Efficiency Guide

version 5.4

Typeset in IATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 Efficiency Guide

11

1.2

13

1.4

15

1.6

1.7

18

1
Introduction 1
1.1.1 PUrpoSe 1
1.1.2 Pre-requisites e e 1
Listhandling e 2
121 Creatingalist 2
1.2.2 Deletingalistelement 2
1.2.3 Unnecessary listtraversal 3
124 Deepandflatlists. 4
Functions e 5
1.3.1 Patternmatching e 5
132 FunctionCalls 5
1.3.3 Memory usage in recursion e e e 6
1.3.4 Unnecessary evaluation in each recursivestep 6
Tablesand databases L 7
1.41 Ets,Detsand Mnesia o e 7
1.4.2 Etsspecific e 12
1.4.3 Mnesiaspecific 13
1.4.4 Older versions of Erlang/OTP o 15
Processes e e e 16
1.5.1 CreationofanErlangprocess o oo 16
1.5.2 ProCess mesSages v v v v i i e e e e e 17
Builtinfunctions 18
1.6.1 SomenotesaboutBIFs 18
Advanced L e e e 18
1.7.1 Memory 18
1.7.2 Systemlimits 19
Profiling 20
1.8.1 Do not guess about performance, when you can know! 20
1.8.2 BigsSysStems e 20

Efficiency Guide i

1.8.3 Whattolookfor e 21

1.84 Tools. 21

1.85 Benchmarking 22

1.9 Appendix - Programs L 23
1.9.1 bench.eerl e 23

1.9.2 bench.hrl 33

1.9.3 allerl e 33

1.9.4 README e 35

1.95 callbmeerl. 37

1.9.6 index.html 39

List of Figures 41
List of Tables 43

iv Efficiency Guide

Chapter 1

Efficiency Guide

1.1 Introduction

1.1.1 Purpose

In the most perfect of all worlds this document would not be needed. The compiler would be able to
make all necessary optimizations. Alas the world is not perfect!

All considerations for efficiency are more or less implementation dependent. Efficient code is not
always good code from the perspective of generality, ease of understanding and maintaining. Therefor
programming becomes a balance act between generality and efficiency. So how do we manage to walk
on the lim and not fall off? Well, on a structural level there are things that you can keep in mind while
you design your code. This guide will try to help you use data structures and mechanisms of
Erlang/OTP in the intended way, this will help you avoid many unnecessary bottlenecks. Apart from
those structal considerations, you should never optimize before you profiled your code and found the
bottlenecks. Also remember not all code is time critical, if it does not matter if takes a few seconds
more or less there is no point in trying to optimize it. Profiling erlang code is easy using tools such as
eprof, fprof (from release 8 and forward) and cover. Using these tools are just a matter of calling a
few functions in the respective library modules. Taking the appropriate measures to speed the code up
once you found the bottlenecks can be a bit harder. You may have to invent new algorithms or in other
ways restructure your program. This guide will give you some background knowledge to be able to
come up with solutions.

Note:

For the sake of readability, the example code has been kept as simple as possible. It does not include
functionality such as error handling, which might be vital in a real-life system. Inspiration for the
examples is taken from code that has existed in real projects.

1.1.2 Pre-requisites

It is assumed that the reader is familiar with the Erlang programming language and concepts of OTP.

Efficiency Guide 1

Chapter 1: Efficiency Guide

1.2 List handling

1.2.1 Creating a list

Calling lists:append(List1l, List2) will resultin that the whole Listl has to be traversed. When
recursively building a list always attach the element to the begining of the list and not to the end. In the
case that the order of the elements in the list is important you can always reverse the list when it has
been built! It is cheaper to reverse the list in the final step, than to append the element to the end of the
list in each recursion. Note that ++ is equivalent to lists:append/2. As an example consider the
tail-recursive function fib that creates a list of Fibonacci numbers. (The Fibonacci series is formed by
adding the latest two numbers to get the next one, starting from 0 and 1.)

> fib(4).
(0, 1, 1, 2, 3]

DO

fib(N) ->
fib(N, 0, 1, [0]).

fib(0, Current, Next, Fibs) —->
lists:reverse(Fibs); ’ Reverse the list as the order is important

fib(N, Current, Next, Fibs) ->
fib(N - 1, Next, Current + Next, [Next | Fibs]).

DO NOT

fib(N) ->
fib(N, 0, 1, [0]).

fib(0, Current, Next, Fibs) ->
Fibs;

fib(N, Current, Next, Fibs) —->
fib(N - 1, Next, Current + Next, Fibs ++ [Next]).

1.2.2 Deleting a list element

When using the function delete in the lists module there is no reason to check that the element is
actually part of the list. If the element is not part of the list the delete operation will be considered
successful.

DO

NewList = lists:delete(Element, List),

DO NOT

2 Efficiency Guide

1.2: List handling

NewList =
case lists:member(Element, List) of
true ->
lists:delete(Element, List);
false ->
List
end,

1.2.3 Unnecessary list traversal

Use functions like lists:foldl/3 and lists:mapfoldl/3 to avoid traversing lists more times than necessary.
The function mapfold combines the operations of map and foldl into one pass. For example, we could
sum the elements in a list and double them at the same time:

> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
o0, [1,2,3,4,5]).
{[2,4,6,8,10] ,15}

Also consider the function evenMultipleSum below where we make one list traversal in the first version
and three in the second version. (This may not be a very useful function, but it serves as a simple
example of the principle.)

DO

evenMultipleSum(List, Multiple) ->
lists:foldl(fun(X, Sum) when (X rem 2) == 0 —->
X * Multiple + Sum;
(X, Sum) —>
Sum
end, 0, List).

DO NOT
evenMultipleSum(List, Multiple) ->
FilteredList = lists:filter(fun(X) -> (X rem 2) == 0 end, List),

MultipleList = lists:map(fun(X) -> X * Multiple end, FilteredList),
lists:sum(MultipleList) .

Efficiency Guide 3

Chapter 1: Efficiency Guide

1.2.4 Deep and flat lists

lists:flatten/1is a very general function and because of this it can be quite expensive to use. So do
not use it if you do not have to. There are especially two senarios where you do not need to use flatten

e When sending data to a port. Ports understands deep lists so there is no reason to flatten the list
before sending it to the port.

¢ When you have a deep list of depth 1 you can flatten it using append/1

Port example
DO

port_command (Port, DeepList)

DO NOT

port_command (Port, lists:flatten(DeepList))

A common way that people construct a flat list in vain is when they use append to send a O-terminated
string to a port. In the example below please note that “foo” is equivalent to [102, 111, 111].

DO

TerminatedStr = [String, 0], % String="foo" => [[102, 111, 111], 0]
port_command (Port, TerminatedStr)

DO NOT

TerminatedStr = String ++ [0], I String="foo" => [102, 111, 111, 0]
port_command (Port, TerminatedStr)

Append example

DO
> lists:append([[1], [2], [3]1]).
[1,2,3]
>

DO NOT

4 Efficiency Guide

1.3: Functions

> lists:flatten([[1], [2], [311).
[1,2,3]
>

Note:
If your deep list is a list of strings you will not get the wanted result using flatten. Remember that
strings are lists. See example below:

> lists:append([["fo0"], ["bar"]]).
[llfooll s llbarll]

> lists:flatten([["foo"], ["bar"]l]).
"foobar"

1.3 Functions

1.3.1 Pattern matching

Pattern matching in function, case and receive-clauses are optimized by the compiler. In most cases,
there is nothing to gain by rearranging clauses.

1.3.2 Function Calls

A function can be called in a number of ways and the cost differs a lot. Which kind of call to use
depends on the situation. Below follows a table with the available alternatives and their relative cost.

Note:

The figures shown as relative cost is highly dependent on the implementation and will vary between
versions and platform. The order from lowest to highest cost will however be stable and is very
useful to be aware of.

Type of call Example Relative cost (5.4)
Local call foo) 1.00
External call m:foo() 1.08
Fun call Fun = fun(X) -> X + 1 end, Fun(2) 2.79
Apply fun Fun = fun(X) -> X + 1 end, apply(Fun, [2]) 3.54
Implicit apply M:Foo() 7.76
Apply MFA/3 apply (M, Foo, [1) 8.21

Table 1.1: Different ways of calling a function

Efficiency Guide 5

Chapter 1: Efficiency Guide

Apply is the most expensive way to call a function and should be avoided in time critical code. A well
motivated use of apply is in conjunction with generic interfaces where several modules provide the
same set of functions.

Note:

The syntax M:Foo (A1,A2,An) (also referred to as implicit apply, where M and Foo are bound
variables) where equivalent with apply (M,Foo, [A1,A2,An]) in releases pre OTP-R10B. The
compiler will now optimize this syntax giving it better performance than apply/3.

The use of apply/3 for just calling different functions within the same module (i.e
apply (mymodule,Func,Args)) is not recommended. The use of Funs can often be a more efficient way
to accomplish calls which are variable in runtime.

1.3.3 Memory usage in recursion

When writing recursive functions it is preferable to make them tail-recursive so that they can execute in
a constant memory space.

DO

list_length(List) ->
list_length(List, 0).

list_length([], AccLen) ->
Acclen; % Base case

list_length([_|Taill, Acclen) ->
list_length(Tail, AcclLen + 1). % Tail-recursive

DO NOT

list_length([]) —>
0. % Base case
list_length([_ | Taill) ->
list_length(Tail) + 1. % Not tail-recursive

1.3.4 Unnecessary evaluation in each recursive step
Do not evaluate the same expression in each recursive step, rather pass the result around as a parameter.
For example imagine that you have the function in_range/3 below and want to write a function

in_range/2 that takes a list of integers and atom as argument. The atom specifies a key to the named
table range_table, so you can lookup the max and min values for a particular type of range.

in_range(Value, Min, Max) ->
(Value >= Min) and (Value =< Max).

DO

6 Efficiency Guide

1.4: Tables and databases

in_range(ValuList, Type) ->
%% Will be evaluated only one time ...
[{Min, Max}] = ets:lookup(range_table, Type),
%% ... send result as parameter to recursive help-function
lists_in_range(ValulList, Min, Max).

lists_in_range([Value | Taill, Min, Max) ->
case in_range(Value, Min, Max) of

true ->
lists_in_range(Tail, Min, Max);
false —>
false
end;
lists_in_range([], _, _) ->
true.
DO NOT

in_range([Value | Taill, Type) ->
%% Will be evaluated in each recursive step
[{Min, Max}] = ets:lookup(range_table, Type),
case in_range(Value, Min, Max) of
true >
lists_in_range(Tail, Type);
false ->
false
end;

in_range([l, _,) —>
true.

1.4 Tables and databases

1.4.1 Ets, Dets and Mnesia

All examples using Ets has an corresponding example in Mnesia. In general all Ets examples also applies

to Dets tabels.

Select/Match operations

Select/Match operations on Ets and Mnesia tables can become very expensive operations. They will
have to scan the whole table that may be very large. You should try to structure your data so that you
minimize the need for select/match operations. However if you need a select/match operation this will
be more efficient than traversing the whole table using other means such as tab21ist and mnemosyne.
Examples of this and also of ways to avoid select/match will be provided in some of the following
sections. From R8 the functions ets:select/2 and mnesia:select/3 should be preferred over

ets:match/2,ets:match object/2 and mnesia:match object/3.

Efficiency Guide

Chapter 1: Efficiency Guide

Note:

There are exceptions when the whole table is not scanned. This is when the key part is bound, the
key part is partially bound in an orded_set table, or if it is a mnesia table and there is a secondary
index on the field that is selected/matched. Of course if the key is fully bound there will be no point
in doing a select/match, unless you have a bag table and you are only interested in a sub-set of the
elements with the specific key.

When creating a record to be used in a select/match operation you want most of the fields to have the
value '_". To avoid having to explicitly set all of these fields people have created functions that takes
advantage of the fact that records are implemented as tuples. This is not such a good idea, that is why
you from R8 can do the following

#person{age = 42, _ = ’_’}.

This will set the age attribute to 42 and all other attributes to *_'. This is more efficient then creating a
tuple with "_" values, that then is used as a record. It is also much better code as it does not violate the
record abstraction.

Deleting an element

As in the case of lists, the delete operation is considered successful if the element was not present in the
table. Hence all attempts to check that the element is present in the Ets/Mnesia table before deletion
are unnecessary. Here follows an example for Ets tables.

DO

ets:delete(Tab, Key),

DO NOT

case ets:lookup(Tab, Key) of
a0 ->
ok;
1] >
ets:delete(Tab, Key)
end,

8 Efficiency Guide

1.4: Tables and databases

Data fetching

Do not fetch data that you already have! Consider that you have a module that handles the abstract
data type Person. You export the interface function print_person/1 that uses the internal functions
print_name/1, print_age/1, print_occupation/1.

Note:
If the functions print name/1 etc. had been interface functions the matter comes in to a whole new
light. As you do not want the user of the interface to know about the internal data representation.

DO

%%% Interface function
print_person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, Personld) of
[Person] ->
print_name (Person),
print_age(Person),
print_occupation(Person) ;
a -
io:format ("No person with ID = “p™n", [PersonID])
end.

%%% Interanal functions
print_name(Person) ->
io:format ("No person “p~n", [Personi#tperson.name]).

print_age(Person) ->
io:format("No person “p~n", [Person#person.age]).

print_occupation(Person) ->
io:format("No person “p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
print_person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, Personld) of
[Person] ->
print_name (PersonID),
print_age(PersonID),
print_occupation(PersonID);
a1 ->
io:format ("No person with ID = “p™n", [PersonID])
end.

%%% Interanal functions
print_name (PersonID) ->

Efficiency Guide 9

Chapter 1: Efficiency Guide

[Person] = ets:lookup(person, PersonId),
io:format ("No person “p~n", [Person#person.name]).

print_age(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person “p~n", [Person#person.age]).

print_occupation(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person “p~n", [Person#person.occupation]).

Non persistent data storage

For non persistent database storage, prefer Ets tables before Mnesia local_content tables. Even the
cheapest Mnesia operations, dirty write operations, carry a fixed overhead compared to Ets writes.
Mnesia must check if the table is replicated or has indices, this involves at least one Ets lookup for each
dirty_write. Thus, Ets writes will always be faster than Mnesia writes.

tab2list

Assume we have an Ets-table, which uses idno as key, and contains:

[#person{idno = 1, name = "Adam", age = 31, occupation = "mailman"},
#person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
#person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
#person{idno = 4, name = "Carl", age = 25, occupation = "mailman"}]

If we must return all data stored in the Ets-table we can use ets:tab2list/1. However, usually we are
only interested in a subset of the information in which case ets:tab21list/1 is expensive. If we only
want to extract one field from each record, e.g., the age of every person, we should use:

DO

ets:select(Tab, [{ #person{idno="_",

name=’_",
age="$1’,
occupation = ’_’},
1,
[°$1°11D),

DO NOT

TabList = ets:tab2list(Tab),
lists:map(fun(X) -> X#person.age end, TabList),

10 Efficiency Guide

1.4: Tables and databases

If we are only interested in the age of all persons named Bryan, we should:
DO

ets:select(Tab, [{ #person{idno="_",
name="Bryan",

age="%1’,
occupation = ’_’},
a1,
[$1°11D),

DO NOT

TabList = ets:tab2list(Tab),
lists:foldl(fun(X, Acc) -> case X#person.name of

"Bryan" ->
[X#tperson.age|Acc];
- >
Acc
end
end, [], TabList),
REALLY DO NOT
TabList = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.name == "Bryan" end,

TabList),
lists:map(fun(X) -> X#person.age end, BryanList),

If we need all information stored in the ets table about persons nhamed Bryan we should:
DO

ets:select(Tab, [{#person{idno=’_",
name="Bryan",
age:)_’,
occupation = ’_’}, [1, [’$°1}1),

DO NOT

Efficiency Guide 11

Chapter 1: Efficiency Guide

TabList = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

Ordered_set tables

If the data in the table should be accessed so that the order of the keys in the table is significant, the
table type ordered_set could be used instead of the more usual set table type. An ordered set is
always traversed in Erlang term order with regards to the key field so that return values from functions
such as select , match object and foldl are ordered by the key values. Traversing an ordered._set
with the first and next operations also returns the keys ordered.

Note:
An ordered _set only guarantees that objects are processed in key order. Results from functions as
ets:select/2 appear in the key order even if the key is not included in the result.

1.4.2 Ets specific
Utilizing the keys of the Ets table

An Ets table is a singel key table (either a hash table or a tree orded by the key) and should be used as
one. In other words, always use the key to look up things when possible. A lookup by a known key in a
set Ets table is constant and for a orded_set Ets table it is O(logN). A key lookup is always preferable to
a call where the whole table has to be scanned. In the examples above, the field idno is the key of the
table and all lookups where only the name is known will result in a complete scan of the (possibly large)
table for a matching result.

A simple solution would be to use the name field as the key instead of the idno field, but that would
cause problems if the names were not unique. A more general solution would be create a second table
with name as key and idno as data, i.e. to index (invert) the table with regards to the name field. The
second table would of course have to be kept consistent with the master table. Mnesia could do this for
you, but a home brew index table could be very efficient compared to the overhead involved in using
mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear
more than once) and could have the following contents:

[#index_entry{name="Adam", idno=1},
#index_entry{name="Bryan", idno=2},
#index_entry{name="Bryan", idno=3},
#index_entry{name="Carl", idno=4}]

Given this index table a lookup of the age fields for all persons named “Bryan” could be done like this:

12 Efficiency Guide

1.4: Tables and databases

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
lists:map(fun(#index_entry{idno = ID}) ->
[#person{age = Age}] = ets:lookup(PersonTable, ID),
Age
end,
MatchingIDs),

Note that the code above never uses ets:match/2 but instead utilizes the ets:lookup/2 call. The
lists:map call is only used to traverse the idno's matching the name “Bryan” in the table, why the
number of lookups in the master table is minimized.

Keeping an index table of course introduces some overhead when inserting records in the table, why the
number of operations gaining from the table has to be weighted against the number of operations
inserting objects in the table. However that the gain when the key can be used to lookup elements is
significant.

1.4.3 Mnesia specific
Secondary index

If you frequently do a lookup on a field that is not the key of the table, you will lose performance using
“mnesia:select/match_object” as this function will traverse the whole table. You may create a secondary
index instead and use “mnesia:index_read” to get faster access, however this will require more memory.
Example:

—record(person, {idno, name, age, occupation}).

{atomic, ok} =
mnesia:create_table(person, [{index, [#person.agel},
{attributes,
record-info(fields, person)}l),
{atomic, ok} = mnesia:add_table_index(person, age),

PersonsAge4?2
mnesia:dirty_index read(person, 42, #person.age),

Transactions

Transactions is a way to guarantee that the distributed mnesia database remains consistent, even when
many different processes updates it in parallel. However if you have real time requirements it is
recommended to use dirty operations instead of transactions. When using the dirty operations you lose
the consistency guarantee, this is usually solved by only letting one process update the table. Other
processes have to send update requests to that process.

Efficiency Guide 13

Chapter 1: Efficiency Guide

% Using transaction

Fun = fun() ->
[mnesia:read({Table, Key}),
mnesia:read({Table2, Key2})]

end,

{atomic, [Resultl, Result2]} = mnesia:transaction(Fun),
% Same thing using dirty operations

Resultl = mnesia:dirtyread({Table, Key}),
Result2 = mnesia:dirty.read({Table2, Key2}),

Mnemosyne

Mnesia supports complex queries through the query language Mnemosyne. This makes it possible to
perform queries of any complexity on Mnesia tables. However for simple queries Mnemosyne is usually
much more expensive than sensible handwritten functions doing the same thing.

Warning:
The use of mnemosyne queries in embedded real time systems is strongly discouraged.

Assume we have an mnesia-table, which uses idno as key, and contains:

[#person{idno=1, name="Adam", age=31, occupation="mailman"},
#person{idno=2, name="Bryan", age=31, occupation="cashier"},
#person{idno=3, name="Bryan", age=35, occupation="banker"},
#person{idno=4, name="Carl", age=25, occupation="mailman"}]

If we need to find all persons named Bryan we should:
DO

Select = fun() ->
mnesia:select(person,
[{#person{name ="Bryan", _ = >}, [1, [’$-’1}1,
read)
end,

{atomic, Result} = mnesia:transaction(Select),

14 Efficiency Guide

1.4: Tables and databases

DO NOT

Handle = query
[Person || Person <- table(person),
Person.name = "Bryan"]
end,
{atomic, Result} = mnesia:transaction(fun() -> mnemosyne:eval(Handle) end),

1.4.4 Older versions of Erlang/OTP

If you have a an older version than R8 of Erlang/OTP you would have to use match and match_object
instead of select. The select call is introduced in R8 and is not present in earlier releases. Then the code
would look as follows.

Selecting the age field:

lists:append(ets:match(Ets, #person{idno=’_’,
name=’_",
age="$1’,
occupation = ’_’})),

The lists:append/1 call above transforms the list of lists returned by ets:match/2 into a flat list
containing the values of the field age in the table.

Selecting people called Bryan:

ets:match_object(Ets, #person{idno=’3,
name="Bryan",
age= ’ s
occupation = ’_’}),

Match = fun() ->
% Create record instance with ’_’ as values of the fileds
Person = mnesia_table_info(person, wild_pattern),
mnesia:match_object (person,
Person#tperson{name ="Bryan"},
read)
end,

{atomic, Result} = mnesia:transaction(Match),

Efficiency Guide 15

Chapter 1: Efficiency Guide

1.5 Processes

1.5.1 Creation of an Erlang process

An Erlang process is very lightweight compared to most operating system threads and processes but it is
always important to be aware of its characteristics. Each Erlang process takes a minimum of 318 words
of memory for heap, stack etc. The heap is increased in Fibonacci steps depending on data created by
the program. The stack is increased by means of nested function calls and a non terminating recursive
call will increase the stack until all memory resources are exhausted and the Erlang node will be
terminated. The latter means that you need to write tail-recursive process loops.

DO

loop() —>
receive
{sys, Msg} ->
handle_sys_msg(Msg),
loop();
{From, Msg} ->
Reply = handle_msg(Msg),
From ! Reply,
loop()
end.

DO NOT

loop() ->
receive
{sys, Msg} —>
handle_sys_msg(Msg),
loop(Q);
{From, Msg} ->
Reply = handle_msg(Msg),
From ! Reply,
loop()
end,

io:format("Message is processed "n", []).

%% The last line in the example above will never be executed and
%% will eventually eat up all memory.

Rz

Figure 1.1: "Don't buy too many spades!”

A good principle when deciding which processes you need is to have one process for each truly parallel
activity in the system. Consider the analogy where you have three diggers digging a ditch, and to speed
things up you buy a fourth spade. Alas that will not help at all as a digger can only use one spade at a
time.

16 Efficiency Guide

1.5: Processes

1.5.2 Process messages

All data in messages between Erlang processes is copied, with binaries between processes at the same
node as the only exception. Binaries are shared between Erlang processes and only the reference to a
binary is copied.

When a message is sent to a process on another Erlang node it is first encoded to the Erlang External
Format and then sent on a tcp/ip socket. The receiving Erlang node decodes the message and distributes
it to the right process.

Binaries

As there is no copying when sending a binary to a process on the same node, it might be relevant to
have your message as a binary. Use binary form in messages if the cost for encoding/decoding to/from
binary form can be expected to be less than the gain of transfering in binary form. Cases where binary
form could be advantageous are when:

e The message size is very large.

e The message content is to be sent to many receivers.
e The message content will be forwarded unchanged in several messages.

Atom vs Strings

It is more efficient to send atoms than strings. However it is more inefficient to convert all strings with
list_to_atom before sending them, then to send the string as it is. The best way is to always use atoms if
possible.

DO

%% Send message on the following format
{insert, {Name, Location}}

{remove, Name}

{retrieve_location, Name}

DO NOT

%% Don’t send message on the following format
{"insert", {Name, Location}}

"remove", Name}
{"retrieve location", Name}

Efficiency Guide 17

Chapter 1: Efficiency Guide

1.6 Builtin functions

1.6.1 Some notes about BIFs

list to_atom/1 Since atoms are not garbage collected it is not a good idea to create atoms dynamically
in a system that will run continously. Sooner or later the limit 1048576 for number of atoms will
be reached with a emulator crash as result. In addition to the bad memory consumption
characteristics the function is also quite expensive to execute.

length/1 is an operation on lists and each time the length is tested the entire list must be traversed.
Since length is implemented in C it is quite efficient anyway but it still has linear characteristics.
The size/1 function which can be applied on tuples and binaries is for example much more
efficient since it only reads a size field in the internal data structure.

setelement/3 Compared with element/2 that is very efficient and independent of the tuple size
setelement/3 is an expensive operation for large tuples (>50 elements) since it implies that all
fields must be copied to a new tuple. Therefore it is not recommended to use setelement in
recursions involving large tuples.

split_binary/2 Depending on the situation it is in most cases more efficient to split a binary through
matching instead of calling the split_binary/2 function.
DO

<<Binl:Num/binary,Bin2/binary>> = Bin,
DON'T
{Bin1,Bin2} = split_binary(Bin,Num),

1.7 Advanced

1.7.1 Memory

A good start when programming efficient is to have knowledge about how much memory different data
types and operations require. It is implementation dependent how much memory the Erlang data types
and other items consume, but here are some figures for the current beam emulator version 5.2 system
(OTP release R9B). The unit of measurement is memory words. There exists both a 32-bit and a 64-bit
implementation, and a word is therefore, respectively, 4 bytes and 8 bytes.

Data type Memory size

Integer (-16#7FFFFFF < i <16#7FFFFFF) 1 word

Integer (big numbers) 3..N words

Atom 1 word. Note, an atom refers into an atom table

which also consumes memory. The atom text is
stored once for each unique atom in this table.
Note also, this table is not garbage collected.

continued ...

18 Efficiency Guide

1.7: Advanced

... continued

Float

On 32-bit architectures: 4 words On 64-bit ar-
chitectures: 3 words

Binary

3..6 + data (can be shared)

List

1 words per element + the size of each element

String (is the same as a List of Integers)

2 words per character

Tuple

2 words + the size of each element

Pid

1 word for a process identifier from the current
local node, and 5 words for a process identifier
from another node. Note, a process identifier
refers into a process table and a node table which
also consumes memory.

Port

1 word for a port identifier from the current lo-
cal node, and 5 words for a port identifier from
another node. Note, a port identifier refers into a
port table and a node table which also consumes
memory.

Reference

On 32-bit architectures: 5 words for a reference
from the current local node, and 7 words for a
reference from another node. On 64-bit archi-
tectures: 4 words for a reference from the cur-
rent local node, and 6 words for a reference from
another node. Note, a reference refers into a
node table which also consumes memory.

Fun

9..13 words + size of environment. Note, a fun
refers into a code table which also consumes
memory.

Ets table

Initially 768 words + the size of each element (6
words + size of Erlang data). The table will grow
when necessary.

Erlang process

327 words when spawned including a heap of
233 words.

Table 1.2: Memory size of different data types

1.7.2 System limits

The Erlang language specification puts no limits on number of processes, length of atoms etc. but for

performance and memory saving reasons there will always be limits in a practical implementation of the
Erlang language and execution environment. The current implementation has a few limitations that is

good to know about since some of them can be of great importance for the design of an application.

Processes The maximum number of simultaneously alive Erlang processes is by default 32768. This
limit can be raised up to at most 268435456 processes at startup (see documentation of the
system flag [+P] in the [erl(1)] documentation). The maximum limit of 268435456 processes

will at least on a 32-bit architecture be impossible to reach due to memory shortage.

Distributed nodes Known nodes A remote node Y has to be known to the node X if there exists any
pids, ports, references, or funs (Erlang data types) from Y on X, or if X and Y are connected.
The maximum number of remote nodes simultaneously/ever known to a node is limited by

the maximum number of atoms [page 20] available for node names. All data concerning

remote nodes, except for the node name atom, are garbage collected.

Efficiency Guide

19

Chapter 1: Efficiency Guide

Connected nodes The maximum number of simultaneously connected nodes is limited by either
the maximum number of simultaneously known remote nodes, the maximum number of
(Erlang) ports [page 20] available, or the maximum number of sockets [page 20] available.

Characters in an atom 255
Atoms The maximum number of atoms is 1048576.
Ets-tables default=1400, can be changed with the environment variable ERL_MAX ETS_TABLES.

Elements in a tuple The maximum number of elements in a tuple is 67108863 (26 bit unsigned
integer). Other factors such as the available memory can of course make it hard to create a tuple
of that size.

Length of binary Unsigned

Total amount of data allocated by an Erlang node The Erlang runtime system can use the whole 32
bit address space, but the operating system often limits one single process to use less than that.

length of a node name An Erlang node name has the form host@shortname or host@longname. The
node name is used as an atom within the system so the maximum size of 255 holds for the node
name too.

Open ports The maximum number of simultaneously open Erlang ports is by default 1024. This limit
can be raised up to at most 268435456 at startup (see environment variable [ERL_MAX_PORTS]
in [erlang(3)]) The maximum limit of 268435456 open ports will at least on a 32-bit architecture
be impossible to reach due to memory shortage.

Open files, and sockets The maximum number of simultaneously open files and sockets depend on the
maximum number of Erlang ports [page 20] available, and operating system specific settings and
limits.

Number of arguments to a function or fun 256

1.8 Profiling

1.8.1 Do not guess about performance, when you can know!

If you have time critical code that is running too slow. Do not waste your time trying to guess what
might be slowing it down. The best approach is to profile your code to find the bottlenecks and
concentrate your efforts on optimizing them. Profiling Erlang code is in first hand done with the tools
fprof and eprof. But also the tools cover and cprof may be useful.

Note:

Do not optimize code that is not time critical. When time is not of the essence it is not worth the
trouble trying to gain a few microseconds here and there. In this case it will never make a notable
difference.

1.8.2 Big systems

If you have a big system it might be interesting to run profiling on a simulated an limited scenario to
start with. But bottlenecks has a tendency to only appear or cause problems, when there are many
things going on at the same time, and when there are many nodes involved. Therefore it is desirable to
also run profiling in a system test plant on a real target system.

20 Efficiency Guide

1.8: Profiling

When your system is big you do not want to run the profiling tools on the whole system. You want to
concentrate on processes and modules that you know are central and stand for a big part of the
execution.

1.8.3 What to look for

When analyzing the result file from the profiling activity you will in first hand look for functions that
are called many times and has a long “own execution time” (time excluded calls to other functions).
Functions that just are called very many times can also be interesting, as even small things can add up to
quite a bit if they are repeated often. Then you need to ask yourself what can | do to reduce this time.
Appropriate types of questions to ask yourself are:

e Can I reduce the number of times the function is called?

e Are there tests that can be run less often if | change the order of tests?

e Are there redundant tests that can be removed?

Is there some expression calculated giving the same result each time?

Is there other ways of doing this that are equivalent and more efficient?
e Can | use another internal data representation to make things more efficient?

These questions are not always trivial to answer. You might need to do some benchmarks to back up
your theory, to avoid making things slower if your theory is wrong. See benchmarking [page 22].

1.8.4 Tools
fprof

fprof measures the execution time for each function, both own time i.e how much time a function has
used for its own execution, and accumulated time i.e. including called functions. The values are
displayed per process. You also get to know how many times each function has been called. fprof is
based on trace to file in order to minimize runtime performance impact. Using fprof is just a matter of
calling a few library functions, see fprof manual page under the application tools.

fprof is introduced in version R8 of Erlang/OTP. Its predecessor eprof that is based on the Erlang trace
BIFs, is still available, see eprof manual page under the application tools. Eprof shows how much time
has been used by each process, and in which function calls this time has been spent. Time is shown as
percentage of total time, not as absolute time.

cover

cover's primary use is coverage analysis to verify test cases, making sure all relevant code is covered.
cover counts how many times each executable line of code is executed when a program is run. This is
done on a per module basis. Of course this information can be used to determine what code is run very
frequently and could therefore be subject for optimization. Using cover is just a matter of calling a few
library functions, see cover manual page under the application tools.

cprof

cprof is something in between fprof and cover regarding features. It counts how many times each
function is called when the program is run, on a per module basis. cprof has a low performance
degradation (versus fprof and eprof) and does not need to recompile any modules to profile (versus
cover).

Efficiency Guide 21

Chapter 1: Efficiency Guide

Tool summarization

Tool Results Size of result Effects on | Records Records Records Records
program number of | Execution called by garbage
execution calls time collection
time

fprof per pro- | large slowdown yes total and | yes yes

cess to own
screen/file

eprof per pro- | medium significant yes only total no no

cess/function slowdown
to
screen/file

cover per mod- | small moderate yes, per | no no no

ule to slowdown line
screen/file

cprof per module | small small yes no no no

to caller slowdown
Table 1.3:

1.8.5 Benchmarking

A benchmark is mainly a way to compare different constructs that logically have the same effect. In
other words you can take two sequential algorithms and see which one is most efficient. This is
achieved by measuring the execution time of several invocations of the algorithms and then comparing
the result. However measuring runtime is far from an exact science, and running the same benchmark
two times in a row might not give exactly the same figures. Although the trend will be the same, so you
may draw a conclusion such as: Algorithm A is substantially faster than B, but you can not say that:
Algorithm A is exactly 3 times faster than B.

If you want to write a benchmark program yourself there are a few things you must consider in order to
get meaningful results.

e The total execution time should be at least several seconds

e That any time spent in setup before entering the measurement loop is very small compared to the
total time.

e That time spent by the loop itself is small compared to the total execution time.

To help you with this we provide a benchmarking framework located in the doc/efficiency_guide
directory of the Erlang/OTP installation, which consists of bench.erl [page 23] , bench.hrl [page 33] ,
and all.erl [page 33]. To find out how it works please consult README [page 35], you can also look at
the example benchmark: call_bm.erl [page 37]. Here follows an example of running the benchmark
defined in call bm.erl in a unix environment:

unix_prompt> ls
all.erl bench.erl bench.hrl call_bm.erl
unix_prompt> erl
Erlang (BEAM) emulator version 5.1.3 [threads:0]

Eshell V5.1.3 (abort with ~G)

22 Efficiency Guide

1.9: Appendix - Programs

1> c(bench).

{ok,bench}

2> bench:run().

Compiling call_bm.erl...

Running call_bm: local_call external_call fun_call apply_fun apply_mfa

ok

3> halt().

unix_prompt> 1s

all.erl bench.erl bench.hrl call_bm.erl index.html

unix_prompt>

The resulting index.html file may look like: index.html [page 39].

Note:

The results of a benchmark can only be considered valid for the Erlang/OTP version that you run the
benchmark on. Performance is dependent on the implementation which may change between
releases.

1.9 Appendix - Programs

This appendix contains the programs referred to in the previous chapters within the Efficiency Guide.

1.9.1 bench.erl

ot
ot
ot
hh
hh
hh
o
o
hh
hh
hh
o
o

‘‘The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved via the world wide web at http://www.erlang.org/.

Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.

The Initial Developer of the Original Code is Ericsson Utvecklings AB.
Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings

%% AB. All Rights Reserved.’’
YA

YA $1d$

W

-module (bench) .

%% User interface

-export ([run/0]).

o

Exported to be used in spawn

Efficiency Guide 23

Chapter 1: Efficiency Guide

-export ([measure/4]) .

%% Internal constants
-define (MAX, 999999999999999) .
-define (RANGE_MAX, 16#7ffffff).

I I T I s T s T s T s T s T o To o Fo T fo T o T o To o o T o o Vo T o Fo o Fo o Yo o oo To o Fo o o o o oo oo o o o T o o o o Fo Jo Fo o oo oot Fo o o
Hohoth Interface
T T s T s T s T s T s T s T s T o To o Fo T fo T o T o To o o T fo T o T o Fo T Fo o Yo o oo To o Fo o o o o oo oo ot o T o T o o Fo o Fo o oo oot Fo o o

/St
bt run() —> _
T
%% Compiles and runs all benchmarks in the current directory,
%% and creates a report
e
run() ->

run(compiler_options()).

T to T To o T Tt T o To To s T Fo S To o To e To T T Tt T fo o o o Fo o oo Yo o Yo o o o oo o Jo o o Voo T o T Vo Jo To o T o o Fo Fo o oo o oo o o Fo o o o o
AN Generic Benchmark functions

Y Y Y Y Y Y Y O Y S S Y Y Y Y Y YA

/e
%% compiler_options() -> OptionsList

%ot OptionsList = 1list() - See Erlang/OTP module compile
s

compiler_options() ->
[report_errors, report_warnings].

b= = T T e
%% run(OptionsList) ->

Do OptionsList = 1list() - See Erlang/OTP module compile

T

%% Help function to run/0.
i

run(OptionsList) ->
Bms = compile_benchmarks(OptionsList),
run_benchmarks (Bms) ,

report ().
Yy
%% compile_benchmarks(OptionsList) -> [BmInfol| _]
Db OptionsList = 1list() - See Erlang/OTP module compile
YAA BmInfo = {Module, Iterations, [BmFunctionName| _]}
YAA Module = atom()
YA Iterations = integer()
YAA BmFunctionName = atom()
W

%% Compiles all benchmark modules in the current directory and
%% returns info about the benchmarks.

= = =

24 Efficiency Guide

1.9: Appendix - Programs

compile_benchmarks(OptionsList) ->

= = = =

hh
ot
ot
ot
hh

T

{ok, FilesInCurrentDir} = file:list_dir("."),
ErlFiles = [ErlFile || ErlFile <- lists:sort(FilesInCurrentDir),
lists:suffix(".erl", ErlFile)],
lists:foldr(fun(File, BmInfoAcc) ->
case lists:suffix("_bm.erl", File) of
true ->
BmInfo = bm_compile(File, OptionsList),
[BmInfo | BmInfoAcc];
false ->
just_compile(File, OptionsList),
BmInfoAcc
end
end, [], ErlFiles).

just_compile(FileName, OptionsList) -> ok
FileName = string()
OptionsList = list() - See Erlang/OTP module compile

Compiles a support module.

just_compile(FileName, OptionsList) ->

n
>

hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh

io:format ("Compiling “s...
[FileName]), % Progress info to user
case c:c(FileName, OptionsList) of
{ok, _Mod} —>
ok;
%% If compilation fails there is no point in trying to continue
error ->
Reason =
lists:flatten(
io_lib:format("Could not compile file “s", [FileNamel)),
exit(self(), Reason)

bm_compile(FileName, OptionsList) -> BmInfo
FileName = string()
OptionsList = list() - See Erlang/OTP module compile
BmInfo = {Module, Iterations, [BmFunctionName| _]}
Iterations = integer()
Module = atom()
BmFunctionName = atom()

Compiles the benchmark module implemented in <FileName> and returns
information about the benchmark tests.

bm_compile(FileName, OptionsList) ->

n
>

io:format("Compiling “s...
[FileName]), % Progress info to user
case c:c(FileName, OptionsList) of
{ok, Mod} ->
bm_cases (Mod) ;

Efficiency Guide

25

Chapter 1: Efficiency Guide

%% If compilation fails there is no point in trying to continue
error ->
Reason =
lists:flatten(
io_lib:format("Could not compile file “s", [FileName])),
exit(self(), Reason)

%% bm_cases(Module) -> {Module, Iter, [BmFunctionName |_]}

YA Module = atom()
Dot Iter = integer()
YA BmFunctionName = atom()

W
%% Fetches the number of iterations and the names of the benchmark
%% functions for the module <Module>.

bm_cases (Module) —>
case catch Module:benchmarks() of
{Iter, BmList} when integer(Iter), list(BmList) ->
{Module, Iter, BmListl};
%% The benchmark is incorrect implemented there is no point in
%% trying to continue
Other —>
Reason =
lists:flatten(
io_lib:format("Incorrect return value: “p
"from “p:benchmarks()",
[Other, Modulel)),
exit(self(), Reason)

%% run_benchmarks(Bms) ->

YA Bms = [{Module, Iter, [BmFunctionName |_1} | _]
W Module = atom()

Do Iter = integer()

YA BmFunctionName = atom()

hote

%% Runs all the benchmark tests described in <Bms>.

run_benchmarks (Bms) ->
Ver = erlang:system_info(version),
Machine = erlang:system_info(machine),
SysInfo = {Ver,Machine}l},

Res = [bms_run(Mod, Tests, Iter, SysInfo) || {Mod,Iter,Tests} <- Bms],
%% Create an intermediate file that is later used to generate a bench
%% mark report.

Name = Ver ++ [$.|Machine] ++ ".bmres",

{ok, IntermediatFile} = file:open(Name, [writel),

%% Create mark that identifies version of the benchmark modules
io:format(IntermediatFile, "“p.

26 Efficiency Guide

1.9: Appendix - Programs

", [erlang:phash(Bms, 7RANGE_MAX)]),

io:format(IntermediatFile, "“p.
", [Resl]),

file:close(IntermediatFile).

A R Rt e LT e
%% bms_run(Module, BmTests, Iter, Info) —>

Toth Module = atom(),

YAA BmTests = [BmFunctionNamel_],

YAA BmFunctionName = atom()

hot Iter = integer(),

% SysInfo = {Ver, Machine}

he Ver = string()

he Machine = string()

ho

%% Runs all benchmark tests in module <Module>.

- m =

bms_run(Module, BmTests, Iter, SysInfo) ->

io:format ("Running “s:", [Modulel), % Progress info to user

Res =

{Module, {SysInfo, [{Bm, bm_run(Module, Bm, Iter)} || Bm <- BmTests]}},

io:nl(),
Res.

%% bm_run(Module, BmTest, Iter) -> Elapsed

%o Module = atom(),
%o BmTest = atom(),
YA Iter = integer()
YA Elapsed = integer() - elapsed time in milliseconds.

YA
%% Runs the benchmark Module:BmTest (Iter)

bm_run(Module, BmTest, Iter) ->

io:format(" “s", [BmTest]), 7% Progress info to user

spawn_link (?MODULE, measure, [self(), Module, BmTest, Iter]),

receive
{Elapsed, ok} ->
Elapsed;
{_Elapsed, Fault} —->
io:nl(),
Reason =

lists:flatten(
io_lib:format("~w", [Fault])),
exit(self(), Reason)

%% measure(Parent, Module, BmTest, Iter) -> _

he Parent = pid(),

Toth Module = atom(),
Toth BmTest = atom(),
he Iter = integer()

ho

Efficiency Guide

27

Chapter 1: Efficiency Guide

%% Measures the time it take to execute Module:Bm(Iter)
%% and send the result to <Parent>.

measure (Parent, Module, BmTest, Iter) ->
statistics(runtime),
Res = (catch apply(Module, BmTest, [Iter])),
{_TotalRunTime, TimeSinceLastCall} = statistics(runtime),
Parent ! {TimeSinceLastCall, Res}.

Toto ol To o o To s o o To o o o oo T To o oo o o o oo oot o oo oo o Jo o o oo oo oo o oo o oo o o oo oo oo oo oo o o oo
AN Report functions

Tl Tl o oo o o o o o 1o 1o 1o 1o T ToToTo o o o oo oo oo oo To T o o oo oo oo oo oo T o o oo oo oo oo oo o oo oo oo o oo o

%% report() -> _

o

%% Creates a report of the bench marking test that appeals to a human.

%% Currently this means creating a html-file. (Other formats could be added)

report() ->
{ok, AllFiles} = file:list_dir("."),
BmResultFiles = [File || File <- AllFiles, lists:suffix(".bmres", File)],

Results = fetch_bmres_data(BmResultFiles),
create_report(Results).

Yh———
%% fetch_bmres_data(BmResultFiles) —-> Results

YA BmResultFiles = [FileName | _]

Tote FileName = string()

YAA Results = [[{Bm, Res} | _1]

YA Bn = atom() - Name of benchmark module
W Res = [{VersionInfo, [{Test, Time} | _13}]
% VersionInfo = {Ver, Machine}

Dot Ver = string()

Tote Machine = string()

YA Test = atom()

W Time = integer()

YA
%% Reads result data from intermediate files

ettt Gttt
fetch_bmres_data(BmResultFiles) ->
fetch_bmres_data(BmResultFiles, [], undefined).

Yoy
%% fetch_bmres_data(BmResultFiles, AccResData, Check) -> Results

YAA BmResultFiles = [FileName | _]

YA FileName = string()

YAA AccResData = see Results fetch_bmres_data/1
YA Check = integer() | undefined (first time)

Dot
%% Help function to fetch_bmres_data/1

28 Efficiency Guide

1.9: Appendix - Programs

fetch_bmres_data([], AccResData, _Check) ->
AccResData;

fetch_bmres_data([Name | BmResultFiles], AccResData, Check) ->
{Datalist, NewCheck} = read_bmres_file(Name, Check),
fetch_bmres_data(BmResultFiles, [Datalist| AccResData], NewCheck).

i m ===

%% read_bmres_file(Name, Check) ->

%o Name = string()

Wt Check = integer() | undefined

Toth

%% Reads the data from the result files. Checks that all result
%% files where created with the same set of tests.

=== = =

read_bmres_file(Name, Check) —->
case file:consult(Name) of

{ok, [Checkl, List]} when Check =:= undefined, integer(Checkl) ->

{List, Checkl};
{ok, [Check, List]} when integer(Check) ->
{List, Check};
{ok, [Checkl, _List]l} when integer(Checkl) ->
Reason =
lists:flatten(

io_lib:format("Different test setup, remove old setup "
"result by removing *.bmres files and "

"try again", [1)),
exit(self(), Reason);
{error, Reason} when atom(Reason) ->
exit(self(), Reason);
{error, Reason} —>
exit(self(), file:format (Reason))

i m ===

%% create_report(Results) ->

%t Results = see Results fetch_bmres_data/1

Toth

%% Organizes <Result> so it will be right for create_html_report/1

%% 1i.e. group results for the same benchmark test, run on different versions

%% of erlang.

=== =

create_report(Results) ->
Dictionary =
lists:foldl(fun(BmResultList, Dict0) ->
lists:foldl(fun({Bm, VerResult}, Dictl) ->

dict:append(Bm, VerResult,

Dict1)
end,Dict0, BmResultList)
end,
dict:new(), Results),

Efficiency Guide

29

Chapter 1: Efficiency Guide

create_html_report(dict:to_list(Dictionary)).

0/0,
b= = T
%% create_html_report(ResultlList) -> _

YA ResultList = [{Bm, Res} | _]

YA Bn = atom() - Name of benchmark module

YA Res = [{VersionInfo, [{Test, Time} | _1} | _]
YA VersionInfo = {Ver, Machine}

Hoth Ver = string()

ho Machine = string()

%ot Test = atom()

Dot Time = integer()

YA
%% Writes the result to an html-file

=== m
create_html_report (ResultlList) ->

{ok, OutputFile} = file:open("index.html", [write]),
%% Create the begining of the result html-file.

Head = Title = "Benchmark Results",
io:put_chars(OutputFile, "<html>

||) s
io:put_chars(OutputFile, "<head>
"),
io:format (OutputFile, "<title>"s</title>
", [Titlel),
io:put_chars(OQutputFile, "</head>
||) s
io:put_chars(OutputFile, "<body bgcolor=\"#FFFFFF\" text=\"#000000\"" ++
" 1ink=\"#0000FF\" v1ink=\"#800080\" alink=\"#FFO000\">
||) s
io:format (QutputFile, "<h1>%s</h1>
", [Head]),
%% Add the result tables
lists:foreach(fun(Element) ->
create_html_table(OutputFile, Element) end,
ResultList),
%% Put in the end-html tags
io:put_chars(OutputFile, "</body>
||) s
io:put_chars(OQutputFile, "</html>
||) s

file:close(OutputFile).

/st
%% create_html_table(File, {Bm, Res}) —>

YA File = file() - html file to write data to.
W Bm = atom() - Name of benchmark module

YA Res = [{VersionInfo, [{Test, Time} | _13}]
YA VersionInfo = {Ver, Machine}

30 Efficiency Guide

1.9: Appendix - Programs

ho
hh
hh
ho
ho
ho

Ver = string()
Machine = string()
Test = atom()

Time = integer()

Creates a html table that displays the result of the benchmark <Bm>.
=== ==

create_html_table(File, {Bm, Res}) —>

ll)’

ll)’

ll)’

n)’

{MinTime, Order} = min_time_and_sort(Res),

io:format (File, "<h2>"s</h2>
(Bml),

%% Fun that calculates relative measure values and puts them in
%% a dictionary
RelativeMesureFun = fun({TestName, Time}, Dictl) ->
dict:append(TestName, Time/MinTime, Dictl)
end,

%% For all erlang versions that the benchmark tests has been run,
%% calculate the relative measure values and put them in a dictiomary.
ResultDict =
lists:foldl(fun({_VerInfo, Bms}, Dict0) ->
lists:foldl(RelativeMesureFun, DictO, Bms) end,
dict:new(), Res),

%% Create the table and its headings
io:put_chars(File, "<table border=0 cellpadding=1><tr>"
"<td bgcolor=\"#000000\">

io:put_chars(File, "<table cellpadding=3 border=0 cellspacing=1>

io:put_chars(File, "<tr bgcolor=white>"),

io:put_chars(File, "<td>Test</td>"),

Heads = table_headers(Res),

lists:foreach(fun({Ver,Machine}) -> io:format(File, "<td>"s
~s</td>",

[Ver,Machine]) end, Heads),

io:put_chars(File, "</tr>

%% Create table rows
lists:foreach(fun(Name) —>
create_html_row(File, Name, ResultDict)
end, Order),

%% Tabel end-tags
io:put_chars(File, "</table></td></tr></table>

%% Create link to benchmark source code
io:format(File, "<p>Source for “s.erl

Efficiency Guide

31

Chapter 1: Efficiency Guide

L

%% create_html_row(File, Name, Dict) -> _

Dot File = file() - html file to write data to.

Tote Name = atom() - Name of benchmark test

W Dict = dict() - Dictonary where the relative time measures for
Do the test can be found.

W
%% Creates an actual html table-row.
R
create_html_row(File, Name, Dict) ->

ReletiveTimes = dict:fetch(Name, Dict),

io:put_chars(File, "<tr bgcolor=white>

II)’
io:format (File, "<td>"s</td>", [Name]),
lists:foreach(fun(Time) —>
io:format(File, "<td>"-8.2f</td>", [Time]) end,
ReletiveTimes),
io:put_chars(File, "</tr>
II).

L

%% min_time_and_sort(ResultList) —-> {MinTime, Order}

YA ResultlList = [{VersionInfo, [{Test, Time} | _13}]

%ot MinTime = integer() - The execution time of the fastes test
YAA Order = [BmFunctionName|_] - the order of the testcases in
Dot increasing execution time.

YAA BmFunctionName = atom()

L

min_time_and_sort(ResultList) ->

%% Use the results from the run on the highest version
%)% of Erlang as norm.
{_, TestRes} =
lists:foldl(fun ({{Ver, _}, ResList},
{CurrentVer, _}) when Ver > CurrentVer ->
{Ver, ResList};
(_, VerAndRes) ->
VerAndRes
end, {"0", [1}, ResultList),

{lists:foldl(fun ({_, TimeO}, Minl) when TimeO < Minl ->
TimeO;
(_, Min1) —>
Min1
end, 7MAX, TestRes),
[Name || {Name, _} <- lists:keysort(2, TestRes)]}.

%% table_headers(VerResultList) -> SysInfo
% VerResultList = [{{Ver, Machine}, [{BmFunctionName, Time}]} | _]
YA Ver = string()

32 Efficiency Guide

1.9: Appendix - Programs

he Machine = string()

%% BmFunctionName = atom()
Toth Time = integer()

%o SysInfo = {Ver, Machine}

A Rt it
table_headers(VerResultList) ->
[SysInfo || {SysInfo, _} <- VerResultList].

1.9.2 bench.hrl

%% ¢‘The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in

%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be

%/ retrieved via the world wide web at http://www.erlang.org/.

hh

%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.

hh

%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.’’

o

hh $1d$

he

-define(rep5(X), X, X, X, X, X).
-define(rep10(X), ?rep5(X), 7rep5(X)).
-define(rep20(X), ?repl0(X), 7repl0(X)).
-define(rep40(X), 7rep20(X), ?rep20(X)).
-define(rep80(X), 7rep40(X), 7repd0(X)).
1.9.3 all.erl

%k ¢‘The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in

%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be

%k retrieved via the world wide web at http://www.erlang.org/.

ot

%% Software distributed under the License is distributed on an "AS IS"

%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.

ot

%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.’’

o

ol $1d$

o

Efficiency Guide 33

Chapter 1: Efficiency Guide

-module(all).

%% User interface
-export ([run/0]) .

%% Interna constants
-define (NORMAL, 0).

To ot To o To Toto o o To To o 1o fo Jo To s 1o o To Fo o To o o oo fo o Fo o Fo o o oo fo o o to oo o oo Fo o oo To o o fo Vo Foto Fo o To o o Fodo Fodta o Voo Fo o Fo o o ot o
AN Interface
Tt dTo o To Tt To o To To S To fo T To T e To Fo T To o o fo T o o Fo o Fo o o o Yo o Vo o oo o o o o Vo o To o o Yo Jo Fo o To o To o B Fo o Tt T o o Yo o Fo o o o

R et
%% run() ->
Tote
%% Runs all benchmark modules in the current directory on all erlang
%% installations specified by releases/0
R
run() ->
%% Delete previous intermediate test result files.
lists:foreach(fun(F) -> file:delete(F) end, filelib:wildcard("*.bmres")),
lists:foreach(fun run/1, releases()).

Tolo T To o To Toto o o To To o 1o fo Jo Toa 1o o To Fo o Fo o o oo fo o Voo Fo o o oo o o oo oo o oo oo oo To o o fo Vo Fodto Fo o To o o Fodo Fodta o Voo Fo o Foto o ot o
YANA Internal functions

To1oToto oo ToTo o o oo To oo o o o ToToTo o o oo o ToTo oo oo o To o To o oo o o ToTo o oo o o T To oo o o o o To To oo o oo o o Fo o o oo o o To Fa o o

o
%% run(Release) -> _
Dot Release = string() - Erlang release
%% Help functions to run/0
o
run(Release) ->
command (Release ++ " -noshell -compile bench -s erlang halt"),
command (Release ++ " -noshell -s bench run -s erlang halt").
o T T
%% command(Command) -> _
Dot Command = string() - is the name and arguments of the external
Do program which will be run
o T T

command (Command) ->
io:format(""s

", [Command]), % Progress info to user
Port = open_port({spawn,Command}, [exit_status, in]),
print_output (Port).

==
%% print_output (Port) -> _
Dot Port = port()

%% Print data from the port i.e. output from external program,
%% on standard out.
o= T T
print_output(Port) ->
receive

34 Efficiency Guide

1.9: Appendix - Programs

{Port, {data,Bytes}} ->
io:put_chars(Bytes),
print_output (Port);

{Port, {exit_status, ?NORMAL}} ->

ok

end
/St
%% run() -> Releases
Toth Releases = [Release |_]
hot Release = string() - Erlang release
%% Defines which erlang releases to run on
%% —--- Change this function to reflect your own erlang installations ---
et

releases() —->
["/usr/local/otp/releases/otp_beam_sunos5_r7b01_patched/bin/erl",
"/usr/local/otp/releases/otp_beam_sunos5_r8b_patched/bin/erl"].

1.9.4 README

Benchmark framework

This benchmark framework consists of the files:
bench.erl - see bench module below

bench.hrl - Defines some useful macros

all.erl - see all module below

bench module

The module bench is a generic module that measures execution time
of functions in callback modules and writes an html-report on the outcome.

When you execute the function bench:run/0 it will compile and run all
benchmark modules in the current directory.

all module

In the all module there is a function called releases/0O that you can

edit to contain all your erlang installations and then you can

run your benchmarks on several erlang versions using only one command i.e.
all:run().

Requirements on callback modules

* A callback module must be named <callbackModuleName>_bm.erl
* The module must export the function benchmarks/0 that must return:

{Iterations, [Namel,Name2...]} where Iterations is the number of
times each benchmark should be run. Namel, Name2 and so one are the

Efficiency Guide

35

Chapter 1: Efficiency Guide

name of exported functions in the module.

* The exported functions Namel etc. must take one argument i.e. the number
of iterations and should return the atom ok.

* The functions in a benchmark module should represent different
ways/different sequential algorithms for doing something. And the
result will be how fast they are compared to each other.

Files created

Files that are created in the current directory are *.bmres and
index.html. The file(s) with the extension "bmres" are an intermediate
representation of the benchmark results and is only meant to be read
by the reporting mechanism defined in bench.erl. The index.html file
is the report telling you how good the benchmarks are in comparison to
each other. If you run your test on several erlang releases the
html-file will include the result for all versions.

Pitfalls

To get meaningful measurements, you should make sure that:
* The total execution time is at least several seconds.

* That any time spent in setup before entering the measurement loop is very
small compared to the total time.

* That time spent by the loop itself is small compared to the total execution
time

Consider the following example of a benchmark function that does
a local function call.

local_call(0) -> ok;
local_call(Iter) ->
foo(), % Local function call
local_call(Iter-1).

The problem is that both "foo()" and "local_call(Iter-1)" takes about
the same amount of time. To get meaningful figures you’ll need to make
sure that the loop overhead will not be visible. In this case we can
take help of a macro in bench.hrl to repeat the local function call
many times, making sure that time spent calling the local function is
relatively much longer than the time spent iterating. 0f course, all
benchmarks in the same module must be repeated the same number of
times; thus external_call will look like

external_call(0) -> ok;

external_call(Iter) ->
?rep20(?MODULE:foo()),

36 Efficiency Guide

1.9: Appendix - Programs

external_call(Iter-1).

This technique is only necessary if the operation we are testing executes
really fast.

If you for instance want to test a sort routine we can keep it simple:

sorted(Iter) ->
do_sort(Iter, lists:seq(0, 63)).

do_sort(0, List) -> ok;

do_sort(Iter, List) ->
lists:sort(List),
do_sort(Iter-1, List).

The call to lists:seq/2 is only done once. The loop overhead in the
do_sort/2 function is small compared to the execution time of lists:sort/1.

Error handling

Any error enforced by a callback module will result in exit of the benchmark
program and an errormessage that should give a good idea of what is wrong.

1.9.5 call_-bm.erl

%% ¢‘The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in

%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be

%/ retrieved via the world wide web at http://www.erlang.org/.

hh

%/ Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.

hh

%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.’’

o

hh $1d$

hh

-module(call_bm).

-include("bench.hrl").

-export ([benchmarks/0]) .
-export([local_call/1,external_call/1,fun_call/1,apply_fun/1,

apply_mfa_implicit/1, apply_mfa_explicit/1]).
-export ([foo/0]).

Efficiency Guide

37

Chapter 1: Efficiency Guide

benchmarks() ->
{400000, [1ocal_call,external_call,fun_call,apply_fun,
apply_mfa_implicit, apply_mfa_explicit]}.

local_call(0) —>
ok;
local_call(Iter) ->
?rep40(foo()),
local_call(Iter-1).

external_call(0) ->
ok;
external_call(Iter) ->
?rep40(?MODULE:foo()),
external_call(Iter-1).

fun_call(Iter) —>
fun_call(Iter, fun() -> ok end).
fun_call(0, _) ->
ok;
fun_call(Iter, Fun) ->
?rep40(Fun()),
fun_call(Iter-1, Fun).

apply_fun(Iter) ->
apply_fun(Iter, fun() -> ok end).
apply_fun(0, _) ->
ok;
apply_fun(Iter, Fun) ->
?rep40(apply (Fun, [1)),
apply_fun(Iter-1, Fun).

apply_mfa_explicit(0) ->
ok;

apply_mfa_explicit(Iter) ->
?rep40 (apply (?MODULE, foo, [1)),
apply_mfa_explicit(Iter-1).

apply_mfa_implicit(Iter) ->
apply_mfa_implicit(?MODULE, foo, Iter).

apply_mfa_implicit(_, _, 0) ->
ok;

apply_mfa_implicit(Module, Function, Iter) ->
?rep40(Module:Function()),
apply_mfa_implicit(Module, Function, Iter-1).

foo() -> ok.

38 Efficiency Guide

1.9: Appendix - Programs

1.9.6 index.html

<html>

<head>

<title>Benchmark Results</title>

</head>

<body bgcolor="#FFFFFF" text="#000000" 1link="#0000FF" v1ink="#800080" alink="#FF0000">
<h1>Benchmark Results</h1>

<h2>call_bm</h2>

<table border=0 cellpadding=1><tr><td bgcolor="#000000">
<table cellpadding=3 border=0 cellspacing=1>

<tr bgcolor=white><td>Test</td><td>5.4
BEAM</td></tr>
<tr bgcolor=white>

<td>local_call</td><td>1.00 </td></tr>

<tr bgcolor=white>

<td>external_call</td><td>1.08 </td></tr>

<tr bgcolor=white>

<td>fun_call</td><td>2.79 </td></tr>

<tr bgcolor=white>

<td>apply_fun</td><td>3.54 </td></tr>

<tr bgcolor=white>

<td>apply_mfa_implicit</td><td>7.76 </td></tr>

<tr bgcolor=white>

<td>apply_mfa_explicit</td><td>8.21 </td></tr>
</table></td></tr></table>

<p>Source for call_bm.erl
</body>

</html>

Efficiency Guide 39

Chapter 1: Efficiency Guide

40 Efficiency Guide

List of Figures

1.1 ’Don’'t buy too many spades!”

Efficiency Guide

41

List of Figures

42

Efficiency Guide

List of Tables

1.1 Differentways of callingafunction
1.2 Memory size of differentdatatypeso
0

Efficiency Guide

43

