
Secure Socket Layer

version 3.0

The Erlang/OTP SSL application includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/). Copyright (c) 1998-2002 The OpenSSL Project. All
rights reserved.
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com). Copyright (C) 1995-1998 Eric Young
(eay@cryptsoft.com). All rights reserved.
For further OpenSSL and SSLeay license information se the chapter Licenses.

http://www.erlang.org

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 SSL User's Guide 1

1.1 SSL Connections . 1

1.2 Certificates . 2

1.3 Encryption Algorithms . 2

1.3.1 Symmetric Key Algorithms . 2

1.3.2 Public Key Algorithms . 2

1.3.3 Digital Signature Algorithms . 3

1.3.4 Message Digests Algorithms . 3

1.4 SSL Handshake . 3

1.5 Authentication . 4

1.5.1 Trusted Certificates . 4

2 Using the SSL application 7

2.1 The ssl Module . 7

2.2 A Client-Server Example . 8

3 PKIX Certificates 11

3.1 Introduction to Certificates . 11

3.2 PKIX Certificates . 11

3.2.1 Certificate and TBSCertificate . 11

3.2.2 TBSCertificate issuer and subject . 12

3.2.3 TBSCertificate extensions . 13

4 Creating Certificates 15

4.1 The openssl Command . 15

4.1.1 The openssl configuration file . 16

4.1.2 Creating the Erlang root CA . 16

4.1.3 Creating the OTP CA . 16

4.2 An Example . 17

iiiSSL Application

5 Using SSL for Erlang Distribution 25

5.1 Introduction . 25

5.2 Building boot scripts including the SSL application . 26

5.3 Specifying distribution module for net kernel . 27

5.4 Specifying security options and other SSL options . 27

5.5 Setting up environment to always use SSL . 28

6 Licenses 29

6.1 OpenSSL License . 29

6.2 SSLeay License . 30

7 SSL Reference Manual 33

7.1 ssl . 35

7.2 ssl . 37

7.3 ssl pkix . 45

List of Tables 47

Bibliography 49

Index of Modules and Functions 51

iv SSL Application

Chapter 1

SSL User's Guide

Here we provide a short introduction to the SSL protocol. We only consider those part of the protocol
that are important from a programming point of view.

For a very good general introduction to SSL and TLS see the book SSL and TLS [1].

Outline:

� Two types of connections - connection: handshake, data transfer, and shutdown - SSL/TLS
protocol - server must have certificate - what the the server sends to the client - client may verify
the server - server may ask client for certificate - what the client sends to the server - server may
then verify the client - verification - certificate chains - root certificates - public keys - key
agreement - purpose of certificate - references

1.1 SSL Connections

The SSL protocol is implemented on top of the TCP/IP protocol. From an endpoint view it also has the
same type of connections as that protocol, almost always created by calls to socket interface functions
listen, accept and connect. The endpoints are servers and clients.

A server listens for connections on a specific address and port. This is done once. The server then accepts
each connections on that same address and port. This is typically done indefinitely many times.

A client connects to a server on a specific address and port. For each purpose this is done once.

For a plain TCP/IP connection the establishment of a connection (through an accept or a connect) is
followed by data transfer between the client and server, finally ended by a connection close.

An SSL connection also consists of data transfer and connection close, However, the data transfer
contains encrypted data, and in order to establish the encryption parameters, the data transfer is
preceeded by an SSL handshake. In this handshake the server plays a dominant role, and the main
instrument used in achieving a valid SSL connection is the server's certificate. We consider certificates in
the next section, and the SSL handshake in a subsequent section.

1SSL Application

Chapter 1: SSL User's Guide

1.2 Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the
subject. First of all the certificate identifies the subject in terms of the name of the subject, its postal
address, country name, company name (if applicable), etc.

Although a driver's license is always issued by a well-known and distinct authority, a certificate may
have an issuer that is not so well-known. Therefore a certificate also always contains information on the
issuer of the certificate. That information is of the same type as the information on the subject. The
issuer of a certificate also signs the certificate with a digital signature (the signature is an inherent part of
the certificate), which allow others to verify that the issuer really is the issuer of the certificate.

Now that a certificate can be checked by verifying the signature of the issuer, the question is how to
trust the issuer. The answer to this question is to require that there is a certificate for the issuer as well.
That issuer has in turn an issuer, which must also have a certificate, and so on. This certificate chain has
to have en end, which then must be a certificate that is trusted by other means. We shall cover this
problem of authentication in a subsequent section.

1.3 Encryption Algorithms

An encryption algorithm is a mathematical algorithm for encryption and decryption of messages (arrays
of bytes, say). The algorithm as such is always required to be publicly known, otherwise its strength
cannot be evaluated, and hence it cannot be used reliably. The secrecy of an encrypted message is not
achieved by the secrecy of the algorithm used, but by the secrecy of the keys used as input to the
encryption and decryption algorithms. For an account of cryptography in general see Applied
Cryptography [2].

There are two classes of encryption algorithms: symmetric key algorithms and public key algorithms.
Both types of algorithms are used in the SSL protocol.

In the sequel we assume holders of keys keep them secret (except public keys) and that they in that
sense are trusted. How a holder of a secret key is proved to be the one it claims to be is a question of
authentication, which, in the context of the SSL protocol, is described in a section further below.

1.3.1 Symmetric Key Algorithms

A symmetric key algorithm has one key only. The key is used for both encryption and decryption.
Obviously the key of a symmetric key algorithm must always be kept secret by the users of the key.
DES is an example of a symmetric key algorithm.

Symmetric key algorithms are fast compared to public key algorithms. They are therefore typically used
for encrypting bulk data.

1.3.2 Public Key Algorithms

A public key algorithm has two keys. Any of the two keys can be used for encryption. A message
encrypted with one of the keys, can only be decrypted with the other key. One of the keys is public
(known to the world), while the other key is private (i.e. kept secret) by the owner of the two keys.

RSA is an example of a public key algorithm.

Public key algorithms are slow compared to symmetric key algorithms, and they are therefore seldom
used for bulk data encryption. They are therefore only used in cases where the fact that one key is
public and the other is private, provides features that cannot be provided by symmetric algorithms.

2 SSL Application

1.4: SSL Handshake

1.3.3 Digital Signature Algorithms

An interesting feature of a public key algorithm is that its public and private keys can both be used for
encryption. Anyone can use the public key to encrypt a message, and send that message to the owner of
the private key, and be sure of that only the holder of the private key can decrypt the message.

On the other hand, the owner of the private key can encrypt a message with the private key, thus
obtaining an encrypted message that can decrypted by anyone having the public key.

The last approach can be used as a digital signature algorithm. The holder of the private key signs an
array of bytes by performing a specified well-known message digest algorithm to compute a hash of the
array, encrypts the hash value with its private key, an then presents the original array, the name of the
digest algorithm, and the encryption of the hash value as a signed array of bytes.

Now anyone having the public key, can decrypt the encrypted hash value with that key, compute the
hash with the specified digest algorithm, and check that the hash values compare equal in order to
verify that the original array was indeed signed by the holder of the private key.

What we have accounted for so far is by no means all that can be said about digital signatures (see
Applied Cryptography [2]for further details).

1.3.4 Message Digests Algorithms

A message digest algorithm is a hash function that accepts an array bytes of arbitrary but finite length of
input, and outputs an array of bytes of fixed length. Such an algorithm is also required to be very hard
to invert.

MD5 (16 bytes output) and SHA1 (20 bytes output) are examples of message digest algorithms.

1.4 SSL Handshake

The main purpose of the handshake performed before an an SSL connection is established is to
negotiate the encryption algorithm and key to be used for the bulk data transfer between the client and
the server. We are writing the key, since the algorithm to choose for bulk encryption one of the
symmetric algorithms.

There is thus only one key to agree upon, and obviously that key has to be kept secret between the
client and the server. To obtain that the handshake has to be encrypted as well.

The SSL protocol requires that the server always sends its certificate to the client in the beginning of
the handshake. The client then retrieves the server's public key from the certificate, which means that
the client can use the server's public key to encrypt messages to the server, and the server can decrypt
those messages with its private key. Similarly, the server can encrypt messages to the client with its
private key, and the client can decrypt messages with the server's public key. It is thus is with the
server's public and private keys that messages in the handshake are encrypted and decrypted, and hence
the key agreed upon for symmetric encryption of bulk data can be kept secret (there are more things to
consider to really keep it secret, see SSL and TLS [1]).

The above indicates that the server does not care who is connecting, and that only the client has the
possibility to properly identify the server based on the server's certificate. That is indeed true in the
minimal use of the protocol, but it is possible to instruct the server to request the certificate of the
client, in order to have a means to identify the client, but it is by no means required to establish an SSL
connection.

If a server request the client certificate, it verifies, as a part of the protocol, that the client really holds
the private key of the certificate by sending the client a string of bytes to encrypt with its private key,
which the server then decrypts with the client's public key, the result of which is compared with the

3SSL Application

Chapter 1: SSL User's Guide

original string of bytes (a similar procedure is always performed by the client when it has received the
server's certificate).

The way clients and servers authenticate each other, i.e. proves that their respective peers are what they
claim to be, is the topic of the next section.

1.5 Authentication

As we have already seen the reception of a certificate from a peer is not enough to prove that the peer is
authentic. More certificates are needed, and we have to consider how certificates are issued and on
what grounds.

Certificates are issued by certification authorities (CAs) only. They issue certificates both for other CAs
and ordinary users (which are not CAs).

Certain CAs are top CAs, i.e. they do not have a certificate issued by another CA. Instead they issue
their own certificate, where the subject and issuer part of the certificate are identical (such a certificate
is called a self-signed certificate). A top CA has to be well-known, and has to have a publicly available
policy telling on what grounds it issues certificates.

There are a handful of top CAs in the world. You can examine the certificates of several of them by
clicking through the menus of your web browser.

A top CA typically issues certificates for other CAs, called intermediate CAs, but possibly also to
ordinary users. Thus the certificates derivable from a top CA constitute a tree, where the leaves of the
tree are ordinary user certificates.

A certificate chain is an ordered sequence of certificates, C1, C2, ..., Cn, say, where C1 is a top CA
certificate, and where Cn is an ordinary user certificate, and where the holder of C1 is the issuer of C2,
the holder of C2 is the issuer of C3, ..., and the holder of Cn-1 is the issuer of Cn, the ordinary user
certificate. The holders of C2, C3, ..., Cn-1 are then intermediate CAs.

Now to verify that a certificate chain is unbroken we have to take the public key from each certificate
Ck, and apply that key to decrypt the signature of certificate Ck-1, thus obtaining the message digest
computed by the holder of the Ck certificate, compute the real message digest of the Ck-1 certificate
and compare the results. If they compare equal the link of the chain between Ck and Ck-1 is considered
to unbroken. This is done for each link k = 1, 2, ..., n-1. If all links are found to be unbroken, the user
certificate Cn is considered authenticated.

1.5.1 Trusted Certificates

Now that there is a way to authenticate a certificate by checking that all links of a certificate chain are
unbroken, the question is how you can be sure to trust the certificates in the chain, and in particular the
top CA certificate of the chain.

To provide an answer to that question consider the perspective of a client, which have just received the
certificate of the server. In order to authenticate the server the client has to construct a certificate chain
and to prove that the chain is unbroken. The client has to have a set of CA certificates (top CA or
intermediate CA certificates) not obtained from the server, but obtained by other means. Those
certificates are kept locally by the client, and are trusted by the client.

More specifically, the client does not really have to have top CA certificates in its local storage. In order
to authenticate a server it is sufficient for the client to posses the trusted certificate of the issuer of the
server certificate.

Now that is not the whole story. A server can send an (incomplete) certificate chain to its client, and
then the task of the client is to construct a certificate chain that begins with a trusted certificate and

4 SSL Application

1.5: Authentication

ends with the server's certificate. (A client can also send a chain to its server, provided the server
requested the client's certificate.)

All this means that an unbroken certificate chain begins with a trusted certificate (top CA or not), and
ends with the peer certificate. That is the end of the chain is obtained from the peer, but the beginning
of the chain is obtained from local storage, which is considered trusted.

5SSL Application

Chapter 1: SSL User's Guide

6 SSL Application

Chapter 2

Using the SSL application

Here we provide an introduction to using the Erlang/OTP SSL application, which is accessed through
the ssl interface module.

We also present example code in the Erlang module client server, also provided in the directory
ssl-X.Y.Z/examples, with source code in src and the compiled module in ebin of that directory.

2.1 The ssl Module

The ssl module provides the user interface to the Erlang/OTP SSL application. The interface functions
provided are very similar to those provided by the gen tcp and inet modules.

Servers use the interface functions listen and accept. The listen function specifies a TCP port to to
listen to, and each call to the accept function establishes an incoming connection.

Clients use the connect function which specifies the address and port of a server to connect to, and a
successful call establishes such a connection.

The listen and connect functions have almost all the options that the corresponding functions in
gen tcp/ have, but there are also additional options specific to the SSL protocol.

The most important SSL specific option is the cacertfile option which specifies a local file containing
trusted CA certificates which are and used for peer authentication. This option is used by clients and
servers in case they want to authenticate their peers.

The certfile option specifies a local path to a file containing the certificate of the holder of the
connection endpoint. In case of a server endpoint this option is mandatory since the contents of the
sever certificate is needed in the the handshake preceeding the establishment of a connection.

Similarly, the keyfile option points to a local file containing the private key of the holder of the
endpoint. If the certfile option is present, this option has to be specified as well, unless the private
key is provided in the same file as specified by the certfile option (a certificate and a private key can
thus coexist in the same file).

The verify option specifies how the peer should be verified:

0 Do not verify the peer,

1 Verify peer,

2 Verify peer, fail the verification if the peer has no certificate.

7SSL Application

Chapter 2: Using the SSL application

The depth option specifies the maximum length of the verification certificate chain. Depth = 0 means
the peer certificate, depth = 1 the CA certificate, depth = 2 the next CA certificate etc. If the
verification process does not find a trusted CA certificate within the maximum length, the verification
fails.

The ciphers option specifies which ciphers to use (a string of colon separated cipher names). To obtain
a list of available ciphers, evaluate the ssl:ciphers/0 function (the SSL application has to be running).

2.2 A Client-Server Example

Here is a simple client server example.

%%% Purpose: Example of SSL client and server using example certificates.

-module(client_server).

-export([start/0, start/1, init_connect/1]).

start() ->
start([ssl, subject]).

start(CertOpts) ->
%% Start ssl application
application:start(ssl),

%% Always seed
ssl:seed("ellynatefttidppohjeh"),

%% Let the current process be the server that listens and accepts
%% Listen
{ok, LSock} = ssl:listen(0, mk_opts(listen)),
{ok, LPort} = ssl:port(LSock),
io:fwrite("Listen: port = ~w.~n", [LPort]),

%% Spawn the client process that connects to the server
spawn(?MODULE, init_connect, [{LPort, CertOpts}]),

%% Accept
{ok, ASock} = ssl:accept(LSock),
io:fwrite("Accept: accepted.~n"),
{ok, Cert} = ssl:peercert(ASock, CertOpts),
io:fwrite("Accept: peer cert:~n~p~n", [Cert]),
io:fwrite("Accept: sending \"hello\".~n"),
ssl:send(ASock, "hello"),
{error, closed} = ssl:recv(ASock, 0),
io:fwrite("Accept: detected closed.~n"),
ssl:close(ASock),
io:fwrite("Listen: closing and terminating.~n"),
ssl:close(LSock),
application:stop(ssl).

8 SSL Application

2.2: A Client-Server Example

%% Client connect
init_connect({LPort, CertOpts}) ->

{ok, Host} = inet:gethostname(),
{ok, CSock} = ssl:connect(Host, LPort, mk_opts(connect)),
io:fwrite("Connect: connected.~n"),
{ok, Cert} = ssl:peercert(CSock, CertOpts),
io:fwrite("Connect: peer cert:~n~p~n", [Cert]),
{ok, Data} = ssl:recv(CSock, 0),
io:fwrite("Connect: got data: ~p~n", [Data]),
io:fwrite("Connect: closing and terminating.~n"),
ssl:close(CSock).

mk_opts(listen) ->
mk_opts("server");

mk_opts(connect) ->
mk_opts("client");

mk_opts(Role) ->
Dir = filename:join([code:lib_dir(ssl), "examples", "certs", "etc"]),
[{active, false},
{verify, 2},
{depth, 2},
{cacertfile, filename:join([Dir, Role, "cacerts.pem"])},
{certfile, filename:join([Dir, Role, "cert.pem"])},
{keyfile, filename:join([Dir, Role, "key.pem"])}].

9SSL Application

Chapter 2: Using the SSL application

10 SSL Application

Chapter 3

PKIX Certificates

3.1 Introduction to Certificates

Certificates were originally defined by ITU (CCITT) and the latest definitions are described in ITU-T
X.509 [3], but those definitions are (as always) not working.

Working certificate definitions for the Internet Community are found in the the PKIX RFCs RFC 3279
[4]and RFC 3280 [5]. The parsing of certificates in the Erlang/OTP SSL application is based on those
RFCS.

Certificates are defined in terms of ASN.1 (ITU-T X.680 [6]). For an introduction to ASN.1 see ASN.1
Information Site1.

3.2 PKIX Certificates

Here we base the PKIX certificate definitions in RFCs RFC 3279 [4]and RFC 3280 [5]. We however
present the definitions according to SSL-PKIX.asn1 module, which is an amelioration of the
PKIX1Explicit88.asn1, PKIX1Implicit88.asn1, and PKIX1Algorithms88.asn1 modules. You find all
these modules in the pkix subdirectory of SSL.

The Erlang terms that are returned by the functions ssl:peercert/1/2, ssl pkix:decode cert/1/2,
and ssl pkix:decode cert file/1/2 when the option ssl is used in those functions, correspond the
ASN.1 structures described in the sequel.

3.2.1 Certificate and TBSCertificate

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm SignatureAlgorithm,
signature BIT STRING }

TBSCertificate ::= SEQUENCE {
version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature SignatureAlgorithm,
issuer Name,

1URL: http://asn1.elibel.tm.fr/

11SSL Application

Chapter 3: PKIX Certificates

validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3
extensions [3] Extensions OPTIONAL

-- If present, version MUST be v3 -- }

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {
notBefore Time,
notAfter Time }

Time ::= CHOICE {
utcTime UTCTime,
generalTime GeneralizedTime }

The meaning of the fields version, serialNumber, and validity are quite obvious given the type
definitions above, so we do not go further into their details.

The signatureAlgorithm field of Certificate and the signature field of TBSCertificate contain
the name and parameters of the algorithm used for signing the certificate. The values of these two fields
must be equal.

The signature field of Certificate contains the value of the signature that the issuer computed by
using the prescribed algorithm.

The issuer<c> and <c>subject fields can contain many different types av data, and is therefore
considered in a separate section. The same holds for the extensions field. The issuerUniqueID and
the subjectUniqueID fields are not considered further.

3.2.2 TBSCertificate issuer and subject

Name ::= CHOICE { -- only one possibility for now --
rdnSequence RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::=
SET SIZE (1 .. MAX) OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
type ATTRIBUTE-TYPE-AND-VALUE-CLASS.&id

({SupportedAttributeTypeAndValues}),
value ATTRIBUTE-TYPE-AND-VALUE-CLASS.&Type

({SupportedAttributeTypeAndValues}{@type}) }

12 SSL Application

3.2: PKIX Certificates

SupportedAttributeTypeAndValues ATTRIBUTE-TYPE-AND-VALUE-CLASS ::=
{ name | surname | givenName | initials | generationQualifier |
commonName | localityName | stateOrProvinceName | organizationName |
organizationalUnitName | title | dnQualifier | countryName |
serialNumber | pseudonym | domainComponent | emailAddress }

3.2.3 TBSCertificate extensions

The extensions field of a TBScertificate is a sequence of type Extension, defined as follows,

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue ANY }

Each extension has a unique object identifier. An extension with a critical value set to TRUE must be
recognised by the reader of a certificate, or else the certificate must be rejected.

Extensions are divided into two groups: standard extensions and internet certificate extensions. All
extensions listed in the table that follows are standard extensions, except for authorityInfoAccess and
subjectInfoAccess, which are internet extensions.

Depending on the object identifier the extnValue is parsed into an appropriate welldefined structure.

The following table shows the purpose of each extension, but does not specify the structure. To see the
structure consult the PKIX1Implicit88.asn1 module.

authorityKeyIdentifier Used by to identify a certificate signed that has multiple signing keys.

subjectKeyIdentifier Used to identify certificates that contain a public key. Must appear i CA
certificates.

keyUsage Defines the purpose of the certificate. Can be one or sev-
eral of digitalSignature, nonRepudiation, keyEncipherment,
dataEncipherment, keyAgreement, keyCertSign, cRLSign,
encipherOnly, decipherOnly.

privateKeyUsagePeriod Allows certificate issuer to provide a private key usage period to be short
than the certificate usage period.

certificatePolicies Contains one or more policy information terms indicating the policies under
which the certificate has been issued.

policyMappings Used i CA certificates.

subjectAltName Allows additional identities to be bound the the subject.

issuerAltName Allows additional identities to be bound the the issuer.

subjectDirectoryAttributes Conveys identity attributes of the subject.

basicConstraints Tells if the certificate holder is a CA or not.

nameConstraints Used in CA certificates.

continued ...

13SSL Application

Chapter 3: PKIX Certificates

... continued

policyConstraints Used in CA certificates.

extKeyUsage Indicates for which purposed the public key may be used.

cRLDistributionPoints Indicates how CRL (Certificate Revokation List) information is obtained.

inhibitAnyPolicy Used i CA certificates.

freshestCRL For CRLs.

authorityInfoAccess How to access CA information of the isssuer of the certificate.

subjectInfoAccess How to access CA information of the subject of the certificate.

Table 3.1: PKIX Extensions

14 SSL Application

Chapter 4

Creating Certificates

Here we consider the creation of example certificates.

4.1 The openssl Command

The openssl command is a utility that comes with the OpenSSL distribution. It provides a variety of
subcommands. Each subcommand is invoked as

openssl subcmd <options and arguments>

where subcmd denotes the subcommand in question.

We shall use the following subcommands to create certificates for the purpose of testing Erlang/OTP
SSL:

� req to create certificate requests and a self-signed certificates,

� ca to create certificates from certificate requests.

We create the following certificates:

� the erlangCA root certificate (a self-signed certificate),

� the otpCA certificate signed by the erlangCA,

� a client certificate signed by the otpCA, and

� a server certificate signed by the otpCA.

15SSL Application

Chapter 4: Creating Certificates

4.1.1 The openssl configuration file

An openssl configuration file consist of a number of sections, where each section starts with one line
containing [section name], where section name is the name of the section. The first section of the
file is either unnamed, or is named [default]. For further details see the OpenSSL config(5) manual
page.

The required sections for the subcommands we are going to use are as follows:

subcommand required/default section override command line option configuration file option

req [req] - -config FILE

ca [ca] -name section -config FILE

Table 4.1: openssl subcommands to use

4.1.2 Creating the Erlang root CA

The Erlang root CA is created with the command

openssl req -new -x509 -config /some/path/req.cnf \n -keyout /some/path/key.pem -out /som

where the option -new indicates that we want to create a new certificate request and the option -x509
implies that a self-signed certificate is created.

4.1.3 Creating the OTP CA

The OTP CA is created by first creating a certificate request with the command

openssl req -new -config /some/path/req.cnf \n -keyout /some/path/key.pem -out /some/path/r

and the ask the Erlang CA to sign it:

openssl ca -batch -notext -config /some/path/req.cnf \n -extensions ca_cert -in /some/path/re

where the option -extensions refers to a section in the configuration file saying that it should create a
CA certificate, and not a plain user certificate.

The client and server certificates are created similarly, except that the option -extensions then has
the value user cert.

16 SSL Application

4.2: An Example

4.2 An Example

The following module create certs is used by the Erlang/OTP SSL application for generating
certificates to be used in tests. The source code is also found in ssl-X.Y.Z/examples/certs/src.

The purpose of the create certs:all/1 function is to make it possible to provide from the erl
command line, the full path name of the openssl command.

Note that the module creates temporary OpenSSL configuration files for the req and ca subcommands.

%% The purpose of this module is to create example certificates for
%% testing.
%% Run it as:
%%
%% erl -noinput -run make_certs all "/path/to/openssl" -s erlang halt
%%

-module(make_certs).
-export([all/0, all/1]).

-record(dn, {commonName,
organizationalUnitName = "Erlang OTP",
organizationName = "Ericsson AB",
localityName = "Stockholm",
countryName = "SE",
emailAddress = "peter@erix.ericsson.se"}).

all() ->
all(["openssl"]).

all([OpenSSLCmd]) ->
Root = filename:dirname(filename:dirname((code:which(?MODULE)))),
%% io:fwrite("Root : ~s~n", [Root]),
NRoot = filename:join([Root, "etc"]),
file:make_dir(NRoot),
create_rnd(Root, "etc"), % For all requests
rootCA(NRoot, OpenSSLCmd, "erlangCA"),
intermediateCA(NRoot, OpenSSLCmd, "otpCA", "erlangCA"),
endusers(NRoot, OpenSSLCmd, "otpCA", ["client", "server"]),
collect_certs(NRoot, ["erlangCA", "otpCA"], ["client", "server"]),
remove_rnd(Root, "etc").

rootCA(Root, OpenSSLCmd, Name) ->
create_ca_dir(Root, Name, ca_cnf(Name)),
DN = #dn{commonName = Name},
create_self_signed_cert(Root, OpenSSLCmd, Name, req_cnf(DN)),
ok.

intermediateCA(Root, OpenSSLCmd, CA, ParentCA) ->
CA = "otpCA",
create_ca_dir(Root, CA, ca_cnf(CA)),
CARoot = filename:join([Root, CA]),
DN = #dn{commonName = CA},
CnfFile = filename:join([CARoot, "req.cnf"]),

17SSL Application

Chapter 4: Creating Certificates

file:write_file(CnfFile, req_cnf(DN)),
KeyFile = filename:join([CARoot, "private", "key.pem"]),
ReqFile = filename:join([CARoot, "req.pem"]),
create_req(Root, OpenSSLCmd, CnfFile, KeyFile, ReqFile),
CertFile = filename:join([CARoot, "cert.pem"]),
sign_req(Root, OpenSSLCmd, ParentCA, "ca_cert", ReqFile, CertFile).

endusers(Root, OpenSSLCmd, CA, Users) ->
lists:foreach(fun(User) -> enduser(Root, OpenSSLCmd, CA, User) end, Users).

enduser(Root, OpenSSLCmd, CA, User) ->
UsrRoot = filename:join([Root, User]),
file:make_dir(UsrRoot),
CnfFile = filename:join([UsrRoot, "req.cnf"]),
DN = #dn{commonName = User},
file:write_file(CnfFile, req_cnf(DN)),
KeyFile = filename:join([UsrRoot, "key.pem"]),
ReqFile = filename:join([UsrRoot, "req.pem"]),
create_req(Root, OpenSSLCmd, CnfFile, KeyFile, ReqFile),
CertFile = filename:join([UsrRoot, "cert.pem"]),
sign_req(Root, OpenSSLCmd, CA, "user_cert", ReqFile, CertFile).

collect_certs(Root, CAs, Users) ->
Bins = lists:foldr(

fun(CA, Acc) ->
File = filename:join([Root, CA, "cert.pem"]),
{ok, Bin} = file:read_file(File),
[Bin, "

" | Acc]
end, [], CAs),

lists:foreach(
fun(User) ->

File = filename:join([Root, User, "cacerts.pem"]),
file:write_file(File, Bins)

end, Users).

create_self_signed_cert(Root, OpenSSLCmd, CAName, Cnf) ->
CARoot = filename:join([Root, CAName]),
CnfFile = filename:join([CARoot, "req.cnf"]),
file:write_file(CnfFile, Cnf),
KeyFile = filename:join([CARoot, "private", "key.pem"]),
CertFile = filename:join([CARoot, "cert.pem"]),
Cmd = [OpenSSLCmd, " req"

" -new"
" -x509"
" -config ", CnfFile,
" -keyout ", KeyFile,
" -out ", CertFile],

Env = [{"ROOTDIR", Root}],
cmd(Cmd, Env).

create_ca_dir(Root, CAName, Cnf) ->
CARoot = filename:join([Root, CAName]),

18 SSL Application

4.2: An Example

file:make_dir(CARoot),
create_dirs(CARoot, ["certs", "crl", "newcerts", "private"]),
create_rnd(Root, filename:join([CAName, "private"])),
create_files(CARoot, [{"serial", "01

"},
{"index.txt", ""},
{"ca.cnf", Cnf}]).

create_req(Root, OpenSSLCmd, CnfFile, KeyFile, ReqFile) ->
Cmd = [OpenSSLCmd, " req"

" -new"
" -config ", CnfFile,
" -keyout ", KeyFile,
" -out ", ReqFile],

Env = [{"ROOTDIR", Root}],
cmd(Cmd, Env).

sign_req(Root, OpenSSLCmd, CA, CertType, ReqFile, CertFile) ->
CACnfFile = filename:join([Root, CA, "ca.cnf"]),
Cmd = [OpenSSLCmd, " ca"

" -batch"
" -notext"
" -config ", CACnfFile,
" -extensions ", CertType,
" -in ", ReqFile,
" -out ", CertFile],

Env = [{"ROOTDIR", Root}],
cmd(Cmd, Env).

%%
%% Misc
%%

create_dirs(Root, Dirs) ->
lists:foreach(fun(Dir) ->

file:make_dir(filename:join([Root, Dir])) end,
Dirs).

create_files(Root, NameContents) ->
lists:foreach(
fun({Name, Contents}) ->

file:write_file(filename:join([Root, Name]), Contents) end,
NameContents).

create_rnd(Root, Dir) ->
From = filename:join([Root, "rnd", "RAND"]),
To = filename:join([Root, Dir, "RAND"]),
file:copy(From, To).

remove_rnd(Root, Dir) ->
File = filename:join([Root, Dir, "RAND"]),
file:delete(File).

19SSL Application

Chapter 4: Creating Certificates

cmd(Cmd, Env) ->
FCmd = lists:flatten(Cmd),
Port = open_port({spawn, FCmd}, [stream, eof, exit_status,

{env, Env}]),
eval_cmd(Port).

eval_cmd(Port) ->
receive

{Port, {data, _}} ->
eval_cmd(Port);

{Port, eof} ->
ok

end,
receive

{Port, {exit_status, Status}} when Status /= 0 ->
%% io:fwrite("exit status: ~w~n", [Status]),
erlang:halt(Status)

after 0 ->
ok

end.

%%
%% Contents of configuration files
%%

req_cnf(DN) ->
["# Purpose: Configuration for requests (end users and CAs)."
"

"
"ROOTDIR = $ENV::ROOTDIR

"
"

"

"[req]
"

"input_password = secret
"

"output_password = secret
"

"default_bits = 1024
"

"RANDFILE = $ROOTDIR/RAND
"

"encrypt_key = no
"

"default_md = sha1
"

"#string_mask = pkix
"

"x509_extensions = ca_ext
"

"prompt = no

20 SSL Application

4.2: An Example

"
"distinguished_name= name

"
"

"

"[name]
"

"commonName = ", DN#dn.commonName, "
"

"organizationalUnitName = ", DN#dn.organizationalUnitName, "
"

"organizationName = ", DN#dn.organizationName, "
"

"localityName = ", DN#dn.localityName, "
"

"countryName = ", DN#dn.countryName, "
"

"emailAddress = ", DN#dn.emailAddress, "
"

"
"

"[ca_ext]
"

"basicConstraints = critical, CA:true
"

"keyUsage = cRLSign, keyCertSign
"

"subjectKeyIdentifier = hash
"

"subjectAltName = email:copy
"].

ca_cnf(CA) ->
["# Purpose: Configuration for CAs.

"
"

"
"ROOTDIR = $ENV::ROOTDIR

"
"default_ca = ca

"
"

"

"[ca]
"

"dir = $ROOTDIR/", CA, "
"

"certs = $dir/certs
"

21SSL Application

Chapter 4: Creating Certificates

"crl_dir = $dir/crl
"

"database = $dir/index.txt
"

"new_certs_dir = $dir/newcerts
"

"certificate = $dir/cert.pem
"

"serial = $dir/serial
"

"crl = $dir/crl.pem
"

"private_key = $dir/private/key.pem
"

"RANDFILE = $dir/private/RAND
"

"
"

"x509_extensions = user_cert
"

"default_days = 3600
"

"default_md = sha1
"

"preserve = no
"

"policy = policy_match
"

"
"

"[policy_match]
"

"commonName = supplied
"

"organizationalUnitName = optional
"

"organizationName = match
"

"countryName = match
"

"localityName = match
"

"emailAddress = supplied
"

"
"

"[user_cert]
"

"basicConstraints = CA:false
"

"keyUsage = nonRepudiation, digitalSignature, keyEncipherment

22 SSL Application

4.2: An Example

"
"subjectKeyIdentifier = hash

"
"authorityKeyIdentifier = keyid,issuer:always

"
"subjectAltName = email:copy

"
"issuerAltName = issuer:copy

"
"

"

"[ca_cert]
"

"basicConstraints = critical,CA:true
"

"keyUsage = cRLSign, keyCertSign
"

"subjectKeyIdentifier = hash
"

"authorityKeyIdentifier = keyid:always,issuer:always
"

"subjectAltName = email:copy
"

"issuerAltName = issuer:copy
"].

23SSL Application

Chapter 4: Creating Certificates

24 SSL Application

Chapter 5

Using SSL for Erlang Distribution

This chapter describes how the Erlang distribution can use SSL to get additional verification and
security.

5.1 Introduction

The Erlang distribution can in theory use almost any connection based protocol as bearer. A module
that implements the protocol specific parts of connection setup is however needed. The default
distribution module is inet tcp dist which is included in the Kernel application. When starting an
Erlang node distributed, net kernel uses this module to setup listen ports and connections.

In the SSL application there is an additional distribution module, inet ssl dist which can be used as
an alternative. All distribution connections will be using SSL and all participating Erlang nodes in a
distributed system must use this distribution module.

The security depends on how the connections are set up, one can use key files or certificates to just get a
crypted connection. One can also make the SSL package verify the certificates of other nodes to get
additional security. Cookies are however always used as they can be used to differentiate between two
different Erlang networks.

Setting up Erlang distribution over SSL involves some simple but necessary steps:

� Building boot scripts including the SSL application

� Specifying the distribution module for net kernel

� Specifying security options and other SSL options

The rest of this chapter describes the above mentioned steps in more detail.

25SSL Application

Chapter 5: Using SSL for Erlang Distribution

5.2 Building boot scripts including the SSL application

Boot scripts are built using the systools utility in the SASL application. Refer to the SASL
documentations for more information on systools. This is only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is
located in the Erlang distributions bin directory. The source for the script can be found under the
Erlang installation top directory under releases/<OTP version>start clean.rel. Copy that script
to another location (and preferably another name) and add the SSL application with its current version
number after the STDLIB application.

An example .rel file with SSL added may look like this:

{release, {"OTP APN 181 01","P7A"}, {erts, "5.0"},
[{kernel,"2.5"},
{stdlib,"1.8.1"},
{ssl,"2.2.1"}]}.

Note that the version numbers surely will differ in your system. Whenever one of the applications
included in the script is upgraded, the script has to be changed.

Assuming the above .rel file is stored in a file start ssl.rel in the current directory, a boot script can
be built like this:

1> systools:make_script("start_ssl",[]).

There will now be a file start ssl.boot in the current directory. To test the boot script, start Erlang
with the -boot command line parameter specifying this boot script (with its full path but without the
.boot suffix), in Unix it could look like this:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> whereis(ssl_server).
<0.32.0>

The whereis function call verifies that the SSL application is really started.

As an alternative to building a bootscript, one can explicitly add the path to the ssl ebin directory on
the command line. This is done with the command line option -pa. This works as the ssl application
really need not be started for the distribution to come up, a primitive version of the ssl server is started
by the distribution module itself, so as long as the primitive code server can reach the code, the
distribution will start. The -pa method is only recommended for testing purpouses.

26 SSL Application

5.3: Specifying distribution module for net kernel

5.3 Specifying distribution module for net kernel

The distribution module for SSL is named inet ssl dist and is specified on the command line whit
the -proto dist option. The argument to -proto dist should be the module name without the dist
suffix, so this distribution module is specified with -proto dist inet ssl on the command line.

Extending the command line from above gives us the following:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl

For the distribution to actually be started, we need to give the emulator a name as well:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

Note however that a node started in this way will refuse to talk to other nodes, as no certificates or key
files are supplied (see below).

When the SSL distribution starts, the OTP system is in its early boot stage, why neither application
nor code are usable. As SSL needs to start a port program in this early stage, it tries to determine the
path to that program from the primitive code loaders code path. If this fails, one need to specify the
directory where the port program resides. This can be done either with an environment variable
ERL SSL PORTPROGRAM DIR or with the command line option -ssl portprogram dir. The value should
be the directory where the ssl esock port program is located. Note that this option is never needed in
a normal Erlang installation.

5.4 Specifying security options and other SSL options

For SSL to work, you either need certificate files or a key file. Certificate files can be specified both
when working as client and as server (connecting or accepting).

On the erl command line one can specify options that the ssl distribution will add when creation a
socket. It is mandatory to specify at least a key file or client and server certificates. One can specify any
SSL option on the command line, but must not specify any socket options (like packet size and such).
The SSL options are listed in the Reference Manual. The only difference between the options in the
reference manual and the ones that can be specified to the distribution on the command line is that
certfile can (and usually needs to) be specified as client certfile and server certfile. The
client certfile is used when the distribution initiates a connection to another node and the
server cerfile is used when accepting a connection from a remote node.

The command line argument for specifying the SSL options is named -ssl dist opt and should be
followed by an even number of SSL options/option values. The -ssl dist opt argument can be
repeated any number of times.

An example command line would now look something like this (line breaks in the command are for
readability, they should not be there when typed):

27SSL Application

Chapter 5: Using SSL for Erlang Distribution

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl
-ssl_dist_opt client_certfile "/home/me/ssl/erlclient.pem"
-ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem"
-ssl_dist_opt verify 1 depth 1
-sname ssl_test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

A node started in this way will be fully functional, using SSL as the distribution protocol.

5.5 Setting up environment to always use SSL

A convenient way to specify arguments to Erlang is to use the ERL FLAGS environment variable. All the
flags needed to use SSL distribution can be specified in that variable and will then be interpreted as
command line arguments for all subsequent invocations of Erlang.

In a Unix (Bourne) shell it could look like this (line breaks for readability):

$ ERL_FLAGS="-boot \"/home/me/ssl/start_ssl\" -proto_dist inet_ssl
-ssl_dist_opt client_certfile \"/home/me/ssl/erlclient.pem\"
-ssl_dist_opt server_certfile \"/home/me/ssl/erlserver.pem\"
-ssl_dist_opt verify 1 -ssl_dist_opt depth 1"

$ export ERL_FLAGS
$ erl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
{progname,["erl "]},
{sname,["ssl_test"]},
{boot,["/home/me/ssl/start_ssl"]},
{proto_dist,["inet_ssl"]},
{ssl_dist_opt,["client_certfile","/home/me/ssl/erlclient.pem"]},
{ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
{ssl_dist_opt,["verify","1"]},
{ssl_dist_opt,["depth","1"]},
{home,["/home/me"]}]

The init:get arguments() call verifies that the correct arguments are supplied to the emulator.

28 SSL Application

Chapter 6

Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

6.1 OpenSSL License

/* ==
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project

29SSL Application

Chapter 6: Licenses

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

6.2 SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young’s, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright

30 SSL Application

6.2: SSLeay License

* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word ’cryptographic’ can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

31SSL Application

Chapter 6: Licenses

32 SSL Application

SSL Reference Manual

Short Summaries

� Application ssl [page 35] – The SSL Application

� Erlang Module ssl [page 37] – Interface Functions for Secure Socket Layer

� Erlang Module ssl pkix [page 45] – Decoding of PKIX certificates with
representation in Erlang.

ssl

No functions are exported.

ssl

The following functions are exported:

� accept(ListenSocket) -> fok, Socketg | ferror, Reasong
[page 39] Accept an incoming connection request.

� accept(ListenSocket, Timeout) -> fok, Socketg | ferror, Reasong
[page 39] Accept an incoming connection request.

� ciphers() -> fok, string()g | ferror, enotstartedg
[page 39] Get supported ciphers.

� close(Socket) -> ok | ferror, Reasong
[page 39] Close a socket returned by accept/1/2, connect/3/4, or listen/2.

� connect(Address, Port, Options) -> fok, Socketg | ferror, Reasong
[page 39] Connect to Port at Address.

� connect(Address, Port, Options, Timeout) -> fok, Socketg | ferror,
Reasong
[page 39] Connect to Port at Address.

� connection info(Socket) -> fok, fProtocol, Ciphergg | ferror,
Reasong
[page 40] Get current protocol version and cipher.

� controlling process(Socket, NewOwner) -> ok | ferror, Reasong
[page 40] Assign a new controlling process to the socket.

� format error(ErrorCode) -> string()
[page 40] Return an error string.

� getopts(Socket, OptionsTags) -> fok, Optionsg | ferror, Reasong
[page 40] Get options set for socket

33SSL Application

SSL Reference Manual

� listen(Port, Options) -> fok, ListenSocketg | ferror, Reasong
[page 40] Set up a socket to listen on a port on the local host.

� peercert(Socket) ->
[page 41] Return the peer certificate.

� peercert(Socket, Opts) -> fok, Certg | fok, Subjectg | ferror,
Reasong
[page 41] Return the peer certificate.

� peername(Socket) -> fok, fAddress, Portgg | ferror, Reasong
[page 41] Return peer address and port.

� pid(Socket) -> pid()
[page 41] Return the pid of the socket process.

� recv(Socket, Length) -> fok, Datag | ferror, Reasong
[page 42] Receive data on socket.

� recv(Socket, Length, Timeout) -> fok, Datag | ferror, Reasong
[page 42] Receive data on socket.

� seed(Data) -> ok | ferror, Reasong
[page 42] Seed the ssl random generator.

� send(Socket, Data) -> ok | ferror, Reasong
[page 42] Write data to a socket.

� setopts(Socket, Options) -> ok | ferror, Reasong
[page 42] Set socket options.

� sockname(Socket) -> fok, fAddress, Portgg | ferror, Reasong
[page 42] Return the local address and port.

� version() -> fok, fSSLVsn, CompVsn, LibVsngg
[page 43] Return the version of SSL.

ssl pkix

The following functions are exported:

� decode cert(Bin) -> fok, Certg | ferror, Reasong
[page 45] Decode a PKIX certificate.

� decode cert(Bin, Opts) -> fok, Certg | ferror, Reasong
[page 45] Decode a PKIX certificate.

� decode cert file(File) -> fok, Certg | ferror, Reasong
[page 45] Decode a PKIX certificate file.

� decode cert file(File, Opts) -> fok, Certg | ferror, Reasong
[page 45] Decode a PKIX certificate file.

34 SSL Application

SSL Reference Manual ssl

ssl
Application

The Secure Socket Layer (SSL) application provides secure socket communication over
TCP/IP.

Warning

In previous versions of Erlang/OTP SSL it was advised, as a work-around, to set the
operating system environment variable SSL CERT FILE to point at a file containing CA
certificates. That variable is no longer needed, and is not recognised by Erlang/OTP SSL
any more.

However, the OpenSSL package does interpret that environment variable. Hence a
setting of that variable might have unpredictable effects on the Erlang/OTP SSL
application. It is therefore adviced to not used that environment variable at all.

Environment

The following application environment configuration parameters are defined for the
SSL application. Refer to application(3) for more information about configuration
parameters.

Note that the environment parameters can be set on the command line, for instance,

erl ... -ssl protcol version ’[sslv2,sslv3]’

ephemeral rsa = true | false <optional> Enables all SSL servers (those that
listen and accept) to use ephemeral RSA key generation when a clients connect
with weak handshake cipher specifications, that need equally weak ciphers from
the server (i.e. obsolete restrictions on export ciphers). Default is false.

debug = true | false <optional> Causes debug information to be written to
standard output. Default is false.

debugdir = path() | false <optional> Causes debug information output
controlled by debug and msgdebug to be printed to a file named
ssl esock.<pid>.log in the directory specified by debugdir, where <pid> is
the operating system specific textual representation of the process indentifier of
the external port program of the SSL application. Default is false, i.e. no log file
is produced.

msgdebug = true | false <optional> Sets debug = true and causes also the
contents of low level messages to be printed to standard output. Default is false.

port program = string() | false <optional> Name of port program. The
default is ssl esock.

35SSL Application

ssl SSL Reference Manual

protocol version = [sslv2|sslv3|tlsv1] <optional>. Name of protocols to
use. If this option is not set, all protocols are assumed, i.e. the default value is
[sslv2, sslv3, tlsv1].

proxylsport = integer() | false <optional> Define the port number of the
listen port of the SSL port program. Almost never is this option needed.

proxylsbacklog = integer() | false <optional> Set the listen queue size of
the listen port of the SSL port program. The default is 128.

OpenSSL libraries

The current implementation of the Erlang SSL application is based on the OpenSSL
package version 0.9.7 or higher. There are source and binary releases on the web.

Source releases of OpenSSL can be downloaded from the OpenSSL1 project home
page, or mirror sites listed there.

The same URL also contains links to some compiled binaries and libraries of OpenSSL
(see the Related/Binaries menu) of which the Shining Light Productions Win32 and
OpenSSL2 pages are of interest for the Win32 user.

For some Unix flavours there are binary packages available on the net.

If you cannot find a suitable binary OpenSSL package, you have to fetch an OpenSSL
source release and compile it.

You then have to compile and install the libraries libcrypto.so and libssl.so (Unix),
or the libraries libeay32.dll and ssleay32.dll (Win32).

For Unix The ssl esock port program is delivered linked to OpenSSL libraries in
/usr/local/lib, but the default dynamic linking will also accept libraries in /lib and
/usr/lib.

If that is not applicable to the particular Unix operating system used, the example
Makefile in the SSL priv/obj directory, should be used as a guide to relinking the final
version of the port program.

For Win32 it is only required that the libraries can be found from the PATH environment
variable, or that they reside in the appropriate SYSTEM32 directory; hence no particular
relinking is need. Hence no example Makefile for Win32 is provided.

Restrictions

Users must be aware of export restrictions and patent rights concerning cryptographic
software.

SEE ALSO

application(3)

1URL: http://www.openssl.org
2URL: http://www.shininglightpro.com/search.php?searchname=Win32+OpenSSL

36 SSL Application

SSL Reference Manual ssl

ssl
Erlang Module

This module contains interface functions to the Secure Socket Layer.

General

The reader is advised to also read the ssl(6) manual page describing the SSL
application.

Warning:
It is strongly advised to seed the random generator after the ssl application has been
started (see seed/1 below), and before any connections are established. Although
the port program interfacing to the ssl libraries does a “random” seeding of its own in
order to make everything work properly, that seeding is by no means random for the
world since it has a constant value which is known to everyone reading the source
code of the port program.

Common data types

The following datatypes are used in the functions below:

� options() = [option()]

� option() = socketoption() | ssloption()

� socketoption() = fmode, listg | fmode, binaryg | binary | fpacket,
packettype()g | fheader, integer()g | fnodelay, boolean()g |
factive, activetype()g | fbacklog, integer()g | fip, ipaddress()g |
fport, integer()g

� ssloption() = fverify, code()g | fdepth, depth()g | fcertfile,
path()g | fkeyfile, path()g | fpassword, string()g | fcacertfile,
path()g | fciphers, string()g

� packettype() (see inet(3))

� activetype() (see inet(3))

� reason() = atom() | fatom(), string()g

� bytes() = [byte()]

� string() = [byte()]

� byte() = 0 | 1 | 2 | ... | 255

37SSL Application

ssl SSL Reference Manual

� code() = 0 | 1 | 2

� depth() = byte()

� address() = hostname() | ipstring() | ipaddress()

� ipaddress() = ipstring() | iptuple()

� hostname() = string()

� ipstring() = string()

� iptuple() = fbyte(), byte(), byte(), byte()g

� sslsocket()

� protocol() = sslv2 | sslv3 | tlsv1

�

The socket option fbacklog, integer()g is for listen/2 only, and the option fport,
integer()g is for connect/3/4 only.

The following socket options are set by default: fmode, listg, fpacket, 0g, fheader,
0g, fnodelay, falseg, factive, trueg, fbacklog, 5g, fip, f0,0,0,0gg, and
fport, 0g.

Note that the options fmode, binaryg and binary are equivalent. Similarly fmode,
listg and the absence of option binary are equivalent.

The ssl options are for setting specific SSL parameters as follows:

� fverify, code()g Specifies type of verification: 0 = do not verify peer; 1 = verify
peer, 2 = verify peer, fail if no peer certificate. The default value is 0.

� fdepth, depth()g Specifies the maximum verification depth, i.e. how far in a
chain of certificates the verification process can proceed before the verification is
considered to fail.
Peer certificate = 0, CA certificate = 1, higher level CA certificate = 2, etc. The
value 2 thus means that a chain can at most contain peer cert, CA cert, next CA
cert, and an additional CA cert.
The default value is 1.

� fcertfile, path()g Path to a file containing the user's certificate. chain of PEM
encoded certificates.

� fkeyfile, path()g Path to file containing user's private PEM encoded key.

� fpassword, string()g String containing the user's password. Only used if the
private keyfile is password protected.

� fcacertfile, path()g Path to file containing PEM encoded CA certificates
(trusted certificates used for verifying a peer certificate).

� fciphers, string()g String of ciphers as a colon separated list of ciphers. The
function ciphers/0 can be used to find all availabe ciphers.

The type sslsocket() is opaque to the user.

The owner of a socket is the one that created it by a call to accept/1, connect/3/4/, or
listen/2.

When a socket is in active mode (the default), data from the socket is delivered to the
owner of the socket in the form of messages:

� fssl, Socket, Datag

� fssl closed, Socketg

38 SSL Application

SSL Reference Manual ssl

� fssl error, Socket, Reasong

A Timeout argument specifies a timeout in milliseconds. The default value for a
Timeout argument is infinity.

Functions listed below may return the value ferror, closedg, which only indicates
that the SSL socket is considered closed for the operation in question. It is for instance
possible to have ferror, closedg returned from an call to send/2, and a subsequent
call to recv/3 returning fok, Datag.

Hence a return value of ferror, closedg must not be interpreted as if the socket was
completely closed. On the contrary, in order to free all resources occupied by an SSL
socket, close/1 must be called, or else the process owning the socket has to terminate.

For each SSL socket there is an Erlang process representing the socket. When a socket is
opened, that process links to the calling client process. Implementations that want to
detect abnormal exits from the socket process by receiving f’EXIT’, Pid, Reasong
messages, should use the function pid/1 to retreive the process identifier from the
socket, in order to be able to match exit messages properly.

Exports

accept(ListenSocket) -> fok, Socketg | ferror, Reasong

accept(ListenSocket, Timeout) -> fok, Socketg | ferror, Reasong

Types:

� ListenSocket = Socket = sslsocket()
� Timeout = integer()

Accepts an incoming connection request on a listen socket. ListenSocket must be a
socket returned from listen/2.

The accepted socket inherits the options set for ListenSocket in listen/2.

The default value for Timeout is infinity. If Timeout is specified, and no connection is
accepted within the given time, ferror, timeoutg is returned.

ciphers() -> fok, string()g | ferror, enotstartedg

Returns a string constisting of colon separated cipher designations that are supported by
the current SSL library implementation.

The SSL application has to be started to return the string of ciphers.

close(Socket) -> ok | ferror, Reasong

Types:

� Socket = sslsocket()

Closes a socket returned by accept/1/2, connect/3/4, or listen/2

connect(Address, Port, Options) -> fok, Socketg | ferror, Reasong

connect(Address, Port, Options, Timeout) -> fok, Socketg | ferror, Reasong

Types:

� Address = address()

39SSL Application

ssl SSL Reference Manual

� Port = integer()
� Options = [connect option()]
� connect option() = fmode, listg | fmode, binaryg | binary | fpacket, packettype()g |
fheader, integer()g | fnodelay, boolean()g | factive, activetype()g | fip, ipaddress()g
| fport, integer()g | fverify, code()g | fdepth, depth()g | fcertfile, path()g |
fkeyfile, path()g | fpassword, string()g | fcacertfile, path()g | fciphers, string()g

� Timeout = integer()
� Socket = sslsocket()

Connects to Port at Address. If the optional Timeout argument is specified, and a
connection could not be established within the given time, ferror, timeoutg is
returned. The default value for Timeout is infinity.

The ip and port options are for binding to a particular local address and port,
respectively.

connection info(Socket) -> fok, fProtocol, Ciphergg | ferror, Reasong

Types:

� Socket = sslsocket()
� Protocol = protocol()
� Cipher = string()

Gets the chosen protocol version and cipher for an established connection (accepted
och connected).

controlling process(Socket, NewOwner) -> ok | ferror, Reasong

Types:

� Socket = sslsocket()
� NewOwner = pid()

Assigns a new controlling process to Socket. A controlling process is the owner of a
socket, and receives all messages from the socket.

format error(ErrorCode) -> string()

Types:

� ErrorCode = term()

Returns a diagnostic string describing an error.

getopts(Socket, OptionsTags) -> fok, Optionsg | ferror, Reasong

Types:

� Socket = sslsocket()
� OptionTags = [optiontag()]()

Returns the options the tags of which are OptionTags for for the socket Socket.

listen(Port, Options) -> fok, ListenSocketg | ferror, Reasong

Types:

� Port = integer()
� Options = [listen option()]

40 SSL Application

SSL Reference Manual ssl

� listen option() = fmode, listg | fmode, binaryg | binary | fpacket, packettype()g |
fheader, integer()g | factive, activetype()g | fbacklog, integer()g | fip, ipaddress()g
| fverify, code()g | fdepth, depth()g | fcertfile, path()g | fkeyfile, path()g |
fpassword, string()g | fcacertfile, path()g | fciphers, string()g

� ListenSocket = sslsocket()

Sets up a socket to listen on port Port at the local host. If Port is zero, listen/2 picks
an available port number (use port/1 to retreive it).

The listen queue size defaults to 5. If a different value is wanted, the option fbacklog,
Sizeg should be added to the list of options.

An empty Options list is considered an error, and ferror, enooptionsg is returned.

The returned ListenSocket can only be used in calls to accept/1/2.

peercert(Socket) ->

peercert(Socket, Opts) -> fok, Certg | fok, Subjectg | ferror, Reasong

Types:

� Socket = sslsocket()
� Opts = [pkix | ssl | subject]()
� Cert = term()()
� Subject = term()()

peercert(Cert) is equivalent to peercert(Cert, []).

The form of the returned certificate depends on the options.

If the options list is empty the certificate is returned as a DER encoded binary.

The options pkix and ssl implies that the certificate is returned as a parsed ASN.1
structure in the form of an Erlang term.

The ssl option gives a more elaborate return structure, with more explicit information.
In particular object identifiers are replaced by atoms.

The options pkix, and ssl are mutually exclusive.

The option subject implies that only the subject's distinguished name part of the peer
certificate is returned. It can only be used together with the option pkix or the option
ssl.

peername(Socket) -> fok, fAddress, Portgg | ferror, Reasong

Types:

� Socket = sslsocket()
� Address = ipaddress()
� Port = integer()

Returns the address and port number of the peer.

pid(Socket) -> pid()

Types:

� Socket = sslsocket()

Returns the pid of the socket process. The returned pid should only be used for
receiving exit messages.

41SSL Application

ssl SSL Reference Manual

recv(Socket, Length) -> fok, Datag | ferror, Reasong

recv(Socket, Length, Timeout) -> fok, Datag | ferror, Reasong

Types:

� Socket = sslsocket()
� Length = integer() >= 0
� Timeout = integer()
� Data = bytes() | binary()

Receives data on socket Socket when the socket is in passive mode, i.e. when the
option factive, falseg has been specified.

A notable return value is ferror, closedg which indicates that the socket is closed.

A positive value of the Length argument is only valid when the socket is in raw mode
(option fpacket, 0g is set, and the option binary is not set); otherwise it should be set
to 0, whence all available bytes are returned.

If the optional Timeout parameter is specified, and no data was available within the
given time, ferror, timeoutg is returned. The default value for Timeout is infinity.

seed(Data) -> ok | ferror, Reasong

Types:

� Data = iolist() | binary()

Seeds the ssl random generator.

It is strongly advised to seed the random generator after the ssl application has been
started, and before any connections are established. Although the port program
interfacing to the OpenSSL libraries does a “random” seeding of its own in order to
make everything work properly, that seeding is by no means random for the world since
it has a constant value which is known to everyone reading the source code of the
seeding.

A notable return value is ferror, edatagg indicating that Data was not a binary nor an
iolist.

send(Socket, Data) -> ok | ferror, Reasong

Types:

� Socket = sslsocket()
� Data = iolist() | binary()

Writes Data to Socket.

A notable return value is ferror, closedg indicating that the socket is closed.

setopts(Socket, Options) -> ok | ferror, Reasong

Types:

� Socket = sslsocket()
� Options = [socketoption]()

Sets options according to Options for the socket Socket.

sockname(Socket) -> fok, fAddress, Portgg | ferror, Reasong

Types:

42 SSL Application

SSL Reference Manual ssl

� Socket = sslsocket()
� Address = ipaddress()
� Port = integer()

Returns the local address and port number of the socket Socket.

version() -> fok, fSSLVsn, CompVsn, LibVsngg

Types:

� SSLVsn = CompVsn = LibVsn = string()()

Returns the SSL application version (SSLVsn), the library version used when compiling
the SSL application port program (CompVsn), and the actual library version used when
dynamically linking in runtime (LibVsn).

If the SSL application has not been started, CompVsn and LibVsn are empty strings.

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by
format error/1 are either the same as those defined in the inet(3) reference manual,
or as follows:

closed Connection closed for the operation in question.

ebadsocket Connection not found (internal error).

ebadstate Connection not in connect state (internal error).

ebrokertype Wrong broker type (internal error).

ecacertfile Own CA certificate file is invalid.

ecertfile Own certificate file is invalid.

echaintoolong The chain of certificates provided by peer is too long.

ecipher Own list of specified ciphers is invalid.

ekeyfile Own private key file is invalid.

ekeymismatch Own private key does not match own certificate.

enoissuercert Cannot find certificate of issuer of certificate provided by peer.

enoservercert Attempt to do accept without having set own certificate.

enotlistener Attempt to accept on a non-listening socket.

enoproxysocket No proxy socket found (internal error).

enooptions The list of options is empty.

enotstarted The SSL application has not been started.

eoptions Invalid list of options.

epeercert Certificate provided by peer is in error.

epeercertexpired Certificate provided by peer has expired.

epeercertinvalid Certificate provided by peer is invalid.

eselfsignedcert Certificate provided by peer is self signed.

esslaccept Server SSL handshake procedure between client and server failed.

esslconnect Client SSL handshake procedure between client and server failed.

43SSL Application

ssl SSL Reference Manual

esslerrssl SSL protocol failure. Typically because of a fatal alert from peer.

ewantconnect Protocol wants to connect, which is not supported in this version of the
SSL application.

ex509lookup Protocol wants X.509 lookup, which is not supported in this version of
the SSL application.

fbadcall, Callg Call not recognized for current mode (active or passive) and state of
socket.

fbadcast, Castg Call not recognized for current mode (active or passive) and state of
socket.

fbadinfo, Infog Call not recognized for current mode (active or passive) and state of
socket.

SEE ALSO

gen tcp(3), inet(3)

44 SSL Application

SSL Reference Manual ssl pkix

ssl pkix
Erlang Module

This module provides decoding of PKIX certificates either provided as files or as
binaries.

Exports

decode cert(Bin) -> fok, Certg | ferror, Reasong

decode cert(Bin, Opts) -> fok, Certg | ferror, Reasong

Types:

� Bin = binary()
� Opts = [pkix | ssl | subject]
� Cert = term()

decode cert(Bin) is equivalent to decode cert(Bin, []).

The form of the returned certificate depends on the options.

If the options list is empty the certificate is returned as a DER encoded binary, i.e. fok,
Bing is returned, where Bin> is the provided input.

The options pkix and ssl imply that the certificate is returned as a parsed ASN.1
structure in the form of an Erlang term.

The ssl option gives a more elaborate return structure, with more explicit information.
In particular object identifiers are replaced by atoms.

The options pkix, and ssl are mutually exclusive.

The option subject implies that only the subject's distinguished name part of the
certificate is returned. It can only be used together with the option pkix or the option
ssl.

decode cert file(File) -> fok, Certg | ferror, Reasong

decode cert file(File, Opts) -> fok, Certg | ferror, Reasong

Types:

� File = path()
� Opts = [pem | pkix | ssl | subject]
� Cert = term()

45SSL Application

ssl pkix SSL Reference Manual

decode cert file(File) is equivalent to decode cert file(File, []).

The form of the returned certificate depends on the options.

If the options list is empty the certificate is returned as a DER encoded binary, i.e. the
contents of the input File is returned as a binary.

The options pkix and ssl implies that the certificate is returned as a parsed ASN.1
structure in the form of an Erlang term.

The ssl option gives a more elaborate return structure, with more explicit information.
In particular object identifiers are replaced by atoms.

The options pkix, and ssl are mutually exclusive.

The option subject implies that only the subject's distinguished name part of the peer
certificate is returned. It can only be used together with the option pkix or the option
ssl.

46 SSL Application

List of Tables

3.1 PKIX Extensions . 14

4.1 openssl subcommands to use . 16

47SSL Application

List of Tables

48 SSL Application

Bibliography

[1] Eric Rescorla: SSL and TLS - Designing and Building Secure Systems, Addison-Wesley, 2001, ISBN
0-201-61598-3.

[2] Bruce Schneier: Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition, John Wiley & Sons, 1995, ISBN 0471117099.

[3] ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1997 :
http://www.itu.int/ITU-T/asn1/database/itu-t/x/x509/1997/index.html.

[4] Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile.

[5] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

[6] ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1: 1995, Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation.

49SSL Application

Bibliography

50 SSL Application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

accept/1
ssl , 39

accept/2
ssl , 39

ciphers/0
ssl , 39

close/1
ssl , 39

connect/3
ssl , 39

connect/4
ssl , 39

connection_info/1
ssl , 40

controlling_process/2
ssl , 40

decode_cert/1
ssl pkix , 45

decode_cert/2
ssl pkix , 45

decode_cert_file/1
ssl pkix , 45

decode_cert_file/2
ssl pkix , 45

format_error/1
ssl , 40

getopts/2
ssl , 40

listen/2
ssl , 40

peercert/1
ssl , 41

peercert/2
ssl , 41

peername/1
ssl , 41

pid/1
ssl , 41

recv/2
ssl , 42

recv/3
ssl , 42

seed/1
ssl , 42

send/2
ssl , 42

setopts/2
ssl , 42

sockname/1
ssl , 42

ssl
accept/1, 39
accept/2, 39
ciphers/0, 39
close/1, 39
connect/3, 39
connect/4, 39
connection_info/1, 40
controlling_process/2, 40
format_error/1, 40
getopts/2, 40
listen/2, 40
peercert/1, 41
peercert/2, 41
peername/1, 41

51SSL Application

Index of Modules and Functions

pid/1, 41
recv/2, 42
recv/3, 42
seed/1, 42
send/2, 42
setopts/2, 42
sockname/1, 42
version/0, 43

ssl pkix
decode_cert/1, 45
decode_cert/2, 45
decode_cert_file/1, 45
decode_cert_file/2, 45

version/0
ssl , 43

52 SSL Application

