \(=\) Line \(=\) integer ()
- Tokens \(=[\{\) atom( \()\), Line \(\} \mid\{\) atom( \()\), Line,term() \(\}]\)
- Error \(=\{\) error, ErrorInfo, EndLine \(\}\)

Takes the list of characters CharList and tries to scan (tokenize) them. Returns \{ok, Tokens, EndLine\}, where Tokens are the Erlang tokens from CharList. EndLine is the last line where a token was found.
StartLine indicates the initial line when scanning starts. string/1 is equivalent to string (CharList,1).
\{error, ErrorInfo, EndLine\} is returned if an error occurs. EndLine indicates where the error occurred.
tokens(Continuation, CharList, StartLine) ->Return
Types:
- Return = \{done, Result, LeftO verChars\} I \{more, Continuation\}
- Continuation = [] \| string()
- CharList = string()
- StartLine = EndLine = integer()
- Result \(=\{0 k\), Tokens, EndLine \(\}\) । \{eof, EndLine \(\}\)
- Tokens \(=[\) \{atom(),Line \(\} \mid\{\) atom(),Line,term() \(\}]\)

This is the re-entrant scanner which scans characters until a dot ('.' whitespace) has been reached. It returns:
\{done, Result, LeftOverChars \} This return indicates that there is sufficient input data to get an input. Result is:
\{ok, Tokens, EndLine\} The scanning was successful. Tokens is the list of tokens including dot.
\{eof, EndLine\} End of file was encountered before any more tokens.
\{error, ErrorInfo, EndLine\} An error occurred.
\{more, Continuation\} M ore data is required for building a term. Continuation must be passed in a new call to tokens/3 when more data is available.
reserved_word(Atom) -> bool()
Returns true if Atom is an Erlang reserved word, otherwise false.
format_error(ErrorDescriptor) -> string()
Types:
- ErrorD escriptor = errordesc()

Takes an ErrorDescriptor and returns a string which describes the error or warning. This function is usually called implicitly when processing an ErrorInfo structure (see below).

\section*{Error Information}

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the following format:
```

{ErrorLine, Module, ErrorDescriptor}

```

A string which describes the error is obtained with the following call:
```

apply(Module, format_error, ErrorDescriptor)

```

\section*{Notes}

The continuation of the first call to the re-entrant input functions must be []. Refer to A rmstrong, Virding and Williams, 'C oncurrent Programming in Erlang', Chapter 13, for a complete description of how the re-entrant input scheme works.

\section*{See Also}
io(3) [page 189], erl_parse(3) [page 106]

\author{
erl_tar \\ Erlang M odule
}

The erl_tar module archives and extract files to and from a tar file. The tar file format is the PO SIX extended tar file format specified in IEEE Std 1003.1 and ISO /IEC 9945-1. That is the same format as used by tar program on Solaris, but is not the same as used by the GNU tar program.
By convention, the name of a tar file should end in ".tar". To abide to the convention, you'll need to add ". tar" yourself to the name.
Tar files can be created in one operation using the create/2 [page 116] or create/3 [page 116] function.
Alternatively, for more control, the open [page 118], add/3,4 [page 115], and close/1 [page 115] functions can be used.
To extract all files from a tar file, use the extract/1 [page 116] function. To extract only some files or to be able to specify some more options, use the extract/2 [page 117] function.
To return a list of the files in a tar file, use either the table/1 [page 118] or table/2 [page 118] function. To print a list of files to the Erlang shell, use either the \(t / 1\) [page 118] or \(\mathrm{tt} / 1\) [page 119] function.
To convert an error term returned from one of the functions above to a readable message, use the format_error/1 [page 117] function.

\section*{LIMITATIONS}

For maximum compatibility, it is safe to archive files with names up to 100 characters in length. Such tar files can generally be extracted by any tar program.
If filenames exceed 100 characters in length, the resulting tar file can only be correctly extracted by a PO SIX -compatible tar program (such as Solaris tar), not by GNU tar. File have longer names than 256 bytes cannot be stored at all.
The filename of the file a symbolic link points is always limited to 100 characters.

\section*{Exports}
add(TarDescriptor, Filename, Options) -> RetValue
Types:
- TarD escriptor = term()
- Filename = filename()
- Options = [O ption]
- Option = dereferencel verbose
- RetValue =okI \{error, \{Filename, Reason \}\}
- Reason = term()

The add/3 function adds a file to a tar file that has been opened for writing by open/1 [page 118].
dereference By default, symbolic links will be stored as symbolic links in the tar file. Use the dereference option to override the default and store the file that the symbolic link points to into the tar file. verbose Print an informational message about the file being added.
add(TarDescriptor, Filename, NameInArchive, Options) -> RetValue
Types:
- TarD escriptor = term()
- Filename = filename()
- \(N\) amelnA rchive = filename()
- Options = [O ption]
- O ption = dereferencel verbose
- RetValue \(=0 \mathrm{~K} \mid\{\) error, \(\{\) Filename, Reason \(\}\}\)
- Reason = term()

The add/4 function adds a file to a tar file that has been opened for writing by open/1 [ page 118]. It accepts the same options as add/3 [page 115].
NameInArchive is the name under which the file will be stored in the tar file. That is the name that the file will get when it will be extracted from the tar file.
close(TarDescriptor)
Types:
- TarD escriptor = term()

The close/1 function closes a tar file opened by open/1 [page 118].
create (Name, FileList) ->RetValue
Types:
- N ame = filename()
- FileList \(=\) [filename()]
- RetValue \(=\) ok \(\mid\{\) error, \(\{\mathrm{N}\) ame, Reason \(\}\}<\mathrm{V}>\) Reason \(=\) term ( \()\)

The create/2 function creates a tar file and archives the files whose names are given in FileList into it.
create(Name, FileList, OptionList)
Types:
- N ame = filename()
- FileList = [filename()]
- OptionList = [O ption]
- O ption = compressed \(\mid\) cooked \(\mid\) dereference \(\mid\) verbose
- RetValue \(=0 \mathrm{k} \mid\) \{error, \(\{\mathrm{N}\) ame,Reason \(\}\}<\mathrm{V}>\) Reason \(=\) term()

The create \(/ 3\) function creates a tar file and archives the files whose names are given in FileList into it.
The options in OptionList modify the defaults as follows.
compressed The entire tar file will be compressed, as if it has been run through the gzip program. To abide to the convention that a compressed tar file should end in ". tar.gz" or ".tgz", you'll need to add the appropriate extension yourself.
cooked By default, the open/2 function will open the tar file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. A dding cooked to the mode list will override the default and open the tar file without the raw option. dereference By default, symbolic links will be stored as symbolic links in the tar file. Use the dereference option to override the default and store the file that the symbolic link points to into the tar file.
verbose Print an informational message about each file being added.
```

extract(Name) -> RetValue

```

Types:
- N ame = filename()
- RetValue \(=0 \mathrm{k} \mid\{\) error, \(\{\) Name, Reason \(\}\}\)
- Reason = term()

The extract/1 function extracts all files from a tar archive.
If the Name argument is given as "\{binary, Binary \(\}\) ", the contents of the binary is assumed to be a tar archive.
If the Name argument is given as "\{file,Fd\}", Fd is assumed to be a file descriptor returned from the file:open/2 function.
O therwise, Name should be a filename.
extract(Name, OptionList)
Types:
- \(N\) ame \(=\) filename() | \(\{\) binary,Binary \(\}\) | \{file,Fd \(\}\)
- Binary = binary()
- Fd = file_descriptor()
- OptionList = [Option]
- Option \(=\{c w d, C w d\} \mid\{\) files,FileList \(\} \mid\) keep_old_files \(\mid\) verbose
- Cwd = [dirname()]
- FileList = [filename()]
- RetValue \(=0 \mathrm{k} \mid\{\) error, \(\{\mathrm{N}\) ame, Reason \(\}\}\)
- Reason = term()

The extract/2 function extracts files from a tar archive.
If the Name argument is given as "\{binary, Binary\}", the contents of the binary is assumed to be a tar archive.
If the Name argument is given as "\{file, Fd\}", Fd is assumed to be a file descriptor returned from the file:open/2 function.
O therwise, Name should be a filename.
The following options modify the defaults for the extraction as follows.
\{cwd, Cwd\} Files with relative filenames will by default be extracted to the current working directory. Given the \(\{\mathrm{cwd}, \mathrm{Cwd}\}\) option, the extract/2 function will extract into the directory Cwd instead of to the current working directory.
\{files,FileList\} By default, all files will be extracted from the tar file. Given the \{files,Files\} option, the extract/2 function will only extract the files whose names are included in FileList.
compressed Given the compressed option, the extract/2 function will uncompress the file while extracting If the tar file is not actually compressed, the compressed will effectively be ignored.
cooked By default, the open/2 function will open the tar file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. A dding cooked to the mode list will override the default and open the tar file without the raw option. keep_old_files By default, all existing files with the same name as file in the tar file will be overwritten \(G\) iven the keep_old_files option, the extract/2 function will not overwrite any existing files.
verbose Print an informational message as each file is being extracted.
```

format_error(Reason) -> string()

```

Types:
- Reason = term()

The format_error/1 converts an error reason term to a human-readable error message string.
open(Name, OpenModeList) -> RetValue
Types:
- N ame = filename()
- O penM odeL ist = [O penM ode]
- M ode \(=\) read \(\mid\) write \(\mid\) compressed \(\mid\) cooked
- RetValue \(=\{\) ok,TarD escriptor \(\} \mid\{\) error, \(\{\mathrm{N}\) ame, Reason \(\}\}<\mathrm{V}>\) TarD escriptor \(=\) term( \()\)
- Reason = term()

The open/2 function opens a tar file.
By convention, the name of a tar file should end in ".tar". To abide to the convention, you'll need to add ". tar" yourself to the name.
N ote that there is currently no function for reading from an opened tar file, meaning that opening a tar file for reading is not very useful.
Except for read and write (which are mutually exclusive), the following atoms may be added to OpenModeList:
compressed The entire tar file will be compressed, as if it has been run through the gzip program. To abide to the convention that a compressed tar file should end in ". tar.gz" or ".tgz", you'll need to add the appropriate extension yourself.
cooked By default, the open/2 function will open the tar file in raw mode, which is faster but does not allow a remote (erlang) file server to be used. Adding cooked to the mode list will override the default and open the tar file without the raw option.

Use the add/3,4 [page 115] functions to add one file at the time into an opened tar file. When you are finished adding files, use the close [page 115] function to close the tar file.

\section*{Warning:}

The TarDescriptor term is not a file descriptor. You should not rely on the specific contents of the TarDescriptor term, as it may change in future versions as more features are added to the erl_tar module.
```

table(Name) -> RetValue

```

Types:
- N ame = filename()
- RetValue \(=\{0 \mathrm{ok},[\) string ()\(]\} \mid\{\) error, \(\{\mathrm{N}\) ame, Reason \(\}\}\)
- Reason = term()

The table/1 function retrieves the names of all files in the tar file Name.
```

table(Name, Options)

```

\section*{Types:}
- N ame = filename()

The table/2 function retrieves the names of all files in the tar file Name.
```

t(Name)

```

\section*{Types:}
\[
\text { - } \mathrm{N} \text { ame = filename() }
\]

The \(t / 1\) function prints the names of all files in the tar file Name to the Erlang shell. (Similar to "tart".)
```

tt(Name)

```

Types:
- N ame = filename()

The \(t t / 1\) function prints names and information about all files in the tar file Name to the Erlang shell. (Similar to "tartv".)

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large quantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of ordered_set, see below, access time is proportional to the logarithm of the number of objects stored).

D ata is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. W hen the process terminates, the table is automatically destroyed. Every table has access rights set at creation.

Tables are divided into four different types, set, ordered_set, bag and duplicate_bag. A set or ordered_set table can only have one object associated with each key. A bag or duplicate_bag can have many objects associated with each key.

The number of tables stored at one Erlang node is limited. The current default limit is approximately 1400 tables. The upper limit can be increased by setting the environment variable ERL_MAX_ETS_TABLES before starting the Erlang runtime system (i.e. with the -env option to erl/werl). The actual limit may be slightly higher than the one specified, but never lower.
N ote that there is no automatic garbage collection for tables. Even if there are no references to a table from any process, it will not automatically be destroyed unless the owner process terminates. It can be destroyed explicitly by using delete/1.
Some implementation details:
- In the current implementation, every object insert and look-up operation results in one copy of the object.
- This module provides very limited support for concurrent updates. No locking is available, but the safe_fixtable/2 function can be used to guarantee that a sequence of first/1 and next/2 calls will traverse the table without errors even if another process (or the same process) simultaneously deletes or inserts objects in the table.
- '\$end_of_table' should not be used as a key since this atom is used to mark the end of the table when using first/next.

In general, the functions below will exit with reason badarg if any argument is of the wrong format, or if the table identifier is invalid.
The type tid() is used to denote a table identifier. N ote that the internal structure of this type is implementation-specific.

\section*{Exports}
```

all() -> [Tab]

```

Types:
- Tab = tid() | atom()

Returns a list of all tables at the node. \(N\) amed tables are given by their names, unnamed tables are given by their table identifiers.
```

delete(Tab) -> true

```

Types:
- Tab = tid() | atom()

D eletes the entire table Tab.
```

delete(Tab, Key) -> true

```

Types:
- Tab = tid() । atom()
- Key = term()

D eletes all objects with the key Key from the table Tab.
delete_all_objects(Tab) -> true
Types:
- Tab = tid() । atom()

D elete all objects in the ETS table Tab. The deletion is atomic.
```

delete_object(Tab,Object) -> true

```

Types:
- Tab = tid() । atom()
- O bject = tuple()

D elete the exact object Object from the ETS table, leaving objects with the same key but other differences (useful for type bag).
file2tab(Filename) -> \{ok,Tab\} | \{error, Reason\}
Types:
- Filename = string() | atom()
- Tab = tid() । atom()
- Reason = term()

Reads a file produced by tab2file/2 and creates the corresponding table Tab.
```

first(Tab) -> Key | '\$end_of_table'

```

Types:
- Tab = tid() । atom()
- Key = term()

Returns the first key Key in the table Tab. If the table is of the ordered_set type, the first key in Erlang term order will be returned. If the table is of any other type, the first key according to the table's internal order will be returned. If the table is empty,
'\$end_of_table' will be returned.
Use next/2 to find subsequent keys in the table.
fixtable(Tab, true|false) -> true | false
Types:
- Tab \(=\) tid() | atom()

\section*{W arning:}

The function is retained for backwards compatibility only. Use safe_fixtable/2 instead.

Fixes a table for safe traversal. The function is primarily used by the M nesia D BM S to implement functions which allow write operations in a table, although the table is in the process of being copied to disk or to another node. It does not keep track of when and how tables are fixed.
```

foldl(Function, Acc0, Tab) -> Acc1

```

Types:
- Function \(=\) fun( \(\mathrm{A}, \mathrm{AccIn})->\mathrm{AccO}\) ut
- Tab \(=\) tid() । atom()
- \(\mathrm{AccO}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term()

Acc0 is returned if the table is empty. This function is similar to lists: foldl/3. The order in which the elements of the table are traversed is unspecified, except for tables of type ordered_set, for which they are traversed first to last.
foldr(Function, Acc0, Tab) -> Acc1
Types:
- Function \(=\) fun( \(\mathrm{A}, \mathrm{AccIn})->\mathrm{AccO}\) ut
- Tab = tid() । atom()
- \(\mathrm{AccO}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term()

Acc0 is returned if the table is empty. This function is similar to lists:foldr/3. The order in which the elements of the table are traversed is unspecified, except for tables of type ordered_set, for which they are traversed last to first.
from_dets(Tab, DetsTab) -> Tab
Types:
- Tab \(=\) tid() | atom()
- DetsTab = atom()

Fills an already created ETS table with the objects in the already opened D ets table named DetsTab. The ETS table is emptied before the objects are inserted.
```

fun2ms(LiteralFun) -> MatchSpec

```

Types:
- LiteralFun = fun() literal
- M atchSpec = term()

Pseudo function that by means of a parse_transform translates the literal fun() typed as parameter in the function call to a match specification as described in the match_spec manual of ERTS users guide. (with literal I mean that the fun() needs to textually be written as the parameter of the function, it cannot be held in a variable which in turn is passed to the function).
The parse transform is implemented in the module ms_transform and the source must include the file ms_transform.hrl in stdlib for this pseudo function to work. Failing to include the hrl file in the source will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line
-include_lib("stdlib/include/ms_transform.hrl"). to the source file.
The fun() is very restricted, it can take only a single parameter (the object to match), a sole variable or a tuple. It needs to use the is_X XX guard tests and one cannot use language constructs that have no representation in a match_spec (like if, case, receive etc). The return value from the fun will be the return value of the resulting match_spec.

\section*{Example:}
```

2> ets:fun2ms(fun({M,N}) when N > 3 -> M end).
[{{'\$1','\$2'},[{'>','\$2',3}],['\$1']}]

```

Variables from the environment can be imported, so that this works:
```

2> X=3.
3
3> ets:fun2ms(fun({M,N}) when N > X -> M end).
[{{'\$1','\$2'},[{'>','\$2',{const,3}}],['\$1']}]

```

The imported variables will be replaced by match_spec const expressions, which is consistent with the static scoping for erlang fun()'s. Local or global function calls can not be in the guard or body of the fun however. Calls to builtin match_spec functions of course is allowed:
```

4> ets:fun2ms(fun({M,N}) when N > X, is_atomm(M) -> M end).
Error: fun containing local erlang function calls
('is_atomm' called in guard) cannot be translated into match_spec
{error,transform_error}
5> ets:fun2ms(fun({M,N}) when N > X, is_atom(M) -> M end).
[{{'\$1','\$2'},[{'>','\$2',{const,3}},{is_atom,'\$1'}], ['\$1']}]

```

A s you can see by the example, the function can be called from the shell too. The fun() needs to be literally in the call when used from the shell as well. O ther means than the parse_transform are used in the shell case, but more or less the same restrictions apply (the exception being records, as they are not handled by the shell).

\section*{W arning:}

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime (with a badarg). The module ets actually exports a function with this name, but it should never really be called except for when using the function in the shell. If the parse_transform is properly applied by including the ms_transform.hrl header file, compiled code will never call the function, but the function call is replaced by a literal match_spec.

M ore information is provided by the ms_transform manual page in stdlib.
```

i() -> void()

```

Displays information about all ETS tables on tty.
```

i(Tab) -> void()

```

Types:
- Tab = tid() । atom()

Browses the table Tab on tty.
```

info(Tab) -> [{Item,Value}] | undefined

```

Types:
- Tab = tid() | atom()
- Item, Value - see below

Returns information about the table Tab as a list of \{Item, Value \} tuples:
- Item=memory, Value=int()

The number of words allocated to the table.
- Item=owner, Value=pid()

The pid of the owner of the table.
- Item=name, Value=atom()

The name of the table.
- Item=size, Value=int()

The number of objects inserted in the table.
- Item=node, Value=atom() The node where the table is stored. This field is no longer meaningful as tables cannot be accessed from other nodes.
- Item=named_table, Value=true|false Indicates if the table is named or not.
- Item=type, Value=set|ordered_set|bag|duplicate_bag The table type.
- Item=keypos, Value=int()

The key position.
- Item=protection, Value=public|protected|private The table access rights.
```

info(Tab, Item) -> Value | undefined

```

Types:
- Tab = tid() । atom()
- Item, Value - see below

Returns the information associated with Item for the table Tab. In addition to the \{Item, Value\} pairs defined for info/1, the following items are allowed:
- Item=fixed, Value=true|false Indicates if the table is fixed by any process or not.
- Item=safe_fixed, Value=\{FirstFixed,Info\}|false

If the table has been fixed using safe_fixtable/2, the call returns a tuple where FirstFixed is the time when the table was first fixed by a process, which may or may not be one of the processes it is fixed by right now. Info is a possibly empty lists of tuples \{Pid, RefCount \}, one tuple for every process the table is fixed by right now. RefCount is the value of the reference counter, keeping track of how many times the table has been fixed by the process. If the table never has been fixed, the call returns false.
```

init_table(Name, InitFun) -> true

```

Types:
- Name = atom()
- InitFun = fun(Arg) \(->\) Res
- Arg = read । close
- Res = end_of_input \| \{[object()], InitFun\} | term()

Replaces the existing objects of the table Tab with objects created by calling the input function InitFun, see below. This function is provided for compatibility with the D ets module, it's not more efficient than filling a table by using ets:insert/2.
When called with the argument read the function InitFun is assumed to return end_of_input when there is no more input, or \{Objects, Fun\}, where Objects is a list of objects and Fun is a new input function. A ny other value Value is returned as an error \{error, \{init_fun, Value\}\}. Each input function will be called exactly once, and should an error occur, the last function is called with the argument close, the reply of which is ignored.
If the type of the table is set and there is more than one object with a given key, one of the objects is chosen. This is not necessarily the last object with the given key in the sequence of objects returned by the input functions. This holds also for duplicated objects stored in tables of type duplicate_bag.
```

insert(Tab, ObjectOrObjects) -> true

```

Types:
- Tab = tid() । atom()
- O bjectO rO bjects = tuple() । [tuple()]

Inserts the object or all of the objects in the list ObjectOrObjects into the table Tab. If there already exists an object with the same key as one of the objects, and the table is a set or ordered_set table, the old object will be replaced. If the list contains more than one object with the same key and the table is a set/ordered_set, one will be inserted, which one is not defined.
```

insert_new(Tab, ObjectOrObjects) -> bool()

```

Types:
- Tab = tid() | atom()
- O bjectO rO bjects = tuple() | [tuple()]

This function works exactly like insert/2, with the exception that instead of overwriting objects with the same key (in the case of sets or ordered_sets) or adding more objects with keys already existing in the table (in the case of bags and duplicate_bags), it simply returns false. If ObjectOrObjects is a list, the function checks every key prior to inserting anything. N othing will be inserted if not all keys present in the list are absent from the table.
```

is_compiled_ms(Term) -> bool()

```

\section*{Types:}
- Term = term()

This function is used to check if a term is a valid compiled match specification. The compiled match_spec is an opaque datatype which can not be sent between erlang nodes nor be stored on disk. A ny attempt to create an external representation of a compiled match specification will result in an empty binary \((\ll \gg)\). As an example, the following expression:
```

ets:is_compiled_ms(ets:match_spec_compile([{'_',[],[true]}])).

```
will yield true, while the following expressions:
```

MS = ets:match_spec_compile([{' _, [],[true]}]),
Broken = binary_to_term(term_to_binary(MS)),
ets:is_compiled_ms(Broken).

```
will yield false, as the variable Broken will contain a compiled match specification that has passed through external representation.

\section*{N ote:}

The fact that compiled match_specifications has no external representation is for performance reasons. It may be subject to change in future releases, while this interface will still remain for backward compatibility reasons.
```

last(Tab) -> Key | '\$end_of_table'

```

Types:
- Tab = tid() । atom()
- Key = term()

Returns the last key Key according to Erlang term order in the table Tab of the ordered_set type. If the table is of any other type, the function is synonymous to first/2. If the table is empty, '\$end_of_table' is returned.
Use prev/2 to find preceding keys in the table.
```

lookup(Tab, Key) -> [Object]

```

Types:
- Tab \(=\) tid () । atom()
- Key = term()
- O bject = tuple()

Returns a list of all objects with the key Key in the table Tab.
If the table is of type set or ordered_set, the function returns either the empty list or a list with one element, as there cannot be more than one object with the same key. If the table is of type bag or duplicate_bag, the function returns a list of arbitrary length.
\(N\) ote that the time order of object insertions is preserved; The first object inserted with the given key will be first in the resulting list, and so on.
Insert and look-up times in tables of type set, bag and duplicate_bag are constant, regardless of the size of the table. For the ordered_set data-type, time is proportional to the (binary) logarithm of the number of objects.
lookup_element(Tab, Key, Pos) -> Elem
Types:
- Tab = tid() \| atom()
- Key = term()
- Pos = int()
- Elem = term() | [term()]

If the table Tab is of type set or ordered_set, the function returns the Pos:th element of the object with the key Key.
If the table is of type bag or duplicate_bag, the functions returns a list with the Pos:th element of every object with the key Key.
If no object with the key Key exists, the function will exit with reason badarg.
match(Tab, Pattern) -> [Match]
Types:
- Tab = tid() । atom()
- Pattern = tuple()
- M atch \(=[\) term ()\(]\)
\(M\) atches the objects in the table Tab against the pattern Pattern.
A pattern is a term that may contain:
- bound parts (Erlang terms),
- ' _' which matches any Erlang term, and
- pattern variables: '\$N' where \(\mathrm{N}=0,1, \ldots\)

The function returns a list with one element for each matching object, where each element is an ordered list of pattern variable bindings. An example:
```

> ets:match(T, '\$1'). % Matches every object in the table
[[{rufsen,dog,7}],[{brunte,horse,5}], [{ludde,dog,5}]]
> ets:match(T, {'-',dog,'\$1'}).
[[7], [5]]
> ets:match(T, {'-',cow,'\$1'}).
[]

```

If the key is specified in the pattern, the match is very efficient. If the key is not specified, i.e. if it is a variable or an underscore, the entire table must be searched. The search time can be substantial if the table is very large.
On tables of the ordered_set type, the result is in the same order as in a first/next traversal.
```

match(Tab, Pattern, Limit) -> {[Match],Continuation} | '\$end_of_table'

```

\section*{Types:}
- Tab = tid() | atom()
- Pattern = tuple()
- M atch = [term()]
- Continuation = term()

Works like ets:match/2 but only returns a limited (Limit) number of matching objects. The Continuation term can then be used in subsequent calls to ets:match/1 to get the next chunk of matching objects. This is a space efficient way to work on objects in a table which is still faster than traversing the table object by object using ets:first/1 and ets:next/1.
'\$end_of_table' is returned if the table is empty.
```

match(Continuation) -> {[Match],Continuation} | '\$end_of_table'
Types:

```
- M atch \(=[\) term( \()\) ]
- Continuation = term()

Continues a match started with ets:match/3. The next chunk of the size given in the initial ets:match/3 call is returned together with a new Continuation that can be used in subsequent calls to this function.
'\$end_of_table' is returned when there are no more objects in the table.
match_delete(Tab, Pattern) -> true
Types:
- Tab = tid() । atom()
- Pattern = tuple()

Deletes all objects which match the pattern Pattern from the table Tab. See match/2 for a description of patterns.
```

match_object(Tab, Pattern) -> [Object]

```

\section*{Types:}
- Tab = tid() । atom()
- Pattern \(=0\) bject \(=\) tuple()

M atches the objects in the table Tab against the pattern Pattern. See match/2 for a description of patterns. The function returns a list of all objects which match the pattern.
If the key is specified in the pattern, the match is very efficient. If the key is not specified, i.e. if it is a variable or an underscore, the entire table must be searched. The search time can be substantial if the table is very large.
On tables of the ordered_set type, the result is in the same order as in a first/next traversal.
match_object(Tab, Pattern, Limit) -> \{[Match], Continuation\} | '\$end_of_table'
Types:
- Tab = tid() । atom()
- Pattern = tuple()
- M atch = [term()]
- Continuation = term()

Works like ets:match_object/2 but only returns a limited (Limit) number of matching objects. The Continuation term can then be used in subsequent calls to ets:match_object/1 to get the next chunk of matching objects. This is a space efficient way to work on objects in a table which is still faster than traversing the table object by object using ets:first/1 and ets:next/1.
'\$end_of_table' is returned if the table is empty.
match_object(Continuation) \(->\) \{[Match], Continuation\} | '\$end_of_table'
Types:
- M atch \(=[\) term( \()\) ]
- Continuation \(=\) term()

C ontinues a match started with ets:match_object/3. The next chunk of the size given in the initial ets:match_object/3 call is returned together with a new Continuation that can be used in subsequent calls to this function.
'\$end_of_table' is returned when there are no more objects in the table.
```

match_spec_compile(MatchSpec) -> CompiledMatchSpec

```

Types:
- M atchSpec = term()
- CompiledM atchSpec = term()

This function transforms a match specification into a internal representation that can be used in subsequent calls to ets:match_spec_run/2. The internal representation is opaque and can not be converted to external term format and then back again without losing its properties (meaning it can not be sent to a process on another node and still remain a valid compiled match specification, nor can it be stored on disk). The validity of a compiled match specification can be checked using ets:is_compiled_ms/1.
If the term MatchSpec can not be compiled (does not represent a valid match specification), a badarg fault is thrown.

\section*{N ote:}

This function has limited use in normal code, it's used by D ets to perform the dets: select operations.
```

match_spec_run(List,CompiledMatchSpec) -> list()

```

Types:
- List = [ tuple() ]
- CompiledM atchSpec = term()

This function executes the matching specified in a compiled match specification on a list of tuples. The CompiledMatchSpec term should be the result of a call to ets:match_spec_compile/1 and is hence the internal representation of the match_spec one wants to use.
The matching will be executed on each element in List and the function returns a list () containing all results. If an element in List does not match, nothing is returned for that element. The length of the result list is therefore equal or less than the the length of the parameter List. The two calls in the following example will give the same result (but certainly not the same execution time...):
```

Table = ets:new...
MatchSpec =
% The following call...
ets:match_spec_run(ets:tab2list(Table),
ets:match_spec_compile(MatchSpec)),
% ...will give the same result as the more common (and more efficient)
ets:select(Table,MatchSpec),

```

\section*{N ote:}

This function has limited use in normal code, it's used by D ets to perform the dets: select operations and by \(M\) nesia during transactions.
member (Tab, Key) -> true | false
Types:
- Tab = tid() । atom()
- Key = term()

W orks like lookup/2, but does not return the objects. The function returns true if one or more elements in the table has the key Key, false otherwise.
new (Name, Options) -> tid()
Types:
- \(\mathrm{Name}=\) atom()
- Options = [O ption]
- Option = Type \| Access \| named_table \| \{keypos,Pos\}
- Type = set | ordered_set | bag | duplicate_bag
- Access = public I protected I private
- Pos = int()

C reates a new table and returns a table identifier which can be used in subsequent operations. The table identifier can be sent to other processes so that a table can be shared between different processes within a node.
The parameter Options is a list of atoms which specifies table type, access rights, key position and if the table is named or not. If one or more options are left out, the default values are used. This means that not specifying any options ( [] ) is the same as specifying [set, protected, \(\{\) keypos,1\}].
- set The table is a set table - one key, one object, no order among objects. This is the default table type.
- ordered_set The table is a ordered_set table - one key, one object, ordered in Erlang term order, which is the order implied by the < and > operators. Tables of this type have a somewhat different behavior in some situations than tables of the other types.
- bag The table is a bag table which can have many objects, but only one instance of each object, per key.
- duplicate_bag The table is a duplicate_bag table which can have many objects, including multiple copies of the same object, per key.
- public Any process may read or write to the table.
- protected The owner process can read and write to the table. Other processes can only read the table. This is the default setting for the access rights.
- private O nly the owner process can read or write to the table.
- named_table If this option is present, the name Name is associated with the table identifier. The name can then be used instead of the table identifier in subsequent operations.
- \{keypos, Pos \(\}\) Specfies which element in the stored tuples should be used as key. By default, it is the first element, i.e. Pos=1. However, this is not always appropriate. In particular, we do not want the first element to be the key if we want to store Erlang records in a table. \(N\) ote that any tuple stored in the table must have at least Pos number of elements.
next(Tab, Key1) -> Key2 | '\$end_of_table'
Types:
- Tab = tid() । atom()
- Key1 = Key2 = term()

Returns the next key Key2, following the key Key1 in the table Tab. If the table is of the ordered_set type, the next key in Erlang term order is returned. If the table is of any other type, the next key according to the table's internal order is returned. If there is no next key, '\$end_of_table' is returned.
Use first/ 1 to find the first key in the table.
U nless a table of type set, bag or duplicate_bag is protected using safe_fixtable/2, see below, a traversal may fail if concurrent updates are made to the table. If the table is of type ordered_set, the function returns the next key in order, even if the object does no longer exist.
```

prev(Tab, Key1) -> Key2 | '\$end_of_table'

```

Types:
- Tab = tid() । atom()
- Key1 = Key2 = term()

Returns the previous key Key2, preceding the key Key1 according the Erlang term order in the table Tab of the ordered_set type. If the table is of any other type, the function is synonymous to next/2. If there is no previous key, '\$end_of_table' is returned.
U se last/ 1 to find the last key in the table.
rename(Tab, Name) -> Name
Types:
- Tab \(=\mathrm{N}\) ame \(=\) atom()

Renames the named table Tab to the new name Name. A fterwards, the old name can not be used to access the table. Renaming an unnamed table has no effect.
repair_continuation(Continuation, MatchSpec) -> Continuation
Types:
- C ontinuation = term()
- M atchSpec \(=\) term()

This function can be used to restore an opaque continuation returned by ets:select/3 or ets:select/ 1 if the continuation has passed through external term format (been sent between nodes or stored on disk).
The reason for this function is that continuation terms contain compiled match specifications and therefore will be invalidated if converted to external term format. Given that the original match specification is kept intact, the continuation can be restored, meaning it can once again be used in subsequent ets:select/1 calls even though it has been stored on disk or on another node.
As an example, the following seqence of calls will fail:
```

T=ets:new(x,[]),
{_,C} = ets:select(T,ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(Broken).

```
...while the following sequence will work:
```

T=ets:new(x, []),
MS = ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),
{_,C} = ets:select(T,MS,10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(ets:repair_continuation(Broken,MS)).

```
...as the call to ets: repair_continuation/2 will reestablish the (deliberately) invalidated continuation Broken.

\section*{N ote:}

This function is very rarely needed in application code. It is used by \(M\) nesia to implement distributed select/3 and select/1 sequences. A normal application would either use \(M\) nesia or keep the continuation from being converted to external format.
The reason for not having an external representation of compiled match specifications is performance. It may be subject to change in future releases, while this interface will remain for backward compatibility.
```

safe_fixtable(Tab, true|false) -> true

```

Types:
- Tab = tid() । atom()

Fixes a table of the set, bag or duplicate_bag table type for safe traversal.
A process fixes a table by calling safe_fixtable (Tab,true). The table remains fixed until the process releases it by calling safe_fixtable(Tab,false), or until the process terminates.
If several processes fix a table, the table will remain fixed until all processes have released it (or terminated). A reference counter is kept on a per process basis, and \(N\) consecutive fixes requires N releases to actually release the table.
W hen a table is fixed, a sequence of first/1 and next/2 calls are guaranteed to succeed even if objects are removed during the traversal. A n example:
```

clean_all_with_value(Tab,X) ->
safe_fixtable(Tab,true),
clean_all_with_value(Tab,X,ets:first(Tab)),
safe_fixtable(Tab,false).
clean_all_with_value(Tab,X,'\$end_of_table') ->
true;
clean_all_with_value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);
_ ->

```
```

 true
 end,
clean_all_with_value(Tab,X,ets:next(Tab,Key)).

```

N ote that no deleted objects are actually removed from a fixed table until it has been released. If a process fixes a table but never releases it, the memory used by the deleted objects will never be freed. The performance of operations on the table will also degrade significantly.
Use info/2 to retrieve information about which processes have fixed which tables. A system with a lot of processes fixing tables may need a monitor which sends alarms when tables have been fixed for too long.
N ote that for tables of the ordered_set type, safe_fixtable/2 is not necessary as calls to first/1 and next/2 will always succeed.
```

select(Tab, MatchSpec) -> [Object]

```

\section*{Types:}
- Tab = tid() | atom()
- O bject = tuple()
- M atchSpec \(=\) term()

M atches the objects in the table Tab using a match_spec as described in ERTS users guide. This is a more general call than the ets:match/2 and ets:match_object/2 calls. In its simplest forms the match_spec's look like this:
- M atchSpec \(=[M\) atchFunction \(]\)
- \(M\) atchFunction \(=\{M\) atchH ead, [Guard], [Result \(]\}\)
- M atchH ead = "Pattern as in ets:match"
- Guard \(=\{\) "G uardtest name", ... \(\}\)
- Result = "Term construct"

This means that the match_spec is always a list of one or more tuples (of arity 3). The tuples first element should be a pattern as described in the documentation of ets :match/2. The second element of the tuple should be a list of 0 or more guard tests (described below). The third element of the tuple should be a list containing a description of the value to actually return. In almost all normal cases the list contains exactly one term which fully describes the value to return for each object.
The return value is constructed using the "match variables" bound in the M atchH ead or using the special match variables '\$_' (the whole matching object) and '\$\$' (all match variables in a list), so that the following <c>ets:match/2 expression:
```

ets:match(Tab,{'\$1','\$2','\$3'})

```
is exactly equivalent to:
```

ets:select(Tab,[{{'\$1','\$2','$3'},[],['$\$']}])
```- and the following ets: match_object/2 call:```
ets:match_object(Tab,{'\$1','\$2','\$1'})
```is exactly equivalent to```
ets:select(Tab,[{{'\$1','\$2','$1'},[],['$_']}])
```

C omposite terms can be constructed in the Result part either by simply writing a list, so that this code:

$$
\text { ets:select (Tab, [\{\{'\$1', '\$2', '\$3'\}, [], ['\$\$']\}]) }
$$

gives the same output as:

```
ets: select (Tab, [\{\{'\$1', '\$2', '\$3'\}, [], [['\$1', '\$2', '\$3'] \(]\}]\))
```

i.e. all the bound variables in the match head as a list. If tuples are to be constructed, one has to write a tuple of arity 1 with the single element in the tuple being the tuple one wants to construct (as an ordinary tuple could be mistaken for a Guard). Therefore the following call:

```
ets:select(Tab,[{{'$1','$2','$1'},[],['$_']}])
```

gives the same output as:

```
ets:select(Tab,[{{'$1','$2','$1'},[],[{{'$1','$2','$3'}}]}])
```

- this syntax is equivalent to the syntax used in the trace patterns (see the dbg module in the runtime_tools application).
The Guard's are constructed as tuples where the first element is the name of the test (again, see the match_spec documentation in ERTS users guide) and the rest of the elements are the parameters of the test. To check for a specific type (say a list) of the element bound to the match variable '\$1', one would write the test as \{is_list, '\$1'\}. If the test fails, the object in the table won't match and the next MatchFunction (if any) will be tried. M ost guard tests present in erlang can be used, but only the new versions prefixed is_ are allowed (like is_float, is_atom etc). An exact list of the allowed guard tests is present in the match_spec section of ERTS users guide.
The Guard section can also contain logic and arithmetic operations, which are written with the same syntax as the guard tests (prefix notation), so that a guard test written in erlang looking like this:

```
is_integer(X), is_integer(Y), X + Y < 4711
```

is expressed like this ( $X$ replaced with '\$1' and $Y$ with '\$2'):

```
[{is_integer, '$1'}, {is_integer, '$2'}, {'<', {'+', '$1',
'$2'}, 4711}]
```

A complete list of the operators is present in the match_spec section of ERTS users guide.

```
select(Tab, MatchSpec, Limit) -> {[Match],Continuation} | '$end_of_table'
```

Types:

- Tab = tid() | atom()
- O bject = tuple()
- M atchSpec = term()
- Continuation $=$ term()

Works like ets: select/2 but only returns a limited (Limit) number of matching objects. The Continuation term can then be used in subsequent calls to ets: select/1 to get the next chunk of matching objects. This is a space efficient way to work on objects in a table which is still faster than traversing the table object by object using ets:first/1 and ets:next/1.
'\$end_of_table' is returned if the table is empty.

```
select(Continuation) -> {[Match],Continuation} | '$end_of_table'
```

Types:

- M atch $=[$ term ()$]$
- Continuation = term()

Continues a match started with ets: select/3. The next chunk of the size given in the initial ets: select/3 call is returned together with a new Continuation that can be used in subsequent calls to this function.
'\$end_of_table' is returned when there are no more objects in the table.

```
select_delete(Tab, MatchSpec) -> NumDeleted
```

Types:

- Tab = tid() । atom()
- O bject = tuple()
- M atchSpec = term()
- N umD eleted $=$ integer ()

M atches the objects in the table Tab using a match_spec as described in ERTS users guide. If the match_spec returns the atom true for an object, that object is removed from the table. For any other result from the match_spec the object is retained. This is a more general call than the ets:match_delete/2 call.
The function returns the number of objects actually deleted from the table.

```
select_count(Tab, MatchSpec) -> NumMatched
```

Types:

- Tab = tid() । atom()
- O bject = tuple()
- M atchSpec = term()
- N umM atched $=$ integer ()
$M$ atches the objects in the table Tab using a match_spec as described in ERTS users guide. If the match_spec returns the atom true for an object, that object considered a match and is counted. For any other result from the match_spec the object is not considered a match and is therefore not counted.
The function could be described as a match_delete/2 that does not actually delete any elements, but only counts them.
The function returns the number of objects matched.

```
slot(Tab, I) -> [Object] | '\$end_of_table'
```

Types:

- Tab $=$ tid() | atom()
- I = int()
- O bject = tuple()

This function is mostly for debugging purposes, N ormally one should use first/next or last/prev instead.
Returns all objects in the I:th slot of the table Tab. A table can be traversed by repeatedly calling the function, starting with the first slot $\mathrm{I}=0$ and ending when '\$end_of_table' is returned. The function will fail with reason badarg if the I argument is out of range.
Unless a table of type set, bag or duplicate_bag is protected using safe_fixtable/2, see above, a traversal may fail if concurrent updates are made to the table. If the table is of type ordered_set, the function returns a list containing the I:th object in Erlang term order.

```
tab2file(Tab, Filename) -> ok | {error,Reason}
```

Types:

- Tab = tid() । atom()
- Filename = string() । atom()
- Reason = term()

D umps the table Tab to the file Filename. The implementation of this function is not efficient.

```
tab2list(Tab) -> [Object]
```

Types:

- Tab = tid() । atom()
- Object = tuple()

Returns a list of all objects in the table Tab.

```
table(Tab [, Options]) -> QueryHandle
```

Types:

- Tab = tid() । atom()
- Q ueryH andle =-a query handle, see qlc(3)-
- Options = [Option] | Option
- O ption = \{n_objects, N O bjects\} । \{traverse, TraverseM ethod\}
- N O bjects = default । integer () >0
- TraverseM ethod = first_next | last_prev | select I \{select, M atchSpec\}
- M atchSpec $=$ term()

Returns a Q LC (Q uery List C omprehension) query handle. The module qlc implements a query language aimed mainly at M nesia but ETS tables, D ets tables, and lists are also recognized by Q LC as sources of data. Calling ets: table/1, 2 is the means to make the ETS table Tab usable to QLC.
When there are only simple restrictions on the key position Q LC uses ets:lookup/2 to look up the keys, but when that is not possible the whole table is traversed. The option traverse determines how this is done:

- first_next. The table is traversed one key at a time by calling ets:first/1 and ets:next/2.
- last_prev. The table is traversed one key at a time by calling ets:last/1 and ets:prev/2.
- select. The table is traversed by calling ets: select/3 and ets:select/1. The option n_objects determines the number of objects returned (the third argument of select/3); the default is to return 100 objects at a time. The match specification (the second argument of select/3) is assembled by Q LC: simple filters are translated into equivalent match specifications while more complicated filters have to be applied to all objects returned by select/3 given a match specification that matches all objects.
- \{select, MatchSpec\}. A sfor select the table is traversed by calling ets: select/3 and ets: select/1. The difference is that the match specification is explicitly given. This is how to state match specifications that cannot easily be expressed within the syntax provided by Q LC.

The following example uses an explicit match specification to traverse the table:

$$
\begin{aligned}
& 1>\text { ets:insert }(\text { Tab }=\text { ets:new }(t,[]),[\{1, a\},\{2, b\},\{3, c\},\{4, d\}]), \\
& M S=\text { ets:fun2ms }(\text { fun }(\{X, Y\}) \text { when }(X>1) \text { or }(X<5)->\{Y\} \text { end })
\end{aligned},
$$

An example with implicit match specification:
$2>$ QH2 = qlc:q([\{Y\} || $\{\mathrm{X}, \mathrm{Y}\}<-$ ets:table $(\mathrm{Tab}),(\mathrm{X}>1)$ or $(\mathrm{X}<5)]$ ).
The latter example is in fact equivalent to the former which can be verified using the function qlc:info/1:
3> qlc:info(QH1) =:= qlc:info(QH2).
true
qlc:info/1 returns information about a query handle, and in this case identical information is returned for the two query handles.

```
test_ms(Tuple, MatchSpec) -> \{ok, Result\} | \{error, Errors\}
```


## Types:

- Tuple = tuple()
- M atchSpec $=$ term()
- Result = term()
- Errors $=[\{$ warning $\mid$ error, string ()$\}]$

This function is a utility to test the match_spec'sused in calls to ets: select/2. The function both tests the MatchSpec for "syntactic" correctness and runs the match_spec against the object Tuple. If the match_spec contains errors, the tuple \{error, Errors\} is returned where Errors is a list of natural language descriptions of what was wrong with the match_spec. If the match_spec is syntactically OK, the function returns \{ok, Term\} where Term is what would have been the result in a real ets: select/2 call or false if the match_spec does not match the object Tuple.
This is a useful debugging and test tool, especially when writing complicated ets:select/2 calls.
to_dets(Tab, DetsTab) -> Tab
Types:

- Tab = tid() | atom()
- DetsTab = atom()

Fills an already created/opened D ets table with the objects in the already opened ETS table named Tab. The D ets table is emptied before the objects are inserted.
update_counter (Tab, Key, \{Pos, Incr, Threshold, SetValue\}) -> Result
update_counter (Tab, Key, \{Pos,Incr\}) -> Result
update_counter(Tab, Key, Incr) $->$ Result
Types:

- Tab = tid() | atom()
- Key = term()
- Pos $=\operatorname{Incr}=$ Threshold $=$ SetValue $=$ Result $=\operatorname{int}()$

This function provides an efficient way to update a counter, without the hassle of having to look up an object, update the object by incrementing an element and insert the resulting object into the table again. (The update is done atomically; i.e. no other Erlang process can access the ets table in the middle of the operation.)
It will destructively update the object with key Key in the table Tab by adding Incr to the element at the Pos:th position. The new counter value is returned. If no position is specified, the element directly following the key (<keypos>+1) is updated.
If a Threshold is specified, the counter will be reset to the value SetValue if the following conditions occur:

- The Incr is not negative ( $>=0$ ) and the result would be greater than ( $>$ ) Threshold
- The Incr is negative $(<0)$ and the result would be less than $(<)$ Threshold

The function will fail with reason badarg if:

- the table is not of type set or ordered_set,
- no object with the right key exists,
- the object has the wrong arity,
- the element to update is not an integer, or,
- any of Pos, Incr, Threshold or SetValue is not an integer


# file_sorter 

Erlang M odule

The functions of this module sort terms on files, merge already sorted files, and check files for sortedness. Chunks containing binary terms are read from a sequence of files, sorted internally in memory and written on temporary files, which are merged producing one sorted file as output. Merging is provided as an optimization; it is faster when the files are already sorted, but it always works to sort instead of merge.
On a file, a term is represented by a header and a binary. Two options define the format of terms on files:

- \{header, HeaderLength\}. H eaderLength determines the number of bytes preceding each binary and containing the length of the binary in bytes. D efault is 4. The order of the header bytes is defined as follows: if B is a binary containing a header only, the size size of the binary is calculated as $\ll$ Size:HeaderLength/unit:8>> = B.
- \{format, Format $\}$. The format determines the function that is applied to binaries in order to create the terms that will be sorted. The default value is binary_term, which is equivalent to funbinary_to_term/1. The value binary is equivalent to fun ( X ) $\rightarrow \mathrm{X}$ end, which means that the binaries will be sorted as they are. This is the fastest format. If Format is term, io:read/2 is called to read terms. In that case only the default value of the header option is allowed. The format option also determines what is written to the sorted output file: if Format is term then io: format/3 is called to write each term, otherwise the binary prefixed by a header is written. $N$ ote that the binary written is the same binary that was read; the results of applying the Format function are thrown away as soon as the terms have been sorted. Reading and writing terms using the io module is very much slower than reading and writing binaries.


## O ther options are:

- \{order, Order\}. The default is to sort terms in ascending order, but that can be changed by the value descending or by giving an ordering function Fun. Fun (A, B) should return true if A comes before B in the ordering, false otherwise. Using an ordering function will slow down the sort considerably. The keysort, keymerge and keycheck functions do not accept ordering functions.
- \{unique, bool() \}. When sorting or merging files, only the first of a sequence of terms that compare equal is output if this option is set to true. The default value is false which implies that all terms that compare equal are output. W hen checking files for sortedness, a check that no pair of consecutive terms compares equal is done if this option is set to true.
- \{tmpdir, TempDirectory\}. The directory where temporary files are put can be chosen explicitly. The default, implied by the value " ", is to put temporary files on the same directory as the sorted output file. If output is a function (see below), the directory returned by file: get_cwd() is used instead. The names of temporary files are derived from the Erlang nodename (node()), the process identifier of the current Erlang emulator (os: getpid()), and a timestamp (erlang: now ()); a typical name would be fs_mynode@myhost_1763_1043_337000_266005.17, where 17 is a sequence number. Existing files will be overwritten. Temporary files are deleted unless some uncaught EXIT signal occurs.
- \{compressed, bool()\}. Temporary files and the output file may be compressed. The default value false implies that written files are not compressed. Regardless of the value of the compressed option, compressed files can always be read. N ote that reading and writing compressed files is significantly slower than reading and writing uncompressed files.
- \{size, Size\}. By default approximately 512*1024 bytes read from files are sorted internally. This option should rarely be needed.
- \{no_files, NoFiles\}. By default 16 files are merged at a time. This option should rarely be needed.

To summarize, here is the syntax of the options:

- Options = [Option] | Option
- Option $=$ \{header, HeaderLength\} | \{format, Format $\mid$ \{order, Order $\}$ | \{unique, bool()\} | \{tmpdir, TempDirectory\} | \{compressed, bool()\} | \{size, Size\} | \{no_files, NoFiles\}
- HeaderLength $=\operatorname{int}()>0$
- Format = binary_term | term | binary | FormatFun
- FormatFun $=$ fun(Binary) $->$ Term
- Order = ascending | descending | OrderFun
- OrderFun $=$ fun(Term, Term) $->$ bool()
- TempDirectory = "" | file_name()
- Size $=$ int() > 0
- NoFiles = int() > 1

A s an alternative to sorting files, a function of one argument can be given as input. When called with the argument read the function is assumed to return end_of_input or \{end_of_input, Value\}\} when there is no more input (Value is explained below), or \{Objects, Fun\}, where Objects is a list of binaries or terms depending on the format and Fun is a new input function. A ny other value is immediately returned as value of the current call to sort or keysort. Each input function will be called exactly once, and should an error occur, the last function is called with the argument close, the reply of which is ignored.

A function of one argument can be given as output. The results of sorting or merging the input is collected in a non-empty sequence of variable length lists of binaries or terms depending on the format. The output function is called with one list at a time, and is assumed to return a new output function. A ny other return value is immediately returned as value of the current call to the sort or merge function. Each output function is called exactly once. When some output function has been applied to all of the results or an error occurs, the last function is called with the argument close, and the reply is
returned as value of the current call to the sort or merge function. If a function is given as input and the last input function returns \{end_of_input, Value\}, the function given as output will be called with the argument \{value, Value\}. This makes it easy to initiate the sequence of output functions with a value calculated by the input functions.
As an example, consider sorting the terms on a disk log file. A function that reads chunks from the disk log and returns a list of binaries is used as input. The results are collected in a list of terms.

```
sort(Log) ->
 {ok, _} = disk_log:open([{name,Log}, {mode,read_only}]),
 Input = input(Log, start),
 Output = output([]),
 Reply = file_sorter:sort(Input, Output, {format,term}),
 ok = disk_log:close(Log),
 Reply.
input(Log, Cont) ->
 fun(close) ->
 ok;
 (read) ->
 case disk_log:chunk(Log, Cont) of
 {error, Reason} ->
 {error, Reason};
 {Cont2, Terms} ->
 {Terms, input(Log, Cont2)};
 {Cont2, Terms, _Badbytes} ->
 {Terms, input(Log, Cont2)};
 eof ->
 end_of_input
 end
 end.
output(L) ->
 fun(close) ->
 lists:append(lists:reverse(L));
 (Terms) ->
 output([Terms | L])
 end.
```

Further examples of functions as input and output can be found at the end of the file_sorter module; the term format is implemented with functions.
The possible values of Reason returned when an error occurs are:

- bad_object, \{bad_object, FileName\}. Applying the format function failed for some binary, or the key(s) could not be extracted from some term.
- \{bad_term, FileName\}. io:read/2 failed to read some term.
- \{file_error, FileName, Reason2\}. See file(3) for an explanation of Reason2.
- \{premature_eof, FileName\}. End-of-file was encountered inside some binary term.
- \{not_a_directory, FileName\}. The file supplied with the tmpdir option is not a directory.


## Types

```
Binary = binary()
FileName = file_name()
FileNames = [FileName]
ICommand = read | close
IReply = end_of_input | {end_of_input, Value} | {[Object], Infun} | InputReply
Infun = fun(ICommand) -> IReply
Input = FileNames | Infun
InputReply = Term
KeyPos = int() > 0 | [int() > 0]
OCommand = {value, Value} | [Object] | close
OReply = Outfun | OutputReply
Object = Term | Binary
Outfun = fun(OCommand) -> OReply
Output = FileName | Outfun
OutputReply = Term
Term = term()
Value = Term
```


## Exports

```
sort(FileName) -> Reply
sort(Input, Output) -> Reply
sort(Input, Output, Options) -> Reply
Types:
- Reply =ok | \{error, Reason\} | InputReply | O utputReply
Sorts terms on files. sort (FileName) is equivalent to sort ([FileName], FileName).
sort(Input, Output) is equivalent to sort(Input, Output, []).
keysort(KeyPos, FileName) -> Reply
keysort(KeyPos, Input, Output) -> Reply
keysort(KeyPos, Input, Output, Options) -> Reply
```

Types:

- Reply =ok | \{error, Reason\} | InputReply | O utputReply

Sorts tuples on files. The sort is performed on the element(s) mentioned in KeyPos. If two tuples compare equal on one element, next element according to KeyPos is compared. The sort is stable.
keysort( $\mathrm{N}, ~ F i l e N a m e$ ) is equivalent to keysort (N, [FileName], FileName).
keysort(N, Input, Output) is equivalent to keysort(N, Input, Output, []).
merge(FileNames, Output) -> Reply
merge(FileNames, Output, Options) -> Reply
Types:

- Reply =ok | \{error, Reason\} | O utputReply

M erges terms on files. Each input file is assumed to be sorted.
merge(FileNames, Output) is equivalent to merge(FileNames, Output, []).

```
keymerge(KeyPos, FileNames, Output) -> Reply
keymerge(KeyPos, FileNames, Output, Options) -> Reply
 Types:
 - Reply =ok | {error, Reason} | O utputReply
 M erges tuples on files. Each input file is assumed to be sorted on key(s).
 keymerge(KeyPos, FileNames, Output) is equivalent to keymerge(KeyPos,
 FileNames, Output, []).
check(FileName) -> Reply
check(FileNames, Options) -> Reply
Types:
- Reply \(=\{\) ok, [Result] \(\}\) I \{error, Reason \(\}\)
- Result \(=\{\) FileN ame, TermPosition, Term \(\}\)
- TermPosition \(=\operatorname{int}()>1\)
Checks files for sortedness. If a file is not sorted, the first out-of-order element is returned. The first term on a file has position 1.
check(FileName) is equivalent to check([FileName], []).
keycheck(KeyPos, FileName) -> CheckReply
keycheck(KeyPos, FileNames, Options) -> Reply
```

Types:

- Reply $=\{$ ok, [Result] $\}$ | \{error, Reason $\}$
- Result $=\{$ FileN ame, TermPosition, Term $\}$
- TermPosition $=\operatorname{int}()>1$

Checks files for sortedness. If a file is not sorted, the first out-of-order element is returned. The first term on a file has position 1.
keycheck(KeyPos, FileName) is equivalent to keycheck(KeyPos, [FileName], []).

## filelib

Erlang M odule

This module contains utilities on a higher level than the file module.

## Exports

```
ensure_dir(Name) -> true
```

Types:

- Name = filename() | dirname()

The ensure_dir/1 functions checks that all parent directories for the given file or directory name exist, creating them if not.

```
file_size(Filename) -> integer()
```

The file_size function returns the size of the given file.

```
fold_files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
```

Types:

- Dir = dirname()
- RegExp = regexp()
- Recursive = truelfalse
- Fun = fun(F, Accln) -> AccO ut
- $\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()

The fold_files/5 function folds the function Fun over all (regular) files F in the directory Dir that match the regular expression RegExp. If Recursive is true all sub-directories to Dir are processed. The match is tried on just the filename without the directory part.
is_dir(Name) -> true | false
Types:

- Name = filename() | dirname()

The is_dir/1 function returns true if Name refers to a directory, and false otherwise.
is_file(Name) -> true | false
Types:

- Name = filename() | dirname()

The is_file/1 function returns true if Name refers to a file or a directory, and false otherwise.
is_regular(Name) -> true | false
Types:

- N ame = filename()

The is_regular/1 function returns true if Name refers to a file (regular file), and false otherwise.
last_modified(Name) -> \{\{Year, Month, Day $\}$,\{Hour, Min, Sec $\}\}$
Types:

- N ame = filename() | dirname()

The last_modified/1 function returns the date and time the given file or directory was last modified.

```
wildcard(Wildcard) -> list()
```

Types:

- Wildcard = filename() । dirname()

The wildcard/1 function returns a list of all files that match Unix-style wildcard-string Wildcard.
The wildcard string looks like an ordinary filename, except that certain "wildcard characters" are interpreted in a special way. The following characters are special:
? M atches one character.

* $M$ atches any number of characters up to the end of the filename, the next dot, or the next slash.
\{Item,...\} Alternation. $M$ atches one of the alternatives.
O ther characters represent themselves. O nly filenames that have exactly the same character in the same position will match. (M atching is case-sensitive; i.e. "a" will not match " A ").
N ote that multiple "*" characters are allowed (as in Unix wildcards, but opposed to Windows/D O S wildcards).
Examples:
The following examples assume that the current directory is the top of an Erlang/OTP installation.
To find all .beam files in all applications, the following line can be used:

```
filelib:wildcard("lib/*/ebin/*.beam").
```

To find either .erl or .hrl in all applications src directories, the following

```
filelib:wildcard("lib/*/src/*.?rl")
```

or the following line

```
filelib:wildcard("lib/*/src/*.{erl,hrl}")
```

can be used.
To find all .hrl files in either src or include directories, use:

```
filelib:wildcard("lib/*/{src,include}/*.hrl").
```

To find all .erl or .hrl files in either src or include directories, use:

```
filelib:wildcard("lib/*/{src,include}/*.{erl,hrl}")
```

wildcard(Wildcard, Cwd) -> list()
Types:

- Wildcard = filename() | dirname()
- Cwd = dirname()

The wildcard/2 function works like wildcard/1, except that instead of the actual working dirctory, Cwd will be used.

## filename

Erlang M odule

The module filename provides a number of useful functions for analyzing and manipulating file names. These functions are designed so that the Erlang code can work on many different platforms with different formats for file names. With file name is meant all strings that can be used to denote a file. They can be short relative names like foo.erl, very long absolute name which include a drive designator and directory names like D: \usr/local \bin\erl/lib\tools $\backslash$ foo.erl, or any variations in between.
In Windows, all functions return file names with forward slashes only, even if the arguments contain back slashes. Use the join/1 function to normalize a file name by removing redundant directory separators.
All functions take either a flat list of characters (a "string") or an atom, or a deep list of strings and atoms. The file module accepts filename in the same form. The return value will always be a flat list of characters.
Types

```
filename = string() | atom() | [filename()]
```


## Exports

```
absname(Filename) -> Absname
 Types:
 - Filename = filename()
 - A bsname = string()
 Converts a relative Filename and returns an absolute name. No attempt is made to
 create the shortest absolute name, because this can give incorrect results on file systems
 which allow links.
 Examples include:
Assume (for UNIX) current directory "/usr/local"
Assume (for WIN32) current directory "D:/usr/local"
(for UNIX): absname("foo") -> "/usr/local/foo"
(for WIN32): absname("foo") -> "D:/usr/local/foo"
(for UNIX): absname("../x") -> "/usr/local/../x"
(for WIN32): absname("../x") -> "D:/usr/local/../x"
(for UNIX): absname("/") -> "/"
(for WIN32): absname("/") -> "D:/"
absname(Filename, Directory) -> Absname
```


## Types:

- Filename = filename()
- Directory = string()
- Absname = string()

This function works like absname/1, except that the directory to which the file name should be made relative is given explicitly in the Directory argument.
absname_join(Directory, Filename) -> Absname
Types:

- Filename = filename()
- Directory = string()
- Absname = string()

Joins an absolute directory with a relative filename. The same as join/2 but more magical. It also assumes that Directory is an absolute directory and Filename is a relative filename. M ight crash otherwise.
The magic consists in that on some platforms, namely they who have tight restrictions on raw filename length, leading parent directory components in Filename are matched against trailing directory components in Directory so they can be removed from the result - minimizing it's length.
On the other hand, on platforms that support symbolic links such magic is magically not performed since it would not work.
basename(Filename)
Types:

- Filename = filename()

Returns the part of the Filename after the last directory separator, or the Filename itself if it has no separators.
Examples include:

```
basename("foo") -> "foo"
```

basename("/usr/foo") -> "foo"
basename("/") -> []
basename(Filename, Ext) -> string()
Types:

- Filename = Ext = filename()

Returns the last component of Filename with the extension Ext stripped. U se this function if you want to to remove an extension which might, or might not, be there. Use rootname (basename (Filename)) if you want to remove an extension that exists, but you are not sure which one it is.
Examples include:

```
basename("~/src/kalle.erl", ".erl") -> "kalle"
basename("~/src/kalle.beam", ".erl") -> "kalle.beam"
basename("~/src/kalle.old.erl", ".erl") -> "kalle.old"
rootname(basename("~/src/kalle.erl")) -> "kalle"
rootname(basename("~/src/kalle.beam")) -> "kalle"
```

```
dirname(Filename) -> string()
 Types:
- Filename = filename()
Returns the directory part of Filename.
Examples include:
dirname("/usr/src/kalle.erl") -> "/usr/src"
dirname("kalle.erl") -> "."
On Win32:
filename:dirname("\\usr\\src/kalle.erl") -> "/usr/src"
extension(Filename) -> string() | []
```

Types:

- Filename = filename()
Given a file name string Filename, this function returns the file extension including the
period. Returns an empty list if there is no extension.
Examples include:
extension("foo.erl") -> ".erl"
extension("beam.src/kalle") -> []
flatten(Filename) -> string()

Types:

- Filename = filename()

Converts a possibly deep list filename consisting of characters and atoms into the corresponding flat string filename.

```
join(Components) -> string()
```

Types:

- Components = [string()]

Joins a list of file name Components with directory separators. If one of the elements in the Components list includes an absolute path, for example "/xxx", the preceding elements, if any, are removed from the result.
The result of the join function is "normalized":

- There are no redundant directory separators.
- In W indows, all directory separators are forward slashes and the drive letter is in lower case.

Examples include:
join("/usr/local", "bin") -> "/usr/local/bin" join(["/usr", "local", "bin"]) -> "/usr/local/bin" join(["a/b///c/"] -> "a/b/c" join(["B:a<br>b///c/"] -> "b:a/b/c" \% On Windows only
join(Name1, Name2) -> string()

```
 Types:
 - N amel = N ame2 = string()
 J oins two file name components with directory separators. Equivalent to
 join([Name1,Name2]).
nativename(Path) -> string()
 Types:
 - Path = string()
 C onverts a filename in Path to a form accepted by the command shell and native
 applications on the current platform. O n W indows, forward slashes will be converted to
 backward slashes. O n all platforms, the name will be normalized as done by join/1.
 Example:
 (on UNIX) filename:nativename("/usr/local/bin/") -> "/usr/local/bin"
 (on Win32) filename:nativename("/usr/local/bin/") -> "\\usr\\local\\bin"
pathtype(Path) -> absolute | relative | volumerelative
Returns one of absolute, relative, or volumerelative.
absolute The path name refers to a specific file on a specific volume.
Examples include:
on Unix
/usr/local/bin/
on Windows
D:/usr/local/bin
relative The path name is relative to the current working directory on the current volume.
Example:
foo/bar, ../src
volumerelative The path name is relative to the current working directory on a
specified volume, or it is a specific file on the current working volume.
Examples include:
In Windows
D:bar.erl, /bar/foo.erl
/temp
rootname(Filename) \(->\) string()
rootname(Filename, Ext) \(->\) string()
Types:
- Filename \(=\) Ext \(=\) filename()
rootname/1 returns all characters in Filename, except the extension.
rootname/2 works as rootname/1, except that the extension is removed only if it is Ext.
Examples include:
```

```
rootname("/beam.src/kalle") -> "/beam.src/kalle"
rootname("/beam.src/foo.erl") -> "/beam.src/foo"
rootname("/beam.src/foo.erl",".erl") -> "/beam.src/foo"
rootname("/beam.src/foo.beam",".erl") -> "/beam.src/foo.beam"
split(Filename) -> Components
Types:
- Filename = filename()
- Components = [string()]
Returns a list whose elements are the path components of Filename.
Examples include:
```

```
split("/usr/local/bin") -> ["/", "usr", "local", "bin"]
```

split("/usr/local/bin") -> ["/", "usr", "local", "bin"]
split("foo/bar") -> ["foo", "bar"]
split("foo/bar") -> ["foo", "bar"]
split("a:<br>msdev<br>include") -> ["a:/", "msdev", "include"]
split("a:<br>msdev<br>include") -> ["a:/", "msdev", "include"]
find_src(Module) -> {SourceFile, Options}
find_src(Module, Rules) -> {SourceFile, Options}
Types:

- M odule = atom() | string()
- SourceFile = string()
- Options = [CompilerO ption]
- CompilerO ption $=\{\mathbf{i}$, string() $\} \mid\{$ outdir, string() $\} \mid\{d$, atom() $\}$

```

Finds the source file name and compilation options for a compiled module. The result can be fed to compile:file/2 in order to compile the file again.
The Module argument, which can be a string or an atom, specifies either the module name or the path to the source code, with or without the ".erl" extension. In either case, the module must be known by the code manager, i.e. code : which/1 must succeed. Rules describe how the source directory is found, when the object code directory is known. Each rule is of the form \{BinSuffix, SourceSuffix\} and is interpreted as follows: If the end of the directory name where the object is located matches BinSuffix, then the suffix of the directory name is replaced by SourceSuffix. If the source file is found in the resulting directory, then the function returns that location together with Options. O therwise, the next rule is tried, and so on.
The function returns \{SourceFile, Options\}. SourceFile is the absolute path to the source file without the ".erl" extension. Options include the options which are necessary to compile the file with compile:file/2, but excludes options such as report or verbose which do not change the way code is generated. The paths in the \{outdir, Path\} and \{i, Path\} options are guaranteed to be absolute.

\section*{gb_sets \\ Erlang M odule}

A n implementation of ordered sets using Prof. Arne A ndersson's General Balanced Trees. This can be much more efficient than using ordered lists, for larger sets, but depends on the application.

\section*{Complexity note}

The complexity on set operations is bounded by either \(\mathrm{O}(|\mathrm{S}|)\) or \(\mathrm{O}(|\mathrm{T}| * \log (|\mathrm{~S}|))\), where \(S\) is the largest given set, depending on which is fastest for any particular function call. For operating on sets of almost equal size, this implementation is about 3 times slower than using ordered-list sets directly. For sets of very different sizes, however, this solution can be arbitrarily much faster; in practical cases, often between 10 and 100 times. This implementation is particularly suited for accumulating elements a few at a time, building up a large set (more than 100-200 elements), and repeatedly testing for membership in the current set.
A s with normal tree structures, lookup (membership testing), insertion and deletion have logarithmic complexity.

\section*{Compatibility}

All of the following functions in this module also exist and do the same thing in the sets and ordsets modules. That is, by only changing the module name for each call, you can try out different set representations.
- add_element/2
- del_element/2
- fold/3
- from_list/1
- intersection/1
- intersection/2
- is_element/2
- is_set/1
- is_subset/2
- new/0
- size/1
- subtract/2
- to_list/1
- union/1
- union/2

\section*{Exports}
empty ()
Returns a new, empty set.
new ()
Returns a new, empty set.
is_empty(S)
Returns 'true' if S is an empty set, and 'false' otherwise.
```

size(S)

```

Returns the number of nodes in the set as an integer. Returns 0 (zero) if the set is empty. singleton(X)

Returns a set containing only the element X .
is_member (X, S)
Returns true if element \(X\) is a member of set \(S\), and false otherwise.
is_element (X, S)
Returns true if element \(X\) is a member of set \(S\), and false otherwise. insert(X, S)

Inserts element X into set S, returns the new set. A ssumes that the element is not present in S .
\(\operatorname{add}(\mathrm{X}, \mathrm{S})\)
Adds element \(X\) to set \(S\), returns the new set. If \(X\) is already an element in \(S\), nothing is changed.
add_element (X, S)
Adds element \(X\) to set \(S\), returns the new set. If \(X\) is already an element in \(S\), nothing is changed.
delete(X, S)
Removes element \(X\) from set \(S\), returns new set. A ssumes that the element exists in the set.

\section*{delete_any (X, T)}

Removes key \(X\) from set \(S\) if the key is present in the set, otherwise does nothing; returns new set.
```

del_element(X,T)

```

Removes key \(X\) from set \(S\) if the key is present in the set, otherwise does nothing; returns new set.
balance(S)
Rebalances the tree representation of \(S\). N ote that this is rarely necessary, but may be motivated when a large number of elements have been deleted from the tree without further insertions. Rebalancing could then be forced in order to minimise lookup times, since deletion only does not rebalance the tree.
```

union(S1, S2)

```

Returns a new set that contains each element that is in either S1 or S2 or both, and no other elements.
```

union(Ss)

```

Returns a new set that contains each element that is in at least one of the sets in the list Ss, and no other elements.
intersection(S1, S2)
Returns a new set that contains each element that is in both S1 and S2, and no other elements.
intersection(Ss)
Returns a new set that contains each element that is in all of the sets in the list Ss, and no other elements.
difference(S1, S2)
Returns a new set that contains each element in S1 that is not also in S2, and no other elements.
subtract(S1, S2)
Returns a new set that contains each element in S1 that is not also in S2, and no other elements.
is_subset(S1, S2)
Returns 'true' if each element in S1 is also a member of S2, and 'false' otherwise.

\section*{to_list(S)}

Returns an ordered list of all elements in set S. The list never contains duplicates (of course).

C reates a set containing all elements in List, where List may be unordered and contain duplicates.
```

from_ordset(L)

```

Turns an ordered-set list L into a set. The list must not contain duplicates.
```

smallest(S)

```

Returns the smallest element in set S . A ssumes that the set S is nonempty.
```

largest(S)

```

Returns the largest element in set S . A ssumes that the set S is nonempty.
```

take_smallest(S)

```

Returns \(\{X, S 1\}\), where \(X\) is the smallest element in set \(S\), and \(S 1\) is the set \(S\) with element \(X\) deleted. A ssumes that the set \(S\) is nonempty.
```

take_largest(S)

```

Returns \(\{X, S 1\}\), where \(X\) is the largest element in set \(S\), and \(S 1\) is the set \(S\) with element \(X\) deleted. \(A\) ssumes that the set \(S\) is nonempty.

Returns an iterator that can be used for traversing the entries of set S; see 'next'. The implementation of this is very efficient; traversing the whole set using 'next' is only slightly slower than getting the list of all elements using 'to_list' and traversing that. The main advantage of the iterator approach is that it does not require the complete list of all elements to be built in memory at one time.
```

next(T)

```

Returns \(\{\mathrm{X}, \mathrm{T} 1\}\) where X is the smallest element referred to by the iterator T , and T 1 is the new iterator to be used for traversing the remaining elements, or the atom 'none' if no elements remain.
filter (P, S)
Filters set S using predicate function P. Included for compatibility with `sets'.
```

fold(F, A, S)

```

Folds function F over set S with A as the initial accumulator. Included for compatibility with `sets'.
is_set(S)
Returns 'true' if S appears to be a set, and 'false' otherwise. N ot recommended; included for compatibility with 'sets'.

\section*{SEE ALSO}
gb_trees(3) [page 157], ordsets(3) [page 231], sets(3) [page 270]

\section*{gb_trees \\ Erlang M odule}

A n efficient implementation of Prof. A rne A ndersson's G eneral Balanced Trees. These have no storage overhead compared to unbalaced binary trees, and their performance is in general better than AVL trees.

\section*{Data structure}

D ata structure:
- \{Size, Tree\}, where 'Tree' is composed of nodes of the form:
- \{Key, Value, Smaller, Bigger\}, and the "empty tree" node:
- nil.

There is no attempt to balance trees after deletions. Since deletions don't increase the height of a tree, this should be OK.
O riginal balance condition \(h(T)<=\operatorname{ceil}(\mathrm{c} * \log (\mathrm{I} \mid))\) has been changed to the similar (but not quite equivalent) condition \(2^{\wedge} \mathrm{h}(\mathrm{T})<=|\mathrm{T}|^{\wedge} \mathrm{c}\). This should al so be OK.

Performance is comparable to the AVL trees in the Erlang book (and faster in general due to less overhead); the difference is that deletion works for these trees, but not for the book's trees. Behaviour is logaritmic (as it should be).

\section*{Exports}
empty ()
Returns a new, empty tree.
is_empty(T)
Returns 'true' if T is an empty tree, and 'false' otherwise.
size(T)
Returns the number of nodes in the tree as an integer. Returns 0 (zero) if the tree is empty.
lookup (X, T)
Looks up key X in tree T ; returns \(\{\) value, V \}, or 'none' if the key is not present.
\(\operatorname{get}(X, T)\)

Retrieves the value stored with key \(X\) in tree \(T\). Assumes that the key is present in the tree, crashes otherwise.
insert (X, V, T)
Inserts key X with value V into tree T ; returns the new tree. A ssumes that the key is *not* present in the tree, crashes otherwise.
update (X, V, T)
U pdates key \(X\) to value \(V\) in tree \(T\); returns the new tree. A ssumes that the key is present in the tree.
enter (\(\mathrm{X}, \mathrm{V}, \mathrm{T}\))
Inserts key X with value V into tree T if the key is not present in the tree, otherwise updates key X to value V in T . Returns the new tree.
delete (X, T)
Removes key \(X\) from tree \(T\); returns new tree. A ssumes that the key is present in the tree, crashes otherwise.
```

delete_any(X, T)

```

Removes key \(X\) from tree \(T\) if the key is present in the tree, otherwise does nothing; returns new tree.
```

balance(T)

```

Rebalances tree T. N ote that this is rarely necessary, but may be motivated when a large number of entries have been deleted from the tree without further insertions. Rebalancing could then be forced in order to minimise lookup times, since deletion only does not rebalance the tree.
is_defined(X, T)
Returns 'true' if key X is present in tree T , and 'false' otherwise.
keys (T)

Returns an ordered list of all keys in tree T .
values(T)
Returns the list of values for all keys in tree \(T\), sorted by their corresponding keys. Duplicates are not removed.
```

to_list(T)

```

Returns an ordered list of \(\{\) Key, Value \(\}\) pairs for all keys in tree \(T\).
```

from_orddict(L)

```

Turns an ordered list \(L\) of \(\{K e y, V a l u e\}\) pairs into a tree. The list must not contain duplicate keys.
smallest (T)
Returns \(\{\mathrm{X}, \mathrm{V}\}\), where X is the smallest key in tree T , and V is the value associated with \(X\) in \(T\). A ssumes that the tree \(T\) is nonempty.
```

largest(T)

```

Returns \(\{\mathrm{X}, \mathrm{V}\}\), where X is the largest key in tree T , and V is the value associated with \(X\) in \(T\). A ssumes that the tree \(T\) is nonempty.
take_smallest(T)
Returns \(\{\mathrm{X}, \mathrm{V}, \mathrm{T} 1\}\), where X is the smallest key in tree \(\mathrm{T}, \mathrm{V}\) is the value associated with \(X\) in \(T\), and \(T 1\) is the tree \(T\) with key \(X\) deleted. Assumes that the tree \(T\) is nonempty.
take_largest (T)
Returns \(\{\mathrm{X}, \mathrm{V}, \mathrm{T} 1\}\), where X is the largest key in tree \(\mathrm{T}, \mathrm{V}\) is the value associated with \(X\) in \(T\), and \(T 1\) is the tree \(T\) with key \(X\) deleted. A ssumes that the tree \(T\) is nonempty.

\section*{iterator(T)}

Returns an iterator that can be used for traversing the entries of tree \(T\); see 'next'. The implementation of this is very efficient; traversing the whole tree using 'next' is only slightly slower than getting the list of all elements using 'to_list' and traversing that. The main advantage of the iterator approach is that it does not require the complete list of all elements to be built in memory at one time.

Returns \(\{\mathrm{X}, \mathrm{V}, \mathrm{S} 1\}\) where X is the smallest key referred to by the iterator S , and S 1 is the new iterator to be used for traversing the remaining entries, or the atom 'none' if no entries remain.

\section*{SEE ALSO}
gb_sets(3) [page 153], dict(3) [page 81],

\section*{gen_event}

Erlang M odule

\begin{abstract}
A behaviour module for implementing event handling functionality. The OTP event handling model consists of a generic event manager process with an arbitrary number of
\end{abstract} event handlers which are added and deleted dynamically.
An event manager implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. It will also fit into an OTP supervision tree. Refer to OTP D esign Principles for more information.
Each event handler is implemented as a callback module exporting a pre-defined set of functions. The relationship between the behaviour functions and the callback functions can be illustrated as follows:
```

gen_event module
gen_event:add_handler
gen_event:add_suphandler -----> Module:init/1
gen_event:notify
gen_event:sync_notify _----> Module:handle_event/2
gen_event:call -----> Module:handle_call/2
_ _----> Module:handle_info/2
gen_event:delete_handler -----> Module:terminate/2
gen_event:swap_handler
gen_event:swap_sup_handler -----> Module1:terminate/2
Module2:init/1
gen_event:which_handlers -----> -
gen_event:stop -----> Module:terminate/2
-----> Module:code_change/3

```

Since each event handler is one call back module, an event manager will have several callback modules which are added and deleted dynamically. Therefore gen_event is more tolerant of call back module errors than the other behaviours. If a callback function for an installed event handler fails with Reason, or returns a bad value Term, the event manager will not fail. It will delete the event handler by calling the callback function

Module: terminate/2 (see below), giving as argument \{error, \{'EXIT', Reason\}\} or \{error, Term\}, respectively. No other event handler will be affected.
The sys module can be used for debugging an event manager.
\(N\) ote that an event manager does trap exit signals automatically.
U nless otherwise stated, all functions in this module fail if the specified event manager does not exist or if bad arguments are given.

\section*{Exports}
```

start_link() -> Result
start_link(EventMgrName) -> Result

```

\section*{Types:}
- EventM grN ame \(=\{\) local, N ame \(\}\) । \(\{\) global, N ame \(\}\)
- \(\mathrm{Name}=\) atom()
- Result \(=\{0 \mathrm{ok}\), Pid \(\}\) । \(\{\) error, \(\{\) already_started, Pid \(\}\}\)
- Pid = pid()

C reates an event manager process as part of a supervision tree. The function should be called, directly or indirectly, by the supervisor. It will, among other things, ensure that the event manager is linked to the supervisor.
If EventMgrName=\{local, Name \(\}\), the event manager is registered locally as Name using register/2. If EventMgrName \(=\{\) global, Name \(\}\), the event manager is registered globally as Name using global: register_name/2. If no name is provided, the event manager is not registered.
If the event manager is successfully created the function returns \(\{o k\), Pid \(\}\), where Pid is the pid of the event manager. If there already exists a process with the specified EventMgrName the function returns \{error, \{already_started, Pid\}\}, where Pid is the pid of that process.
```

start() -> Result
start(EventMgrName) -> Result

```

Types:
- EventM grN ame \(=\{\) local, N ame \(\}\) । \(\{\) global, N ame \(\}\)
- Name = atom()
- Result \(=\{0 \mathrm{ok}, \mathrm{Pid}\}\) । \(\{\) error, \(\{\) already_started, Pid \(\}\}\)
- \(\operatorname{Pid}=\) pid()

C reates a stand-alone event manager process, i.e. an event manager which is not part of a supervision tree and thus has no supervisor.
See start_link/0,1 for a description of arguments and return values.
add_handler(EventMgrRef, Handler, Args) -> Result
Types:
- EventM gr = Name \| \{Name, Node\} | \{global,Name\} | pid()
- Name = N ode = atom()
- H andler \(=\mathrm{M}\) odule \(\mid\) \(\{\) M odule, Id\(\}\)
- M odule \(=\) atom ()
- Id = term()
- A rgs = term()
- Result =ok | \{'EXIT',Reason\} | term()
- Reason = term()

Adds a new event handler to the event manager EventMgrRef. The event manager will call Module : init/1 to initiate the event handler and its internal state.
EventMgrRef can be:
- the pid,
- Name, if the event manager is locally registered,
- \{Name, Node\}, if the event manager is locally registered at another node, or
- \{global, Name\}, if the event manager is globally registered.

Handler is the name of the callback module Module or a tuple \{Module, Id \}, where Id is any term. The \(\{\) Module, Id \(\}\) representation makes it possible to identify a specific event handler when there are several event handlers using the same callback module. Args is an arbitrary term which is passed as the argument to Module:init/1.
If Module:init/1 returns a correct value, the event manager adds the event handler and this function returns ok. If Module:init/1 fails with Reason or returns an unexpected value Term, the event handler is ignored and this function returns \{'EXIT', Reason\} or Term, respectively.
```

add_sup_handler(EventMgrRef, Handler, Args) -> Result

```

\section*{Types:}
- EventM gr = Name \| \{N ame, N ode \(\}\) | \{global, N ame \(\}\) | \(\operatorname{pid}()\)
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Handler \(=\) M odule \(I\) \{M odule,Id \(\}\)
- M odule = atom()
- Id = term()
- A rgs = term()
- Result \(=0 \mathrm{l} \mid\) \{'EXIT',Reason \(\} \mid\) term()
- Reason = term()

Adds a new event handler in the same way as add_handler/3 but will also supervise the connection between the event handler and the calling process.
- If the calling process later terminates with Reason, the event manager will delete the event handler by calling Module: terminate/2 with \{stop, Reason\} as argument.
- If the event handler later is deleted, the event manager sends a message\{gen_event_EXIT, Handler, Reason\} to the calling process. Reason is one of the following:
- normal, if the event handler has been removed due to a call to delete_handler/3, or remove_handler has been returned by a callback function (see below).
- shutdown, if the event handler has been removed because the event manager is terminating.
- \{swapped, NewHandler , Pid\}, if the process Pid has replaced the event handler with another event handler NewHandler using a call to swap_handler/3 or swap_sup_handler/3.
- a term, if the event handler is removed due to an error. Which term depends on the error.

See add_handler/3 for a description of the arguments and return values.
```

notify(EventMgrRef, Event) -> ok

```
sync_notify(EventMgrRef, Event) -> ok

Types:
- EventM grRef = Name \| \{Name,Node\} | \{global,Name\} | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Event = term()

Sends an event notification to the event manager EventMgrRef. The event manager will call Module:handle_event/2 for each installed event handler to handle the event.
notify is asynchronous and will return immediately after the event notification has been sent. sync_notify is synchronous in the sense that it will return ok after the event has been handled by all event handlers.
See add_handler/3 for a description of EventMgrRef.
Event is an arbitrary term which is passed as one of the arguments to Module:handle_event/2.
notify will not fail even if the specified event manager does not exist, unless it is specified as Name.
```

call(EventMgrRef, Handler, Request) -> Result
call(EventMgrRef, Handler, Request, Timeout) -> Result

```

Types:
- EventM grRef = Name \| \{Name,Node\} | \{global,Name\} | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom(\()\)
- Handler \(=\) M odule \(I\{\) M odule, \(I d\}\)
- M odule = atom()
- Id = term()
- Request = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Result = Reply I \{error,Error\}
- Reply = term()
- Error = bad_module \| \{'EXIT',Reason\} | term()
- Reason = term()

M akes a synchronous call to the event handler Handler installed in the event manager EventMgrRef by sending a request and waiting until a reply arrives or a timeout occurs. The event manager will call Module:handle_call/2 to handle the request.
See add_handler/3 for a description of EventMgrRef and Handler.
Request is an arbitrary term which is passed as one of the arguments to Module:handle_call/2.
Timeout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply is received within the specified time, the function call fails.
The return value Reply is defined in the return value of Module:handle_call/2. If the specified event handler is not installed, the function returns \{error, bad_module \(\}\). If the callback function fails with Reason or returns an unexpected value Term, this function returns \{error, \{'EXIT', Reason\}\} or \{error, Term \}, respectively.
delete_handler(EventMgrRef, Handler, Args) -> Result
Types:
- EventM grRef \(=\mathrm{N}\) ame । \(\{\mathrm{N}\) ame, N ode \(\}\) | \{global, N ame \(\}\) | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Handler \(=\) M odule I \(\{\) M odule, Id \(\}\)
- M odule = atom()
- Id = term()
- A rgs = term()
- Result \(=\) term() | \{error,module_not_found \} । \{'EXIT',Reason \(\}\)
- Reason = term()

D eletes an event handler from the event manager EventMgrRef. The event manager will call Module: terminate/2 to terminate the event handler.
See add_handler/3 for a description of EventMgrRef and Handler.
Args is an arbitrary term which is passed as one of the arguments to Module:terminate/2.
The return value is the return value of Module:terminate/2. If the specified event handler is not installed, the function returns \{error, module_not_found \(\}\). If the callback function fails with Reason, the function returns \{ 'EXIT', Reason\}.
swap_handler(EventMgrRef, \{Handler1,Args1\}, \{Handler2,Args2\}) -> Result
Types:
- EventM grRef \(=\mathrm{N}\) ame । \(\{\mathrm{N}\) ame, N ode \(\}\) | \{global, Name\(\}\) | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- H andler \(1=\mathrm{H}\) andler \(2=\mathrm{M}\) odule \(\mathrm{I}\{\) M odule, Id\(\}\)
- M odule = atom()
- Id = term()
- \(\operatorname{Args1}=\mathrm{Args2}=\) term(\()\)
- Result =ok | \{error,Error\}
- Error \(=\left\{{ }^{\prime} E X I T^{\prime}\right.\), Reason \(\} \mid\) term()
- Reason = term()

Replaces an old event handler with a new event handler in the event manager EventMgrRef.

See add_handler/3 for a description of the arguments.
First the old event handler Handler1 is deleted. The event manager calls Module1:terminate (Args1, ...), where Module1 is the callback module of Handler1, and collects the return value.
Then the new event handler Handler2 is added and initiated by calling Module2: init (\{Args2,Term\}), where Module2 is the callback module of Handler2 and Term the return value of Module1:terminate/2. This makes it possible to transfer information from Handler1 to Handler2.
The new handler will be added even if the the specified old event handler is not installed in which case Term=error, or if Module1:terminate/2 fails with Reason in which case Term \(=\{\) 'EXIT' , Reason\}. The old handler will be deleted even if Module2:init/1 fails. If there was a supervised connection between Handler1 and a process Pid, there will be a supervised connection between Handler2 and Pid instead.
If Module2:init/1 returns a correct value, this function returns ok. If Module2:init/1 fails with Reason or returns an unexpected value Term, this this function returns \{error, \{'EXIT', Reason\}\} or \{error, Term \}, respectively.
swap_sup_handler(EventMgrRef, \{Handler1,Args1\}, \{Handler2,Args2\}) -> Result
Types:
- EventM grRef \(=\) Name \| \(\{\mathrm{N}\) ame, N ode \(\}\) | \{global, N ame \(\}\) | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom ()
- H andler \(1=\mathrm{H}\) andler \(2=\mathrm{M}\) odule \(\mathrm{I}\{\mathrm{M}\) odule, I f\(\}\)
- M odule = atom()
- Id = term()
- Args1 = A rgs2 = term()
- Result =ok | \{error,Error\}
- Error \(=\{\) 'EXIT',Reason \(\}\) | term()
- Reason = term()

Replaces an event handler in the event manager EventMgrRef in the same way as swap_handler/3 but will also supervise the connection between Handler2 and the calling process.
See swap_handler/3 for a description of the arguments and return values.
which_handlers(EventMgrRef) -> [Handler]
Types:
- EventM grRef \(=\) N ame \| \(\{\) Name, N ode \(\}\) । \{global, N ame \(\}\) । pid()
- \(\mathrm{Name}=\mathrm{N}\) ode \(=\) atom()
- Handler \(=\) M odule I \(\{\) M odule,Id \(\}\)
- M odule = atom()
- Id = term()

Returns a list of all event handlers installed in the event manager EventMgrRef. See add_handler/3 for a description of EventMgrRef and Handler.
stop(EventMgrRef) -> ok
Types:
- EventM grRef \(=\mathrm{N}\) ame । \(\{\mathrm{N}\) ame, N ode \(\}\) । \{global, N ame \(\}\) । pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom ()

Terminates the event manager EventMgrRef. Before terminating, the event manager will call Module:terminate (stop, . . .) for each installed event handler.
See add_handler/3 for a description of the argument.

\section*{CALLBACK FUNCTIONS}

The following functions should be exported from a gen_event callback module.

\section*{Exports}
```

Module:init(InitArgs) -> {ok,State}

```

Types:
- InitA rgs = A rgs | \(\{\) A rgs,Term \(\}\)
- A rgs = Term = term()
- State = term()

W henever a new event handler is added to an event manager, this function is called to initialize the event handler.
If the event handler is added due to a call to gen_event: add_handler/3 or gen_event: add_sup_handler/3, InitArgs is the Args argument of these functions.
If the event handler is replacing another event handler due to a call to gen_event:swap_handler/3 or gen_event: swap_sup_handler/3, or due to a swap return tuple from one of the other callback functions, InitArgs is a tuple \{Args, Term\} where Args is the argument provided in the function call/return tuple and Term is the result of terminating the old event handler, see gen_event: swap_handler/3.
The function should return \(\{\mathrm{ok}\), State \(\}\) where State is the initial internal state of the event handler.
```

Module:handle_event(Event, State) -> Result

```

Types:
- Event = term()
- State = term()
- Result \(=\{0 \mathrm{ok}, \mathrm{N}\) ew State \(\}\)
- | \{swap_handler,A rgs1,N ewState,H andler2,A rgs2\} | remove_handler
- N ewState = term()
- A rgs1 = A rgs2 = term()
- H andler2 \(=\) M odule2 \(\mid\) \{ M odule2,Id \(\}\)
- M odule2 \(=\) atom(\()\)
- Id = term()

Whenever an event manager receives an event sent using gen_event :notify/2 or gen_event : sync_notify/2, this function is called for each installed event handler to handle the event.
Event is the Event argument of notify/sync_notify.
State is the internal state of the event handler.
If the function returns \(\{0 \mathrm{k}\), NewState \(\}\) the event handler will remain in the event manager with the possible updated internal state NewState.
If the function returns \{swap_handler, Args1, NewState, Handler2, Args2\} the event handler will be replaced by Handler2 by first calling
Module:terminate(Args1,NewState) and then Module2:init(\{Args2,Term\}) where
Term is the return value of Module:terminate/2. See gen_event: swap_handler/3 for more information.
If the function returns remove_handler the event handler will be deleted by calling Module:terminate(removehandler,State).

Module:handle_call(Request, State) -> Result
Types:
- Request = term()
- State = term()
- Result \(=\{0 k\), Reply,N ewState \(\}\)
- I \{swap_handler,Reply,A rgs1,N ewState,H andler2,A rgs2\}
- | \{remove_handler, Reply\}
- Reply = term()
- N ewState \(=\) term()
- Args1 = A rgs2 = term()
- H andler2 \(=\) M odule2 \(\mid\) \{ odule2,Id \(\}\)
- M odule2 \(=\) atom()
- Id = term()

Whenever an event manager receives a request sent using gen_event : call/ 3,4 , this function is called for the specified event handler to handle the request.
Request is the Request argument of call.
State is the internal state of the event handler.
The return values are the same as for handle_event/2 except they also contain a term Reply which is the reply given back to the client as the return value of call.
```

Module:handle_info(Info, State) -> Result

```

Types:
- Info = term()
- State = term()
- Result = \{ok,N ewState \(\}\)
- | \{swap_handler,A rgs1,N ewState,H andler2,A rgs2\} | remove_handler
- N ewState = term()
- Args1 = A rgs2 = term()
- H andler2 = M odule2 I \{M odule2,Id\}
- M odule2 \(=\) atom(\()\)
- Id = term()

This function is called for each installed event handler when an event manager receives any other message than an event or a synchronous request (or a system message).
Info is the received message.
See Module:handle_event/2 for a description of State and possible return values.
Module:terminate(Arg, State) \(->\) term()
Types:
- Arg = Args \| \{stop,Reason\} | stop | remove_handler
- I \{error,\{'EXIT',Reason\}\} I \{error,Term\}
- A rgs \(=\) Reason \(=\) Term \(=\) term()

Whenever an event handler is deleted from an event manager, this function is called. It should be the opposite of Module:init/1 and do any necessary cleaning up.
If the event handler is deleted due to a call to gen_event: delete_handler, gen_event: swap_handler/3 or gen_event: swap_sup_handler/3, Arg is the Args argument of this function call.
\(\operatorname{Arg}=\{\) stop, Reason \(\}\) if the event handler has a supervised connection to a process which has terminated with reason Reason.

Arg=stop if the event handler is deleted because the event manager is terminating.
Arg=remove_handler if the event handler is deleted because another callback function has returned remove_handler or \{remove_handler, Reply\}.
Arg \(=\{\) error , Term \(\}\) if the event handler is deleted because a callback function returned an unexpected value Term, or \(\operatorname{Arg}=\{\) error, \(\{\) 'EXIT', Reason \(\}\}\) if a callback function failed.

State is the internal state of the event handler.
The function may return any term. If the event handler is deleted due to a call to gen_event: delete_handler, the return value of that function will be the return value of this function. If the event handler is to be replaced with another event handler due to a swap, the return value will be passed to the init function of the new event handler. O therwise the return value is ignored.

Module:code_change(OldVsn, State, Extra) -> \{ok, NewState \(\}\)
Types:
- OldV sn = V sn I \{down, Vsn\}
- V sn = term()
- State \(=\) N ewState \(=\) term()
- Extra = term()

This function is called for an installed event handler which should update its internal state during a release upgrade/downgrade, i.e. when the instruction
\{update, Module, Change, . . .\} where Change=\{advanced, Extra\} is given in the . appup file. See OTP D esign Principles for more information.
In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is \{down, Vsn\}. Vsn is defined by the vsn attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the checksum of the BEAM file.
State is the internal state of the event handler.
Extra is passed as-is from the \{advanced, Extra\} part of the update instruction.
The function should return the updated internal state.

\section*{SEE ALSO}
supervisor(3) [page 315], sys(3) [page 325]

\section*{gen_fsm}

Erlang M odule

\begin{abstract}
A behaviour module for implementing a finite state machine. A generic finite state machine process (gen_fsm) implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. It will also fit into an OTP supervision tree. Refer to OTP D esign Principles for more information.
\end{abstract} A gen_fsm assumes all specific parts to be located in a callback module exporting a pre-defined set of functions. The relationship between the behaviour functions and the callback functions can be illustrated as follows:
\begin{tabular}{|c|c|}
\hline gen_fsm module & Callback module \\
\hline gen_fsm:start_link & -----> Module:init/1 \\
\hline gen_fsm: send_event & -----> Module:StateName/2 \\
\hline gen_fsm: send_all_state_event & -----> Module:handle_event/3 \\
\hline gen_fsm: sync_send_event & -----> Module:StateName/3 \\
\hline gen_fsm: sync_send_all_state_event & -----> Module:handle_sync_event/4 \\
\hline - & -----> Module:handle_info/3 \\
\hline - & -----> Module:terminate/3 \\
\hline - & -----> Module:code_change/4 \\
\hline
\end{tabular}

If a callback function fails or returns a bad value, the gen_fsm will terminate. The sys module can be used for debugging a gen_fsm.
N ote that a gen_fsm does not trap exit signals automatically, this must be explicitly initiated in the callback module.

U nless otherwise stated, all functions in this module fail if the specified gen_fsm does not exist or if bad arguments are given.

\section*{Exports}
```

start_link(Module, Args, Options) -> Result
start_link(FsmName, Module, Args, Options) -> Result
Types:

- FsmN ame = {local,N ame} | {global,N ame}
- N ame = atom()
- M odule = atom()
- Args = term()
- O ptions = [O ption]
- Option = {debug,D bgs} | {timeout,Time} | {spawn_opt,SO pts}
- D bgs = [D bg]
- D bg = trace | log | statistics
- | {log_to_file,FileN ame} | {install,{Func,FuncState}}
- SO pts = [term()]
- Result = {ok,Pid} | ignore | {error,Error}
- Pid = pid()
- Error = {already_started,Pid} | term()
C reates a gen_fsm process as part of a supervision tree. The function should be called, directly or indirectly, by the supervisor. It will, among other things, ensure that the gen_fsm is linked to the supervisor.
The gen_fsm process calls Module:init/1 to initialize. To ensure a synchronized start-up procedure, start_link/3,4 does not return until Module:init/1 has returned.
If FsmName=\{local, Name\}, the gen_fsm is registered locally as Name using register/2. If FsmName=\{global, Name\}, the gen_fsm is registered globally as Name using global:register_name/2. If no name is provided, the gen_fsm is not registered.
Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the option \{timeout, Time\} is present, the gen_fsm is allowed to spend Time milliseconds initializing or it will be terminated and the start function will return \{error,timeout\}.
If the option $\{$ debug, Dbgs\} is present, the corresponding sys function will be called for each item in Dbgs. Refer to sys (3) for more information.
If the option \{spawn_opt, SOpts\} is present, SOpts will be passed as option list to the spawn_opt BIF which is used to spawn the gen_fsm process. Refer to erlang (3) for information about the spawn_opt options.
If the gen_fsm is successfully created and initialized the function returns \{ok, Pid\}, where Pid is the pid of the gen_fsm. If there already exists a process with the specified FsmName, the function returns \{error, \{already_started, Pid\}\} where Pid is the pid of that process.
If Module:init/1 fails with Reason, the function returns \{error, Reason\}. If Module:init/1 returns \{stop, Reason\} or ignore, the process is terminated and the function returns \{error, Reason\} or ignore, respectively.
start(Module, Args, Options) -> Result

```
start(FsmName, Module, Args, Options) -> Result
Types:
- FsmN ame \(=\{\) local, N ame \(\}\) | \(\{\) global,, N ame \(\}\)
- N ame = atom()
- M odule = atom()
- A rgs = term()
- Options = [Option]
- Option = \{debug,D bgs\} | \{timeout,Time\} | \{spawn_opt,SO pts\}
- \(\operatorname{Dbgs}=[\mathrm{Dbg}]\)
- \(\operatorname{Dbg}=\) trace \(|\log |\) statistics
- I \{log_to_file,FileN ame\} I \{install,\{Func,FuncState\}\}
- SO pts = [term()]
- Result \(=\{0 k\), Pid \(\}\) | ignore I \{error,Error \(\}\)
- Pid = pid()
- Error = \{already_started,Pid \(\}\) । term()

Creates a stand-alone gen_fsm process, i.e. a gen_fsm which is not part of a supervision tree and thus has no supervisor.
See start_link/3,4 for a description of arguments and return values.
send_event(FsmRef, Event) -> ok
Types:
- FsmRef \(=\) Name | \{N ame,N ode \(\}\) | \{global, Name\} | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Event = term()

Sends an event asynchronously to the gen_fsm FsmRef and returns ok immediately. The gen_fsm will call Module: StateName/2 to handle the event, where StateName is the name of the current state of the gen_fsm.

FsmRef can be:
- the pid,
- Name, if the gen_fsm is locally registered,
- \{Name, Node\}, if the gen_fsm is locally registered at another node, or
- \{global, Name \}, if the gen_fsm is globally registered.

Event is an arbitrary term which is passed as one of the arguments to Module:StateName/2.
send_all_state_event (FsmRef, Event) -> ok
Types:
- FsmRef \(=\) Name | \(\{N\) ame, \(N\) ode \(\}\) | \{global, N ame \(\}\) | pid()
- N ame \(=\mathrm{N}\) ode \(=\) atom()
- Event = term()

Sends an event asynchronously to the gen_fsm FsmRef and returns ok immediately. The gen_fsm will call Module: handle_event/3 to handle the event.
See send_event/2 for a description of the arguments.
The difference between send_event and send_all_state_event is which callback function is used to handle the event. This function is useful when sending events that are handled the same way in every state, as only one handle_event clause is needed to handle the event instead of one clause in each state name function.
```

sync_send_event(FsmRef, Event) -> Reply
sync_send_event(FsmRef, Event, Timeout) -> Reply

```

Types:
- FsmRef = Name | \{Name,Node\} | \{global, Name\} | pid()
- \(\mathrm{Name}=\mathrm{N}\) ode \(=\) atom()
- Event = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reply = term()

Sends an event to the gen_fsm FsmRef and waits until a reply arrives or a timeout occurs. The gen_fsm will call Module: StateName/3 to handle the event, where StateName is the name of the current state of the gen_fsm.
See send_event/2 for a description of FsmRef and Event.
Timeout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom inf inity to wait indefinitely. Default value is 5000. If no reply is received within the specified time, the function call fails.
The return value Reply is defined in the return value of Module: StateName/3.
In the case where the gen_fsm terminates during the handling of the event and the caller is linked to the gen_fsm and trapping exits, the exit message is removed from the caller's receive queue before the function call fails.
This behaviour is retained for backwards compatibility only and may change in the future. N ote that if the gen_fsm crashes in between calls, a linked process must take care of the exit message anyway.
Warning: Under certain circumstances (e.g. FsmRef = \{Name, Node \(\}\), and Node goes down) the exit message cannot be removed.
sync_send_all_state_event(FsmRef, Event) -> Reply
sync_send_all_state_event(FsmRef, Event, Timeout) -> Reply
Types:
- FsmRef \(=\mathrm{N}\) ame | \(\{\mathrm{N}\) ame, N ode \(\}\) | \{global, N ame \(\} \mid \operatorname{pid}()\)
- \(\mathrm{Name}=\mathrm{N}\) ode \(=\) atom()
- Event = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reply = term()

Sends an event to the gen_fsm FsmRef and waits until a reply arrives or a timeout occurs. The gen_fsm will call Module: handle_sync_event/4 to handle the event.
See send_event/2 for a description of FsmRef and Event. See sync_send_event/3 for a description of Timeout and Reply.
See send_all_state_event/2 for a discussion about the difference between sync_send_event and sync_send_all_state_event.
```

reply(Caller, Reply) -> true

```

Types:
- C aller - see below
- Reply = term()

This function can be used by a gen_fsm to explicitly send a reply to a client process that called sync_send_event or sync_send_all_state_event, when the reply cannot be defined in the return value of Module:State/3 or Module: handle_sync_event/4.
Caller must be the From argument provided to the callback function. Reply is an arbitrary term, which will be given back to the client as the return value of sync_send_event or sync_send_all_state_event.
```

send_event_after(Time, Event) -> Ref

```

Types:
- Time = integer()
- Event = term()
- Ref = reference()

Sends a delayed event internally in the gen_fsm that calls this function after Time ms. Returns immediately a reference that can be used to cancel the delayed send using cancel_timer/1.
The gen_fsm will call Module:StateName/2 to handle the event, where StateName is the name of the current state of the gen_fsm at the time the delayed event is delivered.
Event is an arbitrary term which is passed as one of the arguments to
Module:StateName/2.
start_timer(Time, Msg) -> Ref
Types:
- Time = integer()
- M sg = term()
- Ref = reference()

Sends a timeout event internally in the gen_fsm that calls this function after Time ms. Returns immediately a reference that can be used to cancel the timer using cancel_timer/1.
The gen_fsm will call Module: StateName/2 to handle the event, where StateName is the name of the current state of the gen_fsm at the time the timeout message is delivered.
Msg is an arbitrary term which is passed in the timeout message, \{timeout, Ref, Msg\}, as one of the arguments to Module: StateName/2.
```

cancel_timer(Ref) -> RemainingTime | false

```

Types:
- Ref = reference()
- RemainingTime = integer()

C ancels an internal timer referred by Ref in the gen_fsm that calls this function.
Ref is a reference returned from send_event_after/2 or start_timer/2.
If the timer has already timed out, but the event not yet been delivered, it is cancelled as if it had not timed out, so there will be no false timer event after returning from this function.
Returns the remaining time in ms until the timer would have expired if Ref referred to an active timer, false otherwise.

\section*{CALLBACK FUNCTIONS}

The following functions should be exported from a gen_fsm callback module. In the description, the expression state name is used to denote a state of the state machine. state data is used to denote the internal state of the Erlang process which implements the state machine.

\section*{Exports}
```

Module:init(Args) -> Result
Types:
- Args = term()
- Return = {ok,StateN ame,StateD ata} | {ok,StateN ame,StateD ata,Timeout}
- | {stop,Reason} | ignore
- StateN ame = atom()
- StateD ata = term()
- Timeout = int()>0 | infinity
- Reason = term()
W henever a gen_fsm is started using gen_fsm:start/3,4 or gen_fsm:start_link/3,4,
this function is called by the new process to initialize.
Args is the Args argument provided to the start function.
If initialization is successful, the function should return {ok,StateName,StateData} or
{ok,StateName,StateData,Timout}, where StateName is the initial state name and
StateData the initial state data of the gen_fsm.
If an integer timout value is provided, a timout will occur unless an event or a message
is received within Timeout milliseconds. A timout is represented by the atom timeout
and should be handled by the Module:StateName/2 callback functions. The atom
inifinity can be used to wait indefinitely, this is the default value.
If something goes wrong during the initialization the function should return
{stop,Reason}, where Reason is any term, or ignore.
Module:StateName(Event, StateData) -> Result

```

\section*{Types:}
- Event = timeout । term()
- StateD ata = term()
- Result \(=\{\) next_state, N extStateN ame,N ewStateD ata \(\}\)
\{next_state,N extStateN ame,N ewStateD ata,Timeout
- I \{stop,Reason,N ewStateD ata\}
- N extStateN ame = atom()
- N ewStateD ata = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = term()

There should be one instance of this function for each possible state name. W henever a gen_fsm receives an event sent using gen_fsm:send_event/2, the instance of this function with the same name as the current state name StateName is called to handle the event. It is also called if a timeout occurs.
Event is either the atom timeout, if a timeout has occured, or the Event argument provided to send_event.
StateData is the state data of the gen_fsm.
If the function returns \{next_state, NextStateName, NewStateData\} or \{next_state, NextStateName, NewStateData, Timeout \}, the gen_fsm will continue executing with the current state name set to NextStateName and with the possibly updated state data NewStateData. See Module :init/1 for a description of Timeout.
If the function returns \{stop, Reason, NewStateData\}, the gen_fsm will call
Module:terminate (Reason, NewStateData) and terminate.
Module:handle_event(Event, StateName, StateData) \(->\) Result
Types:
- Event = term()
- StateN ame = atom()
- StateD ata = term()
- Result = \{next_state,N extStateN ame,N ewStateD ata\} I \{next_state,N extStateN ame,N ewStateD ata,Timeout\}
- I \{stop,Reason,N ew StateD ata\}
- \(N\) extStateN ame = atom()
- N ewStateD ata = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = term()

W henever a gen_fsm receives an event sent using gen_fsm: send_all_state_event/2, this function is called to handle the event.

StateName is the current state name of the gen_fsm.
See Module:StateName/2 for a description of the other arguments and possible return values.

Module:StateName(Event, From, StateData) -> Result
Types:
- Event = term()
- From \(=\{\) pid(\()\), Tag \(\}\)
- StateD ata = term()
- Result = \{reply,Reply,N extStateN ame,N ewStateD ata\} | \{reply,Reply,N extStateN ame,N ewStateD ata,Timeout\}
- I \{next_state,N extStateN ame,N ew StateD ata\} | \{next_state,N extStateN ame,N ewStateD ata,Timeout\}
- I \{stop,Reason,Reply,N ewStateD ata\} I \{stop,Reason,N ewStateD ata\}
- Reply = term()
- N extStateN ame = atom()
- N ewStateD ata = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = normal । term()

There should be one instance of this function for each possible state name. Whenever a gen_fsm receives an event sent using gen_f sm: sync_send_event \(/ 2,3\), the instance of this function with the same name as the current state name StateName is called to handle the event.
Event is the Event argument provided to sync_send_event.
From is a tuple \{Pid, Tag\} where Pid is the pid of the process which called sync_send_event and Tag is a unique tag.
StateData is the state data of the gen_fsm.
If the function returns \{reply, Reply, NextStateName, NewStateData\} or \{reply, Reply, NextStateName, NewStateData, Timeout \}, Reply will be given back to From as the return value of sync_send_event. The gen_fsm then continues executing with the current state name set to NextStateName and with the possibly updated state data NewStateData. See Module:init/1 for a description of Timeout.
If the function returns \{next_state, NextStateName, NewStateData\} or \{next_state, NextStateName, NewStateData, Timeout \}, the gen_fsm will continue executing in NextStateName with NewStateData. A ny reply to From must be given explicitly using gen_fsm:reply/2.
If the function returns \{stop, Reason, Reply, NewStateData\}, Reply will be given back to From. If the function returns \{stop, Reason, NewStateData\}, any reply to From must be given explicitly using gen_fsm:reply/2. The gen_fsm will then call
Module:terminate(Reason, NewStateData) and terminate.
Module:handle_sync_event(Event, From, StateName, StateData) -> Result

\section*{Types:}
- Event = term()
- From \(=\{\) pid(),Tag \(\}\)
- StateN ame = atom()
- StateD ata = term()
- Result = \{reply,Reply,N extStateN ame,N ewStateD ata\} | \{reply,Reply,N extStateN ame,N ewStateD ata,Timeout\}
- I \{next_state, N extStateN ame, N ewStateD ata\} | \{next_state,N extStateN ame,N ewStateD ata,Timeout \(\}\)
- I \{stop,Reason,Reply,N ewStateD ata\} I \{stop,Reason,N ewStateD ata\}
- Reply = term()
- N extStateN ame = atom()
- \(N\) ewStateD ata \(=\) term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = term()

W henever a gen_fsm receives an event sent using gen_fsm: sync_send_all_state_event/2,3, this function is called to handle the event. StateName is the current state name of the gen_fsm.
See Module:StateName/3 for a description of the other arguments and possible return values.

Module:handle_info(Info, StateName, StateData) -> Result
Types:
- Info = term()
- StateN ame = atom()
- StateD ata = term()
- Result \(=\{\) next_state, \(N\) extStateN ame,N ewStateD ata \(\}\) |
\{next_state,N extStateN ame,N ewStateD ata,Timeout
- I \{stop,Reason,N ewStateD ata\}
- \(N\) extStateN ame = atom()
- \(N\) ewStateD ata \(=\) term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reason = normal । term()

This function is called by a gen_fsm when it receives any other message than a synchronous or asynchronous event (or a system message).
Info is the received message.
See Module:StateName/2 for a description of the other arguments and possible return values.

Module:terminate(Reason, StateName, StateData)
Types:
- Reason = normal | shutdown | term()
- StateN ame = atom()
- StateD ata = term()

This function is called by a gen_fsm when it is about to terminate. It should be the opposite of Module: init/1 and do any necessary cleaning up. W hen it returns, the gen_fsm terminates with Reason. The return value is ignored.
Reason is a term denoting the stop reason, StateName is the current state name, and StateData is the state data of the gen_fsm.
Reason depends on why the gen_fsm is terminating. If it is because another callback function has returned a stop tuple \(\{\) stop, . . \}, Reason will have the value specified in that tuple. If it is due to a failure, Reason is the error reason.
If the gen_fsm is part of a supervision tree and is ordered by its superviser to terminate, this function will be called with Reason=shutdown if the following conditions apply:
- the gen_fsm has been set to trap exit signals, and
- the shutdown strategy as defined in the supervisor's child specification is an integer timeout value, not brutal_kill.

O therwise, the gen_fsm will be immediately terminated.
N ote that for any other reason than normal or shutdown, the gen_fsm is assumed to terminate due to an error and an error report is issued using error_logger :format/2.
```

Module:code_change(OldVsn, StateName, StateData, Extra) -> {ok, NextStateName,

```
 NewStateData\}

Types:
- OldV sn = V sn I \{down, V sn\}
- V sn = term()
- StateN ame = N extStateN ame = atom()
- StateD ata = N ewStateD ata = term()
- Extra = term()

This function is called by a gen_fsm when it should update its internal state data during a release upgrade/downgrade, i.e. when the instruction \{update, Module, Change, . . . \} where Change \(=\{\) advanced, Extra \(\}\) is given in the appup file. See OTP D esign Principles for more information.
In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is \{down, Vsn\}. Vsn is defined by the vsn attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the checksum of the BEAM file.
StateName is the current state name and StateData the internal state data of the gen_fsm.
Extra is passed as-is from the \{advanced, Extra\} part of the update instruction.
The function should return the new current state name and updated internal data.

\section*{SEE ALSO}
supervisor(3) [page 315], sys(3) [page 325]

\section*{gen_server}

Erlang M odule

\begin{abstract}
A behaviour module for implementing the server of a client-server relation. A generic server process (gen_server) implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. It will also fit into an OTP supervision tree. Refer to OTP D esign Principles for more information.
\end{abstract} A gen_server assumes all specific parts to be located in a callback module exporting a pre-defined set of functions. The relationship between the behaviour functions and the callback functions can be illustrated as follows:
\begin{tabular}{|c|c|}
\hline gen_server module & Callback module \\
\hline gen_server:start_link & Module:init/1 \\
\hline \begin{tabular}{l}
gen_server:call \\
gen_server:multi_call
\end{tabular} & Module:handle_call/3 \\
\hline \begin{tabular}{l}
gen_server:cast \\
gen_server: abcast
\end{tabular} & Module:handle_cast/2 \\
\hline - & Module:handle_info/2 \\
\hline - & Module:terminate/2 \\
\hline - & Module:code_change/3 \\
\hline
\end{tabular}

If a callback function fails or returns a bad value, the gen_server will terminate.
The sys module can be used for debugging a gen_server.
N ote that a gen_server does not trap exit signals automatically, this must be explicitly initiated in the callback module.
Unless otherwise stated, all functions in this module fail if the specified gen_server does not exist or if bad arguments are given.

\section*{Exports}
start_link(Module, Args, Options) -> Result
start_link(ServerName, Module, Args, Options) -> Result
Types:
- ServerN ame \(=\{\) local, N ame \(\} \mid\) \{global, N ame \(\}\)
- N ame = atom()
- M odule \(=\) atom()
```

- $\operatorname{Args}=$ term()
- Options = [O ption]
- Option = \{debug, D bgs\} | \{timeout,Time\} \| \{spawn_opt,SO pts\}
- Dbgs = [D bg]
- D bg = trace \| log | statistics | \{log_to_file,FileN ame\} | \{install,\{Func,FuncState\}\}
- SO pts = [term()]
- Result $=\{0 k$, Pid $\}$ । ignore I $\{$ error,Error $\}$
- $\operatorname{Pid}=$ pid()
- Error $=\{$ already_started, Pid $\}$ । term()
C reates a gen_server process as part of a supervision tree. The function should be called, directly or indirectly, by the supervisor. It will, among other things, ensure that the gen_server is linked to the supervisor.
The gen_server process calls Module: init/1 to initialize. To ensure a synchronized start-up procedure, start_link/3,4 does not return until Module:init/1 has returned.
If ServerName=\{local, Name $\}$ the gen_server is registered locally as Name using register/2. If ServerName=\{global, Name $\}$ the gen_server is registered globally as Name using global: register_name/2. If no name is provided, the gen_server is not registered.
Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the option $\{$ timeout, Time $\}$ is present, the gen_server is allowed to spend Time milliseconds initializing or it will be terminated and the start function will return \{error, timeout $\}$.
If the option \{debug, Dbgs\} is present, the corresponding sys function will be called for each item in Dbgs. Refer to sys (3) for more information.
If the option \{spawn_opt, SOpts\} is present, SOpts will be passed as option list to the spawn_opt BIF which is used to spawn the gen_server. Refer to erlang (3) for information about the spawn_opt options.
If the gen_server is successfully created and initialized the function returns $\{\mathrm{ok}, \mathrm{Pid}\}$, where Pid is the pid of the gen_server. If there already exists a process with the specified ServerName the function returns \{error, $\{$ already_started, Pid $\}\}$, where Pid is the pid of that process.
If Module:init/1 fails with Reason, the function returns \{error, Reason\}. If Module:init/1 returns \{stop, Reason\} or ignore, the process is terminated and the function returns $\{$ error, Reason\} or ignore, respectively.
start(Module, Args, Options) -> Result
start(ServerName, Module, Args, Options) -> Result
Types:
- ServerN ame = \{local, N ame $\}$ । $\{$ global, N ame $\}$
- N ame = atom()
- M odule = atom()
- Args = term()
- Options = [O ption]
- Option = \{debug,D bgs\} । \{timeout,Time\} \| \{spawn_opt,SO pts\}
- D bgs = [D bg]

```
- Dbg = trace \| log | statistics \| \{log_to_file,FileN ame\} | \{install,\{Func,FuncState\}\}
- SO pts = [term()]
- Result \(=\{0 \mathrm{ok}, \mathrm{Pid}\}\) । ignore I \(\{\) error,Error \(\}\)
- \(\operatorname{Pid}=\operatorname{pid}()\)
- Error \(=\{\) already_started,Pid \(\}\) | term()

Creates a stand-alone gen_server process, i.e. a gen_server which is not part of a supervision tree and thus has no supervisor.
See start_link/3,4 for a description of arguments and return values.
```

call(ServerRef, Request) -> Reply
call(ServerRef, Request, Timeout) -> Reply

```

Types:
- ServerRef \(=\mathrm{N}\) ame \| \(\{\mathrm{N}\) ame, N ode \(\}\) \| \{global, G lobal Name \} \| pid()
- N ode = atom()
- GlobalN ame = term()
- Request = term()
- Timeout \(=\operatorname{int}()>0\) । infinity
- Reply = term()

M akes a synchronous call to the gen_server ServerRef by sending a request and waiting until a reply arrives or a timout occurs. The gen_server will call Module:handle_call/3 to handle the request.
ServerRef can be:
- the pid,
- Name, if the gen_server is locally registered,
- \{Name, Node\}, if the gen_server is locally registered at another node, or
- \{global, GlobalName\}, if the gen_server is globally registered.

Request is an arbitrary term which is passed as one of the arguments to Module:handle_call/3.
Timeout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply is received within the specified time, the function call fails.
The return value Reply is defined in the return value of Module: handle_call/3.
The call may fail for several reasons, including timeout and the called gen_server dying before or during the call.
There is a special case for backwards compatibility. If
- the client is linked to the gen server, and
- the client is trapping exits, and
- the gen_server terminates while handling the request
then the exit message is removed from the client's receive queue before the function call fails. This special-case behaviour may be removed in the future because it is inconsistent with the behaviour when a gen_server dies between calls and also because the exit message cannot be removed in some circumstances, for instance when ServerRef \(=\{\) Name, Node \(\}\) and Node goes down.
```

multi_call(Name, Request) -> Result
multi_call(Nodes, Name, Request) -> Result
multi_call(Nodes, Name, Request, Timeout) -> Result

```

Types:
- N odes = [ode]
- Node = atom()
- N ame = atom()
- Request \(=\) term()
- Timeout \(=\operatorname{int}()>=0\) । infinity
- Result \(=\{\) Replies,BadN odes \(\}\)
- Replies \(=[\{\) Node,Reply \(\}]\)
- Reply = term()
- BadN odes = [Node]

M akes a synchronous call to all gen_servers locally registered as Name at the specified nodes by first sending a request to every node and then waiting for the replies. The gen_servers will call Module :handle_call/3 to handle the request.
The function returns a tuple \{Replies, BadNodes\} where Replies is a list of \{Node, Reply\} and BadNodes is a list of node that either did not exist, or where the gen_server Name did not exist or did not reply.
Nodes is a list of node names to which the request should be sent. D efault value is the list of all known nodes [node()|nodes()].
Name is the locally registered name of each gen_server.
Request is an arbitrary term which is passed as one of the arguments to Module:handle_call/3.
Timeout is an integer greater than zero which specifies how many milliseconds to wait for each reply, or the atom infinity to wait indefinitely. Default value is infinity. If no reply is received from a node within the specified time, the node is added to BadNodes.
W hen a reply Reply is received from the gen_server at a node Node, \(\{\) Node, Reply \(\}\) is added to Replies. Reply is defined in the return value of Module:handle_call/3.

\section*{Warning:}

If one of the nodes is running Erlang/OTP R6B or older, and the gen_server is not started when the requests are sent, but starts within 2 seconds, this function waits the whole Timeout, which may be infinity.
This problem does not exist if all nodes are running Erlang/OTP R7B or later.

This function does not read out any exit messages like call/2,3 does.

The previously undocumented functions safe_multi_call/2,3,4 were removed in OTP R7B/Erlang 5.0 since this function is now safe, except in the case mentioned above.
To avoid that late answers (after the timeout) pollutes the caller's message queue, a middleman process is used to do the actual calls. Late answers will then be discarded when they arrive to a terminated process.
```

cast(ServerRef, Request) -> ok
Types:
- ServerRef = N ame | {N ame,N ode} | {global,GlobalN ame} | pid()
- N ode = atom()
-GlobalN ame = term()
- Request = term()
Sends an asynchronous request to the gen_server ServerRef and returns ok
immediately, ignoring if the destination node or gen_server does not exist. The
gen_server will call Module:handle_cast/2 to handle the request.
See call/2, 3 for a description of ServerRef.
Request is an arbitrary term which is passed as one of the arguments to
Module:handle_cast/2.
abcast(Name, Request) -> abcast
abcast(Nodes, Name, Request) -> abcast

```
 Types:
 - N odes = [N ode]
 - N ode \(=\) atom()
 - N ame = atom()
 - Request = term()
 Sends an asynchronous request to the gen_servers locally registered as Name at the
 specified nodes. The function returns immediately and ignores nodes that does not
 exist, or where the gen_server Name does not exist. The gen_servers will call
 Module:handle_cast/2 to handle the request.
 See multi_call/2,3,4 for a description of the arguments.
reply(Client, Reply) -> true
 Types:
 - Client - see below
 - Reply = term()
 This function can be used by a gen_server to explicitly send a reply to a client that called
 call or multi_call, when the reply cannot be defined in the return value of
 Module:handle_call/3.
 Client must be the From argument provided to the callback function. Reply is an
 arbitrary term, which will be given back to the client as the return value of call or
 multi_call.
enter_loop(Module, Options, State, ServerName, Timeout) ->
```

enter_loop(Module, Options, State, Timeout) ->
enter_loop(Module, Options, State, ServerName) -> _
Types:
- ServerN ame = {local,N ame} | {global,GlobalN ame}
- Name = atom()
- G lobalN ame = term()
- M odule = atom()
- O ptions = [O ption]
- Option = {debug,D bgs}
- Dbgs = [D bg]
- D bg = trace | log | statistics | {log_to_file,FileN ame} | {install,{Func,FuncState}}
- State = term()
- Timeout = int()>0 | infinity

```
 M akes an existing process into a gen_server. The calling process will enter the gen_server
 receive loop and become a gen_server process. The process *must* have been started
 using one of the start functions in proc_lib, see proc_lib(3). The user is responsible for
 any initialization of the process, including registering a name for it.
 This function is useful when a more complex initalization procedure is needed than the
 gen_server behaviour provides.
 ServerN ame, M odule and O ptions have the same meanings as when calling
 gen_server:start[Jlink]/3,4. H owever, if a ServerName is specified, the process must
 have been registered accordingly *before* this function is called, otherwise the process is
 terminated.
 State and Timeout have the same meanings as in the return value of M odule:init/1.
 A lso, the callback module \(M\) odule does not need to export an init/1 function.

\section*{CALLBACK FUNCTIONS}

The following functions should be exported from a gen_server callback module.

\section*{Exports}

\section*{Module:init(Args) -> Result}

Types:
- Args = term()
- Result \(=\{\) ok,State \(\}\) । \(\{0 k\), State,Timeout \(\}\)
- I \{stop,Reason\} | ignore
- State = term()
- Timeout \(=\operatorname{int}()>=0\) | infinity
- Reason = term()

W henever a gen_server is started using gen_server: start/3, 4 or gen_server: start_link/3.4, this function is called by the new process to initialize. Args is the Args argument provided to the start function.
If the initialization is successful, the function should return \(\{o k\), State \(\}\) or \{ok, State, Timout \}, where State is the internal state of the gen_server.
If an integer timout value is provided, a timout will occur unless a request or a message is received within Timeout milliseconds. A timout is represented by the atom timeout which should be handled by the handle_info/2 callback function. The atom inifinity can be used to wait indefinitely, this is the default value.
If something goes wrong during the initialization the function should return \{stop, Reason\} where Reason is any term, or ignore.
```

Module:handle_call(Request, From, State) -> Result

```

Types:
- Request = term()
- From \(=\{\) pid(),Tag \(\}\)
- State = term()
- Result \(=\{r e p l y, R e p l y, N e w S t a t e\} ~ \| ~\{r e p l y, R e p l y, N ~ e w S t a t e, T i m e o u t ~\} ~\)
- I \{noreply,N ewState\} I \{noreply,N ewState,Timeout \(\}\)
- I \{stop,Reason,Reply,N ewState\} I \{stop,Reason,N ewState\}
- Reply = term()
- N ewState \(=\) term()
- Timeout \(=\operatorname{int}()>=0\) | infinity
- Reason = term()

W henever a gen_server receives a request sent using gen_server : call/2, 3 or gen_server:multi_call/2,3,4, this function is called to handle the request.
Request is the Request argument provided to call or multi_call.
From is a tuple \{Pid, Tag\} where Pid is the pid of the client and Tag is a unique tag. State is the internal state of the gen_server.
If the function returns \{reply, Reply, NewState \(\}\) or \{reply, Reply, NewState, Timout \}, Reply will be given back to From as the return value of call or included in the return value of multi_call. The gen_server then continues executing with the possibly updated internal state NewState. See Module:init/1 for a description of Timeout.
If the functions returns \{noreply, NewState\} or \{noreply, NewState, Timeout \}, the gen_server will continue executing with NewState. A ny reply to From must be given explicitly using gen_server:reply/2.
If the function returns \{stop, Reason, Reply, NewState\}, Reply will be given back to From. If the function returns \{stop, Reason, NewState\}, any reply to From must be given explicitly using gen_server :reply/2. The gen_server will then call Module: terminate (Reason, NewState) and terminate.

Module:handle_cast(Request, State) -> Result
Types:
- Request = term()
- State = term()
- Result \(=\) \{noreply,N ewState \(\}\) । \(\{\) noreply,N ewState,Timeout \(\}\)
- I \{stop,Reason,N ewState\}
- N ewState \(=\) term()
- Timeout \(=\operatorname{int}()>=0\) | infinity
- Reason = term()

W henever a gen_server receives a request sent using gen_server: cast/2 or gen_server : abcast/ 2,3 , this function is called to handle the request.

See Module: handle_call/3 for a description of the arguments and possible return values.

Module:handle_info(Info, State) -> Result
Types:
- Info = timeout | term()
- State = term()
- Result = \{noreply,N ewState\} । \{noreply,N ewState,Timeout \(\}\)
- I \{stop,Reason,N ewState\}
- N ewState = term()
- Timeout \(=\operatorname{int}()>=0\) । infinity
- Reason = normal । term()

This function is called by a gen_server when a timeout occurs or when it receives any other message than a synchronous or asynchronous request (or a system message). Info is either the atom timeout, if a timeout has occured, or the received message. See Module: handle_call/3 for a description of the other arguments and possible return values.

Module:terminate(Reason, State)
Types:
- Reason = normal | shutdown | term()
- State = term()

This function is called by a gen_server when it is about to terminate. It should be the opposite of Module: init/1 and do any necessary cleaning up. W hen it returns, the gen_server terminates with Reason. The return value is ignored.
Reason is a term denoting the stop reason and State is the internal state of the gen_server.
Reason depends on why the gen_server is terminating. If it is because another callback function has returned a stop tuple \(\{\) stop, . .\}, Reason will have the value specified in that tuple. If it is due to a failure, Reason is the error reason.
If the gen_server is part of a supervision tree and is ordered by its supervisor to terminate, this function will be called with Reason=shutdown if the following conditions apply:
- the gen_server has been set to trap exit signals, and
- the shutdown strategy as defined in the supervisor's child specification is an integer timeout value, not brutal_kill.

O therwise, the gen_server will be immediately terminated.
N ote that for any other reason than normal or shutdown, the gen_server is assumed to terminate due to an error and an error report is issued using error_logger:format/2.
```

Module:code_change(OldVsn, State, Extra) -> {ok, NewState}

```

Types:
- OldV sn = V sn I \{down, V sn\}
- V sn = term()
- State \(=\) N ewState \(=\) term()
- Extra = term()

This function is called by a gen_server when it should update its internal state during a release upgrade/downgrade, i.e. when the instruction \{update, Module, Change, . . . \} where Change \(=\{\) advanced, Extra \(\}\) is given in the appup file. See OTP D esign Principles for more information.
In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, 01dVsn is \{down, Vsn\}. Vsn is defined by the vsn attribute(s) of the old version of the callback module Module. If no such attribute is defined, the version is the checksum of the BEAM file.
State is the internal state of the gen_server.
Extra is passed as-is from the \{advanced, Extra\} part of the update instruction.
The function should return the updated internal state.

\section*{SEE ALSO}
supervisor(3) [page 315], sys(3) [page 325]

This module provides an interface to standard Erlang IO servers. The output functions all return ok if they are successful, or exit if they are not. In the following description, a parameter within square brackets means that that parameter is optional. [IoDevice,] is such an example. If included, it must be the Pid of a process which handles the IO protocols. This is often the IoDevice returned by file:open/2 (see file). For a description of the I/O protocols refer to Armstrong, Virding and W illiams, 'C oncurrent Programming in Erlang', Chapter 13, unfortunately now very outdated, but the general principles still apply.

\section*{Exports}
```

put_chars([IoDevice,] Chars)
W rites the characters Chars to the standard output (IoDevice). Chars is a list of
characters. The list is not necessarily flat.
nl([IoDevice])
W rites new line to the standard output (IoDevice).
get_chars([IoDevice,] Prompt, Count)

```
 G ets Count characters from standard input (IoDevice), prompting it with Prompt. It returns:

ListOfChars Returns the input characters, if they are less than Count. eof End of file was encountered.
```

get_line([IoDevice,] Prompt)

```

G ets a line from the standard input (IoDevice), prompting it with Prompt. It returns:
ListOfChars The characters in the line terminated by a LF unless the line read was the last line of the file and was not terminated by LF.
eof End of file was encountered.
setopts([IoDevice,] OptList)
Set options for standard input/output (IoDevice). Possible options are:
binary Makes get_chars/2,3 and get_line/1,2 return binaries instead of lists of chars.
list \(M\) akes get_chars/2,3 and get_line/1, 2 return lists of chars, which is the default.

Returns ok if succesful or \(\{\) error , Reason \(\}\) if not.

\section*{N ote:}

The binary option does not work against I/O servers on remote nodes running an older version of Erlang/OTP than R9C.
```

write([IoDevice,] Term)

```

W rites the term Term to the standard output (IoDevice).
```

read([IoDevice,] Prompt)

```

Reads a term from the standard input (IoDevice), prompting it with Prompt. It returns:
\{ok, Term \(\}\) The parsing was successful.
\{error, ErrorInfo\} The parsing failed.
eof End of file was encountered.
```

fwrite(Format)
format(Format)

```

Equivalent to fwrite(Format, []).
fwrite([IoDevice,] Format, Arguments)
format([IoDevice,] Format, Arguments)
W rites the list of items in Arguments on the standard output (IoDevice) in accordance with Format. Format is a list of plain characters which are copied to the output device, and control sequences which cause the arguments to be printed. If Format is an atom, it is first converted to a list with the aid of atom_to_list/1. Arguments is the list of items to be printed.
```

> io:fwrite("Hello world!~n", []).
Hello world
ok

```

The general format of a control sequence is \({ }^{\sim} F . P\). PadC. The character \(C\) determines the type of control sequence to be used, F and P are optional numeric arguments. If \(\mathrm{F}, \mathrm{P}\), or Pad is *, the next argument in Arguments is used as the numeric value of \(F\) or \(P\).
\(F\) is the field width of the printed argument. A negative value means that the argument will be left justified within the field, otherwise it will be right justified. If no field width is specified, the required print width will be used. If the field width specified is too small, then the whole field will be filled with \(*\) characters.
\(P\) is the precision of the printed argument. A default value is used if no precision is specified. The interpretation of precision depends on the control sequences. Unless otherwise specified, the argument within is used to determine print width.
Pad is the padding character. This is the character used to pad the printed representation of the argument so that it conforms to the specified field width and precision. O nly one padding character can be specified and, whenever applicable, it is used for both the field width and precision. The default padding character is ' ' (space).
The following control sequences are available:
~ The character ~ is written.
c The argument is a number that will be interpreted as an ASCII code. The precision is the number of times the character is printed and it defaults to the field width, which in turn defaults to one. The following example illustrates:
```

> io:fwrite("|~10.5cl~}-10.5c|~5cl~n", [\$a, \$b, \$c]).
| aaaaa|aaaaa |ccocc|
ok

```
f The argument is a float which is written as [-] ddd. ddd, where the precision is the number of digits after the decimal point. The default precision is 6 and it cannot be less than 1.
e The argument is a float which is written as [-]d.ddde+-ddd, where the precision is the number of digits written. The default precision is 6 and it cannot be less than 2.
g The argument is a float which is written as \(f\), if it is \(>=0.1\) and \(<10000.0\).
O therwise, it is written in the e format. The precision is the number of significant digits. It defaults to 6 and should not be less than 2 . If the absolute value of the float does not allow it to be written in the \(f\) format with the desired number of significant digits, it is also written in in the e format.
s Prints the argument with the string syntax. The argument is a list of character codes (possibly not a flat list), or an atom. The characters are printed without quotes. In this format, the printed argument is truncated to the given precision and field width.
This format can be used for printing any object and truncating the output so it fits a specified field:
```

> io:fwrite("|~10w|~n", [{hey, hey, hey}]).
|**********|
ok
> io:fwrite("|~10s|~n", [io_lib:write({hey, hey, hey})]).
|{hey, hey, h|
ok

```
w W rites data with the standard syntax. This is used to output Erlang terms. A toms are printed within quotes if they contain embedded non-printable characters, and floats are printed in the default \(g\) format.
p W rites the data with standard syntax in the same way as ~w, but breaks terms whose printed representation is longer than one line into many lines and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings. For example:
```

> T = [{attributes,[[{id,age,1.50000},{mode,explicit},
{typename,"INTEGER"}],
[{id,cho},{mode, explicit},{typename,'Cho'}]]},
{typename,'Person'},{tag,{'PRIVATE',3}},
{mode,implicit}].
> io:fwrite("~ w~n", [T]).
[{attributes,[[{id,age,1.50000},{mode,explicit},{typename,
[73,78, 84,69,71,69, 82]}],[{id,cho},{mode,explicit},{typena
me,'Cho'}]]},{typename,'Person'},{tag,{'PRIVATE',3}},{mode
,implicit}]
ok
> io:fwrite("~~~n", [T]).
[{attributes,[[{id,age,1.50000},
{mode,explicit},
{typename,"INTEGER"}],
[{id,cho},{mode,explicit},{typename,'Cho'}]]},
{typename,'Person'},
{tag,{'PRIVATE',3}},
{mode,implicit}]
ok

```

The field width specifies the maximum line length. It defaults to 80. The precision specifies the initial indentation of the term. It defaults to the number of characters printed on this line in the same call to io:fwrite or io:format. For example, using T above:
```

> io:fwrite("Here T = ~ p~n", [T]).
Here T = [{attributes,[[{id,age,1.50000},
{mode,explicit},
{typename,"INTEGER"}],
[{id,cho},{mode,explicit},
{typename,'Cho'}]]},
{typename,'Person'},
{tag,{'PRIVATE',3}},
{mode,implicit}]
ok

```

W W rites data in the same way as \({ }^{\text {w }}\), but takes an extra argument which is the maximum depth to which terms are printed. A nything below this depth is replaced with For example, using \(T\) above:
```

> io:fwrite("~W~n", [T,9]).
[{attributes,[[{id,age,1.50000},{mode,explicit},{typename|
...}],[{id,cho},{model...},{...}]]},{typename,'Person'},{t
ag, {'PRIVATE',3}},{mode,implicit}]
ok

```

If the maximum depth has been reached, then it is impossible to read in the resultant output. Also, the I . . . form in a tuple denotes that there are more elements in the tuple but these are below the print depth.

P W rites data in the same way as \({ }^{\sim}\) p, but takes an extra argument which is the maximum depth to which terms are printed. A nything below this depth is replaced with For example:
```

> io:fwrite("~P~n", [T,9]).
[{attributes,[[{id,age,1.50000},{mode,explicit},
{typenamel...}],
[{id,cho},{model...},{...}]]},
{typename,'Person'},
{tag,{'PRIVATE',3}},
{mode,implicit}]
ok

```

B W rites an integer in base 2..36, the default base is 10. A leading dash is printed for negative integers. The precision field selects base. For example:
```

>io:format("~.16B~n", [31]).

```
1F
ok
>io:format("~.2B~n", [-19]).
-10011
ok
>io:format("~.36B~n", [5*36+35]).
5Z
ok
x Like B , but takes an extra argument that is a prefix to insert before the number, but after the leading dash, if any.
The prefix can be a possibly deep list of character codes or an atom.
```

>io:format("~ X~n", [31,"10\#"]).
10\#31
ok
>io:format("~.16X~n", [-31,"0x"]).
-0x1F
ok

```
\# Like B, but prints the number with an Erlang style '\#-separated base prefix.
```

>io:format("~.10\#~n", [31]).
10\#31
ok
>io:format("~.16\#~n", [-31]).
-16\#1F
ok

```
b Like B, but prints lowercase letters.
x Like \(x\), but prints lowercase letters.
+ Like \#, but prints lowercase letters.
n W rites a new line.
i Ignores the next term.
Returns:
ok The formatting succeeded.
If an error occurs, there is no output. For example:
```

> io:fwrite("~s ~w ~ i ~w ~c ~n",['abc def', 'abc def',
{foo, 1},{foo, 1}, 65]).
abc def 'abc def' {foo, 1} A
ok
> io:fwrite("~ s", [65]).
** exited: {badarg,[{io,format,[<0.20.0>,"~s","A"]},
{erl_eval,expr,4},
{shell,eval_loop,2}]} **

```

In this example, an attempt was made to output the single character ' 65 ' with the aid of the string formatting directive " s ".
The two functions fwrite and format are identical. The old name format has been retained for backwards compatibility, while the new name fwrite has been added as a logical complement to fread.
```

fread([IoDevice,] Prompt, Format)

```

Reads characters from the standard input (IoDevice), prompting it with Prompt. Interprets the characters in accordance with Format. Format is a list of control sequences which directs the interpretation of the input.
Format may contain:
- W hite space characters (SPACE, TAB and NEW LINE) which cause input to be read to the next non-white space character.
- O rdinary characters which must match the next input character.
- C ontrol sequences, which have the general format \({ }^{\sim} * \mathrm{FC}\). The character \(*\) is an optional return suppression character. It provides a method to specify a field which is to be omitted. \(F\) is the field width of the input field and \(C\) determines the type of control sequence.
U nless otherwise specified, leading white-space is ignored for all control sequences. A \(n\) input field cannot be more than one line wide. The following control sequences are available:
~ A single ~ is expected in the input.
d A decimal integer is expected.
u A \(n\) unsigned integer in base \(2 . .36\) is expected. The field width parameter is used to specify base. Leading white-space characters are not skipped.
- An optional sign character is expected. A sign character '-' gives the return value -1 . Sign character ' + ' or none gives 1 . The field width parameter is ignored. Leading white-space characters are not skipped.
\# An integer in base \(2 . .36\) with Erlang-style base prefix (for example "16\#ffff") is expected.
f A floating point number is expected. It must follow the Erlang floating point number syntax.
s A string of non-white-space characters is read. If a field width has been specified, this number of characters are read and all trailing white-space characters are stripped. An Erlang string (list of characters) is returned.
a Similar to s, but the resulting string is converted into an atom.
c The number of characters equal to the field width are read (default is 1) and returned as an Erlang string. However, leading and trailing white-space characters are not omitted as they are with s. All characters are returned.
1 Returns the number of characters which have been scanned up to that point, including white-space characters.
It returns:
\{ok, InputList \} The read was successful and InputList is the list of successfully matched and read items.
\{error, What \} The read operation failed and the parameter What gives a hint about the error.
eof End of file was encountered.

\section*{Examples:}
```

> io:fread('enter>', "~f~f~f").
enter>1.9 35.5e3 15.0
{ok, [1.90000, 3.55000e+4, 15.0000]}
> io:fread('enter>', "~10f~d").
enter> 5.67899
{ok, [5.67800, 99]}
> io:fread('enter>', ":~10s:~10c:").
enter>: alan : joe :
{ok, ["alan", " joe "]}

```
scan_erl_exprs(Prompt)
scan_erl_exprs([IoDevice,] Prompt, StartLine)

Reads data from the standard input (IoDevice), prompting it with Prompt. Reading starts at line number StartLine (1). The data is tokenized as if it were a sequence of Erlang expressions until a final '.' is reached. This token is also returned. It returns:
\{ok, Tokens, EndLine\} The tokenization succeeded.
\{error, ErrorInfo, EndLine\} An error occurred.
\{eof, EndLine\} End of file was encountered.

\section*{Example:}
```

> io:scan_erl_exprs('enter>').
enter>abc(), "hey".
{ok,[{atom, 1, abc},{'(', 1}, {')', 1}, {', ', 1},
{string, 1, "hey"}, {dot, 1}], 2}
> io:scan_erl_exprs('enter>').
enter>1.0er.
{error, {1, erl_scan, float}, 2}

```
scan_erl_form(Prompt)
scan_erl_form(IoDevice, Prompt[, StartLine])

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts reading at line number StartLine (1). The data is tokenized as if it were an Erlang form - one of the valid Erlang expressions in an Erlang source file - until a final'.' is reached. This last token is also returned. The return values are the same as for scan_erl_exprs.
```

parse_erl_exprs(Prompt)
parse_erl_exprs(IoDevice, Prompt[, StartLine])

```

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts reading at line number StartLine (1). The data is tokenized and parsed as if it were a sequence of Erlang expressions until a final '.' is reached. It returns:
\{ok, ExpressionList, EndLine\} The parsing was successful.
\{error, ErrorInfo, EndLine\} An error occurred.
\{eof, EndLine\} End of file was encountered.
Example:
```

> io:parse_erl_exprs('enter>').
enter>abc(), "hey".
{ok, [{call, 1, [], abc, []}, {string, 1, "hey"}], 2}
> io:parse_erl_exprs ('enter>').
enter>abc("hey".
{error, {1, erl_parse, {before, {terminator,') '}, {dot, 1}}}, 2}

```
parse_erl_form(Prompt)
parse_erl_form(IoDevice, Prompt[, StartLine])
Reads data from the standard input (IoDevice), prompting it with Prompt Starts reading at line number StartLine (1). The data is tokenized and parsed as if it were an Erlang form - one of the valid Erlang expressions in an Erlang source file - until a final '. ' is reached. It returns:
\{ok, Form, EndLine \(\}\) The parsing was successful.
\{error, ErrorInfo, EndLine\} An error occurred.
\{eof, EndLine\} End of file was encountered.

\section*{Standard Input/Output}

All Erlang processes have a default standard IO device. This device is used when no IoDevice argument is specified in the IO calls. H owever, it is sometimes desirable to use an explicit IoDevice argument which refers to the default IO device. This is the case with functions that can access either a file or the default IO device. The atom standard_io has this special meaning. The following example illustrates this:
```

> io:read('enter>').
enter>foo.
{term, foo}
> io:read(standard_io, 'enter>').
enter>bar.
{term, bar}

```

There is always a process registered under the name of user. This can be used for sending output to the user.

\section*{Error Information}

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned from all IO modules. It has the following format:
\{ErrorLine, Module, ErrorDescriptor\}
A string which describes the error is obtained with the following call:
apply(Module, format_error, ErrorDescriptor)

This module contains functions for converting to and from strings (lists of characters). They are used for implementing the functions in the io module. There is no guarantee that the character lists returned from some of the functions are flat, they can be deep lists. lists: flatten/1 is used for generating flat lists.

\section*{Exports}
nl()
Returns a character list which represents a new line character.
```

write(Term)
write(Term, Depth)

```

Returns a character list which represents Term. The Depth (-1) argument controls the depth of the structures written. W hen the specified depth is reached, everything below this level is replaced by "...". For example:
> lists:flatten(io_lib:write (\{1, [2], [3], [4,5], 6, 7, 8, 9\})).
"\{1, [2], [3], [4, 5] , 6, 7, 8, 9\}"
> lists:flatten(io_lib: \(\operatorname{write}(\{1,[2],[3],[4,5], 6,7,8,9\}, 5))\).
"\{1, [2], [3], [4|...],6|...\}"
print (Term)
print(Term, Column, LineLength, Depth)
Also returns a list of characters which represents Term, but breaks representations which are longer than one line into many lines and indents each line sensibly. It also tries to detect and output lists of printable characters as strings. Column is the starting column (1), LineLength the maximum line length (80), and Depth the maximum print depth.
fwrite(Format, Data)
format (Format, Data)
Returns a character list which represents Data formatted in accordance with Format. Refer to io(3) [page 189] for a detailed description of the available formatting options. A fault is generated if there is an error in the format string or argument list.
```

fread(Format, String)

```

Tries to read String in accordance with the control sequences in Format. Refer to io(3) [page 189] for a detailed description of the available formatting options. It is assumed that String contains whole lines. It returns:
\{ok, InputList, LeftOverChars\} The string was read. InputList is the list of successfully matched and read items, and LeftOverChars are the input characters not used.
\{more, RestFormat, Nchars, InputStack\} The string was read, but more input is needed in order to complete the original format string. RestFormat is the remaining format string, NChars the number of characters scanned, and InputStack is the reversed list of inputs matched up to that point.
\{error, What \(\}\) An error occurred which can be formatted with the call format_error/1.

\section*{Example:}
```

> io_lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok, [15.6000, 1.73000e-5, 24.5000], []}

```
fread (Continuation, CharList, Format)
This is the re-entrant formatted reader. It returns:
\{done, Result, LeftOverChars\} The input is complete. The result is one of the following:
\{ok, InputList \} The string was read. InputList is the list of successfully matched and read items, and LeftOverChars are the remaining characters.
eof End of file has been encountered. LeftOverChars are the input characters not used.
\{error, What An error occurred, which can be formatted with the call format_error/1.
\{more, Continuation\} M ore data is required to build a term. Continuation must be passed to <c>fread/3, when more data becomes available.

\section*{write_atom(Atom)}

Returns the list of characters needed to print the atom Atom.
write_string (String)
Returns the list of characters needed to print String as a string.
write_char(Integer)
Returns the list of characters needed to print a character constant.
indentation(String, StartIndent)
Returns the indentation if String has been printed, starting at Indentation.
```

char_list(CharList) -> bool()

```

Returns true if CharList is a list of characters, otherwise it returns false.
deep_char_list (CharList)
Returns true if CharList is a deep list of characters, otherwise it returns false.
```

printable_list(CharList)

```

Returns true if CharList is a list of printable characters, otherwise it returns false.

\section*{Notes}

The module io_lib also uses the extra modules io_lib_format, io_lib_fread, and io_lib_pretty. All external interfaces exist in io_lib.
\(U\) sers are strongly advised not to access the other modules directly.

\section*{N ote:}

A ny undocumented functions in io_lib should not be used.

The continuation of the first call to the re-entrant input functions must be []. Refer to A rmstrong, Virding, Williams, 'C oncurrent Programming in Erlang', Chapter 13 for a complete description of how the re-entrant input scheme works

\section*{lib}

Erlang M odule

The module lib provides the following useful library functions.

\section*{Exports}
```

flush_receive() -> void()

```

Flushes the message buffer of the current process.
error_message(Format, Args)
Prints error message Args in accordance with Format in the normal way.
```

progname() -> atom()

```

Returns the name of the script that starts the current Erlang session.
```

nonl(List1)

```

Removes the last newline character, if any, in List.
```

send(To, Msg)

```

This function to makes it possible to send a message through apply.
sendw(To, Msg)
A \(s\) send/2, but waits for an answer. It is implemented as follows:
```

sendw(To, Msg) ->
To ! {self(),Msg},
receive
Reply -> Reply
end.

```

The message returned is not necessarily a reply to the message sent.

\section*{Warning}

This module is retained for compatibility. It may disappear without warning in a future release.

\section*{lists}

Erlang M odule

This module contains functions for list processing. The functions are organized in two groups: those in the first group perform a particular operation on one or more lists, whereas those in the second group use a user-defined function (given as the first argument) to perform an operation on one list.

\section*{Exports}
append(List0fLists) -> List1
Types:
- ListO fLists \(=[\) List \(]\)
- List \(=\) List1 \(=[\) term(\()]\)

Returns a list in which all the sub-lists of ListOfLists have been appended. For example:
```

> lists:append([[1, 2, 3], [a, b], [4, 5, 6]]).
$[1,2,3, a, b, 4,5,6]$

```

The result need not be a proper list. The last parameter may be of any datatype and will be the tail in the resulting list. A \(n\) example:
> lists:append ([[a,b], c]).
[a,b|c]
The atom \(c\) will be the tail of the list and the list is therefore not proper (a proper list ends with []).
As a parameter of [] is ignored this example is also valid (although probably useless):
lists: append([[],d]).
append(List1, List2) -> List3
Types:
- List1 \(=\) List2 \(=\) List3 \(=[\) term(\()\)]

Returns a new list List3 which is made from the elements of List1 followed by the elements of List2. For example:
> lists:append("abc", "def").
"abcdef".
lists: append \((A, B)\) is equivalent to \(A++B\).
The behaviour regarding inproper lists is identical to the behaviour of lists:append/1
```

concat(Things) -> string()
Types:
- Things = [Thing]
- Thing = atom() | integer() | float() | string()
C oncatenates the ASCII list representation of the elements of Things. The elements of
Things can be atoms, integers, floats or strings.
> lists:concat([doc, '/', file, '.', 3]).
"doc/file.3"
delete(Element, List1) -> List2
Types:
- List1 = list2 = [Element]
- Element = term()
Returns a copy of List1, but the first occurrence of Element, if present, is deleted.
duplicate(N, Element) -> List
Types:
- N = int()
- List = [Element]
- Element = term()
Returns a list which contains N copies of the term Element.

```

\section*{N ote:}

N must be an integer \(>=0\). For example:
```

> lists:duplicate(5, xx).
[xx, xx, xx, xx, xx]

```
flatlength(DeepList) -> int()

Equivalent to length(flatten(DeepList)), but more efficient.
```

flatten(DeepList) -> List

```

Types:
- D eepList \(=\) [term() | D eepList]

Returns a flattened version of DeepList.
```

flatten(DeepList, Tail) -> List

```

Types:
- D eepList \(=\) [term() | D eepList]
- Tail = [term(\()\)]

Returns a flattened version of DeepList with the tail Tail appended.
```

keydelete(Key, N, TupleList1) -> TupleList2

```

Types:
- TupleList1 = TupleList2 = [tuple()]
- \(N=\operatorname{int}()\)
- Key = term()

Returns a copy of TupleList1 where the first occurrence of a tuple whose nth element is Key is deleted, if present.
keymember(Key, N, TupleList) -> bool()
Types:
- TupleList = [tuple()]
- \(\mathrm{N}=\operatorname{int}()\)
- Key = term()

Searches the list of tuples TupleList for a tuple whose nth element is Key.
keymerge(\(\mathrm{N}, \mathrm{List1}, \mathrm{List2)}\)
Types:
- \(\mathrm{N}=\operatorname{int}()\)
- List1 = List2 = [tuple()]

Returns the sorted list formed by merging List1 and List2. The merge is performed on the nth element of each tuple. Both List1 and List2 must be key-sorted prior to evaluating this function; otherwise the result is undefined (and probably unexpected). When elements in the input lists compare equal, elements from List1 are picked before elements from List2.
keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2
Types:
- Key = term()
- \(\mathrm{N}=\operatorname{int}()\)
- TupleList1 \(=\) TupleList2 \(=[\) tuple(\()\)]
- N ewTuple = tuple()

Returns a list of tuples. In this list, a tuple is replaced by the tuple NewTuple. This tuple is the first tuple in the list where the element number \(N\) is equal to Key.
```

keysearch(Key, N, TupleList) -> Result

```

Types:
- TupleList = [tuple()]
- \(\mathrm{N}=\operatorname{int}()\)
- Key = term()
- Result \(=\{\) value, tuple() \(\}\) | false

Searches the list of the tuples TupleList for Tuple whose nth element is Key. Returns \{value, Tuple\} if such a tuple is found, or false if no such tuple is found.
keysort(N, List1) -> List2

Types:
- \(\mathrm{N}=\operatorname{int}()\)
- List1 = List2 = [tuple()]

Returns a list containing the sorted elements of List1. TupleList1 must be a list of tuples, and the sort is performed on the nth element of the tuple. The sort is stable.
```

last(List) -> Element

```

Types:
- List \(=\) [Element]
- Element = term()

Returns the last element in List.
```

max(List) -> Max

```

Types:
- List = [Element]
- Element \(=\mathrm{Max}=\) term()

Returns the maximum element of List.
member(Element, List) -> bool()
Types:
- List = [Element]
- Element = term()

Returns true if Element is contained in the list List, otherwise false.
merge(ListOfLists) -> List1
Types:
- ListO fLists = [List]
- List \(=\) List1 \(=[\) term(\()]\)

Returns the sorted list formed by merging all the sub-lists of ListOfLists. All sub-lists must be sorted prior to evaluating this function.
merge(List1, List2) -> List3
Types:
- List1 \(=\) List2 \(=\) List3 \(=[\) term(\()\)]

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted prior to evaluating this function.
merge(Fun, List1, List2) -> List
Types:
- List \(=\) List1 \(=\) List2 \(=\) [Element]
- Fun = fun(Element, Element) \(->\) bool()
- Element = term()

Returns the sorted list formed by merging List1 and List2. Both List1 and List2 must be sorted according to the ordering function Fun prior to evaluating this function. Fun (A, B) should return true if A comes before B in the ordering, false otherwise.
```

merge3(List1, List2, List3) -> List4

```

Types:
- List1 \(=\) List2 \(=\) List3 \(=\) List4 \(=[\) term(\()]\)

Returns the sorted list formed by merging List1, List2 and List3. All of List1, List2 and List3 must be sorted prior to evaluating this function.
```

min(List) -> Min

```

Types:
- List = [Element]
- Element \(=\mathrm{Max}=\) term()

Returns the minimum element of List.
```

nth(N, List) -> Element

```

Types:
- \(N=\operatorname{int}()\)
- List \(=\) [Element]
- Element = term()

Returns the nth element of the List. For example:
> lists:nth(3, [a, b, c, d, e]).
c
nthtail(N, List1) -> List2
Types:
- \(\mathrm{N}=\operatorname{int}()\)
- List1 \(=\) List2 \(=[\) Alpha]

Returns the nth tail of List. For example:
```

> lists:nthtail(3, [a, b, c, d, e]).

```
[d, e]
prefix(List1, List2) -> bool()

Types:
- List1 = List2 = [term()]

Returns true if List1 is a prefix of List2, otherwise false.
```

reverse(List1) -> List2

```

Types:
- List1 \(=\) List2 \(=[\) term(\()\)]

Returns a list with the top level elements in List1 in reverse order.
```

reverse(List1, List2) -> List3
Types:
- List1 = List2 = List3 = [term()]
Returns a list where List1 has been reversed and appended to the beginning of List2.
Equivalent to reverse(List1) ++ List2. For example:
> lists:reverse([1, 2, 3, 4], [a, b, c]).
[4, 3, 2, 1, a, b, c]
seq(From, To) -> [int()]
seq(From, To, Incr) -> [int()]
Types:
- From = To = Incr = int()
Returns a sequence of integers which starts with From and contains the successive
results of adding Incr to the previous element, until To has been reached or passed (in
the latter case, To is not an element of the sequence). If To-From has a different sign
from Incr, or if Incr =0 and From is different from To, an error is signalled (this
implies that the result is never an empty list - the first element is always From).
seq(From, To) is equivalent to seq(From, To, 1).
Examples:
> lists:seq(1, 10).
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> lists:seq(1, 20, 3).
[1, 4, 7, 10, 13, 16, 19]
> lists:seq(1, 1, 0).
[1]
sort(List1) -> List2
Types:
- List1 = List2 = [term()]
Returns a list which contains the sorted elements of List1.
sort(Fun, List1) -> List2
Types:
- List1 = List2 = [Element]
- Fun = fun(Element, Element) -> bool()
- Element = term()
Returns a list which contains the sorted elements of List1, according to the ordering
function Fun. Fun(A , B) should return true if A comes before B in the ordering, false
otherwise.
sublist(List, N) -> List1
Types:

```
- List1 \(=\) List2 \(=[\) term(\()\)]
- \(\mathrm{N}=\operatorname{int}()\)

Returns the first \(N\) elements of List. It is not an error for \(N\) to exceed the length of the list when List is a proper list - in that case the whole list is returned.
```

sublist(List1, Start, Length) -> List2

```

Types:
- List1 \(=\) List2 \(=[\) term(\()\)]
- Start = End = int()

Returns the sub-list of List starting at Start of length Length. Terminates with a runtime failure if Start is not in List, but a sub-list of a length less than Length is accepted. Start is considered to be in List if Start \(>=1\) and Start \(<=\) length (List) +1 .
```

subtract(List1, List2) -> List3

```

Types:
- List1 \(=\) List2 \(=\) List3 \(=[\) term(\()]\)

Returns a new list List3 which is a copy of List1, subjected to the following procedure: for each element in List2, its first occurrence in List1 is removed. For example:
```

> lists:subtract("123212", "212").

```
"312".
lists: subtract (A, B) is equivalent to A -- B.
suffix(List1, List2) -> bool()
Returns true if List1 is a suffix of List2, otherwise false.
```

sum(List) -> number()

```

Types:
- List = [number()]

Returns the sum of the elements in List.
ukeymerge(N, List1, List2)
Types:
- \(\mathrm{N}=\operatorname{int}()\)
- List1 = List2 = [tuple()]

Returns the sorted list formed by merging List1 and List2 while removing consecutive duplicates. The merge is performed on the nth element of each tuple. Both List1 and List2 must be key-sorted prior to evaluating this function; otherwise the order of the elements in the result will be undefined. When elements in the input lists compare equal, elements from List1 are picked before elements from List2.
```

ukeysort(N, List1) -> List2

```

Types:
- \(N=\) int()
- List1 \(=\) List2 \(=[\) tuple(\()\)]

Returns a list containing the sorted elements of List1 with consecutive duplicates removed. TupleList1 must be a list of tuples, and the sort is performed on the nth element of the tuple. The sort is stable.
umerge(ListOfLists) -> List1
Types:
- ListO fLists = [List]
- List \(=\) Listl \(=[\) term() \(]\)

Returns the sorted list formed by merging all the sub-lists of ListOfLists while removing duplicates. All sub-lists must be sorted and contain no duplicates prior to evaluating this function.
umerge(List1, List2) -> List3
Types:
- List1 \(=\) List2 \(=\) List3 \(=[\) term(\()]\)

Returns the sorted list formed by merging List1 and List2 while removing duplicates. Both List1 and List2 must be sorted and contain no duplicates prior to evaluating this function.
umerge (Fun, List1, List2) -> List
Types:
- List \(=\) List1 \(=\) List2 \(=[\) Element \(]\)
- Fun = fun(Element, Element) \(->\) bool()
- Element = term()

Returns the sorted list formed by merging List1 and List2 while removing consecutive duplicates. Both List1 and List2 must be sorted according to the ordering function Fun prior to evaluating this function. Fun \((A, B)\) should return true if \(A\) comes before \(B\) in the ordering, false otherwise.
umerge3(List1, List2, List3) -> List4
Types:
- List1 \(=\) List2 \(=\) List3 \(=\) List4 \(=[\) term(\()\)]

Returns the sorted list formed by merging List1, List2 and List3 while removing duplicates. All of List1, List2 and List3 must be sorted and contain no duplicates prior to evaluating this function.
```

unzip(List1) -> {List2,List3}

```

Types:
- List1 \(=[\{X, Y\}]\)
- List2 \(=[X]\)
- List3 \(=[\mathrm{Y}]\)
- \(X=Y=\operatorname{term}()\)
"Unzip" a list of two-tuples into two lists, where the first list contains all terms in the first element of each tuple, and the second list the second element of each tuple.
```

unzip3(List1) -> {List2,List3,List4}

```

Types:
- List1 \(=[\{X, Y, Z\}]\)
- List2 \(=[X]\)
- List3 = [Y]
- List4 = [Z]
- \(X=Y=Z=\) term()
"Unzip" a list of three-tuples into three lists, where the first list contains all terms in the first element of each tuple, the second list the second element of each tuple, and the third list the third element of each tuple.
usort(List1) -> List2
Types:
- List1 = List2 = [term()]

Returns a list which contains the sorted elements of List1 without duplicates.
usort (Fun, List1) -> List2
Types:
- List1 \(=\) List2 \(=\) [Element]
- Fun = fun(Element, Element) \(->\) bool()
- Element = term()

Returns a list which contains the sorted elements of List1 with consecutive duplicates removed, according to the ordering function Fun. Fun (\(A, B\)) should return true if A comes before B in the ordering, false otherwise.
zip(List1, List2) -> List3
Types:
- Listl = [X]
- List2 \(=[\mathrm{Y}]\)
- List3 \(=[\{X, Y\}]\)
- \(X=Y=\) term()
"Zip" two lists of equal length into one list of two-tuples, where the first element of each tuple is taken from the first list and the second element is taken from corresponding element in the second list.
```

zip3(List1, List2, List3) -> List4

```

Types:
- List1 = [X]
- List2 = [Y]
- List3 \(=[\mathrm{Z}]\)
- List3 \(=[\{X, Y, Z\}]\)

\section*{- \(X=Y=\) term()}
"Zip" three lists of equal length into one list of three-tuples, where the first element of each tuple is taken from the first list, the second element is taken from corresponding element in the second list, and the third element is taken from the third list.
zipwith(Combine, List1, List2) -> List3
Types:
- Combine \(=\) fun \((X, Y)->\) term(\()\)
- List1 = [X]
- List2 = [Y]
- List3 \(=[\) Combine \((X, Y)]\)
- \(X=Y=\) term()

C ombine the elements of two lists of equal length into one list. For each pair \(\mathrm{X}, \mathrm{Y}\) of list elements from the two lists the element in the result list will be Combine (X, Y).
zipwith(fun(X, Y) \(->\{X, Y\}\) end, List1, List2) is equivalent to zip(List1, List2).

\section*{Examples:}
```

> lists:zipwith(fun(X, Y) -> X+Y end, [1,2,3], [4,5,6]).
[5,7,9]
> lists:zipwith(fun(X, Y) -> [X|Y] end, [a,b,c], [4,5,6]).
[[a|4],[b/5],[c|6]]
zipwith3(Combine, List1, List2, List3) -> List4

```

Types:
- Combine \(=\) fun \((X, Y)->\) term()
- List1 \(=[\mathrm{X}]\)
- List2 = [Y]
- List3 = [Z]
- List4 \(=[\) Combine \((X, Y, Z)]\)
- \(X=Y=Z=\) term()

C ombine the elements of three lists of equal length into one list. For each triple \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) of list elements from the two lists the element in the result list will be Combine (\(\mathrm{X}, \mathrm{Y}\), Z).
zipwith3(fun(X, Y, Z) \(->\{X, Y, Z\}\) end, List1, List2, List2) is equivalent to zip3(List1, List2, List3).
Examples:
> lists:zipwith3(fun(X, Y, Z) -> X+Y+Z end, \([1,2,3]\), \([4,5,6],[7,8,9]\)). [12,15,18] > lists:zipwith3(fun(X, Y, Z) -> [X,Y,Z] end, [a,b,c], [x,y,z], [1, 2, 3]). [\([a, x, 1],[b, y, 2],[c, z, 3]]\)
all(Pred, List) -> bool()
Types:
- Pred \(=\) fun(A) \(->\) bool()
- List \(=[\mathrm{A}]\)

Returns true if all elements \(X\) in List satisfy Pred (X).
```

any(Pred, List) -> bool()

```

Types:
- Pred \(=\) fun(Element) \(->\) bool()
- List = [Element]
- Element = term()

Returns true if any of the elements in List satisfies Pred.
dropwhile(Pred, List1) -> List2
Types:
- Pred \(=\) fun(A) \(->\) bool()
- List1 = List2 = [A]

Drops elements X from List1 while \(\operatorname{Pred}(\mathrm{X})\) is true and returns the remaining list.
filter (Pred, List1) -> List2
Types:
- Pred \(=\) fun(A) \(->\) bool()
- List1 = List2 = [A]

List2 is a list of all elements \(X\) in List1 for which Pred (\(X\)) is true.
```

flatmap(Function, List1) -> Element

```

Types:
- Function = fun \((A)->B\)
- List1 = [A]
- Element = [B]
flatmap behaves as if it had been defined as follows:
flatmap(Func, List) ->
append(map(Func, List))
foldl(Function, Acc0, List) -> Acc1
Types:
- Function \(=\) fun(\(A, A c c l n)->A c c O\) ut
- List = [A]
- \(\mathrm{AccO}=\mathrm{Accl}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term()

Acc0 is returned if the list is empty. For example:
```

> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15
> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

```
foldr(Function, Acc0, List) -> Acc1

Types:
- Function \(=\) fun(A, A ccln) \(->\) A ccO ut
- List = [A]
- \(\mathrm{AccO}=\mathrm{Acc1}=\mathrm{AccIn}=\mathrm{AccO}\) ut \(=\) term()

Calls Function on successive elements of List together with an extra argument Acc (short for accumulator). Function must return a new accumulator which is passed to the next call. Acc0 is returned if the list is empty. foldr differs from foldl in that the list is traversed "bottom up" instead of "top down". foldl is tail recursive and would usually be preferred to foldr.
```

foreach(Function, List) -> void()

```

Types:
- Function \(=\) fun(A) \(->\operatorname{void}()\)
- List = [A]

A pplies the function Function to each of the elements in List. This function is used for its side effects and the evaluation order is defined to be the same as the order of the elements in the list.
map(Func, List1) -> List2
Types:
- Func \(=\) fun \((A)->B\)
- Listl = [A]
- List2 \(=[B]\)
map takes a function from As to BS, and a list of As and produces a list of Bs by applying the function to every element in the list. This function is used to obtain the return values. The evaluation order is implementation dependent.
mapfoldl(Function, Acc0, List1) \(->\) \{List2, Acc \(\}\)
Types:
- Function \(=\) fun \((A, A c c l n)->\{B, A c c O\) ut \(\}\)
- \(\mathrm{Acc0}=\mathrm{Accl}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term()
- List1 = [A]
- List2 = [B]
mapfold combines the operations of map and foldl into one pass. For example, we could sum the elements in a list and double them at the same time:
```

> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
0, [1,2,3,4,5]).
{[2,4,6,8,10],15}

```
```

mapfoldr(Function, Acc0, List1) -> {List2, Acc}

```

Types:
- Function \(=\) fun \((A, A c c l n)->\{B, A c c O\) ut \(\}\)
- \(\mathrm{AccO}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term ()
- List1 = [A]
- List2 \(=[\mathrm{B}]\)
mapfold combines the operations of map and foldr into one pass.
```

partition(Pred, List) -> {Satisfying, NonSatisfying}

```

Types:
- Pred \(=\) fun(A) \(->\) bool()
- List = [A]
- List \(=\) Satisfying \(=[A]\) where \(\operatorname{Pred}(A)==\) true
- List \(=\) N onSatisfying \(=[A]\) where \(\operatorname{Pred}(A)==\) false
- A = term()

Partition List into two lists, where the first list contains all elements for which Pred (A) returns true, and the second list contains all elements for which Pred (A) returns false.

Examples:
```

> lists:partition(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1, 3, 5, 7], [2, 4, 6]}
> lists:partition(fun(A) -> is_atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b,c,d,e],[1, 2, 3, 4]}

```

See also splitwith/2 [page 214] for a different way to partition a list.
```

split(N, List) -> {List1, List2}

```

Types:
- Pred \(=\) fun(A) \(->\) bool()
- List \(=\) List1 \(=\) List2 \(=[\mathrm{A}]\)

Partitions List into List1 and List2. List1 contains the first \(N\) elements and List2 the rest of the elements.
N ote that List == List1 ++ List2.
splitwith(Pred, List) -> \{List1, List2\}
Types:
- Pred \(=\) fun(A) \(->\) bool()
- List \(=\) List1 \(=\) List2 \(=[\mathrm{A}]\)

Partitions List into List1 and List2 according to Pred.
splitwith behaves as if it had been defined as follows:
splitwidth(Pred, List) ->
\(\{\) takewhile(Pred, List), dropwhile(Pred, List) .
N ote also that List \(==\) List1 ++ List2.
Examples:
```

> lists:splitwith(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1],[2,3,4,5,6,7]}
> lists:splitwith(fun(A) -> is_atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b],[1, c,d,2,3,4,e]}

```

See also partition/2 [page 214] for a different way to partition a list.
```

takewhile(Pred, List1) -> List2

```

Types:
- Pred = fun(A) -> bool()
- List1 = List2 = [A]

Returns the longest prefix of List1 for which all elements \(X\) in List1 satisfy Pred (X).

\section*{Relics}

Some of the exported functions in lists.erl are not documented. In particular, this applies to a number of maps and folds which have an extra argument for environment passing. These functions are no longer needed because Erlang 4.4 and later releases have Funs.

\section*{N ote:}

A ny undocumented functions in lists should not be used.

\section*{log_mf_h}

Erlang M odule

The log_mf_h is a gen_event handler module which can be installed in any gen_event process. It logs onto disk all events which are sent to an event manager. Each event is written as a binary which makes the logging very fast. H owever, a tool such as the Report Browser (rb) must be used in order to read the files. The events are written to multiple files. W hen all files have been used, the first one is re-used and overwritten. The directory location, the number of files, and the size of each file are configurable. The directory will include one file called index, and report files 1, 2,

\section*{Exports}
```

init(Dir, MaxBytes, MaxFiles)

```
init(Dir, MaxBytes, MaxFiles, Pred) -> Args
Types:
- Dir = string()
- M axBytes = integer()
- M axFiles \(=0<\) integer ()\(<256\)
- Pred \(=\) fun(Event) \(->\) boolean()
- Event = term()
- Args = args()

Initiates the event handler. This function returns Args, which should be used in a call to gen_event:add_handler (EventMgr, log_mf_h, Args).
Dir specifies which directory to use for the log files. MaxBytes specifies the size of each individual file. MaxFiles specifies how many files are used. Pred is a predicate function used to filter the events. If no predicate function is specified, all events are logged.

\section*{See Also}
gen_event(3) [page 160], rb(3)

\section*{math}

Erlang M odule

This module provides an interface to a number of mathematical functions.

\section*{N ote:}

N ot all functions are implemented on all platforms. In particular, the erf/1 and erfc/1 functions are not implemented on W indows.

\section*{Exports}
```

pi() -> float()
A useful number.
sin(X)
cos(X)
tan(X)
asin(X)
acos(X)
atan(X)
atan2(Y, X)
sinh(X)
cosh(X)
tanh(X)
asinh(X)
acosh(X)
atanh(X)
exp(X)
log(X)
log10(X)
pow(X, Y)
sqrt(X)

```

Types:
- \(\mathrm{X}=\mathrm{Y}=\) number()

A collection of math functions which return floats. A rguments are numbers.
```

erf(X) -> float()

```

Types:
- X = number()

Returns the error function of X , where
\(\operatorname{erf}(X)=2 /\) sqrt (pi)*integral from 0 to \(X\) of \(\exp (-t * t) d t\).
erfc(X) -> float()
Types:
- \(X=\) number()
\(\operatorname{erfc}(X)\) returns \(1.0-\operatorname{erf}(X)\), computed by methods that avoid cancellation for large X.

\section*{Bugs}

As these are the C library, the bugs are the same.

\section*{ms_transform}

Erlang M odule

This module implements the parse_transform that makes calls to ets and dbg:fun2ms/1 translate into literal match specifications. It also implements the back end for the same functions when called from the Erlang shell.
The translations from fun's to match_specs is accessed through the two "pseudo functions" ets:fun2ms/1 and dbg:fun2ms/1.
A ctually this introduction is more or less an introduction to the whole concept of match specifications. Since everyone trying to use ets: select or dbg seems to end up reading this page, it seems in good place to explain a little more than just what this module does.
There are some caveats one should be aware of, please read through the whole manual page if it's the first time you're using the transformations.
\(M\) atch specifications are used more or less as filters. They resemble usual Erlang matching in a list comprehension or in a fun used in conjunction with lists: foldl etc. The syntax of pure match specifications is somewhat awkward though, as they are made up purely by Erlang terms and there is no syntax in the language to make the match specifications more readable.
A s the match specifications execution and structure is quite like that of a fun, it would for most programmers be more straight forward to simply write it using the familiar fun syntax and having that translated into a match specification automatically. Of course a real fun is more powerful than the match specifications allow, but bearing the match specifications in mind, and what they can do, it's still more convenient to write it all as a fun. This module contains the code that simply translates the fun syntax into match_spec terms.
Let's start with an ets example. U sing ets: select and a match specification, one can filter out rows of a table and construct a list of tuples containing relevant parts of the data in these rows. Of course one could use ets:foldl instead, but the select call is far more efficient. Without the translation, one has to struggle with writing match specifications terms to accommodate this, or one has to resort to the less powerful ets: match (_object) calls, or simply give up and use the more inefficient method of ets:foldl. Using the ets:fun2ms transformation, a ets: select call is at least as easy to write as any of the alternatives.
A s an example, consider a simple table of employees:
```

-record(emp, {empno, %Employee number as a string, the key
surname, %Surname of the employee
givenname, %Given name of employee
dept, %Department one of {dev,sales,prod,adm}
empyear}). %Year the employee was employed

```

We create the table using:
ets:new(emp_tab, [\{keypos,\#emp.empno\}, named_table,ordered_set]).

Let's also fill it with some randomly chosen data for the examples:
```

[{emp,"011103", "Black", "Alfred", sales, 2000},
{emp,"041231", "Doe", "John", prod, 2001},
{emp,"052341", "Smith", "John", dev, 1997},
{emp,"076324","Smith","Ella",sales,1995},
{emp,"122334","Weston","Anna",prod, 2002},
{emp,"535216", "Chalker", "Samuel", adm, 1998},
{emp,"789789", "Harrysson", "Joe", adm, 1996},
{emp,"963721", "Scott", "Juliana", dev, 2003},
{emp,"989891", "Brown", "Gabriel",prod, 1999}]

```

Now, the amount of data in the table is of course to small to justify complicated ets searches, but on real tables, using select to get exactly the data you want will increase efficiency remarkably.
Lets say for example that we'd want the employee numbers of everyone in the sales department. O ne might use ets:match in such a situation:
```

1> ets:match(emp_tab, {'_', '\$1', '_', '_', sales, '_'}).
[["011103"], ["076324"]]

```

Even though ets:match does not require a full match specification, but a simpler type, it's still somew hat unreadable, and one has little control over the returned result, it's always a list of lists. OK, one might use ets: foldl or ets: foldr instead:
```

ets:foldr(fun(\#emp{empno = E, dept = sales},Acc) -> [E | Acc];
(_,Acc) -> Acc
end,
[],
emp_tab).

```

Running that would result in ["011103", "076324"], which at least gets rid of the extra lists. The fun is also quite straightforward, so the only problem is that all the data from the table has to be transferred from the table to the calling process for filtering. That's inefficient compared to the ets:match call where the filtering can be done "inside" the emulator and only the result is transferred to the process. Remember that ets tables are all about efficiency, if it wasn't for efficiency all of ets could be implemented in Erlang, as a process receiving requests and sending answers back. O ne uses ets because one wants performance, and therefore one wouldn't want all of the table transferred to the process for filtering. OK, let's look at a pure ets: select call that does what the ets:foldr does:
```

ets:select(emp_tab,[{\#emp{empno = '\$1', dept = sales, _='_'},[],['\$1']}]).

```

Even though the record syntax is used, it's still somewhat hard to read and even harder to write. The first element of the tuple, \#emp \(\{\) empno \(=\) ' \(\$ 1\) ', dept \(=\) sales, \(=\), _' \(\}\) tells what to match, elements not matching this will not be returned at all, as in the ets:match example. The second element, the empty list is a list of guard expressions, which we need none, and the third element is the list of expressions constructing the return value (in ets this almost always is a list containing one single term). In our case ' \(\$ 1\) ' is bound to the employee number in the head (first element of tuple), and hence it is the employee number that is returned. The result is ["011103", "076324"], just as in the ets: foldr example, but the result is retrieved much more efficiently in terms of execution speed and memory consumption.
We have one efficient but hardly readable way of doing it and one inefficient but fairly readable (at least to the skilled Erlang programmer) way of doing it. With the use of
ets: fun2ms, one could have something that is as efficient as possible but still is written as a filter using the fun syntax:
```

-include_lib("stdlib/include/ms_transform.hrl").
% ...
ets:select(emp_tab, ets:fun2ms(
fun(\#emp{empno = E, dept = sales}) ->
E
end)).

```

This may not be the shortest of the expressions, but it requires no special knowledge of match specifications to read. The fun's head should simply match what you want to filter out and the body returns what you want returned. A s long as the fun can be kept within the limits of the match specifications, there is no need to transfer all data of the table to the process for filtering as in the ets:foldr example. In fact it's even easier to read then the ets:foldr example, as the select call in itself discards anything that doesn't match, while the fun of the foldr call needs to handle both the elements matching and the ones not matching.
It's worth noting in the above ets: fun 2 ms example that one needs to include ms_transform.hrl in the source code, as this is what triggers the parse transformation of the ets:fun 2 ms call to a valid match specification. This also implies that the transformation is done at compile time (except when called from the shell of course) and therefore will take no resources at all in runtime. So although you use the more intuitive fun syntax, it gets as efficient in runtime as writing match specifications by hand.
Let's look at some more ets examples. Let's say one wants to get all the employee numbers of any employee hired before the year 2000. Using ets:match isn't an alternative here as relational operators cannot be expressed there. O nce again, an ets:foldr could do it (slowly, but correct):
```

ets:foldr(fun(\#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc
end,
[],
emp_tab).

```

The result will be ["052341", "076324", "535216", "789789", "989891"], as expected. N ow the equivalent expression using a handwritten match specification would look something like this:
```

ets:select(emp_tab,[{\#emp{empno = '\$1', empyear = '\$2', _='_'},
[{'<', '\$2', 2000}],
['\$1']}]).

```

This gives the same result, the [\{'<', '\$2', 2000\}] is in the guard part and therefore discards anything that does not have a empyear (bound to '\$2' in the head) less than 2000, just as the guard in the foldl example. Lets jump on to writing it using ets:fun2ms
```

-include_lib("stdlib/include/ms_transform.hrl").
% ...
ets:select(emp_tab, ets:fun2ms(
fun(\#emp{empno = E, empyear = Y}) when Y < 2000 ->
E
end)).

```

O bviously readability is gained by using the parse transformation.
I'll show some more examples without the tiresome comparing-to-alternatives stuff. Let's say we'd want the whole object matching instead of only one element. We could of course assign a variable to every part of the record and build it up once again in the body of the fun, but it's easier to do like this:
```

ets:select(emp_tab, ets:fun2ms(
fun(Obj = \#emp{empno = E, empyear = Y})
when Y < 2000 ->
Obj
end)).

```

Just as in ordinary Erlang matching, you can bind a variable to the whole matched object using a "match in then match", i.e. a =. Unfortunately this is not general in fun's translated to match specifications, only on the "top level", i.e. matching the whole object arriving to be matched into a separate variable, is it allowed. For the one's used to writing match specifications by hand, I'll have to mention that the variable A will simply be translated into '\$_'. It's not general, but it has very common usage, why it is handled as a special, but useful, case. If this bothers you, the pseudo function object al so returns the whole matched object, see the part about caveats and limitations below.
Let's do something in the fun's body too: Let's say that someone realizes that there are a few people having an employee number beginning with a zero (0), which shouldn't be allowed. All those should have their numbers changed to begin with a one (1) instead and one wants the list [\{<Old empno \(>,<\) New empno \(>\}\)] created:
```

ets:select(emp_tab, ets:fun2ms(
fun(\#emp{empno = [\$0 | Rest] }) ->
{[\$0|Rest],[\$1|Rest]}
end)).

```

As a matter of fact, this query hit's the feature of partially bound keys in the table type ordered_set, so that not the whole table need be searched, only the part of the table containing keys beginning with 0 is in fact looked into.
The fun of course can have several clauses, so that if one could do the following: For each employee, if he or she is hired prior to 1997, return the tuple \{inventory, <employee number>\}, for each hired 1997 or later, but before 2001, return \{rookie, <employee number>\}, for all others return \{newbie, <employee number>\}. All except for the ones named Smith as they would be affronted by anything other than the tag guru and that is also what's returned for their numbers; \{guru, <employee number \(>\}\) :
```

ets:select(emp_tab, ets:fun2ms(
fun(\#emp{empno = E, surname = "Smith" }) ->
{guru,E};
(\#emp{empno = E, empyear = Y}) when Y < 1997 ->
{inventory, E};

```
```

    (#emp{empno = E, empyear = Y}) when Y > 2001 ->
    {newbie, E};
    (#emp{empno = E, empyear = Y}) -> % 1997 -- 2001
    {rookie, E}
    end)).

```

The result will be:
```

[{rookie,"011103"},
{rookie,"041231"},
{guru,"052341"},
{guru,"076324"},
{newbie,"122334"},
{rookie,"535216"},
{inventory,"789789"},
{newbie,"963721"},
{rookie,"989891"}]

```
and so the Smith's will be happy...
So, what more can you do? Well, the simple answer would be; look in the documentation of match specifications in ERTS users guide. H owever let's briefly go through the most useful "built in functions" that you can use when the fun is to be translated into a match specification by ets:fun2ms (it's worth mentioning, although it might be obvious to some, that calling other functions than the one's allowed in match specifications cannot be done. No "usual" Erlang code can be executed by the fun being translated by fun2ms, the fun is after all limited exactly to the power of the match specifications, which is unfortunate, but the price one has to pay for the execution speed of an ets: select compared to ets:foldl/foldr).

The head of the fun is obviously a head matching (or mismatching) one parameter, one object of the table we select from. The object is always a single variable (can be _) or a tuple, as that's what's in ets, dets and mnesia tables (the match specification returned by ets: fun2ms can of course be used with dets: select and mnesia: select as well as with ets: select). The use of = in the head is allowed (and encouraged) on the top level.
The guard section can contain any guard expression of Erlang. Even the "old" type test are allowed on the toplevel of the guard (integer (X) instead of is_integer (X)). As the new type tests (the is_ tests) are in practice just guard bif's they can also be called from within the body of the fun, but so they can in ordinary Erlang code. Also arithmetics is allowed, as well as ordinary guard bif's. Here's a list of bif's and expressions:
- The type tests: is_atom, is_constant, is_float, is_integer, is_list, is_number, is_pid, is_port, is_reference, is_tuple, is_binary, is_function, is_record
- The boolean operators: not, and, or, andalso, orelse
- The relational operators: \(>,>=,<,=<,=:=,==,=/=, /=\)
- A rithmetics: +, -, *, div, rem
- Bitwise operators: band, bor, bxor, bnot, bsl, bsr
- The guard bif's: abs, element, hd, length, node, round, size, tl, trunc, self
- The obsolete type test (only in guards): atom, constant, float, integer, list, number, pid, port, reference, tuple, binary, function, record

Contrary to the fact with "handwritten" match specifications, the is_record guard works as in ordinary Erlang code.
Semicolons (;) in guards are allowed, the result will be (as expected) one
"match_spec-clause" for each semicolon-separated part of the guard. The semantics beeing identical to the Erlang semantics.
The body of the fun is used to construct the resulting value. W hen selecting from tables one usually just construct a suiting term here, using ordinary Erlang term construction, like tuple parentheses, list brackets and variables matched out in the head, possibly in conjunction with the occasional constant. W hatever expressions are allowed in guards are also allowed here, but there are no special functions except object and bindings (see further down), which returns the whole matched object and all known variable bindings respectively.
The dbg variants of match specifications have an imperative approach to the match specification body, the ets dialect hasn't. The fun body for ets: fun2ms returns the result without side effects, and as matching (\(=\)) in the body of the match specifications is not allowed (for performance reasons) the only thing left, more or less, is term construction...
Let's move on to the dbg dialect, the slightly different match specifications translated by dbg:fun2ms.
The same reasons for using the parse transformation applies to dbg, maybe even more so as filtering using Erlang code is simply not a good idea when tracing (except afterwards, if you trace to file). The concept is similar to that of ets:fun2ms except that you usually use it directly from the shell (which can also be done with ets:fun2ms).
Let's manufacture a toy module to trace on
```

-module(toy).
-export([start/1, store/2, retrieve/1]).
start(Args) ->
toy_table = ets:new(toy_table,Args).
store(Key, Value) ->
ets:insert(toy_table,{Key,Value}).
retrieve(Key) ->
[{Key, Value}] = ets:lookup(toy_table,Key),
Value.

```

During model testing, the first test bails out with a \{badmatch, 16\} in \{toy, start, 1\}, why?
We suspect the ets call, as we match hard on the return value, but want only the particular new call with toy_table as first parameter. So we start a default tracer on the node:

1> dbg:tracer().
\{ok, <0.88.0>\}
A nd so we turn on call tracing for all processes, we are going to make a pretty restrictive trace pattern, so there's no need to call trace only a few processes (it usually isn't):
```

2> dbg:p(all,call).
{ok,[{matched,nonode@nohost, 25}]}

```

It's time to specify the filter. We want to view calls that resemble ets:new(toy_table, <something>):

3> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> true end)).
\{ok, [\{matched, nonode@nohost,1\},\{saved,1\}]\}
A s can be seen, the fun's used with dbg:fun2ms takes a single list as parameter instead of a single tuple. The list matches a list of the parameters to the traced function. A single variable may also be used of course. The body of the fun expresses in a more imperative way actions to be taken if the fun head (and the guards) matches. I return true here, but it's only because the body of a fun cannot be empty, the return value will be discarded.

W hen we run the test of our module now, we get the following trace output:
(<0.86.0>) call ets:new (toy_table, [ordered_set])
Let's play we haven't spotted the problem yet, and want to see what ets:new returns. We do a slightly different trace pattern:
```

4> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> return_trace() end)).

```

Resulting in the following trace output when we run the test:
```

(<0.86.0>) call ets:new(toy_table,[ordered_set])
(<0.86.0>) returned from ets:new/2 -> 24

```

The call to return_trace, makes a trace message appear when the function returns. It applies only to the specific function call triggering the match specification (and matching the head/guards of the match specification). This is the by far the most common call in the body of a dbg match specification.
A s the test now fails with \{badmatch, 24\(\}\), it's obvious that the badmatch is because the atom toy_table does not match the number returned for an unnamed table. So we spotted the problem, the table should be named and the arguments supplied by our test program does not include named_table. We rewrite the start function to:
```

start(Args) ->
toy_table = ets:new(toy_table,[named_table |Args]).

```

A nd with the same tracing turned on, we get the following trace output:
```

(<0.86.0>) call ets:new(toy_table, [named_table,ordered_set])
(<0.86.0>) returned from ets:new/2 -> toy_table

```

Very well. Let's say the module now passes all testing and goes into the system. After a while someone realizes that the table toy_table grows while the system is running and that for some reason there are a lot of elements with atom's as keys. You had expected only integer keys and so does the rest of the system. Well, obviously not all of the system. You turn on call tracing and try to see calls to your module with an atom as the key:
```

1> dbg:tracer().
{ok,<0.88.0>}
2> dbg:p(all,call).
{ok, [{matched,nonode@nohost, 25}]}
3> dbg:tpl(toy,store,dbg:fun2ms(fun([A,_]) when is_atom(A) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}

```

We use dbg:tpl here to make sure to catch local calls (let's say the module has grown since the smaller version and we're not sure this inserting of atoms is not done locally...). When in doubt always use local call tracing.
Let's say nothing happens when we trace in this way. O ur function is never called with these parameters. We make the conclusion that someone else (some other module) is doing it and we realize that we must trace on ets:insert and want to see the calling function. The calling function may be retrieved using the match specification function caller and to get it into the trace message, one has to use the match spec function message. The filter call looks like this (looking for calls to ets:insert):
```

4> dbg:tpl(ets,insert,dbg:fun2ms(fun([toy_table,{A,_}]) when is_atom(A) ->
message(caller())
end)).
{ok,[{matched,nonode@nohost,1},{saved,2}]}

```

The caller will now appear in the "additional message" part of the trace output, and so after a while, the following output comes:
```

(<0.86.0>) call ets:insert(toy_table,{garbage,can}) ({evil_mod,evil_fun,2})

```

You have found out that the function evil_fun of the module evil_mod, with arity 2 , is the one causing all this trouble.
This was just a toy example, but it illustrated the most used calls in match specifications for dbg The other, more esotherical calls are listed and explained in the \(U\) sers guide of the ERTS application, they really are beyond the scope of this document.
To end this chatty introduction with something more precise, here follows some parts about caveats and restrictions concerning the fun's used in conjunction with ets:fun2ms and dbg:fun2ms:

\section*{W arning:}

To use the pseudo functions triggering the translation, one has to include the header file ms_transform.hrl in the source code. Failure to do so will possibly result in runtime errors rather than compile time, as the expression may be valid as a plain Erlang program without translation.

\section*{Warning:}

The fun has to be literally constructed inside the parameter list to the pseudo functions. The fun cannot be bound to a variable first and then passed to ets:fun2ms or dbg:fun2ms, i.e this will work: ets:fun2ms(fun(A) -> A end) but not this: \(F=\) fun(A) \(->A\) end, ets:fun2ms(F). The later will result in a compile time error if the header is included, otherwise a runtime error. Even if the later construction would ever appear to work, it really doesn't, so don't ever use it.

Several restrictions apply to the fun that is being translated into a match_spec. To put it simple you cannot use anything in the fun that you cannot use in a match_spec. This means that, among others, the following restrictions apply to the fun itself:
- Functions written in Erlang cannot be called, neither local functions, global functions or real fun's
- Everything that is written as a function call will be translated into a match_spec call to a builtin function, so that the call is_list (X) will be translated to \{'is_list', ' \(\$ 1\) '\} ('\$1' is just an example, the numbering may vary). If one tries to call a function that is not a match_spec builtin, it will cause an error.
- Variables occurring in the head of the fun will be replaced by match_spec variables in the order of occurrence, so that the fragment fun (\{A, B, C\}) will be replaced by \{'\$1', '\$2', '\$3'\} etc. Every occurrence of such a variable later in the match_spec will be replaced by a match_spec variable in the same way, so that the fun fun(\(\{A, B\}\)) when is_atom(A) \(->B\) end will be translated into \(\left[\left\{\left\{{ }^{\prime} \$ 1^{\prime}, \prime \$ 2 \prime\right\},\left[\left\{\right.\right.\right.\right.\) is_atom, \(\left.\left.\left.\left.{ }^{\prime} \$ 1^{\prime}\right\}\right],\left[{ }^{\prime} \$ 2^{\prime}\right]\right\}\right]\).
- Variables that are not appearing in the head are imported from the environment and made into match_spec const expressions. Example from the shell:
```

1> X = 25.
25
2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{'\$1','\$2'}, [{'>','\$1',{const,25}}],['\$2']}]

```
- \(M\) atching with = cannot be used in the body. It can only be used on the top level in the head of the fun. Example from the shell again:
```

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{'\$1',['\$2'|'\$3']},[{'>','\$1','$2'}],['$_']}]
2> ets:fun2ms(fun({A,[B|C]=D}) when A > B -> D end).
Error: fun with head matching ('=' in head) cannot be translated into
match_spec
{error,transform_error}
3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).
Error: fun with body matching ('=' in body) is illegal as match_spec
{error,transform_error}

```

All variables are bound in the head of a match_spec, so the translator can not allow multiple bindings. The special case when matching is done on the top level makes the variable bind to '\$_' in the resulting match_spec, it is to allow a more natural access to the whole matched object. The pseudo function object () could be used instead, see below. The following expressions are translated equally:
```

ets:fun2ms(fun({a,_} = A) -> A end).
ets:fun2ms(fun({a,_}) -> object() end).

```
- The special match_spec variables '\$_' and '\$*' can be accessed through the pseudo functions object() (for '\$_') and bindings() (for '\$*'). as an example, one could translate the following ets:match_object/2 call to a ets:select call:
```

ets:match_object(Table, {'\$1',test,'\$2'}).

```
...is the same as...
```

ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).

```
(This was just an example, in this simple case the former expression is probably preferable in terms of readability). The ets: select/2 call will conceptually look like this in the resulting code:
ets:select(Table, [\{\{'\$1',test,'\$2'\},[],['\$_']\}]).
\(M\) atching on the top level of the fun head might feel like a more natural way to access '\$_', see above.
- Term constructions/literals are translated as much as is needed to get them into valid match_specs, so that tuples are made into match_spec tuple constructions (a one element tuple containing the tuple) and constant expressions are used when importing variables from the environment. Records are also translated into plain tuple constructions, calls to element etc. The guard test is_record/2 is translated into match_spec code using the three parameter version that's built into match_specs, so that is_record (\(\mathrm{A}, \mathrm{t}\)) is translated into \{is_record, ' \(\$ 1\) ', \(\mathrm{t}, 5\) \} given that the record size of record type \(t\) is 5 .
- Language constructions like case, if, catch etc that are not present in match_specs are not allowed.
- If the header file ms_transform.hrl is not included, the fun won't be translated, which may result in a runtime error (depending on if the fun is valid in a pure Erlang context). Be absolutely sure that the header is included when using ets and dbg:fun2ms/1 in compiled code.
- If the pseudo function triggering the translation is ets:fun2ms/1, the fun's head must contain a single variable or a single tuple. If the pseudo function is dbg : fun \(2 \mathrm{~ms} / 1\) the fun's head must contain a single variable or a single list.

The translation from fun's to match_specs is done at compile time, so runtime performance is not affected by using these pseudo functions. The compile time might be somewhat longer though.

For more information about match_specs, please read about them in ERTS users guide.

\section*{Exports}
parse_transform(Forms,_Options) -> Forms

\section*{Types:}
- Forms = Erlang abstract code format, see the erl_parse module description
- _O ptions = O ption list, required but not used

Implements the actual transformation at compile time. This function is called by the compiler to do the source code transformation if and when the ms_transform.hrl header file is included in your source code. See the ets and dbg:fun2ms/1 function manual pages for documentation on how to use this parse_transform, see the match_spec chapter in ERTS users guide for a description of match specifications.
transform_from_shell(Dialect, Clauses, BoundEnvironment) -> term()
Types:
- Dialect = ets \| dbg
- Clauses = Erlang abstract form for a single fun
- BoundEnvironment \(=[\{\) atom () , term(\()\}\), ...], list of variable bindings in the shell environment
Implements the actual transformation when the fun2ms functions are called from the shell. In this case the abstract form is for one single fun (parsed by the Erlang shell), and all imported variables should be in the key-value list passed as BoundEnvironment. The result is a term, normalized, i.e. not in abstract format.
```

format_error(Errcode) -> ErrMessage

```

Types:
- Errcode = term()
- ErrM essage = string()

Takes an error code returned by one of the other functions in the module and creates a textual description of the error. Fairly uninteresting function actually.

\section*{orddict}

Erlang M odule

Orddict implements a Key - Value dictionary. An orddict is a representation of a dictionary, where a list of pairs is used to store the keys and values. The list is ordered after the keys.

This module provides exactly the same interface as the module dict but with a defined representation.

\section*{See Also}
dict(3) [page 81], gb_trees(3) [page 157]

\section*{ordsets}

Erlang M odule

Sets are collections of elements with no duplicate elements. An ordset is a representation of a set, where an ordered list is used to store the elements of the set. An ordered list is more efficient than an unordered list.
This module provides exactly the same interface as the module sets but with a defined representation.

\section*{See Also}
gb_sets(3) [page 153], sets(3) [page 270]

\section*{pg}

Erlang M odule

This (experimental) module implements process groups. A process group is a group of processes that can be accessed by a common name. For example, a group named foobar can include a set of processes as members of this group and they can be located on different nodes.

W hen messages are sent to the named group, all members of the group receive the message. The messages are serialized. If the process P1 sends the message m1 to the group, and process P2 simultaneously sends message M2, then all members of the group receive the two messages in the same order. If members of a group terminate, they are automatically removed from the group.
This module is not complete. The module is inspired by the ISIS system and the causal order protocol of the ISIS system should also be implemented. At the moment, all messages are serialized by sending them through a group master process.

\section*{Exports}
```

create(PgName)

```

Creates an empty group named PgName on the current node.
```

create(PgName, Node)

```

Creates an epmty group on the node Node.
```

join(PgName, Pid)

```

Joins the Pid Pid to the process group PgName.
send (Pgname, Message)
Sends the tuple \{pg_message, From, PgName, Message \(\}\) to all members of the process group.
```

esend(PgName, Mess)

```

Sends the tuple \{pg_message, From, PgName, Message \(\}\) to all members of the process group, except the current node.
members (PgName)
Returns a list of the current members in the process group.

\section*{pool \\ Erlang M odule}
pool can be used to run a set of Erlang nodes as a pool of computational processors. It is organized as a master and a set of slave nodes and includes the following features:
- The slave nodes send regular reports to the master about their current load.
- Queries can be sent to the master to determine which node will have the least load.

The BIF statistics (run_queue) is used for estimating future loads. It returns the length of the queue of ready to run processes in the Erlang runtime system.
The slave nodes are started with the slave module. This effects, tty IO, file IO, and code loading.
If the master node fails, the entire pool will exit.

\section*{Exports}
```

start(Name)

```

Starts a new pool. The file .hosts.erlang is read to find host names where the pool nodes can be started. The current working directory is searched first, then the home directory, and finally the root directory of the Erlang runtime system. The start-up procedure fails if the file is not found.
Name is sent to all pool nodes. This is used as the first part of the node name in the alive/3 statements for the nodes.
The function net_adm:host_file() reads the file .hosts.erlang for host names. The slave nodes are started with slave: start. See slave(3).
start/ 1 is synchronous and all the nodes, as well as all the system servers, are running when it returns a value. A ccess rights must also be set so that all nodes in the pool have the authority to access each other.
```

start(Name, Args)

```

This function is the same as start/1, except that the environment Args is passed to the pool nodes. See slave(3).
attach(Node)
This function ensures that a pool master is running and includes Node in the pool master's pool of nodes.
stop()

Stops the pool and kills all the slave nodes.
```

get_nodes()

```

Returns a list of the current member nodes of the pool.
pspawn(Mod, Fun, Args)
Spawns a process on the pool node which is expected to have the lowest future load.
pspawn_link(Mod, Fun, Args)
Spawn links a process on the pool node which is expected to have the lowest future load.
get_node()
Returns the node ID of the node with the expected lowest future load.
new_node (Host, Name)
Starts a new node and attaches it to an already existing pool If there is no existing pool, it starts a pool with two nodes, the current node and Node. This function can also be used as a convenient way of starting new nodes, even if the load distribution facilities of pool are of no interest.

\section*{Files}
\$HOME/.hosts.erlang is used to pick hosts where nodes can be started.
\$HOME/.erlang.slave.out.H O ST is used for all additional IO that may come from the slave nodes on standard IO. If the start-up procedure does not work, this file may indicate the reason.

\section*{proc_lib \\ Erlang M odule}

The proc_lib module is used to initialize some useful information when a process starts. The registered names, or the process identities, of the parent process, and the parent ancestors, are stored together with information about the function initially called in the process.

A crash report is generated if the process terminates with a reason other than normal or shutdown. shutdown is used to terminate an abnormal process in a controlled manner. A crash report contains the previously stored information such as ancestors and initial function, the termination reason, and information regarding other processes which terminate as a result of this process terminating.
The crash report is sent to the error_logger. An event handler has to be installed in the error_logger event manager in order to handle these reports. The crash report is tagged crash_report and the format/1 function should be called in order to format the report.

\section*{Exports}
```

spawn(Fun) -> Pid
spawn(Node,Fun) -> Pid
spawn(Module,Func,Args) -> Pid
spawn(Node,Module,Func,Args) -> Pid
Types:

- Fun = fun() -> void()
- M odule = atom()
- Func = atom()
- Args = [Arg]
- Arg = term()
- Node = atom()
- Pid = pid()

```

Spawns a new process and initializes it as described above. The process is spawned using the spawn BIFs. The process can be spawned on another Node.
```

spawn_link(Fun) -> Pid
spawn_link(Node,Fun) -> Pid
spawn_link(Module,Func,Args) -> Pid
spawn_link(Node,Module,Func,Args) -> Pid

```

Types:
- Fun = fun() -> void()
- M odule = atom()
- Func = atom()
- Args = [Arg]
- \(\operatorname{Arg}=\) term()
- N ode = atom()
- Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned using the spawn_link BIFs. The process can be spawned on another Node.
```

spawn_opt(Fun,Opts) -> Pid
spawn_opt(Node,Fun,Opts) -> Pid
spawn_opt(Module,Func,Args,Opts) -> Pid
spawn_opt(Node,Module,Func,Args,Opts) -> Pid

```

Types:
- Fun = fun() -> void()
- M odule = atom()
- Func = atom()
- Args = [Arg]
- \(\operatorname{Arg}=\) term(\()\)
- N ode = atom()
- Opts = list()
- Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned using the spawn_opt BIFs. The process can be spawned on another Node.
```

start(Module,Func,Args) -> Ret
start(Module,Func,Args,Time) -> Ret
start(Module,Func,Args,Time,SpawnOpts) -> Ret
start_link(Module,Func,Args) -> Ret
start_link(Module,Func,Args,Time) -> Ret
start_link(Module,Func,Args,Time,SpawnOpts) -> Ret

```

Types:
- M odule = atom()
- Func = atom()
- Args = [Arg]
- \(\operatorname{Arg}=\) term()
- Time \(=\) integer \(>=0\) । infinity
- SpawnO pts = list()
- Ret \(=\) term() । \{error, Reason\}

Starts a new process synchronously. Spawns the process using proc_lib: spawn/3 or proc_lib:spawn_link/3, and waits for the process to start. When the process has started, it must call proc_lib:init_ack(Parent, Ret) or proc_lib:init_ack(Ret), where Parent is the process that evaluates start. At this time, Ret is returned from start.
If the start_link function is used and the process crashes before proc_lib:init_ack is called, \{error, Reason\} is returned if the calling process traps exits.
If Time is specified as an integer, this function waits for Time milliseconds for the process to start (proc_lib:init_ack). If it has not started within this time, \{error, timeout \} is returned, and the process is killed.
The SpawnOpts argument, if given, will be passed as the last argument to the spawn_opt/4 BIF. Refer to the erlang module for information about the spawn_opt options.
```

init_ack(Parent, Ret) -> void()
init_ack(Ret) -> void()

```

Types:
- Parent \(=\operatorname{pid}()\)
- Ret = term()

This function is used by a process that has been started by a proc_lib: start function. It tells Parent that the process has initialized itself, has started, or has failed to initialize itself. The init_ack/1 function uses the parent value previously stored by the proc_lib: start function. If the init_ack function is not called (e.g. if the init function crashes) and proc_lib: start/3 is used, that function never returns and the parent hangs forever. This can be avoided by using a time out in the call to start, or by using start_link.
The following example illustrates how thisfunction and proc_lib: start_link are used.
-module(my_proc).
-export([start_link/0]).
start_link() -> proc_lib:start_link(my_proc, init, [self()]).
init(Parent) ->
case do_initialization() of
ok ->
proc_lib:init_ack(Parent, \{ok, self()\});
\{error, Reason\} ->
exit(Reason)
end, loop().
loop() -> receive
format(CrashReport) -> string()
Types:
- CrashReport \(=\operatorname{void}()\)

Formats a previously generated crash report. The formatted report is returned as a string.
initial_call(PidOrPinfo) -> \{Module,Function,Args\} | Fun | false
Types:
- PidO rPinfo \(=\operatorname{pid}()|\{X, Y, Z\}|\) Proclnfo
- \(X=Y=Z=\operatorname{int}()\)
- Proclnfo = [void()]
- M odule = atom()
- Fun = fun() -> void()
- Function = atom()
- Args = [term()]

Extracts the initial call of a process that was spawned using the spawn functions described above. PidOrPinfo can either be a Pid, an integer tuple (from which a pid can be created), or the process information of a process (fetched through an erlang: process_info/1 function call).
translate_initial_call(PidOrPinfo) -> \{Module,Function, Arity\} | Fun
Types:
- PidO rPinfo \(=\operatorname{pid}()|\{X, Y, Z\}|\) Proclnfo
- \(X=Y=Z=\operatorname{int}()\)
- Proclnfo = [void()]
- M odule = atom()
- Fun = fun() -> void()
- Function = atom()
- Arity = int()

Extracts the initial call of a process which was spawned using the spawn functions described above. If the initial call is to one of the system defined behaviours such as gen_server or gen_event, it is translated to more useful information. If a gen_server is spawned, the returned Module is the name of the callback module and Function is init (the function that initiates the new server).
A supervisor and a supervisor_bridge are also gen_server processes. In order to return information that this process is a supervisor and the name of the call-back module, Module is supervisor and Function is the name of the supervisor callback module. Arity is 1 since the init/1 function is called initially in the callback module.
By default, \(\{\) proc_lib, init_p, 5\(\}\) is returned if no information about the initial call can be found. It is assumed that the caller knows that the process has been spawned with the proc_lib module.
PidOrPinfo can either be a Pid, an integer tuple (from which a pid can be created), or the process information of a process (fetched through an erlang: process_info/1 function call).
This function is used by the c:i/0 and c:regs/0 functions in order to present process information.
```

hibernate(Module, Function, Arguments)

```

Types:
- M odule = atom()
- Function = atom()
- A rguments = [term()]
hibernate/3 gives a way to put a process started using one of the functions in the proc_lib module into a wait state where its memory allocation has been reduced as much as possible, which is useful if the process does not expect to receive any messages in the near future.
The process will be awaken when a message is sent to it, and control will resume in Module: Function with the arguments given by ArgumentList.
If the process has any message in its message queue, the process will be awaken immediately in the same way as described above.
N ote: The actual work is done by the erlang: hibernate/3 BIF. To ensure that exception handling and logging continues to work in a process started by proc_lib, always use proc_lib:hibernate rather than erlang:hibernate/3.

\section*{See Also}
error_logger(3)

\section*{proplists}

Erlang M odule

Property lists are ordinary lists containing entries in the form of either tuples, whose first elements are keys used for lookup and insertion, or atoms, which work as shorthand for tuples \{Atom, true\}. (O ther terms are allowed in the lists, but are ignored by this module.) If there is more than one entry in a list for a certain key, the first occurrence normally overrides any later (irrespective of the arity of the tuples).
Property lists are useful for representing inherited properties, such as options passed to a function where a user may specify options overriding the default settings, object properties, annotations, etc.

\section*{Exports}
```

append_values(Key, List) -> List

```

Types:
- Key = term()
- List \(=[\) term(\()]\)

Similar to get_all_values/2, but each value is wrapped in a list unless it is already itself a list, and the resulting list of lists is concatenated. This is often useful for "incremental" options; e.g., append_values (a, [\{a, [1,2]\}, \(\{b, 0\},\{a, 3\},\{c\), \(-1\},\{a,[4]\}])\) will return the list \([1,2,3,4]\).
```

compact(List) -> List

```

Types:
- List \(=\) [term(\()\)]

Minimizes the representation of all entries in the list. This is equivalent to [property (P) || P <- List].
See also: property/1, unfold/1.
```

delete(Key, List) -> List

```

Types:
- Key = term()
- List \(=[\) term(\()\)]

D eletes all entries associated with Key from List.
```

expand(Expansions, List) -> List

```

Types:
- Key = term()
- Expansions \(=[\{\) Property,[term()] \(\}]\)
- Property = atom() | tuple()

Expands particular properties to corresponding sets of properties (or other terms). For each pair \{Property, Expansion\} in Expansions, if E is the first entry in List with the same key as Property, and E and Property have equivalent normal forms, then E is replaced with the terms in Expansion, and any following entries with the same key are deleted from List.
For example, the following expressions all return [fie, bar, baz, fum]:
```

expand([{foo, [bar, baz]}],
[fie, foo, fum])
expand([{{foo, true}, [bar, baz]}],
[fie, foo, fum])
expand([{{foo, false}, [bar, baz]}],
[fie, {foo, false}, fum])

```

However, no expansion is done in the following call:
```

expand([{{foo, true}, [bar, baz]}],
[{foo, false}, fie, foo, fum])

```
because \{foo, false\} shadows foo.
N ote that if the original property term is to be preserved in the result when expanded, it must be included in the expansion list. The inserted terms are not expanded recursively. If Expansions contains more than one property with the same key, only the first occurrance is used.
See also: normalize/2.
```

get_all_values(Key, List) -> [term()]

```

Types:
- Key = term()
- List \(=[\) term(\()\)]

Similar to get_value/2, but returns the list of values for all entries \{Key, Value\} in List. If no such entry exists, the result is the empty list.
See also: get_value/2.
```

get_bool(Key, List) -> bool()

```

Types:
- Key = term()
- List \(=[\) term(\()\)]

Returns the value of a boolean key/value option. If lookup(Key, List) would yield \{Key, true\}, this function returns true; otherwise false is returned.
See also: get_value/2, lookup/2.
```

get_keys(List) -> [term()]

```

Types:
- List \(=[\) term() \(]\)

Returns an unordered list of the keys used in List, not containing duplicates.
```

get_value(Key, List) -> term()
Types:
- Key = term()
- List = [term()]
Equivalent to get_value(Key, List, undefined).
get_value(Key, List, Default) -> term()
Types:
- Key = term()
- D efault = term()
- List = [term()]
Returns the value of a simple key/value property in List. If lookup(Key, List) would
yield {Key, Value}, this function returns the corresponding Value, otherwise Default
is returned.
See also: get_all_values/2, get_bool/2, get_value/1, lookup/2.
is_defined(Key, List) -> bool()
Types:
- Key = term()
- List = [term()]
Returns true if List contains at least one entry associated with Key, otherwise false is
returned.
lookup(Key, List) -> none | tuple()

```

Types:
- Key = term()
- List \(=[\) term(\()\)]

Returns the first entry associated with Key in List, if one exists, otherw ise returns none. For an atom \(A\) in the list, the tuple \(\{\mathrm{A}\), true \(\}\) is the entry associated with A .

See also: get_bool/2, get_value/2, lookup_all/2.
lookup_all(Key, List) -> [tuple()]
Types:
- Key = term()
- List \(=[\) term(\()\)]

Returns the list of all entries associated with Key in List. If no such entry exists, the result is the empty list.

See also: lookup/2.
```

normalize(List, Stages) -> List

```

Types:
- List \(=[\) term(\()\)]
- Stages = [O peration]
- O peration \(=\) \{aliases, Aliases \(\}\) । \{negations, Negations\} । \{expand, Expansions
- Aliases \(=[\{\) Key, Key \(\}]\)
- Negations \(=[\{K e y\), Key \(\}]\)
- Key = term()
- Expansions = [\{Property, [term()]\}]
- Property = atom() | tuple()

Passes List through a sequence of substitution/expansion stages. For an aliases operation, the function substitute_aliases/2 is applied using the given list of aliases; for a negations operation, substitute_negations/2 is applied using the given negation list; for an expand operation, the function expand/2 is applied using the given list of expansions. The final result is automatically compacted (cf. compact/1).
Typically you want to substitute negations first, then aliases, then perform one or more expansions (sometimes you want to pre-expand particular entries before doing the main expansion). You might want to substitute negations and/or aliases repeatedly, to allow such forms in the right-hand side of aliases and expansion lists.
See also: compact/1, expand/2, substitute_aliases/2, substitute_negations/2.
```

property(Property) -> Property
Types:
- Property = atom() | tuple()
C reates a normal form (minimal) representation of a property. If Property is \{Key, true\} where Key is an atom, this returns Key, otherwise the whole term Property is returned.
See also: property/2.

```
```

property(Key, Value) -> Property

```
property(Key, Value) -> Property
Types:
- Key = term()
- Value = term()
- Property = atom() | tuple()
C reates a normal form (minimal) representation of a simple key/value property. Returns Key if Value is true and Key is an atom, otherwise a tuple \{Key, Value \(\}\) is returned.
See also: property/1.
```

```
split(List, Keys) -> {Lists, Rest}
 Types:
 - List = [term()]
 - Keys=[term()]
 - Lists =[[term()]]
 - Rest = [term()]
```

Partitions List into a list of sublists and a remainder. Lists contains one sublist for each key in Keys, in the corresponding order. The relative order of the elements in each sublist is preserved from the original List. Rest contains the elements in List that are not associated with any of the given keys, also with their original relative order preserved.
Example: split([\{c, 2\}, $\{\mathrm{e}, 1\}, a,\{c, 3,4\}, d,\{b, 5\}, b],[a, b, c])$
returns
$\{[[a],[\{b, 5\}, b],[\{c, 2\},\{c, 3,4\}]],[\{e, 1\}, d]\}$

```
substitute_aliases(Aliases, List) -> List
```

Types:

- Aliases $=[\{$ Key, Key $\}]$
- Key = term()
- List $=[$ term( $)$ ]

Substitutes keys of properties. For each entry in List, if it is associated with some key K1 such that \{K1, K2\} occurs in Aliases, the key of the entry is changed to Key2. If the same K1 occurs more than once in Aliases, only the first occurrence is used.

Example: substitute_aliases([\{color, colour\}], L) will replace all tuples $\{$ color, ...\} in L with $\{$ colour, . . .\}, and all atoms color with colour.
See also: normalize/2, substitute_negations/2.
substitute_negations(Negations, List) -> List
Types:

- Negations $=[$ KKey, Key $\}]$
- Key = term()
- List $=[$ term( $)$ ]

Substitutes keys of boolean-valued properties and simultaneously negates their values. For each entry in List, if it is associated with some key K1 such that \{K1, K2\} occurs in Negations, then if the entry was $\{\mathrm{K} 1$, true $\}$ it will be replaced with $\{\mathrm{K} 2, \mathrm{false}\}$, otherwise it will be replaced with $\{\mathrm{K} 2$, true $\}$, thus changing the name of the option and simultaneously negating the value given by get_bool (List). If the same K1 occurs more than once in Negations, only the first occurrence is used.
Example: substitute_negations([\{no_foo, foo\}], L) will replace any atom no_foo or tuple \{no_foo, true\} in L with \{foo, false\}, and any other tuple \{no_foo, ... \} with $\{$ foo, true $\}$.
See also: get_bool/2, normalize/2, substitute_aliases/2.

```
unfold(List) -> List
```

Types:

- List = [term()]

Unfolds all occurences of atoms in List to tuples \{Atom, true $\}$.

The qlc module provides a query interface to $M$ nesia, ETS, D ets and other data structures that implement an iterator style traversal of objects.

## Overview

The qlc module implements a query interface to Q LC tables. Typical Q LC tables are ETS, D ets, and M nesia tables. There is also support for user defined tables, see the Implementing a Q LC table [page 249] section. A query is stated using Q uery List C omprehensions (Q LCs). These are similar to ordinary list comprehensions as described in the Erlang Reference $M$ anual and Programming Examples except that variables introduced in patterns cannot be used in list expressions. The answers to a query are determined by data in Q LC tables that fulfill the constraints expressed by the Q LCs of the query.
Q LCs should not be confused with the language construct query ListComprehension end used by M nemosyne. The qlc module recognizes the first argument of every call to qlc: $q / 1,2$ as Q LC s, and nothing else. The semantics are very different: M nemosyne uses ideas borrowed from Prolog while the Q LCs introduced in this module are all Erlang. In fact, in the absence of optimizations and options such as cache and unique ( see below), every Q LC free of Q LC tables evaluates to the same list of answers as the identical ordinary list comprehension. It is the aim of this module to replace M nemosyne and to be more versatile by means of Q LC tables.
W hile ordinary list comprehensions evaluate to lists, calling qlc:q/1,2 [page 254] returns a Q uery H andle. To obtain all the answers to a query, qlc:eval/1,2 [page 252] should be called with the query handle as first argument. Q uery handles are essentially funs created in the module calling $q / 1,2$. As the funs refer to the module's code, one should be careful not to keep query handles too long if the module's code is to be replaced. C ode replacement is described in the [Erlang Reference M anual]. The list of answers can also be traversed in chunks by use of a Q uery C ursor. Q uery cursors are created by calling qlc:cursor/1,2 [page 251] with a query handle as first argument. Q uery cursors are essentially Erlang processes. O ne answer at a time is sent from the query cursor process to the process that created the cursor.

## Syntax

Syntactically Q LC s have the same parts as ordinary list comprehensions:
[Expression || Qualifier1, Qualifier2, ...]

Expression (the template) is an arbitrary Erlang expression. Q ualifiers are either filters or generators. Filters are Erlang expressions returning bool (). Generators have the form Pattern<-ListExpression, where ListExpression is an expression evaluating to a query handle or a list. Q uery handles are returned from qlc: table/2, qlc: append/1,2, qlc:sort/1,2, qlc:keysort/2,3, qlc:q/1,2, and qlc:string_to_handle/1,2,3.

## Evaluation

The evaluation of a query handle begins by the inspection of options and the collection of information about tables. A s a result qualifiers are modified during the optimization phase. N ext all list expressions are evaluated. If a cursor has been created evaluation takes place in the cursor process. For those list expressions that are Q LCs, the list expressions of the Q LCs' generators are evaluated as well. O ne has to be careful if list expressions have side effects since the order in which list expressions are evaluated is unspecified. Finally the answers are found by evaluating the qualifiers from left to right, backtracking when some filter returns false, or collecting the template when all filters return true.

## Common options

The following options are accepted by cursor/2, eval/2, fold/4, and info/2:

- \{unique_all, true\} adds a \{unique, true\} option to every list expression of the query. Default is \{unique_all,false\}. The option unique_all is equivalent to \{unique_all, true\}.
- \{cache_all, true\} adds a \{cache, true \} option to every list expression of the query except tables and lists. D efault is \{cache_all,false\}. The option cache_all is equivalent to \{cache_all, true\}.


## Common data types

- QueryCursor $=\left\{q l c \_c u r s o r, ~ t e r m()\right\}$
- QueryHandle = \{qlc_handle, term() \}
- QueryHandleOrList = QueryHandle | list()
- Answers = [Answer]
- Answer = term()
- AbstractExpression = -parse trees for Erlang expressions, see the [ abstract format] documentation in ERTS U ser's Guide-
- MatchExpression $=$-matchspecifications, see the [ match specification] documentation in the ERTS U ser's G uide and ms_transform(3) [page 219]-
- SpawnOptions = default | spawn_options()
- SortOptions = [SortOption] | SortOption
- SortOption = \{compressed, bool()\} | \{no_files, NoFiles\} | \{order, Order\} | \{size, Size\} | \{tmpdir, TempDirectory\} | \{unique, bool()\} -see file_sorter(3) [page 140]-
- Order = ascending | descending | OrderFun

```
- OrderFun = fun(Term, Term) -> bool()
- TempDirectory = "" | filename()
- Size = int() > 0
- NoFiles = int() > 1
- KeyPos = int() > 0 | [int() > 0]
- bool() = true | false
- filename() = -see filename(3) [page 148]-
- spawn_options() = -see[erlang(3)]-
```


## Future plans

Support for faster join of two tables will be added not later than in R11. Depending on preferences and priorities some high level optimizations may be added in the future.

## Getting started

A s already mentioned queries are stated in the list comprehension syntax as described in the [Erlang Reference M anual]. In the following some familiarity with list comprehensions is assumed. There are examples in [ Programming Examples] that can get you started. It should be stressed that list comprehensions do not add any computational power to the language; anything that can be done with list comprehensions can also be done without them. But they add a syntax for expressing simple search problems which is compact and clear once you get used to it.
M any list comprehension expressions can be evaluated by the qlc module. Exceptions are expressions such that variables introduced in patterns (or filters) are used in some generator later in the list comprehension. A s an example consider an implementation of lists:append(L): [X || Y <- L, X <- Y]. Y is introduced in the first generator and used in the second. The ordinary list comprehension is normally to be preferred when there is a choice as to which to use. O ne difference is that qle : eval/1, 2 collects answers in a list which is finally reversed, while list comprehensions collect answers on the stack which is finally unwound.
W hat the qle module primarily adds to list comprehensions is that data can be read from Q LC tables in small chunks. A QLC table is created by calling qlc:table/2. U sually qlc: table/2 is not called directly from the query but via an interface function of some data structure. There are a few examples of such functions in Erlang/OTP: mnesia:table/1,2, ets:table/1,2, and dets:table/1,2. For a given data structure there can be several functions that create Q LC tables, but common for all these functions is that they return a query handle created by qlc:table/2. U sing the Q LC tables provided by OTP is probably sufficient in most cases, but for the more advanced user the section Implementing a Q LC table [page 249] describes the implementation of a function calling qle: table/2.
Besides qlc: table/2 there are other functions that return query handles. They might not be used as often as tables, but are useful from time to time. qle : append traverses objects from several tables or lists after each other. If, for instance, you want to traverse all answers to a query QH and then finish off by a term \{finished \}, you can do that by calling qlc: append (QH, [\{finished $\}]$ ). append first returns all objects of QH , then
\{finished\}. If there is one tuple \{finished $\}$ among the answers to QH it will be returned twice from append.
As another example, consider concatenating the answers to two queries Q H 1 and QH2 while removing all duplicates. The means to accomplish this is to use the unique option:

```
qlc:q([X || X <- qlc:append(QH1, QH2)], {unique, true})
```

The cost is substantial: every returned answer will be stored in an ETS table. Before returning an answer it is looked up in the ETS table to check if it has already been returned. Without the unique options all answers to QH 1 would be returned followed by all answers to QH2. The unique options keeps the order between the remaining answers.
If the order of the answers is not important there is the alternative to sort the answers uniquely:

```
qlc:sort(qlc:q([X || X <- qlc:append(QH1, QH2)], {unique, true})).
```

This query also removes duplicates but the answers will be sorted. If there are many answers temporary files will be used. N ote that in order to get the first unique answer all answers have to be found and sorted.

To return just a few answers cursors can be used. The following code returns no more than five answers using an ETS table for storing the unique answers:

```
C = qlc:cursor(qlc:q([X || X <- qlc:append(QH1, QH2)],{unique,true})),
R = qlc:next_answers(C, 5),
ok = qlc:delete_cursor(C),
R.
```

Q uery list comprehensions are convenient for stating conditions on data from two or more tables. An example that does a natural join on two tables on position 2:

```
qlc:q([{X1,X2,X3,Y1} || {X1,X2,X3} <- QH1,
 {Y1,Y2} <- QH2,
 X2 =:= Y2])
```

If QH 1 and QH 2 both are tables and X 2 or Y 2 is a key or index position then the join can be done quickly by looking up key values. In this first version of the qlc module this has not yet been implemented. Instead the filter will always be applied to every possible pair of answers to QH1 and QH2, one at a time. If there are M answers to QH1 and N answers to QH 2 the filter will be run $\mathrm{M} * \mathrm{~N}$ times.
If Q H 2 is a call to the function for gb_trees as defined in the Implementing a Q LC table [page 249] section, gb_table:table/1, the iterator for the gb-tree will be initiated for each answer to QH 1 after which the objects of the gb-tree will be returned one by one. This is probably the most efficient way of traversing the table in that case since it takes minimal computational power to get next object. But if Q H 2 is not a table but a more complicated Q LC, it can be more efficient use some RAM memory for collecting the answers in a cache, particularly if there are only a few answers. It must then be assumed that evaluating QH2 has no side effects so that the meaning of the query does not change if Q H 2 is evaluated only once. O ne way of caching the answers is to evaluate QH 2 first of all and substitute the list of answers for QH 2 in the query. A nother way is to use the cache option. It is stated like this:

```
QH2' = qlc:q([X || X <- QH2], {cache, true})
or just
```

```
QH2' = qlc:q([X || X <- QH2], cache)
```

The effect of the cache option is that when the generator $\mathrm{QH} 2^{1}$ is run the first time every answer is stored in an ETS table. W hen next answer of QH1 is tried, answers to QH2' are copied from the ETS table which is very fast. As for the unique option the cost is a possibly substantial amount of RA M memory.
There is an option cache_all that can be set to true when evaluating a query. It adds a cache option to every list expression except Q LC tables and lists on all levels of the query. This can be used for testing if caching would improve efficiency at all. If the answer is yes further testing is needed to pinpoint the generators that should be cached.

## Implementing a QLC table

A s an example of how to use the qlc:table/2 [page 254] function the implementation of a Q LC table for the gb_trees [ page 157] module is given:

```
-module(gb_table).
-import(gb_trees, [iterator/1, lookup/2, next/1]).
-export([table/1]).
table(T) ->
 \(\mathrm{TF}=\) fun() -> qlc_next(next(iterator(T))) end,
 InfoFun = fun(num_of_objects) -> size(T);
 (keypos) -> 1;
 (_) -> undefined
 end,
 LookupFun =
 fun(1, Ks) ->
 lists:flatmap(fun(K) ->
 case gb_trees:lookup(K, T) of
 \{value, V\} -> [\{K,V\}];
 none -> []
 end
 end, Ks)
 end,
 FormatFun =
 fun(all) ->
 Vals = a_few(T),
 \{gb_trees, from_orddict, [Vals]\};
 (\{lookup, 1, KeyValues\}) ->
 ValsS = io_lib:format("gb_trees:from_orddict(~\(\left.{ }^{\sim}\right)\) ",
 [a_few(T)]),
 io_lib:format("lists:flatmap(fun(K) -> "
 "case gb_trees:lookup(K, ~s) of "
 "\{value, V\} -> [\{K,V\}];none -> [] end "
 "end, ~w)",
 [ValsS, KeyValues])
 end,
 qlc:table(TF, [\{info_fun, InfoFun\}, \{format_fun, FormatFun\},
 \{lookup_fun, LookupFun\}]).
```

```
qlc_next({X, V, S}) ->
 [{X,V} | fun() -> qlc_next(next(S)) end];
qlc_next(none) ->
 [].
a_few(T) ->
 a_few(iterator(T), 7).
a_few(_I, 0) ->
 more;
a_few(IO, N) ->
 case next(IO) of
 {X, V, I} ->
 [{X,V} | a_few(I, N-1)];
 none ->
 []
 end.
```

TF is the traversal function. The qlc module requires that there is a way of traversing all objects of the data structure; in gb_trees there is an iterator function suitable for that purpose. N ote that for each object returned a new fun is created. A s long as the list is not terminated by [] it is assumed that the tail of the list is a nullary function and that calling the function returns further objects (and functions).
The lookup function is optional. It is assumed that the lookup function always finds values much faster than it would take to traverse the table. The first argument is the position of the key. Since qlc_next returns the objects as \{Key,Value\} pairs the position is 1 . $N$ ote that the lookup function should return $\{$ Key,Value $\}$ pairs, just as the traversal function does.
The format function is also optional. It is called by qlc:info to give feedback at runtime of how the query will be evaluated. O ne should try to give as good feedback as possible without showing too much details. In the example at most 7 objects of the table are shown. The format function handles two cases: all means that all objects of the table will be traversed; \{lookup,1,KeyValues \} means that the lookup function will be used for looking up key values.
Whether the whole table will be traversed or just some keys looked up depends on how the query is stated. It the query has the form
qlc:q([T || P <- LE, F])
and $P$ is a tuple, the qlc module analyzes $P$ and $F$ in compile time to find positions of the tuple $P$ that are matched or compared to constants. If such a position at runtime turns out to be the key position, the lookup function can be used, otherwise all objects of the table have to be traversed. It is the info function InfoFun that returns the key position. There can be index positions as well, also returned by the info function. An index is an extra table that makes lookup on some position fast. M nesia maintains indices upon request, thereby introducing so called secondary keys. The key is always preferred before secondary keys regardless of the number of constants to look up.

## Exports

```
append(QHL) -> QH
 Types:
 - QHL = [QueryH andleO rList]
 - QH = QueryH andle
 Returns a query handle. When evaluating the query handle QH all answers to the first
 query handle in QHL is returned followed by all answers to the rest of the query handles
 in QHL.
append(QH1, QH2) -> QH3
 Types:
 - QH1 =Q H2 = Q ueryH andleO rList
 -QH3 = Q ueryH andle
 Returns a query handle. W hen evaluating the query handle QH3 all answers to QH1 are
 returned followed by all answers to QH2.
 append(QH1,QH2) is equivalent to append([QH1,QH2]).
cursor(QueryHandleOrList [, Options]) -> QueryCursor
 Types:
 - Options=[O ption] | Option
 - Option = {cache_all, bool()} | cache_all | {spawn_options, SpawnO ptions} |
 {unique_all, bool()} | unique_all
 C reates a query cursor and makes the calling process the owner of the cursor. The
 cursor is to be used as argument to next_answers/1,2 and (eventually)
 delete_cursor/1. Calls erlang:spawn_opt to spawn and link a process which will
 evaluate the query handle. The value of the option spawn_options is used as last
 argument when calling spawn_opt. The default value is [link].
 1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
 QC = qlc:cursor(QH),
 qlc:next_answers(QC, 1).
 [{a,1}]
 2> qlc:next_answers(QC, 1).
 [{a,2}]
 3> qlc:next_answers(QC, all_remaining).
 [{b,1},{b,2}]
 4> qlc:delete_cursor(QC).
 ok
delete_cursor(QueryCursor) -> ok
 D eletes a query cursor. O nly the owner of the cursor can delete the cursor.
eval(QueryHandleOrList [, Options]) -> Answers | Error
e(QueryHandleOrList [, Options]) -> Answers
Types:
```

- Options = [Option] | Option
- Option $=\{$ cache_all, bool ()$\} \mid$ cache_all | \{unique_all, bool() $)$ | unique_all
- Error $=\{$ error, module(), Reason $\}$
- Reason =-as returned by file_sorter(3)-

Evaluates a query handle in the calling process and collects all answers in a list.
$1>\mathrm{QH}=\mathrm{qlc}: \mathrm{q}([\{\mathrm{X}, \mathrm{Y}\}| | \mathrm{X}<-[\mathrm{a}, \mathrm{b}], \mathrm{Y}<-[1,2]])$,
qlc:eval(QH).
$[\{a, 1\},\{a, 2\},\{b, 1\},\{b, 2\}]$
fold(Function, Acc0, QueryHandleOrList [, Options]) -> Acc1 | Error
Types:

- Function = fun(A nswer, Accln) -> AccO ut
- $\mathrm{AccO}=\mathrm{Acc1}=\mathrm{Accln}=\mathrm{AccO}$ ut $=$ term()
- Options = [O ption] | Option
- Option $=\{$ cache_all, bool ()$\} \mid$ cache_all | \{unique_all, bool() $\}$ | unique_all
- Error $=\{$ error, module( ), Reason $\}$
- Reason =-as returned by file_sorter(3)-

Calls Function on successive answers to the query handle together with an extra argument AccIn. The query handle and the function are evaluated in the calling process. Function must return a new accumulator which is passed to the next call. Acc0 is returned if there are no answers to the query handle.
$1>\mathrm{QH}=[1,2,3,4,5,6]$,
qlc:fold(fun(X, Sum) -> X + Sum end, 0, QH).
21
format_error(Error) -> FormatedError
Types:

- Error $=\{$ error, module(), term() $\}$
- FormatedError = character_list()

Returns a descriptive string in English of an error tuple returned by some of the functions of the qle module or the parse transform. This function is mainly used by the compiler invoking the parse transform.
info(QueryHandleOrList [, Options]) -> Info
Types:

- Options = [O ption] | Option
- O ption = EvalO ption । ReturnO ption
- EvalO ption = \{cache_all, bool()\} | cache_all | \{unique_all, bool()\} | unique_all
- ReturnO ption $=\{$ flat, bool() $\} \mid$ \{format, Format $\} \mid\{$ n_elements, $N$ Elements $\}$
- Format = abstract_code \| string
- N Elements = infinity $\mid \operatorname{int}()>0$
- Info = AbstractExpression | string()

Returns information about a query handle. The information describes the simplifications and optimizations that are the results of preparing the query for evaluation. This function is probably useful mostly during debugging.
The information has the form of an Erlang expression where Q LCs most likely occur. D epending on the format functions of mentioned QLC tables it may not be absolutely accurate.
The default is to return a sequence of Q LCs in a block, but if the option \{flat, false \} is given, one single Q LC is returned. The default is to return a string, but if the option \{format, abstract_code\} is given, abstract code is returned instead. The default is to return all elements in lists, but if the \{n_elements, NElements\} option is given, only a limited number of elements are returned.

```
\(1>\mathrm{QH}=\mathrm{qlc}: \mathrm{q}([\{\mathrm{X}, \mathrm{Y}\}| | \mathrm{X}<-[\mathrm{x}, \mathrm{y}], \mathrm{Y}<-[\mathrm{a}, \mathrm{b}]])\),
io:format("~s~n", [qlc:info(QH, unique_all)]).
begin
 V1 = qlc:q([SQV ||
 SQV <- [x,y]
], [\{unique,true\}]),
 \(\mathrm{V} 2=\mathrm{qlc}: q([\) SQV ||
 SQV <- [a,b]
],[\{unique,true\}]),
 qlc:q([\(\{\mathrm{X}, \mathrm{Y}\}\) ||
 \(\mathrm{X}<-\mathrm{V} 1\),
 Y <- V2
],[\{unique, true \(\}]\))
end
```

In this example two simple Q LCs have been inserted just to hold the \{unique, true\} option.
keysort(KeyPos, QH1 [, SortOptions]) -> QH2
Types:

- Q H $1=$ Q ueryH andleO rList
- QH2 = QueryH andle

Returns a query handle. When evaluating the query handle QH2 the answers to the query handle QH1 are sorted by file_sorter:keysort/4 [page 140] according to the options. The sorter will use temporary files only if QH1 does not evaluate to a list and the size of the binary representation of the answers exceeds size bytes, where size is the value of the size option.
next_answers(QueryCursor [, NumberOfAnswers]) -> Answers | Error
Types:

- N umberO fA nswers = all_remaining । int() >0
- Error $=\{$ error, module(), Reason $\}$
- Reason =-as returned by file_sorter(3)-

Returns some or all of the remaining answers to a query cursor. O nly the owner of Cursor can retrieve answers.
The optional argument NumberOfAnswersdetermines the maximum number of answers returned. The default value is 10 . If less than the requested number of answers is returned, subsequent calls to next_answers will return [].
q(QueryListComprehension [, Options]) -> QueryHandle
Types:

- Q ueryListC omprehension =-literal query list comprehension-
- Options = [O ption] | Option
- Option $=\{$ max_lookup, M axLookup $\}$ | \{cache, bool() $\}$ | cache I \{unique, bool() \} | unique
- MaxLookup $=\operatorname{int}()>=0$ । infinity

Returns a query handle for a query list comprehension. The query list comprehension must be the first argument to qlc:q/1, 2 or it will be evaluated as an ordinary list comprehension. It is also necessary to add the line

```
-include_lib("stdlib/include/qlc.hrl").
```

to the source file. This causes a parse transform to substitute a fun for the query list comprehension. The (compiled) fun will be called when the query handle is evaluated.
When calling qlc:q/1,2 from the Erlang shell the parse transform is automatically called. When this happens the fun substituted for the query list comprehension is not compiled but will be evaluated by erl_eval (3). This is al so true when expressions are evaluated by means of file:eval/1,2 or in the debugger.
To be very explicit, this will not work:

```
A = [X || {X} <- [{1},{2}]],
QH = qlc:q(A),
```

The variable a will be bound to the evaluated value of the list comprehension ([1, 2]). The compiler complains with an error message ("argument is not a query list comprehension"); the shell process stops with a badarg reason.
The \{cache, true\} option can be used to cache the answers to a query list comprehension. The answers are stored in one ETS table for each cached query list comprehension. W hen a cached query list comprehension is evaluated again, answers are fetched from the table without any further computations. A s a consequence, when all answers to a cached query list comprehension have been found, the ETS tables used for caching answers to the query list comprehension's qualifiers can be emptied. The option cache is equivalent to \{cache, true\}.
The cache option has no effect if it is known that the query list comprehension will be evaluated at most once. This is always true for the top-most query list comprehension and also for the list expression of the first generator in a list of qualifiers. N ote that in the presence of side effects in filters or callback functions the answers to query list comprehensions can be affected by the cache option.
The \{unique, true option can be used to remove duplicate answers to a query list comprehension. The unique answers are stored in one ETS table for each query list comprehension. The table is emptied every time it is known that there are no more answers to the query list comprehension. The option unique is equivalent to
\{unique, true\}. If the unique option is combined with the cache option, two ETS tables are used, but the full answers are stored in one table only.
Sometimes (see qlc:table/2 [page 257] below) traversal of tables can be done by looking up key values, which is supposed to be fast. Under certain (rare) circumstances it could happen that there are too many key values to look up. The \{max_lookup, MaxLookup\} option can then be used to limit the number of lookups: if more than MaxLookup lookups would be required no lookups are done but the table traversed instead. The default value is infinity which means that there is no limit on the number of keys to look up.

```
1> \(\mathrm{T}=\) gb_trees:empty(),
QH = qlc:q([X || \{\{X,Y\},-\} <- gb_table:table(T),
(\((X=:=1\)) or \((X=:=2)\)),
((Y =:= a) or \((Y=:=b)\) or \((Y=:=c))])\),
io:format("~s~n", [qlc:info(QH)]).
qlc:q([X ||
 \(\{\{\mathrm{X}, \mathrm{Y}\},-\}<-\)
 lists:flatmap(fun (K) ->
 case gb_trees:lookup(K,gb_trees:from_orddict([])) of
 \{value, V\} -> [\{K,V\}];
 none -> []
 end end, \([\{1, a\},\{1, b\},\{1, c\},\{2, a\},\{2, b\},\{2, c\}])\),
 (\(\mathrm{X}=:=1\)) or (\(\mathrm{X}=:=2\)),
 (\(\mathrm{Y}=:=\mathrm{a}\)) or (\(\mathrm{Y}=:=\mathrm{b}\)) or (\(\mathrm{Y}=:=\mathrm{c}\))
])
ok
2>
```

In this example using the gb_table module from the Implementing a Q LC table [page 249] section there are six keys to look up: $\{1, \mathrm{a}\},\{1, \mathrm{~b}\},\{1, \mathrm{c}\},\{2, a\},\{2, b\}$, and $\{2, c\}$. The reason is that the two elements of the key $\{X, Y\}$ are matched separately. sort/1,2 and keysort/2,3 can also be used for caching answers and for removing duplicates. W hen sorting answers are cached in a list, possibly stored on a temporary file, and no ETS tables are used.
sort(QH1 [, SortOptions]) -> QH2
Types:

- QHI = Q ueryH andleO rList
- QH2 $=$ QueryH andle

Returns a query handle. When evaluating the query handle QH2 the answers to the query handle QH1 are sorted by file_sorter:sort/3 [page 140] according to the options. The sorter will use temporary files only if QH1 does not evaluate to a list and the size of the binary representation of the answers exceeds Size bytes, where size is the value of the size option.
string_to_handle(QueryString [, Options [, Bindings]]) -> QueryHandle | Error
Types:

- QueryString = string ()
- Options = [O ption] | Option
- Option $=\{$ max_lookup, $\operatorname{MaxLookup}\} \mid\{$ cache, bool()\} | cache \| \{unique, bool()\} | unique
- MaxLookup $=\operatorname{int}()>=0$ । infinity
- Bindings =-as returned by erl_eval:bindings/1-
- Error = \{error, module(), Reason\}
- Reason =-Errorlnfo as returned by erl_scan:string/1 or erl_parse:parse_exprs/1-

A string version of qlc:q/1,2.W hen the query handle is evaluated the fun created by the parse transform is interpreted by erl_eval (3). The query string is to be one single query list comprehension terminated by a period.

```
1> L = [1,2,3],
Bs = erl_eval:add_binding('L', L, erl_eval:new_bindings()),
QH = qlc:string_to_handle("[X+1 || X <- L].", [], Bs),
qlc:eval(QH).
[2,3,4]
```

This function is probably useful mostly when called from outside of Erlang, for instance from a driver written in C.

```
table(TraverseFun, Options) -> QueryHandle
```

Types:

- TraverseFun =TraverseFun0 । fun( $M$ atchExpression) $->$ O bjects
- TraverseFun0 = fun() -> O bjects
- O bjects = [] । [term() | O bjectList]
- O bjectL ist = TraverseFun0 \| O bjects
- Options = [Option] | Option
- Option = \{format_fun, FormatFun\} | \{info_fun, InfoFun\} | \{lookup_fun, LookupFun\} I \{parent_fun, ParentFun\} I \{post_fun, PostFun\} I \{pre_fun, PreFun\}
- FormatFun = undefined I fun(SelectedO bjects) $->$ FormatedTable
- SelectedO bjects = all । \{match_spec, M atchExpression\} । \{lookup, \{Position, Keys\}\}
- FormatedTable $=\{$ M od, Fun, Args $\} \mid$ AbstractExpression | character_list()
- InfoFun = undefined । fun(InfoTag) -> InfoValue
- InfoTag = indices | is_unique_objects | keypos | num_of_objects
- InfoValue = undefined I term()
- LookupFun = undefined I fun(Position, Keys) $->$ [term()]
- ParentFun = undefined I fun() $->$ ParentFunValue
- PostFun $=$ undefined $I$ fun() $->$ void()
- PreFun = undefined । fun([PreArg]) -> void()
- PreArg = \{parent_value, ParentFunValue\} I \{stop_fun, StopFun\}
- ParentFunValue = undefined । term()
- StopFun = undefined । fun() ->void()
- Position $=\operatorname{int}()>0$
- Keys = [term()]
- $\operatorname{Mod}=$ Fun $=$ atom( $)$
- Args = [term()]

Returns a query handle for a Q LC table. In Erlang/OTP there is support for ETS, D ets and M nesia tables, but it is also possible to turn many other data structures into Q LC tables. The way to accomplish this is to let function(s) in the module implementing the data structure create a query handle by calling qlc:table/2. The different ways to traverse the table as well as properties of the table are handled by callback functions provided as options to qlc: table/2.
The callback function TraverseFun is used for traversing the table. It is to return a list of objects terminated by either [] or a nullary fun to be used for traversing the not yet traversed objects of the table. Unary TraverseFuns are to accept a match specification as argument. The match specification is created by the parse transform by analyzing the pattern of the generator calling qlc:table/2 and filters using variables introduced in the pattern. If the parse transform cannot find a match specification equivalent to the pattern and filters, TraverseFun will be called with a match specification returning every object. M odules that can utilize match specifications for optimized traversal of tables should call qlc:table/2 with a unary TraverseFun while other modules can provide a nullary TraverseFun. ets: table/2 is an example of the former; gb_table:table/1 in the Implementing a Q LC table [page 249] section is an example of the latter.
PreFun is a unary callback function that is called once before the table is read for the first time. If the call fails, the query evaluation fails. Similarly, the nullary callback function PostFun is called once after the table was last read. The return value, which is caught, is ignored. If PreFun has been called for a table, PostFun is guaranteed to be called for that table, even if the evaluation of the query fails for some reason. The order in which pre (post) funs for different tables are evaluated is not specified. O ther table access than reading, such as calling InfoFun, is assumed to be OK at any time. The argument PreArgs is a list of tagged values. Currently there are two tags, parent_value and stop_fun, used by $M$ nesia for managing transactions. The value of parent_value is the value returned by ParentFun, or undefined if there is no ParentFun. ParentFun is called once just before the call of PreFun in the context of the process calling eval, fold, or cursor. The value of stop_fun is a nullary fun that deletes the cursor if called from the parent, or undef ined if there is no cursor.
The binary callback function LookupFun is used for looking up objects in the table. The first argument Position is the key position or an index position and the second argument Keys is a sorted list of unique values. The return value is to be a list of all objects (tuples) such that the element at Position is a member of Keys. LookupFun is called instead of traversing the table if the parse transform at compile time can find out that the filters match and compare the element at Position in such a way that only Keys need to be looked up in order to find all potential answers. The key position is obtained by calling InfoFun (keypos) and the index positions by calling InfoFun(indices). If the key position can be used for lookup it is always chosen, otherwise the index position requiring the least number of lookups is chosen. If there is a tie between two index positions the one occurring first in the list returned by InfoFun is chosen. Positions requiring more than max_lookup [page 255] lookups are ignored.
The unary callback function InfoFun is to return information about the table. undefined should be returned if the value of some tag is unknown:

- indices. Returns a list of indexed positions, a list of positive integers.
- is_unique_objects. Returns true if the objects returned by TraverseFun are unique.
- keypos. Returns the position of the table's key, a positive integer.
- num_of_objects. Returns the number of objects in the table, a non-negative integer.

The unary callback function FormatFun is used by qlc:info/1,2 for displaying the call that created the table's query handle. The default value undefined is displayed as a call to '\$MOD' : '\$FUN' $/ 0$, otherwise it is up to FormatFun to present the selected objects in a suitable way. If a character list is chosen for presentation it must be an Erlang expression that can be scanned and parsed (a trailing dot will be added by qlc:info though). The argument to FormatFun describes the optimizations done as a result of analyzing the filter(s). The possible values are:

- \{lookup, Position, Keys $\}$. LookupFun is used for looking up objects in the table.
- \{match_spec, MatchExpression\}. No way of finding all possible answers by looking up keys was found, but the filters could be transformed into a match specification. All answers are found by calling TraverseFun(MatchExpression).
- all. No optimization was found. A match specification matching all objects will be used if TraverseFun is unary.

See ets(3) [page 137], dets(3) [page 79] and [mnesia(3)] for the various options recognized by table/1, 2 in respective module.

## See Also

dets(3) [page 65], [ Erlang Reference $M$ anual], erl_eval(3) [page 98], [erlang(3)], ets(3)
[page 120], [file(3)], file_sorter(3) [page 140], [mnemosyne(3)], [mnesia(3)], [
Programming Examples], shell(3) [page 273]

## queue

Erlang M odule

This module implements FIFO queues in an efficient manner.
All operations has an amortised $O$ (1) running time, except len/1, reverse/1, join/2 and split/2 that probably are $\mathrm{O}(\mathrm{n})$.

## Exports

```
cons(Item, Q1) -> Q2
 Types:
 - Item = term()
 - Q1 = Q 2 = queue()
 Inserts Item at the head of queue Q1. Returns the new queue Q2.
daeh(Q) -> Item
```

    The same as last (Q) and the opposite of head (Q).
    from_list(L) -> queue()
Types:
- L = list()
Returns a queue containing the items in L , in the same order - the head item of the list
will be the head item of the queue.
head (Q) -> Item
Types:
- Item = term()
- $\mathrm{Q}=$ queue()
Returns Item from the head of queue $Q$.
Fails with reason empty if $Q$ is empty.
in(Item, Q1) -> Q2
Types:
- Item = term()
- Q1 = Q 2 = queue()

Inserts Item at the tail of queue Q1. Returns a new queue Q2. This is the same as $\operatorname{snoc}($ Q1, Item).
in_r(Item, Q1) -> Q2
Types:

- Item = term()
- $\mathrm{Q} 1=\mathrm{Q} 2$ = queue()

Inserts Item at the head of queue Q1. Returns a new queue Q2. This is the same as cons(Item, Q1).
init(Q1) -> Q2
Types:

- Item = term()
- $\mathrm{Q} 1=\mathrm{Q} 2$ = queue()

Returns a queue Q2 that is the result of removing the last item from Q1. This is the opposite of tail(Q1).
Fails with reason empty if Q1 is empty.
is_empty(Q) -> true | false
Types:

- Q = queue()

Tests if $Q$ is empty and returns true if so and false otherwise.
join(Q1, Q2) -> Q3
Types:

- $\mathrm{Q} 1=\mathrm{Q} 2=\mathrm{Q} 3$ = queue()

Returns a queue Q3 that is the result of joining Q1 and Q2 with Q1 before (at the head)
Q2.
lait(Q1) -> Q2
The same as init(Q1) and the opposite of tail(Q1).
last(Q) -> Item
Types:

- Item = term()
- $\mathrm{Q}=$ queue()

Returns the last item of queue Q. This is the opposite of head (Q).
Fails with reason empty if $Q$ is empty.
len(Q) $->N$
Types:

- Q = queue()
- $\mathrm{N}=$ integer ()

C alculates and returns the length of queue Q.

```
new() -> Q
Types:
- \(\mathrm{Q}=\) queue()
Returns an empty queue.
```

```
out(Q1) -> Result
```

out(Q1) -> Result
Types:
- Result = {{value, Item}, Q 2} | {empty, Q 1}
- Q1 = Q2 = queue()
Removes the head item from the queue Q1. Returns the tuple {{value, Item}, Q2},
where Item is the item removed and Q2 is the new queue. If Q1 is empty, the tuple
{empty, Q1} is returned.
out_r(Q1) -> Result
Types:
- Result = {{value, Item}, Q 2} | {empty, Q 1}
- Q 1 = Q 2 = queue()
Removes the last item from the queue Q1. Returns the tuple {{value, Item}, Q2},
where Item is the item removed and Q2 is the new queue. If Q1 is empty, the tuple
{empty, Q1} is returned.
reverse(Q1) -> Q2
Types:
- Q1 = Q 2 = queue()
Returns a queue Q2 that contains the items of Q1 in the reverse order.
snoc(Q1, Item) -> Q2
Types:
- Item = term()
- Q1 = Q 2 = queue()
Inserts Item as the last item of queue Q1. Returns the new queue Q2. This is the
opposite of cons(Item, Q1).
split(N, Q1) -> {Q2,Q3}
Types:
- N = integer()
- Q1 = Q2 = Q 3 = queue()
Splits Q1 into a queue Q2 of length N with items from the head end, and a queue Q3 with
the rest of the items.
tail(Q1) -> Q2

```

Types:
- Item = term()
- Q1 = Q2 = queue()

Returns a queue Q2 that is the result of removing the head item from Q1.
Fails with reason empty if Q1 is empty.
to_list(Q) -> list()
Types:
- Q = queue()

Returns a list of the items in the queue, with the head item of the queue as the head of the list.

\section*{random \\ Erlang M odule}

Random number generator. The method is attributed to B.A. W ichmann and I.D.H ill, in 'A \(n\) efficient and portable pseudo-random number generator', Journal of A pplied Statistics. AS183. 1982. Also Byte M arch 1987.
The current algorithm is a modification of the version attributed to Richard A O'Keefe in the standard Prolog library.
Every time a random number is requested, a state is used to calculate it, and a new state produced. The state can either be implicit (kept in the process dictionary) or be an explicit argument and return value. In this implementation, the state (the type ran()) consists of a tuple of three integers.

\section*{Exports}
```

seed() -> ran()

```

Seeds random number generation with default (fixed) values in the process dictionary, and returns the old state.
```

seed(A1, A2, A3) -> ran()

```

Types:
- \(\mathrm{A} 1=\mathrm{A} 2=\mathrm{A} 3=\operatorname{int}()\)

Seeds random number generation with integer values in the process dictionary, and returns the old state.
seedO() -> ran()
Returns the default state.
uniform()-> float()
Returns a random float uniformly distributed between 0.0 and 1.0, updating the state in the process dictionary.
uniform(N) -> int()
Types:
- \(N=\operatorname{int}()\)

Given an integer \(N>=1\), uniform/1 returns a random integer uniformly distributed between 1 and N , updating the state in the process dictionary.
```

uniform_s(State0) -> {float(), State1}

```

Types:
- State0 = State1 = ran()

Given a state, uniform_s/1returns a random float uniformly distributed between 0.0 and 1.0, and a new state.
uniform_s(N, State0) \(->\) \{int(), State1 \(\}\)
Types:
- \(\mathrm{N}=\operatorname{int}()\)
- State0 = State1 = ran()

Given an integer \(N>=1\) and a state, uniform_s/2 returns a random integer uniformly distributed between 1 and \(N\), and a new state.

\section*{Note}

Some of the functions use the process dictionary variable random_seed to remember the current seed.
If a process calls uniform/0 or uniform/1 without setting a seed first, seed/0 is called automatically.

\section*{regexp \\ Erlang M odule}

This module contains functions for regular expression matching and substitution.

\section*{Exports}
```

match(String, RegExp) -> MatchRes
Types:
- String = RegExp = string()
- M atchRes = {match,Start,Length} | nomatch | {error,errordesc()}
- Start = Length = integer()
Finds the first, longest match of the regular expression RegExp in String. This function
searches for the longest possible match and returns the first one found if there are
several expressions of the same length. It returns as follows:
{match,Start,Length} if the match succeeded. Start is the starting position of the
match, and Length is the length of the matching string.
nomatch if there were no matching characters.
{error,Error} if there was an error in RegExp.
first_match(String, RegExp) -> MatchRes
Types:
- String = RegExp = string()
- M atchRes = {match,Start,Length} | nomatch | {error,errordesc()}
- Start = L ength = integer()
Finds the first match of the regular expression RegExp in String. This call is usually
faster than match and it is also a useful way to ascertain that a match exists. It returns as
follows:
{match,Start,Length} if the match succeeded. Start is the starting position of the
match and Length is the length of the matching string.
nomatch if there were no matching characters.
{error, Error} if there was an error in RegExp.
matches(String, RegExp) -> MatchRes
Types:
- String = RegExp = string()

```
- \(M\) atchRes \(=\{\) match, \(M\) atches \(\}\) । \(\{\) error, errordesc ()\(\}\)
- \(M\) atches \(=\) list()

Finds all non-overlapping matches of the expression RegExp in String. It returns as follows:
\{match, Matches\} if the regular expression was correct. The list will be empty if there was no match. Each element in the list looks like \{Start, Length\}, where Start is the starting position of the match, and Length is the length of the matching string.
\{error, Error\} if there was an error in RegExp.
```

sub(String, RegExp, New) -> SubRes

```

Types:
- String = RegExp = N ew = string()
- SubRes = \{ok,N ewString,RepC ount \(\}\) | \{error,errordesc() \}
- RepCount = integer()

Substitutes the first occurrence of a substring matching RegExp in String with the string New. A \& in the string New is replaced by the matched substring of String. \\& puts a literal \& into the replacement string. It returns as follows:
\{ok, NewString, RepCount \} if RegExp is correct. RepCount is the number of replacements which have been made (this will be either 0 or 1).
\{error, Error\} if there is an error in RegExp.
gsub(String, RegExp, New) -> SubRes
Types:
- String = RegExp = N ew = string()
- SubRes \(=\{\) ok,N ewString,RepC ount \(\}\) । \(\{\) error,errordesc() \(\}\)
- RepCount = integer()

The same as sub, except that all non-overlapping occurrences of a substring matching RegExp in string are replaced by the string New. It returns:
\{ok, NewString, RepCount \} if RegExp is correct. RepCount is the number of replacements which have been made.
\{error, Error\} if there is an error in RegExp.
```

split(String, RegExp) -> SplitRes

```

Types:
- String = RegExp = string ()
- SubRes \(=\{\) ok,FieldList \(\}\) । error,errordesc() \(\}\)
- Fieldlist = [string()]

String is split into fields (sub-strings) by the regular expression RegExp.
If the separator expression is " " (a single space), then the fields are separated by blanks and/or tabs and leading and trailing blanks and tabs are discarded. For all other values of the separator, leading and trailing blanks and tabs are not discarded. It returns:
\{ok, FieldList \} to indicate that the string has been split up into the fields of FieldList.
\{error, Error\} if there is an error in RegExp.
sh_to_awk(ShRegExp) -> AwkRegExp
Types:
- ShRegExp A wkRegExp = string()
- SubRes = \{ok,N ewString,RepCount \(\}\) । \{error,errordesc() \(\}\)
- RepC ount = integer()

Converts the sh type regular expression ShRegExp into a full AWK regular expression. Returns the converted regular expression string. sh expressions are used in the shell for matching file names and have the following special characters:
* matches any string including the null string.
? matches any single character.
[...] matches any of the enclosed characters. Character ranges are specified by a pair of characters separated by a - If the first character after [is a !, then any character not enclosed is matched.

It may sometimes be more practical to use sh type expansions as they are simpler and easier to use, even though they are not as powerful.
```

parse(RegExp) -> ParseRes
Types:
- RegExp = string()
- ParseRes = {ok,RE} | {error,errordesc()}
Parses the regular expression RegExp and builds the internal representation used in the other regular expression functions. Such representations can be used in all of the other functions instead of a regular expression string. This is more efficient when the same regular expression is used in many strings. It returns:
$\{o k, R E\}$ if RegExp is correct and $R E$ is the internal representation.
\{error, Error\} if there is an error in RegExpString.
format_error(ErrorDescriptor) -> string()
Types:

- ErrorD escriptor = errordesc()
Returns a string which describes the error ErrorDescriptor returned when there is an error in a regular expression.

```

\section*{Regular Expressions}

The regular expressions allowed here is a subset of the set found in egrep and in the AWK programming language, as defined in the book, The AWK Programming Language, by A. V. Aho, B. W. Kernighan, P. J. Weinberger. They are composed of the following characters:
c matches the non-metacharacter c.
\(\backslash c\) matches the escape sequence or literal character c.
- matches any character.
- matches the beginning of a string.
\$ matches the end of a string.
[abc...] character class, which matches any of the characters abc . . . Character ranges are specified by a pair of characters separated by a -.
[^abc...] negated character class, which matches any character except abc....
r1 | r2 alternation. It matches either r1 or r2.
r1r2 concatenation. It matches r1 and then r2.
r+ matches one or more rs.
\(r^{*}\) matches zero or more \(r s\).
r? matches zero or one rs.
\((r)\) grouping. It matches \(r\).
The escape sequences allowed are the same as for Erlang strings:
\b backspace
\f form feed
\n newline (line feed)
\r carriage return
\t tab
\e escape
\v vertical tab
\s space
\d delete
\ddd the octal value ddd
\c any other character literally, for example \\ for backslash, \" for ")
To make these functions easier to use, in combination with the function io: get_line which terminates the input line with a new line, the \(\$\) characters also matches a string ending with " . . \n". The following examples define Erlang data types:
```

Atoms [a-z][0-9a-zA-Z_]*
Variables [A-Z_][0-9a-zA-Z_]*
Floats (\+|-)?[0-9]+\.[0-9]+((E|e)(\+|-)?[0-9]+)?

```

Regular expressions are written as Erlang strings when used with the functions in this module. This means that any \(\backslash\) or " characters in a regular expression string must be written with \as they are also escape characters for the string. For example, the regular expression string for Erlang floats is:
" (\\+|-)? [0-9]+\\. [0-9]+((E|e) (\\+|-)? [0-9]+)?".
It is not really necessary to have the escape sequences as part of the regular expression syntax as they can always be generated directly in the string. They are included for completeness and can they can also be useful when generating regular expressions, or when they are entered other than with Erlang strings.

\section*{sets}

Erlang M odule

Sets are collections of elements with no duplicate elements. The representation of a set is not defined.

\section*{Exports}
```

new() -> Set

```

Types:
- Set = set()

Returns a new empty ordered set.
```

is_set(Set) -> bool()

```

Types:
- Set = term()

Returns true if Set is an ordered set of elements, otherwise false.
```

size(Set) -> int()

```

Types:
- Set = term()

Returns the number of elements in Set.
to_list(Set) -> List
Types:
- Set \(=\) set()
- List = [term()]

Returns the elements of Set as a list.
from_list(List) -> Set
Types:
- List \(=[\) term(\()\)]
- Set = set()

Returns an ordered set of the elements in List.
```

is_element(Element, Set) -> bool()

```

Types:
- Element = term()
- Set = set()

Returns true if Element is an element of Set, otherwise false.
```

add_element(Element, Set1) -> Set2

```

Types:
- Element = term()
- Set1 \(=\) Set2 \(=\operatorname{set}(\))

Returns a new ordered set formed from Set 1 with Element inserted.
```

del_element(Element, Set1) -> Set2

```

Types:
- Element = term()
- Set1 \(=\) Set2 \(=\operatorname{set}()\)

Returns Set1, but with Element removed.
union(Set1, Set2) -> Set3
Types:
- Set1 \(=\) Set2 \(=\) Set3 \(=\operatorname{set}(\))

Returns the merged (union) set of Set1 and Set2.
union(SetList) -> Set
Types:
- SetList \(=[\) set() \(]\)
- Set = set()

Returns the merged (union) set of the list of sets.
```

intersection(Set1, Set2) -> Set3

```

Types:
- Set1 \(=\) Set2 \(=\) Set3 \(=\operatorname{set}(\))

Returns the intersection of Set1 and Set2.
intersection(SetList) -> Set
Types:
- SetList =[set()]
- Set = set()

Returns the intersection of the non-empty list of sets.
```

subtract(Set1, Set2) -> Set3

```

Types:
- Set1 \(=\) Set2 \(=\) Set3 \(=\operatorname{set}(\))

Returns only the elements of Set1 which are not also elements of Set2.
is_subset(Set1, Set2) -> bool()
Types:
- Set1 \(=\) Set2 \(=\operatorname{set}()\)

Returns true when every element of Set1 is also a member of Set2, otherwise false.
fold(Function, Acc0, Set) -> Acc1
Types:
- Function \(=\) fun (\(E, A \operatorname{lcI} n\)) \(->A c c O\) ut
- \(\mathrm{AccO}=\mathrm{Accl}=\mathrm{Accln}=\mathrm{AccO}\) ut \(=\) term()
- Set \(=\operatorname{set}()\)

Fold Function over every element in Set returning the final value of the accumulator.
filter(Pred, Set1) -> Set2
Types:
- Pred \(=\) fun (E) \(->\) bool()
- Set1 \(=\) Set2 \(=\operatorname{set}()\)

Filter elements in Set1 with boolean function Fun.

See Also
ordsets(3) [page 231], gb_sets(3) [page 153]

\author{
shell \\ Erlang M odule
}

The module shell implements an Erlang shell.
The shell is a user interface program for entering expression sequences. The expressions are evaluated and a value is returned. A history mechanism saves previous commands and their values, which can then be incorporated in later commands. How many commands and results to save can be determined by the user, either interactively, by calling shell:history/1 and shell:results/1, or by setting the application configuration parameters shell_history_length and shell_saved_results for the application stdlib.
Variable bindings, and local process dictionary changes which are generated in user expressions, are preserved and the variables can be used in later commands to access their values. The bindings can also be forgotten so the variables can be re-used.
The special shell commands all have the syntax of (local) function calls. They are evaluated as normal function calls and many commands can be used in one expression sequence.
If a command (local function call) is not recognized by the shell, an attempt is first made to find the function in the module user_default, where customized local commands can be placed. If found, then the function is evaluated. O therwise, an attempt is made to evaluate the function in the module shell_default. The module user_default must be explicitly loaded.
The shell also permits the user to start multiple concurrent jobs. A job can be regarded as a set of processes which can communicate with the shell.
There is some support for reading and printing records in the shell. D uring compilation record expressions are translated to tuple expressions. In runtime it is not known whether a tuple actually represents a record. N or are the record definitions used by compiler available at runtime. So in order to read the record syntax and print tuples as records when possible, record definitions have to be maintained by the shell itself. The shell commands for reading, defining, forgetting, listing, and printing records are described below. N ote that each job has its own set of record definitions. To facilitate matters record definitions in the modules shell_default and user_default (if loaded) are read each time a new job is started. For instance, adding the line
```

-include_lib("kernel/include/file.hrl").

```
to user_default makes the definition of file_info readily available in the shell.
The shell runs in two modes:
- Normal (possibly restricted) mode, in which commands can be edited and expressions evaluated.
- Job Control M ode JCL, in which jobs can be started, killed, detached and connected.

O nly the currently connected job can 'talk' to the shell.

\section*{Shell Commands}
b() Prints the current variable bindings.
f () Removes all variable bindings.
\(f(X)\) Removes the binding of variable \(X\).
\(h()\) Prints the history list.
history (N) Sets the number of previous commands to keep in the history list to N .
The previous number is returned. The default number is 20.
results (N) Sets the number of results from previous commands to keep in the history list to N . The previous number is returned. The default number is 20.
\(e(N)\) Repeats the command \(N\), if \(N\) is positive. If it is negative, the Nth previous command is repeated (i.e., e (-1) repeats the previous command).
\(\mathrm{v}(\mathrm{N})\) U ses the return value of the command N in the current command, if N is positive. If it is negative, the return value of the nth previous command is used (i.e., v (-1) uses the value of the previous command).
help() Evaluates shell_default:help().
c (File) Evaluates shell_default:c(File). This compiles and loads code in File and purges old versions of code, if necessary. A ssumes that the file and module names are the same.
rd(RecordName, RecordDefinition) Defines a record in the shell. RecordName is an atom and RecordDefinition lists the field names and the default values. U sually record definitions are made known to the shell by use of the rr commands described below, but sometimes it is handy to define records on the fly.
rf () Removes all record definitions, then reads record definitions from the modules shell_default and user_default (if loaded). Returns the names of the records defined.
rf (RecordNames) Removes selected record definitions. RecordNames is a record name or a list of record names. Use '_' to remove all record definitions.
rl() Prints all record definitions.
rl(RecordNames) Prints selected record definitions. RecordNames is a record name or a list of record names.
rp(Term) Prints a term using the record definitions known to the shell. All of Term is printed; the depth is not limited as is the case when a return value is printed.
rr (Module) Reads record definitions from a module's BEAM file. If there are no record definitions in the BEAM file, the source file is located and read instead. Returns the names of the record definitions read. Module is an atom.
rr (Wildcard) Reads record definitions from files. Existing definitions of any of the record names read are replaced. Wildcard is a wildcard string as defined in filelib(3) but not an atom.
rr(WildcardOrModule, RecordNames) Reads record definitions from files but discards record names not mentioned in RecordNames (a record name or a list of record names).
rr(WildcardOrModule, RecordNames, Options) Reads record definitions from files. The compiler options \(\{\mathrm{i}, \mathrm{Dir}\},\{\mathrm{d}, \mathrm{Macro}\}\), and \(\{\mathrm{d}\), Macro, Value \(\}\) are recognized and used for setting up the include path and macro definitions. Use '_' as value of RecordNames to read all record definitions.

\section*{Example}

The following example is a long dialogue with the shell. Commands starting with \(>\) are inputs to the shell. All other lines are output from the shell. All commands in this example are explained at the end of the dialogue. .
```

strider 1> erl
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]
Eshell V5.3 (abort with `G)
1>Str = "abcd".
"abcd"
2> L = length(Str).
4
3> Descriptor = {L, list_to_atom(Str) }.
{4,abcd}
4> L.
4
5> b().
Descriptor = {4,abcd }
L = 4
Str = "abcd"
ok
6> f(L).
ok
7> b().
Descriptor = {4,abcd}
Str = "abcd"
ok
8> f(L).
** 1: variable 'L' is unbound **
9> {L, _} = Descriptor.
{4,abcd}
10> L.
4
11> {P,Q, R } = Descriptor.
** exited: {{badmatch,{4,abcd}},[{erl_eval,expr,3}]}
12> P.
** 1: variable 'P' is unbound **
13> Descriptor.
{4,abcd}
14> {P,Q} = Descriptor.
{4,abcd}
15> P.
4
16> f().
ok
17> put(aa, hello).
undefined
18> get(aa).
hello
19> Y = test1:demo(1).
1 1

```
```

20> get().
[{aa,worked}]
21> put(aa, hello).
worked
22> Z = test1:demo(2).
=ERROR REPORT==== 19-Feb-2003::10:04:14 ===
Error in process <0.40.0> with exit value: {{badmatch,1},[{test1,demo,1},
{erl_eval,expr,4},{shell,eval_loop,2}]}
** exited: {{badmatch,1},
[{test1,demo,1},{erl_eval,expr,4},{shell,eval_loop,2}]}
23> Z.
** 1: variable 'Z' is unbound **
24> get(aa).
hello
25> erase(), put(aa, hello).
undefined
26> spawn(test1, demo, [1]).
<0.57.0>
27> get(aa).
hello
28> io:format("hello hello\n").
hello hello
ok
29> e(28).
hello hello
ok
30> v(28).
ok
31> c(ex).
{ok,ex}
32> rr(ex).
[rec]
33> rl(rec).
-record(rec, {a,
b = val()}).
ok
34> \#rec{}.
** exited: {undef,[{shell_default,val, []},
{erl_eval,do_apply,5},
{erl_eval,expr_list,6},
{erl_eval,expr,5},
{shell,eval_loop,2}]} **
35> \#rec{b = 3}.
{rec,undefined,3}
36> rp(v(-1)).
\#rec{a = undefined,
b = 3}
ok
37> rd(rec, {f = orddict:new()}).
rec
38> rp(\#rec{}).
\#rec{f = []}

```
```

ok
39> rd(rec, {c}), A.
** 1: variable 'A' is unbound **
40> rp(\#rec{}).
\#rec{c = undefined}
ok
41> test1:loop(0).
Hello Number: O
Hello Number: 1
Hello Number: 2
Hello Number: 3
User switch command
--> i
--> c

```

```

Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exited: killed **
42> halt().
strider 2>

```

\section*{Comments}

C ommand 1 sets the variable Str to the string "abcd".
C ommand 2 sets L to the length of the string evaluating the BIF atom_to_list.
Command 3 builds the tuple Descriptor.
C ommand 4 prints the value of the variable L.
Command 5 evaluates the internal shell command b() , which is an abbreviation of "bindings". This prints the current shell variables and their bindings. The ok at the end is the return value of the \(b()\) function.
Command \(6 \mathrm{f}(\mathrm{L})\) evaluates the internal shell command \(\mathrm{f}(\mathrm{L})\) (abbreviation of "forget"). The value of the variable \(L\) is removed.
Command 7 prints the new bindings.
Command 8 shows that L is no longer bound to a value.
Command 9 performs a pattern matching operation on Descriptor, binding a new value to L .
C ommand 10 prints the current value of L .
Command 11 tries to match \(\{\mathrm{P}, \mathrm{Q}, \mathrm{R}\}\) against Descriptor which is \(\{4, \mathrm{abc}\}\). The match fails and none of the new variables become bound. The printout starting with "** exited:" is not the value of the expression (the expression had no value because its evaluation failed), but rather a warning printed by the system to inform the user that an error has occurred. The values of the other variables (L, Str, etc.) are unchanged.

Commands 12 and 13 show that \(P\) is unbound because the previous command failed, and that Descriptor has not changed.
Commands 14 and 15 show a correct match where \(P\) and \(Q\) are bound.
Command 16 clears all bindings.
The next few commands assume that test1: demo (X) is defined in the following way:
```

demo(X) ->
put(aa, worked),
X = 1,
X + 10.

```

Commands 17 and 18 set and inspect the value of the item aa in the process dictionary.
Command 19 evaluates test1: demo(1). The evaluation succeeds and the changes made in the process dictionary become visible to the shell. The new value of the dictionary item aa can be seen in command 20.
Commands 21 and 22 change the value of the dictionary item aa to hello and call test1: demo (2). Evaluation fails and the changes made to the dictionary in test1: demo (2), before the error occurred, are discarded.
Commands 23 and 24 show that z was not bound and that the dictionary item aa has retained its original value.
Commands 25,26 and 27 show the effect of evaluating test1: demo(1) in the background. In this case, the expression is evaluated in a newly spawned process. A ny changes made in the process dictionary are local to the newly spawned process and therefore not visible to the shell.
Commands 28, 29 and 30 use the history facilities of the shell.
Command 29 is e (28). This re-evaluates command 28. Command 30 is v(28). This uses the value (result) of command 28. In the cases of a pure function (a function with no side effects), the result is the same. For a function with side effects, the result can be different.
The next few commands show some record manipulation. It is assumed that ex.erl defines a record like this:
```

-record(rec, {a, b = val()}).
val() ->
3.

```

Commands 31 and 32 compiles the file ex.erl and reads the record definitions in ex.beam. If the compiler did not output any record definitions on the BEAM file, rr (ex) tries to read record definitions from the source file instead.
Command 33 prints the definition of the record named rec.
Command 34 tries to create a rec record, but fails since the function val/0 is undefined. Command 35 shows the workaround: explicitly assign values to record fields that cannot otherwise be initialized.
Command 36 prints the newly created record using record definitions maintained by the shell.
Command 37 defines a record directly in the shell. The definition replaces the one read from the file ex.beam.
Command 38 creates a record using the new definition, and prints the result.

Command 39 and 40 show that record definitions are updated as side effects. The evaluation of the command fails but the definition of rec has been carried out.
For the next command, it is assumed that test1:loop(N) is defined in the following way:
```

loop(N) ->
io:format("Hello Number: ~w~n", [N]),
loop(N+1).

```

Command 41 evaluates test1:loop(0), which puts the system into an infinite loop. At this point the user types Control G, which suspends output from the current process, which is stuck in a loop, and activates JCL mode. In JCL mode the user can start and stop jobs.
In this particular case, the i command ("interrupt") is used to terminate the looping program, and the c command is used to connect to the shell again. Since the process was running in the background before we killed it, there will be more printouts before the "** exited: killed \(* *\) " message is shown.
The halt () command exits the Erlang runtime system.

\section*{J CL Mode}

W hen the shell starts, it starts a single evaluator process. This process, together with any local processes which it spawns, is referred to as a job. O nly the current job, which is said to be connected, can perform operations with standard IO. All other jobs, which are said to be detached, are blocked if they attempt to use standard IO.
All jobs which do not use standard IO run in the normal way.
The shell escape key \({ }^{\wedge} \mathrm{G}\) (Control G) detaches the current job and activates JCL mode. The JCL mode prompt is "-->". If "?" is entered at the prompt, the following help message is displayed:
```

--> ?
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s - start local shell
r [node] - start remote shell
q - quit Erlang
? | h - this message

```

The JCL commands have the following meaning:
c [nn] Connects to job number <nn> or the current job. The standard shell is resumed. O perations which use standard IO by the current job will be interleaved with user inputs to the shell.
i [nn] Stops the current evaluator process for job number nn or the current job, but does not kill the shell process. A ccordingly, any variable bindings and the process dictionary will be preserved and the job can be connected again. This command can be used to interrupt an endless loop.
k [nn] Kills job number nn or the current job. All spawned processes in the job are killed, provided they have not evaluated the group_leader/1 BIF and are located on the local machine. Processes spawned on remote nodes will not be killed.
j Lists all jobs. A list of all known jobs is printed. The current job name is prefixed with '*'.
s Starts a new job. This will be assigned the new index [nn] which can be used in references.
\(r\) [node] Starts a remote job on node. This is used in distributed Erlang to allow a shell running on one node to control a number of applications running on a network of nodes.
q Q uits Erlang. N ote that this option is disabled if Erlang is started with the ignore break, +Bi, system flag (which may be useful e.g. when running a restricted shell, see below).
? D isplays this message.
It is possible to alter the behaviour of shell escape by means of the stdlib application variable shell_esc. The value of the variable can be either jcl (erl -stdlib shell_esc jcl) or abort (erl -stdlib shell_esc abort). The first option sets ^G to activate JCL mode (which is also default behaviour). The latter sets \({ }^{\circ} \mathrm{G}\) to terminate the current shell and start a new one. JCL mode can not be invoked when shell_esc is set to abort.
If you want an Erlang node to have a remote job active from the start (rather than the default local job), you start Erlang with the -remsh flag. Example: erl -sname
this_node -remsh other_node@other_host

\section*{Restricted Shell}

The shell may be started in a restricted mode. In this mode, the shell evaluates a function call only if allowed. This feature makes it possible to, for example, prevent a user from accidentally calling a function from the prompt that could harm a running system (useful in combination with the the system flag +Bi).
When the restricted shell evaluates an expression and encounters a function call, it calls a predicate function (with information about the function call in question). This predicate function returns true to let the shell go ahead with the evaluation, or false to abort it. There are two possible predicate functions for the user to implement:
```

local_allowed(Func, ArgList, State) -> {true,NewState} |
{false,NewState}

```
to determine if the call to the local function Func with arguments ArgList should be allowed.
```

non_local_allowed(FuncSpec, ArgList, State) -> {true,NewState} |
{false,NewState}

```
to determine if the call to non-local function FuncSpec (\(\{\) Module, Func \(\}\) or a fun) with arguments ArgList should be allowed.
These predicate functions are in fact called from local and non-local evaluation function handlers, described in the erl_eval [page 98] manual page. (A rguments in ArgList are evaluated before the predicates are called).
The State argument is a tuple \{ShellState, ExprState\}. The return value NewState has the same form. This may be used to carry a state between calls to the predicate
functions. D ata saved in ShellState lives through an entire shell session. D ata saved in ExprState lives only through the evaluation of the current expression.
There are two ways to start a restricted shell session:
- Use the stdlib application variable restricted_shell and specify, as its value, the name of the predicate function module. Example (with predicate functions implemented in pred_mod.erl): \$ erl -stdlib restricted_shell pred_mod
- From a normal shell session, call function shell:start_restricted/1. This exits the current evaluator and starts a new one in restricted mode.

N otes:
- W hen restricted shell mode is activated or deactivated, new jobs started on the node will run in restricted or normal mode respectively.
- If restricted mode has been enabled on a particular node, remote shells connecting to this node will also run in restricted mode.
- The predicate functions can not be used to allow or disallow execution of functions called from compiled code (only functions called from expressions entered at the shell prompt).

\section*{Exports}
```

history(N) -> integer()

```

Types:
- \(\mathrm{N}=\) integer()

Sets the number of previous commands to keep in the history list to \(N\). The previous number is returned. The default number is 20.
```

results(N) -> integer()

```

Types:
- \(\mathrm{N}=\) integer ()

Sets the number of results from previous commands to keep in the history list to N. The previous number is returned. The default number is 20.
start_restricted(Module) -> ok
Types:
- M odule = atom()

Exits a normal shell and starts a restricted shell. Module specifies the module for the predicate functions local_allowed/3 and non_local_allowed/3. The function is meant to be called from the shell.
```

stop_restricted() -> ok

```

Exits a restricted shell and starts a normal shell. The function is meant to be called from the shell.

\section*{shell_default}

Erlang M odule

The functions in shell_default are called when no module name is given in a shell command.
Consider the following shell dial ogue:
\(1>\) lists:reverse("abc").
"cba"
\(2>\mathrm{c}\) (foo).
\{ok, foo\}
In command one, the module lists is called. In command two, no module name is specified. The shell searches the modules user_default followed by shell_default for the function foo/1.
shell_default is intended for "system wide" customizations to the shell. user_default is intended for "local" or individual user customizations.

\section*{Hint}

To add your own commands to the shell, create a module called user_default and add the commands you want. Then add the following line as the first line in your .erlang file in your home directory.
```

code:load_abs("\$PATH/user_default").

```
\$PATH is the directory where your user_default module can be found.

\author{
slave \\ Erlang M odule
}

This module provides functions for starting Erlang slave nodes. All slave nodes which are started by a master will terminate automatically when the master terminates. All TTY output produced at the slave will be sent back to the master node. File I/O is done via the master.
Slave nodes on other hosts than the current one are started with the program rsh. The user must be allowed to rsh to the remote hosts without being prompted for a password. This can be arranged in a number of ways (refer to the rsh documentation for details). A slave node started on the same host as the master inherits certain environment values from the master, such as the current directory and the environment variables. For what can be assumed about the environment when a slave is started on another host, read the documentation for the rsh program.
A \(n\) alternative to the rsh program can be specified on the command line to erl as follows: -rsh Program.
The slave node should use the same file system at the master. A t least, Erlang/OTP should be installed in the same place on both computers and the same version of Erlang should be used.
Currently, a node running on Windows NT can only start slave nodes on the host on which it is running.
The master node must be alive.

\section*{Exports}
start(Host)
Starts a slave node on the host Host. H ost names need not necessarily be specified as fully qualified names; short names can also be used. This is the same condition that applies to names of distributed Erlang nodes. The name of the started node will be the same as the node which executes the call, with the exception of the host name part of the node name.
Return value: see start/3.
start_link(Host)
Starts a slave node on the host Host in the same way as the start/1, except that the slave node is linked to the currently executing process. If the process terminates, the slave node also terminates.
Return value: see start/3.
```

start(Host, Name)

```

Starts a slave node on the host Host with the name Name@Host.
Return value: see start/3.
```

start_link(Host, Name)

```

Starts a slave node on the host Host in the same way as start/2, except that the slave node is linked to the currently executing process. If that process terminates, the slave node also terminates.

Return value: see start/3.
start(Host, Name, Args) \(->\) \{ok, Node\} | \{error, ErrorInfo\}
Starts a slave node with the name Name@Host on Host and passes the argument string Args to the new node.

The slave node resets its user process so that all terminal I/O which is produced at the slave is automatically relayed to the master. Also, the file process will be relayed to the master.

The Args argument can be used for a variety of purposes. See erl(1). For example, the following command line arguments can be passed to the slave:
- to set some environment variable on the slave
- to run some specific program on the slave
- to set some specific code path on the slave node.

As an example, suppose that we want to start a slave node at host \(H\) with the node name Name@H, and we also want the slave node to have the following properties:
- directory Dir should be added to the code path;
- the M nesia directory should be set to M;
- the unix DISPLAY environment variable should be set to the display of the master node.

The following code is executed to achieve this:
```

E = " -env DISPLAY " ++ net_adm:localhost() ++ ":0 ",
Arg = "-mnesia_dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).

```

The start/3 call returns \{ok, Name@Host \} if successful, otherwise \{error, Reason\}. Reason can be one of:
timeout The master node failed to get in contact with the slave node. This can happen in a number of circumstances:
- Erlang/OTP is not installed on the remote host
- the file system on the other host has a different structure to the the master
- the Erlang nodes have different cookies.
no_rsh There is no rsh program on the computer.
\{already_running, Name@Host\} A node with the name Name@Host already exists.
```

start_link(Host, Name, Args)

```

Starts a slave node on the host Host in the same way as the start/3, except that the slave node is linked to the currently executing process. If that process terminates, the slave node also terminates.
Return value: see start/3.
stop(Node)
Stops (kills) a node.
pseudo([Master | ServerList])
Calls pseudo (Master, ServerList). If we want to start a node from the command line and set up a number of pseudo servers, an Erlang runtime system can be started as follows:
\% erl -name abc -s slave pseudo klacke@super x --
pseudo(Master, ServerList)
Starts a number of pseudo servers. A pseudo server is a server with a registered name which does absolutely nothing but pass on all message to the real server which executes at a master node. A pseudo server is an intermediary which only has the same registered name as the real server.
For example, if we have started a slave node N and want to execute pxw graphics code on this node, we can start the server pxw_server as a pseudo server at the slave node. The following code illustrates:
rpc:call(N, slave, pseudo, [node(), [pxw_server]]).
relay(Pid)
Runs a pseudo server. This function never returns any value and the process which executes the function will receive messages. All messages received will simply be passed on to Pid.

\author{
sofs \\ Erlang M odule
}

The sofs module implements operations on finite sets and relations represented as sets. Intuitively, a set is a collection of elements; every element belongs to the set, and the set contains every element.
Given a set \(A\) and a sentence \(S(x)\), where \(x\) is a free variable, a new set \(B\) whose elements are exactly those elements of \(A\) for which \(S(x)\) holds can be formed, this is denoted \(B=\{x i n A: S(x)\}\). Sentences are expressed using the logical operators "for some" (or "there exists"), "for all", "and", "or", "not". If the existence of a set containing all the specified elements is known (as will always be the case in this module), we write \(B=\{x: S(x)\}\).
The unordered set containing the elements \(a, b\) and \(c\) is denoted \(\{a, b, c\}\). This notation is not to be confused with tuples. The ordered pair of \(a\) and \(b\), with first coordinate \(a\) and second coordinate \(b\), is denoted (\(a, b\)). A \(n\) ordered pair is an ordered set of two elements. In this module ordered sets can contain one, two or more elements, and parentheses are used to enclose the elements. U nordered sets and ordered sets are orthogonal, again in this module; there is no unordered set equal to any ordered set.
The set that contains no elements is called the empty set. If two sets A and B contain the same elements, then \(A\) is equal to \(B\), denoted \(A=B\). Two ordered sets are equal if they contain the same number of elements and have equal elements at each coordinate. If a set \(A\) contains all elements that \(B\) contains, then \(B\) is a subset of \(A\). The union of two sets \(A\) and \(B\) is the smallest set that contains all elements of \(A\) and all elements of \(B\). The intersection of two sets \(A\) and \(B\) is the set that contains all elements of \(A\) that belong to \(B\). Two sets are disjoint if their intersection is the empty set. The difference of two sets A and \(B\) is the set that contains all elements of \(A\) that do not belong to \(B\). The symmetric difference of two sets is the set that contains those element that belong to either of the two sets, but not both. The union of a collection of sets is the smallest set that contains all the elements that belong to at least one set of the collection. The intersection of a non-empty collection of sets is the set that contains all elements that belong to every set of the collection.
The \(C\) artesian product of two sets \(X\) and \(Y\), denoted \(X Y\), is the set \(\{a\) : \(a=(x, y)\) for some xinX and for some yinY \}. A relation is a subset of \(X Y\). Let \(R\) be a relation. The fact that \((x, y)\) belongs to \(R\) is written as \(x R y\). Since relations are sets, the definitions of the last paragraph (subset, union, and so on) apply to relations as well. The domain of \(R\) is the set \(\{x\) : \(x R y\) for some \(y i n Y\}\). The range of \(R\) is the set \(\{y\) : \(x R y\) for some \(x i n X\}\). The converse of \(R\) is the set \(\{a\) : \(a=(y, x)\) for some \((x, y) \operatorname{inR}\}\). If \(A\) is a subset of \(X\), then the image of \(A\) under \(R\) is the set \(\{y\) : \(x R y\) for some \(x i n A\}\), and if \(B\) is a subset of \(Y\), then the inverse image of \(B\) is the set \(\{x\) : \(x R y\) for some yin \(B\}\). If \(R\) is a relation from \(X\) to \(Y\) and \(S\) is a relation from \(Y\) to \(Z\), then the relative product of \(R\) and \(S\) is the relation \(T\) from \(X\) to \(Z\) defined so that \(x T z\) if and only if there exists an element \(y\) in \(Y\) such that \(x R y\) and \(y S z\). The restriction of \(R\) to \(A\) is the set \(S\) defined so that \(x S y\) if and only if there exists an element \(x\) in \(A\) such that \(x R y\). If \(S\) is a restriction of \(R\) to \(A\), then \(R\) is an extension of \(S\) to \(X\). If \(X=Y\) then we call \(R\) a relation in \(X\). The field of a relation \(R\) in \(X\) is the union of
the domain of \(R\) and the range of \(R\). If \(R\) is a relation in \(X\), and if \(S\) is defined so that \(x S y\) if \(x R y\) and not \(x=y\), then \(S\) is the strict relation corresponding to \(R\), and vice versa, if \(S\) is a relation in \(X\), and if \(R\) is defined so that \(x R y\) if \(x S y\) or \(x=y\), then \(R\) is the weak relation corresponding to \(S\). A relation \(R\) in \(X\) is reflexive if \(x R x\) for every element \(x\) of \(X\); it is symmetric if \(x\) Ry implies that \(y R x\); and it is transitive if \(x R y\) and \(y R z\) imply that \(x R z\).
A function \(F\) is a relation, a subset of \(X Y\), such that the domain of \(F\) is equal to \(X\) and such that for every x in X there is a unique element y in Y with (\(\mathrm{x}, \mathrm{y}\)) in F . The latter condition can be formulated as follows: if \(x\) Fy and \(x F z\) then \(\mathrm{y}=\mathrm{z}\). In this module, it will not be required that the domain of F be equal to X for a relation to be considered a function. Instead of writing (\(x, y\)) inF or \(x F y\), we write \(F(x)=y\) when \(F\) is a function, and say that F maps x onto y , or that the value of F at x is y . Since functions are relations, the definitions of the last paragraph (domain, range, and so on) apply to functions as well. If the converse of a function \(F\) is a function \(F^{\prime}\), then \(F^{\prime}\) is called the inverse of \(F\). The relative product of two functions F1 and F2 is called the composite of F1 and F2 if the range of F1 is a subset of the domain of F2.

Sometimes, when the range of a function is more important than the function itself, the function is called a family. The domain of a family is called the index set, and the range is called the indexed set. If \(x\) is a family from I to \(X\), then \(x[i]\) denotes the value of the function at index \(i\). The notation "a family in \(X\) " is used for such a family. When the indexed set is a set of subsets of a set \(X\), then we call \(x\) a family of subsets of \(X\). If \(x\) is a family of subsets of \(X\), then the union of the range of \(x\) is called the union of the family x . If x is non-empty (the index set is non-empty), the intersection of the family x is the intersection of the range of \(x\). In this module, the only families that will be considered are families of subsets of some set X; in the following the word "family" will be used for such families of subsets.
A partition of a set \(X\) is a collection \(S\) of non-empty subsets of \(X\) whose union is \(X\) and whose elements are pairwise disjoint. A relation in a set is an equivalence relation if it is reflexive, symmetric and transitive. If \(R\) is an equivalence relation in \(X\), and \(X\) is an element of \(X\), the equivalence class of \(x\) with respect to \(R\) is the set of all those elements y of X for which xRy holds. The equivalence classes constitute a partitioning of X .
C onversely, if \(C\) is a partition of \(X\), then the relation that holds for any two elements of \(X\) if they belong to the same equivalence class, is an equivalence relation induced by the partition \(C\). If \(R\) is an equivalence relation in \(X\), then the canonical map is the function that maps every element of \(X\) onto its equivalence class.
Relations as defined above (as sets of ordered pairs) will from now on be referred to as binary relations. We call a set of ordered sets (\(\mathrm{x}[1], \ldots, \mathrm{x}[\mathrm{n}]\)) an (n -ary) relation, and say that the relation is a subset of the Cartesian product \(X[1] \ldots \mathrm{C}[\mathrm{n}]\) where \(\mathrm{x}[\mathrm{i}]\) is an element of \(\mathrm{X}[\mathrm{i}], 1<=\mathrm{i}<=\mathrm{n}\). The projection of an n -ary relation R onto coordinate i is the set \(\{x[i]:(x[1], \ldots, x[i], \ldots, x[n])\) in \(R\) for some \(x[j] \operatorname{inX}[j], 1<=j<=n\) and not \(i=j\}\). The projections of a binary relation \(R\) onto the first and second coordinates are the domain and the range of R respectively. The relative product of binary relations can be generalized to \(n\)-ary relations as follows. Let TR be an ordered set (\(R[1], \ldots, R[n]\)) of binary relations from X to \(\mathrm{Y}[\mathrm{i}]\) and S a binary relation from (\(\mathrm{Y}[1] \ldots \mathrm{Y}[\mathrm{n}]\)) to Z . The relative product of TR and \(S\) is the binary relation \(T\) from \(X\) to \(Z\) defined so that \(x T z\) if and only if there exists an element \(y[i]\) in \(Y[i]\) for each \(1<=i<=n\) such that \(x R[i] y[i]\) and \((y[1], \ldots, y[n]) S z\). Now let TR be a an ordered set (\(R[1], \ldots, R[n]\)) of binary relations from \(\mathrm{X}[\mathrm{i}]\) to \(\mathrm{Y}[\mathrm{i}]\) and S a subset of \(\mathrm{X}[1] \ldots \mathrm{X}[\mathrm{n}]\). The multiple relative product of \(T R\) and and \(S\) is defined to be the set \(\{z: ~ z=((x[1], \ldots, x[n]),(y[1], \ldots, y[n]))\) for some (\(\mathrm{x}[1], \ldots, \mathrm{x}[\mathrm{n}]\)) inS and for some (\(\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{i}]\)) in \(\mathrm{R}[\mathrm{i}], 1<=\mathrm{i}<=\mathrm{n}\}\). The natural join of an n -ary relation R and an m -ary relation S on coordinate i and j is defined to be the set \(\{z\) :
\(z=(x[1], \ldots, x[n], y[1], \ldots, y[j-1], y[j+1], \ldots, y[m])\) for some \((x[1], \ldots, x[n])\) inR and for some \((y[1], \ldots, y[m])\) inS such that \(x[i]=y[j]\}\).
The sets recognized by this module will be represented by elements of the relation Sets, defined as the smallest set such that:
- for every atom T except ' - ' and for every term \(\mathrm{X},(\mathrm{T}, \mathrm{X})\) belongs to Sets (atomic sets);
- (['_'],[]) belongs to Sets (the untyped empty set);
- for every tuple \(T=\{T[1], \ldots, T[n]\}\) and for every tuple \(X=\{X[1], \ldots, X[n]\}\), if (\(T[i], X[i]\)) belongs to Sets for every \(1<=i<=n\) then (\(T, X\)) belongs to Sets (ordered sets);
- for every term \(T\), if \(X\) is the empty list or a non-empty sorted list [\(X\) [1],.., \(X\) [\(n\)]] without duplicates such that (\(T, X[i]\)) belongs to Sets for every \(1<=i<=n\), then (\([\mathrm{T}], \mathrm{X}\)) belongs to Sets (typed unordered sets).

An external set is an element of the range of Sets. A type is an element of the domain of Sets. If \(S\) is an element (\(T, X\)) of Sets, then \(T\) is a valid type of \(X, T\) is the type of \(S\), and \(X\) is the external set of \(S\). from_term/2 [page 297] creates a set from a type and an Erlang term turned into an external set.
The actual sets represented by Sets are the elements of the range of the function Set from Sets to Erlang terms and sets of Erlang terms:
- \(\operatorname{Set}(\) T,Term \()=\) Term, where \(T\) is an atom;
- \(\operatorname{Set}(\{T[1], \ldots, T[n]\},\{X[1], \ldots, X[n]\})=(\operatorname{Set}(T[1], X[1]), \ldots, \operatorname{Set}(T[n], X[n]))\);
- \(\operatorname{Set}([T],[X[1], \ldots, X[n]])=\{\operatorname{Set}(T, X[1]), \ldots, \operatorname{Set}(T, X[n])\}\);
- \(\operatorname{Set}([T],[])=\{ \}\).

When there is no risk of confusion, elements of Sets will be identified with the sets they represent. For instance, if \(U\) is the result of calling union/2 with S1 and S2 as arguments, then \(U\) is said to be the union of \(S 1\) and \(S 2\). A more precise formulation would be that \(\operatorname{Set}(\mathrm{U})\) is the union of \(\operatorname{Set}(\mathrm{S} 1)\) and \(\operatorname{Set}(\mathrm{S} 2)\).
The types are used to implement the various conditions that sets need to fulfill. As an example, consider the relative product of two sets \(R\) and \(S\), and recall that the relative product of \(R\) and \(S\) is defined if \(R\) is a binary relation to \(Y\) and \(S\) is a binary relation from Y. The function that implements the relative product, relative_product/2 [page 304], checks that the arguments represent binary relations by matching [\(\{A, B\}\)] against the type of the first argument (Argl say), and [\(\{C, D\}]\) against the type of the second argument (Arg 2 say). The fact that \([\{A, B\}]\) matches the type of \(A r g 1\) is to be interpreted as \(A\) rgl representing a binary relation from \(X\) to \(Y\), where \(X\) is defined as all sets Set(\(x\)) for some element \(x\) in Sets the type of which is A, and similarly for \(Y\). In the same way Arg2 is interpreted as representing a binary relation from W to Z . Finally it is checked that B matches C , which is sufficient to ensure that W is equal to Y . The untyped empty set is handled separately: its type, ['_'], matches the type of any unordered set.
A few functions of this module (drestriction/3, family_projection/2, partition/2, partition_family/2, projection/2, restriction/3, substitution/2) accept an Erlang function as a means to modify each element of a given unordered set. Such a function, called SetFun in the following, can be specified as a functional object (fun), a tuple \{external, Fun \}, or an integer. If SetFun is specified as a fun, the fun is applied to each element of the given set and the return value is
assumed to be a set. If SetFun is specified as a tuple \{external, Fun\}, Fun is applied to the external set of each element of the given set and the return value is assumed to be an external set. Selecting the elements of an unordered set as external sets and assembling a new unordered set from a list of external sets is in the present implementation more efficient than modifying each element as a set. H owever, this optimization can only be utilized when the elements of the unordered set are atomic or ordered sets. It must also be the case that the type of the elements matches some clause of Fun (the type of the created set is the result of applying Fun to the type of the given set), and that Fun does nothing but selecting, duplicating or rearranging parts of the elements. Specifying a SetFun as an integer I is equivalent to specifying \{external, fun(\(X\)) \(->\) element (\(I, X\)) \}, but is to be preferred since it makes it possible to handle this case even more efficiently. Examples of SetFuns:
```

{sofs, union}
fun(S) -> sofs:partition(1, S) end
{external, fun(A) -> A end}
{external, fun({A,_,C}) -> {C,A} end}
{external, fun({-,{-,C}}) -> C end}
{external, fun({-,{-,{-,E}=C}}) -> {E,{E,C}} end}
2

```

The order in which a SetFun is applied to the elements of an unordered set is not specified, and may change in future versions of sofs.
The execution time of the functions of this module is dominated by the time it takes to sort lists. W hen no sorting is needed, the execution time is in the worst case proportional to the sum of the sizes of the input arguments and the returned value. A few functions execute in constant time: from_external, is_empty_set, is_set, is_sofs_set, to_external, type.
The functions of this module exit the process with a badarg, bad_function, or type_mismatch message when given badly formed arguments or sets the types of which are not compatible.
Types
```

anyset() = -an unordered, ordered or atomic set-
binary_relation() = -a binary relation-
bool() = true | false
external_set() = -an external set-
family() = -a family (of subsets)-
function() = -a function-
ordset() = -an ordered set-
relation() = -an n-ary relation-
set() = -an unordered set-
set_of_sets() = -an unordered set of set()-
set_fun() = integer() >= 1
| {external, fun(external_set()) -> external_set()}
| fun(anyset()) -> anyset()
spec_fun() = {external, fun(external_set()) -> bool()}
| fun(anyset()) -> bool()
type() = -a type-

```

\section*{Exports}
```

a_function(Tuples [, Type]) -> Function

```

Types:
- Function = function()
- Tuples = [tuple()]
- Type = type()

Creates a function [page 287]. a_function(\(F, T\)) is equivalent to from_term (\(F\), \(T\)), if the result is a function. If no type [page 288] is explicitly given, [\{atom, atom\}] is used as type of the function.
canonical_relation(SetOfSets) -> BinRel
Types:
- BinRel = binary_relation()
- SetO fSets = set_of_sets()

Returns the binary relation containing the elements (\(E\), Set) such that Set belongs to SetO fSets and E belongs to Set. If SetO fSets is a partition [page 287] of a set X and R is the equivalence relation in \(X\) induced by SetO fSets, then the returned relation is the canonical map [page 287] from \(X\) onto the equivalence classes with respect to \(R\).
\(1>\) Ss = sofs:from_term([[a,b], [b, c]]),
CR = sofs:canonical_relation(Ss),
sofs:to_external(CR).
\(\overline{[\{a,[a, b]\},\{b,[a, b]\}},\{b,[b, c]\},\{c,[b, c]\}]\)
composite(Function1, Function2) -> Function3
Types:
- Function1 = Function2 = Function3 = function()

Returns the composite [page 287] of the functions Function1 and Function2.
\(1>\underline{F 1=}\) sofs:a_function \(([\{a, 1\},\{b, 2\},\{c, 2\}])\),
\(\mathrm{F} 2=\) sofs: a_function \(([\{1, \mathrm{x}\},\{2, \mathrm{y}\},\{3, \mathrm{z}\}])\),
F = sofs:composite(F1, F2),
sofs:to_external(F).
\([\{a, x\},\{b, y\},\{c, y\}]\)
constant_function(Set, AnySet) -> Function
Types:
- A nySet = anyset()
- Function = function()
- Set = set()

Creates the function [page 287] that maps each element of the set Set onto AnySet.
```

1> S = sofs:set([a,b]),
E = sofs:from_term(1),
R = sofs:constant_function(S, E),
sofs:to_external(R).
[{a,1},{b,1}]
converse(BinRel1) -> BinRel2
Types:
- BinRel1 = BinRel2 = binary_relation()
Returns the converse [page 286] of the binary relation BinRel1.
1> R1 = sofs:relation([{1,a},{2,b},{3,a}]),
R2 = sofs:converse(R1),
sofs:to_external(R2).
[{a,1},{a,3},{b,2}]
difference(Set1, Set2) -> Set3
Types:
- Set1 = Set2 = Set3 = set()
Returns the difference [page 286] of the sets Set1 and Set2.
digraph_to_family(Graph [, Type]) -> Family
Types:
- Graph = digraph() -see digraph(3)-
- Family = family()
- Type = type()
C reates a family [page 287] from the directed graph G raph. Each vertex a of Graph is
represented by a pair ( }a,{b[1],···,b[n]})\mathrm{ where the b[i]'s are the out-neighbours of a. If
no type is explicitly given, [ {atom,[atom]}] is used as type of the family. It is assumed
that Type is a valid type [page 288] of the external set of the family.
If G is a directed graph, it holds that the vertices and edges of G are the same as the
vertices and edges of family_to_digraph(digraph_to_family(G)).
domain(BinRel) -> Set
Types:
- BinRel = binary_relation()
- Set = set()
Returns the domain [page 286] of the binary relation BinRel.
1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:domain(R),
sofs:to_external(S).
[1,2]
drestriction(BinRel1, Set) -> BinRel2

```

Types:
- BinRel1 = BinRel2 = binary_relation()
- Set \(=\operatorname{set}()\)

Returns the difference between the binary relation BinRel1 and the restriction [page 286] of BinRel1 to Set.
\(1>\) R1 = sofs:relation(\([\{1, a\},\{2, b\},\{3, c\}])\),
\(\mathrm{S}=\) sofs:set([2,4,6]),
R2 = sofs:drestriction(R1, S),
sofs:to_external(R2).
\([\{1, a\},\{3, c\}]\)
drestriction(R,S) is equivalent to difference(R,restriction (R,S)).
drestriction(SetFun, Set1, Set2) -> Set3
Types:
- SetFun = set_fun()
- Set1 \(=\) Set2 \(=\) Set3 \(=\operatorname{set}()\)

Returns a subset of Set1 containing those elements that do not yield an element in Set2 as the result of applying SetFun.
```

1> SetFun = {external, fun({A,B,C}) -> {B,C} end},
R1 = sofs:relation([{a,aa,1},{b,bb,2},{c,cc,3}]),
R2 = sofs:relation([{bb,2},{cc,3},{dd,4}]),
R3 = sofs:drestriction(SetFun, R1, R2),
sofs:to_external(R3).
[{a,aa,1}]
drestriction(F,S1,S2) is equivalent to difference(S1,restriction(F,S1,S2)).

```
empty_set() -> Set

Types:
- Set = set()

Returns the untyped empty set [page 288]. empty_set () is equivalent to from_term([], ['_']).
```

extension(BinRel1, Set, AnySet) -> BinRel2

```

Types:
- AnySet = anyset()
- BinRel1 = BinRel2 = binary_relation()
- Set = set()

Returns the extension [page 286] of BinRel1 such that for each element \(E\) in Set that does not belong to the domain [page 286] of BinRel1, BinRel2 contains the pair (E,AnySet).
```

1> S = sofs:set([b,c]),
A = sofs:empty_set(),
R = sofs:family([{a,[1,2]},{b,[3]}]),
X = sofs:extension(R, S, A),
sofs:to_external(X).
[{a,[1,2]},{b,[3]},{c,[]}]

```
```

family(Tuples [, Type]) -> Family

```

\section*{Types:}
- Family = family ()
- Tuples \(=[\) tuple ()\(]\)
- Type = type()

C reates a family of subsets [page 287]. family (\(F, T\)) is equivalent to from_term (\(F, T\)), if the result is a family. If no type [page 288] is explicitly given, [\{atom, [atom] \}] is used as type of the family.
```

family_difference(Family1, Family2) -> Family3

```

Types:
- Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 287], then Family3 the family such that the index set is equal to the index set of Family1, and Family \(3[i]\) is the difference between Family1[i] and Family2[i] if Family2 maps i, Family1[i] otherwise.
\(1>\mathrm{F} 1=\) sofs: \(\operatorname{family}([\{a,[1,2]\},\{b,[3,4]\}])\),
\(\mathrm{F} 2=\) sofs: \(\mathrm{family}([\{\mathrm{b},[4,5]\},\{\mathrm{c},[6,7]\}])\),
F3 = sofs:family_difference(F1, F2),
sofs:to_external(F3).
\([\{a,[1,2]\},\{b,[3]\}]\)
family_domain(Family1) -> Family2
Types:
- Family1 = Family2 = family()

If Family1 is a family [page 287] and Family1[i] is a binary relation for every \(i\) in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the domain [page 286] of Family1[i].
\(1>\operatorname{FR}=\) sofs: \(\operatorname{from}\) term \(([\{a,[\{1, a\},\{2, b\},\{3, c\}]\},\{b,[]\},\{c,[\{4, d\},\{5, e\}]\}])\),
\(F=\) sofs:family_domain(FR),
sofs:to_external(F).
\([\{a,[1,2,3]\},\{b,[]\},\{c,[4,5]\}]\)
family_field(Family1) -> Family2
Types:
- Family1 = Family2 = family()

If Family1 is a family [page 287] and Family1[i] is a binary relation for every \(i\) in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the field [page 286] of Family1[i].
\(1>\operatorname{FR}=\) sofs: \(\operatorname{from_ term}([\{\mathrm{a},[\{1, \mathrm{a}\},\{2, \mathrm{~b}\},\{3, \mathrm{c}\}]\},\{\mathrm{b},[]\},\{\mathrm{c},[\{4, \mathrm{~d}\},\{5, \mathrm{e}\}]\}])\), \(F=\) sofs:family_field(FR),
sofs:to_external(F).
\([\{a,[1,2,3, a, b, c]\},\{b,[]\},\{c,[4,5, d, e]\}]\)
family_field(Family1) is equivalent to family_union(family_domain(Family1), family_range(Family1)).
family_intersection(Family1) -> Family2
Types:
- Family1 = Family2 = family()

If Family1 is a family [page 287] and Family1[i] is a set of sets for every \(i\) in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the intersection [page 286] of Family1[i].
If Family1[i] is an empty set for some \(i\), then the process exits with a badarg message.
\(1>\) F1 = sofs:from_term ([\{a, [[1, 2, 3] , \([2,3,4]]\},\{b,[[x, y, z],[x, y]]\}])\),
F2 = sofs:family_intersection(F1),
sofs:to_external(F2).
\(\overline{[\{a,[2,3]\},\{b,[x, y]\}]}\)
family_intersection(Family1, Family2) -> Family3
Types:
- Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 287], then Family3 is the family such that the index set is the intersection of Family1's and Family2's index sets, and Family3[i] is the intersection of Family1[i] and Family2[i].
```

1> F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),
F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),
F3 = sofs:family_intersection(F1, F2),
sofs:to_external(F3).
[{b,[4]},{c,[]}]

```
family_projection(SetFun, Family1) -> Family2
Types:
- SetFun = set_fun()
- Family1 = Family2 = family()
- Set = set()

If Family1 is a family [page 287] then Family2 is the family with the same index set as Family1 such that Family2[i] is the result of calling SetFun with Family1[i] as argument.
\(1>\) F1 \(=\) sofs: from_term \(([\{a,[[1,2],[2,3]]\},\{b,[[]]\}])\),
F2 = sofs:family_projection(\{sofs, union\}, F1),
sofs:to_external(F2).
\([\{a,[1,2,3]\},\{b,[]\}]\)
family_range(Family1) -> Family2
Types:
- Family1 = Family2 = family ()

If Family1 is a family [page 287] and Family1[i] is a binary relation for every \(i\) in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the range [page 286] of Family1[i].
```

    1> FR = sofs: from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),
    F = sofs:family_range(FR),
    sofs:to_external(F).
    [{a,[a,b,c]},{b,[]},{c,[d,e]}]
    family_specification(Fun, Family1) -> Family2
Types:
- Fun = spec_fun()
- Family1 = Family2 = family()
If Family1 is a family [page 287], then Family2 is the restriction [page 286] of Family1
to those elements i of the index set for which Fun applied to Family1[i] returns true. If
Fun is a tuple {external, Fun2}, Fun2 is applied to the external set [page 288] of
Family1[i], otherwise Fun is applied to Family1[i].
1> F1 = sofs:family([{a,[1,2,3]},{b,[1,2]},{c,[1]}]),
SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,
F2 = sofs:family_specification(SpecFun, F1),
sofs:to_external(F2).
[{b,[1,2]}]
family_to_digraph(Family [, GraphType]) -> Graph
Types:
- Graph = digraph()
- Family = family()
- G raphType = -see digraph(3)-
C reates a directed graph from the family [page 287] Family. For each pair
(a,{b[1],···,b[n]}) of Family, the vertex a as well the edges (a,b[i]) for 1<=i<=n are
added to a newly created directed graph.
If no graph type is given, digraph:new/1 is used for creating the directed graph,
otherwise the G raphType argument is passed on as second argument to digraph:new/2.
It F is a family, it holds that F is a subset of
digraph_to_family(family_to_digraph(F),type(F)). Equality holds if
union_of_family(F) is a subset of domain(F).
Creating a cycle in an acyclic graph exits the process with a cyclic message.
family_to_relation(Family) -> BinRel
Types:
- Family = family()
- BinRel = binary_relation()
If Family is a family [page 287], then BinRel is the binary relation containing all pairs
(i,x) such that i belongs to the index set of Family and x belongs to Family[i].
1> F= sofs:family([{a,[]},{b,[1]},{c,[2,3]}]),
R = sofs:family_to_relation(F),
sofs:to_external(R).
[{b,1},{c,2},{c,3}]

```
```

family_union(Family1) -> Family2

```

Types:
- Family1 = Family2 = family()

If Family1 is a family [page 287] and Family1[i] is a set of sets for each in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the union [page 286] of Family1[i].
1> F1 = sofs:from_term ([\{a, [[1, 2], [2, 3]]\},\{b,[[]]\}]),
\(\mathrm{F} 2=\) sofs:family_union(F1),
sofs:to_external(F2).
\([\{a,[1,2,3]\},\{b,[]\}]\)
family_union(F) is equivalent to family_projection(\{sofs, union\}, \(F\)).
family_union(Family1, Family2) -> Family3
Types:
- Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 287], then Family3 is the family such that the index set is the union of Family1's and Family2's index sets, and Family3[i] is the union of Family1[i] and Family2[i] if both maps i, Family1[i] or Family2[i] otherwise.
\(1>\underline{F 1}=\) sofs:family \(([\{a,[1,2]\},\{b,[3,4]\},\{c,[5,6]\}])\),
\(\mathrm{F} 2=\) sofs: \(\operatorname{family}([\{\mathrm{b},[4,5]\},\{\mathrm{c},[7,8]\},\{\mathrm{d},[9,10]\}])\),
F3 = sofs:family_union(F1, F2),
sofs:to_external(F3).
\([\{a,[1,2]\},\{b,[3,4,5]\},\{c,[5,6,7,8]\},\{d,[9,10]\}]\)
field(BinRel) -> Set
Types:
- BinRel = binary_relation()
- Set = set()

Returns the field [page 286] of the binary relation BinRel.
\(1>R=\) sofs:relation([\{1,a\},\{1,b\},\{2,b\},\{2,c\}]),
S = sofs:field(R),
sofs:to_external(S).
\([1,2, a, b, c]\)
field (R) is equivalent to union(domain(R), range(R)).
from_external (ExternalSet, Type) -> AnySet
Types:
- ExternalSet = external_set()
- A nySet = anyset()
- Type = type()

Creates a set from the external set [page 288] ExternalSet and the type [page 288]
Type. It is assumed that Type is a valid type [page 288] of ExternalSet.
from_sets(ListOfSets) -> Set

Types:
- Set = set()
- ListO fSets = [anyset()]

Returns the unordered set [page 288] containing the sets of the list ListO fSets.
1> S1 = sofs:relation (\([\{a, 1\},\{b, 2\}])\),
S2 = sofs:relation([\{x,3\},\{y,4\}]),
S = sofs:from_sets([S1,S2]),
sofs:to_external(S).
\(\left.\left.\frac{\operatorname{l[\{ }, 1\},\{b, 2\}],[\{x, 3\}}{},\{y, 4\}\right]\right]\)
from_sets(TupleOfSets) -> Ordset
Types:
- O rdset = ordset()
- TupleO fSets = tuple-of(anyset())

Returns the ordered set [page 288] containing the sets of the non-empty tuple TupleO fSets.
```

from_term(Term [, Type]) -> AnySet

```

Types:
- AnySet = anyset()
- Term = term()
- Type = type()

C reates an element of Sets [page 288] by traversing the term Term, sorting lists, removing duplicates and deriving or verifying a valid type [page 288] for the so obtained external set. An explicitly given type [page 288] Type can be used to limit the depth of the traversal; an atomic type stops the traversal, as demonstrated by this example where "foo" and \{"foo"\} are left unmodified:
\(1>S\) = sofs:from_term([\{\{"foo"\},[1,1]\},\{"foo", [2, 2]\}], [\{atom, [atom] \}]), sofs:to_external(S).
[\{\{"foo"\}, [1] \}, \{"foo", [2]\}]
from_term can be used for creating atomic or ordered sets. The only purpose of such a set is that of later building unordered sets since all functions in this module that do anything operate on unordered sets. Creating unordered sets from a collection of ordered sets may be the way to go if the ordered sets are big and one does not want to waste heap by rebuilding the elements of the unordered set. A \(n\) example showing that a set can be built "layer by layer":
```

1> A = sofs:from_term(a),
S = sofs:set([1,2,3]),
P1 = sofs:from_sets({A,S}),
P2 = sofs:from_term({b,[6,5,4]}),
Ss = sofs:from_sets([P1,P2]),
sofs:to_external(Ss).
[{a,[1,2,3]},{b,[4,5,6]}]

```

O ther functions that create sets are from_external/2 and from_sets \(/ 1\). Special cases of from_term/2 are a_function/1,2, empty_set/0, family/1,2, relation/1, 2 , and set/1,2.
```

image(BinRel, Set1) -> Set2

```

Types:
- BinRel = binary_relation()
- Set1 = Set2 = set()

Returns the image [page 286] of the set Set1 under the binary relation BinRel.
\(1>R=\) sofs:relation \(([\{1, a\},\{2, b\},\{2, c\},\{3, d\}])\),
S1 = sofs:set([1,2]),
S2 = sofs:image(R, S1),
sofs:to_external(S2).
[a,b, c]
intersection(SetOfSets) -> Set
Types:
- Set = set()
- SetO fSets = set_of_sets()

Returns the intersection [page 286] of the set of sets SetO fSets.
Intersecting an empty set of sets exits the process with a badarg message.
```

intersection(Set1, Set2) -> Set3

```

Types:
- Set1 \(=\) Set2 \(=\) Set3 \(=\operatorname{set}()\)

Returns the intersection [page 286] of Set1 and Set2.
intersection_of_family(Family) -> Set
Types:
- Family = family()
- Set = set()

Returns the intersection of the family [page 287] Family.
Intersecting an empty family exits the process with a badarg message.
\(1>\underset{F}{ }=\) sofs:family \(([\{a,[0,2,4]\},\{b,[0,1,2]\},\{c,[2,3]\}])\),
\(S=\) sofs:intersection_of_family(F),
sofs:to_external(S).
[2]
inverse(Function1) -> Function2
Types:
- Function \(1=\) Function \(2=\) function()

Returns the inverse [page 287] of the function Function1.
```

    1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
    R2 = sofs:inverse(R1),
    sofs:to_external(R2).
    [{a,1},{b,2},{c,3}]
    inverse_image(BinRel, Set1) -> Set2
Types:
- BinRel = binary_relation()
- Set1 = Set2 = set()
Returns the inverse image [page 286] of Set1 under the binary relation BinRel.
1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 = sofs:set([c,d,e]),
S2 = sofs:inverse_image(R, S1),
sofs:to_external(S2).
[2,3]
is_a_function(BinRel) -> Bool
Types:
- Bool = bool()
- BinRel = binary_relation()
Returns true if the binary relation BinRel is a function [page 287] or the untyped
empty set, false otherwise.
is_disjoint(Set1, Set2) -> Bool
Types:

- Bool = bool()
- Set1 = Set2 = set()
Returns true if Set1 and Set2 are disjoint [page 286], false otherwise.
is_empty_set(AnySet) -> Bool
Types:
- A nySet = anyset()
- Bool = bool()
Returns true if Set is an empty unordered set, false otherwise.
is_equal(AnySet1, AnySet2) -> Bool
Types:
- AnySet1 = A nySet2 = anyset()
- Bool = bool()
Returns true if the A nySet1 and A nySet2 are equal [page 286], false otherwise.

```
```

is_set(AnySet) -> Bool

```
is_set(AnySet) -> Bool
Types:
```

- AnySet $=$ anyset()
- Bool = bool()

Returns true if AnySet is an unordered set [page 288], and false if A nySet is an ordered set or an atomic set.

```
is_sofs_set(Term) -> Bool
```

Types:

- Bool = bool()
- Term = term()

Returns true if Term is an unordered set [page 288], an ordered set or an atomic set, false otherwise.
is_subset(Set1, Set2) -> Bool
Types:

- Bool = bool()
- Set1 = Set2 = set()

Returns true if Set1 is a subset [page 286] of Set2, false otherwise.

```
is_type(Term) -> Bool
```

Types:

- Bool = bool()
- Term = term()

Returns true if the term Term is a type [page 288].

```
join(Relation1, I, Relation2, J) -> Relation3
```

Types:

- Relation1 $=$ Relation2 $=$ Relation3 $=$ relation()
- I $=\mathrm{J}=$ integer ()$>0$

Returns the natural join [page 287] of the relations Relation1 and Relation2 on coordinates I and J.

1> R1 = sofs:relation ([\{a, $x, 1\},\{b, y, 2\}])$,
R2 = sofs:relation([\{1,f,g\},\{1,h,i\},\{2,3,4\}]),
J = sofs:join(R1, 3, R2, 1),
sofs:to_external(J).
$[\{a, x, 1, f, g\},\{a, x, 1, h, i\},\{b, y, 2,3,4\}]$
multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2
Types:

- TupleO fBinRels = tuple-of(BinRel)
- BinRel $=$ BinRel1 $=$ BinRel2 $=$ binary_relation()

If TupleO fBinRels is a non-empty tuple $\{R[1], \ldots, R[n]\}$ of binary relations and BinRel 1 is a binary relation, then BinRel2 is the multiple relative product [page 287] of the ordered set ( $R[i], \ldots, R[n]$ ) and BinRel1.

```
1> Ri = sofs:relation([{a,1},{b,2},{c,3}]),
R = sofs:relation([{a,b},{b,c},{c,a}]),
MP = sofs:multiple_relative_product({Ri, Ri}, R),
sofs:to_external(sofs:range(MP)).
[{1,2},{2,3},{3,1}]
no_elements(ASet) -> NoElements
```

Types:

- ASet = set() | ordset()
- NoElements = integer ( ) >=0

Returns the number of elements of the ordered or unordered set A Set.

```
partition(SetOfSets) -> Partition
Types:
- SetO fSets = set_of_sets()
- Partition = set()
Returns the partition [page 287] of the union of the set of sets SetO fSets such that two elements are considered equal if they belong to the same elements of SetO fSets.
```

```
1> Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),
```

1> Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),
Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),
Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),
P = sofs:partition(sofs:union(Sets1, Sets2)),
P = sofs:partition(sofs:union(Sets1, Sets2)),
sofs:to_external(P).
sofs:to_external(P).
[[a],[b, c],[d],[e,f],[g],[h,i], [j]]
[[a],[b, c],[d],[e,f],[g],[h,i], [j]]
partition(SetFun, Set) -> Partition

```

Types:
- SetFun = set_fun()
- Partition = set()
- Set = set()

Returns the partition [page 287] of Set such that two elements are considered equal if the results of applying SetFun are equal.

1> Ss = sofs:from_term([[a], [b], [c, d], [e,f]]),
SetFun \(=\) fun(S) \(->\) sofs:from_term(sofs:no_elements(S)) end, \(\mathrm{P}=\) sofs: partition(SetFun, Ss), sofs:to_external(P).
\(\overline{[[[a],[b]],[[c, d],[e, f]]]}\)
partition(SetFun, Set1, Set2) \(->\{\operatorname{Set} 3, \operatorname{Set} 4\}\)
Types:
- SetFun = set_fun()
- Set1 \(=\) Set \(2=\) Set \(3=\operatorname{Set} 4=\operatorname{set}()\)

Returns a pair of sets that, regarded as constituting a set, forms a partition [page 287] of Set1. If the result of applying SetFun to an element of Set1 yields an element in Set2, the element belongs to Set3, otherwise the element belongs to Set4.
```

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([2,4,6]),
{R2,R3} = sofs:partition(1, R1, S),
{sofs:to_external(R2),sofs:to_external(R3)}.
{[{2,b}],[{1,a},{3,c}]}
partition(F,S1,S2) is equivalent to {restriction(F,S1,S2),
drestriction(F,S1,S2)}.
partition_family(SetFun, Set) -> Family
Types:
- Family = family()

- SetFun = set_fun()
- Set = set()
Returns the family [page 287] Family where the indexed set is a partition [page 287] of Set such that two elements are considered equal if the results of applying SetFun are the same value i. This i is the index that Family maps onto the equivalence class [page 287].

```
```

1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),

```
1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),
SetFun = {external, fun({A,_,C,_}) -> {A,C} end},
SetFun = {external, fun({A,_,C,_}) -> {A,C} end},
F = sofs:partition_family(SetFun, S),
F = sofs:partition_family(SetFun, S),
sofs:to_external(F).
sofs:to_external(F).
[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]
[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]
product(TupleOfSets) -> Relation
Types:
- Relation = relation()
- TupleO fSets = tuple-of(set())
Returns the C artesian product [page 287] of the non-empty tuple of sets TupleO fSets. If (\(x[1], \ldots, x[n]\)) is an element of the \(n\)-ary relation Relation, then \(x[i]\) is drawn from element \(i\) of TupleO fSets.
```

```
1> S1 = sofs:set([a,b]),
```

1> S1 = sofs:set([a,b]),
S2 = sofs:set([1,2]),
S2 = sofs:set([1,2]),
S3 = sofs:set([x,y]),
S3 = sofs:set([x,y]),
P3 = sofs:product({S1,S2,S3}),
P3 = sofs:product({S1,S2,S3}),
sofs:to_external(P3).
sofs:to_external(P3).
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]
product(Set1, Set2) -> BinRel

```

Types:
- BinRel = binary_relation()
- Set1 = Set2 = set()

Returns the C artesian product [page 286] of Set1 and Set2.
```

1> S1 = sofs:set([1,2]),
S2 = sofs:set([a,b]),
R = sofs:product(S1, S2),
sofs:to_external(R).
[{1,a},{1,b},{2,a},{2,b}]

```
product (S1, S2) is equivalent to product (\(\{\mathrm{S} 1, \mathrm{~S} 2\}\)).
```

projection(SetFun, Set1) -> Set2
Types:

- SetFun = set_fun()
- Set1 = Set2 = set() SetFun to the element. [page 287] of Set1 onto coordinate i.
$1>\underline{S 1=}$ sofs:from_term([\{1,a\},\{2,b\},\{3,a\}]),
S2 = sofs:projection(2, S1),
sofs:to_external(S2). [a,b]
range (BinRel) -> Set

```

Returns the set created by substituting each element of Set1 by the result of applying

If SetFun is a number \(\mathrm{i}>=1\) and Set1 is a relation, then the returned set is the projection

Types:
- BinRel = binary_relation()
- Set = set()

Returns the range [page 286] of the binary relation BinRel.
\(1>R=\) sofs:relation([\{1,a\},\{1,b\},\{2,b\},\{2,c\}]),
S = sofs:range(R),
sofs:to_external(S).
[a,b, c]
relation(Tuples [, Type]) -> Relation
Types:
- \(\mathrm{N}=\) integer()
- Type = N | type()
- Relation = relation()
- Tuples = [tuple()]

Creates a relation [page 286]. relation (\(R, T\)) is equivalent to from_term (\(R, T\)), if \(T\) is a type [page 288] and the result is a relation. If Type is an integer \(N\), then
\([\{\) atom,\(\ldots\), atom \(\}])\), where the size of the tuple is \(N\), is used as type of the relation. If no type is explicitly given, the size of the first tuple of Tuples is used if there is such a tuple. relation([]) is equivalent to relation([] ,2).
relation_to_family(BinRel) -> Family
Types:
- Family = family()
- BinRel = binary_relation()

Returns the family [page 287] Family such that the index set is equal to the domain [page 286] of the binary relation BinRel, and Family[i] is the image [page 286] of the set of \(i\) under BinRel.
```

    1> R = sofs:relation([{b,1},{c,2},{c,3}]),
    F= sofs:relation_to_family(R),
sofs:to_external(F).
[{b,[1]},{c,[2,3]}]
relative_product(TupleOfBinRels [, BinRel1]) -> BinRel2
Types:

- TupleO fBinRels = tuple-of(BinRel)
- BinRel $=$ BinRel1 $=$ BinRel2 $=$ binary_relation()
If TupleO fBinRels is a non-empty tuple $\{R[1], \ldots, R[n]\}$ of binary relations and BinRel 1 ( $R[i], \ldots, R[n]$ ) and BinRel1.
If BinRel1 is omitted, the relation of equality betw een the elements of the C artesian product [page 287] of the ranges of $\mathrm{R}[\mathrm{i}]$, rangeR[1]...rangeR[ $n$ ], is used instead (intuitively, nothing is "lost").
$1>\mathrm{TR}=$ sofs:relation $([\{1, \mathrm{a}\},\{1, \mathrm{aa}\},\{2, \mathrm{~b}\}])$,
$\mathrm{R} 1=$ sofs:relation $([\{1, \mathrm{u}\},\{2, \mathrm{v}\},\{3, \mathrm{c}\}])$,
R2 = sofs:relative_product(\{TR, R1\}),
sofs:to_external(R2).
$\overline{[\{1,\{a, u\}\},\{1,\{\mathrm{aa}, \mathrm{u}\}\}},\{2,\{\mathrm{~b}, \mathrm{v}\}\}]$

``` is a binary relation, then BinRel2 is the relative product [page 287] of the ordered set

N ote that relative_product (\(\{\mathrm{R} 1\}, \mathrm{R} 2\)) is different from relative_product (\(\mathrm{R} 1, \mathrm{R} 2\)); the tuple of one element is not identified with the element itself.
```

relative_product(BinRel1, BinRel2) -> BinRel3

```

Types:
- BinRel1 = BinRel2 = BinRel3 = binary_relation()

Returns the relative product [page 286] of the binary relations BinRel1 and BinRel2.
```

relative_product1(BinRel1, BinRel2) -> BinRel3

```

Types:
- BinRel1 = BinRel2 = BinRel3 = binary_relation()

Returns the relative product [page 286] of the converse [page 286] of the binary relation BinRel1 and the binary relation BinRel2.
\(1>\mathrm{R} 1=\) sofs:relation(\([\{1, \mathrm{a}\},\{1, \mathrm{aa}\},\{2, \mathrm{~b}\}])\),
\(\mathrm{R} 2=\) sofs:relation \(([\{1, u\},\{2, \mathrm{v}\},\{3, \mathrm{c}\}])\),
R3 = sofs:relative_product1(R1, R2),
sofs:to_external(R3).
\([\{a, u\},\{a a, u\},\{b, v\}]\)
relative_product1 (R1, R2) is equivalent to relative_product (converse (R1) ,R2).
restriction(BinRel1, Set) -> BinRel2
Types:
- BinRel1 = BinRel2 = binary_relation()
- Set = set()

Returns the restriction [page 286] of the binary relation BinRel1 to Set.
```

1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([1,2,4]),
R2 = sofs:restriction(R1, S),
sofs:to_external(R2).
[{1,a},{2,b}]
restriction(SetFun, Set1, Set2) -> Set3
Types:

- SetFun = set_fun()
- Set1 = Set2 = Set3 = set()
Returns a subset of Set1 containing those elements that yield an element in Set2 as the result of applying SetFun.
$1>$ S1 = sofs:relation( $[\{1, a\},\{2, b\},\{3, c\}])$,
S2 = sofs:set([b, c,d]),
S3 = sofs:restriction(2, S1, S2),
sofs:to_external(S3).
$[\{2, b\},\{3, c\}]$
set(Terms [, Type]) -> Set
Types:
- Set = set()
- Terms = [term()]
- Type = type()
C reates an unordered set [page 288]. set (L, T) is equivalent to from_term (L, T), if the result is an unordered set. If no type [page 288] is explicitly given, [atom] is used as type of the set.

```
Types:
- Fun = spec_fun()
- Set1 = Set2 = set()
```

```
specification(Fun, Set1) -> Set2
```

specification(Fun, Set1) -> Set2
Returns the set containing every element of Set1 for which Fun returns true. If Fun is a tuple \{external , Fun2\}, Fun2 is applied to the external set [page 288] of each element, otherwise Fun is applied to each element.
1> R1 = sofs:relation( $[\{a, 1\},\{b, 2\}]$ ),
R2 = sofs:relation([\{x,1\},\{x,2\},\{y,3\}]),
S1 = sofs:from_sets([R1,R2]),
S2 = sofs:specification(\{sofs,is_a_function\}, S1),
sofs:to_external(S2).
[[\{a,1\},\{b,2\}]]

```
```

strict_relation(BinRel1) -> BinRel2

```
strict_relation(BinRel1) -> BinRel2
Types:
- BinRel1 = BinRel2 = binary_relation()
Returns the strict relation [page 287] corresponding to the binary relation BinRel1.
```

```
 1> R1 = sofs:relation([{1,1},{1, 2},{2,1},{2,2}]),
R2 = sofs:strict_relation(R1),
sofs:to_external(R2).
[{1,2},{2,1}]
substitution(SetFun, Set1) -> Set2
Types:
- SetFun = set_fun()
- Set1 = Set2 = set()
Returns a function, the domain of which is Set1. The value of an element of the domain is the result of applying SetFun to the element.
```

```
1>L=[{a,1},{b,2}].
```

1>L=[{a,1},{b,2}].
[{a, 1},{b,2}]
[{a, 1},{b,2}]
2> sofs:to_external(sofs:projection(1,sofs:relation(L))).
2> sofs:to_external(sofs:projection(1,sofs:relation(L))).
[a,b]
[a,b]
3> sofs:to_external(sofs:substitution(1,sofs:relation(L))).
3> sofs:to_external(sofs:substitution(1,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]
[{{a,1},a},{{b,2},b}]
4> SetFun = {external, fun ({A,_}=E) -> {E,A} end},
4> SetFun = {external, fun ({A,_}=E) -> {E,A} end},
sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).
sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]
[{{a,1},a},{{b,2},b}]
The relation of equality between the elements of $\{a, b, c\}$ :

```
```

1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),

```
1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),
sofs:to_external(I).
sofs:to_external(I).
[{a,a},{b,b},{c,c}]
[{a,a},{b,b},{c,c}]
Let SetO fSets be a set of sets and BinRel a binary relation. The function that maps each element Set of SetO fSets onto the image [page 286] of Set under BinRel is returned by this function:
```

```
images(SetOfSets, BinRel) ->
```

images(SetOfSets, BinRel) ->
Fun = fun(Set) -> sofs:image(BinRel, Set) end,
Fun = fun(Set) -> sofs:image(BinRel, Set) end,
sofs:substitution(Fun, SetOfSets).
sofs:substitution(Fun, SetOfSets).
Here might be the place to reveal something that was more or less stated before, namely that external unordered sets are represented as sorted lists. As a consequence, creating the image of a set under a relation $R$ may traverse all elements of $R$ (to that comes the sorting of results, the image). In images $/ 2$, BinRel will be traversed once for each element of SetO fSets, which may take too long. The following efficient function could be used instead under the assumption that the image of each element of SetO fSets under BinRel is non-empty:

```
```

images2(SetOfSets, BinRel) ->

```
images2(SetOfSets, BinRel) ->
 CR = sofs:canonical_relation(SetOfSets),
 CR = sofs:canonical_relation(SetOfSets),
 R = sofs:relative_product1(CR, BinRel),
 R = sofs:relative_product1(CR, BinRel),
 sofs:relation_to_family(R).
 sofs:relation_to_family(R).
symdiff(Set1, Set2) -> Set3
Types:
- Set1 \(=\) Set2 \(=\) Set3 \(=\) set()
Returns the symmetric difference [page 286] (or the Boolean sum) of Set1 and Set2.
```

```
1> S1 = sofs:set([1,2,3]),
S2 = sofs:set([2,3,4]),
P = sofs:symdiff(S1, S2),
sofs:to_external(P).
[1,4]
symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5}
Types:
- Set1 \(=\) Set \(2=\) Set \(3=\) Set \(4=\) Set \(5=\operatorname{set}()\)
Returns a triple of sets: Set3 contains the elements of Set1 that do not belong to Set2; Set4 contains the elements of Set1 that belong to Set2; Set5 contains the elements of Set2 that do not belong to Set1.
to_external(AnySet) -> ExternalSet
Types:
- ExternalSet = external_set()
- AnySet = anyset()
Returns the external set [page 288] of an atomic, ordered or unordered set.
to_sets(ASet) -> Sets
Types:
- A Set \(=\operatorname{set}()\) । ordset()
- Sets = tuple_of(AnySet) । [A nySet]
Returns the elements of the ordered set A Set as a tuple of sets, and the elements of the unordered set A Set as a sorted list of sets without duplicates.
type(AnySet) -> Type
Types:
- AnySet = anyset()
- Type = type()
Returns the type [page 288] of an atomic, ordered or unordered set.
```

```
union(SetOfSets) -> Set
```

union(SetOfSets) -> Set
Types:

- Set = set()
- SetO fSets = set_of_sets()
Returns the union [ page 286] of the set of sets SetO fSets.
union(Set1, Set2) -> Set3
Types:
- Set1 $=$ Set2 $=$ Set $3=\operatorname{set}()$
Returns the union [page 286] of Set1 and Set2.

```
```

union_of_family(Family) -> Set

```

Types:
- Family = family()
- Set = set()

Returns the union of the family [page 287] Family.
\(1>F=\) sofs: \(\operatorname{family}([\{a,[0,2,4]\},\{b,[0,1,2]\},\{c,[2,3]\}])\), S = sofs:union_of_family(F),
sofs:to_external(S).
\([0,1,2,3,4]\)
weak_relation(BinRel1) -> BinRel2
Types:
- BinRel1 = BinRel2 = binary_relation()

Returns a subset S of the weak relation [page 287] W corresponding to the binary relation BinRel1. Let \(F\) be the field [page 286] of BinRel1. The subset \(S\) is defined so that \(x S y\) if \(x W y\) for some \(x\) in \(F\) and for some \(y\) in \(F\).
\(1>\mathrm{R} 1=\) sofs:relation \(([\{1,1\},\{1,2\},\{3,1\}])\), R2 = sofs:weak_relation(R1),
sofs:to_external(R2).
\([\{1,1\},\{1,2\},\{2,2\},\{3,1\},\{3,3\}]\)

\section*{See Also}
dict(3) [page 81], digraph(3) [page 85], orddict(3) [page 230], ordsets(3) [page 231], sets(3) [page 270]

\section*{string \\ Erlang M odule}

This module contains functions for string processing.

\section*{Exports}
```

len(String) -> Length
Types:
- String = string()
- Length = integer()
Returns the number of characters in the string.
equal(String1, String2) -> bool()
Types:
- String1 = String2 = string()
Tests whether two strings are equal. Returns true if they are, otherwise false.
concat(String1, String2) -> String3
Types:
- String1 = String2 = String3 = string()
C oncatenates two strings to form a new string. Returns the new string.
chr(String, Character) -> Index
rchr(String, Character) -> Index
Types:
- String = string()
- Character = char()
- Index = integer()
Returns the index of the first/last occurrence of Character in String. 0 is returned if
Character does not occur.
str(String, SubString) -> Index
rstr(String, SubString) -> Index
Types:
- String = SubString = string()

```
- Index = integer()

Returns the position where the first/last occurrence of SubString begins in String. 0 is returned if SubString does not exist in String. For example:
```

> string:str(" Hello Hello World World ", "Hello World").

```
8
```

span(String, Chars) -> Length
cspan(String, Chars) -> Length

```

Types:
- String \(=\) C hars \(=\) string ()
- Length = integer()

Returns the length of the maximum initial segment of String, which consists entirely of characters from (not from) Chars.
For example:
```

> string:span("\t abcdef", " \t").
5
> string:cspan("\t abcdef", " \t").
0

```
```

substr(String, Start) -> SubString
substr(String, Start, Length) -> Substring

```

\section*{Types:}
- String = SubString = string()
- Start = Length = integer()

Returns a substring of String, starting at the position Start, and ending at the end of the string or at length Length.
For example:
```

> substr("Hello World", 4, 5).

```
"lo Wo"
tokens(String, SeparatorList) -> Tokens
Types:
- String \(=\) SeparatorList \(=\) string ()
- Tokens = [string()]

Returns a list of tokens in String, separated by the characters in SeparatorList.
For example:
```

> tokens("abc defxxghix jkl", "x ").
["abc", "def", "ghi", "jkl"]

```
chars (Character, Number) -> String
chars (Character, Number, Tail) -> String
Types:
- Character \(=\operatorname{char}()\)
```

    - N umber = integer()
    - String = string()
    Returns a string consisting of Number of characters Character. O ptionally, the string
    can end with the string Tail.
    copies(String, Number) -> Copies
Types:
- String = Copies = string()
- N umber = integer()
Returns a string containing String repeated Number times.
words(String) -> Count
words(String, Character) -> Count
Types:
- String = string()
- Character = char()
- Count = integer()
Returns the number of words in String, separated by blanks or Character.
For example:
> words(" Hello old boy!", \$o).
4
sub_word(String, Number) -> Word
sub_word(String, Number, Character) -> Word
Types:

- String $=$ Word $=$ string ()
- Character = char()
- N umber = integer()
Returns the word in position Number of String. Words are separated by blanks or Characters.
For example:
> string:sub_word(" Hello old boy !",3,\$o).
"ld b"
strip(String) -> Stripped
strip(String, Direction) -> Stripped
strip(String, Direction, Character) -> Stripped
Types:
- String = Stripped = string ()
- Direction = left \| right \| both
- Character = char()

```

Returns a string, where leading and/or trailing blanks or a number of Character have been removed. Direction can be left, right, or both and indicates from which direction blanks are to be removed. The function strip/1 is equivalent to strip(String, both).
For example:
> string:strip("...Hello.....", both, \$.).
"Hello"
left(String, Number) -> Left
left(String, Number, Character) -> Left
Types:
- String \(=\) Left \(=\) string ()
- Character = char
- N umber = integer()

Returns the String with the length adjusted in accordance with Number. The left margin is fixed. If the length (String) < Number, String is padded with blanks or Characters.
For example:
```

> string:left("Hello",10,\$.).

```
"Hello....."
```

right(String, Number) -> Right
right(String, Number, Character) -> Right

```

Types:
- String \(=\) Right \(=\) string ()
- Character = char
- N umber = integer()

Returns the String with the length adjusted in accordance with Number. The right margin is fixed. If the length of (String) < Number, String is padded with blanks or Characters.
For example:
> string:right("Hello", 10, \$.).
"......Hello"
centre(String, Number) \(->\) Centered
centre(String, Number, Character) -> Centered
Types:
- String \(=\) Centered \(=\) string ()
- Character = char
- N umber = integer()

Returns a string, where String is centred in the string and surrounded by blanks or characters. The resulting string will have the length Number.
```

sub_string(String, Start) -> SubString

```
```

sub_string(String, Start, Stop) -> SubString
Types:
- String = SubString = string()
- Start = Stop = integer()
Returns a substring of String, starting at the position Start to the end of the string, or
to and including the Stop position.
For example:
sub_string("Hello World", 4, 8).
"lo Wo"
to_float(String) -> {Float,Rest} | {error,Reason}
Types:
- String = string()
- Float = float()
- Rest = string()
- Reason = no_float | not_a_list
A rgument String is expected to start with a valid text represented float (the digits being ASCII values). Remaining characters in the string after the float are returned in Rest.
Example:

```
```

> {F1,Fs} = string:to_float("1.0-1.0e-1"),

```
> {F1,Fs} = string:to_float("1.0-1.0e-1"),
> {F2,[]} = string:to_float(Fs),
> {F2,[]} = string:to_float(Fs),
> F1+F2.
> F1+F2.
0.900000
0.900000
> string:to_float("3/2=1.5").
> string:to_float("3/2=1.5").
{error,no_float}
{error,no_float}
> string:to_float("-1.5eX").
> string:to_float("-1.5eX").
{-1.50000,"eX"}
{-1.50000,"eX"}
to_integer(String) -> {Int,Rest} | {error,Reason}
Types:
- String = string ()
- Int = integer()
- Rest = string()
- Reason = no_integer | not_a_list
```

A rgument String is expected to start with a valid text represented integer (the digits being A SCII values). Remaining characters in the string after the integer are returned in Rest.
Example:

```
> {I1,Is} = string:to_integer("33+22"),
> {I2,[]} = string:to_integer(Is),
> I1-I2.
11
> string:to_integer("0.5").
{0,".5"}
> string:to_integer("x=2").
{error,no_integer}
```


## Notes

Some of the general string functions may seem to overlap each other. The reason for this is that this string package is the combination of two earlier packages and all the functions of both packages have been retained.
The regular expression functions have been moved to their own module regexp (see regexp(3) [page 265]). The old entry points still exist for backwards compatibility, but will be removed in a future release so that users are encouraged to use the module regexp.

## N ote:

A ny undocumented functions in string should not be used.

## supervisor <br> Erlang M odule

A behaviour module for implementing a supervisor, a process which supervises other processes called child processes. A child process can either be another supervisor or a worker process. Worker processes are normally implemented using one of the gen_event, gen_fsm, or gen_server behaviours. A supervisor implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. Supervisors are used to build an hierarchical process structure called a supervision tree, a nice way to structure a fault tolerant application. Refer to OTP D esign Principles for more information.
A supervisor assumes the definition of which child processes to supervise to be located in a callback module exporting a pre-defined set of functions.
Unless otherwise stated, all functions in this module will fail if the specified supervisor does not exist or if bad arguments are given.

## Supervision Principles

The supervisor is responsible for starting, stopping and monitoring its child processes. The basic idea of a supervisor is that it should keep its child processes alive by restarting them when necessary.
The children of a supervisor is defined as a list of child specifications. W hen the supervisor is started, the child processes are started in order from left to right according to this list. When the supervisor terminates, it first terminates its child processes in reversed start order, from right to left.
A supervisor can have one of the following restart strategies:

- one_for_one - if one child process terminates and should be restarted, only that child process is affected.
- one_for_all - if one child process terminates and should be restarted, all other child processes are terminated and then all child processes are restarted.
- rest_for_one - if one child process terminates and should be restarted, the 'rest' of the child processes - i.e. the child processes after the terminated child process in the start order - are terminated. Then the terminated child process and all child processes after it are restarted.
- simple_one_for_one - a simplified one_for_one supervisor, where all child processes are dynamically added instances of the same process type, i.e. running the same code.
The functions terminate_child/2, delete_child/2 and restart_child/2 are invalid for simple_one_for_one supervisors and will return \{error, simple_one_for_one\} if the specified supervisor uses this restart strategy.

To prevent a supervisor from getting into an infinite loop of child process terminations and restarts, a maximum restart frequency is defined using two integer values MaxR and MaxT. If more than MaxR restarts occur within MaxT seconds, the supervisor terminates all child processes and then itself.
This is the type definition of a child specification:

```
child_spec() = {Id,StartFunc,Restart,Shutdown,Type,Modules}
 Id = term()
 StartFunc = {M,F,A}
 M = F = atom()
 A = [term()]
 Restart = permanent | transient | temporary
 Shutdown = brutal_kill | int()>=0 | infinity
 Type = worker | supervisor
 Modules = [Module] | dynamic
 Module = atom()
```

- Id is a name that is used to identify the child specification internally by the supervisor.
- StartFunc defines the function call used to start the child process. It should be a module-function-arguments tuple $\{\mathrm{M}, \mathrm{F}, \mathrm{A}\}$ used as apply (M, F, A).

The start function must create and link to the child process, and should return \{ok, Child $\}$ or $\{o k$, Child, Info $\}$ where Child is the pid of the child process and Info an arbitrary term which is ignored by the supervisor.

The start function can also return ignore if the child process for some reason cannot be started, in which case the child specification will be kept by the supervisor but the non-existing child process will be ignored.

If something goes wrong, the function may also return an error tuple \{error, Error\}.

N ote that the start_link functions of the different behaviour modules fulfill the above requirements.

- Restart defines when a terminated child process should be restarted. A permanent child process should always be restarted, a temporary child process should never be restarted and a transient child process should be restarted only if it terminates abnormally, i.e. with another exit reason than normal.
- Shutdown defines how a child process should be terminated. brutal_kill means the child process will be unconditionally terminated using exit (Child,kill). An integer timeout value means that the supervisor will tell the child process to terminate by calling exit (Child, shutdown) and then wait for an exit signal with reason shutdown back from the child process. If no exit signal is received within the specified time, the child process is unconditionally terminated using exit(Child,kill).
If the child process is another supervisor, Shutdown should be set to inf inity to give the subtree ample time to shutdown.
N ote that child processes implemented using the behaviour modules automatically adhere to the shutdown protocol.
- Type specifies if the child process is a supervisor or a worker.
- Modules is used by the release handler during code replacement to determine which processes are using a certain module. A s a rule of thumb Modules should be a list with one element [Module], where Module is the callback module, if the child process is a supervisor, gen_server or gen_fsm. If the child process is an event manager (gen_event) with a dynamic set of callback modules, Modules should be dynamic. See OTP D esign Principles for more information about release handling.
- Internally, the supervisor also keeps track of the pid Child of the child process, or undefined if no pid exists.


## Exports

start_link(Module, Args) $->$ Result
start_link(SupName, Module, Args) -> Result
Types:

- SupN ame = \{local, N ame $\}$ । \{global, N ame $\}$
- Name = atom()
- M odule = atom()
- Args = term()
- Result $=\{0 \mathrm{k}$, Pid $\}$ । ignore I $\{$ error,Error $\}$
- Pid = pid()
- Error $=$ \{already_started,Pid\}\} | shutdown | term()

C reates a supervisor process as part of a supervision tree. The function will, among other things, ensure that the supervisor is linked to the calling process (its supervisor).

The created supervisor process calls Module:init/1 to find out about restart strategy, maximum restart frequency and child processes. To ensure a synchronized start-up procedure, start_link/ 2,3 does not return until Module:init/1 has returned and all child processes have been started.

If SupName=\{local, Name $\}$ the supervisor is registered locally as Name using register/2. If SupName $=\{$ global, Name $\}$ the supervisor is registered globally as Name using global:register_name/2. If no name is provided, the supervisor is not registered.
Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the supervisor and its child processes are successfully created (i.e. if all child process start functions return $\{0 \mathrm{k}$, Child $\},\{\mathrm{ok}$, Child, Info $\}$, or ignore) the function returns \{ok, Pid\}, where Pid is the pid of the supervisor. If there already exists a process with the specified SupName the function returns \{error, \{already_started, Pid\}\}, where Pid is the pid of that process.
If Module:init/1 returns ignore, this function returns ignore as well and the supervisor terminates with reason normal. If Module:init/1 fails or returns an incorrect value, this function returns \{error, Term\} where Term is a term with information about the error, and the supervisor terminates with reason Term.
If any child process start function fails or returns an error tuple or an erroneous value, the function returns \{error, shutdown\} and the supervisor terminates all started child processes and then itself with reason shutdown.

```
start_child(SupRef, ChildSpec) -> Result
```

Types:

- SupRef $=$ Name | $\{$ Name, N ode $\}$ | \{global,N ame $\}$ | pid()
- N ame = N ode $=$ atom()
- ChildSpec = child_spec() | [term()]
- Result $=\{0 k$, Child $\}$ I \{ok,Child,Info $\}$ | \{error,Error $\}$
- Child $=$ pid() | undefined
- Info = term()
- Error = already_present \| \{already_started,C hild\} \| term()

Dynamically adds a child specification to the supervisor SupRef which starts the corresponding child process.

## SupRef can be:

- the pid,
- Name, if the supervisor is locally registered,
- \{Name, Node\}, if the supervisor is locally registered at another node, or
- \{global, Name\}, if the supervisor is globally registered.

ChildSpec should be a valid child specification (unless the supervisor is a simple_one_for_one supervisor, see below). The child process will be started by using the start function as defined in the child specification.
If the case of a simple_one_for_one supervisor, the child specification defined in Module:init/1 will be used and ChildSpec should instead be an arbitrary list of terms List. The child process will then be started by appending List to the existing start function arguments, i.e. by calling apply (M, F, A++List) where $\{M, F, A\}$ is the start function defined in the child specification.

If there already exists a child specification with the specified Id, ChildSpec is discarded and the function returns \{error, already present \} or
\{error, $\{$ already_started, Child\}\}, depending on if the corresponding child process is running or not.
If the child process start function returns $\{0 \mathrm{k}$, Child $\}$ or $\{o k$, Child, Info $\}$, the child specification and pid is added to the supervisor and the function returns the same value.
If the child process start function returns ignore, the child specification is added to the supervisor, the pid is set to undefined and the function returns \{ok, undefined\}.
If the child process start function returns an error tuple or an erroneous value, or if it fails, the child specification is discarded and the function returns \{error, Error\} where Error is a term containing information about the error and child specification.
terminate_child(SupRef, Id) $->$ Result
Types:

- SupRef = Name | \{Name,Node\} | \{global, Name\} | pid()
- N ame $=\mathrm{N}$ ode $=$ atom()
- Id = term()
- Result =ok | \{error,Error\}
- Error = not_found | simple_one_for_one

Tells the supervisor SupRef to terminate the child process corresponding to the child specification identified by Id. The process, if there is one, is terminated but the child specification is kept by the supervisor. This means that the child process may be later be restarted by the supervisor. The child process can also be restarted explicitly by calling restart_child/2. Use delete_child/2 to remove the child specification.
See start_child/2 for a description of SupRef.
If successful, the function returns ok. If there is no child specification with the specified Id, the function returns $\{$ error, not_found $\}$.
delete_child(SupRef, Id) -> Result
Types:

- SupRef $=\mathrm{N}$ ame | $\{\mathrm{N}$ ame, N ode $\}$ | \{global, N ame $\}$ | pid()
- $\mathrm{Name}=\mathrm{N}$ ode $=$ atom()
- Id = term()
- Result = ok | \{error,Error\}
- Error = running \| not_found | simple_one_for_one

Tells the supervisor SupRef to delete the child specification identified by Id. The corresponding child process must not be running, use terminate_child/2 to terminate it.
See start_child/2 for a description of SupRef.
If successful, the function returns ok. If the child specification identified by Id exists but the corresponding child process is running, the function returns \{error, running\}. If the child specification identified by Id does not exist, the function returns \{error, not_found \}.
restart_child(SupRef, Id) -> Result
Types:

- SupRef $=\mathrm{N}$ ame | $\{\mathrm{N}$ ame, N ode $\} \mid$ \{global, N ame $\} \mid$ pid()
- $\mathrm{Name}=\mathrm{N}$ ode $=$ atom()
- Id = term()
- Result $=\{0 k, C$ hild $\}$ I \{ok,Child,Info $\mid$ | error,Error $\}$
- Child $=$ pid() । undefined
- Error = running \| not_found \| simple_one_for_one \| term()

Tells the supervisor SupRef to restart a child process corresponding to the child specification identified by Id. The child specification must exist and the corresponding child process must not be running.
See start_child/2 for a description of SupRef.
If the child specification identified by Id does not exist, the function returns \{error, not_found\}. If the child specification exists but the corresponding process is already running, the function returns \{error, running\}.
If the child process start function returns $\{$ ok, Child $\}$ or $\{o k$, Child, Info $\}$, the pid is added to the supervisor and the function returns the same value.
If the child process start function returns ignore, the pid remains set to undefined and the function returns $\{o k$, undefined $\}$.

If the child process start function returns an error tuple or an erroneous value, or if it fails, the function returns \{error, Error \} where Error is a term containing information about the error.

```
which_children(SupRef) -> [{Id,Child,Type,Modules}]
```

Types:

- SupRef $=$ Name \| $\{$ Name, $N$ ode $\}$ \| global, $N$ ame $\} \mid \operatorname{pid}()$
- N ame $=\mathrm{N}$ ode $=$ atom()
- Id = term() | undefined
- Child=pid() | undefined
- Type = worker I supervisor
- M odules = [M odule] । dynamic
- M odule = atom()

Returns a list with information about all child specifications and child processes belonging to the supervisor SupRef.
See start_child/2 for a description of SupRef.
The information given for each child specification/process is:

- Id - as defined in the child specification or undefined in the case of a simple_one_for_one supervisor.
- Child - the pid of the corresponding child process, or undef ined if there is no such process.
- Type - as defined in the child specification.
- Modules - as defined in the child specification.
check_childspecs([ChildSpec]) -> Result


## Types:

- ChildSpec =child_spec()
- Result =ok I \{error,Error\}
- Error = term()

This function takes a list of child specification as argument and returns ok if all of them are syntactically correct, or \{error, Error $\}$ otherwise.

## CALLBACK FUNCTIONS

The following functions should be exported from a supervisor callback module.

## Exports

## Module:init(Args) -> Result

Types:

- Args = term()
- Result $=\{0 \mathrm{k},\{\{$ RestartStrategy,M axR,M axT \},[ChildSpec] $\}\}$ । ignore
- RestartStrategy = one_for_all | one_for_one \| rest_for_one \| simple_one_for_one
- $\operatorname{MaxR}=\mathrm{MaxT}=\operatorname{int}()>=0$
- ChildSpec = child_spec()

W henever a supervisor is started using supervisor : start_link/2,3, this function is called by the new process to find out about restart strategy, maximum restart frequency and child specifications.
Args is the Args argument provided to the start function.
RestartStrategy is the restart strategy and MaxR and MaxT defines the maximum restart frequency of the supervisor. [ChildSpec] is a list of valid child specifications defining which child processes the supervisor should start and monitor. See the discussion about Supervision Principles above.
N ote that when the restart strategy is simple_one_for_one, the list of child specifications must be a list with one child specification only. (The Id is ignored). No child process is then started during the initialization phase, but all children are assumed to be started dynamically using supervisor: start_child/2.
The function may also return ignore.

## SEE ALSO

gen_event(3) [page 160], gen_fsm(3) [page 170], gen_server(3) [page 180], sys(3) [page 325]

## supervisor_bridge

Erlang M odule


#### Abstract

A behaviour module for implementing a supervisor_bridge, a process which connects a subsystem not designed according to the OTP design principles to a supervision tree. The supervisor_bridge sits between a supervisor and the subsystem. It behaves like a real supervisor to its own supervisor, but has a different interface than a real supervisor to the subsystem. Refer to OTP D esign Principles for more information. A supervisor_bridge assumes the functions for starting and stopping the subsystem to be located in a callback module exporting a pre-defined set of functions. The sys module can be used for debugging a supervisor_bridge. Unless otherwise stated, all functions in this module will fail if the specified supervisor_bridge does not exist or if bad arguments are given.


## Exports

start_link(Module, Args) $->$ Result
start_link(SupBridgeName, Module, Args) -> Result

## Types:

- SupBridgeN ame $=\{$ local, N ame $\}$ । $\{$ global, N ame $\}$
- N ame = atom()
- M odule = atom()
- A rgs = term()
- Result $=\{0 k$, Pid $\}$ | ignore I \{error,Error $\}$
- $\operatorname{Pid}=$ pid()
- Error $=\{$ already_started,Pid $\}$ । term()

Creates a supervisor_bridge process, linked to the calling process, which calls Module:init/1 to start the subsystem. To ensure a synchronized start-up procedure, this function does not return until Module :init/1 has returned.
If SupBridgeName=\{local, Name $\}$ the supervisor_bridge is registered locally as Name using register/2. If SupBridgeName=\{global, Name $\}$ the supervisor_bridge is registered globally as Name using global:register_name/2. If no name is provided, the supervisor_bridge is not registered. If there al ready exists a process with the specified SupBridgeName the function returns \{error, \{already_started, Pid\}\}, where Pid is the pid of that process.

Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the supervisor_bridge and the subsystem are successfully started the function returns \{ok, Pid\}, where Pid is is the pid of the supervisor_bridge.

If Module:init/1 returns ignore, this function returns ignore as well and the supervisor_bridge terminates with reason normal. If Module:init/1 fails or returns an error tuple or an incorrect value, this function returns \{error, Term \} where Term is a term with information about the error, and the supervisor_bridge terminates with reason Term.

## CALLBACK FUNCTIONS

The following functions should be exported from a supervisor_bridge callback module.

## Exports

```
Module:init(Args) -> Result
 Types:
 - Args = term()
 - Result = {ok,Pid,State} | ignore | {error,Error}
 - Pid = pid()
 - State = term()
 - Error = term()
```

    W henever a supervisor_bridge is started using supervisor_bridge: start_link/2,3,
        this function is called by the new process to start the subsystem and initialize.
        Args is the Args argument provided to the start function.
        The function should return \{ok, Pid, State\} where Pid is the pid of the main process
        in the subsystem and State is any term.
        If later Pid terminates with a reason Reason, the supervisor bridge will terminate with
        reason Reason as well. If later the supervisor_bridge is stopped by its supervisor with
        reason Reason, it will call Module:terminate (Reason, State) to terminate.
        If something goes wrong during the initialization the function should return
        \{error, Error\} where Error is any term, or ignore.
    Module:terminate(Reason, State)
Types:
- Reason = shutdown I term()
- State = term()

This function is called by the supervisor_bridge when it is about to terminate. It should be the opposite of Module:init/1 and stop the subsystem and do any necessary cleaning up. The return value is ignored.

Reason is shutdown if the supervisor_bridge is terminated by its supervisor. If the supervisor_bridge terminates because a a linked process (apart from the main process of the subsystem) has terminated with reason Term, Reason will be Term.
State is taken from the return value of Module:init/1.

## SEE ALSO

supervisor(3) [page 315], sys(3) [page 325]

## Sys <br> Erlang M odule

This module contains functions for sending system messages used by programs, and messaged used for debugging purposes.
Functions used for implementation of processes should also understand system messages such as debugging messages and code change. These functions must be used to implement the use of system messages for a process; either directly, or through standard behaviours, such as gen_server.
The following types are used in the functions defined below:

- Name $=$ pid() | atom() | \{global, atom()\}
- Timeout $=$ int () $>=0$ | infinity
- system_event () $=$ \{in, Msg\} | \{in, Msg, From $\}$ | \{out, Msg, To\} | term()

The default timeout is 5000 ms , unless otherwise specified. The timeout defines the time period to wait for the process to respond to a request. If the process does not respond, the function evaluates exit (\{timeout, $\{\mathrm{M}, \mathrm{F}, \mathrm{A}\}\}$ ).
The functions make reference to a debug structure. The debug structure is a list of dbg_opt (). dbg_opt () is an internal data type used by the handle_system_msg/6 function. No debugging is performed if it is an empty list.

## System Messages

Processes which are not implemented as one of the standard behaviours must still understand system messages. There are three different messages which must be understood:

- Plain system messages. These are received as \{system, From, Msg\}. The content and meaning of this message are not interpreted by the receiving process module. $W$ hen a system message has been received, the function sys:handle_system_msg/6 is called in order to handle the request.
- Shutdown messages. If the process traps exits, it must be able to handle an shut-down request from its parent, the supervisor. The message \{ 'EXIT', Parent, Reason $\}$ from the parent is an order to terminate. The process must terminate when this message is received, normally with the same Reason as Parent.
- There is one more message which the process must understand if the modules used to implement the process change dynamically during runtime. An example of such a process is the gen_event processes. This message is \{get_modules, From\}. The reply to this message is From ! \{modules, Modules\}, where Modules is a list of the currently active modules in the process.
This message is used by the release handler to find which processes execute a certain module. The process may at a later time be suspended and ordered to perform a code change for one of its modules.


## System Events

When debugging a process with the functions of this module, the process generates system_events which are then treated in the debug function. For example, trace formats the system events to the tty.
There are three predefined system events which are used when a process receives or sends a message. The process can also define its own system events. It is always up to the process itself to format these events.

## Exports

```
log(Name,Flag)
log(Name,Flag,Timeout) -> ok | {ok, [system_event()]}
```

Types:

- Flag = true \| \{true, N \} | false \| get | print
- $\mathrm{N}=$ integer ()$>0$

Turns the logging of system events O n or Off . If O n , a maximum of N events are kept in the debug structure (the default is 10). If Flag is get, a list of all logged events is returned. If Flag is print, the logged events are printed to standard_io. The events are formatted with a function that is defined by the process that generated the event (with a call to sys:handle_debug/4).

```
log_to_file(Name,Flag)
log_to_file(Name,Flag,Timeout) -> ok | {error, open_file}
 Types:
 - Flag = FileN ame | false
 - FileN ame = string()
```

Enables or disables the logging of all system events in textual format to the file. The events are formatted with a function that is defined by the process that generated the event (with a call to sys: handle_debug/4).

```
statistics(Name,Flag)
statistics(Name,Flag,Timeout) -> ok | {ok, Statistics}
```

Types:

- Flag = true I false I get
- Statistics $=[\{$ start_time, $\{\mathrm{D}$ ate1, Timel $\}\},\{$ current_time, $\{\mathrm{D}$ ate, Time2 $\}\}$, \{reductions, integer()\}, \{messages_in, integer()\}, \{messages_out, integer() \}]
- D ate1 $=$ D ate2 $=\{$ Year, $M$ onth, $D$ ay $\}$
- Time1 $=$ Time2 $=\{$ Hour, $M$ in, Sec $\}$

Enables or disables the collection of statistics. If Flag is get, the statistical collection is returned.

```
trace(Name,Flag)
trace(Name,Flag,Timeout) -> void()
```

Types:

- Flag = boolean()

Prints all system events on standard_io. The events are formatted with a function that is defined by the process that generated the event (with a call to sys:handle_debug/4).

```
no_debug(Name)
no_debug(Name,Timeout) -> void()
```

Turns off all debugging for the process. This includes functions that have been installed explicitly with the install function, for example triggers.

```
suspend(Name)
suspend(Name,Timeout) -> void()
```

Suspends the process. W hen the process is suspended, it will only respond to other system messages, but not other messages.

```
resume(Name)
resume(Name,Timeout) -> void()
```

Resumes a suspended process.

```
change_code(Name, Module, OldVsn, Extra)
change_code(Name, Module, OldVsn, Extra, Timeout) -> ok | {error, Reason}
```

Types:

- OldV sn = undefined । term()
- M odule = atom()
- Extra = term()

Tells the process to change code. The process must be suspended to handle this message. The Extra argument is reserved for each process to use as its own. The function Mod:system_code_change/4 is called. OldVsn is the old version of the Module.

```
get_status(Name)
get_status(Name,Timeout) -> {status, Pid, {module, Mod}, [PDict, SysState, Parent,
 Dbg, Misc]}
 Types:
 - PD ict = [{Key, Value}]
 - SysState = running | suspended
 - Parent = pid()
```

- $\operatorname{Dbg}=[$ dbg_opt ()$]$
- $\mathrm{Misc}=$ term()

Gets the status of the process.

```
install(Name,{Func,FuncState})
install(Name,{Func,FuncState},Timeout)
```

Types:

- Func = dbg_fun()
- dbg_fun() = fun(FuncState, Event, ProcState) -> done I N ewFuncState
- FuncState $=$ term()
- Event = system_event()
- ProcState = term()
- N ewFuncState = term()

This function makes it possible to install other debug functions than the ones defined above. An example of such a function is a trigger, a function that waits for some special event and performs some action when the event is generated. This could, for example, be turning on low level tracing.
Func is called whenever a system event is generated. This function should return done, or a new func state. In the first case, the function is removed. It is removed if the function fails.

```
remove(Name,Func)
remove(Name,Func,Timeout) -> void()
```

Types:

- Func = dbg_fun()

Removes a previously installed debug function from the process. Func must be the same as previously installed.

## Process Implementation Functions

The following functions are used when implementing a special process. This is an ordinary process which does not use a standard behaviour, but a process which understands the standard system messages.

## Exports

debug_options(Options) -> [dbg_opt()]
Types:

- Options = [O pt]
- Opt = trace | log | statistics | \{log_to_file, FileN ame\} | \{install, \{Func, FuncState\}\}
- Func = dbg_fun()
- FuncState = term()

This function can be used by a process that initiates a debug structure from a list of options. The values of the Opt argument are the same as the corresponding functions.

```
get_debug(Item,Debug,Default) -> term()
```

Types:

- Item $=\log$ | statistics
- D ebug = [dbg_opt()]
- D efault = term()

This function gets the data associated with a debug option. Def ault is returned if the Item is not found. Can be used by the process to retrieve debug data for printing before it terminates.

```
handle_debug([dbg_opt()],FormFunc,Extra,Event) -> [dbg_opt()]
```

Types:

- FormFunc = dbg_fun()
- Extra = term()
- Event = system_event()

This function is called by a process when it generates a system event. FormFunc is a formatting function which is called as FormFunc (Device, Event, Extra) in order to print the events, which is necessary if tracing is activated. Extra is any extra information which the process needs in the format function, for example the name of the process.
handle_system_msg(Msg, From, Parent, Module, Debug, Misc)
Types:

- $\mathrm{Msg}=$ term()
- From = pid()
- Parent = pid()
- M odule = atom()
- Debug = [dbg_opt()]
- M isc = term()

This function is used by a process module that wishes to take care of system messages. The process receives a \{system, From, Msg\} message and passes the Msg and From to this function.
This function never returns. It calls the function Module: system_continue (Parent, NDebug, Misc) where the process continues the execution, or
Module: system_terminate (Reason, Parent, Debug, Misc) if the process should terminate. The Module must export system_continue/3, system_terminate/4, and system_code_change/4 (see below).
The Misc argument can be used to save internal data in a process, for example its state. It is sent to Module:system_continue/3 or Module:system_terminate/4
print_log(Debug) $->$ void()
Types:

- Debug = [dbg_opt()]

Prints the logged system events in the debug structure using FormFunc as defined when the event was generated by a call to handle_debug/4.

Mod:system_continue(Parent, Debug, Misc)
Types:

- Parent = pid()
- Debug $=[$ dbg_opt( $)$ ]
- M isc = term()

This function is called from sys:handle_system_msg/6 when the process should continue its execution (for example after it has been suspended). This function never returns.

Mod:system_terminate(Reason, Parent, Debug, Misc)
Types:

- Reason = term()
- Parent = pid()
- Debug = [dbg_opt()]
- M isc = term()

This function is called from sys:handle_system_msg/6 when the process should terminate. For example, this function is called when the process is suspended and its parent orders shut-down. It gives the process a chance to do a clean-up. This function never returns.

Mod:system_code_change(Misc, Module, OldVsn, Extra) -> \{ok, NMisc\}
Types:

- M isc = term()
- OldV sn = undefined I term()
- M odule = atom()
- Extra = term()
- N M isc = term()

C alled from sys:handle_system_msg/6 when the process should perform a code change. The code change is used when the internal data structure has changed. This function converts the Misc argument to the new data structure. OldVsn is the vsn attribute of the old version of the Module. If no such attribute was defined, the atom undefined is sent.

## timer

Erlang M odule

This module provides useful functions related to time. U nless otherwise stated, time is always measured in milliseconds. All timer functions return immediately, regardless of work carried out by another process.

Successful evaluations of the timer functions yield return values containing a timer reference, denoted TRef below. By using cancel/1, the returned reference can be used to cancel any requested action. A TRef is an Erlang term, the contents of which must not be altered.

The timeouts are not exact, but should be at least as long as requested.

## Exports

```
start() -> ok
```

Starts the timer server. N ormally, the server does not need to be started explicitly. It is started dynamically if it is needed. This is useful during development, but in a target system the server should be started explicitly. U se configuration parameters for kernel for this.

```
apply_after(Time, Module, Function, Arguments) -> {ok, Tref} | {error, Reason}
```

Types:

- Time = integer() in Milliseconds
- M odule $=$ Function $=$ atom ()
- A rguments = [term()]

Evaluates apply (M, F, A) after Time amount of time has elapsed. Returns \{ok, TRef \}, or \{error, Reason\}.
send_after(Time, Pid, Message) $->$ \{ok, TRef $\}$ | \{error, Reason\}
send_after(Time, Message) -> \{ok, TRef\} | \{error,Reason\}
Types:

- Time = integer() in Milliseconds
- Pid = pid() । atom()
- M essage = term()
- Result $=\{0 k$, TRef $\}$ । $\{$ error, Reason $\}$
send_after/3 Evaluates Pid ! Message after Time amount of time has elapsed. (Pid can also be an atom of a registered name.) Returns \{ok, TRef \}, or $\{$ error, Reason\}.
send_after/2 Same as send_after (Time, self(), Message).

```
exit_after(Time, Pid, Reason1) -> {ok, TRef} | {error,Reason2}
exit_after(Time, Reason1) -> {ok, TRef} | {error,Reason2}
kill_after(Time, Pid)-> {ok, TRef} | {error,Reason2}
kill_after(Time) -> {ok, TRef} | {error,Reason2}
```

Types:

- Time = integer() in milliseconds
- Pid = pid() | atom()
- Reason1 = Reason2 = term()
exit_after/3 Send an exit signal with reason Reason1 to Pid Pid. Returns \{ok, TRef $\}$, or $\{$ error, Reason2 $\}$.
exit_after/2 Same as exit_after(Time, self(), Reason1).
kill_after/2 Same as exit_after (Time, Pid, kill).
kill_after/1 Same aS exit_after(Time, self(), kill).
apply_interval(Time, Module, Function, Arguments) -> \{ok, TRef $\}$ \{error, Reason\}
Types:
- Time = integer() in milliseconds
- M odule = Function = atom()
- A rguments = [term()]

Evaluates apply (Module, Function, Arguments) repeatedly at intervals of Time. Returns \{ok, TRef \}, or \{error, Reason\}.

```
send_interval(Time, Pid, Message) -> {ok, TRef} | {error, Reason}
```

send_interval(Time, Message) $->$ \{ok, TRef \} | \{error, Reason\}

Types:

- Time = integer() in milliseconds
- Pid = pid() । atom()
- M essage = term()
- Reason = term()
send_interval/3 Evaluates Pid ! Message repeatedly after Time amount of time has elapsed. (Pid can also be an atom of a registered name.) Returns \{ok, TRef $\}$ or \{error, Reason\}.
send_interval/2 Same as send_interval(Time, self(), Message).
cancel(TRef) -> \{ok, cancel\} | \{error, Reason\}
C ancels a previously requested timeout. TRef is a unique timer reference returned by the timer function in question. Returns \{ok, cancel\}, or \{error, Reason\} when TRef is not a timer reference.
sleep(Time) -> ok

Types:

- Time = integer() in milliseconds

Suspends the process calling this function for Time amount of milliseconds and then returns ok. N aturally, this function does not return immediately.
tc(Module, Function, Arguments) -> \{Time, Value
Types:

- M odule $=$ Function $=$ atom()
- A rguments = [term( $)$ ]
- Time = integer() in microseconds
- Value = term()

Evaluates apply (Module, Function, Arguments) and measures the elapsed real time. Returns \{Time, Value\}, where Time is the elapsed real time in microseconds, and Value is what is returned from the apply.

```
now_diff(T2, T1) -> {Time, Value}
```

Types:

- T1 = T2 = \{M egaSecs, Secs, M icroSecs $\}$
- M egaSecs $=$ Secs $=$ M icroSecs $=$ integer ()

Calculates the time difference T 2 - T 1 in microseconds, where T 1 and T 2 probably are timestamp tuples returned from erlang: now/0.
seconds(Seconds) -> Milliseconds
Returns the number of milliseconds in Seconds.
minutes(Minutes) -> Milliseconds
Return the number of milliseconds in Minutes.
hours(Hours) -> Milliseconds
Returns the number of milliseconds in Hours.
hms(Hours, Minutes, Seconds) -> Milliseconds
Returns the number of milliseconds in Hours + Minutes + Seconds.

## Examples

This example illustrates how to print out "H ello World!" in 5 seconds:

```
1> timer:apply_after(5000, io, format, ["~nHello World!~n", []]).
{ok,TRef}
Hello World!
2>
```

The following coding example illustrates a process which performs a certain action and if this action is not completed within a certain limit, then the process is killed.

```
Pid = spawn(mod, fun, [foo, bar]),
%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill_after(timer:seconds(10), Pid),
%% We change our mind...
timer:cancel(R),
```


## WARNING

A timer can always be removed by calling cancel/1.
A $n$ interval timer, i.e. a timer created by evaluating any of the functions apply_interval/4, send_interval/3, and send_interval/2, is linked to the process towards which the timer performs its task.
A one-shot timer, i.e. a timer created by evaluating any of the functions apply_after/4, send_after/3, send_after/2, exit_after/3, exit_after/2, kill_after/2, and kill_after/1 is not linked to any process. H ence, such a timer is removed only when it reaches its timeout, or if it is explicitly removed by a call to cancel/1.

## win32reg

Erlang M odule
win32reg provides read and write access to the registry on Windows. It is essentially a port driver wrapped around the W in32 API calls for accessing the registry.
The registry is a hierarchical database, used to store various system and software information in Windows. It is available in W indows 95 and W indows NT. It contains installation data, and is updated by installers and system programs. The Erlang installer updates the registry by adding data that Erlang needs.
The registry contains keys and values. Keys are like the directories in a file system, they form a hierarchy. Values are like files, they have a name and a value, and also a type.
Paths to keys are left to right, with sub-keys to the right and backslash between keys. (Remember that backslashes must be doubled in Erlang strings.) C ase is preserved but not significant. Example:
"<br>hkey_local_machine<br>software<br>Ericsson<br>Erlang <br>5.0" is the key for the installation data for the latest Erlang release.
There are six entry points in the Windows registry, top level keys. They can be abbreviated in the win32reg module as:

Abbrev.	Registry key
$=======$	$===========$
hkcr	HKEY_CLASSES_ROOT
current_user	HKEY_CURRENT_USER
hkcu	HKEY_CURRENT_USER
local_machine	HKEY_LOCAL_MACHINE
hklm	HKEY_LOCAL_MACHINE
users	HKEY_USERS
hku	HKEY_USERS
current_config	HKEY_CURRENT_CONFIG
hkcc	HKEY_CURRENT_CONFIG
dyn_data	HKEY_DYN_DATA
hkdd	HKEY_DYN_DATA

The key above could be written as "<br>hklm<br>software<br>ericsson<br>erlang<br>5.0". The win32reg module uses a current key. It works much like the current directory. From the current key, values can be fetched, sub-keys can be listed, and so on. Under a key, any number of named values can be stored. They have name, and types, and data.

Currently, the win32reg module supports storing only the following types:
REG_DWO RD, which is an integer, REG_SZ which is a string and REG_BIN ARY which is a binary. O ther types can be read, and will be returned as binaries.

There is also a "default" value, which has the empty string as name. It is read and written with the atom default instead of the name.

Some registry values are stored as strings with references to environment variables, e.g. "\%SystemRoot\%Windows". SystemRoot is an environment variable, and should be replaced with its value. A function expand/1 is provided, so that environment variables surrounded in \% can be expanded to their values.
For additional information on the Windows registry consult the Win32 Programmer's Reference.

## Exports

```
change_key(RegHandle, Key) -> ReturnValue
 Types:
 - RegH andle = term()
 - Key = string()
 C hanges the current key to another key. Works like cd. The key can be specified as a
 relative path or as an absolute path, starting with \.
change_key_create(RegHandle, Key) -> ReturnValue
 Types:
 - RegH andle = term()
 - Key = string()
 C reates a key, or just changes to it, if it is already there. Works like a combination of
 mkdir and cd. Calls the Win32 API function RegCreateKeyEx().
 The registry must have been opened in write-mode.
close(RegHandle)-> ReturnValue
 Types:
 - RegH andle = term()
 C loses the registry. After that, the RegHandle cannot be used.
current_key(RegHandle) -> ReturnValue
 Types:
 - RegH andle = term()
 - ReturnValue = {ok, string()}
 Returns the path to the current key. This is the equivalent of pwd.
 N ote that the current key is stored in the driver, and might be invalid (e.g. if the key has
 been removed).
delete_key(RegHandle) -> ReturnValue
 Types:
 - RegH andle = term()
 - ReturnValue =ok I {error, Errorld}
```

Deletes the current key, if it is valid. Calls the Win32 API function RegDeleteKey ().
N ote that this call does not change the current key, (unlike change_key_create/2.)
This means that after the call, the current key is invalid.
delete_value(RegHandle, Name) -> ReturnValue
Types:

- RegH andle = term()
- ReturnValue =ok I \{error, Errorld\}

Deletes a named value on the current key. The atom default is used for the the default value.
The registry must have been opened in write-mode.
expand(String) -> ExpandedString
Types:

- String = string()
- ExpandedString = string()

Expands a string containing environment variables between percent characters.
A nything between two \% is taken for a environment variable, and is replaced by the value. Two consecutive \% is replaced by one \%.

A variable name that is not in the environment, will result in an error.
format_error (ErrorId) -> ErrorString
Types:

- Errorld = atom()
- ErrorString = string()

Convert an PO SIX errorcode to a string (by calling erl_posix_msg:message).
open(OpenModeList)-> ReturnValue
Types:

- O penM odeL ist = [ O penM ode]
- O penM ode = read I write

O pens the registry for reading or writing. The current key will be the root (HKEY_CLASSES_ROOT). The read flag in the mode list can be omitted.

Use change_key/2 with an absolute path after open.
set_value(RegHandle, Name, Value) -> ReturnValue
Types:

- N ame = string() | default
- Value = string() | integer() | binary()

Sets the named (or default) value to value. Calls the Win32 API function
RegSetValueEx(). The value can be of three types, and the corresponding registry type will be used. C urrently the types supported are: REG_DWORD for integers, REG_SZ for strings and REG_BINARY for binaries. O ther types cannot currently be added or changed.
The registry must have been opened in write-mode.

```
sub_keys(RegHandle) -> ReturnValue
```

Types:

- ReturnValue $=\{0$, SubKeys $\}$ । $\{$ error, Errorld $\}$
- SubKeys = [SubKey]
- SubKey = string()

Returns a list of subkeys to the current key. C alls the Win32 A PI function EnumRegKeysEx().
Avoid calling this on the root keys, it can be slow.
value(RegHandle, Name) -> ReturnValue
Types:

- Name = string() | default
- ReturnValue = \{ok, Value $\}$
- Value = string() | integer() | binary()

Retrieves the named value (or default) on the current key. Registry values of type REG_SZ, are returned as strings. Type REG_DWORD values are returned as integers. All other types are returned as binaries.

```
values(RegHandle) -> ReturnValue
```

Types:

- ReturnValue $=\{0 k$, ValuePairs $\}$
- ValuePairs = [ValuePair]
- ValuePair $=\{$ Name, Value $\}$
- $N$ ame = string $\mid$ default
- Value = string() | integer() | binary()

Retrieves a list of all values on the current key. The values have types corresponding to the registry types, see value. Calls the Win32 API function EnumRegValuesEx ().

## SEE ALSO

W in32 Programmer's Reference (from M icrosoft)
erl_posix_msg
The Windows 95 Registry (book from 0 'Reilly)

## Index of Modules and Functions

M odules are typed in this way.
Functions are typed in this way.
a_function/2
sofs, 290
abcast/2
gen_server , 184
abcast/3
gen_server , 184
absname/1
filename, 148
absname/2
filename, 148
absname_join/2
filename, 149
abstract/1
erl_parse , 107
$\operatorname{acos} / 1$
math , 217
acosh/1
math , 217
add/2
gb_sets , 154
add/3
erl_tar , 115
add/4
erl_tar, 115
add_binding/3
erl_eval , 99
add_edge/3
digraph , 85
add_edge/4
digraph , 85
add_edge/5
digraph , 85
add_element/2
gb_sets, 154
sets, 271
add_handler/3
gen_event, 161
add_sup_handler/3
gen_event, 162
add_vertex/1
digraph , 86
add_vertex/2
digraph , 86
add_vertex/3
digraph , 86
all/0
dets, 66
ets, 121
all/2
lists, 211
any/2
lists, 212
append/1
lists, 202
qlc, 251
append/2
lists, 202
qlc, 251
append/3
dict, 81
append_list/3
dict, 81
append_values/2
proplists, 240
apply_after/4
timer, 332
apply_interval/4
timer, 333
arith_op/2 erl_internal, 102
asin/1
math, 217
asinh/1
math , 217
atan/1 math , 217
atan2/2 math , 217
atanh/1 math , 217
attach/1 pool, 233
attribute/1 erl_pp , 109
attribute/2 erl_pp, 109
balance/1
gb_sets, 155
gb_trees, 158
basename/1 filename , 149
basename/2 filename, 149
bchunk/2 dets, 66
beam_lib
chunks/2, 51
clear_crypto_key_fun/0,54
cmp/2, 51
cmp_dirs/2, 52
crypto_key_fun/1,53
diff_dirs/2, 52
format_error/1, 53
info/1, 51
strip/1, 52
strip_files/1, 52
strip_release/1,53
version/1, 51
bif/2
erl_internal , 102
binding/2 erl_eval, 99
bindings/1
erl_eval, 99
bool_op/2
erl_internal , 102
bt/1
C, 55
c
bt/1, 55
c/1, 55
c/2, 55
cd/1, 55
flush/0, 56
help/0, 56
i/0, 56
i/3, 56
1/1, 56
lc/1, 56
1s/0, 56
1s/1, 56
m/0, 56
m/1, 57
memory/0, 57
memory/1, 57
nc/1, 57
nc/2, 57
ni/0, 57
nl/1, 57
nregs/0, 57
pid/3, 57
pwd/0, 58
q/0, 58
regs/0, 58
xm/1, 58
c/1
C, 55
c/2
C, 55
calendar
date_to_gregorian_days/1, 59
date_to_gregorian_days/3, 59
datetime_to_gregorian_seconds/1,59
day_of_the_week/1, 60
day_of_the_week/3, 60
gregorian_days_to_date/1, 60
gregorian_seconds_to_datetime/1, 60
is_leap_year/1,60
last_day_of_the_month/2, 60
local_time/0, 61
local_time_to_universal_time/2, 61
local_time_to_universal_time_dst/1, 61
now_to_datetime/1, 62
now_to_local_time/1, 61
now_to_universal_time/1, 62
seconds_to_daystime/1, 62
seconds_to_time/1, 62
time_difference/2, 62
time_to_seconds/1,63
universal_time/0,63
universal_time_to_local_time/2, 63
valid_date/1, 63
valid_date/3, 63
call/2
gen_server, 182
call/3
gen_event, 163
gen_server , 182
call/4
gen_event, 163
cancel/1
timer, 333
cancel_timer/1
gen_fsm, 174
canonical_relation/1
sofs, 290
cast/2
gen_server , 184
cd/1
c, 55
centre/2
string, 312
centre/3
string, 312
change_code/4
sys, 327
change_code/5
sys, 327
change_key/2
win32reg, 337
change_key_create/2
win32reg, 337
char_list/1
io_lib, 199
chars/2
string, 310
chars/3
string, 310
check/1
file_sorter , 144
check/2
file_sorter, 144
check_childspecs/1
supervisor, 320
chr/2
string, 309
chunks/2
beam_lib, 51
clear_crypto_key_fun/0
beam_lib, 54
close/1
dets, 67
epp, 96
erl_tar, 115
win32reg, 337
cmp/2
beam_lib, 51
cmp_dirs/2
beam_lib, 52
comp_op/2
erl_internal, 103
compact/1
proplists, 240
components/1
digraph_utils, 93
composite/2
sofs, 290
concat/1
lists, 203
concat/2
string, 309
condensation/1 digraph_utils, 93
cons/2 queue, 259
constant_function/2 sofs, 290
converse/1
sofs, 291
copies/2
string, 311
cos/1
math , 217
cosh/1 math , 217
create/1
pg, 232
create/2
erl_tar, 115
pg, 232
create/3
erl_tar, 116
crypto_key_fun/1
beam_lib, 53
cspan/2
string, 310
current_key/1
win32reg, 337
cursor/2
qlc, 251
cyclic_strong_components/1
digraph_utils, 93
daeh/1
queue, 259
date_to_gregorian_days/1 calendar, 59
date_to_gregorian_days/3
calendar, 59
datetime_to_gregorian_seconds/1
calendar, 59
day_of_the_week/1
calendar , 60
day_of_the_week/3
calendar, 60
debug_options/1
sys, 329
deep_char_list/1
io_lib, 200
del_binding/2
erl_eval, 99
del_edge/2
digraph , 86
del_edges/2
digraph , 86
del_element/2
gb_sets, 155
sets, 271
del_path/3
digraph , 86
del_vertex/2
digraph , 87
del_vertices/2
digraph , 87
delete/1
digraph , 87
ets, 121
delete/2
dets, 67
ets, 121
gb_sets, 154
gb_trees, 158
lists, 203
proplists, 240
delete_all_objects/1
dets, 67
ets, 121
delete_any/2
gb_sets, 154
gb_trees, 158
delete_child/2
supervisor, 319
delete_cursor/1
qlc, 251
delete_handler/3
gen_event, 164
delete_key/1
win32reg, 337
delete_object/2
dets, 67
ets, 121
delete_value/2
win32reg, 338
dets
all/0, 66
bchunk/2, 66
close/1, 67
delete/2, 67
delete_all_objects/1, 67
delete_object/2, 67
first/1, 67
foldl/3, 68
foldr/3, 68
from_ets/2, 68
info/1, 68
info/2, 69
init_table/3, 69
insert/2, 70
insert_new/2, 70
is_compatible_bchunk_format/2, 71
is_dets_file/1, 71
lookup/2, 71
match/1, 71
match/2, 72
match/3, 72
match_delete/2, 72
match_object/1,73
match_object/2,73
match_object/3,73
member/2, 74
next/2, 74
open_file/1,74
open_file/2,74
pid2name/1, 76
repair_continuation/2, 76
safe_fixtable/2, 76
select/1, 77
select/2, 77
select/3, 77
select_delete/2, 78
slot/2, 78
sync/1, 78
table/2, 78
to_ets/2, 79
traverse/2, 80
update_counter/3, 80
dict
append/3, 81
append_list/3, 81
erase/2, 81
fetch/2, 81
fetch_keys/1, 82
filter/2, 82
find/2, 82
fold/3, 82
from_list/1, 82
is_key/2, 82
map/2, 82
merge/3, 83
new/0, 83
store/3, 83
to_list/1, 83
update/3, 83
update/4, 84
update_counter/3, 84
diff_dirs/2
beam_lib, 52
difference/2
gb_sets, 155
sofs, 291
digraph
add_edge/3, 85
add_edge/4, 85
add_edge/5, 85
add_vertex/1, 86
add_vertex/2, 86
add_vertex/3, 86
del_edge/2, 86
del_edges $/ 2,86$
del_path/3, 86
del_vertex/2, 87
del_vertices $/ 2,87$
delete/1, 87
edge/2, 87
edges/1, 87
edges/2, 87
get_cycle/2,88
get_path/3, 88
get_short_cycle/2, 88
get_short_path/3, 88
in_degree/2, 89
in_edges/2, 89
in_neighbours/2, 89
info/1, 89
new/0, 90
new/1, 90
no_edges/1, 90
no_vertices/1,90
out_degree/2, 90
out_edges/2, 90
out_neighbours $/ 2,90$
vertex/2, 91
vertices/1, 91
digraph_to_family/2
sofs, 291
digraph_utils
components/1, 93
condensation/1, 93
cyclic_strong_components/1, 93
is_acyclic/1, 93
loop_vertices/1,93
postorder/1,94
preorder/1,94
reachable/2, 94
reachable_neighbours $/ 2,94$
reaching/2, 94
reaching_neighbours $/ 2,94$
strong_components/1,95
subgraph/3, 95
topsort/1, 95
dirname/1
filename, 150
domain/1
sofs, 291
drestriction/2
sofs, 291
drestriction/3
sofs, 292
dropwhile/2
lists, 212
duplicate/2
lists, 203
e/2
qlc, 251
edge/2
digraph , 87
edges/1
digraph , 87
edges/2
digraph , 87
empty/0
gb_sets, 154
gb_trees, 157
empty_set/0
sofs, 292
ensure_dir/1
filelib, 145
enter/3
gb_trees, 158
enter_loop/4
gen_server , 185
enter_loop/5
gen_server , 184
epp
close/1, 96
open/2, 96
open/3, 96
parse_erl_form/1, 96
parse_file/3,96
equal/2
string, 309
erase/2
dict, 81
erf/1
math , 218
erfc/1
math , 218
erl_eval
add_binding/3, 99
binding/2, 99
bindings/1, 99
del_binding/2, 99
expr/2, 98
expr/3, 98
expr/4, 98
expr_list/2, 99
expr_list/3, 99
expr_list/4, 99
exprs/2, 98
exprs/3, 98
exprs/4,98
new_bindings/0, 99
erl_id_trans
parse_transform/2, 101
erl_internal
arith_op/2, 102
bif/2, 102
bool_op/2, 102
comp_op/2, 103
guard_bif/2, 102
list_op/2, 103
op_type/2, 103
send_op/2, 103
type_test/2, 102
erl_lint
format_error/1, 105
is_guard_test/1, 105
module/1, 104
module/2, 104
module/3, 104
erl_parse
abstract/1, 107
format_error/1, 107
normalise/1, 107
parse_exprs/1,106
parse_form/1, 106
parse_term/1, 106
tokens/1, 107
tokens/2, 107
erl_pp
attribute/1, 109
attribute/2, 109
expr/1, 110
expr/2, 110
expr/3, 110
expr/4, 110
exprs/1,110
exprs/2,110
exprs/3,110
form/1, 109
form/2, 109
function/1, 109
function/2, 109
guard/1, 109
guard/2, 109
erl_scan
format_error/1, 113
reserved_word/1, 113
string/1, 112
string/2, 112
tokens/3, 112
erl_tar
add/3, 115
add/4, 115
close/1, 115
create/2, 115
create/3, 116
extract/1, 116
extract/2, 116
format_error/1,117
open/2, 117
t/1, 118
table/1, 118
table/2, 118
tt/1, 118
error_message/2
lib, 201
esend/2
pg, 232
ets
all/0, 121
delete/1, 121
delete/2, 121
delete_all_objects/1, 121
delete_object/2, 121
file2tab/1, 121
first/1, 121
fixtable/2, 122
foldl/3, 122
foldr/3, 122
from_dets/2, 122
fun2ms/1, 123
i/0, 124
i/1, 124
info/1, 124
info/2, 125
init_table/2, 125
insert/2, 125
insert_new/2, 126
is_compiled_ms/1,126
last/1, 126
lookup/2, 127
lookup_element/3, 127
match/1, 128
match/2, 127
match/3, 128
match_delete/2, 128
match_object/1, 129
match_object/2, 128
match_object/3, 129
match_spec_compile/1, 129
match_spec_run/2, 130
member/2, 130
new/2, 131
next/2, 131
prev/2, 132
rename/2, 132
repair_continuation/2, 132
safe_fixtable/2, 133
select/1, 136
select/2, 134
select/3, 135
select_count/2, 136
select_delete/2, 136
slot/2, 136
tab2file/2, 137
tab2list/1, 137
table/2, 137
test_ms/2, 138
to_dets/2, 138
update_counter/3, 139
update_counter/4, 139
update_counter/6, 139
eval/2
q/c, 251
exit_after/2
timer, 333
exit_after/3
timer, 333
exp/1
math , 217
expand/1
win32reg, 338
expand/2
proplists, 240
expr/1
erl_pp , 110
expr/2
erl_eval, 98
erl_pp, 110
expr/3
erl_eval, 98
erl_pp, 110
expr/4
erl_eval, 98
erl_pp, 110
expr_list/2 erl_eval, 99
expr_list/3 erl_eval, 99
expr_list/4 erl_eval, 99
exprs/1 erl_pp, 110
exprs/2
erl_eval, 98
erl_pp, 110
exprs/3
erl_eval, 98
erl_pp, 110
exprs/4 erl_eval, 98
extension/1 filename , 150
extension/3 sofs, 292
extract/1 erl_tar , 116
extract/2
erl_tar , 116
family/2
sofs, 293
family_difference/2 sofs, 293
family_domain/1 sofs, 293
family_field/1 sofs, 293
family_intersection/1 sofs, 294
family_intersection/2 sofs, 294
family_projection/2 sofs, 294
family_range/1 sofs, 294
family_specification/2 sofs, 295
family_to_digraph/2 sofs, 295
family_to_relation/1 sofs, 295
family_union/1 sofs, 296
family_union/2 sofs, 296
fetch/2 dict, 81
fetch_keys/1 dict, 82
field/1 sofs, 296
file2tab/1 ets, 121
file_size/1 filelib, 145
file_sorter
check/1, 144
check/2, 144
keycheck/2, 144
keycheck/3, 144
keymerge/3, 144
keymerge/4, 144
keysort/2, 143
keysort/3, 143
keysort/4, 143
merge/2, 143
merge/3, 143
sort/1, 143
sort/2, 143
sort/3, 143
filelib
ensure_dir/1, 145
file_size/1, 145
fold_files/5, 145
is_dir/1, 145
is_file/1, 145
is_regular/1, 146
last_modified/1, 146
wildcard/1, 146
wildcard/2, 147
filename
absname/1, 148
absname/2, 148
absname_join/2, 149
basename/1, 149
basename/2, 149
dirname/1, 150
extension/1, 150
find_src/1, 152
find_src/2, 152
flatten/1, 150
join/1, 150
join/2, 150
nativename/1, 151
pathtype/1,151
rootname/1, 151
rootname/2, 151
split/1, 152
filter/2
dict, 82
gb_sets, 156
lists, 212
sets, 272
find/2
dict, 82
find_src/1
filename , 152
find_src/2
filename, 152
first/1
dets, 67
ets, 121
first_match/2
regexp, 265
fixtable/2 ets, 122
flatlength/1 lists, 203
flatmap/2
lists, 212
flatten/1
filename, 150 lists, 203
flatten/2
lists, 203
flush/0 c, 56
flush_receive/0 lib, 201
fold/3
dict, 82
gb_sets, 156 sets, 272
fold/4
qlc, 252
fold_files/5 filelib, 145
foldl/3
dets, 68
ets, 122 lists, 212
foldr/3
dets, 68
ets, 122
lists, 212
foreach/2
lists, 213
form/1
erl_pp , 109
form/2 erl_pp , 109
format/1 io, 190 proc_lib, 237
format/2
io_lib, 198
format/3
io , 190
format_error/1
beam_lib, 53
erl_lint, 105
erl_parse, 107
erl_scan, 113
erl_tar, 117
ms_transform , 229
qle , 252
regexp, 267
win32reg, 338
fread/2
io_lib, 198
fread/3
io , 194
io_lib, 199
from_dets/2
ets, 122
from_ets/2
dets, 68
from_external/2
sofs, 296
from_list/1
dict, 82
gb_sets, 155
queue, 259
sets, 270
from_orddict/1
gb_trees, 158
from_ordset/1
gb_sets, 156
from_sets/1
sofs, 296, 297
from_term/2
sofs, 297
fun2ms/1
ets, 123
function/1
erl_pp, 109
function/2
erl_pp, 109
fwrite/1
io , 190
fwrite/2
io_lib, 198
fwrite/3
io , 190
gb_sets
add/2, 154
add_element/2, 154
balance/1, 155
del_element/2, 155
delete/2, 154
delete_any/2, 154
difference/2, 155
empty/0, 154
filter/2, 156
fold/3, 156
from_list/1, 155
from_ordset/1, 156
insert/2, 154
intersection/1, 155
intersection/2, 155
is_element/2, 154
is_empty/1, 154
is_member/2, 154
is_set/1, 156
is_subset/2, 155
iterator/1, 156
largest/1, 156
new/0, 154
next/1, 156
singleton/1, 154
size/1, 154
smallest/1, 156
subtract/2, 155
take_largest/1, 156
take_smallest/1, 156
to_list/1, 155
union/1, 155
union/2, 155
gb_trees
balance/1, 158
delete/2, 158
delete_any/2, 158
empty/0, 157
enter/3, 158
from_orddict/1, 158
get/2, 157
insert/3, 158
is_defined/2, 158
is_empty/1, 157
iterator/1, 159
keys/1, 158
largest/1, 159
lookup/2, 157
next/1, 159
size/1, 157
smallest/1, 159
take_largest/1, 159
take_smallest/1, 159
to_list/1, 158
update/3, 158
values/1, 158
gen_event
add_handler/3, 161
add_sup_handler/3, 162
call/3, 163
call/4, 163
delete_handler/3, 164
Module: code_change/3, 168
Module:handle_call/2, 167
Module:handle_event/2, 166
Module:handle_info/2, 167
Module:init/1, 166
Module:terminate/2, 168
notify/2, 163
start/0, 161
start/1, 161
start_link/0, 161
start_link/1, 161
stop/1, 166
swap_handler/5, 164
swap_sup_handler/5, 165
sync_notify/2, 163
which_handlers/1, 165
gen_fsm
cancel_timer/1,174
Module:code_change/4, 179
Module:handle_event/3, 176
Module:handle_info/3, 178
Module:handle_sync_event/4, 177
Module:init/1, 175
Module:StateName/2, 175
Module:StateName/3, 176
Module:terminate/3, 178
reply/2, 174
send_all_state_event/2, 172
send_event/2, 172
send_event_after/2, 174
start/3, 171
start/4, 172
start_link/3, 171
start_link/4, 171
start_timer/2, 174
sync_send_all_state_event/2, 173
sync_send_all_state_event/3, 173
sync_send_event/2, 173
sync_send_event/3, 173

## gen_server

abcast/2, 184
abcast/3, 184
call/2, 182
call/3, 182
cast/2, 184
enter_loop/4, 185
enter_loop/5, 184
Module: code_change/3, 188
Module:handle_call/3, 186
Module:handle_cast/2, 186
Module:handle_info/2, 187
Module:init/1, 185
Module:terminate/2, 187
multi_call/2, 183
multi_call/3, 183
multi_call/4, 183
reply/2, 184
start/3, 181
start/4, 181
start_link/3, 180
start_link/4, 180
get/2
gb_trees, 157
get_all_values/2
proplists, 241
get_bool/2
proplists, 241
get_chars/3
io , 189
get_cycle/2
digraph , 88
get_debug/3
sys, 329
get_keys/1
proplists, 241
get_line/2
io , 189
get_node/0
pool, 234
get_nodes/0
pool, 234
get_path/3
digraph , 88
get_short_cycle/2
digraph, 88
get_short_path/3
digraph , 88
get_status/1
sys, 327
get_status/2
sys, 327
get_value/2
proplists, 242
get_value/3
proplists, 242
gregorian_days_to_date/1
calendar, 60
gregorian_seconds_to_datetime/1 calendar, 60
gsub/3
regexp, 266
guard/1
erl_pp , 109
guard/2
erl_pp, 109
guard_bif/2
erl_internal, 102
handle_debug/1
sys, 329
handle_system_msg/6
sys, 329
head/1
queue, 259
help/0
C, 56
hibernate/3
proc_lib, 238
history/1
shell, 281
$\mathrm{hms} / 3$
timer , 334
hours/1
timer , 334
i/0
c, 56
ets, 124
i/1
ets, 124
i/3
C, 56
image/2
sofs, 298
in/2
queue, 259
in_degree/2
digraph , 89
in_edges/2
digraph , 89
in_neighbours/2
digraph , 89
in_r/2
queue, 260
indentation/2
io_lib, 199
info/1
beam_lib, 51
dets, 68
digraph, 89
ets, 124
info/2
dets, 69
ets, 125
qlc, 252
init/1
queue, 260
init/3
log_mf_h , 216
init/4
log_mf_h , 216
init_ack/1
proc_lib, 237
init_ack/2
proc_lib, 237
init_table/2
ets, 125
init_table/3
dets, 69
initial_call/1 proc_lib, 238
insert/2
dets, 70
ets, 125
gb_sets, 154
insert/3
gb_trees, 158
insert_new/2
dets, 70
ets, 126
install/3
sys, 328
install/4
sys, 328
intersection/1
gb_sets, 155
sets, 271
sofs, 298
intersection/2
gb_sets, 155
sets, 271
sofs, 298
intersection_of_family/1
sofs, 298
inverse/1
sofs, 298
inverse_image/2
sofs, 299
io
format/1, 190
format/3, 190
fread/3, 194
fwrite/1, 190
fwrite/3, 190
get_chars/3, 189
get_line/2, 189
nl/1, 189
parse_erl_exprs/1, 196
parse_erl_exprs/3,196
parse_erl_form/1, 196
parse_erl_form/3, 196
put_chars/2, 189
read/2, 190
scan_erl_exprs/1, 195
scan_erl_exprs/3, 195
scan_erl_form/1, 195
scan_erl_form/3, 195
setopts/2, 189
write/2, 190
io_lib
char_list/1, 199
deep_char_list/1, 200
format/2, 198
fread/2, 198
fread/3, 199
fwrite/2, 198
indentation/2, 199
nl/0, 198
print/1, 198
print/4, 198
printable_list/1, 200
write/1, 198
write/2, 198
write_atom/1, 199
write_char/1, 199
write_string/1, 199
is_a_function/1
sofs, 299
is_acyclic/1
digraph_utils, 93
is_compatible_bchunk_format/2
dets , 71
is_compiled_ms/1
ets, 126
is_defined/2
gb_trees, 158
proplists, 242
is_dets_file/1
dets , 71
is_dir/1
filelib , 145
is_disjoint/2
sofs, 299
is_element/2
gb_sets, 154
sets , 270
is_empty/1
gb_sets, 154
gb_trees, 157
queue, 260
is_empty_set/1
sofs, 299
is_equal/2
sofs, 299
is_file/1
filelib, 145
is_guard_test/1
erl_lint, 105
is_key/2
dict, 82
is_leap_year/1
calendar, 60
is_member/2
gb_sets, 154
is_regular/1
filelib, 146
is_set/1
gb_sets, 156
sets, 270
sofs, 299
is_sofs_set/1
sofs, 300
is_subset/2
gb_sets, 155
sets, 272
sofs, 300
is_type/1
sofs, 300
iterator/1
gb_sets, 156
gb_trees, 159
join/1
filename, 150
join/2
filename, 150
pg, 232
queue, 260
join/4
sofs, 300
keycheck/2
file_sorter , 144
keycheck/3
file_sorter , 144
keydelete/3
lists, 204
keymember/3
lists, 204
keymerge/3
file_sorter , 144
lists, 204
keymerge/4
file_sorter , 144
keyreplace/4
lists, 204
keys/1
gb_trees, 158
keysearch/3
lists, 204
keysort/2
file_sorter , 143
lists, 204
keysort/3
file_sorter , 143
qlc , 253
keysort/4
file_sorter , 143
kill_after/1
timer, 333
kill_after/2
timer, 333

1/1
C, 56
lait/1
queue, 260
largest/1
gb_sets, 156
gb_trees, 159
last/1
ets, 126
lists, 205
queue, 260
last_day_of_the_month/2
calendar, 60
last_modified/1
filelib, 146
lc/1
C, 56
left/2
string, 312
left/3
string, 312
len/1
queue, 260
string, 309
lib
error_message/2, 201
flush_receive/0, 201
nonl/1, 201
progname/0, 201
send/2, 201
sendw/2, 201
list_op/2
erl_internal, 103
lists
all/2, 211
any/2, 212
append/1, 202
append/2, 202
concat/1, 203
delete/2, 203
dropwhile/2, 212
duplicate/2, 203
filter/2, 212
flatlength/1, 203
flatmap/2, 212
flatten/1, 203
flatten/2, 203
foldl/3, 212
foldr/3, 212
foreach/2, 213
keydelete/3, 204
keymember/3, 204
keymerge/3, 204
keyreplace/4, 204
keysearch/3, 204
keysort/2, 204
last/1, 205
map/2, 213
mapfoldl/3, 213
mapfoldr/3, 213
$\max / 1,205$
member/2, 205
merge/1, 205
merge/2, 205
merge/3, 205
merge3/3, 206
min/1, 206
nth/2, 206
nthtail/2, 206
partition/2, 214
prefix/2, 206
reverse/1, 206
reverse/2, 207
seq/2, 207
seq/3, 207
sort/1, 207
sort/2, 207
split/2, 214
splitwith/2, 214
sublist/2, 207
sublist/3, 208
subtract/2, 208
suffix/2, 208
sum/1, 208
takewhile/2, 214
ukeymerge/3, 208
ukeysort/2, 208
umerge/1, 209
umerge/2, 209
umerge/3, 209
umerge3/3, 209
unzip/1, 209
unzip3/1, 210
usort/1, 210
usort/2, 210
zip/2, 210
zip3/3, 210
zipwith/3, 211
zipwith3/4, 211
local_time/0
calendar , 61
local_time_to_universal_time/2
calendar , 61
local_time_to_universal_time_dst/1 calendar , 61
$\log / 1$
math , 217
$\log / 2$
sys, 326
$\log / 3$
sys, 326
$\log 10 / 1$
math , 217
log_mf_h
init/3, 216
init/4, 216
log_to_file/2
sys, 326
log_to_file/3
sys, 326
lookup/2
dets, 71
ets, 127
gb_trees, 157
proplists, 242
lookup_all/2
proplists, 242
lookup_element/3
ets, 127
loop_vertices/1
digraph_utils, 93
ls/0
C, 56
ls/1
c, 56
m/0
c, 56
m/1
C, 57
map/2
dict , 82
lists, 213
mapfoldl/3
lists, 213
mapfoldr/3
lists, 213
match/1
dets, 71
ets, 128
match/2
dets, 72
ets, 127
regexp, 265
match/3
dets, 72
ets, 128
match_delete/2
dets, 72
ets, 128
match_object/1
dets, 73
ets, 129
match_object/2
dets, 73
ets, 128
match_object/3
dets, 73
ets, 129
match_spec_compile/1 ets, 129
match_spec_run/2 ets, 130
matches/2 regexp, 265
math
acos/1, 217
acosh/1, 217
asin/1, 217
asinh/1, 217
atan/1, 217
atan2/2, 217
atanh/1, 217
$\cos / 1,217$
cosh/1, 217
erf/1, 218
erfc/1, 218
exp/1, 217
log/1, 217
$\log 10 / 1,217$
pi/0, 217
pow/2, 217
sin/1, 217
sinh/1, 217
sqrt/1, 217
$\tan / 1,217$
$\tanh / 1,217$
$\max / 1$
lists, 205
member/2
dets, 74
ets, 130 lists, 205
members/1
pg, 232
memory/0
C, 57
memory/1
c, 57
merge/1
lists, 205
merge/2
file_sorter , 143
lists, 205
merge/3
dict, 83
file_sorter , 143
lists, 205
merge3/3
lists, 206
$\min / 1$
lists, 206
minutes/1
timer, 334
Mod: system_code_change/4
sys, 330
Mod:system_continue/3
sys, 330
Mod:system_terminate/4
sys , 330
module/1
erl_lint, 104
module/2
erl_lint , 104
module/3
erl_lint, 104
Module:code_change/3
gen_event, 168
gen_server, 188
Module:code_change/4
gen_fsm , 179
Module:handle_call/2
gen_event , 167
Module:handle_call/3
gen_server , 186
Module:handle_cast/2 gen_server , 186

Module:handle_event/2 gen_event , 166

Module:handle_event/3 gen_fsm , 176

Module:handle_info/2
gen_event , 167
gen_server , 187
Module:handle_info/3
gen_fsm , 178
Module:handle_sync_event/4 gen_fsm , 177

Module:init/1
gen_event, 166
gen_fsm , 175
gen_server, 185
supervisor, 321
supervisor_bridge , 323
Module:StateName/2
gen_fsm , 175
Module:StateName/3
gen_fsm , 176
Module:terminate/2
gen_event, 168
gen_server , 187
supervisor_bridge , 323
Module:terminate/3
gen_fsm , 178
ms_transform
format_error/1, 229
parse_transform/2, 228
transform_from_shell/3, 228
multi_call/2
gen_server , 183
multi_call/3
gen_server , 183
multi_call/4
gen_server , 183
multiple_relative_product/2 sofs, 300
nativename/1
filename, 151
nc/1
C, 57
$\mathrm{nc} / 2$
C, 57
new/0
dict, 83
digraph , 90
gb_sets, 154
queue, 261
sets, 270
new/1
digraph , 90
new/2
ets , 131
new_bindings/0
erl_eval, 99
new_node/2
pool, 234
next/1
gb_sets, 156
gb_trees, 159
next/2
dets, 74
ets, 131
next_answers/2
qlc, 253
ni/0
C, 57
nl/0
io_lib, 198
nl/1
C, 57
io , 189
no_debug/1
sys, 327
no_debug/2
sys, 327
no_edges/1
digraph , 90
no_elements/1
sofs, 301
no_vertices/1
digraph , 90
nonl/1
lib, 201
normalise/1
erl_parse, 107
normalize/2
proplists, 242
notify/2
gen_event, 163
now_diff/2
timer , 334
now_to_datetime/1
calendar , 62
now_to_local_time/1
calendar, 61
now_to_universal_time/1
calendar , 62
nregs/0
C, 57
nth/2
lists, 206
nthtail/2
lists, 206
op_type/2
erl_internal , 103
open/1
win32reg, 338
open/2
epp, 96
erl_tar , 117
open/3
epp, 96
open_file/1
dets, 74
open_file/2
dets, 74
out/1
queue, 261
out_degree/2
digraph , 90
out_edges/2
digraph, 90
out_neighbours/2
digraph , 90
out_r/1
queue, 261
parse/1
regexp, 267
parse_erl_exprs/1
io , 196
parse_erl_exprs/3
io , 196
parse_erl_form/1
epp, 96
io , 196
parse_erl_form/3
io , 196
parse_exprs/1
erl_parse, 106
parse_file/3
epp, 96
parse_form/1 erl_parse, 106
parse_term/1
erl_parse, 106
parse_transform/2 erl_id_trans, 101 ms_transform , 228
partition/1
sofs, 301
partition/2
lists, 214
sofs, 301
partition/3 sofs, 301
partition_family/2
sofs, 302
pathtype/1
filename , 151
pg
create/1, 232
create/2, 232
esend/2, 232
join/2, 232
members/1, 232
send/2, 232
pi/0
math , 217
pid/3
C, 57
pid2name/1
dets, 76
pool
attach/1, 233
get_node/0, 234
get_nodes/0, 234
new_node/2, 234
pspawn/3, 234
pspawn_link/3, 234
start/1, 233
start/2, 233
stop/0, 233
postorder/1
digraph_utils, 94
pow/2
math, 217
prefix/2
lists, 206
preorder/1 digraph_utils, 94
prev/2 ets, 132
print/1 io_lib, 198
print/4 io_lib, 198
print_log/1 sys, 330
printable_list/1 io_lib, 200
proc_lib
format/1, 237
hibernate/3, 238
init_ack/1, 237
init_ack/2, 237
initial_call/1, 238
spawn/1, 235
spawn/2, 235
spawn/3, 235
spawn/4, 235
spawn_link/1, 235
spawn_link/2, 235
spawn_link/3, 235
spawn_link/4, 235
spawn_opt/2, 236
spawn_opt/3, 236
spawn_opt/4, 236
spawn_opt/5, 236
start/3, 236
start/4, 236
start/5, 236
start_link/3, 236
start_link/4, 236
start_link/5, 236
translate_initial_call/1, 238
product/1
sofs, 302
product/2 sofs, 302
progname/0 lib, 201
projection/2
sofs, 303
property/1
proplists, 243
property/2
proplists, 243
proplists
append_values/2, 240
compact/1, 240
delete/2, 240
expand/2, 240
get_all_values/2,241
get_bool/2, 241
get_keys/1, 241
get_value/2, 242
get_value/3, 242
is_defined/2, 242
lookup/2, 242
lookup_all/2, 242
normalize/2, 242
property/1, 243
property/2, 243
split/2, 243
substitute_aliases/2, 244
substitute_negations/2,244
unfold/1, 244
pseudo/1
slave, 285
pseudo/2
slave, 285
pspawn/3
pool, 234
pspawn_link/3
pool, 234
put_chars/2
io , 189
pwd/0
c, 58
q/0
c, 58
q/2
qlc, 254
qlc
append/1, 251
append/2, 251
cursor/2, 251
delete_cursor/1, 251
e/2, 251
eval/2, 251
fold/4, 252
format_error/1, 252
info/2, 252
keysort/3, 253
next_answers/2, 253
q/2, 254
sort/2, 255
string_to_handle/3, 255
table/2, 256
queue
cons/2, 259
daeh/1, 259
from_list/1, 259
head/1, 259
in/2, 259
in_r/2, 260
init/1, 260
is_empty/1, 260
join/2, 260
lait/1, 260
last/1, 260
len/1, 260
new/0, 261
out/1, 261
out_r/1, 261
reverse/1, 261
snoc/2, 261
split/2, 261
tail/1, 261
to_list/1, 262
random
seed/0, 263
seed/3, 263
seed0/0, 263
uniform/0, 263
uniform/1, 263
uniform_s/1, 264
uniform_s/2, 264
range/1
sofs, 303
rchr/2
string, 309
reachable/2
digraph_utils, 94
reachable_neighbours/2
digraph_utils, 94
reaching/2
digraph_utils, 94
reaching_neighbours/2
digraph_utils, 94
read/2
io , 190
regexp
first_match/2, 265
format_error/1, 267
gsub/3, 266
match/2, 265
matches/2, 265
parse/1, 267
sh_to_awk/1, 267
split/2, 266
sub/3, 266
regs/0
C, 58
relation/2
sofs, 303
relation_to_family/1 sofs, 303
relative_product/2 sofs, 304
relative_product1/2
sofs, 304
relay/1
slave, 285
remove/2
sys, 328
remove/3
sys, 328
rename/2
ets, 132
repair_continuation/2
dets, 76
ets, 132
reply/2
gen_fsm, 174
gen_server, 184
reserved_word/1 erl_scan , 113
restart_child/2 supervisor, 319
restriction/2
sofs, 304
restriction/3
sofs, 305
results/1
shell, 281
resume/1
sys, 327
resume/2
sys, 327
reverse/1
lists, 206
queue, 261
reverse/2
lists, 207
right/2
string, 312
right/3
string, 312
rootname/1
filename, 151
rootname/2
filename, 151
rstr/2
string, 309
safe_fixtable/2
dets, 76
ets, 133
scan_erl_exprs/1
io, 195
scan_erl_exprs/3
io, 195
scan_erl_form/1
io, 195
scan_erl_form/3
io , 195
seconds/1
timer, 334
seconds_to_daystime/1
calendar , 62
seconds_to_time/1
calendar , 62
seed/0
random , 263
seed/3
random, 263
seed0/0
random , 263
select/1
dets, 77
ets, 136
select/2
dets, 77
ets, 134
select/3
dets, 77
ets, 135
select_count/2
ets, 136
select_delete/2
dets, 78
ets, 136
send/2
lib, 201
pg, 232
send_after/2
timer , 332
send_after/3
timer, 332
send_all_state_event/2
gen_fsm, 172
send_event/2
gen_fsm , 172
send_event_after/2
gen_fsm , 174
send_interval/2
timer, 333
send_interval/3
timer , 333
send_op/2
erl_internal , 103
sendw/2
lib, 201
seq/2
lists, 207
seq/3
lists, 207
set/2
sofs, 305
set_value/3
win32reg, 338
setopts/2
io , 189
sets
add_element/2, 271
del_element/2, 271
filter/2, 272
fold/3, 272
from_list/1, 270
intersection/1, 271
intersection/2, 271
is_element/2, 270
is_set/1, 270
is_subset/2, 272
new/0, 270
size/1, 270
subtract/2, 271
to_list/1, 270
union/1, 271
union/2, 271
sh_to_awk/1
regexp, 267
shell
history/1, 281
results/1, 281
start_restricted/1, 281
stop_restricted/0, 281
sin/1
math , 217
singleton/1
gb_sets, 154
sinh/1
math, 217
size/1
gb_sets, 154
gb_trees, 157
sets, 270
slave
pseudo/1, 285
pseudo/2, 285
relay/1, 285
start/1, 283
start/2, 283
start/3, 284
start_link/1, 283
start_link/2, 284
start_link/3, 284
stop/1, 285
sleep/1
timer, 333
slot/2
dets, 78
ets, 136
smallest/1
gb_sets, 156
gb_trees, 159
snoc/2
queue, 261
sofs
a_function/2, 290
canonical_relation/1,290
composite/2, 290
constant_function/2, 290
converse/1, 291
difference/2, 291
digraph_to_family/2, 291
domain/1, 291
drestriction/2, 291
drestriction/3, 292
empty_set/0, 292
extension/3, 292
family/2, 293
family_difference/2, 293
family_domain/1, 293
family_field/1, 293
family_intersection/1, 294
family_intersection/2, 294
family_projection/2, 294
family_range/1, 294
family_specification/2, 295
family_to_digraph/2, 295
family_to_relation/1, 295
family_union/1, 296
family_union/2, 296
field/1, 296
from_external/2, 296
from_sets/1, 296, 297
from_term/2, 297
image/2, 298
intersection/1, 298
intersection/2, 298
intersection_of_family/1, 298
inverse/1, 298
inverse_image/2, 299
is_a_function/1, 299
is_disjoint/2, 299
is_empty_set/1, 299
is_equal/2, 299
is_set/1, 299
is_sofs_set/1, 300
is_subset/2, 300
is_type/1, 300
join/4, 300
multiple_relative_product/2, 300
no_elements/1, 301
partition/1, 301
partition/2, 301
partition/3, 301
partition_family/2, 302
product/1, 302
product/2, 302
projection/2, 303
range/1, 303
relation/2, 303
relation_to_family/1, 303
relative_product/2, 304
relative_product1/2, 304
restriction/2, 304
restriction/3, 305
set/2, 305
specification/2, 305
strict_relation/1, 305
substitution/2, 306
symdiff/2, 306
symmetric_partition/2, 307
to_external/1, 307
to_sets/1, 307
type/1, 307
union/1, 307
union/2, 307
union_of_family/1, 308
weak_relation/1, 308
sort/1
file_sorter, 143
lists , 207
sort/2
file_sorter , 143
lists, 207
qlc, 255
sort/3
file_sorter, 143
span/2
string, 310
spawn/1
proc_lib, 235
spawn/2
proc_lib, 235
spawn/3
proc_lib, 235
spawn/4
proc_lib, 235
spawn_link/1 proc_lib, 235
spawn_link/2 proc_lib, 235
spawn_link/3 proc_lib, 235
spawn_link/4 proc_lib, 235
spawn_opt/2 proc_lib, 236
spawn_opt/3 proc_lib, 236
spawn_opt/4 proc_lib, 236
spawn_opt/5 proc_lib, 236
specification/2 sofs, 305
split/1 filename, 152
split/2
lists, 214
proplists, 243
queue, 261
regexp, 266
splitwith/2 lists, 214
sqrt/1 math , 217
start/0 gen_event, 161 timer , 332
start/1 gen_event, 161
pool, 233
slave, 283
start/2
pool, 233 slave, 283
start/3
gen_fsm , 171
gen_server, 181
proc_lib, 236
slave, 284
start/4
gen_fsm , 172
gen_server, 181
proc_lib, 236
start/5
proc_lib, 236
start_child/2
supervisor, 318
start_link/0
gen_event, 161
start_link/1
gen_event, 161
slave, 283
start_link/2
slave, 284
supervisor, 317
supervisor_bridge, 322
start_link/3
gen_fsm, 171
gen_server, 180
proc_lib, 236
slave, 284
supervisor, 317
supervisor_bridge, 322
start_link/4
gen_fsm, 171
gen_server, 180
proc_lib, 236
start_link/5
proc_lib, 236
start_restricted/1 shell , 281
start_timer/2
gen_fsm, 174
statistics/2
sys, 326
statistics/3 sys, 326
stop/0
pool, 233
stop/1
gen_event, 166
slave, 285
stop_restricted/0
shell, 281
store/3
dict, 83
str/2
string, 309
strict_relation/1
sofs, 305
string
centre/2, 312
centre/3, 312
chars $/ 2,310$
chars $/ 3,310$
chr/2, 309
concat/2, 309
copies/2, 311
cspan/2, 310
equal/2, 309
left/2, 312
left/3, 312
len/1, 309
rchr/2, 309
right/2, 312
right/3, 312
rstr/2, 309
span/2, 310
str/2, 309
strip/1, 311
strip/2, 311
strip/3, 311
sub_string/2, 312
sub_string/3, 313
sub_word/2, 311
sub_word/3, 311
substr/2, 310
substr/3, 310
to_float/1, 313
to_integer/1, 313
tokens/2, 310
words/1, 311
words/2, 311
string/1
erl_scan, 112
string/2
erl_scan , 112
string_to_handle/3
qlc , 255
strip/1
beam_lib, 52
string, 311
strip/2
string, 311
strip/3
string, 311
strip_files/1
beam_lib, 52
strip_release/1
beam_lib, 53
strong_components/1
digraph_utils, 95
sub/3
regexp , 266
sub_keys/1
win32reg, 339
sub_string/2
string, 312
sub_string/3
string, 313
sub_word/2
string, 311
sub_word/3
string, 311
subgraph/3
digraph_utils, 95
sublist/2
lists, 207
sublist/3
lists , 208
substitute_aliases/2
proplists, 244
substitute_negations/2
proplists, 244
substitution/2
sofs, 306
substr/2
string, 310
substr/3
string, 310
subtract/2
gb_sets, 155
lists, 208
sets, 271
suffix/2
lists, 208
sum/1
lists, 208
supervisor
check_childspecs/1, 320
delete_child/2, 319
Module:init/1, 321
restart_child/2, 319
start_child/2, 318
start_link/2, 317
start_link/3, 317
terminate_child/2, 318
which_children/1, 320
supervisor_bridge
Module:init/1, 323
Module:terminate/2, 323
start_link/2, 322
start_link/3, 322
suspend/1
sys, 327
suspend/2
sys, 327
swap_handler/5
gen_event, 164
swap_sup_handler/5
gen_event, 165
symdiff/2
sofs, 306
symmetric_partition/2
sofs, 307
sync/1
dets, 78
sync_notify/2
gen_event, 163
sync_send_all_state_event/2
gen_fsm, 173
sync_send_all_state_event/3
gen_fsm, 173
sync_send_event/2
gen_fsm, 173
sync_send_event/3
gen_fsm, 173

SyS
change_code/4, 327
change_code/5, 327
debug_options/1, 329
get_debug/3, 329
get_status/1, 327
get_status/2, 327
handle_debug/1, 329
handle_system_msg/6, 329
install/3, 328
install/4, 328
$\log / 2,326$
$\log / 3,326$
log_to_file/2, 326
log_to_file/3, 326
Mod:system_code_change/4, 330
Mod:system_continue/3, 330
Mod:system_terminate/4, 330
no_debug/1, 327
no_debug/2, 327
print_log/1, 330
remove/2, 328
remove/3, 328
resume/1, 327
resume/2, 327
statistics/2, 326
statistics/3, 326
suspend/1, 327
suspend/2, 327
trace/2, 327
trace/3, 327
t/1
erl_tar, 118
tab2file/2
ets, 137
tab2list/1
ets, 137
table/1
erl_tar , 118
table/2
dets, 78
erl_tar, 118
ets, 137
qlc, 256
tail/1
queue, 261
take_largest/1
gb_sets, 156
gb_trees, 159
take_smallest/1
gb_sets, 156
gb_trees, 159
takewhile/2
lists, 214
$\tan / 1$
math, 217
tanh/1
math , 217
tc/3
timer, 334
terminate_child/2
supervisor, 318
test_ms/2
ets, 138
time_difference/2
calendar , 62
time_to_seconds/1
calendar , 63
timer
apply_after/4, 332
apply_interval/4, 333
cancel/1, 333
exit_after/2, 333
exit_after/3, 333
hms $/ 3,334$
hours/1, 334
kill_after/1, 333
kill_after/2, 333
minutes/1, 334
now_diff/2, 334
seconds/1, 334
send_after/2, 332
send_after/3, 332
send_interval/2, 333
send_interval/3, 333
sleep/1, 333
start/0, 332
tc/3, 334
to_dets/2
ets, 138
to_ets/2
dets, 79
to_external/1
sofs, 307
to_float/1
string , 313
to_integer/1 string, 313
to_list/1 dict, 83 gb_sets, 155 gb_trees, 158 queue, 262 sets, 270
to_sets/1
sofs, 307
tokens/1 erl_parse, 107
tokens/2 erl_parse, 107 string, 310
tokens/3 erl_scan , 112
topsort/1 digraph_utils, 95
trace/2 sys, 327
trace/3 sys, 327
transform_from_shell/3 ms_transform, 228
translate_initial_call/1 proc_lib, 238
traverse/2 dets, 80
tt/1
erl_tar , 118
type/1
sofs, 307
type_test/2
erl_internal , 102
ukeymerge/3
lists, 208
ukeysort/2
lists, 208
umerge/1 lists, 209
umerge/2
lists, 209
umerge/3
lists, 209
umerge3/3
lists, 209
unfold/1
proplists, 244
uniform/0
random , 263
uniform/1
random , 263
uniform_s/1
random , 264
uniform_s/2
random, 264
union/1
gb_sets, 155
sets, 271
sofs, 307
union/2
gb_sets, 155
sets, 271
sofs, 307
union_of_family/1
sofs, 308
universal_time/0
calendar, 63
universal_time_to_local_time/2
calendar, 63
unzip/1
lists, 209
unzip3/1
lists, 210
update/3
dict, 83
gb_trees, 158
update/4
dict , 84
update_counter/3
dets, 80
dict, 84
ets, 139
update_counter/4
ets, 139
update_counter/6
ets, 139
usort/1
lists, 210
usort/2
lists, 210
valid_date/1
calendar , 63
valid_date/3
calendar, 63
value/2
win32reg, 339
values/1
gb_trees, 158
win32reg, 339
version/1
beam_lib, 51
vertex/2
digraph , 91
vertices/1
digraph , 91
weak_relation/1
sofs, 308
which_children/1
supervisor, 320
which_handlers/1
gen_event, 165
wildcard/1
filelib, 146
wildcard/2
filelib, 147
win32reg
change_key/2, 337
change_key_create/2, 337
close/1, 337
current_key/1, 337
delete_key/1, 337
delete_value/2, 338
expand/1, 338
format_error/1, 338
open/1, 338
set_value/3, 338
sub_keys/1, 339
value/2, 339
values/1, 339
words/1
string, 311
words/2
string, 311
write/1
io_lib, 198
write/2
io , 190
io_lib, 198
write_atom/1
io_lib, 199
write_char/1
io_lib, 199
write_string/1
io_lib, 199
xm/1
C, 58
zip/2
lists, 210
zip3/3
lists, 210
zipwith/3
lists, 211
zipwith3/4
lists, 211

