
STDLIB

version 1.13

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 STDLIB Reference Manual 1

1.1 beam lib . 50

1.2 c . 57

1.3 calendar . 61

1.4 dets . 66

1.5 dict . 82

1.6 digraph . 87

1.7 digraph utils . 94

1.8 epp . 98

1.9 erl eval . 100

1.10 erl id trans . 103

1.11 erl internal . 104

1.12 erl lint . 106

1.13 erl parse . 108

1.14 erl pp . 111

1.15 erl scan . 114

1.16 erl tar . 116

1.17 ets . 122

1.18 file sorter . 142

1.19 filelib . 147

1.20 filename . 150

1.21 gb sets . 156

1.22 gb trees . 162

1.23 gen event . 167

1.24 gen fsm . 177

1.25 gen server . 188

1.26 io . 197

1.27 io lib . 208

1.28 lib . 212

1.29 lists . 214

iiiSTDLIB

1.30 log mf h . 228

1.31 math . 229

1.32 ms transform . 231

1.33 orddict . 242

1.34 ordsets . 243

1.35 pg . 244

1.36 pool . 246

1.37 proc lib . 248

1.38 proplists . 253

1.39 qlc . 258

1.40 queue . 272

1.41 random . 276

1.42 regexp . 278

1.43 sets . 283

1.44 shell . 286

1.45 shell default . 295

1.46 slave . 296

1.47 sofs . 299

1.48 string . 322

1.49 supervisor . 328

1.50 supervisor bridge . 335

1.51 sys . 338

1.52 timer . 345

1.53 win32reg . 349

Index of Modules and Functions 353

iv STDLIB

STDLIB Reference Manual

Short Summaries

� Erlang Module beam lib [page 50] – An Interface To the BEAM File Format

� Erlang Module c [page 57] – Command Interface Module

� Erlang Module calendar [page 61] – Local and universal time, day-of-the-week,
date and time conversions

� Erlang Module dets [page 66] – A Disk Based Term Storage

� Erlang Module dict [page 82] – Key-Value Dictionary

� Erlang Module digraph [page 87] – Directed Graphs

� Erlang Module digraph utils [page 94] – Algorithms for Directed Graphs

� Erlang Module epp [page 98] – An Erlang Code Preprocessor

� Erlang Module erl eval [page 100] – The Erlang Meta Interpreter

� Erlang Module erl id trans [page 103] – An Identity Parse Transform

� Erlang Module erl internal [page 104] – Internal Erlang Definitions

� Erlang Module erl lint [page 106] – The Erlang Code Linter

� Erlang Module erl parse [page 108] – The Erlang Parser

� Erlang Module erl pp [page 111] – The Erlang Pretty Printer

� Erlang Module erl scan [page 114] – The Erlang Token Scanner

� Erlang Module erl tar [page 116] – Unix 'tar' utility for reading and writing tar
archives

� Erlang Module ets [page 122] – Built-In Term Storage

� Erlang Module file sorter [page 142] – File Sorter

� Erlang Module filelib [page 147] – File utilities, such as wildcard matching of
filenames

� Erlang Module filename [page 150] – Filename Manipulation Functions

� Erlang Module gb sets [page 156] – General Balanced Trees

� Erlang Module gb trees [page 162] – General Balanced Trees

� Erlang Module gen event [page 167] – Generic Event Handling Behaviour

� Erlang Module gen fsm [page 177] – Generic Finite State Machine Behaviour

� Erlang Module gen server [page 188] – Generic Server Behaviour

� Erlang Module io [page 197] – Standard IO Server Interface Functions

� Erlang Module io lib [page 208] – IO Library Functions

1STDLIB

STDLIB Reference Manual

� Erlang Module lib [page 212] – A number of useful library functions

� Erlang Module lists [page 214] – List Processing Functions

� Erlang Module log mf h [page 228] – An Event Handler which Logs Events to
Disk

� Erlang Module math [page 229] – Mathematical Functions

� Erlang Module ms transform [page 231] – Parse transform that translates fun
syntax into match specifications.

� Erlang Module orddict [page 242] – Key-Value Dictionary as Ordered List

� Erlang Module ordsets [page 243] – Functions for Manipulating Sets as Ordered
Lists

� Erlang Module pg [page 244] – Distributed, Named Process Groups

� Erlang Module pool [page 246] – Load Distribution Facility

� Erlang Module proc lib [page 248] – Plug-in Replacements for spawn/1,2,3,4,
spawn link/1,2,3,4, and spawn opt/2,3,4,5.

� Erlang Module proplists [page 253] – Support functions for property lists

� Erlang Module qlc [page 258] – Query Interface to Mnesia, ETS, Dets, etc

� Erlang Module queue [page 272] – Abstract Data Type for FIFO Queues

� Erlang Module random [page 276] – Pseudo random number generation

� Erlang Module regexp [page 278] – Regular Expression Functions for Strings

� Erlang Module sets [page 283] – Functions for Set Manipulation

� Erlang Module shell [page 286] – The Erlang Shell

� Erlang Module shell default [page 295] – Customizing the Erlang Environment

� Erlang Module slave [page 296] – Functions to Starting and Controlling Slave
Nodes

� Erlang Module sofs [page 299] – Functions for Manipulating Sets of Sets

� Erlang Module string [page 322] – String Processing Functions

� Erlang Module supervisor [page 328] – Generic Supervisor Behaviour.

� Erlang Module supervisor bridge [page 335] – Generic Supervisor Bridge
Behaviour.

� Erlang Module sys [page 338] – A Functional Interface to System Messages

� Erlang Module timer [page 345] – Timer Functions

� Erlang Module win32reg [page 349] – win32reg provides access to the registry on
Windows

beam lib

The following functions are exported:

� chunks(Beam, [ChunkRef]) -> fok, fModule, [ChunkData]gg | ferror,
beam lib, Reasong
[page 52] Read selected chunks from a BEAM file or binary

� version(Beam) -> fok, fModule, [Version]gg | ferror, beam lib,
Reasong
[page 52] Read the BEAM file's module version

2 STDLIB

STDLIB Reference Manual

� info(Beam) -> [fItem, Infog] | ferror, beam lib, Reason1g
[page 53] Information about a BEAM file

� cmp(Beam1, Beam2) -> ok | ferror, beam lib, Reasong
[page 53] Compare two BEAM files

� cmp dirs(Dir1, Dir2) -> fOnly1, Only2, Differentg | ferror,
beam lib, Reason1g
[page 53] Compare the BEAM files in two directories

� diff dirs(Dir1, Dir2) -> ok | ferror, beam lib, Reason1g
[page 54] Compare the BEAM files in two directories

� strip(Beam1) -> fok, fModule, Beam2gg | ferror, beam lib, Reason1g
[page 54] Removes chunks not needed by the loader from a BEAM file

� strip files(Files) -> fok, [fModule, Beam2g]g | ferror, beam lib,
Reason1g
[page 54] Removes chunks not needed by the loader from BEAM files

� strip release(Dir) -> fok, [fModule, Filename]gg | ferror, beam lib,
Reason1g
[page 54] Removes chunks not needed by the loader from all BEAM files of a
release

� format error(Reason) -> Chars
[page 55] Return an English description of a BEAM read error reply

� crypto key fun(CryptoKeyFun) -> ok | ferror, Reasong
[page 55] Register a fun that provides a crypto key

� clear crypto key fun() -> fok, Resultg
[page 55] Unregister the current crypto key fun

c

The following functions are exported:

� bt(Pid) -> void()
[page 57] Stack backtrace for a process

� c(File) -> fok, Moduleg | error
[page 57] Compile and load code in a file

� c(File, Options) -> fok, Moduleg | error
[page 57] Compile and load code in a file

� cd(Dir) -> void()
[page 57] Change working directory

� flush() -> void()
[page 58] Flush any messages sent to the shell

� help() -> void()
[page 58] Help information

� i() -> void()
[page 58] Information about the system

� ni() -> void()
[page 58] Information about the system

� i(X, Y, Z) -> void()
[page 58] Information about pid <X.Y.Z>

3STDLIB

STDLIB Reference Manual

� l(Module) -> void()
[page 58] Load or reload module

� lc(Files) -> ok
[page 58] Compile a list of files

� ls() -> void()
[page 58] List files in the current directory

� ls(Dir) -> void()
[page 58] List files in a directory

� m() -> void()
[page 59] Which modules are loaded

� m(Module) -> void()
[page 59] Information about a module

� memory() -> [fType, Sizeg]
[page 59] Memory allocation information

� memory(Type) -> Size
[page 59] Memory allocation information

� memory([Type]) -> [fType, Sizeg]
[page 59] Memory allocation information

� nc(File) -> fok, Moduleg | error
[page 59] Compile and load code in a file on all nodes

� nc(File, Options) -> fok, Moduleg | error
[page 59] Compile and load code in a file on all nodes

� nl(Module) -> void()
[page 59] Load module on all nodes

� pid(X, Y, Z) -> pid()
[page 59] Convert X,Y,Z to a pid

� pwd() -> void()
[page 60] Print working directory

� q() -> void()
[page 60] Quit - shorthand for init:stop()

� regs() -> void()
[page 60] Information about registered processes

� nregs() -> void()
[page 60] Information about registered processes

� xm(ModSpec) -> void()
[page 60] Cross reference check a module

calendar

The following functions are exported:

� date to gregorian days(Date) -> Days
[page 62] Compute the number of days from year 0 up to the given date

� date to gregorian days(Year, Month, Day) -> Days
[page 62] Compute the number of days from year 0 up to the given date

4 STDLIB

STDLIB Reference Manual

� datetime to gregorian seconds(fDate, Timeg) -> Seconds
[page 62] Compute the number of seconds from year 0 up to the given date and
time

� day of the week(Date) -> DayNumber
[page 62] Compute the day of the week

� day of the week(Year, Month, Day) -> DayNumber
[page 62] Compute the day of the week

� gregorian days to date(Days) -> Date
[page 62] Compute the date given the number of gregorian days

� gregorian seconds to datetime(Seconds) -> fDate, Timeg
[page 62] Compute the date given the number of gregorian days

� is leap year(Year) -> bool()
[page 62] Check if a year is a leap year

� last day of the month(Year, Month) -> int()
[page 62] Compute the number of days in a month

� local time() -> fDate, Timeg
[page 63] Compute local time

� local time to universal time(fDate1, Time1g) -> fDate2, Time2g
[page 63] Convert from local time to universal time (deprecated)

� local time to universal time dst(fDate1, Time1g) -> [fDate, Timeg]
[page 63] Convert from local time to universal time(s)

� now to local time(Now) -> fDate, Timeg
[page 63] Convert now to local date and time

� now to universal time(Now) -> fDate, Timeg
[page 64] Convert now to date and time

� now to datetime(Now) -> fDate, Timeg
[page 64] Convert now to date and time

� seconds to daystime(Seconds) -> fDays, Timeg
[page 64] Compute days and time from seconds

� seconds to time(Seconds) -> Time
[page 64] Compute time from seconds

� time difference(T1, T2) -> fDays, Timeg
[page 64] Compute the difference between two times (deprecated)

� time to seconds(Time) -> Seconds
[page 64] Compute the number of seconds since midnight up to the given time

� universal time() -> fDate, Timeg
[page 64] Compute universal time

� universal time to local time(fDate1, Time1g) -> fDate2, Time2g
[page 65] Convert from universal time to local time

� valid date(Date) -> bool()
[page 65] Check if a date is valid

� valid date(Year, Month, Day) -> bool()
[page 65] Check if a date is valid

5STDLIB

STDLIB Reference Manual

dets

The following functions are exported:

� all() -> [Name]
[page 67] Return a list of the names of all open Dets tables on this node.

� bchunk(Name, Continuation) -> fContinuation2, Datag |
’$end of table’ | ferror, Reasong
[page 67] Return a chunk of objects stored in a Dets table.

� close(Name) -> ok | ferror, Reasong
[page 68] Close a Dets table.

� delete(Name, Key) -> ok | ferror, Reasong
[page 68] Delete all objects with a given key from a Dets table.

� delete all objects(Name) -> ok | ferror, Reasong
[page 68] Delete all objects from a Dets table.

� delete object(Name, Object) -> ok | ferror, Reasong
[page 68] Delete a given object from a Dets table.

� first(Name) -> Key | ’$end of table’
[page 68] Return the first key stored in a Dets table.

� foldl(Function, Acc0, Name) -> Acc1 | ferror, Reasong
[page 69] Fold a function over a Dets table.

� foldr(Function, Acc0, Name) -> Acc1 | ferror, Reasong
[page 69] Fold a function over a Dets table.

� from ets(Name, EtsTab) -> ok | ferror, Reasong
[page 69] Replace the objects of a Dets table with the objects of an Ets table.

� info(Name) -> InfoList | undefined
[page 69] Return information about a Dets table.

� info(Name, Item) -> Value | undefined
[page 70] Return the information associated with a given item for a Dets table.

� init table(Name, InitFun [, Options]) -> ok | ferror, Reasong
[page 70] Replace all objects of a Dets table.

� insert(Name, Objects) -> ok | ferror, Reasong
[page 71] Insert one or more objects into a Dets table.

� insert new(Name, Objects) -> Bool
[page 71] Insert one or more objects into a Dets table.

� is compatible bchunk format(Name, BchunkFormat) -> Bool
[page 72] Test compatibility of a table's chunk data.

� is dets file(FileName) -> Bool | ferror, Reasong
[page 72] Test for a Dets table.

� lookup(Name, Key) -> [Object] | ferror, Reasong
[page 72] Return all objects with a given key stored in a Dets table.

� match(Continuation) -> f[Match], Continuation2g | ’$end of table’ |
ferror, Reasong
[page 72] Match a chunk of objects stored in a Dets table and return a list of
variable bindings.

� match(Name, Pattern) -> [Match] | ferror, Reasong
[page 73] Match the objects stored in a Dets table and return a list of variable
bindings.

6 STDLIB

STDLIB Reference Manual

� match(Name, Pattern, N) -> f[Match], Continuationg | ’$end of table’
| ferror, Reasong
[page 73] Match the first chunk of objects stored in a Dets table and return a list of
variable bindings.

� match delete(Name, Pattern) -> N | ferror, Reasong
[page 73] Delete all objects that match a given pattern from a Dets table.

� match object(Continuation) -> f[Object], Continuation2g |
’$end of table’ | ferror, Reasong
[page 74] Match a chunk of objects stored in a Dets table and return a list of
objects.

� match object(Name, Pattern) -> [Object] | ferror, Reasong
[page 74] Match the objects stored in a Dets table and return a list of objects.

� match object(Name, Pattern, N) -> f[Object], Continuationg |
’$end of table’ | ferror, Reasong
[page 74] Match the first chunk of objects stored in a Dets table and return a list of
objects.

� member(Name, Key) -> Bool | ferror, Reasong
[page 75] Test for occurrence of a key in a Dets table.

� next(Name, Key1) -> Key2 | ’$end of table’
[page 75] Return the next key in a Dets table.

� open file(Filename) -> fok, Referenceg | ferror, Reasong
[page 75] Open an existing Dets table.

� open file(Name, Args) -> fok, Nameg | ferror, Reasong
[page 75] Open a Dets table.

� pid2name(Pid) -> fok, Nameg | undefined
[page 77] Return the name of the Dets table handled by a pid.

� repair continuation(Continuation, MatchSpec) -> Continuation2
[page 77] Repair a continuation from select/1 or select/3.

� safe fixtable(Name, Fix)
[page 77] Fix a Dets table for safe traversal.

� select(Continuation) -> fSelection, Continuation2g | ’$end of table’
| ferror, Reasong
[page 78] Apply a match specification to some objects stored in a Dets table.

� select(Name, MatchSpec) -> Selection | ferror, Reasong
[page 78] Apply a match specification to all objects stored in a Dets table.

� select(Name, MatchSpec, N) -> fSelection, Continuationg |
’$end of table’ | ferror, Reasong
[page 78] Apply a match specification to the first chunk of objects stored in a Dets
table.

� select delete(Name, MatchSpec) -> N | ferror, Reasong
[page 79] Delete all objects that match a given pattern from a Dets table.

� slot(Name, I) -> ’$end of table’ | [Object] | ferror, Reasong
[page 79] Return the list of objects associated with a slot of a Dets table.

� sync(Name) -> ok | ferror, Reasong
[page 79] Ensure that all updates made to a Dets table are written to disk.

� table(Name [, Options]) -> QueryHandle
[page 79] Return a QLC query handle.

7STDLIB

STDLIB Reference Manual

� to ets(Name, EtsTab) -> EtsTab | ferror, Reasong
[page 80] Insert all objects of a Dets table into an Ets table.

� traverse(Name, Fun) -> Return | ferror, Reasong
[page 81] Apply a function to all or some objects stored in a Dets table.

� update counter(Name, Key, Increment) -> Result
[page 81] Update a counter object stored in a Dets table.

dict

The following functions are exported:

� append(Key, Value, Dict1) -> Dict2
[page 82] Append a value to keys in a dictionary

� append list(Key, ValList, Dict1) -> Dict2
[page 82] Append new values to keys in a dictionary

� erase(Key, Dict1) -> Dict2
[page 82] Erase a key from a dictionary

� fetch(Key, Dict) -> Value
[page 82] Look-up values in a dictionary

� fetch keys(Dict) -> Keys
[page 83] Return all keys in a dictionary

� filter(Pred, Dict1) -> Dict2
[page 83] Choose elements which satisfy a predicate

� find(Key, Dict) -> fok, Valueg | error
[page 83] Search for a key in a dictionary

� fold(Fun, Acc0, Dict) -> Acc1
[page 83] Fold a function over a dictionary

� from list(List) -> Dict
[page 83] Convert a list of pairs to a dictionary

� is key(Key, Dict) -> bool()
[page 83] Test if a key is in a dictionary

� map(Fun, Dict1) -> Dict2
[page 84] Map a function over a dictionary

� merge(Fun, Dict1, Dict2) -> Dict3
[page 84] Merge two dictionaries

� new() -> dictionary()
[page 84] Create a dictionary

� store(Key, Value, Dict1) -> Dict2
[page 84] Store a value in a dictionary

� to list(Dict) -> List
[page 84] Convert a dictionary to a list of pairs

� update(Key, Fun, Dict1) -> Dict2
[page 85] Update a value in a dictionary

� update(Key, Fun, Initial, Dict1) -> Dict2
[page 85] Update a value in a dictionary

� update counter(Key, Increment, Dict1) -> Dict2
[page 85] Increment a value in a dictionary

8 STDLIB

STDLIB Reference Manual

digraph

The following functions are exported:

� add edge(G, E, V1, V2, Label) -> edge() | ferror, Reasong
[page 87] Add an edge to a digraph.

� add edge(G, V1, V2, Label) -> edge() | ferror, Reasong
[page 87] Add an edge to a digraph.

� add edge(G, V1, V2) -> edge() | ferror, Reasong
[page 87] Add an edge to a digraph.

� add vertex(G, V, Label) -> vertex()
[page 88] Add or modify a vertex of a digraph.

� add vertex(G, V) -> vertex()
[page 88] Add or modify a vertex of a digraph.

� add vertex(G) -> vertex()
[page 88] Add or modify a vertex of a digraph.

� del edge(G, E) -> true
[page 88] Delete an edge from a digraph.

� del edges(G, Edges) -> true
[page 88] Delete edges from a digraph.

� del path(G, V1, V2) -> true
[page 88] Delete paths from a digraph.

� del vertex(G, V) -> true
[page 89] Delete a vertex from a digraph.

� del vertices(G, Vertices) -> true
[page 89] Delete vertices from a digraph.

� delete(G) -> true
[page 89] Delete a digraph.

� edge(G, E) -> fE, V1, V2, Labelg | false
[page 89] Return the vertices and the label of an edge of a digraph.

� edges(G) -> Edges
[page 89] Return all edges of a digraph.

� edges(G, V) -> Edges
[page 89] Return the edges emanating from or incident on a vertex of a digraph.

� get cycle(G, V) -> Vertices | false
[page 90] Find one cycle in a digraph.

� get path(G, V1, V2) -> Vertices | false
[page 90] Find one path in a digraph.

� get short cycle(G, V) -> Vertices | false
[page 90] Find one short cycle in a digraph.

� get short path(G, V1, V2) -> Vertices | false
[page 90] Find one short path in a digraph.

� in degree(G, V) -> integer()
[page 91] Return the in-degree of a vertex of a digraph.

� in edges(G, V) -> Edges
[page 91] Return all edges incident on a vertex of a digraph.

9STDLIB

STDLIB Reference Manual

� in neighbours(G, V) -> Vertices
[page 91] Return all in-neighbours of a vertex of a digraph.

� info(G) -> InfoList
[page 91] Return information about a digraph.

� new() -> digraph()
[page 92] Return a protected empty digraph, where cycles are allowed.

� new(Type) -> digraph() | ferror, Reasong
[page 92] Create a new empty digraph.

� no edges(G) -> integer() >= 0
[page 92] Return the number of edges of the a digraph.

� no vertices(G) -> integer() >= 0
[page 92] Return the number of vertices of a digraph.

� out degree(G, V) -> integer()
[page 92] Return the out-degree of a vertex of a digraph.

� out edges(G, V) -> Edges
[page 92] Return all edges emanating from a vertex of a digraph.

� out neighbours(G, V) -> Vertices
[page 92] Return all out-neighbours of a vertex of a digraph.

� vertex(G, V) -> fV, Labelg | false
[page 93] Return the label of a vertex of a digraph.

� vertices(G) -> Vertices
[page 93] Return all vertices of a digraph.

digraph utils

The following functions are exported:

� components(Digraph) -> [Component]
[page 95] Return the components of a digraph.

� condensation(Digraph) -> CondensedDigraph
[page 95] Return a condensed graph of a digraph.

� cyclic strong components(Digraph) -> [StrongComponent]
[page 95] Return the cyclic strong components of a digraph.

� is acyclic(Digraph) -> bool()
[page 95] Check if a digraph is acyclic.

� loop vertices(Digraph) -> Vertices
[page 95] Return the vertices of a digraph included in some loop.

� postorder(Digraph) -> Vertices
[page 96] Return the vertices of a digraph in post-order.

� preorder(Digraph) -> Vertices
[page 96] Return the vertices of a digraph in pre-order.

� reachable(Vertices, Digraph) -> Vertices
[page 96] Return the vertices reachable from some vertices of a digraph.

� reachable neighbours(Vertices, Digraph) -> Vertices
[page 96] Return the neighbours reachable from some vertices of a digraph.

� reaching(Vertices, Digraph) -> Vertices
[page 96] Return the vertices that reach some vertices of a digraph.

10 STDLIB

STDLIB Reference Manual

� reaching neighbours(Vertices, Digraph) -> Vertices
[page 96] Return the neighbours that reach some vertices of a digraph.

� strong components(Digraph) -> [StrongComponent]
[page 97] Return the strong components of a digraph.

� subgraph(Digraph, Vertices [, Options]) -> Subgraph | ferror,
Reasong
[page 97] Return a subgraph of a digraph.

� topsort(Digraph) -> Vertices | false
[page 97] Return a topological sorting of the vertices of a digraph.

epp

The following functions are exported:

� open(FileName, IncludePath) -> fok,Eppg | ferror, ErrorDescriptorg
[page 98] Open a file for preprocessing

� open(FileName, IncludePath, PredefMacros) -> fok,Eppg | ferror,
ErrorDescriptorg
[page 98] Open a file for preprocessing

� close(Epp) -> ok
[page 98] Close the preprocessing of the file associated with Epp

� parse erl form(Epp) -> fok, AbsFormg | feof, Lineg | ferror,
ErrorInfog
[page 98] Return the next Erlang form from the opened Erlang source file

� parse file(FileName,IncludePath,PredefMacro) -> fok,[Form]g |
ferror,OpenErrorg
[page 98] Preprocesse and parse an Erlang source file

erl eval

The following functions are exported:

� exprs(Expressions, Bindings) -> fvalue, Value, NewBindingsg
[page 100] Evaluate expressions

� exprs(Expressions, Bindings, LocalFunctionHandler) -> fvalue,
Value, NewBindingsg
[page 100] Evaluate expressions

� exprs(Expressions, Bindings, LocalFunctionHandler,
NonlocalFunctionHandler) -> fvalue, Value, NewBindingsg
[page 100] Evaluate expressions

� expr(Expression, Bindings) -> f value, Value, NewBindings g
[page 100] Evaluate expression

� expr(Expression, Bindings, LocalFunctionHandler) -> f value, Value,
NewBindings g
[page 100] Evaluate expression

� expr(Expression, Bindings, LocalFunctionHandler,
NonlocalFunctionHandler) -> f value, Value, NewBindings g
[page 100] Evaluate expression

11STDLIB

STDLIB Reference Manual

� expr list(ExpressionList, Bindings) -> fValueList, NewBindingsg
[page 101] Evaluate a list of expressions

� expr list(ExpressionList, Bindings, LocalFunctionHandler) ->
fValueList, NewBindingsg
[page 101] Evaluate a list of expressions

� expr list(ExpressionList, Bindings, LocalFunctionHandler,
NonlocalFunctionHandler) -> fValueList, NewBindingsg
[page 101] Evaluate a list of expressions

� new bindings() -> BindingStruct
[page 101] Return a bindings structure

� bindings(BindingStruct) -> Bindings
[page 101] Return bindings

� binding(Name, BindingStruct) -> Binding
[page 101] Return bindings

� add binding(Name, Value, Bindings) -> BindingStruct
[page 101] Add a binding

� del binding(Name, Bindings) -> BindingStruct
[page 101] Delete a binding

erl id trans

The following functions are exported:

� parse transform(Forms, Options) -> Forms
[page 103] Transform Erlang forms

erl internal

The following functions are exported:

� bif(Name, Arity) -> bool()
[page 104] Test for an Erlang BIF

� guard bif(Name, Arity) -> bool()
[page 104] Test for an Erlang BIF allowed in guards

� type test(Name, Arity) -> bool()
[page 104] Test for a valid type test

� arith op(OpName, Arity) -> bool()
[page 104] Test for an arithmetic operator

� bool op(OpName, Arity) -> bool()
[page 104] Test for a Boolean operator

� comp op(OpName, Arity) -> bool()
[page 105] Test for a comparison operator

� list op(OpName, Arity) -> bool()
[page 105] Test for a list operator

� send op(OpName, Arity) -> bool()
[page 105] Test for a send operator

� op type(OpName, Arity) -> Type
[page 105] Return operator type

12 STDLIB

STDLIB Reference Manual

erl lint

The following functions are exported:

� module(AbsForms) -> fok,Warningsg | ferror,Errors,Warningsg
[page 106] Check a module for errors

� module(AbsForms, FileName) -> fok,Warningsg |
ferror,Errors,Warningsg
[page 106] Check a module for errors

� module(AbsForms, FileName, CompileOptions) -> fok,Warningsg |
ferror,Errors,Warningsg
[page 106] Check a module for errors

� is guard test(Expr) -> bool()
[page 107] Test for a guard test

� format error(ErrorDescriptor) -> Chars
[page 107] Format an error descriptor

erl parse

The following functions are exported:

� parse form(Tokens) -> fok, AbsFormg | ferror, ErrorInfog
[page 108] Parse an Erlang form

� parse exprs(Tokens) -> fok, Expr listg | ferror, ErrorInfog
[page 108] Parse Erlang expressions

� parse term(Tokens) -> fok, Termg | ferror, ErrorInfog
[page 108] Parse an Erlang term

� format error(ErrorDescriptor) -> Chars
[page 109] Format an error descriptor

� tokens(AbsTerm) -> Tokens
[page 109] Generate a list of tokens for an expression

� tokens(AbsTerm, MoreTokens) -> Tokens
[page 109] Generate a list of tokens for an expression

� normalise(AbsTerm) -> Data
[page 109] Convert abstract form to an Erlang term

� abstract(Data) -> AbsTerm
[page 109] Convert an Erlang term into an abstract form

erl pp

The following functions are exported:

� form(Form) -> DeepCharList
[page 111] Pretty print a form

� form(Form, HookFunction) -> DeepCharList
[page 111] Pretty print a form

� attribute(Attribute) -> DeepCharList
[page 111] Pretty print an attribute

13STDLIB

STDLIB Reference Manual

� attribute(Attribute, HookFunction) -> DeepCharList
[page 111] Pretty print an attribute

� function(Function) -> DeepCharList
[page 111] Pretty print a function

� function(Function, HookFunction) -> DeepCharList
[page 111] Pretty print a function

� guard(Guard) -> DeepCharList
[page 111] Pretty print a guard

� guard(Guard, HookFunction) -> DeepCharList
[page 111] Pretty print a guard

� exprs(Expressions) -> DeepCharList
[page 112] Pretty print Expressions

� exprs(Expressions, HookFunction) -> DeepCharList
[page 112] Pretty print Expressions

� exprs(Expressions, Indent, HookFunction) -> DeepCharList
[page 112] Pretty print Expressions

� expr(Expression) -> DeepCharList
[page 112] Pretty print one Expression

� expr(Expression, HookFunction) -> DeepCharList
[page 112] Pretty print one Expression

� expr(Expression, Indent, HookFunction) -> DeepCharList
[page 112] Pretty print one Expression

� expr(Expression, Indent, Precedence, HookFunction) ->->
DeepCharList
[page 112] Pretty print one Expression

erl scan

The following functions are exported:

� string(CharList,StartLine]) -> fok, Tokens, EndLineg | Error
[page 114] Scan a string and returns the Erlang tokens

� string(CharList) -> fok, Tokens, EndLineg | Error
[page 114] Scan a string and returns the Erlang tokens

� tokens(Continuation, CharList, StartLine) ->Return
[page 114] Re-entrant scanner

� reserved word(Atom) -> bool()
[page 115] Test for a reserved word

� format error(ErrorDescriptor) -> string()
[page 115] Format an error descriptor

erl tar

The following functions are exported:

� add(TarDescriptor, Filename, Options) -> RetValue
[page 117] Add a file to an open tar file

14 STDLIB

STDLIB Reference Manual

� add(TarDescriptor, Filename, NameInArchive, Options) -> RetValue
[page 117] Add a file to an open tar file

� close(TarDescriptor)
[page 117] Close an open tar file

� create(Name, FileList) ->RetValue
[page 117] Create a tar archive

� create(Name, FileList, OptionList)
[page 118] Create a tar archive with options

� extract(Name) -> RetValue
[page 118] Extract all files from a tar file

� extract(Name, OptionList)
[page 118] Extract files from a tar file

� format error(Reason) -> string()
[page 119] Convert error term to a readable string

� open(Name, OpenModeList) -> RetValue
[page 119] Open a tar file.

� table(Name) -> RetValue
[page 120] Retrieve the name of all files in a tar file

� table(Name, Options)
[page 120] Retrieve name and information of all files in a tar file

� t(Name)
[page 120] Print the name of each file in a tar file

� tt(Name)
[page 120] Print name and information for each file in a tar file

ets

The following functions are exported:

� all() -> [Tab]
[page 123] Return a list of all ETS tables.

� delete(Tab) -> true
[page 123] Delete an entire ETS table.

� delete(Tab, Key) -> true
[page 123] Delete all objects with a given key from an ETS table.

� delete all objects(Tab) -> true
[page 123] Delete all objects in an ETS table.

� delete object(Tab,Object) -> true
[page 123] Deletes a specific from an ETS table.

� file2tab(Filename) -> fok,Tabg | ferror,Reasong
[page 123] Read an ETS table from a file.

� first(Tab) -> Key | ’$end of table’
[page 124] Return the first key in an ETS table.

� fixtable(Tab, true|false) -> true | false
[page 124] Fix an ETS table for safe traversal (obsolete).

� foldl(Function, Acc0, Tab) -> Acc1
[page 124] Fold a function over an ETS table

15STDLIB

STDLIB Reference Manual

� foldr(Function, Acc0, Tab) -> Acc1
[page 124] Fold a function over an ETS table

� from dets(Tab, DetsTab) -> Tab
[page 125] Fill an ETS table with objects from a Dets table.

� fun2ms(LiteralFun) -> MatchSpec
[page 125] Pseudo function that transforms fun syntax to a match spec.

� i() -> void()
[page 126] Display information about all ETS tables on tty.

� i(Tab) -> void()
[page 126] Browse an ETS table on tty.

� info(Tab) -> tuple() | undefined
[page 126] Return information about an ETS table.

� info(Tab, Item) -> Value | undefined
[page 127] Return the information associated with given item for an ETS table.

� init table(Name, InitFun) -> true
[page 127] Replace all objects of an ETS table.

� insert(Tab, ObjectOrObjects) -> true
[page 128] Insert an object into an ETS table.

� insert new(Tab, ObjectOrObjects) -> bool()
[page 128] Insert an object into an ETS table if the key is not already present.

� is compiled ms(Term) -> bool()
[page 128] Checks if an Erlang term is the result of ets:match spec compile

� last(Tab) -> Key | ’$end of table’
[page 129] Return the last key in an ETS table of type ordered set.

� lookup(Tab, Key) -> [Object]
[page 129] Return all objects with a given key in an ETS table.

� lookup element(Tab, Key, Pos) -> Elem
[page 129] Return the Pos:th element of all objects with a given key in an ETS
table.

� match(Tab, Pattern) -> [Match]
[page 130] Match the objects in an ETS table against a pattern.

� match(Tab, Pattern, Limit) -> f[Match],Continuationg |
’$end of table’
[page 130] Match the objects in an ETS table against a pattern and returns part of
the answers.

� match(Continuation) -> f[Match],Continuationg | ’$end of table’
[page 131] Continues matching objects in an ETS table.

� match delete(Tab, Pattern) -> true
[page 131] Delete all objects which match a given pattern from an ETS table.

� match object(Tab, Pattern) -> [Object]
[page 131] Match the objects in an ETS table against a pattern.

� match object(Tab, Pattern, Limit) -> f[Match],Continuationg |
’$end of table’
[page 131] Match the objects in an ETS table against a pattern and returns part of
the answers.

� match object(Continuation) -> f[Match],Continuationg |
’$end of table’
[page 131] Continues matching objects in an ETS table.

16 STDLIB

STDLIB Reference Manual

� match spec compile(MatchSpec) -> CompiledMatchSpec
[page 132] Compiles a match specification into its internal representation

� match spec run(List,CompiledMatchSpec) -> list()
[page 132] Performs matching, using a compiled match spec, on a list of tuples

� member(Tab, Key) -> true | false
[page 133] Tests for occurrence of a key in an ETS table

� new(Name, Options) -> tid()
[page 133] Create a new ETS table.

� next(Tab, Key1) -> Key2 | ’$end of table’
[page 134] Return the next key in an ETS table.

� prev(Tab, Key1) -> Key2 | ’$end of table’
[page 134] Return the previous key in an ETS table of type ordered set.

� rename(Tab, Name) -> Name
[page 134] Rename a named ETS table.

� repair continuation(Continuation, MatchSpec) -> Continuation
[page 134] Repair a continuation from ets:select/1 or ets:select/3 that has passed
through external representation

� safe fixtable(Tab, true|false) -> true
[page 135] Fix an ETS table for safe traversal.

� select(Tab, MatchSpec) -> [Object]
[page 136] Match the objects in an ETS table against a match spec.

� select(Tab, MatchSpec, Limit) -> f[Match],Continuationg |
’$end of table’
[page 138] Match the objects in an ETS table against a match spec and returns
part of the answers.

� select(Continuation) -> f[Match],Continuationg | ’$end of table’
[page 138] Continue matching objects in an ETS table.

� select delete(Tab, MatchSpec) -> NumDeleted
[page 138] Match the objects in an ETS table against a match spec and deletes
objects where the match spec returns 'true'

� select count(Tab, MatchSpec) -> NumMatched
[page 138] Match the objects in an ETS table against a match spec and returns the
number of objects for which the match spec returned 'true'

� slot(Tab, I) -> [Object] | ’$end of table’
[page 139] Return all objects in a given slot of an ETS table.

� tab2file(Tab, Filename) -> ok | ferror,Reasong
[page 139] Dump an ETS table to a file.

� tab2list(Tab) -> [Object]
[page 139] Return a list of all objects in an ETS table.

� table(Tab [, Options]) -> QueryHandle
[page 139] Return a QLC query handle.

� test ms(Tuple, MatchSpec) -> fok, Resultg | ferror, Errorsg
[page 140] Test a match spec for use in ets:select/2.

� to dets(Tab, DetsTab) -> Tab
[page 141] Fill a Dets table with objects from an ETS table.

� update counter(Tab, Key, fPos,Incr,Threshold,SetValueg) -> Result
[page 141] Update a counter object in an ETS table.

17STDLIB

STDLIB Reference Manual

� update counter(Tab, Key, fPos,Incrg) -> Result
[page 141] Update a counter object in an ETS table.

� update counter(Tab, Key, Incr) -> Result
[page 141] Update a counter object in an ETS table.

file sorter

The following functions are exported:

� sort(FileName) -> Reply
[page 145] Sort terms on files.

� sort(Input, Output) -> Reply
[page 145] Sort terms on files.

� sort(Input, Output, Options) -> Reply
[page 145] Sort terms on files.

� keysort(KeyPos, FileName) -> Reply
[page 145] Sort terms on files by key.

� keysort(KeyPos, Input, Output) -> Reply
[page 145] Sort terms on files by key.

� keysort(KeyPos, Input, Output, Options) -> Reply
[page 145] Sort terms on files by key.

� merge(FileNames, Output) -> Reply
[page 145] Merge terms on files.

� merge(FileNames, Output, Options) -> Reply
[page 145] Merge terms on files.

� keymerge(KeyPos, FileNames, Output) -> Reply
[page 146] Merge terms on files by key.

� keymerge(KeyPos, FileNames, Output, Options) -> Reply
[page 146] Merge terms on files by key.

� check(FileName) -> Reply
[page 146] Check whether terms on files are sorted.

� check(FileNames, Options) -> Reply
[page 146] Check whether terms on files are sorted.

� keycheck(KeyPos, FileName) -> CheckReply
[page 146] Check whether terms on files are sorted by key.

� keycheck(KeyPos, FileNames, Options) -> Reply
[page 146] Check whether terms on files are sorted by key.

filelib

The following functions are exported:

� ensure dir(Name) -> true
[page 147] Ensure that all parent directories needed to create Name exists.

� file size(Filename) -> integer()
[page 147] Return the size in bytes of the file.

� fold files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
[page 147] Fold over all files matching a regular expression.

18 STDLIB

STDLIB Reference Manual

� is dir(Name) -> true | false
[page 147] Test whether Name refer to a directory or not

� is file(Name) -> true | false
[page 147] Test whether Name refer to a file or directory.

� is regular(Name) -> true | false
[page 148] Test whether Name refer to a (regular) file.

� last modified(Name) -> ffYear,Month,Dayg,fHour,Min,Secgg
[page 148] Return the local date and time when a file was last modified.

� wildcard(Wildcard) -> list()
[page 148] Match filenames using Unix-style wildcards.

� wildcard(Wildcard, Cwd) -> list()
[page 149] Match filenames using Unix-style wildcards startin at a specified
directory.

filename

The following functions are exported:

� absname(Filename) -> string()
[page 150] Convert a filename to an absolute name, relative the working directory

� absname(Filename, Dir) -> string()
[page 151] Convert a filename to an absolute name, relative a specified directory

� absname join(Dir, Filename) -> string()
[page 151] Join an absolute directory with a relative filename

� basename(Filename) -> string()
[page 151] Return the last component of a filename

� basename(Filename, Ext) -> string()
[page 151] Return the last component of a filename, stripped of the specified
extension

� dirname(Filename) -> string()
[page 152] Return the directory part of a path name

� extension(Filename) -> string()
[page 152] Return the file extension

� flatten(Filename) -> string()
[page 152] Convert a filename to a flat string

� join(Components) -> string()
[page 153] Join a list of filename components with directory separators

� join(Name1, Name2) -> string()
[page 153] Join two filename components with directory separators

� nativename(Path) -> string()
[page 153] Return the native form of a file path

� pathtype(Path) -> absolute | relative | volumerelative
[page 153] Return the type of a path

� rootname(Filename) -> string()
[page 154] Remove a filename extension

� rootname(Filename, Ext) -> string()
[page 154] Remove a filename extension

19STDLIB

STDLIB Reference Manual

� split(Filename) -> Components
[page 154] Split a filename into its path components

� find src(Beam) -> fSourceFile, Optionsg
[page 154] Find the filename and compiler options for a module

� find src(Beam, Rules) -> fSourceFile, Optionsg
[page 154] Find the filename and compiler options for a module

gb sets

The following functions are exported:

� add(Element, Set1) -> Set2
[page 157] Add a (possibly existing) element to a gb set

� add element(Element, Set1) -> Set2
[page 157] Add a (possibly existing) element to a gb set

� balance(Set1) -> Set2
[page 157] Rebalance tree representation of a gb set

� delete(Element, Set1) -> Set2
[page 157] Remove an element from a gb set

� delete any(Element, Set1) -> Set2
[page 157] Remove a (possibly non-existing) element from a gb set

� del element(Element, Set1) -> Set2
[page 157] Remove a (possibly non-existing) element from a gb set

� difference(Set1, Set2) -> Set3
[page 157] Return the difference of two gb sets

� subtract(Set1, Set2) -> Set3
[page 158] Return the difference of two gb sets

� empty() -> Set
[page 158] Return an empty gb set

� new() -> Set
[page 158] Return an empty gb set

� filter(Pred, Set1) -> Set2
[page 158] Filter gb set elements

� fold(Function, Acc0, Set) -> Acc1
[page 158] Fold over gb set elements

� from list(List) -> Set
[page 158] Convert a list into a gb set

� from ordset(List) -> Set
[page 158] Make a gb set from an ordset list

� insert(Element, Set1) -> Set2
[page 158] Add a new element to a gb set

� intersection(Set1, Set2) -> Set3
[page 159] Return the intersection of two gb sets

� intersection(SetList) -> Set
[page 159] Return the intersection of a list of gb sets

� is empty(Set) -> bool()
[page 159] Test for empty gb set

20 STDLIB

STDLIB Reference Manual

� is member(Element, Set) -> bool()
[page 159] Test for membership of a gb set

� is element(Element, Set) -> bool()
[page 159] Test for membership of a gb set

� is set(Set) -> bool()
[page 159] Test for a gb set

� is subset(Set1, Set2) -> bool()
[page 159] Test for subset

� iterator(Set) -> Iter
[page 159] Return an iterator for a gb set

� largest(Set) -> term()
[page 160] Return largest element

� next(Iter1) -> fElement, Iter2 | noneg
[page 160] Traverse a gb set with an iterator

� singleton(Element) -> gb set()
[page 160] Return a gb set with one element

� size(Set) -> int()
[page 160] Return the number of elements in a gb set

� smallest(Set) -> term()
[page 160] Return smallest element

� take largest(Set1) -> fElement, Set2g
[page 160] Extract largest element

� take smallest(Set1) -> fElement, Set2g
[page 160] Extract smallest element

� to list(Set) -> List
[page 161] Convert a gb set into a list

� union(Set1, Set2) -> Set3
[page 161] Return the union of two gb sets

� union(SetList) -> Set
[page 161] Return the union of a list of gb sets

gb trees

The following functions are exported:

� balance(Tree1) -> Tree2
[page 162] Rebalance a tree

� delete(Key, Tree1) -> Tree2
[page 162] Remove a node from a tree

� delete any(Key, Tree1) -> Tree2
[page 163] Remove a (possibly non-existing) node from a tree

� empty() -> Tree
[page 163] Return an empty tree

� enter(Key, Val, Tree1) -> Tree2
[page 163] Insert or update key with value in a tree

� from orddict(List) -> Tree
[page 163] Make a tree from an orddict

21STDLIB

STDLIB Reference Manual

� get(Key, Tree) -> Val
[page 163] Look up a key in a tree, if present

� lookup(Key, Tree) -> fvalue, Valg | none
[page 163] Look up a key in a tree

� insert(Key, Val, Tree1) -> Tree2
[page 164] Insert a new key and value in a tree

� is defined(Key, Tree) -> bool()
[page 164] Test for membership of a tree

� is empty(Tree) -> bool()
[page 164] Test for empty tree

� iterator(Tree) -> Iter
[page 164] Return an iterator for a tree

� keys(Tree) -> [Key]
[page 164] Return a list of the keys in a tree

� largest(Tree) -> fKey, Valg
[page 164] Return largest key and value

� next(Iter1) -> fKey, Val, Iter2
[page 164] Traverse a tree with an iterator

� size(Tree) -> int()
[page 165] Return the number of nodes in a tree

� smallest(Tree) -> fKey, Valg
[page 165] Return smallest key and value

� take largest(Tree1) -> fKey, Val, Tree2g
[page 165] Extract largest key and value

� take smallest(Tree1) -> fKey, Val, Tree2g
[page 165] Extract smallest key and value

� to list(Tree) -> [fKey, Valg]
[page 165] Convert a tree into a list

� update(Key, Val, Tree1) -> Tree2
[page 165] Update a key to new value in a tree

� values(Tree) -> [Val]
[page 166] Return a list of the values in a tree

gen event

The following functions are exported:

� start link() -> Result
[page 168] Create a generic event manager process in a supervision tree.

� start link(EventMgrName) -> Result
[page 168] Create a generic event manager process in a supervision tree.

� start() -> Result
[page 168] Create a stand-alone event manager process.

� start(EventMgrName) -> Result
[page 168] Create a stand-alone event manager process.

� add handler(EventMgrRef, Handler, Args) -> Result
[page 168] Add an event handler to a generic event manager.

22 STDLIB

STDLIB Reference Manual

� add sup handler(EventMgrRef, Handler, Args) -> Result
[page 169] Add a supervised event handler to a generic event manager.

� notify(EventMgrRef, Event) -> ok
[page 170] Notify an event manager about an event.

� sync notify(EventMgrRef, Event) -> ok
[page 170] Notify an event manager about an event.

� call(EventMgrRef, Handler, Request) -> Result
[page 170] Make a synchronous call to a generic event manager.

� call(EventMgrRef, Handler, Request, Timeout) -> Result
[page 170] Make a synchronous call to a generic event manager.

� delete handler(EventMgrRef, Handler, Args) -> Result
[page 171] Delete an event handler from a generic event manager.

� swap handler(EventMgrRef, fHandler1,Args1g, fHandler2,Args2g) ->
Result
[page 171] Replace an event handler in a generic event manager.

� swap sup handler(EventMgrRef, fHandler1,Args1g, fHandler2,Args2g) ->
Result
[page 172] Replace an event handler in a generic event manager.

� which handlers(EventMgrRef) -> [Handler]
[page 172] Return all event handlers installed in a generic event manager.

� stop(EventMgrRef) -> ok
[page 173] Terminate a generic event manager.

� Module:init(InitArgs) -> fok,Stateg
[page 173] Initialize an event handler.

� Module:handle event(Event, State) -> Result
[page 173] Handle an event.

� Module:handle call(Request, State) -> Result
[page 174] Handle a synchronous request.

� Module:handle info(Info, State) -> Result
[page 174] Handle an incoming message.

� Module:terminate(Arg, State) -> term()
[page 175] Clean up before deletion.

� Module:code change(OldVsn, State, Extra) -> fok, NewStateg
[page 175] Update the internal state during upgrade/downgrade.

gen fsm

The following functions are exported:

� start link(Module, Args, Options) -> Result
[page 178] Create a gen fsm process in a supervision tree.

� start link(FsmName, Module, Args, Options) -> Result
[page 178] Create a gen fsm process in a supervision tree.

� start(Module, Args, Options) -> Result
[page 179] Create a stand-alone gen fsm process.

� start(FsmName, Module, Args, Options) -> Result
[page 179] Create a stand-alone gen fsm process.

23STDLIB

STDLIB Reference Manual

� send event(FsmRef, Event) -> ok
[page 179] Send an event asynchronously to a generic FSM.

� send all state event(FsmRef, Event) -> ok
[page 179] Send an event asynchronously to a generic FSM.

� sync send event(FsmRef, Event) -> Reply
[page 180] Send an event synchronously to a generic FSM.

� sync send event(FsmRef, Event, Timeout) -> Reply
[page 180] Send an event synchronously to a generic FSM.

� sync send all state event(FsmRef, Event) -> Reply
[page 180] Send an event syncronously to a generic FSM.

� sync send all state event(FsmRef, Event, Timeout) -> Reply
[page 180] Send an event syncronously to a generic FSM.

� reply(Caller, Reply) -> true
[page 181] Send a reply to a caller.

� send event after(Time, Event) -> Ref
[page 181] Send a delayed event internally in a generic FSM.

� start timer(Time, Msg) -> Ref
[page 181] Send a timeout event internally in a generic FSM.

� cancel timer(Ref) -> RemainingTime | false
[page 181] Cancel an internal timer in a generic FSM.

� enter loop(Module, Options, StateName, StateData)
[page 182] Enter the gen fsm receive loop

� enter loop(Module, Options, StateName, StateData, FsmName)
[page 182] Enter the gen fsm receive loop

� enter loop(Module, Options, StateName, StateData, Timeout)
[page 182] Enter the gen fsm receive loop

� enter loop(Module, Options, StateName, StateData, FsmName, Timeout)
[page 182] Enter the gen fsm receive loop

� Module:init(Args) -> Result
[page 183] Initialize process and internal state name and state data.

� Module:StateName(Event, StateData) -> Result
[page 183] Handle an asynchronous event.

� Module:handle event(Event, StateName, StateData) -> Result
[page 184] Handle an asynchronous event.

� Module:StateName(Event, From, StateData) -> Result
[page 184] Handle a synchronous event.

� Module:handle sync event(Event, From, StateName, StateData) ->
Result
[page 185] Handle a synchronous event.

� Module:handle info(Info, StateName, StateData) -> Result
[page 185] Handle an incoming message.

� Module:terminate(Reason, StateName, StateData)
[page 186] Clean up before termination.

� Module:code change(OldVsn, StateName, StateData, Extra) -> fok,
NextStateName, NewStateDatag
[page 186] Update the internal state data during upgrade/downgrade.

24 STDLIB

STDLIB Reference Manual

gen server

The following functions are exported:

� start link(Module, Args, Options) -> Result
[page 188] Create a gen server process in a supervision tree.

� start link(ServerName, Module, Args, Options) -> Result
[page 188] Create a gen server process in a supervision tree.

� start(Module, Args, Options) -> Result
[page 189] Create a stand-alone gen server process.

� start(ServerName, Module, Args, Options) -> Result
[page 189] Create a stand-alone gen server process.

� call(ServerRef, Request) -> Reply
[page 190] Make a synchronous call to a generic server.

� call(ServerRef, Request, Timeout) -> Reply
[page 190] Make a synchronous call to a generic server.

� multi call(Name, Request) -> Result
[page 191] Make a synchronous call to several generic servers.

� multi call(Nodes, Name, Request) -> Result
[page 191] Make a synchronous call to several generic servers.

� multi call(Nodes, Name, Request, Timeout) -> Result
[page 191] Make a synchronous call to several generic servers.

� cast(ServerRef, Request) -> ok
[page 192] Send an asynchronous request to a generic server.

� abcast(Name, Request) -> abcast
[page 192] Send an asynchronous request to several generic servers.

� abcast(Nodes, Name, Request) -> abcast
[page 192] Send an asynchronous request to several generic servers.

� reply(Client, Reply) -> true
[page 192] Send a reply to a client.

� enter loop(Module, Options, State)
[page 192] Enter the gen server receive loop

� enter loop(Module, Options, State, ServerName)
[page 193] Enter the gen server receive loop

� enter loop(Module, Options, State, Timeout)
[page 193] Enter the gen server receive loop

� enter loop(Module, Options, State, ServerName, Timeout)
[page 193] Enter the gen server receive loop

� Module:init(Args) -> Result
[page 193] Initialize process and internal state.

� Module:handle call(Request, From, State) -> Result
[page 194] Handle a synchronous request.

� Module:handle cast(Request, State) -> Result
[page 194] Handle an asynchronous request.

� Module:handle info(Info, State) -> Result
[page 195] Handle an incoming message.

25STDLIB

STDLIB Reference Manual

� Module:terminate(Reason, State)
[page 195] Clean up before termination.

� Module:code change(OldVsn, State, Extra) -> fok, NewStateg
[page 196] Update the internal state during upgrade/downgrade.

io

The following functions are exported:

� put chars([IoDevice,] IoData) -> ok
[page 197] Write a list of characters

� nl([IoDevice]) -> ok
[page 197] Write a newline

� get chars([IoDevice,] Prompt, Count) -> string() | eof
[page 197] Read a specified number of characters

� get line([IoDevice,] Prompt) -> string() | eof
[page 198] Read a line

� setopts([IoDevice,] Opts) -> ok | ferror, Reasong
[page 198] Set options

� write([IoDevice,] Term) -> ok
[page 198] Write a term

� read([IoDevice,] Prompt) -> Result
[page 198] Read a term

� read(IoDevice, Prompt, StartLine) -> Result
[page 199] Read a term

� fwrite(Format) ->
[page 199] Write formatted output

� fwrite([IoDevice,] Format, Data) -> ok
[page 199] Write formatted output

� format(Format) ->
[page 199] Write formatted output

� format([IoDevice,] Format, Data) -> ok
[page 199] Write formatted output

� fread([IoDevice,] Prompt, Format) -> Result
[page 203] Read formatted input

� scan erl exprs(Prompt) ->
[page 204] Read and tokenize Erlang expressions

� scan erl exprs([IoDevice,] Prompt, StartLine) -> Result
[page 204] Read and tokenize Erlang expressions

� scan erl form(Prompt) ->
[page 205] Read and tokenize an Erlang form

� scan erl form([IoDevice,] Prompt, StartLine) -> Result
[page 205] Read and tokenize an Erlang form

� parse erl exprs(Prompt) ->
[page 205] Read, tokenize and parse Erlang expressions

� parse erl exprs([IoDevice,] Prompt, StartLine) -> Result
[page 205] Read, tokenize and parse Erlang expressions

26 STDLIB

STDLIB Reference Manual

� parse erl form(Prompt) ->
[page 206] Read, tokenize and parse an Erlang form

� parse erl form([IoDevice,] Prompt, StartLine) -> Result
[page 206] Read, tokenize and parse an Erlang form

io lib

The following functions are exported:

� nl() -> chars()
[page 208] Write a newline

� write(Term) ->
[page 208] Write a term

� write(Term, Depth) -> chars()
[page 208] Write a term

� print(Term) ->
[page 208] Pretty print a term

� print(Term, Column, LineLength, Depth) -> chars()
[page 208] Pretty print a term

� fwrite(Format, Data) ->
[page 209] Write formatted output

� format(Format, Data) -> chars()
[page 209] Write formatted output

� fread(Format, String) -> Result
[page 209] Read formatted input

� fread(Continuation, String, Format) -> Return
[page 209] Re-entrant formatted reader

� write atom(Atom) -> chars()
[page 210] Write an atom

� write string(String) -> chars()
[page 210] Write a string

� write char(Integer) -> chars()
[page 210] Write a character

� indentation(String, StartIndent) -> int()
[page 210] Indentation after printing string

� char list(Term) -> bool()
[page 211] Test for a list of characters

� deep char list(Term) -> bool()
[page 211] Test for a deep list of characters

� printable list(Term) -> bool()
[page 211] Test for a list of printable characters

27STDLIB

STDLIB Reference Manual

lib

The following functions are exported:

� flush receive() -> void()
[page 212] Flush messages

� error message(Format, Args) -> ok
[page 212] Print error message

� progname() -> atom()
[page 212] Return name of Erlang start script

� nonl(String1) -> String2
[page 212] Remove last newline

� send(To, Msg)
[page 212] Send a message

� sendw(To, Msg)
[page 213] Send a message and wait for an answer

lists

The following functions are exported:

� append(ListOfLists) -> List1
[page 214] Append a list of lists

� append(List1, List2) -> List3
[page 214] Append two lists

� concat(Things) -> string()
[page 214] Concatenate a list of atoms

� delete(Elem, List1) -> List2
[page 215] Delete an element from a list

� duplicate(N, Elem) -> List
[page 215] Make N copies of element

� flatlength(DeepList) -> int()
[page 215] Length of flattened deep list

� flatten(DeepList) -> List
[page 215] Flatten a deep list

� flatten(DeepList, Tail) -> List
[page 215] Flatten a deep list

� keydelete(Key, N, TupleList1) -> TupleList2
[page 215] Delete an element from a list of tuples

� keymember(Key, N, TupleList) -> bool()
[page 216] Test for membership of a list of tuples

� keymerge(N, TupleList1, TupleList2) -> TupleList3
[page 216] Merge two key-sorted lists of tuples

� keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2
[page 216] Replace an element in a list of tuples

� keysearch(Key, N, TupleList) -> fvalue, Tupleg | false
[page 216] Search for an element in a list of tuples

28 STDLIB

STDLIB Reference Manual

� keysort(N, TupleList1) -> TupleList2
[page 216] Sort a list of tuples

� last(List) -> Last
[page 217] Return last element in a list

� max(List) -> Max
[page 217] Return maximum element of list

� member(Elem, List) -> bool()
[page 217] Test for membership of a list

� merge(ListOfLists) -> List1
[page 217] Merge a list of sorted lists

� merge(List1, List2) -> List3
[page 217] Merge two sorted lists

� merge(Fun, List1, List2) -> List3
[page 217] Merge two sorted list

� merge3(List1, List2, List3) -> List4
[page 218] Merge three sorted lists

� min(List) -> Min
[page 218] Return minimum element of list

� nth(N, List) -> Elem
[page 218] Return the Nth element of a list

� nthtail(N, List1) -> Tail
[page 218] Return the Nth tail of a list

� prefix(List1, List2) -> bool()
[page 218] Test for list prefix

� reverse(List1) -> List2
[page 218] Reverse a list

� reverse(List1, Tail) -> List2
[page 219] Reverse a list appending a tail

� seq(From, To) -> Seq
[page 219] Generate a sequence of integers

� seq(From, To, Incr) -> Seq
[page 219] Generate a sequence of integers

� sort(List1) -> List2
[page 219] Sort a list

� sort(Fun, List1) -> List2
[page 219] Sort a list

� split(N, List1) -> fList2, List3g
[page 220] Split a list into two lists

� sublist(List1, N) -> List2
[page 220] Return the first N elements of a list

� sublist(List1, Start, Length) -> List2
[page 220] Return a sub-list of a list

� subtract(List1, List2) -> List3
[page 220] Subtract the element in one list from another list

� suffix(List1, List2) -> bool()
[page 220] Test for list suffix

29STDLIB

STDLIB Reference Manual

� sum(List) -> number()
[page 221] Return sum of elements in a list

� ukeymerge(N, TupleList1, TupleList2) -> TupleList3
[page 221] Merge two key-sorted lists of tuples, removing duplicates

� ukeysort(N, TupleList1) -> TupleList2
[page 221] Sort a list of tuples, removing duplicates

� umerge(ListOfLists) -> List1
[page 221] Merge a list of sorted lists, removing duplicates

� umerge(List1, List2) -> List3
[page 221] Merge two sorted lists, removing duplicates

� umerge(Fun, List1, List2) -> List3
[page 221] Merge two sorted lists, removing duplicates

� umerge3(List1, List2, List3) -> List4
[page 222] Merge three sorted lists, removing duplicates

� unzip(List1) -> fList2, List3g
[page 222] Unzip a list of two-tuples into two lists

� unzip3(List1) -> fList2, List3, List4g
[page 222] Unzip a list of three-tuples into three lists

� usort(List1) -> List2
[page 222] Sort a list, removing duplicates

� usort(Fun, List1) -> List2
[page 222] Sort a list, removing duplicates

� zip(List1, List2) -> List3
[page 223] Zip two lists into a list of two-tuples

� zip3(List1, List2, List3) -> List4
[page 223] Zip three lists into a list of three-tuples

� zipwith(Combine, List1, List2) -> List3
[page 223] Zip two lists into one list according to a fun

� zipwith3(Combine, List1, List2, List3) -> List4
[page 223] Zip three lists into one list according to a fun

� all(Pred, List) -> bool()
[page 224] Return true if all elements in the list satisfy Pred

� any(Pred, List) -> bool()
[page 224] Return true if any of the elements in the list satisfies Pred

� dropwhile(Pred, List1) -> List2
[page 224] Drop elements from a list while a predicate is true

� filter(Pred, List1) -> List2
[page 224] Choose elements which satisfy a predicate

� flatmap(Fun, List1) -> List2
[page 225] Map and flatten in one pass

� foldl(Fun, Acc0, List) -> Acc1
[page 225] Fold a function over a list

� foldr(Fun, Acc0, List) -> Acc1
[page 225] Fold a function over a list

� foreach(Fun, List) -> void()
[page 226] Apply a function to each element of a list

30 STDLIB

STDLIB Reference Manual

� map(Fun, List1) -> List2
[page 226] Map a function over a list

� mapfoldl(Fun, Acc0, List1) -> fList2, Acc1g
[page 226] Map and fold in one pass

� mapfoldr(Fun, Acc0, List1) -> fList2, Acc1g
[page 226] Map and fold in one pass

� partition(Pred, List) -> fSatisfying, NonSatisfyingg
[page 227] Partition a list into two lists based on a predicate

� splitwith(Pred, List) -> fList1, List2g
[page 227] Split a list into two lists based on a predicate

� takewhile(Pred, List1) -> List2
[page 227] Take elements from a list while a predicate is true

log mf h

The following functions are exported:

� init(Dir, MaxBytes, MaxFiles)
[page 228] Initiate the event handler

� init(Dir, MaxBytes, MaxFiles, Pred) -> Args
[page 228] Initiate the event handler

math

The following functions are exported:

� pi() -> float()
[page 229] A useful number

� sin(X)
[page 229] Diverse math functions

� cos(X)
[page 229] Diverse math functions

� tan(X)
[page 229] Diverse math functions

� asin(X)
[page 229] Diverse math functions

� acos(X)
[page 229] Diverse math functions

� atan(X)
[page 229] Diverse math functions

� atan2(Y, X)
[page 229] Diverse math functions

� sinh(X)
[page 229] Diverse math functions

� cosh(X)
[page 229] Diverse math functions

� tanh(X)
[page 229] Diverse math functions

31STDLIB

STDLIB Reference Manual

� asinh(X)
[page 229] Diverse math functions

� acosh(X)
[page 229] Diverse math functions

� atanh(X)
[page 229] Diverse math functions

� exp(X)
[page 229] Diverse math functions

� log(X)
[page 229] Diverse math functions

� log10(X)
[page 229] Diverse math functions

� pow(X, Y)
[page 229] Diverse math functions

� sqrt(X)
[page 229] Diverse math functions

� erf(X) -> float()
[page 230] Error function.

� erfc(X) -> float()
[page 230] Another error function

ms transform

The following functions are exported:

� parse transform(Forms, Options) -> Forms
[page 240] Transforms Erlang abstract format containing calls to ets/dbg:fun2ms
into literal match specifications.

� transform from shell(Dialect,Clauses,BoundEnvironment) -> term()
[page 240] Used when transforming fun's created in the shell into
match specifications.

� format error(Errcode) -> ErrMessage
[page 241] Error formatting function as required by the parse transform interface.

orddict

No functions are exported.

ordsets

No functions are exported.

32 STDLIB

STDLIB Reference Manual

pg

The following functions are exported:

� create(PgName) -> ok | ferror, Reasong
[page 244] Create an empty group

� create(PgName, Node) -> ok | ferror, Reasong
[page 244] Create an empty group on another node

� join(PgName, Pid) -> Members
[page 244] Join a pid to a process group

� send(PgName, Msg) -> void()
[page 245] Send a message to all members of a process group

� esend(PgName, Msg) -> void()
[page 245] Send a message to all members of a process group, except ourselves

� members(PgName) -> Members
[page 245] Return a list of all members of a process group

pool

The following functions are exported:

� start(Name) ->
[page 246] >Start a new pool

� start(Name, Args) -> Nodes
[page 246] >Start a new pool

� attach(Node) -> allready attached | attached
[page 246] Ensure that a pool master is running

� stop() -> stopped
[page 247] Stop the pool and kill all the slave nodes

� get nodes() -> Nodes
[page 247] Return a list of the current member nodes of the pool

� pspawn(Mod, Fun, Args) -> pid()
[page 247] Spawn a process on the pool node with expected lowest future load

� pspawn link(Mod, Fun, Args) -> pid()
[page 247] Spawn and link to a process on the pool node with expected lowest
future load

� get node() -> node()
[page 247] Return the node with the expected lowest future load

proc lib

The following functions are exported:

� spawn(Fun) -> Pid
[page 248] Spawn a new process.

� spawn(Node,Fun) -> Pid
[page 248] Spawn a new process.

� spawn(Module,Func,Args) -> Pid
[page 248] Spawn a new process.

33STDLIB

STDLIB Reference Manual

� spawn(Node,Module,Func,Args) -> Pid
[page 248] Spawn a new process.

� spawn link(Fun) -> Pid
[page 248] Spawn a new process and set a link.

� spawn link(Node,Fun) -> Pid
[page 248] Spawn a new process and set a link.

� spawn link(Module,Func,Args) -> Pid
[page 248] Spawn a new process and set a link.

� spawn link(Node,Module,Func,Args) -> Pid
[page 248] Spawn a new process and set a link.

� spawn opt(Fun,Opts) -> Pid
[page 249] Spawn a new process with given options.

� spawn opt(Node,Fun,Opts) -> Pid
[page 249] Spawn a new process with given options.

� spawn opt(Module,Func,Args,Opts) -> Pid
[page 249] Spawn a new process with given options.

� spawn opt(Node,Module,Func,Args,Opts) -> Pid
[page 249] Spawn a new process with given options.

� start(Module,Func,Args) -> Ret
[page 249] Start a new process synchronously.

� start(Module,Func,Args,Time) -> Ret
[page 249] Start a new process synchronously.

� start(Module,Func,Args,Time,SpawnOpts) -> Ret
[page 249] Start a new process synchronously.

� start link(Module,Func,Args) -> Ret
[page 249] Start a new process synchronously.

� start link(Module,Func,Args,Time) -> Ret
[page 249] Start a new process synchronously.

� start link(Module,Func,Args,Time,SpawnOpts) -> Ret
[page 249] Start a new process synchronously.

� init ack(Parent, Ret) -> void()
[page 250] Used by a process when it has started.

� init ack(Ret) -> void()
[page 250] Used by a process when it has started.

� format(CrashReport) -> string()
[page 250] Format a crash report.

� initial call(PidOrPinfo) -> fModule,Function,Argsg | Fun | false
[page 251] Extract the initial call of a proc lib spawned process.

� translate initial call(PidOrPinfo) -> fModule,Function,Arityg | Fun
[page 251] Extract and translate the initial call of a proc lib spawned process.

� hibernate(Module, Function, Arguments)
[page 251] Hibernate the current process until a message is sent to it

34 STDLIB

STDLIB Reference Manual

proplists

The following functions are exported:

� append values(Key, List) -> List
[page 253]

� compact(List) -> List
[page 253]

� delete(Key, List) -> List
[page 253]

� expand(Expansions, List) -> List
[page 253]

� get all values(Key, List) -> [term()]
[page 254]

� get bool(Key, List) -> bool()
[page 254]

� get keys(List) -> [term()]
[page 254]

� get value(Key, List) -> term()
[page 255]

� get value(Key, List, Default) -> term()
[page 255]

� is defined(Key, List) -> bool()
[page 255]

� lookup(Key, List) -> none | tuple()
[page 255]

� lookup all(Key, List) -> [tuple()]
[page 255]

� normalize(List, Stages) -> List
[page 255]

� property(Property) -> Property
[page 256]

� property(Key, Value) -> Property
[page 256]

� split(List, Keys) -> fLists, Restg
[page 256]

� substitute aliases(Aliases, List) -> List
[page 257]

� substitute negations(Negations, List) -> List
[page 257]

� unfold(List) -> List
[page 257]

35STDLIB

STDLIB Reference Manual

qlc

The following functions are exported:

� append(QHL) -> QH
[page 264] Return a query handle.

� append(QH1, QH2) -> QH3
[page 264] Return a query handle.

� cursor(QueryHandleOrList [, Options]) -> QueryCursor
[page 264] Create a query cursor.

� delete cursor(QueryCursor) -> ok
[page 264] Delete a query cursor.

� eval(QueryHandleOrList [, Options]) -> Answers | Error
[page 264] Return all answers to a query.

� e(QueryHandleOrList [, Options]) -> Answers
[page 264] Return all answers to a query.

� fold(Function, Acc0, QueryHandleOrList [, Options]) -> Acc1 | Error
[page 265] Fold a function over the answers to a query.

� format error(Error) -> Chars
[page 265] Return an English description of a an error tuple.

� info(QueryHandleOrList [, Options]) -> Info
[page 265] Return code describing a query handle.

� keysort(KeyPos, QH1 [, SortOptions]) -> QH2
[page 266] Return a query handle.

� next answers(QueryCursor [, NumberOfAnswers]) -> Answers | Error
[page 266] Return some or all answers to a query.

� q(QueryListComprehension [, Options]) -> QueryHandle
[page 267] Return a handle for a query list comprehension.

� sort(QH1 [, SortOptions]) -> QH2
[page 268] Return a query handle.

� string to handle(QueryString [, Options [, Bindings]]) ->
QueryHandle | Error
[page 268] Return a handle for a query list comprehension.

� table(TraverseFun, Options) -> QueryHandle
[page 269] Return a query handle for a table.

queue

The following functions are exported:

� cons(Item, Q1) -> Q2
[page 272] Insert an item at the head of a queue

� daeh(Q) -> Item
[page 272] Return the last item of a queue

� from list(L) -> queue()
[page 272] Convert a list to a queue

� head(Q) -> Item
[page 272] Return the item at the head of a queue

36 STDLIB

STDLIB Reference Manual

� in(Item, Q1) -> Q2
[page 272] Insert an item at the tail of a queue

� in r(Item, Q1) -> Q2
[page 273] Insert an item at the head of a queue

� init(Q1) -> Q2
[page 273] Remove the last item from a queue

� is empty(Q) -> true | false
[page 273] Test if a queue is empty

� join(Q1, Q2) -> Q3
[page 273] Join two queues

� lait(Q1) -> Q2
[page 273] Remove the last item from a queue

� last(Q) -> Item
[page 273] Return the last item of a queue

� len(Q) -> N
[page 273] Get the length of a queue

� new() -> Q
[page 274] Create a new empty FIFO queue

� out(Q1) -> Result
[page 274] Remove the head item from a queue

� out r(Q1) -> Result
[page 274] Remove the last item from a queue

� reverse(Q1) -> Q2
[page 274] Reverse a queue

� snoc(Q1, Item) -> Q2
[page 274] Insert an item at the end of a queue

� split(N, Q1) -> fQ2,Q3g
[page 274] Split a queue in two

� tail(Q1) -> Q2
[page 274] Remove the head item from a queue

� to list(Q) -> list()
[page 275] Convert a queue to a list

random

The following functions are exported:

� seed() -> ran()
[page 276] Seeds random number generation with default values

� seed(A1, A2, A3) -> ran()
[page 276] Seeds random number generator

� seed0() -> ran()
[page 276] Return default state for random number generation

� uniform()-> float()
[page 276] Return a random float

� uniform(N) -> int()
[page 276] Return a random integer

37STDLIB

STDLIB Reference Manual

� uniform s(State0) -> ffloat(), State1g
[page 277] Return a random float

� uniform s(N, State0) -> fint(), State1g
[page 277] Return a random integer

regexp

The following functions are exported:

� match(String, RegExp) -> MatchRes
[page 278] Match a regular expression

� first match(String, RegExp) -> MatchRes
[page 278] Match a regular expression

� matches(String, RegExp) -> MatchRes
[page 278] Match a regular expression

� sub(String, RegExp, New) -> SubRes
[page 279] Substitute the first occurrence of a regular expression

� gsub(String, RegExp, New) -> SubRes
[page 279] Substitute all occurrences of a regular expression

� split(String, RegExp) -> SplitRes
[page 279] Split a string into fields

� sh to awk(ShRegExp) -> AwkRegExp
[page 280] Convert an sh regular expression into an AWK one

� parse(RegExp) -> ParseRes
[page 280] Parse a regular expression

� format error(ErrorDescriptor) -> Chars
[page 280] Format an error descriptor

sets

The following functions are exported:

� new() -> Set
[page 283] Return an empty set

� is set(Set) -> bool()
[page 283] Test for an Set

� size(Set) -> int()
[page 283] Return the number of elements in a set

� to list(Set) -> List
[page 283] Convert an Set into a list

� from list(List) -> Set
[page 283] Convert a list into an Set

� is element(Element, Set) -> bool()
[page 283] Test for membership of an Set

� add element(Element, Set1) -> Set2
[page 284] Add an element to an Set

� del element(Element, Set1) -> Set2
[page 284] Remove an element from an Set

38 STDLIB

STDLIB Reference Manual

� union(Set1, Set2) -> Set3
[page 284] Return the union of two Sets

� union(SetList) -> Set
[page 284] Return the union of a list of Sets

� intersection(Set1, Set2) -> Set3
[page 284] Return the intersection of two Sets

� intersection(SetList) -> Set
[page 284] Return the intersection of a list of Sets

� subtract(Set1, Set2) -> Set3
[page 284] Return the difference of two Sets

� is subset(Set1, Set2) -> bool()
[page 285] Test for subset

� fold(Function, Acc0, Set) -> Acc1
[page 285] Fold over set elements

� filter(Pred, Set1) -> Set2
[page 285] Filter set elements

shell

The following functions are exported:

� history(N) -> integer()
[page 294] Sets the number of previous commands to keep

� results(N) -> integer()
[page 294] Sets the number of previous commands to keep

� start restricted(Module) -> ok
[page 294] Exits a normal shell and starts a restricted shell.

� stop restricted() -> ok
[page 294] Exits a restricted shell and starts a normal shell.

shell default

No functions are exported.

slave

The following functions are exported:

� start(Host) ->
[page 296] Start a slave node on a host

� start(Host, Name) ->
[page 296] Start a slave node on a host

� start(Host, Name, Args) -> fok, Nodeg | ferror, Reasong
[page 296] Start a slave node on a host

� start link(Host) ->
[page 297] Start and link to a slave node on a host

39STDLIB

STDLIB Reference Manual

� start link(Host, Name) ->
[page 297] Start and link to a slave node on a host

� start link(Host, Name, Args) -> fok, Nodeg | ferror, Reasong
[page 297] Start and link to a slave node on a host

� stop(Node) -> ok
[page 298] Stop (kill) a node

� pseudo([Master | ServerList]) -> ok
[page 298] Start a number of pseudo servers

� pseudo(Master, ServerList) -> ok
[page 298] Start a number of pseudo servers

� relay(Pid)
[page 298] Run a pseudo server

sofs

The following functions are exported:

� a function(Tuples [, Type]) -> Function
[page 303] Create a function.

� canonical relation(SetOfSets) -> BinRel
[page 303] Return the canonical map.

� composite(Function1, Function2) -> Function3
[page 303] Return the composite of two functions.

� constant function(Set, AnySet) -> Function
[page 303] Create the function that maps each element of a set onto another set.

� converse(BinRel1) -> BinRel2
[page 304] Return the converse of a binary relation.

� difference(Set1, Set2) -> Set3
[page 304] Return the difference of two sets.

� digraph to family(Graph [, Type]) -> Family
[page 304] Create a family from a directed graph.

� domain(BinRel) -> Set
[page 304] Return the domain of a binary relation.

� drestriction(BinRel1, Set) -> BinRel2
[page 304] Return a restriction of a binary relation.

� drestriction(SetFun, Set1, Set2) -> Set3
[page 305] Return a restriction of a relation.

� empty set() -> Set
[page 305] Return the untyped empty set.

� extension(BinRel1, Set, AnySet) -> BinRel2
[page 305] Extend the domain of a binary relation.

� family(Tuples [, Type]) -> Family
[page 306] Create a family of subsets.

� family difference(Family1, Family2) -> Family3
[page 306] Return the difference of two families.

� family domain(Family1) -> Family2
[page 306] Return a family of domains.

40 STDLIB

STDLIB Reference Manual

� family field(Family1) -> Family2
[page 306] Return a family of fields.

� family intersection(Family1) -> Family2
[page 307] Return the intersection of a family of sets of sets.

� family intersection(Family1, Family2) -> Family3
[page 307] Return the intersection of two families.

� family projection(SetFun, Family1) -> Family2
[page 307] Return a family of modified subsets.

� family range(Family1) -> Family2
[page 307] Return a family of ranges.

� family specification(Fun, Family1) -> Family2
[page 308] Select a subset of a family using a predicate.

� family to digraph(Family [, GraphType]) -> Graph
[page 308] Create a directed graph from a family.

� family to relation(Family) -> BinRel
[page 308] Create a binary relation from a family.

� family union(Family1) -> Family2
[page 309] Return the union of a family of sets of sets.

� family union(Family1, Family2) -> Family3
[page 309] Return the union of two families.

� field(BinRel) -> Set
[page 309] Return the field of a binary relation.

� from external(ExternalSet, Type) -> AnySet
[page 309] Create a set.

� from sets(ListOfSets) -> Set
[page 309] Create a set out of a list of sets.

� from sets(TupleOfSets) -> Ordset
[page 309] Create an ordered set out of a tuple of sets.

� from term(Term [, Type]) -> AnySet
[page 310] Create a set.

� image(BinRel, Set1) -> Set2
[page 311] Return the image of a set under a binary relation.

� intersection(SetOfSets) -> Set
[page 311] Return the intersection of a set of sets.

� intersection(Set1, Set2) -> Set3
[page 311] Return the intersection of two sets.

� intersection of family(Family) -> Set
[page 311] Return the intersection of a family.

� inverse(Function1) -> Function2
[page 311] Return the inverse of a function.

� inverse image(BinRel, Set1) -> Set2
[page 312] Return the inverse image of a set under a binary relation.

� is a function(BinRel) -> Bool
[page 312] Test for a function.

� is disjoint(Set1, Set2) -> Bool
[page 312] Test for disjoint sets.

41STDLIB

STDLIB Reference Manual

� is empty set(AnySet) -> Bool
[page 312] Test for an empty set.

� is equal(AnySet1, AnySet2) -> Bool
[page 312] Test two sets for equality.

� is set(AnySet) -> Bool
[page 312] Test for an unordered set.

� is sofs set(Term) -> Bool
[page 313] Test for an unordered set.

� is subset(Set1, Set2) -> Bool
[page 313] Test two sets for subset.

� is type(Term) -> Bool
[page 313] Test for a type.

� join(Relation1, I, Relation2, J) -> Relation3
[page 313] Return the join of two relations.

� multiple relative product(TupleOfBinRels, BinRel1) -> BinRel2
[page 313] Return the multiple relative product of a tuple of binary relations and a
relation.

� no elements(ASet) -> NoElements
[page 314] Return the number of elements of a set.

� partition(SetOfSets) -> Partition
[page 314] Return the coarsest partition given a set of sets.

� partition(SetFun, Set) -> Partition
[page 314] Return a partition of a set.

� partition(SetFun, Set1, Set2) -> fSet3, Set4g
[page 314] Return a partition of a set.

� partition family(SetFun, Set) -> Family
[page 315] Return a family indexing a partition.

� product(TupleOfSets) -> Relation
[page 315] Return the Cartesian product of a tuple of sets.

� product(Set1, Set2) -> BinRel
[page 315] Return the Cartesian product of two sets.

� projection(SetFun, Set1) -> Set2
[page 316] Return a set of substituted elements.

� range(BinRel) -> Set
[page 316] Return the range of a binary relation.

� relation(Tuples [, Type]) -> Relation
[page 316] Create a relation.

� relation to family(BinRel) -> Family
[page 316] Create a family from a binary relation.

� relative product(TupleOfBinRels [, BinRel1]) -> BinRel2
[page 317] Return the relative product of a tuple of binary relations and a binary
relation.

� relative product(BinRel1, BinRel2) -> BinRel3
[page 317] Return the relative product of two binary relations.

� relative product1(BinRel1, BinRel2) -> BinRel3
[page 317] Return the relative product of two binary relations.

42 STDLIB

STDLIB Reference Manual

� restriction(BinRel1, Set) -> BinRel2
[page 317] Return a restriction of a binary relation.

� restriction(SetFun, Set1, Set2) -> Set3
[page 318] Return a restriction of a set.

� set(Terms [, Type]) -> Set
[page 318] Create a set of atoms or any type of sets.

� specification(Fun, Set1) -> Set2
[page 318] Select a subset using a predicate.

� strict relation(BinRel1) -> BinRel2
[page 318] Return the strict relation corresponding to a given relation.

� substitution(SetFun, Set1) -> Set2
[page 319] Return a function with a given set as domain.

� symdiff(Set1, Set2) -> Set3
[page 319] Return the symmetric difference of two sets.

� symmetric partition(Set1, Set2) -> fSet3, Set4, Set5g
[page 320] Return a partition of two sets.

� to external(AnySet) -> ExternalSet
[page 320] Return the elements of a set.

� to sets(ASet) -> Sets
[page 320] Return a list or a tuple of the elements of set.

� type(AnySet) -> Type
[page 320] Return the type of a set.

� union(SetOfSets) -> Set
[page 320] Return the union of a set of sets.

� union(Set1, Set2) -> Set3
[page 320] Return the union of two sets.

� union of family(Family) -> Set
[page 321] Return the union of a family.

� weak relation(BinRel1) -> BinRel2
[page 321] Return the weak relation corresponding to a given relation.

string

The following functions are exported:

� len(String) -> Length
[page 322] Return the length of a string

� equal(String1, String2) -> bool()
[page 322] Test string equality

� concat(String1, String2) -> String3
[page 322] Concatenate two strings

� chr(String, Character) -> Index
[page 322] Return the index of the first/last occurrence of Character in String

� rchr(String, Character) -> Index
[page 322] Return the index of the first/last occurrence of Character in String

� str(String, SubString) -> Index
[page 322] Find the index of a substring

43STDLIB

STDLIB Reference Manual

� rstr(String, SubString) -> Index
[page 322] Find the index of a substring

� span(String, Chars) -> Length
[page 323] Span characters at start of string

� cspan(String, Chars) -> Length
[page 323] Span characters at start of string

� substr(String, Start) -> SubString
[page 323] Return a substring of String

� substr(String, Start, Length) -> Substring
[page 323] Return a substring of String

� tokens(String, SeparatorList) -> Tokens
[page 323] Split string into tokens

� chars(Character, Number) -> String
[page 323] Returns a string consisting of numbers of characters

� chars(Character, Number, Tail) -> String
[page 323] Returns a string consisting of numbers of characters

� copies(String, Number) -> Copies
[page 324] Copy a string

� words(String) -> Count
[page 324] Count blank separated words

� words(String, Character) -> Count
[page 324] Count blank separated words

� sub word(String, Number) -> Word
[page 324] Extract subword

� sub word(String, Number, Character) -> Word
[page 324] Extract subword

� strip(String) -> Stripped
[page 324] Strip leading or trailing characters

� strip(String, Direction) -> Stripped
[page 324] Strip leading or trailing characters

� strip(String, Direction, Character) -> Stripped
[page 324] Strip leading or trailing characters

� left(String, Number) -> Left
[page 325] Adjust left end of string

� left(String, Number, Character) -> Left
[page 325] Adjust left end of string

� right(String, Number) -> Right
[page 325] Adjust right end of string

� right(String, Number, Character) -> Right
[page 325] Adjust right end of string

� centre(String, Number) -> Centered
[page 325] Center a string

� centre(String, Number, Character) -> Centered
[page 325] Center a string

� sub string(String, Start) -> SubString
[page 325] Extract a substring

44 STDLIB

STDLIB Reference Manual

� sub string(String, Start, Stop) -> SubString
[page 326] Extract a substring

� to float(String) -> fFloat,Restg | ferror,Reasong
[page 326] Returns a float whose text representation is the integers (ASCII values)
in String.

� to integer(String) -> fInt,Restg | ferror,Reasong
[page 326] Returns an integer whose text representation is the integers (ASCII
values) in String.

supervisor

The following functions are exported:

� start link(Module, Args) -> Result
[page 330] Create a supervisor process.

� start link(SupName, Module, Args) -> Result
[page 330] Create a supervisor process.

� start child(SupRef, ChildSpec) -> Result
[page 331] Dynamically add a child process to a supervisor.

� terminate child(SupRef, Id) -> Result
[page 331] Terminate a child process belonging to a supervisor.

� delete child(SupRef, Id) -> Result
[page 332] Delete a child specification from a supervisor.

� restart child(SupRef, Id) -> Result
[page 332] Restart a terminated child process belonging to a supervisor.

� which children(SupRef) -> [fId,Child,Type,Modulesg]
[page 333] Return information about all children specifications and child processes
belonging to a supervisor.

� check childspecs([ChildSpec]) -> Result
[page 333] Check if child specifications are syntactically correct.

� Module:init(Args) -> Result
[page 334] Return a supervisor specification.

supervisor bridge

The following functions are exported:

� start link(Module, Args) -> Result
[page 335] Create a supervisor bridge process.

� start link(SupBridgeName, Module, Args) -> Result
[page 335] Create a supervisor bridge process.

� Module:init(Args) -> Result
[page 336] Initialize process and start subsystem.

� Module:terminate(Reason, State)
[page 336] Clean up and stop subsystem.

45STDLIB

STDLIB Reference Manual

sys

The following functions are exported:

� log(Name,Flag)
[page 339] Log system events in memory

� log(Name,Flag,Timeout) -> ok | fok, [system event()]g
[page 339] Log system events in memory

� log to file(Name,Flag)
[page 339] Log system events to the specified file

� log to file(Name,Flag,Timeout) -> ok | ferror, open fileg
[page 339] Log system events to the specified file

� statistics(Name,Flag)
[page 339] Enable or disable the collections of statistics

� statistics(Name,Flag,Timeout) -> ok | fok, Statisticsg
[page 339] Enable or disable the collections of statistics

� trace(Name,Flag)
[page 340] Print all system events on standard io

� trace(Name,Flag,Timeout) -> void()
[page 340] Print all system events on standard io

� no debug(Name)
[page 340] Turn off debugging

� no debug(Name,Timeout) -> void()
[page 340] Turn off debugging

� suspend(Name)
[page 340] Suspend the process

� suspend(Name,Timeout) -> void()
[page 340] Suspend the process

� resume(Name)
[page 340] Resume a suspended process

� resume(Name,Timeout) -> void()
[page 340] Resume a suspended process

� change code(Name, Module, OldVsn, Extra)
[page 340] Send the code change system message to the process

� change code(Name, Module, OldVsn, Extra, Timeout) -> ok | ferror,
Reasong
[page 340] Send the code change system message to the process

� get status(Name)
[page 340] Get the status of the process

� get status(Name,Timeout) -> fstatus, Pid, fmodule, Modg, [PDict,
SysState, Parent, Dbg, Misc]g
[page 340] Get the status of the process

� install(Name,fFunc,FuncStateg)
[page 341] Install a debug function in the process

� install(Name,fFunc,FuncStateg,Timeout)
[page 341] Install a debug function in the process

� remove(Name,Func)
[page 341] Remove a debug function from the process

46 STDLIB

STDLIB Reference Manual

� remove(Name,Func,Timeout) -> void()
[page 341] Remove a debug function from the process

� debug options(Options) -> [dbg opt()]
[page 342] Convert a list of options to a debug structure

� get debug(Item,Debug,Default) -> term()
[page 342] Get the data associated with a debug option

� handle debug([dbg opt()],FormFunc,Extra,Event) -> [dbg opt()]
[page 342] Generate a system event

� handle system msg(Msg,From,Parent,Module,Debug,Misc)
[page 342] Take care of system messages

� print log(Debug) -> void()
[page 343] Print the logged events in the debug structure

� Mod:system continue(Parent, Debug, Misc)
[page 343] Called when the process should continue its execution

� Mod:system terminate(Reason, Parent, Debug, Misc)
[page 343] Called when the process should terminate

� Mod:system code change(Misc, Module, OldVsn, Extra) -> fok, NMiscg
[page 343] Called when the process should perform a code change

timer

The following functions are exported:

� start() -> ok
[page 345] Start a global timer server (named timer server).

� apply after(Time, Module, Function, Arguments) -> fok, Trefg |
ferror, Reasong
[page 345] Apply Module:Function(Arguments) after a specified Time.

� send after(Time, Pid, Message) -> fok, TRefg | ferror,Reasong
[page 345] Send Message to Pid after a specified Time.

� send after(Time, Message) -> fok, TRefg | ferror,Reasong
[page 345] Send Message to Pid after a specified Time.

� exit after(Time, Pid, Reason1) -> fok, TRefg | ferror,Reason2g
[page 346] Send an exit signal with Reason after a specified Time.

� exit after(Time, Reason1) -> fok, TRefg | ferror,Reason2g
[page 346] Send an exit signal with Reason after a specified Time.

� kill after(Time, Pid)-> fok, TRefg | ferror,Reason2g
[page 346] Send an exit signal with Reason after a specified Time.

� kill after(Time) -> fok, TRefg | ferror,Reason2g
[page 346] Send an exit signal with Reason after a specified Time.

� apply interval(Time, Module, Function, Arguments) -> fok, TRefg |
ferror, Reasong
[page 346] Evaluate Module:Function(Arguments) repeatedly at intervals of
Time.

� send interval(Time, Pid, Message) -> fok, TRefg | ferror, Reasong
[page 346] Send Message repeatedly at intervals of Time.

47STDLIB

STDLIB Reference Manual

� send interval(Time, Message) -> fok, TRefg | ferror, Reasong
[page 346] Send Message repeatedly at intervals of Time.

� cancel(TRef) -> fok, cancelg | ferror, Reasong
[page 346] Cancel a previously requested timeout identified by TRef.

� sleep(Time) -> ok
[page 346] Suspend the calling process for Time amount of milliseconds.

� tc(Module, Function, Arguments) -> fTime, Valueg
[page 347] Measure the real time it takes to evaluate apply(Module, Function,
Arguments)

� now diff(T2, T1) -> fTime, Valueg
[page 347] Calculate time difference between now/0 timestamps

� seconds(Seconds) -> Milliseconds
[page 347] Convert Seconds to Milliseconds.

� minutes(Minutes) -> Milliseconds
[page 347] Converts Minutes to Milliseconds.

� hours(Hours) -> Milliseconds
[page 347] Convert Hours to Milliseconds.

� hms(Hours, Minutes, Seconds) -> Milliseconds
[page 347] Convert Hours+Minutes+Seconds to Milliseconds.

win32reg

The following functions are exported:

� change key(RegHandle, Key) -> ReturnValue
[page 350] Move to a key in the registry

� change key create(RegHandle, Key) -> ReturnValue
[page 350] Move to a key, create it if it is not there

� close(RegHandle)-> ReturnValue
[page 350] Close the registry.

� current key(RegHandle) -> ReturnValue
[page 350] Return the path to the current key.

� delete key(RegHandle) -> ReturnValue
[page 350] Delete the current key

� delete value(RegHandle, Name) -> ReturnValue
[page 351] Delete the named value on the current key.

� expand(String) -> ExpandedString
[page 351] Expand a string with environment variables

� format error(ErrorId) -> ErrorString
[page 351] Convert an POSIX errorcode to a string

� open(OpenModeList)-> ReturnValue
[page 351] Open the registry for reading or writing

� set value(RegHandle, Name, Value) -> ReturnValue
[page 351] Set value at the current registry key with specified name.

� sub keys(RegHandle) -> ReturnValue
[page 352] Get subkeys to the current key.

48 STDLIB

STDLIB Reference Manual

� value(RegHandle, Name) -> ReturnValue
[page 352] Get the named value on the current key.

� values(RegHandle) -> ReturnValue
[page 352] Get all values on the current key.

49STDLIB

beam lib STDLIB Reference Manual

beam lib
Erlang Module

beam lib provides an interface to files created by the BEAM compiler (“BEAM files”).
The format used, a variant of “EA IFF 1985” Standard for Interchange Format Files,
divides data into chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are
returned when chunks are referenced by names (atoms) rather than identifiers (strings).
The names recognized and the corresponding identifiers are:

� abstract code ("Abst")

� attributes ("Attr")

� compile info ("CInf")

� exports ("ExpT")

� labeled exports ("ExpT")

� imports ("ImpT")

� indexed imports ("ImpT")

� locals ("LocT")

� labeled locals ("LocT")

� atoms ("Atom")

ENCRYPTED ABSTRACT CODE

The abstract code can be encrypted in order to keep the source code secret, but still be
able to use tools such as Xref or Debugger. See [compile(3)] for how to encrypt the
abstract code.

To enable tools to use the abstract code, the key must be made available for beam lib.
There are two ways to provide the key:

1) Use the function crypto key fun/1 [page 55] to register a fun that will be called
whenever beam lib needs to decrypt the abstract code.

2) Store the key in a text file named .erlang.crypt located in either the current
directory or the home directory for the current user. beam lib will search for and read
the .erlang.crypt file if no crypto fun has been registered using crypto key fun/1. If
the file exists and contains a key, beam lib will implicitly create a crypto key fun and
register it.

The .erlang.crypt file should contain a single list. The elements of the list should be
tuples looking like this:

{debug_info, Mode, Module, Key}

50 STDLIB

STDLIB Reference Manual beam lib

Mode is the type of key; currently, the only allowed value is des3 cbc. Module is either
an atom, in which case Key will only be used for the module Module, or [], in which
case Key will be used for all modules. Key is a non-empty string.

The Key in the first tuple where both Mode and Module matches will be used.

Here is an example of an .erlang.crypt file that returns the same key for all modules:

[{debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].

And here is a slightly more complicated example of an .erlang.crypt which provides
one key for the module t, and another key for all other modules:

[{debug_info, des3_cbc, t, "My KEY"},
{debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].

Note:
Do not use any of the keys in these examples. Use your own keys.

DATA TYPES

beam() -> Module | Filename | binary()
Module = atom()
Filename = string() | atom()

Each of the functions described below accept either the module name, the filename, or
a binary containing the beam module.

chunkdata() = {ChunkId, DataB} | {ChunkName, DataT}
ChunkId = chunkid()
DataB = binary()
{ChunkName, DataT} =

{abstract_code, AbstractCode}
| {attributes, [{Attribute, [AttributeValue]}]}
| {compile_info, [{InfoKey, [InfoValue]}]}
| {exports, [{Function, Arity}]}
| {labeled_exports, [{Function, Arity, Label}]}
| {imports, [{Module, Function, Arity}]}
| {indexed_imports, [{Index, Module, Function, Arity}]}
| {locals, [{Function, Arity}]}]}
| {labeled_locals, [{Function, Arity, Label}]}]}
| {atoms, [{integer(), atom()}]}

AbstractCode = {AbstVersion, Forms} | no_abstract_code
AbstVersion = atom()

Attribute = atom()
AttributeValue = term()
Module = Function = atom()
Arity = int()
Label = int()

51STDLIB

beam lib STDLIB Reference Manual

It is not checked that the forms conform to the abstract format indicated by
AbstVersion. no abstract code means that the "Abst" chunk is present, but empty.

The list of attributes is sorted on Attribute, and each attribute name occurs once in
the list. The attribute values occur in the same order as in the file. The lists of functions
are also sorted.

chunkid() = "Abst" | "Attr" | "CInf"
| "ExpT" | "ImpT" | "LocT"
| "Atom"

chunkname() = abstract_code | attributes | compile_info
| exports | labeled_exports
| imports | indexed_imports
| locals | labeled_locals
| atoms

chunkref() = chunkname() | chunkid()

Exports

chunks(Beam, [ChunkRef]) -> fok, fModule, [ChunkData]gg | ferror, beam lib, Reasong

Types:

� Beam = beam()
� ChunkRef = chunkref()
� Module = atom()
� ChunkData = chunkdata()
� Reason = funknown chunk, Filename, atom()g
� | fkey missing or invalid, Filename, abstract codeg
� | Reason1 – see info/1
� Filename = string()

Reads chunk data for selected chunks refs. The order of the returned list of chunk data
is determined by the order of the list of chunks references.

version(Beam) -> fok, fModule, [Version]gg | ferror, beam lib, Reasong

Types:

� Beam = beam()
� Module = atom()
� Version = term()
� Reason – see chunks/2

Returns the module version(s). A version is defined by the module attribute -vsn(Vsn).
If this attribute is not specified, the version defaults to the checksum of the module.
Note that if the version Vsn is not a list, it is made into one, that is
fok,fModule,[Vsn]gg is returned. If there are several -vsn module attributes, the
result is the concatenated list of versions. Examples:

52 STDLIB

STDLIB Reference Manual beam lib

1> beam lib:version(a). % -vsn(1).
fok,fa,[1]gg
2> beam lib:version(b). % -vsn([1]).
fok,fb,[1]gg
3> beam lib:version(c). % -vsn([1]). -vsn(2).
fok,fc,[1,2]gg
4> beam lib:version(d). % no -vsn attribute
fok,fd,[275613208176997377698094100858909383631]gg

info(Beam) -> [fItem, Infog] | ferror, beam lib, Reason1g

Types:

� Beam = beam()
� Item, Info – see below
� Reason1 = fchunk too big, Filename, ChunkId, ChunkSize, FileSizeg
� | finvalid beam file, Filename, Posg
� | finvalid chunk, Filename, ChunkIdg
� | fmissing chunk, Filename, ChunkIdg
� | fnot a beam file, Filenameg
� | ffile error, Filename, Posixg
� Filename = string()
� ChunkId = chunkid()
� ChunkSize = FileSize = int()
� Pos = int()
� Posix = posix() – see file(3)

Returns a list containing some information about a BEAM file as tuples fItem, Infog:

ffile, Filenameg | fbinary, Binaryg The name (string) of the BEAM file, or the
binary from which the information was extracted.

fmodule, Moduleg The name (atom) of the module.

fchunks, [fChunkId, Pos, Sizeg]g For each chunk, the identifier (string) and the
position and size of the chunk data, in bytes.

cmp(Beam1, Beam2) -> ok | ferror, beam lib, Reasong

Types:

� Beam1 = Beam2 = beam()
� Reason = fmodules different, Module1, Module2g
� | fchunks different, ChunkIdg
� | Reason1 – see info/1
� Module1 = Module2 = atom()
� ChunkId = chunkid()

Compares the contents of two BEAM files. If the module names are the same, and the
chunks with the identifiers "Code", "ExpT", "ImpT", "StrT", and "Atom" have the same
contents in both files, ok is returned. Otherwise an error message is returned.

cmp dirs(Dir1, Dir2) -> fOnly1, Only2, Differentg | ferror, beam lib, Reason1g

53STDLIB

beam lib STDLIB Reference Manual

Types:

� Dir1 = Dir2 = string() | atom()
� Different = [fFilename1, Filename2g]
� Only1 = Only2 = [Filename]
� Filename = Filename1 = Filename2 = string()
� Reason1 – see info/1

The cmp dirs/2 function compares the BEAM files in two directories. Only files with
extension ".beam" are compared. BEAM files that exist in directory Dir1 (Dir2) only
are returned in Only1 (Only2). BEAM files that exist on both directories but are
considered different by cmp/2 are returned as pairs fFilename1, Filename2g where
Filename1 (Filename2) exists in directory Dir1 (Dir2).

diff dirs(Dir1, Dir2) -> ok | ferror, beam lib, Reason1g

Types:

� Dir1 = Dir2 = string() | atom()
� Reason1 – see info/1

The diff dirs/2 function compares the BEAM files in two directories the way
cmp dirs/2 does, but names of files that exist in only one directory or are different are
presented on standard output.

strip(Beam1) -> fok, fModule, Beam2gg | ferror, beam lib, Reason1g

Types:

� Beam1 = Beam2 = beam()
� Module = atom()
� Reason1 – see info/1

The strip/1 function removes all chunks from a BEAM file except those needed by the
loader. In particular, the abstract code is removed.

strip files(Files) -> fok, [fModule, Beam2g]g | ferror, beam lib, Reason1g

Types:

� Files = [Beam1]
� Beam1 = beam()
� Module = atom()
� Beam2 = beam()
� Reason1 – see info/1

The strip files/1 function removes all chunks except those needed by the loader
from BEAM files. In particular, the abstract code is removed. The returned list contains
one element for each given file name, in the same order as in Files.

strip release(Dir) -> fok, [fModule, Filename]gg | ferror, beam lib, Reason1g

Types:

� Dir = string() | atom()
� Module = atom()
� Filename = string()
� Reason1 – see info/1

54 STDLIB

STDLIB Reference Manual beam lib

The strip release/1 function removes all chunks except those needed by the loader
from the BEAM files of a release. Dir should be the installation root directory. For
example, the current OTP release can be stripped with the call
beam lib:strip release(code:root dir()).

format error(Reason) -> Chars

Types:

� Reason – see other functions
� Chars = [char() | Chars]

Given the error returned by any function in this module, the function format error
returns a descriptive string of the error in English. For file errors, the function
file:format error(Posix) should be called.

crypto key fun(CryptoKeyFun) -> ok | ferror, Reasong

Types:

� CryptoKeyFun = fun() – see below
� Reason = badfun | exists | term()

The crypto key fun/1 function registers a unary fun that will be called if beam lib
needs to read an abstract code chunk that has been encrypted. The fun is held in a
process that is started by the function.

If there already is a fun registered when attempting to register a fun, ferror, existsg
is returned.

The fun must handle the following arguments:

� CryptoKeyFun(init): Called when the fun is registered, in the process that holds
the fun. Here the crypto key fun can do any necessary initializations. Allowed
return values:

– ok

– fok, NewCryptoKeyFung - NewCryptoKeyFun will be registered instead of
CryptoKeyFun.

– ferror, Termg - the registration will be aborted and crypto key fun/1 will
return ferror, Termg, where Term can be any term.

� CryptoKeyFun(fdebug info, Mode, Module, Filenameg): Called when the key
is needed for module Module in the file Filename. Mode describes the method of
encryption; currently the only allowed value is des3 cbc.
The fun should return the key as list of characters, or fail if there is no key available.

� CryptoKeyFun(clear): Called just before the fun is unregistered. Do any needed
cleanup here. The return value is not important, but will be passed back to the
caller of clear crypto key fun/0.

clear crypto key fun() -> fok, Resultg

Types:

� Result = undefined | term()

55STDLIB

beam lib STDLIB Reference Manual

Unregisters the crypto key fun and terminates the process holding it, started by
crypto key fun/1.

The clear crypto key fun/1 either returns fok, undefinedg if there was no crypto
key fun registered, or fok, Termg, where Term is the return value from
CryptoKeyFun(clear), see crypto key fun/1.

56 STDLIB

STDLIB Reference Manual c

c
Erlang Module

The c module enables users to enter the short form of some commonly used commands.

Note:
These functions are are intended for interactive use in the Erlang shell only. The
module prefix may be omitted.

Exports

bt(Pid) -> void()

Types:

� Pid = pid()

Stack backtrace for a process. Equivalent to erlang:process display(Pid,
backtrace).

c(File) -> fok, Moduleg | error

c(File, Options) -> fok, Moduleg | error

Types:

� File = Filename | Module
� Filename = string() | atom()
� Options = [Opt] – see compile:file/2
� Module = atom()

c/1,2 compiles and then purges and loads the code for a file. Options defaults to [].
Compilation is equivalent to:

compile:file(File, Options ++ [report_errors, report_warnings])

Note that purging the code means that any processes lingering in old code for the
module are killed without warning. See code/3 for more information.

cd(Dir) -> void()

Types:

� Dir = string() | atom()

Changes working directory to Dir, which may be a relative name, and then prints the
name of the new working directory.

57STDLIB

c STDLIB Reference Manual

2> cd("../erlang").
/home/ron/erlang

flush() -> void()

Flushes any messages sent to the shell.

help() -> void()

Displays help information: all valid shell internal commands, and commands in this
module.

i() -> void()

ni() -> void()

i/0 displays information about the system, listing information about all processes. ni/0
does the same, but for all nodes the network.

i(X, Y, Z) -> void()

Types:

� X = Y = Z = int()

Displays information about a process, Equivalent to process info(pid(X, Y, Z)), but
location transparent.

l(Module) -> void()

Types:

� Module = atom()

Purges and loads, or reloads, a module by calling code:purge(Module) followed by
code:load file(Module).

Note that purging the code means that any processes lingering in old code for the
module are killed without warning. See code/3 for more information.

lc(Files) -> ok

Types:

� Files = [File]
� File = Filename | Module
� Filename = string() | atom()
� Module = atom()

Compiles a list of files by calling compile:file(File, [report errors,
report warnings]) for each File in Files.

ls() -> void()

Lists files in the current directory.

ls(Dir) -> void()

Types:

58 STDLIB

STDLIB Reference Manual c

� Dir = string() | atom()

Lists files in directory Dir.

m() -> void()

Displays information about the loaded modules, including the files from which they
have been loaded.

m(Module) -> void()

Types:

� Module = atom()

Displays information about Module.

memory() -> [fType, Sizeg]

Types:

� Type, Size – see erlang:memory/0

Memory allocation information. Equivalent to erlang:memory/0.

memory(Type) -> Size

memory([Type]) -> [fType, Sizeg]

Types:

� Type, Size – see erlang:memory/0

Memory allocation information. Equivalent to erlang:memory/1.

nc(File) -> fok, Moduleg | error

nc(File, Options) -> fok, Moduleg | error

Types:

� File = Filename | Module
� Filename = string() | atom()
� Options = [Opt] – see compile:file/2
� Module = atom()

Compiles and then loads the code for a file on all nodes. Options defaults to [].
Compilation is equivalent to:

compile:file(File, Opts ++ [report_errors, report_warnings])

nl(Module) -> void()

Types:

� Module = atom()

Loads Module on all nodes.

pid(X, Y, Z) -> pid()

Types:

� X = Y = Z = int()

59STDLIB

c STDLIB Reference Manual

Converts X, Y, Z to the pid <X.Y.Z>. This function should only be used when
debugging.

pwd() -> void()

Prints the name of the working directory.

q() -> void()

This function is shorthand for init:stop(), that is, it causes the node to stop in a
controlled fashion.

regs() -> void()

nregs() -> void()

regs/0 displays information about all registered processes. nregs/0 does the same, but
for all nodes in the network.

xm(ModSpec) -> void()

Types:

� ModSpec = Module | Filename
� Module = atom()
� Filename = string()

This function finds undefined functions and unused functions in a module by calling
xref:m/1.

See Also

erlang(3)

60 STDLIB

STDLIB Reference Manual calendar

calendar
Erlang Module

This module provides computation of local and universal time, day-of-the-week, and
several time conversion functions.

Time is local when it is adjusted in accordance with the current time zone and daylight
saving. Time is universal when it reflects the time at longitude zero, without any
adjustment for daylight saving. Universal Coordinated Time (UTC) time is also called
Greenwich Mean Time (GMT).

The time functions local time/0 and universal time/0 provided in this module both
return date and time. The reason for this is that separate functions for date and time
may result in a date/time combination which is displaced by 24 hours. This happens if
one of the functions is called before midnight, and the other after midnight. This
problem also applies to the Erlang BIFs date/0 and time/0, and their use is strongly
discouraged if a reliable date/time stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope
Gregory XIII in 1582 and was used in all Catholic countries from this year. Protestant
parts of Germany and the Netherlands adopted it in 1698, England followed in 1752,
and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For a given date, the
gregorian days is the number of days up to and including the date specified. Similarly,
the gregorian seconds for a given date and time, is the the number of seconds up to and
including the specified date and time.

For computing differences between epochs in time, use the functions counting
gregorian days or seconds. If epochs are given as local time, they must be converted to
universal time, in order to get the correct value of the elapsed time between epochs.
Use of the function time difference/2 is discouraged.

DATA TYPES

date() = {Year, Month, Day}
Year = int()
Month = 1..12
Day = 1..31

Year cannot be abbreviated. Example: 93 denotes year 93, not 1993.
Valid range depends on the underlying OS.
The date tuple must denote a valid date.

time() = {Hour, Minute, Second}
Hour = 0..23
Minute = Second = 0..59

61STDLIB

calendar STDLIB Reference Manual

Exports

date to gregorian days(Date) -> Days

date to gregorian days(Year, Month, Day) -> Days

Types:

� Date = date()
� Days = int()

This function computes the number of gregorian days starting with year 0 and ending at
the given date.

datetime to gregorian seconds(fDate, Timeg) -> Seconds

Types:

� Date = date()
� Time = time()
� Seconds = int()

This function computes the number of gregorian seconds starting with year 0 and
ending at the given date and time.

day of the week(Date) -> DayNumber

day of the week(Year, Month, Day) -> DayNumber

Types:

� Date = date()
� DayNumber = 1..7

This function computes the day of the week given Year, Month and Day. The return
value denotes the day of the week as 1: Monday, 2: Tuesday, and so on.

gregorian days to date(Days) -> Date

Types:

� Days = int()
� Date = date()

This function computes the date given the number of gregorian days.

gregorian seconds to datetime(Seconds) -> fDate, Timeg

Types:

� Seconds = int()
� Date = date()
� Time = time()

This function computes the date and time from the given number of gregorian seconds.

is leap year(Year) -> bool()

This function checks if a year is a leap year.

last day of the month(Year, Month) -> int()

62 STDLIB

STDLIB Reference Manual calendar

This function computes the number of days in a month.

local time() -> fDate, Timeg

Types:

� Date = date()
� Time = time()

This function returns the local time reported by the underlying operating system.

local time to universal time(fDate1, Time1g) -> fDate2, Time2g

This function converts from local time to Universal Coordinated Time (UTC). Date1
must refer to a local date after Jan 1, 1970.

Warning:
This function is deprecated. Use local time to universal time dst/1 instead, as
it gives a more correct and complete result. Especially for the period that does not
exist since it gets skipped during the switch to daylight saving time, this function still
returns a result.

local time to universal time dst(fDate1, Time1g) -> [fDate, Timeg]

Types:

� Date1 = Date = date()
� Time1 = Time = time()

This function converts from local time to Universal Coordinated Time (UTC). Date1
must refer to a local date after Jan 1, 1970.

The return value is a list of 0, 1 or 2 possible UTC times:

[] For a local fDate1, Time1g during the period that is skipped when switching to
daylight saving time, there is no corresponding UTC since the local time is illegal -
it has never happened.

[DstDateTimeUTC, DateTimeUTC] For a local fDate1, Time1g during the period that
is repeated when switching from daylight saving time, there are two corresponding
UTCs. One for the first instance of the period when daylight saving time is still
active, and one for the second instance.

[DateTimeUTC] For all other local times there is only one corresponding UTC.

now to local time(Now) -> fDate, Timeg

Types:

� Now – see erlang:now/0
� Date = date()
� Time = time()

This function returns local date and time converted from the return value from
erlang:now().

63STDLIB

calendar STDLIB Reference Manual

now to universal time(Now) -> fDate, Timeg

now to datetime(Now) -> fDate, Timeg

Types:

� Now – see erlang:now/0
� Date = date()
� Time = time()

This function returns Universal Coordinated Time (UTC) converted from the return
value from erlang:now().

seconds to daystime(Seconds) -> fDays, Timeg

Types:

� Seconds = Days = int()
� Time = time()

This function transforms a given number of seconds into days, hours, minutes, and
seconds. The Time part is always non-negative, but Days is negative if the argument
Seconds is.

seconds to time(Seconds) -> Time

Types:

� Seconds = int() < 86400
� Time = time()

This function computes the time from the given number of seconds. Seconds must be
less than the number of seconds per day (86400).

time difference(T1, T2) -> fDays, Timeg

This function returns the difference between two fDate, Timeg tuples. T2 should refer
to an epoch later than T1.

Warning:
This function is obsolete. Use the conversion functions for gregorian days and
seconds instead.

time to seconds(Time) -> Seconds

Types:

� Time = time()
� Seconds = int()

This function computes the number of seconds since midnight up to the specified time.

universal time() -> fDate, Timeg

Types:

� Date = date()
� Time = time()

64 STDLIB

STDLIB Reference Manual calendar

This function returns the Universal Coordinated Time (UTC) reported by the
underlying operating system. Local time is returned if universal time is not available.

universal time to local time(fDate1, Time1g) -> fDate2, Time2g

Types:

� Date1 = Date2 = date()
� Time1 = Time2 = time()

This function converts from Universal Coordinated Time (UTC) to local time. Date1
must refer to a date after Jan 1, 1970.

valid date(Date) -> bool()

valid date(Year, Month, Day) -> bool()

Types:

� Date = date()

This function checks if a date is a valid.

Leap Years

The notion that every fourth year is a leap year is not completely true. By the Gregorian
rule, a year Y is a leap year if either of the following rules is valid:

� Y is divisible by 4, but not by 100; or

� Y is divisible by 400.

Accordingly, 1996 is a leap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF localtime/0. Universal time is computed
from the BIF universaltime/0.

The following facts apply:

� there are 86400 seconds in a day

� there are 365 days in an ordinary year

� there are 366 days in a leap year

� there are 1461 days in a 4 year period

� there are 36524 days in a 100 year period

� there are 146097 days in a 400 year period

� there are 719528 days between Jan 1, 0 and Jan 1, 1970.

65STDLIB

dets STDLIB Reference Manual

dets
Erlang Module

The module dets provides a term storage on file. The stored terms, in this module
called objects, are tuples such that one element is defined to be the key. A Dets table is a
collection of objects with the key at the same position stored on a file.

Dets is used by the Mnesia application, and is provided as is for users who are interested
in an efficient storage of Erlang terms on disk only. Many applications just need to store
some terms in a file. Mnesia adds transactions, queries, and distribution. The size of
Dets files cannot exceed 2 GB. If larger tables are needed, Mnesia's table fragmentation
can be used.

There are three types of Dets tables: set, bag and duplicate bag. A table of type set has
at most one object with a given key. If an object with a key already present in the table
is inserted, the existing object is overwritten by the new object. A table of type bag has
zero or more different objects with a given key. A table of type duplicate bag has zero or
more possibly equal objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they
must be properly closed. If a table has not been properly closed, Dets will automatically
repair the table. This can take a substantial time if the table is large. A Dets table is
closed when the process which opened the table terminates. If several Erlang processes
(users) open the same Dets table, they will share the table. The table is properly closed
when all users have either terminated or closed the table. Dets tables are not properly
closed if the Erlang runtime system is terminated abnormally.

Note:
A ^C command abnormally terminates an Erlang runtime system in a Unix
environment with a break-handler.

Since all operations performed by Dets are disk operations, it is important to realize that
a single look-up operation involves a series of disk seek and read operations. For this
reason, the Dets functions are much slower than the corresponding Ets functions,
although Dets exports a similar interface.

Dets organizes data as a linear hash list and the hash list grows gracefully as more data is
inserted into the table. Space management on the file is performed by what is called a
buddy system. The current implementation keeps the entire buddy system in RAM,
which implies that if the table gets heavily fragmented, quite some memory can be used
up. The only way to defragment a table is to close it and then open it again with the
repair option set to force.

It is worth noting that the ordered set type present in Ets is not yet implemented by
Dets, neither is the limited support for concurrent updates which makes a sequence of
first and next calls safe to use on fixed Ets tables. Both these features will be
implemented by Dets in a future release of Erlang/OTP. Until then, the Mnesia

66 STDLIB

STDLIB Reference Manual dets

application (or some user implemented method for locking) has to be used to
implement safe concurrency. Currently, no library of Erlang/OTP has support for
ordered disk based term storage.

Two versions of the format used for storing objects on file are supported by Dets. The
first version, 8, is the format always used for tables created by OTP R7 and earlier. The
second version, 9, is the default version of tables created by OTP R8 (and later OTP
releases). OTP R8 can create version 8 tables, and convert version 8 tables to version 9,
and vice versa, upon request.

All Dets functions return ferror, Reasong if an error occurs (first/1 and next/2 are
exceptions, they exit the process with the error tuple). If given badly formed
arguments, all functions exit the process with a badarg message.

Types

access() = read | read write
auto save() = infinity | int()
bindings cont() = tuple()
bool() = true | false
file() = string()
int() = integer() >= 0
keypos() = integer() >= 1
name() = atom() | ref()
no slots() = integer() >= 0 | default
object() = tuple()
object cont() = tuple()
select cont() = tuple()
type() = bag | duplicate bag | set
version() = 8 | 9 | default

Exports

all() -> [Name]

Types:

� Name = name()

Returns a list of the names of all open tables on this node.

bchunk(Name, Continuation) -> fContinuation2, Datag | ’$end of table’ | ferror,
Reasong

Types:

� Name = name()
� Continuation = start | cont()
� Continuation2 = cont()
� Data = binary() | tuple()

67STDLIB

dets STDLIB Reference Manual

Returns a list of objects stored in a table. The exact representation of the returned
objects is not public. The lists of data can be used for initializing a table by giving the
value bchunk to the format option of the init table/3 function. The Mnesia
application uses this function for copying open tables.

Unless the table is protected using safe fixtable/2, calls to bchunk/2 may not work
as expected if concurrent updates are made to the table.

The first time bchunk/2 is called, an initial continuation, the atom start, must be
provided.

The bchunk/2 function returns a tuple fContinuation2, Datag, where Data is a list of
objects. Continuation2 is another continuation which is to be passed on to a
subsequent call to bchunk/2. With a series of calls to bchunk/2 it is possible to extract
all objects of the table.

bchunk/2 returns ’$end of table’ when all objects have been returned, or ferror,
Reasong if an error occurs.

close(Name) -> ok | ferror, Reasong

Types:

� Name = name()

Closes a table. Only processes that have opened a table are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to
open a table which has not been properly closed, Dets automatically tries to repair the
table.

delete(Name, Key) -> ok | ferror, Reasong

Types:

� Name = name()

Deletes all objects with the key Key from the table Name.

delete all objects(Name) -> ok | ferror, Reasong

Types:

� Name = name()

Deletes all objects from a table in almost constant time. However, if the table if fixed,
delete all objects(T) is equivalent to match delete(T, ’ ’).

delete object(Name, Object) -> ok | ferror, Reasong

Types:

� Name = name()
� Object = object()

Deletes all instances of a given object from a table. If a table is of type bag or
duplicate bag, the delete/2 function cannot be used to delete only some of the
objects with a given key. This function makes this possible.

first(Name) -> Key | ’$end of table’

Types:

68 STDLIB

STDLIB Reference Manual dets

� Key = term()
� Name = name()

Returns the first key stored in the table Name according to the table's internal order, or
’$end of table’ if the table is empty.

Unless the table is protected using safe fixtable/2, subsequent calls to next/2 may
not work as expected if concurrent updates are made to the table.

Should an error occur, the process is exited with an error tuple ferror, Reasong. The
reason for not returning the error tuple is that it cannot be distinguished from a key.

There are two reasons why first/1 and next/2 should not be used: they are not very
efficient, and they prevent the use of the key ’$end of table’ since this atom is used
to indicate the end of the table. If possible, the match, match object, and select
functions should be used for traversing tables.

foldl(Function, Acc0, Name) -> Acc1 | ferror, Reasong

Types:

� Function = fun(Object, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Name = name()
� Object = object()

Calls Function on successive elements of the table Name together with an extra
argument AccIn. The order in which the elements of the table are traversed is
unspecified. Function must return a new accumulator which is passed to the next call.
Acc0 is returned if the table is empty.

foldr(Function, Acc0, Name) -> Acc1 | ferror, Reasong

Types:

� Function = fun(Object, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Name = name()
� Object = object()

Calls Function on successive elements of the table Name together with an extra
argument AccIn. The order in which the elements of the table are traversed is
unspecified. Function must return a new accumulator which is passed to the next call.
Acc0 is returned if the table is empty.

from ets(Name, EtsTab) -> ok | ferror, Reasong

Types:

� Name = name()
� EtsTab = -see ets(3)-

Deletes all objects of the table Name and then inserts all the objects of the Ets table
EtsTab. The order in which the objects are inserted is not specified. Since
ets:safe fixtable/2 is called the Ets table must be public or owned by the calling
process.

info(Name) -> InfoList | undefined

69STDLIB

dets STDLIB Reference Manual

Types:

� Name = name()
� InfoList = [fItem, Valueg]

Returns information about the table Name as a list of fItem, Valueg tuples:

� ffile size, int()g, the size of the file in bytes.

� ffilename, file()g, the name of the file where objects are stored.

� fkeypos, keypos()g, the position of the key.

� fsize, int()g, the number of objects stored in the table.

� ftype, type()g, the type of the table.

info(Name, Item) -> Value | undefined

Types:

� Name = name()

Returns the information associated with Item for the table Name. In addition to the
fItem, Valueg pairs defined for info/1, the following items are allowed:

� faccess, access()g, the access mode.

� fauto save, auto save()g, the auto save interval.

� fbchunk format, binary()g, an opaque binary describing the format of the
objects returned by bchunk/2. The binary can be used as argument to
is compatible chunk format/2. Only available for version 9 tables.

� fhash, Hashg. Describes which BIF is used to calculate the hash values of the
objects stored in the Dets table. Possible values of Hash are hash, which implies
that the erlang:hash/2 BIF is used, phash, which implies that the
erlang:phash/2 BIF is used, and phash2, which implies that the
erlang:phash2/1 BIF is used.

� fmemory, int()g, the size of the file in bytes. The same value is associated with
the item file size.

� fno keys, int()g, the number of different keys stored in the table. Only
available for version 9 tables.

� fno objects, int()g, the number of objects stored in the table.

� fno slots, fMin, Used, Maxgg, the number of slots of the table. Min is the
minimum number of slots, Used is the number of currently used slots, and Max is
the maximum number of slots. Only available for version 9 tables.

� fowner, pid()g, the pid of the process that handles requests to the Dets table.

� fram file, bool()g, whether the table is kept in RAM.

� fsafe fixed, SafeFixedg. If the table is fixed, SafeFixed is a tuple fFixedAtTime,
[fPid,RefCountg]g. FixedAtTime is the time when the table was first fixed, and
Pid is the pid of the process that fixes the table RefCount times. There may be any
number of processes in the list. If the table is not fixed, SafeFixed is the atom
false.

� fversion, int()g, the version of the format of the table.

init table(Name, InitFun [, Options]) -> ok | ferror, Reasong

70 STDLIB

STDLIB Reference Manual dets

Types:

� Name = atom()
� InitFun = fun(Arg) -> Res
� Arg = read | close
� Res = end of input | f[object()], InitFung | fData, InitFung | term()
� Data = binary() | tuple()

Replaces the existing objects of the table Name with objects created by calling the input
function InitFun, see below. The reason for using this function rather than calling
insert/2 is that of efficiency. It should be noted that the input functions are called by
the process that handles requests to the Dets table, not by the calling process.

When called with the argument read the function InitFun is assumed to return
end of input when there is no more input, or fObjects, Fung, where Objects is a list
of objects and Fun is a new input function. Any other value Value is returned as an error
ferror, finit fun, Valuegg. Each input function will be called exactly once, and
should an error occur, the last function is called with the argument close, the reply of
which is ignored.

If the type of the table is set and there is more than one object with a given key, one of
the objects is chosen. This is not necessarily the last object with the given key in the
sequence of objects returned by the input functions. Extra objects should be avoided, or
the file will be unnecessarily fragmented. This holds also for duplicated objects stored in
tables of type duplicate bag.

It is important that the table has a sufficient number of slots for the objects. If not, the
hash list will start to grow when init table/2 returns which will significantly slow
down access to the table for a period of time. The minimum number of slots is set by
the open file/2 option min no slots and returned by the info/2 item no slots. See
also the min no slots option below.

The Options argument is a list of fKey, Valg tuples where the following values are
allowed:

� fmin no slots, no slots()g. Specifies the estimated number of different keys
that will be stored in the table. The open file option with the same name is
ignored unless the table is created, and in that case performance can be enhanced
by supplying an estimate when initializing the table.

� fformat, Formatg. Specifies the format of the objects returned by the function
InitFun. If Format is term (the default), InitFun is assumed to return a list of
tuples. If Format is bchunk, InitFun is assumed to return Data as returned by
bchunk/2. This option overrides the min no slots option.

insert(Name, Objects) -> ok | ferror, Reasong

Types:

� Name = name()
� Objects = object() | [object()]

Inserts one or more objects into the table Name. If there already exists an object with the
same key as some of the given objects and the table type is set, the old object will be
replaced.

insert new(Name, Objects) -> Bool

71STDLIB

dets STDLIB Reference Manual

Types:

� Name = name()
� Objects = object() | [object()]
� Bool = bool()

Inserts one or more objects into the table Name. If there already exists an object with the
same key as some of the given objects the table is not updated and false is returned,
otherwise the objects are inserted and true returned.

is compatible bchunk format(Name, BchunkFormat) -> Bool

Types:

� Name = name()
� BchunkFormat = binary()
� Bool = bool()

Returns true if it would be possible to initialize the table Name, using init table/3
with the option fformat,bchunkg, with objects read with bchunk/2 from some table T
such that calling info(T,bchunk format) returns BchunkFormat.

is dets file(FileName) -> Bool | ferror, Reasong

Types:

� FileName = file()
� Bool = bool()

Returns true if the file FileName is a Dets table, false otherwise.

lookup(Name, Key) -> [Object] | ferror, Reasong

Types:

� Key = term()
� Name = name()
� Object = object()

Returns a list of all objects with the key Key stored in the table Name. For example:

2> dets:open file(abc, [ftype, bagg]).
fok,abcg
3> dets:insert(abc, f1,2,3g).
ok
4> dets:insert(abc, f1,3,4g).
ok
5> dets:lookup(abc, 1).
[f1,2,3g,f1,3,4g]

If the table is of type set, the function returns either the empty list or a list with one
object, as there cannot be more than one object with a given key. If the table is of type
bag or duplicate bag, the function returns a list of arbitrary length.

Note that the order of objects returned is unspecified. In particular, the order in which
objects were inserted is not reflected.

match(Continuation) -> f[Match], Continuation2g | ’$end of table’ | ferror, Reasong

Types:

72 STDLIB

STDLIB Reference Manual dets

� Continuation = Continuation2 = bindings cont()
� Match = [term()]

Matches some objects stored in a table and returns a list of the bindings that match a
given pattern in some unspecified order. The table, the pattern, and the number of
objects that are matched are all defined by Continuation, which has been returned by
a prior call to match/1 or match/3.

When all objects of the table have been matched, ’$end of table’ is returned.

match(Name, Pattern) -> [Match] | ferror, Reasong

Types:

� Name = name()
� Pattern = tuple()
� Match = [term()]

Returns for each object of the table Name that matches Pattern a list of bindings in
some unspecified order. See ets(3) [page 122] for a description of patterns. If the
keypos'th element of Pattern is unbound, all objects of the table are matched. If the
keypos'th element is bound, only the objects with the right key are matched.

match(Name, Pattern, N) -> f[Match], Continuationg | ’$end of table’ | ferror,
Reasong

Types:

� Name = name()
� Pattern = tuple()
� N = default | int()
� Match = [term()]
� Continuation = bindings cont()

Matches some or all objects of the table Name and returns a list of the bindings that
match Pattern in some unspecified order. See ets(3) [page 122] for a description of
patterns.

A tuple of the bindings and a continuation is returned, unless the table is empty, in
which case ’$end of table’ is returned. The continuation is to be used when
matching further objects by calling match/1.

If the keypos'th element of Pattern is bound, all objects of the table are matched. If
the keypos'th element is unbound, all objects of the table are matched, N objects at a
time. The default, indicated by giving N the value default, is to let the number of
objects vary depending on the sizes of the objects. If Name is a version 9 table, all objects
with the same key are always matched at the same time which implies that more than
N objects may sometimes be matched.

The table should always be protected using safe fixtable/2 before calling match/3, or
errors may occur when calling match/1.

match delete(Name, Pattern) -> N | ferror, Reasong

Types:

� Name = name()
� N = int()
� Pattern = tuple()

73STDLIB

dets STDLIB Reference Manual

Deletes all objects that match Pattern from the table Name, and returns the number of
deleted objects. See ets(3) [page 122] for a description of patterns.

If the keypos'th element of Pattern is bound, only the objects with the right key are
matched.

match object(Continuation) -> f[Object], Continuation2g | ’$end of table’ | ferror,
Reasong

Types:

� Continuation = Continuation2 = object cont()
� Object = object()

Returns a list of some objects stored in a table that match a given pattern in some
unspecified order. The table, the pattern, and the number of objects that are matched
are all defined by Continuation, which has been returned by a prior call to
match object/1 or match object/3.

When all objects of the table have been matched, ’$end of table’ is returned.

match object(Name, Pattern) -> [Object] | ferror, Reasong

Types:

� Name = name()
� Pattern = tuple()
� Object = object()

Returns a list of all objects of the table Name that match Pattern in some unspecified
order. See ets(3) [page 122] for a description of patterns.

If the keypos'th element of Pattern is unbound, all objects of the table are matched. If
the keypos'th element of Pattern is bound, only the objects with the right key are
matched.

Using the match object functions for traversing all objects of a table is more efficient
than calling first/1 and next/2 or slot/2.

match object(Name, Pattern, N) -> f[Object], Continuationg | ’$end of table’ | ferror,
Reasong

Types:

� Name = name()
� Pattern = tuple()
� N = default | int()
� Object = object()
� Continuation = object cont()

74 STDLIB

STDLIB Reference Manual dets

Matches some or all objects stored in the table Name and returns a list of the objects that
match Pattern in some unspecified order. See ets(3) [page 122] for a description of
patterns.

A list of objects and a continuation is returned, unless the table is empty, in which case
’$end of table’ is returned. The continuation is to be used when matching further
objects by calling match object/1.

If the keypos'th element of Pattern is bound, all objects of the table are matched. If
the keypos'th element is unbound, all objects of the table are matched, N objects at a
time. The default, indicated by giving N the value default, is to let the number of
objects vary depending on the sizes of the objects. If Name is a version 9 table, all
matching objects with the same key are always returned in the same reply which
implies that more than N objects may sometimes be returned.

The table should always be protected using safe fixtable/2 before calling
match object/3, or errors may occur when calling match object/1.

member(Name, Key) -> Bool | ferror, Reasong

Types:

� Name = name()
� Key = term()
� Bool = bool()

Works like lookup/2, but does not return the objects. The function returns true if one
or more elements of the table has the key Key, false otherwise.

next(Name, Key1) -> Key2 | ’$end of table’

Types:

� Name = name()
� Key1 = Key2 = term()

Returns the key following Key1 in the table Name according to the table's internal order,
or ’$end of table’ if there is no next key.

Should an error occur, the process is exited with an error tuple ferror, Reasong.

Use first/1 to find the first key in the table.

open file(Filename) -> fok, Referenceg | ferror, Reasong

Types:

� FileName = file()
� Reference = ref()

Opens an existing table. If the table has not been properly closed, the error ferror,
need repairg is returned. The returned reference is to be used as the name of the
table. This function is most useful for debugging purposes.

open file(Name, Args) -> fok, Nameg | ferror, Reasong

Types:

� Name = atom()

75STDLIB

dets STDLIB Reference Manual

Opens a table. An empty Dets table is created if no file exists.

The atom Name is the name of the table. The table name must be provided in all
subsequent operations on the table. The name can be used by other processes as well,
and several process can share one table.

If two processes open the same table by giving the same name and arguments, then the
table will have two users. If one user closes the table, it still remains open until the
second user closes the table.

The Args argument is a list of fKey, Valg tuples where the following values are
allowed:

� faccess, access()g. It is possible to open existing tables in read-only mode. A
table which is opened in read-only mode is not subjected to the automatic file
reparation algorithm if it is later opened after a crash. The default value is
read write.

� fauto save, auto save()g, the auto save interval. If the interval is an integer
Time, the table is flushed to disk whenever it is not accessed for Time milliseconds.
A table that has been flushed will require no reparation when reopened after an
uncontrolled emulator halt. If the interval is the atom infinity, auto save is
disabled. The default value is 180000 (3 minutes).

� festimated no objects, int()g. Equivalent to the min no slots option.

� ffile, file()g, the name of the file to be opened. The default value is the name
of the table.

� fmax no slots, no slots()g, the maximum number of slots that will be used.
The default value is 2 M, and the maximal value is 32 M. Note that a higher value
may increase the fragmentation of the table, and conversely, that a smaller value
may decrease the fragmentation, at the expense of execution time. Only available
for version 9 tables.

� fmin no slots, no slots()g. Application performance can be enhanced with
this flag by specifying, when the table is created, the estimated number of different
keys that will be stored in the table. The default value as well as the minimum
value is 256.

� fkeypos, keypos()g, the position of the element of each object to be used as key.
The default value is 1. The ability to explicitly state the key position is most
convenient when we want to store Erlang records in which the first position of the
record is the name of the record type.

� fram file, bool()g, whether the table is to be kept in RAM. Keeping the table in
RAM may sound like an anomaly, but can enhance the performance of applications
which open a table, insert a set of objects, and then close the table. When the table
is closed, its contents are written to the disk file. The default value is false.

� frepair, Valueg. Value can be either a bool() or the atom force. The flag
specifies whether the Dets server should invoke the automatic file reparation
algorithm. The default is true. If false is specified, there is no attempt to repair
the file and ferror, need repairg is returned if the table needs to be repaired.
The value force means that a reparation will take place even if the table has been
properly closed. This is how to convert tables created by older versions of STDLIB.
An example is tables hashed with the deprecated erlang:hash/2 BIF. Tables
created with Dets from a STDLIB version of 1.8.2 and later use the
erlang:phash/2 function or the erlang:phash2/1 function, which is preferred.
The repair option is ignored if the table is already open.

76 STDLIB

STDLIB Reference Manual dets

� ftype, type()g, the type of the table. The default value is set.

� fversion, version()g, the version of the format used for the table. The default
value is 9. Tables on the format used before OTP R8 can be created by giving the
value 8. A version 8 table can be converted to a version 9 table by giving the
options fversion,9g and frepair,forceg.

pid2name(Pid) -> fok, Nameg | undefined

Types:

� Name = name()
� Pid = pid()

Returns the name of the table given the pid of a process that handles requests to a table,
or undefined if there is no such table.

This function is meant to be used for debugging only.

repair continuation(Continuation, MatchSpec) -> Continuation2

Types:

� Continuation = Continuation2 = select cont()
� MatchSpec = match spec()

This function can be used to restore an opaque continuation returned by select/3 or
select/1 if the continuation has passed through external term format (been sent
between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match
specifications and therefore will be invalidated if converted to external term format.
Given that the original match specification is kept intact, the continuation can be
restored, meaning it can once again be used in subsequent select/1 calls even though it
has been stored on disk or on another node.

See also ets(3) for further explanations and examples.

Note:
This function is very rarely needed in application code. It is used by Mnesia to
implement distributed select/3 and select/1 sequences. A normal application
would either use Mnesia or keep the continuation from being converted to external
format.

The reason for not having an external representation of compiled match
specifications is performance. It may be subject to change in future releases, while
this interface will remain for backward compatibility.

safe fixtable(Name, Fix)

Types:

� Name = name()
� Fix = bool()

77STDLIB

dets STDLIB Reference Manual

If Fix is true, the table Name is fixed (once more) by the calling process, otherwise the
table is released. The table is also released when a fixing process terminates.

If several processes fix a table, the table will remain fixed until all processes have
released it or terminated. A reference counter is kept on a per process basis, and N
consecutive fixes require N releases to release the table.

It is not guaranteed that calls to first/1, next/2, select and match functions work as
expected even if the table has been fixed; the limited support for concurrency
implemented in Ets has not yet been implementeded in Dets. Fixing a table currently
only disables resizing of the hash list of the table.

If objects have been added while the table was fixed, the hash list will start to grow
when the table is released which will significantly slow down access to the table for a
period of time.

select(Continuation) -> fSelection, Continuation2g | ’$end of table’ | ferror,
Reasong

Types:

� Continuation = Continuation2 = select cont()
� Selection = [term()]

Returns the results of applying a match specification to some objects stored in a table.
The table, the match specification, and the number of objects that are matched are all
defined by Continuation, which has been returned by a prior call to select/1 or
select/3.

When all objects of the table have been matched, ’$end of table’ is returned.

select(Name, MatchSpec) -> Selection | ferror, Reasong

Types:

� Name = name()
� MatchSpec = match spec()
� Selection = [term()]

Returns the results of applying the match specification MatchSpec to all or some objects
stored in the table Name. The order of the objects is not specified. See the ERTS User's
Guide for a description of match specifications.

If the keypos'th element of MatchSpec is unbound, the match specification is applied to
all objects of the table. If the keypos'th element is bound, the match specification is
applied to the objects with the right key(s) only.

Using the select functions for traversing all objects of a table is more efficient than
calling first/1 and next/2 or slot/2.

select(Name, MatchSpec, N) -> fSelection, Continuationg | ’$end of table’ | ferror,
Reasong

Types:

� Name = name()
� MatchSpec = match spec()
� N = default | int()
� Selection = [term()]
� Continuation = select cont()

78 STDLIB

STDLIB Reference Manual dets

Returns the results of applying the match specification MatchSpec to some or all objects
stored in the table Name. The order of the objects is not specified. See the ERTS User's
Guide for a description of match specifications.

A tuple of the results of applying the match specification and a continuation is returned,
unless the table is empty, in which case ’$end of table’ is returned. The continuation
is to be used when matching further objects by calling select/1.

If the keypos'th element of MatchSpec is bound, the match specification is applied to all
objects of the table with the right key(s). If the keypos'th element of MatchSpec is
unbound, the match specification is applied to all objects of the table, N objects at a
time. The default, indicated by giving N the value default, is to let the number of
objects vary depending on the sizes of the objects. If Name is a version 9 table, all objects
with the same key are always handled at the same time which implies that the match
specification may be applied to more than N objects.

The table should always be protected using safe fixtable/2 before calling select/3,
or errors may occur when calling select/1.

select delete(Name, MatchSpec) -> N | ferror, Reasong

Types:

� Name = name()
� MatchSpec = match spec()
� N = int()

Deletes each object from the table Name such that applying the match specification
MatchSpec to the object returns the value true. See the ERTS User's Guide for a
description of match specifications. Returns the number of deleted objects.

If the keypos'th element of MatchSpec is bound, the match specification is applied to
the objects with the right key(s) only.

slot(Name, I) -> ’$end of table’ | [Object] | ferror, Reasong

Types:

� Name = name()
� I = int()
� Object = object()

The objects of a table are distributed among slots, starting with slot 0 and ending with
slot n. This function returns the list of objects associated with slot I. If I is greater than
n ’$end of table’ is returned.

sync(Name) -> ok | ferror, Reasong

Types:

� Name = name()

Ensures that all updates made to the table Name are written to disk. This also applies to
tables which have been opened with the ram file flag set to true. In this case, the
contents of the RAM file are flushed to disk.

Note that the space management data structures kept in RAM, the buddy system, is
also written to the disk. This may take some time if the table is fragmented.

table(Name [, Options]) -> QueryHandle

79STDLIB

dets STDLIB Reference Manual

Types:

� Name = name()
� QueryHandle = -a query handle, see qlc(3)-
� Options = [Option] | Option
� Option = fn objects, Limitg | ftraverse, TraverseMethodg
� Limit = default | integer() >= 1
� TraverseMethod = first next | select | fselect, MatchSpecg
� MatchSpec = match spec()

Returns a QLC (Query List Comprehension) query handle. The module qlc
implements a query language aimed mainly at Mnesia but Ets tables, Dets tables, and
lists are also recognized by QLC as sources of data. Calling dets:table/1,2 is the
means to make the Dets table Name usable to QLC.

When there are only simple restrictions on the key position QLC uses dets:lookup/2
to look up the keys, but when that is not possible the whole table is traversed. The
option traverse determines how this is done:

� first next. The table is traversed one key at a time by calling dets:first/1 and
dets:next/2.

� select. The table is traversed by calling dets:select/3 and dets:select/1. The
option n objects determines the number of objects returned (the third argument
of select/3). The match specification (the second argument of select/3) is
assembled by QLC: simple filters are translated into equivalent match
specifications while more complicated filters have to be applied to all objects
returned by select/3 given a match specification that matches all objects.

� fselect, MatchSpecg. As for select the table is traversed by calling
dets:select/3 and dets:select/1. The difference is that the match specification
is explicitly given. This is how to state match specifications that cannot easily be
expressed within the syntax provided by QLC.

The following example uses an explicit match specification to traverse the table:

1> dets:open file(t, []),
dets:insert(t, [f1,ag,f2,bg,f3,cg,f4,dg]),
MS = ets:fun2ms(fun(fX,Yg) when (X > 1) or (X < 5) -> fYg end),
QH1 = dets:table(t, [ftraverse, fselect, MSgg]).

An example with implicit match specification:

2> QH2 = qlc:q([fYg || fX,Yg <- dets:table(t), (X > 1) or (X < 5)]).

The latter example is in fact equivalent to the former which can be verified using the
function qlc:info/1:

3> qlc:info(QH1) =:= qlc:info(QH2).
true

qlc:info/1 returns information about a query handle, and in this case identical
information is returned for the two query handles.

to ets(Name, EtsTab) -> EtsTab | ferror, Reasong

Types:

� Name = name()

80 STDLIB

STDLIB Reference Manual dets

� EtsTab = -see ets(3)-

Inserts the objects of the Dets table Name into the Ets table EtsTab. The order in which
the objects are inserted is not specified. The existing objects of the Ets table are kept
unless overwritten.

traverse(Name, Fun) -> Return | ferror, Reasong

Types:

� Fun = fun(Object) -> FunReturn
� FunReturn = continue | fcontinue, Valg | fdone, Valueg
� Val = Value = term()
� Name = name()
� Object = object()
� Return = [term()]

Applies Fun to each object stored in the table Name in some unspecified order. Different
actions are taken depending on the return value of Fun. The following Fun return values
are allowed:

continue Continue to perform the traversal. For example, the following function can
be used to print out the contents of a table:

fun(X) -> io:format("~p~n", [X]), continue end.

fcontinue, Valg Continue the traversal and accumulate Val. The following function
is supplied in order to collect all objects of a table in a list:

fun(X) -> fcontinue, Xg end.

fdone, Valueg Terminate the traversal and return [Value | Acc].

Any other value returned by Fun terminates the traversal and is immediately returned.

update counter(Name, Key, Increment) -> Result

Types:

� Name = name()
� Key = term()
� Increment = fPos, Incrg | Incr
� Pos = Incr = Result = integer()

Updates the object with key Key stored in the table Name of type set by adding Incr to
the element at the Pos:th position. The new counter value is returned. If no position is
specified, the element directly following the key is updated.

This functions provides a way of updating a counter, without having to look up an
object, update the object by incrementing an element and insert the resulting object
into the table again.

See Also

ets(3) [page 122], mnesia(3), qlc(3) [page 258]

81STDLIB

dict STDLIB Reference Manual

dict
Erlang Module

Dict implements a Key - Value dictionary. The representation of a dictionary is not
defined.

DATA TYPES

dictionary()
as returned by new/0

Exports

append(Key, Value, Dict1) -> Dict2

Types:

� Key = Value = term()
� Dict1 = Dict2 = dictionary()

This function appends a new Value to the current list of values associated with Key. An
exception is generated if the initial value associated with Key is not a list of values.

append list(Key, ValList, Dict1) -> Dict2

Types:

� ValList = [Value]
� Key = Value = term()
� Dict1 = Dict2 = dictionary()

This function appends a list of values ValList to the current list of values associated
with Key. An exception is generated if the initial value associated with Key is not a list
of values.

erase(Key, Dict1) -> Dict2

Types:

� Key = term()
� Dict1 = Dict2 = dictionary()

This function erases all items with a given key from a dictionary.

fetch(Key, Dict) -> Value

Types:

82 STDLIB

STDLIB Reference Manual dict

� Key = Value = term()
� Dict = dictionary()

This function returns the value associated with Key in the dictionary Dict. fetch
assumes that the Key is present in the dictionary and an exception is generated if Key is
not in the dictionary.

fetch keys(Dict) -> Keys

Types:

� Dict = dictionary()
� Keys = [term()]

This function returns a list of all keys in the dictionary.

filter(Pred, Dict1) -> Dict2

Types:

� Pred = fun(Key, Value) -> bool()
� Key = Value = term()
� Dict1 = Dict2 = dictionary()

Dict2 is a dictionary of all keys and values in Dict1 for which Pred(Key, Value) is
true.

find(Key, Dict) -> fok, Valueg | error

Types:

� Key = Value = term()
� Dict = dictionary()

This function searches for a key in a dictionary. Returns fok, Valueg where Value is
the value associated with Key, or error if the key is not present in the dictionary.

fold(Fun, Acc0, Dict) -> Acc1

Types:

� Fun = fun(Key, Value, AccIn) -> AccOut
� Key = Value = term()
� Acc0 = Acc1 = AccIn = AccOut = term()
� Dict = dictionary()

Calls Fun on successive keys and values of Dict together with an extra argument Acc
(short for accumulator). Fun must return a new accumulator which is passed to the
next call. Acc0 is returned if the list is empty. The evaluation order is undefined.

from list(List) -> Dict

Types:

� List = [fKey, Valueg]
� Dict = dictionary()

This function converts the key/value list List to a dictionary.

is key(Key, Dict) -> bool()

83STDLIB

dict STDLIB Reference Manual

Types:

� Key = term()
� Dict = dictionary()

This function tests if Key is contained in the dictionary Dict.

map(Fun, Dict1) -> Dict2

Types:

� Fun = fun(Key, Value1) -> Value2
� Key = Value1 = Value2 = term()
� Dict1 = Dict2 = dictionary()

map calls Func on successive keys and values of Dict to return a new value for each key.
The evaluation order is undefined.

merge(Fun, Dict1, Dict2) -> Dict3

Types:

� Fun = fun(Key, Value1, Value2) -> Value
� Key = Value1 = Value2 = Value3 = term()
� Dict1 = Dict2 = Dict3 = dictionary()

merge merges two dictionaries, Dict1 and Dict2, to create a new dictionary. All the Key
- Value pairs from both dictionaries are included in the new dictionary. If a key occurs
in both dictionaries then Fun is called with the key and both values to return a new
value. merge could be defined as:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->

update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

but is faster.

new() -> dictionary()

This function creates a new dictionary.

store(Key, Value, Dict1) -> Dict2

Types:

� Key = Value = term()
� Dict1 = Dict2 = dictionary()

This function stores a Key - Value pair in a dictionary. If the Key already exists in Dict1,
the associated value is replaced by Value.

to list(Dict) -> List

Types:

� Dict = dictionary()
� List = [fKey, Valueg]

This function converts the dictionary to a list representation.

84 STDLIB

STDLIB Reference Manual dict

update(Key, Fun, Dict1) -> Dict2

Types:

� Key = term()
� Fun = fun(Value1) -> Value2
� Value1 = Value2 = term()
� Dict1 = Dict2 = dictionary()

Update the a value in a dictionary by calling Fun on the value to get a new value. An
exception is generated if Key is not present in the dictionary.

update(Key, Fun, Initial, Dict1) -> Dict2

Types:

� Key = Initial = term()
� Fun = fun(Value1) -> Value2
� Value1 = Value2 = term()
� Dict1 = Dict2 = dictionary()

Update the a value in a dictionary by calling Fun on the value to get a new value. If Key
is not present in the dictionary then Initial will be stored as the first value. For
example append/3 could be defined as:

append(Key, Val, D) ->
update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Dict1) -> Dict2

Types:

� Key = term()
� Increment = number()
� Dict1 = Dict2 = dictionary()

Add Increment to the value associated with Key and store this value. If Key is not
present in the dictionary then Increment will be stored as the first value.

This could be defined as:

update_counter(Key, Incr, D) ->
update(Key, fun (Old) -> Old + Incr end, Incr, D).

but is faster.

85STDLIB

dict STDLIB Reference Manual

Notes

The functions append and append list are included so we can store keyed values in a
list accumulator. For example:

> D0 = dict:new(),
D1 = dict:store(files, [], D0),
D2 = dict:append(files, f1, D1),
D3 = dict:append(files, f2, D2),
D4 = dict:append(files, f3, D3),
dict:fetch(files, D4).

[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list
of stored values, and storing the result.

The function fetch should be used if the key is known to be in the dictionary,
otherwise find.

See Also

gb trees(3) [page 162], orddict(3) [page 242]

86 STDLIB

STDLIB Reference Manual digraph

digraph
Erlang Module

The digraph module implements a version of labeled directed graphs. What makes the
graphs implemented here non-proper directed graphs is that multiple edges between
vertices are allowed. However, the customary definition of directed graphs will be used
in the text that follows.

A directed graph (or just “digraph”) is a pair (V,E) of a finite set V of vertices and a finite
set E of directed edges (or just “edges”). The set of edges E is a subset of VV (the
Cartesian product of V with itself). In this module, V is allowed to be empty; the so
obtained unique digraph is called the empty digraph. Both vertices and edges are
represented by unique Erlang terms.

Digraphs can be annotated with additional information. Such information may be
attached to the vertices and to the edges of the digraph. A digraph which has been
annotated is called a labeled digraph, and the information attached to a vertex or an edge
is called a label. Labels are Erlang terms.

An edge e=(v,w) is said to emanate from vertex v and to be incident on vertex w. The
out-degree of a vertex is the number of edges emanating from that vertex. The in-degree
of a vertex is the number of edges incident on that vertex. If there is an edge emanating
from v and incident on w, then w is is said to be an out-neighbour of v, and v is said to be
an in-neighbour of w. A path P from v[1] to v[k] in a digraph (V, E) is a non-empty
sequence v[1],v[2],...,v[k] of vertices in V such that there is an edge (v[i],v[i+1]) in E
for 1<=i<k. The length of the path P is k-1. P is simple if all vertices are distinct, except
that the first and the last vertices may be the same. P is a cycle if the length of P is not
zero and v[1] = v[k]. A loop is a cycle of length one. A simple cycle is a path that is both
a cycle and simple. An acyclic digraph is a digraph that has no cycles.

Exports

add edge(G, E, V1, V2, Label) -> edge() | ferror, Reasong

add edge(G, V1, V2, Label) -> edge() | ferror, Reasong

add edge(G, V1, V2) -> edge() | ferror, Reasong

Types:

� G = digraph()
� E = edge()
� V1 = V2 = vertex()
� Label = label()
� Reason = fbad edge, Pathg | fbad vertex, Vg

� Path = [vertex()]

87STDLIB

digraph STDLIB Reference Manual

add edge/5 creates (or modifies) the edge E of the digraph G, using Label as the (new)
label [page 87] of the edge. The edge is emanating [page 87] from V1 and incident
[page 87] on V2. Returns E.

add edge(G,V1,V2,Label) is equivalent to add edge(G,E,V1,V2,Label), where E is a
created edge. Tuples on the form [’$e’|N], where N is an integer>=1, are used for
representing the created edges.

add edge(G,V1,V2) is equivalent to add edge(G,V1,V2,[]).

If the edge would create a cycle in an acyclic digraph [page 87], then
ferror,fbad edge,Pathgg is returned. If either of V1 or V2 is not a vertex of the
digraph G, then ferror,fbad vertex,Vgg is returned, V=V1 or V=V2.

add vertex(G, V, Label) -> vertex()

add vertex(G, V) -> vertex()

add vertex(G) -> vertex()

Types:

� G = digraph()
� V = vertex()
� Label = label()

add vertex/3 creates (or modifies) the vertex V of the digraph G, using Label as the
(new) label [page 87] of the vertex. Returns V.

add vertex(G,V) is equivalent to add vertex(G,V,[]).

add vertex/1 creates a vertex using the empty list as label, and returns the created
vertex. Tuples on the form [’$v’|N], where N is an integer>=1, are used for
representing the created vertices.

del edge(G, E) -> true

Types:

� G = digraph()
� E = edge()

Deletes the edge E from the digraph G.

del edges(G, Edges) -> true

Types:

� G = digraph()
� Edges = [edge()]

Deletes the edges in the list Edges from the digraph G.

del path(G, V1, V2) -> true

Types:

� G = digraph()
� V1 = V2 = vertex()

88 STDLIB

STDLIB Reference Manual digraph

Deletes edges from the digraph G until there are no paths [page 87] from the vertex V1
to the vertex V2.

A sketch of the procedure employed: Find an arbitrary simple path [page 87]
v[1],v[2],...,v[k] from V1 to V2 in G. Remove all edges of G emanating [page 87] from
v[i] and incident [page 87] to v[i+1] for 1<=i<k (including multiple edges). Repeat
until there is no path between V1 and V2.

del vertex(G, V) -> true

Types:

� G = digraph()
� V = vertex()

Deletes the vertex V from the digraph G. Any edges emanating [page 87] from V or
incident [page 87] on V are also deleted.

del vertices(G, Vertices) -> true

Types:

� G = digraph()
� Vertices = [vertex()]

Deletes the vertices in the list Vertices from the digraph G.

delete(G) -> true

Types:

� G = digraph()

Deletes the digraph G. This call is important because digraphs are implemented with
Ets. There is no garbage collection of Ets tables. The digraph will, however, be deleted
if the process that created the digraph terminates.

edge(G, E) -> fE, V1, V2, Labelg | false

Types:

� G = digraph()
� E = edge()
� V1 = V2 = vertex()
� Label = label()

Returns fE,V1,V2,Labelg where Label is the label [page 87] of the edge E emanating
[page 87] from V1 and incident [page 87] on V2 of the digraph G. If there is no edge E of
the digraph G, then false is returned.

edges(G) -> Edges

Types:

� G = digraph()
� Edges = [edge()]

Returns a list of all edges of the digraph G, in some unspecified order.

edges(G, V) -> Edges

89STDLIB

digraph STDLIB Reference Manual

Types:

� G = digraph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges emanating [page 87] from or incident [page 87] on V of the
digraph G, in some unspecified order.

get cycle(G, V) -> Vertices | false

Types:

� G = digraph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

If there is a simple cycle [page 87] of length two or more through the vertex V, then the
cycle is returned as a list [V,...,V] of vertices, otherwise if there is a loop [page 87]
through V, then the loop is returned as a list [V]. If there are no cycles through V, then
false is returned.

get path/3 is used for finding a simple cycle through V.

get path(G, V1, V2) -> Vertices | false

Types:

� G = digraph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

Tries to find a simple path [page 87] from the vertex V1 to the vertex V2 of the digraph
G. Returns the path as a list [V1,...,V2] of vertices, or false if no simple path from V1
to V2 of length one or more exists.

The digraph G is traversed in a depth-first manner, and the first path found is returned.

get short cycle(G, V) -> Vertices | false

Types:

� G = digraph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

Tries to find an as short as possible simple cycle [page 87] through the vertex V of the
digraph G. Returns the cycle as a list [V,...,V] of vertices, or false if no simple cycle
through V exists. Note that a loop [page 87] through V is returned as the list [V,V].

get short path/3 is used for finding a simple cycle through V.

get short path(G, V1, V2) -> Vertices | false

Types:

� G = digraph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

90 STDLIB

STDLIB Reference Manual digraph

Tries to find an as short as possible simple path [page 87] from the vertex V1 to the
vertex V2 of the digraph G. Returns the path as a list [V1,...,V2] of vertices, or false
if no simple path from V1 to V2 of length one or more exists.

The digraph G is traversed in a breadth-first manner, and the first path found is returned.

in degree(G, V) -> integer()

Types:

� G= digraph()
� V = vertex()

Returns the in-degree [page 87] of the vertex V of the digraph G.

in edges(G, V) -> Edges

Types:

� G = digraph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges incident [page 87] on V of the digraph G, in some unspecified
order.

in neighbours(G, V) -> Vertices

Types:

� G = digraph()
� V = vertex()
� Vertices = [vertex()]

Returns a list of all in-neighbours [page 87] of V of the digraph G, in some unspecified
order.

info(G) -> InfoList

Types:

� G = digraph()
� InfoList = [fcyclicity, Cyclicityg, fmemory, NoWordsg, fprotection, Protectiong]
� Cyclicity = cyclic | acyclic
� Protection = public | protected | private
� NoWords = integer() >= 0

Returns a list of fTag, Valueg pairs describing the digraph G. The following pairs are
returned:

� fcyclicity, Cyclicityg, where Cyclicity is cyclic or acyclic, according to
the options given to new.

� fmemory, NoWordsg, where NoWords is the number of words allocated to the ets
tables.

� fprotection, Protectiong, where Protection is public, protected or
private, according to the options given to new.

91STDLIB

digraph STDLIB Reference Manual

new() -> digraph()

Equivalent to new([]).

new(Type) -> digraph() | ferror, Reasong

Types:

� Type = [cyclic | acyclic | public | private | protected]
� Reason = funknown type, term()g

Returns an empty digraph [page 87] with properties according to the options in Type:

cyclic Allow cycles [page 87] in the digraph (default).

acyclic The digraph is to be kept acyclic [page 87].

public The digraph may be read and modified by any process.

protected Other processes can only read the digraph (default).

private The digraph can be read and modified by the creating process only.

If an unrecognized type option T is given, then ferror,funknown type,Tgg is returned.

no edges(G) -> integer() >= 0

Types:

� G = digraph()

Returns the number of edges of the digraph G.

no vertices(G) -> integer() >= 0

Types:

� G = digraph()

Returns the number of vertices of the digraph G.

out degree(G, V) -> integer()

Types:

� G = digraph()
� V = vertex()

Returns the out-degree [page 87] of the vertex V of the digraph G.

out edges(G, V) -> Edges

Types:

� G = digraph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges emanating [page 87] from V of the digraph G, in some
unspecified order.

out neighbours(G, V) -> Vertices

Types:

92 STDLIB

STDLIB Reference Manual digraph

� G = digraph()
� V = vertex()
� Vertices = [vertex()]

Returns a list of all out-neighbours [page 87] of V of the digraph G, in some unspecified
order.

vertex(G, V) -> fV, Labelg | false

Types:

� G = digraph()
� V = vertex()
� Label = label()

Returns fV,Labelg where Label is the label [page 87] of the vertex V of the digraph G,
or false if there is no vertex V of the digraph G.

vertices(G) -> Vertices

Types:

� G = digraph()
� Vertices = [vertex()]

Returns a list of all vertices of the digraph G, in some unspecified order.

See Also

digraph utils(3) [page 94], ets(3) [page 122]

93STDLIB

digraph utils STDLIB Reference Manual

digraph utils
Erlang Module

The digraph utils module implements some algorithms based on depth-first traversal
of directed graphs. See the digraph module for basic functions on directed graphs.

A directed graph (or just “digraph”) is a pair (V,E) of a finite set V of vertices and a finite
set E of directed edges (or just “edges”). The set of edges E is a subset of VV (the
Cartesian product of V with itself).

Digraphs can be annotated with additional information. Such information may be
attached to the vertices and to the edges of the digraph. A digraph which has been
annotated is called a labeled digraph, and the information attached to a vertex or an edge
is called a label.

An edge e=(v,w) is said to emanate from vertex v and to be incident on vertex w. If there
is an edge emanating from v and incident on w, then w is is said to be an out-neighbour
of v. A path P from v[1] to v[k] in a digraph (V, E) is a non-empty sequence
v[1],v[2],...,v[k] of vertices in V such that there is an edge (v[i],v[i+1]) in E for
1<=i<k. The length of the path P is k-1. P is a cycle if the length of P is not zero and v[1]
= v[k]. A loop is a cycle of length one. An acyclic digraph is a digraph that has no cycles.

A depth-first traversal of a directed digraph can be viewed as a process that visits all
vertices of the digraph. Initially, all vertices are marked as unvisited. The traversal starts
with an arbitrarily chosen vertex, which is marked as visited, and follows an edge to an
unmarked vertex, marking that vertex. The search then proceeds from that vertex in
the same fashion, until there is no edge leading to an unvisited vertex. At that point the
process backtracks, and the traversal continues as long as there are unexamined edges. If
there remain unvisited vertices when all edges from the first vertex have been
examined, some hitherto unvisited vertex is chosen, and the process is repeated.

A partial ordering of a set S is a transitive, antisymmetric and reflexive relation between
the objects of S. The problem of topological sorting is to find a total ordering of S that is a
superset of the partial ordering. A digraph G=(V,E) is equivalent to a relation E on V
(we neglect the fact that the version of directed graphs implemented in the digraph
module allows multiple edges between vertices). If the digraph has no cycles of length
two or more, then the reflexive and transitive closure of E is a partial ordering.

A subgraph G' of G is a digraph whose vertices and edges form subsets of the vertices
and edges of G. G' is maximal with respect to a property P if all other subgraphs that
include the vertices of G' do not have the property P. A strongly connected component is a
maximal subgraph such that there is a path between each pair of vertices. A connected
component is a maximal subgraph such that there is a path between each pair of vertices,
considering all edges undirected.

94 STDLIB

STDLIB Reference Manual digraph utils

Exports

components(Digraph) -> [Component]

Types:

� Digraph = digraph()
� Component = [vertex()]

Returns a list of connected components [page 94]. Each component is represented by
its vertices. The order of the vertices and the order of the components are arbitrary.
Each vertex of the digraph Digraphoccurs in exactly one component.

condensation(Digraph) -> CondensedDigraph

Types:

� Digraph = CondensedDigraph = digraph()

Creates a digraph where the vertices are the strongly connected components [page 94]
of Digraph as returned by strong components/1. If X and Y are strongly connected
components, and there exist vertices x and y in X and Y respectively such that there is
an edge emanating [page 94] from x and incident [page 94] on y, then an edge
emanating from X and incident on Y is created.

The created digraph has the same type as Digraph. All vertices and edges have the
default label [page 94] [].

Each and every cycle [page 94] is included in some strongly connected component,
which implies that there always exists a topological ordering [page 94] of the created
digraph.

cyclic strong components(Digraph) -> [StrongComponent]

Types:

� Digraph = digraph()
� StrongComponent = [vertex()]

Returns a list of strongly connected components [page 94]. Each strongly component is
represented by its vertices. The order of the vertices and the order of the components
are arbitrary. Only vertices that are included in some cycle [page 94] in Digraph are
returned, otherwise the returned list is equal to that returned by strong components/1.

is acyclic(Digraph) -> bool()

Types:

� Digraph = digraph()

Returns true if and only if the digraph Digraph is acyclic [page 94].

loop vertices(Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns a list of all vertices of Digraph that are included in some loop [page 94].

95STDLIB

digraph utils STDLIB Reference Manual

postorder(Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns all vertices of the digraph Digraph. The order is given by a depth-first traversal
[page 94] of the digraph, collecting visited vertices in postorder. More precisely, the
vertices visited while searching from an arbitrarily chosen vertex are collected in
postorder, and all those collected vertices are placed before the subsequently visited
vertices.

preorder(Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns all vertices of the digraph Digraph. The order is given by a depth-first traversal
[page 94] of the digraph, collecting visited vertices in pre-order.

reachable(Vertices, Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is
a path [page 94] in Digraph from some vertex of Vertices to the vertex. In particular,
since paths may have length zero, the vertices of Vertices are included in the returned
list.

reachable neighbours(Vertices, Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is
a path [page 94] in Digraph of length one or more from some vertex of Vertices to
the vertex. As a consequence, only those vertices of Vertices that are included in some
cycle [page 94] are returned.

reaching(Vertices, Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is
a path [page 94] from the vertex to some vertex of Vertices. In particular, since paths
may have length zero, the vertices of Vertices are included in the returned list.

reaching neighbours(Vertices, Digraph) -> Vertices

Types:

96 STDLIB

STDLIB Reference Manual digraph utils

� Digraph = digraph()
� Vertices = [vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is
a path [page 94] of length one or more from the vertex to some vertex of Vertices. As
a consequence, only those vertices of Vertices that are included in some cycle [page
94] are returned.

strong components(Digraph) -> [StrongComponent]

Types:

� Digraph = digraph()
� StrongComponent = [vertex()]

Returns a list of strongly connected components [page 94]. Each strongly component is
represented by its vertices. The order of the vertices and the order of the components
are arbitrary. Each vertex of the digraph Digraph occurs in exactly one strong
component.

subgraph(Digraph, Vertices [, Options]) -> Subgraph | ferror, Reasong

Types:

� Digraph = Subgraph = digraph()
� Options = [ftype, SubgraphTypeg, fkeep labels, bool()g]
� Reason = finvalid option, term()g | funknown type, term()g
� SubgraphType = inherit | type()
� Vertices = [vertex()]

Creates a maximal subgraph [page 94] of Digraph having as vertices those vertices of
Digraph that are mentioned in Vertices.

If the value of the option type is inherit, which is the default, then the type of
Digraph is used for the subgraph as well. Otherwise the option value of type is used as
argument to digraph:new/1.

If the value of the option keep labels is true, which is the default, then the labels
[page 94] of vertices and edges of Digraph are used for the subgraph as well. If the
value is false, then the default label, [], is used for the subgraph's vertices and edges.

subgraph(Digraph, Vertices) is equivalent to subgraph(Digraph, Vertices, []).

topsort(Digraph) -> Vertices | false

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns a topological ordering [page 94] of the vertices of the digraph Digraph if such
an ordering exists, false otherwise. For each vertex in the returned list, there are no
out-neighbours [page 94] that occur earlier in the list.

See Also

digraph(3) [page 87]

97STDLIB

epp STDLIB Reference Manual

epp
Erlang Module

The Erlang code preprocessor includes functions which are used by compile to
preprocess macros and include files before the actual parsing takes place.

Exports

open(FileName, IncludePath) -> fok,Eppg | ferror, ErrorDescriptorg

open(FileName, IncludePath, PredefMacros) -> fok,Eppg | ferror, ErrorDescriptorg

Types:

� FileName = atom() | string()
� IncludePath = [DirectoryName]
� DirectoryName = atom() | string()
� PredefMacros = [fatom(),term()g]
� Epp = pid() – handle to the epp server
� ErrorDescriptor = term()

Opens a file for preprocessing.

close(Epp) -> ok

Types:

� Epp = pid() – handle to the epp server

Closes the preprocessing of a file.

parse erl form(Epp) -> fok, AbsFormg | feof, Lineg | ferror, ErrorInfog

Types:

� Epp = pid()
� AbsForm = term()
� Line = integer()
� ErrorInfo = see separate description below.

Returns the next Erlang form from the opened Erlang source file. The tuple feof,
Lineg is returned at end-of-file. The first form corresponds to an implicit attribute
-file(File,1)., where File is the name of the file.

parse file(FileName,IncludePath,PredefMacro) -> fok,[Form]g | ferror,OpenErrorg

Types:

� FileName = atom() | string()

98 STDLIB

STDLIB Reference Manual epp

� IncludePath = [DirectoryName]
� DirectoryName = atom() | string()
� PredefMacros = [fatom(),term()g]
� Form = term() – same as returned by erl parse:parse form

Preprocesses and parses an Erlang source file. Note that the tuple feof, Lineg returned
at end-of-file is included as a “form”.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

erl parse(3) [page 108]

99STDLIB

erl eval STDLIB Reference Manual

erl eval
Erlang Module

This module provides an interpreter for Erlang expressions. The expressions are in the
abstract syntax as returned by erl parse, the Erlang parser, or a call to
io:parse erl exprs/2.

Exports

exprs(Expressions, Bindings) -> fvalue, Value, NewBindingsg

exprs(Expressions, Bindings, LocalFunctionHandler) -> fvalue, Value, NewBindingsg

exprs(Expressions, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) ->
fvalue, Value, NewBindingsg

Types:

� Expressions = as returned by erl parse or io:parse erl exprs/2
� Bindings = as returned by bindings/1
� LocalFunctionHandler = fvalue, Funcg | feval, Funcg | none
� NonlocalFunctionHandler = fvalue, Funcg | none

Evaluates Expressions with the set of bindings Bindings, where Expressions is a
sequence of expressions (in abstract syntax) of a type which may be returned by
io:parse erl exprs/2. See below for an explanation of how and when to use the
arguments LocalFunctionHandler and NonlocalFunctionHandler.

Returns fvalue, Value, NewBindingsg

expr(Expression, Bindings) -> f value, Value, NewBindings g

expr(Expression, Bindings, LocalFunctionHandler) -> f value, Value, NewBindings g

expr(Expression, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> f value,
Value, NewBindings g

Types:

� Expression = as returned by io:parse erl form/2, for example
� Bindings = as returned by bindings/1
� LocalFunctionHandler = fvalue, Funcg | feval, Funcg | none
� NonlocalFunctionHandler = fvalue, Funcg | none

Evaluates Expression with the set of bindings Bindings. Expression is an expression
(in abstract syntax) of a type which may be returned by io:parse erl form/2. See
below for an explanation of how and when to use the arguments
LocalFunctionHandler and NonlocalFunctionHandler.

Returns fvalue, Value, NewBindingsg.

100 STDLIB

STDLIB Reference Manual erl eval

expr list(ExpressionList, Bindings) -> fValueList, NewBindingsg

expr list(ExpressionList, Bindings, LocalFunctionHandler) -> fValueList, NewBindingsg

expr list(ExpressionList, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) ->
fValueList, NewBindingsg

Evaluates a list of expressions in parallel, using the same initial bindings for each
expression. Attempts are made to merge the bindings returned from each evaluation.
This function is useful in the LocalFunctionHandler. See below.

Returns fValueList, NewBindingsg.

new bindings() -> BindingStruct

Returns an empty binding structure.

bindings(BindingStruct) -> Bindings

Returns the list of bindings contained in the binding structure.

binding(Name, BindingStruct) -> Binding

Returns the binding of Name in BindingStruct.

add binding(Name, Value, Bindings) -> BindingStruct

Adds the binding Name = Value to Bindings. Returns an updated binding structure.

del binding(Name, Bindings) -> BindingStruct

Removes the binding of Name in Bindings. Returns an updated binding structure.

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined
function error would be generated. However, the optional argument
LocalFunctionHandler may be used to define a function which is called when there is
a call to a local function. The argument can have the following formats:

fvalue,Funcg This defines a local function handler which is called with:

Func(Name, Arguments)

Name is the name of the local function (an atom) and Arguments is a list of the
evaluated arguments. The function handler returns the value of the local function.
In this case, it is not possible to access the current bindings. To signal an error, the
function handler just calls exit/1 with a suitable exit value.

feval,Funcg This defines a local function handler which is called with:

Func(Name, Arguments, Bindings)

Name is the name of the local function (an atom), Arguments is a list of the
unevaluated arguments, and Bindings are the current variable bindings. The
function handler returns:

{value,Value,NewBindings}

101STDLIB

erl eval STDLIB Reference Manual

Value is the value of the local function and NewBindings are the updated variable
bindings. In this case, the function handler must itself evaluate all the function
arguments and manage the bindings. To signal an error, the function handler just
calls exit/1 with a suitable exit value.

none There is no local function handler.

Non-local Function Handler

The optional argument NonlocalFunctionHandler may be used to define a function
which is called in the following cases: a functional object (fun) is called; a built-in
function is called; a function is called using the M:F syntax, where M and F are atoms or
expressions. Exceptions are function calls in guard tests and calls to erlang:apply/2,3;
neither of the function handlers will be called for such calls. The argument can have the
following formats:

fvalue,Funcg This defines an nonlocal function handler which is called with:

Func(FuncSpec, Arguments)

FuncSpec is the name of the function on the form fModule,Functiong or a fun,
and Arguments is a list of the evaluated arguments. The function handler returns
the value of the function. To signal an error, the function handler just calls exit/1
with a suitable exit value.

none There is no nonlocal function handler.

The nonlocal function handler argument is probably not used as frequently as the local
function handler argument. A possible use is to call exit/1 on calls to functions that for
some reason are not allowed to be called.

Bugs

The evaluator is not complete. receive cannot be handled properly.

Any undocumented functions in erl eval should not be used.

102 STDLIB

STDLIB Reference Manual erl id trans

erl id trans
Erlang Module

This module performs an identity parse transformation of Erlang code. It is included as
an example for users who may wish to write their own parse transformers. If the option
fparse transform,Moduleg is passed to the compiler, a user written function
parse transform/2 is called by the compiler before the code is checked for errors.

Exports

parse transform(Forms, Options) -> Forms

Types:

� Forms = [erlang form()]
� Options = [compiler options()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with
different semantics. The original Erlang code is then transformed into other Erlang code.

Note:
Programmers are strongly advised not to engage in parse transformations and no
support is offered for problems encountered.

See Also

erl parse(3) [page 108], compile(3).

103STDLIB

erl internal STDLIB Reference Manual

erl internal
Erlang Module

This module defines Erlang BIFs, guard tests and operators. This module is only of
interest to programmers who manipulate Erlang code.

Exports

bif(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is automatically recognized by the
compiler, otherwise false.

guard bif(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is allowed in guards, otherwise
false.

type test(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is a valid Erlang type test, otherwise false.

arith op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is an arithmetic operator, otherwise false.

bool op(OpName, Arity) -> bool()

Types:

� OpName = atom()

104 STDLIB

STDLIB Reference Manual erl internal

� Arity = integer()

Returns true if OpName/Arity is a Boolean operator, otherwise false.

comp op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a comparison operator, otherwise false.

list op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a list operator, otherwise false.

send op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a send operator, otherwise false.

op type(OpName, Arity) -> Type

Types:

� OpName = atom()
� Arity = integer()
� Type = arith | bool | comp | list | send

Returns the Type of operator that OpName/Arity belongs to, or generates a
function clause error if it is not an operator at all.

105STDLIB

erl lint STDLIB Reference Manual

erl lint
Erlang Module

This module is used to check Erlang code for illegal syntax and other bugs. It also warns
against coding practices which are not recommended.

The errors detected include:

� redefined and undefined functions

� unbound and unsafe variables

� illegal record usage.

Warnings include:

� unused functions and imports

� variables imported into matches

� variables exported from if/case/receive

� variables shadowed in lambdas and list comprehensions.

Some of the warnings are optional, and can be turned on by giving the appropriate
option, described below.

The functions in this module are invoked automatically by the Erlang compiler and
there is no reason to invoke these functions separately unless you have written your own
Erlang compiler.

Exports

module(AbsForms) -> fok,Warningsg | ferror,Errors,Warningsg

module(AbsForms, FileName) -> fok,Warningsg | ferror,Errors,Warningsg

module(AbsForms, FileName, CompileOptions) -> fok,Warningsg | ferror,Errors,Warningsg

Types:

� AbsForms = [term()]
� FileName = FileName2 = atom() | string()
� Warnings = Errors = [fFilename2,[ErrorInfo]g]
� ErrorInfo = see separate description below.
� CompileOptions = [term()]

This function checks all the forms in a module for errors. It returns:

fok,Warningsg There were no errors in the module.

ferror,Errors,Warningsg There were errors in the module.

106 STDLIB

STDLIB Reference Manual erl lint

Since this module is of interest only to the maintainers of the compiler, and to avoid
having the same description in two places to avoid the usual maintainence nightmare,
the elements of Options that control the warnings are only described in the manual
page for the compile module.

The AbsForms of a module which comes from a file that is read through epp, the Erlang
pre-processor, can come from many files. This means that any references to errors must
include the file name (see epp(3) [page 98], or parser erl parse(3) [page 108] The
warnings and errors returned have the following format:

[{FileName2,[ErrorInfo]}]

The errors and warnings are listed in the order in which they are encountered in the
forms. This means that the errors from one file may be split into different entries in the
list of errors.

is guard test(Expr) -> bool()

Types:

� Expr = term()

This function tests if Expr is a legal guard test. Expr is an Erlang term representing the
abstract form for the expression. erl parse:parse exprs(Tokens) can be used to
generate a list of Expr.

format error(ErrorDescriptor) -> Chars

Types:

� ErrorDescriptor = errordesc()
� Chars = [char() | Chars]

Takes an ErrorDescriptor and returns a string which describes the error or warning.
This function is usually called implicitly when processing an ErrorInfo structure (see
below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

erl parse(3) [page 108], epp(3) [page 98]

107STDLIB

erl parse STDLIB Reference Manual

erl parse
Erlang Module

This module is the basic Erlang parser which converts tokens into the abstract form of
either forms (i.e., top-level constructs), expressions, or terms. The Abstract Format is
described in the ERTS User's Guide. Note that a token list must end with the dot token
in order to be acceptable to the parse functions (see erl scan).

Exports

parse form(Tokens) -> fok, AbsFormg | ferror, ErrorInfog

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� AbsForm = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a form. It returns:

fok, AbsFormg The parsing was successful. AbsForm is the abstract form of the parsed
form.

ferror, ErrorInfog An error occurred.

parse exprs(Tokens) -> fok, Expr listg | ferror, ErrorInfog

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� Expr list = [AbsExpr]
� AbsExpr = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a list of expressions. It returns:

fok, Expr listg The parsing was successful. Expr list is a list of the abstract forms
of the parsed expressions.

ferror, ErrorInfog An error occurred.

parse term(Tokens) -> fok, Termg | ferror, ErrorInfog

108 STDLIB

STDLIB Reference Manual erl parse

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� Term = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a term. It returns:

fok, Termg The parsing was successful. Term is the Erlang term corresponding to the
token list.

ferror, ErrorInfog An error occurred.

format error(ErrorDescriptor) -> Chars

Types:

� ErrorDescriptor = errordesc()
� Chars = [char() | Chars]

Uses an ErrorDescriptor and returns a string which describes the error. This function
is usually called implicitly when an ErrorInfo structure is processed (see below).

tokens(AbsTerm) -> Tokens

tokens(AbsTerm, MoreTokens) -> Tokens

Types:

� Tokens = MoreTokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� AbsTerm = term()
� ErrorInfo = see section Error Information below.

This function generates a list of tokens representing the abstract form AbsTerm of an
expression. Optionally, it appends Moretokens.

normalise(AbsTerm) -> Data

Types:

� AbsTerm = Data = term()

Converts the abstract form AbsTerm of a term into a conventional Erlang data structure
(i.e., the term itself). This is the inverse of abstract/1.

abstract(Data) -> AbsTerm

Types:

� Data = AbsTerm = term()

Converts the Erlang data structure Data into an abstract form of type AbsTerm. This is
the inverse of normalise/1.

109STDLIB

erl parse STDLIB Reference Manual

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

io(3) [page 197], erl scan(3) [page 114], ERTS User's Guide

110 STDLIB

STDLIB Reference Manual erl pp

erl pp
Erlang Module

The functions in this module are used to generate aesthetically attractive
representations of abstract forms, which are suitable for printing. All functions return
(possibly deep) lists of characters and generate an error if the form is wrong.

All functions can have an optional argument which specifies a hook that is called if an
attempt is made to print an unknown form.

Exports

form(Form) -> DeepCharList

form(Form, HookFunction) -> DeepCharList

Types:

� Form = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

Pretty prints a Form which is an abstract form of a type which is returned by
erl parse:parse form.

attribute(Attribute) -> DeepCharList

attribute(Attribute, HookFunction) -> DeepCharList

Types:

� Attribute = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the attribute Attribute.

function(Function) -> DeepCharList

function(Function, HookFunction) -> DeepCharList

Types:

� Function = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the function Function.

guard(Guard) -> DeepCharList

guard(Guard, HookFunction) -> DeepCharList

111STDLIB

erl pp STDLIB Reference Manual

Types:

� Form = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the guard test Guard.

exprs(Expressions) -> DeepCharList

exprs(Expressions, HookFunction) -> DeepCharList

exprs(Expressions, Indent, HookFunction) -> DeepCharList

Types:

� Expressions = term()
� HookFunction = see separate description below.
� Indent = integer()
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the sequence of expressions in Expressions.

expr(Expression) -> DeepCharList

expr(Expression, HookFunction) -> DeepCharList

expr(Expression, Indent, HookFunction) -> DeepCharList

expr(Expression, Indent, Precedence, HookFunction) ->-> DeepCharList

Types:

� Expression = term()
� HookFunction = see separate description below.
� Indent = integer()
� Precedence =
� DeepCharList = [char()|DeepCharList]

This function prints one expression. It is useful for implementing hooks (see below).

Unknown Expression Hooks

The optional argument HookFunction, shown in the functions described above, defines
a function which is called when an unknown form occurs where there should be a valid
expression. It can have the following formats:

Function The hook function is called by:

Function(Expr,
CurrentIndentation,
CurrentPrecedence,
HookFunction)

none There is no hook function

The called hook function should return a (possibly deep) list of characters. expr/4 is
useful in a hook.

If CurrentIndentation is negative, there will be no line breaks and only a space is used
as a separator.

112 STDLIB

STDLIB Reference Manual erl pp

Bugs

It should be possible to have hook functions for unknown forms at places other than
expressions.

See Also

io(3) [page 197], erl parse(3) [page 108], erl eval(3) [page 100]

113STDLIB

erl scan STDLIB Reference Manual

erl scan
Erlang Module

This module contains functions for tokenizing characters into Erlang tokens.

Exports

string(CharList,StartLine]) -> fok, Tokens, EndLineg | Error

string(CharList) -> fok, Tokens, EndLineg | Error

Types:

� CharList = string()
� StartLine = EndLine = Line = integer()
� Tokens = [fatom(),Lineg|fatom(),Line,term()g]
� Error = ferror, ErrorInfo, EndLineg

Takes the list of characters CharList and tries to scan (tokenize) them. Returns fok,
Tokens, EndLineg, where Tokens are the Erlang tokens from CharList. EndLine is
the last line where a token was found.

StartLine indicates the initial line when scanning starts. string/1 is equivalent to
string(CharList,1).

ferror, ErrorInfo, EndLineg is returned if an error occurs. EndLine indicates where
the error occurred.

tokens(Continuation, CharList, StartLine) ->Return

Types:

� Return = fdone, Result, LeftOverCharsg | fmore, Continuationg
� Continuation = [] | string()
� CharList = string()
� StartLine = EndLine = integer()
� Result = fok, Tokens, EndLineg | feof, EndLineg
� Tokens = [fatom(),Lineg|fatom(),Line,term()g]

This is the re-entrant scanner which scans characters until a dot ('.' whitespace) has
been reached. It returns:

fdone, Result, LeftOverCharsg This return indicates that there is sufficient input
data to get an input. Result is:

fok, Tokens, EndLineg The scanning was successful. Tokens is the list of tokens
including dot.

feof, EndLineg End of file was encountered before any more tokens.

114 STDLIB

STDLIB Reference Manual erl scan

ferror, ErrorInfo, EndLineg An error occurred.

fmore, Continuationg More data is required for building a term. Continuation must
be passed in a new call to tokens/3 when more data is available.

reserved word(Atom) -> bool()

Returns true if Atom is an Erlang reserved word, otherwise false.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Takes an ErrorDescriptor and returns a string which describes the error or warning.
This function is usually called implicitly when processing an ErrorInfo structure (see
below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

Notes

The continuation of the first call to the re-entrant input functions must be []. Refer to
Armstrong, Virding and Williams, 'Concurrent Programming in Erlang', Chapter 13, for
a complete description of how the re-entrant input scheme works.

See Also

io(3) [page 197], erl parse(3) [page 108]

115STDLIB

erl tar STDLIB Reference Manual

erl tar
Erlang Module

The erl tar module archives and extract files to and from a tar file. The tar file format
is the POSIX extended tar file format specified in IEEE Std 1003.1 and
ISO/IEC9945-1. That is the same format as used by tar program on Solaris, but is not
the same as used by the GNU tar program.

By convention, the name of a tar file should end in “.tar”. To abide to the convention,
you'll need to add “.tar” yourself to the name.

Tar files can be created in one operation using the create/2 [page 118] or create/3 [page
118] function.

Alternatively, for more control, the open [page 120], add/3,4 [page 117], and close/1
[page 117] functions can be used.

To extract all files from a tar file, use the extract/1 [page 118] function. To extract only
some files or to be able to specify some more options, use the extract/2 [page 119]
function.

To return a list of the files in a tar file, use either the table/1 [page 120] or table/2 [page
120] function. To print a list of files to the Erlang shell, use either the t/1 [page 120] or
tt/1 [page 121] function.

To convert an error term returned from one of the functions above to a readable
message, use the format error/1 [page 119] function.

LIMITATIONS

For maximum compatibility, it is safe to archive files with names up to 100 characters in
length. Such tar files can generally be extracted by any tar program.

If filenames exceed 100 characters in length, the resulting tar file can only be correctly
extracted by a POSIX-compatible tar program (such as Solaris tar), not by GNU tar.

File have longer names than 256 bytes cannot be stored at all.

The filename of the file a symbolic link points is always limited to 100 characters.

116 STDLIB

STDLIB Reference Manual erl tar

Exports

add(TarDescriptor, Filename, Options) -> RetValue

Types:

� TarDescriptor = term()
� Filename = filename()
� Options = [Option]
� Option = dereference|verbose
� RetValue = ok|ferror,fFilename,Reasongg
� Reason = term()

The add/3 function adds a file to a tar file that has been opened for writing by open/1
[page 120].

dereference By default, symbolic links will be stored as symbolic links in the tar file.
Use the dereference option to override the default and store the file that the
symbolic link points to into the tar file.

verbose Print an informational message about the file being added.

add(TarDescriptor, Filename, NameInArchive, Options) -> RetValue

Types:

� TarDescriptor = term()
� Filename = filename()
� NameInArchive = filename()
� Options = [Option]
� Option = dereference|verbose
� RetValue = ok|ferror,fFilename,Reasongg
� Reason = term()

The add/4 function adds a file to a tar file that has been opened for writing by open/1
[page 120]. It accepts the same options as add/3 [page 117].

NameInArchive is the name under which the file will be stored in the tar file. That is
the name that the file will get when it will be extracted from the tar file.

close(TarDescriptor)

Types:

� TarDescriptor = term()

The close/1 function closes a tar file opened by open/1 [page 120].

create(Name, FileList) ->RetValue

Types:

� Name = filename()
� FileList = [filename()]
� RetValue = ok|ferror,fName,Reasongg<V>Reason = term()

117STDLIB

erl tar STDLIB Reference Manual

The create/2 function creates a tar file and archives the files whose names are given in
FileList into it.

create(Name, FileList, OptionList)

Types:

� Name = filename()
� FileList = [filename()]
� OptionList = [Option]
� Option = compressed|cooked|dereference|verbose
� RetValue = ok|ferror,fName,Reasongg<V>Reason = term()

The create/3 function creates a tar file and archives the files whose names are given in
FileList into it.

The options in OptionList modify the defaults as follows.

compressed The entire tar file will be compressed, as if it has been run through the
gzip program. To abide to the convention that a compressed tar file should end in
“.tar.gz” or “.tgz”, you'll need to add the appropriate extension yourself.

cooked By default, the open/2 function will open the tar file in raw mode, which is
faster but does not allow a remote (erlang) file server to be used. Adding cooked to
the mode list will override the default and open the tar file without the raw option.

dereference By default, symbolic links will be stored as symbolic links in the tar file.
Use the dereference option to override the default and store the file that the
symbolic link points to into the tar file.

verbose Print an informational message about each file being added.

extract(Name) -> RetValue

Types:

� Name = filename()
� RetValue = ok|ferror,fName,Reasongg
� Reason = term()

The extract/1 function extracts all files from a tar archive.

If the Name argument is given as “fbinary,Binaryg”, the contents of the binary is
assumed to be a tar archive.

If the Name argument is given as “ffile,Fdg”, Fd is assumed to be a file descriptor
returned from the file:open/2 function.

Otherwise, Name should be a filename.

extract(Name, OptionList)

Types:

� Name = filename() | fbinary,Binaryg | ffile,Fdg
� Binary = binary()
� Fd = file descriptor()
� OptionList = [Option]
� Option = fcwd,Cwdg|ffiles,FileListg|keep old files|verbose
� Cwd = [dirname()]

118 STDLIB

STDLIB Reference Manual erl tar

� FileList = [filename()]
� RetValue = ok|ferror,fName,Reasongg
� Reason = term()

The extract/2 function extracts files from a tar archive.

If the Name argument is given as “fbinary,Binaryg”, the contents of the binary is
assumed to be a tar archive.

If the Name argument is given as “ffile,Fdg”, Fd is assumed to be a file descriptor
returned from the file:open/2 function.

Otherwise, Name should be a filename.

The following options modify the defaults for the extraction as follows.

fcwd,Cwdg Files with relative filenames will by default be extracted to the current
working directory. Given the fcwd,Cwdg option, the extract/2 function will
extract into the directory Cwd instead of to the current working directory.

ffiles,FileListg By default, all files will be extracted from the tar file. Given the
ffiles,Filesg option, the extract/2 function will only extract the files whose
names are included in FileList.

compressed Given the compressed option, the extract/2 function will uncompress
the file while extracting If the tar file is not actually compressed, the compressed
will effectively be ignored.

cooked By default, the open/2 function will open the tar file in raw mode, which is
faster but does not allow a remote (erlang) file server to be used. Adding cooked to
the mode list will override the default and open the tar file without the raw option.

keep old files By default, all existing files with the same name as file in the tar file
will be overwritten Given the keep old files option, the extract/2 function
will not overwrite any existing files.

verbose Print an informational message as each file is being extracted.

format error(Reason) -> string()

Types:

� Reason = term()

The format error/1 converts an error reason term to a human-readable error message
string.

open(Name, OpenModeList) -> RetValue

Types:

� Name = filename()
� OpenModeList = [OpenMode]
� Mode = read|write|compressed|cooked
� RetValue = fok,TarDescriptorg|ferror,fName,Reasongg<V>TarDescriptor = term()
� Reason = term()

119STDLIB

erl tar STDLIB Reference Manual

The open/2 function opens a tar file.

By convention, the name of a tar file should end in “.tar”. To abide to the convention,
you'll need to add “.tar” yourself to the name.

Note that there is currently no function for reading from an opened tar file, meaning
that opening a tar file for reading is not very useful.

Except for read and write (which are mutually exclusive), the following atoms may be
added to OpenModeList:

compressed The entire tar file will be compressed, as if it has been run through the
gzip program. To abide to the convention that a compressed tar file should end in
“.tar.gz” or “.tgz”, you'll need to add the appropriate extension yourself.

cooked By default, the open/2 function will open the tar file in raw mode, which is
faster but does not allow a remote (erlang) file server to be used. Adding cooked to
the mode list will override the default and open the tar file without the raw option.

Use the add/3,4 [page 117] functions to add one file at the time into an opened tar file.
When you are finished adding files, use the close [page 117] function to close the tar file.

Warning:
The TarDescriptor term is not a file descriptor. You should not rely on the specific
contents of the TarDescriptor term, as it may change in future versions as more
features are added to the erl tar module.

table(Name) -> RetValue

Types:

� Name = filename()
� RetValue = fok,[string()]g|ferror,fName,Reasongg
� Reason = term()

The table/1 function retrieves the names of all files in the tar file Name.

table(Name, Options)

Types:

� Name = filename()

The table/2 function retrieves the names of all files in the tar file Name.

t(Name)

Types:

� Name = filename()

The t/1 function prints the names of all files in the tar file Name to the Erlang shell.
(Similar to “tart”.)

tt(Name)

Types:

120 STDLIB

STDLIB Reference Manual erl tar

� Name = filename()

The tt/1 function prints names and information about all files in the tar file Name to the
Erlang shell. (Similar to “tartv”.)

121STDLIB

ets STDLIB Reference Manual

ets
Erlang Module

This module is an interface to the Erlang built-in term storage BIFs. These provide the
ability to store very large quantities of data in an Erlang runtime system, and to have
constant access time to the data. (In the case of ordered set, see below, access time is
proportional to the logarithm of the number of objects stored).

Data is organized as a set of dynamic tables, which can store tuples. Each table is
created by a process. When the process terminates, the table is automatically destroyed.
Every table has access rights set at creation.

Tables are divided into four different types, set, ordered set, bag and duplicate bag.
A set or ordered set table can only have one object associated with each key. A bag
or duplicate bag can have many objects associated with each key.

The number of tables stored at one Erlang node is limited. The current default limit is
approximately 1400 tables. The upper limit can be increased by setting the
environment variable ERL MAX ETS TABLES before starting the Erlang runtime system
(i.e. with the -env option to erl/werl). The actual limit may be slightly higher than
the one specified, but never lower.

Note that there is no automatic garbage collection for tables. Even if there are no
references to a table from any process, it will not automatically be destroyed unless the
owner process terminates. It can be destroyed explicitly by using delete/1.

Some implementation details:

� In the current implementation, every object insert and look-up operation results in
one copy of the object.

� This module provides very limited support for concurrent updates. No locking is
available, but the safe fixtable/2 function can be used to guarantee that a
sequence of first/1 and next/2 calls will traverse the table without errors even if
another process (or the same process) simultaneously deletes or inserts objects in
the table.

� ’$end of table’ should not be used as a key since this atom is used to mark the
end of the table when using first/next.

In general, the functions below will exit with reason badarg if any argument is of the
wrong format, or if the table identifier is invalid.

Match Specifications

Some of the functions uses a match specification, match spec. A brief explanation is
given in select/2 [page 136]. For a detailed description, see the chapter “Match
specifications in Erlang” in ERTS User's Guide.

122 STDLIB

STDLIB Reference Manual ets

DATA TYPES

match_spec()
a match specification, see above

tid()
a table identifier, as returned by new/2

Exports

all() -> [Tab]

Types:

� Tab = tid() | atom()

Returns a list of all tables at the node. Named tables are given by their names, unnamed
tables are given by their table identifiers.

delete(Tab) -> true

Types:

� Tab = tid() | atom()

Deletes the entire table Tab.

delete(Tab, Key) -> true

Types:

� Tab = tid() | atom()
� Key = term()

Deletes all objects with the key Key from the table Tab.

delete all objects(Tab) -> true

Types:

� Tab = tid() | atom()

Delete all objects in the ETS table Tab. The deletion is atomic.

delete object(Tab,Object) -> true

Types:

� Tab = tid() | atom()
� Object = tuple()

Delete the exact object Object from the ETS table, leaving objects with the same key
but other differences (useful for type bag).

file2tab(Filename) -> fok,Tabg | ferror,Reasong

Types:

� Filename = string() | atom()

123STDLIB

ets STDLIB Reference Manual

� Tab = tid() | atom()
� Reason = term()

Reads a file produced by tab2file/2 and creates the corresponding table Tab.

first(Tab) -> Key | ’$end of table’

Types:

� Tab = tid() | atom()
� Key = term()

Returns the first key Key in the table Tab. If the table is of the ordered set type, the
first key in Erlang term order will be returned. If the table is of any other type, the first
key according to the table's internal order will be returned. If the table is empty,
’$end of table’ will be returned.

Use next/2 to find subsequent keys in the table.

fixtable(Tab, true|false) -> true | false

Types:

� Tab = tid() | atom()

Warning:
The function is retained for backwards compatibility only. Use safe fixtable/2
instead.

Fixes a table for safe traversal. The function is primarily used by the Mnesia DBMS to
implement functions which allow write operations in a table, although the table is in
the process of being copied to disk or to another node. It does not keep track of when
and how tables are fixed.

foldl(Function, Acc0, Tab) -> Acc1

Types:

� Function = fun(A, AccIn) -> AccOut
� Tab = tid() | atom()
� Acc0 = Acc1 = AccIn = AccOut = term()

Acc0 is returned if the table is empty. This function is similar to lists:foldl/3. The
order in which the elements of the table are traversed is unspecified, except for tables of
type ordered set, for which they are traversed first to last.

foldr(Function, Acc0, Tab) -> Acc1

Types:

� Function = fun(A, AccIn) -> AccOut
� Tab = tid() | atom()
� Acc0 = Acc1 = AccIn = AccOut = term()

124 STDLIB

STDLIB Reference Manual ets

Acc0 is returned if the table is empty. This function is similar to lists:foldr/3. The
order in which the elements of the table are traversed is unspecified, except for tables of
type ordered set, for which they are traversed last to first.

from dets(Tab, DetsTab) -> Tab

Types:

� Tab = tid() | atom()
� DetsTab = atom()

Fills an already created ETS table with the objects in the already opened Dets table
named DetsTab. The ETS table is emptied before the objects are inserted.

fun2ms(LiteralFun) -> MatchSpec

Types:

� LiteralFun – see below
� MatchSpec = match spec()

Pseudo function that by means of a parse transform translates LiteralFun typed as
parameter in the function call to a match spec [page 122]. With “literal” is meant that
the fun needs to textually be written as the parameter of the function, it cannot be held
in a variable which in turn is passed to the function).

The parse transform is implemented in the module ms transform and the source must
include the file ms transform.hrl in stdlib for this pseudo function to work. Failing
to include the hrl file in the source will result in a runtime error, not a compile time
ditto. The include file is easiest included by adding the line
-include lib("stdlib/include/ms transform.hrl"). to the source file.

The fun is very restricted, it can take only a single parameter (the object to match): a
sole variable or a tuple. It needs to use the is XXX guard tests. Language constructs
that have no representation in a match spec (like if, case, receive etc) are not
allowed.

The return value is the resulting match spec.

Example:

1> ets:fun2ms(fun(fM,Ng) when N > 3 -> M end).
[ff’$1’,’$2’g,[f’>’,’$2’,3g],[’$1’]g]

Variables from the environment can be imported, so that this works:

2> X=3.
3
3> ets:fun2ms(fun(fM,Ng) when N > X -> M end).
[ff’$1’,’$2’g,[f’>’,’$2’,fconst,3gg],[’$1’]g]

The imported variables will be replaced by match spec const expressions, which is
consistent with the static scoping for Erlang funs. Local or global function calls can not
be in the guard or body of the fun however. Calls to builtin match spec functions of
course is allowed:

125STDLIB

ets STDLIB Reference Manual

4> ets:fun2ms(fun(fM,Ng) when N > X, is atomm(M) -> M end).
Error: fun containing local Erlang function calls
(’is atomm’ called in guard) cannot be translated into match spec
ferror,transform errorg
5> ets:fun2ms(fun(fM,Ng) when N > X, is atom(M) -> M end).
[ff’$1’,’$2’g,[f’>’,’$2’,fconst,3gg,fis atom,’$1’g],[’$1’]g]

As can be seen by the example, the function can be called from the shell too. The fun
needs to be literally in the call when used from the shell as well. Other means than the
parse transform are used in the shell case, but more or less the same restrictions apply
(the exception being records, as they are not handled by the shell).

Warning:
If the parse transform is not applied to a module which calls this pseudo function,
the call will fail in runtime (with a badarg). The module ets actually exports a
function with this name, but it should never really be called except for when using
the function in the shell. If the parse transform is properly applied by including the
ms transform.hrl header file, compiled code will never call the function, but the
function call is replaced by a literal match spec.

For more information, see ms transform(3) [page 231].

i() -> void()

Displays information about all ETS tables on tty.

i(Tab) -> void()

Types:

� Tab = tid() | atom()

Browses the table Tab on tty.

info(Tab) -> tuple() | undefined

Types:

� Tab = tid() | atom()

Returns information about the table Tab as a tuple with fItem, Valueg elements as
specified below.

Warning:
In Erlang/OTP R11B, this function will be corrected to return a list of tuples instead.

� Item=memory, Value=int()
The number of words allocated to the table.

� Item=owner, Value=pid()
The pid of the owner of the table.

126 STDLIB

STDLIB Reference Manual ets

� Item=name, Value=atom()
The name of the table.

� Item=size, Value=int()
The number of objects inserted in the table.

� Item=node, Value=atom()
The node where the table is stored. This field is no longer meaningful as tables
cannot be accessed from other nodes.

� Item=named table, Value=true|false
Indicates if the table is named or not.

� Item=type, Value=set|ordered set|bag|duplicate bag
The table type.

� Item=keypos, Value=int()
The key position.

� Item=protection, Value=public|protected|private
The table access rights.

info(Tab, Item) -> Value | undefined

Types:

� Tab = tid() | atom()
� Item, Value - see below

Returns the information associated with Item for the table Tab. In addition to the
fItem,Valueg pairs defined for info/1, the following items are allowed:

� Item=fixed, Value=true|false
Indicates if the table is fixed by any process or not.

� Item=safe fixed, Value=fFirstFixed,Infog|false
If the table has been fixed using safe fixtable/2, the call returns a tuple where
FirstFixed is the time when the table was first fixed by a process, which may or
may not be one of the processes it is fixed by right now.
Info is a possibly empty lists of tuples fPid,RefCountg, one tuple for every
process the table is fixed by right now. RefCount is the value of the reference
counter, keeping track of how many times the table has been fixed by the process.
If the table never has been fixed, the call returns false.

init table(Name, InitFun) -> true

Types:

� Name = atom()
� InitFun = fun(Arg) -> Res
� Arg = read | close
� Res = end of input | f[object()], InitFung | term()

127STDLIB

ets STDLIB Reference Manual

Replaces the existing objects of the table Tab with objects created by calling the input
function InitFun, see below. This function is provided for compatibility with the dets
module, it is not more efficient than filling a table by using ets:insert/2.

When called with the argument read the function InitFun is assumed to return
end of input when there is no more input, or fObjects, Fung, where Objects is a list
of objects and Fun is a new input function. Any other value Value is returned as an error
ferror, finit fun, Valuegg. Each input function will be called exactly once, and
should an error occur, the last function is called with the argument close, the reply of
which is ignored.

If the type of the table is set and there is more than one object with a given key, one of
the objects is chosen. This is not necessarily the last object with the given key in the
sequence of objects returned by the input functions. This holds also for duplicated
objects stored in tables of type duplicate bag.

insert(Tab, ObjectOrObjects) -> true

Types:

� Tab = tid() | atom()
� ObjectOrObjects = tuple() | [tuple()]

Inserts the object or all of the objects in the list ObjectOrObjects into the table Tab. If
there already exists an object with the same key as one of the objects, and the table is a
set or ordered set table, the old object will be replaced. If the list contains more than
one object with the same key and the table is a set/ordered set, one will be inserted,
which one is not defined.

insert new(Tab, ObjectOrObjects) -> bool()

Types:

� Tab = tid() | atom()
� ObjectOrObjects = tuple() | [tuple()]

This function works exactly like insert/2, with the exception that instead of
overwriting objects with the same key (in the case of set or ordered set) or adding
more objects with keys already existing in the table (in the case of bag and
duplicate bag), it simply returns false. If ObjectOrObjects is a list, the function
checks every key prior to inserting anything. Nothing will be inserted if not all keys
present in the list are absent from the table.

is compiled ms(Term) -> bool()

Types:

� Term = term()

This function is used to check if a term is a valid compiled match spec [page 122]. The
compiled match spec is an opaque datatype which can not be sent between Erlang
nodes nor be stored on disk. Any attempt to create an external representation of a
compiled match spec will result in an empty binary (<<>>). As an example, the
following expression:

ets:is_compiled_ms(ets:match_spec_compile([{’_’,[],[true]}])).

will yield true, while the following expressions:

128 STDLIB

STDLIB Reference Manual ets

MS = ets:match_spec_compile([{’_’,[],[true]}]),
Broken = binary_to_term(term_to_binary(MS)),
ets:is_compiled_ms(Broken).

will yield false, as the variable Broken will contain a compiled match spec that has
passed through external representation.

Note:
The fact that compiled match specs has no external representation is for
performance reasons. It may be subject to change in future releases, while this
interface will still remain for backward compatibility reasons.

last(Tab) -> Key | ’$end of table’

Types:

� Tab = tid() | atom()
� Key = term()

Returns the last key Key according to Erlang term order in the table Tab of the
ordered set type. If the table is of any other type, the function is synonymous to
first/2. If the table is empty, ’$end of table’ is returned.

Use prev/2 to find preceding keys in the table.

lookup(Tab, Key) -> [Object]

Types:

� Tab = tid() | atom()
� Key = term()
� Object = tuple()

Returns a list of all objects with the key Key in the table Tab.

If the table is of type set or ordered set, the function returns either the empty list or a
list with one element, as there cannot be more than one object with the same key. If the
table is of type bag or duplicate bag, the function returns a list of arbitrary length.

Note that the time order of object insertions is preserved; The first object inserted with
the given key will be first in the resulting list, and so on.

Insert and look-up times in tables of type set, bag and duplicate bag are constant,
regardless of the size of the table. For the ordered set data-type, time is proportional
to the (binary) logarithm of the number of objects.

lookup element(Tab, Key, Pos) -> Elem

Types:

� Tab = tid() | atom()
� Key = term()
� Pos = int()
� Elem = term() | [term()]

129STDLIB

ets STDLIB Reference Manual

If the table Tab is of type set or ordered set, the function returns the Pos:th element
of the object with the key Key.

If the table is of type bag or duplicate bag, the functions returns a list with the Pos:th
element of every object with the key Key.

If no object with the key Key exists, the function will exit with reason badarg.

match(Tab, Pattern) -> [Match]

Types:

� Tab = tid() | atom()
� Pattern = tuple()
� Match = [term()]

Matches the objects in the table Tab against the pattern Pattern.

A pattern is a term that may contain:

� bound parts (Erlang terms),

� ’ ’ which matches any Erlang term, and

� pattern variables: ’$N’ where N=0,1,...

The function returns a list with one element for each matching object, where each
element is an ordered list of pattern variable bindings. An example:

6> ets:match(T, ’$1’). % Matches every object in the table
[[frufsen,dog,7g],[fbrunte,horse,5g],[fludde,dog,5g]]
7> ets:match(T, f’ ’,dog,’$1’g).
[[7],[5]]
8> ets:match(T, f’ ’,cow,’$1’g).
[]

If the key is specified in the pattern, the match is very efficient. If the key is not
specified, i.e. if it is a variable or an underscore, the entire table must be searched. The
search time can be substantial if the table is very large.

On tables of the ordered set type, the result is in the same order as in a first/next
traversal.

match(Tab, Pattern, Limit) -> f[Match],Continuationg | ’$end of table’

Types:

� Tab = tid() | atom()
� Pattern = tuple()
� Match = [term()]
� Continuation = term()

Works like ets:match/2 but only returns a limited (Limit) number of matching
objects. The Continuation term can then be used in subsequent calls to ets:match/1
to get the next chunk of matching objects. This is a space efficient way to work on
objects in a table which is still faster than traversing the table object by object using
ets:first/1 and ets:next/1.

’$end of table’ is returned if the table is empty.

130 STDLIB

STDLIB Reference Manual ets

match(Continuation) -> f[Match],Continuationg | ’$end of table’

Types:

� Match = [term()]
� Continuation = term()

Continues a match started with ets:match/3. The next chunk of the size given in the
initial ets:match/3 call is returned together with a new Continuation that can be used
in subsequent calls to this function.

’$end of table’ is returned when there are no more objects in the table.

match delete(Tab, Pattern) -> true

Types:

� Tab = tid() | atom()
� Pattern = tuple()

Deletes all objects which match the pattern Pattern from the table Tab. See match/2
for a description of patterns.

match object(Tab, Pattern) -> [Object]

Types:

� Tab = tid() | atom()
� Pattern = Object = tuple()

Matches the objects in the table Tab against the pattern Pattern. See match/2 for a
description of patterns. The function returns a list of all objects which match the
pattern.

If the key is specified in the pattern, the match is very efficient. If the key is not
specified, i.e. if it is a variable or an underscore, the entire table must be searched. The
search time can be substantial if the table is very large.

On tables of the ordered set type, the result is in the same order as in a first/next
traversal.

match object(Tab, Pattern, Limit) -> f[Match],Continuationg | ’$end of table’

Types:

� Tab = tid() | atom()
� Pattern = tuple()
� Match = [term()]
� Continuation = term()

Works like ets:match object/2 but only returns a limited (Limit) number of
matching objects. The Continuation term can then be used in subsequent calls to
ets:match object/1 to get the next chunk of matching objects. This is a space efficient
way to work on objects in a table which is still faster than traversing the table object by
object using ets:first/1 and ets:next/1.

’$end of table’ is returned if the table is empty.

match object(Continuation) -> f[Match],Continuationg | ’$end of table’

Types:

131STDLIB

ets STDLIB Reference Manual

� Match = [term()]
� Continuation = term()

Continues a match started with ets:match object/3. The next chunk of the size given
in the initial ets:match object/3 call is returned together with a new Continuation
that can be used in subsequent calls to this function.

’$end of table’ is returned when there are no more objects in the table.

match spec compile(MatchSpec) -> CompiledMatchSpec

Types:

� MatchSpec = match spec()
� CompiledMatchSpec = comp match spec()

This function transforms a match spec [page 122] into an internal representation that
can be used in subsequent calls to ets:match spec run/2. The internal representation
is opaque and can not be converted to external term format and then back again
without losing its properties (meaning it can not be sent to a process on another node
and still remain a valid compiled match spec, nor can it be stored on disk). The validity
of a compiled match spec can be checked using ets:is compiled ms/1.

If the term MatchSpec can not be compiled (does not represent a valid match spec), a
badarg fault is thrown.

Note:
This function has limited use in normal code, it is used by Dets to perform the
dets:select operations.

match spec run(List,CompiledMatchSpec) -> list()

Types:

� List = [tuple()]
� CompiledMatchSpec = comp match spec()

This function executes the matching specified in a compiled match spec [page 122] on
a list of tuples. The CompiledMatchSpec term should be the result of a call to
ets:match spec compile/1 and is hence the internal representation of the match spec
one wants to use.

The matching will be executed on each element in List and the function returns a list
containing all results. If an element in List does not match, nothing is returned for that
element. The length of the result list is therefore equal or less than the the length of the
parameter List. The two calls in the following example will give the same result (but
certainly not the same execution time...):

Table = ets:new...
MatchSpec =
% The following call...
ets:match_spec_run(ets:tab2list(Table),
ets:match_spec_compile(MatchSpec)),
% ...will give the same result as the more common (and more efficient)
ets:select(Table,MatchSpec),

132 STDLIB

STDLIB Reference Manual ets

Note:
This function has limited use in normal code, it is used by Dets to perform the
dets:select operations and by Mnesia during transactions.

member(Tab, Key) -> true | false

Types:

� Tab = tid() | atom()
� Key = term()

Works like lookup/2, but does not return the objects. The function returns true if one
or more elements in the table has the key Key, false otherwise.

new(Name, Options) -> tid()

Types:

� Name = atom()
� Options = [Option]
� Option = Type | Access | named table | fkeypos,Posg
� Type = set | ordered set | bag | duplicate bag
� Access = public | protected | private
� Pos = int()

Creates a new table and returns a table identifier which can be used in subsequent
operations. The table identifier can be sent to other processes so that a table can be
shared between different processes within a node.

The parameter Options is a list of atoms which specifies table type, access rights, key
position and if the table is named or not. If one or more options are left out, the default
values are used. This means that not specifying any options ([]) is the same as
specifying [set,protected,fkeypos,1g].

� set The table is a set table - one key, one object, no order among objects. This is
the default table type.

� ordered set The table is a ordered set table - one key, one object, ordered in
Erlang term order, which is the order implied by the < and > operators. Tables of
this type have a somewhat different behavior in some situations than tables of the
other types.

� bag The table is a bag table which can have many objects, but only one instance of
each object, per key.

� duplicate bag The table is a duplicate bag table which can have many objects,
including multiple copies of the same object, per key.

� public Any process may read or write to the table.

� protected The owner process can read and write to the table. Other processes can
only read the table. This is the default setting for the access rights.

� private Only the owner process can read or write to the table.

� named table If this option is present, the name Name is associated with the table
identifier. The name can then be used instead of the table identifier in subsequent
operations.

133STDLIB

ets STDLIB Reference Manual

� fkeypos,Posg Specfies which element in the stored tuples should be used as key.
By default, it is the first element, i.e. Pos=1. However, this is not always
appropriate. In particular, we do not want the first element to be the key if we
want to store Erlang records in a table.
Note that any tuple stored in the table must have at least Pos number of elements.

next(Tab, Key1) -> Key2 | ’$end of table’

Types:

� Tab = tid() | atom()
� Key1 = Key2 = term()

Returns the next key Key2, following the key Key1 in the table Tab. If the table is of the
ordered set type, the next key in Erlang term order is returned. If the table is of any
other type, the next key according to the table's internal order is returned. If there is no
next key, ’$end of table’ is returned.

Use first/1 to find the first key in the table.

Unless a table of type set, bag or duplicate bag is protected using safe fixtable/2,
see below, a traversal may fail if concurrent updates are made to the table. If the table is
of type ordered set, the function returns the next key in order, even if the object does
no longer exist.

prev(Tab, Key1) -> Key2 | ’$end of table’

Types:

� Tab = tid() | atom()
� Key1 = Key2 = term()

Returns the previous key Key2, preceding the key Key1 according the Erlang term order
in the table Tab of the ordered set type. If the table is of any other type, the function
is synonymous to next/2. If there is no previous key, ’$end of table’ is returned.

Use last/1 to find the last key in the table.

rename(Tab, Name) -> Name

Types:

� Tab = Name = atom()

Renames the named table Tab to the new name Name. Afterwards, the old name can not
be used to access the table. Renaming an unnamed table has no effect.

repair continuation(Continuation, MatchSpec) -> Continuation

Types:

� Continuation = term()
� MatchSpec = match spec()

134 STDLIB

STDLIB Reference Manual ets

This function can be used to restore an opaque continuation returned by ets:select/3
or ets:select/1 if the continuation has passed through external term format (been
sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specs
and therefore will be invalidated if converted to external term format. Given that the
original match spec is kept intact, the continuation can be restored, meaning it can once
again be used in subsequent ets:select/1 calls even though it has been stored on disk
or on another node.

As an example, the following seqence of calls will fail:

T=ets:new(x,[]),
...
{_,C} = ets:select(T,ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(Broken).

...while the following sequence will work:

T=ets:new(x,[]),
...
MS = ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),
{_,C} = ets:select(T,MS,10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(ets:repair_continuation(Broken,MS)).

...as the call to ets:repair continuation/2 will reestablish the (deliberately)
invalidated continuation Broken.

Note:
This function is very rarely needed in application code. It is used by Mnesia to
implement distributed select/3 and select/1 sequences. A normal application
would either use Mnesia or keep the continuation from being converted to external
format.

The reason for not having an external representation of a compiled match spec is
performance. It may be subject to change in future releases, while this interface will
remain for backward compatibility.

safe fixtable(Tab, true|false) -> true

Types:

� Tab = tid() | atom()

135STDLIB

ets STDLIB Reference Manual

Fixes a table of the set, bag or duplicate bag table type for safe traversal.

A process fixes a table by calling safe fixtable(Tab,true). The table remains fixed
until the process releases it by calling safe fixtable(Tab,false), or until the process
terminates.

If several processes fix a table, the table will remain fixed until all processes have
released it (or terminated). A reference counter is kept on a per process basis, and N
consecutive fixes requires N releases to actually release the table.

When a table is fixed, a sequence of first/1 and next/2 calls are guaranteed to
succeed even if objects are removed during the traversal. An example:

clean_all_with_value(Tab,X) ->
safe_fixtable(Tab,true),
clean_all_with_value(Tab,X,ets:first(Tab)),
safe_fixtable(Tab,false).

clean_all_with_value(Tab,X,’$end_of_table’) ->
true;

clean_all_with_value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of

[{Key,X}] ->
ets:delete(Tab,Key);

_ ->
true

end,
clean_all_with_value(Tab,X,ets:next(Tab,Key)).

Note that no deleted objects are actually removed from a fixed table until it has been
released. If a process fixes a table but never releases it, the memory used by the deleted
objects will never be freed. The performance of operations on the table will also
degrade significantly.

Use info/2 to retrieve information about which processes have fixed which tables. A
system with a lot of processes fixing tables may need a monitor which sends alarms
when tables have been fixed for too long.

Note that for tables of the ordered set type, safe fixtable/2 is not necessary as calls
to first/1 and next/2 will always succeed.

select(Tab, MatchSpec) -> [Object]

Types:

� Tab = tid() | atom()
� Object = tuple()
� MatchSpec = match spec()

Matches the objects in the table Tab using a match spec [page 122]. This is a more
general call than the ets:match/2 and ets:match object/2 calls. In its simplest forms
the match specs look like this:

� MatchSpec = [MatchFunction]

� MatchFunction = fMatchHead, [Guard], [Result]g

� MatchHead = “Pattern as in ets:match”

� Guard = f“Guardtest name”, ...g

136 STDLIB

STDLIB Reference Manual ets

� Result = “Term construct”

This means that the match spec is always a list of one or more tuples (of arity 3). The
tuples first element should be a pattern as described in the documentation of
ets:match/2. The second element of the tuple should be a list of 0 or more guard tests
(described below). The third element of the tuple should be a list containing a
description of the value to actually return. In almost all normal cases the list contains
exactly one term which fully describes the value to return for each object.

The return value is constructed using the “match variables” bound in the MatchHead or
using the special match variables ’$ ’ (the whole matching object) and ’$$’ (all match
variables in a list), so that the following ets:match/2 expression:

ets:match(Tab,{’$1’,’$2’,’$3’})

is exactly equivalent to:

ets:select(Tab,[{{’$1’,’$2’,’$3’},[],[’$$’]}])

- and the following ets:match object/2 call:

ets:match_object(Tab,{’$1’,’$2’,’$1’})

is exactly equivalent to

ets:select(Tab,[{{’$1’,’$2’,’$1’},[],[’$_’]}])

Composite terms can be constructed in the Result part either by simply writing a list,
so that this code:

ets:select(Tab,[{{’$1’,’$2’,’$3’},[],[’$$’]}])

gives the same output as:

ets:select(Tab,[{{’$1’,’$2’,’$3’},[],[[’$1’,’$2’,’$3’]]}])

i.e. all the bound variables in the match head as a list. If tuples are to be constructed,
one has to write a tuple of arity 1 with the single element in the tuple being the tuple
one wants to construct (as an ordinary tuple could be mistaken for a Guard). Therefore
the following call:

ets:select(Tab,[{{’$1’,’$2’,’$1’},[],[’$_’]}])

gives the same output as:

ets:select(Tab,[{{’$1’,’$2’,’$1’},[],[{{’$1’,’$2’,’$3’}}]}])

- this syntax is equivalent to the syntax used in the trace patterns (see [dbg(3)]).

The Guards are constructed as tuples where the first element is the name of the test and
the rest of the elements are the parameters of the test. To check for a specific type (say
a list) of the element bound to the match variable ’$1’, one would write the test as
fis list, ’$1’g. If the test fails, the object in the table will not match and the next
MatchFunction (if any) will be tried. Most guard tests present in Erlang can be used,
but only the new versions prefixed is are allowed (like is float, is atom etc).

The Guard section can also contain logic and arithmetic operations, which are written
with the same syntax as the guard tests (prefix notation), so that a guard test written in
Erlang looking like this:

is_integer(X), is_integer(Y), X + Y < 4711

is expressed like this (X replaced with '$1' and Y with '$2'):

[{is_integer, ’$1’}, {is_integer, ’$2’}, {’<’, {’+’, ’$1’, ’$2’}, 4711}]

137STDLIB

ets STDLIB Reference Manual

select(Tab, MatchSpec, Limit) -> f[Match],Continuationg | ’$end of table’

Types:

� Tab = tid() | atom()
� Object = tuple()
� MatchSpec = match spec()
� Continuation = term()

Works like ets:select/2 but only returns a limited (Limit) number of matching
objects. The Continuation term can then be used in subsequent calls to ets:select/1
to get the next chunk of matching objects. This is a space efficient way to work on
objects in a table which is still faster than traversing the table object by object using
ets:first/1 and ets:next/1.

’$end of table’ is returned if the table is empty.

select(Continuation) -> f[Match],Continuationg | ’$end of table’

Types:

� Match = [term()]
� Continuation = term()

Continues a match started with ets:select/3. The next chunk of the size given in the
initial ets:select/3 call is returned together with a new Continuation that can be
used in subsequent calls to this function.

’$end of table’ is returned when there are no more objects in the table.

select delete(Tab, MatchSpec) -> NumDeleted

Types:

� Tab = tid() | atom()
� Object = tuple()
� MatchSpec = match spec()
� NumDeleted = integer()

Matches the objects in the table Tab using a match spec [page 122]. If the match spec
returns true for an object, that object is removed from the table. For any other result
from the match spec the object is retained. This is a more general call than the
ets:match delete/2 call.

The function returns the number of objects actually deleted from the table.

select count(Tab, MatchSpec) -> NumMatched

Types:

� Tab = tid() | atom()
� Object = tuple()
� MatchSpec = match spec()
� NumMatched = integer()

138 STDLIB

STDLIB Reference Manual ets

Matches the objects in the table Tab using a match spec [page 122]. If the match spec
returns true for an object, that object considered a match and is counted. For any other
result from the match spec the object is not considered a match and is therefore not
counted.

The function could be described as a match delete/2 that does not actually delete any
elements, but only counts them.

The function returns the number of objects matched.

slot(Tab, I) -> [Object] | ’$end of table’

Types:

� Tab = tid() | atom()
� I = int()
� Object = tuple()

This function is mostly for debugging purposes, Normally one should use first/next
or last/prev instead.

Returns all objects in the I:th slot of the table Tab. A table can be traversed by
repeatedly calling the function, starting with the first slot I=0 and ending when
’$end of table’ is returned. The function will fail with reason badarg if the I
argument is out of range.

Unless a table of type set, bag or duplicate bag is protected using safe fixtable/2,
see above, a traversal may fail if concurrent updates are made to the table. If the table is
of type ordered set, the function returns a list containing the I:th object in Erlang
term order.

tab2file(Tab, Filename) -> ok | ferror,Reasong

Types:

� Tab = tid() | atom()
� Filename = string() | atom()
� Reason = term()

Dumps the table Tab to the file Filename. The implementation of this function is not
efficient.

tab2list(Tab) -> [Object]

Types:

� Tab = tid() | atom()
� Object = tuple()

Returns a list of all objects in the table Tab.

table(Tab [, Options]) -> QueryHandle

Types:

� Tab = tid() | atom()
� QueryHandle = -a query handle, see qlc(3)-
� Options = [Option] | Option
� Option = fn objects, NObjectsg | ftraverse, TraverseMethodg
� NObjects = default | integer() > 0

139STDLIB

ets STDLIB Reference Manual

� TraverseMethod = first next | last prev | select | fselect, MatchSpecg
� MatchSpec = match spec()

Returns a QLC (Query List Comprehension) query handle. The module qlc
implements a query language aimed mainly at Mnesia but ETS tables, Dets tables, and
lists are also recognized by QLC as sources of data. Calling ets:table/1,2 is the means
to make the ETS table Tab usable to QLC.

When there are only simple restrictions on the key position QLC uses ets:lookup/2 to
look up the keys, but when that is not possible the whole table is traversed. The option
traverse determines how this is done:

� first next. The table is traversed one key at a time by calling ets:first/1 and
ets:next/2.

� last prev. The table is traversed one key at a time by calling ets:last/1 and
ets:prev/2.

� select. The table is traversed by calling ets:select/3 and ets:select/1. The
option n objects determines the number of objects returned (the third argument
of select/3); the default is to return 100 objects at a time. The match spec [page
122] (the second argument of select/3) is assembled by QLC: simple filters are
translated into equivalent match specs while more complicated filters have to be
applied to all objects returned by select/3 given a match spec that matches all
objects.

� fselect, MatchSpecg. As for select the table is traversed by calling
ets:select/3 and ets:select/1. The difference is that the match spec is
explicitly given. This is how to state match specs that cannot easily be expressed
within the syntax provided by QLC.

The following example uses an explicit match spec to traverse the table:

9> ets:insert(Tab = ets:new(t, []), [f1,ag,f2,bg,f3,cg,f4,dg]),
MS = ets:fun2ms(fun(fX,Yg) when (X > 1) or (X < 5) -> fYg end),
QH1 = ets:table(Tab, [ftraverse, fselect, MSgg]).

An example with implicit match spec:

10> QH2 = qlc:q([fYg || fX,Yg <- ets:table(Tab), (X > 1) or (X < 5)]).

The latter example is in fact equivalent to the former which can be verified using the
function qlc:info/1:

11> qlc:info(QH1) =:= qlc:info(QH2).
true

qlc:info/1 returns information about a query handle, and in this case identical
information is returned for the two query handles.

test ms(Tuple, MatchSpec) -> fok, Resultg | ferror, Errorsg

Types:

� Tuple = tuple()
� MatchSpec = match spec()
� Result = term()

140 STDLIB

STDLIB Reference Manual ets

� Errors = [fwarning|error, string()g]

This function is a utility to test a match spec [page 122] used in calls to ets:select/2.
The function both tests MatchSpec for “syntactic” correctness and runs the match spec
against the object Tuple. If the match spec contains errors, the tuple ferror, Errorsg
is returned where Errors is a list of natural language descriptions of what was wrong
with the match spec. If the match spec is syntactically OK, the function returns
fok,Termg where Term is what would have been the result in a real ets:select/2 call
or false if the match spec does not match the object Tuple.

This is a useful debugging and test tool, especially when writing complicated
ets:select/2 calls.

to dets(Tab, DetsTab) -> Tab

Types:

� Tab = tid() | atom()
� DetsTab = atom()

Fills an already created/opened Dets table with the objects in the already opened ETS
table named Tab. The Dets table is emptied before the objects are inserted.

update counter(Tab, Key, fPos,Incr,Threshold,SetValueg) -> Result

update counter(Tab, Key, fPos,Incrg) -> Result

update counter(Tab, Key, Incr) -> Result

Types:

� Tab = tid() | atom()
� Key = term()
� Pos = Incr = Threshold = SetValue = Result = int()

This function provides an efficient way to update a counter, without the hassle of
having to look up an object, update the object by incrementing an element and insert
the resulting object into the table again. (The update is done atomically; i.e. no process
can access the ets table in the middle of the operation.)

It will destructively update the object with key Key in the table Tab by adding Incr to
the element at the Pos:th position. The new counter value is returned. If no position is
specified, the element directly following the key (<keypos>+1) is updated.

If a Threshold is specified, the counter will be reset to the value SetValue if the
following conditions occur:

� The Incr is not negative (>= 0) and the result would be greater than (>)
Threshold

� The Incr is negative (< 0) and the result would be less than (<) Threshold

The function will fail with reason badarg if:

� the table is not of type set or ordered set,

� no object with the right key exists,

� the object has the wrong arity,

� the element to update is not an integer, or,

� any of Pos, Incr, Threshold or SetValue is not an integer

141STDLIB

file sorter STDLIB Reference Manual

file sorter
Erlang Module

The functions of this module sort terms on files, merge already sorted files, and check
files for sortedness. Chunks containing binary terms are read from a sequence of files,
sorted internally in memory and written on temporary files, which are merged
producing one sorted file as output. Merging is provided as an optimization; it is faster
when the files are already sorted, but it always works to sort instead of merge.

On a file, a term is represented by a header and a binary. Two options define the format
of terms on files:

� fheader, HeaderLengthg. HeaderLength determines the number of bytes
preceding each binary and containing the length of the binary in bytes. Default is
4. The order of the header bytes is defined as follows: if B is a binary containing a
header only, the size Size of the binary is calculated as
<<Size:HeaderLength/unit:8>> = B.

� fformat, Formatg. The format determines the function that is applied to binaries
in order to create the terms that will be sorted. The default value is binary term,
which is equivalent to funbinary to term/1. The value binary is equivalent to
fun(X) -> X end, which means that the binaries will be sorted as they are. This
is the fastest format. If Format is term, io:read/2 is called to read terms. In that
case only the default value of the header option is allowed. The format option
also determines what is written to the sorted output file: if Format is term then
io:format/3 is called to write each term, otherwise the binary prefixed by a
header is written. Note that the binary written is the same binary that was read;
the results of applying the Format function are thrown away as soon as the terms
have been sorted. Reading and writing terms using the io module is very much
slower than reading and writing binaries.

Other options are:

� forder, Orderg. The default is to sort terms in ascending order, but that can be
changed by the value descending or by giving an ordering function Fun. Fun(A,B)
should return true if A comes before B in the ordering, false otherwise. Using an
ordering function will slow down the sort considerably. The keysort, keymerge
and keycheck functions do not accept ordering functions.

� funique, bool()g. When sorting or merging files, only the first of a sequence of
terms that compare equal is output if this option is set to true. The default value
is false which implies that all terms that compare equal are output. When
checking files for sortedness, a check that no pair of consecutive terms compares
equal is done if this option is set to true.

142 STDLIB

STDLIB Reference Manual file sorter

� ftmpdir, TempDirectoryg. The directory where temporary files are put can be
chosen explicitly. The default, implied by the value "", is to put temporary files on
the same directory as the sorted output file. If output is a function (see below), the
directory returned by file:get cwd() is used instead. The names of temporary
files are derived from the Erlang nodename (node()), the process identifier of the
current Erlang emulator (os:getpid()), and a timestamp (erlang:now()); a
typical name would be fs mynode@myhost 1763 1043 337000 266005.17, where
17 is a sequence number. Existing files will be overwritten. Temporary files are
deleted unless some uncaught EXIT signal occurs.

� fcompressed, bool()g. Temporary files and the output file may be compressed.
The default value false implies that written files are not compressed. Regardless
of the value of the compressed option, compressed files can always be read. Note
that reading and writing compressed files is significantly slower than reading and
writing uncompressed files.

� fsize, Sizeg. By default approximately 512*1024 bytes read from files are sorted
internally. This option should rarely be needed.

� fno files, NoFilesg. By default 16 files are merged at a time. This option
should rarely be needed.

To summarize, here is the syntax of the options:

� Options = [Option] | Option

� Option = fheader, HeaderLengthg | fformat, Formatg | forder, Orderg
| funique, bool()g | ftmpdir, TempDirectoryg | fcompressed, bool()g
| fsize, Sizeg | fno files, NoFilesg

� HeaderLength = int() > 0

� Format = binary term | term | binary | FormatFun

� FormatFun = fun(Binary) -> Term

� Order = ascending | descending | OrderFun

� OrderFun = fun(Term, Term) -> bool()

� TempDirectory = "" | file name()

� Size = int() > 0

� NoFiles = int() > 1

As an alternative to sorting files, a function of one argument can be given as input.
When called with the argument read the function is assumed to return end of input
or fend of input, Valuegg when there is no more input (Value is explained below),
or fObjects, Fung, where Objects is a list of binaries or terms depending on the
format and Fun is a new input function. Any other value is immediately returned as
value of the current call to sort or keysort. Each input function will be called exactly
once, and should an error occur, the last function is called with the argument close, the
reply of which is ignored.

A function of one argument can be given as output. The results of sorting or merging
the input is collected in a non-empty sequence of variable length lists of binaries or
terms depending on the format. The output function is called with one list at a time,
and is assumed to return a new output function. Any other return value is immediately
returned as value of the current call to the sort or merge function. Each output function
is called exactly once. When some output function has been applied to all of the results
or an error occurs, the last function is called with the argument close, and the reply is

143STDLIB

file sorter STDLIB Reference Manual

returned as value of the current call to the sort or merge function. If a function is given
as input and the last input function returns fend of input, Valueg, the function given
as output will be called with the argument fvalue, Valueg. This makes it easy to
initiate the sequence of output functions with a value calculated by the input functions.

As an example, consider sorting the terms on a disk log file. A function that reads
chunks from the disk log and returns a list of binaries is used as input. The results are
collected in a list of terms.

sort(Log) ->
fok, g = disk log:open([fname,Logg, fmode,read onlyg]),
Input = input(Log, start),
Output = output([]),
Reply = file sorter:sort(Input, Output, fformat,termg),
ok = disk log:close(Log),
Reply.

input(Log, Cont) ->
fun(close) ->

ok;
(read) ->

case disk log:chunk(Log, Cont) of
ferror, Reasong ->

ferror, Reasong;
fCont2, Termsg ->

fTerms, input(Log, Cont2)g;
fCont2, Terms, Badbytesg ->

fTerms, input(Log, Cont2)g;
eof ->

end of input
end

end.

output(L) ->
fun(close) ->

lists:append(lists:reverse(L));
(Terms) ->

output([Terms | L])
end.

Further examples of functions as input and output can be found at the end of the
file sorter module; the term format is implemented with functions.

The possible values of Reason returned when an error occurs are:

� bad object, fbad object, FileNameg. Applying the format function failed for
some binary, or the key(s) could not be extracted from some term.

� fbad term, FileNameg. io:read/2 failed to read some term.

� ffile error, FileName, Reason2g. See file(3) for an explanation of Reason2.

� fpremature eof, FileNameg. End-of-file was encountered inside some binary
term.

� fnot a directory, FileNameg. The file supplied with the tmpdir option is not a
directory.

144 STDLIB

STDLIB Reference Manual file sorter

Types

Binary = binary()
FileName = file name()
FileNames = [FileName]
ICommand = read | close
IReply = end of input | fend of input, Valueg | f[Object], Infung | InputReply
Infun = fun(ICommand) -> IReply
Input = FileNames | Infun
InputReply = Term
KeyPos = int() > 0 | [int() > 0]
OCommand = fvalue, Valueg | [Object] | close
OReply = Outfun | OutputReply
Object = Term | Binary
Outfun = fun(OCommand) -> OReply
Output = FileName | Outfun
OutputReply = Term
Term = term()
Value = Term

Exports

sort(FileName) -> Reply

sort(Input, Output) -> Reply

sort(Input, Output, Options) -> Reply

Types:

� Reply = ok | ferror, Reasong | InputReply | OutputReply

Sorts terms on files.

sort(FileName) is equivalent to sort([FileName], FileName).

sort(Input, Output) is equivalent to sort(Input, Output, []).

keysort(KeyPos, FileName) -> Reply

keysort(KeyPos, Input, Output) -> Reply

keysort(KeyPos, Input, Output, Options) -> Reply

Types:

� Reply = ok | ferror, Reasong | InputReply | OutputReply

Sorts tuples on files. The sort is performed on the element(s) mentioned in KeyPos. If
two tuples compare equal on one element, next element according to KeyPos is
compared. The sort is stable.

keysort(N, FileName) is equivalent to keysort(N, [FileName], FileName).

keysort(N, Input, Output) is equivalent to keysort(N, Input, Output, []).

merge(FileNames, Output) -> Reply

merge(FileNames, Output, Options) -> Reply

Types:

145STDLIB

file sorter STDLIB Reference Manual

� Reply = ok | ferror, Reasong | OutputReply

Merges terms on files. Each input file is assumed to be sorted.

merge(FileNames, Output) is equivalent to merge(FileNames, Output, []).

keymerge(KeyPos, FileNames, Output) -> Reply

keymerge(KeyPos, FileNames, Output, Options) -> Reply

Types:

� Reply = ok | ferror, Reasong | OutputReply

Merges tuples on files. Each input file is assumed to be sorted on key(s).

keymerge(KeyPos, FileNames, Output) is equivalent to keymerge(KeyPos,
FileNames, Output, []).

check(FileName) -> Reply

check(FileNames, Options) -> Reply

Types:

� Reply = fok, [Result]g | ferror, Reasong
� Result = fFileName, TermPosition, Termg

� TermPosition = int() > 1

Checks files for sortedness. If a file is not sorted, the first out-of-order element is
returned. The first term on a file has position 1.

check(FileName) is equivalent to check([FileName], []).

keycheck(KeyPos, FileName) -> CheckReply

keycheck(KeyPos, FileNames, Options) -> Reply

Types:

� Reply = fok, [Result]g | ferror, Reasong
� Result = fFileName, TermPosition, Termg

� TermPosition = int() > 1

Checks files for sortedness. If a file is not sorted, the first out-of-order element is
returned. The first term on a file has position 1.

keycheck(KeyPos, FileName) is equivalent to keycheck(KeyPos, [FileName], []).

146 STDLIB

STDLIB Reference Manual filelib

filelib
Erlang Module

This module contains utilities on a higher level than the file module.

Exports

ensure dir(Name) -> true

Types:

� Name = filename() | dirname()

The ensure dir/1 functions checks that all parent directories for the given file or
directory name exist, creating them if not.

file size(Filename) -> integer()

The file size function returns the size of the given file.

fold files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut

Types:

� Dir = dirname()
� RegExp = regexp()
� Recursive = true|false
� Fun = fun(F, AccIn) -> AccOut
� AccIn = AccOut = term()

The fold files/5 function folds the function Fun over all (regular) files F in the
directory Dir that match the regular expression RegExp. If Recursive is true all
sub-directories to Dir are processed. The match is tried on just the filename without
the directory part.

is dir(Name) -> true | false

Types:

� Name = filename() | dirname()

The is dir/1 function returns true if Name refers to a directory, and false otherwise.

is file(Name) -> true | false

Types:

� Name = filename() | dirname()

147STDLIB

filelib STDLIB Reference Manual

The is file/1 function returns true if Name refers to a file or a directory, and false
otherwise.

is regular(Name) -> true | false

Types:

� Name = filename()

The is regular/1 function returns true if Name refers to a file (regular file), and false
otherwise.

last modified(Name) -> ffYear,Month,Dayg,fHour,Min,Secgg

Types:

� Name = filename() | dirname()

The last modified/1 function returns the date and time the given file or directory was
last modified.

wildcard(Wildcard) -> list()

Types:

� Wildcard = filename() | dirname()

The wildcard/1 function returns a list of all files that match Unix-style wildcard-string
Wildcard.

The wildcard string looks like an ordinary filename, except that certain “wildcard
characters” are interpreted in a special way. The following characters are special:

? Matches one character.

* Matches any number of characters up to the end of the filename, the next dot, or the
next slash.

fItem,...g Alternation. Matches one of the alternatives.

Other characters represent themselves. Only filenames that have exactly the same
character in the same position will match. (Matching is case-sensitive; i.e. “a” will not
match “A”).

Note that multiple “*” characters are allowed (as in Unix wildcards, but opposed to
Windows/DOS wildcards).

Examples:

The following examples assume that the current directory is the top of an Erlang/OTP
installation.

To find all .beam files in all applications, the following line can be used:

filelib:wildcard("lib/*/ebin/*.beam").

To find either .erl or .hrl in all applications src directories, the following

filelib:wildcard("lib/*/src/*.?rl")

or the following line

filelib:wildcard("lib/*/src/*.{erl,hrl}")

148 STDLIB

STDLIB Reference Manual filelib

can be used.

To find all .hrl files in either src or include directories, use:

filelib:wildcard("lib/*/{src,include}/*.hrl").

To find all .erl or .hrl files in either src or include directories, use:

filelib:wildcard("lib/*/{src,include}/*.{erl,hrl}")

wildcard(Wildcard, Cwd) -> list()

Types:

� Wildcard = filename() | dirname()
� Cwd = dirname()

The wildcard/2 function works like wildcard/1, except that instead of the actual
working dirctory, Cwd will be used.

149STDLIB

filename STDLIB Reference Manual

filename
Erlang Module

The module filename provides a number of useful functions for analyzing and
manipulating file names. These functions are designed so that the Erlang code can work
on many different platforms with different formats for file names. With file name is
meant all strings that can be used to denote a file. They can be short relative names like
foo.erl, very long absolute name which include a drive designator and directory names
like D:\usr/local\bin\erl/lib\tools\foo.erl, or any variations in between.

In Windows, all functions return file names with forward slashes only, even if the
arguments contain back slashes. Use join/1 to normalize a file name by removing
redundant directory separators.

DATA TYPES

name() = string() | atom() | DeepList
DeepList = [char() | atom() | DeepList]

Exports

absname(Filename) -> string()

Types:

� Filename = name()

Converts a relative Filename and returns an absolute name. No attempt is made to
create the shortest absolute name, because this can give incorrect results on file systems
which allow links.

Unix examples:

1> pwd().
"/usr/local"
2> filename:absname("foo").
"/usr/local/foo"
3> filename:absname("../x").
"/usr/local/../x"
4> filename:absname("/").
"/"

Windows examples:

150 STDLIB

STDLIB Reference Manual filename

1> pwd().
"D:/usr/local"
2> filename:absname("foo").
"D:/usr/local/foo"
3> filename:absname("../x").
"D:/usr/local/../x"
4> filename:absname("/").
"D:/"

absname(Filename, Dir) -> string()

Types:

� Filename = name()
� Dir = string()

This function works like absname/1, except that the directory to which the file name
should be made relative is given explicitly in the Dir argument.

absname join(Dir, Filename) -> string()

Types:

� Dir = string()
� Filename = name()

Joins an absolute directory with a relative filename. Similar to join/2, but on platforms
with tight restrictions on raw filename length and no support for symbolic links (read:
VxWorks), leading parent directory components in Filename are matched against
trailing directory components in Dir so they can be removed from the result -
minimizing its length.

basename(Filename) -> string()

Types:

� Filename = name()

Returns the last component of Filename, or Filename itself if it does not contain any
directory separators.

5> filename:basename("foo").
"foo"
6> filename:basename("/usr/foo").
"foo"
7> filename:basename("/").
[]

basename(Filename, Ext) -> string()

Types:

� Filename = Ext = name()

151STDLIB

filename STDLIB Reference Manual

Returns the last component of Filename with the extension Ext stripped. This function
should be used to remove a specific extension which might, or might not, be there. Use
rootname(basename(Filename)) to remove an extension that exists, but you are not
sure which one it is.

8> filename:basename("~/src/kalle.erl", ".erl").
"kalle"
9> filename:basename("~/src/kalle.beam", ".erl").
"kalle.beam"
10> filename:basename("~/src/kalle.old.erl", ".erl").
"kalle.old"
11> filename:rootname(filename:basename("~/src/kalle.erl")).
"kalle"
12> filename:rootname(filename:basename("~/src/kalle.beam")).
"kalle"

dirname(Filename) -> string()

Types:

� Filename = name()

Returns the directory part of Filename.

13> filename:dirname("/usr/src/kalle.erl").
"/usr/src"
14> filename:dirname("kalle.erl").
"."

5> filename:dirname("\\usr\\src/kalle.erl"). % Windows
"/usr/src"

extension(Filename) -> string()

Types:

� Filename = name()

Returns the file extension of Filename, including the period. Returns an empty string if
there is no extension.

15> filename:extension("foo.erl").
".erl"
16> filename:extension("beam.src/kalle").
[]

flatten(Filename) -> string()

Types:

� Filename = name()

Converts a possibly deep list filename consisting of characters and atoms into the
corresponding flat string filename.

152 STDLIB

STDLIB Reference Manual filename

join(Components) -> string()

Types:

� Components = [string()]

Joins a list of file name Components with directory separators. If one of the elements of
Components includes an absolute path, for example "/xxx", the preceding elements, if
any, are removed from the result.

The result is “normalized”:

� Redundant directory separators are removed.

� In Windows, all directory separators are forward slashes and the drive letter is in
lower case.

17> filename:join(["/usr", "local", "bin"]).
"/usr/local/bin"
18> filename:join(["a/b///c/"]).
"a/b/c"

6> filename:join(["B:a\\b///c/"]). % Windows
"b:a/b/c"

join(Name1, Name2) -> string()

Types:

� Name1 = Name2 = string()

Joins two file name components with directory separators. Equivalent to join([Name1,
Name2]).

nativename(Path) -> string()

Types:

� Path = string()

Converts Path to a form accepted by the command shell and native applications on the
current platform. On Windows, forward slashes is converted to backward slashes. On
all platforms, the name is normalized as done by join/1.

19> filename:nativename("/usr/local/bin/"). % Unix
"/usr/local/bin"

7> filename:nativename("/usr/local/bin/"). % Windows
"\\usr\\local\\bin"

pathtype(Path) -> absolute | relative | volumerelative

Returns the type of path, one of absolute, relative, or volumerelative.

absolute The path name refers to a specific file on a specific volume.
Unix example: /usr/local/bin
Windows example: D:/usr/local/bin

153STDLIB

filename STDLIB Reference Manual

relative The path name is relative to the current working directory on the current
volume.
Example: foo/bar, ../src

volumerelative The path name is relative to the current working directory on a
specified volume, or it is a specific file on the current working volume.
Windows example: D:bar.erl, /bar/foo.erl

rootname(Filename) -> string()

rootname(Filename, Ext) -> string()

Types:

� Filename = Ext = name()

Remove a filename extension. rootname/2 works as rootname/1, except that the
extension is removed only if it is Ext.

20> filename:rootname("/beam.src/kalle").
/beam.src/kalle"
21> filename:rootname("/beam.src/foo.erl").
"/beam.src/foo"
22> filename:rootname("/beam.src/foo.erl", ".erl").
"/beam.src/foo"
23> filename:rootname("/beam.src/foo.beam", ".erl").
"/beam.src/foo.beam"

split(Filename) -> Components

Types:

� Filename = name()
� Components = [string()]

Returns a list whose elements are the path components of Filename.

24> filename:split("/usr/local/bin").
["/","usr","local","bin"]
25> filename:split("foo/bar").
["foo","bar"]
26> filename:split("a:\\msdev\\include").
["a:/","msdev","include"]

find src(Beam) -> fSourceFile, Optionsg

find src(Beam, Rules) -> fSourceFile, Optionsg

Types:

� Beam = Module | Filename
� Module = atom()
� Filename = string() | atom()
� SourceFile = string()
� Options = [Opt]
� Opt = fi, string()g | foutdir, string()g | fd, atom()g

154 STDLIB

STDLIB Reference Manual filename

Finds the source filename and compiler options for a module. The result can be fed to
compile:file/2 in order to compile the file again.

The Beam argument, which can be a string or an atom, specifies either the module name
or the path to the source code, with or without the ".erl" extension. In either case,
the module must be known by the code server, i.e. code:which(Module) must succeed.

Rules describes how the source directory can be found, when the object code directory
is known. It is a list of tuples fBinSuffix, SourceSuffixg and is interpreted as
follows: If the end of the directory name where the object is located matches
BinSuffix, then the source code directory has the same name, but with BinSuffix
replaced by SourceSuffix. Rules defaults to:

[{"", ""}, {"ebin", "src"}, {"ebin", "esrc"}]

If the source file is found in the resulting directory, then the function returns that
location together with Options. Otherwise, the next rule is tried, and so on.

The function returns fSourceFile, Optionsg. SourceFile is the absolute path to the
source file without the ".erl" extension. Options include the options which are
necessary to recompile the file with compile:file/2, but excludes options such as
report or verbose which do not change the way code is generated. The paths in the
foutdir, Pathg and fi, Pathg options are guaranteed to be absolute.

155STDLIB

gb sets STDLIB Reference Manual

gb sets
Erlang Module

An implementation of ordered sets using Prof. Arne Andersson's General Balanced
Trees. This can be much more efficient than using ordered lists, for larger sets, but
depends on the application.

Complexity note

The complexity on set operations is bounded by either O(|S|) or O(|T| * log(|S|)),
where S is the largest given set, depending on which is fastest for any particular function
call. For operating on sets of almost equal size, this implementation is about 3 times
slower than using ordered-list sets directly. For sets of very different sizes, however, this
solution can be arbitrarily much faster; in practical cases, often between 10 and 100
times. This implementation is particularly suited for accumulating elements a few at a
time, building up a large set (more than 100-200 elements), and repeatedly testing for
membership in the current set.

As with normal tree structures, lookup (membership testing), insertion and deletion
have logarithmic complexity.

Compatibility

All of the following functions in this module also exist and do the same thing in the
sets and ordsets modules. That is, by only changing the module name for each call,
you can try out different set representations.

� add element/2

� del element/2

� filter/2

� fold/3

� from list/1

� intersection/1

� intersection/2

� is element/2

� is set/1

� is subset/2

� new/0

� size/1

� subtract/2

156 STDLIB

STDLIB Reference Manual gb sets

� to list/1

� union/1

� union/2

DATA TYPES

gb_set() = a GB set

Exports

add(Element, Set1) -> Set2

add element(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = gb set()

Returns a new gb set formed from Set1 with Element inserted. If Element is already an
element in Set1, nothing is changed.

balance(Set1) -> Set2

Types:

� Set1 = Set2 = gb set()

Rebalances the tree representation of Set1. Note that this is rarely necessary, but may
be motivated when a large number of elements have been deleted from the tree without
further insertions. Rebalancing could then be forced in order to minimise lookup times,
since deletion only does not rebalance the tree.

delete(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = gb set()

Returns a new gb set formed from Set1 with Element removed. Assumes that Element
is present in Set1.

delete any(Element, Set1) -> Set2

del element(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = gb set()

Returns a new gb set formed from Set1 with Element removed. If Element is not an
element in Set1, nothing is changed.

difference(Set1, Set2) -> Set3

157STDLIB

gb sets STDLIB Reference Manual

subtract(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = gb set()

Returns only the elements of Set1 which are not also elements of Set2.

empty() -> Set

new() -> Set

Types:

� Set = gb set()

Returns a new empty gb set.

filter(Pred, Set1) -> Set2

Types:

� Pred = fun (E) -> bool()
� E = term()
� Set1 = Set2 = gb set()

Filters elements in Set1 using predicate function Pred.

fold(Function, Acc0, Set) -> Acc1

Types:

� Function = fun (E, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� E = term()
� Set = gb set()

Folds Function over every element in Set returning the final value of the accumulator.

from list(List) -> Set

Types:

� List = [term()]
� Set = gb set()

Returns a gb set of the elements in List, where List may be unordered and contain
duplicates.

from ordset(List) -> Set

Types:

� List = [term()]
� Set = gb set()

Turns an ordered-set list List into a gb set. The list must not contain duplicates.

insert(Element, Set1) -> Set2

Types:

� Element = term()

158 STDLIB

STDLIB Reference Manual gb sets

� Set1 = Set2 = gb set()

Returns a new gb set formed from Set1 with Element inserted. Assumes that Element
is not present in Set1.

intersection(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = gb set()

Returns the intersection of Set1 and Set2.

intersection(SetList) -> Set

Types:

� SetList = [gb set()]
� Set = gb set()

Returns the intersection of the non-empty list of gb sets.

is empty(Set) -> bool()

Types:

� Set = gb set()

Returns true if Set is an empty set, and false otherwise.

is member(Element, Set) -> bool()

is element(Element, Set) -> bool()

Types:

� Element = term()
� Set = gb set()

Returns true if Element is an element of Set, otherwise false.

is set(Set) -> bool()

Types:

� Set = gb set()

Returns true if Set appears to be a gb set, otherwise false.

is subset(Set1, Set2) -> bool()

Types:

� Set1 = Set2 = gb set()

Returns true when every element of Set1 is also a member of Set2, otherwise false.

iterator(Set) -> Iter

Types:

� Set = gb set()
� Iter = term()

159STDLIB

gb sets STDLIB Reference Manual

Returns an iterator that can be used for traversing the entries of Set; see next/1. The
implementation of this is very efficient; traversing the whole set using next/1 is only
slightly slower than getting the list of all elements using to list/1 and traversing that.
The main advantage of the iterator approach is that it does not require the complete list
of all elements to be built in memory at one time.

largest(Set) -> term()

Types:

� Set = gb set()

Returns the largest element in Set. Assumes that Set is nonempty.

next(Iter1) -> fElement, Iter2 | noneg

Types:

� Iter1 = Iter2 = Element = term()

Returns fElement, Iter2g where Element is the smallest element referred to by the
iterator Iter1, and Iter2 is the new iterator to be used for traversing the remaining
elements, or the atom none if no elements remain.

singleton(Element) -> gb set()

Types:

� Element = term()

Returns a gb set containing only the element Element.

size(Set) -> int()

Types:

� Set = gb set()

Returns the number of elements in Set.

smallest(Set) -> term()

Types:

� Set = gb set()

Returns the smallest element in Set. Assumes that Set is nonempty.

take largest(Set1) -> fElement, Set2g

Types:

� Set1 = Set2 = gb set()
� Element = term()

Returns fElement, Set2g, where Element is the largest element in Set1, and Set2 is
this set with Element deleted. Assumes that Set1 is nonempty.

take smallest(Set1) -> fElement, Set2g

Types:

� Set1 = Set2 = gb set()

160 STDLIB

STDLIB Reference Manual gb sets

� Element = term()

Returns fElement, Set2g, where Element is the smallest element in Set1, and Set2 is
this set with Element deleted. Assumes that Set1 is nonempty.

to list(Set) -> List

Types:

� Set = gb set()
� List = [term()]

Returns the elements of Set as a list.

union(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = gb set()

Returns the merged (union) gb set of Set1 and Set2.

union(SetList) -> Set

Types:

� SetList = [gb set()]
� Set = gb set()

Returns the merged (union) gb set of the list of gb sets.

SEE ALSO

gb trees(3) [page 162], ordsets(3) [page 243], sets(3) [page 283]

161STDLIB

gb trees STDLIB Reference Manual

gb trees
Erlang Module

An efficient implementation of Prof. Arne Andersson's General Balanced Trees. These
have no storage overhead compared to unbalaced binary trees, and their performance is
in general better than AVL trees.

Data structure

Data structure:

- {Size, Tree}, where ‘Tree’ is composed of nodes of the form:
- {Key, Value, Smaller, Bigger}, and the "empty tree" node:
- nil.

There is no attempt to balance trees after deletions. Since deletions do not increase the
height of a tree, this should be OK.

Original balance condition h(T) <= ceil(c * log(|T|)) has been changed to the similar
(but not quite equivalent) condition 2 ^ h(T) <= |T| ^ c. This should also be OK.

Performance is comparable to the AVL trees in the Erlang book (and faster in general
due to less overhead); the difference is that deletion works for these trees, but not for
the book's trees. Behaviour is logaritmic (as it should be).

DATA TYPES

gb_tree() = a GB tree

Exports

balance(Tree1) -> Tree2

Types:

� Tree1 = Tree2 = gb tree()

Rebalances Tree1. Note that this is rarely necessary, but may be motivated when a large
number of nodes have been deleted from the tree without further insertions.
Rebalancing could then be forced in order to minimise lookup times, since deletion only
does not rebalance the tree.

delete(Key, Tree1) -> Tree2

Types:

162 STDLIB

STDLIB Reference Manual gb trees

� Key = term()
� Tree1 = Tree2 = gb tree()

Removes the node with key Key from Tree1; returns new tree. Assumes that the key is
present in the tree, crashes otherwise.

delete any(Key, Tree1) -> Tree2

Types:

� Key = term()
� Tree1 = Tree2 = gb tree()

Removes the node with key Key from Tree1 if the key is present in the tree, otherwise
does nothing; returns new tree.

empty() -> Tree

Types:

� Tree = gb tree()

Returns a new empty tree

enter(Key, Val, Tree1) -> Tree2

Types:

� Key = Val = term()
� Tree1 = Tree2 = gb tree()

Inserts Key with value Val into Tree1 if the key is not present in the tree, otherwise
updates Key to value Val in Tree1. Returns the new tree.

from orddict(List) -> Tree

Types:

� List = [fKey, Valg]
� Key = Val = term()
� Tree = gb tree()

Turns an ordered list List of key-value tuples into a tree. The list must not contain
duplicate keys.

get(Key, Tree) -> Val

Types:

� Key = Val = term()
� Tree = gb tree()

Retrieves the value stored with Key in Tree. Assumes that the key is present in the tree,
crashes otherwise.

lookup(Key, Tree) -> fvalue, Valg | none

Types:

� Key = Val = term()
� Tree = gb tree()

163STDLIB

gb trees STDLIB Reference Manual

Looks up Key in Tree; returns fvalue, Valg, or none if Key is not present.

insert(Key, Val, Tree1) -> Tree2

Types:

� Key = Val = term()
� Tree1 = Tree2 = gb tree()

Inserts Key with value Val into Tree1; returns the new tree. Assumes that the key is not
present in the tree, crashes otherwise.

is defined(Key, Tree) -> bool()

Types:

� Tree = gb tree()

Returns true if Key is present in Tree, otherwise false.

is empty(Tree) -> bool()

Types:

� Tree = gb tree()

Returns true if Tree is an empty tree, and false otherwise.

iterator(Tree) -> Iter

Types:

� Tree = gb tree()
� Iter = term()

Returns an iterator that can be used for traversing the entries of Tree; see next/1. The
implementation of this is very efficient; traversing the whole tree using next/1 is only
slightly slower than getting the list of all elements using to list/1 and traversing that.
The main advantage of the iterator approach is that it does not require the complete list
of all elements to be built in memory at one time.

keys(Tree) -> [Key]

Types:

� Tree = gb tree()
� Key = term()

Returns the keys in Tree as an ordered list.

largest(Tree) -> fKey, Valg

Types:

� Tree = gb tree()
� Key = Val = term()

Returns fKey, Valg, where Key is the largest key in Tree, and Val is the value
associated with this key. Assumes that the tree is nonempty.

next(Iter1) -> fKey, Val, Iter2

164 STDLIB

STDLIB Reference Manual gb trees

Types:

� Iter1 = Iter2 = Key = Val = term()

Returns fKey, Val, Iter2g where Key is the smallest key referred to by the iterator
Iter1, and Iter2 is the new iterator to be used for traversing the remaining nodes, or
the atom none if no nodes remain.

size(Tree) -> int()

Types:

� Tree = gb tree()

Returns the number of nodes in Tree.

smallest(Tree) -> fKey, Valg

Types:

� Tree = gb tree()
� Key = Val = term()

Returns fKey, Valg, where Key is the smallest key in Tree, and Val is the value
associated with this key. Assumes that the tree is nonempty.

take largest(Tree1) -> fKey, Val, Tree2g

Types:

� Tree1 = Tree2 = gb tree()
� Key = Val = term()

Returns fKey, Val, Tree2g, where Key is the largest key in Tree1, Val is the value
associated with this key, and Tree2 is this tree with the corresponding node deleted.
Assumes that the tree is nonempty.

take smallest(Tree1) -> fKey, Val, Tree2g

Types:

� Tree1 = Tree2 = gb tree()
� Key = Val = term()

Returns fKey, Val, Tree2g, where Key is the smallest key in Tree1, Val is the value
associated with this key, and Tree2 is this tree with the corresponding node deleted.
Assumes that the tree is nonempty.

to list(Tree) -> [fKey, Valg]

Types:

� Tree = gb tree()
� Key = Val = term()

Converts a tree into an ordered list of key-value tuples.

update(Key, Val, Tree1) -> Tree2

Types:

� Key = Val = term()

165STDLIB

gb trees STDLIB Reference Manual

� Tree1 = Tree2 = gb tree()

Updates Key to value Val in Tree1; returns the new tree. Assumes that the key is
present in the tree.

values(Tree) -> [Val]

Types:

� Tree = gb tree()
� Val = term()

Returns the values in Tree as an ordered list, sorted by their corresponding keys.
Duplicates are not removed.

SEE ALSO

gb sets(3) [page 156], dict(3) [page 82]

166 STDLIB

STDLIB Reference Manual gen event

gen event
Erlang Module

A behaviour module for implementing event handling functionality. The OTP event
handling model consists of a generic event manager process with an arbitrary number of
event handlers which are added and deleted dynamically.

An event manager implemented using this module will have a standard set of interface
functions and include functionality for tracing and error reporting. It will also fit into an
OTP supervision tree. Refer to OTP Design Principles for more information.

Each event handler is implemented as a callback module exporting a pre-defined set of
functions. The relationship between the behaviour functions and the callback functions
can be illustrated as follows:

gen event module Callback module
--------------- -------------
gen event:start link -----> -

gen event:add handler
gen event:add suphandler -----> Module:init/1

gen event:notify
gen event:sync notify -----> Module:handle event/2

gen event:call -----> Module:handle call/2

- -----> Module:handle info/2

gen event:delete handler -----> Module:terminate/2

gen event:swap handler
gen event:swap sup handler -----> Module1:terminate/2

Module2:init/1

gen event:which handlers -----> -

gen event:stop -----> Module:terminate/2

- -----> Module:code change/3

Since each event handler is one callback module, an event manager will have several
callback modules which are added and deleted dynamically. Therefore gen event is
more tolerant of callback module errors than the other behaviours. If a callback function
for an installed event handler fails with Reason, or returns a bad value Term, the event
manager will not fail. It will delete the event handler by calling the callback function

167STDLIB

gen event STDLIB Reference Manual

Module:terminate/2 (see below), giving as argument ferror,f’EXIT’,Reasongg or
ferror,Termg, respectively. No other event handler will be affected.

The sys module can be used for debugging an event manager.

Note that an event manager does trap exit signals automatically.

Unless otherwise stated, all functions in this module fail if the specified event manager
does not exist or if bad arguments are given.

Exports

start link() -> Result

start link(EventMgrName) -> Result

Types:

� EventMgrName = flocal,Nameg | fglobal,Nameg
� Name = atom()
� Result = fok,Pidg | ferror,falready started,Pidgg
� Pid = pid()

Creates an event manager process as part of a supervision tree. The function should be
called, directly or indirectly, by the supervisor. It will, among other things, ensure that
the event manager is linked to the supervisor.

If EventMgrName=flocal,Nameg, the event manager is registered locally as Name using
register/2. If EventMgrName=fglobal,Nameg, the event manager is registered globally
as Name using global:register name/2. If no name is provided, the event manager is
not registered.

If the event manager is successfully created the function returns fok,Pidg, where Pid is
the pid of the event manager. If there already exists a process with the specified
EventMgrName the function returns ferror,falready started,Pidgg, where Pid is
the pid of that process.

start() -> Result

start(EventMgrName) -> Result

Types:

� EventMgrName = flocal,Nameg | fglobal,Nameg
� Name = atom()
� Result = fok,Pidg | ferror,falready started,Pidgg
� Pid = pid()

Creates a stand-alone event manager process, i.e. an event manager which is not part of
a supervision tree and thus has no supervisor.

See start link/0,1 for a description of arguments and return values.

add handler(EventMgrRef, Handler, Args) -> Result

Types:

� EventMgr = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg

168 STDLIB

STDLIB Reference Manual gen event

� Module = atom()
� Id = term()
� Args = term()
� Result = ok | f'EXIT',Reasong | term()
� Reason = term()

Adds a new event handler to the event manager EventMgrRef. The event manager will
call Module:init/1 to initiate the event handler and its internal state.

EventMgrRef can be:

� the pid,

� Name, if the event manager is locally registered,

� fName,Nodeg, if the event manager is locally registered at another node, or

� fglobal,Nameg, if the event manager is globally registered.

Handler is the name of the callback module Module or a tuple fModule,Idg, where Id
is any term. The fModule,Idg representation makes it possible to identify a specific
event handler when there are several event handlers using the same callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If Module:init/1 returns a correct value, the event manager adds the event handler and
this function returns ok. If Module:init/1 fails with Reason or returns an unexpected
value Term, the event handler is ignored and this function returns f’EXIT’,Reasong or
Term, respectively.

add sup handler(EventMgrRef, Handler, Args) -> Result

Types:

� EventMgr = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args = term()
� Result = ok | f'EXIT',Reasong | term()
� Reason = term()

Adds a new event handler in the same way as add handler/3 but will also supervise the
connection between the event handler and the calling process.

� If the calling process later terminates with Reason, the event manager will delete
the event handler by calling Module:terminate/2 with fstop,Reasong as
argument.

� If the event handler later is deleted, the event manager sends a
messagefgen event EXIT,Handler,Reasong to the calling process. Reason is one
of the following:

– normal, if the event handler has been removed due to a call to
delete handler/3, or remove handler has been returned by a callback
function (see below).

– shutdown, if the event handler has been removed because the event manager
is terminating.

169STDLIB

gen event STDLIB Reference Manual

– fswapped,NewHandler,Pidg, if the process Pid has replaced the event
handler with another event handler NewHandler using a call to
swap handler/3 or swap sup handler/3.

– a term, if the event handler is removed due to an error. Which term depends
on the error.

See add handler/3 for a description of the arguments and return values.

notify(EventMgrRef, Event) -> ok

sync notify(EventMgrRef, Event) -> ok

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Event = term()

Sends an event notification to the event manager EventMgrRef. The event manager will
call Module:handle event/2 for each installed event handler to handle the event.

notify is asynchronous and will return immediately after the event notification has
been sent. sync notify is synchronous in the sense that it will return ok after the event
has been handled by all event handlers.

See add handler/3 for a description of EventMgrRef.

Event is an arbitrary term which is passed as one of the arguments to
Module:handle event/2.

notify will not fail even if the specified event manager does not exist, unless it is
specified as Name.

call(EventMgrRef, Handler, Request) -> Result

call(EventMgrRef, Handler, Request, Timeout) -> Result

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()
� Request = term()
� Timeout = int()>0 | infinity
� Result = Reply | ferror,Errorg
� Reply = term()
� Error = bad module | f'EXIT',Reasong | term()
� Reason = term()

170 STDLIB

STDLIB Reference Manual gen event

Makes a synchronous call to the event handler Handler installed in the event manager
EventMgrRef by sending a request and waiting until a reply arrives or a timeout occurs.
The event manager will call Module:handle call/2 to handle the request.

See add handler/3 for a description of EventMgrRef and Handler.

Request is an arbitrary term which is passed as one of the arguments to
Module:handle call/2.

Timeout is an integer greater than zero which specifies how many milliseconds to wait
for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply
is received within the specified time, the function call fails.

The return value Reply is defined in the return value of Module:handle call/2. If the
specified event handler is not installed, the function returns ferror,bad moduleg. If
the callback function fails with Reason or returns an unexpected value Term, this
function returns ferror,f’EXIT’,Reasongg or ferror,Termg, respectively.

delete handler(EventMgrRef, Handler, Args) -> Result

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args = term()
� Result = term() | ferror,module not foundg | f'EXIT',Reasong
� Reason = term()

Deletes an event handler from the event manager EventMgrRef. The event manager
will call Module:terminate/2 to terminate the event handler.

See add handler/3 for a description of EventMgrRef and Handler.

Args is an arbitrary term which is passed as one of the arguments to
Module:terminate/2.

The return value is the return value of Module:terminate/2. If the specified event
handler is not installed, the function returns ferror,module not foundg. If the
callback function fails with Reason, the function returns f’EXIT’,Reasong.

swap handler(EventMgrRef, fHandler1,Args1g, fHandler2,Args2g) -> Result

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler1 = Handler2 = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args1 = Args2 = term()
� Result = ok | ferror,Errorg
� Error = f'EXIT',Reasong | term()
� Reason = term()

171STDLIB

gen event STDLIB Reference Manual

Replaces an old event handler with a new event handler in the event manager
EventMgrRef.

See add handler/3 for a description of the arguments.

First the old event handler Handler1 is deleted. The event manager calls
Module1:terminate(Args1, ...), where Module1 is the callback module of
Handler1, and collects the return value.

Then the new event handler Handler2 is added and initiated by calling
Module2:init(fArgs2,Termg), where Module2 is the callback module of Handler2 and
Term the return value of Module1:terminate/2. This makes it possible to transfer
information from Handler1 to Handler2.

The new handler will be added even if the the specified old event handler is not installed
in which case Term=error, or if Module1:terminate/2 fails with Reason in which case
Term=f’EXIT’,Reasong. The old handler will be deleted even if Module2:init/1 fails.

If there was a supervised connection between Handler1 and a process Pid, there will be
a supervised connection between Handler2 and Pid instead.

If Module2:init/1 returns a correct value, this function returns ok. If Module2:init/1
fails with Reason or returns an unexpected value Term, this this function returns
ferror,f’EXIT’,Reasongg or ferror,Termg, respectively.

swap sup handler(EventMgrRef, fHandler1,Args1g, fHandler2,Args2g) -> Result

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler1 = Handler 2 = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args1 = Args2 = term()
� Result = ok | ferror,Errorg
� Error = f'EXIT',Reasong | term()
� Reason = term()

Replaces an event handler in the event manager EventMgrRef in the same way as
swap handler/3 but will also supervise the connection between Handler2 and the
calling process.

See swap handler/3 for a description of the arguments and return values.

which handlers(EventMgrRef) -> [Handler]

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()

Returns a list of all event handlers installed in the event manager EventMgrRef.

See add handler/3 for a description of EventMgrRef and Handler.

172 STDLIB

STDLIB Reference Manual gen event

stop(EventMgrRef) -> ok

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()

Terminates the event manager EventMgrRef. Before terminating, the event manager
will call Module:terminate(stop,...) for each installed event handler.

See add handler/3 for a description of the argument.

CALLBACK FUNCTIONS

The following functions should be exported from a gen event callback module.

Exports

Module:init(InitArgs) -> fok,Stateg

Types:

� InitArgs = Args | fArgs,Termg

� Args = Term = term()
� State = term()

Whenever a new event handler is added to an event manager, this function is called to
initialize the event handler.

If the event handler is added due to a call to gen event:add handler/3 or
gen event:add sup handler/3, InitArgs is the Args argument of these functions.

If the event handler is replacing another event handler due to a call to
gen event:swap handler/3 or gen event:swap sup handler/3, or due to a swap
return tuple from one of the other callback functions, InitArgs is a tuple fArgs,Termg
where Args is the argument provided in the function call/return tuple and Term is the
result of terminating the old event handler, see gen event:swap handler/3.

The function should return fok,Stateg where State is the initial internal state of the
event handler.

Module:handle event(Event, State) -> Result

Types:

� Event = term()
� State = term()
� Result = fok,NewStateg
� | fswap handler,Args1,NewState,Handler2,Args2g | remove handler
� NewState = term()
� Args1 = Args2 = term()
� Handler2 = Module2 | fModule2,Idg
� Module2 = atom()
� Id = term()

173STDLIB

gen event STDLIB Reference Manual

Whenever an event manager receives an event sent using gen event:notify/2 or
gen event:sync notify/2, this function is called for each installed event handler to
handle the event.

Event is the Event argument of notify/sync notify.

State is the internal state of the event handler.

If the function returns fok,NewStateg the event handler will remain in the event
manager with the possible updated internal state NewState.

If the function returns fswap handler,Args1,NewState,Handler2,Args2g the event
handler will be replaced by Handler2 by first calling
Module:terminate(Args1,NewState) and then Module2:init(fArgs2,Termg) where
Term is the return value of Module:terminate/2. See gen event:swap handler/3 for
more information.

If the function returns remove handler the event handler will be deleted by calling
Module:terminate(remove handler,State).

Module:handle call(Request, State) -> Result

Types:

� Request = term()
� State = term()
� Result = fok,Reply,NewStateg
� | fswap handler,Reply,Args1,NewState,Handler2,Args2g
� | fremove handler, Replyg
� Reply = term()
� NewState = term()
� Args1 = Args2 = term()
� Handler2 = Module2 | fModule2,Idg
� Module2 = atom()
� Id = term()

Whenever an event manager receives a request sent using gen event:call/3,4, this
function is called for the specified event handler to handle the request.

Request is the Request argument of call.

State is the internal state of the event handler.

The return values are the same as for handle event/2 except they also contain a term
Reply which is the reply given back to the client as the return value of call.

Module:handle info(Info, State) -> Result

Types:

� Info = term()
� State = term()
� Result = fok,NewStateg
� | fswap handler,Args1,NewState,Handler2,Args2g | remove handler
� NewState = term()
� Args1 = Args2 = term()
� Handler2 = Module2 | fModule2,Idg
� Module2 = atom()

174 STDLIB

STDLIB Reference Manual gen event

� Id = term()

This function is called for each installed event handler when an event manager receives
any other message than an event or a synchronous request (or a system message).

Info is the received message.

See Module:handle event/2 for a description of State and possible return values.

Module:terminate(Arg, State) -> term()

Types:

� Arg = Args | fstop,Reasong | stop | remove handler
� | ferror,f'EXIT',Reasongg | ferror,Termg

� Args = Reason = Term = term()

Whenever an event handler is deleted from an event manager, this function is called. It
should be the opposite of Module:init/1 and do any necessary cleaning up.

If the event handler is deleted due to a call to gen event:delete handler,
gen event:swap handler/3 or gen event:swap sup handler/3, Arg is the Args
argument of this function call.

Arg=fstop,Reasong if the event handler has a supervised connection to a process
which has terminated with reason Reason.

Arg=stop if the event handler is deleted because the event manager is terminating.

Arg=remove handler if the event handler is deleted because another callback function
has returned remove handler or fremove handler,Replyg.

Arg=ferror,Termg if the event handler is deleted because a callback function returned
an unexpected value Term, or Arg=ferror,f’EXIT’,Reasongg if a callback function
failed.

State is the internal state of the event handler.

The function may return any term. If the event handler is deleted due to a call to
gen event:delete handler, the return value of that function will be the return value
of this function. If the event handler is to be replaced with another event handler due
to a swap, the return value will be passed to the init function of the new event handler.
Otherwise the return value is ignored.

Module:code change(OldVsn, State, Extra) -> fok, NewStateg

Types:

� OldVsn = Vsn | fdown, Vsng
� Vsn = term()
� State = NewState = term()
� Extra = term()

175STDLIB

gen event STDLIB Reference Manual

This function is called for an installed event handler which should update its internal
state during a release upgrade/downgrade, i.e. when the instruction
fupdate,Module,Change,...gwhere Change=fadvanced,Extrag is given in the
.appup file. See OTP Design Principles for more information.

In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is
fdown,Vsng. Vsn is defined by the vsn attribute(s) of the old version of the callback
module Module. If no such attribute is defined, the version is the checksum of the
BEAM file.

State is the internal state of the event handler.

Extra is passed as-is from the fadvanced,Extrag part of the update instruction.

The function should return the updated internal state.

SEE ALSO

supervisor(3) [page 328], sys(3) [page 338]

176 STDLIB

STDLIB Reference Manual gen fsm

gen fsm
Erlang Module

A behaviour module for implementing a finite state machine. A generic finite state
machine process (gen fsm) implemented using this module will have a standard set of
interface functions and include functionality for tracing and error reporting. It will also
fit into an OTP supervision tree. Refer to OTP Design Principles for more information.

A gen fsm assumes all specific parts to be located in a callback module exporting a
pre-defined set of functions. The relationship between the behaviour functions and the
callback functions can be illustrated as follows:

gen fsm module Callback module
-------------- ---------------
gen fsm:start link -----> Module:init/1

gen fsm:send event -----> Module:StateName/2

gen fsm:send all state event -----> Module:handle event/3

gen fsm:sync send event -----> Module:StateName/3

gen fsm:sync send all state event -----> Module:handle sync event/4

- -----> Module:handle info/3

- -----> Module:terminate/3

- -----> Module:code change/4

If a callback function fails or returns a bad value, the gen fsm will terminate.

The sys module can be used for debugging a gen fsm.

Note that a gen fsm does not trap exit signals automatically, this must be explicitly
initiated in the callback module.

Unless otherwise stated, all functions in this module fail if the specified gen fsm does
not exist or if bad arguments are given.

177STDLIB

gen fsm STDLIB Reference Manual

Exports

start link(Module, Args, Options) -> Result

start link(FsmName, Module, Args, Options) -> Result

Types:

� FsmName = flocal,Nameg | fglobal,GlobalNameg
� Name = atom()
� GlobalName = term()
� Module = atom()
� Args = term()
� Options = [Option]
� Option = fdebug,Dbgsg | ftimeout,Timeg | fspawn opt,SOptsg
� Dbgs = [Dbg]
� Dbg = trace | log | statistics
� | flog to file,FileNameg | finstall,fFunc,FuncStategg
� SOpts = [SOpt]
� SOpt - see erlang:spawn opt/2,3,4,5
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidg | term()

Creates a gen fsm process as part of a supervision tree. The function should be called,
directly or indirectly, by the supervisor. It will, among other things, ensure that the
gen fsm is linked to the supervisor.

The gen fsm process calls Module:init/1 to initialize. To ensure a synchronized
start-up procedure, start link/3,4 does not return until Module:init/1 has returned.

If FsmName=flocal,Nameg, the gen fsm is registered locally as Name using register/2.
If FsmName=fglobal,GlobalNameg, the gen fsm is registered globally as GlobalName
using global:register name/2. If no name is provided, the gen fsm is not registered.

Module is the name of the callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If the option ftimeout,Timeg is present, the gen fsm is allowed to spend Time
milliseconds initializing or it will be terminated and the start function will return
ferror,timeoutg.

If the option fdebug,Dbgsg is present, the corresponding sys function will be called for
each item in Dbgs. Refer to sys(3) for more information.

If the option fspawn opt,SOptsg is present, SOpts will be passed as option list to the
spawn opt BIF which is used to spawn the gen fsm process. Refer to erlang(3) for
information about the spawn opt options.

If the gen fsm is successfully created and initialized the function returns fok,Pidg,
where Pid is the pid of the gen fsm. If there already exists a process with the specified
FsmName, the function returns ferror,falready started,Pidgg where Pid is the pid
of that process.

If Module:init/1 fails with Reason, the function returns ferror,Reasong. If
Module:init/1 returns fstop,Reasong or ignore, the process is terminated and the
function returns ferror,Reasong or ignore, respectively.

178 STDLIB

STDLIB Reference Manual gen fsm

start(Module, Args, Options) -> Result

start(FsmName, Module, Args, Options) -> Result

Types:

� FsmName = flocal,Nameg | fglobal,GlobalNameg
� Name = atom()
� GlobalName = term()
� Module = atom()
� Args = term()
� Options = [Option]
� Option = fdebug,Dbgsg | ftimeout,Timeg | fspawn opt,SOptsg
� Dbgs = [Dbg]
� Dbg = trace | log | statistics
� | flog to file,FileNameg | finstall,fFunc,FuncStategg
� SOpts = [term()]
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidg | term()

Creates a stand-alone gen fsm process, i.e. a gen fsm which is not part of a supervision
tree and thus has no supervisor.

See start link/3,4 for a description of arguments and return values.

send event(FsmRef, Event) -> ok

Types:

� FsmRef = Name | fName,Nodeg | fglobal,GlobalNameg | pid()
� Name = Node = atom()
� GlobalName = term()
� Event = term()

Sends an event asynchronously to the gen fsm FsmRef and returns ok immediately. The
gen fsm will call Module:StateName/2 to handle the event, where StateName is the
name of the current state of the gen fsm.

FsmRef can be:

� the pid,

� Name, if the gen fsm is locally registered,

� fName,Nodeg, if the gen fsm is locally registered at another node, or

� fglobal,GlobalNameg, if the gen fsm is globally registered.

Event is an arbitrary term which is passed as one of the arguments to
Module:StateName/2.

send all state event(FsmRef, Event) -> ok

Types:

� FsmRef = Name | fName,Nodeg | fglobal,GlobalNameg | pid()
� Name = Node = atom()
� GlobalName = term()

179STDLIB

gen fsm STDLIB Reference Manual

� Event = term()

Sends an event asynchronously to the gen fsm FsmRef and returns ok immediately. The
gen fsm will call Module:handle event/3 to handle the event.

See send event/2 for a description of the arguments.

The difference between send event and send all state event is which callback
function is used to handle the event. This function is useful when sending events that
are handled the same way in every state, as only one handle event clause is needed to
handle the event instead of one clause in each state name function.

sync send event(FsmRef, Event) -> Reply

sync send event(FsmRef, Event, Timeout) -> Reply

Types:

� FsmRef = Name | fName,Nodeg | fglobal,GlobalNameg | pid()
� Name = Node = atom()
� GlobalName = term()
� Event = term()
� Timeout = int()>0 | infinity
� Reply = term()

Sends an event to the gen fsm FsmRef and waits until a reply arrives or a timeout
occurs. The gen fsm will call Module:StateName/3 to handle the event, where
StateName is the name of the current state of the gen fsm.

See send event/2 for a description of FsmRef and Event.

Timeout is an integer greater than zero which specifies how many milliseconds to wait
for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply
is received within the specified time, the function call fails.

The return value Reply is defined in the return value of Module:StateName/3.

In the case where the gen fsm terminates during the handling of the event and the caller
is linked to the gen fsm and trapping exits, the exit message is removed from the caller's
receive queue before the function call fails.
This behaviour is retained for backwards compatibility only and may change in the
future. Note that if the gen fsm crashes in between calls, a linked process must take care
of the exit message anyway.
Warning: Under certain circumstances (e.g. FsmRef = fName,Nodeg, and Node goes
down) the exit message cannot be removed.

sync send all state event(FsmRef, Event) -> Reply

sync send all state event(FsmRef, Event, Timeout) -> Reply

Types:

� FsmRef = Name | fName,Nodeg | fglobal,GlobalNameg | pid()
� Name = Node = atom()
� GlobalName = term()
� Event = term()
� Timeout = int()>0 | infinity
� Reply = term()

180 STDLIB

STDLIB Reference Manual gen fsm

Sends an event to the gen fsm FsmRef and waits until a reply arrives or a timeout
occurs. The gen fsm will call Module:handle sync event/4 to handle the event.

See send event/2 for a description of FsmRef and Event. See sync send event/3 for a
description of Timeout and Reply.

See send all state event/2 for a discussion about the difference between
sync send event and sync send all state event.

reply(Caller, Reply) -> true

Types:

� Caller - see below
� Reply = term()

This function can be used by a gen fsm to explicitly send a reply to a client process that
called sync send event or sync send all state event, when the reply cannot be
defined in the return value of Module:State/3 or Module:handle sync event/4.

Caller must be the From argument provided to the callback function. Reply is an
arbitrary term, which will be given back to the client as the return value of
sync send event or sync send all state event.

send event after(Time, Event) -> Ref

Types:

� Time = integer()
� Event = term()
� Ref = reference()

Sends a delayed event internally in the gen fsm that calls this function after Time ms.
Returns immediately a reference that can be used to cancel the delayed send using
cancel timer/1.

The gen fsm will call Module:StateName/2 to handle the event, where StateName is
the name of the current state of the gen fsm at the time the delayed event is delivered.

Event is an arbitrary term which is passed as one of the arguments to
Module:StateName/2.

start timer(Time, Msg) -> Ref

Types:

� Time = integer()
� Msg = term()
� Ref = reference()

Sends a timeout event internally in the gen fsm that calls this function after Time ms.
Returns immediately a reference that can be used to cancel the timer using
cancel timer/1.

The gen fsm will call Module:StateName/2 to handle the event, where StateName is the
name of the current state of the gen fsm at the time the timeout message is delivered.

Msg is an arbitrary term which is passed in the timeout message, ftimeout, Ref, Msgg,
as one of the arguments to Module:StateName/2.

cancel timer(Ref) -> RemainingTime | false

181STDLIB

gen fsm STDLIB Reference Manual

Types:

� Ref = reference()
� RemainingTime = integer()

Cancels an internal timer referred by Ref in the gen fsm that calls this function.

Ref is a reference returned from send event after/2 or start timer/2.

If the timer has already timed out, but the event not yet been delivered, it is cancelled
as if it had not timed out, so there will be no false timer event after returning from this
function.

Returns the remaining time in ms until the timer would have expired if Ref referred to
an active timer, false otherwise.

enter loop(Module, Options, StateName, StateData)

enter loop(Module, Options, StateName, StateData, FsmName)

enter loop(Module, Options, StateName, StateData, Timeout)

enter loop(Module, Options, StateName, StateData, FsmName, Timeout)

Types:

� Module = atom()
� Options = [Option]
� Option = fdebug,Dbgsg
� Dbgs = [Dbg]
� Dbg = trace | log | statistics
� | flog to file,FileNameg | finstall,fFunc,FuncStategg
� StateName = atom()
� StateData = term()
� FsmName = flocal,Nameg | fglobal,GlobalNameg
� Name = atom()
� GlobalName = term()
� Timeout = int() | infinity

Makes an existing process into a gen fsm. Does not return, instead the calling process
will enter the gen fsm receive loop and become a gen fsm process. The process must
have been started using one of the start functions in proc lib, see proc lib(3) [page
248]. The user is responsible for any initialization of the process, including registering a
name for it.

This function is useful when a more complex initialization procedure is needed than the
gen fsm behaviour provides.

Module, Options and FsmName have the same meanings as when calling start[link]/3,4
[page 178]. However, if FsmName is specified, the process must have been registered
accordingly before this function is called.

StateName, StateData and Timeout have the same meanings as in the return value of
Module:init/1 [page ??]. Also, the callback module Module does not need to export an
init/1 function.

Failure: If the calling process was not started by a proc lib start function, or if it is not
registered according to FsmName.

182 STDLIB

STDLIB Reference Manual gen fsm

CALLBACK FUNCTIONS

The following functions should be exported from a gen fsm callback module.

In the description, the expression state name is used to denote a state of the state
machine. state data is used to denote the internal state of the Erlang process which
implements the state machine.

Exports

Module:init(Args) -> Result

Types:

� Args = term()
� Return = fok,StateName,StateDatag | fok,StateName,StateData,Timeoutg
� | fstop,Reasong | ignore
� StateName = atom()
� StateData = term()
� Timeout = int()>0 | infinity
� Reason = term()

Whenever a gen fsm is started using gen fsm:start/3,4 or gen fsm:start link/3,4,
this function is called by the new process to initialize.

Args is the Args argument provided to the start function.

If initialization is successful, the function should return fok,StateName,StateDatag or
fok,StateName,StateData,Timoutg, where StateName is the initial state name and
StateData the initial state data of the gen fsm.

If an integer timout value is provided, a timout will occur unless an event or a message
is received within Timeout milliseconds. A timout is represented by the atom timeout
and should be handled by the Module:StateName/2 callback functions. The atom
inifinity can be used to wait indefinitely, this is the default value.

If something goes wrong during the initialization the function should return
fstop,Reasong, where Reason is any term, or ignore.

Module:StateName(Event, StateData) -> Result

Types:

� Event = timeout | term()
� StateData = term()
� Result = fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,NewStateDatag
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity
� Reason = term()

183STDLIB

gen fsm STDLIB Reference Manual

There should be one instance of this function for each possible state name. Whenever a
gen fsm receives an event sent using gen fsm:send event/2, the instance of this
function with the same name as the current state name StateName is called to handle
the event. It is also called if a timeout occurs.

Event is either the atom timeout, if a timeout has occured, or the Event argument
provided to send event.

StateData is the state data of the gen fsm.

If the function returns fnext state,NextStateName,NewStateDatag or
fnext state,NextStateName,NewStateData,Timeoutg, the gen fsm will continue
executing with the current state name set to NextStateName and with the possibly
updated state data NewStateData. See Module:init/1 for a description of Timeout.

If the function returns fstop,Reason,NewStateDatag, the gen fsm will call
Module:terminate(Reason,NewStateData) and terminate.

Module:handle event(Event, StateName, StateData) -> Result

Types:

� Event = term()
� StateName = atom()
� StateData = term()
� Result = fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,NewStateDatag
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity
� Reason = term()

Whenever a gen fsm receives an event sent using gen fsm:send all state event/2,
this function is called to handle the event.

StateName is the current state name of the gen fsm.

See Module:StateName/2 for a description of the other arguments and possible return
values.

Module:StateName(Event, From, StateData) -> Result

Types:

� Event = term()
� From = fpid(),Tagg
� StateData = term()
� Result = freply,Reply,NextStateName,NewStateDatag |
freply,Reply,NextStateName,NewStateData,Timeoutg

� | fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,Reply,NewStateDatag | fstop,Reason,NewStateDatag
� Reply = term()
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity

184 STDLIB

STDLIB Reference Manual gen fsm

� Reason = normal | term()

There should be one instance of this function for each possible state name. Whenever a
gen fsm receives an event sent using gen fsm:sync send event/2,3, the instance of
this function with the same name as the current state name StateName is called to
handle the event.

Event is the Event argument provided to sync send event.

From is a tuple fPid,Tagg where Pid is the pid of the process which called
sync send event and Tag is a unique tag.

StateData is the state data of the gen fsm.

If the function returns freply,Reply,NextStateName,NewStateDatag or
freply,Reply,NextStateName,NewStateData,Timeoutg, Reply will be given back to
From as the return value of sync send event. The gen fsm then continues executing
with the current state name set to NextStateName and with the possibly updated state
data NewStateData. See Module:init/1 for a description of Timeout.

If the function returns fnext state,NextStateName,NewStateDatag or
fnext state,NextStateName,NewStateData,Timeoutg, the gen fsm will continue
executing in NextStateName with NewStateData. Any reply to From must be given
explicitly using gen fsm:reply/2.

If the function returns fstop,Reason,Reply,NewStateDatag, Reply will be given back
to From. If the function returns fstop,Reason,NewStateDatag, any reply to From must
be given explicitly using gen fsm:reply/2. The gen fsm will then call
Module:terminate(Reason,NewStateData) and terminate.

Module:handle sync event(Event, From, StateName, StateData) -> Result

Types:

� Event = term()
� From = fpid(),Tagg
� StateName = atom()
� StateData = term()
� Result = freply,Reply,NextStateName,NewStateDatag |
freply,Reply,NextStateName,NewStateData,Timeoutg

� | fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,Reply,NewStateDatag | fstop,Reason,NewStateDatag
� Reply = term()
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity
� Reason = term()

Whenever a gen fsm receives an event sent using
gen fsm:sync send all state event/2,3, this function is called to handle the event.

StateName is the current state name of the gen fsm.

See Module:StateName/3 for a description of the other arguments and possible return
values.

Module:handle info(Info, StateName, StateData) -> Result

185STDLIB

gen fsm STDLIB Reference Manual

Types:

� Info = term()
� StateName = atom()
� StateData = term()
� Result = fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,NewStateDatag
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity
� Reason = normal | term()

This function is called by a gen fsm when it receives any other message than a
synchronous or asynchronous event (or a system message).

Info is the received message.

See Module:StateName/2 for a description of the other arguments and possible return
values.

Module:terminate(Reason, StateName, StateData)

Types:

� Reason = normal | shutdown | term()
� StateName = atom()
� StateData = term()

This function is called by a gen fsm when it is about to terminate. It should be the
opposite of Module:init/1 and do any necessary cleaning up. When it returns, the
gen fsm terminates with Reason. The return value is ignored.

Reason is a term denoting the stop reason, StateName is the current state name, and
StateData is the state data of the gen fsm.

Reason depends on why the gen fsm is terminating. If it is because another callback
function has returned a stop tuple fstop,..g, Reason will have the value specified in
that tuple. If it is due to a failure, Reason is the error reason.

If the gen fsm is part of a supervision tree and is ordered by its superviser to terminate,
this function will be called with Reason=shutdown if the following conditions apply:

� the gen fsm has been set to trap exit signals, and

� the shutdown strategy as defined in the supervisor's child specification is an integer
timeout value, not brutal kill.

Otherwise, the gen fsm will be immediately terminated.

Note that for any other reason than normal or shutdown, the gen fsm is assumed to
terminate due to an error and an error report is issued using error logger:format/2.

Module:code change(OldVsn, StateName, StateData, Extra) -> fok, NextStateName,
NewStateDatag

Types:

� OldVsn = Vsn | fdown, Vsng
� Vsn = term()

186 STDLIB

STDLIB Reference Manual gen fsm

� StateName = NextStateName = atom()
� StateData = NewStateData = term()
� Extra = term()

This function is called by a gen fsm when it should update its internal state data during
a release upgrade/downgrade, i.e. when the instruction fupdate,Module,Change,...g
where Change=fadvanced,Extrag is given in the appup file. See OTP Design Principles
for more information.

In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is
fdown,Vsng. Vsn is defined by the vsn attribute(s) of the old version of the callback
module Module. If no such attribute is defined, the version is the checksum of the
BEAM file.

StateName is the current state name and StateData the internal state data of the
gen fsm.

Extra is passed as-is from the fadvanced,Extrag part of the update instruction.

The function should return the new current state name and updated internal data.

SEE ALSO

supervisor(3) [page 328], sys(3) [page 338]

187STDLIB

gen server STDLIB Reference Manual

gen server
Erlang Module

A behaviour module for implementing the server of a client-server relation. A generic
server process (gen server) implemented using this module will have a standard set of
interface functions and include functionality for tracing and error reporting. It will also
fit into an OTP supervision tree. Refer to OTP Design Principles for more information.

A gen server assumes all specific parts to be located in a callback module exporting a
pre-defined set of functions. The relationship between the behaviour functions and the
callback functions can be illustrated as follows:

gen server module Callback module
----------------- ---------------
gen server:start link -----> Module:init/1

gen server:call
gen server:multi call -----> Module:handle call/3

gen server:cast
gen server:abcast -----> Module:handle cast/2

- -----> Module:handle info/2

- -----> Module:terminate/2

- -----> Module:code change/3

If a callback function fails or returns a bad value, the gen server will terminate.

The sys module can be used for debugging a gen server.

Note that a gen server does not trap exit signals automatically, this must be explicitly
initiated in the callback module.

Unless otherwise stated, all functions in this module fail if the specified gen server does
not exist or if bad arguments are given.

Exports

start link(Module, Args, Options) -> Result

start link(ServerName, Module, Args, Options) -> Result

Types:

� ServerName = flocal,Nameg | fglobal,GlobalNameg
� Name = atom()
� GlobalName = term()

188 STDLIB

STDLIB Reference Manual gen server

� Module = atom()
� Args = term()
� Options = [Option]
� Option = fdebug,Dbgsg | ftimeout,Timeg | fspawn opt,SOptsg
� Dbgs = [Dbg]
� Dbg = trace | log | statistics | flog to file,FileNameg | finstall,fFunc,FuncStategg
� SOpts = [term()]
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidg | term()

Creates a gen server process as part of a supervision tree. The function should be called,
directly or indirectly, by the supervisor. It will, among other things, ensure that the
gen server is linked to the supervisor.

The gen server process calls Module:init/1 to initialize. To ensure a synchronized
start-up procedure, start link/3,4 does not return until Module:init/1 has returned.

If ServerName=flocal,Nameg the gen server is registered locally as Name using
register/2. If ServerName=fglobal,GlobalNameg the gen server is registered globally
as GlobalName using global:register name/2. If no name is provided, the gen server
is not registered.

Module is the name of the callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If the option ftimeout,Timeg is present, the gen server is allowed to spend Time
milliseconds initializing or it will be terminated and the start function will return
ferror,timeoutg.

If the option fdebug,Dbgsg is present, the corresponding sys function will be called for
each item in Dbgs. Refer to sys(3) for more information.

If the option fspawn opt,SOptsg is present, SOpts will be passed as option list to the
spawn opt BIF which is used to spawn the gen server. Refer to erlang(3) for
information about the spawn opt options.

If the gen server is successfully created and initialized the function returns fok,Pidg,
where Pid is the pid of the gen server. If there already exists a process with the
specified ServerName the function returns ferror,falready started,Pidgg, where
Pid is the pid of that process.

If Module:init/1 fails with Reason, the function returns ferror,Reasong. If
Module:init/1 returns fstop,Reasong or ignore, the process is terminated and the
function returns ferror,Reasong or ignore, respectively.

start(Module, Args, Options) -> Result

start(ServerName, Module, Args, Options) -> Result

Types:

� ServerName = flocal,Nameg | fglobal,GlobalNameg
� Name = atom()
� GlobalName = term()
� Module = atom()
� Args = term()
� Options = [Option]

189STDLIB

gen server STDLIB Reference Manual

� Option = fdebug,Dbgsg | ftimeout,Timeg | fspawn opt,SOptsg
� Dbgs = [Dbg]
� Dbg = trace | log | statistics | flog to file,FileNameg | finstall,fFunc,FuncStategg
� SOpts = [term()]
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidg | term()

Creates a stand-alone gen server process, i.e. a gen server which is not part of a
supervision tree and thus has no supervisor.

See start link/3,4 for a description of arguments and return values.

call(ServerRef, Request) -> Reply

call(ServerRef, Request, Timeout) -> Reply

Types:

� ServerRef = Name | fName,Nodeg | fglobal,GlobalNameg | pid()
� Node = atom()
� GlobalName = term()
� Request = term()
� Timeout = int()>0 | infinity
� Reply = term()

Makes a synchronous call to the gen server ServerRef by sending a request and waiting
until a reply arrives or a timout occurs. The gen server will call Module:handle call/3
to handle the request.

ServerRef can be:

� the pid,

� Name, if the gen server is locally registered,

� fName,Nodeg, if the gen server is locally registered at another node, or

� fglobal,GlobalNameg, if the gen server is globally registered.

Request is an arbitrary term which is passed as one of the arguments to
Module:handle call/3.

Timeout is an integer greater than zero which specifies how many milliseconds to wait
for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply
is received within the specified time, the function call fails.

The return value Reply is defined in the return value of Module:handle call/3.

The call may fail for several reasons, including timeout and the called gen server dying
before or during the call.

There is a special case for backwards compatibility. If

� the client is linked to the gen server, and

� the client is trapping exits, and

� the gen server terminates while handling the request

190 STDLIB

STDLIB Reference Manual gen server

then the exit message is removed from the client's receive queue before the function
call fails. This special-case behaviour may be removed in the future because it is
inconsistent with the behaviour when a gen server dies between calls and also because
the exit message cannot be removed in some circumstances, for instance when
ServerRef = fName, Nodeg and Node goes down.

multi call(Name, Request) -> Result

multi call(Nodes, Name, Request) -> Result

multi call(Nodes, Name, Request, Timeout) -> Result

Types:

� Nodes = [Node]
� Node = atom()
� Name = atom()
� Request = term()
� Timeout = int()>=0 | infinity
� Result = fReplies,BadNodesg
� Replies = [fNode,Replyg]
� Reply = term()
� BadNodes = [Node]

Makes a synchronous call to all gen servers locally registered as Name at the specified
nodes by first sending a request to every node and then waiting for the replies. The
gen servers will call Module:handle call/3 to handle the request.

The function returns a tuple fReplies,BadNodesg where Replies is a list of
fNode,Replyg and BadNodes is a list of node that either did not exist, or where the
gen server Name did not exist or did not reply.

Nodes is a list of node names to which the request should be sent. Default value is the
list of all known nodes [node()|nodes()].

Name is the locally registered name of each gen server.

Request is an arbitrary term which is passed as one of the arguments to
Module:handle call/3.

Timeout is an integer greater than zero which specifies how many milliseconds to wait
for each reply, or the atom infinity to wait indefinitely. Default value is infinity. If
no reply is received from a node within the specified time, the node is added to
BadNodes.

When a reply Reply is received from the gen server at a node Node, fNode,Replyg is
added to Replies. Reply is defined in the return value of Module:handle call/3.

Warning:
If one of the nodes is running Erlang/OTP R6B or older, and the gen server is not
started when the requests are sent, but starts within 2 seconds, this function waits the
whole Timeout, which may be infinity.

This problem does not exist if all nodes are running Erlang/OTP R7B or later.

This function does not read out any exit messages like call/2,3 does.

191STDLIB

gen server STDLIB Reference Manual

The previously undocumented functions safe multi call/2,3,4 were removed in
OTP R7B/Erlang 5.0 since this function is now safe, except in the case mentioned
above.

To avoid that late answers (after the timeout) pollutes the caller's message queue, a
middleman process is used to do the actual calls. Late answers will then be discarded
when they arrive to a terminated process.

cast(ServerRef, Request) -> ok

Types:

� ServerRef = Name | fName,Nodeg | fglobal,GlobalNameg | pid()
� Node = atom()
� GlobalName = term()
� Request = term()

Sends an asynchronous request to the gen server ServerRef and returns ok
immediately, ignoring if the destination node or gen server does not exist. The
gen server will call Module:handle cast/2 to handle the request.

See call/2,3 for a description of ServerRef.

Request is an arbitrary term which is passed as one of the arguments to
Module:handle cast/2.

abcast(Name, Request) -> abcast

abcast(Nodes, Name, Request) -> abcast

Types:

� Nodes = [Node]
� Node = atom()
� Name = atom()
� Request = term()

Sends an asynchronous request to the gen servers locally registered as Name at the
specified nodes. The function returns immediately and ignores nodes that does not
exist, or where the gen server Name does not exist. The gen servers will call
Module:handle cast/2 to handle the request.

See multi call/2,3,4 for a description of the arguments.

reply(Client, Reply) -> true

Types:

� Client - see below
� Reply = term()

This function can be used by a gen server to explicitly send a reply to a client that called
call or multi call, when the reply cannot be defined in the return value of
Module:handle call/3.

Client must be the From argument provided to the callback function. Reply is an
arbitrary term, which will be given back to the client as the return value of call or
multi call.

enter loop(Module, Options, State)

192 STDLIB

STDLIB Reference Manual gen server

enter loop(Module, Options, State, ServerName)

enter loop(Module, Options, State, Timeout)

enter loop(Module, Options, State, ServerName, Timeout)

Types:

� Module = atom()
� Options = [Option]
� Option = fdebug,Dbgsg
� Dbgs = [Dbg]
� Dbg = trace | log | statistics
� | flog to file,FileNameg | finstall,fFunc,FuncStategg
� State = term()
� ServerName = flocal,Nameg | fglobal,GlobalNameg
� Name = atom()
� GlobalName = term()
� Timeout = int() | infinity

Makes an existing process into a gen server. Does not return, instead the calling process
will enter the gen server receive loop and become a gen server process. The process
must have been started using one of the start functions in proc lib, see proc lib(3)
[page 248]. The user is responsible for any initialization of the process, including
registering a name for it.

This function is useful when a more complex initalization procedure is needed than the
gen server behaviour provides.

Module, Options and ServerName have the same meanings as when calling
gen server:start[link]/3,4 [page 188]. However, if ServerName is specified, the process
must have been registered accordingly before this function is called.

State and Timeout have the same meanings as in the return value of Module:init/1
[page ??]. Also, the callback module Module does not need to export an init/1
function.

Failure: If the calling process was not started by a proc lib start function, or if it is not
registered according to ServerName.

CALLBACK FUNCTIONS

The following functions should be exported from a gen server callback module.

Exports

Module:init(Args) -> Result

Types:

� Args = term()
� Result = fok,Stateg | fok,State,Timeoutg
� | fstop,Reasong | ignore
� State = term()
� Timeout = int()>=0 | infinity

193STDLIB

gen server STDLIB Reference Manual

� Reason = term()

Whenever a gen server is started using gen server:start/3,4 or
gen server:start link/3.4, this function is called by the new process to initialize.

Args is the Args argument provided to the start function.

If the initialization is successful, the function should return fok,Stateg or
fok,State,Timoutg, where State is the internal state of the gen server.

If an integer timout value is provided, a timout will occur unless a request or a message
is received within Timeout milliseconds. A timout is represented by the atom timeout
which should be handled by the handle info/2 callback function. The atom
inifinity can be used to wait indefinitely, this is the default value.

If something goes wrong during the initialization the function should return
fstop,Reasong where Reason is any term, or ignore.

Module:handle call(Request, From, State) -> Result

Types:

� Request = term()
� From = fpid(),Tagg
� State = term()
� Result = freply,Reply,NewStateg | freply,Reply,NewState,Timeoutg
� | fnoreply,NewStateg | fnoreply,NewState,Timeoutg
� | fstop,Reason,Reply,NewStateg | fstop,Reason,NewStateg
� Reply = term()
� NewState = term()
� Timeout = int()>=0 | infinity
� Reason = term()

Whenever a gen server receives a request sent using gen server:call/2,3 or
gen server:multi call/2,3,4, this function is called to handle the request.

Request is the Request argument provided to call or multi call.

From is a tuple fPid,Tagg where Pid is the pid of the client and Tag is a unique tag.

State is the internal state of the gen server.

If the function returns freply,Reply,NewStateg or
freply,Reply,NewState,Timoutg, Reply will be given back to From as the return
value of call or included in the return value of multi call. The gen server then
continues executing with the possibly updated internal state NewState. See
Module:init/1 for a description of Timeout.

If the functions returns fnoreply,NewStateg or fnoreply,NewState,Timeoutg, the
gen server will continue executing with NewState. Any reply to From must be given
explicitly using gen server:reply/2.

If the function returns fstop,Reason,Reply,NewStateg, Reply will be given back to
From. If the function returns fstop,Reason,NewStateg, any reply to From must be
given explicitly using gen server:reply/2. The gen server will then call
Module:terminate(Reason,NewState) and terminate.

Module:handle cast(Request, State) -> Result

Types:

194 STDLIB

STDLIB Reference Manual gen server

� Request = term()
� State = term()
� Result = fnoreply,NewStateg | fnoreply,NewState,Timeoutg
� | fstop,Reason,NewStateg
� NewState = term()
� Timeout = int()>=0 | infinity
� Reason = term()

Whenever a gen server receives a request sent using gen server:cast/2 or
gen server:abcast/2,3, this function is called to handle the request.

See Module:handle call/3 for a description of the arguments and possible return
values.

Module:handle info(Info, State) -> Result

Types:

� Info = timeout | term()
� State = term()
� Result = fnoreply,NewStateg | fnoreply,NewState,Timeoutg
� | fstop,Reason,NewStateg
� NewState = term()
� Timeout = int()>=0 | infinity
� Reason = normal | term()

This function is called by a gen server when a timeout occurs or when it receives any
other message than a synchronous or asynchronous request (or a system message).

Info is either the atom timeout, if a timeout has occured, or the received message.

See Module:handle call/3 for a description of the other arguments and possible
return values.

Module:terminate(Reason, State)

Types:

� Reason = normal | shutdown | term()
� State = term()

This function is called by a gen server when it is about to terminate. It should be the
opposite of Module:init/1 and do any necessary cleaning up. When it returns, the
gen server terminates with Reason. The return value is ignored.

Reason is a term denoting the stop reason and State is the internal state of the
gen server.

Reason depends on why the gen server is terminating. If it is because another callback
function has returned a stop tuple fstop,..g, Reason will have the value specified in
that tuple. If it is due to a failure, Reason is the error reason.

If the gen server is part of a supervision tree and is ordered by its supervisor to
terminate, this function will be called with Reason=shutdown if the following
conditions apply:

� the gen server has been set to trap exit signals, and

� the shutdown strategy as defined in the supervisor's child specification is an integer
timeout value, not brutal kill.

195STDLIB

gen server STDLIB Reference Manual

Otherwise, the gen server will be immediately terminated.

Note that for any other reason than normal or shutdown, the gen server is assumed to
terminate due to an error and an error report is issued using error logger:format/2.

Module:code change(OldVsn, State, Extra) -> fok, NewStateg

Types:

� OldVsn = Vsn | fdown, Vsng
� Vsn = term()
� State = NewState = term()
� Extra = term()

This function is called by a gen server when it should update its internal state during a
release upgrade/downgrade, i.e. when the instruction fupdate,Module,Change,...g
where Change=fadvanced,Extrag is given in the appup file. See OTP Design Principles
for more information.

In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is
fdown,Vsng. Vsn is defined by the vsn attribute(s) of the old version of the callback
module Module. If no such attribute is defined, the version is the checksum of the
BEAM file.

State is the internal state of the gen server.

Extra is passed as-is from the fadvanced,Extrag part of the update instruction.

The function should return the updated internal state.

SEE ALSO

supervisor(3) [page 328], sys(3) [page 338]

196 STDLIB

STDLIB Reference Manual io

io
Erlang Module

This module provides an interface to standard Erlang IO servers. The output functions
all return ok if they are successful, or exit if they are not.

In the following description, all functions have an optional parameter IoDevice. If
included, it must be the pid of a process which handles the IO protocols. Normally, it is
the IoDevice returned by [file:open/2].

For a description of the IO protocols refer to Armstrong, Virding and Williams,
'Concurrent Programming in Erlang', Chapter 13, unfortunately now very outdated,
but the general principles still apply.

DATA TYPES

io_device()
as returned by file:open/2, a process handling IO protocols

Exports

put chars([IoDevice,] IoData) -> ok

Types:

� IoDevice = io device()
� IoData = IoList | binary()
� IoList = [char() | binary() | IoList]

Writes the characters of IoData to the standard output (IoDevice).

nl([IoDevice]) -> ok

Types:

� IoDevice = io device()

Writes new line to the standard output (IoDevice).

get chars([IoDevice,] Prompt, Count) -> string() | eof

Types:

� IoDevice = io device()
� Prompt = atom() | string()
� Count = int()

197STDLIB

io STDLIB Reference Manual

Reads Count characters from standard input (IoDevice), prompting it with Prompt. It
returns:

String The input characters.

eof End of file was encountered.

get line([IoDevice,] Prompt) -> string() | eof

Types:

� IoDevice = io device()
� Prompt = atom() | string()

Reads a line from the standard input (IoDevice), prompting it with Prompt. It returns:

String The characters in the line terminated by a LF (or end of file).

eof End of file was encountered.

setopts([IoDevice,] Opts) -> ok | ferror, Reasong

Types:

� IoDevice = io device()
� Opts = [Opt]
� Opt = binary | list
� Reason = term()

Set options for standard input/output (IoDevice). Possible options are:

binary Makes get chars/2,3 and get line/1,2 return binaries instead of lists of
chars.

list Makes get chars/2,3 and get line/1,2 return lists of chars, which is the
default.

Note:
The binary option does not work against IO servers on remote nodes running an
older version of Erlang/OTP than R9C.

write([IoDevice,] Term) -> ok

Types:

� IoDevice = io device()
� Term = term()

Writes the term Term to the standard output (IoDevice).

read([IoDevice,] Prompt) -> Result

Types:

� IoDevice = io device()
� Prompt = atom() | string()

198 STDLIB

STDLIB Reference Manual io

� Result = fok, Termg | eof | ferror, ErrorInfog
� Term = term()
� ErrorInfo – see section Error Information below

Reads a term Term from the standard input (IoDevice), prompting it with Prompt. It
returns:

fok, Termg The parsing was successful.

eof End of file was encountered.

ferror, ErrorInfog The parsing failed.

read(IoDevice, Prompt, StartLine) -> Result

Types:

� IoDevice = io device()
� Prompt = atom() | string()
� StartLine = int()
� Result = fok, Term, EndLineg | feof, EndLineg | ferror, ErrorInfo, EndLineg
� Term = term()
� EndLine = int()
� ErrorInfo – see section Error Information below

Reads a term Term from IoDevice, prompting it with Prompt. Reading starts at line
number StartLine. It returns:

fok, Term, EndLineg The parsing was successful.

feof, EndLineg End of file was encountered.

ferror, ErrorInfo, EndLineg The parsing failed.

fwrite(Format) ->

fwrite([IoDevice,] Format, Data) -> ok

format(Format) ->

format([IoDevice,] Format, Data) -> ok

Types:

� IoDevice = io device()
� Format = atom() | string()
� Data = [term()]

Writes the items in Data ([]) on the standard output (IoDevice) in accordance with
Format. Format contains plain characters which are copied to the output device, and
control sequences for formatting, see below. If Format is an atom, it is first converted to
a list with the aid of atom to list/1.

1> io:fwrite("Hello world!~n", []).
Hello world!
ok

199STDLIB

io STDLIB Reference Manual

The general format of a control sequence is ~F.P.PadC. The character C determines the
type of control sequence to be used, F and P are optional numeric arguments. If F, P, or
Pad is *, the next argument in Data is used as the numeric value of F or P.

F is the field width of the printed argument. A negative value means that the
argument will be left justified within the field, otherwise it will be right justified. If no
field width is specified, the required print width will be used. If the field width specified
is too small, then the whole field will be filled with * characters.

P is the precision of the printed argument. A default value is used if no precision is
specified. The interpretation of precision depends on the control sequences. Unless
otherwise specified, the argument within is used to determine print width.

Pad is the padding character. This is the character used to pad the printed representation
of the argument so that it conforms to the specified field width and precision. Only one
padding character can be specified and, whenever applicable, it is used for both the field
width and precision. The default padding character is ’ ’ (space).

The following control sequences are available:

~ The character ~ is written.

c The argument is a number that will be interpreted as an ASCII code. The precision is
the number of times the character is printed and it defaults to the field width,
which in turn defaults to 1. The following example illustrates:

2> io:fwrite("|~10.5c|~-10.5c|~5c|~n", [$a, $b, $c]).
| aaaaa|aaaaa |ccccc|
ok

f The argument is a float which is written as [-]ddd.ddd, where the precision is the
number of digits after the decimal point. The default precision is 6 and it cannot
be less than 1.

e The argument is a float which is written as [-]d.ddde+-ddd, where the precision is
the number of digits written. The default precision is 6 and it cannot be less than 2.

g The argument is a float which is written as f, if it is >= 0.1 and < 10000.0.
Otherwise, it is written in the e format. The precision is the number of significant
digits. It defaults to 6 and should not be less than 2. If the absolute value of the
float does not allow it to be written in the f format with the desired number of
significant digits, it is also written in the e format.

s Prints the argument with the string syntax. The argument is a list of characters
(possibly not a flat list), or an atom. The characters are printed without quotes. In
this format, the printed argument is truncated to the given precision and field
width.
This format can be used for printing any object and truncating the output so it fits
a specified field:

3> io:fwrite("|~10w|~n", [fhey, hey, heyg]).
|**********|
ok
4> io:fwrite("|~10s|~n", [io lib:write(fhey, hey, heyg)]).
|fhey,hey,h|
ok

200 STDLIB

STDLIB Reference Manual io

w Writes data with the standard syntax. This is used to output Erlang terms. Atoms are
printed within quotes if they contain embedded non-printable characters, and
floats are printed in the default g format.

p Writes the data with standard syntax in the same way as ~w, but breaks terms whose
printed representation is longer than one line into many lines and indents each line
sensibly. It also tries to detect lists of printable characters and to output these as
strings. For example:

5> T = [fattributes,[[fid,age,1.50000g,fmode,explicitg,
ftypename,"INTEGER"g], [fid,chog,fmode,explicitg,ftypename,’Cho’g]]g,
ftypename,’Person’g,ftag,f’PRIVATE’,3gg,fmode,implicitg].
...
6> io:fwrite("~w~n", [T]).
[fattributes,[[fid,age,1.50000g,fmode,explicitg,ftypename,
[73,78,84,69,71,69,82]g],[fid,chog,fmode,explicitg,ftypena
me,’Cho’g]]g,ftypename,’Person’g,ftag,f’PRIVATE’,3gg,fmode
,implicitg]
ok
7> io:fwrite("~p~n", [T]).
[fattributes,[[fid,age,1.50000g,

fmode,explicitg,
ftypename,"INTEGER"g],
[fid,chog,fmode,explicitg,ftypename,’Cho’g]]g,

ftypename,’Person’g,
ftag,f’PRIVATE’,3gg,
fmode,implicitg]

ok

The field width specifies the maximum line length. It defaults to 80. The precision
specifies the initial indentation of the term. It defaults to the number of characters
printed on this line in the same call to io:fwrite or io:format. For example,
using T above:

8> io:fwrite("Here T = ~p~n", [T]).
Here T = [fattributes,[[fid,age,1.50000g,

fmode,explicitg,
ftypename,"INTEGER"g],

[fid,chog,fmode,explicitg,
ftypename,’Cho’g]]g,

ftypename,’Person’g,
ftag,f’PRIVATE’,3gg,
fmode,implicitg]

ok

W Writes data in the same way as ~w, but takes an extra argument which is the
maximum depth to which terms are printed. Anything below this depth is
replaced with For example, using T above:

9> io:fwrite("~W~n", [T,9]).

201STDLIB

io STDLIB Reference Manual

[fattributes,[[fid,age,1.50000g,fmode,explicitg,ftypename|
...g],[fid,chog,fmode|...g,f...g]]g,ftypename,’Person’g,ft
ag,f’PRIVATE’,3gg,fmode,implicitg]
ok

If the maximum depth has been reached, then it is impossible to read in the
resultant output. Also, the |... form in a tuple denotes that there are more
elements in the tuple but these are below the print depth.

P Writes data in the same way as ~p, but takes an extra argument which is the
maximum depth to which terms are printed. Anything below this depth is
replaced with For example:

10> io:fwrite("~P~n", [T,9]).
[fattributes,[[fid,age,1.50000g,fmode,explicitg,

ftypename|...g],
[fid,chog,fmode|...g,f...g]]g,

ftypename,’Person’g,
ftag,f’PRIVATE’,3gg,
fmode,implicitg]
ok

B Writes an integer in base 2..36, the default base is 10. A leading dash is printed for
negative integers.
The precision field selects base. For example:

11> io:format("~.16B~n", [31]).
1F
ok
12> io:format("~.2B~n", [-19]).
-10011
ok
13> io:format("~.36B~n", [5*36+35]).
5Z
ok

X Like B, but takes an extra argument that is a prefix to insert before the number, but
after the leading dash, if any.
The prefix can be a possibly deep list of characters or an atom.

14> io:format("~X~n", [31,"10#"]).
10#31
ok
15> io:format("~.16X~n", [-31,"0x"]).
-0x1F
ok

Like B, but prints the number with an Erlang style '#'-separated base prefix.

202 STDLIB

STDLIB Reference Manual io

16> io:format("~.10#~n", [31]).
10#31
ok
17> io:format("~.16#~n", [-31]).
-16#1F
ok

b Like B, but prints lowercase letters.

x Like X, but prints lowercase letters.

+ Like #, but prints lowercase letters.

n Writes a new line.

i Ignores the next term.

Returns:

ok The formatting succeeded.

If an error occurs, there is no output. For example:

18> io:fwrite("~s ~w ~i ~w ~c ~n",[’abc def’, ’abc def’, ffoo, 1g,ffoo, 1g, 65]).
abc def ’abc def’ ffoo, 1g A
ok
19> io:fwrite("~s", [65]).
** exited: fbadarg,[fio,format,[<0.22.0>,"~s","A"]g,

ferl eval,do apply,5g,
fshell,exprs,6g,
fshell,eval loop,2g]g **

In this example, an attempt was made to output the single character '65' with the aid of
the string formatting directive “~s”.

The two functions fwrite and format are identical. The old name format has been
retained for backwards compatibility, while the new name fwrite has been added as a
logical complement to fread.

fread([IoDevice,] Prompt, Format) -> Result

Types:

� IoDevice = io device()
� Prompt = atom() | string()
� Format = string()
� Result = fok, Termsg | eof | ferror, Whatg
� Terms = [term()]
� What = term()

Reads characters from the standard input (IoDevice), prompting it with Prompt.
Interprets the characters in accordance with Format. Format contains control sequences
which directs the interpretation of the input.

Format may contain:

� White space characters (SPACE, TAB and NEWLINE) which cause input to be
read to the next non-white space character.

203STDLIB

io STDLIB Reference Manual

� Ordinary characters which must match the next input character.

� Control sequences, which have the general format ~*FC. The character * is an
optional return suppression character. It provides a method to specify a field which
is to be omitted. F is the field width of the input field and C determines the type
of control sequence.
Unless otherwise specified, leading white-space is ignored for all control sequences.
An input field cannot be more than one line wide. The following control sequences
are available:

~ A single ~ is expected in the input.
d A decimal integer is expected.
u An unsigned integer in base 2..36 is expected. The field width parameter is used

to specify base. Leading white-space characters are not skipped.
- An optional sign character is expected. A sign character '-' gives the return value

-1. Sign character '+' or none gives 1. The field width parameter is ignored.
Leading white-space characters are not skipped.

An integer in base 2..36 with Erlang-style base prefix (for example "16#ffff")
is expected.

f A floating point number is expected. It must follow the Erlang floating point
number syntax.

s A string of non-white-space characters is read. If a field width has been
specified, this number of characters are read and all trailing white-space
characters are stripped. An Erlang string (list of characters) is returned.

a Similar to s, but the resulting string is converted into an atom.
c The number of characters equal to the field width are read (default is 1) and

returned as an Erlang string. However, leading and trailing white-space
characters are not omitted as they are with s. All characters are returned.

l Returns the number of characters which have been scanned up to that point,
including white-space characters.

It returns:

fok, Termsg The read was successful and Terms is the list of successfully matched
and read items.

eof End of file was encountered.
ferror, Whatg The read operation failed and the parameter What gives a hint

about the error.

Examples:

20> io:fread(’enter>’, "~f~f~f").
enter>1.9 35.5e3 15.0
fok,[1.90000,3.55000e+4,15.0000]g
21> io:fread(’enter>’, "~10f~d").
enter> 5.67899
fok, [5.67800, 99]g
22> io:fread(’enter>’, ":~10s:~10c:").
enter>: alan : joe :
fok, ["alan", " joe "]g

scan erl exprs(Prompt) ->

scan erl exprs([IoDevice,] Prompt, StartLine) -> Result

204 STDLIB

STDLIB Reference Manual io

Types:

� IoDevice = io device()
� Prompt = atom() | string()
� StartLine = int()
� Result = fok, Tokens, EndLineg | feof, EndLineg | ferror, ErrorInfo, EndLineg
� Tokens – see erl scan(3)
� EndLine = int()
� ErrorInfo – see section Error Information below

Reads data from the standard input (IoDevice), prompting it with Prompt. Reading
starts at line number StartLine (1). The data is tokenized as if it were a sequence of
Erlang expressions until a final ’.’ is reached. This token is also returned. It returns:

fok, Tokens, EndLineg The tokenization succeeded.

feof, EndLineg End of file was encountered.

ferror, ErrorInfo, EndLineg An error occurred.

Example:

23> io:scan erl exprs(’enter>’).
enter>abc(), "hey".
fok,[fatom,1,abcg,f’(’,1g,f’)’,1g,f’,’,1g,fstring,1,"hey"g,fdot,1g],2g
24> io:scan erl exprs(’enter>’).
enter>1.0er.
ferror,f1,erl scan,fillegal,floatgg,2g

scan erl form(Prompt) ->

scan erl form([IoDevice,] Prompt, StartLine) -> Result

Types:

� IoDevice = io device()
� Prompt = atom() | string()
� StartLine = int()
� Result = fok, Tokens, EndLineg | feof, EndLineg | ferror, ErrorInfo, EndLineg
� Tokens – see erl scan(3)
� EndLine = int()
� ErrorInfo – see section Error Information below

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts
reading at line number StartLine (1). The data is tokenized as if it were an Erlang
form - one of the valid Erlang expressions in an Erlang source file - until a final ’.’ is
reached. This last token is also returned. The return values are the same as for
scan erl exprs/1,2,3 above.

parse erl exprs(Prompt) ->

parse erl exprs([IoDevice,] Prompt, StartLine) -> Result

Types:

� IoDevice = io device()
� Prompt = atom() | string()

205STDLIB

io STDLIB Reference Manual

� StartLine = int()
� Result = fok, Expr list, EndLineg | feof, EndLineg | ferror, ErrorInfo, EndLineg
� Expr list – see erl parse(3)
� EndLine = int()
� ErrorInfo – see section Error Information below

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts
reading at line number StartLine (1). The data is tokenized and parsed as if it were a
sequence of Erlang expressions until a final '.' is reached. It returns:

fok, Expr list, EndLineg The parsing was successful.

feof, EndLineg End of file was encountered.

ferror, ErrorInfo, EndLineg An error occurred.

Example:

25> io:parse erl exprs(’enter>’).
enter>abc(), "hey".
fok, [fcall,1,fatom,1,abcg,[]g,fstring,1,"hey"g],2g
26> io:parse erl exprs (’enter>’).
enter>abc("hey".
ferror,f1,erl parse,["syntax error before: ",["’.’"]]g,2g

parse erl form(Prompt) ->

parse erl form([IoDevice,] Prompt, StartLine) -> Result

Types:

� IoDevice = io device()
� Prompt = atom() | string()
� StartLine = int()
� Result = fok, AbsForm, EndLineg | feof, EndLineg | ferror, ErrorInfo, EndLineg
� AbsForm – see erl parse(3)
� EndLine = int()
� ErrorInfo – see section Error Information below

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts
reading at line number StartLine (1). The data is tokenized and parsed as if it were an
Erlang form - one of the valid Erlang expressions in an Erlang source file - until a final '.'
is reached. It returns:

fok, AbsForm, EndLineg The parsing was successful.

feof, EndLineg End of file was encountered.

ferror, ErrorInfo, EndLineg An error occurred.

206 STDLIB

STDLIB Reference Manual io

Standard Input/Output

All Erlang processes have a default standard IO device. This device is used when no
IoDevice argument is specified in the above function calls. However, it is sometimes
desirable to use an explicit IoDevice argument which refers to the default IO device.
This is the case with functions that can access either a file or the default IO device. The
atom standard io has this special meaning. The following example illustrates this:

27> io:read(’enter>’).
enter>foo.
fok,foog
28> io:read(standard io, ’enter>’).
enter>bar.
fok,barg

There is always a process registered under the name of user. This can be used for
sending output to the user.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

207STDLIB

io lib STDLIB Reference Manual

io lib
Erlang Module

This module contains functions for converting to and from strings (lists of characters).
They are used for implementing the functions in the io module. There is no guarantee
that the character lists returned from some of the functions are flat, they can be deep
lists. lists:flatten/1 can be used for flattening deep lists.

DATA TYPES

chars() = [char() | chars()]

Exports

nl() -> chars()

Returns a character list which represents a new line character.

write(Term) ->

write(Term, Depth) -> chars()

Types:

� Term = term()
� Depth = int()

Returns a character list which represents Term. The Depth (-1) argument controls the
depth of the structures written. When the specified depth is reached, everything below
this level is replaced by “...”. For example:

1> lists:flatten(io lib:write(f1,[2],[3],[4,5],6,7,8,9g)).
"f1,[2],[3],[4,5],6,7,8,9g"
2> lists:flatten(io lib:write(f1,[2],[3],[4,5],6,7,8,9g, 5)).
"f1,[2],[3],[...]|...g"

print(Term) ->

print(Term, Column, LineLength, Depth) -> chars()

Types:

� Term = term()
� Column = LineLenght = Depth = int()

208 STDLIB

STDLIB Reference Manual io lib

Also returns a list of characters which represents Term, but breaks representations
which are longer than one line into many lines and indents each line sensibly. It also
tries to detect and output lists of printable characters as strings. Column is the starting
column (1), LineLength the maximum line length (80), and Depth (-1) the maximum
print depth.

fwrite(Format, Data) ->

format(Format, Data) -> chars()

Types:

� Format = string()
� Data = [term()]

Returns a character list which represents Data formatted in accordance with Format.
See io:fwrite/2 [page ??] for a detailed description of the available formatting options.
A fault is generated if there is an error in the format string or argument list.

fread(Format, String) -> Result

Types:

� Format = String = string()
� Result = fok, InputList, LeftOverCharsg | fmore, RestFormat, Nchars, InputStackg
| ferror, Whatg

� InputList = chars()
� LeftOverChars = string()
� RestFormat = string()
� Nchars = int()
� InputStack = chars()
� What = term()

Tries to read String in accordance with the control sequences in Format. See io:fread/3
[page 203] for a detailed description of the available formatting options. It is assumed
that String contains whole lines. It returns:

fok, InputList, LeftOverCharsg The string was read. InputList is the list of
successfully matched and read items, and LeftOverChars are the input characters
not used.

fmore, RestFormat, Nchars, InputStackg The string was read, but more input is
needed in order to complete the original format string. RestFormat is the
remaining format string, NChars the number of characters scanned, and
InputStack is the reversed list of inputs matched up to that point.

ferror, Whatg The read operation failed and the parameter What gives a hint about
the error.

Example:

3> io lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
fok,[15.6000,1.73000e-5,24.5000],[]g

fread(Continuation, String, Format) -> Return

Types:

209STDLIB

io lib STDLIB Reference Manual

� Continuation = see below
� String = Format = string()
� Return = fdone, Result, LeftOverCharsg | fmore, Continuationg
� Result = fok, InputListg | eof | ferror, Whatg
� InputList = chars()
� What = term()()
� LeftOverChars = string()

This is the re-entrant formatted reader. The continuation of the first call to the
functions must be []. Refer to Armstrong, Virding, Williams, 'Concurrent
Programming in Erlang', Chapter 13 for a complete description of how the re-entrant
input scheme works.

The function returns:

fdone, Result, LeftOverCharsg The input is complete. The result is one of the
following:

fok, InputListg The string was read. InputList is the list of successfully
matched and read items, and LeftOverChars are the remaining characters.

eof End of file has been encountered. LeftOverChars are the input characters not
used.

ferror, Whatg An error occurred and the parameter What gives a hint about the
error.

fmore, Continuationg More data is required to build a term. Continuation must be
passed to fread/3, when more data becomes available.

write atom(Atom) -> chars()

Types:

� Atom = atom()

Returns the list of characters needed to print the atom Atom.

write string(String) -> chars()

Types:

� String = string()

Returns the list of characters needed to print String as a string.

write char(Integer) -> chars()

Types:

� Integer = int()

Returns the list of characters needed to print a character constant.

indentation(String, StartIndent) -> int()

Types:

� String = string()
� StartIndent = int()

210 STDLIB

STDLIB Reference Manual io lib

Returns the indentation if String has been printed, starting at StartIndent.

char list(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a flat list of characters, otherwise it returns false.

deep char list(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a, possibly deep, list of characters, otherwise it returns false.

printable list(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a flat list of printable characters, otherwise it returns false.

211STDLIB

lib STDLIB Reference Manual

lib
Erlang Module

Warning:
This module is retained for compatibility. It may disappear without warning in a
future release.

Exports

flush receive() -> void()

Flushes the message buffer of the current process.

error message(Format, Args) -> ok

Types:

� Format = string()
� Args = [term()]

Prints error message Args in accordance with Format. Similar to io:format/2, see io(3)
[page ??].

progname() -> atom()

Returns the name of the script that started the current Erlang session.

nonl(String1) -> String2

Types:

� String1 = String2 = string()

Removes the last newline character, if any, in String1.

send(To, Msg)

Types:

� To = pid() | Name | fName,Nodeg
� Name = Node = atom()
� Msg = term()

This function to makes it possible to send a message using the apply/3 BIF.

212 STDLIB

STDLIB Reference Manual lib

sendw(To, Msg)

Types:

� To = pid() | Name | fName,Nodeg
� Name = Node = atom()
� Msg = term()

As send/2, but waits for an answer. It is implemented as follows:

sendw(To, Msg) ->
To ! {self(),Msg},
receive

Reply -> Reply
end.

The message returned is not necessarily a reply to the message sent.

213STDLIB

lists STDLIB Reference Manual

lists
Erlang Module

This module contains functions for list processing. The functions are organized in two
groups: those in the first group perform a particular operation on one or more lists,
whereas those in the second group are higher-order functions, using a fun as argument
to perform an operation on one list.

Exports

append(ListOfLists) -> List1

Types:

� ListOfLists = [List]
� List = List1 = [term()]

Returns a list in which all the sub-lists of ListOfLists have been appended. For
example:

> lists:append([[1, 2, 3], [a, b], [4, 5, 6]]).
[1,2,3,a,b,4,5,6]

append(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns a new list List3 which is made from the elements of List1 followed by the
elements of List2. For example:

> lists:append("abc", "def").
"abcdef"

lists:append(A, B) is equivalent to A ++ B.

concat(Things) -> string()

Types:

� Things = [Thing]
� Thing = atom() | integer() | float() | string()

Concatenates the text representation of the elements of Things. The elements of
Things can be atoms, integers, floats or strings.

214 STDLIB

STDLIB Reference Manual lists

> lists:concat([doc, ’/’, file, ’.’, 3]).
"doc/file.3"

delete(Elem, List1) -> List2

Types:

� Elem = term()
� List1 = List2 = [term()]

Returns a copy of List1, but the first occurrence of Elem, if present, is deleted.

duplicate(N, Elem) -> List

Types:

� N = int()
� Elem = term()
� List = [Elem]

Returns a list which contains N copies of the term Elem. For example:

> lists:duplicate(5, xx).
[xx,xx,xx,xx,xx]

flatlength(DeepList) -> int()

Types:

� DeepList = [term() | DeepList]

Equivalent to length(flatten(DeepList)), but more efficient.

flatten(DeepList) -> List

Types:

� DeepList = [Elem | DeepList]
� Elem = term()
� List = [Elem]

Returns a flattened version of DeepList.

flatten(DeepList, Tail) -> List

Types:

� DeepList = [Elem | DeepList]
� Elem = term()
� Tail = [term()]
� List = [Elem]

Returns a flattened version of DeepList with the tail Tail appended.

keydelete(Key, N, TupleList1) -> TupleList2

Types:

� Key = term()

215STDLIB

lists STDLIB Reference Manual

� N = 1..size(Tuple)
� TupleList1 = TupleList2 = [Tuple]
� Tuple = tuple()

Returns a copy of TupleList1 where the first occurrence of a tuple whose Nth element
is Key is deleted, if present.

keymember(Key, N, TupleList) -> bool()

Types:

� Key = term()
� N = 1..size(Tuple)
� TupleList = [Tuple]
� Tuple = tuple()

Returns true if there is a tuple in TupleList whose Nth element is Key, otherwise
false.

keymerge(N, TupleList1, TupleList2) -> TupleList3

Types:

� N = 1..size(Tuple)
� TupleList1 = TupleList2 = TupleList3 = [Tuple]
� Tuple = tuple()

Returns the sorted list formed by merging TupleList1 and TupleList2. The sorting is
performed on the Nth element of each tuple. Both TupleList1 and TupleList2 must
be key-sorted prior to evaluating this function. When two keys are equal, elements
from TupleList1 are picked before elements from TupleList2.

keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2

Types:

� Key = term()
� N = 1..size(Tuple)
� TupleList1 = TupleList2 = [Tuple]
� NewTuple = Tuple = tuple()

Returns a copy of TupleList1, where the first occurrence of a tuple whose Nth
element is Key, if present, is replaced with NewTuple.

keysearch(Key, N, TupleList) -> fvalue, Tupleg | false

Types:

� Key = term()
� N = 1..size(Tuple)
� TupleList = [Tuple]
� Tuple = tuple()

Searches the list of the tuples TupleList for a tuple whose Nth element is Key. Returns
fvalue, Tupleg if such a tuple is found, or false otherwise.

keysort(N, TupleList1) -> TupleList2

216 STDLIB

STDLIB Reference Manual lists

Types:

� N = 1..size(Tuple)
� TupleList1 = TupleList2 = [Tuple]
� Tuple = tuple()

Returns a list containing the sorted elements of TupleList1. Sorting is performed on
the Nth element of the tuples.

last(List) -> Last

Types:

� List = [term()]
� Last = term()

Returns the last element in List.

max(List) -> Max

Types:

� List = [term()]
� Max = term()

Returns the maximum element of List.

member(Elem, List) -> bool()

Types:

� Elem = term()
� List = [term()]

Returns true if Elem is an element of List, otherwise false.

merge(ListOfLists) -> List1

Types:

� ListOfLists = [List]
� List = List1 = [term()]

Returns the sorted list formed by merging all the sub-lists of ListOfLists. All sub-lists
must be sorted prior to evaluating this function.

merge(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns the sorted list formed by merging List1 and List2. Both List1 and List2
must be sorted prior to evaluating this function.

merge(Fun, List1, List2) -> List3

Types:

� Fun = fun(A, B) -> bool()
� List1 = [A]
� List2 = [B]

217STDLIB

lists STDLIB Reference Manual

� List3 = [A | B]
� A = B = term()

Returns the sorted list formed by merging List1 and List2. Both List1 and List2
must be sorted according to the ordering function Fun prior to evaluating this function.
Fun(A, B) should return true if A comes before B in the ordering, false otherwise.

merge3(List1, List2, List3) -> List4

Types:

� List1 = List2 = List3 = List4 = [term()]

Returns the sorted list formed by merging List1, List2 and List3. All of List1, List2
and List3 must be sorted prior to evaluating this function.

min(List) -> Min

Types:

� List = [term()]
� Min = term()

Returns the minimum element of List.

nth(N, List) -> Elem

Types:

� N = int()
� List = [term()]
� Elem = term()

Returns the Nth element of List. For example:

> lists:nth(3, [a, b, c, d, e]).
c

nthtail(N, List1) -> Tail

Types:

� N = int()
� List1 = Tail = [term()]

Returns the Nth tail of List. For example:

> lists:nthtail(3, [a, b, c, d, e]).
[d,e]

prefix(List1, List2) -> bool()

Types:

� List1 = List2 = [term()]

Returns true if List1 is a prefix of List2, otherwise false.

reverse(List1) -> List2

218 STDLIB

STDLIB Reference Manual lists

Types:

� List1 = List2 = [term()]

Returns a list with the top level elements in List1 in reverse order.

reverse(List1, Tail) -> List2

Types:

� List1 = Tail = List2 = [term()]

Returns a list with the top level elements in List1 in reverse order, with the tail Tail
appended. For example:

> lists:reverse([1, 2, 3, 4], [a, b, c]).
[4,3,2,1,a,b,c]

seq(From, To) -> Seq

seq(From, To, Incr) -> Seq

Types:

� From = To = Incr = int()
� Seq = [int()]

Returns a sequence of integers which starts with From and contains the successive
results of adding Incr to the previous element, until To has been reached or passed (in
the latter case, To is not an element of the sequence). Incr defaults to 1.

Limitations: A failure will occur if To < From and Incr is positive, or if To > From
and Incr is negative, or if Incr == 0 and From /= To.

Examples:

> lists:seq(1, 10).
[1,2,3,4,5,6,7,8,9,10]
> lists:seq(1, 20, 3).
[1,4,7,10,13,16,19]
> lists:seq(1, 1, 0).
[1]

sort(List1) -> List2

Types:

� List1 = List2 = [term()]

Returns a list containing the sorted elements of List1.

sort(Fun, List1) -> List2

Types:

� Fun = fun(Elem1, Elem2) -> bool()
� Elem1 = Elem2 = term()
� List1 = List2 = [term()]

219STDLIB

lists STDLIB Reference Manual

Returns a list containing the sorted elements of List1, according to the ordering
function Fun. Fun(A, B) should return true if A comes before B in the ordering, false
otherwise.

split(N, List1) -> fList2, List3g

Types:

� N = 1..length(List1)
� List1 = List2 = List3 = [term()]

Splits List1 into List2 and List3. List2 contains the first N elements and List3 the
rest of the elements.

sublist(List1, N) -> List2

Types:

� List1 = List2 = [term()]
� N = int()

Returns the first N elements of List1. It is not an error for N to exceed the length of the
list - in that case the whole list is returned.

sublist(List1, Start, Length) -> List2

Types:

� List1 = List2 = [term()]
� Start = Length = int()

Returns the sub-list of List1 starting at Start and of length Length. It is not an error if
Start > length(List1) or if (Start+Length) > length(List1.

> lists:sublist([1,2,3,4], 2, 2).
[2,3]
> lists:sublist([1,2,3,4], 2, 5).
[2,3,4]
> lists:sublist([1,2,3,4], 5, 2).
[]

subtract(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns a new list List3 which is a copy of List1, subjected to the following
procedure: for each element in List2, its first occurrence in List1 is removed. For
example:

> lists:subtract("123212", "212").
"312".

lists:subtract(A,B) is equivalent to A -- B.

suffix(List1, List2) -> bool()

220 STDLIB

STDLIB Reference Manual lists

Returns true if List1 is a suffix of List2, otherwise false.

sum(List) -> number()

Types:

� List = [number()]

Returns the sum of the elements in List.

ukeymerge(N, TupleList1, TupleList2) -> TupleList3

Types:

� N = 1..size(Tuple)
� TupleList1 = TupleList2 = TupleList3 = [Tuple]
� Tuple = tuple()

Returns the sorted list formed by merging TupleList1 and TupleList2 while removing
consecutive duplicates. The sorting is performed on the Nth element of each tuple.
Both TupleList1 and TupleList2 must be key-sorted and contain no duplicates prior
to evaluating this function. When two keys are equal, elements from TupleList1 are
picked before elements from TupleList2.

ukeysort(N, TupleList1) -> TupleList2

Types:

� N = 1..size(Tuple)
� TupleList1 = TupleList2 = [Tuple]
� Tuple = tuple()

Returns a list containing the sorted elements of TupleList1 with consecutive duplicates
removed. Sorting is performed on the Nth element of the tuples.

umerge(ListOfLists) -> List1

Types:

� ListOfLists = [List]
� List = List1 = [term()]

Returns the sorted list formed by merging all the sub-lists of ListOfLists while
removing duplicates. All sub-lists must be sorted and contain no duplicates prior to
evaluating this function.

umerge(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns the sorted list formed by merging List1 and List2 while removing duplicates.
Both List1 and List2 must be sorted and contain no duplicates prior to evaluating this
function.

umerge(Fun, List1, List2) -> List3

Types:

� Fun = fun(A, B) -> bool()

221STDLIB

lists STDLIB Reference Manual

� List1 = [A]
� List2 = [B]
� List3 = [A | B]
� A = B = term()

Returns the sorted list formed by merging List1 and List2 while removing consecutive
duplicates. Both List1 and List2 must be sorted according to the ordering function
Fun and contain no duplicates prior to evaluating this function. Fun(A, B) should
return true if A equals or comes before B in the ordering, false otherwise.

umerge3(List1, List2, List3) -> List4

Types:

� List1 = List2 = List3 = List4 = [term()]

Returns the sorted list formed by merging List1, List2 and List3 while removing
duplicates. All of List1, List2 and List3 must be sorted and contain no duplicates
prior to evaluating this function.

unzip(List1) -> fList2, List3g

Types:

� List1 = [fX, Yg]
� List2 = [X]
� List3 = [Y]
� X = Y = term()

“Unzips” a list of two-tuples into two lists, where the first list contains the first element
of each tuple, and the second list contains the second element of each tuple.

unzip3(List1) -> fList2, List3, List4g

Types:

� List1 = [fX, Y, Zg]
� List2 = [X]
� List3 = [Y]
� List4 = [Z]
� X = Y = Z = term()

“Unzips” a list of three-tuples into three lists, where the first list contains the first
element of each tuple, the second list contains the second element of each tuple, and
the third list contains the third element of each tuple.

usort(List1) -> List2

Types:

� List1 = List2 = [term()]

Returns a list containing the sorted elements of List1 without duplicates.

usort(Fun, List1) -> List2

Types:

� Fun = fun(Elem1, Elem2) -> bool()

222 STDLIB

STDLIB Reference Manual lists

� Elem1 = Elem2 = term()
� List1 = List2 = [term()]

Returns a list containing the sorted elements of List1 with consecutive duplicates
removed, according to the ordering function Fun. Fun(A, B) should return true if A
equals or comes before B in the ordering, false otherwise.

zip(List1, List2) -> List3

Types:

� List1 = [X]
� List2 = [Y]
� List3 = [fX, Yg]
� X = Y = term()

“Zips” two lists of equal length into one list of two-tuples, where the first element of
each tuple is taken from the first list and the second element is taken from
corresponding element in the second list.

zip3(List1, List2, List3) -> List4

Types:

� List1 = [X]
� List2 = [Y]
� List3 = [Z]
� List3 = [fX, Y, Zg]
� X = Y = Z = term()

“Zips” three lists of equal length into one list of three-tuples, where the first element of
each tuple is taken from the first list, the second element is taken from corresponding
element in the second list, and the third element is taken from the corresponding
element in the third list.

zipwith(Combine, List1, List2) -> List3

Types:

� Combine = fun(X, Y) -> T
� List1 = [X]
� List2 = [Y]
� List3 = [T]
� X = Y = T = term()

Combine the elements of two lists of equal length into one list. For each pair X, Y of
list elements from the two lists, the element in the result list will be Combine(X, Y).

zipwith(fun(X, Y) -> fX,Yg end, List1, List2) is equivalent to zip(List1,
List2).

Examples:

> lists:zipwith(fun(X, Y) -> X+Y end, [1,2,3], [4,5,6]).
[5,7,9]

zipwith3(Combine, List1, List2, List3) -> List4

223STDLIB

lists STDLIB Reference Manual

Types:

� Combine = fun(X, Y, Z) -> T
� List1 = [X]
� List2 = [Y]
� List3 = [Z]
� List4 = [T]
� X = Y = Z = T = term()

Combine the elements of three lists of equal length into one list. For each triple X, Y,
Z of list elements from the three lists, the element in the result list will be Combine(X,
Y, Z).

zipwith3(fun(X, Y, Z) -> fX,Y,Zg end, List1, List2, List3) is equivalent to
zip3(List1, List2, List3).

Examples:

> lists:zipwith3(fun(X, Y, Z) -> X+Y+Z end, [1,2,3], [4,5,6], [7,8,9]).
[12,15,18]
> lists:zipwith3(fun(X, Y, Z) -> [X,Y,Z] end, [a,b,c], [x,y,z], [1,2,3]).
[[a,x,1],[b,y,2],[c,z,3]]

all(Pred, List) -> bool()

Types:

� Pred = fun(Elem) -> bool()
� Elem = term()
� List = [term()]

Returns true if Pred(Elem) returns true for all elements Elem in List, otherwise
false.

any(Pred, List) -> bool()

Types:

� Pred = fun(Elem) -> bool()
� Elem = term()
� List = [term()]

Returns true if Pred(Elem) returns true for at least one element Elem in List.

dropwhile(Pred, List1) -> List2

Types:

� Pred = fun(Elem) -> bool()
� Elem = term()
� List1 = List2 = [term()]

Drops elements Elem from List1 while Pred(Elem) returns true and returns the
remaining list.

filter(Pred, List1) -> List2

Types:

224 STDLIB

STDLIB Reference Manual lists

� Pred = fun(Elem) -> bool()
� Elem = term()
� List1 = List2 = [term()]

List2 is a list of all elements Elem in List1 for which Pred(Elem) returns true.

flatmap(Fun, List1) -> List2

Types:

� Fun = fun(A) -> B
� List1 = [A]
� List2 = [B]
� A = B = term()

flatmap behaves as if it had been defined as follows:

flatmap(Fun, List1) ->
append(map(Fun, List1))

foldl(Fun, Acc0, List) -> Acc1

Types:

� Fun = fun(Elem, AccIn) -> AccOut
� Elem = term()
� Acc0 = Acc1 = AccIn = AccOut = term()
� List = [term()]

Calls Fun(Elem, AccIn) on successive elements A of List, starting with AccIn ==
Acc0. Fun/2 must return a new accumulator which is passed to the next call. The
function returns the final value of the accumulator. Acc0 is returned if the list is empty.
For example:

> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15
> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

foldr(Fun, Acc0, List) -> Acc1

Types:

� Fun = fun(Elem, AccIn) -> AccOut
� Elem = term()
� Acc0 = Acc1 = AccIn = AccOut = term()
� List = [term()]

Like foldl/3, but the list is traversed from right to left. For example:

> P = fun(A, AccIn) -> io:format("~p ", [A]), AccIn end.
#Fun<erl eval.12.2225172>
> lists:foldl(P, void, [1,2,3]).
1 2 3 void
> lists:foldr(P, void, [1,2,3]).
3 2 1 void

225STDLIB

lists STDLIB Reference Manual

foldl/3 is tail recursive and would usually be preferred to foldr/3.

foreach(Fun, List) -> void()

Types:

� Fun = fun(Elem) -> void()
� Elem = term()
� List = [term()]

Calls Fun(Elem) for each element Elem in List. This function is used for its side effects
and the evaluation order is defined to be the same as the order of the elements in the
list.

map(Fun, List1) -> List2

Types:

� Fun = fun(A) -> B
� List1 = [A]
� List2 = [B]
� A = B = term()

Takes a function from As to Bs, and a list of As and produces a list of Bs by applying the
function to every element in the list. This function is used to obtain the return values.
The evaluation order is implementation dependent.

mapfoldl(Fun, Acc0, List1) -> fList2, Acc1g

Types:

� Fun = fun(A, AccIn) -> fB, AccOutg
� Acc0 = Acc1 = AccIn = AccOut = term()
� List1 = [A]
� List2 = [B]
� A = B = term()

mapfold combines the operations of map/2 and foldl/3 into one pass. An example,
summing the elements in a list and double them at the same time:

> lists:mapfoldl(fun(X, Sum) -> f2*X, X+Sumg end,
0, [1,2,3,4,5]).

f[2,4,6,8,10],15g

mapfoldr(Fun, Acc0, List1) -> fList2, Acc1g

Types:

� Fun = fun(A, AccIn) -> fB, AccOutg
� Acc0 = Acc1 = AccIn = AccOut = term()
� List1 = [A]
� List2 = [B]
� A = B = term()

mapfold combines the operations of map/2 and foldr/3 into one pass.

226 STDLIB

STDLIB Reference Manual lists

partition(Pred, List) -> fSatisfying, NonSatisfyingg

Types:

� Pred = fun(Elem) -> bool()
� Elem = term()
� List = Satisfying = NonSatisfying = [term()]

Partitions List into two lists, where the first list contains all elements for which
Pred(Elem) returns true, and the second list contains all elements for which
Pred(Elem) returns false.

Examples:

> lists:partition(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
f[1,3,5,7],[2,4,6]g
> lists:partition(fun(A) -> is atom(A) end, [a,b,1,c,d,2,3,4,e]).
f[a,b,c,d,e],[1,2,3,4]g

See also splitwith/2 for a different way to partition a list.

splitwith(Pred, List) -> fList1, List2g

Types:

� Pred = fun(Elem) -> bool()
� Elem = term()
� List = List1 = List2 = [term()]

Partitions List into two lists according to Pred. splitwith/2 behaves as if it is defined
as follows:

splitwidth(Pred, List) ->
{takewhile(Pred, List), dropwhile(Pred, List)}.

Examples:

> lists:splitwith(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
f[1],[2,3,4,5,6,7]g
> lists:splitwith(fun(A) -> is atom(A) end, [a,b,1,c,d,2,3,4,e]).
f[a,b],[1,c,d,2,3,4,e]g

See also partition/2 for a different way to partition a list.

takewhile(Pred, List1) -> List2

Types:

� Pred = fun(Elem) -> bool()
� Elem = term()
� List1 = List2 = [term()]

Takes elements Elem from List1 while Pred(Elem) returns true, that is, the function
returns the longest prefix of the list for which all elements satisfy the predicate.

227STDLIB

log mf h STDLIB Reference Manual

log mf h
Erlang Module

The log mf h is a gen event handler module which can be installed in any gen event
process. It logs onto disk all events which are sent to an event manager. Each event is
written as a binary which makes the logging very fast. However, a tool such as the
Report Browser (rb) must be used in order to read the files. The events are written to
multiple files. When all files have been used, the first one is re-used and overwritten.
The directory location, the number of files, and the size of each file are configurable.
The directory will include one file called index, and report files 1, 2,

Exports

init(Dir, MaxBytes, MaxFiles)

init(Dir, MaxBytes, MaxFiles, Pred) -> Args

Types:

� Dir = string()
� MaxBytes = integer()
� MaxFiles = 0 < integer() < 256
� Pred = fun(Event) -> boolean()
� Event = term()
� Args = args()

Initiates the event handler. This function returns Args, which should be used in a call to
gen event:add handler(EventMgr, log mf h, Args).

Dir specifies which directory to use for the log files. MaxBytes specifies the size of each
individual file. MaxFiles specifies how many files are used. Pred is a predicate function
used to filter the events. If no predicate function is specified, all events are logged.

See Also

gen event(3) [page 167], rb(3)

228 STDLIB

STDLIB Reference Manual math

math
Erlang Module

This module provides an interface to a number of mathematical functions.

Note:
Not all functions are implemented on all platforms. In particular, the erf/1 and
erfc/1 functions are not implemented on Windows.

Exports

pi() -> float()

A useful number.

sin(X)

cos(X)

tan(X)

asin(X)

acos(X)

atan(X)

atan2(Y, X)

sinh(X)

cosh(X)

tanh(X)

asinh(X)

acosh(X)

atanh(X)

exp(X)

log(X)

log10(X)

pow(X, Y)

sqrt(X)

Types:

� X = Y = number()

A collection of math functions which return floats. Arguments are numbers.

229STDLIB

math STDLIB Reference Manual

erf(X) -> float()

Types:

� X = number()

Returns the error function of X, where

erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.

erfc(X) -> float()

Types:

� X = number()

erfc(X) returns 1.0 - erf(X), computed by methods that avoid cancellation for large
X.

Bugs

As these are the C library, the bugs are the same.

230 STDLIB

STDLIB Reference Manual ms transform

ms transform
Erlang Module

This module implements the parse transform that makes calls to ets and dbg:fun2ms/1
translate into literal match specifications. It also implements the back end for the same
functions when called from the Erlang shell.

The translations from fun's to match specs is accessed through the two “pseudo
functions” ets:fun2ms/1 and dbg:fun2ms/1.

Actually this introduction is more or less an introduction to the whole concept of match
specifications. Since everyone trying to use ets:select or dbg seems to end up reading
this page, it seems in good place to explain a little more than just what this module does.

There are some caveats one should be aware of, please read through the whole manual
page if it's the first time you're using the transformations.

Match specifications are used more or less as filters. They resemble usual Erlang
matching in a list comprehension or in a fun used in conjunction with lists:foldl etc.
The syntax of pure match specifications is somewhat awkward though, as they are made
up purely by Erlang terms and there is no syntax in the language to make the match
specifications more readable.

As the match specifications execution and structure is quite like that of a fun, it would
for most programmers be more straight forward to simply write it using the familiar fun
syntax and having that translated into a match specification automatically. Of course a
real fun is more powerful than the match specifications allow, but bearing the match
specifications in mind, and what they can do, it's still more convenient to write it all as a
fun. This module contains the code that simply translates the fun syntax into
match spec terms.

Let's start with an ets example. Using ets:select and a match specification, one can
filter out rows of a table and construct a list of tuples containing relevant parts of the
data in these rows. Of course one could use ets:foldl instead, but the select call is far
more efficient. Without the translation, one has to struggle with writing match
specifications terms to accommodate this, or one has to resort to the less powerful
ets:match(object) calls, or simply give up and use the more inefficient method of
ets:foldl. Using the ets:fun2ms transformation, a ets:select call is at least as easy
to write as any of the alternatives.

As an example, consider a simple table of employees:

-record(emp, {empno, %Employee number as a string, the key
surname, %Surname of the employee
givenname, %Given name of employee
dept, %Department one of {dev,sales,prod,adm}
empyear}). %Year the employee was employed

We create the table using:

ets:new(emp_tab,[{keypos,#emp.empno},named_table,ordered_set]).

231STDLIB

ms transform STDLIB Reference Manual

Let's also fill it with some randomly chosen data for the examples:

[{emp,"011103","Black","Alfred",sales,2000},
{emp,"041231","Doe","John",prod,2001},
{emp,"052341","Smith","John",dev,1997},
{emp,"076324","Smith","Ella",sales,1995},
{emp,"122334","Weston","Anna",prod,2002},
{emp,"535216","Chalker","Samuel",adm,1998},
{emp,"789789","Harrysson","Joe",adm,1996},
{emp,"963721","Scott","Juliana",dev,2003},
{emp,"989891","Brown","Gabriel",prod,1999}]

Now, the amount of data in the table is of course to small to justify complicated ets
searches, but on real tables, using select to get exactly the data you want will increase
efficiency remarkably.

Lets say for example that we'd want the employee numbers of everyone in the sales
department. One might use ets:match in such a situation:

1> ets:match(emp_tab, {’_’, ’$1’, ’_’, ’_’, sales, ’_’}).
[["011103"],["076324"]]

Even though ets:match does not require a full match specification, but a simpler type,
it's still somewhat unreadable, and one has little control over the returned result, it's
always a list of lists. OK, one might use ets:foldl or ets:foldr instead:

ets:foldr(fun(#emp{empno = E, dept = sales},Acc) -> [E | Acc];
(_,Acc) -> Acc

end,
[],
emp_tab).

Running that would result in ["011103","076324"] , which at least gets rid of the
extra lists. The fun is also quite straightforward, so the only problem is that all the data
from the table has to be transferred from the table to the calling process for filtering.
That's inefficient compared to the ets:match call where the filtering can be done
“inside” the emulator and only the result is transferred to the process. Remember that
ets tables are all about efficiency, if it wasn't for efficiency all of ets could be
implemented in Erlang, as a process receiving requests and sending answers back. One
uses ets because one wants performance, and therefore one wouldn't want all of the
table transferred to the process for filtering. OK, let's look at a pure ets:select call
that does what the ets:foldr does:

ets:select(emp_tab,[{#emp{empno = ’$1’, dept = sales, _=’_’},[],[’$1’]}]).

Even though the record syntax is used, it's still somewhat hard to read and even harder
to write. The first element of the tuple, #empfempno = ’$1’, dept = sales, =’ ’g
tells what to match, elements not matching this will not be returned at all, as in the
ets:match example. The second element, the empty list is a list of guard expressions,
which we need none, and the third element is the list of expressions constructing the
return value (in ets this almost always is a list containing one single term). In our case
’$1’ is bound to the employee number in the head (first element of tuple), and hence it
is the employee number that is returned. The result is ["011103","076324"], just as in
the ets:foldr example, but the result is retrieved much more efficiently in terms of
execution speed and memory consumption.

We have one efficient but hardly readable way of doing it and one inefficient but fairly
readable (at least to the skilled Erlang programmer) way of doing it. With the use of

232 STDLIB

STDLIB Reference Manual ms transform

ets:fun2ms, one could have something that is as efficient as possible but still is written
as a filter using the fun syntax:

-include_lib("stdlib/include/ms_transform.hrl").

% ...

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, dept = sales}) ->

E
end)).

This may not be the shortest of the expressions, but it requires no special knowledge of
match specifications to read. The fun's head should simply match what you want to
filter out and the body returns what you want returned. As long as the fun can be kept
within the limits of the match specifications, there is no need to transfer all data of the
table to the process for filtering as in the ets:foldr example. In fact it's even easier to
read then the ets:foldr example, as the select call in itself discards anything that
doesn't match, while the fun of the foldr call needs to handle both the elements
matching and the ones not matching.

It's worth noting in the above ets:fun2ms example that one needs to include
ms transform.hrl in the source code, as this is what triggers the parse transformation
of the ets:fun2ms call to a valid match specification. This also implies that the
transformation is done at compile time (except when called from the shell of course)
and therefore will take no resources at all in runtime. So although you use the more
intuitive fun syntax, it gets as efficient in runtime as writing match specifications by
hand.

Let's look at some more ets examples. Let's say one wants to get all the employee
numbers of any employee hired before the year 2000. Using ets:match isn't an
alternative here as relational operators cannot be expressed there. Once again, an
ets:foldr could do it (slowly, but correct):

ets:foldr(fun(#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc

end,
[],
emp_tab).

The result will be ["052341","076324","535216","789789","989891"], as expected.
Now the equivalent expression using a handwritten match specification would look
something like this:

ets:select(emp_tab,[{#emp{empno = ’$1’, empyear = ’$2’, _=’_’},
[{’<’, ’$2’, 2000}],
[’$1’]}]).

This gives the same result, the [f’<’, ’$2’, 2000g] is in the guard part and therefore
discards anything that does not have a empyear (bound to '$2' in the head) less than
2000, just as the guard in the foldl example. Lets jump on to writing it using
ets:fun2ms

233STDLIB

ms transform STDLIB Reference Manual

-include_lib("stdlib/include/ms_transform.hrl").

% ...

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, empyear = Y}) when Y < 2000 ->

E
end)).

Obviously readability is gained by using the parse transformation.

I'll show some more examples without the tiresome comparing-to-alternatives stuff.
Let's say we'd want the whole object matching instead of only one element. We could
of course assign a variable to every part of the record and build it up once again in the
body of the fun, but it's easier to do like this:

ets:select(emp_tab, ets:fun2ms(
fun(Obj = #emp{empno = E, empyear = Y})

when Y < 2000 ->
Obj

end)).

Just as in ordinary Erlang matching, you can bind a variable to the whole matched
object using a “match in then match”, i.e. a =. Unfortunately this is not general in fun’s
translated to match specifications, only on the “top level”, i.e. matching the whole object
arriving to be matched into a separate variable, is it allowed. For the one's used to
writing match specifications by hand, I'll have to mention that the variable A will
simply be translated into '$ '. It's not general, but it has very common usage, why it is
handled as a special, but useful, case. If this bothers you, the pseudo function object
also returns the whole matched object, see the part about caveats and limitations below.

Let's do something in the fun's body too: Let's say that someone realizes that there are
a few people having an employee number beginning with a zero (0), which shouldn't be
allowed. All those should have their numbers changed to begin with a one (1) instead
and one wants the list [f<Old empno>,<New empno>g] created:

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = [$0 | Rest] }) ->

{[$0|Rest],[$1|Rest]}
end)).

As a matter of fact, this query hit's the feature of partially bound keys in the table type
ordered set, so that not the whole table need be searched, only the part of the table
containing keys beginning with 0 is in fact looked into.

The fun of course can have several clauses, so that if one could do the following: For
each employee, if he or she is hired prior to 1997, return the tuple finventory,
<employee number>g, for each hired 1997 or later, but before 2001, return frookie,
<employee number>g, for all others return fnewbie, <employee number>g. All
except for the ones named Smith as they would be affronted by anything other than the
tag guru and that is also what's returned for their numbers; fguru, <employee
number>g:

ets:select(emp_tab, ets:fun2ms(
fun(#emp{empno = E, surname = "Smith" }) ->

{guru,E};
(#emp{empno = E, empyear = Y}) when Y < 1997 ->

{inventory, E};

234 STDLIB

STDLIB Reference Manual ms transform

(#emp{empno = E, empyear = Y}) when Y > 2001 ->
{newbie, E};

(#emp{empno = E, empyear = Y}) -> % 1997 -- 2001
{rookie, E}

end)).

The result will be:

[{rookie,"011103"},
{rookie,"041231"},
{guru,"052341"},
{guru,"076324"},
{newbie,"122334"},
{rookie,"535216"},
{inventory,"789789"},
{newbie,"963721"},
{rookie,"989891"}]

and so the Smith's will be happy...

So, what more can you do? Well, the simple answer would be; look in the
documentation of match specifications in ERTS users guide. However let's briefly go
through the most useful “built in functions” that you can use when the fun is to be
translated into a match specification by ets:fun2ms (it's worth mentioning, although it
might be obvious to some, that calling other functions than the one's allowed in match
specifications cannot be done. No “usual” Erlang code can be executed by the fun being
translated by fun2ms, the fun is after all limited exactly to the power of the match
specifications, which is unfortunate, but the price one has to pay for the execution
speed of an ets:select compared to ets:foldl/foldr).

The head of the fun is obviously a head matching (or mismatching) one parameter, one
object of the table we select from. The object is always a single variable (can be) or a
tuple, as that's what's in ets, dets and mnesia tables (the match specification returned
by ets:fun2ms can of course be used with dets:select and mnesia:select as well as
with ets:select). The use of = in the head is allowed (and encouraged) on the top
level.

The guard section can contain any guard expression of Erlang. Even the “old” type test
are allowed on the toplevel of the guard (integer(X) instead of is integer(X)). As
the new type tests (the is tests) are in practice just guard bif's they can also be called
from within the body of the fun, but so they can in ordinary Erlang code. Also
arithmetics is allowed, as well as ordinary guard bif's. Here's a list of bif's and
expressions:

� The type tests: is atom, is constant, is float, is integer, is list, is number, is pid,
is port, is reference, is tuple, is binary, is function, is record

� The boolean operators: not, and, or, andalso, orelse

� The relational operators: >, >=, <, =<, =:=, ==, =/=, /=

� Arithmetics: +, -, *, div, rem

� Bitwise operators: band, bor, bxor, bnot, bsl, bsr

� The guard bif's: abs, element, hd, length, node, round, size, tl, trunc, self

� The obsolete type test (only in guards): atom, constant, float, integer, list, number,
pid, port, reference, tuple, binary, function, record

235STDLIB

ms transform STDLIB Reference Manual

Contrary to the fact with “handwritten” match specifications, the is record guard
works as in ordinary Erlang code.

Semicolons (;) in guards are allowed, the result will be (as expected) one
“match spec-clause” for each semicolon-separated part of the guard. The semantics
beeing identical to the Erlang semantics.

The body of the fun is used to construct the resulting value. When selecting from tables
one usually just construct a suiting term here, using ordinary Erlang term construction,
like tuple parentheses, list brackets and variables matched out in the head, possibly in
conjunction with the occasional constant. Whatever expressions are allowed in guards
are also allowed here, but there are no special functions except object and bindings
(see further down), which returns the whole matched object and all known variable
bindings respectively.

The dbg variants of match specifications have an imperative approach to the match
specification body, the ets dialect hasn't. The fun body for ets:fun2ms returns the
result without side effects, and as matching (=) in the body of the match specifications is
not allowed (for performance reasons) the only thing left, more or less, is term
construction...

Let's move on to the dbg dialect, the slightly different match specifications translated by
dbg:fun2ms.

The same reasons for using the parse transformation applies to dbg, maybe even more
so as filtering using Erlang code is simply not a good idea when tracing (except
afterwards, if you trace to file). The concept is similar to that of ets:fun2ms except that
you usually use it directly from the shell (which can also be done with ets:fun2ms).

Let's manufacture a toy module to trace on

-module(toy).

-export([start/1, store/2, retrieve/1]).

start(Args) ->
toy_table = ets:new(toy_table,Args).

store(Key, Value) ->
ets:insert(toy_table,{Key,Value}).

retrieve(Key) ->
[{Key, Value}] = ets:lookup(toy_table,Key),
Value.

During model testing, the first test bails out with a fbadmatch,16g in ftoy,start,1g,
why?

We suspect the ets call, as we match hard on the return value, but want only the
particular new call with toy table as first parameter. So we start a default tracer on the
node:

1> dbg:tracer().
{ok,<0.88.0>}

And so we turn on call tracing for all processes, we are going to make a pretty restrictive
trace pattern, so there's no need to call trace only a few processes (it usually isn't):

2> dbg:p(all,call).
{ok,[{matched,nonode@nohost,25}]}

236 STDLIB

STDLIB Reference Manual ms transform

It's time to specify the filter. We want to view calls that resemble
ets:new(toy table,<something>):

3> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}

As can be seen, the fun's used with dbg:fun2ms takes a single list as parameter instead
of a single tuple. The list matches a list of the parameters to the traced function. A
single variable may also be used of course. The body of the fun expresses in a more
imperative way actions to be taken if the fun head (and the guards) matches. I return
true here, but it's only because the body of a fun cannot be empty, the return value will
be discarded.

When we run the test of our module now, we get the following trace output:

(<0.86.0>) call ets:new(toy_table,[ordered_set])

Let's play we haven't spotted the problem yet, and want to see what ets:new returns.
We do a slightly different trace pattern:

4> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> return_trace() end)).

Resulting in the following trace output when we run the test:

(<0.86.0>) call ets:new(toy_table,[ordered_set])
(<0.86.0>) returned from ets:new/2 -> 24

The call to return trace, makes a trace message appear when the function returns. It
applies only to the specific function call triggering the match specification (and
matching the head/guards of the match specification). This is the by far the most
common call in the body of a dbg match specification.

As the test now fails with fbadmatch,24g, it's obvious that the badmatch is because the
atom toy table does not match the number returned for an unnamed table. So we
spotted the problem, the table should be named and the arguments supplied by our test
program does not include named table. We rewrite the start function to:

start(Args) ->
toy_table = ets:new(toy_table,[named_table |Args]).

And with the same tracing turned on, we get the following trace output:

(<0.86.0>) call ets:new(toy_table,[named_table,ordered_set])
(<0.86.0>) returned from ets:new/2 -> toy_table

Very well. Let's say the module now passes all testing and goes into the system. After a
while someone realizes that the table toy table grows while the system is running and
that for some reason there are a lot of elements with atom's as keys. You had expected
only integer keys and so does the rest of the system. Well, obviously not all of the
system. You turn on call tracing and try to see calls to your module with an atom as the
key:

1> dbg:tracer().
{ok,<0.88.0>}
2> dbg:p(all,call).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tpl(toy,store,dbg:fun2ms(fun([A,_]) when is_atom(A) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}

237STDLIB

ms transform STDLIB Reference Manual

We use dbg:tpl here to make sure to catch local calls (let's say the module has grown
since the smaller version and we're not sure this inserting of atoms is not done locally...).
When in doubt always use local call tracing.

Let's say nothing happens when we trace in this way. Our function is never called with
these parameters. We make the conclusion that someone else (some other module) is
doing it and we realize that we must trace on ets:insert and want to see the calling
function. The calling function may be retrieved using the match specification function
caller and to get it into the trace message, one has to use the match spec function
message. The filter call looks like this (looking for calls to ets:insert):

4> dbg:tpl(ets,insert,dbg:fun2ms(fun([toy_table,{A,_}]) when is_atom(A) ->
message(caller())

end)).
{ok,[{matched,nonode@nohost,1},{saved,2}]}

The caller will now appear in the “additional message” part of the trace output, and so
after a while, the following output comes:

(<0.86.0>) call ets:insert(toy_table,{garbage,can}) ({evil_mod,evil_fun,2})

You have found out that the function evil fun of the module evil mod, with arity 2, is
the one causing all this trouble.

This was just a toy example, but it illustrated the most used calls in match specifications
for dbg The other, more esotherical calls are listed and explained in the Users guide of
the ERTS application, they really are beyond the scope of this document.

To end this chatty introduction with something more precise, here follows some parts
about caveats and restrictions concerning the fun's used in conjunction with
ets:fun2ms and dbg:fun2ms:

Warning:
To use the pseudo functions triggering the translation, one has to include the header
file ms transform.hrl in the source code. Failure to do so will possibly result in
runtime errors rather than compile time, as the expression may be valid as a plain
Erlang program without translation.

Warning:
The fun has to be literally constructed inside the parameter list to the pseudo
functions. The fun cannot be bound to a variable first and then passed to ets:fun2ms
or dbg:fun2ms, i.e this will work: ets:fun2ms(fun(A) -> A end) but not this: F =
fun(A) -> A end, ets:fun2ms(F). The later will result in a compile time error if
the header is included, otherwise a runtime error. Even if the later construction
would ever appear to work, it really doesn't, so don't ever use it.

Several restrictions apply to the fun that is being translated into a match spec. To put it
simple you cannot use anything in the fun that you cannot use in a match spec. This
means that, among others, the following restrictions apply to the fun itself:

� Functions written in Erlang cannot be called, neither local functions, global
functions or real fun's

238 STDLIB

STDLIB Reference Manual ms transform

� Everything that is written as a function call will be translated into a match spec
call to a builtin function, so that the call is list(X) will be translated to
f’is list’, ’$1’g (’$1’ is just an example, the numbering may vary). If one
tries to call a function that is not a match spec builtin, it will cause an error.

� Variables occurring in the head of the fun will be replaced by match spec variables
in the order of occurrence, so that the fragment fun(fA,B,Cg) will be replaced by
f’$1’, ’$2’, ’$3’g etc. Every occurrence of such a variable later in the
match spec will be replaced by a match spec variable in the same way, so that the
fun fun(fA,Bg) when is atom(A) -> B end will be translated into
[ff’$1’,’$2’g,[fis atom,’$1’g],[’$2’]g].

� Variables that are not appearing in the head are imported from the environment
and made into match spec const expressions. Example from the shell:

1> X = 25.
25
2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{’$1’,’$2’},[{’>’,’$1’,{const,25}}],[’$2’]}]

� Matching with = cannot be used in the body. It can only be used on the top level in
the head of the fun. Example from the shell again:

1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{’$1’,[’$2’|’$3’]},[{’>’,’$1’,’$2’}],[’$_’]}]
2> ets:fun2ms(fun({A,[B|C]=D}) when A > B -> D end).
Error: fun with head matching (’=’ in head) cannot be translated into
match_spec
{error,transform_error}
3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).
Error: fun with body matching (’=’ in body) is illegal as match_spec
{error,transform_error}

All variables are bound in the head of a match spec, so the translator can not allow
multiple bindings. The special case when matching is done on the top level makes
the variable bind to ’$ ’ in the resulting match spec, it is to allow a more natural
access to the whole matched object. The pseudo function object() could be used
instead, see below. The following expressions are translated equally:

ets:fun2ms(fun({a,_} = A) -> A end).
ets:fun2ms(fun({a,_}) -> object() end).

� The special match spec variables ’$ ’ and ’$*’ can be accessed through the
pseudo functions object() (for ’$ ’) and bindings() (for ’$*’). as an example,
one could translate the following ets:match object/2 call to a ets:select call:

ets:match_object(Table, {’$1’,test,’$2’}).

...is the same as...

ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).

(This was just an example, in this simple case the former expression is probably
preferable in terms of readability). The ets:select/2 call will conceptually look
like this in the resulting code:

ets:select(Table, [{{’$1’,test,’$2’},[],[’$_’]}]).

Matching on the top level of the fun head might feel like a more natural way to
access ’$ ’, see above.

239STDLIB

ms transform STDLIB Reference Manual

� Term constructions/literals are translated as much as is needed to get them into
valid match specs, so that tuples are made into match spec tuple constructions (a
one element tuple containing the tuple) and constant expressions are used when
importing variables from the environment. Records are also translated into plain
tuple constructions, calls to element etc. The guard test is record/2 is translated
into match spec code using the three parameter version that's built into
match specs, so that is record(A,t) is translated into fis record,’$1’,t,5g
given that the record size of record type t is 5.

� Language constructions like case, if, catch etc that are not present in
match specs are not allowed.

� If the header file ms transform.hrl is not included, the fun won't be translated,
which may result in a runtime error (depending on if the fun is valid in a pure
Erlang context). Be absolutely sure that the header is included when using ets and
dbg:fun2ms/1 in compiled code.

� If the pseudo function triggering the translation is ets:fun2ms/1, the fun's head
must contain a single variable or a single tuple. If the pseudo function is
dbg:fun2ms/1 the fun's head must contain a single variable or a single list.

The translation from fun's to match specs is done at compile time, so runtime
performance is not affected by using these pseudo functions. The compile time might
be somewhat longer though.

For more information about match specs, please read about them in ERTS users guide.

Exports

parse transform(Forms, Options) -> Forms

Types:

� Forms = Erlang abstract code format, see the erl parse module description
� Options = Option list, required but not used

Implements the actual transformation at compile time. This function is called by the
compiler to do the source code transformation if and when the ms transform.hrl
header file is included in your source code. See the ets and dbg:fun2ms/1 function
manual pages for documentation on how to use this parse transform, see the
match spec chapter in ERTS users guide for a description of match specifications.

transform from shell(Dialect,Clauses,BoundEnvironment) -> term()

Types:

� Dialect = ets | dbg
� Clauses = Erlang abstract form for a single fun
� BoundEnvironment = [fatom(), term()g, ...], list of variable bindings in the shell

environment

Implements the actual transformation when the fun2ms functions are called from the
shell. In this case the abstract form is for one single fun (parsed by the Erlang shell), and
all imported variables should be in the key-value list passed as BoundEnvironment. The
result is a term, normalized, i.e. not in abstract format.

240 STDLIB

STDLIB Reference Manual ms transform

format error(Errcode) -> ErrMessage

Types:

� Errcode = term()
� ErrMessage = string()

Takes an error code returned by one of the other functions in the module and creates a
textual description of the error. Fairly uninteresting function actually.

241STDLIB

orddict STDLIB Reference Manual

orddict
Erlang Module

Orddict implements a Key - Value dictionary. An orddict is a representation of a
dictionary, where a list of pairs is used to store the keys and values. The list is ordered
after the keys.

This module provides exactly the same interface as the module dict but with a defined
representation.

See Also

dict(3) [page 82], gb trees(3) [page 162]

242 STDLIB

STDLIB Reference Manual ordsets

ordsets
Erlang Module

Sets are collections of elements with no duplicate elements. An ordset is a
representation of a set, where an ordered list is used to store the elements of the set. An
ordered list is more efficient than an unordered list.

This module provides exactly the same interface as the module sets but with a defined
representation.

See Also

gb sets(3) [page 156], sets(3) [page 283]

243STDLIB

pg STDLIB Reference Manual

pg
Erlang Module

This (experimental) module implements process groups. A process group is a group of
processes that can be accessed by a common name. For example, a group named foobar
can include a set of processes as members of this group and they can be located on
different nodes.

When messages are sent to the named group, all members of the group receive the
message. The messages are serialized. If the process P1 sends the message M1 to the
group, and process P2 simultaneously sends message M2, then all members of the group
receive the two messages in the same order. If members of a group terminate, they are
automatically removed from the group.

This module is not complete. The module is inspired by the ISIS system and the causal
order protocol of the ISIS system should also be implemented. At the moment, all
messages are serialized by sending them through a group master process.

Exports

create(PgName) -> ok | ferror, Reasong

Types:

� PgName = term()
� Reason = already created | term()

Creates an empty group named PgName on the current node.

create(PgName, Node) -> ok | ferror, Reasong

Types:

� PgName = term()
� Node = node()
� Reason = already created | term()

Creates an empty group named PgName on the node Node.

join(PgName, Pid) -> Members

Types:

� PgName = term()
� Pid = pid()
� Members = [pid()]

244 STDLIB

STDLIB Reference Manual pg

Joins the pid Pid to the process group PgName. Returns a list of all old members of the
group.

send(PgName, Msg) -> void()

Types:

� PgName = Msg = term()

Sends the tuple fpg message, From, PgName, Msgg to all members of the process
group PgName.

Failure: fbadarg, fPgName, Msggg if PgName is not a process group (a globally
registered name).

esend(PgName, Msg) -> void()

Types:

� PgName = Msg = term()

Sends the tuple fpg message, From, PgName, Msgg to all members of the process
group PgName, except ourselves.

Failure: fbadarg, fPgName, Msggg if PgName is not a process group (a globally
registered name).

members(PgName) -> Members

Types:

� PgName = term()
� Members = [pid()]

Returns a list of all members of the process group PgName.

245STDLIB

pool STDLIB Reference Manual

pool
Erlang Module

pool can be used to run a set of Erlang nodes as a pool of computational processors. It is
organized as a master and a set of slave nodes and includes the following features:

� The slave nodes send regular reports to the master about their current load.

� Queries can be sent to the master to determine which node will have the least load.

The BIF statistics(run queue) is used for estimating future loads. It returns the
length of the queue of ready to run processes in the Erlang runtime system.

The slave nodes are started with the slave module. This effects, tty IO, file IO, and
code loading.

If the master node fails, the entire pool will exit.

Exports

start(Name) ->

start(Name, Args) -> Nodes

Types:

� Name = atom()
� Args = string()
� Nodes = [node()]

Starts a new pool. The file .hosts.erlang is read to find host names where the pool
nodes can be started. See section Files [page 247] below. The start-up procedure fails if
the file is not found.

The slave nodes are started with slave:start/2,3, passing along Name and, if provided,
Args. Name is used as the first part of the node names, Args is used to specify command
line arguments. See slave(3) [page 296].

Access rights must be set so that all nodes in the pool have the authority to access each
other.

The function is synchronous and all the nodes, as well as all the system servers, are
running when it returns a value.

attach(Node) -> allready attached | attached

Types:

� Node = node()

246 STDLIB

STDLIB Reference Manual pool

This function ensures that a pool master is running and includes Node in the pool
master's pool of nodes.

stop() -> stopped

Stops the pool and kills all the slave nodes.

get nodes() -> Nodes

Types:

� Nodes = [node()]

Returns a list of the current member nodes of the pool.

pspawn(Mod, Fun, Args) -> pid()

Types:

� Mod = Fun = atom()
� Args = [term()]

Spawns a process on the pool node which is expected to have the lowest future load.

pspawn link(Mod, Fun, Args) -> pid()

Types:

� Mod = Fun = atom()
� Args = [term()]

Spawn links a process on the pool node which is expected to have the lowest future
load.

get node() -> node()

Returns the node with the expected lowest future load.

Files

.hosts.erlang is used to pick hosts where nodes can be started. See [net adm(3)] for
information about format and location of this file.

$HOME/.erlang.slave.out.HOST is used for all additional IO that may come from the
slave nodes on standard IO. If the start-up procedure does not work, this file may
indicate the reason.

247STDLIB

proc lib STDLIB Reference Manual

proc lib
Erlang Module

The proc lib module is used to initialize some useful information when a process
starts. The registered names, or the process identities, of the parent process, and the
parent ancestors, are stored together with information about the function initially called
in the process.

A crash report is generated if the process terminates with a reason other than normal or
shutdown. shutdown is used to terminate an abnormal process in a controlled manner.
A crash report contains the previously stored information such as ancestors and initial
function, the termination reason, and information regarding other processes which
terminate as a result of this process terminating.

The crash report is sent to the error logger. An event handler has to be installed in
the error logger event manager in order to handle these reports. The crash report is
tagged crash report and the format/1 function should be called in order to format the
report.

Exports

spawn(Fun) -> Pid

spawn(Node,Fun) -> Pid

spawn(Module,Func,Args) -> Pid

spawn(Node,Module,Func,Args) -> Pid

Types:

� Fun = fun() -> void()
� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Node = atom()
� Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned using
the spawn BIFs. The process can be spawned on another Node.

spawn link(Fun) -> Pid

spawn link(Node,Fun) -> Pid

spawn link(Module,Func,Args) -> Pid

spawn link(Node,Module,Func,Args) -> Pid

Types:

248 STDLIB

STDLIB Reference Manual proc lib

� Fun = fun() -> void()
� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Node = atom()
� Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned using
the spawn link BIFs. The process can be spawned on another Node.

spawn opt(Fun,Opts) -> Pid

spawn opt(Node,Fun,Opts) -> Pid

spawn opt(Module,Func,Args,Opts) -> Pid

spawn opt(Node,Module,Func,Args,Opts) -> Pid

Types:

� Fun = fun() -> void()
� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Node = atom()
� Opts = list()
� Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned using
the spawn opt BIFs. The process can be spawned on another Node.

start(Module,Func,Args) -> Ret

start(Module,Func,Args,Time) -> Ret

start(Module,Func,Args,Time,SpawnOpts) -> Ret

start link(Module,Func,Args) -> Ret

start link(Module,Func,Args,Time) -> Ret

start link(Module,Func,Args,Time,SpawnOpts) -> Ret

Types:

� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Time = integer >= 0 | infinity
� SpawnOpts = list()
� Ret = term() | ferror, Reasong

249STDLIB

proc lib STDLIB Reference Manual

Starts a new process synchronously. Spawns the process using proc lib:spawn/3 or
proc lib:spawn link/3, and waits for the process to start. When the process has
started, it must call proc lib:init ack(Parent, Ret) or proc lib:init ack(Ret),
where Parent is the process that evaluates start. At this time, Ret is returned from
start.

If the start link function is used and the process crashes before proc lib:init ack is
called, ferror, Reasong is returned if the calling process traps exits.

If Time is specified as an integer, this function waits for Time milliseconds for the process
to start (proc lib:init ack). If it has not started within this time, ferror, timeoutg
is returned, and the process is killed.

The SpawnOpts argument, if given, will be passed as the last argument to the
spawn opt/4 BIF. Refer to the erlang module for information about the spawn opt
options.

init ack(Parent, Ret) -> void()

init ack(Ret) -> void()

Types:

� Parent = pid()
� Ret = term()

This function is used by a process that has been started by a proc lib:start function.
It tells Parent that the process has initialized itself, has started, or has failed to initialize
itself. The init ack/1 function uses the parent value previously stored by the
proc lib:start function. If the init ack function is not called (e.g. if the init function
crashes) and proc lib:start/3 is used, that function never returns and the parent
hangs forever. This can be avoided by using a time out in the call to start, or by using
start link.

The following example illustrates how this function and proc lib:start link are used.

-module(my_proc).
-export([start_link/0]).
start_link() ->

proc_lib:start_link(my_proc, init, [self()]).
init(Parent) ->

case do_initialization() of
ok ->

proc_lib:init_ack(Parent, {ok, self()});
{error, Reason} ->

exit(Reason)
end,
loop().

loop() ->
receive

....

format(CrashReport) -> string()

Types:

� CrashReport = void()

250 STDLIB

STDLIB Reference Manual proc lib

Formats a previously generated crash report. The formatted report is returned as a
string.

initial call(PidOrPinfo) -> fModule,Function,Argsg | Fun | false

Types:

� PidOrPinfo = pid() | fX,Y,Zg | ProcInfo
� X = Y = Z = int()
� ProcInfo = [void()]
� Module = atom()
� Fun = fun() -> void()
� Function = atom()
� Args = [term()]

Extracts the initial call of a process that was spawned using the spawn functions
described above. PidOrPinfo can either be a Pid, an integer tuple (from which a pid
can be created), or the process information of a process (fetched through an
erlang:process info/1 function call).

translate initial call(PidOrPinfo) -> fModule,Function,Arityg | Fun

Types:

� PidOrPinfo = pid() | fX,Y,Zg | ProcInfo
� X = Y = Z = int()
� ProcInfo = [void()]
� Module = atom()
� Fun = fun() -> void()
� Function = atom()
� Arity = int()

Extracts the initial call of a process which was spawned using the spawn functions
described above. If the initial call is to one of the system defined behaviours such as
gen server or gen event, it is translated to more useful information. If a gen server is
spawned, the returned Module is the name of the callback module and Function is init
(the function that initiates the new server).

A supervisor and a supervisor bridge are also gen server processes. In order to
return information that this process is a supervisor and the name of the call-back
module, Module is supervisor and Function is the name of the supervisor callback
module. Arity is 1 since the init/1 function is called initially in the callback module.

By default, fproc lib,init p,5g is returned if no information about the initial call can
be found. It is assumed that the caller knows that the process has been spawned with
the proc lib module.

PidOrPinfo can either be a Pid, an integer tuple (from which a pid can be created), or
the process information of a process (fetched through an erlang:process info/1
function call).

This function is used by the c:i/0 and c:regs/0 functions in order to present process
information.

hibernate(Module, Function, Arguments)

Types:

251STDLIB

proc lib STDLIB Reference Manual

� Module = atom()
� Function = atom()
� Arguments = [term()]

hibernate/3 gives a way to put a process started using one of the functions in the
proc lib module into a wait state where its memory allocation has been reduced as
much as possible, which is useful if the process does not expect to receive any messages
in the near future.

The process will be awaken when a message is sent to it, and control will resume in
Module:Function with the arguments given by ArgumentList.

If the process has any message in its message queue, the process will be awaken
immediately in the same way as described above.

Note: The actual work is done by the erlang:hibernate/3 BIF. To ensure that
exception handling and logging continues to work in a process started by proc lib,
always use proc lib:hibernate rather than erlang:hibernate/3.

See Also

error logger(3)

252 STDLIB

STDLIB Reference Manual proplists

proplists
Erlang Module

Property lists are ordinary lists containing entries in the form of either tuples, whose
first elements are keys used for lookup and insertion, or atoms, which work as shorthand
for tuples fAtom, trueg. (Other terms are allowed in the lists, but are ignored by this
module.) If there is more than one entry in a list for a certain key, the first occurrence
normally overrides any later (irrespective of the arity of the tuples).

Property lists are useful for representing inherited properties, such as options passed to a
function where a user may specify options overriding the default settings, object
properties, annotations, etc.

Exports

append values(Key, List) -> List

Types:

� Key = term()
� List = [term()]

Similar to get all values/2, but each value is wrapped in a list unless it is already
itself a list, and the resulting list of lists is concatenated. This is often useful for
“incremental” options; e.g., append values(a, [fa, [1,2]g, fb, 0g, fa, 3g, fc,
-1g, fa, [4]g]) will return the list [1,2,3,4].

compact(List) -> List

Types:

� List = [term()]

Minimizes the representation of all entries in the list. This is equivalent to
[property(P) || P <- List].

See also: property/1, unfold/1.

delete(Key, List) -> List

Types:

� Key = term()
� List = [term()]

Deletes all entries associated with Key from List.

expand(Expansions, List) -> List

Types:

253STDLIB

proplists STDLIB Reference Manual

� Key = term()
� Expansions = [fProperty,[term()]g]
� Property = atom() | tuple()

Expands particular properties to corresponding sets of properties (or other terms). For
each pair fProperty, Expansiong in Expansions, if E is the first entry in List with
the same key as Property, and E and Property have equivalent normal forms, then E is
replaced with the terms in Expansion, and any following entries with the same key are
deleted from List.

For example, the following expressions all return [fie, bar, baz, fum]:

expand([{foo, [bar, baz]}],
[fie, foo, fum])
expand([{{foo, true}, [bar, baz]}],
[fie, foo, fum])
expand([{{foo, false}, [bar, baz]}],
[fie, {foo, false}, fum])

However, no expansion is done in the following call:

expand([{{foo, true}, [bar, baz]}],
[{foo, false}, fie, foo, fum])

because ffoo, falseg shadows foo.

Note that if the original property term is to be preserved in the result when expanded,
it must be included in the expansion list. The inserted terms are not expanded
recursively. If Expansions contains more than one property with the same key, only the
first occurrance is used.

See also: normalize/2.

get all values(Key, List) -> [term()]

Types:

� Key = term()
� List = [term()]

Similar to get value/2, but returns the list of values for all entries fKey, Valueg in
List. If no such entry exists, the result is the empty list.

See also: get value/2.

get bool(Key, List) -> bool()

Types:

� Key = term()
� List = [term()]

Returns the value of a boolean key/value option. If lookup(Key, List) would yield
fKey, trueg, this function returns true; otherwise false is returned.

See also: get value/2, lookup/2.

get keys(List) -> [term()]

Types:

� List = [term()]

254 STDLIB

STDLIB Reference Manual proplists

Returns an unordered list of the keys used in List, not containing duplicates.

get value(Key, List) -> term()

Types:

� Key = term()
� List = [term()]

Equivalent to get value(Key, List, undefined).

get value(Key, List, Default) -> term()

Types:

� Key = term()
� Default = term()
� List = [term()]

Returns the value of a simple key/value property in List. If lookup(Key, List) would
yield fKey, Valueg, this function returns the corresponding Value, otherwise Default
is returned.

See also: get all values/2, get bool/2, get value/1, lookup/2.

is defined(Key, List) -> bool()

Types:

� Key = term()
� List = [term()]

Returns true if List contains at least one entry associated with Key, otherwise false is
returned.

lookup(Key, List) -> none | tuple()

Types:

� Key = term()
� List = [term()]

Returns the first entry associated with Key in List, if one exists, otherwise returns none.
For an atom A in the list, the tuple fA, trueg is the entry associated with A.

See also: get bool/2, get value/2, lookup all/2.

lookup all(Key, List) -> [tuple()]

Types:

� Key = term()
� List = [term()]

Returns the list of all entries associated with Key in List. If no such entry exists, the
result is the empty list.

See also: lookup/2.

normalize(List, Stages) -> List

Types:

255STDLIB

proplists STDLIB Reference Manual

� List = [term()]
� Stages = [Operation]
� Operation = faliases, Aliasesg | fnegations, Negationsg | fexpand, Expansionsg
� Aliases = [fKey, Keyg]
� Negations = [fKey, Keyg]
� Key = term()
� Expansions = [fProperty, [term()]g]
� Property = atom() | tuple()

Passes List through a sequence of substitution/expansion stages. For an aliases
operation, the function substitute aliases/2 is applied using the given list of aliases;
for a negations operation, substitute negations/2 is applied using the given
negation list; for an expand operation, the function expand/2 is applied using the given
list of expansions. The final result is automatically compacted (cf. compact/1).

Typically you want to substitute negations first, then aliases, then perform one or more
expansions (sometimes you want to pre-expand particular entries before doing the main
expansion). You might want to substitute negations and/or aliases repeatedly, to allow
such forms in the right-hand side of aliases and expansion lists.

See also: compact/1, expand/2, substitute aliases/2, substitute negations/2.

property(Property) -> Property

Types:

� Property = atom() | tuple()

Creates a normal form (minimal) representation of a property. If Property is fKey,
trueg where Key is an atom, this returns Key, otherwise the whole term Property is
returned.

See also: property/2.

property(Key, Value) -> Property

Types:

� Key = term()
� Value = term()
� Property = atom() | tuple()

Creates a normal form (minimal) representation of a simple key/value property. Returns
Key if Value is true and Key is an atom, otherwise a tuple fKey, Valueg is returned.

See also: property/1.

split(List, Keys) -> fLists, Restg

Types:

� List = [term()]
� Keys = [term()]
� Lists = [[term()]]
� Rest = [term()]

256 STDLIB

STDLIB Reference Manual proplists

Partitions List into a list of sublists and a remainder. Lists contains one sublist for
each key in Keys, in the corresponding order. The relative order of the elements in each
sublist is preserved from the original List. Rest contains the elements in List that are
not associated with any of the given keys, also with their original relative order
preserved.

Example: split([fc, 2g, fe, 1g, a, fc, 3, 4g, d, fb, 5g, b], [a, b, c])

returns

f[[a], [fb, 5g, b],[fc, 2g, fc, 3, 4g]], [fe, 1g, d]g

substitute aliases(Aliases, List) -> List

Types:

� Aliases = [fKey, Keyg]
� Key = term()
� List = [term()]

Substitutes keys of properties. For each entry in List, if it is associated with some key
K1 such that fK1, K2g occurs in Aliases, the key of the entry is changed to Key2. If the
same K1 occurs more than once in Aliases, only the first occurrence is used.

Example: substitute aliases([fcolor, colourg], L) will replace all tuples
fcolor, ...g in L with fcolour, ...g, and all atoms color with colour.

See also: normalize/2, substitute negations/2.

substitute negations(Negations, List) -> List

Types:

� Negations = [fKey, Keyg]
� Key = term()
� List = [term()]

Substitutes keys of boolean-valued properties and simultaneously negates their values.
For each entry in List, if it is associated with some key K1 such that fK1, K2g occurs in
Negations, then if the entry was fK1, trueg it will be replaced with fK2, falseg,
otherwise it will be replaced with fK2, trueg, thus changing the name of the option
and simultaneously negating the value given by get bool(List). If the same K1 occurs
more than once in Negations, only the first occurrence is used.

Example: substitute negations([fno foo, foog], L) will replace any atom no foo
or tuple fno foo, trueg in L with ffoo, falseg, and any other tuple fno foo, ...g
with ffoo, trueg.

See also: get bool/2, normalize/2, substitute aliases/2.

unfold(List) -> List

Types:

� List = [term()]

Unfolds all occurences of atoms in List to tuples fAtom, trueg.

257STDLIB

qlc STDLIB Reference Manual

qlc
Erlang Module

The qlc module provides a query interface to Mnesia, ETS, Dets and other data
structures that implement an iterator style traversal of objects.

Overview

The qlc module implements a query interface to QLC tables. Typical QLC tables are
ETS, Dets, and Mnesia tables. There is also support for user defined tables, see the
Implementing a QLC table [page 262] section. A query is stated using Query List
Comprehensions (QLCs). These are similar to ordinary list comprehensions as described
in the Erlang Reference Manual and Programming Examples except that variables
introduced in patterns cannot be used in list expressions. The answers to a query are
determined by data in QLC tables that fulfill the constraints expressed by the QLCs of
the query.

QLCs should not be confused with the language construct query ListComprehension
end used by Mnemosyne. The qlc module recognizes the first argument of every call to
qlc:q/1,2 as QLCs, and nothing else. The semantics are very different: Mnemosyne
uses ideas borrowed from Prolog while the QLCs introduced in this module are all
Erlang. In fact, in the absence of optimizations and options such as cache and unique
(see below), every QLC free of QLC tables evaluates to the same list of answers as the
identical ordinary list comprehension. It is the aim of this module to replace
Mnemosyne and to be more versatile by means of QLC tables.

While ordinary list comprehensions evaluate to lists, calling qlc:q/1,2 [page 267] returns
a Query Handle. To obtain all the answers to a query, qlc:eval/1,2 [page 265] should be
called with the query handle as first argument. Query handles are essentially funs
created in the module calling q/1,2. As the funs refer to the module's code, one should
be careful not to keep query handles too long if the module's code is to be replaced.
Code replacement is described in the [Erlang Reference Manual]. The list of answers
can also be traversed in chunks by use of a Query Cursor. Query cursors are created by
calling qlc:cursor/1,2 [page 264] with a query handle as first argument. Query cursors
are essentially Erlang processes. One answer at a time is sent from the query cursor
process to the process that created the cursor.

Syntax

Syntactically QLCs have the same parts as ordinary list comprehensions:

[Expression || Qualifier1, Qualifier2, ...]

258 STDLIB

STDLIB Reference Manual qlc

Expression (the template) is an arbitrary Erlang expression. Qualifiers are either filters
or generators. Filters are Erlang expressions returning bool(). Generators have the form
Pattern<-ListExpression, where ListExpression is an expression evaluating to a
query handle or a list. Query handles are returned from qlc:table/2, qlc:append/1,2,
qlc:sort/1,2, qlc:keysort/2,3, qlc:q/1,2, and qlc:string to handle/1,2,3.

Evaluation

The evaluation of a query handle begins by the inspection of options and the collection
of information about tables. As a result qualifiers are modified during the optimization
phase. Next all list expressions are evaluated. If a cursor has been created evaluation
takes place in the cursor process. For those list expressions that are QLCs, the list
expressions of the QLCs' generators are evaluated as well. One has to be careful if list
expressions have side effects since the order in which list expressions are evaluated is
unspecified. Finally the answers are found by evaluating the qualifiers from left to right,
backtracking when some filter returns false, or collecting the template when all filters
return true.

Common options

The following options are accepted by cursor/2, eval/2, fold/4, and info/2:

� funique all, trueg adds a funique,trueg option to every list expression of the
query. Default is funique all,falseg. The option unique all is equivalent to
funique all,trueg.

� fcache all, trueg adds a fcache,trueg option to every list expression of the
query except tables and lists. Default is fcache all,falseg. The option
cache all is equivalent to fcache all,trueg.

Common data types

� QueryCursor = fqlc cursor, term()g

� QueryHandle = fqlc handle, term()g

� QueryHandleOrList = QueryHandle | list()

� Answers = [Answer]

� Answer = term()

� AbstractExpression = -parse trees for Erlang expressions, see the [abstract
format] documentation in ERTS User's Guide-

� MatchExpression = -matchspecifications, see the [match specification]
documentation in the ERTS User's Guide and ms transform(3) [page 231]-

� SpawnOptions = default | spawn options()

� SortOptions = [SortOption] | SortOption

� SortOption = fcompressed, bool()g | fno files, NoFilesg | forder,
Orderg | fsize, Sizeg | ftmpdir, TempDirectoryg | funique, bool()g
-see file sorter(3) [page 142]-

� Order = ascending | descending | OrderFun

259STDLIB

qlc STDLIB Reference Manual

� OrderFun = fun(Term, Term) -> bool()

� TempDirectory = "" | filename()

� Size = int() > 0

� NoFiles = int() > 1

� KeyPos = int() > 0 | [int() > 0]

� bool() = true | false

� filename() = -see filename(3) [page 150]-

� spawn options() = -see [erlang(3)]-

Future plans

Support for faster join of two tables will be added not later than in R11. Depending on
preferences and priorities some high level optimizations may be added in the future.

Getting started

As already mentioned queries are stated in the list comprehension syntax as described in
the [Erlang Reference Manual]. In the following some familiarity with list
comprehensions is assumed. There are examples in [Programming Examples] that can
get you started. It should be stressed that list comprehensions do not add any
computational power to the language; anything that can be done with list
comprehensions can also be done without them. But they add a syntax for expressing
simple search problems which is compact and clear once you get used to it.

Many list comprehension expressions can be evaluated by the qlc module. Exceptions
are expressions such that variables introduced in patterns (or filters) are used in some
generator later in the list comprehension. As an example consider an implementation of
lists:append(L): [X || Y <- L, X <- Y]. Y is introduced in the first generator and
used in the second. The ordinary list comprehension is normally to be preferred when
there is a choice as to which to use. One difference is that qlc:eval/1,2 collects
answers in a list which is finally reversed, while list comprehensions collect answers on
the stack which is finally unwound.

What the qlc module primarily adds to list comprehensions is that data can be read
from QLC tables in small chunks. A QLC table is created by calling qlc:table/2.
Usually qlc:table/2 is not called directly from the query but via an interface function
of some data structure. There are a few examples of such functions in Erlang/OTP:
mnesia:table/1,2, ets:table/1,2, and dets:table/1,2. For a given data structure
there can be several functions that create QLC tables, but common for all these
functions is that they return a query handle created by qlc:table/2. Using the QLC
tables provided by OTP is probably sufficient in most cases, but for the more advanced
user the section Implementing a QLC table [page 262] describes the implementation of
a function calling qlc:table/2.

Besides qlc:table/2 there are other functions that return query handles. They might
not be used as often as tables, but are useful from time to time. qlc:append traverses
objects from several tables or lists after each other. If, for instance, you want to traverse
all answers to a query QH and then finish off by a term ffinishedg, you can do that by
calling qlc:append(QH, [ffinishedg]). append first returns all objects of QH, then

260 STDLIB

STDLIB Reference Manual qlc

ffinishedg. If there is one tuple ffinishedg among the answers to QH it will be
returned twice from append.

As another example, consider concatenating the answers to two queries QH1 and QH2
while removing all duplicates. The means to accomplish this is to use the unique
option:

qlc:q([X || X <- qlc:append(QH1, QH2)], {unique, true})

The cost is substantial: every returned answer will be stored in an ETS table. Before
returning an answer it is looked up in the ETS table to check if it has already been
returned. Without the unique options all answers to QH1 would be returned followed
by all answers to QH2. The unique options keeps the order between the remaining
answers.

If the order of the answers is not important there is the alternative to sort the answers
uniquely:

qlc:sort(qlc:q([X || X <- qlc:append(QH1, QH2)], {unique, true})).

This query also removes duplicates but the answers will be sorted. If there are many
answers temporary files will be used. Note that in order to get the first unique answer
all answers have to be found and sorted.

To return just a few answers cursors can be used. The following code returns no more
than five answers using an ETS table for storing the unique answers:

C = qlc:cursor(qlc:q([X || X <- qlc:append(QH1, QH2)],{unique,true})),
R = qlc:next_answers(C, 5),
ok = qlc:delete_cursor(C),
R.

Query list comprehensions are convenient for stating conditions on data from two or
more tables. An example that does a natural join on two tables on position 2:

qlc:q([{X1,X2,X3,Y1} || {X1,X2,X3} <- QH1,
{Y1,Y2} <- QH2,
X2 =:= Y2])

If QH1 and QH2 both are tables and X2 or Y2 is a key or index position then the join
can be done quickly by looking up key values. In this first version of the qlc module this
has not yet been implemented. Instead the filter will always be applied to every possible
pair of answers to QH1 and QH2, one at a time. If there are M answers to QH1 and N
answers to QH2 the filter will be run M*N times.

If QH2 is a call to the function for gb trees as defined in the Implementing a QLC
table [page 262] section, gb table:table/1, the iterator for the gb-tree will be
initiated for each answer to QH1 after which the objects of the gb-tree will be returned
one by one. This is probably the most efficient way of traversing the table in that case
since it takes minimal computational power to get next object. But if QH2 is not a table
but a more complicated QLC, it can be more efficient use some RAM memory for
collecting the answers in a cache, particularly if there are only a few answers. It must
then be assumed that evaluating QH2 has no side effects so that the meaning of the
query does not change if QH2 is evaluated only once. One way of caching the answers
is to evaluate QH2 first of all and substitute the list of answers for QH2 in the query.
Another way is to use the cache option. It is stated like this:

QH2’ = qlc:q([X || X <- QH2], {cache, true})

or just

261STDLIB

qlc STDLIB Reference Manual

QH2’ = qlc:q([X || X <- QH2], cache)

The effect of the cache option is that when the generator QH2' is run the first time
every answer is stored in an ETS table. When next answer of QH1 is tried, answers to
QH2' are copied from the ETS table which is very fast. As for the unique option the
cost is a possibly substantial amount of RAM memory.

There is an option cache all that can be set to true when evaluating a query. It adds a
cache option to every list expression except QLC tables and lists on all levels of the
query. This can be used for testing if caching would improve efficiency at all. If the
answer is yes further testing is needed to pinpoint the generators that should be cached.

Implementing a QLC table

As an example of how to use the qlc:table/2 [page 267] function the implementation of
a QLC table for the gb trees [page 162] module is given:

-module(gb_table).

-import(gb_trees, [iterator/1, lookup/2, next/1]).

-export([table/1]).

table(T) ->
TF = fun() -> qlc_next(next(iterator(T))) end,
InfoFun = fun(num_of_objects) -> size(T);

(keypos) -> 1;
(_) -> undefined

end,
LookupFun =

fun(1, Ks) ->
lists:flatmap(fun(K) ->

case gb_trees:lookup(K, T) of
{value, V} -> [{K,V}];
none -> []

end
end, Ks)

end,
FormatFun =

fun(all) ->
Vals = a_few(T),
{gb_trees, from_orddict, [Vals]};

({lookup, 1, KeyValues}) ->
ValsS = io_lib:format("gb_trees:from_orddict(~w)",

[a_few(T)]),
io_lib:format("lists:flatmap(fun(K) -> "

"case gb_trees:lookup(K, ~s) of "
"{value, V} -> [{K,V}];none -> [] end "
"end, ~w)",
[ValsS, KeyValues])

end,
qlc:table(TF, [{info_fun, InfoFun}, {format_fun, FormatFun},

{lookup_fun, LookupFun}]).

262 STDLIB

STDLIB Reference Manual qlc

qlc_next({X, V, S}) ->
[{X,V} | fun() -> qlc_next(next(S)) end];

qlc_next(none) ->
[].

a_few(T) ->
a_few(iterator(T), 7).

a_few(_I, 0) ->
more;

a_few(I0, N) ->
case next(I0) of

{X, V, I} ->
[{X,V} | a_few(I, N-1)];

none ->
[]

end.

TF is the traversal function. The qlc module requires that there is a way of traversing all
objects of the data structure; in gb trees there is an iterator function suitable for that
purpose. Note that for each object returned a new fun is created. As long as the list is
not terminated by [] it is assumed that the tail of the list is a nullary function and that
calling the function returns further objects (and functions).

The lookup function is optional. It is assumed that the lookup function always finds
values much faster than it would take to traverse the table. The first argument is the
position of the key. Since qlc next returns the objects as fKey,Valueg pairs the position
is 1. Note that the lookup function should return fKey,Valueg pairs, just as the traversal
function does.

The format function is also optional. It is called by qlc:info to give feedback at
runtime of how the query will be evaluated. One should try to give as good feedback as
possible without showing too much details. In the example at most 7 objects of the
table are shown. The format function handles two cases: all means that all objects of
the table will be traversed; flookup,1,KeyValuesg means that the lookup function will
be used for looking up key values.

Whether the whole table will be traversed or just some keys looked up depends on how
the query is stated. It the query has the form

qlc:q([T || P <- LE, F])

and P is a tuple, the qlc module analyzes P and F in compile time to find positions of
the tuple P that are matched or compared to constants. If such a position at runtime
turns out to be the key position, the lookup function can be used, otherwise all objects
of the table have to be traversed. It is the info function InfoFun that returns the key
position. There can be index positions as well, also returned by the info function. An
index is an extra table that makes lookup on some position fast. Mnesia maintains
indices upon request, thereby introducing so called secondary keys. The key is always
preferred before secondary keys regardless of the number of constants to look up.

263STDLIB

qlc STDLIB Reference Manual

Exports

append(QHL) -> QH

Types:

� QHL = [QueryHandleOrList]
� QH = QueryHandle

Returns a query handle. When evaluating the query handle QH all answers to the first
query handle in QHL is returned followed by all answers to the rest of the query handles
in QHL.

append(QH1, QH2) -> QH3

Types:

� QH1 = QH2 = QueryHandleOrList
� QH3 = QueryHandle

Returns a query handle. When evaluating the query handle QH3 all answers to QH1 are
returned followed by all answers to QH2.

append(QH1,QH2) is equivalent to append([QH1,QH2]).

cursor(QueryHandleOrList [, Options]) -> QueryCursor

Types:

� Options = [Option] | Option
� Option = fcache all, bool()g | cache all | fspawn options, SpawnOptionsg |
funique all, bool()g | unique all

Creates a query cursor and makes the calling process the owner of the cursor. The
cursor is to be used as argument to next answers/1,2 and (eventually)
delete cursor/1. Calls erlang:spawn opt to spawn and link a process which will
evaluate the query handle. The value of the option spawn options is used as last
argument when calling spawn opt. The default value is [link].

1> QH = qlc:q([fX,Yg || X <- [a,b], Y <- [1,2]]),
QC = qlc:cursor(QH),
qlc:next answers(QC, 1).
[fa,1g]
2> qlc:next answers(QC, 1).
[fa,2g]
3> qlc:next answers(QC, all remaining).
[fb,1g,fb,2g]
4> qlc:delete cursor(QC).
ok

delete cursor(QueryCursor) -> ok

Deletes a query cursor. Only the owner of the cursor can delete the cursor.

eval(QueryHandleOrList [, Options]) -> Answers | Error

e(QueryHandleOrList [, Options]) -> Answers

Types:

264 STDLIB

STDLIB Reference Manual qlc

� Options = [Option] | Option
� Option = fcache all, bool()g | cache all | funique all, bool()g | unique all
� Error = ferror, module(), Reasong
� Reason =-as returned by file sorter(3)-

Evaluates a query handle in the calling process and collects all answers in a list.

1> QH = qlc:q([fX,Yg || X <- [a,b], Y <- [1,2]]),
qlc:eval(QH).
[fa,1g,fa,2g,fb,1g,fb,2g]

fold(Function, Acc0, QueryHandleOrList [, Options]) -> Acc1 | Error

Types:

� Function = fun(Answer, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Options = [Option] | Option
� Option = fcache all, bool()g | cache all | funique all, bool()g | unique all
� Error = ferror, module(), Reasong
� Reason =-as returned by file sorter(3)-

Calls Function on successive answers to the query handle together with an extra
argument AccIn. The query handle and the function are evaluated in the calling
process. Function must return a new accumulator which is passed to the next call.
Acc0 is returned if there are no answers to the query handle.

1> QH = [1,2,3,4,5,6],
qlc:fold(fun(X, Sum) -> X + Sum end, 0, QH).
21

format error(Error) -> Chars

Types:

� Error = ferror, module(), term()g
� Chars = [char() | Chars]

Returns a descriptive string in English of an error tuple returned by some of the
functions of the qlc module or the parse transform. This function is mainly used by the
compiler invoking the parse transform.

info(QueryHandleOrList [, Options]) -> Info

Types:

� Options = [Option] | Option
� Option = EvalOption | ReturnOption
� EvalOption = fcache all, bool()g | cache all | funique all, bool()g | unique all
� ReturnOption = fflat, bool()g | fformat, Formatg | fn elements, NElementsg
� Format = abstract code | string
� NElements = infinity | int() > 0
� Info = AbstractExpression | string()

265STDLIB

qlc STDLIB Reference Manual

Returns information about a query handle. The information describes the
simplifications and optimizations that are the results of preparing the query for
evaluation. This function is probably useful mostly during debugging.

The information has the form of an Erlang expression where QLCs most likely occur.
Depending on the format functions of mentioned QLC tables it may not be absolutely
accurate.

The default is to return a sequence of QLCs in a block, but if the option fflat,falseg
is given, one single QLC is returned. The default is to return a string, but if the option
fformat,abstract codeg is given, abstract code is returned instead. The default is to
return all elements in lists, but if the fn elements,NElementsg option is given, only a
limited number of elements are returned.

1> QH = qlc:q([fX,Yg || X <- [x,y], Y <- [a,b]]),
io:format("~s~n", [qlc:info(QH, unique all)]).
begin

V1 = qlc:q([SQV ||
SQV <- [x,y]

],[funique,trueg]),
V2 = qlc:q([SQV ||

SQV <- [a,b]
],[funique,trueg]),

qlc:q([fX,Yg ||
X <- V1,
Y <- V2

],[funique,trueg])
end

In this example two simple QLCs have been inserted just to hold the funique,trueg
option.

keysort(KeyPos, QH1 [, SortOptions]) -> QH2

Types:

� QH1 = QueryHandleOrList
� QH2 = QueryHandle

Returns a query handle. When evaluating the query handle QH2 the answers to the
query handle QH1 are sorted by file sorter:keysort/4 [page 142] according to the options.

The sorter will use temporary files only if QH1 does not evaluate to a list and the size of
the binary representation of the answers exceeds Size bytes, where Size is the value of
the size option.

next answers(QueryCursor [, NumberOfAnswers]) -> Answers | Error

Types:

� NumberOfAnswers = all remaining | int() > 0
� Error = ferror, module(), Reasong
� Reason =-as returned by file sorter(3)-

266 STDLIB

STDLIB Reference Manual qlc

Returns some or all of the remaining answers to a query cursor. Only the owner of
Cursor can retrieve answers.

The optional argument NumberOfAnswersdetermines the maximum number of answers
returned. The default value is 10. If less than the requested number of answers is
returned, subsequent calls to next answers will return [].

q(QueryListComprehension [, Options]) -> QueryHandle

Types:

� QueryListComprehension = -literal query list comprehension-
� Options = [Option] | Option
� Option = fmax lookup, MaxLookupg | fcache, bool()g | cache | funique, bool()g |

unique
� MaxLookup = int() >= 0 | infinity

Returns a query handle for a query list comprehension. The query list comprehension
must be the first argument to qlc:q/1,2 or it will be evaluated as an ordinary list
comprehension. It is also necessary to add the line

-include_lib("stdlib/include/qlc.hrl").

to the source file. This causes a parse transform to substitute a fun for the query list
comprehension. The (compiled) fun will be called when the query handle is evaluated.

When calling qlc:q/1,2 from the Erlang shell the parse transform is automatically
called. When this happens the fun substituted for the query list comprehension is not
compiled but will be evaluated by erl eval(3). This is also true when expressions are
evaluated by means of file:eval/1,2 or in the debugger.

To be very explicit, this will not work:

...
A = [X || fXg <- [f1g,f2g]],
QH = qlc:q(A),
...

The variable A will be bound to the evaluated value of the list comprehension ([1,2]).
The compiler complains with an error message (“argument is not a query list
comprehension”); the shell process stops with a badarg reason.

The fcache,trueg option can be used to cache the answers to a query list
comprehension. The answers are stored in one ETS table for each cached query list
comprehension. When a cached query list comprehension is evaluated again, answers
are fetched from the table without any further computations. As a consequence, when
all answers to a cached query list comprehension have been found, the ETS tables used
for caching answers to the query list comprehension's qualifiers can be emptied. The
option cache is equivalent to fcache,trueg.

The cache option has no effect if it is known that the query list comprehension will be
evaluated at most once. This is always true for the top-most query list comprehension
and also for the list expression of the first generator in a list of qualifiers. Note that in
the presence of side effects in filters or callback functions the answers to query list
comprehensions can be affected by the cache option.

The funique,trueg option can be used to remove duplicate answers to a query list
comprehension. The unique answers are stored in one ETS table for each query list
comprehension. The table is emptied every time it is known that there are no more
answers to the query list comprehension. The option unique is equivalent to

267STDLIB

qlc STDLIB Reference Manual

funique,trueg. If the unique option is combined with the cache option, two ETS
tables are used, but the full answers are stored in one table only.

Sometimes (see qlc:table/2 [page 270] below) traversal of tables can be done by looking
up key values, which is supposed to be fast. Under certain (rare) circumstances it could
happen that there are too many key values to look up. The fmax lookup,MaxLookupg
option can then be used to limit the number of lookups: if more than MaxLookup
lookups would be required no lookups are done but the table traversed instead. The
default value is infinity which means that there is no limit on the number of keys to
look up.

1> T = gb trees:empty(),
QH = qlc:q([X || ffX,Yg, g <- gb table:table(T),
((X =:= 1) or (X =:= 2)),
((Y =:= a) or (Y =:= b) or (Y =:= c))]),
io:format("~s~n", [qlc:info(QH)]).
qlc:q([X ||

ffX,Yg, g <-
lists:flatmap(fun (K) ->
case gb trees:lookup(K,gb trees:from orddict([])) of

fvalue,Vg -> [fK,Vg];
none -> []

end end,[f1,ag,f1,bg,f1,cg,f2,ag,f2,bg,f2,cg]),
(X =:= 1) or (X =:= 2),
(Y =:= a) or (Y =:= b) or (Y =:= c)

])
ok
2>

In this example using the gb table module from the Implementing a QLC table [page
262] section there are six keys to look up: f1,ag, f1,bg, f1,cg, f2,ag, f2,bg,
andf2,cg. The reason is that the two elements of the key fX,Yg are matched separately.

sort/1,2 and keysort/2,3 can also be used for caching answers and for removing
duplicates. When sorting answers are cached in a list, possibly stored on a temporary
file, and no ETS tables are used.

sort(QH1 [, SortOptions]) -> QH2

Types:

� QH1 = QueryHandleOrList
� QH2 = QueryHandle

Returns a query handle. When evaluating the query handle QH2 the answers to the
query handle QH1 are sorted by file sorter:sort/3 [page 142] according to the options.

The sorter will use temporary files only if QH1 does not evaluate to a list and the size of
the binary representation of the answers exceeds Size bytes, where Size is the value of
the size option.

string to handle(QueryString [, Options [, Bindings]]) -> QueryHandle | Error

Types:

� QueryString = string()
� Options = [Option] | Option

268 STDLIB

STDLIB Reference Manual qlc

� Option = fmax lookup, MaxLookupg | fcache, bool()g | cache | funique, bool()g |
unique

� MaxLookup = int() >= 0 | infinity
� Bindings =-as returned by erl eval:bindings/1-
� Error = ferror, module(), Reasong
� Reason = -ErrorInfo as returned by erl scan:string/1 or erl parse:parse exprs/1-

A string version of qlc:q/1,2. When the query handle is evaluated the fun created by
the parse transform is interpreted by erl eval(3). The query string is to be one single
query list comprehension terminated by a period.

1> L = [1,2,3],
Bs = erl eval:add binding(’L’, L, erl eval:new bindings()),
QH = qlc:string to handle("[X+1 || X <- L].", [], Bs),
qlc:eval(QH).
[2,3,4]

This function is probably useful mostly when called from outside of Erlang, for instance
from a driver written in C.

table(TraverseFun, Options) -> QueryHandle

Types:

� TraverseFun = TraverseFun0 | fun(MatchExpression) -> Objects
� TraverseFun0 = fun() -> Objects
� Objects = [] | [term() | ObjectList]
� ObjectList = TraverseFun0 | Objects
� Options = [Option] | Option
� Option = fformat fun, FormatFung | finfo fun, InfoFung | flookup fun,

LookupFung | fparent fun, ParentFung | fpost fun, PostFung | fpre fun, PreFung
� FormatFun = undefined | fun(SelectedObjects) -> FormatedTable
� SelectedObjects = all | fmatch spec, MatchExpressiong | flookup, fPosition, Keysgg
� FormatedTable = fMod, Fun, Argsg | AbstractExpression | character list()
� InfoFun = undefined | fun(InfoTag) -> InfoValue
� InfoTag = indices | is unique objects | keypos | num of objects
� InfoValue = undefined | term()
� LookupFun = undefined | fun(Position, Keys) -> [term()]
� ParentFun = undefined | fun() -> ParentFunValue
� PostFun = undefined | fun() -> void()
� PreFun = undefined | fun([PreArg]) -> void()
� PreArg = fparent value, ParentFunValueg | fstop fun, StopFung
� ParentFunValue = undefined | term()
� StopFun = undefined | fun() -> void()
� Position = int() > 0
� Keys = [term()]
� Mod = Fun = atom()
� Args = [term()]

269STDLIB

qlc STDLIB Reference Manual

Returns a query handle for a QLC table. In Erlang/OTP there is support for ETS, Dets
and Mnesia tables, but it is also possible to turn many other data structures into QLC
tables. The way to accomplish this is to let function(s) in the module implementing the
data structure create a query handle by calling qlc:table/2. The different ways to
traverse the table as well as properties of the table are handled by callback functions
provided as options to qlc:table/2.

The callback function TraverseFun is used for traversing the table. It is to return a list
of objects terminated by either [] or a nullary fun to be used for traversing the not yet
traversed objects of the table. Unary TraverseFuns are to accept a match specification
as argument. The match specification is created by the parse transform by analyzing the
pattern of the generator calling qlc:table/2 and filters using variables introduced in
the pattern. If the parse transform cannot find a match specification equivalent to the
pattern and filters, TraverseFun will be called with a match specification returning
every object. Modules that can utilize match specifications for optimized traversal of
tables should call qlc:table/2 with a unary TraverseFun while other modules can
provide a nullary TraverseFun. ets:table/2 is an example of the former;
gb table:table/1 in the Implementing a QLC table [page 262] section is an example
of the latter.

PreFun is a unary callback function that is called once before the table is read for the
first time. If the call fails, the query evaluation fails. Similarly, the nullary callback
function PostFun is called once after the table was last read. The return value, which is
caught, is ignored. If PreFun has been called for a table, PostFun is guaranteed to be
called for that table, even if the evaluation of the query fails for some reason. The order
in which pre (post) funs for different tables are evaluated is not specified. Other table
access than reading, such as calling InfoFun, is assumed to be OK at any time. The
argument PreArgs is a list of tagged values. Currently there are two tags, parent value
and stop fun, used by Mnesia for managing transactions. The value of parent value is
the value returned by ParentFun, or undefined if there is no ParentFun. ParentFun is
called once just before the call of PreFun in the context of the process calling eval,
fold, or cursor. The value of stop fun is a nullary fun that deletes the cursor if called
from the parent, or undefined if there is no cursor.

The binary callback function LookupFun is used for looking up objects in the table. The
first argument Position is the key position or an index position and the second
argument Keys is a sorted list of unique values. The return value is to be a list of all
objects (tuples) such that the element at Position is a member of Keys. LookupFun is
called instead of traversing the table if the parse transform at compile time can find out
that the filters match and compare the element at Position in such a way that only
Keys need to be looked up in order to find all potential answers. The key position is
obtained by calling InfoFun(keypos) and the index positions by calling
InfoFun(indices). If the key position can be used for lookup it is always chosen,
otherwise the index position requiring the least number of lookups is chosen. If there is
a tie between two index positions the one occurring first in the list returned by InfoFun
is chosen. Positions requiring more than max lookup [page 268] lookups are ignored.

The unary callback function InfoFun is to return information about the table.
undefined should be returned if the value of some tag is unknown:

� indices. Returns a list of indexed positions, a list of positive integers.

� is unique objects. Returns true if the objects returned by TraverseFun are
unique.

� keypos. Returns the position of the table's key, a positive integer.

270 STDLIB

STDLIB Reference Manual qlc

� num of objects. Returns the number of objects in the table, a non-negative
integer.

The unary callback function FormatFun is used by qlc:info/1,2 for displaying the call
that created the table's query handle. The default value undefined is displayed as a call
to ’$MOD’:’$FUN’/0, otherwise it is up to FormatFun to present the selected objects in
a suitable way. If a character list is chosen for presentation it must be an Erlang
expression that can be scanned and parsed (a trailing dot will be added by qlc:info
though). The argument to FormatFun describes the optimizations done as a result of
analyzing the filter(s). The possible values are:

� flookup, Position, Keysg. LookupFun is used for looking up objects in the
table.

� fmatch spec, MatchExpressiong. No way of finding all possible answers by
looking up keys was found, but the filters could be transformed into a match
specification. All answers are found by calling TraverseFun(MatchExpression).

� all. No optimization was found. A match specification matching all objects will
be used if TraverseFun is unary.

See ets(3) [page 140], dets(3) [page 80] and [mnesia(3)] for the various options
recognized by table/1,2 in respective module.

See Also

dets(3) [page 66], [Erlang Reference Manual], erl eval(3) [page 100], [erlang(3)],
ets(3) [page 122], [file(3)], file sorter(3) [page 142], [mnemosyne(3)], [mnesia(3)], [
Programming Examples], shell(3) [page 286]

271STDLIB

queue STDLIB Reference Manual

queue
Erlang Module

This module implements FIFO queues in an efficient manner.

All operations has an amortised O(1) running time, except len/1, reverse/1, join/2
and split/2 that probably are O(n).

Exports

cons(Item, Q1) -> Q2

Types:

� Item = term()
� Q1 = Q2 = queue()

Inserts Item at the head of queue Q1. Returns the new queue Q2.

daeh(Q) -> Item

The same as last(Q) and the opposite of head(Q).

from list(L) -> queue()

Types:

� L = list()

Returns a queue containing the items in L, in the same order - the head item of the list
will be the head item of the queue.

head(Q) -> Item

Types:

� Item = term()
� Q = queue()

Returns Item from the head of queue Q.

Fails with reason empty if Q is empty.

in(Item, Q1) -> Q2

Types:

� Item = term()
� Q1 = Q2 = queue()

272 STDLIB

STDLIB Reference Manual queue

Inserts Item at the tail of queue Q1. Returns a new queue Q2. This is the same as
snoc(Q1, Item).

in r(Item, Q1) -> Q2

Types:

� Item = term()
� Q1 = Q2 = queue()

Inserts Item at the head of queue Q1. Returns a new queue Q2. This is the same as
cons(Item, Q1).

init(Q1) -> Q2

Types:

� Item = term()
� Q1 = Q2 = queue()

Returns a queue Q2 that is the result of removing the last item from Q1. This is the
opposite of tail(Q1).

Fails with reason empty if Q1 is empty.

is empty(Q) -> true | false

Types:

� Q = queue()

Tests if Q is empty and returns true if so and false otherwise.

join(Q1, Q2) -> Q3

Types:

� Q1 = Q2 = Q3 = queue()

Returns a queue Q3 that is the result of joining Q1 and Q2 with Q1 before (at the head)
Q2.

lait(Q1) -> Q2

The same as init(Q1) and the opposite of tail(Q1).

last(Q) -> Item

Types:

� Item = term()
� Q = queue()

Returns the last item of queue Q. This is the opposite of head(Q).

Fails with reason empty if Q is empty.

len(Q) -> N

Types:

� Q = queue()
� N = integer()

273STDLIB

queue STDLIB Reference Manual

Calculates and returns the length of queue Q.

new() -> Q

Types:

� Q = queue()

Returns an empty queue.

out(Q1) -> Result

Types:

� Result = ffvalue, Itemg, Q2g | fempty, Q1g
� Q1 = Q2 = queue()

Removes the head item from the queue Q1. Returns the tuple ffvalue, Itemg, Q2g,
where Item is the item removed and Q2 is the new queue. If Q1 is empty, the tuple
fempty, Q1g is returned.

out r(Q1) -> Result

Types:

� Result = ffvalue, Itemg, Q2g | fempty, Q1g
� Q1 = Q2 = queue()

Removes the last item from the queue Q1. Returns the tuple ffvalue, Itemg, Q2g,
where Item is the item removed and Q2 is the new queue. If Q1 is empty, the tuple
fempty, Q1g is returned.

reverse(Q1) -> Q2

Types:

� Q1 = Q2 = queue()

Returns a queue Q2 that contains the items of Q1 in the reverse order.

snoc(Q1, Item) -> Q2

Types:

� Item = term()
� Q1 = Q2 = queue()

Inserts Item as the last item of queue Q1. Returns the new queue Q2. This is the
opposite of cons(Item, Q1).

split(N, Q1) -> fQ2,Q3g

Types:

� N = integer()
� Q1 = Q2 = Q3 = queue()

Splits Q1 into a queue Q2 of length N with items from the head end, and a queue Q3 with
the rest of the items.

tail(Q1) -> Q2

274 STDLIB

STDLIB Reference Manual queue

Types:

� Item = term()
� Q1 = Q2 = queue()

Returns a queue Q2 that is the result of removing the head item from Q1.

Fails with reason empty if Q1 is empty.

to list(Q) -> list()

Types:

� Q = queue()

Returns a list of the items in the queue, with the head item of the queue as the head of
the list.

275STDLIB

random STDLIB Reference Manual

random
Erlang Module

Random number generator. The method is attributed to B.A. Wichmann and I.D.Hill,
in 'An efficient and portable pseudo-random number generator', Journal of Applied
Statistics. AS183. 1982. Also Byte March 1987.

The current algorithm is a modification of the version attributed to Richard A O'Keefe
in the standard Prolog library.

Every time a random number is requested, a state is used to calculate it, and a new state
produced. The state can either be implicit (kept in the process dictionary) or be an
explicit argument and return value. In this implementation, the state (the type ran())
consists of a tuple of three integers.

Exports

seed() -> ran()

Seeds random number generation with default (fixed) values in the process dictionary,
and returns the old state.

seed(A1, A2, A3) -> ran()

Types:

� A1 = A2 = A3 = int()

Seeds random number generation with integer values in the process dictionary, and
returns the old state.

seed0() -> ran()

Returns the default state.

uniform()-> float()

Returns a random float uniformly distributed between 0.0 and 1.0, updating the state
in the process dictionary.

uniform(N) -> int()

Types:

� N = int()

Given an integer N >= 1, uniform/1 returns a random integer uniformly distributed
between 1 and N, updating the state in the process dictionary.

276 STDLIB

STDLIB Reference Manual random

uniform s(State0) -> ffloat(), State1g

Types:

� State0 = State1 = ran()

Given a state, uniform s/1returns a random float uniformly distributed between 0.0
and 1.0, and a new state.

uniform s(N, State0) -> fint(), State1g

Types:

� N = int()
� State0 = State1 = ran()

Given an integer N >= 1 and a state, uniform s/2 returns a random integer uniformly
distributed between 1 and N, and a new state.

Note

Some of the functions use the process dictionary variable random seed to remember the
current seed.

If a process calls uniform/0 or uniform/1 without setting a seed first, seed/0 is called
automatically.

277STDLIB

regexp STDLIB Reference Manual

regexp
Erlang Module

This module contains functions for regular expression matching and substitution.

Exports

match(String, RegExp) -> MatchRes

Types:

� String = RegExp = string()
� MatchRes = fmatch,Start,Lengthg | nomatch | ferror,errordesc()g
� Start = Length = integer()

Finds the first, longest match of the regular expression RegExp in String. This function
searches for the longest possible match and returns the first one found if there are
several expressions of the same length. It returns as follows:

fmatch,Start,Lengthg if the match succeeded. Start is the starting position of the
match, and Length is the length of the matching string.

nomatch if there were no matching characters.

ferror,Errorg if there was an error in RegExp.

first match(String, RegExp) -> MatchRes

Types:

� String = RegExp = string()
� MatchRes = fmatch,Start,Lengthg | nomatch | ferror,errordesc()g
� Start = Length = integer()

Finds the first match of the regular expression RegExp in String. This call is usually
faster than match and it is also a useful way to ascertain that a match exists. It returns as
follows:

fmatch,Start,Lengthg if the match succeeded. Start is the starting position of the
match and Length is the length of the matching string.

nomatch if there were no matching characters.

ferror,Errorg if there was an error in RegExp.

matches(String, RegExp) -> MatchRes

Types:

� String = RegExp = string()

278 STDLIB

STDLIB Reference Manual regexp

� MatchRes = fmatch, Matchesg | ferror, errordesc()g
� Matches = list()

Finds all non-overlapping matches of the expression RegExp in String. It returns as
follows:

fmatch, Matchesg if the regular expression was correct. The list will be empty if there
was no match. Each element in the list looks like fStart, Lengthg, where Start
is the starting position of the match, and Length is the length of the matching
string.

ferror,Errorg if there was an error in RegExp.

sub(String, RegExp, New) -> SubRes

Types:

� String = RegExp = New = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

Substitutes the first occurrence of a substring matching RegExp in String with the
string New. A & in the string New is replaced by the matched substring of String. \& puts
a literal & into the replacement string. It returns as follows:

fok,NewString,RepCountg if RegExp is correct. RepCount is the number of
replacements which have been made (this will be either 0 or 1).

ferror, Errorg if there is an error in RegExp.

gsub(String, RegExp, New) -> SubRes

Types:

� String = RegExp = New = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

The same as sub, except that all non-overlapping occurrences of a substring matching
RegExp in String are replaced by the string New. It returns:

fok,NewString,RepCountg if RegExp is correct. RepCount is the number of
replacements which have been made.

ferror, Errorg if there is an error in RegExp.

split(String, RegExp) -> SplitRes

Types:

� String = RegExp = string()
� SubRes = fok,FieldListg | ferror,errordesc()g
� Fieldlist = [string()]

String is split into fields (sub-strings) by the regular expression RegExp.

If the separator expression is " " (a single space), then the fields are separated by blanks
and/or tabs and leading and trailing blanks and tabs are discarded. For all other values of
the separator, leading and trailing blanks and tabs are not discarded. It returns:

279STDLIB

regexp STDLIB Reference Manual

fok, FieldListg to indicate that the string has been split up into the fields of
FieldList.

ferror, Errorg if there is an error in RegExp.

sh to awk(ShRegExp) -> AwkRegExp

Types:

� ShRegExp AwkRegExp = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

Converts the sh type regular expression ShRegExp into a full AWK regular expression.
Returns the converted regular expression string. sh expressions are used in the shell for
matching file names and have the following special characters:

* matches any string including the null string.

? matches any single character.

[...] matches any of the enclosed characters. Character ranges are specified by a pair
of characters separated by a -. If the first character after [is a !, then any character
not enclosed is matched.

It may sometimes be more practical to use sh type expansions as they are simpler and
easier to use, even though they are not as powerful.

parse(RegExp) -> ParseRes

Types:

� RegExp = string()
� ParseRes = fok,REg | ferror,errordesc()g

Parses the regular expression RegExp and builds the internal representation used in the
other regular expression functions. Such representations can be used in all of the other
functions instead of a regular expression string. This is more efficient when the same
regular expression is used in many strings. It returns:

fok, REg if RegExp is correct and RE is the internal representation.

ferror, Errorg if there is an error in RegExpString.

format error(ErrorDescriptor) -> Chars

Types:

� ErrorDescriptor = errordesc()
� Chars = [char() | Chars]

Returns a string which describes the error ErrorDescriptor returned when there is an
error in a regular expression.

280 STDLIB

STDLIB Reference Manual regexp

Regular Expressions

The regular expressions allowed here is a subset of the set found in egrep and in the
AWK programming language, as defined in the book, The AWK Programming Language,
by A. V. Aho, B. W. Kernighan, P. J. Weinberger. They are composed of the
following characters:

c matches the non-metacharacter c.

\c matches the escape sequence or literal character c.

. matches any character.

^ matches the beginning of a string.

$ matches the end of a string.

[abc...] character class, which matches any of the characters abc... Character ranges
are specified by a pair of characters separated by a -.

[^abc...] negated character class, which matches any character except abc....

r1 | r2 alternation. It matches either r1 or r2.

r1r2 concatenation. It matches r1 and then r2.

r+ matches one or more rs.

r* matches zero or more rs.

r? matches zero or one rs.

(r) grouping. It matches r.

The escape sequences allowed are the same as for Erlang strings:

\b backspace

\f form feed

\n newline (line feed)

\r carriage return

\t tab

\e escape

\v vertical tab

\s space

\d delete

\ddd the octal value ddd

\c any other character literally, for example \\ for backslash, \" for “)

To make these functions easier to use, in combination with the function io:get line
which terminates the input line with a new line, the $ characters also matches a string
ending with "...\n". The following examples define Erlang data types:

Atoms [a-z][0-9a-zA-Z]*

Variables [A-Z][0-9a-zA-Z]*

Floats (\+|-)?[0-9]+\.[0-9]+((E|e)(\+|-)?[0-9]+)?

281STDLIB

regexp STDLIB Reference Manual

Regular expressions are written as Erlang strings when used with the functions in this
module. This means that any \ or " characters in a regular expression string must be
written with \ as they are also escape characters for the string. For example, the regular
expression string for Erlang floats is:
"(\\+|-)?[0-9]+\\.[0-9]+((E|e)(\\+|-)?[0-9]+)?".

It is not really necessary to have the escape sequences as part of the regular expression
syntax as they can always be generated directly in the string. They are included for
completeness and can they can also be useful when generating regular expressions, or
when they are entered other than with Erlang strings.

282 STDLIB

STDLIB Reference Manual sets

sets
Erlang Module

Sets are collections of elements with no duplicate elements. The representation of a set
is not defined.

Exports

new() -> Set

Types:

� Set = set()

Returns a new empty ordered set.

is set(Set) -> bool()

Types:

� Set = term()

Returns true if Set is an ordered set of elements, otherwise false.

size(Set) -> int()

Types:

� Set = term()

Returns the number of elements in Set.

to list(Set) -> List

Types:

� Set = set()
� List = [term()]

Returns the elements of Set as a list.

from list(List) -> Set

Types:

� List = [term()]
� Set = set()

Returns an ordered set of the elements in List.

is element(Element, Set) -> bool()

283STDLIB

sets STDLIB Reference Manual

Types:

� Element = term()
� Set = set()

Returns true if Element is an element of Set, otherwise false.

add element(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = set()

Returns a new ordered set formed from Set1 with Element inserted.

del element(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = set()

Returns Set1, but with Element removed.

union(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the merged (union) set of Set1 and Set2.

union(SetList) -> Set

Types:

� SetList = [set()]
� Set = set()

Returns the merged (union) set of the list of sets.

intersection(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the intersection of Set1 and Set2.

intersection(SetList) -> Set

Types:

� SetList = [set()]
� Set = set()

Returns the intersection of the non-empty list of sets.

subtract(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

284 STDLIB

STDLIB Reference Manual sets

Returns only the elements of Set1 which are not also elements of Set2.

is subset(Set1, Set2) -> bool()

Types:

� Set1 = Set2 = set()

Returns true when every element of Set1 is also a member of Set2, otherwise false.

fold(Function, Acc0, Set) -> Acc1

Types:

� Function = fun (E, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Set = set()

Fold Function over every element in Set returning the final value of the accumulator.

filter(Pred, Set1) -> Set2

Types:

� Pred = fun (E) -> bool()
� Set1 = Set2 = set()

Filter elements in Set1 with boolean function Fun.

See Also

ordsets(3) [page 243], gb sets(3) [page 156]

285STDLIB

shell STDLIB Reference Manual

shell
Erlang Module

The module shell implements an Erlang shell.

The shell is a user interface program for entering expression sequences. The expressions
are evaluated and a value is returned. A history mechanism saves previous commands
and their values, which can then be incorporated in later commands. How many
commands and results to save can be determined by the user, either interactively, by
calling shell:history/1 and shell:results/1, or by setting the application
configuration parameters shell history length and shell saved results for the
application stdlib.

Variable bindings, and local process dictionary changes which are generated in user
expressions, are preserved and the variables can be used in later commands to access
their values. The bindings can also be forgotten so the variables can be re-used.

The special shell commands all have the syntax of (local) function calls. They are
evaluated as normal function calls and many commands can be used in one expression
sequence.

If a command (local function call) is not recognized by the shell, an attempt is first
made to find the function in the module user default, where customized local
commands can be placed. If found, then the function is evaluated. Otherwise, an
attempt is made to evaluate the function in the module shell default. The module
user default must be explicitly loaded.

The shell also permits the user to start multiple concurrent jobs. A job can be regarded
as a set of processes which can communicate with the shell.

There is some support for reading and printing records in the shell. During compilation
record expressions are translated to tuple expressions. In runtime it is not known
whether a tuple actually represents a record. Nor are the record definitions used by
compiler available at runtime. So in order to read the record syntax and print tuples as
records when possible, record definitions have to be maintained by the shell itself. The
shell commands for reading, defining, forgetting, listing, and printing records are
described below. Note that each job has its own set of record definitions. To facilitate
matters record definitions in the modules shell default and user default (if loaded)
are read each time a new job is started. For instance, adding the line

-include_lib("kernel/include/file.hrl").

to user default makes the definition of file info readily available in the shell.

The shell runs in two modes:

� Normal (possibly restricted) mode, in which commands can be edited and
expressions evaluated.

� Job Control Mode JCL, in which jobs can be started, killed, detached and
connected.

Only the currently connected job can 'talk' to the shell.

286 STDLIB

STDLIB Reference Manual shell

Shell Commands

b() Prints the current variable bindings.

f() Removes all variable bindings.

f(X) Removes the binding of variable X.

h() Prints the history list.

history(N) Sets the number of previous commands to keep in the history list to N.
The previous number is returned. The default number is 20.

results(N) Sets the number of results from previous commands to keep in the history
list to N. The previous number is returned. The default number is 20.

e(N) Repeats the command N, if N is positive. If it is negative, the Nth previous
command is repeated (i.e., e(-1) repeats the previous command).

v(N) Uses the return value of the command N in the current command, if N is positive.
If it is negative, the return value of the Nth previous command is used (i.e., v(-1)
uses the value of the previous command).

help() Evaluates shell default:help().

c(File) Evaluates shell default:c(File). This compiles and loads code in File and
purges old versions of code, if necessary. Assumes that the file and module names
are the same.

rd(RecordName, RecordDefinition) Defines a record in the shell. RecordName is an
atom and RecordDefinition lists the field names and the default values. Usually
record definitions are made known to the shell by use of the rr commands
described below, but sometimes it is handy to define records on the fly.

rf() Removes all record definitions, then reads record definitions from the modules
shell default and user default (if loaded). Returns the names of the records
defined.

rf(RecordNames) Removes selected record definitions. RecordNames is a record name
or a list of record names. Use ’ ’ to remove all record definitions.

rl() Prints all record definitions.

rl(RecordNames) Prints selected record definitions. RecordNames is a record name or a
list of record names.

rp(Term) Prints a term using the record definitions known to the shell. All of Term is
printed; the depth is not limited as is the case when a return value is printed.

rr(Module) Reads record definitions from a module's BEAM file. If there are no record
definitions in the BEAM file, the source file is located and read instead. Returns
the names of the record definitions read. Module is an atom.

rr(Wildcard) Reads record definitions from files. Existing definitions of any of the
record names read are replaced. Wildcard is a wildcard string as defined in
filelib(3) but not an atom.

rr(WildcardOrModule, RecordNames) Reads record definitions from files but discards
record names not mentioned in RecordNames (a record name or a list of record
names).

rr(WildcardOrModule, RecordNames, Options) Reads record definitions from files.
The compiler options fi,Dirg, fd,Macrog, and fd,Macro,Valueg are recognized
and used for setting up the include path and macro definitions. Use ’ ’ as value of
RecordNames to read all record definitions.

287STDLIB

shell STDLIB Reference Manual

Example

The following example is a long dialogue with the shell. Commands starting with > are
inputs to the shell. All other lines are output from the shell. All commands in this
example are explained at the end of the dialogue. .

strider 1> erl
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ^G)
1> Str = "abcd".
"abcd"
2> L = length(Str).
4
3> Descriptor = fL, list to atom(Str)g.
f4,abcdg
4> L.
4
5> b().
Descriptor = f4,abcdg
L = 4
Str = "abcd"
ok
6> f(L).
ok
7> b().
Descriptor = f4,abcdg
Str = "abcd"
ok
8> f(L).
** 1: variable ’L’ is unbound **
9> fL, g = Descriptor.
f4,abcdg
10> L.
4
11> fP, Q, Rg = Descriptor.
** exited: ffbadmatch,f4,abcdgg,[ferl eval,expr,3g]g **
12> P.
** 1: variable ’P’ is unbound **
13> Descriptor.
f4,abcdg
14> fP, Qg = Descriptor.
f4,abcdg
15> P.
4
16> f().
ok
17> put(aa, hello).
undefined
18> get(aa).
hello
19> Y = test1:demo(1).
11

288 STDLIB

STDLIB Reference Manual shell

20> get().
[faa,workedg]
21> put(aa, hello).
worked
22> Z = test1:demo(2).

=ERROR REPORT==== 19-Feb-2003::10:04:14 ===
Error in process <0.40.0> with exit value: ffbadmatch,1g,[ftest1,demo,1g,
ferl eval,expr,4g,fshell,eval loop,2g]g
** exited: ffbadmatch,1g,

[ftest1,demo,1g,ferl eval,expr,4g,fshell,eval loop,2g]g **
23> Z.
** 1: variable ’Z’ is unbound **
24> get(aa).
hello
25> erase(), put(aa, hello).
undefined
26> spawn(test1, demo, [1]).
<0.57.0>
27> get(aa).
hello
28> io:format("hello hello\n").
hello hello
ok
29> e(28).
hello hello
ok
30> v(28).
ok
31> c(ex).
fok,exg
32> rr(ex).
[rec]
33> rl(rec).
-record(rec, fa,

b = val()g).
ok
34> #recfg.
** exited: fundef,[fshell default,val,[]g,

ferl eval,do apply,5g,
ferl eval,expr list,6g,
ferl eval,expr,5g,
fshell,eval loop,2g]g **

35> #recfb = 3g.
frec,undefined,3g
36> rp(v(-1)).
#recfa = undefined,

b = 3g
ok
37> rd(rec, ff = orddict:new()g).
rec
38> rp(#recfg).
#recff = []g

289STDLIB

shell STDLIB Reference Manual

ok
39> rd(rec, fcg), A.
** 1: variable ’A’ is unbound **
40> rp(#recfg).
#recfc = undefinedg
ok
41> test1:loop(0).
Hello Number: 0
Hello Number: 1
Hello Number: 2
Hello Number: 3

User switch command
--> i
--> c

.

.

.
Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exited: killed **
42> halt().
strider 2>

Comments

Command 1 sets the variable Str to the string "abcd".

Command 2 sets L to the length of the string evaluating the BIF atom to list.

Command 3 builds the tuple Descriptor.

Command 4 prints the value of the variable L.

Command 5 evaluates the internal shell command b(), which is an abbreviation of
“bindings”. This prints the current shell variables and their bindings. The ok at the end
is the return value of the b() function.

Command 6 f(L) evaluates the internal shell command f(L) (abbreviation of “forget”).
The value of the variable L is removed.

Command 7 prints the new bindings.

Command 8 shows that L is no longer bound to a value.

Command 9 performs a pattern matching operation on Descriptor, binding a new
value to L.

Command 10 prints the current value of L.

Command 11 tries to match fP, Q, Rg against Descriptor which is f4, abcg. The
match fails and none of the new variables become bound. The printout starting with
“** exited:” is not the value of the expression (the expression had no value because its
evaluation failed), but rather a warning printed by the system to inform the user that an
error has occurred. The values of the other variables (L, Str, etc.) are unchanged.

290 STDLIB

STDLIB Reference Manual shell

Commands 12 and 13 show that P is unbound because the previous command failed,
and that Descriptor has not changed.

Commands 14 and 15 show a correct match where P and Q are bound.

Command 16 clears all bindings.

The next few commands assume that test1:demo(X) is defined in the following way:

demo(X) ->
put(aa, worked),
X = 1,
X + 10.

Commands 17 and 18 set and inspect the value of the item aa in the process dictionary.

Command 19 evaluates test1:demo(1). The evaluation succeeds and the changes
made in the process dictionary become visible to the shell. The new value of the
dictionary item aa can be seen in command 20.

Commands 21 and 22 change the value of the dictionary item aa to hello and call
test1:demo(2). Evaluation fails and the changes made to the dictionary in
test1:demo(2), before the error occurred, are discarded.

Commands 23 and 24 show that Z was not bound and that the dictionary item aa has
retained its original value.

Commands 25, 26 and 27 show the effect of evaluating test1:demo(1) in the
background. In this case, the expression is evaluated in a newly spawned process. Any
changes made in the process dictionary are local to the newly spawned process and
therefore not visible to the shell.

Commands 28, 29 and 30 use the history facilities of the shell.

Command 29 is e(28). This re-evaluates command 28. Command 30 is v(28). This
uses the value (result) of command 28. In the cases of a pure function (a function with
no side effects), the result is the same. For a function with side effects, the result can be
different.

The next few commands show some record manipulation. It is assumed that ex.erl
defines a record like this:

-record(rec, fa, b = val()g).

val() ->
3.

Commands 31 and 32 compiles the file ex.erl and reads the record definitions in
ex.beam. If the compiler did not output any record definitions on the BEAM file,
rr(ex) tries to read record definitions from the source file instead.

Command 33 prints the definition of the record named rec.

Command 34 tries to create a rec record, but fails since the function val/0 is
undefined. Command 35 shows the workaround: explicitly assign values to record fields
that cannot otherwise be initialized.

Command 36 prints the newly created record using record definitions maintained by
the shell.

Command 37 defines a record directly in the shell. The definition replaces the one read
from the file ex.beam.

Command 38 creates a record using the new definition, and prints the result.

291STDLIB

shell STDLIB Reference Manual

Command 39 and 40 show that record definitions are updated as side effects. The
evaluation of the command fails but the definition of rec has been carried out.

For the next command, it is assumed that test1:loop(N) is defined in the following
way:

loop(N) ->
io:format("Hello Number: ~w~n", [N]),
loop(N+1).

Command 41 evaluates test1:loop(0), which puts the system into an infinite loop. At
this point the user types Control G, which suspends output from the current process,
which is stuck in a loop, and activates JCL mode. In JCL mode the user can start and
stop jobs.

In this particular case, the i command (“interrupt”) is used to terminate the looping
program, and the c command is used to connect to the shell again. Since the process
was running in the background before we killed it, there will be more printouts before
the “** exited: killed **” message is shown.

The halt() command exits the Erlang runtime system.

JCL Mode

When the shell starts, it starts a single evaluator process. This process, together with any
local processes which it spawns, is referred to as a job. Only the current job, which is
said to be connected, can perform operations with standard IO. All other jobs, which
are said to be detached, are blocked if they attempt to use standard IO.

All jobs which do not use standard IO run in the normal way.

The shell escape key ^G (Control G) detaches the current job and activates JCL mode.
The JCL mode prompt is "-->". If "?" is entered at the prompt, the following help
message is displayed:

--> ?
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s - start local shell
r [node] - start remote shell
q - quit Erlang
? | h - this message

The JCL commands have the following meaning:

c [nn] Connects to job number <nn> or the current job. The standard shell is
resumed. Operations which use standard IO by the current job will be interleaved
with user inputs to the shell.

i [nn] Stops the current evaluator process for job number nn or the current job, but
does not kill the shell process. Accordingly, any variable bindings and the process
dictionary will be preserved and the job can be connected again. This command
can be used to interrupt an endless loop.

292 STDLIB

STDLIB Reference Manual shell

k [nn] Kills job number nn or the current job. All spawned processes in the job are
killed, provided they have not evaluated the group leader/1 BIF and are located
on the local machine. Processes spawned on remote nodes will not be killed.

j Lists all jobs. A list of all known jobs is printed. The current job name is prefixed
with '*'.

s Starts a new job. This will be assigned the new index [nn] which can be used in
references.

r [node] Starts a remote job on node. This is used in distributed Erlang to allow a
shell running on one node to control a number of applications running on a
network of nodes.

q Quits Erlang. Note that this option is disabled if Erlang is started with the ignore
break, +Bi, system flag (which may be useful e.g. when running a restricted shell,
see below).

? Displays this message.

It is possible to alter the behaviour of shell escape by means of the stdlib application
variable shell esc. The value of the variable can be either jcl (erl -stdlib
shell esc jcl) or abort (erl -stdlib shell esc abort). The first option sets ^G
to activate JCL mode (which is also default behaviour). The latter sets ^G to terminate
the current shell and start a new one. JCL mode can not be invoked when shell esc is
set to abort.

If you want an Erlang node to have a remote job active from the start (rather than the
default local job), you start Erlang with the -remsh flag. Example: erl -sname
this node -remsh other node@other host

Restricted Shell

The shell may be started in a restricted mode. In this mode, the shell evaluates a
function call only if allowed. This feature makes it possible to, for example, prevent a
user from accidentally calling a function from the prompt that could harm a running
system (useful in combination with the the system flag +Bi).

When the restricted shell evaluates an expression and encounters a function call, it calls
a predicate function (with information about the function call in question). This
predicate function returns true to let the shell go ahead with the evaluation, or false
to abort it. There are two possible predicate functions for the user to implement:

local allowed(Func, ArgList, State) -> ftrue,NewStateg |
ffalse,NewStateg

to determine if the call to the local function Func with arguments ArgList should be
allowed.

non local allowed(FuncSpec, ArgList, State) -> ftrue,NewStateg |
ffalse,NewStateg

to determine if the call to non-local function FuncSpec (fModule,Funcg or a fun) with
arguments ArgList should be allowed.

These predicate functions are in fact called from local and non-local evaluation function
handlers, described in the erl eval [page 100] manual page. (Arguments in ArgList are
evaluated before the predicates are called).

The State argument is a tuple fShellState,ExprStateg. The return value NewState
has the same form. This may be used to carry a state between calls to the predicate

293STDLIB

shell STDLIB Reference Manual

functions. Data saved in ShellState lives through an entire shell session. Data saved in
ExprState lives only through the evaluation of the current expression.

There are two ways to start a restricted shell session:

� Use the stdlib application variable restricted shell and specify, as its value, the
name of the predicate function module. Example (with predicate functions
implemented in pred mod.erl): $ erl -stdlib restricted shell pred mod

� From a normal shell session, call function shell:start restricted/1. This exits
the current evaluator and starts a new one in restricted mode.

Notes:

� When restricted shell mode is activated or deactivated, new jobs started on the
node will run in restricted or normal mode respectively.

� If restricted mode has been enabled on a particular node, remote shells connecting
to this node will also run in restricted mode.

� The predicate functions can not be used to allow or disallow execution of
functions called from compiled code (only functions called from expressions
entered at the shell prompt).

Exports

history(N) -> integer()

Types:

� N = integer()

Sets the number of previous commands to keep in the history list to N. The previous
number is returned. The default number is 20.

results(N) -> integer()

Types:

� N = integer()

Sets the number of results from previous commands to keep in the history list to N. The
previous number is returned. The default number is 20.

start restricted(Module) -> ok

Types:

� Module = atom()

Exits a normal shell and starts a restricted shell. Module specifies the module for the
predicate functions local allowed/3 and non local allowed/3. The function is
meant to be called from the shell.

stop restricted() -> ok

Exits a restricted shell and starts a normal shell. The function is meant to be called from
the shell.

294 STDLIB

STDLIB Reference Manual shell default

shell default
Erlang Module

The functions in shell default are called when no module name is given in a shell
command.

Consider the following shell dialogue:

1 > lists:reverse("abc").
"cba"
2 > c(foo).
fok, foog

In command one, the module lists is called. In command two, no module name is
specified. The shell searches the modules user default followed by shell default for
the function foo/1.

shell default is intended for “system wide” customizations to the shell. user default
is intended for “local” or individual user customizations.

Hint

To add your own commands to the shell, create a module called user default and add
the commands you want. Then add the following line as the first line in your .erlang
file in your home directory.

code:load abs("$PATH/user default").

$PATH is the directory where your user default module can be found.

295STDLIB

slave STDLIB Reference Manual

slave
Erlang Module

This module provides functions for starting Erlang slave nodes. All slave nodes which
are started by a master will terminate automatically when the master terminates. All
TTY output produced at the slave will be sent back to the master node. File I/O is done
via the master.

Slave nodes on other hosts than the current one are started with the program rsh. The
user must be allowed to rsh to the remote hosts without being prompted for a
password. This can be arranged in a number of ways (refer to the rsh documentation
for details). A slave node started on the same host as the master inherits certain
environment values from the master, such as the current directory and the environment
variables. For what can be assumed about the environment when a slave is started on
another host, read the documentation for the rsh program.

An alternative to the rsh program can be specified on the command line to erl as
follows: -rsh Program.

The slave node should use the same file system at the master. At least, Erlang/OTP
should be installed in the same place on both computers and the same version of Erlang
should be used.

Currently, a node running on Windows NT can only start slave nodes on the host on
which it is running.

The master node must be alive.

Exports

start(Host) ->

start(Host, Name) ->

start(Host, Name, Args) -> fok, Nodeg | ferror, Reasong

Types:

� Host = Name = atom()
� Args = string()
� Node = node()
� Reason = timeout | no rsh | falready running, Nodeg

296 STDLIB

STDLIB Reference Manual slave

Starts a slave node on the host Host. Host names need not necessarily be specified as
fully qualified names; short names can also be used. This is the same condition that
applies to names of distributed Erlang nodes.

The name of the started node will be Name@Host. If no name is provided, the name will
be the same as the node which executes the call (with the exception of the host name
part of the node name).

The slave node resets its user process so that all terminal I/O which is produced at the
slave is automatically relayed to the master. Also, the file process will be relayed to the
master.

The Args argument is used to set erl command line arguments. If provided, it is passed
to the new node and can be used for a variety of purposes. See [erl(1)]

As an example, suppose that we want to start a slave node at host H with the node name
Name@H, and we also want the slave node to have the following properties:

� directory Dir should be added to the code path;

� the Mnesia directory should be set to M;

� the unix DISPLAY environment variable should be set to the display of the master
node.

The following code is executed to achieve this:

E = " -env DISPLAY " ++ net_adm:localhost() ++ ":0 ",
Arg = "-mnesia_dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).

If successful, the function returns fok, Nodeg, where Node is the name of the new
node. Otherwise it returns ferror, Reasong, where Reason can be one of:

timeout The master node failed to get in contact with the slave node. This can happen
in a number of circumstances:

� Erlang/OTP is not installed on the remote host
� the file system on the other host has a different structure to the the master
� the Erlang nodes have different cookies.

no rsh There is no rsh program on the computer.

falready running, Nodeg A node with the name Name@Host already exists.

start link(Host) ->

start link(Host, Name) ->

start link(Host, Name, Args) -> fok, Nodeg | ferror, Reasong

Types:

� Host = Name = atom()
� Args = string()
� Node = node()
� Reason = timeout | no rsh | falready running, Nodeg

Starts a slave node in the same way as start/1,2,3, except that the slave node is linked
to the currently executing process. If that process terminates, the slave node also
terminates.

See start/1,2,3 for a description of arguments and return values.

297STDLIB

slave STDLIB Reference Manual

stop(Node) -> ok

Types:

� Node = node()

Stops (kills) a node.

pseudo([Master | ServerList]) -> ok

Types:

� Master = node()
� ServerList = [atom()]

Calls pseudo(Master, ServerList). If we want to start a node from the command
line and set up a number of pseudo servers, an Erlang runtime system can be started as
follows:

% erl -name abc -s slave pseudo klacke@super x --

pseudo(Master, ServerList) -> ok

Types:

� Master = node()
� ServerList = [atom()]

Starts a number of pseudo servers. A pseudo server is a server with a registered name
which does absolutely nothing but pass on all message to the real server which executes
at a master node. A pseudo server is an intermediary which only has the same registered
name as the real server.

For example, if we have started a slave node N and want to execute pxw graphics code on
this node, we can start the server pxw server as a pseudo server at the slave node. The
following code illustrates:

rpc:call(N, slave, pseudo, [node(), [pxw_server]]).

relay(Pid)

Types:

� Pid = pid()

Runs a pseudo server. This function never returns any value and the process which
executes the function will receive messages. All messages received will simply be passed
on to Pid.

298 STDLIB

STDLIB Reference Manual sofs

sofs
Erlang Module

The sofs module implements operations on finite sets and relations represented as sets.
Intuitively, a set is a collection of elements; every element belongs to the set, and the set
contains every element.

Given a set A and a sentence S(x), where x is a free variable, a new set B whose
elements are exactly those elements of A for which S(x) holds can be formed, this is
denoted B= fxinA: S(x)g. Sentences are expressed using the logical operators “for
some” (or “there exists”), “for all”, “and”, “or”, “not”. If the existence of a set containing
all the specified elements is known (as will always be the case in this module), we write
B= fx: S(x)g.

The unordered set containing the elements a, b and c is denoted fa,b,cg. This notation is
not to be confused with tuples. The ordered pair of a and b, with first coordinate a and
second coordinate b, is denoted (a,b). An ordered pair is an ordered set of two elements.
In this module ordered sets can contain one, two or more elements, and parentheses are
used to enclose the elements. Unordered sets and ordered sets are orthogonal, again in
this module; there is no unordered set equal to any ordered set.

The set that contains no elements is called the empty set. If two sets A and B contain the
same elements, then A is equal to B, denoted A=B. Two ordered sets are equal if they
contain the same number of elements and have equal elements at each coordinate. If a
set A contains all elements that B contains, then B is a subset of A. The union of two sets
A and B is the smallest set that contains all elements of A and all elements of B. The
intersection of two sets A and B is the set that contains all elements of A that belong to
B. Two sets are disjoint if their intersection is the empty set. The difference of two sets A
and B is the set that contains all elements of A that do not belong to B. The symmetric
difference of two sets is the set that contains those element that belong to either of the
two sets, but not both. The union of a collection of sets is the smallest set that contains
all the elements that belong to at least one set of the collection. The intersection of a
non-empty collection of sets is the set that contains all elements that belong to every set
of the collection.

The Cartesian product of two sets X and Y, denoted XY, is the set fa: a= (x,y) for some
xinX and for some yinYg. A relation is a subset of XY. Let R be a relation. The fact that
(x,y) belongs to R is written as xRy. Since relations are sets, the definitions of the last
paragraph (subset, union, and so on) apply to relations as well. The domain of R is the
set fx: xRy for some yinYg. The range of R is the set fy: xRy for some xinXg. The
converse of R is the set fa: a= (y,x) for some (x,y)inRg. If A is a subset of X, then the
image of A under R is the set fy: xRy for some xinAg, and if B is a subset of Y, then the
inverse image of B is the set fx: xRy for some yinBg. If R is a relation from X to Y and S
is a relation from Y to Z, then the relative product of R and S is the relation T from X to
Z defined so that xTz if and only if there exists an element y in Y such that xRy and
ySz. The restriction of R to A is the set S defined so that xSy if and only if there exists an
element x in A such that xRy. If S is a restriction of R to A, then R is an extension of S to
X. If X=Y then we call R a relation in X. The field of a relation R in X is the union of

299STDLIB

sofs STDLIB Reference Manual

the domain of R and the range of R. If R is a relation in X, and if S is defined so that xSy
if xRy and not x=y, then S is the strict relation corresponding to R, and vice versa, if S is
a relation in X, and if R is defined so that xRy if xSy or x=y, then R is the weak relation
corresponding to S. A relation R in X is reflexive if xRx for every element x of X; it is
symmetric if xRy implies that yRx; and it is transitive if xRy and yRz imply that xRz.

A function F is a relation, a subset of XY, such that the domain of F is equal to X and
such that for every x in X there is a unique element y in Y with (x,y) in F. The latter
condition can be formulated as follows: if xFy and xFz then y=z. In this module, it will
not be required that the domain of F be equal to X for a relation to be considered a
function. Instead of writing (x,y)inF or xFy, we write F(x)=y when F is a function, and
say that F maps x onto y, or that the value of F at x is y. Since functions are relations,
the definitions of the last paragraph (domain, range, and so on) apply to functions as
well. If the converse of a function F is a function F', then F' is called the inverse of F.
The relative product of two functions F1 and F2 is called the composite of F1 and F2 if
the range of F1 is a subset of the domain of F2.

Sometimes, when the range of a function is more important than the function itself, the
function is called a family. The domain of a family is called the index set, and the range
is called the indexed set. If x is a family from I to X, then x[i] denotes the value of the
function at index i. The notation “a family in X” is used for such a family. When the
indexed set is a set of subsets of a set X, then we call x a family of subsets of X. If x is a
family of subsets of X, then the union of the range of x is called the union of the family
x. If x is non-empty (the index set is non-empty), the intersection of the family x is the
intersection of the range of x. In this module, the only families that will be considered
are families of subsets of some set X; in the following the word “family” will be used for
such families of subsets.

A partition of a set X is a collection S of non-empty subsets of X whose union is X and
whose elements are pairwise disjoint. A relation in a set is an equivalence relation if it is
reflexive, symmetric and transitive. If R is an equivalence relation in X, and x is an
element of X, the equivalence class of x with respect to R is the set of all those elements
y of X for which xRy holds. The equivalence classes constitute a partitioning of X.
Conversely, if C is a partition of X, then the relation that holds for any two elements of
X if they belong to the same equivalence class, is an equivalence relation induced by the
partition C. If R is an equivalence relation in X, then the canonical map is the function
that maps every element of X onto its equivalence class.

Relations as defined above (as sets of ordered pairs) will from now on be referred to as
binary relations. We call a set of ordered sets (x[1],...,x[n]) an (n-ary) relation, and say
that the relation is a subset of the Cartesian product X[1]...X[n] where x[i] is an
element of X[i], 1<=i<=n. The projection of an n-ary relation R onto coordinate i is the
set fx[i]: (x[1],...,x[i],...,x[n]) in R for some x[j]inX[j], 1<=j<=n and not i=jg. The
projections of a binary relation R onto the first and second coordinates are the domain
and the range of R respectively. The relative product of binary relations can be
generalized to n-ary relations as follows. Let TR be an ordered set (R[1],...,R[n]) of
binary relations from X to Y[i] and S a binary relation from (Y[1]...Y[n]) to Z. The
relative product of TR and S is the binary relation T from X to Z defined so that xTz if
and only if there exists an element y[i] in Y[i] for each 1<=i<=n such that xR[i]y[i]
and (y[1],...,y[n])Sz. Now let TR be a an ordered set (R[1],...,R[n]) of binary relations
from X[i] to Y[i] and S a subset of X[1]...X[n]. The multiple relative product of TR and
and S is defined to be the set fz: z= ((x[1],...,x[n]), (y[1],...,y[n])) for some
(x[1],...,x[n])inS and for some (x[i],y[i]) in R[i], 1<=i<=ng. The natural join of an
n-ary relation R and an m-ary relation S on coordinate i and j is defined to be the set fz:

300 STDLIB

STDLIB Reference Manual sofs

z= (x[1],...,x[n], y[1],...,y[j-1],y[j+1],...,y[m]) for some (x[1],...,x[n])inR and for some
(y[1],...,y[m])inS such that x[i]=y[j]g.

The sets recognized by this module will be represented by elements of the relation Sets,
defined as the smallest set such that:

� for every atom T except ' ' and for every term X, (T,X) belongs to Sets (atomic
sets);

� ([' '],[]) belongs to Sets (the untyped empty set);

� for every tuple T= fT[1],...,T[n]g and for every tuple X= fX[1],...,X[n]g, if
(T[i],X[i]) belongs to Sets for every 1<=i<=n then (T,X) belongs to Sets (ordered
sets);

� for every term T, if X is the empty list or a non-empty sorted list [X[1],...,X[n]]
without duplicates such that (T,X[i]) belongs to Sets for every 1<=i<=n, then
([T],X) belongs to Sets (typed unordered sets).

An external set is an element of the range of Sets. A type is an element of the domain of
Sets. If S is an element (T,X) of Sets, then T is a valid type of X, T is the type of S, and
X is the external set of S. from term/2 [page 310] creates a set from a type and an
Erlang term turned into an external set.

The actual sets represented by Sets are the elements of the range of the function Set
from Sets to Erlang terms and sets of Erlang terms:

� Set(T,Term)= Term, where T is an atom;

� Set(fT[1],...,T[n]g,fX[1],...,X[n]g) = (Set(T[1],X[1]),...,Set(T[n],X[n]));

� Set([T],[X[1],...,X[n]]) = fSet(T,X[1]),...,Set(T,X[n])g;

� Set([T],[])= fg.

When there is no risk of confusion, elements of Sets will be identified with the sets they
represent. For instance, if U is the result of calling union/2 with S1 and S2 as
arguments, then U is said to be the union of S1 and S2. A more precise formulation
would be that Set(U) is the union of Set(S1) and Set(S2).

The types are used to implement the various conditions that sets need to fulfill. As an
example, consider the relative product of two sets R and S, and recall that the relative
product of R and S is defined if R is a binary relation to Y and S is a binary relation from
Y. The function that implements the relative product, relative product/2 [page 317],
checks that the arguments represent binary relations by matching [fA,Bg] against the
type of the first argument (Arg1 say), and [fC,Dg] against the type of the second
argument (Arg2 say). The fact that [fA,Bg] matches the type of Arg1 is to be
interpreted as Arg1 representing a binary relation from X to Y, where X is defined as all
sets Set(x) for some element x in Sets the type of which is A, and similarly for Y. In the
same way Arg2 is interpreted as representing a binary relation from W to Z. Finally it is
checked that B matches C, which is sufficient to ensure that W is equal to Y. The
untyped empty set is handled separately: its type, [' '], matches the type of any
unordered set.

A few functions of this module (drestriction/3, family projection/2,
partition/2, partition family/2, projection/2, restriction/3,
substitution/2) accept an Erlang function as a means to modify each element of a
given unordered set. Such a function, called SetFun in the following, can be specified as
a functional object (fun), a tuple fexternal,Fung, or an integer. If SetFun is specified
as a fun, the fun is applied to each element of the given set and the return value is

301STDLIB

sofs STDLIB Reference Manual

assumed to be a set. If SetFun is specified as a tuple fexternal, Fung, Fun is applied to
the external set of each element of the given set and the return value is assumed to be
an external set. Selecting the elements of an unordered set as external sets and
assembling a new unordered set from a list of external sets is in the present
implementation more efficient than modifying each element as a set. However, this
optimization can only be utilized when the elements of the unordered set are atomic or
ordered sets. It must also be the case that the type of the elements matches some clause
of Fun (the type of the created set is the result of applying Fun to the type of the given
set), and that Fun does nothing but selecting, duplicating or rearranging parts of the
elements. Specifying a SetFun as an integer I is equivalent to specifying fexternal,
fun(X)-> element(I,X)g, but is to be preferred since it makes it possible to handle
this case even more efficiently. Examples of SetFuns:

fsofs, uniong
fun(S) -> sofs:partition(1, S) end
fexternal, fun(A) -> A endg
fexternal, fun(fA, ,Cg) -> fC,Ag endg
fexternal, fun(f ,f ,Cgg) -> C endg
fexternal, fun(f ,f ,f ,Eg=Cgg) -> fE,fE,Cgg endg
2

The order in which a SetFun is applied to the elements of an unordered set is not
specified, and may change in future versions of sofs.

The execution time of the functions of this module is dominated by the time it takes to
sort lists. When no sorting is needed, the execution time is in the worst case
proportional to the sum of the sizes of the input arguments and the returned value. A
few functions execute in constant time: from external, is empty set, is set,
is sofs set, to external, type.

The functions of this module exit the process with a badarg, bad function, or
type mismatch message when given badly formed arguments or sets the types of which
are not compatible.

Types

anyset() = -an unordered, ordered or atomic set-
binary relation() = -a binary relation-
bool() = true | false
external set() = -an external set-
family() = -a family (of subsets)-
function() = -a function-
ordset() = -an ordered set-
relation() = -an n-ary relation-
set() = -an unordered set-
set of sets() = -an unordered set of set()-
set fun() = integer() >= 1

| fexternal, fun(external set()) -> external set()g
| fun(anyset()) -> anyset()

spec fun() = fexternal, fun(external set()) -> bool()g
| fun(anyset()) -> bool()

type() = -a type-

302 STDLIB

STDLIB Reference Manual sofs

Exports

a function(Tuples [, Type]) -> Function

Types:

� Function = function()
� Tuples = [tuple()]
� Type = type()

Creates a function [page 300]. a function(F,T) is equivalent to from term(F,T), if
the result is a function. If no type [page 301] is explicitly given, [fatom,atomg] is used
as type of the function.

canonical relation(SetOfSets) -> BinRel

Types:

� BinRel = binary relation()
� SetOfSets = set of sets()

Returns the binary relation containing the elements (E,Set) such that Set belongs to
SetOfSets and E belongs to Set. If SetOfSets is a partition [page 300] of a set X and R
is the equivalence relation in X induced by SetOfSets, then the returned relation is the
canonical map [page 300] from X onto the equivalence classes with respect to R.

1> Ss = sofs:from term([[a,b],[b,c]]),
CR = sofs:canonical relation(Ss),
sofs:to external(CR).
[fa,[a,b]g,fb,[a,b]g,fb,[b,c]g,fc,[b,c]g]

composite(Function1, Function2) -> Function3

Types:

� Function1 = Function2 = Function3 = function()

Returns the composite [page 300] of the functions Function1 and Function2.

1> F1 = sofs:a function([fa,1g,fb,2g,fc,2g]),
F2 = sofs:a function([f1,xg,f2,yg,f3,zg]),
F = sofs:composite(F1, F2),
sofs:to external(F).
[fa,xg,fb,yg,fc,yg]

constant function(Set, AnySet) -> Function

Types:

� AnySet = anyset()
� Function = function()
� Set = set()

Creates the function [page 300] that maps each element of the set Set onto AnySet.

303STDLIB

sofs STDLIB Reference Manual

1> S = sofs:set([a,b]),
E = sofs:from term(1),
R = sofs:constant function(S, E),
sofs:to external(R).
[fa,1g,fb,1g]

converse(BinRel1) -> BinRel2

Types:

� BinRel1 = BinRel2 = binary relation()

Returns the converse [page 299] of the binary relation BinRel1.

1> R1 = sofs:relation([f1,ag,f2,bg,f3,ag]),
R2 = sofs:converse(R1),
sofs:to external(R2).
[fa,1g,fa,3g,fb,2g]

difference(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the difference [page 299] of the sets Set1 and Set2.

digraph to family(Graph [, Type]) -> Family

Types:

� Graph = digraph() -see digraph(3)-
� Family = family()
� Type = type()

Creates a family [page 300] from the directed graph Graph. Each vertex a of Graph is
represented by a pair (a,fb[1],...,b[n]g) where the b[i]'s are the out-neighbours of a. If
no type is explicitly given, [fatom,[atom]g] is used as type of the family. It is assumed
that Type is a valid type [page 301] of the external set of the family.

If G is a directed graph, it holds that the vertices and edges of G are the same as the
vertices and edges of family to digraph(digraph to family(G)).

domain(BinRel) -> Set

Types:

� BinRel = binary relation()
� Set = set()

Returns the domain [page 299] of the binary relation BinRel.

1> R = sofs:relation([f1,ag,f1,bg,f2,bg,f2,cg]),
S = sofs:domain(R),
sofs:to external(S).
[1,2]

drestriction(BinRel1, Set) -> BinRel2

Types:

304 STDLIB

STDLIB Reference Manual sofs

� BinRel1 = BinRel2 = binary relation()
� Set = set()

Returns the difference between the binary relation BinRel1 and the restriction [page
299] of BinRel1 to Set.

1> R1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
S = sofs:set([2,4,6]),
R2 = sofs:drestriction(R1, S),
sofs:to external(R2).
[f1,ag,f3,cg]

drestriction(R,S) is equivalent to difference(R,restriction(R,S)).

drestriction(SetFun, Set1, Set2) -> Set3

Types:

� SetFun = set fun()
� Set1 = Set2 = Set3 = set()

Returns a subset of Set1 containing those elements that do not yield an element in Set2
as the result of applying SetFun.

1> SetFun = fexternal, fun(f A,B,Cg) -> fB,Cg endg,
R1 = sofs:relation([fa,aa,1g,fb,bb,2g,fc,cc,3g]),
R2 = sofs:relation([fbb,2g,fcc,3g,fdd,4g]),
R3 = sofs:drestriction(SetFun, R1, R2),
sofs:to external(R3).
[fa,aa,1g]

drestriction(F,S1,S2) is equivalent to difference(S1,restriction(F,S1,S2)).

empty set() -> Set

Types:

� Set = set()

Returns the untyped empty set [page 301]. empty set() is equivalent to
from term([],[’ ’]).

extension(BinRel1, Set, AnySet) -> BinRel2

Types:

� AnySet = anyset()
� BinRel1 = BinRel2 = binary relation()
� Set = set()

Returns the extension [page 299] of BinRel1 such that for each element E in Set that
does not belong to the domain [page 299] of BinRel1, BinRel2 contains the pair
(E,AnySet).

1> S = sofs:set([b,c]),
A = sofs:empty set(),
R = sofs:family([fa,[1,2]g,fb,[3]g]),
X = sofs:extension(R, S, A),
sofs:to external(X).
[fa,[1,2]g,fb,[3]g,fc,[]g]

305STDLIB

sofs STDLIB Reference Manual

family(Tuples [, Type]) -> Family

Types:

� Family = family()
� Tuples = [tuple()]
� Type = type()

Creates a family of subsets [page 300]. family(F,T) is equivalent to from term(F,T),
if the result is a family. If no type [page 301] is explicitly given, [fatom,[atom]g] is
used as type of the family.

family difference(Family1, Family2) -> Family3

Types:

� Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 300], then Family3 the family such that the
index set is equal to the index set of Family1, and Family3[i] is the difference between
Family1[i] and Family2[i] if Family2 maps i, Family1[i] otherwise.

1> F1 = sofs:family([fa,[1,2]g,fb,[3,4]g]),
F2 = sofs:family([fb,[4,5]g,fc,[6,7]g]),
F3 = sofs:family difference(F1, F2),
sofs:to external(F3).
[fa,[1,2]g,fb,[3]g]

family domain(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 300] and Family1[i] is a binary relation for every i in the
index set of Family1, then Family2 is the family with the same index set as Family1
such that Family2[i] is the domain [page 299] of Family1[i].

1> FR = sofs:from term([fa,[f1,ag,f2,bg,f3,cg]g,fb,[]g,fc,[f4,dg,f5,eg]g]),
F = sofs:family domain(FR),
sofs:to external(F).
[fa,[1,2,3]g,fb,[]g,fc,[4,5]g]

family field(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 300] and Family1[i] is a binary relation for every i in the
index set of Family1, then Family2 is the family with the same index set as Family1
such that Family2[i] is the field [page 299] of Family1[i].

1> FR = sofs:from term([fa,[f1,ag,f2,bg,f3,cg]g,fb,[]g,fc,[f4,dg,f5,eg]g]),
F = sofs:family field(FR),
sofs:to external(F).
[fa,[1,2,3,a,b,c]g,fb,[]g,fc,[4,5,d,e]g]

family field(Family1) is equivalent to family union(family domain(Family1),
family range(Family1)).

306 STDLIB

STDLIB Reference Manual sofs

family intersection(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 300] and Family1[i] is a set of sets for every i in the index
set of Family1, then Family2 is the family with the same index set as Family1 such that
Family2[i] is the intersection [page 299] of Family1[i].

If Family1[i] is an empty set for some i, then the process exits with a badarg message.

1> F1 = sofs:from term([fa,[[1,2,3],[2,3,4]]g,fb,[[x,y,z],[x,y]]g]),
F2 = sofs:family intersection(F1),
sofs:to external(F2).
[fa,[2,3]g,fb,[x,y]g]

family intersection(Family1, Family2) -> Family3

Types:

� Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 300], then Family3 is the family such that the
index set is the intersection of Family1's and Family2's index sets, and Family3[i] is the
intersection of Family1[i] and Family2[i].

1> F1 = sofs:family([fa,[1,2]g,fb,[3,4]g,fc,[5,6]g]),
F2 = sofs:family([fb,[4,5]g,fc,[7,8]g,fd,[9,10]g]),
F3 = sofs:family intersection(F1, F2),
sofs:to external(F3).
[fb,[4]g,fc,[]g]

family projection(SetFun, Family1) -> Family2

Types:

� SetFun = set fun()
� Family1 = Family2 = family()
� Set = set()

If Family1 is a family [page 300] then Family2 is the family with the same index set as
Family1 such that Family2[i] is the result of calling SetFun with Family1[i] as argument.

1> F1 = sofs:from term([fa,[[1,2],[2,3]]g,fb,[[]]g]),
F2 = sofs:family projection(fsofs, uniong, F1),
sofs:to external(F2).
[fa,[1,2,3]g,fb,[]g]

family range(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 300] and Family1[i] is a binary relation for every i in the
index set of Family1, then Family2 is the family with the same index set as Family1
such that Family2[i] is the range [page 299] of Family1[i].

307STDLIB

sofs STDLIB Reference Manual

1> FR = sofs:from term([fa,[f1,ag,f2,bg,f3,cg]g,fb,[]g,fc,[f4,dg,f5,eg]g]),
F = sofs:family range(FR),
sofs:to external(F).
[fa,[a,b,c]g,fb,[]g,fc,[d,e]g]

family specification(Fun, Family1) -> Family2

Types:

� Fun = spec fun()
� Family1 = Family2 = family()

If Family1 is a family [page 300], then Family2 is the restriction [page 299] of Family1
to those elements i of the index set for which Fun applied to Family1[i] returns true. If
Fun is a tuple fexternal,Fun2g, Fun2 is applied to the external set [page 301] of
Family1[i], otherwise Fun is applied to Family1[i].

1> F1 = sofs:family([fa,[1,2,3]g,fb,[1,2]g,fc,[1]g]),
SpecFun = fun(S) -> sofs:no elements(S) =:= 2 end,
F2 = sofs:family specification(SpecFun, F1),
sofs:to external(F2).
[fb,[1,2]g]

family to digraph(Family [, GraphType]) -> Graph

Types:

� Graph = digraph()
� Family = family()
� GraphType = -see digraph(3)-

Creates a directed graph from the family [page 300] Family. For each pair
(a,fb[1],...,b[n]g) of Family, the vertex a as well the edges (a,b[i]) for 1<=i<=n are
added to a newly created directed graph.

If no graph type is given, digraph:new/1 is used for creating the directed graph,
otherwise the GraphType argument is passed on as second argument to digraph:new/2.

It F is a family, it holds that F is a subset of
digraph to family(family to digraph(F),type(F)). Equality holds if
union of family(F) is a subset of domain(F).

Creating a cycle in an acyclic graph exits the process with a cyclic message.

family to relation(Family) -> BinRel

Types:

� Family = family()
� BinRel = binary relation()

If Family is a family [page 300], then BinRel is the binary relation containing all pairs
(i,x) such that i belongs to the index set of Family and x belongs to Family[i].

1> F = sofs:family([fa,[]g, fb,[1]g, fc,[2,3]g]),
R = sofs:family to relation(F),
sofs:to external(R).
[fb,1g,fc,2g,fc,3g]

308 STDLIB

STDLIB Reference Manual sofs

family union(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 300] and Family1[i] is a set of sets for each i in the index set
of Family1, then Family2 is the family with the same index set as Family1 such that
Family2[i] is the union [page 299] of Family1[i].

1> F1 = sofs:from term([fa,[[1,2],[2,3]]g,fb,[[]]g]),
F2 = sofs:family union(F1),
sofs:to external(F2).
[fa,[1,2,3]g,fb,[]g]

family union(F) is equivalent to family projection(fsofs,uniong,F).

family union(Family1, Family2) -> Family3

Types:

� Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 300], then Family3 is the family such that the
index set is the union of Family1's and Family2's index sets, and Family3[i] is the union
of Family1[i] and Family2[i] if both maps i, Family1[i] or Family2[i] otherwise.

1> F1 = sofs:family([fa,[1,2]g,fb,[3,4]g,fc,[5,6]g]),
F2 = sofs:family([fb,[4,5]g,fc,[7,8]g,fd,[9,10]g]),
F3 = sofs:family union(F1, F2),
sofs:to external(F3).
[fa,[1,2]g,fb,[3,4,5]g,fc,[5,6,7,8]g,fd,[9,10]g]

field(BinRel) -> Set

Types:

� BinRel = binary relation()
� Set = set()

Returns the field [page 299] of the binary relation BinRel.

1> R = sofs:relation([f1,ag,f1,bg,f2,bg,f2,cg]),
S = sofs:field(R),
sofs:to external(S).
[1,2,a,b,c]

field(R) is equivalent to union(domain(R), range(R)).

from external(ExternalSet, Type) -> AnySet

Types:

� ExternalSet = external set()
� AnySet = anyset()
� Type = type()

Creates a set from the external set [page 301] ExternalSet and the type [page 301]
Type. It is assumed that Type is a valid type [page 301] of ExternalSet.

from sets(ListOfSets) -> Set

309STDLIB

sofs STDLIB Reference Manual

Types:

� Set = set()
� ListOfSets = [anyset()]

Returns the unordered set [page 301] containing the sets of the list ListOfSets.

1> S1 = sofs:relation([fa,1g,fb,2g]),
S2 = sofs:relation([fx,3g,fy,4g]),
S = sofs:from sets([S1,S2]),
sofs:to external(S).
[[fa,1g,fb,2g],[fx,3g,fy,4g]]

from sets(TupleOfSets) -> Ordset

Types:

� Ordset = ordset()
� TupleOfSets = tuple-of(anyset())

Returns the ordered set [page 301] containing the sets of the non-empty tuple
TupleOfSets.

from term(Term [, Type]) -> AnySet

Types:

� AnySet = anyset()
� Term = term()
� Type = type()

Creates an element of Sets [page 301] by traversing the term Term, sorting lists,
removing duplicates and deriving or verifying a valid type [page 301] for the so
obtained external set. An explicitly given type [page 301] Type can be used to limit the
depth of the traversal; an atomic type stops the traversal, as demonstrated by this
example where “foo” and f“foo”g are left unmodified:

1> S = sofs:from term([ff"foo"g,[1,1]g,f"foo",[2,2]g], [fatom,[atom]g]),
sofs:to external(S).
[ff"foo"g,[1]g,f"foo",[2]g]

from term can be used for creating atomic or ordered sets. The only purpose of such a
set is that of later building unordered sets since all functions in this module that do
anything operate on unordered sets. Creating unordered sets from a collection of
ordered sets may be the way to go if the ordered sets are big and one does not want to
waste heap by rebuilding the elements of the unordered set. An example showing that a
set can be built “layer by layer”:

1> A = sofs:from term(a),
S = sofs:set([1,2,3]),
P1 = sofs:from sets(fA,Sg),
P2 = sofs:from term(fb,[6,5,4]g),
Ss = sofs:from sets([P1,P2]),
sofs:to external(Ss).
[fa,[1,2,3]g,fb,[4,5,6]g]

310 STDLIB

STDLIB Reference Manual sofs

Other functions that create sets are from external/2 and from sets/1. Special cases
of from term/2 are a function/1,2, empty set/0, family/1,2, relation/1,2, and
set/1,2.

image(BinRel, Set1) -> Set2

Types:

� BinRel = binary relation()
� Set1 = Set2 = set()

Returns the image [page 299] of the set Set1 under the binary relation BinRel.

1> R = sofs:relation([f1,ag,f2,bg,f2,cg,f3,dg]),
S1 = sofs:set([1,2]),
S2 = sofs:image(R, S1),
sofs:to external(S2).
[a,b,c]

intersection(SetOfSets) -> Set

Types:

� Set = set()
� SetOfSets = set of sets()

Returns the intersection [page 299] of the set of sets SetOfSets.

Intersecting an empty set of sets exits the process with a badarg message.

intersection(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the intersection [page 299] of Set1 and Set2.

intersection of family(Family) -> Set

Types:

� Family = family()
� Set = set()

Returns the intersection of the family [page 300] Family.

Intersecting an empty family exits the process with a badarg message.

1> F = sofs:family([fa,[0,2,4]g,fb,[0,1,2]g,fc,[2,3]g]),
S = sofs:intersection of family(F),
sofs:to external(S).
[2]

inverse(Function1) -> Function2

Types:

� Function1 = Function2 = function()

Returns the inverse [page 300] of the function Function1.

311STDLIB

sofs STDLIB Reference Manual

1> R1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
R2 = sofs:inverse(R1),
sofs:to external(R2).
[fa,1g,fb,2g,fc,3g]

inverse image(BinRel, Set1) -> Set2

Types:

� BinRel = binary relation()
� Set1 = Set2 = set()

Returns the inverse image [page 299] of Set1 under the binary relation BinRel.

1> R = sofs:relation([f1,ag,f2,bg,f2,cg,f3,dg]),
S1 = sofs:set([c,d,e]),
S2 = sofs:inverse image(R, S1),
sofs:to external(S2).
[2,3]

is a function(BinRel) -> Bool

Types:

� Bool = bool()
� BinRel = binary relation()

Returns true if the binary relation BinRel is a function [page 300] or the untyped
empty set, false otherwise.

is disjoint(Set1, Set2) -> Bool

Types:

� Bool = bool()
� Set1 = Set2 = set()

Returns true if Set1 and Set2 are disjoint [page 299], false otherwise.

is empty set(AnySet) -> Bool

Types:

� AnySet = anyset()
� Bool = bool()

Returns true if Set is an empty unordered set, false otherwise.

is equal(AnySet1, AnySet2) -> Bool

Types:

� AnySet1 = AnySet2 = anyset()
� Bool = bool()

Returns true if the AnySet1 and AnySet2 are equal [page 299], false otherwise.

is set(AnySet) -> Bool

Types:

312 STDLIB

STDLIB Reference Manual sofs

� AnySet = anyset()
� Bool = bool()

Returns true if AnySet is an unordered set [page 301], and false if AnySet is an
ordered set or an atomic set.

is sofs set(Term) -> Bool

Types:

� Bool = bool()
� Term = term()

Returns true if Term is an unordered set [page 301], an ordered set or an atomic set,
false otherwise.

is subset(Set1, Set2) -> Bool

Types:

� Bool = bool()
� Set1 = Set2 = set()

Returns true if Set1 is a subset [page 299] of Set2, false otherwise.

is type(Term) -> Bool

Types:

� Bool = bool()
� Term = term()

Returns true if the term Term is a type [page 301].

join(Relation1, I, Relation2, J) -> Relation3

Types:

� Relation1 = Relation2 = Relation3 = relation()
� I = J = integer() > 0

Returns the natural join [page 300] of the relations Relation1 and Relation2 on
coordinates I and J.

1> R1 = sofs:relation([fa,x,1g,fb,y,2g]),
R2 = sofs:relation([f1,f,gg,f1,h,ig,f2,3,4g]),
J = sofs:join(R1, 3, R2, 1),
sofs:to external(J).
[fa,x,1,f,gg,fa,x,1,h,ig,fb,y,2,3,4g]

multiple relative product(TupleOfBinRels, BinRel1) -> BinRel2

Types:

� TupleOfBinRels = tuple-of(BinRel)
� BinRel = BinRel1 = BinRel2 = binary relation()

If TupleOfBinRels is a non-empty tuple fR[1],...,R[n]g of binary relations and BinRel1
is a binary relation, then BinRel2 is the multiple relative product [page 300] of the
ordered set (R[i],...,R[n]) and BinRel1.

313STDLIB

sofs STDLIB Reference Manual

1> Ri = sofs:relation([fa,1g,fb,2g,fc,3g]),
R = sofs:relation([fa,bg,fb,cg,fc,ag]),
MP = sofs:multiple relative product(fRi, Rig, R),
sofs:to external(sofs:range(MP)).
[f1,2g,f2,3g,f3,1g]

no elements(ASet) -> NoElements

Types:

� ASet = set() | ordset()
� NoElements = integer() >= 0

Returns the number of elements of the ordered or unordered set ASet.

partition(SetOfSets) -> Partition

Types:

� SetOfSets = set of sets()
� Partition = set()

Returns the partition [page 300] of the union of the set of sets SetOfSets such that two
elements are considered equal if they belong to the same elements of SetOfSets.

1> Sets1 = sofs:from term([[a,b,c],[d,e,f],[g,h,i]]),
Sets2 = sofs:from term([[b,c,d],[e,f,g],[h,i,j]]),
P = sofs:partition(sofs:union(Sets1, Sets2)),
sofs:to external(P).
[[a],[b,c],[d],[e,f],[g],[h,i],[j]]

partition(SetFun, Set) -> Partition

Types:

� SetFun = set fun()
� Partition = set()
� Set = set()

Returns the partition [page 300] of Set such that two elements are considered equal if
the results of applying SetFun are equal.

1> Ss = sofs:from term([[a],[b],[c,d],[e,f]]),
SetFun = fun(S) -> sofs:from term(sofs:no elements(S)) end,
P = sofs:partition(SetFun, Ss),
sofs:to external(P).
[[[a],[b]],[[c,d],[e,f]]]

partition(SetFun, Set1, Set2) -> fSet3, Set4g

Types:

� SetFun = set fun()
� Set1 = Set2 = Set3 = Set4 = set()

Returns a pair of sets that, regarded as constituting a set, forms a partition [page 300] of
Set1. If the result of applying SetFun to an element of Set1 yields an element in Set2,
the element belongs to Set3, otherwise the element belongs to Set4.

314 STDLIB

STDLIB Reference Manual sofs

1> R1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
S = sofs:set([2,4,6]),
fR2,R3g = sofs:partition(1, R1, S),
fsofs:to external(R2),sofs:to external(R3)g.
f[f2,bg],[f1,ag,f3,cg]g

partition(F,S1,S2) is equivalent to frestriction(F,S1,S2),
drestriction(F,S1,S2)g.

partition family(SetFun, Set) -> Family

Types:

� Family = family()
� SetFun = set fun()
� Set = set()

Returns the family [page 300] Family where the indexed set is a partition [page 300] of
Set such that two elements are considered equal if the results of applying SetFun are the
same value i. This i is the index that Family maps onto the equivalence class [page 300].

1> S = sofs:relation([fa,a,a,ag,fa,a,b,bg,fa,b,b,bg]),
SetFun = fexternal, fun(fA, ,C, g) -> fA,Cg endg,
F = sofs:partition family(SetFun, S),
sofs:to external(F).
[ffa,ag,[fa,a,a,ag]g,ffa,bg,[fa,a,b,bg,fa,b,b,bg]g]

product(TupleOfSets) -> Relation

Types:

� Relation = relation()
� TupleOfSets = tuple-of(set())

Returns the Cartesian product [page 300] of the non-empty tuple of sets TupleOfSets.
If (x[1],...,x[n]) is an element of the n-ary relation Relation, then x[i] is drawn from
element i of TupleOfSets.

1> S1 = sofs:set([a,b]),
S2 = sofs:set([1,2]),
S3 = sofs:set([x,y]),
P3 = sofs:product(fS1,S2,S3g),
sofs:to external(P3).
[fa,1,xg,fa,1,yg,fa,2,xg,fa,2,yg,fb,1,xg,fb,1,yg,fb,2,xg,fb,2,yg]

product(Set1, Set2) -> BinRel

Types:

� BinRel = binary relation()
� Set1 = Set2 = set()

Returns the Cartesian product [page 299] of Set1 and Set2.

1> S1 = sofs:set([1,2]),
S2 = sofs:set([a,b]),
R = sofs:product(S1, S2),
sofs:to external(R).
[f1,ag,f1,bg,f2,ag,f2,bg]

315STDLIB

sofs STDLIB Reference Manual

product(S1,S2) is equivalent to product(fS1,S2g).

projection(SetFun, Set1) -> Set2

Types:

� SetFun = set fun()
� Set1 = Set2 = set()

Returns the set created by substituting each element of Set1 by the result of applying
SetFun to the element.

If SetFun is a number i>=1 and Set1 is a relation, then the returned set is the projection
[page 300] of Set1 onto coordinate i.

1> S1 = sofs:from term([f1,ag,f2,bg,f3,ag]),
S2 = sofs:projection(2, S1),
sofs:to external(S2).
[a,b]

range(BinRel) -> Set

Types:

� BinRel = binary relation()
� Set = set()

Returns the range [page 299] of the binary relation BinRel.

1> R = sofs:relation([f1,ag,f1,bg,f2,bg,f2,cg]),
S = sofs:range(R),
sofs:to external(S).
[a,b,c]

relation(Tuples [, Type]) -> Relation

Types:

� N = integer()
� Type = N | type()
� Relation = relation()
� Tuples = [tuple()]

Creates a relation [page 299]. relation(R,T) is equivalent to from term(R,T), if T is a
type [page 301] and the result is a relation. If Type is an integer N, then
[fatom,...,atomg]), where the size of the tuple is N, is used as type of the relation. If
no type is explicitly given, the size of the first tuple of Tuples is used if there is such a
tuple. relation([]) is equivalent to relation([],2).

relation to family(BinRel) -> Family

Types:

� Family = family()
� BinRel = binary relation()

Returns the family [page 300] Family such that the index set is equal to the domain
[page 299] of the binary relation BinRel, and Family[i] is the image [page 299] of the
set of i under BinRel.

316 STDLIB

STDLIB Reference Manual sofs

1> R = sofs:relation([fb,1g,fc,2g,fc,3g]),
F = sofs:relation to family(R),
sofs:to external(F).
[fb,[1]g,fc,[2,3]g]

relative product(TupleOfBinRels [, BinRel1]) -> BinRel2

Types:

� TupleOfBinRels = tuple-of(BinRel)
� BinRel = BinRel1 = BinRel2 = binary relation()

If TupleOfBinRels is a non-empty tuple fR[1],...,R[n]g of binary relations and BinRel1
is a binary relation, then BinRel2 is the relative product [page 300] of the ordered set
(R[i],...,R[n]) and BinRel1.

If BinRel1 is omitted, the relation of equality between the elements of the Cartesian
product [page 300] of the ranges of R[i], rangeR[1]...rangeR[n], is used instead
(intuitively, nothing is “lost”).

1> TR = sofs:relation([f1,ag,f1,aag,f2,bg]),
R1 = sofs:relation([f1,ug,f2,vg,f3,cg]),
R2 = sofs:relative product(fTR, R1g),
sofs:to external(R2).
[f1,fa,ugg,f1,faa,ugg,f2,fb,vgg]

Note that relative product(fR1g,R2) is different from relative product(R1,R2);
the tuple of one element is not identified with the element itself.

relative product(BinRel1, BinRel2) -> BinRel3

Types:

� BinRel1 = BinRel2 = BinRel3 = binary relation()

Returns the relative product [page 299] of the binary relations BinRel1 and BinRel2.

relative product1(BinRel1, BinRel2) -> BinRel3

Types:

� BinRel1 = BinRel2 = BinRel3 = binary relation()

Returns the relative product [page 299] of the converse [page 299] of the binary
relation BinRel1 and the binary relation BinRel2.

1> R1 = sofs:relation([f1,ag,f1,aag,f2,bg]),
R2 = sofs:relation([f1,ug,f2,vg,f3,cg]),
R3 = sofs:relative product1(R1, R2),
sofs:to external(R3).
[fa,ug,faa,ug,fb,vg]

relative product1(R1,R2) is equivalent to relative product(converse(R1),R2).

restriction(BinRel1, Set) -> BinRel2

Types:

� BinRel1 = BinRel2 = binary relation()
� Set = set()

Returns the restriction [page 299] of the binary relation BinRel1 to Set.

317STDLIB

sofs STDLIB Reference Manual

1> R1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
S = sofs:set([1,2,4]),
R2 = sofs:restriction(R1, S),
sofs:to external(R2).
[f1,ag,f2,bg]

restriction(SetFun, Set1, Set2) -> Set3

Types:

� SetFun = set fun()
� Set1 = Set2 = Set3 = set()

Returns a subset of Set1 containing those elements that yield an element in Set2 as the
result of applying SetFun.

1> S1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
S2 = sofs:set([b,c,d]),
S3 = sofs:restriction(2, S1, S2),
sofs:to external(S3).
[f2,bg,f3,cg]

set(Terms [, Type]) -> Set

Types:

� Set = set()
� Terms = [term()]
� Type = type()

Creates an unordered set [page 301]. set(L,T) is equivalent to from term(L,T), if the
result is an unordered set. If no type [page 301] is explicitly given, [atom] is used as
type of the set.

specification(Fun, Set1) -> Set2

Types:

� Fun = spec fun()
� Set1 = Set2 = set()

Returns the set containing every element of Set1 for which Fun returns true. If Fun is a
tuple fexternal,Fun2g, Fun2 is applied to the external set [page 301] of each element,
otherwise Fun is applied to each element.

1> R1 = sofs:relation([fa,1g,fb,2g]),
R2 = sofs:relation([fx,1g,fx,2g,fy,3g]),
S1 = sofs:from sets([R1,R2]),
S2 = sofs:specification(fsofs,is a functiong, S1),
sofs:to external(S2).
[[fa,1g,fb,2g]]

strict relation(BinRel1) -> BinRel2

Types:

� BinRel1 = BinRel2 = binary relation()

Returns the strict relation [page 300] corresponding to the binary relation BinRel1.

318 STDLIB

STDLIB Reference Manual sofs

1> R1 = sofs:relation([f1,1g,f1,2g,f2,1g,f2,2g]),
R2 = sofs:strict relation(R1),
sofs:to external(R2).
[f1,2g,f2,1g]

substitution(SetFun, Set1) -> Set2

Types:

� SetFun = set fun()
� Set1 = Set2 = set()

Returns a function, the domain of which is Set1. The value of an element of the domain
is the result of applying SetFun to the element.

1> L = [fa,1g,fb,2g].
[fa,1g,fb,2g]
2> sofs:to external(sofs:projection(1,sofs:relation(L))).
[a,b]
3> sofs:to external(sofs:substitution(1,sofs:relation(L))).
[ffa,1g,ag,ffb,2g,bg]
4> SetFun = fexternal, fun(fA, g=E) -> fE,Ag endg,
sofs:to external(sofs:projection(SetFun,sofs:relation(L))).
[ffa,1g,ag,ffb,2g,bg]

The relation of equality between the elements of fa,b,cg:

1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),
sofs:to external(I).
[fa,ag,fb,bg,fc,cg]

Let SetOfSets be a set of sets and BinRel a binary relation. The function that maps each
element Set of SetOfSets onto the image [page 299] of Set under BinRel is returned by
this function:

images(SetOfSets, BinRel) ->
Fun = fun(Set) -> sofs:image(BinRel, Set) end,
sofs:substitution(Fun, SetOfSets).

Here might be the place to reveal something that was more or less stated before, namely
that external unordered sets are represented as sorted lists. As a consequence, creating
the image of a set under a relation R may traverse all elements of R (to that comes the
sorting of results, the image). In images/2, BinRel will be traversed once for each
element of SetOfSets, which may take too long. The following efficient function could
be used instead under the assumption that the image of each element of SetOfSets
under BinRel is non-empty:

images2(SetOfSets, BinRel) ->
CR = sofs:canonical relation(SetOfSets),
R = sofs:relative product1(CR, BinRel),
sofs:relation to family(R).

symdiff(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the symmetric difference [page 299] (or the Boolean sum) of Set1 and Set2.

319STDLIB

sofs STDLIB Reference Manual

1> S1 = sofs:set([1,2,3]),
S2 = sofs:set([2,3,4]),
P = sofs:symdiff(S1, S2),
sofs:to external(P).
[1,4]

symmetric partition(Set1, Set2) -> fSet3, Set4, Set5g

Types:

� Set1 = Set2 = Set3 = Set4 = Set5 = set()

Returns a triple of sets: Set3 contains the elements of Set1 that do not belong to Set2;
Set4 contains the elements of Set1 that belong to Set2; Set5 contains the elements of
Set2 that do not belong to Set1.

to external(AnySet) -> ExternalSet

Types:

� ExternalSet = external set()
� AnySet = anyset()

Returns the external set [page 301] of an atomic, ordered or unordered set.

to sets(ASet) -> Sets

Types:

� ASet = set() | ordset()
� Sets = tuple of(AnySet) | [AnySet]

Returns the elements of the ordered set ASet as a tuple of sets, and the elements of the
unordered set ASet as a sorted list of sets without duplicates.

type(AnySet) -> Type

Types:

� AnySet = anyset()
� Type = type()

Returns the type [page 301] of an atomic, ordered or unordered set.

union(SetOfSets) -> Set

Types:

� Set = set()
� SetOfSets = set of sets()

Returns the union [page 299] of the set of sets SetOfSets.

union(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the union [page 299] of Set1 and Set2.

320 STDLIB

STDLIB Reference Manual sofs

union of family(Family) -> Set

Types:

� Family = family()
� Set = set()

Returns the union of the family [page 300] Family.

1> F = sofs:family([fa,[0,2,4]g,fb,[0,1,2]g,fc,[2,3]g]),
S = sofs:union of family(F),
sofs:to external(S).
[0,1,2,3,4]

weak relation(BinRel1) -> BinRel2

Types:

� BinRel1 = BinRel2 = binary relation()

Returns a subset S of the weak relation [page 300] W corresponding to the binary
relation BinRel1. Let F be the field [page 299] of BinRel1. The subset S is defined so
that x S y if x W y for some x in F and for some y in F.

1> R1 = sofs:relation([f1,1g,f1,2g,f3,1g]),
R2 = sofs:weak relation(R1),
sofs:to external(R2).
[f1,1g,f1,2g,f2,2g,f3,1g,f3,3g]

See Also

dict(3) [page 82], digraph(3) [page 87], orddict(3) [page 242], ordsets(3) [page 243],
sets(3) [page 283]

321STDLIB

string STDLIB Reference Manual

string
Erlang Module

This module contains functions for string processing.

Exports

len(String) -> Length

Types:

� String = string()
� Length = integer()

Returns the number of characters in the string.

equal(String1, String2) -> bool()

Types:

� String1 = String2 = string()

Tests whether two strings are equal. Returns true if they are, otherwise false.

concat(String1, String2) -> String3

Types:

� String1 = String2 = String3 = string()

Concatenates two strings to form a new string. Returns the new string.

chr(String, Character) -> Index

rchr(String, Character) -> Index

Types:

� String = string()
� Character = char()
� Index = integer()

Returns the index of the first/last occurrence of Character in String. 0 is returned if
Character does not occur.

str(String, SubString) -> Index

rstr(String, SubString) -> Index

Types:

� String = SubString = string()

322 STDLIB

STDLIB Reference Manual string

� Index = integer()

Returns the position where the first/last occurrence of SubString begins in String. 0 is
returned if SubString does not exist in String. For example:

> string:str(" Hello Hello World World ", "Hello World").
8

span(String, Chars) -> Length

cspan(String, Chars) -> Length

Types:

� String = Chars = string()
� Length = integer()

Returns the length of the maximum initial segment of String, which consists entirely of
characters from (not from) Chars.

For example:

> string:span("\t abcdef", " \t").
5
> string:cspan("\t abcdef", " \t").
0

substr(String, Start) -> SubString

substr(String, Start, Length) -> Substring

Types:

� String = SubString = string()
� Start = Length = integer()

Returns a substring of String, starting at the position Start, and ending at the end of
the string or at length Length.

For example:

> substr("Hello World", 4, 5).
"lo Wo"

tokens(String, SeparatorList) -> Tokens

Types:

� String = SeparatorList = string()
� Tokens = [string()]

Returns a list of tokens in String, separated by the characters in SeparatorList.

For example:

> tokens("abc defxxghix jkl", "x ").
["abc", "def", "ghi", "jkl"]

chars(Character, Number) -> String

chars(Character, Number, Tail) -> String

Types:

� Character = char()

323STDLIB

string STDLIB Reference Manual

� Number = integer()
� String = string()

Returns a string consisting of Number of characters Character. Optionally, the string
can end with the string Tail.

copies(String, Number) -> Copies

Types:

� String = Copies = string()
� Number = integer()

Returns a string containing String repeated Number times.

words(String) -> Count

words(String, Character) -> Count

Types:

� String = string()
� Character = char()
� Count = integer()

Returns the number of words in String, separated by blanks or Character.

For example:

> words(" Hello old boy!", $o).
4

sub word(String, Number) -> Word

sub word(String, Number, Character) -> Word

Types:

� String = Word = string()
� Character = char()
� Number = integer()

Returns the word in position Number of String. Words are separated by blanks or
Characters.

For example:

> string:sub_word(" Hello old boy !",3,$o).
"ld b"

strip(String) -> Stripped

strip(String, Direction) -> Stripped

strip(String, Direction, Character) -> Stripped

Types:

� String = Stripped = string()
� Direction = left | right | both
� Character = char()

324 STDLIB

STDLIB Reference Manual string

Returns a string, where leading and/or trailing blanks or a number of Character have
been removed. Direction can be left, right, or both and indicates from which
direction blanks are to be removed. The function strip/1 is equivalent to
strip(String, both).

For example:

> string:strip("...Hello.....", both, $.).
"Hello"

left(String, Number) -> Left

left(String, Number, Character) -> Left

Types:

� String = Left = string()
� Character = char
� Number = integer()

Returns the String with the length adjusted in accordance with Number. The left
margin is fixed. If the length(String)< Number, String is padded with blanks or
Characters.

For example:

> string:left("Hello",10,$.).
"Hello....."

right(String, Number) -> Right

right(String, Number, Character) -> Right

Types:

� String = Right = string()
� Character = char
� Number = integer()

Returns the String with the length adjusted in accordance with Number. The right
margin is fixed. If the length of (String) < Number, String is padded with blanks or
Characters.

For example:

> string:right("Hello", 10, $.).
".....Hello"

centre(String, Number) -> Centered

centre(String, Number, Character) -> Centered

Types:

� String = Centered = string()
� Character = char
� Number = integer()

Returns a string, where String is centred in the string and surrounded by blanks or
characters. The resulting string will have the length Number.

sub string(String, Start) -> SubString

325STDLIB

string STDLIB Reference Manual

sub string(String, Start, Stop) -> SubString

Types:

� String = SubString = string()
� Start = Stop = integer()

Returns a substring of String, starting at the position Start to the end of the string, or
to and including the Stop position.

For example:

sub_string("Hello World", 4, 8).
"lo Wo"

to float(String) -> fFloat,Restg | ferror,Reasong

Types:

� String = string()
� Float = float()
� Rest = string()
� Reason = no float | not a list

Argument String is expected to start with a valid text represented float (the digits
being ASCII values). Remaining characters in the string after the float are returned in
Rest.

Example:

> {F1,Fs} = string:to_float("1.0-1.0e-1"),
> {F2,[]} = string:to_float(Fs),
> F1+F2.
0.900000
> string:to_float("3/2=1.5").
{error,no_float}
> string:to_float("-1.5eX").
{-1.50000,"eX"}

to integer(String) -> fInt,Restg | ferror,Reasong

Types:

� String = string()
� Int = integer()
� Rest = string()
� Reason = no integer | not a list

Argument String is expected to start with a valid text represented integer (the digits
being ASCII values). Remaining characters in the string after the integer are returned in
Rest.

Example:

326 STDLIB

STDLIB Reference Manual string

> {I1,Is} = string:to_integer("33+22"),
> {I2,[]} = string:to_integer(Is),
> I1-I2.
11
> string:to_integer("0.5").
{0,".5"}
> string:to_integer("x=2").
{error,no_integer}

Notes

Some of the general string functions may seem to overlap each other. The reason for
this is that this string package is the combination of two earlier packages and all the
functions of both packages have been retained.

The regular expression functions have been moved to their own module regexp (see
regexp(3) [page 278]). The old entry points still exist for backwards compatibility, but
will be removed in a future release so that users are encouraged to use the module
regexp.

Note:
Any undocumented functions in string should not be used.

327STDLIB

supervisor STDLIB Reference Manual

supervisor
Erlang Module

A behaviour module for implementing a supervisor, a process which supervises other
processes called child processes. A child process can either be another supervisor or a
worker process. Worker processes are normally implemented using one of the
gen event, gen fsm, or gen server behaviours. A supervisor implemented using this
module will have a standard set of interface functions and include functionality for
tracing and error reporting. Supervisors are used to build an hierarchical process
structure called a supervision tree, a nice way to structure a fault tolerant application.
Refer to OTP Design Principles for more information.

A supervisor assumes the definition of which child processes to supervise to be located
in a callback module exporting a pre-defined set of functions.

Unless otherwise stated, all functions in this module will fail if the specified supervisor
does not exist or if bad arguments are given.

Supervision Principles

The supervisor is responsible for starting, stopping and monitoring its child processes.
The basic idea of a supervisor is that it should keep its child processes alive by restarting
them when necessary.

The children of a supervisor is defined as a list of child specifications. When the
supervisor is started, the child processes are started in order from left to right according
to this list. When the supervisor terminates, it first terminates its child processes in
reversed start order, from right to left.

A supervisor can have one of the following restart strategies:

� one for one - if one child process terminates and should be restarted, only that
child process is affected.

� one for all - if one child process terminates and should be restarted, all other
child processes are terminated and then all child processes are restarted.

� rest for one - if one child process terminates and should be restarted, the 'rest' of
the child processes – i.e. the child processes after the terminated child process in
the start order – are terminated. Then the terminated child process and all child
processes after it are restarted.

� simple one for one - a simplified one for one supervisor, where all child
processes are dynamically added instances of the same process type, i.e. running
the same code.
The functions terminate child/2, delete child/2 and restart child/2 are
invalid for simple one for one supervisors and will return
ferror,simple one for oneg if the specified supervisor uses this restart strategy.

328 STDLIB

STDLIB Reference Manual supervisor

To prevent a supervisor from getting into an infinite loop of child process terminations
and restarts, a maximum restart frequency is defined using two integer values MaxR and
MaxT. If more than MaxR restarts occur within MaxT seconds, the supervisor terminates
all child processes and then itself.

This is the type definition of a child specification:

child spec() = fId,StartFunc,Restart,Shutdown,Type,Modulesg
Id = term()
StartFunc = fM,F,Ag
M = F = atom()
A = [term()]

Restart = permanent | transient | temporary
Shutdown = brutal kill | int()>=0 | infinity
Type = worker | supervisor
Modules = [Module] | dynamic
Module = atom()

� Id is a name that is used to identify the child specification internally by the
supervisor.

� StartFunc defines the function call used to start the child process. It should be a
module-function-arguments tuple fM,F,Ag used as apply(M,F,A).

The start function must create and link to the child process, and should return
fok,Childg or fok,Child,Infogwhere Child is the pid of the child process and
Info an arbitrary term which is ignored by the supervisor.

The start function can also return ignore if the child process for some reason
cannot be started, in which case the child specification will be kept by the
supervisor but the non-existing child process will be ignored.

If something goes wrong, the function may also return an error tuple
ferror,Errorg.

Note that the start link functions of the different behaviour modules fulfill the
above requirements.

� Restart defines when a terminated child process should be restarted. A
permanent child process should always be restarted, a temporary child process
should never be restarted and a transient child process should be restarted only if
it terminates abnormally, i.e. with another exit reason than normal.

� Shutdown defines how a child process should be terminated. brutal kill means
the child process will be unconditionally terminated using exit(Child,kill). An
integer timeout value means that the supervisor will tell the child process to
terminate by calling exit(Child,shutdown) and then wait for an exit signal with
reason shutdown back from the child process. If no exit signal is received within
the specified time, the child process is unconditionally terminated using
exit(Child,kill).
If the child process is another supervisor, Shutdown should be set to infinity to
give the subtree ample time to shutdown.
Note that child processes implemented using the behaviour modules automatically
adhere to the shutdown protocol.

329STDLIB

supervisor STDLIB Reference Manual

� Type specifies if the child process is a supervisor or a worker.

� Modules is used by the release handler during code replacement to determine
which processes are using a certain module. As a rule of thumb Modules should be
a list with one element [Module], where Module is the callback module, if the
child process is a supervisor, gen server or gen fsm. If the child process is an event
manager (gen event) with a dynamic set of callback modules, Modules should be
dynamic. See OTP Design Principles for more information about release handling.

� Internally, the supervisor also keeps track of the pid Child of the child process, or
undefined if no pid exists.

Exports

start link(Module, Args) -> Result

start link(SupName, Module, Args) -> Result

Types:

� SupName = flocal,Nameg | fglobal,Nameg
� Name = atom()
� Module = atom()
� Args = term()
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidgg | shutdown | term()

Creates a supervisor process as part of a supervision tree. The function will, among
other things, ensure that the supervisor is linked to the calling process (its supervisor).

The created supervisor process calls Module:init/1 to find out about restart strategy,
maximum restart frequency and child processes. To ensure a synchronized start-up
procedure, start link/2,3 does not return until Module:init/1 has returned and all
child processes have been started.

If SupName=flocal,Nameg the supervisor is registered locally as Name using register/2.
If SupName=fglobal,Nameg the supervisor is registered globally as Name using
global:register name/2. If no name is provided, the supervisor is not registered.

Module is the name of the callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If the supervisor and its child processes are successfully created (i.e. if all child process
start functions return fok,Childg, fok,Child,Infog, or ignore) the function returns
fok,Pidg, where Pid is the pid of the supervisor. If there already exists a process with
the specified SupName the function returns ferror,falready started,Pidgg, where
Pid is the pid of that process.

If Module:init/1 returns ignore, this function returns ignore as well and the
supervisor terminates with reason normal. If Module:init/1 fails or returns an
incorrect value, this function returns ferror,Termg where Term is a term with
information about the error, and the supervisor terminates with reason Term.

If any child process start function fails or returns an error tuple or an erroneous value,
the function returns ferror,shutdowng and the supervisor terminates all started child
processes and then itself with reason shutdown.

330 STDLIB

STDLIB Reference Manual supervisor

start child(SupRef, ChildSpec) -> Result

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� ChildSpec = child spec() | [term()]
� Result = fok,Childg | fok,Child,Infog | ferror,Errorg
� Child = pid() | undefined
� Info = term()
� Error = already present | falready started,Childg | term()

Dynamically adds a child specification to the supervisor SupRef which starts the
corresponding child process.

SupRef can be:

� the pid,

� Name, if the supervisor is locally registered,

� fName,Nodeg, if the supervisor is locally registered at another node, or

� fglobal,Nameg, if the supervisor is globally registered.

ChildSpec should be a valid child specification (unless the supervisor is a
simple one for one supervisor, see below). The child process will be started by using
the start function as defined in the child specification.

If the case of a simple one for one supervisor, the child specification defined in
Module:init/1 will be used and ChildSpec should instead be an arbitrary list of terms
List. The child process will then be started by appending List to the existing start
function arguments, i.e. by calling apply(M, F, A++List) where fM,F,Ag is the start
function defined in the child specification.

If there already exists a child specification with the specified Id, ChildSpec is discarded
and the function returns ferror,already presentg or
ferror,falready started,Childgg, depending on if the corresponding child process
is running or not.

If the child process start function returns fok,Childg or fok,Child,Infog, the child
specification and pid is added to the supervisor and the function returns the same value.

If the child process start function returns ignore, the child specification is added to the
supervisor, the pid is set to undefined and the function returns fok,undefinedg.

If the child process start function returns an error tuple or an erroneous value, or if it
fails, the child specification is discarded and the function returns ferror,Errorg where
Error is a term containing information about the error and child specification.

terminate child(SupRef, Id) -> Result

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Id = term()
� Result = ok | ferror,Errorg
� Error = not found | simple one for one

331STDLIB

supervisor STDLIB Reference Manual

Tells the supervisor SupRef to terminate the child process corresponding to the child
specification identified by Id. The process, if there is one, is terminated but the child
specification is kept by the supervisor. This means that the child process may be later be
restarted by the supervisor. The child process can also be restarted explicitly by calling
restart child/2. Use delete child/2 to remove the child specification.

See start child/2 for a description of SupRef.

If successful, the function returns ok. If there is no child specification with the specified
Id, the function returns ferror,not foundg.

delete child(SupRef, Id) -> Result

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Id = term()
� Result = ok | ferror,Errorg
� Error = running | not found | simple one for one

Tells the supervisor SupRef to delete the child specification identified by Id. The
corresponding child process must not be running, use terminate child/2 to terminate
it.

See start child/2 for a description of SupRef.

If successful, the function returns ok. If the child specification identified by Id exists
but the corresponding child process is running, the function returns ferror,runningg.
If the child specification identified by Id does not exist, the function returns
ferror,not foundg.

restart child(SupRef, Id) -> Result

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Id = term()
� Result = fok,Childg | fok,Child,Infog | ferror,Errorg
� Child = pid() | undefined
� Error = running | not found | simple one for one | term()

Tells the supervisor SupRef to restart a child process corresponding to the child
specification identified by Id. The child specification must exist and the corresponding
child process must not be running.

See start child/2 for a description of SupRef.

If the child specification identified by Id does not exist, the function returns
ferror,not foundg. If the child specification exists but the corresponding process is
already running, the function returns ferror,runningg.

If the child process start function returns fok,Childg or fok,Child,Infog, the pid is
added to the supervisor and the function returns the same value.

If the child process start function returns ignore, the pid remains set to undefined and
the function returns fok,undefinedg.

332 STDLIB

STDLIB Reference Manual supervisor

If the child process start function returns an error tuple or an erroneous value, or if it
fails, the function returns ferror,Errorg where Error is a term containing information
about the error.

which children(SupRef) -> [fId,Child,Type,Modulesg]

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Id = term() | undefined
� Child = pid() | undefined
� Type = worker | supervisor
� Modules = [Module] | dynamic
� Module = atom()

Returns a list with information about all child specifications and child processes
belonging to the supervisor SupRef.

See start child/2 for a description of SupRef.

The information given for each child specification/process is:

� Id - as defined in the child specification or undefined in the case of a
simple one for one supervisor.

� Child - the pid of the corresponding child process, or undefined if there is no
such process.

� Type - as defined in the child specification.

� Modules - as defined in the child specification.

check childspecs([ChildSpec]) -> Result

Types:

� ChildSpec = child spec()
� Result = ok | ferror,Errorg
� Error = term()

This function takes a list of child specification as argument and returns ok if all of them
are syntactically correct, or ferror,Errorg otherwise.

CALLBACK FUNCTIONS

The following functions should be exported from a supervisor callback module.

333STDLIB

supervisor STDLIB Reference Manual

Exports

Module:init(Args) -> Result

Types:

� Args = term()
� Result = fok,ffRestartStrategy,MaxR,MaxTg,[ChildSpec]gg | ignore
� RestartStrategy = one for all | one for one | rest for one | simple one for one
� MaxR = MaxT = int()>=0
� ChildSpec = child spec()

Whenever a supervisor is started using supervisor:start link/2,3, this function is
called by the new process to find out about restart strategy, maximum restart frequency
and child specifications.

Args is the Args argument provided to the start function.

RestartStrategy is the restart strategy and MaxR and MaxT defines the maximum
restart frequency of the supervisor. [ChildSpec] is a list of valid child specifications
defining which child processes the supervisor should start and monitor. See the
discussion about Supervision Principles above.

Note that when the restart strategy is simple one for one, the list of child
specifications must be a list with one child specification only. (The Id is ignored). No
child process is then started during the initialization phase, but all children are assumed
to be started dynamically using supervisor:start child/2.

The function may also return ignore.

SEE ALSO

gen event(3) [page 167], gen fsm(3) [page 177], gen server(3) [page 188], sys(3) [page
338]

334 STDLIB

STDLIB Reference Manual supervisor bridge

supervisor bridge
Erlang Module

A behaviour module for implementing a supervisor bridge, a process which connects a
subsystem not designed according to the OTP design principles to a supervision tree.
The supervisor bridge sits between a supervisor and the subsystem. It behaves like a real
supervisor to its own supervisor, but has a different interface than a real supervisor to
the subsystem. Refer to OTP Design Principles for more information.

A supervisor bridge assumes the functions for starting and stopping the subsystem to be
located in a callback module exporting a pre-defined set of functions.

The sys module can be used for debugging a supervisor bridge.

Unless otherwise stated, all functions in this module will fail if the specified
supervisor bridge does not exist or if bad arguments are given.

Exports

start link(Module, Args) -> Result

start link(SupBridgeName, Module, Args) -> Result

Types:

� SupBridgeName = flocal,Nameg | fglobal,Nameg
� Name = atom()
� Module = atom()
� Args = term()
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidg | term()

Creates a supervisor bridge process, linked to the calling process, which calls
Module:init/1 to start the subsystem. To ensure a synchronized start-up procedure,
this function does not return until Module:init/1 has returned.

If SupBridgeName=flocal,Nameg the supervisor bridge is registered locally as Name
using register/2. If SupBridgeName=fglobal,Nameg the supervisor bridge is
registered globally as Name using global:register name/2. If no name is provided, the
supervisor bridge is not registered. If there already exists a process with the specified
SupBridgeName the function returns ferror,falready started,Pidgg, where Pid is
the pid of that process.

Module is the name of the callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If the supervisor bridge and the subsystem are successfully started the function returns
fok,Pidg, where Pid is is the pid of the supervisor bridge.

335STDLIB

supervisor bridge STDLIB Reference Manual

If Module:init/1 returns ignore, this function returns ignore as well and the
supervisor bridge terminates with reason normal. If Module:init/1 fails or returns an
error tuple or an incorrect value, this function returns ferror,Termg where Term is a
term with information about the error, and the supervisor bridge terminates with
reason Term.

CALLBACK FUNCTIONS

The following functions should be exported from a supervisor bridge callback
module.

Exports

Module:init(Args) -> Result

Types:

� Args = term()
� Result = fok,Pid,Stateg | ignore | ferror,Errorg
� Pid = pid()
� State = term()
� Error = term()

Whenever a supervisor bridge is started using supervisor bridge:start link/2,3,
this function is called by the new process to start the subsystem and initialize.

Args is the Args argument provided to the start function.

The function should return fok,Pid,Stateg where Pid is the pid of the main process
in the subsystem and State is any term.

If later Pid terminates with a reason Reason, the supervisor bridge will terminate with
reason Reason as well. If later the supervisor bridge is stopped by its supervisor with
reason Reason, it will call Module:terminate(Reason,State) to terminate.

If something goes wrong during the initialization the function should return
ferror,Errorg where Error is any term, or ignore.

Module:terminate(Reason, State)

Types:

� Reason = shutdown | term()
� State = term()

This function is called by the supervisor bridge when it is about to terminate. It should
be the opposite of Module:init/1 and stop the subsystem and do any necessary
cleaning up. The return value is ignored.

Reason is shutdown if the supervisor bridge is terminated by its supervisor. If the
supervisor bridge terminates because a a linked process (apart from the main process of
the subsystem) has terminated with reason Term, Reason will be Term.

State is taken from the return value of Module:init/1.

336 STDLIB

STDLIB Reference Manual supervisor bridge

SEE ALSO

supervisor(3) [page 328], sys(3) [page 338]

337STDLIB

sys STDLIB Reference Manual

sys
Erlang Module

This module contains functions for sending system messages used by programs, and
messaged used for debugging purposes.

Functions used for implementation of processes should also understand system messages
such as debugging messages and code change. These functions must be used to
implement the use of system messages for a process; either directly, or through standard
behaviours, such as gen server.

The following types are used in the functions defined below:

� Name = pid() | atom() | fglobal, atom()g

� Timeout = int() >= 0 | infinity

� system event() = fin, Msgg | fin, Msg, Fromg | fout, Msg, Tog |
term()

The default timeout is 5000 ms, unless otherwise specified. The timeout defines the
time period to wait for the process to respond to a request. If the process does not
respond, the function evaluates exit(ftimeout, fM, F, Agg).

The functions make reference to a debug structure. The debug structure is a list of
dbg opt(). dbg opt() is an internal data type used by the handle system msg/6
function. No debugging is performed if it is an empty list.

System Messages

Processes which are not implemented as one of the standard behaviours must still
understand system messages. There are three different messages which must be
understood:

� Plain system messages. These are received as fsystem, From, Msgg. The content
and meaning of this message are not interpreted by the receiving process module.
When a system message has been received, the function
sys:handle system msg/6 is called in order to handle the request.

� Shutdown messages. If the process traps exits, it must be able to handle an
shut-down request from its parent, the supervisor. The message f’EXIT’,
Parent, Reasong from the parent is an order to terminate. The process must
terminate when this message is received, normally with the same Reason as
Parent.

338 STDLIB

STDLIB Reference Manual sys

� There is one more message which the process must understand if the modules
used to implement the process change dynamically during runtime. An example of
such a process is the gen event processes. This message is fget modules, Fromg.
The reply to this message is From ! fmodules, Modulesg, where Modules is a
list of the currently active modules in the process.
This message is used by the release handler to find which processes execute a
certain module. The process may at a later time be suspended and ordered to
perform a code change for one of its modules.

System Events

When debugging a process with the functions of this module, the process generates
system events which are then treated in the debug function. For example, trace formats
the system events to the tty.

There are three predefined system events which are used when a process receives or
sends a message. The process can also define its own system events. It is always up to
the process itself to format these events.

Exports

log(Name,Flag)

log(Name,Flag,Timeout) -> ok | fok, [system event()]g

Types:

� Flag = true | ftrue, Ng | false | get | print
� N = integer() > 0

Turns the logging of system events On or Off. If On, a maximum of N events are kept in
the debug structure (the default is 10). If Flag is get, a list of all logged events is
returned. If Flag is print, the logged events are printed to standard io. The events
are formatted with a function that is defined by the process that generated the event
(with a call to sys:handle debug/4).

log to file(Name,Flag)

log to file(Name,Flag,Timeout) -> ok | ferror, open fileg

Types:

� Flag = FileName | false
� FileName = string()

Enables or disables the logging of all system events in textual format to the file. The
events are formatted with a function that is defined by the process that generated the
event (with a call to sys:handle debug/4).

statistics(Name,Flag)

statistics(Name,Flag,Timeout) -> ok | fok, Statisticsg

Types:

� Flag = true | false | get

339STDLIB

sys STDLIB Reference Manual

� Statistics = [fstart time, fDate1, Time1gg, fcurrent time, fDate, Time2gg,
freductions, integer()g, fmessages in, integer()g, fmessages out, integer()g]

� Date1 = Date2 = fYear, Month, Dayg
� Time1 = Time2 = fHour, Min, Secg

Enables or disables the collection of statistics. If Flag is get, the statistical collection is
returned.

trace(Name,Flag)

trace(Name,Flag,Timeout) -> void()

Types:

� Flag = boolean()

Prints all system events on standard io. The events are formatted with a function that
is defined by the process that generated the event (with a call to sys:handle debug/4).

no debug(Name)

no debug(Name,Timeout) -> void()

Turns off all debugging for the process. This includes functions that have been installed
explicitly with the install function, for example triggers.

suspend(Name)

suspend(Name,Timeout) -> void()

Suspends the process. When the process is suspended, it will only respond to other
system messages, but not other messages.

resume(Name)

resume(Name,Timeout) -> void()

Resumes a suspended process.

change code(Name, Module, OldVsn, Extra)

change code(Name, Module, OldVsn, Extra, Timeout) -> ok | ferror, Reasong

Types:

� OldVsn = undefined | term()
� Module = atom()
� Extra = term()

Tells the process to change code. The process must be suspended to handle this
message. The Extra argument is reserved for each process to use as its own. The
function Mod:system code change/4 is called. OldVsn is the old version of the Module.

get status(Name)

get status(Name,Timeout) -> fstatus, Pid, fmodule, Modg, [PDict, SysState, Parent,
Dbg, Misc]g

Types:

� PDict = [fKey, Valueg]
� SysState = running | suspended
� Parent = pid()

340 STDLIB

STDLIB Reference Manual sys

� Dbg = [dbg opt()]
� Misc = term()

Gets the status of the process.

install(Name,fFunc,FuncStateg)

install(Name,fFunc,FuncStateg,Timeout)

Types:

� Func = dbg fun()
� dbg fun() = fun(FuncState, Event, ProcState) -> done | NewFuncState
� FuncState = term()
� Event = system event()
� ProcState = term()
� NewFuncState = term()

This function makes it possible to install other debug functions than the ones defined
above. An example of such a function is a trigger, a function that waits for some special
event and performs some action when the event is generated. This could, for example,
be turning on low level tracing.

Func is called whenever a system event is generated. This function should return done,
or a new func state. In the first case, the function is removed. It is removed if the
function fails.

remove(Name,Func)

remove(Name,Func,Timeout) -> void()

Types:

� Func = dbg fun()

Removes a previously installed debug function from the process. Func must be the same
as previously installed.

Process Implementation Functions

The following functions are used when implementing a special process. This is an
ordinary process which does not use a standard behaviour, but a process which
understands the standard system messages.

341STDLIB

sys STDLIB Reference Manual

Exports

debug options(Options) -> [dbg opt()]

Types:

� Options = [Opt]
� Opt = trace | log | statistics | flog to file, FileNameg | finstall, fFunc, FuncStategg
� Func = dbg fun()
� FuncState = term()

This function can be used by a process that initiates a debug structure from a list of
options. The values of the Opt argument are the same as the corresponding functions.

get debug(Item,Debug,Default) -> term()

Types:

� Item = log | statistics
� Debug = [dbg opt()]
� Default = term()

This function gets the data associated with a debug option. Default is returned if the
Item is not found. Can be used by the process to retrieve debug data for printing before
it terminates.

handle debug([dbg opt()],FormFunc,Extra,Event) -> [dbg opt()]

Types:

� FormFunc = dbg fun()
� Extra = term()
� Event = system event()

This function is called by a process when it generates a system event. FormFunc is a
formatting function which is called as FormFunc(Device, Event, Extra) in order to
print the events, which is necessary if tracing is activated. Extra is any extra information
which the process needs in the format function, for example the name of the process.

handle system msg(Msg,From,Parent,Module,Debug,Misc)

Types:

� Msg = term()
� From = pid()
� Parent = pid()
� Module = atom()
� Debug = [dbg opt()]
� Misc = term()

342 STDLIB

STDLIB Reference Manual sys

This function is used by a process module that wishes to take care of system messages.
The process receives a fsystem, From, Msgg message and passes the Msg and From to
this function.

This function never returns. It calls the function Module:system continue(Parent,
NDebug, Misc) where the process continues the execution, or
Module:system terminate(Reason, Parent, Debug, Misc) if the process should
terminate. The Module must export system continue/3, system terminate/4, and
system code change/4 (see below).

The Misc argument can be used to save internal data in a process, for example its state.
It is sent to Module:system continue/3 or Module:system terminate/4

print log(Debug) -> void()

Types:

� Debug = [dbg opt()]

Prints the logged system events in the debug structure using FormFunc as defined when
the event was generated by a call to handle debug/4.

Mod:system continue(Parent, Debug, Misc)

Types:

� Parent = pid()
� Debug = [dbg opt()]
� Misc = term()

This function is called from sys:handle system msg/6 when the process should
continue its execution (for example after it has been suspended). This function never
returns.

Mod:system terminate(Reason, Parent, Debug, Misc)

Types:

� Reason = term()
� Parent = pid()
� Debug = [dbg opt()]
� Misc = term()

This function is called from sys:handle system msg/6 when the process should
terminate. For example, this function is called when the process is suspended and its
parent orders shut-down. It gives the process a chance to do a clean-up. This function
never returns.

Mod:system code change(Misc, Module, OldVsn, Extra) -> fok, NMiscg

Types:

� Misc = term()
� OldVsn = undefined | term()
� Module = atom()
� Extra = term()
� NMisc = term()

343STDLIB

sys STDLIB Reference Manual

Called from sys:handle system msg/6 when the process should perform a code
change. The code change is used when the internal data structure has changed. This
function converts the Misc argument to the new data structure. OldVsn is the vsn
attribute of the old version of the Module. If no such attribute was defined, the atom
undefined is sent.

344 STDLIB

STDLIB Reference Manual timer

timer
Erlang Module

This module provides useful functions related to time. Unless otherwise stated, time is
always measured in milliseconds. All timer functions return immediately, regardless
of work carried out by another process.

Successful evaluations of the timer functions yield return values containing a timer
reference, denoted TRef below. By using cancel/1, the returned reference can be used
to cancel any requested action. A TRef is an Erlang term, the contents of which must
not be altered.

The timeouts are not exact, but should be at least as long as requested.

Exports

start() -> ok

Starts the timer server. Normally, the server does not need to be started explicitly. It is
started dynamically if it is needed. This is useful during development, but in a target
system the server should be started explicitly. Use configuration parameters for kernel
for this.

apply after(Time, Module, Function, Arguments) -> fok, Trefg | ferror, Reasong

Types:

� Time = integer() in Milliseconds
� Module = Function = atom()
� Arguments = [term()]

Evaluates apply(M, F, A) after Time amount of time has elapsed. Returns fok,
TRefg, or ferror, Reasong.

send after(Time, Pid, Message) -> fok, TRefg | ferror,Reasong

send after(Time, Message) -> fok, TRefg | ferror,Reasong

Types:

� Time = integer() in Milliseconds
� Pid = pid() | atom()
� Message = term()
� Result = fok, TRefg | ferror, Reasong

send after/3 Evaluates Pid ! Message after Time amount of time has elapsed. (Pid
can also be an atom of a registered name.) Returns fok, TRefg, or ferror,
Reasong.

345STDLIB

timer STDLIB Reference Manual

send after/2 Same as send after(Time, self(), Message).

exit after(Time, Pid, Reason1) -> fok, TRefg | ferror,Reason2g

exit after(Time, Reason1) -> fok, TRefg | ferror,Reason2g

kill after(Time, Pid)-> fok, TRefg | ferror,Reason2g

kill after(Time) -> fok, TRefg | ferror,Reason2g

Types:

� Time = integer() in milliseconds
� Pid = pid() | atom()
� Reason1 = Reason2 = term()

exit after/3 Send an exit signal with reason Reason1 to Pid Pid. Returns fok,
TRefg, or ferror, Reason2g.

exit after/2 Same as exit after(Time, self(), Reason1).

kill after/2 Same as exit after(Time, Pid, kill).

kill after/1 Same as exit after(Time, self(), kill).

apply interval(Time, Module, Function, Arguments) -> fok, TRefg | ferror, Reasong

Types:

� Time = integer() in milliseconds
� Module = Function = atom()
� Arguments = [term()]

Evaluates apply(Module, Function, Arguments) repeatedly at intervals of Time.
Returns fok, TRefg, or ferror, Reasong.

send interval(Time, Pid, Message) -> fok, TRefg | ferror, Reasong

send interval(Time, Message) -> fok, TRefg | ferror, Reasong

Types:

� Time = integer() in milliseconds
� Pid = pid() | atom()
� Message = term()
� Reason = term()

send interval/3 Evaluates Pid ! Message repeatedly after Time amount of time has
elapsed. (Pid can also be an atom of a registered name.) Returns fok, TRefg or
ferror, Reasong.

send interval/2 Same as send interval(Time, self(), Message).

cancel(TRef) -> fok, cancelg | ferror, Reasong

Cancels a previously requested timeout. TRef is a unique timer reference returned by
the timer function in question. Returns fok, cancelg, or ferror, Reasong when TRef
is not a timer reference.

sleep(Time) -> ok

346 STDLIB

STDLIB Reference Manual timer

Types:

� Time = integer() in milliseconds

Suspends the process calling this function for Time amount of milliseconds and then
returns ok. Naturally, this function does not return immediately.

tc(Module, Function, Arguments) -> fTime, Valueg

Types:

� Module = Function = atom()
� Arguments = [term()]
� Time = integer() in microseconds
� Value = term()

Evaluates apply(Module, Function, Arguments) and measures the elapsed real time.
Returns fTime, Valueg, where Time is the elapsed real time in microseconds, and Value
is what is returned from the apply.

now diff(T2, T1) -> fTime, Valueg

Types:

� T1 = T2 = fMegaSecs, Secs, MicroSecsg
� MegaSecs = Secs = MicroSecs = integer()

Calculates the time difference T2 - T1 in microseconds, where T1 and T2 probably are
timestamp tuples returned from erlang:now/0.

seconds(Seconds) -> Milliseconds

Returns the number of milliseconds in Seconds.

minutes(Minutes) -> Milliseconds

Return the number of milliseconds in Minutes.

hours(Hours) -> Milliseconds

Returns the number of milliseconds in Hours.

hms(Hours, Minutes, Seconds) -> Milliseconds

Returns the number of milliseconds in Hours + Minutes + Seconds.

347STDLIB

timer STDLIB Reference Manual

Examples

This example illustrates how to print out “Hello World!” in 5 seconds:

1> timer:apply_after(5000, io, format, ["~nHello World!~n", []]).
{ok,TRef}
Hello World!
2>

The following coding example illustrates a process which performs a certain action and
if this action is not completed within a certain limit, then the process is killed.

Pid = spawn(mod, fun, [foo, bar]),
%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill_after(timer:seconds(10), Pid),
...
%% We change our mind...
timer:cancel(R),
...

WARNING

A timer can always be removed by calling cancel/1.

An interval timer, i.e. a timer created by evaluating any of the functions
apply interval/4, send interval/3, and send interval/2, is linked to the process
towards which the timer performs its task.

A one-shot timer, i.e. a timer created by evaluating any of the functions apply after/4,
send after/3, send after/2, exit after/3, exit after/2, kill after/2, and
kill after/1 is not linked to any process. Hence, such a timer is removed only when it
reaches its timeout, or if it is explicitly removed by a call to cancel/1.

348 STDLIB

STDLIB Reference Manual win32reg

win32reg
Erlang Module

win32reg provides read and write access to the registry on Windows. It is essentially a
port driver wrapped around the Win32 API calls for accessing the registry.

The registry is a hierarchical database, used to store various system and software
information in Windows. It is available in Windows 95 and Windows NT. It contains
installation data, and is updated by installers and system programs. The Erlang installer
updates the registry by adding data that Erlang needs.

The registry contains keys and values. Keys are like the directories in a file system, they
form a hierarchy. Values are like files, they have a name and a value, and also a type.

Paths to keys are left to right, with sub-keys to the right and backslash between keys.
(Remember that backslashes must be doubled in Erlang strings.) Case is preserved but
not significant. Example:
"\\hkey local machine\\software\\Ericsson\\Erlang\\5.0" is the key for the
installation data for the latest Erlang release.

There are six entry points in the Windows registry, top level keys. They can be
abbreviated in the win32reg module as:

Abbrev. Registry key
======= ============
hkcr HKEY CLASSES ROOT
current user HKEY CURRENT USER
hkcu HKEY CURRENT USER
local machine HKEY LOCAL MACHINE
hklm HKEY LOCAL MACHINE
users HKEY USERS
hku HKEY USERS
current config HKEY CURRENT CONFIG
hkcc HKEY CURRENT CONFIG
dyn data HKEY DYN DATA
hkdd HKEY DYN DATA

The key above could be written as "\\hklm\\software\\ericsson\\erlang\\5.0".

The win32reg module uses a current key. It works much like the current directory.
From the current key, values can be fetched, sub-keys can be listed, and so on.

Under a key, any number of named values can be stored. They have name, and types,
and data.

Currently, the win32reg module supports storing only the following types:
REG DWORD, which is an integer, REG SZ which is a string and REG BINARY which
is a binary. Other types can be read, and will be returned as binaries.

There is also a “default” value, which has the empty string as name. It is read and
written with the atom default instead of the name.

349STDLIB

win32reg STDLIB Reference Manual

Some registry values are stored as strings with references to environment variables, e.g.
"%SystemRoot%Windows". SystemRoot is an environment variable, and should be
replaced with its value. A function expand/1 is provided, so that environment variables
surrounded in % can be expanded to their values.

For additional information on the Windows registry consult the Win32 Programmer's
Reference.

Exports

change key(RegHandle, Key) -> ReturnValue

Types:

� RegHandle = term()
� Key = string()

Changes the current key to another key. Works like cd. The key can be specified as a
relative path or as an absolute path, starting with \.

change key create(RegHandle, Key) -> ReturnValue

Types:

� RegHandle = term()
� Key = string()

Creates a key, or just changes to it, if it is already there. Works like a combination of
mkdir and cd. Calls the Win32 API function RegCreateKeyEx().

The registry must have been opened in write-mode.

close(RegHandle)-> ReturnValue

Types:

� RegHandle = term()

Closes the registry. After that, the RegHandle cannot be used.

current key(RegHandle) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = fok, string()g

Returns the path to the current key. This is the equivalent of pwd.

Note that the current key is stored in the driver, and might be invalid (e.g. if the key has
been removed).

delete key(RegHandle) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = ok | ferror, ErrorIdg

350 STDLIB

STDLIB Reference Manual win32reg

Deletes the current key, if it is valid. Calls the Win32 API function RegDeleteKey().
Note that this call does not change the current key, (unlike change key create/2.)
This means that after the call, the current key is invalid.

delete value(RegHandle, Name) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = ok | ferror, ErrorIdg

Deletes a named value on the current key. The atom default is used for the the default
value.

The registry must have been opened in write-mode.

expand(String) -> ExpandedString

Types:

� String = string()
� ExpandedString = string()

Expands a string containing environment variables between percent characters.
Anything between two % is taken for a environment variable, and is replaced by the
value. Two consecutive % is replaced by one %.

A variable name that is not in the environment, will result in an error.

format error(ErrorId) -> ErrorString

Types:

� ErrorId = atom()
� ErrorString = string()

Convert an POSIX errorcode to a string (by calling erl posix msg:message).

open(OpenModeList)-> ReturnValue

Types:

� OpenModeList = [OpenMode]
� OpenMode = read | write

Opens the registry for reading or writing. The current key will be the root
(HKEY CLASSES ROOT). The read flag in the mode list can be omitted.

Use change key/2 with an absolute path after open.

set value(RegHandle, Name, Value) -> ReturnValue

Types:

� Name = string() | default
� Value = string() | integer() | binary()

351STDLIB

win32reg STDLIB Reference Manual

Sets the named (or default) value to value. Calls the Win32 API function
RegSetValueEx(). The value can be of three types, and the corresponding registry type
will be used. Currently the types supported are: REG DWORD for integers, REG SZ for
strings and REG BINARY for binaries. Other types cannot currently be added or changed.

The registry must have been opened in write-mode.

sub keys(RegHandle) -> ReturnValue

Types:

� ReturnValue = fok, SubKeysg | ferror, ErrorIdg
� SubKeys = [SubKey]
� SubKey = string()

Returns a list of subkeys to the current key. Calls the Win32 API function
EnumRegKeysEx().

Avoid calling this on the root keys, it can be slow.

value(RegHandle, Name) -> ReturnValue

Types:

� Name = string() | default
� ReturnValue = fok, Valueg
� Value = string() | integer() | binary()

Retrieves the named value (or default) on the current key. Registry values of type
REG SZ, are returned as strings. Type REG DWORD values are returned as integers. All
other types are returned as binaries.

values(RegHandle) -> ReturnValue

Types:

� ReturnValue = fok, ValuePairsg
� ValuePairs = [ValuePair]
� ValuePair = fName, Valueg
� Name = string | default
� Value = string() | integer() | binary()

Retrieves a list of all values on the current key. The values have types corresponding to
the registry types, see value. Calls the Win32 API function EnumRegValuesEx().

SEE ALSO

Win32 Programmer's Reference (from Microsoft)

erl posix msg

The Windows 95 Registry (book from O'Reilly)

352 STDLIB

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

a_function/2
sofs , 303

abcast/2
gen server , 192

abcast/3
gen server , 192

absname/1
filename , 150

absname/2
filename , 151

absname_join/2
filename , 151

abstract/1
erl parse , 109

acos/1
math , 229

acosh/1
math , 229

add/2
gb sets , 157

add/3
erl tar , 117

add/4
erl tar , 117

add_binding/3
erl eval , 101

add_edge/3
digraph , 87

add_edge/4
digraph , 87

add_edge/5
digraph , 87

add_element/2

gb sets , 157
sets , 284

add_handler/3
gen event , 168

add_sup_handler/3
gen event , 169

add_vertex/1
digraph , 88

add_vertex/2
digraph , 88

add_vertex/3
digraph , 88

all/0
dets , 67
ets , 123

all/2
lists , 224

any/2
lists , 224

append/1
lists , 214
qlc , 264

append/2
lists , 214
qlc , 264

append/3
dict , 82

append_list/3
dict , 82

append_values/2
proplists , 253

apply_after/4
timer , 345

apply_interval/4

353STDLIB

timer , 346

arith_op/2
erl internal , 104

asin/1
math , 229

asinh/1
math , 229

atan/1
math , 229

atan2/2
math , 229

atanh/1
math , 229

attach/1
pool , 246

attribute/1
erl pp , 111

attribute/2
erl pp , 111

balance/1
gb sets , 157
gb trees , 162

basename/1
filename , 151

basename/2
filename , 151

bchunk/2
dets , 67

beam lib
chunks/2, 52
clear_crypto_key_fun/0, 55
cmp/2, 53
cmp_dirs/2, 53
crypto_key_fun/1, 55
diff_dirs/2, 54
format_error/1, 55
info/1, 53
strip/1, 54
strip_files/1, 54
strip_release/1, 54
version/1, 52

bif/2
erl internal , 104

binding/2
erl eval , 101

bindings/1
erl eval , 101

bool_op/2
erl internal , 104

bt/1
c , 57

c
bt/1, 57
c/1, 57
c/2, 57
cd/1, 57
flush/0, 58
help/0, 58
i/0, 58
i/3, 58
l/1, 58
lc/1, 58
ls/0, 58
ls/1, 58
m/0, 59
m/1, 59
memory/0, 59
memory/1, 59
nc/1, 59
nc/2, 59
ni/0, 58
nl/1, 59
nregs/0, 60
pid/3, 59
pwd/0, 60
q/0, 60
regs/0, 60
xm/1, 60

c/1
c , 57

c/2
c , 57

calendar
date_to_gregorian_days/1, 62
date_to_gregorian_days/3, 62
datetime_to_gregorian_seconds/2, 62
day_of_the_week/1, 62
day_of_the_week/3, 62
gregorian_days_to_date/1, 62
gregorian_seconds_to_datetime/1, 62
is_leap_year/1, 62
last_day_of_the_month/2, 62
local_time/0, 63
local_time_to_universal_time/2, 63

354 STDLIB

local_time_to_universal_time_dst/2,
63

now_to_datetime/1, 64
now_to_local_time/1, 63
now_to_universal_time/1, 64
seconds_to_daystime/1, 64
seconds_to_time/1, 64
time_difference/2, 64
time_to_seconds/1, 64
universal_time/0, 64
universal_time_to_local_time/2, 65
valid_date/1, 65
valid_date/3, 65

call/2
gen server , 190

call/3
gen event , 170
gen server , 190

call/4
gen event , 170

cancel/1
timer , 346

cancel_timer/1
gen fsm , 181

canonical_relation/1
sofs , 303

cast/2
gen server , 192

cd/1
c , 57

centre/2
string , 325

centre/3
string , 325

change_code/4
sys , 340

change_code/5
sys , 340

change_key/2
win32reg , 350

change_key_create/2
win32reg , 350

char_list/1
io lib , 211

chars/2

string , 323

chars/3
string , 323

check/1
file sorter , 146

check/2
file sorter , 146

check_childspecs/1
supervisor , 333

chr/2
string , 322

chunks/2
beam lib , 52

clear_crypto_key_fun/0
beam lib , 55

close/1
dets , 68
epp , 98
erl tar , 117
win32reg , 350

cmp/2
beam lib , 53

cmp_dirs/2
beam lib , 53

comp_op/2
erl internal , 105

compact/1
proplists , 253

components/1
digraph utils , 95

composite/2
sofs , 303

concat/1
lists , 214

concat/2
string , 322

condensation/1
digraph utils , 95

cons/2
queue , 272

constant_function/2
sofs , 303

converse/1

355STDLIB

sofs , 304

copies/2
string , 324

cos/1
math , 229

cosh/1
math , 229

create/1
pg , 244

create/2
erl tar , 117
pg , 244

create/3
erl tar , 118

crypto_key_fun/1
beam lib , 55

cspan/2
string , 323

current_key/1
win32reg , 350

cursor/2
qlc , 264

cyclic_strong_components/1
digraph utils , 95

daeh/1
queue , 272

date_to_gregorian_days/1
calendar , 62

date_to_gregorian_days/3
calendar , 62

datetime_to_gregorian_seconds/2
calendar , 62

day_of_the_week/1
calendar , 62

day_of_the_week/3
calendar , 62

debug_options/1
sys , 342

deep_char_list/1
io lib , 211

del_binding/2
erl eval , 101

del_edge/2
digraph , 88

del_edges/2
digraph , 88

del_element/2
gb sets , 157
sets , 284

del_path/3
digraph , 88

del_vertex/2
digraph , 89

del_vertices/2
digraph , 89

delete/1
digraph , 89
ets , 123

delete/2
dets , 68
ets , 123
gb sets , 157
gb trees , 162
lists , 215
proplists , 253

delete_all_objects/1
dets , 68
ets , 123

delete_any/2
gb sets , 157
gb trees , 163

delete_child/2
supervisor , 332

delete_cursor/1
qlc , 264

delete_handler/3
gen event , 171

delete_key/1
win32reg , 350

delete_object/2
dets , 68
ets , 123

delete_value/2
win32reg , 351

dets
all/0, 67
bchunk/2, 67

356 STDLIB

close/1, 68
delete/2, 68
delete_all_objects/1, 68
delete_object/2, 68
first/1, 68
foldl/3, 69
foldr/3, 69
from_ets/2, 69
info/1, 69
info/2, 70
init_table/3, 70
insert/2, 71
insert_new/2, 71
is_compatible_bchunk_format/2, 72
is_dets_file/1, 72
lookup/2, 72
match/1, 72
match/2, 73
match/3, 73
match_delete/2, 73
match_object/1, 74
match_object/2, 74
match_object/3, 74
member/2, 75
next/2, 75
open_file/1, 75
open_file/2, 75
pid2name/1, 77
repair_continuation/2, 77
safe_fixtable/2, 77
select/1, 78
select/2, 78
select/3, 78
select_delete/2, 79
slot/2, 79
sync/1, 79
table/2, 79
to_ets/2, 80
traverse/2, 81
update_counter/3, 81

dict
append/3, 82
append_list/3, 82
erase/2, 82
fetch/2, 82
fetch_keys/1, 83
filter/2, 83
find/2, 83
fold/3, 83
from_list/1, 83
is_key/2, 83
map/2, 84

merge/3, 84
new/0, 84
store/3, 84
to_list/1, 84
update/3, 85
update/4, 85
update_counter/3, 85

diff_dirs/2
beam lib , 54

difference/2
gb sets , 157
sofs , 304

digraph
add_edge/3, 87
add_edge/4, 87
add_edge/5, 87
add_vertex/1, 88
add_vertex/2, 88
add_vertex/3, 88
del_edge/2, 88
del_edges/2, 88
del_path/3, 88
del_vertex/2, 89
del_vertices/2, 89
delete/1, 89
edge/2, 89
edges/1, 89
edges/2, 89
get_cycle/2, 90
get_path/3, 90
get_short_cycle/2, 90
get_short_path/3, 90
in_degree/2, 91
in_edges/2, 91
in_neighbours/2, 91
info/1, 91
new/0, 92
new/1, 92
no_edges/1, 92
no_vertices/1, 92
out_degree/2, 92
out_edges/2, 92
out_neighbours/2, 92
vertex/2, 93
vertices/1, 93

digraph_to_family/2
sofs , 304

digraph utils
components/1, 95
condensation/1, 95

357STDLIB

cyclic_strong_components/1, 95
is_acyclic/1, 95
loop_vertices/1, 95
postorder/1, 96
preorder/1, 96
reachable/2, 96
reachable_neighbours/2, 96
reaching/2, 96
reaching_neighbours/2, 96
strong_components/1, 97
subgraph/3, 97
topsort/1, 97

dirname/1
filename , 152

domain/1
sofs , 304

drestriction/2
sofs , 304

drestriction/3
sofs , 305

dropwhile/2
lists , 224

duplicate/2
lists , 215

e/2
qlc , 264

edge/2
digraph , 89

edges/1
digraph , 89

edges/2
digraph , 89

empty/0
gb sets , 158
gb trees , 163

empty_set/0
sofs , 305

ensure_dir/1
filelib , 147

enter/3
gb trees , 163

enter_loop/3
gen server , 192

enter_loop/4
gen fsm , 182

gen server , 193

enter_loop/5
gen fsm , 182
gen server , 193

enter_loop/6
gen fsm , 182

epp
close/1, 98
open/2, 98
open/3, 98
parse_erl_form/1, 98
parse_file/3, 98

equal/2
string , 322

erase/2
dict , 82

erf/1
math , 230

erfc/1
math , 230

erl eval
add_binding/3, 101
binding/2, 101
bindings/1, 101
del_binding/2, 101
expr/2, 100
expr/3, 100
expr/4, 100
expr_list/2, 101
expr_list/3, 101
expr_list/4, 101
exprs/2, 100
exprs/3, 100
exprs/4, 100
new_bindings/0, 101

erl id trans
parse_transform/2, 103

erl internal
arith_op/2, 104
bif/2, 104
bool_op/2, 104
comp_op/2, 105
guard_bif/2, 104
list_op/2, 105
op_type/2, 105
send_op/2, 105
type_test/2, 104

erl lint

358 STDLIB

format_error/1, 107
is_guard_test/1, 107
module/1, 106
module/2, 106
module/3, 106

erl parse
abstract/1, 109
format_error/1, 109
normalise/1, 109
parse_exprs/1, 108
parse_form/1, 108
parse_term/1, 108
tokens/1, 109
tokens/2, 109

erl pp
attribute/1, 111
attribute/2, 111
expr/1, 112
expr/2, 112
expr/3, 112
expr/4, 112
exprs/1, 112
exprs/2, 112
exprs/3, 112
form/1, 111
form/2, 111
function/1, 111
function/2, 111
guard/1, 111
guard/2, 111

erl scan
format_error/1, 115
reserved_word/1, 115
string/1, 114
string/2, 114
tokens/3, 114

erl tar
add/3, 117
add/4, 117
close/1, 117
create/2, 117
create/3, 118
extract/1, 118
extract/2, 118
format_error/1, 119
open/2, 119
t/1, 120
table/1, 120
table/2, 120
tt/1, 120

error_message/2
lib , 212

esend/2
pg , 245

ets
all/0, 123
delete/1, 123
delete/2, 123
delete_all_objects/1, 123
delete_object/2, 123
file2tab/1, 123
first/1, 124
fixtable/2, 124
foldl/3, 124
foldr/3, 124
from_dets/2, 125
fun2ms/1, 125
i/0, 126
i/1, 126
info/1, 126
info/2, 127
init_table/2, 127
insert/2, 128
insert_new/2, 128
is_compiled_ms/1, 128
last/1, 129
lookup/2, 129
lookup_element/3, 129
match/1, 131
match/2, 130
match/3, 130
match_delete/2, 131
match_object/1, 131
match_object/2, 131
match_object/3, 131
match_spec_compile/1, 132
match_spec_run/2, 132
member/2, 133
new/2, 133
next/2, 134
prev/2, 134
rename/2, 134
repair_continuation/2, 134
safe_fixtable/2, 135
select/1, 138
select/2, 136
select/3, 138
select_count/2, 138
select_delete/2, 138
slot/2, 139
tab2file/2, 139
tab2list/1, 139

359STDLIB

table/2, 139
test_ms/2, 140
to_dets/2, 141
update_counter/3, 141
update_counter/4, 141
update_counter/6, 141

eval/2
qlc , 264

exit_after/2
timer , 346

exit_after/3
timer , 346

exp/1
math , 229

expand/1
win32reg , 351

expand/2
proplists , 253

expr/1
erl pp , 112

expr/2
erl eval , 100
erl pp , 112

expr/3
erl eval , 100
erl pp , 112

expr/4
erl eval , 100
erl pp , 112

expr_list/2
erl eval , 101

expr_list/3
erl eval , 101

expr_list/4
erl eval , 101

exprs/1
erl pp , 112

exprs/2
erl eval , 100
erl pp , 112

exprs/3
erl eval , 100
erl pp , 112

exprs/4
erl eval , 100

extension/1
filename , 152

extension/3
sofs , 305

extract/1
erl tar , 118

extract/2
erl tar , 118

family/2
sofs , 306

family_difference/2
sofs , 306

family_domain/1
sofs , 306

family_field/1
sofs , 306

family_intersection/1
sofs , 307

family_intersection/2
sofs , 307

family_projection/2
sofs , 307

family_range/1
sofs , 307

family_specification/2
sofs , 308

family_to_digraph/2
sofs , 308

family_to_relation/1
sofs , 308

family_union/1
sofs , 309

family_union/2
sofs , 309

fetch/2
dict , 82

fetch_keys/1
dict , 83

field/1
sofs , 309

file2tab/1
ets , 123

360 STDLIB

file_size/1
filelib , 147

file sorter
check/1, 146
check/2, 146
keycheck/2, 146
keycheck/3, 146
keymerge/3, 146
keymerge/4, 146
keysort/2, 145
keysort/3, 145
keysort/4, 145
merge/2, 145
merge/3, 145
sort/1, 145
sort/2, 145
sort/3, 145

filelib
ensure_dir/1, 147
file_size/1, 147
fold_files/5, 147
is_dir/1, 147
is_file/1, 147
is_regular/1, 148
last_modified/1, 148
wildcard/1, 148
wildcard/2, 149

filename
absname/1, 150
absname/2, 151
absname_join/2, 151
basename/1, 151
basename/2, 151
dirname/1, 152
extension/1, 152
find_src/1, 154
find_src/2, 154
flatten/1, 152
join/1, 153
join/2, 153
nativename/1, 153
pathtype/1, 153
rootname/1, 154
rootname/2, 154
split/1, 154

filter/2
dict , 83
gb sets , 158
lists , 224
sets , 285

find/2
dict , 83

find_src/1
filename , 154

find_src/2
filename , 154

first/1
dets , 68
ets , 124

first_match/2
regexp , 278

fixtable/2
ets , 124

flatlength/1
lists , 215

flatmap/2
lists , 225

flatten/1
filename , 152
lists , 215

flatten/2
lists , 215

flush/0
c , 58

flush_receive/0
lib , 212

fold/3
dict , 83
gb sets , 158
sets , 285

fold/4
qlc , 265

fold_files/5
filelib , 147

foldl/3
dets , 69
ets , 124
lists , 225

foldr/3
dets , 69
ets , 124
lists , 225

foreach/2
lists , 226

361STDLIB

form/1
erl pp , 111

form/2
erl pp , 111

format/1
io , 199
proc lib , 250

format/2
io lib , 209

format/3
io , 199

format_error/1
beam lib , 55
erl lint , 107
erl parse , 109
erl scan , 115
erl tar , 119
ms transform , 241
qlc , 265
regexp , 280
win32reg , 351

fread/2
io lib , 209

fread/3
io , 203
io lib , 209

from_dets/2
ets , 125

from_ets/2
dets , 69

from_external/2
sofs , 309

from_list/1
dict , 83
gb sets , 158
queue , 272
sets , 283

from_orddict/1
gb trees , 163

from_ordset/1
gb sets , 158

from_sets/1
sofs , 309, 310

from_term/2
sofs , 310

fun2ms/1
ets , 125

function/1
erl pp , 111

function/2
erl pp , 111

fwrite/1
io , 199

fwrite/2
io lib , 209

fwrite/3
io , 199

gb sets
add/2, 157
add_element/2, 157
balance/1, 157
del_element/2, 157
delete/2, 157
delete_any/2, 157
difference/2, 157
empty/0, 158
filter/2, 158
fold/3, 158
from_list/1, 158
from_ordset/1, 158
insert/2, 158
intersection/1, 159
intersection/2, 159
is_element/2, 159
is_empty/1, 159
is_member/2, 159
is_set/1, 159
is_subset/2, 159
iterator/1, 159
largest/1, 160
new/0, 158
next/1, 160
singleton/1, 160
size/1, 160
smallest/1, 160
subtract/2, 158
take_largest/1, 160
take_smallest/1, 160
to_list/1, 161
union/1, 161
union/2, 161

gb trees
balance/1, 162
delete/2, 162

362 STDLIB

delete_any/2, 163
empty/0, 163
enter/3, 163
from_orddict/1, 163
get/2, 163
insert/3, 164
is_defined/2, 164
is_empty/1, 164
iterator/1, 164
keys/1, 164
largest/1, 164
lookup/2, 163
next/1, 164
size/1, 165
smallest/1, 165
take_largest/1, 165
take_smallest/1, 165
to_list/1, 165
update/3, 165
values/1, 166

gen event
add_handler/3, 168
add_sup_handler/3, 169
call/3, 170
call/4, 170
delete_handler/3, 171
Module:code_change/3, 175
Module:handle_call/2, 174
Module:handle_event/2, 173
Module:handle_info/2, 174
Module:init/1, 173
Module:terminate/2, 175
notify/2, 170
start/0, 168
start/1, 168
start_link/0, 168
start_link/1, 168
stop/1, 173
swap_handler/5, 171
swap_sup_handler/5, 172
sync_notify/2, 170
which_handlers/1, 172

gen fsm
cancel_timer/1, 181
enter_loop/4, 182
enter_loop/5, 182
enter_loop/6, 182
Module:code_change/4, 186
Module:handle_event/3, 184
Module:handle_info/3, 185
Module:handle_sync_event/4, 185
Module:init/1, 183

Module:StateName/2, 183
Module:StateName/3, 184
Module:terminate/3, 186
reply/2, 181
send_all_state_event/2, 179
send_event/2, 179
send_event_after/2, 181
start/3, 179
start/4, 179
start_link/3, 178
start_link/4, 178
start_timer/2, 181
sync_send_all_state_event/2, 180
sync_send_all_state_event/3, 180
sync_send_event/2, 180
sync_send_event/3, 180

gen server
abcast/2, 192
abcast/3, 192
call/2, 190
call/3, 190
cast/2, 192
enter_loop/3, 192
enter_loop/4, 193
enter_loop/5, 193
Module:code_change/3, 196
Module:handle_call/3, 194
Module:handle_cast/2, 194
Module:handle_info/2, 195
Module:init/1, 193
Module:terminate/2, 195
multi_call/2, 191
multi_call/3, 191
multi_call/4, 191
reply/2, 192
start/3, 189
start/4, 189
start_link/3, 188
start_link/4, 188

get/2
gb trees , 163

get_all_values/2
proplists , 254

get_bool/2
proplists , 254

get_chars/3
io , 197

get_cycle/2
digraph , 90

363STDLIB

get_debug/3
sys , 342

get_keys/1
proplists , 254

get_line/2
io , 198

get_node/0
pool , 247

get_nodes/0
pool , 247

get_path/3
digraph , 90

get_short_cycle/2
digraph , 90

get_short_path/3
digraph , 90

get_status/1
sys , 340

get_status/2
sys , 340

get_value/2
proplists , 255

get_value/3
proplists , 255

gregorian_days_to_date/1
calendar , 62

gregorian_seconds_to_datetime/1
calendar , 62

gsub/3
regexp , 279

guard/1
erl pp , 111

guard/2
erl pp , 111

guard_bif/2
erl internal , 104

handle_debug/1
sys , 342

handle_system_msg/6
sys , 342

head/1
queue , 272

help/0
c , 58

hibernate/3
proc lib , 251

history/1
shell , 294

hms/3
timer , 347

hours/1
timer , 347

i/0
c , 58
ets , 126

i/1
ets , 126

i/3
c , 58

image/2
sofs , 311

in/2
queue , 272

in_degree/2
digraph , 91

in_edges/2
digraph , 91

in_neighbours/2
digraph , 91

in_r/2
queue , 273

indentation/2
io lib , 210

info/1
beam lib , 53
dets , 69
digraph , 91
ets , 126

info/2
dets , 70
ets , 127
qlc , 265

init/1
queue , 273

init/3
log mf h , 228

364 STDLIB

init/4
log mf h , 228

init_ack/1
proc lib , 250

init_ack/2
proc lib , 250

init_table/2
ets , 127

init_table/3
dets , 70

initial_call/1
proc lib , 251

insert/2
dets , 71
ets , 128
gb sets , 158

insert/3
gb trees , 164

insert_new/2
dets , 71
ets , 128

install/3
sys , 341

install/4
sys , 341

intersection/1
gb sets , 159
sets , 284
sofs , 311

intersection/2
gb sets , 159
sets , 284
sofs , 311

intersection_of_family/1
sofs , 311

inverse/1
sofs , 311

inverse_image/2
sofs , 312

io
format/1, 199
format/3, 199
fread/3, 203
fwrite/1, 199
fwrite/3, 199

get_chars/3, 197
get_line/2, 198
nl/1, 197
parse_erl_exprs/1, 205
parse_erl_exprs/3, 205
parse_erl_form/1, 206
parse_erl_form/3, 206
put_chars/2, 197
read/2, 198
read/3, 199
scan_erl_exprs/1, 204
scan_erl_exprs/3, 204
scan_erl_form/1, 205
scan_erl_form/3, 205
setopts/2, 198
write/2, 198

io lib
char_list/1, 211
deep_char_list/1, 211
format/2, 209
fread/2, 209
fread/3, 209
fwrite/2, 209
indentation/2, 210
nl/0, 208
print/1, 208
print/4, 208
printable_list/1, 211
write/1, 208
write/2, 208
write_atom/1, 210
write_char/1, 210
write_string/1, 210

is_a_function/1
sofs , 312

is_acyclic/1
digraph utils , 95

is_compatible_bchunk_format/2
dets , 72

is_compiled_ms/1
ets , 128

is_defined/2
gb trees , 164
proplists , 255

is_dets_file/1
dets , 72

is_dir/1
filelib , 147

is_disjoint/2

365STDLIB

sofs , 312

is_element/2
gb sets , 159
sets , 283

is_empty/1
gb sets , 159
gb trees , 164
queue , 273

is_empty_set/1
sofs , 312

is_equal/2
sofs , 312

is_file/1
filelib , 147

is_guard_test/1
erl lint , 107

is_key/2
dict , 83

is_leap_year/1
calendar , 62

is_member/2
gb sets , 159

is_regular/1
filelib , 148

is_set/1
gb sets , 159
sets , 283
sofs , 312

is_sofs_set/1
sofs , 313

is_subset/2
gb sets , 159
sets , 285
sofs , 313

is_type/1
sofs , 313

iterator/1
gb sets , 159
gb trees , 164

join/1
filename , 153

join/2
filename , 153
pg , 244

queue , 273

join/4
sofs , 313

keycheck/2
file sorter , 146

keycheck/3
file sorter , 146

keydelete/3
lists , 215

keymember/3
lists , 216

keymerge/3
file sorter , 146
lists , 216

keymerge/4
file sorter , 146

keyreplace/4
lists , 216

keys/1
gb trees , 164

keysearch/3
lists , 216

keysort/2
file sorter , 145
lists , 216

keysort/3
file sorter , 145
qlc , 266

keysort/4
file sorter , 145

kill_after/1
timer , 346

kill_after/2
timer , 346

l/1
c , 58

lait/1
queue , 273

largest/1
gb sets , 160
gb trees , 164

last/1

366 STDLIB

ets , 129
lists , 217
queue , 273

last_day_of_the_month/2
calendar , 62

last_modified/1
filelib , 148

lc/1
c , 58

left/2
string , 325

left/3
string , 325

len/1
queue , 273
string , 322

lib
error_message/2, 212
flush_receive/0, 212
nonl/1, 212
progname/0, 212
send/2, 212
sendw/2, 213

list_op/2
erl internal , 105

lists
all/2, 224
any/2, 224
append/1, 214
append/2, 214
concat/1, 214
delete/2, 215
dropwhile/2, 224
duplicate/2, 215
filter/2, 224
flatlength/1, 215
flatmap/2, 225
flatten/1, 215
flatten/2, 215
foldl/3, 225
foldr/3, 225
foreach/2, 226
keydelete/3, 215
keymember/3, 216
keymerge/3, 216
keyreplace/4, 216
keysearch/3, 216
keysort/2, 216
last/1, 217

map/2, 226
mapfoldl/3, 226
mapfoldr/3, 226
max/1, 217
member/2, 217
merge/1, 217
merge/2, 217
merge/3, 217
merge3/3, 218
min/1, 218
nth/2, 218
nthtail/2, 218
partition/2, 227
prefix/2, 218
reverse/1, 218
reverse/2, 219
seq/2, 219
seq/3, 219
sort/1, 219
sort/2, 219
split/2, 220
splitwith/2, 227
sublist/2, 220
sublist/3, 220
subtract/2, 220
suffix/2, 220
sum/1, 221
takewhile/2, 227
ukeymerge/3, 221
ukeysort/2, 221
umerge/1, 221
umerge/2, 221
umerge/3, 221
umerge3/3, 222
unzip/1, 222
unzip3/1, 222
usort/1, 222
usort/2, 222
zip/2, 223
zip3/3, 223
zipwith/3, 223
zipwith3/4, 223

local_time/0
calendar , 63

local_time_to_universal_time/2
calendar , 63

local_time_to_universal_time_dst/2
calendar , 63

log/1
math , 229

367STDLIB

log/2
sys , 339

log/3
sys , 339

log10/1
math , 229

log mf h
init/3, 228
init/4, 228

log_to_file/2
sys , 339

log_to_file/3
sys , 339

lookup/2
dets , 72
ets , 129
gb trees , 163
proplists , 255

lookup_all/2
proplists , 255

lookup_element/3
ets , 129

loop_vertices/1
digraph utils , 95

ls/0
c , 58

ls/1
c , 58

m/0
c , 59

m/1
c , 59

map/2
dict , 84
lists , 226

mapfoldl/3
lists , 226

mapfoldr/3
lists , 226

match/1
dets , 72
ets , 131

match/2
dets , 73

ets , 130
regexp , 278

match/3
dets , 73
ets , 130

match_delete/2
dets , 73
ets , 131

match_object/1
dets , 74
ets , 131

match_object/2
dets , 74
ets , 131

match_object/3
dets , 74
ets , 131

match_spec_compile/1
ets , 132

match_spec_run/2
ets , 132

matches/2
regexp , 278

math
acos/1, 229
acosh/1, 229
asin/1, 229
asinh/1, 229
atan/1, 229
atan2/2, 229
atanh/1, 229
cos/1, 229
cosh/1, 229
erf/1, 230
erfc/1, 230
exp/1, 229
log/1, 229
log10/1, 229
pi/0, 229
pow/2, 229
sin/1, 229
sinh/1, 229
sqrt/1, 229
tan/1, 229
tanh/1, 229

max/1
lists , 217

member/2

368 STDLIB

dets , 75
ets , 133
lists , 217

members/1
pg , 245

memory/0
c , 59

memory/1
c , 59

merge/1
lists , 217

merge/2
file sorter , 145
lists , 217

merge/3
dict , 84
file sorter , 145
lists , 217

merge3/3
lists , 218

min/1
lists , 218

minutes/1
timer , 347

Mod:system_code_change/4
sys , 343

Mod:system_continue/3
sys , 343

Mod:system_terminate/4
sys , 343

module/1
erl lint , 106

module/2
erl lint , 106

module/3
erl lint , 106

Module:code_change/3
gen event , 175
gen server , 196

Module:code_change/4
gen fsm , 186

Module:handle_call/2
gen event , 174

Module:handle_call/3

gen server , 194

Module:handle_cast/2
gen server , 194

Module:handle_event/2
gen event , 173

Module:handle_event/3
gen fsm , 184

Module:handle_info/2
gen event , 174
gen server , 195

Module:handle_info/3
gen fsm , 185

Module:handle_sync_event/4
gen fsm , 185

Module:init/1
gen event , 173
gen fsm , 183
gen server , 193
supervisor , 334
supervisor bridge , 336

Module:StateName/2
gen fsm , 183

Module:StateName/3
gen fsm , 184

Module:terminate/2
gen event , 175
gen server , 195
supervisor bridge , 336

Module:terminate/3
gen fsm , 186

ms transform
format_error/1, 241
parse_transform/2, 240
transform_from_shell/3, 240

multi_call/2
gen server , 191

multi_call/3
gen server , 191

multi_call/4
gen server , 191

multiple_relative_product/2
sofs , 313

nativename/1
filename , 153

369STDLIB

nc/1
c , 59

nc/2
c , 59

new/0
dict , 84
digraph , 92
gb sets , 158
queue , 274
sets , 283

new/1
digraph , 92

new/2
ets , 133

new_bindings/0
erl eval , 101

next/1
gb sets , 160
gb trees , 164

next/2
dets , 75
ets , 134

next_answers/2
qlc , 266

ni/0
c , 58

nl/0
io lib , 208

nl/1
c , 59
io , 197

no_debug/1
sys , 340

no_debug/2
sys , 340

no_edges/1
digraph , 92

no_elements/1
sofs , 314

no_vertices/1
digraph , 92

nonl/1
lib , 212

normalise/1

erl parse , 109

normalize/2
proplists , 255

notify/2
gen event , 170

now_diff/2
timer , 347

now_to_datetime/1
calendar , 64

now_to_local_time/1
calendar , 63

now_to_universal_time/1
calendar , 64

nregs/0
c , 60

nth/2
lists , 218

nthtail/2
lists , 218

op_type/2
erl internal , 105

open/1
win32reg , 351

open/2
epp , 98
erl tar , 119

open/3
epp , 98

open_file/1
dets , 75

open_file/2
dets , 75

out/1
queue , 274

out_degree/2
digraph , 92

out_edges/2
digraph , 92

out_neighbours/2
digraph , 92

out_r/1
queue , 274

370 STDLIB

parse/1
regexp , 280

parse_erl_exprs/1
io , 205

parse_erl_exprs/3
io , 205

parse_erl_form/1
epp , 98
io , 206

parse_erl_form/3
io , 206

parse_exprs/1
erl parse , 108

parse_file/3
epp , 98

parse_form/1
erl parse , 108

parse_term/1
erl parse , 108

parse_transform/2
erl id trans , 103
ms transform , 240

partition/1
sofs , 314

partition/2
lists , 227
sofs , 314

partition/3
sofs , 314

partition_family/2
sofs , 315

pathtype/1
filename , 153

pg
create/1, 244
create/2, 244
esend/2, 245
join/2, 244
members/1, 245
send/2, 245

pi/0
math , 229

pid/3
c , 59

pid2name/1
dets , 77

pool
attach/1, 246
get_node/0, 247
get_nodes/0, 247
pspawn/3, 247
pspawn_link/3, 247
start/1, 246
start/2, 246
stop/0, 247

postorder/1
digraph utils , 96

pow/2
math , 229

prefix/2
lists , 218

preorder/1
digraph utils , 96

prev/2
ets , 134

print/1
io lib , 208

print/4
io lib , 208

print_log/1
sys , 343

printable_list/1
io lib , 211

proc lib
format/1, 250
hibernate/3, 251
init_ack/1, 250
init_ack/2, 250
initial_call/1, 251
spawn/1, 248
spawn/2, 248
spawn/3, 248
spawn/4, 248
spawn_link/1, 248
spawn_link/2, 248
spawn_link/3, 248
spawn_link/4, 248
spawn_opt/2, 249
spawn_opt/3, 249
spawn_opt/4, 249
spawn_opt/5, 249
start/3, 249

371STDLIB

start/4, 249
start/5, 249
start_link/3, 249
start_link/4, 249
start_link/5, 249
translate_initial_call/1, 251

product/1
sofs , 315

product/2
sofs , 315

progname/0
lib , 212

projection/2
sofs , 316

property/1
proplists , 256

property/2
proplists , 256

proplists
append_values/2, 253
compact/1, 253
delete/2, 253
expand/2, 253
get_all_values/2, 254
get_bool/2, 254
get_keys/1, 254
get_value/2, 255
get_value/3, 255
is_defined/2, 255
lookup/2, 255
lookup_all/2, 255
normalize/2, 255
property/1, 256
property/2, 256
split/2, 256
substitute_aliases/2, 257
substitute_negations/2, 257
unfold/1, 257

pseudo/1
slave , 298

pseudo/2
slave , 298

pspawn/3
pool , 247

pspawn_link/3
pool , 247

put_chars/2

io , 197

pwd/0
c , 60

q/0
c , 60

q/2
qlc , 267

qlc
append/1, 264
append/2, 264
cursor/2, 264
delete_cursor/1, 264
e/2, 264
eval/2, 264
fold/4, 265
format_error/1, 265
info/2, 265
keysort/3, 266
next_answers/2, 266
q/2, 267
sort/2, 268
string_to_handle/3, 268
table/2, 269

queue
cons/2, 272
daeh/1, 272
from_list/1, 272
head/1, 272
in/2, 272
in_r/2, 273
init/1, 273
is_empty/1, 273
join/2, 273
lait/1, 273
last/1, 273
len/1, 273
new/0, 274
out/1, 274
out_r/1, 274
reverse/1, 274
snoc/2, 274
split/2, 274
tail/1, 274
to_list/1, 275

random
seed/0, 276
seed/3, 276
seed0/0, 276

372 STDLIB

uniform/0, 276
uniform/1, 276
uniform_s/1, 277
uniform_s/2, 277

range/1
sofs , 316

rchr/2
string , 322

reachable/2
digraph utils , 96

reachable_neighbours/2
digraph utils , 96

reaching/2
digraph utils , 96

reaching_neighbours/2
digraph utils , 96

read/2
io , 198

read/3
io , 199

regexp
first_match/2, 278
format_error/1, 280
gsub/3, 279
match/2, 278
matches/2, 278
parse/1, 280
sh_to_awk/1, 280
split/2, 279
sub/3, 279

regs/0
c , 60

relation/2
sofs , 316

relation_to_family/1
sofs , 316

relative_product/2
sofs , 317

relative_product1/2
sofs , 317

relay/1
slave , 298

remove/2
sys , 341

remove/3

sys , 341

rename/2
ets , 134

repair_continuation/2
dets , 77
ets , 134

reply/2
gen fsm , 181
gen server , 192

reserved_word/1
erl scan , 115

restart_child/2
supervisor , 332

restriction/2
sofs , 317

restriction/3
sofs , 318

results/1
shell , 294

resume/1
sys , 340

resume/2
sys , 340

reverse/1
lists , 218
queue , 274

reverse/2
lists , 219

right/2
string , 325

right/3
string , 325

rootname/1
filename , 154

rootname/2
filename , 154

rstr/2
string , 322

safe_fixtable/2
dets , 77
ets , 135

scan_erl_exprs/1
io , 204

373STDLIB

scan_erl_exprs/3
io , 204

scan_erl_form/1
io , 205

scan_erl_form/3
io , 205

seconds/1
timer , 347

seconds_to_daystime/1
calendar , 64

seconds_to_time/1
calendar , 64

seed/0
random , 276

seed/3
random , 276

seed0/0
random , 276

select/1
dets , 78
ets , 138

select/2
dets , 78
ets , 136

select/3
dets , 78
ets , 138

select_count/2
ets , 138

select_delete/2
dets , 79
ets , 138

send/2
lib , 212
pg , 245

send_after/2
timer , 345

send_after/3
timer , 345

send_all_state_event/2
gen fsm , 179

send_event/2
gen fsm , 179

send_event_after/2

gen fsm , 181

send_interval/2
timer , 346

send_interval/3
timer , 346

send_op/2
erl internal , 105

sendw/2
lib , 213

seq/2
lists , 219

seq/3
lists , 219

set/2
sofs , 318

set_value/3
win32reg , 351

setopts/2
io , 198

sets
add_element/2, 284
del_element/2, 284
filter/2, 285
fold/3, 285
from_list/1, 283
intersection/1, 284
intersection/2, 284
is_element/2, 283
is_set/1, 283
is_subset/2, 285
new/0, 283
size/1, 283
subtract/2, 284
to_list/1, 283
union/1, 284
union/2, 284

sh_to_awk/1
regexp , 280

shell
history/1, 294
results/1, 294
start_restricted/1, 294
stop_restricted/0, 294

sin/1
math , 229

singleton/1

374 STDLIB

gb sets , 160

sinh/1
math , 229

size/1
gb sets , 160
gb trees , 165
sets , 283

slave
pseudo/1, 298
pseudo/2, 298
relay/1, 298
start/1, 296
start/2, 296
start/3, 296
start_link/1, 297
start_link/2, 297
start_link/3, 297
stop/1, 298

sleep/1
timer , 346

slot/2
dets , 79
ets , 139

smallest/1
gb sets , 160
gb trees , 165

snoc/2
queue , 274

sofs
a_function/2, 303
canonical_relation/1, 303
composite/2, 303
constant_function/2, 303
converse/1, 304
difference/2, 304
digraph_to_family/2, 304
domain/1, 304
drestriction/2, 304
drestriction/3, 305
empty_set/0, 305
extension/3, 305
family/2, 306
family_difference/2, 306
family_domain/1, 306
family_field/1, 306
family_intersection/1, 307
family_intersection/2, 307
family_projection/2, 307
family_range/1, 307

family_specification/2, 308
family_to_digraph/2, 308
family_to_relation/1, 308
family_union/1, 309
family_union/2, 309
field/1, 309
from_external/2, 309
from_sets/1, 309, 310
from_term/2, 310
image/2, 311
intersection/1, 311
intersection/2, 311
intersection_of_family/1, 311
inverse/1, 311
inverse_image/2, 312
is_a_function/1, 312
is_disjoint/2, 312
is_empty_set/1, 312
is_equal/2, 312
is_set/1, 312
is_sofs_set/1, 313
is_subset/2, 313
is_type/1, 313
join/4, 313
multiple_relative_product/2, 313
no_elements/1, 314
partition/1, 314
partition/2, 314
partition/3, 314
partition_family/2, 315
product/1, 315
product/2, 315
projection/2, 316
range/1, 316
relation/2, 316
relation_to_family/1, 316
relative_product/2, 317
relative_product1/2, 317
restriction/2, 317
restriction/3, 318
set/2, 318
specification/2, 318
strict_relation/1, 318
substitution/2, 319
symdiff/2, 319
symmetric_partition/2, 320
to_external/1, 320
to_sets/1, 320
type/1, 320
union/1, 320
union/2, 320
union_of_family/1, 321
weak_relation/1, 321

375STDLIB

sort/1
file sorter , 145
lists , 219

sort/2
file sorter , 145
lists , 219
qlc , 268

sort/3
file sorter , 145

span/2
string , 323

spawn/1
proc lib , 248

spawn/2
proc lib , 248

spawn/3
proc lib , 248

spawn/4
proc lib , 248

spawn_link/1
proc lib , 248

spawn_link/2
proc lib , 248

spawn_link/3
proc lib , 248

spawn_link/4
proc lib , 248

spawn_opt/2
proc lib , 249

spawn_opt/3
proc lib , 249

spawn_opt/4
proc lib , 249

spawn_opt/5
proc lib , 249

specification/2
sofs , 318

split/1
filename , 154

split/2
lists , 220
proplists , 256
queue , 274
regexp , 279

splitwith/2
lists , 227

sqrt/1
math , 229

start/0
gen event , 168
timer , 345

start/1
gen event , 168
pool , 246
slave , 296

start/2
pool , 246
slave , 296

start/3
gen fsm , 179
gen server , 189
proc lib , 249
slave , 296

start/4
gen fsm , 179
gen server , 189
proc lib , 249

start/5
proc lib , 249

start_child/2
supervisor , 331

start_link/0
gen event , 168

start_link/1
gen event , 168
slave , 297

start_link/2
slave , 297
supervisor , 330
supervisor bridge , 335

start_link/3
gen fsm , 178
gen server , 188
proc lib , 249
slave , 297
supervisor , 330
supervisor bridge , 335

start_link/4
gen fsm , 178
gen server , 188
proc lib , 249

376 STDLIB

start_link/5
proc lib , 249

start_restricted/1
shell , 294

start_timer/2
gen fsm , 181

statistics/2
sys , 339

statistics/3
sys , 339

stop/0
pool , 247

stop/1
gen event , 173
slave , 298

stop_restricted/0
shell , 294

store/3
dict , 84

str/2
string , 322

strict_relation/1
sofs , 318

string
centre/2, 325
centre/3, 325
chars/2, 323
chars/3, 323
chr/2, 322
concat/2, 322
copies/2, 324
cspan/2, 323
equal/2, 322
left/2, 325
left/3, 325
len/1, 322
rchr/2, 322
right/2, 325
right/3, 325
rstr/2, 322
span/2, 323
str/2, 322
strip/1, 324
strip/2, 324
strip/3, 324
sub_string/2, 325
sub_string/3, 326
sub_word/2, 324

sub_word/3, 324
substr/2, 323
substr/3, 323
to_float/1, 326
to_integer/1, 326
tokens/2, 323
words/1, 324
words/2, 324

string/1
erl scan , 114

string/2
erl scan , 114

string_to_handle/3
qlc , 268

strip/1
beam lib , 54
string , 324

strip/2
string , 324

strip/3
string , 324

strip_files/1
beam lib , 54

strip_release/1
beam lib , 54

strong_components/1
digraph utils , 97

sub/3
regexp , 279

sub_keys/1
win32reg , 352

sub_string/2
string , 325

sub_string/3
string , 326

sub_word/2
string , 324

sub_word/3
string , 324

subgraph/3
digraph utils , 97

sublist/2
lists , 220

sublist/3

377STDLIB

lists , 220

substitute_aliases/2
proplists , 257

substitute_negations/2
proplists , 257

substitution/2
sofs , 319

substr/2
string , 323

substr/3
string , 323

subtract/2
gb sets , 158
lists , 220
sets , 284

suffix/2
lists , 220

sum/1
lists , 221

supervisor
check_childspecs/1, 333
delete_child/2, 332
Module:init/1, 334
restart_child/2, 332
start_child/2, 331
start_link/2, 330
start_link/3, 330
terminate_child/2, 331
which_children/1, 333

supervisor bridge
Module:init/1, 336
Module:terminate/2, 336
start_link/2, 335
start_link/3, 335

suspend/1
sys , 340

suspend/2
sys , 340

swap_handler/5
gen event , 171

swap_sup_handler/5
gen event , 172

symdiff/2
sofs , 319

symmetric_partition/2

sofs , 320

sync/1
dets , 79

sync_notify/2
gen event , 170

sync_send_all_state_event/2
gen fsm , 180

sync_send_all_state_event/3
gen fsm , 180

sync_send_event/2
gen fsm , 180

sync_send_event/3
gen fsm , 180

sys
change_code/4, 340
change_code/5, 340
debug_options/1, 342
get_debug/3, 342
get_status/1, 340
get_status/2, 340
handle_debug/1, 342
handle_system_msg/6, 342
install/3, 341
install/4, 341
log/2, 339
log/3, 339
log_to_file/2, 339
log_to_file/3, 339
Mod:system_code_change/4, 343
Mod:system_continue/3, 343
Mod:system_terminate/4, 343
no_debug/1, 340
no_debug/2, 340
print_log/1, 343
remove/2, 341
remove/3, 341
resume/1, 340
resume/2, 340
statistics/2, 339
statistics/3, 339
suspend/1, 340
suspend/2, 340
trace/2, 340
trace/3, 340

t/1
erl tar , 120

tab2file/2
ets , 139

378 STDLIB

tab2list/1
ets , 139

table/1
erl tar , 120

table/2
dets , 79
erl tar , 120
ets , 139
qlc , 269

tail/1
queue , 274

take_largest/1
gb sets , 160
gb trees , 165

take_smallest/1
gb sets , 160
gb trees , 165

takewhile/2
lists , 227

tan/1
math , 229

tanh/1
math , 229

tc/3
timer , 347

terminate_child/2
supervisor , 331

test_ms/2
ets , 140

time_difference/2
calendar , 64

time_to_seconds/1
calendar , 64

timer
apply_after/4, 345
apply_interval/4, 346
cancel/1, 346
exit_after/2, 346
exit_after/3, 346
hms/3, 347
hours/1, 347
kill_after/1, 346
kill_after/2, 346
minutes/1, 347
now_diff/2, 347
seconds/1, 347

send_after/2, 345
send_after/3, 345
send_interval/2, 346
send_interval/3, 346
sleep/1, 346
start/0, 345
tc/3, 347

to_dets/2
ets , 141

to_ets/2
dets , 80

to_external/1
sofs , 320

to_float/1
string , 326

to_integer/1
string , 326

to_list/1
dict , 84
gb sets , 161
gb trees , 165
queue , 275
sets , 283

to_sets/1
sofs , 320

tokens/1
erl parse , 109

tokens/2
erl parse , 109
string , 323

tokens/3
erl scan , 114

topsort/1
digraph utils , 97

trace/2
sys , 340

trace/3
sys , 340

transform_from_shell/3
ms transform , 240

translate_initial_call/1
proc lib , 251

traverse/2
dets , 81

tt/1

379STDLIB

erl tar , 120

type/1
sofs , 320

type_test/2
erl internal , 104

ukeymerge/3
lists , 221

ukeysort/2
lists , 221

umerge/1
lists , 221

umerge/2
lists , 221

umerge/3
lists , 221

umerge3/3
lists , 222

unfold/1
proplists , 257

uniform/0
random , 276

uniform/1
random , 276

uniform_s/1
random , 277

uniform_s/2
random , 277

union/1
gb sets , 161
sets , 284
sofs , 320

union/2
gb sets , 161
sets , 284
sofs , 320

union_of_family/1
sofs , 321

universal_time/0
calendar , 64

universal_time_to_local_time/2
calendar , 65

unzip/1
lists , 222

unzip3/1
lists , 222

update/3
dict , 85
gb trees , 165

update/4
dict , 85

update_counter/3
dets , 81
dict , 85
ets , 141

update_counter/4
ets , 141

update_counter/6
ets , 141

usort/1
lists , 222

usort/2
lists , 222

valid_date/1
calendar , 65

valid_date/3
calendar , 65

value/2
win32reg , 352

values/1
gb trees , 166
win32reg , 352

version/1
beam lib , 52

vertex/2
digraph , 93

vertices/1
digraph , 93

weak_relation/1
sofs , 321

which_children/1
supervisor , 333

which_handlers/1
gen event , 172

wildcard/1
filelib , 148

380 STDLIB

wildcard/2
filelib , 149

win32reg
change_key/2, 350
change_key_create/2, 350
close/1, 350
current_key/1, 350
delete_key/1, 350
delete_value/2, 351
expand/1, 351
format_error/1, 351
open/1, 351
set_value/3, 351
sub_keys/1, 352
value/2, 352
values/1, 352

words/1
string , 324

words/2
string , 324

write/1
io lib , 208

write/2
io , 198
io lib , 208

write_atom/1
io lib , 210

write_char/1
io lib , 210

write_string/1
io lib , 210

xm/1
c , 60

zip/2
lists , 223

zip3/3
lists , 223

zipwith/3
lists , 223

zipwith3/4
lists , 223

381STDLIB

382 STDLIB

