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Chapter 1

OTP Design Principles

1.1 Overview

The OTP Design Principles is a set of principles for how to structure Erlang code in terms of processes,
modules and directories.

1.1.1 Supervision Trees

A basic concept in Erlang/OTP is the supervision tree. This is a process structuring model based on the
idea of workers and supervisors.
e Workers are processes which perform computations, that is, they do the actual work.

e Supervisors are processes which monitor the behaviour of workers. A supervisor can restart a
worker if something goes wrong.

e The supervision tree is a hierarchical arrangement of code into supervisors and workers, making it
possible to design and program fault-tolerant software.
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Figure 1.1: Supervision Tree

In the figure above, square boxes represents supervisors and circles represent workers.

1.1.2 Behaviours

In a supervision tree, many of the processes have similar structures, they follow similar patterns. For
example, the supervisors are very similar in structure. The only difference between them is which child
processes they supervise. Also, many of the workers are servers in a server-client relation, finite state
machines, or event handlers such as error loggers.

Behaviours are formalizations of these common patterns. The idea is to divide the code for a process in
a generic part (a behaviour module) and a specific part (a callback module).

The behaviour module is part of Erlang/OTP. To implement a process such as a supervisor, the user only
has to implement the callback module which should export a pre-defined set of functions, the callback
functions.

An example to illustrate how code can be divided into a generic and a specific part: Consider the
following code (written in plain Erlang) for a simple server, which keeps track of a number of
“channels”. Other processes can allocate and free the channels by calling the functions alloc/0 and
free/1, respectively.

-module(chl).
-export([start/0]).
-export([alloc/0, free/1]).
—export ([init/0]).

start() ->
spawn(chl, init, [1).

alloc() ->
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1.1: Overview

chl ! {self(), alloc},

receive
{ch1l, Res} —>
Res
end.
free(Ch) ->
chl ! {free, Ch},
ok.
init() ->

register(chl, self()),
Chs = channels(),
loop(Chs).

loop(Chs) ->
receive
{From, alloc} —>
{Ch, Chs2} = alloc(Chs),
From ! {chi, Ch},
loop(Chs2);
{free, Ch} ->
Chs2 = free(Ch, Chs),
loop(Chs2)
end.

The code for the server can be rewritten into a generic part server.erl:

-module (server) .
-export([start/1]).
-export([call/2, cast/2]).
-export ([init/11).

start (Mod) ->
spawn(server, init, [Mod]).

call(Name, Req) ->
Name ! {call, self(), Reql},
receive
{Name, Res} —>
Res
end.

cast(Name, Req) —>
Name ! {cast, Req},
ok.

init (Mod) ->
register(Mod, self()),
State = Mod:init(),
loop(Mod, State).

loop(Mod, State) ->
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receive
{call, From, Req} —>
{Res, State2} = Mod:handle_call(Req, State),
From ! {Mod, Res},
loop(Mod, State2);
{cast, Req} —->
State2 = Mod:handle_cast(Req, State),
loop(Mod, State2)
end.

and a callback module ch2.erl:

-module(ch2).

-export([start/0]).

-export([alloc/0, free/1]).

-export([init/0, handle_call/2, handle_cast/2]).

start() —>
server:start(ch2).

alloc() ->
server:call(ch2, alloc).

free(Ch) ->
server:cast(ch2, {free, Ch}).

init() —->
channels().

handle_call(alloc, Chs) ->
alloc(Chs). % => {Ch,Chs2}

handle_cast ({free, Ch}, Chs) ->
free(Ch, Chs). % => Chs2

Note the following:

e The code in server can be re-used to build many different servers.

e The name of the server, in this example the atom ch2, is hidden from the users of the client
functions. This means the name can be changed without affecting them.

e The protcol (messages sent to and received from the server) is hidden as well. This is good
programming practice and allows us to change the protocol without making changes to code using
the interface functions.

e \We can extend the functionality of server, without having to change ch2 or any other callback
module.

Code written without making use of behaviours may be more efficient, but the increased efficiency will
be at the expense of generality. The ability to manage all applications in the system in a consistent
manner is very important.

Using behaviours also makes it easier to read and understand code written by other programmers. Ad
hoc programming structures, while possibly more efficient, are always more difficult to understand.
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The module server corresponds, greatly simplified, to the Erlang/OTP behaviour gen_server.
The standard Erlang/OTP behaviours are:

gen_server [page 6 ] For implementing the server of a client-server relation.
gen_fsm [page 10 ] For implementing finite state machines.

gen_event [page 15 ] For implementing event handling functionality.
supervisor [page 18 ] For implementing a supervisor in a supervision tree.

The compiler understands the module attribute -behaviour (Behaviour) and issues warnings about
missing callback functions. Example:

-module(chs3) .
-behaviour(gen_server) .

3> c(chs3).
./chs3.erl:10: Warning: undefined call-back function handle_call/3
{ok,chs3}

1.1.3 Applications

Erlang/OTP comes with a number of components, each implementing some specific functionality.
Components are with Erlang/OTP terminology called applications. Examples of Erlang/OTP
applications are Mnesia, which has everything needed for programming database services, and
Debugger which is used to debug Erlang programs. The minimal system based on Erlang/OTP consists
of the applications Kernel and STDLIB.

The application concept applies both to program structure (processes) and directory structure
(modules).

The simplest kind of application does not have any processes, but consists of a collection of functional
modules. Such an application is called a library application. An example of a library application is
STDLIB.

An application with processes is easiest implemented as a supervision tree using the standard
behaviours.

How to program applications is described in Applications [page 31].

1.1.4 Releases

A release is a complete system made out from a subset of the Erlang/OTP applications and a set of
user-specific applications.

How to program releases is described in Releases [page 45].

How to install a release in a target environment is described in the chapter about Target Systems in
System Principles.

1.1.5 Release Handling

Release handling is upgrading and downgrading between different versions of a release, in a (possibly)
running system. How to do this is described in Release Handling [page 49].
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1.2 Gen_Server Behaviour

This chapter should be read in conjunction with gen_server (3), where all interface functions and
callback functions are described in detail.

1.2.1 Client-Server Principles

The client-server model is characterized by a central server and an arbitrary number of clients. The

client-server model is generally used for resource management operations, where several different
clients want to share a common resource. The server is responsible for managing this resource.

Query

Clients

The Client-server model

Figure 1.2: Client-Server Model

1.2.2 Example

An example of a simple server written in plain Erlang was given in Overview [page 2]. The server can
be re-implemented using gen_server, resulting in this callback module:

-module(ch3).
-behaviour(gen_server).

-export ([start_link/0]).
-export([alloc/0, free/1]).
-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
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gen_server:start_link({local, ch3}, ch3, [1, [1).

alloc() —->
gen_server:call(ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

init(_Args) ->
{ok, channels()}.

handle_call(alloc, _From, Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

handle_cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

The code is explained in the next sections.

1.2.3 Starting a Gen_Server

In the example in the previous section, the gen_server is started by calling ch3:start 1ink():

start_link() ->
gen_server:start_link({local, ch3}, ch3, [1, [1) => {ok, Pid}

start_link calls the function gen_server:start_1ink/4. This function spawns and links to a new
process, a gen_server.

e The first argument {local, ch3} specifies the name. In this case, the gen_server will be locally
registered as ch3.
If the name is omitted, the gen_server is not registered. Instead its pid must be used. The name
could also be given as {global, Name}, in which case the gen_server is registered using
global:register name/2.

e The second argument, ch3, is the name of the callback module, that is the module where the
callback functions are located.

In this case, the interface functions (start_link, alloc and free) are located in the same module

as the callback functions (init, handle_call and handle_cast). This is normally good
programming practice, to have the code corresponding to one process contained in one module.

e The third argument, [], is a term which is passed as-is to the callback function init. Here, init

does not need any indata and ignores the argument.
e The fourth argument, [], is a list of options. See gen_server (3) for available options.

If name registration succeeds, the new gen_server process calls the callback function ch3:init ([1).
init is expected to return {ok, State}, where State is the internal state of the gen_server. In this
case, the state is the available channels.

init(_Args) ->
{ok, channels()}.
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Note that gen_server:start_1link is synchronous. It does not return until the gen_server has been
initialized and is ready to receive requests.

gen_server:start_link must be used if the gen_server is part of a supervision tree, i.e. is started by a
supervisor. There is another function gen_server:start to start a stand-alone gen_server, i.e. a
gen_server which is not part of a supervision tree.

1.2.4 Synchronous Requests - Call

The synchronous request alloc () is implemented using gen_server:call/2:

alloc() —>
gen_server:call(ch3, alloc).

ch3 is the name of the gen_server and must agree with the name used to start it. alloc is the actual
request.

The request is made into a message and sent to the gen_server. When the request is received, the
gen_server calls handle_call (Request, From, State) which is expected to return a tuple {reply,
Reply, Statel}. Reply is the reply which should be sent back to the client, and Statel is a new value
for the state of the gen_server.

handle_call(alloc, _From, Chs) —>
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

In this case, the reply is the allocated channel Ch and the new state is the set of remaining available
channels Chs2.

Thus, the call ch3:alloc() returns the allocated channel Ch and the gen_server then waits for new
requests, now with an updated list of available channels.

1.2.5 Asynchronous Requests - Cast

The asynchronous request free (Ch) is implemented using gen_server:cast/2:

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

ch3 is the name of the gen_server. {free, Ch} is the actual request.
The request is made into a message and sent to the gen_server. cast, and thus free, then returns ok.

When the request is received, the gen_server calls handle_cast (Request, State) which is expected to
return a tuple {noreply, Statel}. Statel isa new value for the state of the gen_server.

handle_call({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

In this case, the new state is the updated list of available channels Chs2. The gen_server is now ready for
new requests.
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1.2: Gen_Server Behaviour

1.2.6 Stopping
In a Supervision Tree

If the gen_server is part of a supervision tree, no stop function is needed. The gen_server will
automatically be terminated by its supervisor. Exactly how this is done is defined by a shutdown
strategy [page 21] set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be a timeout value and the
gen_server must be set to trap exit signals in the init function. When ordered to shutdown, the
gen_server will then call the callback function terminate (shutdown, State):

init (Args) ->
process_flag(trap_exit, true),

>

{ok, Statel}.

terminate (shutdown, State) —>
..code for cleaning up here..
ok.

Stand-Alone Gen_Servers

If the gen_server is not part of a supervision tree, a stop function may be useful, for example:

export ([5top/0]) .

stop() —->
gen_server:cast(ch3, stop).

handle_cast(stop, State) ->
{stop, normal, Statel};
handle_cast({free, Ch}, State) ->

terminate(normal, State) ->
ok.

The callback function handling the stop request returns a tuple {stop, normal, Statel}, where
normal specifies that it is a normal termination and State1 is a new value for the state of the gen_server.
This will cause the gen_server to call terminate (normal,Statel) and then terminate gracefully.

OTP Design Principles 9
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1.2.7 Handling Other Messages

If the gen_server should be able to receive other messages than requests, the callback function
handle_info(Info, State) must be implemented to handle them. Examples of other messages are
exit messages, if the gen_server is linked to other processes (than the supervisor) and trapping exit
signals.

handle_info({’EXIT’, Pid, Reason}, State) ->
..code to handle exits here..
{noreply, Statel}.

1.3 Gen_Fsm Behaviour

This chapter should be read in conjunction with gen_fsm(3), where all interface functions and callback
functions are described in detail.

1.3.1 Finite State Machines

A finite state machine, FSM, can be described as a set of relations of the form:

State(S) x Event(E) -> Actions(A), State(S’)

These relations are interpreted as meaning:

If we are in state S and the event E occurs, we should perform the actions A and make a
transition to the state S°.

For an FSM implemented using the gen_fsm behaviour, the state transition rules are written as a
number of Erlang functions which conform to the following convention:

StateName (Event, StateData) ->
. code for actions here ...
{next_state, StateName’, StateData’}

1.3.2 Example

A door with a code lock could be viewed as an FSM. Initially, the door is locked. Anytime someone
presses a button, this generates an event. Depending on what buttons have been pressed before, the
sequence so far may be correct, incomplete or wrong.

If it is correct, the door is unlocked for 30 seconds (30000 ms). If it is incomplete, we wait for another
button to be pressed. If it is is wrong, we start all over, waiting for a new button sequence.

Implementing the code lock FSM using gen_fsm results in this callback module:

10 OTP Design Principles
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-module(code_lock).
-behaviour (gen_fsm) .

-export([start_link/1]).
-export ([button/1]).
-export([init/1, locked/2, open/2]).

start_link(Code) —>
gen_fsm:start_link({local, code_lock}, code_lock, Code, []).

button(Digit) ->
gen_fsm:send_event (code_lock, {button, Digit}).

init(Code) ->
{ok, locked, {[], Codel}}.

locked ({button, Digit}, {SoFar, Code}) ->
case [Digit|SoFar] of
Code —>
do_unlock(),
{next_state, open, {[], Code}, 3000};
Incomplete when length(Incomplete)<length(Code) ->
{next_state, locked, {Incomplete, Codel}};
_Wrong ->
{next_state, locked, {[], Codel}};
end.

open(timeout, State) ->
do_lock(),
{next_state, locked, Statel}.

The code is explained in the next sections.

1.3.3 Starting a Gen_Fsm

In the example in the previous section, the gen_fsm is started by calling code_lock:start 1ink(Code):

start_link(Code) —>
gen_fsm:start_link({local, code_lock}, code_lock, Code, []).

start_link calls the function gen_fsm:start_1ink/4. This function spawns and links to a new process,
a gen_fsm.

e The first argument {local, code_lock} specifies the name. In this case, the gen_fsm will be
locally registered as code_lock.
If the name is omitted, the gen_fsm is not registered. Instead its pid must be used. The name
could also be given as {global, Name}, in which case the gen_fsm is registered using
global:register name/2.
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e The second argument, code_lock, is the name of the callback module, that is the module where
the callback functions are located.
In this case, the interface functions (start_link and button) are located in the same module as
the callback functions (init, locked and open). This is normally good programming practice, to
have the code corresponding to one process contained in one module.

e The third argument, Code, is a term which is passed as-is to the callback function init. Here,
init gets the correct code for the lock as indata.

e The fourth argument, [], is a list of options. See gen_fsm(3) for available options.

If name registration succeeds, the new gen_fsm process calls the callback function

code_lock:init (Code). This function is expected to return {ok, StateName, StateData}, where
StateName is the name of the initial state of the gen_fsm. In this case locked, assuming the door is
locked to begin with. StateData is the internal state of the gen_fsm. (For gen_fsms, the internal state is
often referred to 'state data' to distinguish it from the state as in states of a state machine.) In this case,
the state data is the button sequence so far (empty to begin with) and the correct code of the lock.

init(Code) ->
{ok, locked, {[], Codel}}.

Note that gen _fsm:start 1ink is synchronous. It does not return until the gen_fsm has been initialized
and is ready to receive notifications.

gen_fsm:start_link must be used if the gen_fsm is part of a supervision tree, i.e. is started by a
supervisor. There is another function gen_fsm: start to start a stand-alone gen_fsm, i.e. a gen_fsm
which is not part of a supervision tree.

1.3.4 Notifying About Events

The function notifying the code lock about a button event is implemented using
gen_fsm:send_event/2:

button(Digit) ->
gen_fsm:send_event(code_lock, {button, Digit}).

code_lock is the name of the gen_fsm and must agree with the name used to start it. {button, Digit}
is the actual event.

The event is made into a message and sent to the gen_fsm. When the event is received, the gen_fsm
calls StateName (Event, StateData) which is expected to return a tuple {next_state, StateNamel,
StateDatal}. StateName is the name of the current state and StateName1 is the name of the next state
to go to. StateDatal is a new value for the state data of the gen_fsm.

locked({button, Digit}, {SoFar, Code}) ->
case [Digit|SoFar] of
Code —>
do_unlock(),
{next_state, open, {[], Codel}, 30000};
Incomplete when length(Incomplete)<length(Code) ->
{next_state, locked, {Incomplete, Codel}};
_Wrong ->
{next_state, locked, {[], Codel}};
end.

12 OTP Design Principles



1.3: Gen_Fsm Behaviour

open(timeout, State) ->
do_lock(),
{next_state, locked, Statel}.

If the door is locked and a button is pressed, the complete button sequence so far is compared with the
correct code for the lock and, depending on the result, the door is either unlocked and the gen_fsm goes
to state open, or the door remains in state locked.

1.3.5 Timeouts

When a correct code has been givened, the door is unlocked and the following tuple is returned from
locked/2:

{next_state, open, {[], Codel}, 30000};

30000 is a timeout value in milliseconds. After 30000 ms, i.e. 30 seconds, a timeout occurs. Then
StateName (timeout, StateData) is called. In this case, the timeout occurs when the door has been in
state open for 30 seconds. After that the door is locked again:

open(timeout, State) ->

do_lock(),
{next_state, locked, State}.

1.3.6 All State Events

Sometimes an event can arrive at any state of the gen_fsm. Instead of sending the message with
gen_fsm:send_event/2 and writing one clause handling the event for each state function, the message
can be sent with gen fsm:send all state_event/2 and handled with Module:handle event/3:

-module(code_lock).

“export ([stop/01) .

stop() —->
gen_fsm:send_all_state_event(code_lock, stop).

handle_event(stop, _StateName, StateData) ->
{stop, normal, StateData}.
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1.3.7 Stopping
In a Supervision Tree

If the gen_fsm is part of a supervision tree, no stop function is needed. The gen_fsm will automatically
be terminated by its supervisor. Exactly how this is done is defined by a shutdown strategy [page 21] set
in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be a timeout value and the
gen_fsm must be set to trap exit signals in the init function. When ordered to shutdown, the gen_fsm
will then call the callback function terminate (shutdown, StateName, StateData):

init(Args) ->
process_flag(trap_exit, true),

>

{ok, StateName, StateData}.

terminate(shutdown, StateName, StateData) ->
..code for cleaning up here..
ok.

Stand-Alone Gen_Fsms

If the gen_fsm is not part of a supervision tree, a stop function may be useful, for example:

;égport([stop/O]).

stop() —>
gen_fsm:send_all_state_event(code_lock, stop).

handle_event(stop, _StateName, StateData) ->
{stop, normal, StateData}.

terminate(normal, _StateName, _StateData) ->
ok.

The callback function handling the stop event returns a tuple {stop,normal,StateDatal}, where
normal specifies that it is a normal termination and StateDatal is a new value for the state data of the
gen_fsm. This will cause the gen_fsm to call terminate (normal,StateName,StateDatal) and then
terminate gracefully:
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1.3.8 Handling Other Messages

If the gen_fsm should be able to receive other messages than events, the callback function
handle_info(Info, StateName, StateData) must be implemented to handle them. Examples of
other messages are exit messages, if the gen_fsm is linked to other processes (than the supervisor) and
trapping exit signals.

handle_info({’EXIT’, Pid, Reason}, StateName, StateData) —->
..code to handle exits here..
{next_state, StateNamel, StateDatal}.

1.4 Gen_Event Behaviour

This chapter should be read in conjunction with gen_event (3), where all interface functions and
callback functions are described in detail.

1.4.1 Event Handling Principles

In OTP, an event manager is a named object to which events can be sent. An event could be, for
example, an error, an alarm or some information that should be logged.

In the event manager, zero, one or several event handlers are installed. When the event manager is
notified about an event, the event will be processed by all the installed event handlers. For example, an
event manager for handling errors can by default have a handler installed which writes error messages to
the terminal. If the error messages during a certain period should be saved to a file as well, the user adds
another event handler which does this. When logging to file is no longer necessary, this event handler is
deleted.

An event manager is implemented as a process and each event handler is implemented as a callback
module.

The event manager essentially maintains a list of {Module, State} pairs, where each Module is an event
handler, and State the internal state of that event handler.

1.4.2 Example

The callback module for the event handler writing error messages to the terminal could look like:

-module(terminal_logger) .
-behaviour (gen_event) .

-export([init/1, handle_event/2, terminate/2]).

init(_Args) ->
{ok, [1}.
handle_event (ErrorlMsg, State) ->
io:format ("***Error*** “p~n", [ErrorMsg]l),

{ok, State}.

terminate (_Args, _State) ->
ok.
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The callback module for the event handler writing error messages to a file could look like:

-module(file_logger) .
-behaviour(gen_event) .

-export([init/1, handle_event/2, terminate/2]).

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

handle_event (ErrorMsg, Fd) ->
io:format (Fd, "#**Error*** “p~n", [ErrorMsgl),
{ok, Fd}.

terminate(_Args, Fd) ->
file:close(Fd).

The code is explained in the next sections.

1.4.3 Starting an Event Manager

To start an event manager for handling errors, as described in the example above, call the following
function:

gen_event:start_link({local, error_man})

This function spawns and links to a new process, an event manager.

The argument, {local, error man} specifies the name. In this case, the event manager will be locally
registered as error man.

If the name is omitted, the event manager is not registered. Instead its pid must be used. The name
could also be given as {global, Name}, in which case the event manager is registered using
global:register name/2.

gen_event:start_1link must be used if the event manager is part of a supervision tree, i.e. is started by

a supervisor. There is another function gen_event : start to start a stand-alone event manager, i.e. an
event manager which is not part of a supervision tree.

1.4.4 Adding an Event Handler

Here is an example using the shell on how to start an event manager and add an event handler to it:

1> gen event:start({local, error.man}).

{0k,<0.31.0>}

2> gen_event:add handler(error man, terminal logger, []).
ok

This function sends a message to the event manager registered as error_man, telling it to add the event
handler terminal_logger. The event manager will call the callback function

terminal logger:init ([]), where the argument [] is the third argument to add_handler. init is
expected to return {ok, State}, where State is the internal state fo the event handler.
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init(_Args) ->
{ok, [1}.

Here, init does not need any indata and ignores its argument. Also, for terminal logger the internal
state is not used. For file_logger, the internal state is used to save the open file descriptor.

init(_Args) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

1.4.5 Notifying About Events

3> gen_event:notify(errorman, no_reply).
*xkxError*** no_reply
ok

error_man is the name of the event manager and no_reply is the event.

The event is made into a message and sent to the event manager. When the event is received, the event
manager calls handle_event (Event, State) for each installed event handler, in the same order as they
were added. The function is expected to return a tuple {ok, Statel}, where State1l is a new value for
the state of the event handler.

In terminal logger:

handle_event (ErrorlMsg, State) ->
io:format ("***Errorx*x “p~n", [ErrorMsg]),
{ok, State}.

Infile_logger:
handle_event (ErrorMsg, Fd) ->

io:format (Fd, "#**Error*** ~“p~n", [ErrorMsg]l),
{ok, Fd}.

1.4.6 Deleting an Event Handler

4> gen_event:delete handler(errorman, terminal logger, []).
ok

This function sends a message to the event manager registered as error_man, telling it to delete the
event handler terminal_logger. The event manager will call the callback function

terminal logger:terminate([], State), where the argument [] is the third argument to
delete handler. terminate should be the opposite of init and do any necessary cleaning up. Its
return value is ignored.

For terminal logger, no cleaning up is necessary:

terminate (_Args, _State) ->
ok.
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For file logger, the file descriptor opened in init needs to be closed:

terminate(_Args, Fd) ->
file:close(Fd).
1.4.7 Stopping

When an event manager is stopped, it will give each of the installed event handlers the chance to clean
up by calling terminate/2, the same way as when deleting a handler.

In a Supervision Tree

If the event manager is part of a supervision tree, no stop function is needed. The event manager will
automatically be terminated by its supervisor. Exactly how this is done is defined by a shutdown
strategy [page 21] set in the supervisor.

Stand-Alone Event Managers
An event manager can also be stopped by calling:

> gen_event:stop(errorman) .
ok

1.5 Supervisor Behaviour

This section should be read in conjunction with supervisor (3), where all details about the supervisor
behaviour is given.

1.5.1 Supervision Principles

A supervisor is responsible for starting, stopping and monitoring its child processes. The basic idea of a
supervisor is that it should keep its child processes alive by restarting them when necessary.

Which child processes to start and monitor is specified by a list of child specifications [page 21]. The
child processes are started in the order specified by this list, and terminated in the reversed order.
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1.5.2 Example

The callback module for a supervisor starting the server from the gen_server chapter [page 6] could
look like this:

-module(ch_sup) .
-behaviour (supervisor) .

-export([start_link/0]).
-export ([init/11).

start_link() ->
supervisor:start_link(ch_sup, [1).

init(_Args) ->
{ok, {{one_for_one, 1, 60},

[{ch3, {ch3, start_link, []},
permanent, brutal_kill, worker, [ch3]}]1}}.

one_for_one is the restart strategy [page 19].
1 and 60 defines the maximum restart frequency [page 20].
The tuple {ch3, ...} isa child specification [page 21].

1.5.3 Restart Strategy
one_for_.one

If a child process terminates, only that process is restarted.

1 One for one supervision
If any child diesit is restarted

Figure 1.3: One_For_One Supervision
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one_for_all

If a child process terminates, all other child processes are terminated and then all child processes,
including the terminated one, are restarted.

all-for-one supervision
a If any child dies all children
are terminated and all are restarted

Figure 1.4: One_For_All Supervision

rest_for_one

If a child process terminates, the 'rest’ of the child processes — i.e. the child processes after the
terminated process in start order — are terminated. Then the terminated child process and the rest of
the child processes are restarted.

1.5.4 Maximum Restart Frequency

The supervisors have a built-in mechanism to limit the number of restarts which can occur in a given
time interval. This is determined by the values of the two parameters MaxR and MaxT in the start
specification returned by the callback function init:

init(...) =>
{ok, {{RestartStrategy, MaxR, MaxT},
[ChildSpec, ...1}}.

If more than MaxR number of restarts occur in the last MaxT seconds, then the supervisor terminates all
the child processes and then itself.

When the supervisor terminates, then the next higher level supervisor takes some action. It either
restarts the terminated supervisor, or terminates itself.

The intention of the restart mechanism is to prevent a situation where a process repeatedly dies for the
same reason, only to be restarted again.
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1.5.5 Child Specification

This is the type definition for a child specification:

{Id, StartFunc, Restart, Shutdown, Type, Modules}
Id = term()
StartFunc = {M, F, A}
M =F = atom()
A = [term()]
Restart = permanent | transient | temporary
Shutdown = brutal_kill | integer() &gt;=0 | infinity
Type = worker | supervisor
Modules = [Module] | dynamic
Module = atom()

e Idis aname that is used to identify the child specification internally by the supervisor.

e StartFunc defines the function call used to start the child process. It is a
module-function-arguments tuple used as apply (M, F, A).
It should be (or result in) a call to supervisor:start_link, gen_server:start_link,
gen_fsm:start_link Or gen_event:start_link. (Or a function compliant with these functions,
see supervisor (3) for details.

e Restart defines when a terminated child process should be restarted.

— A permanent child process is always restarted.
— A temporary child process is never restarted.
— A transient child process is restarted only if it terminates abnormally, i.e. with another exit
reason than normal.
¢ Shutdown defines how a child process should be terminated.

— brutal kill means the child process is unconditionally terminated using exit (Child,
kill).

— An integer timeout value means that the supervisor tells the child process to terminate by
calling exit (Child, shutdown) and then waits for an exit signal back. If no exit signal is
received within the specified time, the child process is unconditionally terminated using
exit(Child, kill).

— If the child process is another supervisor, it should be set to infinity to give the subtree
enough time to shutdown.
e Type specifies if the child process is a supervisor or a worker.

e Modules should be a list with one element [Module], where Module is the name of the callback
module, if the child process is a supervisor, gen_server or gen_fsm. If the child process is a
gen_event, Modules should be dynamic.

This information is used by the release handler during upgrades and downgrades, see Release
Handling [page 49].

Example: The child specification to start the server ch3 in the example above looks like:
{ch3,

{ch3, start_link, [1},

permanent, brutal_kill, worker, [ch3]}

Example: A child specification to start the event manager from the chapter about gen_event [page 16]:
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{error_man,
{gen_event, start_link, [{local, error_man}]},
permanent, 5000, worker, dynamic}

Both the server and event manager are registered processes which can be expected to be accessible at all
times, thus they are specified to be permanent.

ch3 does not need to do any cleaning up before termination, thus no shutdown time is needed but
brutal kill should be sufficient. error man may need some time for the event handlers to clean up,
thus Shutdown is set to 5000 ms.

Example: A child specification to start another supervisor:

{sup,
{sup, start_link, [13},
transient, infinity, supervisor, [supl}

1.5.6 Starting a Supervisor

In the example above, the supervisor is started by calling ch_sup:start 1ink():

start_link() ->
supervisor:start_link(ch_sup, [1).

ch_sup:start_link calls the function supervisor:start_1ink/2. This function spawns and links to a
New Process, a Supervisor.

e The first argument, ch_sup, is the name of the callback module, that is the module where the
init callback function is located.

e The second argument, [], is a term which is passed as-is to the callback function init. Here, init
does not need any indata and ignores the argument.

In this case, the supervisor is not registered. Instead its pid must be used. A name can be specified by
calling supervisor:start 1link({local, Name}, Module, Args) Or
supervisor:start_link({global, Name}, Module, Args).

The new supervisor process calls the callback function ch_sup:init([]). init is expected to return
{ok, StartSpec}:

init(_Args) ->
{ok, {{one_for_one, 1, 60},
[{ch3, {ch3, start_link, [1},
permanent, brutal_kill, worker, [ch3]}]1}}.

The supervisor then starts all its child processes according to the child specifications in the start
specification. In this case there is one child process, ch3.

Note that supervisor:start_link is synchronous. It does not return until all child processes have
been started.
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1.5.7 Adding a Child Process

In addition to the static supervision tree, we can also add dynamic child processes to an existing
supervisor with the following call:

supervisor:start_child(Sup, ChildSpec)

Sup is the pid, or name, of the supervisor. ChildSpec is a child specification [page 21].

Child processes added using start_child/2 behave in the same manner as the other child processes,
with the following important exception: If a supervisor dies and is re-created, then all child processes
which were dynamically added to the supervisor will be lost.

1.5.8 Stopping a Child Process

Any child process, static or dynamic, can be stopped in accordance with the shutdown specification:
supervisor:terminate_child(Sup, Id)

The child specification for a stopped child process is deleted with the following call:
supervisor:delete_child(Sup, Id)

Sup is the pid, or name, of the supervisor. Id is the id specified in the child specification [page 21].

As with dynamically added child processes, the effects of deleting a static child process is lost if the
supervisor itself restarts.

1.5.9 Simple-One-For-One Supervisors

A supervisor with restart strategy simple_one_for_one is a simplified one_for_one supervisor, where all
child processes are dynamically added instances of the same process.

Example of a callback module for a simple_one_for_one supervisor:

-module (simple_sup) .
-behaviour (supervisor) .

-export ([start_link/0]).
-export ([init/11).

start_link() ->
supervisor:start_link(simple_sup, []).

init(_Args) ->
{ok, {{simple_one_for_one, 0, 1},
[{call, {call, start_link, []},
temporary, brutal_kill, worker, [callll}]}}.

When started, the supervisor will not start any child processes. Instead, all child processes are added
dynamically by calling:

supervisor:start_child(Sup, List)
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Sup is the pid, or name, of the supervisor. List is an arbitrary list of terms which will be added to the
list of arguments specified in the child specification. If the start function is specified as {M, F, A}, then
the child process is started by calling apply (M, F, A++List).

For example, adding a child to simple_sup above:
supervisor:start_child(Pid, [id1])
results in the child process being started by calling apply(call, start_link, [J++[id1]), or actually:

call:start_link(id1l)

1.5.10 Stopping

Since the supervisor is part of a supervision tree, it will automatically be terminated by its supervisor.
When asked to shutdown, it will terminate all child processes in reversed start order according to the
respective shutdown specifications, and then terminate itself.

1.6 Sys and Proc_Lib

The module sys contains functions for simple debugging of processes implemented using behaviours.

There are also functions that, together with functions in the module proc_1ib, can be used to
implement a special process, a process which comply to the OTP design principles without making use
of a standard behaviour. They can also be used to implement user defined (non-standard) behaviours.

Both sys and proc_1ib belong to the STDLIB application.

1.6.1 Simple Debugging

The module sys contains some functions for simple debugging of processes implemented using
behaviours. We use the code_lock example from the gen_event [page 10] chapter to illustrate this:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> code_lock:start_1ink([1,2,3,4]).

{0k,<0.32.0>}

2> sys:statistics(codelock, true).

ok

3> sys:trace(codelock, true).

ok

4> code_lock:button(4).

*DBG* code_lock got event {button,4} in state closed
ok

*DBG* code_lock switched to state closed

5> code_lock:button(3).

*DBG* code_lock got event {button,3} in state closed
ok

*DBG* code_lock switched to state closed

6> code_lock:button(2).
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*DBG* code_lock got event {button,2} in state closed

ok

*DBG* code_lock switched to state closed

7> code_lock:button(1).

*DBG* code_lock got event {button,l1} in state closed

ok

OPEN DOOR

*DBG* code_lock switched to state open

*DBG* code_lock got event timeout in state open

CLOSE DOOR

*DBG* code_lock switched to state closed

8> sys:statistics(codelock, get).

{0k, [{start_time,{{2003,6,12},{14,11,40}}},
{current_time, {{2003,6,12},{14,12,14}}},
{reductions, 333},

{messages_in,5},
{messages_out,0}]1}

9> sys:statistics(code_lock, false).

ok

10> sys:trace(code_lock, false).

ok

11> sys:get_status(codelock).

{status,<0.32.0>,

{module,gen fsm},
[[{’$ancestors’,[<0.30.0>]},
{’$initial call’,{gen,init it,

[gen_fsm,
<0.30.0>,
<0.30.0>,
{local,code lock},
code_lock,
[1,2,3,4]1,

(11}}1,

running,
<0.30.0>,
(1,

[code_lock,closed,{[1,[1,2,3,4]},codelock,infinity]]}

1.6.2 Special Processes

This section describes how to write a process which comply to the OTP design principles, without

making use of a standard behaviour. Such a process should:

e be started in a way that makes the process fit into a supervision tree,

e support the sys debug facilities [page 28], and
e take care of system messages [page 29].

System messages are messages with special meaning, used in the supervision tree. Typical system
messages are requests for trace output, and requests to suspend or resume process execution (used
during release handling). Processes implemented using standard behaviours automatically understand

these messages.
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Example

The simple server from the Overview [page 2] chapter, implemented using sys and proc_1ib so it fits
into a supervision tree:

-module(ch4) .

-export ([start 1ink/0]) .

-export([alloc/0, free/1]).

—export([init/1]).

-export([system_continue/3, system_terminate/4,
write_debug/3]).

start_link() ->
proc_lib:start link(ch4, init, [self()]).

alloc() ->
chd ! {self(), alloc},
receive
{ch4, Res} ->
Res
end.
free(Ch) ->
ch4 ! {free, Ch},
ok.

init (Parent) ->
register(ch4, self()),
Chs = channels(),
Deb = sys:debugoptions([]),
proc_lib:init_ack(Parent, {ok, self()}),
loop(Chs, Parent, Deb).

loop(Chs, Parent, Deb) ->
receive
{From, alloc} ->
Deb2 = sys:handle debug(Deb, {ch4, write_debug},
ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle debug(Deb2, {ch4, write_debug},
ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys:handle debug(Deb, {ch4, write._debug},
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);

{system, From, Request} ->
sys:handle_system msg(Request, From, Parent,
ch4, Deb, Chs)
end.
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system_continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).

system_terminate (Reason, Parent, Deb, Chs) ->
exit (Reason).

write debug(Dev, Event, Name) ->
io:format(Dev, ""p event = “p°n", [Name, Event]).

Example on how the simple debugging functions in sys can be used for ch4 as well:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> ch4:start 1link().

{0k,<0.30.0>}

2> sys:statistics(ch4, true).

ok

3> sys:trace(ch4, true).

ok

4> ch4:alloc().

ch4 event = {in,alloc,<0.25.0>}

ch4 event = {out,{ch4,chl},<0.25.0>}

chl

5> ch4:free(chl).

ch4 event = {in,{free,chl}}

ok

6> sys:statistics(ch4, get).

{ok, [{start_time, {{2003,6,13},{9,47,5}}},
{current_time, {{2003,6,13},{9,47,56}}},
{reductions, 109},
{messages_in, 2},
{messages_out,1}]1}

7> sys:statistics(ch4, false).

ok

8> sys:trace(ch4, false).

ok

9> sys:get_status(ch4).

{status,<0.30.0>,

{module,ch4},

[[{’$ancestors’,[<0.25.0>]},{’$initial call’,{ch4,init, [<0.25.0>]}}],

running,
<0.25.0>,

a,
[ch1l,ch2,ch3]]}
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Starting the Process

A function in the proc_1ib module should be used to start the process. There are several possible
functions, for example spawn_1ink/3,4 for asynchronous start and start_1ink/3,4,5 for synchronous
start.

A process started using one of these functions will store information that is needed for a process in a
supervision tree, for example about the ancestors and initial call.

Also, if the process terminates with another reason than normal or shutdown, a crash report (see SASL
User's Guide) is generated.

In the example, synchronous start is used. The process is started by calling ch4:start 1ink():

start_link() ->
proc_lib:start_link(ch4, init, [self()]).

ch4:start_1link calls the function proc_1lib:start_1ink. This function takes a module name, a
function name and an argument list as arguments and spawns and links to a new process. The new
process starts by executing the given function, in this case ch4:init (Pid), where Pid is the pid
(self ()) of the first process, that is the parent process.

In init, all initialization including name registration is done. The new process must also acknowledge
that it has been started to the parent:

init (Parent) ->

proc_lib:init_ack(Parent, {ok, self()}),
loop(...).

proc_lib:start_1ink is synchronous and does not return until proc_1lib:init_ack has been called.

Debugging

To support the debug facilites in sys, we need a debug structure, a term Deb which is initialized using
sys:debug_options/1:

init(Parent) ->
Deb = sys:debug_options([]),
loop(Chs, Parent, Deb).

sys:debug_options/1 takes a list of options as argument. Here the list is empty, which means no
debugging is enabled initially. See sys(3) for information about possible options.

Then for each system event that we want to be logged or traced, the following function should be called.

sys:handle_debug(Deb, Func, Info, Event) => Debl

e Deb is the debug structure.

e Func is a tuple {Module, Name} (or a fun) and should specify a (user defined) function used to
format trace output. For each system event, the format function is called as Module: Name (Dev,
Event, Info), where:
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— Dev is the 10 device to which the output should be printed. See io(3).
— Event and Info are passed as-is from handle debug.

e Info is used to pass additional information to Func, it can be any term and is passed as-is.

e Event is the system event. It is up to the user to define what a system event is and how it should
be represented, but typically at least incoming and outgoing messages are considered system
events and represented by the tuples {in,Msg[,From] } and {out,Msg, To}, respectively.

handle_debug returns an updated debug structure Deb1.

In the example, handle_debug is called for each incoming and outgoing message. The format function
Func is the function ch4:write_debug/3 which prints the message using io:format/3.

loop(Chs, Parent, Deb) ->
receive
{From, alloc} —>
Deb2 = sys:handle_debug(Deb, {ch4, write_debug},
ch4, {in, alloc, From}),
{Ch, Chs2} = alloc(Chs),
From ! {ch4, Ch},
Deb3 = sys:handle_debug(Deb2, {ch4, write_debug},
ch4, {out, {ch4, Ch}, From}),
loop(Chs2, Parent, Deb3);
{free, Ch} —>
Deb2 = sys:handle_debug(Deb, {ch4, write_debugl,
ch4, {in, {free, Chl}}),
Chs2 = free(Ch, Chs),
loop(Chs2, Parent, Deb2);

end.

write_debug(Dev, Event, Name) ->

io:format(Dev, ""p event = “p°n", [Name, Event]).
Handling System Messages
System messages are received as:
{system, From, Request}

The content and meaning of these messages do not need to be interpreted by the process. Instead the
following function should be called:

sys:handle_system_msg(Request, From, Parent, Module, Deb, State)
This function does not return. It will handle the system message and then call:
Module:system_continue(Parent, Deb, State)

if process execution should continue, or:

Module:system_terminate(Reason, Parent, Deb, State)
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if the process should terminate. Note that a process in a supervision tree is expected to terminate with
the same reason as its parent.

e Request and From should be passed as-is from the system message to the call to
handle_system msg.

e Parent is the pid of the parent.

e Module is the name of the module.

e Deb is the debug structure.

e State is a term describing the internal state and is passed to

system continue/system terminate

In the example:

loop(Chs, Parent, Deb) ->
receive

{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent,
ch4, Deb, Chs)
end.

system_continue(Parent, Deb, Chs) ->
loop(Chs, Parent, Deb).

system_terminate(Reason, Parent, Deb, Chs) ->
exit (Reason) .

If the special process is set to trap exits, note that if the parent process terminates, the expected
behavior is to terminate with the same reason:

init(...) —>
process_flag(trap_exit, true),

Toop(...).

loop(...) —>
receive

{’EXIT’, Parent, Reason} —>
. .maybe some cleaning up here..
exit (Reason);

end.
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1.6.3 User-Defined Behaviours

To implement a user-defined behaviour, write code similar to code for a special process but calling
functions in a callback module for handling specific tasks.

If it is desired that the compiler should warn for missing callback functions, as it does for the OTP
behaviours, implement and export the function:

behaviour_info(callbacks) ->
[{Namel,Arity1l},...,{NameN,ArityN}].

where each {Name, Arity} specifies the name and arity of a callback function.

When the compiler encounters the module attribute -behaviour (Behaviour) . in a module Mod, it will
call Behaviour:behaviour_info(callbacks) and compare the result with the set of functions actually
exported from Mod, and issue a warning if any callback function is missing.

Example:

%% User-defined behaviour module
-module (simple_server) .
-export([start_link/2,...]).
-export ([behaviour_info/1]).

behaviour_info(callbacks) ->
[{init, 1},
{handle_req,1},
{terminate,0}].

start_link(Name, Module) —>
proc_lib:start_link(?MODULE, init, [self(), Name, Module]).

init(Parent, Name, Module) ->
register(Name, self()),

Dbg = sys:debug_options([]),
proc_lib:init_ack(Parent, {ok, self()}),
loop(Parent, Module, Deb, ...).

In a callback module:

-module (db) .
-behaviour(simple_server) .

-export([init/0, handle_req/1, terminate/0]).

1.7 Applications

This chapter should be read in conjunction with app(4) and application(3).
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1.7.1 Application Concept

When we have written code implementing some specific functionality, we might want to make the code
into an application, that is a component that can be started and stopped as a unit, and which can be
re-used in other systems as well.

To do this, we create an application callback module [page 32], where we describe how the application
should be started and stopped.

Then, an application specification is needed, which is put in an application resource file [page 33].
Among other things, we specify which modules the application consists of and the name of the callback
module.

If we use systools, the Erlang/OTP tools for packaging code (see Releases [page 45]), the code for
each application is placed in a separate directory following a pre-defined directory structure [page 34].

1.7.2 Application Callback Module

How to start and stop the code for the application, i.e. the supervision tree, is described by two callback
functions:

start (StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
stop(State)

start is called when starting the application and should create the supervision tree by starting the top
supervisor. It is expected to return the pid of the top supervisor and an optional term State, which
defaults to []. This term is passed as-is to stop.

StartType is usually the atom normal. It has other values only in the case of a takeover or failover, see
Distributed Applications [page 40]. StartArgs is defined by the key mod in the application resource file
[page 33] file.

stop/1 is called after the application has been stopped and should do any necessary cleaning up. Note
that the actual stopping of the application, that is the shutdown of the supervision tree, is handled
automatically as described in Starting and Stopping Applications [page 35].

Example of an application callback module for packaging the supervision tree from the Supervisor
[page 19] chapter:

-module(ch_app) .
-behaviour (application) .

-export ([start/2, stop/1]).

start(_Type, _Args) ->
ch_sup:start_link().

stop(_State) ->
ok.

A library application, which can not be started or stopped, does not need any application callback
module.
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1.7.3 Application Resource File

To define an application, we create an application specification which is put in an application resource file,
or in short . app file:

{application, Application, [Optl,...,O0ptN]}.

Application, an atom, is the name of the application. The file must be named Application.app.

Each 0Opt is a tuple {Key, Value} which define a certain property of the application. All keys are
optional. Default values are used for any omitted keys.

The contents of a minimal . app file for a library application 1ibapp looks like this:
{application, libapp, [1}.

The contents of a minimal . app file ch_app . app for a supervision tree application like ch_app looks like
this:

{application, ch_app,
[{mod, {ch_app, [1}}1}.

The key mod defines the callback module and start argument of the application, in this case ch_app and
[1, respectively. This means that

ch_app:start (normal, [J])
will be called when the application should be started and
ch_app:stop([1)

will be called when the application has been stopped.

When using systools, the Erlang/OTP tools for packaging code (see Releases [page 45]), the keys
description, vsn, modules, registered and applications should also be specified:

{application, ch_app,

[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasll},
{mod, {ch_app, [1}}

1}.

description A short description, a string. Defaults to “.

vsn Version number, a string. Defaults to “”.

modules All modules introduced by this application. systools uses this list when generating boot
scripts and tar files. A module must be defined in one and only one application. Defaults to [].

registered All names of registered processes in the application. systools uses this list to detect name
clashes between applications. Defaults to [].

applications All applications which must be started before this application is started. systools uses
this list to generate correct boot scripts. Defaults to [], but note that all applications have
dependencies to at least kernel and stdlib.

The syntax and contents of of the application resource file are described in detail in app(4).
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1.7.4 Directory Structure

When packaging code using systools, the code for each application is placed in a separate directory
1lib/Application-Vsn, where Vsn is the version number.

This may be useful to know, even if systools is not used, since Erlang/OTP itself is packaged according
to the OTP principles and thus comes with this directory structure. The code server (see code(3)) will

automatically use code from the directory with the highest version number, if there are more than one

version of an application present.

The application directory structure can of course be used in the development environment as well. The
version number may then be omitted from the name.

The application directory have the following sub-directories:

e srcC
e cbin
e priv

e include

src Contains the Erlang source code.
ebin Contains the Erlang object code, the beamn files. The . app file is also placed here.

priv Used for application specific files. For example, C executables are placed here. The function
code:priv.dir/1 should be used to access this directory.

include Used for include files.

1.7.5 Application Controller

When an Erlang runtime system is started, a number of processes are started as part of the Kernel
application. One of these processes is the application controller process, registered as
application_controller.

All operations on applications are coordinated by the application controller. It is interfaced through the
functions in the module application, See application(3). In particular, applications can be loaded,
unloaded, started and stopped.

1.7.6 Loading and Unloading Applications

Before an application can be started, it must be loaded. The application controller reads and stores the
information from the . app file.

1> application:load(ch_app).

ok

2> application:loaded applications().
[{kernel,"ERTS CXC 138 10","2.8.1.3"},
{stdlib,"ERTS CXC 138 10","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

An application that has been stopped, or has never been started, can be unloaded. The information
about the application is erased from the internal database of the application controller.
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3> application:unload(ch_app) .

ok

4> application:loaded applications().
[{kernel,"ERTS CXC 138 10","2.8.1.3"},
{stdlib,"ERTS CXC 138 10","1.11.4.3"}]

Note:
Loading/unloading an application does not load/unload the code used by the application. Code
loading is done the usual way.

1.7.7 Starting and Stopping Applications

An application is started by calling:

5> application:start(ch_app).

ok

6> application:which_applications().

[{kernel,"ERTS CXC 138 10","2.8.1.3"},
{stdlib,"ERTS CXC 138 10","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

If the application is not already loaded, the application controller will first load it using
application:load/1. It will check the value of the applications key, to ensure that all applications
that should be started before this application are running.

The application controller then creates an application master for the application. The application master
is the group leader of all the processes in the application. The application master starts the application
by calling the application callback function start/2 in the module, and with the start argument,
defined by the mod key in the . app file.

An application is stopped, but not unloaded, by calling:

7> application:stop(ch_app) .
ok

The application master stops the application by telling the top supervisor to shutdown. The top
supervisor tells all its child processes to shutdown etc. and the entire tree is terminated in reversed start
order. The application master then calls the application callback function stop/1 in the module defined
by the mod key.
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1.7.8 Configuring an Application

An application can be configured using configuration parameters. These are a list of {Par, Val} tuples
specified by a key env in the . app file.

{application, ch_app,
[{description, "Channel allocator"},
{VSH, "1"},
{modules, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]l},
{mod, {ch_app, [13}},
{env, [{file, "/usr/local/log"}1}
1}.

Par should be an atom, Val is any term. The application can retrieve the value of a configuration
parameter by calling application:get_env(App, Par) or a number of similar functions, see
application(3).

Example:

% erl
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> application:start(ch-app).

ok

2> application:get_env(ch_app, file).
{ok,"/usr/local/log"}

The values in the . app file can be overridden by values in a system configuration file. This is a file which
contains configuration parameters for relevant applications:

[{Applicationl, [{Parl1,Valii},...]},

{ApplicationN, [{ParN1,ValNi},...]1}].

The system configuration should be called Name . config and Erlang should be started with the
command line argument -config Name. See config(4) for more information.

Example: A file test.config is created with the following contents:
[{ch_app, [{file, "testlog"}1}].

The value of £ile will override the value of file as defined in the . app file:
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% erl -config test
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> application:start(ch_app).

ok

2> application:get_env(ch_app, file).
{ok,"testlog"}

If release handling [page 59] is used, exactly one system configuration file should be used and that file
should be called sys.config

The values in the . app file, as well as the values in a system configuration file, can be overridden directly
from the command line:

% erl -ApplName Parl Vall ... ParN ValN

Example:

% erl -ch app file ’"testlog"’
Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~G)

1> application:start(ch_app).

ok

2> application:get_env(ch_app, file).
{ok,"testlog"}

1.7.9 Application Start Types

A start type is defined when starting the application:
application:start(Application, Type)

application:start(Application) is the same as calling application:start(Application,
temporary). The type can also be permanent or transient:

¢ If a permanent application terminates, all other applications and the runtime system are also
terminated.

o If a transient application terminates with reason normal, this is reported but no other applications
are terminated. If a transient application terminates abnormally, that is with any other reason than
normal, all other applications and the runtime system are also terminated.

o If a temporary application terminates, this is reported but no other applications are terminated.
It is always possible to stop an application explicitly by calling application:stop/1. Regardless of the
mode, no other applications will be affected.

Note that transient mode is of little practical use, since when a supervision tree terminates, the reason is
set to shutdown, Nnot normal.
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1.8 Included Applications

1.8.1 Definition

An application can include other applications. An included application has its own application directory
and . app file, but it is started as part of the supervisor tree of another application.

An application can only be included by one other application.
An included application can include other applications.
An application which is not included by any other application is called a primary application.

Primary application

Inclnded applications

Inclnded applications

Figure 1.5: Primary Application and Included Applications.

The application controller will automatically load any included applications when loading a primary
application, but not start them. Instead, the top supervisor of the included application must be started
by a supervisor in the including application.

This means that when running, an included application is in fact part of the primary application and a
process in an included application will consider itself belonging to the primary application.

1.8.2 Specifying Included Applications
Which applications to include is defined by the included_applications key in the . app file.

{application, prim app,
[{description, "Tree application"},
{VSIl, "1"} R
{modules, [prim_app_cb, prim_app_sup, prim app.server]},
{registered, [prim app_server]},
{included_applications, [incl_appl},
{applications, [kernel, stdlib, sasll},
{mod, {prim_app_cb,[1}},
{env, [{file, "/usr/local/log"}1}

1}.
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1.8.3 Synchronizing Processes During Startup

The supervisor tree of an included application is started as part of the supervisor tree of the including
application. If there is a need for synchronization between processes in the including and included
applications, this can be achieved by using start phases.

Start phases are defined by the start_phases key in the . app file as a list of tuples
{Phase,PhaseArgs}, where Phase is an atom and PhaseArgs is a term. Also, the value of the mod key
of the including application must be set to {application starter, [Module,StartArgs]}, where
Module as usual is the application callback module and StartArgs a term provided as argument to the
callback function Module:start/2.

{application, prim_app,

[{description, "Tree application"},
{VSD, ||1||}’
{modules, [prim_app_cb, prim_app_sup, prim_app_server]},
{registered, [prim_app_server]l},
{included_applications, [incl_appl},
{start_phases, [{init,[]}, {go, [1}13},
{applications, [kernel, stdlib, sasll},
{mod, {application_starter, [prim_app_cb, [1]1}},
{env, [{file, "/usr/local/log"}]1}

1r.

{application, incl_app,
[{description, "Included application"},
{VSD, ||1||}’
{modules, [incl_app_cb, incl_app_sup, incl_app_server]},
{registered, [13},
{start_phases, [{go,[1}]},
{applications, [kernel, stdlib, sasll},
{mod, {incl_app_cb, [1}}
1.

When starting a primary application with included applications, the primary application is started the
normal way: The application controller creates an application master for the application, and the
application master calls Module:start (normal, StartArgs) to start the top supervisor.

Then, for the primary application and each included application in top-down, left-to-right order, the
application master calls Module:start_phase (Phase, Type, PhaseArgs) for each phase defined for
for the primary application, in that order. Note that if a phase is not defined for an included application,
the function is not called for this phase and application.

The following requirements apply to the . app file for an included application:
e The {mod, {Module,StartArgs}}option must be included. This option is used to find the

callback module Module of the application. StartArgs is ignored, as Module:start/2is called
only for the primary application.

o If the included application itself contains included applications, instead the option {mod,
{application_starter, [Module,StartArgs]}} must be included.

e The {start_phases, [{Phase,PhaseArgs}]} option must be included, and the set of specified
phases must be a subset of the set of phases specified for the primary application.

When starting prim_app as defined above, the application controller will call the following callback
functions, before application:start (prim app) returns a value:
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application:start(prim_app)

=> prim_app_cb:start(normal, [])

=> prim_app_cb:start_phase(init, normal, [])
=> prim_app_cb:start_phase(go, normal, [])
=> incl_app_cb:start_phase(go, normal, [])
ok

1.9 Distributed Applications

1.9.1 Definition

In a distributed system with several Erlang nodes, there may be a need to control applications in a
distributed manner. If the node, where a certain application is running, goes down, the application
should be restarted at another node.

Such an application is called a distributed application. Note that it is the control of the application
which is distributed, all applications can of course be distributed in the sense that they, for example, use
services on other nodes.

Because a distributed application may move between nodes, some addressing mechanism is required to
ensure that it can be addressed by other applications, regardless on which node it currently executes.
This issue is not addressed here, but the Kernel module global or STDLIB module pg can be used for
this purpose.

1.9.2 Specifying Distributed Applications

Distributed applications are controlled by both the application controller and a distributed application
controller process, dist_ac. Both these processes are part of the kernel application. Therefore,
distributed applications are specified by configuring the kernel application, using the following
configuration parameter (see also kernel (6)):

distributed = [{Application, [Timeout,] NodeDesc}] Specifies where the application
Application = atom() may execute. NodeDesc = [Node | {Node,...,Node}] isa list of node
names in priority order. The order between nodes in a tuple is undefined.
Timeout = integer () specifies how many milliseconds to wait before restarting the application
at another node. Defaults to O.

For distribution of application control to work properly, the nodes where a distributed application may
run must contact each other and negotiate where to start the application. This is done using the
following kernel configuration parameters:

syncnodes_mandatory = [Node] Specifies which other nodes must be started (within the timeout
specified by sync_nodes_timeout.

sync_nodes_optional = [Node] Specifies which other nodes can be started (within the timeout
specified by sync_nodes_timeout.

sync_nodes_timeout = integer() | infinity Specifies how many milliseconds to wait for the other
nodes to start.
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When started, the node will wait for all nodes specified by sync nodes mandatory and
syncnodes_optional to come up. When all nodes have come up, or when all mandatory nodes have
come up and the time specified by sync_ nodes_timeout has elapsed, all applications will be started. If
not all mandatory nodes have come up, the node will terminate.

Example: An application myapp should run at the node cpil@cave. If this node goes down, myapp
should be restarted at cp2@cave or cp3@cave. A system configuration file cpl.config for cpl@cave
could look like:

[{kernel,
[{distributed, [{myapp, 5000, [cpl@cave, {cp2@cave, cp3@cave}]}]},
{sync_nodes_mandatory, [cp2@cave, cp3Q@cavel},
{sync_nodes_timeout, 5000}
]
}
1.

The system configuration files for cp2@cave and cp3@cave are identical, except for the list of mandatory
nodes which should be [cpl@cave, cp3@cave] for cp2@cave and [cpl@cave, cp2@cave] for
cp3Qcave.

Note:

All involved nodes must have the same value for distributed and sync nodes_timeout, or the
behaviour of the system is undefined.

1.9.3 Starting and Stopping Distributed Applications

When all involved (mandatory) nodes have been started, the distributed application can be started by
calling application:start(Application) at all of these nodes.

It is of course also possible to use a boot script (see Releases [page 45]) which automatically starts the
application.

The application will be started at the first node, specified by the distributed configuration parameter,
which is up and running. The application is started as usual. That is, an application master is created
and calls the application callback function:

Module:start (normal, StartArgs)

Example: Continuing the example from the previous section, the three nodes are started, specifying the
system configuration file:

> erl -sname cpl -config cpl
> erl -sname cp2 -config cp2
> erl -sname cp3 -config cp3
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When all nodes are up and running, myapp can be started. This is achieved by calling
application:start (myapp) at all three nodes. It is then started at cp1, as shown in the figure below.

myapp

Figure 1.6: Application myapp - Situation 1

Similarly, the application must be stopped by calling application:stop(Application) at all involved
nodes.

1.9.4 Failover
If the node where the application is running goes down, the application is restarted (after the specified

timeout) at the first node, specified by the distributed configuration parameter, which is up and
running. This is called a failover.

The application is started the normal way at the new node, that is, by the application master calling:
Module:start(normal, StartArgs)

Exception: If the application has the start_phases key defined (see Included Applications [page 38]),
then the application is instead started by calling:

Module:start({failover, Nodel}, StartArgs)

where Node is the terminated node.

Example: If cp1 goes down, the system checks which one of the other nodes, cp2 or cp3, has the least
number of running applications, but waits for 5 seconds for cp1 to restart. If cp1 does not restart and
cp2 runs fewer applications than cp3, then myapp is restarted on cp2.
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myapp

5 secs.

myapp

Figure 1.7: Application myapp - Situation 2

Suppose now that cp2 goes down as well and does not restart within 5 seconds. myapp is now restarted

on cp3.

myapp

5 secs.

myapp

Figure 1.8: Application myapp - Situation 3
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1.9.5 Takeover

If a node is started, which has higher priority according to distributed, than the node where a
distributed application is currently running, the application will be restarted at the new node and
stopped at the old node. This is called a takeover.

The application is started by the application master calling:
Module:start({takeover, Node}, StartArgs)

where Node is the old node.

Example: If myapp is running at cp3, and if cp2 now restarts, it will not restart myapp, because the order
between nodes cp2 and cp3 is undefined.

myapp

Figure 1.9: Application myapp - Situation 4

However, if cp1 restarts as well, the function application:takeover/2 moves myapp to cpl, because
cpl has a higher priority than cp3 for this application. In this case, Module:start ({takeover,
cp3@cave}, StartArgs) is executed at cpl to start the application.

yapp

cpl: application:takeover(myapp, permanent)

myapp

Figure 1.10: Application myapp - Situation 5
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1.10 Releases

This chapter should be read in conjuction with rel(4), systools(3) and script (4).

1.10.1 Release Concept

When we have written one or more applications, we might want to create a complete system consisting
of these applications and a subset of the Erlang/OTP applications. This is called a release.

To do this, we create a release resource file [page 45] which defines which applications are included in
the release.

The release resource file is used to generate boot scripts [page 46] and release packages [page 47]. A
system which is transfered to and installed at another site is called a target system. How to use a release
package to create a target system is described in System Principles.

1.10.2 Release Resource File

To define a release, we create a release resource file, or in short . rel file, where we specify the name and
version of the release, which ERTS version it is based on, and which applications it consists of:

{release, {Name,Vsn}, {erts, EVsn},
[{Applicationl, AppVsnl},

{ApplicationN, AppVsnN}]}.

The file must be named Rel.rel, where Rel is a unique name.
Name, Vsn and Evsn are strings.

Each Application (atom) and AppVsn (string) is the name and version of an application included in the
release. Note the the minimal release based on Erlang/OTP consists of the kernel and stdlib
applications, so these applications must be included in the list.

Example: We want to make a release of ch_app from the Applications [page 32] chapter. It has the
following . app file:

{application, ch_app,

[{description, "Channel allocator"},
{vsn, "1"},
{modules, [ch_app, ch_sup, ch3]l},
{registered, [ch3]},
{applications, [kernel, stdlib, sasll},
{mod, {ch_app, [1}}

1}.

The .rel file must also contain kernel, stdlib and sasl, since these applications are required by
ch_app. We call the file ch_rel-1.rel:
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{release,
{"ch_rel", nAn},
{erts, "5.3"%},
[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},
{ch_app, ||1||}]
}.

1.10.3 Generating Boot Scripts

There are tools in the SASL module systools available to build and check releases. The functions read
the .rel and . app files and performs syntax and dependency checks. The function
systools:make _script/1,2 is used to generate a boot script (see System Principles).

1> systools:make script("chrel-1", [locall).
ok

This creates a boot script, both the readable version ch_rel-1.script and the binary version used by
the runtime system, ch_rel-1.boot. "ch_rel-1" is the name of the .rel file, minus the extension.
local is an option that means that the directories where the applications are found are used in the boot
script, instead of $RO0T/1ib. ($ROOT is the root directory of the installed release.) This is a useful way
to test a generated boot script locally.

When starting Erlang/OTP using the boot script, all applications from the .rel file are automatically
loaded and started:

% erl -boot ch.rel-1
Erlang (BEAM) emulator version 5.3

Eshell V5.3 (abort with ~G)

1>
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===
supervisor: {local,sasl safe sup}
started: [{pid,<0.33.0>},
{name,alarm handler},
{mfa,{alarmhandler,start link, [1}},
{restart_type,permanent},
{shutdown, 2000},
{child_type,worker}]
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===
application: sasl
started_at: nonodeC@nohost
=PROGRESS REPORT==== 13-Jun-2003::12:01:15 ===

application: ch_app
started_at: nonode@nohost
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1.10.4 Creating a Release Package

There is a function systools:make_tar/1,2 which takes a .rel file as input and creates a zipped
tar-file with the code for the specified applications, a release package.

1> systools:make script("chrel-1").
ok

2> systools:make_tar("chrel-1").
ok

The release package by default contains the . app files and object code for all applications, structured
according to the application directory structure [page 34], the binary boot script renamed to
start.boot, and the .rel file.

% tar tf ch rel-1.tar
lib/kernel-2.9/ebin/kernel.app
lib/kernel-2.9/ebin/application.beam

lib/stdlib-1.12/ebin/stdlib.app
1lib/stdlib-1.12/ebin/beam1ib.beam

lib/sasl-1.10/ebin/sasl.app
lib/sasl-1.10/ebin/sasl.beam

1ib/ch_app-1/ebin/ch_app.app
1ib/ch_app-1/ebin/ch_app.beam
lib/ch_app-1/ebin/ch_sup.beam
lib/ch_app-1/ebin/ch3.beam
releases/A/start.boot
releases/chrel-1.rel

Note that a new boot script was generated, without the 1ocal option set, before the release package
was made. In the release package, all application directories are placed under 1ib. Also, we do not
know where the release package will be installed, so we do not want any hardcoded absolute paths in

the boot script here.

If a relup file and/or a system configuration file called sys.config is found, these files are included in
the release package as well. See Release Handling [page 51].

Options can be set to make the release package include source code and the ERTS binary as well.

Refer to System Principles for how to install the first target system, using a release package, and to
Release Handling [page 49] for how to install a new release package in an existing system.
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1.10.5 Directory Structure

Directory structure for the code installed by the release handler from a release package:

$ROOT/1ib/Appl-AVsni/ebin
/priv

/App2-AVsn2/ebin

/priv

/AppN-AVsnN/ebin
/priv
/erts-EVsn/bin
/releases/Vsn
/bin

1ib Application directories.
erts-EVsn/bin Erlang runtime system executables.

releases/Vsn .rel file and boot script start.boot.
If present in the release package,
relup and/or sys.config

bin Top level Erlang runtime system executables.

Applications are not required to be located under the $R0O0T/1ib directory. Accordingly, several
installation directories may exist which contain different parts of a system. For example, the previous
example could be extended as follows:

$SECOND_ROOT/ . . ./SApp1-SAVsnl/ebin
/priv

/SApp2-SAVsn2/ebin

/priv

/SAppN-SAVsnN/ebin
/priv

$THIRD ROOT/TAppl-TAVsnl/ebin
/priv

/TApp2-TAVsn2/ebin

/priv

/TAppN-TAVsnN/ebin
/priv

The $SECOND_ROOT and $THIRD_ROOT are introduced as variables in the call to the
systools:make_script/2 function.
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Disk-Less and/or Read-Only Clients

If a complete system consists of some disk-less and/or read-only client nodes, a clients directory should
be added to the $ROOT directory. By a read-only node we mean a node with a read-only file system.

The clients directory should have one sub-directory per supported client node. The name of each
client directory should be the name of the corresponding client node. As a minimum, each client
directory should contain the bin and releases sub-directories. These directories are used to store
information about installed releases and to appoint the current release to the client. Accordingly, the
$ROOT directory contains the following:

$ROOT/ . ..
/clients/ClientNamel/bin
/releases/Vsn
/ClientName2/bin
/releases/Vsn

/ClientNameN/bin
/releases/Vsn

This structure should be used if all clients are running the same type of Erlang machine. If there are
clients running different types of Erlang machines, or on different operating systems, the clients
directory could be divided into one sub-directory per type of Erlang machine. Alternatively, you can set
up one $ROOT per type of machine. For each type, some of the directories specified for the $RO0T
directory should be included:

$ROOT/ . ..
/clients/Typel/lib

/erts-EVsn

/bin

/ClientNamel/bin
/releases/Vsn

/ClientName2/bin
/releases/Vsn

/ClientNameN/bin
/releases/Vsn

/TypeN/1ib
/erts-EVsn
/bin

With this structure, the root directory for clients of Type1 is $R00T/clients/Typel.

1.11 Release Handling

1.11.1 Release Handling Principles

An important feature of the Erlang programming language is the ability to change module code in
run-time, code replacement, as described in Erlang Reference Manual.
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Based on this feature, the OTP application SASL provides a framework for upgrading and downgrading
between different versions of an entire release in run-time. This is what we call release handling.

The framework consists of off-line support (systools) for generating scripts and building release
packages, and on-line support (release handler) for unpacking and installing release packages.

Note that the minimal system based on Erlang/OTP, enabling release handling, thus consists of Kernel,
STDLIB and SASL.

1. Arrelease is created as described in the previous chapter Releases [page 45]. The release is
transferred to and installed at target environment. Refer to System Principles for information of
how to install the first target system.

2. Modifications, for example error corrections, are made to the code in the development
environment.

3. At some point it is time to make a new version of release. The relevant . app files are updated and
anew .rel file is written.

4. For each modified application, an application upgrade file [page 54], .appup, is created. In this
file, it is described how to upgrade and/or downgrade between the old and new version of the
application.

5. Based on the . appup files, a release upgrade file [page 55] called relup, is created. This file
describes how to upgrade and/or downgrade between the old and new version of the entire
release.

6. A new release package is made and transferred to the target system.
7. The new release package is unpacked using the release handler.

8. The new version of the release is installed, also using the release handler. This is done by
evaluating the instructions in relup. Modules may be added, deleted or re-loaded, applications
may be started, stopped or re-started etc. In some cases, it is even necessary to restart the entire
emulator.

If the installation fails, the system may be rebooted. The old release version is then automatically
used.

9. If the installation succeeds, the new version is made the default version, which should now be
used in case of a system reboot.

The next chapter, Appup Cookbook [page 60], contains examples of . appup files for typical cases of
upgrades/downgrades that are normally easy to handle in run-time. However, there are a many aspects
that can make release handling complicated. To name a few examples:

e Complicated or circular dependencies can make it difficult or even impossible to decide in which
order things must be done without risking run-time errors during an upgrade or downgrade.
Dependencies may be:

— between nodes,
— between processes, and

— between modules.
¢ During release handling, non-affected processes continue normal execution. This may lead to
timeouts or other problems. For example, new processes created in the time window between

suspending processes using a certain module and loading a new version of this module, may
execute old code.

It is therefore recommended that code is changed in as small steps as possible, and always kept
backwards compatible.
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1.11.2 Requirements

For release handling to work properly, the runtime system needs to have knowledge about which release
it is currently running. It must also be able to change (in run-time) which boot script and system
configuration file should be used if the system is rebooted, for example by heart after a failure.
Therefore, Erlang must be started as an embedded system, see Embedded System for information on how
to do this.

For system reboots to work properly, it is also required that the system is started with heart beat
monitoring, see erl (1) and heart (3).

Other requirements:

e The boot script included in a release package must be generated from the same .rel file as the
release package itself.

Information about applications are fetched from the script when an upgrade or downgrade is
performed.

e The system must be configured using one and only one system configuration file, called
sys.config.
If found, this file is automatically included when a release package is created.

o All versions of a release, except the first one, must contain a relup file.
If found, this file is automatically included when a release package is created.

1.11.3 Distributed Systems

If the system consists of several Erlang nodes, each node may use its own version of the release. The
release handler is a locally registered process and must be called at each node where an upgrade or
downgrade is required. There is a release handling instruction that can be used to synchronize the
release handler processes at a number of nodes: sync nodes. See appup(4).

1.11.4 Release Handling Instructions

OTP supports a set of release handling instructions that is used when creating . appup files. The release
handler understands a subset of these, the low-level instructions. To make it easier for the user, there are
also a number of high-level instructions, which are translated to low-level instructions by
systools:make_relup.

Here, some of the most frequently used instructions are described. The complete list of instructions is
found in appup (4).

First, some definitions:
Residence module The module where a process has its tail-recursive loop function(s). If the

tail-recursive loop functions are implemented in several modules, all those modules are residence
modules for the process.

Functional module A module which is not a residence module for any process.

Note that for a process implemented using an OTP behaviour, the behaviour module is the residence
module for that process. The callback module is a functional module.
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load_module

If a simple extension has been made to a functional module, it is sufficient to simply load the new
version of the module into the system, and remove the old version. This is called simple code replacement
and for this the following instruction is used:

{load_module, Module}

update

If a more complex change has been made, for example a change to the format of the internal state of a
gen_server, simple code replacement is not sufficient. Instead it is necessary to suspend the processes
using the module (to avoid that they try to handle any requests before the code replacement is
completed), ask them to transform the internal state format and switch to the new version of the
module, remove the old version and last, resume the processes. This is called synchronized code
replacement and for this the following instructions are used:

{update, Module, {advanced, Extra}}
{update, Module, supervisor}

update with argument {advanced,Extra} is used when changing the internal state of a behaviour as
described above. It will cause behaviour processes to call the callback function code_change, passing
the term Extra and some other information as arguments. See the man pages for the respective
behaviours and Appup Cookbook [page 61].

update with argument supervisor is used when changing the start specification of a supervisor. See
Appup Cookbook [page 63].

The release handler finds the processes using a module to update by traversing the supervision tree of
each running application and checking all the child specifications:

{Id, StartFunc, Restart, Shutdown, Type, Modules}

A process is using a module if the name is listed in Modules in the child specification for the process.

If Modules=dynamic, which is the case for event managers, the event manager process informs the
release handler about the list of currently installed event handlers (gen_fsm) and it is checked if the
module name is in this list instead.

The release handler suspends, asks for code change, and resumes processes by calling the functions
sys:suspend/1,2, sys:change _code/4,5 and sys:resume/1,2 respectively.
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add_module and delete_module

If a new module is introduced, the following instruction is used:
{add_module, Module}

The instruction loads the module and is absolutely necessary when running Erlang in embedded mode.
It is not strictly required when running Erlang in interactive (default) mode, since the code server
automatically searches for and loads unloaded modules.

The opposite of add module is delete module which unloads a module:
{delete_module, Module}

Note that any process, in any application, with Module as residence module, is killed when the
instruction is evaluated. The user should therefore ensure that all such processes are terminated before
deleting the module, to avoid a possible situation with failing supervisor restarts.

Application Instructions

Instruction for adding an application:
{add_application, Application}

Adding an application means that the modules defined by the modules key in the . app file are loaded
using a number of add module instructions, then the application is started.

Instruction for removing an application:
{remove_application, Application}

Removing an application means that the application is stopped, the modules are unloaded using a
number of delete module instructions and then the application specification is unloaded from the
application controller.

Instruction for removing an application:
{restart_application, Application}

Restarting an application means that the application is stopped and then started again similar to using
the instructions remove_application and add_application in sequence.

apply (low-level)
To call an arbitrary function from the release handler, the following instruction is used:
{apply, {M, F, A}}

The release handler will evalute apply (M, F, A).
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restart_new_emulator (low-level)

This instruction is used when changing to a new emulator version, or if a system reboot is needed for
some other reason. Requires that the system is started with heart beat monitoring, see er1 (1) and
heart (3).

When the release handler encounters the instruction, it shuts down the current emulator by calling
init:reboot (), see init (3). All processes are terminated gracefully and the system can then be
rebooted by the heart program, using the new release version. This new version must still be made
permanent when the new emulator is up and running. Otherwise, the old version is used in case of a
new system reboot.

On UNIX, the release handler tells the heart program which command to use to reboot the system.
Note that the environment variable HEART_COMMAND, normally used by the heart program, in this case is
ignored. The command instead defaults to $RO0T/bin/start. Another command can be set by using
the SASL configuration parameter start_prg, see sas1(6).

1.11.5 Application Upgrade File

To define how to upgrade/downgrade between the current version and previous versions of an
application, we create an application upgrade file, or in short . appup file. The file should be called
Application.appup, where Application is the name of the application:

{Vsn,
[{UpFromVsnl, InstructionsU1l},

{UpFromVsnK, InstructionsUK}],
[{DownToVsnl, InstructionsD1},

L

{DownToVsnK, InstructionsDK}]}.

Vsn, a string, is the current version of the application, as defined in the .app file. Each UpFromVsn is a
previous version of the application to upgrade from, and each DownToVsn is a previous version of the
application to downgrade to. Each Instructions is a list of release handling instructions.

The syntax and contents of the appup file are described in detail in appup(4).

In the chapter Appup Cookbook [page 60], examples of . appup files for typical upgrade/downgrade
cases are given.

Example: Consider the release ch_rel-1 from the Releases [page 45] chapter. Assume we want to add
a function available/0 to the server ch3 which returns the number of available channels:

(Hint: When trying out the example, make the changes in a copy of the original directory, so that the
first versions are still available.)

-module(ch3).
-behaviour(gen_server) .

-export([start_link/0]).

-export([alloc/0, free/1]).
-export([available/0]).

-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
gen_server:start_link({local, ch3}, ch3, [1, [1).
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alloc() —->
gen_server:call(ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

available() ->
gen_server:call(ch3, available).

init(_Args) ->
{ok, channels()}.

handle_call(alloc, _From, Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2};
handle_call(available, _From, Chs) ->
N = available(Chs),
{reply, N, Chs}.

handle_cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

A new version of the ch_app. app file must now be created, where the version is updated:

{application, ch_app,

[{description, "Channel allocator"},
{vsn, "2"},
{modules, [ch_app, ch_sup, ch3]l},
{registered, [ch3]},
{applications, [kernel, stdlib, sasll},
{mod, {ch_app, [1}}

1}.

To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), we simply need to load the
new (old) version of the ch3 callback module. We create the application upgrade file ch_app . appup in
the ebin directory:

{"2" ,
[{"1", [{load_module, ch3}]}],
[{"1", [{load_module, ch3}]}]
}.

1.11.6 Release Upgrade File

To define how to upgrade/downgrade between the new version and previous versions of a release, we
create a release upgrade file, or in short relup file.

This file does not need to be created manually, it can be generated by systools:make relup/3,4. The
relevant versions of the .rel file, .app files and . appup files are used as input. It is deducted which
applications should be added and deleted, and which applications that need to be upgraded and/or
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downgraded. The instructions for this is fetched from the . appup files and transformed into a single list
of low-level instructions in the right order.

If the relup file is relatively simple, it can be created manually. Remember that it should only contain
low-level instructions.

The syntax and contents of the release upgrade file are described in detail in relup(4).

Example, continued from the previous section. We have a new version “2” of ch_app and an .appup file.
We also need a new version of the .rel file. This time the file is called ch_rel-2.rel and the release
version string is changed changed from “A” to “B™:

{release,
{"ch_rel", "B"},
{erts, "5.3"},
[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},
{ch_app, "2"}]

}.

Now the relup file can be generated:

1> systools:make relup("chrel-2", ["chrel-1"], ["chrel-1"]).
ok

This will generate a relup file with instructions for how to upgrade from version “A” (“ch_rel-1") to
version “B” (“ch_rel-2") and how to downgrade from version “B” to version “A”.

Note that both the old and new versions of the . app and .rel files must be in the code path, as well as
the . appup and (new) .bean files. It is possible to extend the code path by using the option path:

1> systools:makerelup("chrel-2", ["chrel-1"], ["chrel-1"],
[{path, ["../chrel-1",
"../chrel-1/1ib/ch app-1/ebin"]1}1).

ok

1.11.7 Installing a Release

When we have made a new version of a release, a release package can be created with this new version
and transferred to the target environment.

To install the new version of the release in run-time, the release handler is used. This is a process
belonging to the SASL application, that handles unpacking, installation, and removal of release
packages. It is interfaced through the module release handler, which is described in detail in
release handler(3).

Assuming there is a target system up and running with installation root directory $R00T, the release
package with the new version of the release should be copied to $RO0T/releases.

The first action is to unpack the release package, the files are then extracted from the package:

release_handler:unpack_release(ReleaseName) => {ok, Vsn}
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ReleaseName is the name of the release package except the .tar.gz extension. Vsn is the version of the
unpacked release, as defined in its .rel file.

A directory $R00T/1ib/releases/Vsn will be created, where the .rel file, the boot script start.boot,
the system configuration file sys.config and relup are placed. For applications with new version
numbers, the application directories will be placed under $rR00T/1ib. Unchanged applications are not
affected.

An unpacked release can be installed. The release handler then evaluates the instructions in relup, step
by step:

release_handler:install_release(Vsn) => {ok, FromVsn, []}

If an error occurs during the installation, the system is rebooted using the old version of the release. If
installation succeeds, the system is afterwards using the new version of the release, but should anything
happen and the system is rebooted, it would start using the previous version again. To be made the
default version, the newly installed release must be made permanent, which means the previous version
becomes old:

release_handler:make_permanent(Vsn) => ok

The system keeps information about which versions are old and permanent in the files
$RO0T/releases/RELEASES and $R0O0T/releases/start_erl.data

To downgrade from Vsn to FromVsn, install release must be called again:
release_handler:install_release(FromVsn) => {ok, Vsn, []}

An installed, but not permanent, release can be removed. Information about the release is then deleted
from $RO0T/releases/RELEASES and the release specific code, that is the new application directories
and the $RO0T/releases/Vsn directory, are removed.

release_handler:remove_release(Vsn) => ok

Example, continued from the previous sections:

1) Create a target system as described in System Principles of the first version "A" of ch_rel from the
Releases [page 45] chapter. This time sys.config must be included in the release package. If no
configuration is needed, the file should contain the empty list:

1.
2) Start the system as a simple target system. Note that in reality, it should be started as an embedded

system. However, using erl with the correct boot script and . config file is enough for illustration
purposes:

% cd $ROOT
% bin/erl -boot $RO0T/releases/A/start -config $RO0T/releases/A/sys

$ROOT is the installation directory of the target system.

3) In another Erlang shell, generate start scripts and create a release package for the new version "B".
Remember to include (a possible updated) sys.config and the relup file, see Release Upgrade File
[page 55] above.
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1> systools:make script("chrel-2").
ok

2> systools:make tar("ch.rel-2").

ok

The new release package now contains version “2” of ch_app and the relup file as well:

% tar tf ch_rel-2.tar
lib/kernel-2.9/ebin/kernel.app
lib/kernel-2.9/ebin/application.beam

lib/stdlib-1.12/ebin/stdlib.app
lib/stdlib-1.12/ebin/beam_lib.beam

lib/sasl-1.10/ebin/sasl.app
lib/sasl-1.10/ebin/sasl.beam

lib/ch_app-2/ebin/ch_app.app
lib/ch_app-2/ebin/ch_app.bean
lib/ch_app-2/ebin/ch_sup.beam
lib/ch_app-2/ebin/ch3.beam
releases/B/start.boot
releases/B/relup
releases/B/sys.config
releases/ch_rel-2.rel

4) Copy the release package ch_rel-2.tar.gz to the $RO0T/releases directory.
5) In the running target system, unpack the release package:

1> release handler:unpack release("chrel-2").
{Ok, "B"}

The new application version ch_app-2 is installed under $R00T/1ib next to ch_app-1. The kernel,
stdlib and sasl directories are not affected, as they have not changed.

Under $R0O0T/releases, a new directory B is created, containing ch_rel-2.rel, start.boot,
sys.configand relup.

6) Check if the function ch3:available/0 is available:

2> ch3:available().

** exited: {undef, [{ch3,available,[]},
{erl_eval,do_apply,5},
{shell,eval loop,2}]1} **

7) Install the new release. The instructions in $R00T/releases/B/relup are executed one by one,
resulting in the new version of ch3 being loaded. The function ch3:available/0 is now available:
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3> release handler:install release("B").

{Ok, Lyl R [] }
4> ch3:available().
3

5> code:which(ch3).
".../lib/ch_app-2/ebin/ch3.beam"
6> code:which(ch_sup) .
".../1lib/ch_app-1/ebin/ch_sup.beam"

Note that processes in ch_app for which code have not been updated, for example the supervisor, are
still evaluating code from ch_app-1.

8) If the target system is now rebooted, it will use version “A’ again. The “B” version must be made
permanent, in order to be used when the system is rebooted.

7> release handler:make permanent ("B").
ok

1.11.8 Updating Application Specifications

When a new version of a release is installed, the application specifications are automatically updated for
all loaded applications.

Note:

The information about the new application specifications are fetched from the boot script included
in the release package. It is therefore important that the boot script is generated from the same .rel
file as is used to build the release package itself.

Specifically, the application configuration parameters are automatically updated according to (in
increasing priority order):

1. The data in the boot script, fetched from the new application resource file App . app

2. The new sys.config

3. Command line arguments -App Par Val
This means that parameter values set in the other system configuration files, as well as values set using
application:set_env/3, are disregarded.

When an installed release is made permanent, the system process init is set to point out the new
sys.config.

After the installation, the application controller will compare the old and new configuration parameters
for all running applications and call the callback function:

Module:config_change(Changed, New, Removed)
Module is the application callback module as defined by the mod key in the . app file. Changed and New

are lists of {Par,Val} for all changed and added configuration parameters, respectively. Removed is a list
of all parameters Par that have been removed.

The function is optional and may be omitted when implementing an application callback module.
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1.12 Appup Cookbook

This chapter contains examples of . appup files for typical cases of upgrades/downgrades done in
run-time.

1.12.1 Changing a Functional Module

When a change has been made to a functional module, for example if a new function has been added or
a bug has been corrected, simple code replacement is sufficient.

Example:

{||2|| s
[{"1", [{load_module, m}]}],
[{"1", [{load_module, m}]}]
}.

1.12.2 Changing a Residence Module

In a system implemented according to the OTP Design Principles, all processes, except system processes
and special processes, reside in one of the behaviours supervisor, gen_server, gen fsm Or gen_event.
These belong to the STDLIB application and upgrading/downgrading normally requires an emulator
restart.

OTP thus provides no support for changing residence modules except in the case of special processes
[page 62].

1.12.3 Changing a Callback Module

A callback module is a functional module, and for code extensions simple code replacement is sufficient.

Example: When adding a function to ch3 as described in the example in Release Handling [page 54],
ch_app . appup looks as follows:

{|I2|I s
[{"1", [{load_module, ch3}]}],
[{"1", [{load_module, ch3}]}]
}.

OTP also supports changing the internal state of behaviour processes, see Changing Internal State [page
61] below.
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1.12.4 Changing Internal State

In this case, simple code replacement is not sufficient. The process must explicitly transform its state
using the callback function code_change before switching to the new version of the callback module.
Thus synchronized code replacement is used.

Example: Consider the gen_server ch3 from the chapter about the gen_server behaviour [page 6]. The
internal state is a term Chs representing the available channels. Assume we want add a counter N which
keeps track of the number of alloc requests so far. This means we need to change the format to
{Chs,N}.

The . appup file could look as follows:

{"2" s
[{"1", [{update, ch3, {advanced, [1}}13}],
[({"1", [{update, ch3, {advanced, [1}}]}]
T

The third element of the update instruction is a tuple {advanced,Extra} which says that the affected
processes should do a state transformation before loading the new version of the module. This is done
by the processes calling the callback function code_change (see gen_server(3)). The term Extra, in
this case [], is passed as-is to the function:

-module(ch3).
-export ([code_change/3]) .

code_change ({down, _Vsn}, {Chs, N}, _Extra) ->
{ok, Chs};

code_change(_Vsn, Chs, _Extra) ->
{ok, {Chs, O}}.

The first argument is {down,Vsn} in case of a downgrade, or Vsn in case of an upgrade. The term Vsn is
fetched from the "original® version of the module, i.e. the version we are upgrading from, or
downgrading to.

The version is defined by the module attribute vsn, if any. There is no such attribute in ch3, so in this
case the version is the checksum (a huge integer) of the BEAM file, an uninteresting value which is
ignored.

(The other callback functions of ch3 need to be modified as well and perhaps a new interface function
added, this is not shown here).

1.12.5 Module Dependencies

Assume we extend a module by adding a new interface function, as in the example in Release Handling
[page 54], where a function available/0 is added to ch3.

If we also add a call to this function, say in the module m1, a run-time error could occur during release
upgrade if the new version of m1 is loaded first and calls ch3:available/0 before the new version of
ch3 is loaded.

Thus, ch3 must be loaded before m1 is, in the upgrade case, and vice versa in the downgrade case. We say
that m1 is dependent on ch3. In a release handling instruction, this is expressed by the element DepMods:
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{load_module, Module, DepMods}
{update, Module, {advanced, Extra}, DepMods}

DepMods is a list of modules, on which Module is dependent.

Example: The module m1 in the application myapp is dependent on ch3 when upgrading from “1” to “2”,
or downgrading from “2” to “1”:

myapp . appup:

{ll2ll’

[{"1", [{load_module, m1, [ch3]}]1}],
[{"1", [{load_module, m1, [ch3]1}]1}]
}.

ch_app.appup:

{||2|| s
[{"1", [{load_module, ch3}]}],
[{"1", [{load_module, ch3}]}]
}.

If m1 and ch3 had belonged to the same application, the . appup file could have looked like this:

{ll2ll s
[{"1n,
[{load_module, ch3},
{load_module, ml1, [ch3]}]1}],
[{lllll s
[{load_module, ch3},
{load_module, mi, [ch3]}]1}]

Note that it is m1 that is dependent on ch3 also when downgrading. systools knows the difference
between up- and downgrading and will generate a correct relup, where ch3 is loaded before m1 when
upgrading but m1 is loaded before ch3 when downgrading.

1.12.6 Changing Code For a Special Process

In this case, simple code replacement is not sufficient. When a new version of a residence module for a
special process is loaded, the process must make a fully qualified call to its loop function to switch to
the new code. Thus synchronized code replacement must be used.

Note:

The name(s) of the user-defined residence module(s) must be listed in the Modules part of the child
specification for the special process, in order for the release handler to find the process.

Example. Consider the example ch4 from the chapter about sys and proc_lib [page 26]. When started
by a supervisor, the child specification could look like this:
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{ch4, {ch4, start_link, []},
permanent, brutal_kill, worker, [ch4]}

If ch4 is part of the application sp_app and a new version of the module should be loaded when
upgrading from version “1” to “2” of this application, sp_app . appup could look like this:

{"2" ,
[{"1", [{update, ch4, {advanced, [1}}13}],
[{"1", [{update, ch4, {advanced, [1}}]1}]
}.

The update instruction must contain the tuple {advanced,Extra}. The instruction will make the
special process call the callback function system_code_change/4, a function the user must implement.
The term Extra, in this case [], is passed as-is to system_code_change/4:

-module(ch4) .

-export([system_code_change/4]) .

system_code_change(Chs, _Module, _01dVsn, _Extra) ->
{ok, Chs}.

The first argument is the internal state State passed from the function
sys:handle system msg(Request, From, Parent, Module, Deb, State), called by the special
process when a system message is received. In ch4, the internal state is the set of available channels Chs.

The second argument is the name of the module (ch4).
The third argument is Vsn or {down, Vsn} as described for gen_server:code_change/3 [page 61].

In this case, all arguments but the first are ignored and the function simply returns the internal state
again. This is enough if the code only has been extended. If we had wanted to change the internal state
(similar to the example in Changing Internal State [page 61]), it would have been done in this function
and {ok,Chs2} returned.

1.12.7 Changing a Supervisor

The supervisor behaviour supports changing the internal state, i.e. changing restart strategy and
maximum restart frequency properties, as well as changing existing child specifications.

Adding and deleting child processes are also possible, but not handled automatically. Instructions must
be given by in the .appup file.
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Changing Properties
Since the supervisor should change its internal state, synchronized code replacement is required.

However, a special update instruction must be used.

The new version of the callback module must be loaded first both in the case of upgrade and downgrade.
Then the new return value of init/1 can be checked and the internal state be changed accordingly.

The following upgrade instruction is used for supervisors:
{update, Module, supervisor}

Example: Assume we want to change the restart strategy of ch_sup from the Supervisor Behaviour
[page 19] chapter from one_for_one to one_for_all. We change the callback function init/1 in
ch_sup.erl

-module(ch_sup) .

init(_Args) —->
{ok, {{one_for_all, 1, 60}, ...}}.

The file ch_app . appup:

{“2“ s
[{"1", [{update, ch_sup, supervisor}]}],
[{"1", [{update, ch_sup, supervisor}]}]
}.

Changing Child Specifications

The instruction, and thus the . appup file, when changing an existing child specification, is the same as
when changing properties as described above:

{||2|| s
[{"1", [{update, ch_sup, supervisor}]}],
[{"1", [{update, ch_sup, supervisor}]}]
}.

The changes do not affect existing child processes. For example, changing the start function only
specifies how the child process should be restarted, if needed later on.

Note that the id of the child specification cannot be changed.

Note also that changing the Modules field of the child specification may affect the release handling
process itself, as this field is used to identify which processes are affected when doing a synchronized
code replacement.
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Adding And Deleting Child Processes

As stated above, changing child specifications does not affect existing child processes. New child
specifications are automatically added, but not deleted. Also, child processes are not automatically
started or terminated. Instead, this must be done explicitly using apply instructions.

Example: Assume we want to add a new child process m1 to ch_sup when upgrading ch_app from “1” to
“2”. This means m1 should be deleted when downgrading from “2” to “1”":

{"2",

[{lllll s
[{update, ch_sup, supervisor},
{apply, {supervisor, restart_child, [ch_sup, m1]}}
131,

[{"1n,
[{apply, {supervisor, terminate_child, [ch_sup, m1]}},
{apply, {supervisor, delete_child, [ch_sup, mil}},
{update, ch_sup, supervisor}

13]

Note that the order of the instructions is important.

Note also that the supervisor must be registered as ch_sup for the script to work. If the supervisor is not
registered, it cannot be accessed directly from the script. Instead a help function that finds the pid of
the supervisor and calls supervisor:restart_child etc. must be written, and it is this function that
should be called from the script using the apply instruction.

If the module m1 is introduced in version “2” of ch_app, it must also be loaded when upgrading and
deleted when downgrading:

{"2",
[{lllll s
[{add_module, mi1},
{update, ch_sup, supervisor},
{apply, {supervisor, restart_child, [ch_sup, ml1]}}
131,
[{"1n,
[{apply, {supervisor, terminate_child, [ch_sup, m1]}},
{apply, {supervisor, delete_child, [ch_sup, mil}},
{update, ch_sup, supervisor},
{delete_module, ml}
131

Note again that the order of the instructions is important. When upgrading, m1 must be loaded and the
supervisor's child specification changed, before the new child process can be started. When
downgrading, the child process must be terminated before child specification is changed and the
module is deleted.
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1.12.8 Adding or Deleting a Module

Example: A new functional module m is added to ch_app:

{||2|| s
[{"1", [{add_module, m}]1}],
[{"1", [{delete_module, m}]}]

1.12.9 Starting or Terminating a Process

In a system structured according to the OTP design principles, any process would be a child process
belonging to a supervisor, see Adding and Deleting Child Processes [page 64] above.

1.12.10 Adding or Removing an Application

When adding or removing an application, no .appup file is needed. When generating relup, the .rel
files are compared and add_application and remove_application instructions are added
automatically.

1.12.11 Restarting an Application

Restarting an application is useful when a change is too complicated to be made without restarting the
processes, for example if the supervisor hierarchy has been restructured.

Example: When adding a new child m1 to ch_sup, as in the example above [page 64], an alternative to
updating the supervisor is to restart the entire application:

{||2|| s
[{"1", [{restart_application, ch_app}]}],
[{"1", [{restart_application, ch_app}]}]
}.

1.12.12 Changing an Application Specification

When installing a release, the application specifications are automatically updated before evaluating the
relup script. Hence, no instructions are needed in the . appup file:

{IIQII’
[{"1", 001}1,
({"1", [}]
1.

1.12.13 Changing Application Configuration

Changing an application configuration by updating the env key in the . app file is an instance of
changing an application specification, see above [page 66].

Alternatively, application configuration parameters can be added or updated in sys.config.
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1.12.14 Changing Included Applications

The release handling instructions for adding, removing and restarting applications apply to primary
applications only. There are no corresponding instructions for included applications. However, since an
included application is really a supervision tree with a topmost supervisor, started as a child process to a
supervisor in the including application, a relup file can be manually created.

Example: Assume we have a release containing an application prim_app which have a supervisor
prim_sup in its supervision tree.

In a new version of the release, our example application ch_app should be included in prim_app. That
is, its topmost supervisor ch_sup should be started as a child process to prim_sup.

1) Edit the code for prim_sup:

init(...) —>
{ok, {...supervisor flags...,

C

{ch_sup, {ch_sup,start_link,[]1},
permanent,infinity,supervisor, [ch_sup]l},

.13
2) Edit the . app file for prim_app:

{application, prim_app,
L...,
{VSII, ||2||}’

{included_applications, [ch_appl},
1r.
3) Create a new .rel file, including ch_app:

{release,
[...,
{prim_app, "2"},
{ch_app, "1"}1%}.

Application Restart

4a) One way to start the included application is to restart the entire prim_app application. Normally,
we would then use the restart_application instruction in the .appup file for prim_app.

However, if we did this and then generated a relup file, not only would it contain instructions for
restarting (i.e. removing and adding) prim_app, it would also contain instructions for starting ch_app
(and stopping it, in the case of downgrade). This is due to the fact that ch_app is included in the new
.rel file, but not in the old one.

Instead, a correct relup file can be created manually, either from scratch or by editing the generated
version. The instructions for starting/stopping ch_app are replaced by instructions for loading/unloading
the application:
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{"B",

[{IIAII s
1,
[{load_object_code,{ch_app,"1", [ch_sup,ch3]}},
{load_object_code,{prim_app,"2", [prim_app,prim_supl}},
point_of_no_return,
{apply,{application,stop, [prim_appl}},
{remove,{prim_app,brutal_purge,brutal_purge}},
{remove,{prim_sup,brutal_purge,brutal_purge}},
{purge, [prim_app,prim_supl},
{load,{prim_app,brutal_purge,brutal_purgel}},
{load,{prim_sup,brutal_purge,brutal_purgel}},
{load,{ch_sup,brutal_purge,brutal_purgel}},
{load,{ch3,brutal_purge,brutal_purge}},
{apply,{application,load, [ch_app]}},
{apply,{application,start, [prim_app,permanent]}}1}1,

[{"A",
1,
[{load_object_code,{prim_app,"1", [prim_app,prim_sup]l }},
point_of_no_return,
{apply,{application,stop, [prim_appl}},
{apply,{application,unload, [ch_appl}},
{remove,{ch_sup,brutal_purge,brutal_purgel}},
{remove,{ch3,brutal_purge,brutal_purge}},
{purge, [ch_sup,ch3]},
{remove,{prim_app,brutal_purge,brutal_purgel}},
{remove,{prim_sup,brutal_purge,brutal_purgel}},
{purge, [prim_app,prim_supl},
{load,{prim_app,brutal_purge,brutal_purgel}},
{load,{prim_sup,brutal_purge,brutal_purgel}},
{apply,{application,start, [prim_app,permanent] }}]13}]

Supervisor Change

4b) Another way to start the included application (or stop it in the case of downgrade) is by combining
instructions for adding and removing child processes to/from prim_sup with instructions for
loading/unloading all ch_app code and its application specification.

Again, the relup file is created manually. Either from scratch or by editing a generated version. Load all
code for ch_app first, and also load the application specification, before prim_sup is updated. When
downgrading, prim_sup should be updated first, before the code for ch_app and its application
specification are unloaded.

{IIBII s

[{"A",
1,
[{load_object_code,{ch_app,"1", [ch_sup,ch3]}},
{load_object_code,{prim_app,"2", [prim_sup]l }},
point_of_no_return,
{load,{ch_sup,brutal_purge,brutal_purgel}},
{load,{ch3,brutal_purge,brutal_purgel}},
{apply,{application,load, [ch_app]}},
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{suspend, [prim_supl},

{load,{prim_sup,brutal_purge,brutal_purgel}},

{code_change,up, [{prim_sup, [1}13},

{resume, [prim_sup]l},

{apply, {supervisor,restart_child, [prim_sup,ch_sup] }}]1}],
[{"A",

1,

[{load_object_code,{prim_app,"1", [prim_sup]l }},

point_of_no_return,

{apply, {supervisor,terminate_child, [prim_sup,ch_sup] }},

{apply,{supervisor,delete_child, [prim_sup,ch_sup]}},

{suspend, [prim_supl},

{load,{prim_sup,brutal_purge,brutal_purgel}},

{code_change,down, [{prim_sup, [1}1},

{resume, [prim_sup]l},

{remove,{ch_sup,brutal_purge,brutal_purgel}},

{remove,{ch3,brutal_purge,brutal_purgel}},

{purge, [ch_sup,ch3]},

{apply,{application,unload, [ch_app]}}]}]

1.12.15 Changing Non-Erlang Code

Changing code for a program written in another programming language than Erlang, for example a port
program, is very application dependent and OTP provides no special support for it.

Example, changing code for a port program: Assume that the Erlang process controlling the port is a
gen_server portc and that the port is opened in the callback function init/1:

init(...) —>

PortPrg = filename: join(code:priv_dir(App), "portc"),
Port = open_port ({spawn,PortPrg}, [...]),

{ok, #state{port=Port, ...}}.

If the port program should be updated, we can extend the code for the gen_server with a code_change
function which closes the old port and opens a new port. (If necessary, the gen_server may first request
data that needs to be saved from the port program and pass this data to the new port):

code_change(_01dVsn, State, port) ->
State#state.port ! close,
receive
{Port,close} —>
true
end,
PortPrg = filename: join(code:priv_dir(App), "portc"),
Port = open_port({spawn,PortPrg}, [...]),
{ok, #state{port=Port, ...}}.

Update the application version number in the . app file and write an . appup file:
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[||2|| s
[{"1", [{update, portc, {advanced,port}}]1}],
[{"1", [{update, portc, {advanced,port}}]}]
1.

Make sure the priv directory where the C program is located is included in the new release package:

1> systools:make tar("my_release", [{dirs, [priv]}]).

1.12.16 Emulator Restart

If the emulator can or should be restarted, the very simple .relup file can be created manually:

{"B",
[{IIAII s
a1,
[restart_new_emulator]}],
[{"A",
1,

[restart_new_emulator]}]

This way, the release handler framework with automatic packing and unpacking of release packages,
automatic path updates etc. can be used without having to specify . appup files.

If some transformation of persistent data, for example database contents, needs to be done before
installing the new release version, instructions for this can be added to the .relup file as well.
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