
System Application Support Libraries
(SASL)

version 2.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 SASL User's Guide 1

1.1 About This Document . 1

2 SASL Error Logging 3

2.1 Supervisor Report . 3

2.2 Progress Report . 3

2.3 Crash Report . 4

2.3.1 An Example . 4

2.4 Multi-File Error Report Logging . 5

2.5 Report Browser . 5

2.5.1 Starting the Report Browser . 5

2.5.2 On-line Help . 5

2.5.3 List Reports in the Server . 6

2.5.4 Show Reports . 6

2.5.5 Search the Reports . 7

3 SASL Reference Manual 11

3.1 sasl . 15

3.2 alarm handler . 17

3.3 overload . 19

3.4 rb . 21

3.5 release handler . 24

3.6 systools . 34

3.7 appup . 39

3.8 rel . 44

3.9 relup . 46

3.10 script . 47

iiiSystem Application Support Libraries (SASL)

iv System Application Support Libraries (SASL)

Chapter 1

SASL User's Guide

1.1 About This Document

The SASL application provides support for:

� error logging

� alarm handling

� overload regulation

� release handling

� report browsing.

In this document, “SASL Error Logging” describes the error handler which produces the supervisor,
progress, and crash reports which can be written to screen, or to a specified file. It also describes the
report browser rb.

The chapters about release structure and release handling have been moved to OTP Design Principles.

1System Application Support Libraries (SASL)

Chapter 1: SASL User's Guide

2 System Application Support Libraries (SASL)

Chapter 2

SASL Error Logging

The SASL application introduces three types of reports:

� supervisor report

� progress report

� crash report.

When the SASL application is started, it adds a handler that formats and writes these reports, as
specified in the configuration parameters for sasl, i.e the environment variables in the SASL application
specification, which is found in the .app file of SASL. See sasl(Application) [page 15], and app(File) in
the Kernel Reference Manual for the details.

2.1 Supervisor Report

A supervisor report is issued when a supervised child terminates in an unexpected way. A supervisor
report contains the following items:

Supervisor. The name of the reporting supervisor.

Context. Indicates in which phase the child terminated from the supervisor's point of view. This can be
start error, child terminated, or shutdown error.

Reason. The termination reason.

Offender. The start specification for the child.

2.2 Progress Report

A progress report is issued whenever a supervisor starts or restarts. A progress report contains the
following items:

Supervisor. The name of the reporting supervisor.

Started. The start specification for the successfully started child.

3System Application Support Libraries (SASL)

Chapter 2: SASL Error Logging

2.3 Crash Report

Processes started with the proc lib:spawn or proc lib:spawn link functions are wrapped within a
catch. A crash report is issued whenever such a process terminates with an unexpected reason, which
is any reason other than normal or shutdown. Processes using the gen server and gen fsm behaviours
are examples of such processes. A crash report contains the following items:

Crasher. Information about the crashing process is reported, such as initial function call, exit reason,
and message queue.

Neighbours. Information about processes which are linked to the crashing process and do not trap
exits. These processes are the neighbours which will terminate because of this process crash. The
information gathered is the same as the information for Crasher, shown in the previous item.

2.3.1 An Example

The following example shows the reports which are generated when a process crashes. The example
process is an permanent process supervised by the test sup supervisor. A division by zero is executed
and the error is first reported by the faulty process. A crash report is generated as the process was
started using the proc lib:spawn/3 function. The supervisor generates a supervisor report showing the
process that has crashed, and then a progress report is generated when the process is finally re-started.

=ERROR REPORT==== 27-May-1996::13:38:56 ===
<0.63.0>: Divide by zero !

=CRASH REPORT==== 27-May-1996::13:38:56 ===
crasher:
pid: <0.63.0>
registered name: []
error info: fbadarith,ftest,s,[]gg
initial call: ftest,s,[]g
ancestors: [test sup,<0.46.0>]
messages: []
links: [<0.47.0>]
dictionary: []
trap exit: false
status: running
heap size: 128
stack size: 128
reductions: 348
neighbours:

=SUPERVISOR REPORT==== 27-May-1996::13:38:56 ===
Supervisor: flocal,test supg
Context: child terminated
Reason: fbadarith,ftest,s,[]gg
Offender: [fpid,<0.63.0>g,
fname,testg,
fmfa,ftest,t,[]gg,
frestart type,permanentg,
fshutdown,200g,
fchild type,workerg]

4 System Application Support Libraries (SASL)

2.4: Multi-File Error Report Logging

=PROGRESS REPORT==== 27-May-1996::13:38:56 ===
Supervisor: flocal,test supg
Started: [fpid,<0.64.0>g,
fname,testg,
fmfa,ftest,t,[]gg,
frestart type,permanentg,
fshutdown,200g,
fchild type,workerg]

2.4 Multi-File Error Report Logging

Multi-file error report logging is used to store error messages, which are received by the error logger.
The error messages are stored in several files and each file is smaller than a specified amount of
kilobytes, and no more than a specified number of files exist at the same time. The logging is very fast
because each error message is written as a binary term.

Refer to sasl application in the Reference Manual for more details.

2.5 Report Browser

The report browser is used to browse and format error reports written by the error logger handler
error logger mf h.

The error logger mf h handler writes all reports to a report logging directory. This directory is
specified when configuring the SASL application.

If the report browser is used off-line, the reports can be copied to another directory which is specified
when starting the browser. If no such directory is specified, the browser reads reports from the SASL
error logger mf dir.

2.5.1 Starting the Report Browser

Start the rb server with the function rb:start([Options]) as shown in the following example:

5> rb:start([fmax, 20g]).
rb: reading report...done.
rb: reading report...done.
rb: reading report...done.
rb: reading report...done.

2.5.2 On-line Help

Enter the command rb:help(). to access the report browser on-line help system.

5System Application Support Libraries (SASL)

Chapter 2: SASL Error Logging

2.5.3 List Reports in the Server

The function rb:list() lists all loaded reports:

4> rb:list().
No Type Process Date Time
== ==== ======= ==== ====
20 progress <0.17.0> 1996-10-16 16:14:54
19 progress <0.14.0> 1996-10-16 16:14:55
18 error <0.15.0> 1996-10-16 16:15:02
17 progress <0.14.0> 1996-10-16 16:15:06
16 progress <0.38.0> 1996-10-16 16:15:12
15 progress <0.17.0> 1996-10-16 16:16:14
14 progress <0.17.0> 1996-10-16 16:16:14
13 progress <0.17.0> 1996-10-16 16:16:14
12 progress <0.14.0> 1996-10-16 16:16:14
11 error <0.17.0> 1996-10-16 16:16:21
10 error <0.17.0> 1996-10-16 16:16:21
9 crash report release handler 1996-10-16 16:16:21
8 supervisor report <0.17.0> 1996-10-16 16:16:21
7 progress <0.17.0> 1996-10-16 16:16:21
6 progress <0.17.0> 1996-10-16 16:16:36
5 progress <0.17.0> 1996-10-16 16:16:36
4 progress <0.17.0> 1996-10-16 16:16:36
3 progress <0.14.0> 1996-10-16 16:16:36
2 error <0.15.0> 1996-10-16 16:17:04
1 progress <0.14.0> 1996-10-16 16:17:09
ok

2.5.4 Show Reports

To show details of a specific report, use the function rb:show(Number):

10> rb:show(1).
7> rb:show(4).

PROGRESS REPORT <0.20.0> 1996-10-16 16:16:36
===
supervisor flocal,sasl supg
started
[fpid,<0.24.0>g,
fname,release handlerg,
fmfa,frelease handler,start link,[]gg,
frestart type,permanentg,
fshutdown,2000g,
fchild type,workerg]

ok
8> rb:show(9).

CRASH REPORT <0.24.0> 1996-10-16 16:16:21

6 System Application Support Libraries (SASL)

2.5: Report Browser

===
Crashing process
pid <0.24.0>
registered name release handler
error info fundef,frelease handler,mbj func,[]gg
initial call
fgen,init it,
[gen server,
<0.20.0>,
<0.20.0>,
ferlang,registerg,
release handler,
release handler,
[],
[]]g
ancestors [sasl sup,<0.18.0>]
messages []
links [<0.23.0>,<0.20.0>]
dictionary []
trap exit false
status running
heap size 610
stack size 142
reductions 54

ok

2.5.5 Search the Reports

It is possible to show all reports which contain a common pattern. Suppose a process crashes because it
tries to call a non-existing function release handler:mbj func. We could then show reports as
follows:

12> rb:grep("mbj func").
Found match in report number 11

ERROR REPORT <0.24.0> 1996-10-16 16:16:21
===

** undefined function: release handler:mbj func[] **
Found match in report number 10

ERROR REPORT <0.24.0> 1996-10-16 16:16:21
===

** Generic server release handler terminating
** Last message in was funpack release,hejg
** When Server state == fstate,[],
"/home/dup/otp2/otp beam sunos5 p1g 7",
[frelease,
"OTP APN 181 01",

7System Application Support Libraries (SASL)

Chapter 2: SASL Error Logging

"P1G",
undefined,
[],
permanentg],
undefinedg
** Reason for termination ==
** fundef,frelease handler,mbj func,[]gg
Found match in report number 9

CRASH REPORT <0.24.0> 1996-10-16 16:16:21
===
Crashing process
pid <0.24.0>
registered name release handler
error info fundef,frelease handler,mbj func,[]gg
initial call
fgen,init it,
[gen server,
<0.20.0>,
<0.20.0>,
ferlang,registerg,
release handler,
release handler,
[],
[]]g
ancestors [sasl sup,<0.18.0>]
messages []
links [<0.23.0>,<0.20.0>]
dictionary []
trap exit false
status running
heap size 610
stack size 142
reductions 54

Found match in report number 8

SUPERVISOR REPORT <0.20.0> 1996-10-16 16:16:21
===
Reporting supervisor flocal,sasl supg

Child process
errorContext child terminated
reason fundef,frelease handler,mbj func,[]gg
pid <0.24.0>
name release handler
start function frelease handler,start link,[]g
restart type permanent
shutdown 2000
child type worker

ok

8 System Application Support Libraries (SASL)

2.5: Report Browser

Stop the Server

Stop the rb server with the function rb:stop():

13> rb:stop().
ok

9System Application Support Libraries (SASL)

Chapter 2: SASL Error Logging

10 System Application Support Libraries (SASL)

SASL Reference Manual

Short Summaries

� Application sasl [page 15] – The SASL Application

� Erlang Module alarm handler [page 17] – An Alarm Handling Process
� Erlang Module overload [page 19] – An Overload Regulation Process

� Erlang Module rb [page 21] – The Report Browser Tool
� Erlang Module release handler [page 24] – Unpacking and Installation of Release

Packages
� Erlang Module systools [page 34] – A Set of Release Handling Tools.

� File appup [page 39] – Application upgrade file.
� File rel [page 44] – Release resource file
� File relup [page 46] – Release upgrade file

� File script [page 47] – Boot script

sasl

No functions are exported.

alarm handler

The following functions are exported:

� clear alarm(AlarmId) -> void()
[page 17] Clear the specified alarms

� get alarms() -> [alarm()]
[page 17] Get all active alarms

� set alarm(alarm())
[page 17] Set an alarm with an id

overload

The following functions are exported:

� request() -> accept | reject
[page 20] Request to proceed with current job

� get overload info() -> OverloadInfo
[page 20] Return current overload information data

11System Application Support Libraries (SASL)

SASL Reference Manual

rb

The following functions are exported:

� grep(RegExp)
[page 21] Search the reports for a regular expression

� h()
[page 21] Print help information

� help()
[page 21] Print help information

� list()
[page 21] List all reports

� list(Type)
[page 21] List all reports

� rescan()
[page 21] Rescan the report directory

� rescan(Options)
[page 21] Rescan the report directory

� show()
[page 21] Show reports

� show(Report)
[page 21] Show reports

� start()
[page 22] Start the RB server

� start(Options)
[page 22] Start the RB server

� start log(FileName)
[page 22] Redirect all output to FileName

� stop()
[page 23] Stop the RB server

� stop log()
[page 23] Stop logging to file

release handler

The following functions are exported:

� check install release(Vsn) -> fok, OtherVsn, Descrg | ferror,
Reasong
[page 26] Check installation of a release in the system.

� create RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | ferror,
Reasong
[page 26] Create an initial RELEASES file.

� install file(Vsn, File) -> ok | ferror, Reasong
[page 26] Install a release file in the release structure.

� install release(Vsn) -> fok, OtherVsn, Descrg | ferror, Reasong
[page 27] Install a release in the system.

12 System Application Support Libraries (SASL)

SASL Reference Manual

� install release(Vsn, [Opt]) -> fok, OtherVsn, Descrg | ferror,
Reasong
[page 27] Install a release in the system.

� make permanent(Vsn) -> ok | ferror, Reasong
[page 28] Make the specified release version permanent.

� remove release(Vsn) -> ok | ferror, Reasong
[page 28] Remove a release from the system.

� reboot old release(Vsn) -> ok | ferror, Reasong
[page 28] Reboot the system from an old release.

� set removed(Vsn) -> ok | ferror, Reasong
[page 28] Mark a release as removed.

� set unpacked(RelFile, AppDirs) -> fok, Vsng | ferror, Reasong
[page 28] Mark a release as unpacked.

� unpack release(Name) -> fok, Vsng | ferror, Reasong
[page 29] Unpack a release package.

� which releases() -> [fName, Vsn, Apps, Statusg]
[page 29] Return all known releases

� upgrade app(App, Dir) -> fok, Unpurgedg | restart new emulator |
ferror, Reasong
[page 29] Upgrade to a new application version

� upgrade script(App, Dir) -> fok, NewVsn, Scriptg
[page 30] Find an application upgrade script

� downgrade app(App, Dir) ->
[page 30] Downgrade to a previous application version

� downgrade app(App, OldVsn, Dir) -> fok, Unpurgedg |
restart new emulator | ferror, Reasong
[page 30] Downgrade to a previous application version

� downgrade script(App, OldVsn, Dir) -> fok, Scriptg
[page 31] Find an application downgrade script

� eval appup script(App, ToVsn, ToDir, Script) -> fok, Unpurgedg |
restart new emulator | ferror, Reasong
[page 32] Evaluate an application upgrade or downgrade script

systools

The following functions are exported:

� make relup(Name, UpFrom, DownTo) -> Result
[page 34] Generate a release upgrade file relup.

� make relup(Name, UpFrom, DownTo, [Opt]) -> Result
[page 34] Generate a release upgrade file relup.

� make script(Name) -> Result
[page 35] Generate a boot script .script/.boot.

� make script(Name, [Opt]) -> Result
[page 35] Generate a boot script .script/.boot.

� make tar(Name) -> Result
[page 36] Create a release package.

13System Application Support Libraries (SASL)

SASL Reference Manual

� make tar(Name, [Opt]) -> Result
[page 36] Create a release package.

� script2boot(File) -> ok | error
[page 38] Generate a binary version of a boot script.

appup

No functions are exported.

rel

No functions are exported.

relup

No functions are exported.

script

No functions are exported.

14 System Application Support Libraries (SASL)

SASL Reference Manual sasl

sasl
Application

This section describes the SASL application which provides the following services:

� alarm handler

� overload

� rb

� release handler

� systools

The SASL application also includes error logger event handlers for formatting SASL
error and crash reports.

Error Logger Event Handlers

The following error logger event handlers are defined in the SASL application.

sasl report tty h Formats and writes supervisor reports, crash reports and progress
reports to stdio.

sasl report file h Formats and writes supervisor reports, crash report and progress
report to a single file.

error logger mf h This error logger writes all events sent to the error logger to disk. It
installs the log mf h event handler in the error logger process.

Configuration

The following configuration parameters are defined for the SASL application. See
app(4) for more information about configuration parameters:

sasl error logger = Value <optional> Value is one of:

tty Installs sasl report tty h in the error logger. This is the default option.
ffile,FileNameg Installs sasl report file h in the error logger. This makes all

reports go to the file FileName. FileName is a string.
false No SASL error logger handler is installed.

errlog type = error | progress | all <optional> Restricts the error logging
performed by the specified sasl error logger to error reports, progress reports,
or both. Default is all.

error logger mf dir = string() | false<optional> Specifies in which directory
the files are stored. If this parameter is undefined or false, the
error logger mf h is not installed.

15System Application Support Libraries (SASL)

sasl SASL Reference Manual

error logger mf maxbytes = integer() <optional> Specifies how large each
individual file can be. If this parameter is undefined, the error logger mf h is not
installed.

error logger mf maxfiles = 0<integer()<256 <optional> Specifies how many
files are used. If this parameter is undefined, the error logger mf h is not
installed.

overload max intensity = float() > 0 <optional> Specifies the maximum
intensity for overload. Default is 0.8.

overload weight = float() > 0 <optional> Specifies the overload weight.
Default is 0.1.

start prg = string() <optional> Specifies which program should be used when
restarting the system. Default is $OTP ROOT/bin/start.

masters = [atom()] <optional> Specifies which nodes this node uses to read/write
release information. This parameter is ignored if the client directory parameter
is not set.

client directory = string() <optional> This parameter specifies the client
directory at the master nodes. Refer to Release Handling in OTP Design Principles
for more information. This parameter is ignored if the masters parameter is not
set.

static emulator = true | false <optional> Indicates if the Erlang emulator is
statically installed. A node with a static emulator cannot switch dynamically to a
new emulator as the executable files are written into memory statically. This
parameter is ignored if the masters and client directory parameters are not set.

releases dir = string() <optional> Indicates where the releases directory is
located. The release handler writes all its files to this directory. If this parameter is
not set, the OS environment parameter RELDIR is used. By default, this is
$OTP ROOT/releases.

utc log = true | false <optional> If set to true, all dates in textual log outputs
are displayed in Universal Coordinated Time with the string UTC appended.

See Also

alarm handler(3) [page 17], error logger(3), log mf h(3), overload(3) [page 19], rb(3)
[page 21], release handler(3) [page 24], systools(3) [page 34]

16 System Application Support Libraries (SASL)

SASL Reference Manual alarm handler

alarm handler
Erlang Module

The alarm handler process is a gen event event manager process which receives alarms
in the system. This process is not intended to be a complete alarm handler. It defines a
place to which alarms can be sent. One simple event handler is installed in the alarm
handler at start-up, but users are encouraged to write and install their own handlers.

The simple event handler sends all alarms as info reports to the error logger, and saves
all of them in a list which can be passed to a user defined event handler, which may be
installed at a later stage. The list can grow large if many alarms are generated. So it is a
good reason to install a better user defined handler.

There are functions to set and clear alarms. The format of alarms are defined by the user.
For example, an event handler for SNMP could be defined, together with an alarm MIB.

The alarm handler is part of the SASL application.

When writing new event handlers for the alarm handler, the following events must be
handled:

fset alarm, fAlarmId, AlarmDescrgg This event is generated by
alarm handler:set alarm(fAlarmId, AlarmDecsrg).

fclear alarm, AlarmIdg This event is generated by
alarm handler:clear alarm(AlarmId).

The default simple handler is called alarm handler and it may be exchanged by calling
gen event:swap handler/3 as gen event:swap handler(alarm handler,
falarm handler, swapg, fNewHandler, Argsg). NewHandler:init(fArgs,
falarm handler, Alarmsgg) is called. Refer to gen event(3) for further details.

Exports

clear alarm(AlarmId) -> void()

Types:

� AlarmId = term()

Clears all alarms with id AlarmId.

get alarms() -> [alarm()]

Returns a list of all active alarms. This function can only be used when the simple
handler is installed.

set alarm(alarm())

Types:

17System Application Support Libraries (SASL)

alarm handler SASL Reference Manual

� alarm() = fAlarmId, AlarmDescriptiong
� AlarmId = term()
� AlarmDescription = term()

Sets an alarm with id AlarmId. This id is used at a later stage when the alarm is cleared.

See Also

error logger(3), gen event(3)

18 System Application Support Libraries (SASL)

SASL Reference Manual overload

overload
Erlang Module

overload is a process which indirectly regulates CPU usage in the system. The idea is
that a main application calls the request/0 function before starting a major job, and
proceeds with the job if the return value is positive; otherwise the job must not be
started.

overload is part of the sasl application, and all configuration parameters are defined
there.

A set of two intensities are maintained, the total intensity and the accept
intensity. For that purpose there are two configuration parameters, the MaxIntensity
and the Weight value (both are measured in 1/second).

Then total and accept intensities are calculated as follows. Assume that the time of the
current call to request/0 is T(n), and that the time of the previous call was T(n-1).

� The current total intensity, denoted TI(n), is calculated according to the
formula,
TI(n) = exp(-Weight*(T(n) - T(n-1)) * TI(n-1) + Weight,
where TI(n-1) is the previous total intensity.

� The current accept intensity, denoted AI(n), is determined by the formula,
AI(n) = exp(-Weight*(T(n) - T(n-1)) * AI(n-1) + Weight,
where AI(n-1) is the previous accept intensity, provided that the value of
exp(-Weight*(T(n) - T(n-1)) * AI(n-1) is less than MaxIntensity; otherwise
the value is
AI(n) = exp(-Weight*(T(n) - T(n-1)) * AI(n-1).

The value of configuration parameter Weight controls the speed with which the
calculations of intensities will react to changes in the underlying input intensity. The
inverted value of Weight,

T = 1/Weight

can be thought of as the “time constant” of the intensity calculation formulas. For
example, if Weight = 0.1, then a change in the underlying input intensity will be
reflected in the total and accept intensities within approximately 10 seconds.

The overload process defines one alarm, which it sets using
alarm handler:set alarm(Alarm). Alarm is defined as:

foverload, []g This alarm is set when the current accept intensity exceeds
MaxIntensity.

A new overload alarm is not set until the current accept intensity has fallen below
MaxIntensity. To prevent the overload process from generating a lot of set/reset
alarms, the alarm is not reset until the current accept intensity has fallen below 75% of
MaxIntensity, and it is not until then that the alarm can be set again.

19System Application Support Libraries (SASL)

overload SASL Reference Manual

Exports

request() -> accept | reject

Returns accept or reject depending on the current value of the accept intensity.

The application calling this function should be processed with the job in question if the
return value is accept; otherwise it should not continue with that job.

get overload info() -> OverloadInfo

Types:

� OverloadInfo = [ftotal intensity, TotalIntensityg, faccept intensity, AcceptIntensityg,
fmax intensity, MaxIntensityg, fweight, Weightg, ftotal requests, TotalRequestsg,
faccepted requests, AcceptedRequestsg].

� TotalIntensity = float() > 0
� AcceptIntensity = float() > 0
� MaxIntensity = float() > 0
� Weight = float() > 0
� TotalRequests = integer()
� AcceptedRequests = integer()

Returns the current total and accept intensities, the configuration parameters, and
absolute counts of the total number of requests, and accepted number of requests (since
the overload process was started).

See Also

alarm handler(3), sasl(3)

20 System Application Support Libraries (SASL)

SASL Reference Manual rb

rb
Erlang Module

The Report Browser (RB) tool makes it possible to browse and format error reports
written by the error logger handler log mf h.

Exports

grep(RegExp)

Types:

� RegExp = string()

All reports containing the regular expression RegExp are printed.

RegExp is a string containing the regular expression. Refer to the module regexp in the
STDLIB reference manual for a definition of valid regular expressions. They are
essentially the same as the UNIX command egrep.

h()

help()

Prints the on-line help information.

list()

list(Type)

Types:

� Type = type()
� type() = crash report | supervisor report | error | progress

This function lists all reports loaded in the rb server. Each report is given a unique
number that can be used as a reference to the report in the show/1 function.

If no Type is given, all reports are listed.

rescan()

rescan(Options)

Types:

� Options = [opt()]

Rescans the report directory. Options is the same as for start().

show()

show(Report)

21System Application Support Libraries (SASL)

rb SASL Reference Manual

Types:

� Report = int() | type()

If a type argument is given, all loaded reports of this type are printed. If an integer
argument is given, the report with this reference number is printed. If no argument is
given, all reports are shown.

start()

start(Options)

Types:

� Options = [opt()]
� opt() = fstart log, FileNameg | fmax, MaxNoOfReportsg | freport dir, DirStringg |
ftype, ReportTypeg | fabort on error, Boolg

� FileName = string() | standard io
� MaxNoOfReports = int() | all
� DirString = string()
� ReportType = type() | [type()] | all
� Bool = true | false

The function start/1 starts the rb server with the specified options, while start/0
starts with default options. The rb server must be started before reports can be
browsed. When the rb server is started, the files in the specified directory are scanned.
The other functions assume that the server has started.

fstart log, FileNameg starts logging to file. All reports will be printed to the named
file. The default is standard io.

fmax, MaxNoOfReportsg. Controls how many reports the rb server should read on
start-up. This option is useful as the directory may contain 20.000 reports. If this option
is given, the MaxNoOfReports latest reports will be read. The default is 'all'.

freport dir, DirStringg. Defines the directory where the error log files are located.
The default is fsasl, error logger mf dirg.

ftype, ReportTypeg. Controls what kind of reports the rb server should read on
start-up. ReportType is a supported type, 'all', or a list of supported types. The default
is 'all'.

fabort on error, Boolg. This option specifies whether or not logging should be
aborted if rb encounters an unprintable report. (You may get a report on incorrect form
if the error logger function error msg or info msg has been called with an invalid
format string). If Bool is true, rb will stop logging (and print an error message to
stdout) if it encounters a badly formatted report. If logging to file is enabled, an error
message will be appended to the log file as well. If Bool is false (which is the default
value), rb will print an error message to stdout for every bad report it encounters, but
the logging process is never aborted. All printable reports will be written. If logging to
file is enabled, rb prints * UNPRINTABLE REPORT * in the log file at the location of an
unprintable report.

start log(FileName)

Types:

� FileName = string()

Redirects all report output from the RB tool to the specified file.

22 System Application Support Libraries (SASL)

SASL Reference Manual rb

stop()

Stops the rb server.

stop log()

Closes the log file. The output from the RB tool will be directed to standard io.

23System Application Support Libraries (SASL)

release handler SASL Reference Manual

release handler
Erlang Module

The release handler is a process belonging to the SASL application which is responsible
for release handling, that is, unpacking, installation, and removal of release packages.

A release package is a compressed tar file containing code for a certain version of a
release, see systools(3). The release package should be placed in the $ROOT/releases
directory of a previous version of the release where $ROOT is the installation root
directory, code:root dir(). Another releases directory can be specified using the
SASL configuration parameter releases dir, or the OS environment variable RELDIR.
The release handler must have write access to this directory in order to install the new
release. The persistent state of the release handler is stored there in a file called
RELEASES.

A release package should always contain the release resource file Name.rel and a boot
script Name.boot. It may contain a release upgrade file relup and a system
configuration file sys.config. The .rel file contains information about the release: its
name, version, and which ERTS and application versions it uses. The relup file contains
scripts for how to upgrade to, or downgrade from, this version of the release.

The release package can be unpacked, which extracts the files. An unpacked release can
be installed. The currently used version of the release is then upgraded or downgraded
to the specified version by evaluating the instructions in relup. An installed release can
be made permanent. There can only be one permanent release in the system, and this is
the release that is used if the system is restarted. An installed release, except the
permanent one, can be removed. When a release is removed, all files that belong to that
release only are deleted.

Each version of the release has a status. The status can be unpacked, current,
permanent, or old. There is always one latest release which either has status permanent
(normal case), or current (installed, but not yet made permanent). The following table
illustrates the meaning of the status values:

Status Action NextStatus

- unpack unpacked

unpacked install current
remove -

current make permanent permanent
install other old
remove -

permanent make other permanent old
install permanent

old reboot old permanent
install current
remove -

24 System Application Support Libraries (SASL)

SASL Reference Manual release handler

The release handler process is a locally registered process on each node. When a release
is installed in a distributed system, the release handler on each node must be called. The
release installation may be synchronized between nodes. From an operator view, it may
be unsatisfactory to specify each node. The aim is to install one release package in the
system, no matter how many nodes there are. If this is the case, it is recommended that
software management functions are written which take care of this problem. Such a
function may have knowledge of the system architecture, so it can contact each
individual release handler to install the package.

For release handling to work properly, the runtime system needs to have knowledge
about which release it is currently running. It must also be able to change (in run-time)
which boot script and system configuration file should be used if the system is restarted.
This is taken care of automatically if Erlang is started as an embedded system. Read
about this in Embedded System. In this case, the system configuration file sys.config is
mandatory.

A new release may restart the system. Which program to use is specified by the SASL
configuration parameter start prg which defaults to $ROOT/bin/start.

The emulator restart on Windows NT expects that the system is started using the
erlsrv program (as a service). Furthermore the release handler expects that the service
is named NodeName Release, where NodeName is the first part of the Erlang nodename
(up to, but not including the “@”) and Release is the current release of the application.
The release handler furthermore expects that a program like start erl.exe is specified
as “machine” to erlsrv. During upgrading with restart, a new service will be registered
and started. The new service will be set to automatic and the old service removed as
soon as the new release is made permanent.

The release handler at a node which runs on a diskless machine, or with a read-only file
system, must be configured accordingly using the following sasl configuration
parameters:

masters This node uses a number of master nodes in order to store and fetch release
information. All master nodes must be up and running whenever release
information is written by this node.

client directory The client directory in the directory structure of the master nodes
must be specified.

static emulator This parameter specifies if the Erlang emulator is statically installed at
the client node. A node with a static emulator cannot dynamically switch to a new
emulator because the executable files are statically written into memory.

It is also possible to use the release handler to unpack and install release packages when
not running Erlang as an embedded system, but in this case the user must somehow
make sure that correct boot scripts and configuration files are used if the system needs
to be restarted.

There are additional functions for using another file structure than the structure defined
in OTP. These functions can be used to test a release upgrade locally.

25System Application Support Libraries (SASL)

release handler SASL Reference Manual

Exports

check install release(Vsn) -> fok, OtherVsn, Descrg | ferror, Reasong

Types:

� Vsn = OtherVsn = string()
� Descr = term()
� Reason = term()

Checks if the specified version Vsn of the release can be installed. The release must not
have status current. Issues warnings if relup or sys.config are not present. If relup
is present, its contents are checked and ferror,Reasong is returned if an error is found.
Also checks that all required applications are present and that all new code can be
loaded, or ferror,Reasong is returned.

This function evaluates all instructions that occur before the point of no return
instruction in the release upgrade script.

Returns the same as install release/1. Descr defaults to “” if no relup file is found.

create RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | ferror, Reasong

Types:

� Root = RelDir = RelFile = string()
� AppDirs = [fApp, Vsn, Dirg]
� App = atom()
� Vsn = Dir = string()
� Reason = term()

Creates an initial RELEASES file to be used by the release handler. This file must exist
in order to install new releases.

Root is the root of the installation ($ROOT) as described above. RelDir is the the
directory where the RELEASES file should be created (normally $ROOT/releases).
RelFile is the name of the .rel file that describes the initial release, including the
extension .rel.

AppDirs can be used to specify from where the modules for the specified applications
should be loaded. App is the name of an application, Vsn is the version, and Dir is the
name of the directory where App-Vsn is located. The corresponding modules should be
located under Dir/App-Vsn/ebin. The directories for applications not specified in
AppDirs are assumed to be located in $ROOT/lib.

install file(Vsn, File) -> ok | ferror, Reasong

Types:

� Vsn = File = string()
� Reason = term()

Installs a release dependent file in the release structure. A release dependent file is a file
that must be in the release structure when a new release is installed: start.boot, relup
and sys.config.

The function can be called, for example, when these files are generated at the target. It
should be called after set unpacked/2 has been called.

26 System Application Support Libraries (SASL)

SASL Reference Manual release handler

install release(Vsn) -> fok, OtherVsn, Descrg | ferror, Reasong

install release(Vsn, [Opt]) -> fok, OtherVsn, Descrg | ferror, Reasong

Types:

� Vsn = OtherVsn = string()
� Opt = ferror action, Actiong | fcode change timeout, Timeoutg
� | fsuspend timeout, Timeoutg | fupdate paths, Boolg
� Action = restart | reboot
� Timeout = default | infinity | int()>0
� Bool = boolean()
� Descr = term()
� Reason = fillegal option, Optg | falready installed, Vsng | fchange appl data,

term()g | term()

Installs the specfied version Vsn of the release. Looks first for a relup file for Vsn and a
script fUpFromVsn,Descr1,Instructions1g in this file for upgrading from the current
version. If not found, the function looks for a relup file for the current version and a
script fVsn,Descr2,Instructions2g in this file for downgrading to Vsn.

If a script is found, the first thing that happens is that the applications specifications are
updated according to the .app files and sys.config belonging to the release version
Vsn.

After the application specifications have been updated, the instructions in the script are
evaluated and the function returns fok,OtherVsn,Descrg if successful. OtherVsn and
Descr are the version (UpFromVsn or Vsn) and description (Descr1 or Descr2) as
specified in the script.

If a recoverable error occurs, the function returns ferror,Reasong and the original
application specifications are restored. If a non-recoverable error occurs, the system is
restarted.

The option error action defines if the node should be restarted (init:restart()) or
rebooted (init:reboot()) in case of an error during the installation. Default is
restart.

The option code change timeout defines the timeout for all calls to sys:change code.
If no value is specified or default is given, the default value defined in sys is used.

The option suspend timeout defines the timeout for all calls to sys:suspend. If no
value is specified, the values defined by the Timeout parameter of the upgrade or
suspend instructions are used. If default is specified, the default value defined in sys is
used.

The option fupdate paths,Boolg indicates if all application code paths should be
updated (Bool==true), or if only code paths for modified applications should be
updated (Bool==false, default). This option only has effect for other application
directories than the default $ROOT/lib/App-Vsn, that is, application directories
provided in the AppDirs argument in a call to create RELEASES/4 or set unpacked/2.

Example: In the current version CurVsn of a release, the application directory of myapp
is $ROOT/lib/myapp-1.0. A new version NewVsn is unpacked outside the release
handler, and the release handler is informed about this with a call to:

release_handler:set_unpacked(RelFile, [{myapp,"1.0","/home/user"},...]).
=> {ok,NewVsn}

27System Application Support Libraries (SASL)

release handler SASL Reference Manual

If NewVsn is installed with the option fupdate paths,trueg, afterwards
code:lib dir(myapp) will return /home/user/myapp-1.0.

make permanent(Vsn) -> ok | ferror, Reasong

Types:

� Vsn = string()
� Reason = fbad status, Statusg | term()

Makes the specified version Vsn of the release permanent.

remove release(Vsn) -> ok | ferror, Reasong

Types:

� Vsn = string()
� Reason = fpermanent, Vsng | client node | term()

Removes a release and its files from the system. The release must not be the permanent
release. Removes only the files and directories not in use by another release.

reboot old release(Vsn) -> ok | ferror, Reasong

Types:

� Vsn = string()
� Reason = fbad status, Statusg | term()

Reboots the system by making the old release permanent, and calls init:reboot()
directly. The release must have status old.

set removed(Vsn) -> ok | ferror, Reasong

Types:

� Vsn = string()
� Reason = fpermanent, Vsng | term()

Makes it possible to handle removal of releases outside the release handler. Tells the
release handler that the release is removed from the system. This function does not
delete any files.

set unpacked(RelFile, AppDirs) -> fok, Vsng | ferror, Reasong

Types:

� RelFile = string()
� AppDirs = [fApp, Vsn, Dirg]
� App = atom()
� Vsn = Dir = string()
� Reason = term()

28 System Application Support Libraries (SASL)

SASL Reference Manual release handler

Makes it possible to handle unpacking of releases outside the release handler. Tells the
release handler that the release is unpacked. Vsn is extracted from the release resource
file RelFile.

AppDirs can be used to specify from where the modules for the specified applications
should be loaded. App is the name of an application, Vsn is the version, and Dir is the
name of the directory where App-Vsn is located. The corresponding modules should be
located under Dir/App-Vsn/ebin. The directories for applications not specified in
AppDirs are assumed to be located in $ROOT/lib.

unpack release(Name) -> fok, Vsng | ferror, Reasong

Types:

� Name = Vsn = string()
� Reason = client node | term()

Unpacks a release package Name.tar.gz located in the releases directory.

Performs some checks on the package - for example checks that all mandatory files are
present - and extracts its contents.

which releases() -> [fName, Vsn, Apps, Statusg]

Types:

� Name = Vsn = string()
� Apps = [”App-Vsn”]
� Status = unpacked | current | permanent | old

Returns all releases known to the release handler.

upgrade app(App, Dir) -> fok, Unpurgedg | restart new emulator | ferror, Reasong

Types:

� App = atom()
� Dir = string()
� Unpurged = [Module]
� Module = atom()
� Reason = term()

Upgrades an application App from the current version to a new version located in Dir
according to the .appup script.

App is the name of the application, which must be started. Dir is the new library
directory of App, the corresponding modules as well as the .app and .appup files should
be located under Dir/ebin.

The function looks in the .appup file and tries to find an upgrade script from the
current version of the application using upgrade script/2 [page 30]. This script is
evaluated using eval appup script/4 [page 32], exactly in the same way as
install release/1,2 [page 27] does.

Returns fok, Unpurgedg if evaluating the script is successful, where Unpurged is a list
of unpurged modules, or restart new emulator if this instruction is encountered in the
script, or ferror, Reasong if an error occurred when finding or evaluating the script.

29System Application Support Libraries (SASL)

release handler SASL Reference Manual

Warning:
This function is primarily intended for simplified testing of .appup files, and must not
be used together with calls to install release/1,2.

No persistant information is updated, why this function can be used on any Erlang
node, embedded or not. Also, using this function does not effect which code will be
loaded in case of a reboot.

If evaluating the .appup script fails, the application may end up in an inconsistent
state.

upgrade script(App, Dir) -> fok, NewVsn, Scriptg

Types:

� App = atom()
� Dir = string()
� NewVsn = string()
� Script = Instructions – see appup(4)

Finds an application upgrade script for App from the current version to a new version
located in Dir. It is recommended to use upgrade app/2 [page 29] instead, but this
function is useful in order to inspect the contents of the generated upgrade script.

App is the name of the application, which must be started. Dir is the new library
directory of App, the corresponding modules as well as the .app and .appup files should
be located under Dir/ebin.

The function looks in the .appup file and tries to find an upgrade script from the
current version of the application. High-level instructions are translated to low-level
instructions and the instructions are sorted in the same manner as when generating a
relup script.

Returns fok, NewVsn, Scriptg if successful, where NewVsn is the new application
version.

Failure: If an error occurs, the function fails with an appropriate error reason.

downgrade app(App, Dir) ->

downgrade app(App, OldVsn, Dir) -> fok, Unpurgedg | restart new emulator | ferror,
Reasong

Types:

� App = atom()
� Dir = OldVsn = string()
� Unpurged = [Module]
� Module = atom()
� Reason = term()

30 System Application Support Libraries (SASL)

SASL Reference Manual release handler

Downgrades an application App from the current version to a previous version located
in Dir according to the .appup script.

App is the name of the application, which must be started. OldVsn is the previous
version of the application and can be omitted if Dir is of the format "App-OldVsn". Dir
is the previous library directory of App, the corresponding modules as well as the old
.app file should be located under Dir/ebin. The .appup file should be located in the
ebin directory of the current library directory of the application (code:lib dir(App)).

The function looks in the .appup file and tries to find an downgrade script to the
previous version of the application using downgrade script/3 [page 31]. This script is
evaluated using eval appup script/4 [page 32], exactly in the same way as
install release/1,2 [page 27] does.

Returns fok, Unpurgedg if evaluating the script is successful, where Unpurged is a list
of unpurged modules, or restart new emulator if this instruction is encountered in the
script, or ferror, Reasong if an error occurred when finding or evaluating the script.

Warning:
This function is primarily intended for simplified testing of .appup files, and must not
be used together with calls to install release/1,2.

No persistant information is updated, why this function can be used on any Erlang
node, embedded or not. Also, using this function does not effect which code will be
loaded in case of a reboot.

If evaluating the .appup script fails, the application may end up in an inconsistent
state.

downgrade script(App, OldVsn, Dir) -> fok, Scriptg

Types:

� App = atom()
� OldVsn = Dir = string()
� Script = Instructions – see appup(4)

Finds an application downgrade script for App from the current version to a previous
version OldVsn located in Dir. It is recommended to use downgrade app/2,3 [page 30]
instead, but this function is useful in order to inspect the contents of the generated
downgrade script.

App is the name of the application, which must be started. Dir is the previous library
directory of App, the corresponding modules as well as the old .app file should be
located under Dir/ebin. The .appup file should be located in the ebin directory of the
current library directory of the application (code:lib dir(App)).

The function looks in the .appup file and tries to find an downgrade script from the
current version of the application. High-level instructions are translated to low-level
instructions and the instructions are sorted in the same manner as when generating a
relup script.

Returns fok, Scriptg if successful.

Failure: If an error occurs, the function fails with an appropriate error reason.

31System Application Support Libraries (SASL)

release handler SASL Reference Manual

eval appup script(App, ToVsn, ToDir, Script) -> fok, Unpurgedg | restart new emulator
| ferror, Reasong

Types:

� App = atom()
� ToVsn = ToDir = string()
� Script – see upgrade script/2, downgrade script/3
� Unpurged = [Module]
� Module = atom()
� Reason = term()

Evaluates an application upgrade or downgrade script Script, the result from calling
upgrade app/2 [page 29] or downgrade app/2,3 [page 30], exactly in the same way as
install release/1,2 [page 27] does.

App is the name of the application, which must be started. ToVsn is the version to be
upgraded/downgraded to, and ToDir is the library directory of this version. The
corresponding modules as well as the .app and .appup files should be located under
Dir/ebin.

Returns fok, Unpurgedg if evaluating the script is successful, where Unpurged is a list
of unpurged modules, or restart new emulator if this instruction is encountered in
the script, or ferror, Reasong if an error occurred when evaluating the script.

Typical Error Reasons

� fbad masters, Mastersg - The master nodes Masters are not alive.

� fbad rel file, Fileg - Specified .rel file File can not be read, or does not
contain a single term.

� fbad rel data, Datag - Specified .rel file does not contain a recognized release
specification, but another term Data.

� fbad relup file, Fileg - Specified relup file Relup contains bad data.

� fcannot extract file, Name, Reasong - Problems when extracting from a tar
file, erl tar:extract/2 returned ferror, fName, Reasongg.

� fexisting release, Vsng - Specified release version Vsn is already in use.

� fMaster, Reason, Wheng - Some operation, indicated by the term When, failed on
the master node Master with the specified error reason Reason.

� fno matching relup, Vsn, CurrentVsng - Cannot find a script for
up/downgrading between CurrentVsn and Vsn.

� fno such directory, Pathg - The directory Path does not exist.

� fno such file, Pathg - The path Path (file or directory) does not exist.

� fno such file, fMaster, Pathgg - The path Path (file or directory) does not
exist at the master node Master.

� fno such release, Vsng - The specified version Vsn of the release does not exist.

� fnot a directory, Pathg - Path exists, but is not a directory.

� fPosix, Fileg - Some file operation failed for File. Posix is an atom named
from the Posix error codes, such as enoent, eacces or eisdir. See file(3).

� Posix - Some file operation failed, as above.

32 System Application Support Libraries (SASL)

SASL Reference Manual release handler

SEE ALSO

OTP Design Principles, config(4), relup(4) [page 46], rel(4), script(4) [page 47], sys(3),
systools(3) [page 34]

33System Application Support Libraries (SASL)

systools SASL Reference Manual

systools
Erlang Module

This module contains functions to generate boot scripts (.boot, .script), release
upgrade scripts (relup), and release packages.

Exports

make relup(Name, UpFrom, DownTo) -> Result

make relup(Name, UpFrom, DownTo, [Opt]) -> Result

Types:

� Name = string()
� UpFrom = DownTo = [Name | fName,Descrg]
� Descr = term()
� Opt = fpath,[Dir]g | restart emulator | silent | noexec
� Dir = string()
� Result = ok | error | fok,Relup,Module,Warningsg | ferror,Module,Errorg
� Relup - see relup(4)
� Module = atom()
� Warnings = Error = term()

Generates a release upgrade file relup containing a script which describes how to
upgrade the system from a number of previous releases, and how to downgrade to a
number of previous releases. The script is used by release handler when installing a
new version of a release in run-time.

The release resource file Name.rel is compared with all release resource files Name2.rel
specified in UpFrom and DownTo. For each such pair, it is deducted:

� Which applications should be deleted, that is applications which are listed in
Name.rel but not in Name2.rel.

� Which applications should be added, that is applications which are listed in
Name2.rel but not in Name.rel.

� Which applications should be upgraded/downgraded, that is applications listed in
both Name.rel and Name2.rel, but with different versions.

� If the emulator needs to be restarted after upgrading or downgrading, that is if the
ERTS version differs between Name.rel and Name2.rel.

34 System Application Support Libraries (SASL)

SASL Reference Manual systools

Instructions for this are added to the relup script in the above order. Instructions for
upgrading or downgrading between application versions are fetched from the relevant
application upgrade files App.appup, sorted in the same order as when generating a boot
script, see make script/1,2. High-level instructions are translated into low-level
instructions and the result is printed to relup in the current working directory.

The optional Descr parameter is included as-is in the relup script, see relup(4).
Defaults to the empty list.

All the files are searched for in the code path. It is assumed that the .app and .appup
file for an application is located in the same directory.

If the option fpath,[Dir]g is provided, this path is appended to the current path. The
wildcard * is expanded to all matching directories. Example: lib/*/ebin.

If the restart emulator option is supplied, a low-level instruction to restart the
emulator is appended to the relup scripts. This ensures that a complete reboot of the
system is done when the system is upgraded or downgraded.

By default, errors and warnings are printed to tty and the function returns ok or error.
If the option silent is provided, the function instead returns
fok,Relup,Module,Warningsg where Relup is the release upgrade script, or it returns
ferror,Module,Errorg. Warnings and errors can be converted to strings by calling
Module:format warning(Warnings) or Module:format error(Error).

If the option noexec is provided, the function returns the same values as for silent but
no relup file is created.

make script(Name) -> Result

make script(Name, [Opt]) -> Result

Types:

� Name = string()
� Opt = no module tests | fpath,[Dir]g | local | fvariables,[Var]g | exref |
fexref,[App]g] | silent

� Dir = string()
� Var = fVarName,Prefixg
� VarName = Prefix = string()
� App = atom()
� Result = ok | error | fok,Module,Warningsg | ferror,Module,Errorg
� Module = atom()
� Warnings = Error = term()

Generates a boot script in a readable version Name.script and a binary version
Name.boot, specifying which code should be loaded and which applications should be
started when the Erlang runtime system is started. See script(4).

The release resource file Name.rel is read to find out which applications are included in
the release. Then the relevant application resource files App.app are read to find out
which modules should be loaded and if and how the application should be started.
(Keys modules and mod, see app(4)).

The correctness of each application is checked:

� The version of an application specified in the .rel file should be the same as the
version specified in the .app file.

35System Application Support Libraries (SASL)

systools SASL Reference Manual

� There should be no undefined applications, that is, dependencies to applications
which are not included in the release. (Key applications in .app file).

� There should be no circular dependencies among the applications.

� There should no duplicated modules, that is, modules with the same name but
belonging to different applications.

� A warning is issued if the source code for a module is missing or newer than the
object code.
If the no module tests option is specified, this check is omitted.

The applications are sorted according to the dependencies between the applications.
Where there are no dependencies, the order in the .rel file is kept. The resulting boot
script files are created in the current working directory, or in the directory where
Name.rel is located if Name contains a path.

All files are searched for in the current path. It is assumed that the .app and .beam files
for an application is located in the same directory. The .erl files are also assumed to be
located in this directory, unless it is an ebin directory in which case they may be located
in the corresponding src directory.

If the option fpath,[Dir]g is provided, this path is appended to the current path. A
directory in the path can be given with a wildcard *, this is expanded to all matching
directories. Example: "lib/*/ebin".

In the generated boot script all application directories are structured as App-Vsn/ebin
and assumed to be located in $ROOT/lib, where $ROOT is the root directory of the
installed release. If the local option is supplied, the actual directories where the
applications were found are used instead. This is a useful way to test a generated boot
script locally.

The variables option can be used to specify an installation directory other than
$ROOT/lib for some of the applications. If a variable fVarName,Prefixg is specified and
an application is found in a directory Prefix/Rest/App[-Vsn]/ebin, this application
will get the path VarName/Rest/App-Vsn/ebin in the boot script. If an application is
found in a directory Prefix/Rest, the path will be VarName/Rest/App-Vsn/ebin.
When starting Erlang, all variables VarName are given values using the boot var
command line flag.

Example: If the option fvariables,[f"TEST","lib"g]g is supplied, and myapp.app is
found in lib/myapp/ebin, then the path to this application in the boot script will be
$TEST/myapp-1/ebin". If myapp.app is found in lib/test, then the path will be
$TEST/test/myapp-1/ebin.

The checks performed before the boot script is generated can be extended with some
cross reference checks by specifying the exref option. These checks are performed with
the Xref tool. All applications, or the applications specified with fexref,[App]g, are
checked by Xref and warnings are generated for calls to undefined functions.

By default, errors and warnings are printed to tty and the function returns ok or error.
If the option silent is provided, the function instead returns fok,Module,Warningsg
or ferror,Module,Errorg. Warnings and errors can be converted to strings by calling
Module:format warning(Warnings) or Module:format error(Error).

make tar(Name) -> Result

make tar(Name, [Opt]) -> Result

Types:

� Name = string()

36 System Application Support Libraries (SASL)

SASL Reference Manual systools

� Opt = fdirs,[IncDir]g | fpath,[Dir]g | fvariables,[Var]g | fvar tar,VarTarg |
ferts,Dirg | no module tests | exref | fexref,[App]g | silent

� Dir = string()
� IncDir = src | include | atom()
� Var = fVarName,PreFixg
� VarName = Prefix = string()
� VarTar = include | ownfile | omit
� Machine = atom()
� App = atom()
� Result = ok | error | fok,Module,Warningsg | ferror,Module,Errorg
� Module = atom()
� Warning = Error = term()

Creates a release package file Name.tar.gz. file. This file must be uncompressed and
unpacked on the target system using the release handler, before the new release can
be installed.

The release resource file Name.rel is read to find out which applications are included in
the release. Then the relevant application resource files App.app are read to find out the
version and modules of each application. (Keys vsn and modules, see app(4)).

By default, the release package contains the directories lib/App-Vsn/ebin and
lib/App-Vsn/priv for each included application. If more directories, the option dirs
is supplied. Example: fdirs,[src,examples]g.

All files are searched for in the current path. If the option fpath,[Dir]g is provided,
this path is appended to the current path. The wildcard * is expanded to all matching
directories. Example: "lib/*/ebin".

The variables option can be used to specify an installation directory other than lib
for some of the applications. If a variable fVarName,Prefixg is specified and an
application is found in a directory Prefix/Rest/App[-Vsn]/ebin, this application will
be packed into a separate VarName.tar.gz file as Rest/App-Vsn/ebin.

Example: If the option fvariables,[f"TEST","lib"g]g is supplied, and myapp.app is
found in lib/myapp-1/ebin, the the application myapp is included in TEST.tar.gz:

% tar tf TEST.tar
myapp-1/ebin/myapp.app
...

The fvar tar,VarTarg option can be used to specify if and where a separate package
should be stored. In this option, VarTar is:

� include. Each separate (variable) package is included in the main
ReleaseName.tar.gz file. This is the default.

� ownfile. Each separate (variable) package is generated as separate files in the same
directory as the ReleaseName.tar.gz file.

� omit. No separate (variable) packages are generated and applications which are
found underneath a variable directory are ignored.

37System Application Support Libraries (SASL)

systools SASL Reference Manual

A directory called releases/RelVsn is also included in the release package. The release
version RelVsn is found in the release package. This directory contains Name.rel, the
boot script Name.boot renamed to start.boot and, if found, the files relup and
sys.config.

If the release package should contain a new Erlang runtime system, the bin directory of
the specified runtime system ferts,Dirg is copied to erts-ErtsVsn/bin.

All checks performed with the make script function are performed before the release
package is created. The no module tests and exref options are also valid here.

The return value and the handling of errorsd and warnings are the same as described for
make script above.

script2boot(File) -> ok | error

Types:

� File = string()

The Erlang runtime system requires that the contents of the script used to boot the
system is a binary Erlang term. This function transforms the File.script boot script to
a binary term which is stored in the file File.boot.

A boot script generated using the make script function is already transformed to the
binary form.

SEE ALSO

app(4), appup(4), erl(1), rel(4), release handler(3), relup(4), script(4)

38 System Application Support Libraries (SASL)

SASL Reference Manual appup

appup
File

The application upgrade file defines how an application is upgraded or downgraded in a
running system.

This file is used by the functions in systools when generating a release upgrade file
relup.

FILE SYNTAX

The application upgrade file should be called Application.appup where Application
is the name of the application. The file should be located in the ebin directory for the
application.

The .appup file contains one single Erlang term, which defines the instructions used to
upgrade or downgrade the application. The file has the following syntax:

{Vsn,
[{UpFromVsn, Instructions}, ...],
[{DownToVsn, Instructions}, ...]}.

� Vsn = string() is the current version of the application.

� UpFromVsn = string() is an earlier version of the application to upgrade from.

� DownToVsn = string() is an earlier version of the application to downgrade to.

� Instructions is a list of release upgrade instructions, see below. It is recommended
to use high-level instructions only. These are automatically translated to low-level
instructions by systools when creating the relup file.

RELEASE UPGRADE INSTRUCTIONS

Release upgrade instructions are interpreted by the release handler when an upgrade or
downgrade is made. For more information about release handling, refer to OTP Design
Principes.

A process is said to use a module Mod, if Mod is listed in the Modules part of the child
specification used to start the process, see supervisor(3). In the case of gen event, an
event manager process is said to use Mod if Mod is an installed event handler.

High-level instructions

39System Application Support Libraries (SASL)

appup SASL Reference Manual

fupdate, Modg
fupdate, Mod, supervisorg
fupdate, Mod, Changeg
fupdate, Mod, DepModsg
fupdate, Mod, Change, DepModsg
fupdate, Mod, Change, PrePurge, PostPurge, DepModsg
fupdate, Mod, Timeout, Change, PrePurge, PostPurge, DepModsg
fupdate, Mod, ModType, Timeout, Change, PrePurge, PostPurge, DepModsg
Mod = atom()
ModType = static | dynamic
Timeout = int()>0 | default | infinity
Change = soft | fadvanced,Extrag

Extra = term()
PrePurge = PostPurge = soft purge | brutal purge
DepMods = [Mod]

Synchronized code replacement of processes using the module Mod. All those processes
are suspended using sys:suspend, the new version of the module is loaded and then
the processes are resumed using sys:resume.

Change defaults to soft and defines the type of code change. If it is set to
fadvanced,Extrag, processes implemented using gen server, gen fsm or gen event will
transform their internal state by calling the callback function code change. Special
processes will call the callback function system code change/4. In both cases, the term
Extra is passed as an argument to the callback function.

PrePurge defaults to brutal purge and controls what action to take with processes
that are executing old code before loading the new version of the module. If the value is
brutal purge, the processes are killed. If the value is soft purge,
release handler:install release/1 returns ferror,fold processes,Modgg.

PostPurge defaults to brutal purge and controls what action to take with processes
that are executing old code when the new version of the module has been loaded. If the
value is brutal purge, the code is purged when the release is made permanent and the
processes are killed. If the value is soft purge, the release handler will purge the old
code when no remaining processes execute the code.

DepMods defaults to [] and defines which other modules Mod is dependent on. In relup,
instructions for suspending processes using Mod will come before instructions for
suspending processes using modules in DepMods when upgrading, and vice versa when
downgrading. In case of circular dependencies, the order of the instructions in the
appup script is kept.

Timeout defines the timeout when suspending processes. If no value or default is
given, the default value for sys:suspend is used.

ModType defaults to dynamic and specifies if the code is “dynamic”, that is if a process
using the module does spontaneously switch to new code, or if it is “static”. When doing
an advanced update and upgrading, the new version of a dynamic module is loaded
before the process is asked to change code. When downgrading, the process is asked to
change code before loading the new version. For static modules, the new version is
loaded before the process is asked to change code, both in the case of upgrading and
downgrading. Callback modules are dynamic.

update with argument supervisor is used when changing the start specification of a
supervisor.

40 System Application Support Libraries (SASL)

SASL Reference Manual appup

fload module, Modg
fload module, Mod, DepModsg
fload module, Mod, PrePurge, PostPurge, DepModsg
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge
DepMods = [Mod]

Simple code replacement of the module Mod.

See update above for a description of PrePurge and PostPurge.

DepMods defaults to [] and defines which other modules Mod is dependent on. In relup,
instructions for loading these modules will come before the instruction for loading Mod
when upgrading, and vice versa when downgrading.

fadd module, Modg
Mod = atom()

Loads a new module Mod.

fdelete module, Modg
Mod = atom()

Deletes a module Mod using the low-level instructions remove and purge.

fadd application, Applicationg
Application = atom()

Adding an application means that the modules defined by the modules key in the .app
file are loaded using add module, then the application is started.

fremove application, Applicationg
Application = atom()

Removing an application means that the application is stopped, the modules are
unloaded using delete module and then the application specification is unloaded from
the application controller.

frestart application, Applicationg
Application = atom()

Restarting an application means that the application is stopped and then started again
similar to using the instructions remove application and add application in
sequence.

Low-level instructions

fload object code, fApp, Vsn, [Mod]gg
App = Mod = atom()
Vsn = string()

Reads each Mod from the directory App-Vsn/ebin as a binary. It does not load the
modules. The instruction should be placed first in the script in order to read all new
code from file to make the suspend-load-resume cycle less time consuming. After this
instruction has been executed, the code server with the new version of App.

41System Application Support Libraries (SASL)

appup SASL Reference Manual

point of no return

If a crash occurs after this instruction, the system cannot recover and is restarted from
the old version of the release. The instruction must only occur once in a script. It
should be placed after all load object code instructions.

fload, fMod, PrePurge, PostPurgegg
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge

Before this instruction occurs, Mod must have been loaded using load object code.
This instruction loads the module. PrePurge is ignored. See the high-level instruction
update for a description of PostPurge.

fremove, fMod, PrePurge, PostPurgegg
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge

Makes the current version of Mod old. PrePurge is ignored. See the high-level
instruction update for a description of PostPurge.

fpurge, [Mod]g
Mod = atom()

Purges each module Mod, that is removes the old code. Note that any process executing
purged code is killed.

fsuspend, [Mod | fMod, Timeoutg]g
Mod = atom()
Timeout = int()>0 | default | infinity

Tries to suspend all processes using a module Mod. If a process does not respond, it is
ignored. This may cause the process to die, either because it crashes when it
spontaneously switches to new code, or as a result of a purge operation. If no Timeout is
specified or default is given, the default value for sys:suspend is used.

fresume, [Mod]g
Mod = atom()

Resumes all suspended processes using a module Mod.

fcode change, [fMod, Extrag]g
fcode change, Mode, [fMod, Extrag]g
Mod = atom()
Mode = up | down
Extra = term()

Mode defaults to up and specifies if it is an upgrade or downgrade.

This instruction sends a code change system message to all processes using a module
Mod by calling the function sys:change code, passing the term Extra as argument.

42 System Application Support Libraries (SASL)

SASL Reference Manual appup

fstop, [Mod]g
Mod = atom()

Stops all processes using a module Mod by calling supervisor:terminate child/2.
The instruction is useful when the simplest way to change code is to stop and restart the
processes which run the code.

fstart, [Mod]g
Mod = atom()

Starts all stopped processes using a module Mod by calling
supervisor:restart child/2.

fsync nodes, Id, [Node]g
fsync nodes, Id, fM, F, Agg
Id = term()
Node = node()
M = F = atom()
A = [term()]

apply(M, F, A) must return a list of nodes.

The instruction synchronizes the release installation with other nodes. Each Node must
evaluate this command, with the same Id. The local node waits for all other nodes to
evaluate the instruction before execution continues. In case a node goes down, it is
considered to be an unrecoverable error, and the local node is restarted from the old
release. There is no timeout for this instruction, which means that it may hang forever.

fapply, fM, F, Agg
M = F = atom()
A = [term()]

Evaluates apply(M, F, A). If the instruction appears before the point of no return
instruction, a failure is caught. release handler:install release/1 then returns
ferror,f’EXIT’,Reasongg, unless ferror,Errorg is thrown or returned. Then it
returns ferror,Errorg.

If the instruction appears after the point of no return instruction, and the function
call fails, the system is restarted.

restart new emulator

Shuts down the current emulator and starts a ne one. All processes are terminated
gracefully. The new release must still be made permanent when the new emulator is up
and running. Otherwise, the old emulator is started in case of a emulator restart. This
instruction should be used when a new emulator is introduced, or if a complete reboot
of the system should be done.

SEE ALSO

relup(4) [page 46], release handler(3) [page 24], supervisor(3), systools(3) [page 34]

43System Application Support Libraries (SASL)

rel SASL Reference Manual

rel
File

The release resource file specifies which applications are are included in a release
(system) based on Erlang/OTP.

This file is used by the functions in systools when generating start scripts (.script,
.boot) and release upgrade files (relup).

FILE SYNTAX

The release resource file should be called Name.rel.

The .rel file contains one single Erlang term, which is called a release specification. The
file has the following syntax:

{release, {RelName,Vsn}, {erts, EVsn},
[{Application, AppVsn} |
{Application, AppVsn, Type} |
{Application, AppVsn, IncApps} |
{Application, AppVsn, Type, IncApps}]}.

� RelName = string() is the name of the release.

� Vsn = string() is the version of the release.

� EVsn = string() is the version of ERTS the release is intended for.

� Application = atom() is the name of an application included in the release.

� AppVsn = string() is the version of an application included in the release.

� Type = permanent | transient | temporary | load | none is the start type
of an application included in the release.
If Type = permanent | transient | temporary, the application will be loaded
and started in the corresponding way, see application(3). If Type = load, the
application will only be loaded. If Type = none, the application will be neither
loaded nor started, although the code for its modules will be loaded. Defaults to
permanent

� IncApps = [atom()] is a list of applications that are included by an application
included in the release.
The list must be a subset of the included applications specified in the application
resource file (Application.app) and overrides this value. Defaults to the empty
list.

Note:
The list of applications must contain the kernel and stdlib applications.

44 System Application Support Libraries (SASL)

SASL Reference Manual rel

SEE ALSO

application(3), relup(4), systools(3)

45System Application Support Libraries (SASL)

relup SASL Reference Manual

relup
File

The release upgrade file describes how a release is upgraded in a running system.

This file is automatically generated by systools:make relup/3,4, using a release
resource file (.rel), application resource files (.app) and application upgrade files
(.appup) as input.

FILE SYNTAX

In a target system, the release upgrade file should be located in the
OTP ROOT/erts-EVsn/Vsn directory.

The relup file contains one single Erlang term, which defines the instructions used to
upgrade the release. The file has the following syntax:

{Vsn,
[{UpFromVsn, Descr, Instructions}, ...],
[{DownToVsn, Descr, Instructions}, ...]}.

� Vsn = string() is the current version of the release.

� UpFromVsn = string() is an earlier version of the release to upgrade from.

� Descr = term() is a user defined parameter passed from the
systools:make relup/3,4 function. It will be used in the return value of
release handler:install release/1,2.

� Instructions is a list of low-level release upgrade instructions, see appup(4).
It consists of the release upgrade instructions from the respective application
upgrade files (high-level instructions are translated to low-level instructions), in the
same order as in the start script.

� DownToVsn = string() is an earlier version of the release to downgrade to.

When upgrading from UpFromVsn with release handler:install release/1,2, there
does not have to be an exact match of versions, but UpFromVsn can be a sub-string of
the current release version.

SEE ALSO

app(4), appup(4), rel(4), release handler(3), systools(3)

46 System Application Support Libraries (SASL)

SASL Reference Manual script

script
File

The boot script describes how the Erlang runtime system is started. It contains
instructions on which code to load and which processes and applications to start.

The command erl -boot Name starts the system with a boot file called Name.boot,
which is generated from the Name.script file, using systools:script2boot/1.

The .script file is generated by systools from a .rel file and .app files.

FILE SYNTAX

The boot script is stored in a file with the extension .script

The file has the following syntax:

{script, {Name, Vsn},
[
{progress, loading},
{preLoaded, [Mod1, Mod2, ...]},
{path, [Dir1,"$ROOT/Dir",...]}.
{primLoad, [Mod1, Mod2, ...]},
...
{kernel_load_completed},
{progress, loaded},
{kernelProcess, Name, {Mod, Func, Args}},
...
{apply, {Mod, Func, Args}},
...
{progress, started}]}.

� Name = string() defines the name of the system.

� Vsn = string() defines the version of the system.

� fprogress, Termg sets the “progress” of the initialization program. The function
init:get status() returns the current value of the progress, which is
fInternalStatus,Termg.

� fpath, [Dir]g where Dir is a string. This argument sets the load path of the
system to [Dir]. The load path used to load modules is obtained from the initial
load path, which is given in the script file, together with any path flags which were
supplied in the command line arguments. The command line arguments modify
the path as follows:

– -pa Dir1 Dir2 ... DirN adds the directories Dir1, Dir2, ..., DirN to
the front of the initial load path.

– -pz Dir1 Dir2 ... DirN adds the directories Dir1, Dir2, ..., DirN to
the end of the initial load path.

47System Application Support Libraries (SASL)

script SASL Reference Manual

– -path Dir1 Dir2 ... DirN defines a set of directories Dir1, Dir2, ...,
DirN which replaces the search path given in the script file. Directory names
in the path are interpreted as follows:
� Directory names starting with / are assumed to be absolute path names.
� Directory names not starting with / are assumed to be relative the current

working directory.
� The special $ROOT variable can only be used in the script, not as a

command line argument. The given directory is relative the Erlang
installation directory.

� fprimLoad, [Mod]g loads the modules [Mod] from the directories specified in
Path. The script interpreter fetches the appropriate module by calling the function
erl prim loader:get file(Mod). A fatal error which terminates the system will
occur if the module cannot be located.

� fkernel load completedg indicates that all modules which must be loaded before
any processes are started are loaded. In interactive mode, all fprimLoad,[Mod]g
commands interpreted after this command are ignored, and these modules are
loaded on demand. In embedded mode, kernel load completed is ignored, and
all modules are loaded during system start.

� fkernelProcess, Name, fMod, Func, Argsgg starts a “kernel process”. The
kernel process Name is started by evaluating apply(Mod, Func, Args) which is
expected to return fok, Pidg or ignore. The init process monitors the
behaviour of Pid and terminates the system if Pid dies. Kernel processes are key
components of the runtime system. Users do not normally add new kernel
processes.

� fapply, fMod, Func, Argsgg. The init process simply evaluates apply(Mod,
Func, Args). The system terminates if this results in an error. The boot procedure
hangs if this function never returns.

Note:
In the interactive system the code loader provides demand driven code loading,
but in the embedded system the code loader loads all the code immediately. The same
version of code is used in both cases. The code server calls
init:get argument(mode) to find out if it should run in demand mode, or
non-demand driven mode.

SEE ALSO

systools(3)

48 System Application Support Libraries (SASL)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

alarm handler
clear_alarm/1, 17
get_alarms/0, 17
set_alarm/1, 17

check_install_release/1
release handler , 26

clear_alarm/1
alarm handler , 17

create_RELEASES/4
release handler , 26

downgrade_app/2
release handler , 30

downgrade_app/3
release handler , 30

downgrade_script/3
release handler , 31

eval_appup_script/4
release handler , 32

get_alarms/0
alarm handler , 17

get_overload_info/0
overload , 20

grep/1
rb , 21

h/0
rb , 21

help/0
rb , 21

install_file/2
release handler , 26

install_release/1
release handler , 27

install_release/2
release handler , 27

list/0
rb , 21

list/1
rb , 21

make_permanent/1
release handler , 28

make_relup/3
systools , 34

make_relup/4
systools , 34

make_script/1
systools , 35

make_script/2
systools , 35

make_tar/1
systools , 36

make_tar/2
systools , 36

overload
get_overload_info/0, 20
request/0, 20

rb
grep/1, 21
h/0, 21
help/0, 21
list/0, 21
list/1, 21
rescan/0, 21

49System Application Support Libraries (SASL)

rescan/1, 21
show/0, 21
show/1, 21
start/0, 22
start/1, 22
start_log/1, 22
stop/0, 23
stop_log/0, 23

reboot_old_release/1
release handler , 28

release handler
check_install_release/1, 26
create_RELEASES/4, 26
downgrade_app/2, 30
downgrade_app/3, 30
downgrade_script/3, 31
eval_appup_script/4, 32
install_file/2, 26
install_release/1, 27
install_release/2, 27
make_permanent/1, 28
reboot_old_release/1, 28
remove_release/1, 28
set_removed/1, 28
set_unpacked/2, 28
unpack_release/1, 29
upgrade_app/2, 29
upgrade_script/2, 30
which_releases/0, 29

remove_release/1
release handler , 28

request/0
overload , 20

rescan/0
rb , 21

rescan/1
rb , 21

script2boot/1
systools , 38

set_alarm/1
alarm handler , 17

set_removed/1
release handler , 28

set_unpacked/2
release handler , 28

show/0
rb , 21

show/1
rb , 21

start/0
rb , 22

start/1
rb , 22

start_log/1
rb , 22

stop/0
rb , 23

stop_log/0
rb , 23

systools
make_relup/3, 34
make_relup/4, 34
make_script/1, 35
make_script/2, 35
make_tar/1, 36
make_tar/2, 36
script2boot/1, 38

unpack_release/1
release handler , 29

upgrade_app/2
release handler , 29

upgrade_script/2
release handler , 30

which_releases/0
release handler , 29

50 System Application Support Libraries (SASL)

