

Isabelle2008/doc/classes.pdf

λ →

∀
=Isa

be
lle

β
α

Isar

Haskell-style type classes with Isabelle/Isar

Florian Haftmann

8 June 2008

Abstract

This tutorial introduces the look-and-feel of Isar type classes to the end-user;
Isar type classes are a convenient mechanism for organizing specifications,
overcoming some drawbacks of raw axiomatic type classes. Essentially, they
combine an operational aspect (in the manner of Haskell) with a logical
aspect, both managed uniformly.

Chapter 1

Haskell-style classes with
Isabelle/Isar

1.1 Introduction

Type classes were introduces by Wadler and Blott [9] into the Haskell lan-
guage, to allow for a reasonable implementation of overloading1. As a canon-
ical example, a polymorphic equality function eq :: α ⇒ α ⇒ bool which is
overloaded on different types for α, which is achieved by splitting introduc-
tion of the eq function from its overloaded definitions by means of class and
instance declarations:

class eq where2

eq :: α ⇒ α ⇒ bool

instance nat :: eq where
eq 0 0 = True
eq 0 - = False
eq - 0 = False
eq (Suc n) (Suc m) = eq n m

instance (α::eq , β::eq) pair :: eq where
eq (x1, y1) (x2, y2) = eq x1 x2 ∧ eq y1 y2

class ord extends eq where
less-eq :: α ⇒ α ⇒ bool
less :: α ⇒ α ⇒ bool

Type variables are annotated with (finitly many) classes; these annotations
are assertions that a particular polymorphic type provides definitions for
overloaded functions.

Indeed, type classes not only allow for simple overloading but form a
generic calculus, an instance of order-sorted algebra [7, 6, 10].

1throughout this tutorial, we are referring to classical Haskell 1.0 type classes, not
considering later additions in expressiveness

2syntax here is a kind of isabellized Haskell

1

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 2

From a software enigineering point of view, type classes correspond to
interfaces in object-oriented languages like Java; so, it is naturally desirable
that type classes do not only provide functions (class parameters) but also
state specifications implementations must obey. For example, the class eq
above could be given the following specification, demanding that class eq is
an equivalence relation obeying reflexivity, symmetry and transitivity:

class eq where
eq :: α ⇒ α ⇒ bool

satisfying
refl : eq x x
sym: eq x y ↔ eq x y
trans : eq x y ∧ eq y z −→ eq x z

From a theoretic point of view, type classes are leightweight modules; Haskell
type classes may be emulated by SML functors [1]. Isabelle/Isar offers a
discipline of type classes which brings all those aspects together:

1. specifying abstract parameters together with corresponding specifica-
tions,

2. instantating those abstract parameters by a particular type

3. in connection with a “less ad-hoc” approach to overloading,

4. with a direct link to the Isabelle module system (aka locales [4]).

Isar type classes also directly support code generation in a Haskell like fash-
ion.

This tutorial demonstrates common elements of structured specifications
and abstract reasoning with type classes by the algebraic hierarchy of semi-
groups, monoids and groups. Our background theory is that of Isabelle/HOL
[8], for which some familiarity is assumed.

Here we merely present the look-and-feel for end users. Internally, those
are mapped to more primitive Isabelle concepts. See [3] for more detail.

1.2 A simple algebra example

1.2.1 Class definition

Depending on an arbitrary type α, class semigroup introduces a binary op-
erator ◦ that is assumed to be associative:

class semigroup = type +

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 3

fixes mult :: α ⇒ α ⇒ α (infixl ◦ 70)
assumes assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)

This class specification consists of two parts: the operational part names
the class parameter (fixes), the logical part specifies properties on them
(assumes). The local fixes and assumes are lifted to the theory toplevel,
yielding the global parameter mult :: α::semigroup ⇒ α ⇒ α and the global
theorem semigroup.assoc:

∧
x y z :: α::semigroup. (x ◦ y) ◦ z = x ◦ (y ◦ z).

1.2.2 Class instantiation

The concrete type int is made a semigroup instance by providing a suitable
definition for the class parameter mult and a proof for the specification of
assoc. This is accomplished by the instantiation target:

instantiation int :: semigroup
begin

definition
mult-int-def : i ◦ j = i + (j ::int)

instance proof
fix i j k :: int have (i + j) + k = i + (j + k) by simp
then show (i ◦ j) ◦ k = i ◦ (j ◦ k)

unfolding mult-int-def .
qed

end

instantiation allows to define class parameters at a particular instance us-
ing common specification tools (here, definition). The concluding instance
opens a proof that the given parameters actually conform to the class spec-
ification. Note that the first proof step is the default method, which for
such instance proofs maps to the intro-classes method. This boils down an
instance judgement to the relevant primitive proof goals and should conve-
niently always be the first method applied in an instantiation proof.

From now on, the type-checker will consider int as a semigroup automati-
cally, i.e. any general results are immediately available on concrete instances.
Another instance of semigroup are the natural numbers:

instantiation nat :: semigroup
begin

primrec mult-nat where

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 4

(0::nat) ◦ n = n
| Suc m ◦ n = Suc (m ◦ n)

instance proof
fix m n q :: nat
show m ◦ n ◦ q = m ◦ (n ◦ q)

by (induct m) auto
qed

end

Note the occurence of the name mult-nat in the primrec declaration; by de-
fault, the local name of a class operation f to instantiate on type constructor
κ are mangled as f-κ. In case of uncertainty, these names may be inspected
using the print-context command or the corresponding ProofGeneral but-
ton.

1.2.3 Lifting and parametric types

Overloaded definitions giving on class instantiation may include recursion
over the syntactic structure of types. As a canonical example, we model
product semigroups using our simple algebra:

instantiation ∗ :: (semigroup, semigroup) semigroup
begin

definition
mult-prod-def : p1 ◦ p2 = (fst p1 ◦ fst p2, snd p1 ◦ snd p2)

instance proof
fix p1 p2 p3 :: α::semigroup × β::semigroup
show p1 ◦ p2 ◦ p3 = p1 ◦ (p2 ◦ p3)

unfolding mult-prod-def by (simp add : assoc)
qed

end

Associativity from product semigroups is established using the definition of ◦
on products and the hypothetical associativety of the type components; these
hypothesis are facts due to the semigroup constraints imposed on the type
components by the instance proposition. Indeed, this pattern often occurs
with parametric types and type classes.

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 5

1.2.4 Subclassing

We define a subclass monoidl (a semigroup with a left-hand neutral) by
extending semigroup with one additional parameter neutral together with
its property:

class monoidl = semigroup +
fixes neutral :: α (1)
assumes neutl : 1 ◦ x = x

Again, we prove some instances, by providing suitable parameter definitions
and proofs for the additional specifications. Obverve that instantiations for
types with the same arity may be simultaneous:

instantiation nat and int :: monoidl
begin

definition
neutral-nat-def : 1 = (0::nat)

definition
neutral-int-def : 1 = (0::int)

instance proof
fix n :: nat
show 1 ◦ n = n

unfolding neutral-nat-def by simp
next

fix k :: int
show 1 ◦ k = k

unfolding neutral-int-def mult-int-def by simp
qed

end

instantiation ∗ :: (monoidl , monoidl) monoidl
begin

definition
neutral-prod-def : 1 = (1, 1)

instance proof
fix p :: α::monoidl × β::monoidl
show 1 ◦ p = p

unfolding neutral-prod-def mult-prod-def by (simp add : neutl)

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 6

qed

end

Fully-fledged monoids are modelled by another subclass which does not add
new parameters but tightens the specification:

class monoid = monoidl +
assumes neutr : x ◦ 1 = x

instantiation nat and int :: monoid
begin

instance proof
fix n :: nat
show n ◦ 1 = n

unfolding neutral-nat-def by (induct n) simp-all
next

fix k :: int
show k ◦ 1 = k

unfolding neutral-int-def mult-int-def by simp
qed

end

instantiation ∗ :: (monoid , monoid) monoid
begin

instance proof
fix p :: α::monoid × β::monoid
show p ◦ 1 = p

unfolding neutral-prod-def mult-prod-def by (simp add : neutr)
qed

end

To finish our small algebra example, we add a group class with a correspond-
ing instance:

class group = monoidl +
fixes inverse :: α ⇒ α ((-−1) [1000] 999)
assumes invl : x−1 ◦ x = 1

instantiation int :: group
begin

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 7

definition
inverse-int-def : i−1 = − (i ::int)

instance proof
fix i :: int
have −i + i = 0 by simp
then show i−1 ◦ i = 1

unfolding mult-int-def neutral-int-def inverse-int-def .
qed

end

1.3 Type classes as locales

1.3.1 A look behind the scene

The example above gives an impression how Isar type classes work in practice.
As stated in the introduction, classes also provide a link to Isar’s locale
system. Indeed, the logical core of a class is nothing else than a locale:

class idem = type +
fixes f :: α ⇒ α
assumes idem: f (f x) = f x

essentially introduces the locale

locale idem =
fixes f :: α ⇒ α
assumes idem: f (f x) = f x

together with corresponding constant(s):

consts f :: α ⇒ α

The connection to the type system is done by means of a primitive axclass

axclass idem < type
idem: f (f x) = f x

together with a corresponding interpretation:

interpretation idem-class:
idem [f :: (α::idem) ⇒ α]

by unfold-locales (rule idem)

This give you at hand the full power of the Isabelle module system; con-
clusions in locale idem are implicitly propagated to class idem.

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 8

1.3.2 Abstract reasoning

Isabelle locales enable reasoning at a general level, while results are implicitly
transferred to all instances. For example, we can now establish the left-cancel
lemma for groups, which states that the function (x ◦) is injective:

lemma (in group) left-cancel : x ◦ y = x ◦ z ↔ y = z
proof

assume x ◦ y = x ◦ z
then have x−1 ◦ (x ◦ y) = x−1 ◦ (x ◦ z) by simp
then have (x−1 ◦ x) ◦ y = (x−1 ◦ x) ◦ z using assoc by simp
then show y = z using neutl and invl by simp

next
assume y = z
then show x ◦ y = x ◦ z by simp

qed

Here the “in group” target specification indicates that the result is recorded
within that context for later use. This local theorem is also lifted to the
global one group.left-cancel :

∧
x y z :: α::group. x ◦ y = x ◦ z ↔ y = z.

Since type int has been made an instance of group before, we may refer to
that fact as well:

∧
x y z :: int . x ◦ y = x ◦ z ↔ y = z.

1.3.3 Derived definitions

Isabelle locales support a concept of local definitions in locales:

primrec (in monoid)
pow-nat :: nat ⇒ α ⇒ α where
pow-nat 0 x = 1
| pow-nat (Suc n) x = x ◦ pow-nat n x

If the locale group is also a class, this local definition is propagated onto a
global definition of pow-nat :: nat ⇒ α::monoid ⇒ α::monoid with corre-
sponding theorems

pow-nat 0 x = 1
pow-nat (Suc n) x = x ◦ pow-nat n x.

As you can see from this example, for local definitions you may use any
specification tool which works together with locales (e.g. [5]).

1.3.4 A functor analogy

We introduced Isar classes by analogy to type classes functional program-
ming; if we reconsider this in the context of what has been said about type

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 9

classes and locales, we can drive this analogy further by stating that type
classes essentially correspond to functors which have a canonical interpre-
tation as type classes. Anyway, there is also the possibility of other in-
terpretations. For example, also lists form a monoid with op @ and [] as
operations, but it seems inappropriate to apply to lists the same operations
as for genuinly algebraic types. In such a case, we simply can do a particular
interpretation of monoids for lists:

interpretation list-monoid : monoid [op @ []]
by unfold-locales auto

This enables us to apply facts on monoids to lists, e.g. [] @ x = x.
When using this interpretation pattern, it may also be appropriate to

map derived definitions accordingly:

fun
replicate :: nat ⇒ α list ⇒ α list

where
replicate 0 - = []
| replicate (Suc n) xs = xs @ replicate n xs

interpretation list-monoid : monoid [op @ []] where
monoid .pow-nat (op @) [] = replicate

proof
fix n :: nat
show monoid .pow-nat (op @) [] n = replicate n

by (induct n) auto
qed

1.3.5 Additional subclass relations

Any group is also a monoid ; this can be made explicit by claiming an addi-
tional subclass relation, together with a proof of the logical difference:

subclass (in group) monoid
proof unfold-locales

fix x
from invl have x−1 ◦ x = 1 by simp
with assoc [symmetric] neutl invl have x−1 ◦ (x ◦ 1) = x−1 ◦ x by simp
with left-cancel show x ◦ 1 = x by simp

qed

The logical proof is carried out on the locale level and thus conveniently is
opened using the unfold-locales method which only leaves the logical differ-
ences still open to proof to the user. Afterwards it is propagated to the type

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 10

system, making group an instance of monoid by adding an additional edge
to the graph of subclass relations (cf. figure 1.1).

semigroup

monoidl

monoid

group

?

�
�	

B
B
B
B
BBN

semigroup

monoidl

monoid

group

?

�
�	

PPPPPPq

Figure 1.1: Subclass relationship of monoids and groups: before and after
establishing the relationship group ⊆ monoid ; transitive edges left out.

For illustration, a derived definition in group which uses pow-nat :

definition (in group)
pow-int :: int ⇒ α ⇒ α where
pow-int k x = (if k >= 0

then pow-nat (nat k) x
else (pow-nat (nat (− k)) x)−1)

yields the global definition of pow-int :: int ⇒ α::group ⇒ α::group with the
corresponding theorem pow-int k x = (if 0 ≤ k then pow-nat (nat k) x else
(pow-nat (nat (− k)) x)−1).

1.3.6 A note on syntax

As a commodity, class context syntax allows to refer to local class operations
and their global conuterparts uniformly; type inference resolves ambiguities.
For example:

context semigroup
begin

term x ◦ y — example 1
term (x ::nat) ◦ y — example 2

end

term x ◦ y — example 3

Here in example 1, the term refers to the local class operation mult [α],
whereas in example 2 the type constraint enforces the global class opera-

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 11

tion mult [nat]. In the global context in example 3, the reference is to the
polymorphic global class operation mult [?α :: semigroup].

1.4 Type classes and code generation

Turning back to the first motivation for type classes, namely overloading, it is
obvious that overloading stemming from class statements and instantiation
targets naturally maps to Haskell type classes. The code generator framework
[2] takes this into account. Concerning target languages lacking type classes
(e.g. SML), type classes are implemented by explicit dictionary construction.
For example, lets go back to the power function:

definition
example :: int where
example = pow-int 10 (−2)

This maps to Haskell as:

export-code example in Haskell module-name Classes file code-examples/

module Classes where {

data Nat = Suc Nat | Zero_nat;

nat_aux :: Integer -> Nat -> Nat;

nat_aux i n = (if i <= 0 then n else nat_aux (i - 1) (Suc n));

nat :: Integer -> Nat;

nat i = nat_aux i Zero_nat;

class Semigroup a where {

mult :: a -> a -> a;

};

class (Semigroup a) => Monoidl a where {

neutral :: a;

};

class (Monoidl a) => Monoid a where {

};

class (Monoid a) => Group a where {

inverse :: a -> a;

};

inverse_int :: Integer -> Integer;

inverse_int i = negate i;

neutral_int :: Integer;

neutral_int = 0;

mult_int :: Integer -> Integer -> Integer;

mult_int i j = i + j;

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 12

instance Semigroup Integer where {

mult = mult_int;

};

instance Monoidl Integer where {

neutral = neutral_int;

};

instance Monoid Integer where {

};

instance Group Integer where {

inverse = inverse_int;

};

pow_nat :: forall a. (Monoid a) => Nat -> a -> a;

pow_nat (Suc n) x = mult x (pow_nat n x);

pow_nat Zero_nat x = neutral;

pow_int :: forall a. (Group a) => Integer -> a -> a;

pow_int k x =

(if 0 <= k then pow_nat (nat k) x

else inverse (pow_nat (nat (negate k)) x));

example :: Integer;

example = pow_int 10 (-2);

}

The whole code in SML with explicit dictionary passing:

export-code example in SML module-name Classes file code-examples/classes.ML

structure Classes =

struct

datatype nat = Suc of nat | Zero_nat;

fun nat_aux i n =

(if IntInf.<= (i, (0 : IntInf.int)) then n

else nat_aux (IntInf.- (i, (1 : IntInf.int))) (Suc n));

fun nat i = nat_aux i Zero_nat;

type ’a semigroup = {mult : ’a -> ’a -> ’a};

fun mult (A_:’a semigroup) = #mult A_;

type ’a monoidl =

{Classes__semigroup_monoidl : ’a semigroup , neutral : ’a};

fun semigroup_monoidl (A_:’a monoidl) = #Classes__semigroup_monoidl A_;

fun neutral (A_:’a monoidl) = #neutral A_;

type ’a monoid = {Classes__monoidl_monoid : ’a monoidl };

fun monoidl_monoid (A_:’a monoid) = #Classes__monoidl_monoid A_;

type ’a group = {Classes__monoid_group : ’a monoid , inverse : ’a -> ’a};

fun monoid_group (A_:’a group) = #Classes__monoid_group A_;

fun inverse (A_:’a group) = #inverse A_;

fun inverse_int i = IntInf .~ i;

CHAPTER 1. HASKELL-STYLE CLASSES WITH ISABELLE/ISAR 13

val neutral_int : IntInf.int = (0 : IntInf.int);

fun mult_int i j = IntInf .+ (i, j);

val semigroup_int = {mult = mult_int} : IntInf.int semigroup;

val monoidl_int =

{Classes__semigroup_monoidl = semigroup_int , neutral = neutral_int} :

IntInf.int monoidl;

val monoid_int = {Classes__monoidl_monoid = monoidl_int} :

IntInf.int monoid;

val group_int =

{Classes__monoid_group = monoid_int , inverse = inverse_int} :

IntInf.int group;

fun pow_nat A_ (Suc n) x =

mult ((semigroup_monoidl o monoidl_monoid) A_) x (pow_nat A_ n x)

| pow_nat A_ Zero_nat x = neutral (monoidl_monoid A_);

fun pow_int A_ k x =

(if IntInf.<= ((0 : IntInf.int), k)

then pow_nat (monoid_group A_) (nat k) x

else inverse A_ (pow_nat (monoid_group A_) (nat (IntInf .~ k)) x));

val example : IntInf.int =

pow_int group_int (10 : IntInf.int) (~2 : IntInf.int);

end; (∗ s t r u c t C l a s s e s ∗)

Bibliography

[1] Stefan Wehr et. al. ML modules and Haskell type classes: A constructive
comparison.

[2] Florian Haftmann. Code generation from Isabelle theories.
http://isabelle.in.tum.de/doc/codegen.pdf.

[3] Florian Haftmann and Makarius Wenzel. Constructive type classes in
Isabelle. In T. Altenkirch and C. McBride, editors, Types for Proofs and
Programs, TYPES 2006, volume 4502 of LNCS. Springer, 2007.

[4] Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales: A
sectioning concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order Logics:
TPHOLs ’99, volume 1690 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[5] Alexander Krauss. Partial recursive functions in Higher-Order Logic. In
U. Furbach and N. Shankar, editors, Automated Reasoning: IJCAR 2006,
volume 4130 of Lecture Notes in Computer Science, pages 589–603.
Springer-Verlag, 2006.

[6] T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 164–188. Cambridge
University Press, 1993.

[7] T. Nipkow and C. Prehofer. Type checking type classes. In ACM Symp.
Principles of Programming Languages, 1993.

[8] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[9] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In
ACM Symp. Principles of Programming Languages, 1989.

[10] Markus Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

14

http://isabelle.in.tum.de/doc/codegen.pdf

			Haskell-style classes with Isabelle/Isar

			Introduction

			A simple algebra example

			Class definition

			Class instantiation

			Lifting and parametric types

			Subclassing

			Type classes as locales

			A look behind the scene

			Abstract reasoning

			Derived definitions

			A functor analogy

			Additional subclass relations

			A note on syntax

			Type classes and code generation

Isabelle2008/doc/codegen.pdf

λ →

∀
=Isa

be
lle

β
α

Isar

Code generation from Isabelle/HOL theories

Florian Haftmann

8 June 2008

Abstract

This tutorial gives a motivation-driven introduction to a generic code gen-
erator framework in Isabelle for generating executable code in functional
programming languages from logical specifications.

Chapter 1

Code generation from Isabelle
theories

1.1 Introduction

1.1.1 Motivation

Executing formal specifications as programs is a well-established topic in the
theorem proving community. With increasing application of theorem proving
systems in the area of software development and verification, its relevance
manifests for running test cases and rapid prototyping. In logical calculi
like constructive type theory, a notion of executability is implicit due to the
nature of the calculus. In contrast, specifications in Isabelle can be highly
non-executable. In order to bridge the gap between logic and executable
specifications, an explicit non-trivial transformation has to be applied: code
generation.

This tutorial introduces a generic code generator for the Isabelle system
[6]. Generic in the sense that the target language for which code shall ul-
timately be generated is not fixed but may be an arbitrary state-of-the-art
functional programming language (currently, the implementation supports
SML [5], OCaml [4] and Haskell [7]). We aim to provide a versatile envi-
ronment suitable for software development and verification, structuring the
process of code generation into a small set of orthogonal principles while
achieving a big coverage of application areas with maximum flexibility.

Conceptually the code generator framework is part of Isabelle’s Pure meta
logic; the object logic HOL which is an extension of Pure already comes with
a reasonable framework setup and thus provides a good working horse for
raising code-generation-driven applications. So, we assume some familiarity
and experience with the ingredients of the HOL Main theory (see also [6]).

1.1.2 Overview

The code generator aims to be usable with no further ado in most cases
while allowing for detailed customization. This manifests in the structure

1

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 2

of this tutorial: we start with a generic example §1.2 and introduce code
generation concepts §1.3. Section §1.4 explains how to use the framework
naively, presuming a reasonable default setup. Then, section §1.5 deals with
advanced topics, introducing further aspects of the code generator framework
in a motivation-driven manner. Last, section §1.6 introduces the framework’s
internal programming interfaces.

! Ultimately, the code generator which this tutorial deals with is supposed to
replace the already established code generator by Stefan Berghofer [1]. So,

for the moment, there are two distinct code generators in Isabelle. Also note
that while the framework itself is object-logic independent, only HOL provides a
reasonable framework setup.

1.2 An example: a simple theory of search

trees

When writing executable specifications using HOL, it is convenient to use
three existing packages: the datatype package for defining datatypes, the
function package for (recursive) functions, and the class package for over-
loaded definitions.

We develope a small theory of search trees; trees are represented as a
datatype with key type ′a and value type ′b:

datatype (′a, ′b) searchtree = Leaf ′a::linorder ′b
| Branch (′a, ′b) searchtree ′a (′a, ′b) searchtree

Note that we have constrained the type of keys to the class of total orders,
linorder.

We define find and update functions:

primrec
find :: (′a::linorder , ′b) searchtree ⇒ ′a ⇒ ′b option where
find (Leaf key val) it = (if it = key then Some val else None)
| find (Branch t1 key t2) it = (if it ≤ key then find t1 it else find t2 it)

fun
update :: ′a::linorder × ′b ⇒ (′a, ′b) searchtree ⇒ (′a, ′b) searchtree where
update (it , entry) (Leaf key val) = (

if it = key then Leaf key entry
else if it ≤ key
then Branch (Leaf it entry) it (Leaf key val)
else Branch (Leaf key val) it (Leaf it entry)

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 3

)
| update (it , entry) (Branch t1 key t2) = (

if it ≤ key
then (Branch (update (it , entry) t1) key t2)
else (Branch t1 key (update (it , entry) t2))

)

For testing purpose, we define a small example using natural numbers nat
(which are a linorder) as keys and list of nats as values:

definition
example :: (nat , nat list) searchtree

where
example = update (Suc (Suc (Suc (Suc 0))), [Suc (Suc 0), Suc (Suc 0)]) (update

(Suc (Suc (Suc 0)), [Suc (Suc (Suc 0))])
(update (Suc (Suc 0), [Suc (Suc 0)]) (Leaf (Suc 0) [])))

Then we generate code

export-code example in SML file examples/tree.ML

which looks like:

structure HOL =

struct

type ’a eq = {eq : ’a -> ’a -> bool};

fun eq (A_:’a eq) = #eq A_;

type ’a ord = {less_eq : ’a -> ’a -> bool , less : ’a -> ’a -> bool};

fun less_eq (A_:’a ord) = #less_eq A_;

fun less (A_:’a ord) = #less A_;

fun eqop A_ a = eq A_ a;

end; (∗ s t r u c t HOL∗)

structure Orderings =

struct

type ’a order = {Orderings__ord_order : ’a HOL.ord};

fun ord_order (A_:’a order) = #Orderings__ord_order A_;

type ’a linorder = {Orderings__order_linorder : ’a order };

fun order_linorder (A_:’a linorder) = #Orderings__order_linorder A_;

end; (∗ s t r u c t O rde r i n g s ∗)

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun eq_nat Zero_nat Zero_nat = true

| eq_nat (Suc m) (Suc n) = eq_nat m n

| eq_nat Zero_nat (Suc a) = false

| eq_nat (Suc a) Zero_nat = false;

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 4

val eq_nata = {eq = eq_nat} : nat HOL.eq;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

val ord_nat = {less_eq = less_eq_nat , less = less_nat} : nat HOL.ord;

val order_nat = {Orderings__ord_order = ord_nat} : nat Orderings.order;

val linorder_nat = {Orderings__order_linorder = order_nat} :

nat Orderings.linorder;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

datatype (’a, ’b) searchtree =

Branch of (’a, ’b) searchtree * ’a * (’a, ’b) searchtree |

Leaf of ’a * ’b;

fun update (A1_ , A2_) (it, entry) (Branch (t1 , key , t2)) =

(if HOL.less_eq ((Orderings.ord_order o Orderings.order_linorder) A2_)

it key

then Branch (update (A1_ , A2_) (it, entry) t1, key , t2)

else Branch (t1, key , update (A1_ , A2_) (it, entry) t2))

| update (A1_ , A2_) (it, entry) (Leaf (key , vala)) =

(if HOL.eqop A1_ it key then Leaf (key , entry)

else (if HOL.less_eq

((Orderings.ord_order o Orderings.order_linorder) A2_) it

key

then Branch (Leaf (it, entry), it, Leaf (key , vala))

else Branch (Leaf (key , vala), it, Leaf (it, entry))));

val example : (Nat.nat , (Nat.nat list)) searchtree =

update (Nat.eq_nata , Nat.linorder_nat)

(Nat.Suc (Nat.Suc (Nat.Suc (Nat.Suc Nat.Zero_nat))),

[Nat.Suc (Nat.Suc Nat.Zero_nat), Nat.Suc (Nat.Suc Nat.Zero_nat)])

(update (Nat.eq_nata , Nat.linorder_nat)

(Nat.Suc (Nat.Suc (Nat.Suc Nat.Zero_nat)),

[Nat.Suc (Nat.Suc (Nat.Suc Nat.Zero_nat))])

(update (Nat.eq_nata , Nat.linorder_nat)

(Nat.Suc (Nat.Suc Nat.Zero_nat), [Nat.Suc (Nat.Suc Nat.Zero_nat)])

(Leaf (Nat.Suc Nat.Zero_nat , []))));

end; (∗ s t r u c t Codegen ∗)

1.3 Code generation concepts and process

The code generator employs a notion of executability for three foundational
executable ingredients known from functional programming: defining equa-
tions, datatypes, and type classes. A defining equation as a first approxima-
tion is a theorem of the form f t1 t2 . . . tn ≡ t (an equation headed by a

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 5

Isabelle/HOL
Isar theory

selection

SML

...

Haskell

preprocessing defining equations

serialization

translation

intermediate language

Figure 1.1: code generator – processing overview

constant f with arguments t1 t2 . . . tn and right hand side t). Code gener-
ation aims to turn defining equations into a functional program by running
through a process (see figure 1.1):

• Out of the vast collection of theorems proven in a theory, a reasonable
subset modeling defining equations is selected.

• On those selected theorems, certain transformations are carried out
(preprocessing). Their purpose is to turn theorems representing non-
or badly executable specifications into equivalent but executable coun-
terparts. The result is a structured collection of code theorems.

• These code theorems then are translated into an Haskell-like interme-
diate language.

• Finally, out of the intermediate language the final code in the desired
target language is serialized.

From these steps, only the two last are carried out outside the logic; by
keeping this layer as thin as possible, the amount of code to trust is kept to
a minimum.

1.4 Basics

1.4.1 Invoking the code generator

Thanks to a reasonable setup of the HOL theories, in most cases code gen-
eration proceeds without further ado:

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 6

primrec
fac :: nat ⇒ nat where

fac 0 = 1
| fac (Suc n) = Suc n ∗ fac n

This executable specification is now turned to SML code:

export-code fac in SML file examples/fac.ML

The export code command takes a space-separated list of constants to-
gether with serialization directives These start with a target language iden-
tifier, followed by a file specification where to write the generated code to.

Internally, the defining equations for all selected constants are taken,
including any transitively required constants, datatypes and classes, resulting
in the following code:

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

val one_nat : nat = Suc Zero_nat;

fun plus_nat (Suc m) n = plus_nat m (Suc n)

| plus_nat Zero_nat n = n;

fun times_nat (Suc m) n = plus_nat n (times_nat m n)

| times_nat Zero_nat n = Zero_nat;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun fac (Nat.Suc n) = Nat.times_nat (Nat.Suc n) (fac n)

| fac Nat.Zero_nat = Nat.one_nat;

end; (∗ s t r u c t Codegen ∗)

The code generator will complain when a required ingredient does not pro-
vide a executable counterpart, e.g. generating code for constants not yielding
a defining equation (e.g. the Hilbert choice operation SOME):

definition
pick-some :: ′a list ⇒ ′a where
pick-some xs = (SOME x . x ∈ set xs)

export-code pick-some in SML file examples/fail-const .ML

will fail.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 7

1.4.2 Theorem selection

The list of all defining equations in a theory may be inspected using the
print codesetup command:

print-codesetup

which displays a table of constant with corresponding defining equations (the
additional stuff displayed shall not bother us for the moment).

The typical HOL tools are already set up in a way that function definitions
introduced by definition, primrec, fun, function, constdefs, recdef are
implicitly propagated to this defining equation table. Specific theorems may
be selected using an attribute: code func. As example, a weight selector
function:

primrec
pick :: (nat × ′a) list ⇒ nat ⇒ ′a where
pick (x#xs) n = (let (k , v) = x in

if n < k then v else pick xs (n − k))

We want to eliminate the explicit destruction of x to (k , v):

lemma [code func]:
pick ((k , v)#xs) n = (if n < k then v else pick xs (n − k))
by simp

export-code pick in SML file examples/pick1.ML

This theorem now is used for generating code:

structure HOL =

struct

fun leta s f = f s;

end; (∗ s t r u c t HOL∗)

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

fun minus_nat (Suc m) (Suc n) = minus_nat m n

| minus_nat Zero_nat n = Zero_nat

| minus_nat m Zero_nat = m;

end; (∗ s t r u c t Nat ∗)

structure Product_Type =

struct

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 8

fun split f (a, b) = f a b;

end; (∗ s t r u c t Product Type ∗)

structure Codegen =

struct

fun pick ((k, v) :: xs) n =

(if Nat.less_nat n k then v else pick xs (Nat.minus_nat n k))

| pick (x :: xs) n =

let

val a = x;

val (k, v) = a;

in

(if Nat.less_nat n k then v else pick xs (Nat.minus_nat n k))

end;

end; (∗ s t r u c t Codegen ∗)

It might be convenient to remove the pointless original equation, using the
func del attribute:

lemmas [code func del] = pick .simps

export-code pick in SML file examples/pick2.ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

fun minus_nat (Suc m) (Suc n) = minus_nat m n

| minus_nat Zero_nat n = Zero_nat

| minus_nat m Zero_nat = m;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun pick ((k, v) :: xs) n =

(if Nat.less_nat n k then v else pick xs (Nat.minus_nat n k));

end; (∗ s t r u c t Codegen ∗)

Syntactic redundancies are implicitly dropped. For example, using a modified
version of the fac function as defining equation, the then redundant (since
syntactically subsumed) original defining equations are dropped, resulting in
a warning:

lemma [code func]:

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 9

fac n = (case n of 0 ⇒ 1 | Suc m ⇒ n ∗ fac m)
by (cases n) simp-all

export-code fac in SML file examples/fac-case.ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

val one_nat : nat = Suc Zero_nat;

fun nat_case f1 f2 Zero_nat = f1

| nat_case f1 f2 (Suc nat) = f2 nat;

fun plus_nat (Suc m) n = plus_nat m (Suc n)

| plus_nat Zero_nat n = n;

fun times_nat (Suc m) n = plus_nat n (times_nat m n)

| times_nat Zero_nat n = Zero_nat;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun fac n =

(case n of Nat.Zero_nat => Nat.one_nat

| Nat.Suc m => Nat.times_nat n (fac m));

end; (∗ s t r u c t Codegen ∗)

! The attributes code and code del associated with the existing code generator
also apply to the new one: code implies code func, and code del implies code

func del.

1.4.3 Type classes

Type classes enter the game via the Isar class package. For a short intro-
duction how to use it, see [2]; here we just illustrate its impact on code
generation.

In a target language, type classes may be represented natively (as in
the case of Haskell). For languages like SML, they are implemented using
dictionaries. Our following example specifies a class “null”, assigning to each
of its inhabitants a “null” value:

class null = type +
fixes null :: ′a

primrec

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 10

head :: ′a::null list ⇒ ′a where
head [] = null
| head (x#xs) = x

We provide some instances for our null :

instantiation option and list :: (type) null
begin

definition
null = None

definition
null = []

instance ..

end

Constructing a dummy example:

definition
dummy = head [Some (Suc 0), None]

Type classes offer a suitable occasion to introduce the Haskell serializer.
Its usage is almost the same as SML, but, in accordance with conventions
some Haskell systems enforce, each module ends up in a single file. The
module hierarchy is reflected in the file system, with root directory given as
file specification.

export-code dummy in Haskell file examples/

module Codegen where {

import qualified Nat;

class Null a where {

nulla :: a;

};

heada :: forall a. (Codegen.Null a) => [a] -> a;

heada (x : xs) = x;

heada [] = Codegen.nulla;

null_option :: forall a. Maybe a;

null_option = Nothing;

instance Codegen.Null (Maybe a) where {

nulla = Codegen.null_option;

};

dummy :: Maybe Nat.Nat;

dummy = Codegen.heada [Just (Nat.Suc Nat.Zero_nat), Nothing];

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 11

}

(we have left out all other modules).

The whole code in SML with explicit dictionary passing:

export-code dummy in SML file examples/class.ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

type ’a null = {null : ’a};

fun null (A_:’a null) = #null A_;

fun head A_ (x :: xs) = x

| head A_ [] = null A_;

val null_option : ’a option = NONE;

fun null_optiona () = {null = null_option} : (’a option) null;

val dummy : Nat.nat option =

head (null_optiona ()) [SOME (Nat.Suc Nat.Zero_nat), NONE];

end; (∗ s t r u c t Codegen ∗)

or in OCaml:

export-code dummy in OCaml file examples/class.ocaml

module Nat =

struct

type nat = Suc of nat | Zero_nat ;;

end;; (∗ s t r u c t Nat ∗)

module Codegen =

struct

type ’a null = {null : ’a};;

let null _A = _A.null;;

let rec head _A = function x :: xs -> x

| [] -> null _A;;

let rec null_option = None;;

let null_optiona () = ({null = null_option} : (’a option) null);;

let rec dummy

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 12

= head (null_optiona ()) [Some (Nat.Suc Nat.Zero_nat); None];;

end;; (∗ s t r u c t Codegen ∗)

The explicit association of constants to classes can be inspected using the
print classes command.

1.5 Recipes and advanced topics

In this tutorial, we do not attempt to give an exhaustive description of the
code generator framework; instead, we cast a light on advanced topics by
introducing them together with practically motivated examples. Concerning
further reading, see

• the Isabelle/Isar Reference Manual [8] for exhaustive syntax diagrams.

• or [3] which deals with foundational issues of the code generator frame-
work.

1.5.1 Library theories

The HOL Main theory already provides a code generator setup which should
be suitable for most applications. Common extensions and modifications
are available by certain theories of the HOL library; beside being useful in
applications, they may serve as a tutorial for customizing the code generator
setup.

Code-Integer represents HOL integers by big integer literals in target lan-
guages.

Code-Char represents HOL characters by character literals in target lan-
guages.

Code-Char-chr like Code-Char, but also offers treatment of character codes;
includes Code-Integer.

Efficient-Nat implements natural numbers by integers, which in general will
result in higher efficency; pattern matching with 0 / Suc is eliminated;
includes Code-Integer.

Code-Index provides an additional datatype index which is mapped to
target-language built-in integers. Useful for code setups which involve
e.g. indexing of target-language arrays.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 13

Code-Message provides an additional datatype message-string which is iso-
morphic to strings; message-strings are mapped to target-language
strings. Useful for code setups which involve e.g. printing (error) mes-
sages.

! When importing any of these theories, they should form the last items in an
import list. Since these theories adapt the code generator setup in a non-

conservative fashion, strange effects may occur otherwise.

1.5.2 Preprocessing

Before selected function theorems are turned into abstract code, a chain of
definitional transformation steps is carried out: preprocessing. There are
three possibilities to customize preprocessing: inline theorems, inline proce-
dures and generic preprocessors.

Inline theorems are rewriting rules applied to each defining equation. Due
to the interpretation of theorems of defining equations, rewrites are applied
to the right hand side and the arguments of the left hand side of an equation,
but never to the constant heading the left hand side. Inline theorems may
be declared an undeclared using the code inline or code inline del attribute
respectively. Some common applications:

• replacing non-executable constructs by executable ones:

lemma [code inline]:

x ∈ set xs ←→ x mem xs by (induct xs) simp-all

• eliminating superfluous constants:

lemma [code inline]:

1 = Suc 0 by simp

• replacing executable but inconvenient constructs:

lemma [code inline]:

xs = [] ←→ List .null xs by (induct xs) simp-all

The current set of inline theorems may be inspected using the print code-
setup command.

Inline procedures are a generalized version of inline theorems written in
ML – rewrite rules are generated dependent on the function theorems for a

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 14

certain function. One application is the implicit expanding of nat numerals
to 0 / Suc representation. See further §1.6

Generic preprocessors provide a most general interface, transforming a
list of function theorems to another list of function theorems, provided that
neither the heading constant nor its type change. The 0 / Suc pattern
elimination implemented in theory EfficientNat (§1.5.1) uses this interface.

! The order in which single preprocessing steps are carried out currently is not
specified; in particular, preprocessing is no fix point process. Keep this in mind

when setting up the preprocessor.
Further, the attribute code unfold associated with the existing code generator

also applies to the new one: code unfold implies code inline.

1.5.3 Concerning operational equality

Surely you have already noticed how equality is treated by the code generator:

primrec
collect-duplicates :: ′a list ⇒ ′a list ⇒ ′a list ⇒ ′a list where

collect-duplicates xs ys [] = xs
| collect-duplicates xs ys (z#zs) = (if z ∈ set xs

then if z ∈ set ys
then collect-duplicates xs ys zs
else collect-duplicates xs (z#ys) zs

else collect-duplicates (z#xs) (z#ys) zs)

The membership test during preprocessing is rewritten, resulting in op
mem, which itself performs an explicit equality check.

export-code collect-duplicates in SML file examples/collect-duplicates.ML

structure HOL =

struct

type ’a eq = {eq : ’a -> ’a -> bool};

fun eq (A_:’a eq) = #eq A_;

fun eqop A_ a = eq A_ a;

end; (∗ s t r u c t HOL∗)

structure List =

struct

fun member A_ x (y :: ys) =

(if HOL.eqop A_ y x then true else member A_ x ys)

| member A_ x [] = false;

end; (∗ s t r u c t L i s t ∗)

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 15

structure Codegen =

struct

fun collect_duplicates A_ xs ys (z :: zs) =

(if List.member A_ z xs

then (if List.member A_ z ys then collect_duplicates A_ xs ys zs

else collect_duplicates A_ xs (z :: ys) zs)

else collect_duplicates A_ (z :: xs) (z :: ys) zs)

| collect_duplicates A_ xs ys [] = xs;

end; (∗ s t r u c t Codegen ∗)

Obviously, polymorphic equality is implemented the Haskell way using a
type class. How is this achieved? HOL introduces an explicit class eq with
a corresponding operation eq-class .eq such that eq-class .eq x y = (x = y).
The preprocessing framework does the rest. For datatypes, instances of eq
are implicitly derived when possible. For other types, you may instantiate
eq manually like any other type class.

Though this eq class is designed to get rarely in the way, a subtlety
enters the stage when definitions of overloaded constants are dependent on
operational equality. For example, let us define a lexicographic ordering on
tuples:

instantiation ∗ :: (ord , ord) ord
begin

definition
[code func del]: p1 < p2 ←→ (let (x1, y1) = p1; (x2, y2) = p2 in

x1 < x2 ∨ (x1 = x2 ∧ y1 < y2))

definition
[code func del]: p1 ≤ p2 ←→ (let (x1, y1) = p1; (x2, y2) = p2 in

x1 < x2 ∨ (x1 = x2 ∧ y1 ≤ y2))

instance ..

end

lemma ord-prod [code func]:
(x1 :: ′a::ord , y1 :: ′b::ord) < (x2, y2) ←→ x1 < x2 ∨ (x1 = x2 ∧ y1 < y2)
(x1 :: ′a::ord , y1 :: ′b::ord) ≤ (x2, y2) ←→ x1 < x2 ∨ (x1 = x2 ∧ y1 ≤ y2)
unfolding less-prod-def less-eq-prod-def by simp-all

Then code generation will fail. Why? The definition of op ≤ depends on
equality on both arguments, which are polymorphic and impose an additional
eq class constraint, thus violating the type discipline for class operations.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 16

The solution is to add eq explicitly to the first sort arguments in the code
theorems:

lemma ord-prod-code [code func]:
(x1 :: ′a::{ord , eq}, y1 :: ′b::ord) < (x2, y2) ←→

x1 < x2 ∨ (x1 = x2 ∧ y1 < y2)
(x1 :: ′a::{ord , eq}, y1 :: ′b::ord) ≤ (x2, y2) ←→

x1 < x2 ∨ (x1 = x2 ∧ y1 ≤ y2)
unfolding ord-prod by rule+

Then code generation succeeds:

export-code op ≤ :: ′a::{eq , ord} × ′b::ord ⇒ ′a × ′b ⇒ bool
in SML file examples/lexicographic.ML

structure HOL =

struct

type ’a eq = {eq : ’a -> ’a -> bool};

fun eq (A_:’a eq) = #eq A_;

type ’a ord = {less_eq : ’a -> ’a -> bool , less : ’a -> ’a -> bool};

fun less_eq (A_:’a ord) = #less_eq A_;

fun less (A_:’a ord) = #less A_;

end; (∗ s t r u c t HOL∗)

structure Codegen =

struct

fun less_eq (A1_ , A2_) B_ (x1 , y1) (x2, y2) =

HOL.less A2_ x1 x2 orelse HOL.eq A1_ x1 x2 andalso HOL.less_eq B_ y1 y2;

end; (∗ s t r u c t Codegen ∗)

In general, code theorems for overloaded constants may have more re-
strictive sort constraints than the underlying instance relation between class
and type constructor as long as the whole system of constraints is coregular;
code theorems violating coregularity are rejected immediately. Consequently,
it might be necessary to delete disturbing theorems in the code theorem ta-
ble, as we have done here with the original definitions less-prod-def and
less-eq-prod-def.

In some cases, the automatically derived defining equations for equal-
ity on a particular type may not be appropriate. As example, watch the
following datatype representing monomorphic parametric types (where type
constructors are referred to by natural numbers):

datatype monotype = Mono nat monotype list

Then code generation for SML would fail with a message that the gen-
erated code conains illegal mutual dependencies: the theorem Mono tyco1

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 17

typargs1 = Mono tyco2 typargs2 ≡ tyco1 = tyco2 ∧ typargs1 = typargs2 al-
ready requires the instance monotype :: eq, which itself requires Mono tyco1
typargs1 = Mono tyco2 typargs2 ≡ tyco1 = tyco2 ∧ typargs1 = typargs2;
Haskell has no problem with mutually recursive instance and function defi-
nitions, but the SML serializer does not support this.

In such cases, you have to provide you own equality equations involving
auxiliary constants. In our case, list-all2 can do the job:

lemma monotype-eq-list-all2 [code func]:
Mono tyco1 typargs1 = Mono tyco2 typargs2 ←→

tyco1 = tyco2 ∧ list-all2 (op =) typargs1 typargs2
by (simp add : list-all2-eq [symmetric])

does not depend on instance monotype :: eq :

export-code op = :: monotype ⇒ monotype ⇒ bool
in SML file examples/monotype.ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun eq_nat Zero_nat Zero_nat = true

| eq_nat (Suc m) (Suc n) = eq_nat m n

| eq_nat Zero_nat (Suc a) = false

| eq_nat (Suc a) Zero_nat = false;

end; (∗ s t r u c t Nat ∗)

structure List =

struct

fun null (x :: xs) = false

| null [] = true;

fun list_all2 p (x :: xs) (y :: ys) = p x y andalso list_all2 p xs ys

| list_all2 p xs [] = null xs

| list_all2 p [] ys = null ys;

end; (∗ s t r u c t L i s t ∗)

structure Codegen =

struct

datatype monotype = Mono of Nat.nat * monotype list;

fun eq_monotype (Mono (tyco1 , typargs1)) (Mono (tyco2 , typargs2)) =

Nat.eq_nat tyco1 tyco2 andalso

List.list_all2 eq_monotype typargs1 typargs2;

end; (∗ s t r u c t Codegen ∗)

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 18

1.5.4 Programs as sets of theorems

As told in §1.3, code generation is based on a structured collection of code
theorems. For explorative purpose, this collection may be inspected using
the code thms command:

code-thms op mod :: nat ⇒ nat ⇒ nat

prints a table with all defining equations for op mod, including all defining
equations those equations depend on recursivly. code thms provides a con-
venient mechanism to inspect the impact of a preprocessor setup on defining
equations.

Similarly, the code deps command shows a graph visualizing dependen-
cies between defining equations.

1.5.5 Constructor sets for datatypes

Conceptually, any datatype is spanned by a set of constructors of type τ =
. . . ⇒ κ α1 . . . αn where {α1, . . ., αn} is excactly the set of all type variables
in τ . The HOL datatype package by default registers any new datatype in
the table of datatypes, which may be inspected using the print codesetup
command.

In some cases, it may be convenient to alter or extend this table; as an
example, we will develope an alternative representation of natural numbers
as binary digits, whose size does increase logarithmically with its value, not
linear 1. First, the digit representation:

definition Dig0 :: nat ⇒ nat where
Dig0 n = 2 ∗ n

definition Dig1 :: nat ⇒ nat where
Dig1 n = Suc (2 ∗ n)

We will use these two ”¿digits”¡ to represent natural numbers in binary digits,
e.g.:

lemma 42: 42 = Dig0 (Dig1 (Dig0 (Dig1 (Dig0 1))))
by (simp add : Dig0-def Dig1-def)

Of course we also have to provide proper code equations for the operations,
e.g. op +:

lemma plus-Dig [code func]:
0 + n = n

1Indeed, the Efficient-Nat theory 1.5.1 does something similar

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 19

m + 0 = m
1 + Dig0 n = Dig1 n
Dig0 m + 1 = Dig1 m
1 + Dig1 n = Dig0 (n + 1)
Dig1 m + 1 = Dig0 (m + 1)
Dig0 m + Dig0 n = Dig0 (m + n)
Dig0 m + Dig1 n = Dig1 (m + n)
Dig1 m + Dig0 n = Dig1 (m + n)
Dig1 m + Dig1 n = Dig0 (m + n + 1)
by (simp-all add : Dig0-def Dig1-def)

We then instruct the code generator to view 0, 1, Dig0 and Dig1 as datatype
constructors:

code-datatype 0::nat 1::nat Dig0 Dig1

For the former constructor Suc, we provide a code equation and remove some
parts of the default code generator setup which are an obstacle here:

lemma Suc-Dig [code func]:
Suc n = n + 1
by simp

declare One-nat-def [code inline del]
declare add-Suc-shift [code func del]

This yields the following code:

export-code op + :: nat ⇒ nat ⇒ nat in SML file examples/nat-binary .ML

structure Nat =

struct

datatype nat = Dig1 of nat | Dig0 of nat | One_nat | Zero_nat;

fun plus_nat (Dig1 m) (Dig1 n) = Dig0 (plus_nat (plus_nat m n) One_nat)

| plus_nat (Dig1 m) (Dig0 n) = Dig1 (plus_nat m n)

| plus_nat (Dig0 m) (Dig1 n) = Dig1 (plus_nat m n)

| plus_nat (Dig0 m) (Dig0 n) = Dig0 (plus_nat m n)

| plus_nat (Dig1 m) One_nat = Dig0 (plus_nat m One_nat)

| plus_nat One_nat (Dig1 n) = Dig0 (plus_nat n One_nat)

| plus_nat (Dig0 m) One_nat = Dig1 m

| plus_nat One_nat (Dig0 n) = Dig1 n

| plus_nat m Zero_nat = m

| plus_nat Zero_nat n = n;

end; (∗ s t r u c t Nat ∗)

From this example, it can be easily glimpsed that using own constructor
sets is a little delicate since it changes the set of valid patterns for values of
that type. Without going into much detail, here some practical hints:

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 20

• When changing the constuctor set for datatypes, take care to provide
an alternative for the case combinator (e.g. by replacing it using the
preprocessor).

• Values in the target language need not to be normalized – different
values in the target language may represent the same value in the logic
(e.g. Dig1 0 = 1).

• Usually, a good methodology to deal with the subleties of pattern
matching is to see the type as an abstract type: provide a set of op-
erations which operate on the concrete representation of the type, and
derive further operations by combinations of these primitive ones, with-
out relying on a particular representation.

1.5.6 Customizing serialization

Basics

Consider the following function and its corresponding SML code:

primrec
in-interval :: nat × nat ⇒ nat ⇒ bool where
in-interval (k , l) n ←→ k ≤ n ∧ n ≤ lexport-code in-interval in SML file

examples/bool-literal .ML

structure HOL =

struct

datatype boola = False | True;

fun anda x True = x

| anda x False = False

| anda True x = x

| anda False x = False;

end; (∗ s t r u c t HOL∗)

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = HOL.False

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = HOL.True;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 21

fun in_interval (k, l) n =

HOL.anda (Nat.less_eq_nat k n) (Nat.less_eq_nat n l);

end; (∗ s t r u c t Codegen ∗)

Though this is correct code, it is a little bit unsatisfactory: boolean values
and operators are materialized as distinguished entities with have nothing to
do with the SML-builtin notion of “bool”. This results in less readable code;
additionally, eager evaluation may cause programs to loop or break which
would perfectly terminate when the existing SML “bool” would be used. To
map the HOL “bool” on SML “bool”, we may use custom serializations :

code type bool
(SML "bool")

code const True and False and "op ∧"
(SML "true" and "false" and "_ andalso _")

The code type commad takes a type constructor as arguments together
with a list of custom serializations. Each custom serialization starts with a
target language identifier followed by an expression, which during code serial-
ization is inserted whenever the type constructor would occur. For constants,
code const implements the corresponding mechanism. Each “_” in a serial-
ization expression is treated as a placeholder for the type constructor’s (the
constant’s) arguments.

export-code in-interval in SML file examples/bool-mlbool .ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun in_interval (k, l) n =

(Nat.less_eq_nat k n) andalso (Nat.less_eq_nat n l);

end; (∗ s t r u c t Codegen ∗)

This still is not perfect: the parentheses around the “andalso” expression
are superfluous. Though the serializer by no means attempts to imitate the
rich Isabelle syntax framework, it provides some common idioms, notably
associative infixes with precedences which may be used here:

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 22

code const "op ∧"
(SML infixl 1 "andalso")

export-code in-interval in SML file examples/bool-infix .ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun in_interval (k, l) n =

Nat.less_eq_nat k n andalso Nat.less_eq_nat n l;

end; (∗ s t r u c t Codegen ∗)

Next, we try to map HOL pairs to SML pairs, using the infix “*” type
constructor and parentheses:

code type *
(SML infix 2 "*")

code const Pair
(SML "!((_),/ (_))")

The initial bang “!” tells the serializer to never put parentheses around
the whole expression (they are already present), while the parentheses around
argument place holders tell not to put parentheses around the arguments.
The slash “/” (followed by arbitrary white space) inserts a space which may
be used as a break if necessary during pretty printing.

These examples give a glimpse what mechanisms custom serializations
provide; however their usage requires careful thinking in order not to intro-
duce inconsistencies – or, in other words: custom serializations are completely
axiomatic.

A further noteworthy details is that any special character in a custom
serialization may be quoted using “’”; thus, in “fn ’_ => _” the first “_”
is a proper underscore while the second “_” is a placeholder.

The HOL theories provide further examples for custom serializations.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 23

Haskell serialization

For convenience, the default HOL setup for Haskell maps the eq class to
its counterpart in Haskell, giving custom serializations for the class (code
class) and its operation:

code class eq
(Haskell "Eq" where "op =" ≡ "(==)")

code const "op ="
(Haskell infixl 4 "==")

A problem now occurs whenever a type which is an instance of eq in HOL
is mapped on a Haskell-builtin type which is also an instance of Haskell Eq :

typedecl bar

instantiation bar :: eq
begin

definition eq-class.eq (x ::bar) y ←→ x = y

instance by default (simp add : eq-bar-def)

end

code type bar
(Haskell "Integer")

The code generator would produce an additional instance, which of course
is rejected. To suppress this additional instance, use code instance:

code instance bar :: eq
(Haskell -)

Pretty printing

The serializer provides ML interfaces to set up pretty serializations for ex-
pressions like lists, numerals and characters; these are monolithic stubs and
should only be used with the theories introduces in §1.5.1.

1.5.7 Cyclic module dependencies

Sometimes the awkward situation occurs that dependencies between defini-
tions introduce cyclic dependencies between modules, which in the Haskell

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 24

world leaves you to the mercy of the Haskell implementation you are using,
while for SML code generation is not possible.

A solution is to declare module names explicitly. Let use assume the three
cyclically dependent modules are named A, B and C. Then, by stating

code-modulename SML
A ABC
B ABC
C ABC

we explicitly map all those modules on ABC, resulting in an ad-hoc merge
of this three modules at serialization time.

1.5.8 Incremental code generation

Code generation is incremental : theorems and abstract intermediate code are
cached and extended on demand. The cache may be partially or fully dropped
if the underlying executable content of the theory changes. Implementation
of caching is supposed to transparently hid away the details from the user.
Anyway, caching reaches the surface by using a slightly more general form
of the code thms, code deps and export code commands: the list of
constants may be omitted. Then, all constants with code theorems in the
current cache are referred to.

1.6 ML interfaces

Since the code generator framework not only aims to provide a nice Isar
interface but also to form a base for code-generation-based applications, here
a short description of the most important ML interfaces.

1.6.1 Executable theory content: Code

This Pure module implements the core notions of executable content of a
theory.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 25

Managing executable content

ml Reference

Code.add_func: thm -> theory -> theory
Code.del_func: thm -> theory -> theory
Code.add_funcl: string * thm list Susp.T -> theory -> theory
Code.add_inline: thm -> theory -> theory
Code.del_inline: thm -> theory -> theory
Code.add_inline_proc: string * (theory -> cterm list -> thm list)

-> theory -> theory
Code.del_inline_proc: string -> theory -> theory
Code.add_preproc: string * (theory -> thm list -> thm list)

-> theory -> theory
Code.del_preproc: string -> theory -> theory
Code.add_datatype: (string * typ) list -> theory -> theory
Code.get_datatype: theory -> string

-> (string * sort) list * (string * typ list) list
Code.get_datatype_of_constr: theory -> string -> string option

Code.add_func thm thy adds function theorem thm to executable content.

Code.del_func thm thy removes function theorem thm from executable content,
if present.

Code.add_funcl (const , lthms) thy adds suspended defining equations lthms for
constant const to executable content.

Code.add_inline thm thy adds inlining theorem thm to executable content.

Code.del_inline thm thy remove inlining theorem thm from executable content,
if present.

Code.add_inline_proc (name, f) thy adds inline procedure f (named name)
to executable content; f is a computation of rewrite rules dependent on the
current theory context and the list of all arguments and right hand sides of
the defining equations belonging to a certain function definition.

Code.del_inline_proc name thy removes inline procedure named name from
executable content.

Code.add_preproc (name, f) thy adds generic preprocessor f (named name) to
executable content; f is a transformation of the defining equations belonging
to a certain function definition, depending on the current theory context.

Code.del_preproc name thy removes generic preprcoessor named name from
executable content.

Code.add_datatype cs thy adds a datatype to executable content, with genera-
tion set cs.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 26

Code.get_datatype_of_constr thy const returns type constructor correspond-
ing to constructor const ; returns NONE if const is no constructor.

1.6.2 Auxiliary

ml Reference

CodeUnit.read_const: theory -> string -> string
CodeUnit.head_func: thm -> string * ((string * sort) list * typ)
CodeUnit.rewrite_func: thm list -> thm -> thm

CodeUnit.read_const thy s reads a constant as a concrete term expression s.

CodeUnit.head_func thm extracts the constant and its type from a defining
equation thm.

CodeUnit.rewrite_func rews thm rewrites a defining equation thm with a set
of rewrite rules rews; only arguments and right hand side are rewritten, not
the head of the defining equation.

1.6.3 Implementing code generator applications

Implementing code generator applications on top of the framework set out so
far usually not only involves using those primitive interfaces but also storing
code-dependent data and various other things.

! Some interfaces discussed here have not reached a final state yet. Changes
likely to occur in future.

Data depending on the theory’s executable content

Due to incrementality of code generation, changes in the theory’s executable
content have to be propagated in a certain fashion. Additionally, such
changes may occur not only during theory extension but also during the-
ory merge, which is a little bit nasty from an implementation point of view.
The framework provides a solution to this technical challenge by providing
a functorial data slot CodeDataFun; on instantiation of this functor, the fol-
lowing types and operations are required:

type T
val empty : T
val merge: Pretty .pp → T ∗ T → T
val purge: theory option → CodeUnit .const list option → T → T

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 27

T the type of data to store.

empty initial (empty) data.

merge merging two data slots.

purge thy consts propagates changes in executable content; if possible, the
current theory context is handed over as argument thy (if there is no
current theory context (e.g. during theory merge, NONE); consts indi-
cates the kind of change: NONE stands for a fundamental change which
invalidates any existing code, SOME consts hints that executable con-
tent for constants consts has changed.

An instance of CodeDataFun provides the following interface:

get : theory → T
change: theory → (T → T) → T
change-yield : theory → (T → ′a ∗ T) → ′a ∗ T

get retrieval of the current data.

change update of current data (cached!) by giving a continuation.

change-yield update with side result.

Happy proving, happy hacking!

Bibliography

[1] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs
and Programs: TYPES’2000, volume 2277 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[2] Florian Haftmann. Haskell-style type classes with Isabelle/Isar.
http://isabelle.in.tum.de/doc/classes.pdf.

[3] Florian Haftmann and Tobias Nipkow. A code generator framework for
Isabelle/HOL. Technical Report 364/07, Department of Computer Science,
University of Kaiserslautern, 08 2007.

[4] Xavier Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[5] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[6] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[7] Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003.
http://www.haskell.org/definition/.

[8] Markus Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

28

http://isabelle.in.tum.de/doc/classes.pdf

http://caml.inria.fr/pub/docs/manual-ocaml/

http://www.haskell.org/definition/

http://isabelle.in.tum.de/doc/isar-ref.pdf

			Code generation from Isabelle theories

			Introduction

			Motivation

			Overview

			An example: a simple theory of search trees

			Code generation concepts and process

			Basics

			Invoking the code generator

			Theorem selection

			Type classes

			Recipes and advanced topics

			Library theories

			Preprocessing

			Concerning operational equality

			Programs as sets of theorems

			Constructor sets for datatypes

			Customizing serialization

			Cyclic module dependencies

			Incremental code generation

			ML interfaces

			Executable theory content: Code

			Auxiliary

			Implementing code generator applications

Isabelle2008/doc/functions.pdf

Defining Recursive Functions in Isabelle/HOL

Alexander Krauss

Abstract

This tutorial describes the use of the new function package, which
provides general recursive function definitions for Isabelle/HOL. We start
with very simple examples and then gradually move on to more advanced
topics such as manual termination proofs, nested recursion, partiality, tail
recursion and congruence rules.

1 Introduction

Starting from Isabelle 2007, new facilities for recursive function definitions [2]
are available. They provide better support for general recursive definitions than
previous packages. But despite all tool support, function definitions can some-
times be a difficult thing.

This tutorial is an example-guided introduction to the practical use of the
package and related tools. It should help you get started with defining functions
quickly. For the more difficult definitions we will discuss what problems can
arise, and how they can be solved.

We assume that you have mastered the fundamentals of Isabelle/HOL and
are able to write basic specifications and proofs. To start out with Isabelle in
general, consult the Isabelle/HOL tutorial [3].

Structure of this tutorial. Section 2 introduces the syntax and basic op-
eration of the fun command, which provides full automation with reasonable
default behavior. The impatient reader can stop after that section, and consult
the remaining sections only when needed. Section 3 introduces the more ver-
bose function command which gives fine-grained control. This form should be
used whenever the short form fails. After that we discuss more specialized is-
sues: termination, mutual, nested and higher-order recursion, partiality, pattern
matching and others.

Some background. Following the LCF tradition, the package is realized as
a definitional extension: Recursive definitions are internally transformed into a
non-recursive form, such that the function can be defined using standard defi-
nition facilities. Then the recursive specification is derived from the primitive
definition. This is a complex task, but it is fully automated and mostly trans-
parent to the user. Definitional extensions are valuable because they are con-
servative by construction: The “new” concept of general wellfounded recursion
is completely reduced to existing principles.

1

2 FUNCTION DEFINITIONS FOR DUMMIES 2

The new function command, and its short form fun have mostly replaced
the traditional recdef command [4]. They solve a few of technical issues around
recdef, and allow definitions which were not previously possible.

2 Function Definitions for Dummies

In most cases, defining a recursive function is just as simple as other definitions:

fun fib :: "nat ⇒ nat"

where
"fib 0 = 1"

| "fib (Suc 0) = 1"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"

The syntax is rather self-explanatory: We introduce a function by giving
its name, its type, and a set of defining recursive equations. If we leave out
the type, the most general type will be inferred, which can sometimes lead to
surprises: Since both 1 and + are overloaded, we would end up with fib :: nat

⇒ ’a::{one,plus}.

The function always terminates, since its argument gets smaller in every re-
cursive call. Since HOL is a logic of total functions, termination is a fundamental
requirement to prevent inconsistencies1. Isabelle tries to prove termination au-
tomatically when a definition is made. In §4, we will look at cases where this
fails and see what to do then.

2.1 Pattern matching

Like in functional programming, we can use pattern matching to define func-
tions. At the moment we will only consider constructor patterns, which only
consist of datatype constructors and variables. Furthermore, patterns must be
linear, i.e. all variables on the left hand side of an equation must be distinct. In
§6 we discuss more general pattern matching.

If patterns overlap, the order of the equations is taken into account. The
following function inserts a fixed element between any two elements of a list:

fun sep :: "’a ⇒ ’a list ⇒ ’a list"

where
"sep a (x#y#xs) = x # a # sep a (y # xs)"

| "sep a xs = xs"

Overlapping patterns are interpreted as “increments” to what is already
there: The second equation is only meant for the cases where the first one does
not match. Consequently, Isabelle replaces it internally by the remaining cases,
making the patterns disjoint:

thm sep.simps

sep a (x # y # xs) = x # a # sep a (y # xs)

sep a [] = []

sep a [v] = [v]

1From the “definition” f(n) = f(n) + 1 we could prove 0 = 1 by subtracting f(n) on
both sides.

3 FUN VS. FUNCTION 3

The equations from function definitions are automatically used in simplification:

lemma "sep 0 [1, 2, 3] = [1, 0, 2, 0, 3]"
by simp

2.2 Induction

Isabelle provides customized induction rules for recursive functions. These rules
follow the recursive structure of the definition. Here is the rule sep.induct

arising from the above definition of sep:

[[
∧
a x y xs. ?P a (y # xs) =⇒ ?P a (x # y # xs);

∧
a. ?P a [];

∧
a v. ?P

a [v]]]
=⇒ ?P ?a0.0 ?a1.0

We have a step case for list with at least two elements, and two base cases
for the zero- and the one-element list. Here is a simple proof about sep and map

lemma "map f (sep x ys) = sep (f x) (map f ys)"

apply (induct x ys rule: sep.induct)

We get three cases, like in the definition.

1.
∧
a x y xs.

map f (sep a (y # xs)) = sep (f a) (map f (y # xs)) =⇒
map f (sep a (x # y # xs)) = sep (f a) (map f (x # y # xs))

2.
∧
a. map f (sep a []) = sep (f a) (map f [])

3.
∧
a v. map f (sep a [v]) = sep (f a) (map f [v])

apply auto

done

With the fun command, you can define about 80% of the functions that
occur in practice. The rest of this tutorial explains the remaining 20%.

3 fun vs. function

The fun command provides a convenient shorthand notation for simple function
definitions. In this mode, Isabelle tries to solve all the necessary proof obliga-
tions automatically. If any proof fails, the definition is rejected. This can either
mean that the definition is indeed faulty, or that the default proof procedures
are just not smart enough (or rather: not designed) to handle the definition.

By expanding the abbreviation to the more verbose function command,
these proof obligations become visible and can be analyzed or solved manually.
The expansion from fun to function is as follows:

fun f :: τ
where

equations
...

 ≡

function (sequential) f :: τ
where

equations
...

by pat_completeness auto

termination by lexicographic_order

Some details have now become explicit:

4 TERMINATION 4

1. The sequential option enables the preprocessing of pattern overlaps
which we already saw. Without this option, the equations must already
be disjoint and complete. The automatic completion only works with
constructor patterns.

2. A function definition produces a proof obligation which expresses com-
pleteness and compatibility of patterns (we talk about this later). The
combination of the methods pat_completeness and auto is used to solve
this proof obligation.

3. A termination proof follows the definition, started by the termination
command. This will be explained in §4.

Whenever a fun command fails, it is usually a good idea to expand the syntax
to the more verbose function form, to see what is actually going on.

4 Termination

The method lexicographic_order is the default method for termination proofs.
It can prove termination of a certain class of functions by searching for a suitable
lexicographic combination of size measures. Of course, not all functions have
such a simple termination argument. For them, we can specify the termination
relation manually.

4.1 The relation method

Consider the following function, which sums up natural numbers up to N, using
a counter i:

function sum :: "nat ⇒ nat ⇒ nat"

where
"sum i N = (if i > N then 0 else i + sum (Suc i) N)"

by pat_completeness auto

The lexicographic_order method fails on this example, because none of the
arguments decreases in the recursive call, with respect to the standard size
ordering. To prove termination manually, we must provide a custom wellfounded
relation.

The termination argument for sum is based on the fact that the difference
between i and N gets smaller in every step, and that the recursion stops when i

is greater than N. Phrased differently, the expression N + 1 - i always decreases.
We can use this expression as a measure function suitable to prove termina-

tion.

termination sum

apply (relation "measure (λ(i,N). N + 1 - i)")

The termination command sets up the termination goal for the specified
function sum. If the function name is omitted, it implicitly refers to the last
function definition.

The relation method takes a relation of type (’a × ’a) set, where ’a is the
argument type of the function. If the function has multiple curried arguments,
then these are packed together into a tuple, as it happened in the above example.

4 TERMINATION 5

The predefined function "measure :: (’a ⇒ nat) ⇒ (’a × ’a) set" con-
structs a wellfounded relation from a mapping into the natural numbers (a
measure function).

After the invocation of relation, we must prove that (a) the relation we
supplied is wellfounded, and (b) that the arguments of recursive calls indeed
decrease with respect to the relation:

1. wf (measure (λ(i, N). N + 1 - i))

2.
∧
i N. ¬ N < i =⇒ ((Suc i, N), i, N) ∈ measure (λ(i, N). N + 1 - i)

These goals are all solved by auto:

apply auto

done

Let us complicate the function a little, by adding some more recursive calls:

function foo :: "nat ⇒ nat ⇒ nat"

where
"foo i N = (if i > N

then (if N = 0 then 0 else foo 0 (N - 1))
else i + foo (Suc i) N)"

by pat_completeness auto

When i has reached N, it starts at zero again and N is decremented. This
corresponds to a nested loop where one index counts up and the other down.
Termination can be proved using a lexicographic combination of two measures,
namely the value of N and the above difference. The measures combinator gen-
eralizes measure by taking a list of measure functions.

termination
by (relation "measures [λ(i, N). N, λ(i,N). N + 1 - i]") auto

4.2 How lexicographic_order works

To see how the automatic termination proofs work, let’s look at an example
where it fails2:

fun fails :: "nat ⇒ nat list ⇒ nat"

where
"fails a [] = a"

| "fails a (x#xs) = fails (x + a) (x#xs)"

Isabelle responds with the following error:

*** Unfinished subgoals:

*** (a, 1, <):

*** 1.
∧
x. x = 0

*** (a, 1, <=):

*** 1. False

*** (a, 2, <):

*** 1. False

*** Calls:

*** a) (a, x # xs) -->> (x + a, x # xs)

2For a detailed discussion of the termination prover, see [1]

5 MUTUAL RECURSION 6

*** Measures:

*** 1) λx. size (fst x)

*** 2) λx. size (snd x)

*** Result matrix:

*** 1 2

*** a: ? <=

*** Could not find lexicographic termination order.

*** At command "fun".

The the key to this error message is the matrix at the bottom. The rows of
that matrix correspond to the different recursive calls (In our case, there is just
one). The columns are the function’s arguments (expressed through different
measure functions, which map the argument tuple to a natural number).

The contents of the matrix summarize what is known about argument de-
scents: The second argument has a weak descent (<=) at the recursive call, and
for the first argument nothing could be proved, which is expressed by ?. In
general, there are the values <, <= and ?.

For the failed proof attempts, the unfinished subgoals are also printed. Look-
ing at these will often point to a missing lemma.

5 Mutual Recursion

If two or more functions call one another mutually, they have to be defined in
one step. Here are even and odd:

function even :: "nat ⇒ bool"

and odd :: "nat ⇒ bool"

where
"even 0 = True"

| "odd 0 = False"

| "even (Suc n) = odd n"

| "odd (Suc n) = even n"

by pat_completeness auto

To eliminate the mutual dependencies, Isabelle internally creates a single
function operating on the sum type nat + nat. Then, even and odd are defined
as projections. Consequently, termination has to be proved simultaneously for
both functions, by specifying a measure on the sum type:

termination
by (relation "measure (λx. case x of Inl n ⇒ n | Inr n ⇒ n)") auto

We could also have used lexicographic_order, which supports mutual recur-
sive termination proofs to a certain extent.

5.1 Induction for mutual recursion

When functions are mutually recursive, proving properties about them generally
requires simultaneous induction. The induction rule even_odd.induct generated
from the above definition reflects this.

Let us prove something about even and odd:

6 GENERAL PATTERN MATCHING 7

lemma even_odd_mod2:
"even n = (n mod 2 = 0)"
"odd n = (n mod 2 = 1)"

We apply simultaneous induction, specifying the induction variable for both
goals, separated by and:

apply (induct n and n rule: even_odd.induct)

We get four subgoals, which correspond to the clauses in the definition of
even and odd:

1. even 0 = (0 mod 2 = 0)
2. odd 0 = (0 mod 2 = 1)
3.

∧
n. odd n = (n mod 2 = 1) =⇒ even (Suc n) = (Suc n mod 2 = 0)

4.
∧
n. even n = (n mod 2 = 0) =⇒ odd (Suc n) = (Suc n mod 2 = 1)

Simplification solves the first two goals, leaving us with two statements about
the mod operation to prove:

apply simp_all

1.
∧
n. odd n = (n mod 2 = Suc 0) =⇒ (n mod 2 = Suc 0) = (Suc n mod 2 =

0)
2.

∧
n. even n = (n mod 2 = 0) =⇒ (n mod 2 = 0) = (Suc n mod 2 = Suc 0)

These can be handled by Isabelle’s arithmetic decision procedures.

apply arith

apply arith

done

In proofs like this, the simultaneous induction is really essential: Even if we
are just interested in one of the results, the other one is necessary to strengthen
the induction hypothesis. If we leave out the statement about odd and just write
True instead, the same proof fails:

lemma failed_attempt:

"even n = (n mod 2 = 0)"
"True"

apply (induct n rule: even_odd.induct)

Now the third subgoal is a dead end, since we have no useful induction hypoth-
esis available:

1. even 0 = (0 mod 2 = 0)
2. True

3.
∧
n. True =⇒ even (Suc n) = (Suc n mod 2 = 0)

4.
∧
n. even n = (n mod 2 = 0) =⇒ True

oops

6 General pattern matching

6.1 Avoiding automatic pattern splitting

Up to now, we used pattern matching only on datatypes, and the patterns
were always disjoint and complete, and if they weren’t, they were made disjoint
automatically like in the definition of sep in §2.1.

6 GENERAL PATTERN MATCHING 8

This automatic splitting can significantly increase the number of equations
involved, and this is not always desirable. The following example shows the
problem:

Suppose we are modeling incomplete knowledge about the world by a three-
valued datatype, which has values T, F and X for true, false and uncertain propo-
sitions, respectively.

datatype P3 = T | F | X

Then the conjunction of such values can be defined as follows:

fun And :: "P3 ⇒ P3 ⇒ P3"
where
"And T p = p"

| "And p T = p"

| "And p F = F"

| "And F p = F"

| "And X X = X"

This definition is useful, because the equations can directly be used as sim-
plification rules rules. But the patterns overlap: For example, the expression And

T T is matched by both the first and the second equation. By default, Isabelle
makes the patterns disjoint by splitting them up, producing instances:

thm And.simps

And T ?p = ?p

And F T = F

And X T = X

And F F = F

And X F = F

And F X = F

And X X = X

There are several problems with this:

1. If the datatype has many constructors, there can be an explosion of equa-
tions. For And, we get seven instead of five equations, which can be toler-
ated, but this is just a small example.

2. Since splitting makes the equations “less general”, they do not always
match in rewriting. While the term And x F can be simplified to F with
the original equations, a (manual) case split on x is now necessary.

3. The splitting also concerns the induction rule And.induct. Instead of five
premises it now has seven, which means that our induction proofs will
have more cases.

4. In general, it increases clarity if we get the same definition back which we
put in.

If we do not want the automatic splitting, we can switch it off by leaving
out the sequential option. However, we will have to prove that our pattern
matching is consistent3:

3This prevents us from defining something like f x = True and f x = False simultane-
ously.

6 GENERAL PATTERN MATCHING 9

function And2 :: "P3 ⇒ P3 ⇒ P3"
where
"And2 T p = p"

| "And2 p T = p"

| "And2 p F = F"

| "And2 F p = F"

| "And2 X X = X"

Now let’s look at the proof obligations generated by a function definition. In
this case, they are:

1.
∧
P x. [[

∧
p. x = (T, p) =⇒ P;

∧
p. x = (p, T) =⇒ P;

∧
p. x = (p, F)

=⇒ P; ∧
p. x = (F, p) =⇒ P; x = (X, X) =⇒ P]]

=⇒ P

2.
∧
p pa. (T, p) = (T, pa) =⇒ p = pa

3.
∧
p pa. (T, p) = (pa, T) =⇒ p = pa

4.
∧
p pa. (T, p) = (pa, F) =⇒ p = F

5.
∧
p pa. (T, p) = (F, pa) =⇒ p = F

6.
∧
p. (T, p) = (X, X) =⇒ p = X

7.
∧
p pa. (p, T) = (pa, T) =⇒ p = pa

8.
∧
p pa. (p, T) = (pa, F) =⇒ p = F

9.
∧
p pa. (p, T) = (F, pa) =⇒ p = F

10.
∧
p. (p, T) = (X, X) =⇒ p = X

...

The first subgoal expresses the completeness of the patterns. It has the form
of an elimination rule and states that every x of the function’s input type must
match at least one of the patterns4. If the patterns just involve datatypes, we
can solve it with the pat_completeness method:

apply pat_completeness

The remaining subgoals express pattern compatibility. We do allow that an
input value matches multiple patterns, but in this case, the result (i.e. the right
hand sides of the equations) must also be equal. For each pair of two patterns,
there is one such subgoal. Usually this needs injectivity of the constructors,
which is used automatically by auto.

by auto

6.2 Non-constructor patterns

Most of Isabelle’s basic types take the form of inductive datatypes, and usu-
ally pattern matching works on the constructors of such types. However, this
need not be always the case, and the function command handles other kind of
patterns, too.

One well-known instance of non-constructor patterns are so-called n + k-
patterns, which are a little controversial in the functional programming world.
Here is the initial fibonacci example with n + k -patterns:

4Completeness could be equivalently stated as a disjunction of existential state-
ments: (∃ p. x = (T, p)) ∨ (∃ p. x = (p, T)) ∨ (∃ p. x = (p, F)) ∨ (∃ p. x
= (F, p)) ∨ x = (X, X), and you can use the method atomize_elim to get that form
instead.

6 GENERAL PATTERN MATCHING 10

function fib2 :: "nat ⇒ nat"

where
"fib2 0 = 1"

| "fib2 1 = 1"
| "fib2 (n + 2) = fib2 n + fib2 (Suc n)"

This kind of matching is again justified by the proof of pattern completeness
and compatibility. The proof obligation for pattern completeness states that
every natural number is either 0, 1 or n + 2:

1.
∧
P x. [[x = 0 =⇒ P; x = 1 =⇒ P;

∧
n. x = n + 2 =⇒ P]] =⇒ P

This is an arithmetic triviality, but unfortunately the arith method cannot
handle this specific form of an elimination rule. However, we can use the method
atomize_elim to do an ad-hoc conversion to a disjunction of existentials, which
can then be soved by the arithmetic decision procedure. Pattern compatibility
and termination are automatic as usual.

apply atomize_elim

apply arith

apply auto

done
termination by lexicographic_order

We can stretch the notion of pattern matching even more. The following
function is not a sensible functional program, but a perfectly valid mathematical
definition:

function ev :: "nat ⇒ bool"

where
"ev (2 * n) = True"

| "ev (2 * n + 1) = False"

apply atomize_elim

by arith+

termination by (relation "{}") simp

This general notion of pattern matching gives you a certain freedom in writ-
ing down specifications. However, as always, such freedom should be used with
care:

If we leave the area of constructor patterns, we have effectively departed
from the world of functional programming. This means that it is no longer
possible to use the code generator, and expect it to generate ML code for our
definitions. Also, such a specification might not work very well together with
simplification. Your mileage may vary.

6.3 Conditional equations

The function package also supports conditional equations, which are similar
to guards in a language like Haskell. Here is Euclid’s algorithm written with
conditional patterns5:

function gcd :: "nat ⇒ nat ⇒ nat"

5Note that the patterns are also overlapping in the base case

7 PARTIALITY 11

where
"gcd x 0 = x"

| "gcd 0 y = y"

| "x < y =⇒ gcd (Suc x) (Suc y) = gcd (Suc x) (y - x)"

| "¬ x < y =⇒ gcd (Suc x) (Suc y) = gcd (x - y) (Suc y)"

by (atomize_elim, auto, arith)

termination by lexicographic_order

By now, you can probably guess what the proof obligations for the pattern
completeness and compatibility look like.

Again, functions with conditional patterns are not supported by the code
generator.

6.4 Pattern matching on strings

As strings (as lists of characters) are normal datatypes, pattern matching on
them is possible, but somewhat problematic. Consider the following definition:

fun check :: "string ⇒ bool"

where
"check (’’good’’) = True"

| "check s = False"

An invocation of the above fun command does not terminate. What is the
problem? Strings are lists of characters, and characters are a datatype with a
lot of constructors. Splitting the catch-all pattern thus leads to an explosion of
cases, which cannot be handled by Isabelle.

There are two things we can do here. Either we write an explicit if on the
right hand side, or we can use conditional patterns:

function check :: "string ⇒ bool"

where
"check (’’good’’) = True"

| "s 6= ’’good’’ =⇒ check s = False"

by auto

7 Partiality

In HOL, all functions are total. A function f applied to x always has the
value f x, and there is no notion of undefinedness. This is why we have to do
termination proofs when defining functions: The proof justifies that the function
can be defined by wellfounded recursion.

However, the function package does support partiality to a certain extent.
Let’s look at the following function which looks for a zero of a given function f.

function findzero :: "(nat ⇒ nat) ⇒ nat ⇒ nat"

where
"findzero f n = (if f n = 0 then n else findzero f (Suc n))"

by pat_completeness auto

Clearly, any attempt of a termination proof must fail. And without that, we do
not get the usual rules findzero.simp and findzero.induct. So what was the
definition good for at all?

7 PARTIALITY 12

7.1 Domain predicates

The trick is that Isabelle has not only defined the function findzero, but also
a predicate findzero_dom that characterizes the values where the function ter-
minates: the domain of the function. If we treat a partial function just as a
total function with an additional domain predicate, we can derive simplification
and induction rules as we do for total functions. They are guarded by domain
conditions and are called psimps and pinduct:

findzero_dom (?f, ?n) =⇒
findzero ?f ?n = (if ?f ?n = 0 then ?n else findzero ?f

(Suc ?n))

(findzero.psimps)

[[findzero_dom (?a0.0, ?a1.0);∧
f n. [[findzero_dom (f, n); f n 6= 0 =⇒ ?P f (Suc n)]]

=⇒ ?P f n]]
=⇒ ?P ?a0.0 ?a1.0

(findzero.pinduct)

Remember that all we are doing here is use some tricks to make a total
function appear as if it was partial. We can still write the term findzero (λx. 1)

0 and like any other term of type nat it is equal to some natural number, although
we might not be able to find out which one. The function is underdefined.

But it is defined enough to prove something interesting about it. We can
prove that if findzero f n terminates, it indeed returns a zero of f:

lemma findzero_zero: "findzero_dom (f, n) =⇒ f (findzero f n) = 0"

We apply induction as usual, but using the partial induction rule:

apply (induct f n rule: findzero.pinduct)

This gives the following subgoals:

1.
∧
f n. [[findzero_dom (f, n); f n 6= 0 =⇒ f (findzero f (Suc n)) = 0]]

=⇒ f (findzero f n) = 0

The hypothesis in our lemma was used to satisfy the first premise in the induc-
tion rule. However, we also get findzero_dom (f, n) as a local assumption in
the induction step. This allows to unfold findzero f n using the psimps rule,
and the rest is trivial. Since the psimps rules carry the [simp] attribute by
default, we just need a single step:

apply simp

done

Proofs about partial functions are often not harder than for total functions.
Fig. 1 shows a slightly more complicated proof written in Isar. It is verbose
enough to show how partiality comes into play: From the partial induction, we
get an additional domain condition hypothesis. Observe how this condition is
applied when calls to findzero are unfolded.

7.2 Partial termination proofs

Now that we have proved some interesting properties about our function, we
should turn to the domain predicate and see if it is actually true for some values.
Otherwise we would have just proved lemmas with False as a premise.

7 PARTIALITY 13

lemma [[findzero-dom (f , n); x ∈ {n ..< findzero f n}]] =⇒ f x 6= 0
proof (induct rule: findzero.pinduct)

fix f n assume dom: findzero-dom (f , n)
and IH : [[f n 6= 0; x ∈ {Suc n ..< findzero f (Suc n)}]]

=⇒ f x 6= 0
and x-range: x ∈ {n ..< findzero f n}

have f n 6= 0
proof

assume f n = 0
with dom have findzero f n = n by simp
with x-range show False by auto

qed

from x-range have x = n ∨ x ∈ {Suc n ..< findzero f n} by auto
thus f x 6= 0
proof

assume x = n
with 〈f n 6= 0〉 show ?thesis by simp

next
assume x ∈ {Suc n ..< findzero f n}
with dom and 〈f n 6= 0〉 have x ∈ {Suc n ..< findzero f (Suc

n)} by simp
with IH and 〈f n 6= 0〉

show ?thesis by simp
qed

qed

Figure 1: A proof about a partial function

7 PARTIALITY 14

Essentially, we need some introduction rules for findzero_dom. The function
package can prove such domain introduction rules automatically. But since they
are not used very often (they are almost never needed if the function is total),
this functionality is disabled by default for efficiency reasons. So we have to
go back and ask for them explicitly by passing the (domintros) option to the
function package:

function (domintros) findzero :: "(nat ⇒ nat) ⇒ nat ⇒ nat"

where
. . .

Now the package has proved an introduction rule for findzero_dom:

thm findzero.domintros

(0 < ?f ?n =⇒ findzero_dom (?f, Suc ?n)) =⇒ findzero_dom (?f, ?n)

Domain introduction rules allow to show that a given value lies in the domain
of a function, if the arguments of all recursive calls are in the domain as well.
They allow to do a “single step” in a termination proof. Usually, you want to
combine them with a suitable induction principle.

Since our function increases its argument at recursive calls, we need an
induction principle which works “backwards”. We will use inc_induct, which
allows to do induction from a fixed number “downwards”:

[[?i ≤ ?j; ?P ?j;
∧
i. [[i < ?j; ?P (Suc i)]] =⇒ ?P i]] =⇒ ?P ?i

(inc_induct)

Figure 2 gives a detailed Isar proof of the fact that findzero terminates if
there is a zero which is greater or equal to n. First we derive two useful rules
which will solve the base case and the step case of the induction. The induction
is then straightforward, except for the unusual induction principle.

Again, the proof given in Fig. 2 has a lot of detail in order to explain the
principles. Using more automation, we can also have a short proof:

lemma findzero_termination_short:

assumes zero: "x >= n"

assumes [simp]: "f x = 0"
shows "findzero_dom (f, n)"

using zero

by (induct rule:inc_induct) (auto intro: findzero.domintros)

It is simple to combine the partial correctness result with the termination lemma:

lemma findzero_total_correctness:

"f x = 0 =⇒ f (findzero f 0) = 0"
by (blast intro: findzero_zero findzero_termination)

7.3 Definition of the domain predicate

Sometimes it is useful to know what the definition of the domain predicate looks
like. Actually, findzero_dom is just an abbreviation:

findzero_dom ≡ accp findzero_rel

7 PARTIALITY 15

lemma findzero-termination:
assumes x ≥ n and f x = 0
shows findzero-dom (f , n)

proof −
have base: findzero-dom (f , x)

by (rule findzero.domintros) (simp add :〈f x = 0〉)

have step:
∧

i . findzero-dom (f , Suc i)
=⇒ findzero-dom (f , i)
by (rule findzero.domintros) simp

from 〈x ≥ n〉 show ?thesis
proof (induct rule:inc-induct)

show findzero-dom (f , x) by (rule base)
next

fix i assume findzero-dom (f , Suc i)
thus findzero-dom (f , i) by (rule step)

qed
qed

Figure 2: Termination proof for findzero

The domain predicate is the accessible part of a relation findzero_rel, which
was also created internally by the function package. findzero_rel is just a
normal inductive predicate, so we can inspect its definition by looking at the
introduction rules findzero_rel.intros. In our case there is just a single rule:

?f ?n 6= 0 =⇒ findzero_rel (?f, Suc ?n) (?f, ?n)

The predicate findzero_rel describes the recursion relation of the function
definition. The recursion relation is a binary relation on the arguments of the
function that relates each argument to its recursive calls. In general, there is
one introduction rule for each recursive call.

The predicate findzero_dom is the accessible part of that relation. An argu-
ment belongs to the accessible part, if it can be reached in a finite number of
steps (cf. its definition in Accessible_Part.thy).

Since the domain predicate is just an abbreviation, you can use lemmas for
accp and findzero_rel directly. Some lemmas which are occasionally useful are
accpI, accp_downward, and of course the introduction and elimination rules for
the recursion relation findzero.intros and findzero.cases.

7.4 A Useful Special Case: Tail recursion

The domain predicate is our trick that allows us to model partiality in a world
of total functions. The downside of this is that we have to carry it around
all the time. The termination proof above allowed us to replace the abstract
findzero_dom (f, n) by the more concrete n ≤ x ∧ f x = 0, but the condition
is still there and can only be discharged for special cases. In particular, the
domain predicate guards the unfolding of our function, since it is there as a
condition in the psimp rules.

8 NESTED RECURSION 16

Now there is an important special case: We can actually get rid of the
condition in the simplification rules, if the function is tail-recursive. The reason
is that for all tail-recursive equations there is a total function satisfying them,
even if they are non-terminating.

The function package internally does the right construction and can derive
the unconditional simp rules, if we ask it to do so. Luckily, our findzero function
is tail-recursive, so we can just go back and add another option to the function
command:

function (domintros, tailrec) findzero :: "(nat ⇒ nat) ⇒ nat ⇒ nat"

where
. . .

Now, we actually get unconditional simplification rules, even though the func-
tion is partial:

thm findzero.simps

findzero ?f ?n = (if ?f ?n = 0 then ?n else findzero ?f (Suc ?n))

Of course these would make the simplifier loop, so we better remove them from
the simpset:

declare findzero.simps[simp del]

Getting rid of the domain conditions in the simplification rules is not only
useful because it simplifies proofs. It is also required in order to use Isabelle’s
code generator to generate ML code from a function definition. Since the code
generator only works with equations, it cannot be used with psimp rules. Thus,
in order to generate code for partial functions, they must be defined as a tail
recursion. Luckily, many functions have a relatively natural tail recursive defi-
nition.

8 Nested recursion

Recursive calls which are nested in one another frequently cause complications,
since their termination proof can depend on a partial correctness property of
the function itself.

As a small example, we define the “nested zero” function:

function nz :: "nat ⇒ nat"

where
"nz 0 = 0"

| "nz (Suc n) = nz (nz n)"

by pat_completeness auto

If we attempt to prove termination using the identity measure on naturals,
this fails:

termination
apply (relation "measure (λn. n)")

apply auto

We get stuck with the subgoal

9 HIGHER-ORDER RECURSION 17

function f 91 :: nat ⇒ nat
where

f 91 n = (if 100 < n then n − 10 else f 91 (f 91 (n + 11)))
by pat-completeness auto

lemma f 91-estimate:
assumes trm: f 91-dom n
shows n < f 91 n + 11

using trm by induct auto

termination
proof

let ?R = measure (λx . 101 − x)
show wf ?R ..

fix n :: nat assume ¬ 100 < n — Assumptions for both calls

thus (n + 11, n) ∈ ?R by simp — Inner call

assume inner-trm: f 91-dom (n + 11) — Outer call
with f 91-estimate have n + 11 < f 91 (n + 11) + 11 .
with 〈¬ 100 < n〉 show (f 91 (n + 11), n) ∈ ?R by simp

qed

Figure 3: McCarthy’s 91-function

1.
∧
n. nz_dom n =⇒ nz n < Suc n

Of course this statement is true, since we know that nz is the zero function.
And in fact we have no problem proving this property by induction.

lemma nz_is_zero: "nz_dom n =⇒ nz n = 0"
by (induct rule:nz.pinduct) auto

We formulate this as a partial correctness lemma with the condition nz_dom

n. This allows us to prove it with the pinduct rule before we have proved
termination. With this lemma, the termination proof works as expected:

termination
by (relation "measure (λn. n)") (auto simp: nz_is_zero)

As a general strategy, one should prove the statements needed for termina-
tion as a partial property first. Then they can be used to do the termination
proof. This also works for less trivial examples. Figure 3 defines the 91-function,
a well-known challenge problem due to John McCarthy, and proves its termina-
tion.

9 Higher-Order Recursion

Higher-order recursion occurs when recursive calls are passed as arguments to
higher-order combinators such as map, filter etc. As an example, imagine a
datatype of n-ary trees:

9 HIGHER-ORDER RECURSION 18

datatype ’a tree =

Leaf ’a

| Branch "’a tree list"

We can define a function which swaps the left and right subtrees recursively,
using the list functions rev and map:

fun mirror :: "’a tree ⇒ ’a tree"

where
"mirror (Leaf n) = Leaf n"

| "mirror (Branch l) = Branch (rev (map mirror l))"

Although the definition is accepted without problems, let us look at the
termination proof:

termination proof

As usual, we have to give a wellfounded relation, such that the arguments
of the recursive calls get smaller. But what exactly are the arguments of the
recursive calls when mirror is given as an argument to map? Isabelle gives us
the subgoals

1. wf ?R

2.
∧
l x. x ∈ set l =⇒ (x, Branch l) ∈ ?R

So the system seems to know that map only applies the recursive call mirror
to elements of l, which is essential for the termination proof.

This knowledge about map is encoded in so-called congruence rules, which
are special theorems known to the function command. The rule for map is

[[?xs = ?ys;
∧
x. x ∈ set ?ys =⇒ ?f x = ?g x]] =⇒ map ?f ?xs = map ?g ?ys

You can read this in the following way: Two applications of map are equal, if
the list arguments are equal and the functions coincide on the elements of the
list. This means that for the value map f l we only have to know how f behaves
on the elements of l.

Usually, one such congruence rule is needed for each higher-order construct
that is used when defining new functions. In fact, even basic functions like If

and Let are handled by this mechanism. The congruence rule for If states that
the then branch is only relevant if the condition is true, and the else branch
only if it is false:

[[?b = ?c; ?c =⇒ ?x = ?u; ¬ ?c =⇒ ?y = ?v]]
=⇒ (if ?b then ?x else ?y) = (if ?c then ?u else ?v)

Congruence rules can be added to the function package by giving them the
fundef_cong attribute.

The constructs that are predefined in Isabelle, usually come with the respec-
tive congruence rules. But if you define your own higher-order functions, you
may have to state and prove the required congruence rules yourself, if you want
to use your functions in recursive definitions.

REFERENCES 19

9.1 Congruence Rules and Evaluation Order

Higher order logic differs from functional programming languages in that it has
no built-in notion of evaluation order. A program is just a set of equations, and
it is not specified how they must be evaluated.

However for the purpose of function definition, we must talk about evaluation
order implicitly, when we reason about termination. Congruence rules express
that a certain evaluation order is consistent with the logical definition.

Consider the following function.
function f :: "nat ⇒ bool"

where
"f n = (n = 0 ∨ f (n - 1))"

For this definition, the termination proof fails. The default configuration
specifies no congruence rule for disjunction. We have to add a congruence rule
that specifies left-to-right evaluation order:

[[?P = ?P’; ¬ ?P’ =⇒ ?Q = ?Q’]] =⇒ (?P ∨ ?Q) = (?P’ ∨ ?Q’) (disj_cong)

Now the definition works without problems. Note how the termination proof
depends on the extra condition that we get from the congruence rule.

However, as evaluation is not a hard-wired concept, we could just turn ev-
erything around by declaring a different congruence rule. Then we can make
the reverse definition:
lemma disj_cong2[fundef_cong]:

"(¬ Q’ =⇒ P = P’) =⇒ (Q = Q’) =⇒ (P ∨ Q) = (P’ ∨ Q’)"

by blast

fun f’ :: "nat ⇒ bool"

where
"f’ n = (f’ (n - 1) ∨ n = 0)"

These examples show that, in general, there is no “best” set of congruence rules.
However, such tweaking should rarely be necessary in practice, as most of

the time, the default set of congruence rules works well.

References

[1] Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow. Finding lexicographic
orders for termination proofs in Isabelle/HOL. In K. Schneider and J. Brandt,
editors, Theorem Proving in Higher Order Logics: TPHOLs 2007, volume 4732 of
Lecture Notes in Computer Science, pages 38–53. Springer-Verlag, 2007.

[2] Alexander Krauss. Partial recursive functions in Higher-Order Logic. In
U. Furbach and N. Shankar, editors, Automated Reasoning: IJCAR 2006, volume
4130 of Lecture Notes in Computer Science, pages 589–603. Springer-Verlag, 2006.

[3] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[4] Konrad Slind. Function definition in higher order logic. In J. von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics:
TPHOLs ’96, volume 1125 of Lecture Notes in Computer Science, pages 381–397.
Springer-Verlag, 1996.

			Introduction

			Function Definitions for Dummies

			Pattern matching

			Induction

			fun vs. function

			Termination

			The relation method

			How lexicographicorder works

			Mutual Recursion

			Induction for mutual recursion

			General pattern matching

			Avoiding automatic pattern splitting

			Non-constructor patterns

			Conditional equations

			Pattern matching on strings

			Partiality

			Domain predicates

			Partial termination proofs

			Definition of the domain predicate

			A Useful Special Case: Tail recursion

			Nested recursion

			Higher-Order Recursion

			Congruence Rules and Evaluation Order

Isabelle2008/doc/implementation.pdf

λ →

∀
=Isa

be
lle

β
α

Isar

The Isabelle/Isar Implementation

Makarius Wenzel

8 June 2008

Abstract

We describe the key concepts underlying the Isabelle/Isar implementation,
including ML references for the most important functions. The aim is to
give some insight into the overall system architecture, and provide clues on
implementing applications within this framework.

Isabelle was not designed; it evolved. Not everyone likes this idea.
Specification experts rightly abhor trial-and-error programming. They
suggest that no one should write a program without first writing a com-
plete formal specification. But university departments are not software
houses. Programs like Isabelle are not products: when they have served
their purpose, they are discarded.

Lawrence C. Paulson, “Isabelle: The Next 700 Theorem Provers”

As I did 20 years ago, I still fervently believe that the only way to make
software secure, reliable, and fast is to make it small. Fight features.

Andrew S. Tanenbaum

Contents

1 Preliminaries 1
1.1 Contexts . 1

1.1.1 Theory context . 2
1.1.2 Proof context . 4
1.1.3 Generic contexts . 5
1.1.4 Context data . 6

1.2 Names . 7
1.2.1 Strings of symbols . 7
1.2.2 Basic names . 9
1.2.3 Indexed names . 10
1.2.4 Qualified names and name spaces 11

2 Primitive logic 14
2.1 Types . 14
2.2 Terms . 17
2.3 Theorems . 20

2.3.1 Primitive connectives and rules 20
2.3.2 Auxiliary definitions 24

2.4 Rules . 25

3 Tactical reasoning 26
3.1 Goals . 26
3.2 Tactics . 27
3.3 Tacticals . 27

4 Structured proofs 28
4.1 Variables . 28
4.2 Assumptions . 30
4.3 Results . 32

5 Isar proof texts 34
5.1 Proof context . 34
5.2 Proof state . 34
5.3 Proof methods . 34

i

CONTENTS ii

5.4 Attributes . 34

6 Structured specifications 35
6.1 Specification elements . 35
6.2 Type-inference . 35
6.3 Local theories . 35

7 System integration 36
7.1 Isar toplevel . 36

7.1.1 Toplevel transitions 37
7.1.2 Toplevel control . 39

7.2 ML toplevel . 39
7.3 Theory database . 41

A Advanced ML programming 44
A.1 Style . 44
A.2 Thread-safe programming . 45

B Basic library functions 49
B.1 Linear transformations . 49
B.2 Options and partiality . 52
B.3 Common data structures . 52

B.3.1 Lists (as set-like data structures) 52
B.3.2 Association lists . 53
B.3.3 Tables . 54

Bibliography 55

Index 56

List of Figures

1.1 A theory definition depending on ancestors 3

2.1 Primitive connectives of Pure 20
2.2 Primitive inferences of Pure 21
2.3 Conceptual axiomatization of Pure equality 21
2.4 Admissible substitution rules 21
2.5 Definitions of auxiliary connectives 24

iii

LIST OF FIGURES iv

Chapter 1

Preliminaries

1.1 Contexts

A logical context represents the background that is required for formulating
statements and composing proofs. It acts as a medium to produce formal
content, depending on earlier material (declarations, results etc.).

For example, derivations within the Isabelle/Pure logic can be described
as a judgment Γ `Θ ϕ, which means that a proposition ϕ is derivable from
hypotheses Γ within the theory Θ. There are logical reasons for keeping Θ
and Γ separate: theories can be liberal about supporting type constructors
and schematic polymorphism of constants and axioms, while the inner cal-
culus of Γ ` ϕ is strictly limited to Simple Type Theory (with fixed type
variables in the assumptions).

Contexts and derivations are linked by the following key principles:

• Transfer: monotonicity of derivations admits results to be transferred
into a larger context, i.e. Γ `Θ ϕ implies Γ ′ `Θ ′ ϕ for contexts Θ ′ ⊇ Θ
and Γ ′ ⊇ Γ.

• Export: discharge of hypotheses admits results to be exported into a
smaller context, i.e. Γ ′ `Θ ϕ implies Γ `Θ ∆ =⇒ ϕ where Γ ′ ⊇ Γ and
∆ = Γ ′ − Γ. Note that Θ remains unchanged here, only the Γ part is
affected.

By modeling the main characteristics of the primitive Θ and Γ above, and
abstracting over any particular logical content, we arrive at the fundamental
notions of theory context and proof context in Isabelle/Isar. These implement
a certain policy to manage arbitrary context data. There is a strongly-typed
mechanism to declare new kinds of data at compile time.

The internal bootstrap process of Isabelle/Pure eventually reaches a stage
where certain data slots provide the logical content of Θ and Γ sketched
above, but this does not stop there! Various additional data slots support
all kinds of mechanisms that are not necessarily part of the core logic.

1

CHAPTER 1. PRELIMINARIES 2

For example, there would be data for canonical introduction and elimina-
tion rules for arbitrary operators (depending on the object-logic and appli-
cation), which enables users to perform standard proof steps implicitly (cf.
the rule method [7]).

Thus Isabelle/Isar is able to bring forth more and more concepts suc-
cessively. In particular, an object-logic like Isabelle/HOL continues the
Isabelle/Pure setup by adding specific components for automated reasoning
(classical reasoner, tableau prover, structured induction etc.) and derived
specification mechanisms (inductive predicates, recursive functions etc.). All
of this is ultimately based on the generic data management by theory and
proof contexts introduced here.

1.1.1 Theory context

A theory is a data container with explicit named and unique identifier. Theo-
ries are related by a (nominal) sub-theory relation, which corresponds to the
dependency graph of the original construction; each theory is derived from a
certain sub-graph of ancestor theories.

The merge operation produces the least upper bound of two theories,
which actually degenerates into absorption of one theory into the other (due
to the nominal sub-theory relation).

The begin operation starts a new theory by importing several parent the-
ories and entering a special draft mode, which is sustained until the final end
operation. A draft theory acts like a linear type, where updates invalidate
earlier versions. An invalidated draft is called “stale”.

The checkpoint operation produces an intermediate stepping stone that
will survive the next update: both the original and the changed theory remain
valid and are related by the sub-theory relation. Checkpointing essentially
recovers purely functional theory values, at the expense of some extra internal
bookkeeping.

The copy operation produces an auxiliary version that has the same data
content, but is unrelated to the original: updates of the copy do not affect
the original, neither does the sub-theory relation hold.

The example in figure 1.1 below shows a theory graph derived from Pure,
with theory Length importing Nat and List. The body of Length consists of
a sequence of updates, working mostly on drafts. Intermediate checkpoints
may occur as well, due to the history mechanism provided by the Isar top-
level, cf. §7.1.

There is a separate notion of theory reference for maintaining a live link to

CHAPTER 1. PRELIMINARIES 3

Pure
↓

FOL
↙ ↘

Nat List
↘ ↙

Length
imports
begin
...
·
...
·
...

end

Figure 1.1: A theory definition depending on ancestors

an evolving theory context: updates on drafts are propagated automatically.
Dynamic updating stops after an explicit end only.

Derived entities may store a theory reference in order to indicate the con-
text they belong to. This implicitly assumes monotonic reasoning, because
the referenced context may become larger without further notice.

ml Reference

type theory
Theory.subthy: theory * theory -> bool
Theory.merge: theory * theory -> theory
Theory.checkpoint: theory -> theory
Theory.copy: theory -> theory

type theory_ref
Theory.deref: theory_ref -> theory
Theory.check_thy: theory -> theory_ref

theory represents theory contexts. This is essentially a linear type! Most oper-
ations destroy the original version, which then becomes “stale”.

Theory.subthy (thy1, thy2) compares theories according to the inherent graph
structure of the construction. This sub-theory relation is a nominal approx-
imation of inclusion (⊆) of the corresponding content.

CHAPTER 1. PRELIMINARIES 4

Theory.merge (thy1, thy2) absorbs one theory into the other. This fails for
unrelated theories!

Theory.checkpoint thy produces a safe stepping stone in the linear development
of thy. The next update will result in two related, valid theories.

Theory.copy thy produces a variant of thy that holds a copy of the same data.
The result is not related to the original; the original is unchanched.

theory_ref represents a sliding reference to an always valid theory; updates on
the original are propagated automatically.

Theory.deref thy-ref turns a theory_ref into an theory value. As the
referenced theory evolves monotonically over time, later invocations of
Theory.deref may refer to a larger context.

Theory.check_thy thy produces a theory_ref from a valid theory value.

1.1.2 Proof context

A proof context is a container for pure data with a back-reference to the
theory it belongs to. The init operation creates a proof context from a
given theory. Modifications to draft theories are propagated to the proof
context as usual, but there is also an explicit transfer operation to force
resynchronization with more substantial updates to the underlying theory.
The actual context data does not require any special bookkeeping, thanks to
the lack of destructive features.

Entities derived in a proof context need to record inherent logical re-
quirements explicitly, since there is no separate context identification as for
theories. For example, hypotheses used in primitive derivations (cf. §2.3) are
recorded separately within the sequent Γ ` ϕ, just to make double sure. Re-
sults could still leak into an alien proof context do to programming errors, but
Isabelle/Isar includes some extra validity checks in critical positions, notably
at the end of a sub-proof.

Proof contexts may be manipulated arbitrarily, although the common
discipline is to follow block structure as a mental model: a given context
is extended consecutively, and results are exported back into the original
context. Note that the Isar proof states model block-structured reasoning
explicitly, using a stack of proof contexts internally, cf. §5.2.

CHAPTER 1. PRELIMINARIES 5

ml Reference

type Proof.context
ProofContext.init: theory -> Proof.context
ProofContext.theory_of: Proof.context -> theory
ProofContext.transfer: theory -> Proof.context -> Proof.context

Proof.context represents proof contexts. Elements of this type are essentially
pure values, with a sliding reference to the background theory.

ProofContext.init thy produces a proof context derived from thy, initializing
all data.

ProofContext.theory_of ctxt selects the background theory from ctxt, derefer-
encing its internal theory_ref.

ProofContext.transfer thy ctxt promotes the background theory of ctxt to the
super theory thy.

1.1.3 Generic contexts

A generic context is the disjoint sum of either a theory or proof context. Oc-
casionally, this enables uniform treatment of generic context data, typically
extra-logical information. Operations on generic contexts include the usual
injections, partial selections, and combinators for lifting operations on either
component of the disjoint sum.

Moreover, there are total operations theory-of and proof-of to convert a
generic context into either kind: a theory can always be selected from the
sum, while a proof context might have to be constructed by an ad-hoc init
operation.

ml Reference

type Context.generic
Context.theory_of: Context.generic -> theory
Context.proof_of: Context.generic -> Proof.context

Context.generic is the direct sum of theory and Proof.context, with the
datatype constructors Context.Theory and Context.Proof.

Context.theory_of context always produces a theory from the generic context,
using ProofContext.theory_of as required.

Context.proof_of context always produces a proof context from the generic
context, using ProofContext.init as required (note that this re-initializes
the context data with each invocation).

CHAPTER 1. PRELIMINARIES 6

1.1.4 Context data

The main purpose of theory and proof contexts is to manage arbitrary data.
New data types can be declared incrementally at compile time. There are
separate declaration mechanisms for any of the three kinds of contexts: the-
ory, proof, generic.

Theory data may refer to destructive entities, which are maintained in
direct correspondence to the linear evolution of theory values, including ex-
plicit copies.1 A theory data declaration needs to implement the following
SML signature:

type T representing type
val empty : T empty default value
val copy : T → T refresh impure data
val extend : T → T re-initialize on import
val merge: T × T → T join on import

The empty value acts as initial default for any theory that does not declare
actual data content; copy maintains persistent integrity for impure data, it is
just the identity for pure values; extend is acts like a unitary version of merge,
both operations should also include the functionality of copy for impure data.

Proof context data is purely functional. A declaration needs to imple-
ment the following SML signature:

type T representing type
val init : theory → T produce initial value

The init operation is supposed to produce a pure value from the given back-
ground theory.

Generic data provides a hybrid interface for both theory and proof data.
The declaration is essentially the same as for (pure) theory data, without
copy. The init operation for proof contexts merely selects the current data
value from the background theory.

A data declaration of type T results in the following interface:

init : theory → theory
get : context → T
put : T → context → context
map: (T → T) → context → context

1Most existing instances of destructive theory data are merely historical relics (e.g. the
destructive theorem storage, and destructive hints for the Simplifier and Classical rules).

CHAPTER 1. PRELIMINARIES 7

Here init is only applicable to impure theory data to install a fresh copy
persistently (destructive update on uninitialized has no permanent effect).
The other operations provide access for the particular kind of context (theory,
proof, or generic context). Note that this is a safe interface: there is no other
way to access the corresponding data slot of a context. By keeping these
operations private, a component may maintain abstract values authentically,
without other components interfering.

ml Reference

functor TheoryDataFun
functor ProofDataFun
functor GenericDataFun

TheoryDataFun(spec) declares data for type theory according to the specification
provided as argument structure. The resulting structure provides data init
and access operations as described above.

ProofDataFun(spec) is analogous to TheoryDataFun for type Proof.context.

GenericDataFun(spec) is analogous to TheoryDataFun for type Context.generic.

1.2 Names

In principle, a name is just a string, but there are various convention for
encoding additional structure. For example, “Foo.bar .baz” is considered as
a qualified name consisting of three basic name components. The individ-
ual constituents of a name may have further substructure, e.g. the string
“\<alpha>” encodes as a single symbol.

1.2.1 Strings of symbols

A symbol constitutes the smallest textual unit in Isabelle — raw characters
are normally not encountered at all. Isabelle strings consist of a sequence of
symbols, represented as a packed string or a list of strings. Each symbol is
in itself a small string, which has either one of the following forms:

1. a single ASCII character “c”, for example “a”,

2. a regular symbol “\<ident>”, for example “\<alpha>”,

3. a control symbol “\<^ident>”, for example “\<^bold>”,

CHAPTER 1. PRELIMINARIES 8

4. a raw symbol “\<^raw:text>” where text constists of printable charac-
ters excluding “.” and “>”, for example “\<^raw:$\sum_{i = 1}^n$>”,

5. a numbered raw control symbol “\<^rawn> where n consists of digits,
for example “\<^raw42>”.

The ident syntax for symbol names is letter (letter | digit)∗, where letter
= A..Za..z and digit = 0..9. There are infinitely many regular symbols
and control symbols, but a fixed collection of standard symbols is treated
specifically. For example, “\<alpha>” is classified as a letter, which means
it may occur within regular Isabelle identifiers.

Since the character set underlying Isabelle symbols is 7-bit ASCII and
8-bit characters are passed through transparently, Isabelle may also process
Unicode/UCS data in UTF-8 encoding. Unicode provides its own collec-
tion of mathematical symbols, but there is no built-in link to the standard
collection of Isabelle.

Output of Isabelle symbols depends on the print mode (§??). For exam-
ple, the standard LATEX setup of the Isabelle document preparation system
would present “\<alpha>” as α, and “\<^bold>\<alpha>” as α.

ml Reference

type Symbol.symbol
Symbol.explode: string -> Symbol.symbol list
Symbol.is_letter: Symbol.symbol -> bool
Symbol.is_digit: Symbol.symbol -> bool
Symbol.is_quasi: Symbol.symbol -> bool
Symbol.is_blank: Symbol.symbol -> bool

type Symbol.sym
Symbol.decode: Symbol.symbol -> Symbol.sym

Symbol.symbol represents individual Isabelle symbols; this is an alias for string.

Symbol.explode str produces a symbol list from the packed form. This function
supercedes String.explode for virtually all purposes of manipulating text
in Isabelle!

Symbol.is_letter, Symbol.is_digit, Symbol.is_quasi, Symbol.is_blank
classify standard symbols according to fixed syntactic conventions of Isabelle,
cf. [7].

Symbol.sym is a concrete datatype that represents the different kinds of sym-
bols explicitly, with constructors Symbol.Char, Symbol.Sym, Symbol.Ctrl,
Symbol.Raw.

CHAPTER 1. PRELIMINARIES 9

Symbol.decode converts the string representation of a symbol into the datatype
version.

1.2.2 Basic names

A basic name essentially consists of a single Isabelle identifier. There are
conventions to mark separate classes of basic names, by attaching a suffix
of underscores (-): one underscore means internal name, two underscores
means Skolem name, three underscores means internal Skolem name.

For example, the basic name foo has the internal version foo-, with Skolem
versions foo-- and foo---, respectively.

These special versions provide copies of the basic name space, apart from
anything that normally appears in the user text. For example, system gen-
erated variables in Isar proof contexts are usually marked as internal, which
prevents mysterious name references like xaa to appear in the text.

Manipulating binding scopes often requires on-the-fly renamings. A name
context contains a collection of already used names. The declare operation
adds names to the context.

The invents operation derives a number of fresh names from a given
starting point. For example, the first three names derived from a are a, b, c.

The variants operation produces fresh names by incrementing tentative
names as base-26 numbers (with digits a..z) until all clashes are resolved.
For example, name foo results in variants fooa, foob, fooc, . . . , fooaa, fooab
etc.; each renaming step picks the next unused variant from this sequence.

ml Reference

Name.internal: string -> string
Name.skolem: string -> string

type Name.context
Name.context: Name.context
Name.declare: string -> Name.context -> Name.context
Name.invents: Name.context -> string -> int -> string list
Name.variants: string list -> Name.context -> string list * Name.context

Name.internal name produces an internal name by adding one underscore.

Name.skolem name produces a Skolem name by adding two underscores.

Name.context represents the context of already used names; the initial value is
Name.context.

CHAPTER 1. PRELIMINARIES 10

Name.declare name enters a used name into the context.

Name.invents context name n produces n fresh names derived from name.

Name.variants names context produces fresh varians of names; the result is
entered into the context.

1.2.3 Indexed names

An indexed name (or indexname) is a pair of a basic name and a natu-
ral number. This representation allows efficient renaming by incrementing
the second component only. The canonical way to rename two collections
of indexnames apart from each other is this: determine the maximum in-
dex maxidx of the first collection, then increment all indexes of the second
collection by maxidx + 1; the maximum index of an empty collection is −1.

Occasionally, basic names and indexed names are injected into the same
pair type: the (improper) indexname (x , −1) is used to encode basic names.

Isabelle syntax observes the following rules for representing an indexname
(x , i) as a packed string:

• ?x if x does not end with a digit and i = 0,

• ?xi if x does not end with a digit,

• ?x .i otherwise.

Indexnames may acquire large index numbers over time. Results are nor-
malized towards 0 at certain checkpoints, notably at the end of a proof. This
works by producing variants of the corresponding basic name components.
For example, the collection ?x1, ?x7, ?x42 becomes ?x , ?xa, ?xb.

ml Reference

type indexname

indexname represents indexed names. This is an abbreviation for string * int.
The second component is usually non-negative, except for situations where
(x , −1) is used to embed basic names into this type.

CHAPTER 1. PRELIMINARIES 11

1.2.4 Qualified names and name spaces

A qualified name consists of a non-empty sequence of basic name components.
The packed representation uses a dot as separator, as in “A.b.c”. The last
component is called base name, the remaining prefix qualifier (which may
be empty). The idea of qualified names is to encode nested structures by
recording the access paths as qualifiers. For example, an item named “A.b.c”
may be understood as a local entity c, within a local structure b, within a
global structure A. Typically, name space hierarchies consist of 1–2 levels of
qualification, but this need not be always so.

The empty name is commonly used as an indication of unnamed entities,
whenever this makes any sense. The basic operations on qualified names are
smart enough to pass through such improper names unchanged.

A naming policy tells how to turn a name specification into a fully quali-
fied internal name (by the full operation), and how fully qualified names may
be accessed externally. For example, the default naming policy is to prefix
an implicit path: full x produces path.x, and the standard accesses for path.x
include both x and path.x. Normally, the naming is implicit in the theory or
proof context; there are separate versions of the corresponding.

A name space manages a collection of fully internalized names, together
with a mapping between external names and internal names (in both direc-
tions). The corresponding intern and extern operations are mostly used for
parsing and printing only! The declare operation augments a name space
according to the accesses determined by the naming policy.

As a general principle, there is a separate name space for each kind of
formal entity, e.g. logical constant, type constructor, type class, theorem. It
is usually clear from the occurrence in concrete syntax (or from the scope)
which kind of entity a name refers to. For example, the very same name c
may be used uniformly for a constant, type constructor, and type class.

There are common schemes to name theorems systematically, according
to the name of the main logical entity involved, e.g. c.intro for a canonical
theorem related to constant c. This technique of mapping names from one
space into another requires some care in order to avoid conflicts. In par-
ticular, theorem names derived from a type constructor or type class are
better suffixed in addition to the usual qualification, e.g. c-type.intro and
c-class .intro for theorems related to type c and class c, respectively.

CHAPTER 1. PRELIMINARIES 12

ml Reference

NameSpace.base: string -> string
NameSpace.qualifier: string -> string
NameSpace.append: string -> string -> string
NameSpace.implode: string list -> string
NameSpace.explode: string -> string list

type NameSpace.naming
NameSpace.default_naming: NameSpace.naming
NameSpace.add_path: string -> NameSpace.naming -> NameSpace.naming
NameSpace.full: NameSpace.naming -> string -> string

type NameSpace.T
NameSpace.empty: NameSpace.T
NameSpace.merge: NameSpace.T * NameSpace.T -> NameSpace.T
NameSpace.declare: NameSpace.naming -> string -> NameSpace.T -> NameSpace.T
NameSpace.intern: NameSpace.T -> string -> string
NameSpace.extern: NameSpace.T -> string -> string

NameSpace.base name returns the base name of a qualified name.

NameSpace.qualifier name returns the qualifier of a qualified name.

NameSpace.append name1 name2 appends two qualified names.

NameSpace.implode name and NameSpace.explode names convert between the
packed string representation and the explicit list form of qualified names.

NameSpace.naming represents the abstract concept of a naming policy.

NameSpace.default_naming is the default naming policy. In a theory context,
this is usually augmented by a path prefix consisting of the theory name.

NameSpace.add_path path naming augments the naming policy by extending its
path component.

NameSpace.fullnaming name turns a name specification (usually a basic name)
into the fully qualified internal version, according to the given naming policy.

NameSpace.T represents name spaces.

NameSpace.empty and NameSpace.merge (space1, space2) are the canonical op-
erations for maintaining name spaces according to theory data management
(§1.1.4).

NameSpace.declare naming name space enters a fully qualified name into the
name space, with external accesses determined by the naming policy.

CHAPTER 1. PRELIMINARIES 13

NameSpace.intern space name internalizes a (partially qualified) external name.

This operation is mostly for parsing! Note that fully qualified names stem-
ming from declarations are produced via NameSpace.full (or its derivatives
for theory and Proof.context).

NameSpace.extern space name externalizes a (fully qualified) internal name.

This operation is mostly for printing! Note unqualified names are produced
via NameSpace.base.

Chapter 2

Primitive logic

The logical foundations of Isabelle/Isar are that of the Pure logic, which has
been introduced as a natural-deduction framework in [5]. This is essentially
the same logic as “λHOL” in the more abstract setting of Pure Type Systems
(PTS) [1], although there are some key differences in the specific treatment
of simple types in Isabelle/Pure.

Following type-theoretic parlance, the Pure logic consists of three levels of
λ-calculus with corresponding arrows, ⇒ for syntactic function space (terms
depending on terms),

∧
for universal quantification (proofs depending on

terms), and =⇒ for implication (proofs depending on proofs).
Derivations are relative to a logical theory, which declares type construc-

tors, constants, and axioms. Theory declarations support schematic poly-
morphism, which is strictly speaking outside the logic.1

2.1 Types

The language of types is an uninterpreted order-sorted first-order algebra;
types are qualified by ordered type classes.

A type class is an abstract syntactic entity declared in the theory context.
The subclass relation c1 ⊆ c2 is specified by stating an acyclic generating
relation; the transitive closure is maintained internally. The resulting relation
is an ordering: reflexive, transitive, and antisymmetric.

A sort is a list of type classes written as s = {c1, . . ., cm}, which rep-
resents symbolic intersection. Notationally, the curly braces are omitted for
singleton intersections, i.e. any class c may be read as a sort {c}. The
ordering on type classes is extended to sorts according to the meaning of
intersections: {c1, . . . cm} ⊆ {d1, . . ., dn} iff ∀ j . ∃ i . ci ⊆ d j . The empty
intersection {} refers to the universal sort, which is the largest element wrt.
the sort order. The intersections of all (finitely many) classes declared in the
current theory are the minimal elements wrt. the sort order.

1This is the deeper logical reason, why the theory context Θ is separate from the proof
context Γ of the core calculus.

14

CHAPTER 2. PRIMITIVE LOGIC 15

A fixed type variable is a pair of a basic name (starting with a ′ character)
and a sort constraint, e.g. (′a, s) which is usually printed as αs . A schematic
type variable is a pair of an indexname and a sort constraint, e.g. ((′a, 0), s)
which is usually printed as ?αs .

Note that all syntactic components contribute to the identity of type
variables, including the sort constraint. The core logic handles type variables
with the same name but different sorts as different, although some outer
layers of the system make it hard to produce anything like this.

A type constructor κ is a k -ary operator on types declared in the theory.
Type constructor application is written postfix as (α1, . . ., αk)κ. For k = 0
the argument tuple is omitted, e.g. prop instead of ()prop. For k = 1 the
parentheses are omitted, e.g. α list instead of (α)list. Further notation is
provided for specific constructors, notably the right-associative infix α ⇒ β
instead of (α, β)fun.

A type is defined inductively over type variables and type constructors as
follows: τ = αs | ?αs | (τ 1, . . ., τ k)κ.

A type abbreviation is a syntactic definition (α)κ = τ of an arbitrary type
expression τ over variables α. Type abbreviations appear as type construc-
tors in the syntax, but are expanded before entering the logical core.

A type arity declares the image behavior of a type constructor wrt. the
algebra of sorts: κ :: (s1, . . ., sk)s means that (τ 1, . . ., τ k)κ is of sort s if every
argument type τ i is of sort s i . Arity declarations are implicitly completed,
i.e. κ :: (s)c entails κ :: (s)c ′ for any c ′ ⊇ c.

The sort algebra is always maintained as coregular, which means that type
arities are consistent with the subclass relation: for any type constructor κ,
and classes c1 ⊆ c2, and arities κ :: (s1)c1 and κ :: (s2)c2 holds s1 ⊆ s2

component-wise.
The key property of a coregular order-sorted algebra is that sort con-

straints can be solved in a most general fashion: for each type constructor κ
and sort s there is a most general vector of argument sorts (s1, . . ., sk) such
that a type scheme (αs1 , . . ., αsk)κ is of sort s. Consequently, type unification
has most general solutions (modulo equivalence of sorts), so type-inference
produces primary types as expected [4].

CHAPTER 2. PRIMITIVE LOGIC 16

ml Reference

type class
type sort
type arity
type typ
map_atyps: (typ -> typ) -> typ -> typ
fold_atyps: (typ -> ’a -> ’a) -> typ -> ’a -> ’a

Sign.subsort: theory -> sort * sort -> bool
Sign.of_sort: theory -> typ * sort -> bool
Sign.add_types: (string * int * mixfix) list -> theory -> theory
Sign.add_tyabbrs_i:
(string * string list * typ * mixfix) list -> theory -> theory

Sign.primitive_class: string * class list -> theory -> theory
Sign.primitive_classrel: class * class -> theory -> theory
Sign.primitive_arity: arity -> theory -> theory

class represents type classes; this is an alias for string.

sort represents sorts; this is an alias for class list.

arity represents type arities; this is an alias for triples of the form (κ, s, s) for
κ :: (s)s described above.

typ represents types; this is a datatype with constructors TFree, TVar, Type.

map_atyps f τ applies the mapping f to all atomic types (TFree, TVar) occurring
in τ .

fold_atyps f τ iterates the operation f over all occurrences of atomic types
(TFree, TVar) in τ ; the type structure is traversed from left to right.

Sign.subsort thy (s1, s2) tests the subsort relation s1 ⊆ s2.

Sign.of_sort thy (τ , s) tests whether type τ is of sort s.

Sign.add_types [(κ, k , mx), . . .] declares a new type constructors κ with k
arguments and optional mixfix syntax.

Sign.add_tyabbrs_i [(κ, α, τ , mx), . . .] defines a new type abbreviation (α)κ
= τ with optional mixfix syntax.

Sign.primitive_class (c, [c1, . . ., cn]) declares a new class c, together with
class relations c ⊆ ci , for i = 1, . . ., n.

Sign.primitive_classrel (c1, c2) declares the class relation c1 ⊆ c2.

Sign.primitive_arity (κ, s, s) declares the arity κ :: (s)s.

CHAPTER 2. PRIMITIVE LOGIC 17

2.2 Terms

The language of terms is that of simply-typed λ-calculus with de-Bruijn
indices for bound variables (cf. [3] or [6]), with the types being determined
determined by the corresponding binders. In contrast, free variables and
constants are have an explicit name and type in each occurrence.

A bound variable is a natural number b, which accounts for the number
of intermediate binders between the variable occurrence in the body and its
binding position. For example, the de-Bruijn term λnat. λnat. 1 + 0 would
correspond to λx nat. λynat. x + y in a named representation. Note that a
bound variable may be represented by different de-Bruijn indices at different
occurrences, depending on the nesting of abstractions.

A loose variable is a bound variable that is outside the scope of local
binders. The types (and names) for loose variables can be managed as a
separate context, that is maintained as a stack of hypothetical binders. The
core logic operates on closed terms, without any loose variables.

A fixed variable is a pair of a basic name and a type, e.g. (x , τ) which
is usually printed x τ . A schematic variable is a pair of an indexname and a
type, e.g. ((x , 0), τ) which is usually printed as ?x τ .

A constant is a pair of a basic name and a type, e.g. (c, τ) which is usually
printed as cτ . Constants are declared in the context as polymorphic families
c :: σ, meaning that all substitution instances cτ for τ = σθ are valid.

The vector of type arguments of constant cτ wrt. the declaration c :: σ is
defined as the codomain of the matcher θ = {?α1 7→ τ 1, . . ., ?αn 7→ τn} pre-
sented in canonical order (τ 1, . . ., τn). Within a given theory context, there
is a one-to-one correspondence between any constant cτ and the application
c(τ 1, . . ., τn) of its type arguments. For example, with plus :: α ⇒ α ⇒ α,
the instance plusnat ⇒ nat ⇒ nat corresponds to plus(nat).

Constant declarations c :: σ may contain sort constraints for type vari-
ables in σ. These are observed by type-inference as expected, but ignored by
the core logic. This means the primitive logic is able to reason with instances
of polymorphic constants that the user-level type-checker would reject due
to violation of type class restrictions.

An atomic term is either a variable or constant. A term is defined induc-
tively over atomic terms, with abstraction and application as follows: t = b |
x τ | ?x τ | cτ | λτ . t | t1 t2. Parsing and printing takes care of converting be-
tween an external representation with named bound variables. Subsequently,
we shall use the latter notation instead of internal de-Bruijn representation.

The inductive relation t :: τ assigns a (unique) type to a term according

CHAPTER 2. PRIMITIVE LOGIC 18

to the structure of atomic terms, abstractions, and applicatins:

aτ :: τ
t :: σ

(λx τ . t) :: τ ⇒ σ
t :: τ ⇒ σ u :: τ

t u :: σ

A well-typed term is a term that can be typed according to these rules.
Typing information can be omitted: type-inference is able to reconstruct

the most general type of a raw term, while assigning most general types to all
of its variables and constants. Type-inference depends on a context of type
constraints for fixed variables, and declarations for polymorphic constants.

The identity of atomic terms consists both of the name and the type
component. This means that different variables x τ1 and x τ2 may become
the same after type instantiation. Some outer layers of the system make it
hard to produce variables of the same name, but different types. In contrast,
mixed instances of polymorphic constants occur frequently.

The hidden polymorphism of a term t :: σ is the set of type variables
occurring in t, but not in σ. This means that the term implicitly depends
on type arguments that are not accounted in the result type, i.e. there are
different type instances tθ :: σ and tθ ′ :: σ with the same type. This slightly
pathological situation notoriously demands additional care.

A term abbreviation is a syntactic definition cσ ≡ t of a closed term t of
type σ, without any hidden polymorphism. A term abbreviation looks like
a constant in the syntax, but is expanded before entering the logical core.
Abbreviations are usually reverted when printing terms, using t → cσ as
rules for higher-order rewriting.

Canonical operations on λ-terms include αβη-conversion: α-conversion
refers to capture-free renaming of bound variables; β-conversion contracts an
abstraction applied to an argument term, substituting the argument in the
body: (λx . b)a becomes b[a/x]; η-conversion contracts vacuous application-
abstraction: λx . f x becomes f, provided that the bound variable does not
occur in f.

Terms are normally treated modulo α-conversion, which is implicit in
the de-Bruijn representation. Names for bound variables in abstractions are
maintained separately as (meaningless) comments, mostly for parsing and
printing. Full αβη-conversion is commonplace in various standard operations
(§2.4) that are based on higher-order unification and matching.

CHAPTER 2. PRIMITIVE LOGIC 19

ml Reference

type term
op aconv: term * term -> bool
map_types: (typ -> typ) -> term -> term
fold_types: (typ -> ’a -> ’a) -> term -> ’a -> ’a
map_aterms: (term -> term) -> term -> term
fold_aterms: (term -> ’a -> ’a) -> term -> ’a -> ’a

fastype_of: term -> typ
lambda: term -> term -> term
betapply: term * term -> term
Sign.declare_const: Markup.property list -> bstring * typ * mixfix ->
theory -> term * theory

Sign.add_abbrev: string -> Markup.property list -> bstring * term ->
theory -> (term * term) * theory

Sign.const_typargs: theory -> string * typ -> typ list
Sign.const_instance: theory -> string * typ list -> typ

term represents de-Bruijn terms, with comments in abstractions, and explicitly
named free variables and constants; this is a datatype with constructors
Bound, Free, Var, Const, Abs, op $.

t aconv u checks α-equivalence of two terms. This is the basic equality relation on
type term; raw datatype equality should only be used for operations related
to parsing or printing!

map_types f t applies the mapping f to all types occurring in t.

fold_types f t iterates the operation f over all occurrences of types in t ; the
term structure is traversed from left to right.

map_aterms f t applies the mapping f to all atomic terms (Bound, Free, Var,
Const) occurring in t.

fold_aterms f t iterates the operation f over all occurrences of atomic terms
(Bound, Free, Var, Const) in t ; the term structure is traversed from left to
right.

fastype_of t determines the type of a well-typed term. This operation is rela-
tively slow, despite the omission of any sanity checks.

lambda a b produces an abstraction λa. b, where occurrences of the atomic term
a in the body b are replaced by bound variables.

betapply (t , u) produces an application t u, with topmost β-conversion if t is an
abstraction.

Sign.declare_const properties (c, σ, mx) declares a new constant c :: σ with
optional mixfix syntax.

CHAPTER 2. PRIMITIVE LOGIC 20

Sign.add_abbrev print-mode properties (c, t) introduces a new term abbrevia-
tion c ≡ t.

Sign.const_typargs thy (c, τ) and Sign.const_instance thy (c, [τ1, . . ., τn])
convert between two representations of polymorphic constants: full type
instance vs. compact type arguments form.

2.3 Theorems

A proposition is a well-typed term of type prop, a theorem is a proven propo-
sition (depending on a context of hypotheses and the background theory).
Primitive inferences include plain natural deduction rules for the primary
connectives

∧
and =⇒ of the framework. There is also a builtin notion of

equality/equivalence ≡.

2.3.1 Primitive connectives and rules

The theory Pure contains constant declarations for the primitive connectives∧
, =⇒, and ≡ of the logical framework, see figure 2.1. The derivability judg-

ment A1, . . ., An ` B is defined inductively by the primitive inferences given
in figure 2.2, with the global restriction that the hypotheses must not contain
any schematic variables. The builtin equality is conceptually axiomatized as
shown in figure 2.3, although the implementation works directly with derived
inferences.

all :: (α ⇒ prop) ⇒ prop universal quantification (binder
∧

)
=⇒ :: prop ⇒ prop ⇒ prop implication (right associative infix)
≡ :: α ⇒ α ⇒ prop equality relation (infix)

Figure 2.1: Primitive connectives of Pure

The introduction and elimination rules for
∧

and =⇒ are analogous to
formation of dependently typed λ-terms representing the underlying proof
objects. Proof terms are irrelevant in the Pure logic, though; they can-
not occur within propositions. The system provides a runtime option to
record explicit proof terms for primitive inferences. Thus all three levels of
λ-calculus become explicit: ⇒ for terms, and

∧
/=⇒ for proofs (cf. [2]).

Observe that locally fixed parameters (as in
∧

-intro) need not be recorded
in the hypotheses, because the simple syntactic types of Pure are always

CHAPTER 2. PRIMITIVE LOGIC 21

A ∈ Θ
` A

(axiom)
A ` A

(assume)

Γ ` b[x] x /∈ Γ

Γ ` ∧
x . b[x]

(
∧

-intro)
Γ ` ∧

x . b[x]

Γ ` b[a]
(
∧

-elim)

Γ ` B
Γ − A ` A =⇒ B

(=⇒-intro)
Γ1 ` A =⇒ B Γ2 ` A

Γ1 ∪ Γ2 ` B
(=⇒-elim)

Figure 2.2: Primitive inferences of Pure

` (λx . b[x]) a ≡ b[a] β-conversion
` x ≡ x reflexivity
` x ≡ y =⇒ P x =⇒ P y substitution
` (

∧
x . f x ≡ g x) =⇒ f ≡ g extensionality

` (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ≡ B logical equivalence

Figure 2.3: Conceptual axiomatization of Pure equality

inhabitable. “Assumptions” x :: τ for type-membership are only present as
long as some x τ occurs in the statement body.2

The axiomatization of a theory is implicitly closed by forming all instances
of type and term variables: ` Aθ holds for any substitution instance of an
axiom ` A. By pushing substitutions through derivations inductively, we also
get admissible generalize and instance rules as shown in figure 2.4.

Γ ` B [α] α /∈ Γ

Γ ` B [?α]

Γ ` B [x] x /∈ Γ

Γ ` B [?x]
(generalize)

Γ ` B [?α]

Γ ` B [τ]

Γ ` B [?x]

Γ ` B [t]
(instantiate)

Figure 2.4: Admissible substitution rules

Note that instantiate does not require an explicit side-condition, because
Γ may never contain schematic variables.

2This is the key difference to “λHOL” in the PTS framework [1], where hypotheses x :
A are treated uniformly for propositions and types.

CHAPTER 2. PRIMITIVE LOGIC 22

In principle, variables could be substituted in hypotheses as well, but this
would disrupt the monotonicity of reasoning: deriving Γθ ` Bθ from Γ ` B
is correct, but Γθ ⊇ Γ does not necessarily hold: the result belongs to a
different proof context.

An oracle is a function that produces axioms on the fly. Logically, this
is an instance of the axiom rule (figure 2.2), but there is an operational
difference. The system always records oracle invocations within derivations
of theorems. Tracing plain axioms (and named theorems) is optional.

Axiomatizations should be limited to the bare minimum, typically as part
of the initial logical basis of an object-logic formalization. Later on, theories
are usually developed in a strictly definitional fashion, by stating only certain
equalities over new constants.

A simple definition consists of a constant declaration c :: σ together
with an axiom ` c ≡ t, where t :: σ is a closed term without any hidden
polymorphism. The RHS may depend on further defined constants, but not
c itself. Definitions of functions may be presented as c x ≡ t instead of the
puristic c ≡ λx . t.

An overloaded definition consists of a collection of axioms for the same
constant, with zero or one equations c((α)κ) ≡ t for each type constructor
κ (for distinct variables α). The RHS may mention previously defined con-
stants as above, or arbitrary constants d(αi) for some αi projected from α.
Thus overloaded definitions essentially work by primitive recursion over the
syntactic structure of a single type argument.

ml Reference

type ctyp
type cterm
Thm.ctyp_of: theory -> typ -> ctyp
Thm.cterm_of: theory -> term -> cterm

type thm
proofs: int ref
Thm.assume: cterm -> thm
Thm.forall_intr: cterm -> thm -> thm
Thm.forall_elim: cterm -> thm -> thm
Thm.implies_intr: cterm -> thm -> thm
Thm.implies_elim: thm -> thm -> thm
Thm.generalize: string list * string list -> int -> thm -> thm
Thm.instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
Thm.get_axiom_i: theory -> string -> thm
Thm.invoke_oracle_i: theory -> string -> theory * Object.T -> thm

CHAPTER 2. PRIMITIVE LOGIC 23

Theory.add_axioms_i: (string * term) list -> theory -> theory
Theory.add_deps: string -> string * typ -> (string * typ) list -> theory -> theory
Theory.add_oracle: string * (theory * Object.T -> term) -> theory -> theory
Theory.add_defs_i: bool -> bool -> (bstring * term) list -> theory -> theory

ctyp and cterm represent certified types and terms, respectively. These are
abstract datatypes that guarantee that its values have passed the full well-
formedness (and well-typedness) checks, relative to the declarations of type
constructors, constants etc. in the theory.

ctyp_of thy τ and cterm_of thy t explicitly checks types and terms, respectively.
This also involves some basic normalizations, such expansion of type and
term abbreviations from the theory context.

Re-certification is relatively slow and should be avoided in tight reasoning
loops. There are separate operations to decompose certified entities (includ-
ing actual theorems).

thm represents proven propositions. This is an abstract datatype that guarantees
that its values have been constructed by basic principles of the Thm module.
Every thm value contains a sliding back-reference to the enclosing theory, cf.
§1.1.1.

proofs determines the detail of proof recording within thm values: 0 records only
oracles, 1 records oracles, axioms and named theorems, 2 records full proof
terms.

Thm.assume, Thm.forall_intr, Thm.forall_elim, Thm.implies_intr, and
Thm.implies_elim correspond to the primitive inferences of figure 2.2.

Thm.generalize (α, x) corresponds to the generalize rules of figure 2.4. Here col-
lections of type and term variables are generalized simultaneously, specified
by the given basic names.

Thm.instantiate (αs , x τ) corresponds to the instantiate rules of figure 2.4. Type
variables are substituted before term variables. Note that the types in x τ

refer to the instantiated versions.

Thm.get_axiom_i thy name retrieves a named axiom, cf. axiom in figure 2.2.

Thm.invoke_oracle_i thy name arg invokes a named oracle function, cf. axiom
in figure 2.2.

Theory.add_axioms_i [(name, A), . . .] declares arbitrary propositions as axioms.

Theory.add_oracle (name, f) declares an oracle function for generating arbi-
trary axioms on the fly.

CHAPTER 2. PRIMITIVE LOGIC 24

Theory.add_deps name cτ dσ declares dependencies of a named specification for
constant cτ , relative to existing specifications for constants dσ.

Theory.add_defs_i unchecked overloaded [(name, c x ≡ t), . . .] states a defi-
nitional axiom for an existing constant c. Dependencies are recorded (cf.
Theory.add_deps), unless the unchecked option is set.

2.3.2 Auxiliary definitions

Theory Pure provides a few auxiliary definitions, see figure 2.5. These spe-
cial constants are normally not exposed to the user, but appear in internal
encodings.

conjunction :: prop ⇒ prop ⇒ prop (infix &)
` A & B ≡ (

∧
C . (A =⇒ B =⇒ C) =⇒ C)

prop :: prop ⇒ prop (prefix #, suppressed)
#A ≡ A

term :: α ⇒ prop (prefix TERM)
term x ≡ (

∧
A. A =⇒ A)

TYPE :: α itself (prefix TYPE)
(unspecified)

Figure 2.5: Definitions of auxiliary connectives

Derived conjunction rules include introduction A =⇒ B =⇒ A & B,
and destructions A & B =⇒ A and A & B =⇒ B. Conjunction allows to
treat simultaneous assumptions and conclusions uniformly. For example,
multiple claims are intermediately represented as explicit conjunction, but
this is refined into separate sub-goals before the user continues the proof; the
final result is projected into a list of theorems (cf. §3.1).

The prop marker (#) makes arbitrarily complex propositions appear as
atomic, without changing the meaning: Γ ` A and Γ ` #A are interchange-
able. See §3.1 for specific operations.

The term marker turns any well-typed term into a derivable proposition:
` TERM t holds unconditionally. Although this is logically vacuous, it allows
to treat terms and proofs uniformly, similar to a type-theoretic framework.

The TYPE constructor is the canonical representative of the unspecified
type α itself ; it essentially injects the language of types into that of terms.
There is specific notation TYPE (τ) for TYPE τ itself. Although being devoid

CHAPTER 2. PRIMITIVE LOGIC 25

of any particular meaning, the TYPE (τ) accounts for the type τ within the
term language. In particular, TYPE (α) may be used as formal argument
in primitive definitions, in order to circumvent hidden polymorphism (cf.
§2.2). For example, c TYPE (α) ≡ A[α] defines c :: α itself ⇒ prop in terms
of a proposition A that depends on an additional type argument, which is
essentially a predicate on types.

ml Reference

Conjunction.intr: thm -> thm -> thm
Conjunction.elim: thm -> thm * thm
Drule.mk_term: cterm -> thm
Drule.dest_term: thm -> cterm
Logic.mk_type: typ -> term
Logic.dest_type: term -> typ

Conjunction.intr derives A & B from A and B.

Conjunction.elim derives A and B from A & B.

Drule.mk_term derives TERM t.

Drule.dest_term recovers term t from TERM t.

Logic.mk_type τ produces the term TYPE (τ).

Logic.dest_type TYPE (τ) recovers the type τ .

2.4 Rules

〈FIXME 〉

Chapter 3

Tactical reasoning

Tactical reasoning works by refining the initial claim in a backwards fashion,
until a solved form is reached. A goal consists of several subgoals that need
to be solved in order to achieve the main statement; zero subgoals means
that the proof may be finished. A tactic is a refinement operation that maps
a goal to a lazy sequence of potential successors. A tactical is a combinator
for composing tactics.

3.1 Goals

Isabelle/Pure represents a goal as a theorem stating that the subgoals imply
the main goal: A1 =⇒ . . . =⇒ An =⇒ C. The outermost goal structure is
that of a Horn Clause: i.e. an iterated implication without any quantifiers1.
For n = 0 a goal is called “solved”.

The structure of each subgoal Ai is that of a general Hereditary Harrop
Formula

∧
x 1 . . .

∧
x k . H 1 =⇒ . . . =⇒ H m =⇒ B in normal form where.

Here x 1, . . ., x k are goal parameters, i.e. arbitrary-but-fixed entities of certain
types, and H 1, . . ., H m are goal hypotheses, i.e. facts that may be assumed
locally. Together, this forms the goal context of the conclusion B to be
established. The goal hypotheses may be again arbitrary Hereditary Harrop
Formulas, although the level of nesting rarely exceeds 1–2 in practice.

The main conclusion C is internally marked as a protected proposition,
which is represented explicitly by the notation #C. This ensures that the de-
composition into subgoals and main conclusion is well-defined for arbitrarily
structured claims.

Basic goal management is performed via the following Isabelle/Pure rules:

C =⇒ #C
(init)

#C
C

(finish)

1Recall that outermost
∧

x . ϕ[x] is always represented via schematic variables in the
body: ϕ[?x]. These variables may get instantiated during the course of reasoning.

26

CHAPTER 3. TACTICAL REASONING 27

The following low-level variants admit general reasoning with protected
propositions:

C
#C

(protect)
A1 =⇒ . . . =⇒ An =⇒ #C
A1 =⇒ . . . =⇒ An =⇒ C

(conclude)

ml Reference

Goal.init: cterm -> thm
Goal.finish: thm -> thm
Goal.protect: thm -> thm
Goal.conclude: thm -> thm

Goal.init C initializes a tactical goal from the well-formed proposition C.

Goal.finish thm checks whether theorem thm is a solved goal (no subgoals),
and concludes the result by removing the goal protection.

Goal.protect thm protects the full statement of theorem thm.

Goal.conclude thm removes the goal protection, even if there are pending sub-
goals.

3.2 Tactics

FIXME

3.3 Tacticals

FIXME

Chapter 4

Structured proofs

4.1 Variables

Any variable that is not explicitly bound by λ-abstraction is considered as
“free”. Logically, free variables act like outermost universal quantification at
the sequent level: A1(x), . . ., An(x) ` B(x) means that the result holds for
all values of x. Free variables for terms (not types) can be fully internalized
into the logic: ` B(x) and ` ∧

x . B(x) are interchangeable, provided that
x does not occur elsewhere in the context. Inspecting ` ∧

x . B(x) more
closely, we see that inside the quantifier, x is essentially “arbitrary, but fixed”,
while from outside it appears as a place-holder for instantiation (thanks to∧

elimination).
The Pure logic represents the idea of variables being either inside or

outside the current scope by providing separate syntactic categories for fixed
variables (e.g. x) vs. schematic variables (e.g. ?x). Incidently, a universal
result ` ∧

x . B(x) has the HHF normal form ` B(?x), which represents its
generality nicely without requiring an explicit quantifier. The same principle
works for type variables: ` B(?α) represents the idea of “` ∀α. B(α)”
without demanding a truly polymorphic framework.

Additional care is required to treat type variables in a way that facilitates
type-inference. In principle, term variables depend on type variables, which
means that type variables would have to be declared first. For example, a
raw type-theoretic framework would demand the context to be constructed
in stages as follows: Γ = α: type, x : α, a: A(x α).

We allow a slightly less formalistic mode of operation: term variables x
are fixed without specifying a type yet (essentially all potential occurrences
of some instance x τ are fixed); the first occurrence of x within a specific
term assigns its most general type, which is then maintained consistently
in the context. The above example becomes Γ = x : term, α: type, A(x α),
where type α is fixed after term x, and the constraint x :: α is an implicit
consequence of the occurrence of x α in the subsequent proposition.

This twist of dependencies is also accommodated by the reverse operation
of exporting results from a context: a type variable α is considered fixed as

28

CHAPTER 4. STRUCTURED PROOFS 29

long as it occurs in some fixed term variable of the context. For example,
exporting x : term, α: type ` x α = x α produces in the first step x : term ` x α

= x α for fixed α, and only in the second step ` ?x ?α = ?x ?α for schematic
?x and ?α.

The Isabelle/Isar proof context manages the gory details of term vs. type
variables, with high-level principles for moving the frontier between fixed and
schematic variables.

The add-fixes operation explictly declares fixed variables; the declare-term
operation absorbs a term into a context by fixing new type variables and
adding syntactic constraints.

The export operation is able to perform the main work of generalizing
term and type variables as sketched above, assuming that fixing variables
and terms have been declared properly.

There import operation makes a generalized fact a genuine part of the
context, by inventing fixed variables for the schematic ones. The effect can
be reversed by using export later, potentially with an extended context; the
result is equivalent to the original modulo renaming of schematic variables.

The focus operation provides a variant of import for nested propositions
(with explicit quantification):

∧
x 1 . . . xn . B(x 1, . . ., xn) is decomposed by

inventing fixed variables x 1, . . ., xn for the body.

ml Reference

Variable.add_fixes:
string list -> Proof.context -> string list * Proof.context

Variable.variant_fixes:
string list -> Proof.context -> string list * Proof.context

Variable.declare_term: term -> Proof.context -> Proof.context
Variable.declare_constraints: term -> Proof.context -> Proof.context
Variable.export: Proof.context -> Proof.context -> thm list -> thm list
Variable.polymorphic: Proof.context -> term list -> term list
Variable.import_thms: bool -> thm list -> Proof.context ->
((ctyp list * cterm list) * thm list) * Proof.context

Variable.focus: cterm -> Proof.context -> (cterm list * cterm) * Proof.context

Variable.add_fixes xs ctxt fixes term variables xs, returning the resulting in-
ternal names. By default, the internal representation coincides with the
external one, which also means that the given variables must not be fixed
already. There is a different policy within a local proof body: the given
names are just hints for newly invented Skolem variables.

Variable.variant_fixes is similar to Variable.add_fixes, but always pro-
duces fresh variants of the given names.

CHAPTER 4. STRUCTURED PROOFS 30

Variable.declare_term t ctxt declares term t to belong to the context. This
automatically fixes new type variables, but not term variables. Syntactic
constraints for type and term variables are declared uniformly, though.

Variable.declare_constraints t ctxt declares syntactic constraints from term
t, without making it part of the context yet.

Variable.export inner outer thms generalizes fixed type and term variables in
thms according to the difference of the inner and outer context, following
the principles sketched above.

Variable.polymorphic ctxt ts generalizes type variables in ts as far as pos-
sible, even those occurring in fixed term variables. The default policy of
type-inference is to fix newly introduced type variables, which is essentially
reversed with Variable.polymorphic: here the given terms are detached
from the context as far as possible.

Variable.import_thms open thms ctxt invents fixed type and term variables for
the schematic ones occurring in thms. The open flag indicates whether the
fixed names should be accessible to the user, otherwise newly introduced
names are marked as “internal” (§1.2).

Variable.focus B decomposes the outermost
∧

prefix of proposition B.

4.2 Assumptions

An assumption is a proposition that it is postulated in the current context.
Local conclusions may use assumptions as additional facts, but this imposes
implicit hypotheses that weaken the overall statement.

Assumptions are restricted to fixed non-schematic statements, i.e. all gen-
erality needs to be expressed by explicit quantifiers. Nevertheless, the result
will be in HHF normal form with outermost quantifiers stripped. For exam-
ple, by assuming

∧
x :: α. P x we get

∧
x :: α. P x ` P ?x for schematic ?x of

fixed type α. Local derivations accumulate more and more explicit references
to hypotheses: A1, . . ., An ` B where A1, . . ., An needs to be covered by the
assumptions of the current context.

The add-assms operation augments the context by local assumptions,
which are parameterized by an arbitrary export rule (see below).

The export operation moves facts from a (larger) inner context into a
(smaller) outer context, by discharging the difference of the assumptions as
specified by the associated export rules. Note that the discharged portion is
determined by the difference contexts, not the facts being exported! There is

CHAPTER 4. STRUCTURED PROOFS 31

a separate flag to indicate a goal context, where the result is meant to refine
an enclosing sub-goal of a structured proof state (cf. §5.2).

The most basic export rule discharges assumptions directly by means of
the =⇒ introduction rule:

Γ ` B
Γ \ A ` A =⇒ B

(=⇒-intro)

The variant for goal refinements marks the newly introduced premises,
which causes the canonical Isar goal refinement scheme to enforce unification
with local premises within the goal:

Γ ` B
Γ \ A ` #A =⇒ B

(#=⇒-intro)

Alternative versions of assumptions may perform arbitrary transforma-
tions on export, as long as the corresponding portion of hypotheses is removed
from the given facts. For example, a local definition works by fixing x and
assuming x ≡ t, with the following export rule to reverse the effect:

Γ ` B x
Γ \ x ≡ t ` B t

(≡−expand)

This works, because the assumption x ≡ t was introduced in a context with
x being fresh, so x does not occur in Γ here.

ml Reference

type Assumption.export
Assumption.assume: cterm -> thm
Assumption.add_assms: Assumption.export ->
cterm list -> Proof.context -> thm list * Proof.context

Assumption.add_assumes:
cterm list -> Proof.context -> thm list * Proof.context

Assumption.export: bool -> Proof.context -> Proof.context -> thm -> thm

Assumption.export represents arbitrary export rules, which is any function of
type bool -> cterm list -> thm -> thm, where the bool indicates goal
mode, and the cterm list the collection of assumptions to be discharged
simultaneously.

Assumption.assume A turns proposition A into a raw assumption A ` A ′, where
the conclusion A ′ is in HHF normal form.

Assumption.add_assms r As augments the context by assumptions As with ex-
port rule r. The resulting facts are hypothetical theorems as produced by
the raw Assumption.assume.

CHAPTER 4. STRUCTURED PROOFS 32

Assumption.add_assumes As is a special case of Assumption.add_assms where
the export rule performs =⇒-intro or #=⇒-intro, depending on goal mode.

Assumption.export is-goal inner outer thm exports result thm from the the in-
ner context back into the outer one; is-goal = true means this is a goal con-
text. The result is in HHF normal form. Note that ProofContext.export
combines Variable.export and Assumption.export in the canonical way.

4.3 Results

Local results are established by monotonic reasoning from facts within a con-
text. This allows common combinations of theorems, e.g. via

∧
/=⇒ elimina-

tion, resolution rules, or equational reasoning, see §2.3. Unaccounted context
manipulations should be avoided, notably raw

∧
/=⇒ introduction or ad-hoc

references to free variables or assumptions not present in the proof context.

The SUBPROOF combinator allows to structure a tactical proof recur-
sively by decomposing a selected sub-goal: (

∧
x . A(x) =⇒ B(x)) =⇒ . . . is

turned into B(x) =⇒ . . . after fixing x and assuming A(x). This means the
tactic needs to solve the conclusion, but may use the premise as a local fact,
for locally fixed variables.

The prove operation provides an interface for structured backwards rea-
soning under program control, with some explicit sanity checks of the result.
The goal context can be augmented by additional fixed variables (cf. §4.1)
and assumptions (cf. §4.2), which will be available as local facts during the
proof and discharged into implications in the result. Type and term variables
are generalized as usual, according to the context.

The obtain operation produces results by eliminating existing facts by
means of a given tactic. This acts like a dual conclusion: the proof demon-
strates that the context may be augmented by certain fixed variables and
assumptions. See also [7] for the user-level obtain and guess elements. Fi-
nal results, which may not refer to the parameters in the conclusion, need to
exported explicitly into the original context.

ml Reference

SUBPROOF: ({context: Proof.context, schematics: ctyp list * cterm list,
params: cterm list, asms: cterm list, concl: cterm,
prems: thm list} -> tactic) -> Proof.context -> int -> tactic

CHAPTER 4. STRUCTURED PROOFS 33

Goal.prove: Proof.context -> string list -> term list -> term ->
({prems: thm list, context: Proof.context} -> tactic) -> thm

Goal.prove_multi: Proof.context -> string list -> term list -> term list ->
({prems: thm list, context: Proof.context} -> tactic) -> thm list

Obtain.result: (Proof.context -> tactic) ->
thm list -> Proof.context -> (cterm list * thm list) * Proof.context

SUBPROOF tac decomposes the structure of a particular sub-goal, producing an
extended context and a reduced goal, which needs to be solved by the given
tactic. All schematic parameters of the goal are imported into the context
as fixed ones, which may not be instantiated in the sub-proof.

Goal.prove ctxt xs As C tac states goal C in the context augmented by fixed
variables xs and assumptions As, and applies tactic tac to solve it. The
latter may depend on the local assumptions being presented as facts. The
result is in HHF normal form.

Goal.prove_multi is simular to Goal.prove, but states several conclusions
simultaneously. The goal is encoded by means of Pure conjunction;
Goal.conjunction_tac will turn this into a collection of individual sub-
goals.

Obtain.result tac thms ctxt eliminates the given facts using a tactic, which
results in additional fixed variables and assumptions in the context. Final
results need to be exported explicitly.

Chapter 5

Isar proof texts

5.1 Proof context

FIXME

5.2 Proof state

FIXME

5.3 Proof methods

FIXME

5.4 Attributes

FIXME ?!

34

Chapter 6

Structured specifications

6.1 Specification elements

FIXME

6.2 Type-inference

FIXME

6.3 Local theories

FIXME

35

Chapter 7

System integration

7.1 Isar toplevel

The Isar toplevel may be considered the centeral hub of the Isabelle/Isar
system, where all key components and sub-systems are integrated into a
single read-eval-print loop of Isar commands. We shall even incorporate the
existing ml toplevel of the compiler and run-time system (cf. §7.2).

Isabelle/Isar departs from the original “LCF system architecture” where
ml was really The Meta Language for defining theories and conducting
proofs. Instead, ml now only serves as the implementation language for
the system (and user extensions), while the specific Isar toplevel supports
the concepts of theory and proof development natively. This includes the
graph structure of theories and the block structure of proofs, support for
unlimited undo, facilities for tracing, debugging, timing, profiling etc.

The toplevel maintains an implicit state, which is transformed by a se-
quence of transitions – either interactively or in batch-mode. In interactive
mode, Isar state transitions are encapsulated as safe transactions, such that
both failure and undo are handled conveniently without destroying the under-
lying draft theory (cf. §1.1.1). In batch mode, transitions operate in a linear
(destructive) fashion, such that error conditions abort the present attempt
to construct a theory or proof altogether.

The toplevel state is a disjoint sum of empty toplevel, or theory, or proof.
On entering the main Isar loop we start with an empty toplevel. A theory is
commenced by giving a theory header; within a theory we may issue theory
commands such as definition, or state a theorem to be proven. Now we
are within a proof state, with a rich collection of Isar proof commands for
structured proof composition, or unstructured proof scripts. When the proof
is concluded we get back to the theory, which is then updated by storing
the resulting fact. Further theory declarations or theorem statements with
proofs may follow, until we eventually conclude the theory development by
issuing end. The resulting theory is then stored within the theory database
and we are back to the empty toplevel.

In addition to these proper state transformations, there are also some

36

CHAPTER 7. SYSTEM INTEGRATION 37

diagnostic commands for peeking at the toplevel state without modifying it
(e.g. thm, term, print-cases).

ml Reference

type Toplevel.state
Toplevel.UNDEF: exn
Toplevel.is_toplevel: Toplevel.state -> bool
Toplevel.theory_of: Toplevel.state -> theory
Toplevel.proof_of: Toplevel.state -> Proof.state
Toplevel.debug: bool ref
Toplevel.timing: bool ref
Toplevel.profiling: int ref

Toplevel.state represents Isar toplevel states, which are normally manipulated
through the concept of toplevel transitions only (§7.1.1). Also note that a
raw toplevel state is subject to the same linearity restrictions as a theory
context (cf. §1.1.1).

Toplevel.UNDEF is raised for undefined toplevel operations. Many operations
work only partially for certain cases, since Toplevel.state is a sum type.

Toplevel.is_toplevel state checks for an empty toplevel state.

Toplevel.theory_of state selects the theory of a theory or proof (!), otherwise
raises Toplevel.UNDEF.

Toplevel.proof_of state selects the Isar proof state if available, otherwise raises
Toplevel.UNDEF.

set Toplevel.debug makes the toplevel print further details about internal error
conditions, exceptions being raised etc.

set Toplevel.timing makes the toplevel print timing information for each Isar
command being executed.

Toplevel.profiling := n controls low-level profiling of the underlying ml run-
time system. For Poly/ML, n = 1 means time and n = 2 space profiling.

7.1.1 Toplevel transitions

An Isar toplevel transition consists of a partial function on the toplevel state,
with additional information for diagnostics and error reporting: there are
fields for command name, source position, optional source text, as well as

CHAPTER 7. SYSTEM INTEGRATION 38

flags for interactive-only commands (which issue a warning in batch-mode),
printing of result state, etc.

The operational part is represented as the sequential union of a list of
partial functions, which are tried in turn until the first one succeeds. This
acts like an outer case-expression for various alternative state transitions.
For example, qed acts differently for a local proofs vs. the global ending of
the main proof.

Toplevel transitions are composed via transition transformers. Internally,
Isar commands are put together from an empty transition extended by name
and source position (and optional source text). It is then left to the individual
command parser to turn the given concrete syntax into a suitable transition
transformer that adjoin actual operations on a theory or proof state etc.

ml Reference

Toplevel.print: Toplevel.transition -> Toplevel.transition
Toplevel.no_timing: Toplevel.transition -> Toplevel.transition
Toplevel.keep: (Toplevel.state -> unit) ->
Toplevel.transition -> Toplevel.transition

Toplevel.theory: (theory -> theory) ->
Toplevel.transition -> Toplevel.transition

Toplevel.theory_to_proof: (theory -> Proof.state) ->
Toplevel.transition -> Toplevel.transition

Toplevel.proof: (Proof.state -> Proof.state) ->
Toplevel.transition -> Toplevel.transition

Toplevel.proofs: (Proof.state -> Proof.state Seq.seq) ->
Toplevel.transition -> Toplevel.transition

Toplevel.end_proof: (bool -> Proof.state -> Proof.context) ->
Toplevel.transition -> Toplevel.transition

Toplevel.print tr sets the print flag, which causes the toplevel loop to echo the
result state (in interactive mode).

Toplevel.no_timing tr indicates that the transition should never show timing
information, e.g. because it is a diagnostic command.

Toplevel.keep tr adjoins a diagnostic function.

Toplevel.theory tr adjoins a theory transformer.

Toplevel.theory_to_proof tr adjoins a global goal function, which turns a
theory into a proof state. The theory may be changed before entering the
proof; the generic Isar goal setup includes an argument that specifies how
to apply the proven result to the theory, when the proof is finished.

CHAPTER 7. SYSTEM INTEGRATION 39

Toplevel.proof tr adjoins a deterministic proof command, with a singleton
result.

Toplevel.proofs tr adjoins a general proof command, with zero or more result
states (represented as a lazy list).

Toplevel.end_proof tr adjoins a concluding proof command, that returns the
resulting theory, after storing the resulting facts in the context etc.

7.1.2 Toplevel control

There are a few special control commands that modify the behavior the
toplevel itself, and only make sense in interactive mode. Under normal cir-
cumstances, the user encounters these only implicitly as part of the protocol
between the Isabelle/Isar system and a user-interface such as ProofGeneral.

undo follows the three-level hierarchy of empty toplevel vs. theory vs. proof:
undo within a proof reverts to the previous proof context, undo after a
proof reverts to the theory before the initial goal statement, undo of a
theory command reverts to the previous theory value, undo of a theory
header discontinues the current theory development and removes it
from the theory database (§7.3).

kill aborts the current level of development: kill in a proof context reverts
to the theory before the initial goal statement, kill in a theory context
aborts the current theory development, removing it from the database.

exit drops out of the Isar toplevel into the underlying ml toplevel (§7.2).
The Isar toplevel state is preserved and may be continued later.

quit terminates the Isabelle/Isar process without saving.

7.2 ML toplevel

The ml toplevel provides a read-compile-eval-print loop for ml values, types,
structures, and functors. ml declarations operate on the global system state,
which consists of the compiler environment plus the values of ml reference
variables. There is no clean way to undo ml declarations, except for reverting
to a previously saved state of the whole Isabelle process. ml input is either
read interactively from a TTY, or from a string (usually within a theory
text), or from a source file (usually loaded from a theory).

CHAPTER 7. SYSTEM INTEGRATION 40

Whenever the ml toplevel is active, the current Isabelle theory context
is passed as an internal reference variable. Thus ml code may access the
theory context during compilation, it may even change the value of a theory
being under construction — while observing the usual linearity restrictions
(cf. §1.1.1).

ml Reference

the_context: unit -> theory
Context.>> : (Context.generic -> Context.generic) -> unit

the_context () refers to the theory context of the ml toplevel — at compile
time! ml code needs to take care to refer to the_context () correctly.
Recall that evaluation of a function body is delayed until actual runtime.
Moreover, persistent ml toplevel bindings to an unfinished theory should be
avoided: code should either project out the desired information immediately,
or produce an explicit theory_ref (cf. §1.1.1).

Context.>> f applies context transformation f to the implicit context of the ml
toplevel.

It is very important to note that the above functions are really restricted to the
compile time, even though the ml compiler is invoked at runtime! The majority
of ml code uses explicit functional arguments of a theory or proof context instead.
Thus it may be invoked for an arbitrary context later on, without having to worry
about any operational details.

Isar.main: unit -> unit
Isar.loop: unit -> unit
Isar.state: unit -> Toplevel.state
Isar.exn: unit -> (exn * string) option
Isar.context: unit -> Proof.context
Isar.goal: unit -> thm

Isar.main () invokes the Isar toplevel from ml, initializing an empty toplevel
state.

Isar.loop () continues the Isar toplevel with the current state, after having
dropped out of the Isar toplevel loop.

Isar.state () and Isar.exn () get current toplevel state and error condition,
respectively. This only works after having dropped out of the Isar toplevel
loop.

Isar.context () produces the proof context from Isar.state (), analogous
to Context.proof_of (§1.1.3).

CHAPTER 7. SYSTEM INTEGRATION 41

Isar.goal () picks the tactical goal from Isar.state (), represented as a the-
orem according to §3.1.

7.3 Theory database

The theory database maintains a collection of theories, together with some
administrative information about their original sources, which are held in an
external store (i.e. some directory within the regular file system).

The theory database is organized as a directed acyclic graph; entries are
referenced by theory name. Although some additional interfaces allow to
include a directory specification as well, this is only a hint to the underlying
theory loader. The internal theory name space is flat!

Theory A is associated with the main theory file A.thy, which needs to
be accessible through the theory loader path. Any number of additional ml
source files may be associated with each theory, by declaring these depen-
dencies in the theory header as uses, and loading them consecutively within
the theory context. The system keeps track of incoming ml sources and as-
sociates them with the current theory. The file A.ML is loaded after a theory
has been concluded, in order to support legacy proof ml proof scripts.

The basic internal actions of the theory database are update, outdate, and
remove:

• update A introduces a link of A with a theory value of the same name;
it asserts that the theory sources are now consistent with that value;

• outdate A invalidates the link of a theory database entry to its sources,
but retains the present theory value;

• remove A deletes entry A from the theory database.

These actions are propagated to sub- or super-graphs of a theory entry
as expected, in order to preserve global consistency of the state of all loaded
theories with the sources of the external store. This implies certain causalities
between actions: update or outdate of an entry will outdate all descendants;
remove will remove all descendants.

There are separate user-level interfaces to operate on the theory database
directly or indirectly. The primitive actions then just happen automatically
while working with the system. In particular, processing a theory header
theory A imports B1 . . . Bn begin ensures that the sub-graph of the
collective imports B1 . . . Bn is up-to-date, too. Earlier theories are reloaded

CHAPTER 7. SYSTEM INTEGRATION 42

as required, with update actions proceeding in topological order according to
theory dependencies. There may be also a wave of implied outdate actions
for derived theory nodes until a stable situation is achieved eventually.

ml Reference

theory: string -> theory
use_thy: string -> unit
use_thys: string list -> unit
touch_thy: string -> unit
remove_thy: string -> unit

ThyInfo.begin_theory: ... -> bool -> theory
ThyInfo.end_theory: theory -> theory
ThyInfo.register_theory: theory -> unit

datatype action = Update | Outdate | Remove
ThyInfo.add_hook: (ThyInfo.action -> string -> unit) -> unit

theory A retrieves the theory value presently associated with name A. Note that
the result might be outdated.

use_thy A ensures that theory A is fully up-to-date wrt. the external file store,
reloading outdated ancestors as required.

use_thys is similar to use_thy, but handles several theories simultaneously. Thus
it acts like processing the import header of a theory, without performing the
merge of the result, though.

touch_thy A performs and outdate action on theory A and all descendants.

remove_thy A deletes theory A and all descendants from the theory database.

ThyInfo.begin_theory is the basic operation behind a theory header declara-
tion. This is ml functions is normally not invoked directly.

ThyInfo.end_theory concludes the loading of a theory proper. An attached
theory ml file may be still loaded later on. This is function is normally not
invoked directly.

ThyInfo.register_theory text thy registers an existing theory value with the
theory loader database. There is no management of associated sources.

ThyInfo.add_hook f registers function f as a hook for theory database actions.
The function will be invoked with the action and theory name being involved;
thus derived actions may be performed in associated system components, e.g.
maintaining the state of an editor for the theory sources.

CHAPTER 7. SYSTEM INTEGRATION 43

The kind and order of actions occurring in practice depends both on user
interactions and the internal process of resolving theory imports. Hooks
should not rely on a particular policy here! Any exceptions raised by the
hook are ignored.

Appendix A

Advanced ML programming

A.1 Style

Like any style guide, also this one should not be interpreted dogmatically,
but with care and discernment. It consists of a collection of recommenda-
tions which have been turned out useful over long years of Isabelle system
development and are supposed to support writing of readable and managable
code. Special cases encourage derivations, as far as you know what you are
doing. 1

fundamental law of programming Whenever writing code, keep in
mind: A program is written once, modified ten times, and read
hundred times. So simplify its writing, always keep future modifi-
cations in mind, and never jeopardize readability. Every second you
hesitate to spend on making your code more clear you will have to
spend ten times understanding what you have written later on.

white space matters Treat white space in your code as if it determines
the meaning of code.

• The space bar is the easiest key to find on the keyboard, press it
as often as necessary. 2 + 2 is better than 2+2, likewise f (x, y)

is better than f(x,y).

• Restrict your lines to 80 characters. This will allow you to keep
the beginning of a line in view while watching its end.2

• Ban tabulators; they are a context-sensitive formatting feature
and likely to confuse anyone not using your favorite editor.3

1This style guide is loosely based on http://caml.inria.fr/resources/doc/guides/
guidelines.en.html

2To acknowledge the lax practice of text editing these days, we tolerate as much as 100
characters per line, but anything beyond 120 is not considered proper source text.

3Some modern programming language even forbid tabulators altogether according to
the formal syntax definition.

44

http://caml.inria.fr/resources/doc/guides/guidelines.en.html

http://caml.inria.fr/resources/doc/guides/guidelines.en.html

APPENDIX A. ADVANCED ML PROGRAMMING 45

• Get rid of trailing whitespace. Instead, do not suppress a trailing
newline at the end of your files.

• Choose a generally accepted style of indentation, then use it sys-
tematically throughout the whole application. An indentation of
two spaces is appropriate. Avoid dangling indentation.

cut-and-paste succeeds over copy-and-paste Never copy-and-paste
code when programming. If you need the same piece of code twice,
introduce a reasonable auxiliary function (if there is no such function,
very likely you got something wrong). Any copy-and-paste will turn
out to be painful when something has to be changed later on.

comments are a device which requires careful thinking before using it. The
best comment for your code should be the code itself. Prefer efforts to
write clear, understandable code over efforts to explain nasty code.

functional programming is based on functions Model things as ab-
stract as appropriate. Avoid unnecessarrily concrete datatype repre-
sentations. For example, consider a function taking some table data
structure as argument and performing lookups on it. Instead of taking
a table, it could likewise take just a lookup function. Accustom your
way of coding to the level of expressiveness a functional programming
language is giving onto you.

tuples are often in the way. When there is no striking argument to tuple
function arguments, just write your function curried.

telling names Any name should tell its purpose as exactly as possible, while
keeping its length to the absolutely necessary minimum. Always give
the same name to function arguments which have the same meaning.
Separate words by underscores (int_of_string, not intOfString).4

A.2 Thread-safe programming

Recent versions of Poly/ML (5.1 or later) support multithreaded execu-
tion based on native operating system threads of the underlying platform.
Thus threads will actually be executed in parallel on multi-core systems. A

4Some recent tools for Emacs include special precautions to cope with bumpy names
in camelCase, e.g. for improved on-screen readability. It is easier to abstain from using
such names in the first place.

APPENDIX A. ADVANCED ML PROGRAMMING 46

speedup-factor of approximately 2–4 can be expected for large well-structured
Isabelle sessions, where theories are organized as a graph with sufficiently
many independent nodes.

Threads lack the memory protection of separate processes, but operate
concurrently on shared heap memory. This has the advantage that results of
independent computations are immediately available to other threads, with-
out requiring explicit communication, reloading, or even recoding of data.

On the other hand, some programming guidelines need to be observed
in order to make unprotected parallelism work out smoothly. While the
ML system implementation is responsible to maintain basic integrity of the
representation of ML values in memory, the application programmer needs to
ensure that multithreaded execution does not break the intended semantics.

Critical shared resources. Actually only those parts outside the purely
functional world of ML are critical. In particular, this covers

• global references (or arrays), i.e. those that persist over several invoca-
tions of associated operations,5

• global ML bindings in the toplevel environment (type, val, structure
etc.) due to run-time invocation of the compiler,

• direct I/O on shared channels, notably stdin, stdout, stderr.

The majority of tools implemented within the Isabelle/Isar framework
will not require any of these critical elements: nothing special needs to be
observed when staying in the purely functional fragment of ML. Note that
output via the official Isabelle channels does not even count as direct I/O in
the above sense, so the operations writeln, warning, tracing etc. are safe.

Multithreading in Isabelle/Isar. Our parallel execution model is cen-
tered around the theory loader. Whenever a given subgraph of theories needs
to be updated, the system schedules a number of threads to process the
sources as required, while observing their dependencies. Thus concurrency
is limited to independent nodes according to the theory import relation.

Any user-code that works relatively to the present background theory is
already safe. Contextual data may be easily stored within the theory or proof
context, thanks to the generic data concept of Isabelle/Isar (see §1.1.4). This
greatly diminishes the demand for global state information in the first place.

5This is independent of the visibility of such mutable values in the toplevel scope.

APPENDIX A. ADVANCED ML PROGRAMMING 47

In rare situations where actual mutable content needs to be manipulated,
Isabelle provides a single critical section that may be entered while preventing
any other thread from doing the same. Entering the critical section without
contention is very fast, and several basic system operations do so frequently.
This also means that each thread should leave the critical section quickly,
otherwise parallel execution performance may degrade significantly.

Despite this potential bottle-neck, we refrain from fine-grained locking
mechanisms: the restriction to a single lock prevents deadlocks without de-
manding further considerations in user programs.

Good conduct of impure programs. The following guidelines enable
non-functional programs to participate in multithreading.

• Minimize global state information. Using proper theory and proof con-
text data will actually return to functional update of values, without
any special precautions for multithreading. Apart from the fully gen-
eral functors for theory and proof data (see §1.1.4) there are drop-in
replacements that emulate primitive references for common cases of
configuration options for type bool/int/string (see structure Config

and Attrib.config_bool etc.), and lists of theorems (see functor
NamedThmsFun).

• Keep components with local state information re-entrant. Instead of
poking initial values into (private) global references, create a new state
record on each invocation, and pass that through any auxiliary func-
tions of the component. The state record may well contain mutable
references, without requiring any special synchronizations, as long as
each invocation sees its own copy. Occasionally, one might even return
to plain functional updates on non-mutable record values here.

• Isolate process configuration flags. The main legitimate application of
global references is to configure the whole process in a certain way,
essentially affecting all threads. A typical example is the show_types

flag, which tells the pretty printer to output explicit type information
for terms. Such flags usually do not affect the functionality of the core
system, but only the view being presented to the user.

Occasionally, such global process flags are treated like implicit argu-
ments to certain operations, by using the setmp combinator for safe
temporary assignment. Its traditional purpose was to ensure proper
recovery of the original value when exceptions are raised in the body,

APPENDIX A. ADVANCED ML PROGRAMMING 48

now the functionality is extended to enter the critical section (with its
usual potential of degrading parallelism).

Note that recovery of plain value passing semantics via setmp ref value
assumes that this ref is exclusively manipulated within the critical
section. In particular, any persistent global assignment of ref := value
needs to be marked critical as well, to prevent intruding another threads
local view, and a lost-update in the global scope, too.

• Minimize global ML bindings. Processing theories occasionally affects
the global ML environment as well. While each ML compilation unit
is safe, the order of scheduling of independent declarations might cause
problems when composing several modules later on, due to hiding of
previous ML names.

This cannot be helped in general, because the ML toplevel lacks the
graph structure of the Isabelle theory space. Nevertheless, some sound
conventions of keeping global ML names essentially disjoint (e.g. with
the help of ML structures) prevents the problem to occur in most prac-
tical situations.

Recall that in an open “LCF-style” system like Isabelle/Isar, the user
participates in constructing the overall environment. This means that state-
based facilities offered by one component will require special caution later on.
So minimizing critical elements, by staying within the plain value-oriented
view relative to theory or proof contexts most of the time, will also reduce
the chance of mishaps occurring to end-users.

ml Reference

NAMED_CRITICAL: string -> (unit -> ’a) -> ’a
CRITICAL: (unit -> ’a) -> ’a
setmp: ’a ref -> ’a -> (’b -> ’c) -> ’b -> ’c

NAMED_CRITICAL name f evaluates f () while staying within the critical section of
Isabelle/Isar. No other thread may do so at the same time, but non-critical
parallel execution will continue. The name argument serves for diagnostic
purposes and might help to spot sources of congestion.

CRITICAL is the same as NAMED_CRITICAL with empty name argument.

setmp ref value f x evaluates f x while staying within the critical section and
having ref := value assigned temporarily. This recovers a value-passing se-
mantics involving global references, regardless of exceptions or concurrency.

Appendix B

Basic library functions

Beyond the proposal of the SML/NJ basis library, Isabelle comes with its
own library, from which selected parts are given here. These should encour-
age a study of the Isabelle sources, in particular files Pure/library.ML and
Pure/General/*.ML.

B.1 Linear transformations

ml Reference

op |> : ’a * (’a -> ’b) -> ’b

Many problems in functional programming can be thought of as linear trans-
formations, i.e. a caluclation starts with a particular value x : foo which
is then transformed by application of a function f : foo -> foo, continued
by an application of a function g : foo -> bar, and so on. As a canon-
cial example, take functions enriching a theory by constant declararion and
primitive definitions:
Sign.declare_const: Markup.property list -> bstring * typ * mixfix
-> theory -> term * theory

Thm.add_def: bool -> bool -> bstring * term -> theory -> thm * theory

Written with naive application, an addition of constant bar with type foo ⇒
foo and a corresponding definition bar ≡ λx . x would look like:
(fn (t, thy) => Thm.add_def false false
("bar_def", Logic.mk_equals (t, @{term "%x. x"})) thy)

(Sign.declare_const []
("bar", @{typ "foo => foo"}, NoSyn) thy)

With increasing numbers of applications, this code gets quite unreadable.
Further, it is unintuitive that things are written down in the opposite order
as they actually “happen”.

At this stage, Isabelle offers some combinators which allow for more conve-
nient notation, most notably reverse application:

49

APPENDIX B. BASIC LIBRARY FUNCTIONS 50

thy
|> Sign.declare_const [] ("bar", @{typ "foo => foo"}, NoSyn)
|> (fn (t, thy) => thy
|> Thm.add_def false false

("bar_def", Logic.mk_equals (t, @{term "%x. x"})))

ml Reference

op |-> : (’c * ’a) * (’c -> ’a -> ’b) -> ’b
op |>> : (’a * ’c) * (’a -> ’b) -> ’b * ’c
op ||> : (’c * ’a) * (’a -> ’b) -> ’c * ’b
op ||>> : (’c * ’a) * (’a -> ’d * ’b) -> (’c * ’d) * ’b

Usually, functions involving theory updates also return side results; to use
these conveniently, yet another set of combinators is at hand, most notably
op |-> which allows curried access to side results:

thy
|> Sign.declare_const [] ("bar", @{typ "foo => foo"}, NoSyn)
|-> (fn t => Thm.add_def false false

("bar_def", Logic.mk_equals (t, @{term "%x. x"})))

op |>> allows for processing side results on their own:

thy
|> Sign.declare_const [] ("bar", @{typ "foo => foo"}, NoSyn)
|>> (fn t => Logic.mk_equals (t, @{term "%x. x"}))
|-> (fn def => Thm.add_def false false ("bar_def", def))

Orthogonally, op ||> applies a transformation in the presence of side results
which are left unchanged:
thy
|> Sign.declare_const [] ("bar", @{typ "foo => foo"}, NoSyn)
||> Sign.add_path "foobar"
|-> (fn t => Thm.add_def false false

("bar_def", Logic.mk_equals (t, @{term "%x. x"})))
||> Sign.restore_naming thy

op ||>> accumulates side results:

thy
|> Sign.declare_const [] ("bar", @{typ "foo => foo"}, NoSyn)
||>> Sign.declare_const [] ("foobar", @{typ "foo => foo"}, NoSyn)
|-> (fn (t1, t2) => Thm.add_def false false

("bar_def", Logic.mk_equals (t1, t2)))

ml Reference

fold: (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
fold_map: (’a -> ’b -> ’c * ’b) -> ’a list -> ’b -> ’c list * ’b

APPENDIX B. BASIC LIBRARY FUNCTIONS 51

This principles naturally lift to lists using the fold and fold_map combina-
tors. The first lifts a single function

f : ’a -> ’b -> ’b to ’a list -> ’b -> ’b

such that

y |> fold f [x1, x2, ..., x_n]
; y |> f x1 |> f x2 |> ... |> f x_n

The second accumulates side results in a list by lifting a single function

f : ’a -> ’b -> ’c * ’b to ’a list -> ’b -> ’c list * ’b

such that

y |> fold_map f [x1, x2, ..., x_n]
; y |> f x1 ||>> f x2 ||>> ... ||>> f x_n

||> (fn ((z1, z2), ..., z_n) => [z1, z2, ..., z_n])

Example:
let
val consts = ["foo", "bar"];

in
thy
|> fold_map (fn const => Sign.declare_const []

(const, @{typ "foo => foo"}, NoSyn)) consts
|>> map (fn t => Logic.mk_equals (t, @{term "%x. x"}))
|-> (fn defs => fold_map (fn def =>

Thm.add_def false false ("", def)) defs)
end

ml Reference

op #> : (’a -> ’b) * (’b -> ’c) -> ’a -> ’c
op #-> : (’a -> ’c * ’b) * (’c -> ’b -> ’d) -> ’a -> ’d
op #>> : (’a -> ’c * ’b) * (’c -> ’d) -> ’a -> ’d * ’b
op ##> : (’a -> ’c * ’b) * (’b -> ’d) -> ’a -> ’c * ’d
op ##>> : (’a -> ’c * ’b) * (’b -> ’e * ’d) -> ’a -> (’c * ’e) * ’d

All those linear combinators also exist in higher-order variants which do not
expect a value on the left hand side but a function.

ml Reference

op ‘ : (’b -> ’a) -> ’b -> ’a * ’b
tap: (’b -> ’a) -> ’b -> ’b

APPENDIX B. BASIC LIBRARY FUNCTIONS 52

These operators allow to “query” a context in a series of context transfor-
mations:
thy
|> tap (fn _ => writeln "now adding constant")
|> Sign.declare_const [] ("bar", @{typ "foo => foo"}, NoSyn)
||>> ‘(fn thy => Sign.declared_const thy

(Sign.full_name thy "foobar"))
|-> (fn (t, b) => if b then I

else Sign.declare_const []
("foobar", @{typ "foo => foo"}, NoSyn) #> snd)

B.2 Options and partiality

ml Reference

is_some: ’a option -> bool
is_none: ’a option -> bool
the: ’a option -> ’a
these: ’a list option -> ’a list
the_list: ’a option -> ’a list
the_default: ’a -> ’a option -> ’a
try: (’a -> ’b) -> ’a -> ’b option
can: (’a -> ’b) -> ’a -> bool

Standard selector functions on options are provided. The try and can

functions provide a convenient interface for handling exceptions – both take
as arguments a function f together with a parameter x and handle any ex-
ception during the evaluation of the application of f to x, either return a
lifted result (NONE on failure) or a boolean value (false on failure).

B.3 Common data structures

B.3.1 Lists (as set-like data structures)

member: (’b * ’a -> bool) -> ’a list -> ’b -> bool
insert: (’a * ’a -> bool) -> ’a -> ’a list -> ’a list
remove: (’b * ’a -> bool) -> ’b -> ’a list -> ’a list
merge: (’a * ’a -> bool) -> ’a list * ’a list -> ’a list

Lists are often used as set-like data structures – set-like in the sense that
they support a notion of member-ship, insert-ing and remove-ing, but are
order-sensitive. This is convenient when implementing a history-like mecha-
nism: insert adds an element to the front of a list, if not yet present; remove
removes all occurences of a particular element. Correspondingly merge im-
plements a a merge on two lists suitable for merges of context data (§1.1.1).

APPENDIX B. BASIC LIBRARY FUNCTIONS 53

Functions are parametrized by an explicit equality function to accomplish
overloaded equality; in most cases of monomorphic equality, writing op =

should suffice.

B.3.2 Association lists
exception AList.DUP
AList.lookup: (’a * ’b -> bool) -> (’b * ’c) list -> ’a -> ’c option
AList.defined: (’a * ’b -> bool) -> (’b * ’c) list -> ’a -> bool
AList.update: (’a * ’a -> bool) -> (’a * ’b) -> (’a * ’b) list -> (’a * ’b) list
AList.default: (’a * ’a -> bool) -> (’a * ’b) -> (’a * ’b) list -> (’a * ’b) list
AList.delete: (’a * ’b -> bool) -> ’a -> (’b * ’c) list -> (’b * ’c) list
AList.map_entry: (’a * ’b -> bool) -> ’a

-> (’c -> ’c) -> (’b * ’c) list -> (’b * ’c) list
AList.map_default: (’a * ’a -> bool) -> ’a * ’b -> (’b -> ’b)

-> (’a * ’b) list -> (’a * ’b) list
AList.join: (’a * ’a -> bool) -> (’a -> ’b * ’b -> ’b) (*exception DUP*)

-> (’a * ’b) list * (’a * ’b) list -> (’a * ’b) list (*exception AList.DUP*)
AList.merge: (’a * ’a -> bool) -> (’b * ’b -> bool)

-> (’a * ’b) list * (’a * ’b) list -> (’a * ’b) list (*exception AList.DUP*)

Association lists can be seens as an extension of set-like lists: on the one
hand, they may be used to implement finite mappings, on the other hand,
they remain order-sensitive and allow for multiple key-value-pair with the
same key: AList.lookup returns the first value corresponding to a partic-
ular key, if present. AList.update updates the first occurence of a partic-
ular key; if no such key exists yet, the key-value-pair is added to the front.
AList.delete only deletes the first occurence of a key. AList.merge pro-
vides an operation suitable for merges of context data (§1.1.1), where an
equality parameter on values determines whether a merge should be con-
sidered a conflict. A slightly generalized operation if implementend by the
AList.join function which allows for explicit conflict resolution.

APPENDIX B. BASIC LIBRARY FUNCTIONS 54

B.3.3 Tables
type ’a Symtab.table
exception Symtab.DUP of string
exception Symtab.SAME
exception Symtab.UNDEF of string
Symtab.empty: ’a Symtab.table
Symtab.lookup: ’a Symtab.table -> string -> ’a option
Symtab.defined: ’a Symtab.table -> string -> bool
Symtab.update: (string * ’a) -> ’a Symtab.table -> ’a Symtab.table
Symtab.default: string * ’a -> ’a Symtab.table -> ’a Symtab.table
Symtab.delete: string

-> ’a Symtab.table -> ’a Symtab.table (*exception Symtab.UNDEF*)
Symtab.map_entry: string -> (’a -> ’a)

-> ’a Symtab.table -> ’a Symtab.table
Symtab.map_default: (string * ’a) -> (’a -> ’a)

-> ’a Symtab.table -> ’a Symtab.table
Symtab.join: (string -> ’a * ’a -> ’a) (*exception Symtab.DUP/Symtab.SAME*)

-> ’a Symtab.table * ’a Symtab.table
-> ’a Symtab.table (*exception Symtab.DUP*)

Symtab.merge: (’a * ’a -> bool)
-> ’a Symtab.table * ’a Symtab.table
-> ’a Symtab.table (*exception Symtab.DUP*)

Tables are an efficient representation of finite mappings without any no-
tion of order; due to their efficiency they should be used whenever such pure
finite mappings are neccessary.

The key type of tables must be given explicitly by instantiating the
TableFun functor which takes the key type together with its order; for con-
vience, we restrict here to the Symtab instance with string as key type.

Most table functions correspond to those of association lists.

Bibliography

[1] H. Barendregt and H. Geuvers. Proof assistants using dependent type
systems. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning. Elsevier, 2001.

[2] Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher
order logic. In J. Harrison and M. Aagaard, editors, Theorem Proving in
Higher Order Logics: TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 38–52. Springer-Verlag, 2000.

[3] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indag. Math., 34:381–392, 1972.

[4] Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201–224, 1995.

[5] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361–386. Academic
Press, 1990.

[6] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 2nd edition, 1996.

[7] Markus Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

55

http://isabelle.in.tum.de/doc/isar-ref.pdf

Index

’a Symtab.table (type), 54
AList.DUP (exception), 53
AList.default, 53
AList.defined, 53
AList.delete, 53
AList.join, 53
AList.lookup, 53
AList.map default, 53
AList.map entry, 53
AList.merge, 53
AList.update, 53
Assumption.add assms, 31
Assumption.add assumes, 31
Assumption.assume, 31
Assumption.export, 31
Assumption.export (type), 31
CRITICAL, 48
Conjunction.elim, 25
Conjunction.intr, 25
Context.>> , 40
Context.generic (type), 5
Context.proof of, 5
Context.theory of, 5
Drule.dest term, 25
Drule.mk term, 25
GenericDataFun (functor), 7
Goal.conclude, 27
Goal.finish, 27
Goal.init, 27
Goal.protect, 27
Goal.prove multi, 33
Goal.prove, 33
Isar.context, 40
Isar.exn, 40

Isar.goal, 40
Isar.loop, 40
Isar.main, 40
Isar.state, 40
Logic.dest type, 25
Logic.mk type, 25
NAMED CRITICAL, 48
Name.context, 9
Name.context (type), 9
Name.declare, 9
Name.internal, 9
Name.invents, 9
Name.skolem, 9
Name.variants, 9
NameSpace.T (type), 12
NameSpace.add path, 12
NameSpace.append, 12
NameSpace.base, 12
NameSpace.declare, 12
NameSpace.default naming, 12
NameSpace.empty, 12
NameSpace.explode, 12
NameSpace.extern, 12
NameSpace.full, 12
NameSpace.implode, 12
NameSpace.intern, 12
NameSpace.merge, 12
NameSpace.naming (type), 12
NameSpace.qualifier, 12
Obtain.result, 33
Proof.context (type), 5
ProofContext.init, 5
ProofContext.theory of, 5
ProofContext.transfer, 5

56

INDEX 57

ProofDataFun (functor), 7
SUBPROOF, 32
Sign.add abbrev, 19
Sign.add tyabbrs i, 16
Sign.add types, 16
Sign.const instance, 19
Sign.const typargs, 19
Sign.declare const, 19
Sign.of sort, 16
Sign.primitive arity, 16
Sign.primitive classrel, 16
Sign.primitive class, 16
Sign.subsort, 16
Symbol.decode, 8
Symbol.explode, 8
Symbol.is blank, 8
Symbol.is digit, 8
Symbol.is letter, 8
Symbol.is quasi, 8
Symbol.symbol (type), 8
Symbol.sym (type), 8
Symtab.DUP (exception), 54
Symtab.SAME (exception), 54
Symtab.UNDEF (exception), 54
Symtab.default, 54
Symtab.defined, 54
Symtab.delete, 54
Symtab.empty, 54
Symtab.join, 54
Symtab.lookup, 54
Symtab.map default, 54
Symtab.map entry, 54
Symtab.merge, 54
Symtab.update, 54
Theory.add axioms i, 23
Theory.add defs i, 23
Theory.add deps, 23
Theory.add oracle, 23
Theory.check thy, 3
Theory.checkpoint, 3
Theory.copy, 3

Theory.deref, 3
Theory.merge, 3
Theory.subthy, 3
TheoryDataFun (functor), 7
Thm.assume, 22
Thm.cterm of, 22
Thm.ctyp of, 22
Thm.forall elim, 22
Thm.forall intr, 22
Thm.generalize, 22
Thm.get axiom i, 22
Thm.implies elim, 22
Thm.implies intr, 22
Thm.instantiate, 22
Thm.invoke oracle i, 22
ThyInfo.add hook, 42
ThyInfo.begin theory, 42
ThyInfo.end theory, 42
ThyInfo.register theory, 42
Toplevel.UNDEF, 37
Toplevel.debug, 37
Toplevel.end proof, 38
Toplevel.is toplevel, 37
Toplevel.keep, 38
Toplevel.no timing, 38
Toplevel.print, 38
Toplevel.profiling, 37
Toplevel.proof of, 37
Toplevel.proofs, 38
Toplevel.proof, 38
Toplevel.state (type), 37
Toplevel.theory of, 37
Toplevel.theory to proof, 38
Toplevel.theory, 38
Toplevel.timing, 37
Variable.add fixes, 29
Variable.declare constraints, 29
Variable.declare term, 29
Variable.export, 29
Variable.focus, 29
Variable.import thms, 29

INDEX 58

Variable.polymorphic, 29
Variable.variant fixes, 29
arity (type), 16
betapply, 19
can, 52
class (type), 16
cterm (type), 22
ctyp (type), 22
fastype of, 19
fold aterms, 19
fold atyps, 16
fold map, 50
fold types, 19
fold, 50
indexname (type), 10
insert, 52
is none, 52
is some, 52
lambda, 19
map aterms, 19
map atyps, 16
map types, 19
member, 52
merge, 52
op #> , 51
op #>> , 51
op #-> , 51
op ##> , 51
op ##>> , 51
op ‘ , 51
op aconv, 19
proofs, 22
remove thy, 42
remove, 52
setmp, 48
sort (type), 16
tap, 51
term (type), 19
the context, 40
the default, 52
the list, 52

theory ref (type), 3
theory, 42
theory (type), 3
these, 52
the, 52
thm (type), 22
touch thy, 42
try, 52
typ (type), 16
use thys, 42
use thy, 42

			Preliminaries

			Contexts

			Theory context

			Proof context

			Generic contexts

			Context data

			Names

			Strings of symbols

			Basic names

			Indexed names

			Qualified names and name spaces

			Primitive logic

			Types

			Terms

			Theorems

			Primitive connectives and rules

			Auxiliary definitions

			Rules

			Tactical reasoning

			Goals

			Tactics

			Tacticals

			Structured proofs

			Variables

			Assumptions

			Results

			Isar proof texts

			Proof context

			Proof state

			Proof methods

			Attributes

			Structured specifications

			Specification elements

			Type-inference

			Local theories

			System integration

			Isar toplevel

			Toplevel transitions

			Toplevel control

			ML toplevel

			Theory database

			Advanced ML programming

			Style

			Thread-safe programming

			Basic library functions

			Linear transformations

			Options and partiality

			Common data structures

			Lists (as set-like data structures)

			Association lists

			Tables

			Bibliography

			Index

Isabelle2008/doc/ind-defs.pdf

A Fixedpoint Approach to
(Co)Inductive and (Co)Datatype Definitions∗

Lawrence C. Paulson
lcp@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, England

8 June 2008

Abstract

This paper presents a fixedpoint approach to inductive definitions.
Instead of using a syntactic test such as “strictly positive,” the ap-
proach lets definitions involve any operators that have been proved
monotone. It is conceptually simple, which has allowed the easy im-
plementation of mutual recursion and iterated definitions. It also han-
dles coinductive definitions: simply replace the least fixedpoint by a
greatest fixedpoint.

The method has been implemented in two of Isabelle’s logics, zf set
theory and higher-order logic. It should be applicable to any logic in
which the Knaster-Tarski theorem can be proved. Examples include
lists of n elements, the accessible part of a relation and the set of
primitive recursive functions. One example of a coinductive definition
is bisimulations for lazy lists. Recursive datatypes are examined in
detail, as well as one example of a codatatype: lazy lists.

The Isabelle package has been applied in several large case studies,
including two proofs of the Church-Rosser theorem and a coinductive
proof of semantic consistency. The package can be trusted because it
proves theorems from definitions, instead of asserting desired proper-
ties as axioms.

Copyright c© 2008 by Lawrence C. Paulson

∗J. Grundy and S. Thompson made detailed comments. Mads Tofte and the referees
were also helpful. The research was funded by the SERC grants GR/G53279, GR/H40570
and by the ESPRIT Project 6453 “Types”.

Contents

1 Introduction 1

2 Fixedpoint operators 2

3 Elements of an inductive or coinductive definition 3
3.1 The form of the introduction rules 3
3.2 The fixedpoint definitions . 4
3.3 Mutual recursion . 5
3.4 Proving the introduction rules 5
3.5 The case analysis rule . 6

4 Induction and coinduction rules 6
4.1 The basic induction rule . 7
4.2 Modified induction rules . 8
4.3 Coinduction . 8

5 Examples of inductive and coinductive definitions 9
5.1 The finite powerset operator 9
5.2 Lists of n elements . 10
5.3 Rule inversion: the function mk cases 12
5.4 A coinductive definition: bisimulations on lazy lists 13
5.5 The accessible part of a relation 14
5.6 The primitive recursive functions 15

6 Datatypes and codatatypes 18
6.1 Constructors and their domain 18
6.2 The case analysis operator . 19
6.3 Example: lists and lazy lists 20
6.4 Example: mutual recursion . 21
6.5 Example: a four-constructor datatype 22
6.6 Proving freeness theorems . 23

7 Related work 24

8 Conclusions and future work 25

1 Introduction

Several theorem provers provide commands for formalizing recursive data
structures, like lists and trees. Robin Milner implemented one of the first
of these, for Edinburgh lcf [15]. Given a description of the desired data
structure, Milner’s package formulated appropriate definitions and proved
the characteristic theorems. Similar is Melham’s recursive type package for
the Cambridge hol system [14]. Such data structures are called datatypes
below, by analogy with datatype declarations in Standard ml. Some logics
take datatypes as primitive; consider Boyer and Moore’s shell principle [4]
and the Coq type theory [21].

A datatype is but one example of an inductive definition. Such a defi-
nition [2] specifies the least set R closed under given rules: applying a rule
to elements of R yields a result within R. Inductive definitions have many
applications. The collection of theorems in a logic is inductively defined. A
structural operational semantics [12] is an inductive definition of a reduction
or evaluation relation on programs. A few theorem provers provide com-
mands for formalizing inductive definitions; these include Coq [21] and again
the hol system [5].

The dual notion is that of a coinductive definition. Such a defini-
tion specifies the greatest set R consistent with given rules: every element
of R can be seen as arising by applying a rule to elements of R. Important
examples include using bisimulation relations to formalize equivalence of pro-
cesses [16] or lazy functional programs [1]. Other examples include lazy lists
and other infinite data structures; these are called codatatypes below.

Not all inductive definitions are meaningful. Monotone inductive def-
initions are a large, well-behaved class. Monotonicity can be enforced by
syntactic conditions such as “strictly positive,” but this could lead to mono-
tone definitions being rejected on the grounds of their syntactic form. More
flexible is to formalize monotonicity within the logic and allow users to prove
it.

This paper describes a package based on a fixedpoint approach. Least
fixedpoints yield inductive definitions; greatest fixedpoints yield coinductive
definitions. Most of the discussion below applies equally to inductive and
coinductive definitions, and most of the code is shared.

The package supports mutual recursion and infinitely-branching data-
types and codatatypes. It allows use of any operators that have been proved
monotone, thus accepting all provably monotone inductive definitions, in-
cluding iterated definitions.

The package has been implemented in Isabelle [28, 24] using zf set the-
ory [23, 25]; part of it has since been ported to Isabelle/hol (higher-order

1

logic). The recursion equations are specified as introduction rules for the
mutually recursive sets. The package transforms these rules into a mapping
over sets, and attempts to prove that the mapping is monotonic and well-
typed. If successful, the package makes fixedpoint definitions and proves the
introduction, elimination and (co)induction rules. Users invoke the package
by making simple declarations in Isabelle theory files.

Most datatype packages equip the new datatype with some means of
expressing recursive functions. This is the main omission from my package.
Its fixedpoint operators define only recursive sets. The Isabelle/zf theory
provides well-founded recursion [25], which is harder to use than structural
recursion but considerably more general. Slind [33] has written a package to
automate the definition of well-founded recursive functions in Isabelle/hol.

Outline. Section 2 introduces the least and greatest fixedpoint operators.
Section 3 discusses the form of introduction rules, mutual recursion and other
points common to inductive and coinductive definitions. Section 4 discusses
induction and coinduction rules separately. Section 5 presents several exam-
ples, including a coinductive definition. Section 6 describes datatype defi-
nitions. Section 7 presents related work. Section 8 draws brief conclusions.
The appendices are simple user’s manuals for this Isabelle package.

Most of the definitions and theorems shown below have been generated
by the package. I have renamed some variables to improve readability.

2 Fixedpoint operators

In set theory, the least and greatest fixedpoint operators are defined as fol-
lows:

lfp(D , h) ≡
⋂
{X ⊆ D . h(X) ⊆ X }

gfp(D , h) ≡
⋃
{X ⊆ D . X ⊆ h(X)}

Let D be a set. Say that h is bounded by D if h(D) ⊆ D , and monotone
below D if h(A) ⊆ h(B) for all A and B such that A ⊆ B ⊆ D . If h is
bounded by D and monotone then both operators yield fixedpoints:

lfp(D , h) = h(lfp(D , h))

gfp(D , h) = h(gfp(D , h))

These equations are instances of the Knaster-Tarski theorem, which states
that every monotonic function over a complete lattice has a fixedpoint [6]. It

2

is obvious from their definitions that lfp must be the least fixedpoint, and
gfp the greatest.

This fixedpoint theory is simple. The Knaster-Tarski theorem is easy to
prove. Showing monotonicity of h is trivial, in typical cases. We must also
exhibit a bounding set D for h. Frequently this is trivial, as when a set
of theorems is (co)inductively defined over some previously existing set of
formulæ. Isabelle/zf provides suitable bounding sets for infinitely-branching
(co)datatype definitions; see §6.1. Bounding sets are also called domains.

The powerset operator is monotone, but by Cantor’s theorem there is no
set A such that A = P(A). We cannot put A = lfp(D ,P) because there
is no suitable domain D . But §5.5 demonstrates that P is still useful in
inductive definitions.

3 Elements of an inductive or coinductive def-

inition

Consider a (co)inductive definition of the sets R1, . . . , Rn , in mutual recur-
sion. They will be constructed from domains D1, . . . , Dn , respectively. The
construction yields not Ri ⊆ Di but Ri ⊆ D1 + · · · + Dn , where Ri is con-
tained in the image of Di under an injection. Reasons for this are discussed
elsewhere [25, §4.5].

The definition may involve arbitrary parameters ~p = p1, . . . , pk . Each
recursive set then has the form Ri(~p). The parameters must be identical
every time they occur within a definition. This would appear to be a serious
restriction compared with other systems such as Coq [21]. For instance, we
cannot define the lists of n elements as the set listn(A, n) using rules where
the parameter n varies. Section 5.2 describes how to express this set using
the inductive definition package.

To avoid clutter below, the recursive sets are shown as simply Ri instead
of Ri(~p).

3.1 The form of the introduction rules

The body of the definition consists of the desired introduction rules. The
conclusion of each rule must have the form t ∈ Ri , where t is any term.
Premises typically have the same form, but they can have the more general
form t ∈ M (Ri) or express arbitrary side-conditions.

The premise t ∈ M (Ri) is permitted if M is a monotonic operator on

3

sets, satisfying the rule
A ⊆ B

M (A) ⊆ M (B)

The user must supply the package with monotonicity rules for all such premises.
The ability to introduce new monotone operators makes the approach

flexible. A suitable choice of M and t can express a lot. The powerset
operator P is monotone, and the premise t ∈ P(R) expresses t ⊆ R; see
§5.5 for an example. The list of operator is monotone, as is easily proved
by induction. The premise t ∈ list(R) avoids having to encode the effect
of list(R) using mutual recursion; see §5.6 and also my earlier paper [25,
§4.4].

Introduction rules may also contain side-conditions. These are premises
consisting of arbitrary formulæ not mentioning the recursive sets. Side-
conditions typically involve type-checking. One example is the premise a ∈ A
in the following rule from the definition of lists:

a ∈ A l ∈ list(A)

Cons(a, l) ∈ list(A)

3.2 The fixedpoint definitions

The package translates the list of desired introduction rules into a fixedpoint
definition. Consider, as a running example, the finite powerset operator
Fin(A): the set of all finite subsets of A. It can be defined as the least set
closed under the rules

∅ ∈ Fin(A)

a ∈ A b ∈ Fin(A)

{a} ∪ b ∈ Fin(A)

The domain in a (co)inductive definition must be some existing set closed
under the rules. A suitable domain for Fin(A) is P(A), the set of all subsets
of A. The package generates the definition

Fin(A) ≡ lfp(P(A), λX . {z ∈ P(A). z = ∅ ∨
(∃a b . z = {a} ∪ b ∧ a ∈ A ∧ b ∈ X)})

The contribution of each rule to the definition of Fin(A) should be obvious.
A coinductive definition is similar but uses gfp instead of lfp.

The package must prove that the fixedpoint operator is applied to a mono-
tonic function. If the introduction rules have the form described above, and if

4

the package is supplied a monotonicity theorem for every t ∈ M (Ri) premise,
then this proof is trivial.1

The package returns its result as an ml structure, which consists of named
components; we may regard it as a record. The result structure contains the
definitions of the recursive sets as a theorem list called defs. It also contains
some theorems; dom subset is an inclusion such as Fin(A) ⊆ P(A), while
bnd mono asserts that the fixedpoint definition is monotonic.

Internally the package uses the theorem unfold, a fixedpoint equation
such as

Fin(A) = {z ∈ P(A). z = ∅ ∨
(∃a b . z = {a} ∪ b ∧ a ∈ A ∧ b ∈ Fin(A))}

In order to save space, this theorem is not exported.

3.3 Mutual recursion

In a mutually recursive definition, the domain of the fixedpoint construction
is the disjoint sum of the domain Di of each Ri , for i = 1, . . . , n. The
package uses the injections of the binary disjoint sum, typically Inl and Inr,
to express injections h1n , . . . , hnn for the n-ary disjoint sum D1 + · · ·+ Dn .

As discussed elsewhere [25, §4.5], Isabelle/zf defines the operator Part to
support mutual recursion. The set Part(A, h) contains those elements of A
having the form h(z):

Part(A, h) ≡ {x ∈ A . ∃z . x = h(z)}.

For mutually recursive sets R1, . . . , Rn with n > 1, the package makes
n + 1 definitions. The first defines a set R using a fixedpoint operator. The
remaining n definitions have the form

Ri ≡ Part(R, hin), i = 1, . . . , n.

It follows that R = R1 ∪ · · · ∪ Rn , where the Ri are pairwise disjoint.

3.4 Proving the introduction rules

The user supplies the package with the desired form of the introduction rules.
Once it has derived the theorem unfold, it attempts to prove those rules.

1Due to the presence of logical connectives in the fixedpoint’s body, the monotonicity
proof requires some unusual rules. These state that the connectives ∧, ∨ and ∃ preserve
monotonicity with respect to the partial ordering on unary predicates given by P v Q if
and only if ∀x . P(x)→ Q(x).

5

From the user’s point of view, this is the trickiest stage; the proofs often
fail. The task is to show that the domain D1 + · · · + Dn of the combined
set R1 ∪ · · · ∪ Rn is closed under all the introduction rules. This essentially
involves replacing each Ri by D1 + · · ·+ Dn in each of the introduction rules
and attempting to prove the result.

Consider the Fin(A) example. After substituting P(A) for Fin(A) in the
rules, the package must prove

∅ ∈ P(A)

a ∈ A b ∈ P(A)

{a} ∪ b ∈ P(A)

Such proofs can be regarded as type-checking the definition.2 The user sup-
plies the package with type-checking rules to apply. Usually these are general
purpose rules from the zf theory. They could however be rules specifically
proved for a particular inductive definition; sometimes this is the easiest way
to get the definition through!

The result structure contains the introduction rules as the theorem list
intrs.

3.5 The case analysis rule

The elimination rule, called elim, performs case analysis. It is a simple
consequence of unfold. There is one case for each introduction rule. If
x ∈ Fin(A) then either x = ∅ or else x = {a} ∪ b for some a ∈ A and
b ∈ Fin(A). Formally, the elimination rule for Fin(A) is written

x ∈ Fin(A)

[x = ∅]
....
Q

[x = {a} ∪ b a ∈ A b ∈ Fin(A)]a,b....
Q

Q

The subscripted variables a and b above the third premise are eigenvariables,
subject to the usual “not free in . . . ” proviso.

4 Induction and coinduction rules

Here we must consider inductive and coinductive definitions separately. For
an inductive definition, the package returns an induction rule derived di-
rectly from the properties of least fixedpoints, as well as a modified rule for
mutual recursion. For a coinductive definition, the package returns a basic
coinduction rule.

2The Isabelle/hol version does not require these proofs, as hol has implicit type-
checking.

6

4.1 The basic induction rule

The basic rule, called induct, is appropriate in most situations. For inductive
definitions, it is strong rule induction [5]; for datatype definitions (see below),
it is just structural induction.

The induction rule for an inductively defined set R has the form described
below. For the time being, assume that R’s domain is not a Cartesian prod-
uct; inductively defined relations are treated slightly differently.

The major premise is x ∈ R. There is a minor premise for each introduc-
tion rule:

• If the introduction rule concludes t ∈ Ri , then the minor premise
is P(t).

• The minor premise’s eigenvariables are precisely the introduction rule’s
free variables that are not parameters of R. For instance, the eigen-
variables in the Fin(A) rule below are a and b, but not A.

• If the introduction rule has a premise t ∈ Ri , then the minor premise
discharges the assumption t ∈ Ri and the induction hypothesis P(t). If
the introduction rule has a premise t ∈ M (Ri) then the minor premise
discharges the single assumption

t ∈ M ({z ∈ Ri . P(z)}).

Because M is monotonic, this assumption implies t ∈ M (Ri). The
occurrence of P gives the effect of an induction hypothesis, which may
be exploited by appealing to properties of M .

The induction rule for Fin(A) resembles the elimination rule shown above,
but includes an induction hypothesis:

x ∈ Fin(A) P(∅)

[a ∈ A b ∈ Fin(A) P(b)]a,b....
P({a} ∪ b)

P(x)

Stronger induction rules often suggest themselves. We can derive a rule for
Fin(A) whose third premise discharges the extra assumption a 6∈ b. The
package provides rules for mutual induction and inductive relations. The
Isabelle/zf theory also supports well-founded induction and recursion over
datatypes, by reasoning about the rank of a set [25, §3.4].

7

4.2 Modified induction rules

If the domain of R is a Cartesian product A1×· · ·×Am (however nested), then
the corresponding predicate Pi takes m arguments. The major premise be-
comes 〈z1, . . . , zm〉 ∈ R instead of x ∈ R; the conclusion becomes P(z1, . . . , zm).
This simplifies reasoning about inductively defined relations, eliminating the
need to express properties of z1, . . . , zm as properties of the tuple 〈z1, . . . , zm〉.
Occasionally it may require you to split up the induction variable using
SigmaE and dom subset, especially if the constant split appears in the
rule.

The mutual induction rule is called mutual induct. It differs from the
basic rule in two respects:

• Instead of a single predicate P , it uses n predicates P1, . . . , Pn : one
for each recursive set.

• There is no major premise such as x ∈ Ri . Instead, the conclusion
refers to all the recursive sets:

(∀z . z ∈ R1 → P1(z)) ∧ · · · ∧ (∀z . z ∈ Rn → Pn(z))

Proving the premises establishes Pi(z) for z ∈ Ri and i = 1, . . . , n.

If the domain of some Ri is a Cartesian product, then the mutual induction
rule is modified accordingly. The predicates are made to take m separate
arguments instead of a tuple, and the quantification in the conclusion is over
the separate variables z1, . . . , zm .

4.3 Coinduction

A coinductive definition yields a primitive coinduction rule, with no refine-
ments such as those for the induction rules. (Experience may suggest re-
finements later.) Consider the codatatype of lazy lists as an example. For
suitable definitions of LNil and LCons, lazy lists may be defined as the great-
est set consistent with the rules

LNil ∈ llist(A)

a ∈ A l ∈ llist(A)

LCons(a, l) ∈ llist(A)
(−)

The (−) tag stresses that this is a coinductive definition. A suitable domain
for llist(A) is quniv(A); this set is closed under the variant forms of sum
and product that are used to represent non-well-founded data structures
(see §6.1).

8

The package derives an unfold theorem similar to that for Fin(A). Then
it proves the theorem coinduct, which expresses that llist(A) is the great-
est solution to this equation contained in quniv(A):

x ∈ X X ⊆ quniv(A)

[z ∈ X]z....
z = LNil ∨ (∃a l . z = LCons(a, l) ∧ a ∈ A ∧

l ∈ X ∪ llist(A))

x ∈ llist(A)

This rule complements the introduction rules; it provides a means of showing
x ∈ llist(A) when x is infinite. For instance, if x = LCons(0, x) then
applying the rule with X = {x} proves x ∈ llist(nat). (Here nat is the set
of natural numbers.)

Having X ∪ llist(A) instead of simply X in the third premise above
represents a slight strengthening of the greatest fixedpoint property. I discuss
several forms of coinduction rules elsewhere [26].

The clumsy form of the third premise makes the rule hard to use, espe-
cially in large definitions. Probably a constant should be declared to abbre-
viate the large disjunction, and rules derived to allow proving the separate
disjuncts.

5 Examples of inductive and coinductive def-

initions

This section presents several examples from the literature: the finite powerset
operator, lists of n elements, bisimulations on lazy lists, the well-founded part
of a relation, and the primitive recursive functions.

5.1 The finite powerset operator

This operator has been discussed extensively above. Here is the correspond-
ing invocation in an Isabelle theory file. Note that cons(a, b) abbreviates
{a} ∪ b in Isabelle/zf.

9

Finite = Arith +
consts Fin :: i=>i
inductive
domains "Fin(A)" <= "Pow(A)"
intrs
emptyI "0 : Fin(A)"
consI "[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)"

type_intrs empty_subsetI, cons_subsetI, PowI
type_elims "[make_elim PowD]"

end

Theory Finite extends the parent theory Arith by declaring the unary func-
tion symbol Fin, which is defined inductively. Its domain is specified as
P(A), where A is the parameter appearing in the introduction rules. For
type-checking, we supply two introduction rules:

∅ ⊆ A

a ∈ C B ⊆ C

{a} ∪ B ⊆ C

A further introduction rule and an elimination rule express both directions
of the equivalence A ∈ P(B) ↔ A ⊆ B . Type-checking involves mostly
introduction rules.

Like all Isabelle theory files, this one yields a structure containing the new
theory as an ml value. Structure Finite also has a substructure, called Fin.
After declaring open Finite; we can refer to the Fin(A) introduction rules
as the list Fin.intrs or individually as Fin.emptyI and Fin.consI. The
induction rule is Fin.induct.

5.2 Lists of n elements

This has become a standard example of an inductive definition. Following
Paulin-Mohring [21], we could attempt to define a new datatype listn(A, n),
for lists of length n, as an n-indexed family of sets. But her introduction
rules

Niln ∈ listn(A, 0)

n ∈ nat a ∈ A l ∈ listn(A, n)

Consn(n, a, l) ∈ listn(A, succ(n))

are not acceptable to the inductive definition package: listn occurs with
three different parameter lists in the definition.

The Isabelle version of this example suggests a general treatment of vary-
ing parameters. It uses the existing datatype definition of list(A), with
constructors Nil and Cons, and incorporates the parameter n into the in-
ductive set itself. It defines listn(A) as a relation consisting of pairs 〈n, l〉

10

such that n ∈ nat and l ∈ list(A) and l has length n. In fact, listn(A) is
the converse of the length function on list(A). The Isabelle/zf introduction
rules are

〈0, Nil〉 ∈ listn(A)

a ∈ A 〈n, l〉 ∈ listn(A)

〈succ(n), Cons(a, l)〉 ∈ listn(A)

The Isabelle theory file takes, as parent, the theory List of lists. We declare
the constant listn and supply an inductive definition, specifying the domain
as nat× list(A):

ListN = List +
consts listn :: i=>i
inductive
domains "listn(A)" <= "nat*list(A)"
intrs
NilI "<0,Nil>: listn(A)"
ConsI "[| a:A; <n,l>:listn(A) |] ==> <succ(n), Cons(a,l)>: listn(A)"

type_intrs "nat_typechecks @ list.intrs"
end

The type-checking rules include those for 0, succ, Nil and Cons. Because
listn(A) is a set of pairs, type-checking requires the equivalence 〈a, b〉 ∈
A× B ↔ a ∈ A ∧ b ∈ B . The package always includes the rules for ordered
pairs.

The package returns introduction, elimination and induction rules for
listn. The basic induction rule, listn.induct, is

〈z1, z2〉 ∈ listn(A) P(0, Nil)

[a ∈ A 〈n, l〉 ∈ listn(A) P(n, l)]a,l ,n....
P(succ(n), Cons(a, l))

P(z1, z2)

This rule lets the induction formula to be a binary property of pairs, P(n, l).
It is now a simple matter to prove theorems about listn(A), such as

∀l ∈ list(A) . 〈length(l), l〉 ∈ listn(A)

listn(A)“{n} = {l ∈ list(A) . length(l) = n}
This latter result — here r“X denotes the image of X under r — asserts
that the inductive definition agrees with the obvious notion of n-element list.

A “list of n elements” really is a list, namely an element of list(A). It
is subject to list operators such as append (concatenation). For example, a
trivial induction on 〈m, l〉 ∈ listn(A) yields

〈m, l〉 ∈ listn(A) 〈m ′, l ′〉 ∈ listn(A)

〈m + m ′, l@l ′〉 ∈ listn(A)

where + denotes addition on the natural numbers and @ denotes append.

11

5.3 Rule inversion: the function mk cases

The elimination rule, listn.elim, is cumbersome:

x ∈ listn(A)

[x = 〈0, Nil〉]
....
Q

 x = 〈succ(n), Cons(a, l)〉
a ∈ A
〈n, l〉 ∈ listn(A)

a,l ,n....

Q

Q

The ml function listn.mk cases generates simplified instances of this rule.
It works by freeness reasoning on the list constructors: Cons(a, l) is injective
in its two arguments and differs from Nil. If x is 〈i , Nil〉 or 〈i , Cons(a, l)〉
then listn.mk cases deduces the corresponding form of i ; this is called rule
inversion. Here is a sample session:

listn.mk_cases "<i,Nil> : listn(A)";
"[| <?i, []> : listn(?A); ?i = 0 ==> ?Q |] ==> ?Q" : thm

listn.mk_cases "<i,Cons(a,l)> : listn(A)";
"[| <?i, Cons(?a, ?l)> : listn(?A);

!!n. [| ?a : ?A; <n, ?l> : listn(?A); ?i = succ(n) |] ==> ?Q

|] ==> ?Q" : thm

Each of these rules has only two premises. In conventional notation, the
second rule is

〈i , Cons(a, l)〉 ∈ listn(A)

 a ∈ A
〈n, l〉 ∈ listn(A)
i = succ(n)

n....

Q

Q

The package also has built-in rules for freeness reasoning about 0 and succ.
So if x is 〈0, l〉 or 〈succ(i), l〉, then listn.mk cases can deduce the corre-
sponding form of l .

The function mk cases is also useful with datatype definitions. The in-
stance from the definition of lists, namely list.mk cases, can prove that
Cons(a, l) ∈ list(A) implies a ∈ A and l ∈ list(A):

Cons(a, l) ∈ list(A)

[a ∈ A l ∈ list(A)]
....
Q

Q

12

A typical use of mk cases concerns inductive definitions of evaluation rela-
tions. Then rule inversion yields case analysis on possible evaluations. For
example, Isabelle/zf includes a short proof of the diamond property for par-
allel contraction on combinators. Ole Rasmussen used mk cases extensively
in his development of the theory of residuals [31].

5.4 A coinductive definition: bisimulations on lazy lists

This example anticipates the definition of the codatatype llist(A), which
consists of finite and infinite lists over A. Its constructors are LNil and LCons,
satisfying the introduction rules shown in §4.3. Because llist(A) is defined
as a greatest fixedpoint and uses the variant pairing and injection operators,
it contains non-well-founded elements such as solutions to LCons(a, l) = l .

The next step in the development of lazy lists is to define a coinduction
principle for proving equalities. This is done by showing that the equality
relation on lazy lists is the greatest fixedpoint of some monotonic operation.
The usual approach [30] is to define some notion of bisimulation for lazy lists,
define equivalence to be the greatest bisimulation, and finally to prove that
two lazy lists are equivalent if and only if they are equal. The coinduction
rule for equivalence then yields a coinduction principle for equalities.

A binary relation R on lazy lists is a bisimulation provided R ⊆ R+,
where R+ is the relation

{〈LNil, LNil〉} ∪ {〈LCons(a, l), LCons(a, l ′)〉 . a ∈ A ∧ 〈l , l ′〉 ∈ R}.

A pair of lazy lists are equivalent if they belong to some bisimulation.
Equivalence can be coinductively defined as the greatest fixedpoint for the
introduction rules

〈LNil, LNil〉 ∈ lleq(A)

a ∈ A 〈l , l ′〉 ∈ lleq(A)

〈LCons(a, l), LCons(a, l ′)〉 ∈ lleq(A)
(−)

To make this coinductive definition, the theory file includes (after the decla-
ration of llist(A)) the following lines:

consts lleq :: i=>i
coinductive

domains "lleq(A)" <= "llist(A) * llist(A)"
intrs
LNil "<LNil,LNil> : lleq(A)"
LCons "[| a:A; <l,l’>:lleq(A) |] ==> <LCons(a,l),LCons(a,l’)>: lleq(A)"

type_intrs "llist.intrs"

The domain of lleq(A) is llist(A)×llist(A). The type-checking rules
include the introduction rules for llist(A), whose declaration is discussed
below (§6.3).

13

The package returns the introduction rules and the elimination rule, as
usual. But instead of induction rules, it returns a coinduction rule. The rule
is too big to display in the usual notation; its conclusion is x ∈ lleq(A) and
its premises are x ∈ X , X ⊆ llist(A)× llist(A) and

[z ∈ X]z....
z = 〈LNil, LNil〉 ∨ (∃a l l ′ . z = 〈LCons(a, l), LCons(a, l ′)〉 ∧ a ∈ A ∧

〈l , l ′〉 ∈ X ∪ lleq(A))

Thus if x ∈ X , where X is a bisimulation contained in the domain of lleq(A),
then x ∈ lleq(A). It is easy to show that lleq(A) is reflexive: the equality
relation is a bisimulation. And lleq(A) is symmetric: its converse is a
bisimulation. But showing that lleq(A) coincides with the equality relation
takes some work.

5.5 The accessible part of a relation

Let ≺ be a binary relation on D ; in short, (≺) ⊆ D × D . The accessible
or well-founded part of ≺, written acc(≺), is essentially that subset of D
for which ≺ admits no infinite decreasing chains [2]. Formally, acc(≺) is
inductively defined to be the least set that contains a if it contains all ≺-
predecessors of a, for a ∈ D . Thus we need an introduction rule of the
form

∀y . y ≺ a → y ∈ acc(≺)

a ∈ acc(≺)

Paulin-Mohring treats this example in Coq [21], but it causes difficulties
for other systems. Its premise is not acceptable to the inductive definition
package of the Cambridge hol system [5]. It is also unacceptable to the
Isabelle package (recall §3.1), but fortunately can be transformed into the
acceptable form t ∈ M (R).

The powerset operator is monotonic, and t ∈ P(R) is equivalent to t ⊆ R.
This in turn is equivalent to ∀y ∈ t . y ∈ R. To express ∀y . y ≺ a → y ∈
acc(≺) we need only find a term t such that y ∈ t if and only if y ≺ a. A
suitable t is the inverse image of {a} under ≺.

The definition below follows this approach. Here r is ≺ and field(r)
refers to D , the domain of acc(r). (The field of a relation is the union of its
domain and range.) Finally r−“{a} denotes the inverse image of {a} under r .
We supply the theorem Pow mono, which asserts that P is monotonic.

14

consts acc :: i=>i
inductive
domains "acc(r)" <= "field(r)"
intrs
vimage "[| r-‘‘{a}: Pow(acc(r)); a: field(r) |] ==> a: acc(r)"

monos Pow_mono

The Isabelle theory proceeds to prove facts about acc(≺). For instance, ≺
is well-founded if and only if its field is contained in acc(≺).

As mentioned in §4.1, a premise of the form t ∈ M (R) gives rise to an un-
usual induction hypothesis. Let us examine the induction rule, acc.induct:

x ∈ acc(r)

[
r−“{a}∈ P({z ∈ acc(r) . P(z)})

a ∈ field(r)

]
a....

P(a)

P(x)

The strange induction hypothesis is equivalent to ∀y . 〈y , a〉 ∈ r → y ∈
acc(r) ∧ P(y). Therefore the rule expresses well-founded induction on the
accessible part of ≺.

The use of inverse image is not essential. The Isabelle package can accept
introduction rules with arbitrary premises of the form ∀~y .P(~y)→ f (~y) ∈ R.
The premise can be expressed equivalently as

{z ∈ D . P(~y) ∧ z = f (~y)} ∈ P(R)

provided f (~y) ∈ D for all ~y such that P(~y). The following section demon-
strates another use of the premise t ∈ M (R), where M = list.

5.6 The primitive recursive functions

The primitive recursive functions are traditionally defined inductively, as
a subset of the functions over the natural numbers. One difficulty is that
functions of all arities are taken together, but this is easily circumvented
by regarding them as functions on lists. Another difficulty, the notion of
composition, is less easily circumvented.

Here is a more precise definition. Letting ~x abbreviate x0, . . . , xn−1, we
can write lists such as [~x], [y + 1, ~x], etc. A function is primitive recursive
if it belongs to the least set of functions in list(nat)→ nat containing

• The successor function SC, such that SC[y , ~x] = y + 1.

• All constant functions CONST(k), such that CONST(k)[~x] = k .

15

• All projection functions PROJ(i), such that PROJ(i)[~x] = xi if 0 ≤ i <
n.

• All compositions COMP(g , [f0, . . . , fm−1]), where g and f0, . . . , fm−1 are
primitive recursive, such that

COMP(g , [f0, . . . , fm−1])[~x] = g [f0[~x], . . . , fm−1[~x]].

• All recursions PREC(f , g), where f and g are primitive recursive, such
that

PREC(f , g)[0, ~x] = f [~x]

PREC(f , g)[y + 1, ~x] = g [PREC(f , g)[y , ~x], y , ~x].

Composition is awkward because it combines not two functions, as is usual,
but m +1 functions. In her proof that Ackermann’s function is not primitive
recursive, Nora Szasz was unable to formalize this definition directly [34].
So she generalized primitive recursion to tuple-valued functions. This modi-
fied the inductive definition such that each operation on primitive recursive
functions combined just two functions.

Szasz was using alf, but Coq and hol would also have problems ac-
cepting this definition. Isabelle’s package accepts it easily since [f0, . . . , fm−1]
is a list of primitive recursive functions and list is monotonic. There are
five introduction rules, one for each of the five forms of primitive recursive
function. Let us examine the one for COMP:

g ∈ primrec fs ∈ list(primrec)

COMP(g , fs) ∈ primrec

The induction rule for primrec has one case for each introduction rule. Due
to the use of list as a monotone operator, the composition case has an
unusual induction hypothesis:

[g ∈ primrec fs ∈ list({z ∈ primrec . P(z)})]fs,g....
P(COMP(g , fs))

The hypothesis states that fs is a list of primitive recursive functions, each
satisfying the induction formula. Proving the COMP case typically requires
structural induction on lists, yielding two subcases: either fs = Nil or else
fs = Cons(f , fs ′), where f ∈ primrec, P(f), and fs ′ is another list of primitive
recursive functions satisfying P .

16

Primrec_defs = Main +
consts SC :: i
...
defs
SC_def "SC == lam l:list(nat).list_case(0, %x xs.succ(x), l)"
...
end

Primrec = Primrec_defs +
consts prim_rec :: i
inductive
domains "primrec" <= "list(nat)->nat"
intrs
SC "SC : primrec"
CONST "k: nat ==> CONST(k) : primrec"
PROJ "i: nat ==> PROJ(i) : primrec"
COMP "[| g: primrec; fs: list(primrec) |] ==> COMP(g,fs): primrec"
PREC "[| f: primrec; g: primrec |] ==> PREC(f,g): primrec"

monos list_mono
con_defs SC_def, CONST_def, PROJ_def, COMP_def, PREC_def
type_intrs "nat_typechecks @ list.intrs @

[lam_type, list_case_type, drop_type, map_type,
apply_type, rec_type]"

end

Figure 1: Inductive definition of the primitive recursive functions

17

Figure 1 presents the theory file. Theory Primrec defines the constants
SC, CONST, etc. These are not constructors of a new datatype, but functions
over lists of numbers. Their definitions, most of which are omitted, consist
of routine list programming. In Isabelle/zf, the primitive recursive functions
are defined as a subset of the function set list(nat)→ nat.

The Isabelle theory goes on to formalize Ackermann’s function and prove
that it is not primitive recursive, using the induction rule primrec.induct.
The proof follows Szasz’s excellent account.

6 Datatypes and codatatypes

A (co)datatype definition is a (co)inductive definition with automatically
defined constructors and a case analysis operator. The package proves that
the case operator inverts the constructors and can prove freeness theorems
involving any pair of constructors.

6.1 Constructors and their domain

A (co)inductive definition selects a subset of an existing set; a (co)datatype
definition creates a new set. The package reduces the latter to the former.
Isabelle/zf supplies sets having strong closure properties to serve as domains
for (co)inductive definitions.

Isabelle/zf defines the Cartesian product A×B , containing ordered pairs
〈a, b〉; it also defines the disjoint sum A + B , containing injections Inl(a) ≡
〈0, a〉 and Inr(b) ≡ 〈1, b〉. For use below, define the m-tuple 〈x1, . . . , xm〉
to be the empty set ∅ if m = 0, simply x1 if m = 1 and 〈x1, 〈x2, . . . , xm〉〉 if
m ≥ 2.

A datatype constructor Con(x1, . . . , xm) is defined to be h(〈x1, . . . , xm〉),
where h is composed of Inl and Inr. In a mutually recursive definition, all
constructors for the set Ri have the outer form hin , where hin is the injection
described in §3.3. Further nested injections ensure that the constructors
for Ri are pairwise distinct.

Isabelle/zf defines the set univ(A), which contains A and furthermore
contains 〈a, b〉, Inl(a) and Inr(b) for a, b ∈ univ(A). In a typical datatype
definition with set parameters A1, . . . , Ak , a suitable domain for all the
recursive sets is univ(A1∪· · ·∪Ak). This solves the problem for datatypes [25,
§4.2].

The standard pairs and injections can only yield well-founded construc-
tions. This eases the (manual!) definition of recursive functions over data-

18

types. But they are unsuitable for codatatypes, which typically contain non-
well-founded objects.

To support codatatypes, Isabelle/zf defines a variant notion of ordered
pair, written 〈a; b〉. It also defines the corresponding variant notion of Carte-
sian product A⊗B , variant injections QInl(a) and QInr(b) and variant dis-
joint sum A⊕ B . Finally it defines the set quniv(A), which contains A and
furthermore contains 〈a; b〉, QInl(a) and QInr(b) for a, b ∈ quniv(A). In
a typical codatatype definition with set parameters A1, . . . , Ak , a suitable
domain is quniv(A1 ∪ · · · ∪ Ak). Details are published elsewhere [27].

6.2 The case analysis operator

The (co)datatype package automatically defines a case analysis operator,
called R case. A mutually recursive definition still has only one operator,
whose name combines those of the recursive sets: it is called R1 ... Rn

case. The case operator is analogous to those for products and sums.
Datatype definitions employ standard products and sums, whose opera-

tors are split and case and satisfy the equations

split(f , 〈x , y〉) = f (x , y)

case(f , g , Inl(x)) = f (x)

case(f , g , Inr(y)) = g(y)

Suppose the datatype has k constructors Con1, . . . , Conk . Then its case
operator takes k +1 arguments and satisfies an equation for each constructor:

R case(f1, . . . , fk , Coni(~x)) = fi(~x), i = 1, . . . , k

The case operator’s definition takes advantage of Isabelle’s representation
of syntax in the typed λ-calculus; it could readily be adapted to a theorem
prover for higher-order logic. If f and g have meta-type i ⇒ i then so
do split(f) and case(f , g). This works because split and case operate
on their last argument. They are easily combined to make complex case
analysis operators. For example, case(f , case(g , h)) performs case analysis
for A + (B + C); let us verify one of the three equations:

case(f , case(g , h), Inr(Inl(b))) = case(g , h, Inl(b)) = g(b)

Codatatype definitions are treated in precisely the same way. They express
case operators using those for the variant products and sums, namely qsplit

and qcase.

To see how constructors and the case analysis operator are defined, let us
examine some examples. Further details are available elsewhere [25].

19

6.3 Example: lists and lazy lists

Here is a declaration of the datatype of lists, as it might appear in a theory
file:

consts list :: i=>i
datatype "list(A)" = Nil | Cons ("a:A", "l: list(A)")

And here is a declaration of the codatatype of lazy lists:

consts llist :: i=>i
codatatype "llist(A)" = LNil | LCons ("a: A", "l: llist(A)")

Each form of list has two constructors, one for the empty list and one
for adding an element to a list. Each takes a parameter, defining the set
of lists over a given set A. Each is automatically given the appropriate
domain: univ(A) for list(A) and quniv(A) for llist(A). The default can
be overridden.

Since list(A) is a datatype, it has a structural induction rule, list.induct:

x ∈ list(A) P(Nil)

[a ∈ A l ∈ list(A) P(l)]a,l....
P(Cons(a, l))

P(x)

Induction and freeness yield the law l 6= Cons(a, l). To strengthen this, Isa-
belle/zf defines the rank of a set and proves that the standard pairs and
injections have greater rank than their components. An immediate conse-
quence, which justifies structural recursion on lists [25, §4.3], is

rank(l) < rank(Cons(a, l)).

But llist(A) is a codatatype and has no induction rule. Instead it
has the coinduction rule shown in §4.3. Since variant pairs and injections are
monotonic and need not have greater rank than their components, fixedpoint
operators can create cyclic constructions. For example, the definition

lconst(a) ≡ lfp(univ(a), λl . LCons(a, l))

yields lconst(a) = LCons(a, lconst(a)).

It may be instructive to examine the definitions of the constructors and
case operator for list(A). The definitions for llist(A) are similar. The list
constructors are defined as follows:

Nil ≡ Inl(∅)
Cons(a, l) ≡ Inr(〈a, l〉)

20

The operator list case performs case analysis on these two alternatives:

list case(c, h) ≡ case(λu . c, split(h))

Let us verify the two equations:

list case(c, h, Nil) = case(λu . c, split(h), Inl(∅))
= (λu . c)(∅)
= c

list case(c, h, Cons(x , y)) = case(λu . c, split(h), Inr(〈x , y〉))
= split(h, 〈x , y〉)
= h(x , y)

6.4 Example: mutual recursion

In mutually recursive trees and forests [25, §4.5], trees have the one construc-
tor Tcons, while forests have the two constructors Fnil and Fcons:

consts tree, forest, tree_forest :: i=>i
datatype "tree(A)" = Tcons ("a: A", "f: forest(A)")
and "forest(A)" = Fnil | Fcons ("t: tree(A)", "f: forest(A)")

The three introduction rules define the mutual recursion. The distinguishing
feature of this example is its two induction rules.

The basic induction rule is called tree forest.induct:

x ∈ tree forest(A)

 a ∈ A
f ∈ forest(A)
P(f)

a,f....

P(Tcons(a, f)) P(Fnil)

t ∈ tree(A)
P(t)
f ∈ forest(A)
P(f)

t ,f....

P(Fcons(t , f))

P(x)

This rule establishes a single predicate for tree forest(A), the union of the
recursive sets. Although such reasoning can be useful [25, §4.5], a proper
mutual induction rule should establish separate predicates for tree(A) and
forest(A). The package calls this rule tree forest.mutual induct. Ob-

21

serve the usage of P and Q in the induction hypotheses:

 a ∈ A
f ∈ forest(A)
Q(f)

a,f....

P(Tcons(a, f)) Q(Fnil)

t ∈ tree(A)
P(t)
f ∈ forest(A)
Q(f)

t ,f....

Q(Fcons(t , f))

(∀z . z ∈ tree(A)→ P(z)) ∧ (∀z . z ∈ forest(A)→ Q(z))

Elsewhere I describe how to define mutually recursive functions over trees
and forests [25, §4.5].

Both forest constructors have the form Inr(· · ·), while the tree constructor
has the form Inl(· · ·). This pattern would hold regardless of how many tree
or forest constructors there were.

Tcons(a, l) ≡ Inl(〈a, l〉)
Fnil ≡ Inr(Inl(∅))

Fcons(a, l) ≡ Inr(Inr(〈a, l〉))

There is only one case operator; it works on the union of the trees and forests:

tree forest case(f , c, g) ≡ case(split(f), case(λu . c, split(g)))

6.5 Example: a four-constructor datatype

A bigger datatype will illustrate some efficiency refinements. It has four
constructors Con0, . . . , Con3, with the corresponding arities.

consts data :: [i,i] => i
datatype "data(A,B)" = Con0

| Con1 ("a: A")
| Con2 ("a: A", "b: B")
| Con3 ("a: A", "b: B", "d: data(A,B)")

Because this datatype has two set parameters, A and B , the package au-
tomatically supplies univ(A ∪ B) as its domain. The structural induction
rule has four minor premises, one per constructor, and only the last has an
induction hypothesis. (Details are left to the reader.)

The constructors are defined by the equations

Con0 ≡ Inl(Inl(∅))
Con1(a) ≡ Inl(Inr(a))

Con2(a, b) ≡ Inr(Inl(〈a, b〉))
Con3(a, b, c) ≡ Inr(Inr(〈a, b, c〉)).

22

The case analysis operator is

data case(f0, f1, f2, f3) ≡ case(case(λu . f0, f1),
case(split(f2), split(λv . split(f3(v)))))

This may look cryptic, but the case equations are trivial to verify.
In the constructor definitions, the injections are balanced. A more naive

approach is to define Con3(a, b, c) as Inr(Inr(Inr(〈a, b, c〉))); instead, each
constructor has two injections. The difference here is small. But the zf
examples include a 60-element enumeration type, where each constructor
has 5 or 6 injections. The naive approach would require 1 to 59 injections;
the definitions would be quadratic in size. It is like the advantage of binary
notation over unary.

The result structure contains the case operator and constructor definitions
as the theorem list con_defs. It contains the case equations, such as

data case(f0, f1, f2, f3, Con3(a, b, c)) = f3(a, b, c),

as the theorem list case_eqns. There is one equation per constructor.

6.6 Proving freeness theorems

There are two kinds of freeness theorems:

• injectiveness theorems, such as

Con2(a, b) = Con2(a
′, b ′)↔ a = a ′ ∧ b = b ′

• distinctness theorems, such as

Con1(a) 6= Con2(a
′, b ′)

Since the number of such theorems is quadratic in the number of constructors,
the package does not attempt to prove them all. Instead it returns tools
for proving desired theorems — either manually or during simplification or
classical reasoning.

The theorem list free_iffs enables the simplifier to perform freeness
reasoning. This works by incremental unfolding of constructors that appear
in equations. The theorem list contains logical equivalences such as

Con0 = c ↔ c = Inl(Inl(∅))
Con1(a) = c ↔ c = Inl(Inr(a))

23

...

Inl(a) = Inl(b) ↔ a = b

Inl(a) = Inr(b) ↔ False

〈a, b〉 = 〈a ′, b ′〉 ↔ a = a ′ ∧ b = b ′

For example, these rewrite Con1(a) = Con1(b) to a = b in four steps.
The theorem list free_SEs enables the classical reasoner to perform sim-

ilar replacements. It consists of elimination rules to replace Con0 = c by
c = Inl(Inl(∅)) and so forth, in the assumptions.

Such incremental unfolding combines freeness reasoning with other proof
steps. It has the unfortunate side-effect of unfolding definitions of construc-
tors in contexts such as ∃x . Con1(a) = x , where they should be left alone.
Calling the Isabelle tactic fold tac con defs restores the defined constants.

7 Related work

The use of least fixedpoints to express inductive definitions seems obvious.
Why, then, has this technique so seldom been implemented?

Most automated logics can only express inductive definitions by asserting
axioms. Little would be left of Boyer and Moore’s logic [4] if their shell
principle were removed. With alf the situation is more complex; earlier
versions of Martin-Löf’s type theory could (using wellordering types) express
datatype definitions, but the version underlying alf requires new rules for
each definition [7]. With Coq the situation is subtler still; its underlying
Calculus of Constructions can express inductive definitions [13], but cannot
quite handle datatype definitions [21]. It seems that researchers tried hard
to circumvent these problems before finally extending the Calculus with rule
schemes for strictly positive operators. Recently Giménez has extended the
Calculus of Constructions with inductive and coinductive types [10], with
mechanized support in Coq.

Higher-order logic can express inductive definitions through quantification
over unary predicates. The following formula expresses that i belongs to the
least set containing 0 and closed under succ:

∀P . P(0) ∧ (∀x . P(x)→ P(succ(x)))→ P(i)

This technique can be used to prove the Knaster-Tarski theorem, which (in
its general form) is little used in the Cambridge hol system. Melham [14]
describes the development. The natural numbers are defined as shown above,
but lists are defined as functions over the natural numbers. Unlabelled trees

24

are defined using Gödel numbering; a labelled tree consists of an unlabelled
tree paired with a list of labels. Melham’s datatype package expresses the
user’s datatypes in terms of labelled trees. It has been highly successful, but
a fixedpoint approach might have yielded greater power with less effort.

Elsa Gunter [11] reports an ongoing project to generalize the Cambridge
hol system with mutual recursion and infinitely-branching trees. She retains
many features of Melham’s approach.

Melham’s inductive definition package [5] also uses quantification over
predicates. But instead of formalizing the notion of monotone function, it
requires definitions to consist of finitary rules, a syntactic form that excludes
many monotone inductive definitions.

pvs [20] is another proof assistant based on higher-order logic. It supports
both inductive definitions and datatypes, apparently by asserting axioms.
Datatypes may not be iterated in general, but may use recursion over the
built-in list type.

The earliest use of least fixedpoints is probably Robin Milner’s. Brian
Monahan extended this package considerably [18], as did I in unpublished
work.3 lcf is a first-order logic of domain theory; the relevant fixedpoint the-
orem is not Knaster-Tarski but concerns fixedpoints of continuous functions
over domains. lcf is too weak to express recursive predicates. The Isabelle
package might be the first to be based on the Knaster-Tarski theorem.

8 Conclusions and future work

Higher-order logic and set theory are both powerful enough to express in-
ductive definitions. A growing number of theorem provers implement one of
these [8, 32]. The easiest sort of inductive definition package to write is one
that asserts new axioms, not one that makes definitions and proves theorems
about them. But asserting axioms could introduce unsoundness.

The fixedpoint approach makes it fairly easy to implement a package
for (co)inductive definitions that does not assert axioms. It is efficient: it
processes most definitions in seconds and even a 60-constructor datatype
requires only a few minutes. It is also simple: The first working version took
under a week to code, consisting of under 1100 lines (35K bytes) of Standard
ml.

In set theory, care is needed to ensure that the inductive definition yields
a set (rather than a proper class). This problem is inherent to set theory,
whether or not the Knaster-Tarski theorem is employed. We must exhibit a

3The datatype package described in my lcf book [22] does not make definitions, but
merely asserts axioms.

25

bounding set (called a domain above). For inductive definitions, this is often
trivial. For datatype definitions, I have had to formalize much set theory.
To justify infinitely-branching datatype definitions, I have had to develop a
theory of cardinal arithmetic [29], such as the theorem that if κ is an infinite
cardinal and |X (α)| ≤ κ for all α < κ then |⋃α<κ X (α)| ≤ κ. The need for
such efforts is not a drawback of the fixedpoint approach, for the alternative
is to take such definitions on faith.

Care is also needed to ensure that the greatest fixedpoint really yields a
coinductive definition. In set theory, standard pairs admit only well-founded
constructions. Aczel’s anti-foundation axiom [3] could be used to get non-
well-founded objects, but it does not seem easy to mechanize. Isabelle/zf
instead uses a variant notion of ordered pairing, which can be generalized to a
variant notion of function. Elsewhere I have proved that this simple approach
works (yielding final coalgebras) for a broad class of definitions [27].

Several large studies make heavy use of inductive definitions. Lötzbeyer
and Sandner have formalized two chapters of a semantics book [35], prov-
ing the equivalence between the operational and denotational semantics of
a simple imperative language. A single theory file contains three datatype
definitions (of arithmetic expressions, boolean expressions and commands)
and three inductive definitions (the corresponding operational rules). Us-
ing different techniques, Nipkow [19] and Rasmussen [31] have both proved
the Church-Rosser theorem; inductive definitions specify several reduction
relations on λ-terms. Recently, I have applied inductive definitions to the
analysis of cryptographic protocols [28].

To demonstrate coinductive definitions, Frost [9] has proved the consis-
tency of the dynamic and static semantics for a small functional language.
The example is due to Milner and Tofte [17]. It concerns an extended cor-
respondence relation, which is defined coinductively. A codatatype defini-
tion specifies values and value environments in mutual recursion. Non-well-
founded values represent recursive functions. Value environments are variant
functions from variables into values. This one key definition uses most of the
package’s novel features.

The approach is not restricted to set theory. It should be suitable for any
logic that has some notion of set and the Knaster-Tarski theorem. I have
ported the (co)inductive definition package from Isabelle/zf to Isabelle/hol
(higher-order logic).

References

[1] Samson Abramsky. The lazy lambda calculus. In David A. Turner, editor, Research
Topics in Functional Programming, pages 65–116. Addison-Wesley, 1990.

26

[2] Peter Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook
of Mathematical Logic, pages 739–782. North-Holland, 1977.

[3] Peter Aczel. Non-Well-Founded Sets. CSLI, 1988.

[4] Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press,
1979.

[5] J. Camilleri and T. F. Melham. Reasoning with inductively defined relations in the
HOL theorem prover. Technical Report 265, Computer Laboratory, University of
Cambridge, August 1992.

[6] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[7] Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-
theoretic semantics. In Gérard Huet and Gordon Plotkin, editors, Logical Frameworks,
pages 280–306. Cambridge University Press, 1991.

[8] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An interactive
mathematical proof system. Journal of Automated Reasoning, 11(2):213–248, 1993.

[9] Jacob Frost. A case study of co-induction in Isabelle. Technical Report 359, Computer
Laboratory, University of Cambridge, February 1995.

[10] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter
Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and Programs:
International Workshop TYPES ’94, LNCS 996, pages 39–59. Springer, 1995.

[11] Elsa L. Gunter. A broader class of trees for recursive type definitions for HOL. In
J. Joyce and C. Seger, editors, Higher Order Logic Theorem Proving and Its Appli-
cations: HUG ’93, LNCS 780, pages 141–154. Springer, Published 1994.

[12] Matthew Hennessy. The Semantics of Programming Languages: An Elementary In-
troduction Using Structural Operational Semantics. Wiley, 1990.

[13] Gérard Huet. Induction principles formalized in the Calculus of Constructions. In
K. Fuchi and M. Nivat, editors, Programming of Future Generation Computers, pages
205–216. Elsevier, 1988.

[14] Thomas F. Melham. Automating recursive type definitions in higher order logic. In
Graham Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware
Verification and Automated Theorem Proving, pages 341–386. Springer, 1989.

[15] Robin Milner. How to derive inductions in LCF. note, Department of Computer
Science, University of Edinburgh, 1980.

[16] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[17] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87:209–220, 1991.

[18] Brian Q. Monahan. Data Type Proofs using Edinburgh LCF. PhD thesis, University
of Edinburgh, 1984.

[19] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). In M. McRobbie
and J.K. Slaney, editors, Automated Deduction — CADE-13, volume 1104 of Lecture
Notes in Computer Science, pages 733–747. Springer-Verlag, 1996.

27

[20] S. Owre, N. Shankar, and J. M. Rushby. The PVS specification language. Computer
Science Laboratory, SRI International, Menlo Park, CA, April 1993. Beta release.

[21] Christine Paulin-Mohring. Inductive definitions in the system Coq: Rules and prop-
erties. In M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications,
LNCS 664, pages 328–345. Springer, 1993.

[22] Lawrence C. Paulson. Logic and Computation: Interactive proof with Cambridge
LCF. Cambridge University Press, 1987.

[23] Lawrence C. Paulson. Set theory for verification: I. From foundations to functions.
Journal of Automated Reasoning, 11(3):353–389, 1993.

[24] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994. LNCS
828.

[25] Lawrence C. Paulson. Set theory for verification: II. Induction and recursion. Journal
of Automated Reasoning, 15(2):167–215, 1995.

[26] Lawrence C. Paulson. Mechanizing coinduction and corecursion in higher-order logic.
Journal of Logic and Computation, 7(2):175–204, March 1997.

[27] Lawrence C. Paulson. Final coalgebras as greatest fixed points in ZF set theory.
Mathematical Structures in Computer Science, 9(5):545–567, 1999.

[28] Lawrence C. Paulson. Tool support for logics of programs. In Manfred Broy, edi-
tor, Mathematical Methods in Program Development: Summer School Marktoberdorf
1996, NATO ASI Series F, pages 461–498. Springer, Published 1997.

[29] Lawrence C. Paulson and Krzysztof Gra̧bczewski. Mechanizing set theory: Cardinal
arithmetic and the axiom of choice. Journal of Automated Reasoning, 17(3):291–323,
December 1996.

[30] Andrew M. Pitts. A co-induction principle for recursively defined domains. Theoret-
ical Computer Science, 124:195–219, 1994.

[31] Ole Rasmussen. The Church-Rosser theorem in Isabelle: A proof porting experiment.
Technical Report 364, Computer Laboratory, University of Cambridge, May 1995.

[32] Mark Saaltink, Sentot Kromodimoeljo, Bill Pase, Dan Craigen, and Irwin Meisels. An
EVES data abstraction example. In J. C. P. Woodcock and P. G. Larsen, editors, FME
’93: Industrial-Strength Formal Methods, volume 670 of Lecture Notes in Computer
Science, pages 578–596. Springer-Verlag, 1993.

[33] Konrad Slind. Function definition in higher order logic. In J. von Wright, J. Grundy,
and J. Harrison, editors, Theorem Proving in Higher Order Logics: TPHOLs ’96,
volume 1125 of Lecture Notes in Computer Science, pages 381–397. Springer-Verlag,
1996.

[34] Nora Szasz. A machine checked proof that Ackermann’s function is not primitive
recursive. In Gérard Huet and Gordon Plotkin, editors, Logical Environments, pages
317–338. Cambridge University Press, 1993.

[35] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

28

			Introduction

			Fixedpoint operators

			Elements of an inductive or coinductive definition

			The form of the introduction rules

			The fixedpoint definitions

			Mutual recursion

			Proving the introduction rules

			The case analysis rule

			Induction and coinduction rules

			The basic induction rule

			Modified induction rules

			Coinduction

			Examples of inductive and coinductive definitions

			The finite powerset operator

			Lists of n elements

			Rule inversion: the function mk_cases

			A coinductive definition: bisimulations on lazy lists

			The accessible part of a relation

			The primitive recursive functions

			Datatypes and codatatypes

			Constructors and their domain

			The case analysis operator

			Example: lists and lazy lists

			Example: mutual recursion

			Example: a four-constructor datatype

			Proving freeness theorems

			Related work

			Conclusions and future work

Isabelle2008/doc/isar-overview.pdf

A Tutorial Introduction to Structured Isar
Proofs

Tobias Nipkow

Institut für Informatik, TU München
http://www.in.tum.de/∼nipkow/

1 Introduction

This is a tutorial introduction to structured proofs in Isabelle/HOL. It introduces
the core of the proof language Isar by example. Isar is an extension of the apply -
style proofs introduced in the Isabelle/HOL tutorial [4] with structured proofs
in a stylised language of mathematics. These proofs are readable for both human
and machine.

1.1 A first glimpse of Isar

Below you find a simplified grammar for Isar proofs. Parentheses are used for
grouping and ? indicates an optional item:

proof ::= proof method? statement* qed
| by method

statement ::= fix variables
| assume propositions
| (from fact*)? (show | have) propositions proof

proposition ::= (label :)? string

fact ::= label

A proof can be either compound (proof – qed) or atomic (by). A method is a
proof method.

This is a typical proof skeleton:

proof
assume " the-assm"

have " . . . " — intermediate result
...
have " . . . " — intermediate result
show " the-concl"

qed

It proves the-assm =⇒ the-concl. Text starting with “—” is a comment. The
intermediate haves are only there to bridge the gap between the assumption and
the conclusion and do not contribute to the theorem being proved. In contrast,
show establishes the conclusion of the theorem.

http://www.in.tum.de/~nipkow/

1.2 Background

Interactive theorem proving has been dominated by a model of proof that goes
back to the LCF system [2]: a proof is a more or less structured sequence of
commands that manipulate an implicit proof state. Thus the proof text is only
suitable for the machine; for a human, the proof only comes alive when he can see
the state changes caused by the stepwise execution of the commands. Such proofs
are like uncommented assembly language programs. Their Isabelle incarnation
are sequences of apply -commands.

In contrast there is the model of a mathematics-like proof language pioneered
in the Mizar system [5] and followed by Isar [7]. The most important arguments
in favour of this style are communication and maintainance: structured proofs
are immensly more readable and maintainable than apply -scripts.

For reading this tutorial you should be familiar with natural deduction and
the basics of Isabelle/HOL [4] although we summarize the most important as-
pects of Isabelle below. The definitive Isar reference is its manual [6]. For an
example-based account of Isar’s support for reasoning by chains of (in)equations
see [1].

1.3 Bits of Isabelle

Isabelle’s meta-logic comes with a type of propositions with implication =⇒ and
a universal quantifier

∧
for expressing inference rules and generality. Iterated

implications A1 =⇒ . . . An =⇒ A may be abbreviated to [[A1; . . . ;An]] =⇒ A.
Applying a theorem A =⇒ B (named T) to a theorem A (named U) is written
T[OF U] and yields theorem B.

Isabelle terms are simply typed. Function types are written τ1 ⇒ τ2.
Free variables that may be instantiated (“logical variables” in Prolog par-

lance) are prefixed with a ?. Typically, theorems are stated with ordinary free
variables but after the proof those are automatically replaced by ? -variables.
Thus the theorem can be used with arbitrary instances of its free variables.

Isabelle/HOL offers all the usual logical symbols like −→, ∧, ∀ etc. HOL
formulae are propositions, e.g. ∀ can appear below =⇒, but not the other way
around. Beware that −→ binds more tightly than =⇒: in ∀x.P −→ Q the ∀x
covers P −→ Q, whereas in ∀x.P =⇒ Q it covers only P .

Proof methods include rule (which performs a backwards step with a given
rule, unifying the conclusion of the rule with the current subgoal and replacing
the subgoal by the premises of the rule), simp (for simplification) and blast (for
predicate calculus reasoning).

1.4 Advice

A word of warning for potential writers of Isar proofs. It is easier to write obscure
rather than readable texts. Similarly, apply -style proofs are sometimes easier to
write than readable ones: structure does not emerge automatically but needs to
be understood and imposed. If the precise structure of the proof is unclear at

2

beginning, it can be useful to start with apply for exploratory purposes until
one has found a proof which can be converted into a structured text in a second
step. Top down conversion is possible because Isar allows apply -style proofs as
components of structured ones.

Finally, do not be mislead by the simplicity of the formulae being proved,
especially in the beginning. Isar has been used very successfully in large appli-
cations, for example the formalisation of Java dialects [3].

The rest of this tutorial is divided into two parts. Section 2 introduces proofs
in pure logic based on natural deduction. Section 3 is dedicated to induction.

2 Logic

2.1 Propositional logic

Introduction rules We start with a really trivial toy proof to introduce the
basic features of structured proofs.

lemma "A −→ A"

proof (rule impI)

assume a: "A"

show "A" by(rule a)

qed

The operational reading: the assume-show block proves A =⇒ A (a is a degen-
erate rule (no assumptions) that proves A outright), which rule impI ((?P =⇒
?Q) =⇒ ?P −→ ?Q) turns into the desired A −→ A. However, this text is much
too detailed for comfort. Therefore Isar implements the following principle:

Command proof automatically tries to select an introduction rule based
on the goal and a predefined list of rules.

Here impI is applied automatically:

lemma "A −→ A"

proof
assume a: A

show A by(rule a)

qed

Single-identifier formulae such as A need not be enclosed in double quotes. How-
ever, we will continue to do so for uniformity.

Trivial proofs, in particular those by assumption, should be trivial to perform.
Proof “.” does just that (and a bit more). Thus naming of assumptions is often
superfluous:

lemma "A −→ A"

proof
assume "A"

show "A" .

3

qed

To hide proofs by assumption further, by(method) first applies method and
then tries to solve all remaining subgoals by assumption:

lemma "A −→ A ∧ A"

proof
assume "A"

show "A ∧ A" by(rule conjI)

qed

Rule conjI is of course [[?P; ?Q]] =⇒ ?P ∧ ?Q. A drawback of implicit proofs by
assumption is that it is no longer obvious where an assumption is used.

Proofs of the form by(rule name) can be abbreviated to “..” if name refers
to one of the predefined introduction rules (or elimination rules, see below):

lemma "A −→ A ∧ A"

proof
assume "A"

show "A ∧ A" ..
qed

This is what happens: first the matching introduction rule conjI is applied (first
“.”), then the two subgoals are solved by assumption (second “.”).

Elimination rules A typical elimination rule is conjE, ∧-elimination:

[[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

In the following proof it is applied by hand, after its first (major) premise has
been eliminated via [OF AB] :

lemma "A ∧ B −→ B ∧ A"

proof
assume AB: "A ∧ B"

show "B ∧ A"

proof (rule conjE[OF AB]) — conjE[OF AB] : ([[A; B]] =⇒ ?R) =⇒ ?R

assume "A" "B"

show ?thesis ..
qed

qed

Note that the term ?thesis always stands for the “current goal”, i.e. the enclos-
ing show (or have) statement.

This is too much proof text. Elimination rules should be selected automat-
ically based on their major premise, the formula or rather connective to be
eliminated. In Isar they are triggered by facts being fed into a proof. Syntax:

from fact show proposition proof

where fact stands for the name of a previously proved proposition, e.g. an as-
sumption, an intermediate result or some global theorem, which may also be

4

modified with OF etc. The fact is “piped” into the proof, which can deal with it
how it chooses. If the proof starts with a plain proof, an elimination rule (from
a predefined list) is applied whose first premise is solved by the fact. Thus the
proof above is equivalent to the following one:

lemma "A ∧ B −→ B ∧ A"

proof
assume AB: "A ∧ B"

from AB show "B ∧ A"

proof
assume "A" "B"

show ?thesis ..
qed

qed

Now we come to a second important principle:

Try to arrange the sequence of propositions in a UNIX-like pipe, such
that the proof of each proposition builds on the previous proposition.

The previous proposition can be referred to via the fact this. This greatly reduces
the need for explicit naming of propositions:

lemma "A ∧ B −→ B ∧ A"

proof
assume "A ∧ B"

from this show "B ∧ A"

proof
assume "A" "B"

show ?thesis ..
qed

qed

Because of the frequency of from this, Isar provides two abbreviations:

then = from this

thus = then show

Here is an alternative proof that operates purely by forward reasoning:

lemma "A ∧ B −→ B ∧ A"

proof
assume ab: "A ∧ B"

from ab have a: "A" ..
from ab have b: "B" ..
from b a show "B ∧ A" ..

qed

It is worth examining this text in detail because it exhibits a number of new
concepts. For a start, it is the first time we have proved intermediate propositions
(have) on the way to the final show. This is the norm in nontrivial proofs where
one cannot bridge the gap between the assumptions and the conclusion in one
step. To understand how the proof works we need to explain more Isar details:

5

– Method rule can be given a list of rules, in which case (rule rules) applies
the first matching rule in the list rules.

– Command from can be followed by any number of facts. Given from f1 . . . fn,
the proof step (rule rules) following a have or show searches rules for a
rule whose first n premises can be proved by f1 . . . fn in the given order.

– “..” is short for by(rule elim-rules intro-rules)1, where elim-rules and intro-
rules are the predefined elimination and introduction rule. Thus elimination
rules are tried first (if there are incoming facts).

Hence in the above proof both haves are proved via conjE triggered by from ab

whereas in the show step no elimination rule is applicable and the proof succeeds
with conjI. The latter would fail had we written from a b instead of from b a.

A plain proof with no argument is short for proof (rule elim-rules intro-
rules)1. This means that the matching rule is selected by the incoming facts and
the goal exactly as just explained.

Although we have only seen a few introduction and elimination rules so far,
Isar’s predefined rules include all the usual natural deduction rules. We conclude
our exposition of propositional logic with an extended example — which rules
are used implicitly where?
lemma "¬ (A ∧ B) −→ ¬ A ∨ ¬ B"

proof
assume n: "¬ (A ∧ B)"

show "¬ A ∨ ¬ B"

proof (rule ccontr)

assume nn: "¬ (¬ A ∨ ¬ B)"

have "¬ A"

proof
assume "A"

have "¬ B"

proof
assume "B"

have "A ∧ B" ..
with n show False ..

qed
hence "¬ A ∨ ¬ B" ..
with nn show False ..

qed
hence "¬ A ∨ ¬ B" ..
with nn show False ..

qed
qed

Rule ccontr (“classical contradiction”) is (¬ P =⇒ False) =⇒ P. Apart from
demonstrating the strangeness of classical arguments by contradiction, this ex-
ample also introduces two new abbreviations:

hence = then have
with facts = from facts this

1 or merely (rule intro-rules) if there are no facts fed into the proof

6

2.2 Avoiding duplication

So far our examples have been a bit unnatural: normally we want to prove rules
expressed with =⇒, not −→. Here is an example:

lemma "A ∧ B =⇒ B ∧ A"

proof
assume "A ∧ B" thus "B" ..

next
assume "A ∧ B" thus "A" ..

qed

The proof always works on the conclusion, B ∧ A in our case, thus selecting
∧-introduction. Hence we must show B and A ; both are proved by ∧-elimination
and the proofs are separated by next:

next deals with multiple subgoals. For example, when showing A ∧ B we need
to show both A and B. Each subgoal is proved separately, in any order. The
individual proofs are separated by next. 2

Strictly speaking next is only required if the subgoals are proved in different
assumption contexts which need to be separated, which is not the case above.
For clarity we have employed next anyway and will continue to do so.

This is all very well as long as formulae are small. Let us now look at some
devices to avoid repeating (possibly large) formulae. A very general method is
pattern matching:

lemma "large_A ∧ large_B =⇒ large_B ∧ large_A"

(is "?AB =⇒ ?B ∧ ?A")

proof
assume "?AB" thus "?B" ..

next
assume "?AB" thus "?A" ..

qed

Any formula may be followed by (is pattern) which causes the pattern to be
matched against the formula, instantiating the ? -variables in the pattern. Sub-
sequent uses of these variables in other terms causes them to be replaced by the
terms they stand for.

We can simplify things even more by stating the theorem by means of the
assumes and shows elements which allow direct naming of assumptions:

lemma assumes AB: "large_A ∧ large_B"

shows "large_B ∧ large_A" (is "?B ∧ ?A")

proof
from AB show "?B" ..

next
from AB show "?A" ..

2 Each show must prove one of the pending subgoals. If a show matches multiple
subgoals, e.g. if the subgoals contain ?-variables, the first one is proved. Thus the
order in which the subgoals are proved can matter — see §3.1 for an example.

7

qed

Note the difference between ?AB, a term, and AB, a fact.
Finally we want to start the proof with ∧-elimination so we don’t have to

perform it twice, as above. Here is a slick way to achieve this:

lemma assumes AB: "large_A ∧ large_B"

shows "large_B ∧ large_A" (is "?B ∧ ?A")

using AB

proof
assume "?A" "?B" show ?thesis ..

qed

Command using can appear before a proof and adds further facts to those
piped into the proof. Here AB is the only such fact and it triggers ∧-elimination.
Another frequent idiom is as follows:

from major-facts show proposition using minor-facts proof

Sometimes it is necessary to suppress the implicit application of rules in a
proof. For example show A ∨ B would trigger ∨-introduction, requiring us to
prove A. A simple “-” prevents this faux pas:

lemma assumes AB: "A ∨ B" shows "B ∨ A"

proof -

from AB show ?thesis

proof
assume A show ?thesis ..

next
assume B show ?thesis ..

qed
qed

Alternatively one can feed A ∨ B directly into the proof, thus triggering the
elimination rule:

lemma assumes AB: "A ∨ B" shows "B ∨ A"

using AB

proof
assume A show ?thesis ..

next
assume B show ?thesis ..

qed

Remember that eliminations have priority over introductions.

2.3 Avoiding names

Too many names can easily clutter a proof. We already learned about this as a
means of avoiding explicit names. Another handy device is to refer to a fact not
by name but by contents: for example, writing ‘A ∨ B‘ (enclosing the formula

8

in back quotes) refers to the fact A ∨ B without the need to name it. Here is a
simple example, a revised version of the previous proof

lemma assumes "A ∨ B" shows "B ∨ A"

using ‘A ∨ B‘

which continues as before.
Clearly, this device of quoting facts by contents is only advisable for small

formulae. In such cases it is superior to naming because the reader immediately
sees what the fact is without needing to search for it in the preceding proof text.

The assumptions of a lemma can also be referred to via their predefined name
assms. Hence the ‘A ∨ B‘ in the previous proof can also be replaced by assms.
Note that assms refers to the list of all assumptions. To pick out a specific one,
say the second, write assms(2).

This indexing notation name(.) works for any name that stands for a list of
facts, for example f.simps, the equations of the recursively defined function f .
You may also select sublists by writing name(2− 3).

Above we recommended the UNIX-pipe model (i.e. this) to avoid the need to
name propositions. But frequently we needed to feed more than one previously
derived fact into a proof step. Then the UNIX-pipe model appears to break
down and we need to name the different facts to refer to them. But this can be
avoided:

lemma assumes "A ∧ B" shows "B ∧ A"

proof -

from ‘A ∧ B‘ have "B" ..
moreover
from ‘A ∧ B‘ have "A" ..
ultimately show "B ∧ A" ..

qed

You can combine any number of facts A1 . . . An into a sequence by separat-
ing their proofs with moreover. After the final fact, ultimately stands for
from A1 . . . An. This avoids having to introduce names for all of the sequence
elements.

2.4 Predicate calculus

Command fix introduces new local variables into a proof. The pair fix-show
corresponds to

∧
(the universal quantifier at the meta-level) just like assume-

show corresponds to =⇒. Here is a sample proof, annotated with the rules that
are applied implicitly:

lemma assumes P: "∀ x. P x" shows "∀ x. P(f x)"

proof — allI : (
∧
x. ?P x) =⇒ ∀ x. ?P x

fix a

from P show "P(f a)" .. — allE : [[∀ x. ?P x; ?P ?x =⇒ ?R]] =⇒ ?R

qed

Note that in the proof we have chosen to call the bound variable a instead of x
merely to show that the choice of local names is irrelevant.

9

Next we look at ∃ which is a bit more tricky.

lemma assumes Pf: "∃ x. P(f x)" shows "∃ y. P y"

proof -

from Pf show ?thesis

proof — exE : [[∃ x. ?P x;
∧
x. ?P x =⇒ ?Q]] =⇒ ?Q

fix x

assume "P(f x)"

show ?thesis .. — exI : ?P ?x =⇒ ∃ x. ?P x

qed
qed

Explicit ∃-elimination as seen above can become cumbersome in practice. The
derived Isar language element obtain provides a more appealing form of gener-
alised existence reasoning:

lemma assumes Pf: "∃ x. P(f x)" shows "∃ y. P y"

proof -

from Pf obtain x where "P(f x)" ..
thus "∃ y. P y" ..

qed

Note how the proof text follows the usual mathematical style of concluding P (x)
from ∃x.P (x), while carefully introducing x as a new local variable. Technically,
obtain is similar to fix and assume together with a soundness proof of the
elimination involved.

Here is a proof of a well known tautology. Which rule is used where?

lemma assumes ex: "∃ x. ∀ y. P x y" shows "∀ y. ∃ x. P x y"

proof
fix y

from ex obtain x where "∀ y. P x y" ..
hence "P x y" ..
thus "∃ x. P x y" ..

qed

2.5 Making bigger steps

So far we have confined ourselves to single step proofs. Of course powerful auto-
matic methods can be used just as well. Here is an example, Cantor’s theorem
that there is no surjective function from a set to its powerset:

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

proof
let ?S = "{x. x /∈ f x}"

show "?S /∈ range f"

proof
assume "?S ∈ range f"

then obtain y where "?S = f y" ..
show False

proof cases

10

assume "y ∈ ?S"

with ‘?S = f y‘ show False by blast

next
assume "y /∈ ?S"

with ‘?S = f y‘ show False by blast

qed
qed

qed

For a start, the example demonstrates two new constructs:

– let introduces an abbreviation for a term, in our case the witness for the
claim.

– Proof by cases starts a proof by cases. Note that it remains implicit what
the two cases are: it is merely expected that the two subproofs prove P =⇒
?thesis and ¬P =⇒ ?thesis (in that order) for some P.

If you wonder how to obtain y : via the predefined elimination rule [[b ∈ range

f;
∧
x. b = f x =⇒ P]] =⇒ P.

Method blast is used because the contradiction does not follow easily by just
a single rule. If you find the proof too cryptic for human consumption, here is a
more detailed version; the beginning up to obtain stays unchanged.

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

proof
let ?S = "{x. x /∈ f x}"

show "?S /∈ range f"

proof
assume "?S ∈ range f"

then obtain y where "?S = f y" ..
show False

proof cases

assume "y ∈ ?S"

hence "y /∈ f y" by simp

hence "y /∈ ?S" by(simp add: ‘?S = f y‘)

thus False by contradiction

next
assume "y /∈ ?S"

hence "y ∈ f y" by simp

hence "y ∈ ?S" by(simp add: ‘?S = f y‘)

thus False by contradiction

qed
qed

qed

Method contradiction succeeds if both P and ¬P are among the assumptions
and the facts fed into that step, in any order.

As it happens, Cantor’s theorem can be proved automatically by best-first
search. Depth-first search would diverge, but best-first search successfully navi-
gates through the large search space:

11

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

by best

2.6 Raw proof blocks

Although we have shown how to employ powerful automatic methods like blast

to achieve bigger proof steps, there may still be the tendency to use the default
introduction and elimination rules to decompose goals and facts. This can lead
to very tedious proofs:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof
fix x show "∀ y. A x y ∧ B x y −→ C x y"

proof
fix y show "A x y ∧ B x y −→ C x y"

proof
assume "A x y ∧ B x y"

show "C x y" sorry
qed

qed
qed

Since we are only interested in the decomposition and not the actual proof,
the latter has been replaced by sorry. Command sorry proves anything but is
only allowed in quick and dirty mode, the default interactive mode. It is very
convenient for top down proof development.

Luckily we can avoid this step by step decomposition very easily:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof -

have "
∧
x y. [[A x y; B x y]] =⇒ C x y"

proof -

fix x y assume "A x y" "B x y"

show "C x y" sorry
qed
thus ?thesis by blast

qed

This can be simplified further by raw proof blocks, i.e. proofs enclosed in braces:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof -

{ fix x y assume "A x y" "B x y"

have "C x y" sorry }
thus ?thesis by blast

qed

The result of the raw proof block is the same theorem as above, namely
∧
x

y. [[A x y; B x y]] =⇒ C x y. Raw proof blocks are like ordinary proofs except
that they do not prove some explicitly stated property but that the property
emerges directly out of the fixes, assumes and have in the block. Thus they

12

again serve to avoid duplication. Note that the conclusion of a raw proof block
is stated with have rather than show because it is not the conclusion of some
pending goal but some independent claim.

The general idea demonstrated in this subsection is very important in Isar
and distinguishes it from apply -style proofs:

Do not manipulate the proof state into a particular form by applying proof
methods but state the desired form explicitly and let the proof methods
verify that from this form the original goal follows.

This yields more readable and also more robust proofs.

General case distinctions As an important application of raw proof blocks
we show how to deal with general case distinctions — more specific kinds are
treated in §3.1. Imagine that you would like to prove some goal by distinguishing
n cases P1, . . . , Pn. You show that the n cases are exhaustive (i.e. P1 ∨ . . .∨Pn)
and that each case Pi implies the goal. Taken together, this proves the goal. The
corresponding Isar proof pattern (for n = 3) is very handy:

proof -

have "P1 ∨ P2 ∨ P3" ...

moreover
{ assume P1

...

have ?thesis ... }
moreover
{ assume P2

...

have ?thesis ... }
moreover
{ assume P3

...

have ?thesis ... }
ultimately show ?thesis by blast

qed

2.7 Further refinements

This subsection discusses some further tricks that can make life easier although
they are not essential.

and Propositions (following assume etc) may but need not be separated by
and. This is not just for readability (from A and B looks nicer than from A B)
but for structuring lists of propositions into possibly named blocks. In

assume A: A1 A2 and B: A3 and A4

label A refers to the list of propositions A1 A2 and label B to A3.

13

note If you want to remember intermediate fact(s) that cannot be named di-
rectly, use note. For example the result of raw proof block can be named by
following it with note some_name = this. As a side effect, this is set to the list
of facts on the right-hand side. You can also say note some_fact, which simply
sets this, i.e. recalls some_fact, e.g. in a moreover sequence.

fixes Sometimes it is necessary to decorate a proposition with type constraints,
as in Cantor’s theorem above. These type constraints tend to make the theorem
less readable. The situation can be improved a little by combining the type
constraint with an outer

∧
:

theorem "
∧
f :: ’a ⇒ ’a set. ∃ S. S /∈ range f"

However, now f is bound and we need a fix f in the proof before we can refer
to f. This is avoided by fixes:

theorem fixes f :: "’a ⇒ ’a set" shows "∃ S. S /∈ range f"

Even better, fixes allows to introduce concrete syntax locally:

lemma comm_mono:

fixes r :: "’a ⇒ ’a ⇒ bool" (infix ">" 60) and
f :: "’a ⇒ ’a ⇒ ’a" (infixl "++" 70)

assumes comm: "
∧
x y::’a. x ++ y = y ++ x" and

mono: "
∧
x y z::’a. x > y =⇒ x ++ z > y ++ z"

shows "x > y =⇒ z ++ x > z ++ y"

by(simp add: comm mono)

The concrete syntax is dropped at the end of the proof and the theorem becomes

[[
∧
x y. ?f x y = ?f y x;∧
x y z. ?r x y =⇒ ?r (?f x z) (?f y z); ?r ?x ?y]]

=⇒ ?r (?f ?z ?x) (?f ?z ?y)

obtain The obtain construct can introduce multiple witnesses and propositions
as in the following proof fragment:

lemma assumes A: "∃ x y. P x y ∧ Q x y" shows "R"

proof -

from A obtain x y where P: "P x y" and Q: "Q x y" by blast

Remember also that one does not even need to start with a formula containing
∃ as we saw in the proof of Cantor’s theorem.

Combining proof styles Finally, whole apply -scripts may appear in the leaves
of the proof tree, although this is best avoided. Here is a contrived example:

lemma "A −→ (A −→ B) −→ B"

proof

14

assume a: "A"

show "(A −→B) −→ B"

apply(rule impI)

apply(erule impE)

apply(rule a)

apply assumption

done
qed

You may need to resort to this technique if an automatic step fails to prove the
desired proposition.

When converting a proof from apply -style into Isar you can proceed in a
top-down manner: parts of the proof can be left in script form while the outer
structure is already expressed in Isar.

3 Case distinction and induction

Computer science applications abound with inductively defined structures, which
is why we treat them in more detail. HOL already comes with a datatype of lists
with the two constructors Nil and Cons. Nil is written [] and Cons x xs is
written x # xs.

3.1 Case distinction

We have already met the cases method for performing binary case splits. Here
is another example:

lemma "¬ A ∨ A"

proof cases

assume "A" thus ?thesis ..
next

assume "¬ A" thus ?thesis ..
qed

The two cases must come in this order because cases merely abbreviates (rule

case_split_thm) where case_split_thm is [[?P =⇒ ?Q; ¬ ?P =⇒ ?Q]] =⇒ ?Q. If
we reverse the order of the two cases in the proof, the first case would prove ¬ A

=⇒ ¬ A ∨ A which would solve the first premise of case_split_thm, instantiating
?P with ¬ A, thus making the second premise ¬ ¬ A =⇒ ¬ A ∨ A. Therefore the
order of subgoals is not always completely arbitrary.

The above proof is appropriate if A is textually small. However, if A is large,
we do not want to repeat it. This can be avoided by the following idiom

lemma "¬ A ∨ A"

proof (cases "A")

case True thus ?thesis ..
next

case False thus ?thesis ..

15

qed

which is like the previous proof but instantiates ?P right away with A. Thus
we could prove the two cases in any order. The phrase case True abbreviates
assume True: A and analogously for False and ¬ A.

The same game can be played with other datatypes, for example lists, where
tl is the tail of a list, and length returns a natural number (remember: 0−1 = 0):

lemma "length(tl xs) = length xs - 1"

proof (cases xs)

case Nil thus ?thesis by simp

next
case Cons thus ?thesis by simp

qed

Here case Nil abbreviates assume Nil: xs = [] and case Cons abbreviates
fix ? ?? assume Cons: xs = ? # ??, where ? and ?? stand for variable names
that have been chosen by the system. Therefore we cannot refer to them. Luckily,
this proof is simple enough we do not need to refer to them. However, sometimes
one may have to. Hence Isar offers a simple scheme for naming those variables:
replace the anonymous Cons by (Cons y ys), which abbreviates fix y ys as-
sume Cons: xs = y # ys. In each case the assumption can be referred to inside
the proof by the name of the constructor. In Section 3.4 below we will come
across an example of this.

3.2 Structural induction

We start with an inductive proof where both cases are proved automatically:

lemma "2 * (
∑

i::nat≤n. i) = n*(n+1)"

by (induct n) simp_all

The constraint ::nat is needed because all of the operations involved are over-
loaded. This proof also demonstrates that by can take two arguments, one to
start and one to finish the proof — the latter is optional.

If we want to expose more of the structure of the proof, we can use pattern
matching to avoid having to repeat the goal statement:

lemma "2 * (
∑

i::nat≤n. i) = n*(n+1)" (is "?P n")

proof (induct n)

show "?P 0" by simp

next
fix n assume "?P n"

thus "?P(Suc n)" by simp

qed

We could refine this further to show more of the equational proof. Instead we
explore the same avenue as for case distinctions: introducing context via the
case command:

lemma "2 * (
∑

i::nat ≤ n. i) = n*(n+1)"

16

proof (induct n)

case 0 show ?case by simp

next
case Suc thus ?case by simp

qed

The implicitly defined ?case refers to the corresponding case to be proved, i.e.
?P 0 in the first case and ?P(Suc n) in the second case. Context case 0 is empty
whereas case Suc assumes ?P n. Again we have the same problem as with case
distinctions: we cannot refer to an anonymous n in the induction step because it
has not been introduced via fix (in contrast to the previous proof). The solution
is the one outlined for Cons above: replace Suc by (Suc i) :

lemma fixes n::nat shows "n < n*n + 1"

proof (induct n)

case 0 show ?case by simp

next
case (Suc i) thus "Suc i < Suc i * Suc i + 1" by simp

qed

Of course we could again have written thus ?case instead of giving the term
explicitly but we wanted to use i somewhere.

3.3 Generalization via arbitrary

It is frequently necessary to generalize a claim before it becomes provable by
induction. The tutorial [4] demonstrates this with itrev xs ys = rev xs @ ys,
where ys needs to be universally quantified before induction succeeds.3 But
strictly speaking, this quantification step is already part of the proof and the
quantifiers should not clutter the original claim. This is how the quantification
step can be combined with induction:

lemma "itrev xs ys = rev xs @ ys"

by (induct xs arbitrary: ys) simp_all

The annotation arbitrary: vars universally quantifies all vars before the induc-
tion. Hence they can be replaced by arbitrary values in the proof.

The nice thing about generalization via arbitrary: is that in the induction
step the claim is available in unquantified form but with the generalized vari-
ables replaced by ? -variables, ready for instantiation. In the above example the
induction hypothesis is itrev xs ?ys = rev xs @ ?ys.

For the curious: arbitrary: introduces
∧

behind the scenes.

3.4 Inductive proofs of conditional formulae

Induction also copes well with formulae involving =⇒, for example

3 rev [] = [], rev (x # xs) = rev xs @ [x],
itrev [] ys = ys, itrev (x # xs) ys = itrev xs (x # ys)

17

lemma "xs 6= [] =⇒ hd(rev xs) = last xs"

by (induct xs) simp_all

This is an improvement over that style the tutorial [4] advises, which requires
−→. A further improvement is shown in the following proof:

lemma "map f xs = map f ys =⇒ length xs = length ys"

proof (induct ys arbitrary: xs)

case Nil thus ?case by simp

next
case (Cons y ys) note Asm = Cons

show ?case

proof (cases xs)

case Nil

hence False using Asm(2) by simp

thus ?thesis ..
next

case (Cons x xs’)

with Asm(2) have "map f xs’ = map f ys" by simp

from Asm(1)[OF this] ‘xs = x#xs’‘ show ?thesis by simp

qed
qed

The base case is trivial. In the step case Isar assumes (under the name Cons)
two propositions:

map f ?xs = map f ys =⇒ length ?xs = length ys

map f xs = map f (y # ys)

The first is the induction hypothesis, the second, and this is new, is the premise
of the induction step. The actual goal at this point is merely length xs = length

(y # ys). The assumptions are given the new name Asm to avoid a name clash
further down. The proof procedes with a case distinction on xs. In the case xs

= [], the second of our two assumptions (Asm(2)) implies the contradiction 0 =

Suc(. . .). In the case xs = x # xs’, we first obtain map f xs’ = map f ys, from
which a forward step with the first assumption (Asm(1)[OF this]) yields length

xs’ = length ys. Together with xs = x # xs this yields the goal length xs =

length (y # ys).

3.5 Induction formulae involving
∧

or =⇒

Let us now consider abstractly the situation where the goal to be proved contains
both

∧
and =⇒, say

∧
x. P x =⇒ Q x. This means that in each case of the

induction, ?case would be of the form
∧
x. P’ x =⇒ Q’ x. Thus the first proof

steps will be the canonical ones, fixing x and assuming P’ x. To avoid this
tedium, induction performs the canonical steps automatically: in each step case,
the assumptions contain both the usual induction hypothesis and P’ x, whereas
?case is only Q’ x.

18

3.6 Rule induction

HOL also supports inductively defined sets. See [4] for details. As an example
we define our own version of the reflexive transitive closure of a relation — HOL
provides a predefined one as well.

inductive set
rtc :: "(’a × ’a)set ⇒ (’a × ’a)set" ("_*" [1000] 999)

for r :: "(’a × ’a)set"

where
refl: "(x,x) ∈ r*"

| step: " [[(x,y) ∈ r; (y,z) ∈ r*]] =⇒ (x,z) ∈ r*"

First the constant is declared as a function on binary relations (with concrete
syntax r* instead of rtc r), then the defining clauses are given. We will now
prove that r* is indeed transitive:

lemma assumes A: "(x,y) ∈ r*" shows "(y,z) ∈ r* =⇒ (x,z) ∈ r*"

using A

proof induct

case refl thus ?case .
next

case step thus ?case by(blast intro: rtc.step)

qed

Rule induction is triggered by a fact (x1, . . . , xn) ∈ R piped into the proof, here
using A. The proof itself follows the inductive definition very closely: there is one
case for each rule, and it has the same name as the rule, analogous to structural
induction.

However, this proof is rather terse. Here is a more readable version:

lemma assumes "(x,y) ∈ r*" and "(y,z) ∈ r*" shows "(x,z) ∈ r*"

using assms

proof induct

fix x assume "(x,z) ∈ r*" — B [y := x]
thus "(x,z) ∈ r*" .

next
fix x’ x y

assume 1: "(x’,x) ∈ r" and
IH: "(y,z) ∈ r* =⇒ (x,z) ∈ r*" and
B: "(y,z) ∈ r*"

from 1 IH[OF B] show "(x’,z) ∈ r*" by(rule rtc.step)

qed

This time, merely for a change, we start the proof with by feeding both as-
sumptions into the inductive proof. Only the first assumption is “consumed” by
the induction. Since the second one is left over we don’t just prove ?thesis but
(y,z) ∈ r* =⇒ ?thesis, just as in the previous proof. The base case is trivial.
In the assumptions for the induction step we can see very clearly how things fit
together and permit ourselves the obvious forward step IH[OF B].

The notation case (constructor vars) is also supported for inductive defini-
tions. The constructor is the name of the rule and the vars fix the free variables

19

in the rule; the order of the vars must correspond to the left-to-right order of
the variables as they appear in the rule. For example, we could start the above
detailed proof of the induction with case (step x’ x y). In that case we don’t
need to spell out the assumptions but can refer to them by step(.), although
the resulting text will be quite cryptic.

3.7 More induction

We close the section by demonstrating how arbitrary induction rules are applied.
As a simple example we have chosen recursion induction, i.e. induction based
on a recursive function definition. However, most of what we show works for
induction in general.

The example is an unusual definition of rotation:

fun rot :: "’a list ⇒ ’a list" where
"rot [] = []" |

"rot [x] = [x]" |

"rot (x#y#zs) = y # rot(x#zs)"

This yields, among other things, the induction rule rot.induct :

[[P [];
∧
x. P [x];

∧
x y zs. P (x # zs) =⇒ P (x # y # zs)]] =⇒ P a0

The following proof relies on a default naming scheme for cases: they are called
1, 2, etc, unless they have been named explicitly. The latter happens only with
datatypes and inductively defined sets, but (usually) not with recursive func-
tions.

lemma "xs 6= [] =⇒ rot xs = tl xs @ [hd xs]"

proof (induct xs rule: rot.induct)

case 1 thus ?case by simp

next
case 2 show ?case by simp

next
case (3 a b cs)

have "rot (a # b # cs) = b # rot(a # cs)" by simp

also have " . . . = b # tl(a # cs) @ [hd(a # cs)]" by(simp add:3)

also have " . . . = tl (a # b # cs) @ [hd (a # b # cs)]" by simp

finally show ?case .
qed

The third case is only shown in gory detail (see [1] for how to reason with chains
of equations) to demonstrate that the case (constructor vars) notation also
works for arbitrary induction theorems with numbered cases. The order of the
vars corresponds to the order of the

∧
-quantified variables in each case of the

induction theorem. For induction theorems produced by fun it is the order in
which the variables appear on the left-hand side of the equation.

The proof is so simple that it can be condensed to

by (induct xs rule: rot.induct) simp_all

20

References

1. Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited — an
Isabelle/Isar experience. In R. Boulton and P. Jackson, editors, Theorem Proving
in Higher Order Logics, TPHOLs 2001, volume 2152 of Lect. Notes in Comp. Sci.,
pages 75–90. Springer-Verlag, 2001.

2. M.C.J. Gordon, Robin Milner, and C.P. Wadsworth. Edinburgh LCF: a
Mechanised Logic of Computation, volume 78 of Lect. Notes in Comp. Sci.
Springer-Verlag, 1979.

3. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like
language, virtual machine and compiler. ACM Transactions on Programming
Languages and Systems, 28(4):619–695, 2006.

4. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci.
Springer-Verlag, 2002. http://www.in.tum.de/∼nipkow/LNCS2283/.

5. P. Rudnicki. An overview of the Mizar project. In Workshop on Types for Proofs
and Programs. Chalmers University of Technology, 1992.

6. Markus Wenzel. The Isabelle/Isar Reference Manual. Technische Universität
München, 2002. http://isabelle.in.tum.de/dist/Isabelle2002/doc/isar-ref.pdf.

7. Markus Wenzel and Freek Wiedijk. A comparison of the mathematical proof
languages Mizar and Isar. J. Automated Reasoning, pages 389–411, 2002.

21

http://www.in.tum.de/~nipkow/LNCS2283/

http://isabelle.in.tum.de/dist/Isabelle2002/doc/isar-ref.pdf

			A Tutorial Introduction to Structured Isar Proofs

			Tobias Nipkow

Isabelle2008/doc/isar-ref.pdf

λ →

∀
=Isa

be
lle

β
α

Isar

The Isabelle/Isar Reference Manual

Makarius Wenzel

With Contributions by Clemens Ballarin, Stefan Berghofer,
Lucas Dixon, Florian Haftmann, Gerwin Klein,

Alexander Krauss, Tobias Nipkow, David von Oheimb,
Larry Paulson, and Sebastian Skalberg

8 June 2008

Contents

1 Introduction 1
1.1 Overview . 1
1.2 User interfaces . 2

1.2.1 Terminal sessions . 2
1.2.2 Emacs Proof General 2

1.3 Isabelle/Isar theories . 4
1.4 How to write Isar proofs anyway? 5

2 Outer syntax 6
2.1 Lexical matters . 7
2.2 Common syntax entities . 8

2.2.1 Names . 8
2.2.2 Comments . 9
2.2.3 Type classes, sorts and arities 9
2.2.4 Types and terms . 10
2.2.5 Mixfix annotations . 11
2.2.6 Proof methods . 12
2.2.7 Attributes and theorems 14
2.2.8 Term patterns and declarations 16

3 Theory specifications 18
3.1 Defining theories . 18
3.2 Local theory targets . 19
3.3 Basic specification elements 20
3.4 Generic declarations . 22
3.5 Locales . 23

3.5.1 Locale specifications 23
3.5.2 Interpretation of locales 27

3.6 Classes . 30
3.6.1 The class target . 32
3.6.2 Old-style axiomatic type classes 33

3.7 Unrestricted overloading . 34
3.8 Incorporating ML code . 34
3.9 Primitive specification elements 36

i

CONTENTS ii

3.9.1 Type classes and sorts 36
3.9.2 Types and type abbreviations 37
3.9.3 Constants and definitions 38

3.10 Axioms and theorems . 40
3.11 Oracles . 41
3.12 Name spaces . 41
3.13 Syntax and translations . 42
3.14 Syntax translation functions 44

4 Proofs 46
4.1 Context elements . 46
4.2 Facts and forward chaining . 48
4.3 Goal statements . 50
4.4 Initial and terminal proof steps 53
4.5 Fundamental methods and attributes 55
4.6 Term abbreviations . 58
4.7 Block structure . 59
4.8 Emulating tactic scripts . 60
4.9 Omitting proofs . 61
4.10 Generalized elimination . 62
4.11 Calculational reasoning . 64
4.12 Proof by cases and induction 66

4.12.1 Rule contexts . 66
4.12.2 Proof methods . 68
4.12.3 Declaring rules . 72

5 Document preparation 74
5.1 Markup commands . 75
5.2 Antiquotations . 77
5.3 Tagged commands . 81
5.4 Draft presentation . 82

6 Other commands 84
6.1 Diagnostics . 84
6.2 Inspecting the context . 86
6.3 History commands . 88
6.4 System commands . 89

7 Generic tools and packages 90
7.1 Configuration options . 90
7.2 Basic proof tools . 91

CONTENTS iii

7.2.1 Miscellaneous methods and attributes 91
7.2.2 Low-level equational reasoning 93
7.2.3 Further tactic emulations 94

7.3 The Simplifier . 97
7.3.1 Simplification methods 97
7.3.2 Declaring rules . 99
7.3.3 Simplification procedures 99
7.3.4 Forward simplification 100

7.4 The Classical Reasoner . 101
7.4.1 Basic methods . 101
7.4.2 Automated methods 102
7.4.3 Combined automated methods 103
7.4.4 Declaring rules . 105
7.4.5 Classical operations . 106

7.5 Object-logic setup . 106

8 Isabelle/HOL 108
8.1 Primitive types . 108
8.2 Adhoc tuples . 109
8.3 Records . 110

8.3.1 Basic concepts . 110
8.3.2 Record specifications 111
8.3.3 Record operations . 112
8.3.4 Derived rules and proof tools 113

8.4 Datatypes . 114
8.5 Recursive functions . 115

8.5.1 Proof methods related to recursive definitions 117
8.5.2 Old-style recursive function definitions (TFL) 118

8.6 Inductive and coinductive definitions 120
8.6.1 Derived rules . 121
8.6.2 Monotonicity theorems 122

8.7 Arithmetic proof support . 122
8.8 Cases and induction: emulating tactic scripts 123
8.9 Executable code . 124
8.10 Definition by specification . 133

9 Isabelle/HOLCF 135
9.1 Mixfix syntax for continuous operations 135
9.2 Recursive domains . 135

CONTENTS iv

10 Isabelle/ZF 137
10.1 Type checking . 137
10.2 (Co)Inductive sets and datatypes 137

10.2.1 Set definitions . 137
10.2.2 Primitive recursive functions 139
10.2.3 Cases and induction: emulating tactic scripts 140

A Isabelle/Isar quick reference 141
A.1 Proof commands . 141

A.1.1 Primitives and basic syntax 141
A.1.2 Abbreviations and synonyms 142
A.1.3 Derived elements . 142
A.1.4 Diagnostic commands 142

A.2 Proof methods . 143
A.3 Attributes . 144
A.4 Rule declarations and methods 144
A.5 Emulating tactic scripts . 145

A.5.1 Commands . 145
A.5.2 Methods . 145

B ML tactic expressions 146
B.1 Resolution tactics . 146
B.2 Simplifier tactics . 147
B.3 Classical Reasoner tactics . 147
B.4 Miscellaneous tactics . 147
B.5 Tacticals . 148

Chapter 1

Introduction

1.1 Overview

The Isabelle system essentially provides a generic infrastructure for building
deductive systems (programmed in Standard ML), with a special focus on
interactive theorem proving in higher-order logics. In the olden days even
end-users would refer to certain ML functions (goal commands, tactics, tac-
ticals etc.) to pursue their everyday theorem proving tasks [14, 15].

In contrast Isar provides an interpreted language environment of its own,
which has been specifically tailored for the needs of theory and proof devel-
opment. Compared to raw ML, the Isabelle/Isar top-level provides a more
robust and comfortable development platform, with proper support for the-
ory development graphs, single-step transactions with unlimited undo, etc.
The Isabelle/Isar version of the Proof General user interface [1, 2] provides
an adequate front-end for interactive theory and proof development in this
advanced theorem proving environment.

Apart from the technical advances over bare-bones ML programming,
the main purpose of the Isar language is to provide a conceptually differ-
ent view on machine-checked proofs [22, 23]. “Isar” stands for “Intelligible
semi-automated reasoning”. Drawing from both the traditions of informal
mathematical proof texts and high-level programming languages, Isar offers a
versatile environment for structured formal proof documents. Thus properly
written Isar proofs become accessible to a broader audience than unstruc-
tured tactic scripts (which typically only provide operational information for
the machine). Writing human-readable proof texts certainly requires some
additional efforts by the writer to achieve a good presentation, both of formal
and informal parts of the text. On the other hand, human-readable formal
texts gain some value in their own right, independently of the mechanic
proof-checking process.

Despite its grand design of structured proof texts, Isar is able to assimilate
the old tactical style as an “improper” sub-language. This provides an easy
upgrade path for existing tactic scripts, as well as additional means for in-
teractive experimentation and debugging of structured proofs. Isabelle/Isar

1

CHAPTER 1. INTRODUCTION 2

supports a broad range of proof styles, both readable and unreadable ones.

The Isabelle/Isar framework [20] is generic and should work reasonably
well for any Isabelle object-logic that conforms to the natural deduction
view of the Isabelle/Pure framework. Specific language elements introduced
by the major object-logics are described in chapter 8 (Isabelle/HOL), chap-
ter 9 (Isabelle/HOLCF), and chapter 10 (Isabelle/ZF). The main language
elements are already provided by the Isabelle/Pure framework. Nevertheless,
examples given in the generic parts will usually refer to Isabelle/HOL as well.

Isar commands may be either proper document constructors, or improper
commands. Some proof methods and attributes introduced later are classified
as improper as well. Improper Isar language elements, which are marked
by “∗” in the subsequent chapters; they are often helpful when developing
proof documents, but their use is discouraged for the final human-readable
outcome. Typical examples are diagnostic commands that print terms or
theorems according to the current context; other commands emulate old-
style tactical theorem proving.

1.2 User interfaces

1.2.1 Terminal sessions

The Isabelle tty tool provides a very interface for running the Isar interaction
loop, with some support for command line editing. For example:

isatool tty

Welcome to Isabelle/HOL (Isabelle2008)

theory Foo imports Main begin;
definition foo :: nat where "foo == 1";
lemma "0 < foo" by (simp add: foo_def);
end;

Any Isabelle/Isar command may be retracted by undo. See the
Isabelle/Isar Quick Reference (appendix A) for a comprehensive overview
of available commands and other language elements.

1.2.2 Emacs Proof General

Plain TTY-based interaction as above used to be quite feasible with tradi-
tional tactic based theorem proving, but developing Isar documents really
demands some better user-interface support. The Proof General environ-
ment by David Aspinall [1, 2] offers a generic Emacs interface for interactive

CHAPTER 1. INTRODUCTION 3

theorem provers that organizes all the cut-and-paste and forward-backward
walk through the text in a very neat way. In Isabelle/Isar, the current po-
sition within a partial proof document is equally important than the actual
proof state. Thus Proof General provides the canonical working environment
for Isabelle/Isar, both for getting acquainted (e.g. by replaying existing Isar
documents) and for production work.

Proof General as default Isabelle interface

The Isabelle interface wrapper script provides an easy way to invoke
Proof General (including XEmacs or GNU Emacs). The default configuration
of Isabelle is smart enough to detect the Proof General distribution in several
canonical places (e.g. $ISABELLE_HOME/contrib/ProofGeneral). Thus the
capital Isabelle executable would already refer to the ProofGeneral/isar

interface without further ado. The Isabelle interface script provides several
options; pass -? to see its usage.

With the proper Isabelle interface setup, Isar documents may now be
edited by visiting appropriate theory files, e.g.

Isabelle 〈isabellehome〉/src/HOL/Isar_examples/Summation.thy

Beginners may note the tool bar for navigating forward and backward
through the text (this depends on the local Emacs installation). Consult
the Proof General documentation [1] for further basic command sequences,
in particular “C-c C-return” and “C-c u”.

Proof General may be also configured manually by giving Isabelle settings
like this (see also [24]):

ISABELLE_INTERFACE=$ISABELLE_HOME/contrib/ProofGeneral/isar/interface
PROOFGENERAL_OPTIONS=""

You may have to change $ISABELLE_HOME/contrib/ProofGeneral to the
actual installation directory of Proof General.

Apart from the Isabelle command line, defaults for interface options may
be given by the PROOFGENERAL_OPTIONS setting. For example, the Emacs
executable to be used may be configured in Isabelle’s settings like this:

PROOFGENERAL_OPTIONS="-p xemacs-mule"

Occasionally, a user’s ~/.emacs file contains code that is incompatible
with the (X)Emacs version used by Proof General, causing the interface
startup to fail prematurely. Here the -u false option helps to get the in-
terface process up and running. Note that additional Lisp customization
code may reside in proofgeneral-settings.el of $ISABELLE_HOME/etc or
$ISABELLE_HOME_USER/etc.

CHAPTER 1. INTRODUCTION 4

The X-Symbol package

Proof General incorporates a version of the Emacs X-Symbol package [19],
which handles proper mathematical symbols displayed on screen. Pass option
-x true to the Isabelle interface script, or check the appropriate Proof Gen-
eral menu setting by hand. The main challenge of getting X-Symbol to work
properly is the underlying (semi-automated) X11 font setup.

Using proper mathematical symbols in Isabelle theories can be very con-
venient for readability of large formulas. On the other hand, the plain ASCII
sources easily become somewhat unintelligible. For example, =⇒ would ap-
pear as \<Longrightarrow> according the default set of Isabelle symbols.
Nevertheless, the Isabelle document preparation system (see chapter 5) will
be happy to print non-ASCII symbols properly. It is even possible to invent
additional notation beyond the display capabilities of Emacs and X-Symbol.

1.3 Isabelle/Isar theories

Isabelle/Isar offers the following main improvements over classic Isabelle.

1. A theory format that integrates specifications and proofs, supporting
interactive development and unlimited undo operation.

2. A formal proof document language designed to support intelligible semi-
automated reasoning. Instead of putting together unreadable tactic
scripts, the author is enabled to express the reasoning in way that is
close to usual mathematical practice. The old tactical style has been
assimilated as “improper” language elements.

3. A simple document preparation system, for typesetting formal de-
velopments together with informal text. The resulting hyper-linked
PDF documents are equally well suited for WWW presentation and as
printed copies.

The Isar proof language is embedded into the new theory format as a
proper sub-language. Proof mode is entered by stating some theorem or
lemma at the theory level, and left again with the final conclusion (e.g. via
qed). A few theory specification mechanisms also require some proof, such
as HOL’s typedef which demands non-emptiness of the representing sets.

CHAPTER 1. INTRODUCTION 5

1.4 How to write Isar proofs anyway?

This is one of the key questions, of course. First of all, the tactic script emu-
lation of Isabelle/Isar essentially provides a clarified version of the very same
unstructured proof style of classic Isabelle. Old-time users should quickly
become acquainted with that (slightly degenerative) view of Isar.

Writing proper Isar proof texts targeted at human readers is quite dif-
ferent, though. Experienced users of the unstructured style may even have
to unlearn some of their habits to master proof composition in Isar. In con-
trast, new users with less experience in old-style tactical proving, but a good
understanding of mathematical proof in general, often get started easier.

The present text really is only a reference manual on Isabelle/Isar, not a
tutorial. Nevertheless, we will attempt to give some clues of how the concepts
introduced here may be put into practice. Especially note that appendix A
provides a quick reference card of the most common Isabelle/Isar language
elements.

Further issues concerning the Isar concepts are covered in the literature
[22, 25, 3, 4]. The author’s PhD thesis [23] presently provides the most
complete exposition of Isar foundations, techniques, and applications. A
number of example applications are distributed with Isabelle, and available
via the Isabelle WWW library (e.g. http://isabelle.in.tum.de/library/). The
“Archive of Formal Proofs” http://afp.sourceforge.net/ also provides plenty
of examples, both in proper Isar proof style and unstructured tactic scripts.

http://isabelle.in.tum.de/library/

http://afp.sourceforge.net/

Chapter 2

Outer syntax

The rather generic framework of Isabelle/Isar syntax emerges from three
main syntactic categories: commands of the top-level Isar engine (covering
theory and proof elements), methods for general goal refinements (analogous
to traditional “tactics”), and attributes for operations on facts (within a
certain context). Subsequently we give a reference of basic syntactic entities
underlying Isabelle/Isar syntax in a bottom-up manner. Concrete theory and
proof language elements will be introduced later on.

In order to get started with writing well-formed Isabelle/Isar documents,
the most important aspect to be noted is the difference of inner versus outer
syntax. Inner syntax is that of Isabelle types and terms of the logic, while
outer syntax is that of Isabelle/Isar theory sources (specifications and proofs).
As a general rule, inner syntax entities may occur only as atomic entities
within outer syntax. For example, the string "x + y" and identifier z are
legal term specifications within a theory, while x + y without quotes is not.

Printed theory documents usually omit quotes to gain readability (this
is a matter of LATEX macro setup, say via \isabellestyle, see also [24]).
Experienced users of Isabelle/Isar may easily reconstruct the lost technical
information, while mere readers need not care about quotes at all.

Isabelle/Isar input may contain any number of input termination char-
acters “;” (semicolon) to separate commands explicitly. This is particularly
useful in interactive shell sessions to make clear where the current command
is intended to end. Otherwise, the interpreter loop will continue to issue a
secondary prompt “#” until an end-of-command is clearly recognized from
the input syntax, e.g. encounter of the next command keyword.

More advanced interfaces such as Proof General [1] do not require explicit
semicolons, the amount of input text is determined automatically by inspect-
ing the present content of the Emacs text buffer. In the printed presentation
of Isabelle/Isar documents semicolons are omitted altogether for readability.

! Proof General requires certain syntax classification tables in order to achieve
properly synchronized interaction with the Isabelle/Isar process. These tables

need to be consistent with the Isabelle version and particular logic image to be used

6

CHAPTER 2. OUTER SYNTAX 7

in a running session (common object-logics may well change the outer syntax). The
standard setup should work correctly with any of the “official” logic images derived
from Isabelle/HOL (including HOLCF etc.). Users of alternative logics may need
to tell Proof General explicitly, e.g. by giving an option -k ZF (in conjunction with
-l ZF, to specify the default logic image). Note that option -L does both of this
at the same time.

2.1 Lexical matters

The Isabelle/Isar outer syntax provides token classes as presented below;
most of these coincide with the inner lexical syntax as presented in [15].

ident = letter quasiletter ∗

longident = ident(.ident)+

symident = sym+ | \<ident>
nat = digit+

var = ident | ?ident | ?ident.nat
typefree = ’ident
typevar = typefree | ?typefree | ?typefree.nat

string = " . . . "
altstring = ‘ . . . ‘
verbatim = {* . . . *}

letter = latin | \<latin> | \<latin latin> | greek |
\<^isub> | \<^isup>

quasiletter = letter | digit | _ | ’
latin = a | . . . | z | A | . . . | Z
digit = 0 | . . . | 9
sym = ! | # | $ | % | & | * | + | - | / |

< | = | > | ? | @ | ^ | _ | | | ~
greek = \<alpha> | \<beta> | \<gamma> | \<delta> |

\<epsilon> | \<zeta> | \<eta> | \<theta> |
\<iota> | \<kappa> | \<mu> | \<nu> |
\<xi> | \<pi> | \<rho> | \<sigma> | \<tau> |
\<upsilon> | \<phi> | \<chi> | \<psi> |
\<omega> | \<Gamma> | \<Delta> | \<Theta> |
\<Lambda> | \<Xi> | \<Pi> | \<Sigma> |
\<Upsilon> | \<Phi> | \<Psi> | \<Omega>

The syntax of string admits any characters, including newlines; “"”
(double-quote) and “\” (backslash) need to be escaped by a backslash; arbi-
trary character codes may be specified as “\ddd”, with three decimal digits.

CHAPTER 2. OUTER SYNTAX 8

Alternative strings according to altstring are analogous, using single back-
quotes instead. The body of verbatim may consist of any text not containing
“*}”; this allows convenient inclusion of quotes without further escapes. The
greek letters do not include \<lambda>, which is already used differently in
the meta-logic.

Common mathematical symbols such as ∀ are represented in Isabelle as
\<forall>. There are infinitely many Isabelle symbols like this, although
proper presentation is left to front-end tools such as LATEX or Proof General
with the X-Symbol package. A list of standard Isabelle symbols that work
well with these tools is given in [24, appendix A].

Source comments take the form (* . . . *) and may be nested, although
user-interface tools might prevent this. Note that this form indicates source
comments only, which are stripped after lexical analysis of the input. The
Isar document syntax also provides formal comments that are considered as
part of the text (see §2.2.2).

2.2 Common syntax entities

We now introduce several basic syntactic entities, such as names, terms, and
theorem specifications, which are factored out of the actual Isar language
elements to be described later.

2.2.1 Names

Entity name usually refers to any name of types, constants, theorems etc.
that are to be declared or defined (so qualified identifiers are excluded here).
Quoted strings provide an escape for non-identifier names or those ruled out
by outer syntax keywords (e.g. quoted "let"). Already existing objects are
usually referenced by nameref .

name

ident
�� ��

� symident
�� �� string
�� ��nat
�� �

�

parname

(
���name

�� �)
���

CHAPTER 2. OUTER SYNTAX 9

nameref

name
�� ��

� longident
�� �

�

int

nat
�� ��

� -
���nat

�� �
�

2.2.2 Comments

Large chunks of plain text are usually given verbatim, i.e. enclosed in
{* . . . *}. For convenience, any of the smaller text units conforming to
nameref are admitted as well. A marginal comment is of the form -- text.
Any number of these may occur within Isabelle/Isar commands.

text

verbatim
�� ��

�nameref
�� �

�

comment

--
�� �text

�� �
2.2.3 Type classes, sorts and arities

Classes are specified by plain names. Sorts have a very simple inner syntax,
which is either a single class name c or a list {c1, . . ., cn} referring to the
intersection of these classes. The syntax of type arities is given directly at
the outer level.

classdecl

name
�� ��

� <
����

�⊆
�� �

�

nameref
�� ��

� ,
���

�

�

CHAPTER 2. OUTER SYNTAX 10

sort

nameref
�� �

arity

�
� (

��� sort�
� ,

���
�

)
���

�

sort

2.2.4 Types and terms

The actual inner Isabelle syntax, that of types and terms of the logic, is far
too sophisticated in order to be modelled explicitly at the outer theory level.
Basically, any such entity has to be quoted to turn it into a single token (the
parsing and type-checking is performed internally later). For convenience, a
slightly more liberal convention is adopted: quotes may be omitted for any
type or term that is already atomic at the outer level. For example, one
may just write x instead of quoted "x". Note that symbolic identifiers (e.g.
++ or ∀ are available as well, provided these have not been superseded by
commands or other keywords already (such as = or +).

type

nameref
�� ��

� typefree
�� �� typevar
�� �

�

term

nameref
�� ��

�var
�� �

�

prop

term
�� �

Positional instantiations are indicated by giving a sequence of terms, or
the placeholder “ ” (underscore), which means to skip a position.

CHAPTER 2. OUTER SYNTAX 11

inst

_
����

� term
�� �

�

insts

�
� inst

�

Type declarations and definitions usually refer to typespec on the left-hand
side. This models basic type constructor application at the outer syntax level.
Note that only plain postfix notation is available here, but no infixes.

typespec

�
� typefree

�� �� (
��� typefree

�� ��
� ,

���
�

)
���

�

name
�� �

2.2.5 Mixfix annotations

Mixfix annotations specify concrete inner syntax of Isabelle types and terms.
Some commands such as types (see §3.9.2) admit infixes only, while consts
(see §3.9.3) and syntax (see §3.13) support the full range of general mixfixes
and binders.

infix

(
��� infix

�� ��
�infixl

�� ��infixr
�� �

�

�
� string

�� �
�

nat
�� �)

���

CHAPTER 2. OUTER SYNTAX 12

mixfix

infix�
� (

���string
�� ��

�prios

�

�
�nat

�� �
�

)
���

� (
���binder

�� �string
�� ��

�prios

�

nat
�� �)

���

�

structmixfix

mixfix�
� (

���structure
�� �)

���
�

prios

[
��� nat

�� ��
� ,

���
�

]
���

Here the string specifications refer to the actual mixfix template (see also
[15]), which may include literal text, spacing, blocks, and arguments (denoted
by “ ”); the special symbol “\<index>” (printed as “ı”) represents an index
argument that specifies an implicit structure reference (see also §3.5). Infix
and binder declarations provide common abbreviations for particular mixfix
declarations. So in practice, mixfix templates mostly degenerate to literal
text for concrete syntax, such as “++” for an infix symbol, or “++ı” for an
infix of an implicit structure.

2.2.6 Proof methods

Proof methods are either basic ones, or expressions composed of methods
via “,” (sequential composition), “|” (alternative choices), “?” (try), “+”
(repeat at least once), “[n]” (restriction to first n sub-goals, with default
n = 1). In practice, proof methods are usually just a comma separated list
of nameref args specifications. Note that parentheses may be dropped for
single method specifications (with no arguments).

CHAPTER 2. OUTER SYNTAX 13

method

nameref
�� ��

� (
���methods)

���
�

�
� ?

���� +
���� [
����

�nat
�� �

�

]
���

�

methods

nameref
�� �args�

�method

�

�
� ,

����
� |

���
�

�

Proper Isar proof methods do not admit arbitrary goal addressing, but
refer either to the first sub-goal or all sub-goals uniformly. The goal restric-
tion operator “[n]” evaluates a method expression within a sandbox consist-
ing of the first n sub-goals (which need to exist). For example, the method
“simp all [3]” simplifies the first three sub-goals, while “(rule foo, simp all)[]”
simplifies all new goals that emerge from applying rule foo to the originally
first one.

Improper methods, notably tactic emulations, offer a separate low-level
goal addressing scheme as explicit argument to the individual tactic being
involved. Here “[!]” refers to all goals, and “[n−]” to all goals starting from
n.

goalspec

[
��� nat

�� �-
���nat

�� ��
�nat

�� �-
����nat

�� �� !
���

�

]
���

CHAPTER 2. OUTER SYNTAX 14

2.2.7 Attributes and theorems

Attributes (and proof methods, see §2.2.6) have their own “semi-inner” syn-
tax, in the sense that input conforming to args below is parsed by the at-
tribute a second time. The attribute argument specifications may be any
sequence of atomic entities (identifiers, strings etc.), or properly bracketed
argument lists. Below atom refers to any atomic entity, including any key-
word conforming to symident.

atom

nameref
�� ��

� typefree
�� �� typevar
�� ��var
�� ��nat
�� ��keyword
�� �

�

arg

atom
�� ��

� (
���args)

���� [
���args]

���

�

args

�
�arg

�

attributes

[
����

� nameref
�� �args�

� ,
���

�

�

]
���

Theorem specifications come in several flavors: axmdecl and thmdecl usu-
ally refer to axioms, assumptions or results of goal statements, while thmdef

CHAPTER 2. OUTER SYNTAX 15

collects lists of existing theorems. Existing theorems are given by thmref and
thmrefs , the former requires an actual singleton result.

There are three forms of theorem references:

1. named facts a,

2. selections from named facts a(i) or a(j − k),

3. literal fact propositions using altstring syntax ‘ϕ‘ (see also method
fact in §4.5).

Any kind of theorem specification may include lists of attributes both
on the left and right hand sides; attributes are applied to any immediately
preceding fact. If names are omitted, the theorems are not stored within the
theorem database of the theory or proof context, but any given attributes
are applied nonetheless.

An extra pair of brackets around attributes (like “[[simproc a]]”) abbre-
viates a theorem reference involving an internal dummy fact, which will be
ignored later on. So only the effect of the attribute on the background con-
text will persist. This form of in-place declarations is particularly useful with
commands like declare and using.

axmdecl

name
�� ��

�attributes

�

:
���

thmdecl

thmbind :
���

thmdef

thmbind =
���

thmref

nameref
�� ��

� selection

�

�
�altstring

�

�
�attributes

�

�

� [
���attributes]

���

�

CHAPTER 2. OUTER SYNTAX 16

thmrefs

thmref�
�

�

thmbind

name
�� �attributes�

�name
�� ��attributes

�

selection

(
��� nat

�� ��
�nat

�� �-
����

�nat
�� �

�

�

�

� ,
���

�

)
���

2.2.8 Term patterns and declarations

Wherever explicit propositions (or term fragments) occur in a proof text,
casual binding of schematic term variables may be given specified via patterns
of the form “(is p1 . . . pn)”. This works both for term and prop.

termpat

(
��� is

�� �term
�� ��

�
�

)
���

proppat

(
��� is

�� �prop
�� ��

�
�

)
���

Declarations of local variables x :: τ and logical propositions a : ϕ rep-
resent different views on the same principle of introducing a local scope. In
practice, one may usually omit the typing of vars (due to type-inference),

CHAPTER 2. OUTER SYNTAX 17

and the naming of propositions (due to implicit references of current facts).
In any case, Isar proof elements usually admit to introduce multiple such
items simultaneously.

vars

name
�� ��

�
�

�
�::

�� �type
�� �

�

props

�
� thmdecl

�

prop
�� ��

�proppat

�

�
�

�

The treatment of multiple declarations corresponds to the complementary
focus of vars versus props . In “x 1 . . . xn :: τ” the typing refers to all variables,
while in a: ϕ1 . . . ϕn the naming refers to all propositions collectively. Isar
language elements that refer to vars or props typically admit separate typings
or namings via another level of iteration, with explicit and separators; e.g.
see fix and assume in §4.1.

Chapter 3

Theory specifications

3.1 Defining theories

theory : toplevel → theory
end : theory → toplevel

Isabelle/Isar theories are defined via theory file, which contain both spec-
ifications and proofs; occasionally definitional mechanisms also require some
explicit proof. The theory body may be sub-structered by means of local
theory target mechanisms, notably locale and class.

The first “real” command of any theory has to be theory, which starts a
new theory based on the merge of existing ones. Just preceding the theory
keyword, there may be an optional header declaration, which is relevant
to document preparation only; it acts very much like a special pre-theory
markup command (cf. §5.1). The end command concludes a theory devel-
opment; it has to be the very last command of any theory file loaded in
batch-mode.

theory
�� �name

�� �imports
�� � name

�� ��
�

�

�
�uses

�

begin
�� �

uses

uses
�� � name

�� ��
�parname

�

�
�

�

theory A imports B1 . . . Bn begin starts a new theory A based on the
merge of existing theories B1 . . . Bn .

Due to inclusion of several ancestors, the overall theory structure
emerging in an Isabelle session forms a directed acyclic graph (DAG).

18

CHAPTER 3. THEORY SPECIFICATIONS 19

Isabelle’s theory loader ensures that the sources contributing to the
development graph are always up-to-date. Changed files are automat-
ically reloaded when processing theory headers.

The optional uses specification declares additional dependencies on
extra files (usually ML sources). Files will be loaded immediately (as
ML), unless the name is put in parentheses, which merely documents
the dependency to be resolved later in the text (typically via explicit
use in the body text, see §3.8).

end concludes the current theory definition.

3.2 Local theory targets

A local theory target is a context managed separately within the enclosing
theory. Contexts may introduce parameters (fixed variables) and assump-
tions (hypotheses). Definitions and theorems depending on the context may
be added incrementally later on. Named contexts refer to locales (cf. §3.5)
or type classes (cf. §3.6); the name “−” signifies the global theory context.

context : theory → local-theory
end : local-theory → theory

context
�� �name

�� �begin
�� �

target

(
���in

�� �name
�� �)

���
context c begin recommences an existing locale or class context c. Note

that locale and class definitions allow to include the begin keyword as
well, in order to continue the local theory immediately after the initial
specification.

end concludes the current local theory and continues the enclosing global
theory. Note that a global end has a different meaning: it concludes
the theory itself (§3.1).

CHAPTER 3. THEORY SPECIFICATIONS 20

(in c) given after any local theory command specifies an immediate target,
e.g. “definition (in c) . . .” or “theorem (in c) . . .”. This works both
in a local or global theory context; the current target context will be
suspended for this command only. Note that “(in −)” will always
produce a global result independently of the current target context.

The exact meaning of results produced within a local theory context
depends on the underlying target infrastructure (locale, type class etc.). The
general idea is as follows, considering a context named c with parameter x
and assumption A[x].

Definitions are exported by introducing a global version with additional
arguments; a syntactic abbreviation links the long form with the abstract
version of the target context. For example, a ≡ t [x] becomes c.a ?x ≡ t [?x]
at the theory level (for arbitrary ?x), together with a local abbreviation c ≡
c.a x in the target context (for the fixed parameter x).

Theorems are exported by discharging the assumptions and generalizing
the parameters of the context. For example, a: B [x] becomes c.a: A[?x] =⇒
B [?x], again for arbitrary ?x.

3.3 Basic specification elements

axiomatization : local-theory → local-theory (axiomatic!)
definition : local-theory → local-theory

defn : attribute
abbreviation : local-theory → local-theory

print abbrevs∗ : theory | proof → theory | proof
notation : local-theory → local-theory

no notation : local-theory → local-theory

These specification mechanisms provide a slightly more abstract view
than the underlying primitives of consts, defs (see §3.9.3), and axioms (see
§3.10). In particular, type-inference is commonly available, and result names
need not be given.

axiomatization
�� ��

� target

�

�
�fixes

�

�
�where

�� �specs

�

definition
�� ��

� target

�

�
�decl where

�� �
�

�
� thmdecl

�

prop
�� �

CHAPTER 3. THEORY SPECIFICATIONS 21

abbreviation
�� ��

� target

�

�
�mode

�

�
�decl where

�� �
�

prop
�� �

notation
�� ��

�no notation
�� �

�

�
� target

�

�
�mode

�

nameref
�� �structmixfix�

� and
�� �

�

fixes

name
�� ��

�::
�� �type

�� �
�

�
�mixfix

�

�
�vars

�

�

� and
�� �

�

specs

�
� thmdecl

�

props�
� and

�� �

�

decl

name
�� ��

�::
�� �type

�� �
�

�
�mixfix

�

axiomatization c1 . . . cm where ϕ1 . . . ϕn introduces several constants
simultaneously and states axiomatic properties for these. The con-
stants are marked as being specified once and for all, which prevents
additional specifications being issued later on.

Note that axiomatic specifications are only appropriate when declaring
a new logical system. Normal applications should only use definitional
mechanisms!

definition c where eq produces an internal definition c ≡ t according to
the specification given as eq, which is then turned into a proven fact.
The given proposition may deviate from internal meta-level equality
according to the rewrite rules declared as defn by the object-logic.

CHAPTER 3. THEORY SPECIFICATIONS 22

This usually covers object-level equality x = y and equivalence A ↔
B. End-users normally need not change the defn setup.

Definitions may be presented with explicit arguments on the LHS, as
well as additional conditions, e.g. f x y = t instead of f ≡ λx y . t and
y 6= 0 =⇒ g x y = u instead of an unrestricted g ≡ λx y . u.

abbreviation c where eq introduces a syntactic constant which is associ-
ated with a certain term according to the meta-level equality eq.

Abbreviations participate in the usual type-inference process, but are
expanded before the logic ever sees them. Pretty printing of terms in-
volves higher-order rewriting with rules stemming from reverted abbre-
viations. This needs some care to avoid overlapping or looping syntactic
replacements!

The optional mode specification restricts output to a particular print
mode; using “input” here achieves the effect of one-way abbreviations.
The mode may also include an “output” qualifier that affects the con-
crete syntax declared for abbreviations, cf. syntax in §3.13.

print abbrevs prints all constant abbreviations of the current context.

notation c (mx) associates mixfix syntax with an existing constant or fixed
variable. This is a robust interface to the underlying syntax primitive
(§3.13). Type declaration and internal syntactic representation of the
given entity is retrieved from the context.

no notation is similar to notation, but removes the specified syntax an-
notation from the present context.

All of these specifications support local theory targets (cf. §3.2).

3.4 Generic declarations

Arbitrary operations on the background context may be wrapped-up as
generic declaration elements. Since the underlying concept of local theories
may be subject to later re-interpretation, there is an additional dependency
on a morphism that tells the difference of the original declaration context
wrt. the application context encountered later on. A fact declaration is an
important special case: it consists of a theorem which is applied to the con-
text by means of an attribute.

declaration : local-theory → local-theory
declare : local-theory → local-theory

CHAPTER 3. THEORY SPECIFICATIONS 23

declaration
�� ��

� target

�

text
�� �

declare
�� ��

� target

�

thmrefs�
� and

�� �
�

declaration d adds the declaration function d of ML type declaration,
to the current local theory under construction. In later application
contexts, the function is transformed according to the morphisms being
involved in the interpretation hierarchy.

declare thms declares theorems to the current local theory context. No
theorem binding is involved here, unlike theorems or lemmas (cf.
§3.10), so declare only has the effect of applying attributes as included
in the theorem specification.

3.5 Locales

Locales are named local contexts, consisting of a list of declaration elements
that are modeled after the Isar proof context commands (cf. §4.1).

3.5.1 Locale specifications

locale : theory → local-theory
print locale∗ : theory | proof → theory | proof

print locales∗ : theory | proof → theory | proof
intro locales : method

unfold locales : method

locale
�� ��

�(open)
�� �

�

name
�� ��

� =
���localeexpr

�

�
�begin

�� �
�

print locale
�� ��

� !
���

�

localeexpr

CHAPTER 3. THEORY SPECIFICATIONS 24

localeexpr

contextexpr +
��� contextelem�

�
�

�
� contextexpr

� contextelem�
�

�

�

contextexpr

nameref
�� ��

� (
���contextexpr)

���� contextexpr name
�� ��

�mixfix

�

�
�

�

� contextexpr�
� +

���
�

�

contextelem

fixes�
� constrains

�assumes

�defines

�notes

�

fixes

fixes
�� � name

�� ��
�::

�� �type
�� �

�

�
� structmixfix

�

�
�vars

�

�

� and
�� �

�

CHAPTER 3. THEORY SPECIFICATIONS 25

constrains

constrains
�� � name

�� �::
�� �type

�� ��
� and

�� �
�

assumes

assumes
�� � �

� thmdecl

�

props�
� and

�� �

�

defines

defines
�� � �

� thmdecl

�

prop
�� ��

�proppat

�

�
� and

�� �

�

notes

notes
�� � �

� thmdef

�

thmrefs�
� and

�� �

�

includes

includes
�� �contextexpr

locale loc = import + body defines a new locale loc as a context consisting
of a certain view of existing locales (import) plus some additional ele-
ments (body). Both import and body are optional; the degenerate form
locale loc defines an empty locale, which may still be useful to collect
declarations of facts later on. Type-inference on locale expressions au-
tomatically takes care of the most general typing that the combined
context elements may acquire.

The import consists of a structured context expression, consisting of
references to existing locales, renamed contexts, or merged contexts.
Renaming uses positional notation: c x 1 . . . xn means that (a pre-
fix of) the fixed parameters of context c are named x 1, . . ., xn ; a
“ ” (underscore) means to skip that position. Renaming by default

CHAPTER 3. THEORY SPECIFICATIONS 26

deletes concrete syntax, but new syntax may by specified with a mix-
fix annotation. An exeption of this rule is the special syntax declared
with “(structure)” (see below), which is neither deleted nor can it be
changed. Merging proceeds from left-to-right, suppressing any dupli-
cates stemming from different paths through the import hierarchy.

The body consists of basic context elements, further context expressions
may be included as well.

fixes x :: τ (mx) declares a local parameter of type τ and mixfix an-
notation mx (both are optional). The special syntax declaration
“(structure)” means that x may be referenced implicitly in this
context.

constrains x :: τ introduces a type constraint τ on the local parame-
ter x.

assumes a: ϕ1 . . . ϕn introduces local premises, similar to assume
within a proof (cf. §4.1).

defines a: x ≡ t defines a previously declared parameter. This is sim-
ilar to def within a proof (cf. §4.1), but defines takes an equa-
tional proposition instead of variable-term pair. The left-hand side
of the equation may have additional arguments, e.g. “defines f x 1

. . . xn ≡ t”.

notes a = b1 . . . bn reconsiders facts within a local context. Most
notably, this may include arbitrary declarations in any attribute
specifications included here, e.g. a local simp rule.

includes c copies the specified context in a statically scoped manner.
Only available in the long goal format of §4.3.

In contrast, the initial import specification of a locale expression
maintains a dynamic relation to the locales being referenced (ben-
efiting from any later fact declarations in the obvious manner).

Note that “(is p1 . . . pn)” patterns given in the syntax of assumes and
defines above are illegal in locale definitions. In the long goal format
of §4.3, term bindings may be included as expected, though.

By default, locale specifications are “closed up” by turning the given
text into a predicate definition loc axioms and deriving the original
assumptions as local lemmas (modulo local definitions). The predicate
statement covers only the newly specified assumptions, omitting the
content of included locale expressions. The full cumulative view is only

CHAPTER 3. THEORY SPECIFICATIONS 27

provided on export, involving another predicate loc that refers to the
complete specification text.

In any case, the predicate arguments are those locale parameters that
actually occur in the respective piece of text. Also note that these
predicates operate at the meta-level in theory, but the locale packages
attempts to internalize statements according to the object-logic setup
(e.g. replacing

∧
by ∀ , and =⇒ by −→ in HOL; see also §7.5). Separate

introduction rules loc axioms .intro and loc.intro are provided as well.

The (open) option of a locale specification prevents both the current
loc axioms and cumulative loc predicate constructions. Predicates are
also omitted for empty specification texts.

print locale import + body prints the specified locale expression in a flat-
tened form. The notable special case print locale loc just prints the
contents of the named locale, but keep in mind that type-inference will
normalize type variables according to the usual alphabetical order. The
command omits notes elements by default. Use print locale! to get
them included.

print locales prints the names of all locales of the current theory.

intro locales and unfold locales repeatedly expand all introduction rules of
locale predicates of the theory. While intro locales only applies the
loc.intro introduction rules and therefore does not decend to assump-
tions, unfold locales is more aggressive and applies loc axioms .intro as
well. Both methods are aware of locale specifications entailed by the
context, both from target and includes statements, and from interpre-
tations (see below). New goals that are entailed by the current context
are discharged automatically.

3.5.2 Interpretation of locales

Locale expressions (more precisely, context expressions) may be instantiated,
and the instantiated facts added to the current context. This requires a proof
of the instantiated specification and is called locale interpretation. Interpre-
tation is possible in theories and locales (command interpretation) and also
within a proof body (command interpret).

interpretation : theory → proof (prove)
interpret : proof (state) | proof (chain) → proof (prove)

print interps∗ : theory | proof → theory | proof

CHAPTER 3. THEORY SPECIFICATIONS 28

interpretation
�� � interp�

�name
�� � <

����
�⊆

�� �
�

contextexpr

�

interpret
�� �interp

print interps
�� ��

� !
���

�

name
�� �

instantiation

�
� [

��� inst�
�

�

]
���

�

interp

�
� thmdecl

�

�
�

� contextexpr instantiation�
�name

�� �instantiation where
�� � �

� thmdecl

�

prop
�� ��

� and
�� �

�

�

interpretation expr insts where eqns The first form of interpretation
interprets expr in the theory. The instantiation is given as a list of
terms insts and is positional. All parameters must receive an instanti-
ation term — with the exception of defined parameters. These are, if
omitted, derived from the defining equation and other instantiations.
Use “ ” to omit an instantiation term.

The command generates proof obligations for the instantiated specifi-
cations (assumes and defines elements). Once these are discharged by

CHAPTER 3. THEORY SPECIFICATIONS 29

the user, instantiated facts are added to the theory in a post-processing
phase.

Additional equations, which are unfolded in facts during post-
processing, may be given after the keyword where. This is useful
for interpreting concepts introduced through definition specification el-
ements. The equations must be proved. Note that if equations are
present, the context expression is restricted to a locale name.

The command is aware of interpretations already active in the theory.
No proof obligations are generated for those, neither is post-processing
applied to their facts. This avoids duplication of interpreted facts, in
particular. Note that, in the case of a locale with import, parts of the
interpretation may already be active. The command will only generate
proof obligations and process facts for new parts.

The context expression may be preceded by a name and/or attributes.
These take effect in the post-processing of facts. The name is used to
prefix fact names, for example to avoid accidental hiding of other facts.
Attributes are applied after attributes of the interpreted facts.

Adding facts to locales has the effect of adding interpreted facts to
the theory for all active interpretations also. That is, interpretations
dynamically participate in any facts added to locales.

interpretation name ⊆ expr This form of the command interprets expr in
the locale name. It requires a proof that the specification of name
implies the specification of expr. As in the localized version of the
theorem command, the proof is in the context of name. After the
proof obligation has been dischared, the facts of expr become part of
locale name as derived context elements and are available when the
context name is subsequently entered. Note that, like import, this
is dynamic: facts added to a locale part of expr after interpretation
become also available in name. Like facts of renamed context elements,
facts obtained by interpretation may be accessed by prefixing with the
parameter renaming (where the parameters are separated by “ ”).

Unlike interpretation in theories, instantiation is confined to the re-
naming of parameters, which may be specified as part of the context
expression expr. Using defined parameters in name one may achieve
an effect similar to instantiation, though.

Only specification fragments of expr that are not already part of name
(be it imported, derived or a derived fragment of the import) are con-
sidered by interpretation. This enables circular interpretations.

CHAPTER 3. THEORY SPECIFICATIONS 30

If interpretations of name exist in the current theory, the command
adds interpretations for expr as well, with the same prefix and at-
tributes, although only for fragments of expr that are not interpreted
in the theory already.

interpret expr insts where eqns interprets expr in the proof context and
is otherwise similar to interpretation in theories.

print interps loc prints the interpretations of a particular locale loc that
are active in the current context, either theory or proof context. The
exclamation point argument triggers printing of witness theorems jus-
tifying interpretations. These are normally omitted from the output.

! Since attributes are applied to interpreted theorems, interpretation may mod-
ify the context of common proof tools, e.g. the Simplifier or Classical Reasoner.

Since the behavior of such automated reasoning tools is not stable under interpre-
tation morphisms, manual declarations might have to be issued.

! An interpretation in a theory may subsume previous interpretations. This
happens if the same specification fragment is interpreted twice and the instan-

tiation of the second interpretation is more general than the interpretation of the
first. A warning is issued, since it is likely that these could have been general-
ized in the first place. The locale package does not attempt to remove subsumed
interpretations.

3.6 Classes

A class is a particular locale with exactly one type variable α. Beyond the
underlying locale, a corresponding type class is established which is inter-
preted logically as axiomatic type class [21] whose logical content are the
assumptions of the locale. Thus, classes provide the full generality of locales
combined with the commodity of type classes (notably type-inference). See
[6] for a short tutorial.

class : theory → local-theory
instantiation : theory → local-theory

instance : local-theory → local-theory
subclass : local-theory → local-theory

print classes∗ : theory | proof → theory | proof
intro classes : method

CHAPTER 3. THEORY SPECIFICATIONS 31

class
�� �name

�� �=
��� superclassexpr +

��� contextelem�
�

�

�
� superclassexpr

� contextelem�
�

�

�

�

�
��

�begin
�� �

�

instantiation
�� � nameref

�� ��
� and

�� �
�

::
�� �arity begin

�� �

instance
�� �
subclass

�� ��
� target

�

nameref
�� �

print classes
�� �

superclassexpr

nameref
�� ��

�nameref
�� �+

���superclassexpr

�

class c = superclasses + body defines a new class c, inheriting from super-
classes. This introduces a locale c with import of all locales super-
classes.

Any fixes in body are lifted to the global theory level (class opera-
tions f 1, . . ., f n of class c), mapping the local type parameter α to a
schematic type variable ?α :: c.

Likewise, assumes in body are also lifted, mapping each local parame-
ter f :: τ [α] to its corresponding global constant f :: τ [?α :: c]. The cor-
responding introduction rule is provided as c class axioms .intro. This

CHAPTER 3. THEORY SPECIFICATIONS 32

rule should be rarely needed directly — the intro classes method takes
care of the details of class membership proofs.

instantiation t :: (s1, . . ., sn) s begin opens a theory target (cf. §3.2)
which allows to specify class operations f 1, . . ., f n corresponding to
sort s at the particular type instance (α1 :: s1, . . ., αn :: sn) t. A plain
instance command in the target body poses a goal stating these type
arities. The target is concluded by an end command.

Note that a list of simultaneous type constructors may be given;
this corresponds nicely to mutual recursive type definitions, e.g. in
Isabelle/HOL.

instance in an instantiation target body sets up a goal stating the type
arities claimed at the opening instantiation. The proof would usually
proceed by intro classes , and then establish the characteristic theorems
of the type classes involved. After finishing the proof, the background
theory will be augmented by the proven type arities.

subclass c in a class context for class d sets up a goal stating that class c is
logically contained in class d. After finishing the proof, class d is proven
to be subclass c and the locale c is interpreted into d simultaneously.

print classes prints all classes in the current theory.

intro classes repeatedly expands all class introduction rules of this theory.
Note that this method usually needs not be named explicitly, as it is
already included in the default proof step (e.g. of proof). In particular,
instantiation of trivial (syntactic) classes may be performed by a single
“..” proof step.

3.6.1 The class target

A named context may refer to a locale (cf. §3.2). If this locale is also a class
c, apart from the common locale target behaviour the following happens.

• Local constant declarations g [α] referring to the local type parameter
α and local parameters f [α] are accompanied by theory-level constants
g [?α :: c] referring to theory-level class operations f [?α :: c].

• Local theorem bindings are lifted as are assumptions.

CHAPTER 3. THEORY SPECIFICATIONS 33

• Local syntax refers to local operations g [α] and global operations g [?α
:: c] uniformly. Type inference resolves ambiguities. In rare cases,
manual type annotations are needed.

3.6.2 Old-style axiomatic type classes

axclass : theory → theory
instance : theory → proof (prove)

Axiomatic type classes are Isabelle/Pure’s primitive definitional interface
to type classes. For practical applications, you should consider using classes
(cf. §3.9.1) which provide high level interface.

axclass
�� �classdecl axmdecl prop

�� ��
�

�

instance
�� � nameref

�� � <
����

�⊆
�� �

�

nameref
�� ��

�nameref
�� �::

�� �arity

�

axclass c ⊆ c1, . . ., cn axms defines an axiomatic type class as the inter-
section of existing classes, with additional axioms holding. Class ax-
ioms may not contain more than one type variable. The class axioms
(with implicit sort constraints added) are bound to the given names.
Furthermore a class introduction rule is generated (being bound as c
class .intro); this rule is employed by method intro classes to support
instantiation proofs of this class.

The “class axioms” are stored as theorems according to the given name
specifications, adding c class as name space prefix; the same facts are
also stored collectively as c class .axioms.

instance c1 ⊆ c2 and instance t :: (s1, . . ., sn) s setup a goal stating a
class relation or type arity. The proof would usually proceed by
intro classes , and then establish the characteristic theorems of the type
classes involved. After finishing the proof, the theory will be augmented
by a type signature declaration corresponding to the resulting theorem.

CHAPTER 3. THEORY SPECIFICATIONS 34

3.7 Unrestricted overloading

Isabelle/Pure’s definitional schemes support certain forms of overloading (see
§3.9.3). At most occassions overloading will be used in a Haskell-like fashion
together with type classes by means of instantiation (see §3.6). Sometimes
low-level overloading is desirable. The overloading target provides a con-
venient view for end-users.

overloading : theory → local-theory

overloading
�� ��

�
� string

�� � ==
�� ��

�≡
�� �

�

term
�� ��

� (
���unchecked

�� �)
���

�

�
�

�

begin
�� �

overloading x 1 ≡ c1 :: τ 1 and . . . xn ≡ cn :: τn begin opens a theory
target (cf. §3.2) which allows to specify constants with overloaded
definitions. These are identified by an explicitly given mapping from
variable names x i to constants ci at particular type instances. The def-
initions themselves are established using common specification tools,
using the names x i as reference to the corresponding constants. The
target is concluded by end.

A (unchecked) option disables global dependency checks for the corre-
sponding definition, which is occasionally useful for exotic overloading.
It is at the discretion of the user to avoid malformed theory specifica-
tions!

3.8 Incorporating ML code

use : theory | local-theory → theory | local-theory
ML : theory | local-theory → theory | local-theory

ML val : · → ·
ML command : · → ·

setup : theory → theory
method setup : theory → theory

CHAPTER 3. THEORY SPECIFICATIONS 35

use
�� �name

�� �
ML

�� ��
�ML val

�� ��ML command
�� ��setup
�� �

�

text
�� �

method setup
�� �name

�� �=
���text

�� �text
�� �

use file reads and executes ML commands from file. The current theory
context is passed down to the ML toplevel and may be modified, using
"Context.>>" or derived ML commands. The file name is checked
with the uses dependency declaration given in the theory header (see
also §3.1).

ML text is similar to use, but executes ML commands directly from the
given text.

ML val and ML command are diagnostic versions of ML, which means
that the context may not be updated. ML val echos the bindings
produced at the ML toplevel, but ML command is silent.

setup text changes the current theory context by applying text, which refers
to an ML expression of type "theory -> theory". This enables to
initialize any object-logic specific tools and packages written in ML,
for example.

method setup name = text description defines a proof method in the cur-
rent theory. The given text has to be an ML expression of type
"Args.src ->

Proof.context -> Proof.method". Parsing concrete method syn-
tax from Args.src input can be quite tedious in general. The following
simple examples are for methods without any explicit arguments, or a
list of theorems, respectively.

Method.no_args (Method.METHOD (fn facts => foobar_tac))
Method.thms_args (fn thms => Method.METHOD (fn facts => foobar_tac))
Method.ctxt_args (fn ctxt => Method.METHOD (fn facts => foobar_tac))
Method.thms_ctxt_args (fn thms => fn ctxt =>

Method.METHOD (fn facts => foobar_tac))

CHAPTER 3. THEORY SPECIFICATIONS 36

Note that mere tactic emulations may ignore the facts parameter above.
Proper proof methods would do something appropriate with the list of
current facts, though. Single-rule methods usually do strict forward-
chaining (e.g. by using Drule.multi_resolves), while automatic ones
just insert the facts using Method.insert_tac before applying the
main tactic.

3.9 Primitive specification elements

3.9.1 Type classes and sorts

classes : theory → theory
classrel : theory → theory (axiomatic!)

defaultsort : theory → theory
class deps∗ : theory | proof → theory | proof

classes
�� � classdecl�

�
�

classrel
�� � nameref

�� � <
����

�⊆
�� �

�

nameref
�� ��

� and
�� �

�

defaultsort
�� �sort

classes c ⊆ c1, . . ., cn declares class c to be a subclass of existing classes
c1, . . ., cn . Cyclic class structures are not permitted.

classrel c1 ⊆ c2 states subclass relations between existing classes c1 and
c2. This is done axiomatically! The instance command (see §3.6.2)
provides a way to introduce proven class relations.

defaultsort s makes sort s the new default sort for any type variables
given without sort constraints. Usually, the default sort would be only
changed when defining a new object-logic.

class deps visualizes the subclass relation, using Isabelle’s graph browser
tool (see also [24]).

CHAPTER 3. THEORY SPECIFICATIONS 37

3.9.2 Types and type abbreviations

types : theory → theory
typedecl : theory → theory

nonterminals : theory → theory
arities : theory → theory (axiomatic!)

types
�� � typespec =

���type
�� ��

� infix

�

�
�

�

typedecl
�� �typespec �

� infix

�

nonterminals
�� � name

�� ��
�

�

arities
�� � nameref

�� �::
�� �arity�

�
�

types (α1, . . ., αn) t = τ introduces type synonym (α1, . . ., αn) t for ex-
isting type τ . Unlike actual type definitions, as are available in
Isabelle/HOL for example, type synonyms are just purely syntactic ab-
breviations without any logical significance. Internally, type synonyms
are fully expanded.

typedecl (α1, . . ., αn) t declares a new type constructor t, intended as an
actual logical type (of the object-logic, if available).

nonterminals c declares type constructors c (without arguments) to act
as purely syntactic types, i.e. nonterminal symbols of Isabelle’s inner
syntax of terms or types.

arities t :: (s1, . . ., sn) s augments Isabelle’s order-sorted signature of
types by new type constructor arities. This is done axiomatically!
The instance command (see §3.6.2) provides a way to introduce
proven type arities.

CHAPTER 3. THEORY SPECIFICATIONS 38

3.9.3 Constants and definitions

Definitions essentially express abbreviations within the logic. The simplest
form of a definition is c :: σ ≡ t, where c is a newly declared constant.
Isabelle also allows derived forms where the arguments of c appear on the
left, abbreviating a prefix of λ-abstractions, e.g. c ≡ λx y . t may be written
more conveniently as c x y ≡ t. Moreover, definitions may be weakened by
adding arbitrary pre-conditions: A =⇒ c x y ≡ t.

The built-in well-formedness conditions for definitional specifications are:

• Arguments (on the left-hand side) must be distinct variables.

• All variables on the right-hand side must also appear on the left-hand
side.

• All type variables on the right-hand side must also appear on the left-
hand side; this prohibits 0 :: nat ≡ length ([] :: α list) for example.

• The definition must not be recursive. Most object-logics provide defi-
nitional principles that can be used to express recursion safely.

Overloading means that a constant being declared as c :: α decl may
be defined separately on type instances c :: (β1, . . ., βn) t decl for each
type constructor t. The right-hand side may mention overloaded constants
recursively at type instances corresponding to the immediate argument types
β1, . . ., βn . Incomplete specification patterns impose global constraints on all
occurrences, e.g. d :: α × α on the left-hand side means that all corresponding
occurrences on some right-hand side need to be an instance of this, general
d :: α × β will be disallowed.

consts : theory → theory
defs : theory → theory

constdefs : theory → theory

consts
�� � name

�� �::
�� �type

�� ��
�mixfix

�

�
�

�

CHAPTER 3. THEORY SPECIFICATIONS 39

defs
�� ��

� (
����

�unchecked
�� �

�

�
�overloaded

�� �
�

)
���

�

�

�
� axmdecl prop

�� ��
�

�

constdefs
�� ��

� structs

�

�
� constdecl

�

constdef�
�

�

structs

(
���structure

�� � vars�
� and

�� �
�

)
���

constdecl

name
�� �::

�� �type
�� �mixfix�

�name
�� �::

�� �type
�� ��name

�� �mixfix

�

�
�where

�� �
�

�

�name
�� �where

�� �

�

constdef

�
� thmdecl

�

prop
�� �

consts c :: σ declares constant c to have any instance of type scheme σ.
The optional mixfix annotations may attach concrete syntax to the
constants declared.

defs name: eqn introduces eqn as a definitional axiom for some existing con-
stant.

CHAPTER 3. THEORY SPECIFICATIONS 40

The (unchecked) option disables global dependency checks for this def-
inition, which is occasionally useful for exotic overloading. It is at the
discretion of the user to avoid malformed theory specifications!

The (overloaded) option declares definitions to be potentially over-
loaded. Unless this option is given, a warning message would be issued
for any definitional equation with a more special type than that of the
corresponding constant declaration.

constdefs provides a streamlined combination of constants declarations and
definitions: type-inference takes care of the most general typing of the
given specification (the optional type constraint may refer to type-
inference dummies “ ” as usual). The resulting type declaration needs
to agree with that of the specification; overloading is not supported
here!

The constant name may be omitted altogether, if neither type nor
syntax declarations are given. The canonical name of the definitional
axiom for constant c will be c def, unless specified otherwise. Also note
that the given list of specifications is processed in a strictly sequential
manner, with type-checking being performed independently.

An optional initial context of (structure) declarations admits use of
indexed syntax, using the special symbol \<index> (printed as “ı”).
The latter concept is particularly useful with locales (see also §3.5).

3.10 Axioms and theorems

axioms : theory → theory (axiomatic!)
lemmas : local-theory → local-theory

theorems : local-theory → local-theory

axioms
�� � axmdecl prop

�� ��
�

�

lemmas
�� ��

�theorems
�� �

�

�
� target

�

�
� thmdef

�

thmrefs�
� and

�� �

�

CHAPTER 3. THEORY SPECIFICATIONS 41

axioms a: ϕ introduces arbitrary statements as axioms of the meta-logic.
In fact, axioms are “axiomatic theorems”, and may be referred later
just as any other theorem.

Axioms are usually only introduced when declaring new logical systems.
Everyday work is typically done the hard way, with proper definitions
and proven theorems.

lemmas a = b1 . . . bn retrieves and stores existing facts in the theory con-
text, or the specified target context (see also §3.2). Typical applications
would also involve attributes, to declare Simplifier rules, for example.

theorems is essentially the same as lemmas, but marks the result as a
different kind of facts.

3.11 Oracles

oracle : theory → theory

The oracle interface promotes a given ML function theory -> T -> term

to theory -> T -> thm, for some type T given by the user. This acts like an
infinitary specification of axioms – there is no internal check of the correctness
of the results! The inference kernel records oracle invocations within the
internal derivation object of theorems, and the pretty printer attaches “[!]”
to indicate results that are not fully checked by Isabelle inferences.

oracle
�� �name

�� �(
���type

�� �)
���=

���text
�� �

oracle name (type) = text turns the given ML expression text of
type theory -> type -> term into an ML function of type
theory -> type -> thm, which is bound to the global identifier name.

3.12 Name spaces

global : theory → theory
local : theory → theory
hide : theory → theory

CHAPTER 3. THEORY SPECIFICATIONS 42

hide
�� ��

�(open)
�� �

�

name
�� � nameref

�� ��
�

�

Isabelle organizes any kind of name declarations (of types, constants,
theorems etc.) by separate hierarchically structured name spaces. Normally
the user does not have to control the behavior of name spaces by hand, yet
the following commands provide some way to do so.

global and local change the current name declaration mode. Initially, theo-
ries start in local mode, causing all names to be automatically qualified
by the theory name. Changing this to global causes all names to be
declared without the theory prefix, until local is declared again.

Note that global names are prone to get hidden accidently later, when
qualified names of the same base name are introduced.

hide space names fully removes declarations from a given name space
(which may be class, type, const, or fact); with the (open) option,
only the base name is hidden. Global (unqualified) names may never
be hidden.

Note that hiding name space accesses has no impact on logical dec-
larations – they remain valid internally. Entities that are no longer
accessible to the user are printed with the special qualifier “??” pre-
fixed to the full internal name.

3.13 Syntax and translations

syntax : theory → theory
no syntax : theory → theory

translations : theory → theory
no translations : theory → theory

syntax
�� ��

�no syntax
�� �

�

�
�mode

�

constdecl�
�

�

CHAPTER 3. THEORY SPECIFICATIONS 43

translations
�� ��

�no translations
�� �

�

transpat ==
�� ��

�=>
�� ��<=
�� ��⇀↽
�� ��⇀
�� ��↽
�� �

�

transpat�

�

�

mode

(
��� name

�� ��
�output

�� ��name
�� �output

�� �

�

)
���

transpat

�
� (

���nameref
�� �)

���
�

string
�� �

syntax (mode) decls is similar to consts decls, except that the actual logi-
cal signature extension is omitted. Thus the context free grammar of
Isabelle’s inner syntax may be augmented in arbitrary ways, indepen-
dently of the logic. The mode argument refers to the print mode that
the grammar rules belong; unless the output indicator is given, all
productions are added both to the input and output grammar.

no syntax (mode) decls removes grammar declarations (and translations)
resulting from decls, which are interpreted in the same manner as for
syntax above.

translations rules specifies syntactic translation rules (i.e. macros): parse /
print rules (⇀↽), parse rules (⇀), or print rules (↽). Translation pat-
terns may be prefixed by the syntactic category to be used for parsing;
the default is logic.

no translations rules removes syntactic translation rules, which are inter-
preted in the same manner as for translations above.

CHAPTER 3. THEORY SPECIFICATIONS 44

3.14 Syntax translation functions

parse ast translation : theory → theory
parse translation : theory → theory
print translation : theory → theory

typed print translation : theory → theory
print ast translation : theory → theory

token translation : theory → theory

parse ast translation
�� ��

�parse translation
�� ��print translation
�� ��typed print translation
�� ��print ast translation
�� �

�

�
�(advanced)

�� �
�

text
�� �

token translation
�� �text

�� �
Syntax translation functions written in ML admit almost arbitrary ma-

nipulations of Isabelle’s inner syntax. Any of the above commands have a
single text argument that refers to an ML expression of appropriate type,
which are as follows by default:

val parse_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list
val typed_print_translation :
(string * (bool -> typ -> term list -> term)) list

val print_ast_translation : (string * (ast list -> ast)) list
val token_translation :
(string * string * (string -> string * real)) list

If the (advanced) option is given, the corresponding translation functions
may depend on the current theory or proof context. This allows to implement
advanced syntax mechanisms, as translations functions may refer to specific
theory declarations or auxiliary proof data.

See also [15, §8] for more information on the general concept of syntax
transformations in Isabelle.

CHAPTER 3. THEORY SPECIFICATIONS 45

val parse_ast_translation:
(string * (Proof.context -> ast list -> ast)) list

val parse_translation:
(string * (Proof.context -> term list -> term)) list

val print_translation:
(string * (Proof.context -> term list -> term)) list

val typed_print_translation:
(string * (Proof.context -> bool -> typ -> term list -> term)) list

val print_ast_translation:
(string * (Proof.context -> ast list -> ast)) list

Chapter 4

Proofs

Proof commands perform transitions of Isar/VM machine configurations,
which are block-structured, consisting of a stack of nodes with three main
components: logical proof context, current facts, and open goals. Isar/VM
transitions are typed according to the following three different modes of op-
eration:

proof (prove) means that a new goal has just been stated that is now to be
proven; the next command may refine it by some proof method, and
enter a sub-proof to establish the actual result.

proof (state) is like a nested theory mode: the context may be augmented by
stating additional assumptions, intermediate results etc.

proof (chain) is intermediate between proof (state) and proof (prove): exist-
ing facts (i.e. the contents of the special “this” register) have been just
picked up in order to be used when refining the goal claimed next.

The proof mode indicator may be read as a verb telling the writer what
kind of operation may be performed next. The corresponding typings of
proof commands restricts the shape of well-formed proof texts to particular
command sequences. So dynamic arrangements of commands eventually turn
out as static texts of a certain structure. Appendix A gives a simplified
grammar of the overall (extensible) language emerging that way.

4.1 Context elements

fix : proof (state) → proof (state)
assume : proof (state) → proof (state)

presume : proof (state) → proof (state)
def : proof (state) → proof (state)

The logical proof context consists of fixed variables and assumptions. The
former closely correspond to Skolem constants, or meta-level universal quan-
tification as provided by the Isabelle/Pure logical framework. Introducing

46

CHAPTER 4. PROOFS 47

some arbitrary, but fixed variable via “fix x” results in a local value that may
be used in the subsequent proof as any other variable or constant. Further-
more, any result ` ϕ[x] exported from the context will be universally closed
wrt. x at the outermost level: ` ∧

x . ϕ[x] (this is expressed in normal form
using Isabelle’s meta-variables).

Similarly, introducing some assumption χ has two effects. On the one
hand, a local theorem is created that may be used as a fact in subsequent
proof steps. On the other hand, any result χ ` ϕ exported from the context
becomes conditional wrt. the assumption: ` χ =⇒ ϕ. Thus, solving an
enclosing goal using such a result would basically introduce a new subgoal
stemming from the assumption. How this situation is handled depends on
the version of assumption command used: while assume insists on solving
the subgoal by unification with some premise of the goal, presume leaves
the subgoal unchanged in order to be proved later by the user.

Local definitions, introduced by “def x ≡ t”, are achieved by combining
“fix x” with another version of assumption that causes any hypothetical
equation x ≡ t to be eliminated by the reflexivity rule. Thus, exporting
some result x ≡ t ` ϕ[x] yields ` ϕ[t].

fix
�� � vars�

� and
�� �

�

assume
�� ��

�presume
�� �

�

props�
� and

�� �
�

def
�� � def�

�and
�� �

�

def

�
� thmdecl

�

�
�

�name
�� � ==

�� ��
�≡

�� �
�

term
�� ��

� termpat

�

CHAPTER 4. PROOFS 48

fix x introduces a local variable x that is arbitrary, but fixed.

assume a: ϕ and presume a: ϕ introduce a local fact ϕ ` ϕ by assump-
tion. Subsequent results applied to an enclosing goal (e.g. by show) are
handled as follows: assume expects to be able to unify with existing
premises in the goal, while presume leaves ϕ as new subgoals.

Several lists of assumptions may be given (separated by and; the re-
sulting list of current facts consists of all of these concatenated.

def x ≡ t introduces a local (non-polymorphic) definition. In results ex-
ported from the context, x is replaced by t. Basically, “def x ≡ t”
abbreviates “fix x assume x ≡ t”, with the resulting hypothetical
equation solved by reflexivity.

The default name for the definitional equation is x def. Several simul-
taneous definitions may be given at the same time.

The special name prems refers to all assumptions of the current context
as a list of theorems. This feature should be used with great care! It is better
avoided in final proof texts.

4.2 Facts and forward chaining

note : proof (state) → proof (state)
then : proof (state) → proof (chain)
from : proof (state) → proof (chain)
with : proof (state) → proof (chain)

using : proof (prove) → proof (prove)
unfolding : proof (prove) → proof (prove)

New facts are established either by assumption or proof of local state-
ments. Any fact will usually be involved in further proofs, either as explicit
arguments of proof methods, or when forward chaining towards the next
goal via then (and variants); from and with are composite forms involving
note. The using elements augments the collection of used facts after a goal
has been stated. Note that the special theorem name this refers to the most
recently established facts, but only before issuing a follow-up claim.

note
�� � �

� thmdef

�

thmrefs�
� and

�� �

�

CHAPTER 4. PROOFS 49

from
�� ��

�with
�� ��using
�� ��unfolding
�� �

�

thmrefs�
� and

�� �
�

note a = b1 . . . bn recalls existing facts b1, . . ., bn , binding the result as a.
Note that attributes may be involved as well, both on the left and right
hand sides.

then indicates forward chaining by the current facts in order to establish the
goal to be claimed next. The initial proof method invoked to refine that
will be offered the facts to do “anything appropriate” (see also §4.4).
For example, method rule (see §4.5) would typically do an elimination
rather than an introduction. Automatic methods usually insert the
facts into the goal state before operation. This provides a simple scheme
to control relevance of facts in automated proof search.

from b abbreviates “note b then”; thus then is equivalent to “from this”.

with b1 . . . bn abbreviates “from b1 . . . bn and this”; thus the forward
chaining is from earlier facts together with the current ones.

using b1 . . . bn augments the facts being currently indicated for use by a
subsequent refinement step (such as apply or proof).

unfolding b1 . . . bn is structurally similar to using, but unfolds definitional
equations b1, . . . bn throughout the goal state and facts.

Forward chaining with an empty list of theorems is the same as not
chaining at all. Thus “from nothing” has no effect apart from entering
prove(chain) mode, since nothing is bound to the empty list of theorems.

Basic proof methods (such as rule) expect multiple facts to be given
in their proper order, corresponding to a prefix of the premises of the rule
involved. Note that positions may be easily skipped using something like
from and a and b, for example. This involves the trivial rule PROP ψ
=⇒ PROP ψ, which is bound in Isabelle/Pure as “ ” (underscore).

Automated methods (such as simp or auto) just insert any given facts
before their usual operation. Depending on the kind of procedure involved,
the order of facts is less significant here.

CHAPTER 4. PROOFS 50

4.3 Goal statements

lemma : local-theory → proof (prove)
theorem : local-theory → proof (prove)
corollary : local-theory → proof (prove)

have : proof (state) | proof (chain) → proof (prove)
show : proof (state) | proof (chain) → proof (prove)

hence : proof (state) → proof (prove)
thus : proof (state) → proof (prove)

print statement∗ : theory | proof → theory | proof

From a theory context, proof mode is entered by an initial goal command
such as lemma, theorem, or corollary. Within a proof, new claims may
be introduced locally as well; four variants are available here to indicate
whether forward chaining of facts should be performed initially (via then),
and whether the final result is meant to solve some pending goal.

Goals may consist of multiple statements, resulting in a list of facts even-
tually. A pending multi-goal is internally represented as a meta-level con-
junction (printed as &&), which is usually split into the corresponding num-
ber of sub-goals prior to an initial method application, via proof (§4.4) or
apply (§4.8). The induct method covered in §4.12 acts on multiple claims
simultaneously.

Claims at the theory level may be either in short or long form. A short
goal merely consists of several simultaneous propositions (often just one). A
long goal includes an explicit context specification for the subsequent conclu-
sion, involving local parameters and assumptions. Here the role of each part
of the statement is explicitly marked by separate keywords (see also §3.5); the
local assumptions being introduced here are available as assms in the proof.
Moreover, there are two kinds of conclusions: shows states several simul-
taneous propositions (essentially a big conjunction), while obtains claims
several simultaneous simultaneous contexts of (essentially a big disjunction
of eliminated parameters and assumptions, cf. §4.10).

lemma
�� ��

�theorem
�� ��corollary
�� �

�

�
� target

�

goal�
� longgoal

�

CHAPTER 4. PROOFS 51

have
�� ��

�show
�� ��hence
�� ��thus
�� �

�

goal

print statement
�� ��

�modes

�

thmrefs

goal

props�
� and

�� �
�

longgoal

�
� thmdecl

�

�
� contextelem

�

conclusion

conclusion

shows
�� �goal�

�obtains
�� � �

�parname

�

case�
� |

���

�

�

case

vars�
� and

�� �
�

where
�� � props�

� and
�� �

�

lemma a: ϕ enters proof mode with ϕ as main goal, eventually resulting in
some fact ` ϕ to be put back into the target context. An additional
context specification may build up an initial proof context for the sub-
sequent claim; this includes local definitions and syntax as well, see the
definition of contextelem in §3.5.

CHAPTER 4. PROOFS 52

theorem a: ϕ and corollary a: ϕ are essentially the same as lemma a: ϕ,
but the facts are internally marked as being of a different kind. This
discrimination acts like a formal comment.

have a: ϕ claims a local goal, eventually resulting in a fact within the cur-
rent logical context. This operation is completely independent of any
pending sub-goals of an enclosing goal statements, so have may be
freely used for experimental exploration of potential results within a
proof body.

show a: ϕ is like have a: ϕ plus a second stage to refine some pending sub-
goal for each one of the finished result, after having been exported into
the corresponding context (at the head of the sub-proof of this show
command).

To accommodate interactive debugging, resulting rules are printed be-
fore being applied internally. Even more, interactive execution of show
predicts potential failure and displays the resulting error as a warning
beforehand. Watch out for the following message:

Problem! Local statement will fail to solve any pending goal

hence abbreviates “then have”, i.e. claims a local goal to be proven by
forward chaining the current facts. Note that hence is also equivalent
to “from this have”.

thus abbreviates “then show”. Note that thus is also equivalent to
“from this show”.

print statement a prints facts from the current theory or proof context in
long statement form, according to the syntax for lemma given above.

Any goal statement causes some term abbreviations (such as ?thesis) to
be bound automatically, see also §4.6.

The optional case names of obtains have a twofold meaning: (1) during
the of this claim they refer to the the local context introductions, (2) the
resulting rule is annotated accordingly to support symbolic case splits when
used with the cases method (cf. §4.12).

! Isabelle/Isar suffers theory-level goal statements to contain unbound schematic
variables, although this does not conform to the aim of human-readable proof

documents! The main problem with schematic goals is that the actual outcome is

CHAPTER 4. PROOFS 53

usually hard to predict, depending on the behavior of the proof methods applied
during the course of reasoning. Note that most semi-automated methods heavily
depend on several kinds of implicit rule declarations within the current theory
context. As this would also result in non-compositional checking of sub-proofs,
local goals are not allowed to be schematic at all. Nevertheless, schematic goals
do have their use in Prolog-style interactive synthesis of proven results, usually
by stepwise refinement via emulation of traditional Isabelle tactic scripts (see also
§4.8). In any case, users should know what they are doing.

4.4 Initial and terminal proof steps

proof : proof (prove) → proof (state)
qed : proof (state) → proof (state) | theory
by : proof (prove) → proof (state) | theory
.. : proof (prove) → proof (state) | theory
. : proof (prove) → proof (state) | theory

sorry : proof (prove) → proof (state) | theory

Arbitrary goal refinement via tactics is considered harmful. Structured
proof composition in Isar admits proof methods to be invoked in two places
only.

1. An initial refinement step proof m1 reduces a newly stated goal to a
number of sub-goals that are to be solved later. Facts are passed to m1

for forward chaining, if so indicated by proof (chain) mode.

2. A terminal conclusion step qed m2 is intended to solve remaining goals.
No facts are passed to m2.

The only other (proper) way to affect pending goals in a proof body is by
show, which involves an explicit statement of what is to be solved eventually.
Thus we avoid the fundamental problem of unstructured tactic scripts that
consist of numerous consecutive goal transformations, with invisible effects.

As a general rule of thumb for good proof style, initial proof methods
should either solve the goal completely, or constitute some well-understood
reduction to new sub-goals. Arbitrary automatic proof tools that are prone
leave a large number of badly structured sub-goals are no help in continuing
the proof document in an intelligible manner.

Unless given explicitly by the user, the default initial method is “rule”,
which applies a single standard elimination or introduction rule according to
the topmost symbol involved. There is no separate default terminal method.
Any remaining goals are always solved by assumption in the very last step.

CHAPTER 4. PROOFS 54

proof
�� ��

�method

�

qed
�� ��

�method

�

by
�� �method �

�method

�

.
����

�..
�� ��sorry
�� �

�

proof m1 refines the goal by proof method m1; facts for forward chaining
are passed if so indicated by proof (chain) mode.

qed m2 refines any remaining goals by proof method m2 and concludes the
sub-proof by assumption. If the goal had been show (or thus), some
pending sub-goal is solved as well by the rule resulting from the result
exported into the enclosing goal context. Thus qed may fail for two
reasons: either m2 fails, or the resulting rule does not fit to any pend-
ing goal1 of the enclosing context. Debugging such a situation might
involve temporarily changing show into have, or weakening the local
context by replacing occurrences of assume by presume.

by m1 m2 is a terminal proof ; it abbreviates proof m1 qed m2, but with
backtracking across both methods. Debugging an unsuccessful by m1

m2 command can be done by expanding its definition; in many cases
proof m1 (or even apply m1) is already sufficient to see the problem.

“..” is a default proof ; it abbreviates by rule.

“.” is a trivial proof ; it abbreviates by this.

1This includes any additional “strong” assumptions as introduced by assume.

CHAPTER 4. PROOFS 55

sorry is a fake proof pretending to solve the pending claim without fur-
ther ado. This only works in interactive development, or if the
quick_and_dirty flag is enabled (in ML). Facts emerging from fake
proofs are not the real thing. Internally, each theorem container is
tainted by an oracle invocation, which is indicated as “[!]” in the printed
result.

The most important application of sorry is to support experimentation
and top-down proof development.

4.5 Fundamental methods and attributes

The following proof methods and attributes refer to basic logical operations
of Isar. Further methods and attributes are provided by several generic and
object-logic specific tools and packages (see chapter 7 and chapter 8).

− : method
fact : method

assumption : method
this : method
rule : method

iprover : method

intro : attribute
elim : attribute
dest : attribute
rule : attribute

OF : attribute
of : attribute

where : attribute

fact
�� ��

� thmrefs

�

rule
�� ��

� thmrefs

�

CHAPTER 4. PROOFS 56

iprover
�� ��

� !
���

�

�
� rulemod

�

rulemod

intro
�� ��

�elim
�� ��dest
�� �

�

!
����

�
� ?

���

�

�
�nat

�� �
�

�

�del
�� �

�

:
���thmrefs

intro
�� ��

�elim
�� ��dest
�� �

�

!
����

�
� ?

���

�

�
�nat

�� �
�

rule
�� �del

�� �
OF

�� �thmrefs

of
�� �insts �

�concl
�� �:

���insts

�

where
�� ��

� name
�� ��

�var
�� �� typefree
�� �� typevar
�� �

�

=
��� type

�� ��
� term

�� �
�

�

� and
�� �

�

�

“−” (minus) does nothing but insert the forward chaining facts as premises
into the goal. Note that command proof without any method actually

CHAPTER 4. PROOFS 57

performs a single reduction step using the rule method; thus a plain
do-nothing proof step would be “proof −” rather than proof alone.

fact a1 . . . an composes some fact from a1, . . ., an (or implicitly from the
current proof context) modulo unification of schematic type and term
variables. The rule structure is not taken into account, i.e. meta-level
implication is considered atomic. This is the same principle underlying
literal facts (cf. §2.2.7): “have ϕ by fact” is equivalent to “note ‘ϕ‘”
provided that ` ϕ is an instance of some known ` ϕ in the proof
context.

assumption solves some goal by a single assumption step. All given facts are
guaranteed to participate in the refinement; this means there may be
only 0 or 1 in the first place. Recall that qed (§4.4) already concludes
any remaining sub-goals by assumption, so structured proofs usually
need not quote the assumption method at all.

this applies all of the current facts directly as rules. Recall that “.” (dot)
abbreviates “by this”.

rule a1 . . . an applies some rule given as argument in backward manner;
facts are used to reduce the rule before applying it to the goal. Thus
rule without facts is plain introduction, while with facts it becomes
elimination.

When no arguments are given, the rule method tries to pick appropriate
rules automatically, as declared in the current context using the intro,
elim, dest attributes (see below). This is the default behavior of proof
and “..” (double-dot) steps (see §4.4).

iprover performs intuitionistic proof search, depending on specifically de-
clared rules from the context, or given as explicit arguments. Chained
facts are inserted into the goal before commencing proof search;
“iprover !” means to include the current prems as well.

Rules need to be classified as intro, elim, or dest ; here the “!” indica-
tor refers to “safe” rules, which may be applied aggressively (without
considering back-tracking later). Rules declared with “?” are ignored
in proof search (the single-step rule method still observes these). An
explicit weight annotation may be given as well; otherwise the number
of rule premises will be taken into account here.

intro, elim, and dest declare introduction, elimination, and destruct rules,
to be used with the rule and iprover methods. Note that the latter will
ignore rules declared with “?”, while “!” are used most aggressively.

CHAPTER 4. PROOFS 58

The classical reasoner (see §7.4) introduces its own variants of these
attributes; use qualified names to access the present versions of
Isabelle/Pure, i.e. Pure.intro.

rule del undeclares introduction, elimination, or destruct rules.

OF a1 . . . an applies some theorem to all of the given rules a1, . . ., an (in
parallel). This corresponds to the "op MRS" operation in ML, but note
the reversed order. Positions may be effectively skipped by including
“ ” (underscore) as argument.

of t1 . . . tn performs positional instantiation of term variables. The terms
t1, . . ., tn are substituted for any schematic variables occurring in a
theorem from left to right; “ ” (underscore) indicates to skip a position.
Arguments following a “concl :” specification refer to positions of the
conclusion of a rule.

where x 1 = t1 and . . . xn = tn performs named instantiation of schematic
type and term variables occurring in a theorem. Schematic variables
have to be specified on the left-hand side (e.g. ?x1.3). The question
mark may be omitted if the variable name is a plain identifier without
index. As type instantiations are inferred from term instantiations,
explicit type instantiations are seldom necessary.

4.6 Term abbreviations

let : proof (state) → proof (state)
is : syntax

Abbreviations may be either bound by explicit let p ≡ t statements, or
by annotating assumptions or goal statements with a list of patterns “(is
p1 . . . pn)”. In both cases, higher-order matching is invoked to bind extra-
logical term variables, which may be either named schematic variables of the
form ?x, or nameless dummies “ ” (underscore). Note that in the let form
the patterns occur on the left-hand side, while the is patterns are in postfix
position.

Polymorphism of term bindings is handled in Hindley-Milner style, similar
to ML. Type variables referring to local assumptions or open goal statements
are fixed, while those of finished results or bound by let may occur in arbitrary
instances later. Even though actual polymorphism should be rarely used in

CHAPTER 4. PROOFS 59

practice, this mechanism is essential to achieve proper incremental type-
inference, as the user proceeds to build up the Isar proof text from left to
right.

Term abbreviations are quite different from local definitions as introduced
via def (see §4.1). The latter are visible within the logic as actual equations,
while abbreviations disappear during the input process just after type check-
ing. Also note that def does not support polymorphism.

let
�� � term

�� ��
� and

�� �
�

=
���term

�� ��
� and

�� �

�

The syntax of is patterns follows termpat or proppat (see §2.2.8).

let p1 = t1 and . . . pn = tn binds any text variables in patterns p1, . . ., pn

by simultaneous higher-order matching against terms t1, . . ., tn .

(is p1 . . . pn) resembles let, but matches p1, . . ., pn against the preceding
statement. Also note that is is not a separate command, but part of
others (such as assume, have etc.).

Some implicit term abbreviations for goals and facts are available as well.
For any open goal, thesis refers to its object-level statement, abstracted over
any meta-level parameters (if present). Likewise, this is bound for fact state-
ments resulting from assumptions or finished goals. In case this refers to
an object-logic statement that is an application f t, then t is bound to the
special text variable “. . .” (three dots). The canonical application of this
convenience are calculational proofs (see §4.11).

4.7 Block structure

next : proof (state) → proof (state)
{ : proof (state) → proof (state)
} : proof (state) → proof (state)

While Isar is inherently block-structured, opening and closing blocks is
mostly handled rather casually, with little explicit user-intervention. Any lo-
cal goal statement automatically opens two internal blocks, which are closed
again when concluding the sub-proof (by qed etc.). Sections of different

CHAPTER 4. PROOFS 60

context within a sub-proof may be switched via next, which is just a single
block-close followed by block-open again. The effect of next is to reset the
local proof context; there is no goal focus involved here!

For slightly more advanced applications, there are explicit block paren-
theses as well. These typically achieve a stronger forward style of reasoning.

next switches to a fresh block within a sub-proof, resetting the local context
to the initial one.

{ and } explicitly open and close blocks. Any current facts pass through
“{” unchanged, while “}” causes any result to be exported into the
enclosing context. Thus fixed variables are generalized, assumptions
discharged, and local definitions unfolded (cf. §4.1). There is no differ-
ence of assume and presume in this mode of forward reasoning — in
contrast to plain backward reasoning with the result exported at show
time.

4.8 Emulating tactic scripts

The Isar provides separate commands to accommodate tactic-style proof
scripts within the same system. While being outside the orthodox Isar proof
language, these might come in handy for interactive exploration and debug-
ging, or even actual tactical proof within new-style theories (to benefit from
document preparation, for example). See also §7.2.3 for actual tactics, that
have been encapsulated as proof methods. Proper proof methods may be
used in scripts, too.

apply∗ : proof (prove) → proof (prove)
apply end∗ : proof (state) → proof (state)

done∗ : proof (prove) → proof (state)
defer∗ : proof → proof

prefer∗ : proof → proof
back∗ : proof → proof

apply
�� ��

�apply end
�� �

�

method

defer
�� ��

�nat
�� �

�

CHAPTER 4. PROOFS 61

prefer
�� �nat

�� �
apply m applies proof method m in initial position, but unlike proof it

retains “proof (prove)” mode. Thus consecutive method applications
may be given just as in tactic scripts.

Facts are passed to m as indicated by the goal’s forward-chain mode,
and are consumed afterwards. Thus any further apply command would
always work in a purely backward manner.

apply end m applies proof method m as if in terminal position. Basically,
this simulates a multi-step tactic script for qed, but may be given
anywhere within the proof body.

No facts are passed to m here. Furthermore, the static context is that of
the enclosing goal (as for actual qed). Thus the proof method may not
refer to any assumptions introduced in the current body, for example.

done completes a proof script, provided that the current goal state is solved
completely. Note that actual structured proof commands (e.g. “.” or
sorry) may be used to conclude proof scripts as well.

defer n and prefer n shuffle the list of pending goals: defer puts off sub-
goal n to the end of the list (n = 1 by default), while prefer brings
sub-goal n to the front.

back does back-tracking over the result sequence of the latest proof com-
mand. Basically, any proof command may return multiple results.

Any proper Isar proof method may be used with tactic script commands
such as apply. A few additional emulations of actual tactics are provided as
well; these would be never used in actual structured proofs, of course.

4.9 Omitting proofs

oops : proof → theory

The oops command discontinues the current proof attempt, while con-
sidering the partial proof text as properly processed. This is conceptually
quite different from “faking” actual proofs via sorry (see §4.4): oops does
not observe the proof structure at all, but goes back right to the theory
level. Furthermore, oops does not produce any result theorem — there is no
intended claim to be able to complete the proof anyhow.

CHAPTER 4. PROOFS 62

A typical application of oops is to explain Isar proofs within the system
itself, in conjunction with the document preparation tools of Isabelle de-
scribed in [24]. Thus partial or even wrong proof attempts can be discussed
in a logically sound manner. Note that the Isabelle LATEX macros can be
easily adapted to print something like “. . .” instead of the keyword “oops”.

The oops command is undo-able, unlike kill (see §6.3). The effect is to
get back to the theory just before the opening of the proof.

4.10 Generalized elimination

obtain : proof (state) → proof (prove)
guess∗ : proof (state) → proof (prove)

Generalized elimination means that additional elements with certain
properties may be introduced in the current context, by virtue of a locally
proven “soundness statement”. Technically speaking, the obtain language
element is like a declaration of fix and assume (see also see §4.1), together
with a soundness proof of its additional claim. According to the nature of
existential reasoning, assumptions get eliminated from any result exported
from the context later, provided that the corresponding parameters do not
occur in the conclusion.

obtain
�� ��

�parname

�

vars�
� and

�� �
�

where
�� � props�

� and
�� �

�

guess
�� � vars�

� and
�� �

�

The derived Isar command obtain is defined as follows (where b1, . . ., bk

CHAPTER 4. PROOFS 63

shall refer to (optional) facts indicated for forward chaining).

〈using b1 . . . bk〉 obtain x 1 . . . xm where a: ϕ1 . . . ϕn 〈proof 〉 ≡
have

∧
thesis . (

∧
x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis) =⇒ thesis

proof succeed
fix thesis
assume that [Pure.intro?]:

∧
x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis

then show thesis
apply −
using b1 . . . bk 〈proof 〉

qed
fix x 1 . . . xm assume∗ a: ϕ1 . . . ϕn

Typically, the soundness proof is relatively straight-forward, often just by
canonical automated tools such as “by simp” or “by blast”. Accordingly, the
“that” reduction above is declared as simplification and introduction rule.

In a sense, obtain represents at the level of Isar proofs what would be
meta-logical existential quantifiers and conjunctions. This concept has a
broad range of useful applications, ranging from plain elimination (or in-
troduction) of object-level existential and conjunctions, to elimination over
results of symbolic evaluation of recursive definitions, for example. Also note
that obtain without parameters acts much like have, where the result is
treated as a genuine assumption.

An alternative name to be used instead of “that” above may be given in
parentheses.

The improper variant guess is similar to obtain, but derives the obtained
statement from the course of reasoning! The proof starts with a fixed goal
thesis. The subsequent proof may refine this to anything of the form like∧

x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis, but must not introduce new subgoals.
The final goal state is then used as reduction rule for the obtain scheme
described above. Obtained parameters x 1, . . ., xm are marked as internal
by default, which prevents the proof context from being polluted by ad-hoc
variables. The variable names and type constraints given as arguments for
guess specify a prefix of obtained parameters explicitly in the text.

It is important to note that the facts introduced by obtain and guess
may not be polymorphic: any type-variables occurring here are fixed in the
present context!

CHAPTER 4. PROOFS 64

4.11 Calculational reasoning

also : proof (state) → proof (state)
finally : proof (state) → proof (chain)

moreover : proof (state) → proof (state)
ultimately : proof (state) → proof (chain)

print trans rules∗ : theory | proof → theory | proof
trans : attribute
sym : attribute

symmetric : attribute

Calculational proof is forward reasoning with implicit application of tran-
sitivity rules (such those of =, ≤, <). Isabelle/Isar maintains an auxil-
iary fact register calculation for accumulating results obtained by transitiv-
ity composed with the current result. Command also updates calculation
involving this , while finally exhibits the final calculation by forward chain-
ing towards the next goal statement. Both commands require valid current
facts, i.e. may occur only after commands that produce theorems such as
assume, note, or some finished proof of have, show etc. The moreover
and ultimately commands are similar to also and finally, but only collect
further results in calculation without applying any rules yet.

Also note that the implicit term abbreviation “. . .” has its canonical appli-
cation with calculational proofs. It refers to the argument of the preceding
statement. (The argument of a curried infix expression happens to be its
right-hand side.)

Isabelle/Isar calculations are implicitly subject to block structure in the
sense that new threads of calculational reasoning are commenced for any
new block (as opened by a local goal, for example). This means that, apart
from being able to nest calculations, there is no separate begin-calculation
command required.

The Isar calculation proof commands may be defined as follows:2

also0 ≡ note calculation = this
alson+1 ≡ note calculation = trans [OF calculation this]

finally ≡ also from calculation

moreover ≡ note calculation = calculation this
ultimately ≡ moreover from calculation

2We suppress internal bookkeeping such as proper handling of block-structure.

CHAPTER 4. PROOFS 65

also
�� ��

�finally
�� �

�

�
� (

���thmrefs)
���

�

trans
�� ��

�add
�� ��del
�� �

�

also (a1 . . . an) maintains the auxiliary calculation register as follows.
The first occurrence of also in some calculational thread initializes
calculation by this . Any subsequent also on the same level of block-
structure updates calculation by some transitivity rule applied to
calculation and this (in that order). Transitivity rules are picked from
the current context, unless alternative rules are given as explicit argu-
ments.

finally (a1 . . . an) maintaining calculation in the same way as also, and
concludes the current calculational thread. The final result is ex-
hibited as fact for forward chaining towards the next goal. Basi-
cally, finally just abbreviates also from calculation. Typical idioms
for concluding calculational proofs are “finally show ?thesis .” and
“finally have ϕ .”.

moreover and ultimately are analogous to also and finally, but collect
results only, without applying rules.

print trans rules prints the list of transitivity rules (for calculational com-
mands also and finally) and symmetry rules (for the symmetric oper-
ation and single step elimination patters) of the current context.

trans declares theorems as transitivity rules.

sym declares symmetry rules, as well as Pure.elim? rules.

symmetric resolves a theorem with some rule declared as sym in the cur-
rent context. For example, “assume [symmetric]: x = y” produces a
swapped fact derived from that assumption.

In structured proof texts it is often more appropriate to use an explicit
single-step elimination proof, such as “assume x = y then have y =
x ..”.

CHAPTER 4. PROOFS 66

4.12 Proof by cases and induction

4.12.1 Rule contexts

case : proof (state) → proof (state)
print cases∗ : proof → proof

case names : attribute
case conclusion : attribute

params : attribute
consumes : attribute

The puristic way to build up Isar proof contexts is by explicit language
elements like fix, assume, let (see §4.1). This is adequate for plain natural
deduction, but easily becomes unwieldy in concrete verification tasks, which
typically involve big induction rules with several cases.

The case command provides a shorthand to refer to a local context sym-
bolically: certain proof methods provide an environment of named “cases” of
the form c: x 1, . . ., xm , ϕ1, . . ., ϕn ; the effect of “case c” is then equivalent
to “fix x 1 . . . xm assume c: ϕ1 . . . ϕn”. Term bindings may be covered as
well, notably ?case for the main conclusion.

By default, the “terminology” x 1, . . ., xm of a case value is marked as
hidden, i.e. there is no way to refer to such parameters in the subsequent
proof text. After all, original rule parameters stem from somewhere outside
of the current proof text. By using the explicit form “case (c y1 . . . ym)”
instead, the proof author is able to chose local names that fit nicely into the
current context.

It is important to note that proper use of case does not provide means
to peek at the current goal state, which is not directly observable in Isar!
Nonetheless, goal refinement commands do provide named cases goal i for
each subgoal i = 1, . . ., n of the resulting goal state. Using this extra fea-
ture requires great care, because some bits of the internal tactical machinery
intrude the proof text. In particular, parameter names stemming from the
left-over of automated reasoning tools are usually quite unpredictable.

Under normal circumstances, the text of cases emerge from standard elim-
ination or induction rules, which in turn are derived from previous theory
specifications in a canonical way (say from inductive definitions).

Proper cases are only available if both the proof method and the rules
involved support this. By using appropriate attributes, case names, conclu-
sions, and parameters may be also declared by hand. Thus variant versions
of rules that have been derived manually become ready to use in advanced
case analysis later.

CHAPTER 4. PROOFS 67

case
�� � caseref�

� (
���caseref name

�� ��
� _

���
�

�
�

�

)
���

�

caseref

nameref
�� ��

�attributes

�

case names
�� � name

�� ��
�

�

case conclusion
�� �name

�� ��
�name

�� �
�

params
�� � �

�name
�� �

�

�
� and

�� �

�

consumes
�� ��

�nat
�� �

�

case (c x 1 . . . xm) invokes a named local context c: x 1, . . ., xm , ϕ1, . . .,
ϕm , as provided by an appropriate proof method (such as cases and
induct). The command “case (c x 1 . . . xm)” abbreviates “fix x 1 . . .
xm assume c: ϕ1 . . . ϕn”.

print cases prints all local contexts of the current state, using Isar proof
language notation.

case names c1 . . . ck declares names for the local contexts of premises of a
theorem; c1, . . ., ck refers to the suffix of the list of premises.

CHAPTER 4. PROOFS 68

case conclusion c d1 . . . d k declares names for the conclusions of a named
premise c; here d1, . . ., d k refers to the prefix of arguments of a logical
formula built by nesting a binary connective (e.g. ∨).

Note that proof methods such as induct and coinduct already provide
a default name for the conclusion as a whole. The need to name sub-
formulas only arises with cases that split into several sub-cases, as in
common co-induction rules.

params p1 . . . pm and . . . q1 . . . qn renames the innermost parameters of
premises 1, . . ., n of some theorem. An empty list of names may be
given to skip positions, leaving the present parameters unchanged.

Note that the default usage of case rules does not directly expose pa-
rameters to the proof context.

consumes n declares the number of “major premises” of a rule, i.e. the num-
ber of facts to be consumed when it is applied by an appropriate proof
method. The default value of consumes is n = 1, which is appropriate
for the usual kind of cases and induction rules for inductive sets (cf.
§8.6). Rules without any consumes declaration given are treated as if
consumes 0 had been specified.

Note that explicit consumes declarations are only rarely needed; this is
already taken care of automatically by the higher-level cases , induct ,
and coinduct declarations.

4.12.2 Proof methods

cases : method
induct : method

coinduct : method

The cases , induct , and coinduct methods provide a uniform interface
to common proof techniques over datatypes, inductive predicates (or sets),
recursive functions etc. The corresponding rules may be specified and in-
stantiated in a casual manner. Furthermore, these methods provide named
local contexts that may be invoked via the case proof command within the
subsequent proof text. This accommodates compact proof texts even when
reasoning about large specifications.

The induct method also provides some additional infrastructure in or-
der to be applicable to structure statements (either using explicit meta-level

CHAPTER 4. PROOFS 69

connectives, or including facts and parameters separately). This avoids cum-
bersome encoding of “strengthened” inductive statements within the object-
logic.

cases
�� ��

� insts�
� and

�� �
�

�

�
� rule

�

induct
�� ��

� definsts�
� and

�� �
�

�

�

�
��

�arbitrary

�

�
� taking

�

�
� rule

�

coinduct
�� �insts taking �

� rule

�

rule

type
�� ��

�pred
�� ��set
�� �

�

:
��� nameref

�� ��
�

�

�

�rule
�� �:

��� thmref�
�

�

�

definst

name
�� � ==

�� ��
�≡

�� �
�

term
�� ��

� inst

�

CHAPTER 4. PROOFS 70

definsts

�
�definst

�

arbitrary

arbitrary
�� �:

��� �
� term

�� �
�

and
�� ��

�
�

taking

taking
�� �:

���insts

cases insts R applies method rule with an appropriate case distinction theo-
rem, instantiated to the subjects insts. Symbolic case names are bound
according to the rule’s local contexts.

The rule is determined as follows, according to the facts and arguments
passed to the cases method:

facts arguments rule
cases classical case split
cases t datatype exhaustion (type of t)

` A t cases . . . inductive predicate/set elimination (of A)
. . . cases . . . rule: R explicit rule R

Several instantiations may be given, referring to the suffix of premises of
the case rule; within each premise, the prefix of variables is instantiated.
In most situations, only a single term needs to be specified; this refers
to the first variable of the last premise (it is usually the same for all
cases).

induct insts R is analogous to the cases method, but refers to induction
rules, which are determined as follows:

facts arguments rule
induct P x datatype induction (type of x)

` A x induct . . . predicate/set induction (of A)
. . . induct . . . rule: R explicit rule R

CHAPTER 4. PROOFS 71

Several instantiations may be given, each referring to some part of a
mutual inductive definition or datatype — only related partial induc-
tion rules may be used together, though. Any of the lists of terms
P , x , . . . refers to the suffix of variables present in the induction rule.
This enables the writer to specify only induction variables, or both
predicates and variables, for example.

Instantiations may be definitional: equations x ≡ t introduce local defi-
nitions, which are inserted into the claim and discharged after applying
the induction rule. Equalities reappear in the inductive cases, but have
been transformed according to the induction principle being involved
here. In order to achieve practically useful induction hypotheses, some
variables occurring in t need to be fixed (see below).

The optional “arbitrary : x 1 . . . xm” specification generalizes variables
x 1, . . ., xm of the original goal before applying induction. Thus in-
duction hypotheses may become sufficiently general to get the proof
through. Together with definitional instantiations, one may effectively
perform induction over expressions of a certain structure.

The optional “taking : t1 . . . tn” specification provides additional in-
stantiations of a prefix of pending variables in the rule. Such schematic
induction rules rarely occur in practice, though.

coinduct inst R is analogous to the induct method, but refers to coinduction
rules, which are determined as follows:

goal arguments rule
coinduct x type coinduction (type of x)

A x coinduct . . . predicate/set coinduction (of A)
. . . coinduct . . . rule: R explicit rule R

Coinduction is the dual of induction. Induction essentially eliminates
A x towards a generic result P x, while coinduction introduces A x
starting with B x, for a suitable “bisimulation” B. The cases of a coin-
duct rule are typically named after the predicates or sets being covered,
while the conclusions consist of several alternatives being named after
the individual destructor patterns.

The given instantiation refers to the suffix of variables occurring in
the rule’s major premise, or conclusion if unavailable. An additional
“taking : t1 . . . tn” specification may be required in order to specify the
bisimulation to be used in the coinduction step.

Above methods produce named local contexts, as determined by the in-
stantiated rule as given in the text. Beyond that, the induct and coinduct

CHAPTER 4. PROOFS 72

methods guess further instantiations from the goal specification itself. Any
persisting unresolved schematic variables of the resulting rule will render the
the corresponding case invalid. The term binding ?case for the conclusion
will be provided with each case, provided that term is fully specified.

The print cases command prints all named cases present in the current
proof state.

Despite the additional infrastructure, both cases and coinduct merely
apply a certain rule, after instantiation, while conforming due to the usual
way of monotonic natural deduction: the context of a structured statement∧

x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ . . . reappears unchanged after the case split.
The induct method is fundamentally different in this respect: the meta-

level structure is passed through the “recursive” course involved in the in-
duction. Thus the original statement is basically replaced by separate copies,
corresponding to the induction hypotheses and conclusion; the original goal
context is no longer available. Thus local assumptions, fixed parameters and
definitions effectively participate in the inductive rephrasing of the original
statement.

In induction proofs, local assumptions introduced by cases are split into
two different kinds: hyps stemming from the rule and prems from the goal
statement. This is reflected in the extracted cases accordingly, so invoking
“case c” will provide separate facts c.hyps and c.prems, as well as fact c to
hold the all-inclusive list.

Facts presented to either method are consumed according to the number
of “major premises” of the rule involved, which is usually 0 for plain cases
and induction rules of datatypes etc. and 1 for rules of inductive predicates
or sets and the like. The remaining facts are inserted into the goal verbatim
before the actual cases, induct, or coinduct rule is applied.

4.12.3 Declaring rules

print induct rules∗ : theory | proof → theory | proof
cases : attribute

induct : attribute
coinduct : attribute

cases
�� �spec

induct
�� �spec

CHAPTER 4. PROOFS 73

coinduct
�� �spec

spec

type
�� ��

�pred
�� ��set
�� �

�

:
���nameref

�� �

print induct rules prints cases and induct rules for predicates (or sets)
and types of the current context.

cases , induct , and coinduct (as attributes) augment the corresponding con-
text of rules for reasoning about (co)inductive predicates (or sets) and
types, using the corresponding methods of the same name. Certain def-
initional packages of object-logics usually declare emerging cases and
induction rules as expected, so users rarely need to intervene.

Manual rule declarations usually refer to the case names and params
attributes to adjust names of cases and parameters of a rule; the
consumes declaration is taken care of automatically: consumes 0 is
specified for “type” rules and consumes 1 for “predicate” / “set” rules.

Chapter 5

Document preparation

Isabelle/Isar provides a simple document preparation system based on ex-
isting PDF-LATEX technology, with full support of hyper-links (both local
references and URLs) and bookmarks. Thus the results are equally well
suited for WWW browsing and as printed copies.

Isabelle generates LATEX output as part of the run of a logic session (see
also [24]). Getting started with a working configuration for common situa-
tions is quite easy by using the Isabelle mkdir and make tools. First invoke

isatool mkdir Foo

to initialize a separate directory for session Foo — it is safe to experi-
ment, since isatool mkdir never overwrites existing files. Ensure that
Foo/ROOT.ML holds ML commands to load all theories required for this ses-
sion; furthermore Foo/document/root.tex should include any special LATEX
macro packages required for your document (the default is usually sufficient
as a start).

The session is controlled by a separate IsaMakefile (with crude source
dependencies by default). This file is located one level up from the Foo

directory location. Now invoke

isatool make Foo

to run the Foo session, with browser information and document preparation
enabled. Unless any errors are reported by Isabelle or LATEX, the output
will appear inside the directory ISABELLE_BROWSER_INFO, as reported by the
batch job in verbose mode.

You may also consider to tune the usedir options in IsaMakefile, for
example to change the output format from pdf to dvi, or activate the -D

option to retain a second copy of the generated LATEX sources.

See The Isabelle System Manual [24] for further details on Isabelle logic
sessions and theory presentation. The Isabelle/HOL tutorial [13] also covers
theory presentation issues.

74

CHAPTER 5. DOCUMENT PREPARATION 75

5.1 Markup commands

header : toplevel → toplevel

chapter : local-theory → local-theory
section : local-theory → local-theory

subsection : local-theory → local-theory
subsubsection : local-theory → local-theory

text : local-theory → local-theory
text raw : local-theory → local-theory

sect : proof → proof
subsect : proof → proof

subsubsect : proof → proof
txt : proof → proof

txt raw : proof → proof

Apart from formal comments (see §2.2.2), markup commands provide a
structured way to insert text into the document generated from a theory (see
[24] for more information on Isabelle’s document preparation tools).

chapter
�� ��

�section
�� ��subsection
�� ��subsubsection
�� ��text
�� �

�

�
� target

�

text
�� �

header
�� ��

�text raw
�� ��sect
�� ��subsect
�� ��subsubsect
�� ��txt
�� ��txt raw
�� �

�

text
�� �

CHAPTER 5. DOCUMENT PREPARATION 76

header text provides plain text markup just preceding the formal begin-
ning of a theory. In actual document preparation the corresponding
LATEX macro \isamarkupheader may be redefined to produce chapter
or section headings.

chapter, section, subsection, and subsubsection mark chapter and
section headings. The corresponding LATEX macros are
\isamarkupchapter, \isamarkupsection etc.

text and txt specify paragraphs of plain text.

text raw and txt raw insert LATEX source into the output, without addi-
tional markup. Thus the full range of document manipulations becomes
available.

The text argument of these markup commands (except for text raw)
may contain references to formal entities (“antiquotations”, see also §5.2).
These are interpreted in the present theory context, or the named target.

Any of these markup elements corresponds to a LATEX command with the
name prefixed by \isamarkup. For the sectioning commands this is a plain
macro with a single argument, e.g. \isamarkupchapter{. . .} for chapter.
The text markup results in a LATEX environment \begin{isamarkuptext}

. . . \end{isamarkuptext}, while text raw causes the text to be inserted
directly into the LATEX source.

The proof markup commands closely resemble those for theory specifica-
tions, but have a different formal status and produce different LATEX macros.
Also note that the header declaration (see §3.1) admits to insert section
markup just preceding the actual theory definition.

CHAPTER 5. DOCUMENT PREPARATION 77

5.2 Antiquotations

theory : antiquotation
thm : antiquotation
prop : antiquotation
term : antiquotation
const : antiquotation

abbrev : antiquotation
typeof : antiquotation

typ : antiquotation
thm style : antiquotation

term style : antiquotation
text : antiquotation

goals : antiquotation
subgoals : antiquotation

prf : antiquotation
full prf : antiquotation

ML : antiquotation
ML type : antiquotation

ML struct : antiquotation

The text body of formal comments (see also §2.2.2) may contain antiquo-
tations of logical entities, such as theorems, terms and types, which are to be
presented in the final output produced by the Isabelle document preparation
system.

Thus embedding of “@{term [show types] f x = a + x}” within a text
block would cause (f :: ′a ⇒ ′a) (x :: ′a) = (a:: ′a) + x to appear in the fi-
nal LATEX document. Also note that theorem antiquotations may involve
attributes as well. For example, @{thm sym [no vars]} would print the the-
orem’s statement where all schematic variables have been replaced by fixed
ones, which are easier to read.

@
���{

���antiquotation }
���

CHAPTER 5. DOCUMENT PREPARATION 78

antiquotation

theory
�� �options name

�� ��
�thm

�� �options thmrefs

�prop
�� �options prop

�� ��term
�� �options term

�� ��const
�� �options term

�� ��abbrev
�� �options term

�� ��typeof
�� �options term

�� ��typ
�� �options type

�� ��thm style
�� �options name

�� �thmref

�term style
�� �options name

�� �term
�� ��text

�� �options name
�� ��goals

�� �options

�subgoals
�� �options

�prf
�� �options thmrefs

�full prf
�� �options thmrefs

�ML
�� �options name

�� ��ML type
�� �options name

�� ��ML struct
�� �options name

�� �

�

options

[
����

� option�
� ,

���
�

�

]
���

CHAPTER 5. DOCUMENT PREPARATION 79

option

name
�� ��

�name
�� �=

���name
�� �

�

Note that the syntax of antiquotations may not include source comments
(* . . . *) or verbatim text {* . . . *}.

@{theory A} prints the name A, which is guaranteed to refer to a valid an-
cestor theory in the current context.

@{thm a1 . . . an} prints theorems a1 . . . an . Note that attribute specifica-
tions may be included as well (see also §2.2.7); the no vars rule (see
§7.2.1) would be particularly useful to suppress printing of schematic
variables.

@{prop ϕ} prints a well-typed proposition ϕ.

@{term t} prints a well-typed term t.

@{const c} prints a logical or syntactic constant c.

@{abbrev c x 1 . . . xn} prints a constant abbreviation c x 1 . . . xn ≡ rhs as
defined in the current context.

@{typeof t} prints the type of a well-typed term t.

@{typ τ} prints a well-formed type τ .

@{thm style s a} prints theorem a, previously applying a style s to it (see
below).

@{term style s t} prints a well-typed term t after applying a style s to it
(see below).

@{text s} prints uninterpreted source text s. This is particularly useful to
print portions of text according to the Isabelle LATEX output style,
without demanding well-formedness (e.g. small pieces of terms that
should not be parsed or type-checked yet).

@{goals} prints the current dynamic goal state. This is mainly for support
of tactic-emulation scripts within Isar — presentation of goal states
does not conform to actual human-readable proof documents.

Please do not include goal states into document output unless you really
know what you are doing!

CHAPTER 5. DOCUMENT PREPARATION 80

@{subgoals} is similar to @{goals}, but does not print the main goal.

@{prf a1 . . . an} prints the (compact) proof terms corresponding to the the-
orems a1 . . . an . Note that this requires proof terms to be switched
on for the current object logic (see the “Proof terms” section of the
Isabelle reference manual for information on how to do this).

@{full prf a1 . . . an} is like @{prf a1 . . . an}, but displays the full proof
terms, i.e. also displays information omitted in the compact proof term,
which is denoted by “ ” placeholders there.

@{ML s}, @{ML type s}, and @{ML struct s} check text s as ML value,
type, and structure, respectively. The source is displayed verbatim.

The following standard styles for use with thm style and term style are
available:

lhs extracts the first argument of any application form with at least two
arguments – typically meta-level or object-level equality, or any other
binary relation.

rhs is like lhs, but extracts the second argument.

concl extracts the conclusion C from a rule in Horn-clause normal form A1

=⇒ . . . An =⇒ C.

prem1, . . . , prem9 extract premise number 1, . . ., 9, respectively, from from
a rule in Horn-clause normal form A1 =⇒ . . . An =⇒ C

The following options are available to tune the output. Note that most
of these coincide with ML flags of the same names (see also [15]).

show types = bool and show sorts = bool control printing of explicit type
and sort constraints.

show structs = bool controls printing of implicit structures.

long names = bool forces names of types and constants etc. to be printed in
their fully qualified internal form.

short names = bool forces names of types and constants etc. to be printed
unqualified. Note that internalizing the output again in the current
context may well yield a different result.

CHAPTER 5. DOCUMENT PREPARATION 81

unique names = bool determines whether the printed version of qualified
names should be made sufficiently long to avoid overlap with names
declared further back. Set to false for more concise output.

eta contract = bool prints terms in η-contracted form.

display = bool indicates if the text is to be output as multi-line “display
material”, rather than a small piece of text without line breaks (which
is the default).

break = bool controls line breaks in non-display material.

quotes = bool indicates if the output should be enclosed in double quotes.

mode = name adds name to the print mode to be used for presentation (see
also [15]). Note that the standard setup for LATEX output is already
present by default, including the modes latex and xsymbols.

margin = nat and indent = nat change the margin or indentation for pretty
printing of display material.

source = bool prints the source text of the antiquotation arguments, rather
than the actual value. Note that this does not affect well-formedness
checks of thm, term, etc. (only the text antiquotation admits arbitrary
output).

goals limit = nat determines the maximum number of goals to be printed.

locale = name specifies an alternative locale context used for evaluating and
printing the subsequent argument.

For boolean flags, “name = true” may be abbreviated as “name”. All of
the above flags are disabled by default, unless changed from ML.

Note that antiquotations do not only spare the author from tedious typing
of logical entities, but also achieve some degree of consistency-checking of
informal explanations with formal developments: well-formedness of terms
and types with respect to the current theory or proof context is ensured here.

5.3 Tagged commands

Each Isabelle/Isar command may be decorated by presentation tags:

CHAPTER 5. DOCUMENT PREPARATION 82

tags

�
� tag

�

tag

%
��� ident

�� ��
� string

�� �
�

The tags theory, proof, ML are already pre-declared for certain classes of
commands:

theory theory begin/end
proof all proof commands
ML all commands involving ML code

The Isabelle document preparation system (see also [24]) allows tagged
command regions to be presented specifically, e.g. to fold proof texts, or drop
parts of the text completely.

For example “by %invisible auto” would cause that piece of proof to be
treated as invisible instead of proof (the default), which may be either show
or hidden depending on the document setup. In contrast, “by %visible auto”
would force this text to be shown invariably.

Explicit tag specifications within a proof apply to all subsequent com-
mands of the same level of nesting. For example, “proof %visible . . . qed”
would force the whole sub-proof to be typeset as visible (unless some of its
parts are tagged differently).

5.4 Draft presentation

display drafts∗ : · → ·
print drafts∗ : · → ·

display drafts
�� ��

�print drafts
�� �

�

name
�� ��

�
�

display drafts paths and print drafts paths perform simple output of a
given list of raw source files. Only those symbols that do not require
additional LATEX packages are displayed properly, everything else is left
verbatim.

CHAPTER 5. DOCUMENT PREPARATION 83

Chapter 6

Other commands

6.1 Diagnostics

pr∗ : · → ·
thm∗ : theory | proof → theory | proof

term∗ : theory | proof → theory | proof
prop∗ : theory | proof → theory | proof

typ∗ : theory | proof → theory | proof
prf∗ : theory | proof → theory | proof

full prf∗ : theory | proof → theory | proof

These diagnostic commands assist interactive development. Note that
undo does not apply here, the theory or proof configuration is not changed.

pr
�� ��

�modes

�

�
�nat

�� �
�

�
� ,

���nat
�� �

�

thm
�� ��

�modes

�

thmrefs

term
�� ��

�modes

�

term
�� �

prop
�� ��

�modes

�

prop
�� �

typ
�� ��

�modes

�

type
�� �

84

CHAPTER 6. OTHER COMMANDS 85

prf
�� ��

�modes

�

�
� thmrefs

�

full prf
�� ��

�modes

�

�
� thmrefs

�

modes

(
��� name

�� ��
�

�

)
���

pr goals , prems prints the current proof state (if present), including the
proof context, current facts and goals. The optional limit arguments
affect the number of goals and premises to be displayed, which is ini-
tially 10 for both. Omitting limit values leaves the current setting
unchanged.

thm a1 . . . an retrieves theorems from the current theory or proof context.
Note that any attributes included in the theorem specifications are
applied to a temporary context derived from the current theory or
proof; the result is discarded, i.e. attributes involved in a1, . . ., an do
not have any permanent effect.

term t and prop ϕ read, type-check and print terms or propositions ac-
cording to the current theory or proof context; the inferred type of t is
output as well. Note that these commands are also useful in inspecting
the current environment of term abbreviations.

typ τ reads and prints types of the meta-logic according to the current the-
ory or proof context.

prf displays the (compact) proof term of the current proof state (if present),
or of the given theorems. Note that this requires proof terms to be
switched on for the current object logic (see the “Proof terms” section
of the Isabelle reference manual for information on how to do this).

full prf is like prf , but displays the full proof term, i.e. also displays in-
formation omitted in the compact proof term, which is denoted by “ ”
placeholders there.

CHAPTER 6. OTHER COMMANDS 86

All of the diagnostic commands above admit a list of modes to be spec-
ified, which is appended to the current print mode (see also [15]). Thus
the output behavior may be modified according particular print mode fea-
tures. For example, pr (latex xsymbols symbols) would print the current
proof state with mathematical symbols and special characters represented in
LATEX source, according to the Isabelle style [24].

Note that antiquotations (cf. §5.2) provide a more systematic way to
include formal items into the printed text document.

6.2 Inspecting the context

print commands∗ : · → ·
print theory∗ : theory | proof → theory | proof
print syntax∗ : theory | proof → theory | proof

print methods∗ : theory | proof → theory | proof
print attributes∗ : theory | proof → theory | proof
print theorems∗ : theory | proof → theory | proof
find theorems∗ : theory | proof → theory | proof

thm deps∗ : theory | proof → theory | proof
print facts∗ : proof → proof

print binds∗ : proof → proof

print theory
�� ��

� !
���

�

find theorems
�� ��

� (
����

�nat
�� �

�

�
�with dups

�� �
�

)
���

�

�
� criterion

�

CHAPTER 6. OTHER COMMANDS 87

criterion

�
� -

���
�

name
�� �:

���nameref
�� ��

�intro
�� ��elim
�� ��dest
�� ��simp
�� �:

���term
�� �� term

�� �

�

thm deps
�� �thmrefs

These commands print certain parts of the theory and proof context.
Note that there are some further ones available, such as for the set of rules
declared for simplifications.

print commands prints Isabelle’s outer theory syntax, including keywords
and command.

print theory prints the main logical content of the theory context; the “!”
option indicates extra verbosity.

print syntax prints the inner syntax of types and terms, depending on the
current context. The output can be very verbose, including grammar
tables and syntax translation rules. See [15, §7, §8] for further infor-
mation on Isabelle’s inner syntax.

print methods prints all proof methods available in the current theory con-
text.

print attributes prints all attributes available in the current theory con-
text.

print theorems prints theorems resulting from the last command.

find theorems criteria retrieves facts from the theory or proof context
matching all of given search criteria. The criterion name: p selects
all theorems whose fully qualified name matches pattern p, which may
contain “∗” wildcards. The criteria intro, elim, and dest select theo-
rems that match the current goal as introduction, elimination or de-
struction rules, respectively. The criterion simp: t selects all rewrite

CHAPTER 6. OTHER COMMANDS 88

rules whose left-hand side matches the given term. The criterion term
t selects all theorems that contain the pattern t – as usual, patterns
may contain occurrences of the dummy “ ”, schematic variables, and
type constraints.

Criteria can be preceded by “−” to select theorems that do not match.
Note that giving the empty list of criteria yields all currently known
facts. An optional limit for the number of printed facts may be given;
the default is 40. By default, duplicates are removed from the search
result. Use with dups to display duplicates.

thm deps a1 . . . an visualizes dependencies of facts, using Isabelle’s graph
browser tool (see also [24]).

print facts prints all local facts of the current context, both named and
unnamed ones.

print binds prints all term abbreviations present in the context.

6.3 History commands

undo∗∗ : · → ·
redo∗∗ : · → ·

kill∗∗ : · → ·

The Isabelle/Isar top-level maintains a two-stage history, for theory and
proof state transformation. Basically, any command can be undone using
undo, excluding mere diagnostic elements. Its effect may be revoked via
redo, unless the corresponding undo step has crossed the beginning of a
proof or theory. The kill command aborts the current history node alto-
gether, discontinuing a proof or even the whole theory. This operation is not
undo-able.

! History commands should never be used with user interfaces such as Proof Gen-
eral [1, 2], which takes care of stepping forth and back itself. Interfering by

manual undo, redo, or even kill commands would quickly result in utter confu-
sion.

CHAPTER 6. OTHER COMMANDS 89

6.4 System commands

cd∗ : · → ·
pwd∗ : · → ·

use thy∗ : · → ·

cd
�� ��

�use thy
�� ��update thy
�� �

�

name
�� �

cd path changes the current directory of the Isabelle process.

pwd prints the current working directory.

use thy A preload theory A. These system commands are scarcely used
when working interactively, since loading of theories is done automati-
cally as required.

Chapter 7

Generic tools and packages

7.1 Configuration options

Isabelle/Pure maintains a record of named configuration options within the
theory or proof context, with values of type bool, int, or string. Tools may
declare options in ML, and then refer to these values (relative to the context).
Thus global reference variables are easily avoided. The user may change the
value of a configuration option by means of an associated attribute of the
same name. This form of context declaration works particularly well with
commands such as declare or using.

For historical reasons, some tools cannot take the full proof context into
account and merely refer to the background theory. This is accommodated by
configuration options being declared as “global”, which may not be changed
within a local context.

print configs : theory | proof → theory | proof

name
�� ��

� =
��� true

�� ��
�false

�� �� int

�name
�� �

�

�

print configs prints the available configuration options, with names, types,
and current values.

name = value as an attribute expression modifies the named option, with
the syntax of the value depending on the option’s type. For bool the
default value is true. Any attempt to change a global option in a local
context is ignored.

90

CHAPTER 7. GENERIC TOOLS AND PACKAGES 91

7.2 Basic proof tools

7.2.1 Miscellaneous methods and attributes

unfold : method
fold : method

insert : method

erule∗ : method
drule∗ : method
frule∗ : method

succeed : method
fail : method

fold
�� ��

�unfold
�� ��insert
�� �

�

thmrefs

erule
�� ��

�drule
�� ��frule
�� �

�

�
� (

���nat
�� �)

���
�

thmrefs

unfold a1 . . . an and fold a1 . . . an expand (or fold back) the given defini-
tions throughout all goals; any chained facts provided are inserted into
the goal and subject to rewriting as well.

insert a1 . . . an inserts theorems as facts into all goals of the proof state.
Note that current facts indicated for forward chaining are ignored.

erule a1 . . . an , drule a1 . . . an , and frule a1 . . . an are similar to the basic
rule method (see §4.5), but apply rules by elim-resolution, destruct-
resolution, and forward-resolution, respectively [15]. The optional nat-
ural number argument (default 0) specifies additional assumption steps
to be performed here.

Note that these methods are improper ones, mainly serving for ex-
perimentation and tactic script emulation. Different modes of basic
rule application are usually expressed in Isar at the proof language
level, rather than via implicit proof state manipulations. For example,
a proper single-step elimination would be done using the plain rule
method, with forward chaining of current facts.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 92

succeed yields a single (unchanged) result; it is the identity of the “,” method
combinator (cf. §2.2.6).

fail yields an empty result sequence; it is the identity of the “|” method
combinator (cf. §2.2.6).

tagged : attribute
untagged : attribute

THEN : attribute
COMP : attribute

unfolded : attribute
folded : attribute

rotated : attribute
elim format : attribute

standard∗ : attribute
no vars∗ : attribute

tagged
�� �nameref

�� �
untagged

�� �name
�� �

THEN
�� ��

�COMP
�� �

�

�
� [

���nat
�� �]

���
�

thmref

unfolded
�� ��

�folded
�� �

�

thmrefs

rotated
�� ��

� int

�

tagged name arg and untagged name add and remove tags of some theorem.
Tags may be any list of string pairs that serve as formal comment. The
first string is considered the tag name, the second its argument. Note
that untagged removes any tags of the same name.

THEN a and COMP a compose rules by resolution. THEN resolves with
the first premise of a (an alternative position may be also specified);

CHAPTER 7. GENERIC TOOLS AND PACKAGES 93

the COMP version skips the automatic lifting process that is normally
intended (cf. "op RS" and "op COMP" in [15, §5]).

unfolded a1 . . . an and folded a1 . . . an expand and fold back again the
given definitions throughout a rule.

rotated n rotate the premises of a theorem by n (default 1).

elim format turns a destruction rule into elimination rule format, by resolv-
ing with the rule PROP A =⇒ (PROP A =⇒ PROP B) =⇒ PROP
B.

Note that the Classical Reasoner (§7.4) provides its own version of this
operation.

standard puts a theorem into the standard form of object-rules at the out-
ermost theory level. Note that this operation violates the local proof
context (including active locales).

no vars replaces schematic variables by free ones; this is mainly for tuning
output of pretty printed theorems.

7.2.2 Low-level equational reasoning

subst : method
hypsubst : method

split : method

subst
�� ��

� (
���asm

�� �)
���

�

�
� (

��� nat
�� ��

�
�

)
���

�

thmref

split
�� ��

� (
���asm

�� �)
���

�

thmrefs

These methods provide low-level facilities for equational reasoning that
are intended for specialized applications only. Normally, single step calcu-
lations would be performed in a structured text (see also §4.11), while the
Simplifier methods provide the canonical way for automated normalization
(see §7.3).

CHAPTER 7. GENERIC TOOLS AND PACKAGES 94

subst eq performs a single substitution step using rule eq, which may be
either a meta or object equality.

subst (asm) eq substitutes in an assumption.

subst (i . . . j) eq performs several substitutions in the conclusion. The num-
bers i to j indicate the positions to substitute at. Positions are ordered
from the top of the term tree moving down from left to right. For exam-
ple, in (a + b) + (c + d) there are three positions where commutativity
of + is applicable: 1 refers to a + b, 2 to the whole term, and 3 to c
+ d.

If the positions in the list (i . . . j) are non-overlapping (e.g. (2 3) in
(a + b) + (c + d)) you may assume all substitutions are performed
simultaneously. Otherwise the behaviour of subst is not specified.

subst (asm) (i . . . j) eq performs the substitutions in the assumptions. The
positions refer to the assumptions in order from left to right. For ex-
ample, given in a goal of the form P (a + b) =⇒ P (c + d) =⇒ . . .,
position 1 of commutativity of + is the subterm a + b and position 2
is the subterm c + d.

hypsubst performs substitution using some assumption; this only works for
equations of the form x = t where x is a free or bound variable.

split a1 . . . an performs single-step case splitting using the given rules. By
default, splitting is performed in the conclusion of a goal; the (asm)
option indicates to operate on assumptions instead.

Note that the simp method already involves repeated application of
split rules as declared in the current context.

7.2.3 Further tactic emulations

The following improper proof methods emulate traditional tactics. These
admit direct access to the goal state, which is normally considered harmful!
In particular, this may involve both numbered goal addressing (default 1),
and dynamic instantiation within the scope of some subgoal.

! Dynamic instantiations refer to universally quantified parameters of a subgoal
(the dynamic context) rather than fixed variables and term abbreviations of a

(static) Isar context.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 95

Tactic emulation methods, unlike their ML counterparts, admit simul-
taneous instantiation from both dynamic and static contexts. If names oc-
cur in both contexts goal parameters hide locally fixed variables. Likewise,
schematic variables refer to term abbreviations, if present in the static con-
text. Otherwise the schematic variable is interpreted as a schematic variable
and left to be solved by unification with certain parts of the subgoal.

Note that the tactic emulation proof methods in Isabelle/Isar are consis-
tently named foo tac. Note also that variable names occurring on left hand
sides of instantiations must be preceded by a question mark if they coincide
with a keyword or contain dots. This is consistent with the attribute where
(see §4.5).

rule tac∗ : method
erule tac∗ : method
drule tac∗ : method
frule tac∗ : method

cut tac∗ : method
thin tac∗ : method

subgoal tac∗ : method
rename tac∗ : method

rotate tac∗ : method
tactic∗ : method

rule tac
�� ��

�erule tac
�� ��drule tac
�� ��frule tac
�� ��cut tac
�� ��thin tac
�� �

�

�
�goalspec

�

insts thmref�
� thmrefs

�

subgoal tac
�� ��

�goalspec

�

prop
�� ��

�
�

rename tac
�� ��

�goalspec

�

name
�� ��

�
�

CHAPTER 7. GENERIC TOOLS AND PACKAGES 96

rotate tac
�� ��

�goalspec

�

�
� int

�

tactic
�� �text

�� �
insts

name
�� �=

���term
�� ��

� and
�� �

�

in
�� �

rule tac etc. do resolution of rules with explicit instantiation. This works
the same way as the ML tactics res_inst_tac etc. (see [15, §3]).

Multiple rules may be only given if there is no instantiation; then
rule tac is the same as resolve_tac in ML (see [15, §3]).

cut tac inserts facts into the proof state as assumption of a subgoal, see also
cut_facts_tac in [15, §3]. Note that the scope of schematic variables
is spread over the main goal statement. Instantiations may be given as
well, see also ML tactic cut_inst_tac in [15, §3].

thin tac ϕ deletes the specified assumption from a subgoal; note that ϕ may
contain schematic variables. See also thin_tac in [15, §3].

subgoal tac ϕ adds ϕ as an assumption to a subgoal. See also subgoal_tac

and subgoals_tac in [15, §3].

rename tac x 1 . . . xn renames parameters of a goal according to the list x 1,
. . ., xn , which refers to the suffix of variables.

rotate tac n rotates the assumptions of a goal by n positions: from right to
left if n is positive, and from left to right if n is negative; the default
value is 1. See also rotate_tac in [15, §3].

tactic text produces a proof method from any ML text of type tactic. Apart
from the usual ML environment and the current implicit theory context,
the ML code may refer to the following locally bound values:

val ctxt : Proof.context
val facts : thm list
val thm : string -> thm
val thms : string -> thm list

CHAPTER 7. GENERIC TOOLS AND PACKAGES 97

Here ctxt refers to the current proof context, facts indicates any
current facts for forward-chaining, and thm / thms retrieve named facts
(including global theorems) from the context.

7.3 The Simplifier

7.3.1 Simplification methods

simp : method
simp all : method

simp
�� ��

�simp all
�� �

�

�
� !

���
�

�
�opt

�

�
� simpmod

�

opt

(
��� no asm

�� ��
�no asm simp

�� ��no asm use
�� ��asm lr
�� �

�

)
���

simpmod

add
�� ��

�del
�� ��only
�� ��cong
�� ��

�add
�� ��del
�� �

�

�split
�� ��

�add
�� ��del
�� �

�

�

:
���thmrefs

CHAPTER 7. GENERIC TOOLS AND PACKAGES 98

simp invokes the Simplifier, after declaring additional rules according to the
arguments given. Note that the only modifier first removes all other
rewrite rules, congruences, and looper tactics (including splits), and
then behaves like add.

The cong modifiers add or delete Simplifier congruence rules (see also
[15]), the default is to add.

The split modifiers add or delete rules for the Splitter (see also [15]),
the default is to add. This works only if the Simplifier method has been
properly setup to include the Splitter (all major object logics such HOL,
HOLCF, FOL, ZF do this already).

simp all is similar to simp, but acts on all goals (backwards from the last to
the first one).

By default the Simplifier methods take local assumptions fully into ac-
count, using equational assumptions in the subsequent normalization process,
or simplifying assumptions themselves (cf. asm_full_simp_tac in [15, §10]).
In structured proofs this is usually quite well behaved in practice: just the lo-
cal premises of the actual goal are involved, additional facts may be inserted
via explicit forward-chaining (via then, from, using etc.). The full context
of premises is only included if the “!” (bang) argument is given, which should
be used with some care, though.

Additional Simplifier options may be specified to tune the behavior fur-
ther (mostly for unstructured scripts with many accidental local facts): “(no
asm)” means assumptions are ignored completely (cf. simp_tac), “(no asm
simp)” means assumptions are used in the simplification of the conclusion but
are not themselves simplified (cf. asm_simp_tac), and “(no asm use)” means
assumptions are simplified but are not used in the simplification of each other
or the conclusion (cf. full_simp_tac). For compatibility reasons, there is
also an option “(asm lr)”, which means that an assumption is only used for
simplifying assumptions which are to the right of it (cf. asm_lr_simp_tac).

The configuration option depth limit limits the number of recursive invo-
cations of the simplifier during conditional rewriting.

The Splitter package is usually configured to work as part of the Simplifier.
The effect of repeatedly applying split_tac can be simulated by “(simp
only : split : a1 . . . an)”. There is also a separate split method available for
single-step case splitting.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 99

7.3.2 Declaring rules

print simpset∗ : theory | proof → theory | proof
simp : attribute
cong : attribute
split : attribute

simp
�� ��

�cong
�� ��split
�� �

�

�
�add

�� ��del
�� �

�

print simpset prints the collection of rules declared to the Simplifier, which
is also known as “simpset” internally [15].

simp declares simplification rules.

cong declares congruence rules.

split declares case split rules.

7.3.3 Simplification procedures

simproc setup : local-theory → local-theory
simproc : attribute

simproc setup
�� �name

�� �(
��� term

�� ��
� |

���
�

)
���=

���text
�� ��

�
��

�identifier
�� � nameref

�� ��
�

�

�

simproc
�� ��

�add
�� �:

����del
�� �:

���

�

name
�� ��

�
�

CHAPTER 7. GENERIC TOOLS AND PACKAGES 100

simproc setup defines a named simplification procedure that is
invoked by the Simplifier whenever any of the given term
patterns match the current redex. The implementation,
which is provided as ML source text, needs to be of type
"morphism -> simpset -> cterm -> thm option", where the cterm
represents the current redex r and the result is supposed to be some
proven rewrite rule r ≡ r ′ (or a generalized version), or NONE to in-
dicate failure. The simpset argument holds the full context of the
current Simplifier invocation, including the actual Isar proof context.
The morphism informs about the difference of the original compilation
context wrt. the one of the actual application later on. The optional
identifier specifies theorems that represent the logical content of the
abstract theory of this simproc.

Morphisms and identifiers are only relevant for simprocs that are de-
fined within a local target context, e.g. in a locale.

simproc add : name and simproc del : name add or delete named simprocs to
the current Simplifier context. The default is to add a simproc. Note
that simproc setup already adds the new simproc to the subsequent
context.

7.3.4 Forward simplification

simplified : attribute

simplified
�� ��

�opt

�

�
� thmrefs

�

opt

(
��� no asm

�� ��
�no asm simp

�� ��no asm use
�� �

�

)
���

simplified a1 . . . an causes a theorem to be simplified, either by exactly the
specified rules a1, . . ., an , or the implicit Simplifier context if no ar-
guments are given. The result is fully simplified by default, including

CHAPTER 7. GENERIC TOOLS AND PACKAGES 101

assumptions and conclusion; the options no asm etc. tune the Simpli-
fier in the same way as the for the simp method.

Note that forward simplification restricts the simplifier to its most ba-
sic operation of term rewriting; solver and looper tactics [15] are not
involved here. The simplified attribute should be only rarely required
under normal circumstances.

7.4 The Classical Reasoner

7.4.1 Basic methods

rule : method
contradiction : method

intro : method
elim : method

rule
�� ��

�intro
�� ��elim
�� �

�

�
� thmrefs

�

rule as offered by the Classical Reasoner is a refinement over the primitive
one (see §4.5). Both versions essentially work the same, but the clas-
sical version observes the classical rule context in addition to that of
Isabelle/Pure.

Common object logics (HOL, ZF, etc.) declare a rich collection of
classical rules (even if these would qualify as intuitionistic ones), but
only few declarations to the rule context of Isabelle/Pure (§4.5).

contradiction solves some goal by contradiction, deriving any result from
both ¬ A and A. Chained facts, which are guaranteed to participate,
may appear in either order.

intro and elim repeatedly refine some goal by intro- or elim-resolution, after
having inserted any chained facts. Exactly the rules given as arguments
are taken into account; this allows fine-tuned decomposition of a proof
problem, in contrast to common automated tools.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 102

7.4.2 Automated methods

blast : method
fast : method

slow : method
best : method
safe : method

clarify : method

blast
�� ��

� !
���

�

�
�nat

�� �
�

�
� clamod

�

fast
�� ��

�slow
�� ��best
�� ��safe
�� ��clarify
�� �

�

�
� !

���
�

�
� clamod

�

clamod

intro
�� ��

�elim
�� ��dest
�� �

�

!
����

�
� ?

���

�

�

�del
�� �

�

:
���thmrefs

blast refers to the classical tableau prover (see blast_tac in [15, §11]). The
optional argument specifies a user-supplied search bound (default 20).

fast , slow , best , safe, and clarify refer to the generic classical reasoner. See
fast_tac, slow_tac, best_tac, safe_tac, and clarify_tac in [15,
§11] for more information.

Any of the above methods support additional modifiers of the context
of classical rules. Their semantics is analogous to the attributes given be-
fore. Facts provided by forward chaining are inserted into the goal before
commencing proof search. The “!” argument causes the full context of as-
sumptions to be included as well.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 103

7.4.3 Combined automated methods

auto : method
force : method

clarsimp : method
fastsimp : method

slowsimp : method
bestsimp : method

auto
�� ��

� !
���

�

�
�nat

�� �nat
�� �

�

�
� clasimpmod

�

force
�� ��

�clarsimp
�� ��fastsimp
�� ��slowsimp
�� ��bestsimp
�� �

�

�
� !

���
�

�
� clasimpmod

�

CHAPTER 7. GENERIC TOOLS AND PACKAGES 104

clasimpmod

simp
�� ��

�add
�� ��del
�� ��only
�� �

�

�

� cong
�� ��

�split
�� �

�

�
�add

�� ��del
�� �

�

�iff
�� � �

�add
�� �

�

�
� ?

���
�

�
�del

�� �

�

� intro
�� ��

�elim
�� ��dest
�� �

�

!
����

�
� ?

���

�

�

�del
�� �

�

�

:
���thmrefs

auto, force, clarsimp, fastsimp, slowsimp, and bestsimp provide access to
Isabelle’s combined simplification and classical reasoning tactics. These
correspond to auto_tac, force_tac, clarsimp_tac, and Classical
Reasoner tactics with the Simplifier added as wrapper, see [15, §11] for
more information. The modifier arguments correspond to those given
in §7.3 and §7.4. Just note that the ones related to the Simplifier are
prefixed by simp here.

Facts provided by forward chaining are inserted into the goal before do-
ing the search. The “!” argument causes the full context of assumptions
to be included as well.

CHAPTER 7. GENERIC TOOLS AND PACKAGES 105

7.4.4 Declaring rules

print claset∗ : theory | proof → theory | proof
intro : attribute
elim : attribute
dest : attribute
rule : attribute

iff : attribute

intro
�� ��

�elim
�� ��dest
�� �

�

!
����

�
� ?

���

�

�
�nat

�� �
�

rule
�� �del

�� �
iff

�� � �
�add

�� �
�

�
� ?

���
�

�
�del

�� �

�

print claset prints the collection of rules declared to the Classical Reasoner,
which is also known as “claset” internally [15].

intro, elim, and dest declare introduction, elimination, and destruction
rules, respectively. By default, rules are considered as unsafe (i.e. not
applied blindly without backtracking), while “!” classifies as safe. Rule
declarations marked by “?” coincide with those of Isabelle/Pure, cf.
§4.5 (i.e. are only applied in single steps of the rule method). The op-
tional natural number specifies an explicit weight argument, which is
ignored by automated tools, but determines the search order of single
rule steps.

rule del deletes introduction, elimination, or destruction rules from the con-
text.

iff declares logical equivalences to the Simplifier and the Classical reasoner
at the same time. Non-conditional rules result in a “safe” introduc-
tion and elimination pair; conditional ones are considered “unsafe”.
Rules with negative conclusion are automatically inverted (using ¬-
elimination internally).

CHAPTER 7. GENERIC TOOLS AND PACKAGES 106

The “?” version of iff declares rules to the Isabelle/Pure context only,
and omits the Simplifier declaration.

7.4.5 Classical operations

swapped : attribute

swapped turns an introduction rule into an elimination, by resolving with
the classical swap principle (¬ B =⇒ A) =⇒ (¬ A =⇒ B).

7.5 Object-logic setup

judgment : theory → theory
atomize : method
atomize : attribute

rule format : attribute
rulify : attribute

The very starting point for any Isabelle object-logic is a “truth judg-
ment” that links object-level statements to the meta-logic (with its minimal
language of prop that covers universal quantification

∧
and implication =⇒).

Common object-logics are sufficiently expressive to internalize rule state-
ments over

∧
and =⇒ within their own language. This is useful in certain

situations where a rule needs to be viewed as an atomic statement from the
meta-level perspective, e.g.

∧
x . x ∈ A =⇒ P x versus ∀ x ∈ A. P x.

From the following language elements, only the atomize method and
rule format attribute are occasionally required by end-users, the rest is for
those who need to setup their own object-logic. In the latter case exist-
ing formulations of Isabelle/FOL or Isabelle/HOL may be taken as realistic
examples.

Generic tools may refer to the information provided by object-logic dec-
larations internally.

judgment
�� �constdecl

atomize
�� ��

� (
���full

�� �)
���

�

CHAPTER 7. GENERIC TOOLS AND PACKAGES 107

rule format
�� ��

� (
���noasm

�� �)
���

�

judgment c :: σ (mx) declares constant c as the truth judgment of the cur-
rent object-logic. Its type σ should specify a coercion of the category of
object-level propositions to prop of the Pure meta-logic; the mixfix an-
notation (mx) would typically just link the object language (internally
of syntactic category logic) with that of prop. Only one judgment
declaration may be given in any theory development.

atomize (as a method) rewrites any non-atomic premises of a sub-goal, us-
ing the meta-level equations declared via atomize (as an attribute)
beforehand. As a result, heavily nested goals become amenable to
fundamental operations such as resolution (cf. the rule method). Giv-
ing the “(full)” option here means to turn the whole subgoal into an
object-statement (if possible), including the outermost parameters and
assumptions as well.

A typical collection of atomize rules for a particular object-logic would
provide an internalization for each of the connectives of

∧
, =⇒, and ≡.

Meta-level conjunction should be covered as well (this is particularly
important for locales, see §3.5).

rule format rewrites a theorem by the equalities declared as rulify rules in
the current object-logic. By default, the result is fully normalized,
including assumptions and conclusions at any depth. The (no asm)
option restricts the transformation to the conclusion of a rule.

In common object-logics (HOL, FOL, ZF), the effect of rule format
is to replace (bounded) universal quantification (∀) and implication
(−→) by the corresponding rule statements over

∧
and =⇒.

Chapter 8

Isabelle/HOL

8.1 Primitive types

typedecl : theory → theory
typedef : theory → proof (prove)

typedecl
�� �typespec �

� infix

�

typedef
�� ��

�altname

�

abstype =
���repset

altname

(
��� name

�� ��
�open

�� ��open
�� �name

�� �

�

)
���

abstype

typespec �
� infix

�

repset

term
�� ��

�morphisms
�� �name

�� �name
�� �

�

typedecl (α1, . . ., αn) t is similar to the original typedecl of Isabelle/Pure
(see §3.9.2), but also declares type arity t :: (type, . . ., type) type, mak-
ing t an actual HOL type constructor.

108

CHAPTER 8. ISABELLE/HOL 109

typedef (α1, . . ., αn) t = A sets up a goal stating non-emptiness of the
set A. After finishing the proof, the theory will be augmented by a
Gordon/HOL-style type definition, which establishes a bijection be-
tween the representing set A and the new type t.

Technically, typedef defines both a type t and a set (term constant) of
the same name (an alternative base name may be given in parentheses).
The injection from type to set is called Rep t, its inverse Abs t (this
may be changed via an explicit morphisms declaration).

Theorems Rep t, Rep t inverse, and Abs t inverse provide the most
basic characterization as a corresponding injection/surjection pair (in
both directions). Rules Rep t inject and Abs t inject provide a slightly
more convenient view on the injectivity part, suitable for automated
proof tools (e.g. in simp or iff declarations). Rules Rep t cases/Rep t
induct, and Abs t cases/Abs t induct provide alternative views on sur-
jectivity; these are already declared as set or type rules for the generic
cases and induct methods.

An alternative name may be specified in parentheses; the default is
to use t as indicated before. The “(open)” declaration suppresses a
separate constant definition for the representing set.

Note that raw type declarations are rarely used in practice; the main
application is with experimental (or even axiomatic!) theory fragments. In-
stead of primitive HOL type definitions, user-level theories usually refer to
higher-level packages such as record (see §8.3) or datatype (see §8.4).

8.2 Adhoc tuples

split format∗ : attribute

split format
�� � �

�name
�� �

�

�
� and

�� �

�

�

� (
���complete

�� �)
���

�

split format p1 . . . pm and . . . and q1 . . . qn puts expressions of low-level

tuple types into canonical form as specified by the arguments given;

CHAPTER 8. ISABELLE/HOL 110

the i -th collection of arguments refers to occurrences in premise i of
the rule. The “(complete)” option causes all arguments in function ap-
plications to be represented canonically according to their tuple type
structure.

Note that these operations tend to invent funny names for new local
parameters to be introduced.

8.3 Records

In principle, records merely generalize the concept of tuples, where com-
ponents may be addressed by labels instead of just position. The logical
infrastructure of records in Isabelle/HOL is slightly more advanced, though,
supporting truly extensible record schemes. This admits operations that are
polymorphic with respect to record extension, yielding “object-oriented” ef-
fects like (single) inheritance. See also [11] for more details on object-oriented
verification and record subtyping in HOL.

8.3.1 Basic concepts

Isabelle/HOL supports both fixed and schematic records at the level of terms
and types. The notation is as follows:

record terms record types
fixed (|x = a, y = b|) (|x :: A, y :: B |)
schematic (|x = a, y = b, . . . = m|) (|x :: A, y :: B , . . . :: M |)

The ASCII representation of (|x = a|) is (| x = a |).
A fixed record (|x = a, y = b|) has field x of value a and field y of value

b. The corresponding type is (|x :: A, y :: B |), assuming that a :: A and b ::
B.

A record scheme like (|x = a, y = b, . . . = m|) contains fields x and y
as before, but also possibly further fields as indicated by the “. . .” notation
(which is actually part of the syntax). The improper field “. . .” of a record
scheme is called the more part. Logically it is just a free variable, which is
occasionally referred to as “row variable” in the literature. The more part
of a record scheme may be instantiated by zero or more further components.
For example, the previous scheme may get instantiated to (|x = a, y = b, z
= c, . . . = m ′|), where m ′ refers to a different more part. Fixed records are
special instances of record schemes, where “. . .” is properly terminated by

CHAPTER 8. ISABELLE/HOL 111

the () :: unit element. In fact, (|x = a, y = b|) is just an abbreviation for (|x
= a, y = b, . . . = ()|).

Two key observations make extensible records in a simply typed language
like HOL work out:

1. the more part is internalized, as a free term or type variable,

2. field names are externalized, they cannot be accessed within the logic
as first-class values.

In Isabelle/HOL record types have to be defined explicitly, fixing their
field names and types, and their (optional) parent record. Afterwards,
records may be formed using above syntax, while obeying the canonical
order of fields as given by their declaration. The record package provides
several standard operations like selectors and updates. The common setup
for various generic proof tools enable succinct reasoning patterns. See also
the Isabelle/HOL tutorial [13] for further instructions on using records in
practice.

8.3.2 Record specifications

record : theory → theory

record
�� �typespec =

����
� type

�� �+
���

�

constdecl�
�

�

record (α1, . . ., αm) t = τ + c1 :: σ1 . . . cn :: σn defines extensible record
type (α1, . . ., αm) t, derived from the optional parent record τ by adding
new field components ci :: σi etc.

The type variables of τ and σi need to be covered by the (distinct)
parameters α1, . . ., αm . Type constructor t has to be new, while τ
needs to specify an instance of an existing record type. At least one
new field ci has to be specified. Basically, field names need to belong
to a unique record. This is not a real restriction in practice, since fields
are qualified by the record name internally.

The parent record specification τ is optional; if omitted t becomes
a root record. The hierarchy of all records declared within a theory
context forms a forest structure, i.e. a set of trees starting with a root
record each. There is no way to merge multiple parent records!

CHAPTER 8. ISABELLE/HOL 112

For convenience, (α1, . . ., αm) t is made a type abbreviation for the
fixed record type (|c1 :: σ1, . . ., cn :: σn |), likewise is (α1, . . ., αm , ζ)
t scheme made an abbreviation for (|c1 :: σ1, . . ., cn :: σn , . . . :: ζ|).

8.3.3 Record operations

Any record definition of the form presented above produces certain standard
operations. Selectors and updates are provided for any field, including the
improper one “more”. There are also cumulative record constructor func-
tions. To simplify the presentation below, we assume for now that (α1, . . .,
αm) t is a root record with fields c1 :: σ1, . . ., cn :: σn .

Selectors and updates are available for any field (including “more”):

ci :: (|c :: σ, . . . :: ζ|) ⇒ σi

ci update :: σi ⇒ (|c :: σ, . . . :: ζ|) ⇒ (|c :: σ, . . . :: ζ|)

There is special syntax for application of updates: r(|x := a|) abbreviates
term x update a r. Further notation for repeated updates is also available:
r(|x := a|)(|y := b|)(|z := c|) may be written r(|x := a, y := b, z := c|). Note
that because of postfix notation the order of fields shown here is reverse than
in the actual term. Since repeated updates are just function applications,
fields may be freely permuted in (|x := a, y := b, z := c|), as far as logical
equality is concerned. Thus commutativity of independent updates can be
proven within the logic for any two fields, but not as a general theorem.

The make operation provides a cumulative record constructor function:

t .make :: σ1 ⇒ . . . σn ⇒ (|c :: σ|)

We now reconsider the case of non-root records, which are derived of
some parent. In general, the latter may depend on another parent as well,
resulting in a list of ancestor records. Appending the lists of fields of all
ancestors results in a certain field prefix. The record package automatically
takes care of this by lifting operations over this context of ancestor fields.
Assuming that (α1, . . ., αm) t has ancestor fields b1 :: %1, . . ., bk :: %k , the
above record operations will get the following types:

ci :: (|b :: %, c :: σ, . . . :: ζ|) ⇒ σi

ci update :: σi ⇒ (|b :: %, c :: σ, . . . :: ζ|) ⇒ (|b :: %, c :: σ, . . . :: ζ|)
t .make :: %1 ⇒ . . . %k ⇒ σ1 ⇒ . . . σn ⇒ (|b :: %, c :: σ|)

CHAPTER 8. ISABELLE/HOL 113

Some further operations address the extension aspect of a derived record
scheme specifically: t .fields produces a record fragment consisting of exactly
the new fields introduced here (the result may serve as a more part elsewhere);
t .extend takes a fixed record and adds a given more part; t .truncate restricts
a record scheme to a fixed record.

t .fields :: σ1 ⇒ . . . σn ⇒ (|c :: σ|)
t .extend :: (|b :: %, c :: σ|) ⇒ ζ ⇒ (|b :: %, c :: σ, . . . :: ζ|)
t .truncate :: (|b :: %, c :: σ, . . . :: ζ|) ⇒ (|b :: %, c :: σ|)

Note that t .make and t .fields coincide for root records.

8.3.4 Derived rules and proof tools

The record package proves several results internally, declaring these facts to
appropriate proof tools. This enables users to reason about record structures
quite conveniently. Assume that t is a record type as specified above.

1. Standard conversions for selectors or updates applied to record con-
structor terms are made part of the default Simplifier context; thus
proofs by reduction of basic operations merely require the simp method
without further arguments. These rules are available as t .simps, too.

2. Selectors applied to updated records are automatically reduced by an
internal simplification procedure, which is also part of the standard
Simplifier setup.

3. Inject equations of a form analogous to (x , y) = (x ′, y ′) ≡ x = x ′ ∧ y
= y ′ are declared to the Simplifier and Classical Reasoner as iff rules.
These rules are available as t .iffs.

4. The introduction rule for record equality analogous to x r = x r ′ =⇒
y r = y r ′ . . . =⇒ r = r ′ is declared to the Simplifier, and as the basic
rule context as “intro?”. The rule is called t .equality.

5. Representations of arbitrary record expressions as canonical construc-
tor terms are provided both in cases and induct format (cf. the generic
proof methods of the same name, §4.12). Several variations are avail-
able, for fixed records, record schemes, more parts etc.

The generic proof methods are sufficiently smart to pick the most sensi-
ble rule according to the type of the indicated record expression: users
just need to apply something like “(cases r)” to a certain proof prob-
lem.

CHAPTER 8. ISABELLE/HOL 114

6. The derived record operations t .make, t .fields, t .extend, t .truncate are
not treated automatically, but usually need to be expanded by hand,
using the collective fact t .defs.

8.4 Datatypes

datatype : theory → theory
rep datatype : theory → theory

datatype
�� � dtspec�

� and
�� �

�

rep datatype
�� ��

�name
�� �

�

dtrules

dtspec

�
�parname

�

typespec �
� infix

�

=
��� cons�

� |
���

�

cons

name
�� ��

� type
�� �

�

�
�mixfix

�

dtrules

distinct
�� �thmrefs inject

�� �thmrefs induction
�� �thmrefs

datatype defines inductive datatypes in HOL.

rep datatype represents existing types as inductive ones, generating the
standard infrastructure of derived concepts (primitive recursion etc.).

The induction and exhaustion theorems generated provide case names
according to the constructors involved, while parameters are named after
the types (see also §4.12).

CHAPTER 8. ISABELLE/HOL 115

See [12] for more details on datatypes, but beware of the old-style theory
syntax being used there! Apart from proper proof methods for case-analysis
and induction, there are also emulations of ML tactics case tac and induct tac
available, see §8.8; these admit to refer directly to the internal structure of
subgoals (including internally bound parameters).

8.5 Recursive functions

primrec : local-theory → local-theory
fun : local-theory → local-theory

function : local-theory → proof (prove)
termination : local-theory → proof (prove)

primrec
�� ��

� target

�

fixes where
�� �equations

equations

�
� thmdecl

�

prop
�� ��

� |
���

�

fun
�� ��

�function
�� �

�

�
� target

�

�
� functionopts

�

fixes where
�� �clauses

clauses

�
� thmdecl

�

prop
�� ��

� (
���otherwise

�� �)
���

�

�
� |

���

�

CHAPTER 8. ISABELLE/HOL 116

functionopts

(
��� sequential

�� ��
�domintros

�� ��tailrec
�� ��default
�� �term

�� �

�

�

� ,
���

�

)
���

termination
�� ��

� term
�� �

�

primrec defines primitive recursive functions over datatypes, see also [12].

function defines functions by general wellfounded recursion. A detailed
description with examples can be found in [7]. The function is specified
by a set of (possibly conditional) recursive equations with arbitrary
pattern matching. The command generates proof obligations for the
completeness and the compatibility of patterns.

The defined function is considered partial, and the resulting simplifica-
tion rules (named f .psimps) and induction rule (named f .pinduct) are
guarded by a generated domain predicate f dom. The termination
command can then be used to establish that the function is total.

fun is a shorthand notation for “function (sequential), followed by auto-
mated proof attempts regarding pattern matching and termination.
See [7] for further details.

termination f commences a termination proof for the previously defined
function f. If this is omitted, the command refers to the most recent
function definition. After the proof is closed, the recursive equations
and the induction principle is established.

Recursive definitions introduced by both the primrec and the function
command accommodate reasoning by induction (cf. §4.12): rule c.induct
(where c is the name of the function definition) refers to a specific induction
rule, with parameters named according to the user-specified equations. Case
names of primrec are that of the datatypes involved, while those of function
are numbered (starting from 1).

CHAPTER 8. ISABELLE/HOL 117

The equations provided by these packages may be referred later as the-
orem list f .simps, where f is the (collective) name of the functions defined.
Individual equations may be named explicitly as well.

The function command accepts the following options.

sequential enables a preprocessor which disambiguates overlapping patterns
by making them mutually disjoint. Earlier equations take precedence
over later ones. This allows to give the specification in a format very
similar to functional programming. Note that the resulting simplifica-
tion and induction rules correspond to the transformed specification,
not the one given originally. This usually means that each equation
given by the user may result in several theroems. Also note that this
automatic transformation only works for ML-style datatype patterns.

domintros enables the automated generation of introduction rules for the
domain predicate. While mostly not needed, they can be helpful in
some proofs about partial functions.

tailrec generates the unconstrained recursive equations even without a termi-
nation proof, provided that the function is tail-recursive. This currently
only works

default d allows to specify a default value for a (partial) function, which will
ensure that f x = d x whenever x /∈ f dom.

8.5.1 Proof methods related to recursive definitions

pat completeness : method
relation : method

lexicographic order : method

relation
�� �term

�� �
lexicographic order

�� ��
� clasimpmod

�

pat completeness is a specialized method to solve goals regarding the com-
pleteness of pattern matching, as required by the function package (cf.
[7]).

CHAPTER 8. ISABELLE/HOL 118

relation R introduces a termination proof using the relation R. The resulting
proof state will contain goals expressing that R is wellfounded, and that
the arguments of recursive calls decrease with respect to R. Usually, this
method is used as the initial proof step of manual termination proofs.

lexicographic order attempts a fully automated termination proof by search-
ing for a lexicographic combination of size measures on the arguments
of the function. The method accepts the same arguments as the auto
method, which it uses internally to prove local descents. The same
context modifiers as for auto are accepted, see §7.4.3.

In case of failure, extensive information is printed, which can help to
analyse the situation (cf. [7]).

8.5.2 Old-style recursive function definitions (TFL)

The old TFL commands recdef and recdef tc for defining recursive are
mostly obsolete; function or fun should be used instead.

recdef : theory → theory
recdef tc∗ : theory → proof (prove)

recdef
�� ��

� (
���permissive

�� �)
���

�

�
�

�name
�� �term

�� � prop
�� ��

�
�

�
�hints

�

recdeftc �
� thmdecl

�

tc

hints

(
���hints

�� ��
� recdefmod

�

)
���

CHAPTER 8. ISABELLE/HOL 119

recdefmod

recdef simp
�� ��

�recdef cong
�� ��recdef wf
�� �

�

�
�add

�� ��del
�� �

�

:
���thmrefs�

� clasimpmod

�

tc

nameref
�� ��

� (
���nat

�� �)
���

�

recdef defines general well-founded recursive functions (using the TFL pack-
age), see also [12]. The “(permissive)” option tells TFL to recover from
failed proof attempts, returning unfinished results. The recdef simp,
recdef cong, and recdef wf hints refer to auxiliary rules to be used in
the internal automated proof process of TFL. Additional clasimpmod
declarations (cf. §7.4.3) may be given to tune the context of the Sim-
plifier (cf. §7.3) and Classical reasoner (cf. §7.4).

recdef tc c (i) recommences the proof for leftover termination condition
number i (default 1) as generated by a recdef definition of constant c.

Note that in most cases, recdef is able to finish its internal proofs
without manual intervention.

Hints for recdef may be also declared globally, using the following at-
tributes.

recdef simp : attribute
recdef cong : attribute

recdef wf : attribute

recdef simp
�� ��

�recdef cong
�� ��recdef wf
�� �

�

�
�add

�� ��del
�� �

�

CHAPTER 8. ISABELLE/HOL 120

8.6 Inductive and coinductive definitions

An inductive definition specifies the least predicate (or set) R closed under
given rules: applying a rule to elements of R yields a result within R. For
example, a structural operational semantics is an inductive definition of an
evaluation relation.

Dually, a coinductive definition specifies the greatest predicate / set
R that is consistent with given rules: every element of R can be seen as
arising by applying a rule to elements of R. An important example is using
bisimulation relations to formalise equivalence of processes and infinite data
structures.

The HOL package is related to the ZF one, which is described in a separate
paper,1 which you should refer to in case of difficulties. The package is simpler
than that of ZF thanks to implicit type-checking in HOL. The types of the
(co)inductive predicates (or sets) determine the domain of the fixedpoint
definition, and the package does not have to use inference rules for type-
checking.

inductive : local-theory → local-theory
inductive set : local-theory → local-theory

coinductive : local-theory → local-theory
coinductive set : local-theory → local-theory

mono : attribute

inductive
�� ��

�inductive set
�� ��coinductive
�� ��coinductive set
�� �

�

�
� target

�

fixes �
�for

�� �fixes

�

�

�
��

�where
�� �clauses

�

�
�monos

�� �thmrefs

�

1It appeared in CADE [17]; a longer version is distributed with Isabelle.

CHAPTER 8. ISABELLE/HOL 121

clauses

�
� thmdecl

�

prop
�� ��

� |
���

�

mono
�� ��

�add
�� ��del
�� �

�

inductive and coinductive define (co)inductive predicates from the intro-
duction rules given in the where part. The optional for part con-
tains a list of parameters of the (co)inductive predicates that remain
fixed throughout the definition. The optional monos section contains
monotonicity theorems, which are required for each operator applied
to a recursive set in the introduction rules. There must be a theorem
of the form A ≤ B =⇒ M A ≤ M B, for each premise M Ri t in an
introduction rule!

inductive set and coinductive set are wrappers for to the previous com-
mands, allowing the definition of (co)inductive sets.

mono declares monotonicity rules. These rule are involved in the automated
monotonicity proof of inductive.

8.6.1 Derived rules

Each (co)inductive definition R adds definitions to the theory and also proves
some theorems:

R.intros is the list of introduction rules as proven theorems, for the recursive
predicates (or sets). The rules are also available individually, using the
names given them in the theory file;

R.cases is the case analysis (or elimination) rule;

R.induct or R.coinduct is the (co)induction rule.

CHAPTER 8. ISABELLE/HOL 122

When several predicates R1, . . ., Rn are defined simultaneously, the list
of introduction rules is called R1 . . . Rn .intros, the case analysis rules are
called R1.cases , . . ., Rn .cases, and the list of mutual induction rules is called
R1 . . . Rn .inducts.

8.6.2 Monotonicity theorems

Each theory contains a default set of theorems that are used in monotonicity
proofs. New rules can be added to this set via the mono attribute. The
HOL theory Inductive shows how this is done. In general, the following
monotonicity theorems may be added:

• Theorems of the form A ≤ B =⇒ M A ≤ M B, for proving mono-
tonicity of inductive definitions whose introduction rules have premises
involving terms such as M Ri t.

• Monotonicity theorems for logical operators, which are of the general
form (. . . −→ . . .) =⇒ . . . (. . . −→ . . .) =⇒ . . . −→ For example,
in the case of the operator ∨, the corresponding theorem is

P1 −→ Q1 P2 −→ Q2

P1 ∨ P2 −→ Q1 ∨ Q2

• De Morgan style equations for reasoning about the “polarity” of ex-
pressions, e.g.

¬ ¬ P ←→ P ¬ (P ∧ Q) ←→ ¬ P ∨ ¬ Q

• Equations for reducing complex operators to more primitive ones whose
monotonicity can easily be proved, e.g.

(P −→ Q) ←→ ¬ P ∨ Q Ball A P ≡ ∀ x . x ∈ A −→ P x

8.7 Arithmetic proof support

arith : method
arith split : attribute

The arith method decides linear arithmetic problems (on types nat, int,
real). Any current facts are inserted into the goal before running the proce-
dure.

CHAPTER 8. ISABELLE/HOL 123

The arith split attribute declares case split rules to be expanded before
the arithmetic procedure is invoked.

Note that a simpler (but faster) version of arithmetic reasoning is already
performed by the Simplifier.

8.8 Cases and induction: emulating tactic

scripts

The following important tactical tools of Isabelle/HOL have been ported to
Isar. These should be never used in proper proof texts!

case tac∗ : method
induct tac∗ : method
ind cases∗ : method

inductive cases : theory → theory

case tac
�� ��

�goalspec

�

term
�� ��

� rule

�

induct tac
�� ��

�goalspec

�

�
� insts�

� and
�� �

�

�

�
� rule

�

ind cases
�� � prop

�� ��
�

�

�
�for

�� � name
�� ��

�
�

�

inductive cases
�� � �

� thmdecl

�

prop
�� ��

�
�

�
� and

�� �

�

rule

rule
�� �:

���thmref

CHAPTER 8. ISABELLE/HOL 124

case tac and induct tac admit to reason about inductive datatypes only (un-
less an alternative rule is given explicitly). Furthermore, case tac does
a classical case split on booleans; induct tac allows only variables to
be given as instantiation. These tactic emulations feature both goal
addressing and dynamic instantiation. Note that named rule cases are
not provided as would be by the proper induct and cases proof methods
(see §4.12).

ind cases and inductive cases provide an interface to the internal
mk_cases operation. Rules are simplified in an unrestricted forward
manner.

While ind cases is a proof method to apply the result immediately as
elimination rules, inductive cases provides case split theorems at the
theory level for later use. The for argument of the ind cases method
allows to specify a list of variables that should be generalized before
applying the resulting rule.

8.9 Executable code

Isabelle/Pure provides two generic frameworks to support code generation
from executable specifications. Isabelle/HOL instantiates these mechanisms
in a way that is amenable to end-user applications.

One framework generates code from both functional and relational pro-
grams to SML. See [12] for further information (this actually covers the
new-style theory format as well).

value∗ : theory | proof → theory | proof
code module : theory → theory
code library : theory → theory
consts code : theory → theory
types code : theory → theory

code : attribute

value
�� �term

�� �

CHAPTER 8. ISABELLE/HOL 125

code module
�� ��

�code library
�� �

�

�
�modespec

�

�
�name

�� �
�

�
�

��
�file

�� �name
�� �

�

�
�imports

�� � name
�� ��

�
�

�

�

�
�contains

�� � name
�� �=

���term
�� ��

�
�

�
� term

�� ��
�

�

�

modespec

(
����

�name
�� �

�

)
���

consts code
�� � codespec�

�
�

codespec

const template �
�attachment

�

types code
�� � tycodespec�

�
�

CHAPTER 8. ISABELLE/HOL 126

tycodespec

name
�� �template �

�attachment

�

const

term
�� �

template

(
���string

�� �)
���

attachment

attach
�� ��

�modespec

�

{*
�� �text

�� �*}
�� �

code
�� ��

�name
�� �

�

value t evaluates and prints a term using the code generator.

The other framework generates code from functional programs (includ-
ing overloading using type classes) to SML [9], OCaml [8] and Haskell [18].
Conceptually, code generation is split up in three steps: selection of code
theorems, translation into an abstract executable view and serialization to a

CHAPTER 8. ISABELLE/HOL 127

specific target language. See [5] for an introduction on how to use it.

export code∗ : theory | proof → theory | proof
code thms∗ : theory | proof → theory | proof
code deps∗ : theory | proof → theory | proof

code datatype : theory → theory
code const : theory → theory
code type : theory → theory
code class : theory → theory

code instance : theory → theory
code monad : theory → theory

code reserved : theory → theory
code include : theory → theory

code modulename : theory → theory
code exception : theory → theory

print codesetup∗ : theory | proof → theory | proof
code : attribute

export code
�� ��

� constexpr�
�

�

�

�

�
��

� in
�� �target �

�module name
�� �string

�� �
�

�
�

��
�file

�� � string
�� ��

� -
���

�

�

�
� (

���args)
���

�

��

�

�

�

CHAPTER 8. ISABELLE/HOL 128

code thms
�� ��

� constexpr�
�

�

�

code deps
�� ��

� constexpr�
�

�

�

const

term
�� �

constexpr

const�
�name.*

�� �� *
���

�

typeconstructor

nameref
�� �

class

nameref
�� �

target

OCaml
�� ��

�SML
�� ��Haskell
�� �

�

code datatype
�� �const�

�
�

CHAPTER 8. ISABELLE/HOL 129

code const
�� � const�

� and
�� �

�

�
�

� (
���target �

� syntax

�

�
� and

�� �

�

)
����

�

�

code type

�� � typeconstructor�
� and

�� �
�

�
�

� (
���target �

� syntax

�

�
� and

�� �

�

)
����

�

�

CHAPTER 8. ISABELLE/HOL 130

code class
�� � class�

� and
�� �

�

�
�

� (
���target �

�
� �

� string
�� ��

� where
�� ��

�
� const ==

�� ��
�≡

�� �
�

string
�� �

��

�

�

�

�

�

� and
�� �

�

)
���

��

�

�

code instance

�� � typeconstructor ::
�� �class�

� and
�� �

�

�
�

� (
���target �

� -
���

�

�
� and

�� �

�

)
����

�

�

code monad

�� �const const target

CHAPTER 8. ISABELLE/HOL 131

code reserved
�� �target string

�� ��
�

�

code include
�� �target string

�� � string
�� ��

� -
���

�

code modulename
�� �target string

�� �string
�� ��

�
�

code exception
�� � const�

�
�

syntax

string
�� ��

� infix
�� ��

�infixl
�� ��infixr
�� �

�

nat
�� �string

�� �
�

code
�� � func

�� ��
�inline

�� �
�

�
�del

�� �
�

export code is the canonical interface for generating and serializing code:
for a given list of constants, code is generated for the specified target
languages. Abstract code is cached incrementally. If no constant is
given, the currently cached code is serialized. If no serialization in-
struction is given, only abstract code is cached.

Constants may be specified by giving them literally, referring to all exe-
cutable contants within a certain theory by giving name.∗, or referring
to all executable constants currently available by giving ∗.
By default, for each involved theory one corresponding name space
module is generated. Alternativly, a module name may be specified af-
ter the module name keyword; then all code is placed in this module.

CHAPTER 8. ISABELLE/HOL 132

For SML and OCaml, the file specification refers to a single file; for
Haskell, it refers to a whole directory, where code is generated in mul-
tiple files reflecting the module hierarchy. The file specification “−”
denotes standard output. For SML, omitting the file specification com-
piles code internally in the context of the current ML session.

Serializers take an optional list of arguments in parentheses. For Haskell
a module name prefix may be given using the “root :” argument; “string
classes” adds a “deriving (Read, Show)” clause to each appropriate
datatype declaration.

code thms prints a list of theorems representing the corresponding program
containing all given constants; if no constants are given, the currently
cached code theorems are printed.

code deps visualizes dependencies of theorems representing the correspond-
ing program containing all given constants; if no constants are given,
the currently cached code theorems are visualized.

code datatype specifies a constructor set for a logical type.

code const associates a list of constants with target-specific serializations;
omitting a serialization deletes an existing serialization.

code type associates a list of type constructors with target-specific serial-
izations; omitting a serialization deletes an existing serialization.

code class associates a list of classes with target-specific class names; in ad-
dition, constants associated with this class may be given target-specific
names used for instance declarations; omitting a serialization deletes
an existing serialization. This applies only to Haskell.

code instance declares a list of type constructor / class instance relations
as “already present” for a given target. Omitting a “−” deletes an
existing “already present” declaration. This applies only to Haskell.

code monad provides an auxiliary mechanism to generate monadic code.

code reserved declares a list of names as reserved for a given target, pre-
venting it to be shadowed by any generated code.

code include adds arbitrary named content (“include”) to generated code.
A as last argument “−” will remove an already added “include”.

code modulename declares aliasings from one module name onto another.

CHAPTER 8. ISABELLE/HOL 133

code exception declares constants which are not required to have a defini-
tion by a defining equations; these are mapped on exceptions instead.

code func explicitly selects (or with option “del :” deselects) a defining equa-
tion for code generation. Usually packages introducing defining equa-
tions provide a resonable default setup for selection.

codeinline declares (or with option “del :” removes) inlining theorems which
are applied as rewrite rules to any defining equation during preprocess-
ing.

print codesetup gives an overview on selected defining equations, code
generator datatypes and preprocessor setup.

8.10 Definition by specification

specification : theory → proof (prove)
ax specification : theory → proof (prove)

specification
�� ��

�ax specification
�� �

�

(
��� decl�

�
�

)
����

�
� �

� thmdecl

�

prop
�� ��

�
�

decl

�
�name

�� �:
���

�

term
�� �(

���overloaded
�� ��

�)
���

�

specification decls ϕ sets up a goal stating the existence of terms with the
properties specified to hold for the constants given in decls. After fin-
ishing the proof, the theory will be augmented with definitions for the
given constants, as well as with theorems stating the properties for
these constants.

CHAPTER 8. ISABELLE/HOL 134

ax specification decls ϕ sets up a goal stating the existence of terms with
the properties specified to hold for the constants given in decls. After
finishing the proof, the theory will be augmented with axioms express-
ing the properties given in the first place.

decl declares a constant to be defined by the specification given. The defi-
nition for the constant c is bound to the name c def unless a theorem
name is given in the declaration. Overloaded constants should be de-
clared as such.

Whether to use specification or ax specification is to some extent a
matter of style. specification introduces no new axioms, and so by con-
struction cannot introduce inconsistencies, whereas ax specification does
introduce axioms, but only after the user has explicitly proven it to be safe.
A practical issue must be considered, though: After introducing two con-
stants with the same properties using specification, one can prove that the
two constants are, in fact, equal. If this might be a problem, one should use
ax specification.

Chapter 9

Isabelle/HOLCF

9.1 Mixfix syntax for continuous operations

consts : theory → theory

HOLCF provides a separate type for continuous functions α → β, with
an explicit application operator f · x. Isabelle mixfix syntax normally refers
directly to the pure meta-level function type α ⇒ β, with application f x.

The HOLCF variant of consts modifies that of Pure Isabelle (cf. §3.9.3)
such that declarations involving continuous function types are treated specif-
ically. Any given syntax template is transformed internally, generating trans-
lation rules for the abstract and concrete representation of continuous appli-
cation. Note that mixing of HOLCF and Pure application is not supported!

9.2 Recursive domains

domain : theory → theory

domain
�� ��

�parname

�

dmspec�
� and

�� �
�

dmspec

typespec =
��� cons�

� |
���

�

cons

name
�� ��

� type
�� �

�

�
�mixfix

�

135

CHAPTER 9. ISABELLE/HOLCF 136

dtrules

distinct
�� �thmrefs inject

�� �thmrefs induction
�� �thmrefs

Recursive domains in HOLCF are analogous to datatypes in classical
HOL (cf. §8.4). Mutual recursion is supported, but no nesting nor arbitrary
branching. Domain constructors may be strict (default) or lazy, the latter
admits to introduce infinitary objects in the typical LCF manner (e.g. lazy
lists). See also [10] for a general discussion of HOLCF domains.

Chapter 10

Isabelle/ZF

10.1 Type checking

The ZF logic is essentially untyped, so the concept of “type checking” is
performed as logical reasoning about set-membership statements. A special
method assists users in this task; a version of this is already declared as a
“solver” in the standard Simplifier setup.

print tcset∗ : theory | proof → theory | proof
typecheck : method

TC : attribute

TC
�� ��

�add
�� ��del
�� �

�

print tcset prints the collection of typechecking rules of the current context.

typecheck attempts to solve any pending type-checking problems in subgoals.

TC adds or deletes type-checking rules from the context.

10.2 (Co)Inductive sets and datatypes

10.2.1 Set definitions

In ZF everything is a set. The generic inductive package also provides a spe-
cific view for “datatype” specifications. Coinductive definitions are available
in both cases, too.

inductive : theory → theory
coinductive : theory → theory

datatype : theory → theory
codatatype : theory → theory

137

CHAPTER 10. ISABELLE/ZF 138

inductive
�� ��

�coinductive
�� �

�

domains intros hints

domains

domains
�� � term

�� ��
� +

���
�

<=
�� ��

�⊆
�� �

�

term
�� �

intros

intros
�� � �

� thmdecl

�

prop
�� ��

�
�

hints

�
�monos

�

�
� condefs

�

�
� typeintros

�

�
� typeelims

�

monos

�
�monos

�� �thmrefs

�

condefs

�
�con defs

�� �thmrefs

�

typeintros

�
�type intros

�� �thmrefs

�

typeelims

�
�type elims

�� �thmrefs

�

CHAPTER 10. ISABELLE/ZF 139

In the following syntax specification monos, typeintros, and typeelims are
the same as above.

datatype
�� ��

�codatatype
�� �

�

�
�domain

�

dtspec�
� and

�� �
�

hints

domain

<=
�� ��

�⊆
�� �

�

term
�� �

dtspec

term
�� �=

��� con�
� |

���
�

con

name
�� ��

� (
��� term

�� �,
����

�
�

)
���

�

hints

�
�monos

�

�
� typeintros

�

�
� typeelims

�

See [16] for further information on inductive definitions in ZF, but note
that this covers the old-style theory format.

10.2.2 Primitive recursive functions

primrec : theory → theory

primrec
�� � �

� thmdecl

�

prop
�� ��

�
�

CHAPTER 10. ISABELLE/ZF 140

10.2.3 Cases and induction: emulating tactic scripts

The following important tactical tools of Isabelle/ZF have been ported to
Isar. These should not be used in proper proof texts.

case tac∗ : method
induct tac∗ : method
ind cases∗ : method

inductive cases : theory → theory

case tac
�� ��

�induct tac
�� �

�

�
�goalspec

�

name
�� �

indcases prop
�� ��

�
�

inductivecases �
� thmdecl

�

prop
�� ��

�
�

�
� and

�� �

�

Appendix A

Isabelle/Isar quick reference

A.1 Proof commands

A.1.1 Primitives and basic syntax

fix x augment context by
∧

x . 2

assume a: ϕ augment context by ϕ =⇒ 2

then indicate forward chaining of facts
have a: ϕ prove local result
show a: ϕ prove local result, refining some goal
using a indicate use of additional facts
unfolding a unfold definitional equations
proof m1 . . . qed m2 indicate proof structure and refinements
{ . . . } indicate explicit blocks
next switch blocks
note a = b reconsider facts
let p = t abbreviate terms by higher-order matching

theory-stmt = theorem name: props proof | definition . . . | . . .
proof = prfx ∗ proof method stmt∗ qed method

| prfx ∗ done

prfx = apply method
| using facts
| unfolding facts

stmt = { stmt∗ }
| next
| note name = facts
| let term = term
| fix var+

| assume name: props
| then? goal

goal = have name: props proof
| show name: props proof

141

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 142

A.1.2 Abbreviations and synonyms

by m1 m2 ≡ proof m1 qed m2

.. ≡ by rule
. ≡ by this

hence ≡ then have
thus ≡ then show

from a ≡ note a then
with a ≡ from a and this

from this ≡ then
from this have ≡ hence
from this show ≡ thus

A.1.3 Derived elements

also0 ≈ note calculation = this
alson+1 ≈ note calculation = trans [OF calculation this]
finally ≈ also from calculation

moreover ≈ note calculation = calculation this
ultimately ≈ moreover from calculation

presume a: ϕ ≈ assume a: ϕ
def a: x ≡ t ≈ fix x assume a: x ≡ t

obtain x where a: ϕ ≈ . . . fix x assume a: ϕ
case c ≈ fix x assume c: ϕ
sorry ≈ by cheating

A.1.4 Diagnostic commands

pr print current state
thm a print fact
term t print term
prop ϕ print meta-level proposition
typ τ print meta-level type

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 143

A.2 Proof methods

Single steps (forward-chaining facts)

assumption apply some assumption
this apply current facts
rule a apply some rule
rule apply standard rule (default for proof)
contradiction apply ¬ elimination rule (any order)
cases t case analysis (provides cases)
induct x proof by induction (provides cases)

Repeated steps (inserting facts)

− no rules
intro a introduction rules
intro classes class introduction rules
elim a elimination rules
unfold a definitional rewrite rules

Automated proof tools (inserting facts)

iprover intuitionistic proof search
blast , fast Classical Reasoner
simp, simp all Simplifier (+ Splitter)
auto, force Simplifier + Classical Reasoner
arith Arithmetic procedures

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 144

A.3 Attributes

Operations

OF a rule resolved with facts (skipping “ ”)
of t rule instantiated with terms (skipping “ ”)
where x = t rule instantiated with terms, by variable name
symmetric resolution with symmetry rule
THEN b resolution with another rule
rule format result put into standard rule format
elim format destruct rule turned into elimination rule format

Declarations

simp Simplifier rule
intro, elim, dest Pure or Classical Reasoner rule
iff Simplifier + Classical Reasoner rule
split case split rule
trans transitivity rule
sym symmetry rule

A.4 Rule declarations and methods

rule iprover blast simp auto
fast simp all force

Pure.elim! Pure.intro! × ×
Pure.elim Pure.intro × ×
elim! intro! × × ×
elim intro × × ×
iff × × × ×
iff ? ×
elim? intro? ×
simp × ×
cong × ×
split × ×

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 145

A.5 Emulating tactic scripts

A.5.1 Commands

apply m apply proof method at initial position
apply end m apply proof method near terminal position
done complete proof
defer n move subgoal to end
prefer n move subgoal to beginning
back backtrack last command

A.5.2 Methods

rule tac insts resolution (with instantiation)
erule tac insts elim-resolution (with instantiation)
drule tac insts destruct-resolution (with instantiation)
frule tac insts forward-resolution (with instantiation)
cut tac insts insert facts (with instantiation)
thin tac ϕ delete assumptions
subgoal tac ϕ new claims
rename tac x rename innermost goal parameters
rotate tac n rotate assumptions of goal
tactic text arbitrary ML tactic
case tac t exhaustion (datatypes)
induct tac x induction (datatypes)
ind cases t exhaustion + simplification (inductive predicates)

Appendix B

ML tactic expressions

Isar Proof methods closely resemble traditional tactics, when used in un-
structured sequences of apply commands. Isabelle/Isar provides emulations
for all major ML tactics of classic Isabelle — mostly for the sake of easy
porting of existing developments, as actual Isar proof texts would demand
much less diversity of proof methods.

Unlike tactic expressions in ML, Isar proof methods provide proper con-
crete syntax for additional arguments, options, modifiers etc. Thus a typi-
cal method text is usually more concise than the corresponding ML tactic.
Furthermore, the Isar versions of classic Isabelle tactics often cover several
variant forms by a single method with separate options to tune the behav-
ior. For example, method simp replaces all of simp_tac / asm_simp_tac /
full_simp_tac / asm_full_simp_tac, there is also concrete syntax for aug-
menting the Simplifier context (the current “simpset”) in a convenient way.

B.1 Resolution tactics

Classic Isabelle provides several variant forms of tactics for single-step rule
applications (based on higher-order resolution). The space of resolution tac-
tics has the following main dimensions.

1. The “mode” of resolution: intro, elim, destruct, or forward (e.g.
resolve_tac, eresolve_tac, dresolve_tac, forward_tac).

2. Optional explicit instantiation (e.g. resolve_tac vs. res_inst_tac).

3. Abbreviations for singleton arguments (e.g. resolve_tac vs. rtac).

Basically, the set of Isar tactic emulations rule tac, erule tac, drule tac,
frule tac (see §7.2.3) would be sufficient to cover the four modes, either with
or without instantiation, and either with single or multiple arguments. Al-
though it is more convenient in most cases to use the plain rule method (see
§4.5), or any of its “improper” variants erule, drule, frule (see §7.2.1). Note
that explicit goal addressing is only supported by the actual rule tac version.

146

APPENDIX B. ML TACTIC EXPRESSIONS 147

With this in mind, plain resolution tactics correspond to Isar methods as
follows.

rtac a 1 rule a
resolve_tac [a1, . . .] 1 rule a1 . . .
res_inst_tac [(x 1, t1), . . .] a 1 rule tac x 1 = t1 and . . . in a

rtac a i rule tac [i] a
resolve_tac [a1, . . .] i rule tac [i] a1 . . .
res_inst_tac [(x 1, t1), . . .] a i rule tac [i] x 1 = t1 and . . . in a

Note that explicit goal addressing may be usually avoided by changing
the order of subgoals with defer or prefer (see §4.8).

B.2 Simplifier tactics

The main Simplifier tactics simp_tac and variants (cf. [15]) are all covered
by the simp and simp all methods (see §7.3). Note that there is no individual
goal addressing available, simplification acts either on the first goal (simp)
or all goals (simp all).

asm_full_simp_tac @{simpset} 1 simp
ALLGOALS (asm_full_simp_tac @{simpset}) simp all

simp_tac @{simpset} 1 simp (no asm)
asm_simp_tac @{simpset} 1 simp (no asm simp)
full_simp_tac @{simpset} 1 simp (no asm use)
asm_lr_simp_tac @{simpset} 1 simp (asm lr)

B.3 Classical Reasoner tactics

The Classical Reasoner provides a rather large number of variations of au-
tomated tactics, such as blast_tac, fast_tac, clarify_tac etc. (see [15]).
The corresponding Isar methods usually share the same base name, such as
blast , fast , clarify etc. (see §7.4).

B.4 Miscellaneous tactics

There are a few additional tactics defined in various theories of Isabelle/HOL,
some of these also in Isabelle/FOL or Isabelle/ZF. The most common ones
of these may be ported to Isar as follows.

APPENDIX B. ML TACTIC EXPRESSIONS 148

stac a 1 subst a
hyp_subst_tac 1 hypsubst
strip_tac 1 ≈ intro strip
split_all_tac 1 simp (no asm simp) only : split tupled all

≈ simp only : split tupled all
� clarify

B.5 Tacticals

Classic Isabelle provides a huge amount of tacticals for combination and
modification of existing tactics. This has been greatly reduced in Isar, pro-
viding the bare minimum of combinators only: “,” (sequential composition),
“|” (alternative choices), “?” (try), “+” (repeat at least once). These are
usually sufficient in practice; if all fails, arbitrary ML tactic code may be
invoked via the tactic method (see §7.2.3).

Common ML tacticals may be expressed directly in Isar as follows:

tac1 THEN tac2 meth1, meth2

tac1 ORELSE tac2 meth1 | meth2

TRY tac meth?
REPEAT1 tac meth+
REPEAT tac (meth+)?
EVERY [tac1, . . .] meth1, . . .
FIRST [tac1, . . .] meth1 | . . .

CHANGED (see [15]) is usually not required in Isar, since most basic proof
methods already fail unless there is an actual change in the goal state. Nev-
ertheless, “?” (try) may be used to accept unchanged results as well.

ALLGOALS, SOMEGOAL etc. (see [15]) are not available in Isar, since there
is no direct goal addressing. Nevertheless, some basic methods address all
goals internally, notably simp all (see §7.3). Also note that ALLGOALS can
be often replaced by “+” (repeat at least once), although this usually has a
different operational behavior, such as solving goals in a different order.

Iterated resolution, such as REPEAT (FIRSTGOAL

(resolve_tac \<dots>)), is usually better expressed using the intro
and elim methods of Isar (see §7.4).

Bibliography

[1] David Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.

[2] David Aspinall. Proof General: A generic tool for proof development. In
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1785 of Lecture Notes in Computer Science, pages 38–42.
Springer-Verlag, 2000.

[3] Gertrud Bauer and Markus Wenzel. Computer-assisted mathematics at
work — the Hahn-Banach theorem in Isabelle/Isar. In Thierry Coquand,
Peter Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs
and Programs: TYPES’99, LNCS, 2000.

[4] Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited — an
Isabelle/Isar experience. In R. J. Boulton and P. B. Jackson, editors,
Theorem Proving in Higher Order Logics: TPHOLs 2001, volume 2152 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[5] Florian Haftmann. Code generation from Isabelle theories.
http://isabelle.in.tum.de/doc/codegen.pdf.

[6] Florian Haftmann. Haskell-style type classes with Isabelle/Isar.
http://isabelle.in.tum.de/doc/classes.pdf.

[7] Alexander Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/doc/functions.pdf.

[8] Xavier Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[9] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[10] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch.
HOLCF = HOL + LCF. Journal of Functional Programming, 9:191–223,
1999.

[11] Wolfgang Naraschewski and Markus Wenzel. Object-oriented verification
based on record subtyping in higher-order logic. In Jim Grundy and Malcom
Newey, editors, Theorem Proving in Higher Order Logics: TPHOLs ’98,
volume 1479 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

149

http://proofgeneral.inf.ed.ac.uk/

http://isabelle.in.tum.de/doc/codegen.pdf

http://isabelle.in.tum.de/doc/classes.pdf

http://isabelle.in.tum.de/doc/functions.pdf

http://caml.inria.fr/pub/docs/manual-ocaml/

BIBLIOGRAPHY 150

[12] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle’s Logics:
HOL. http://isabelle.in.tum.de/doc/logics-HOL.pdf.

[13] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS 2283.

[14] Lawrence C. Paulson. Introduction to Isabelle.
http://isabelle.in.tum.de/doc/intro.pdf.

[15] Lawrence C. Paulson. The Isabelle Reference Manual.
http://isabelle.in.tum.de/doc/ref.pdf.

[16] Lawrence C. Paulson. Isabelle’s Logics: FOL and ZF.
http://isabelle.in.tum.de/doc/logics-ZF.pdf.

[17] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive
definitions. In Alan Bundy, editor, Automated Deduction — CADE-12
International Conference, LNAI 814, pages 148–161. Springer, 1994.

[18] Simon Peyton Jones et al. The Haskell 98 language and libraries: The
revised report. Journal of Functional Programming, 13(1):0–255, Jan 2003.
http://www.haskell.org/definition/.

[19] Christoph Wedler. Emacs package “X-Symbol”.
http://x-symbol.sourceforge.net.

[20] Makarius Wenzel. Isabelle/Isar — a generic framework for human-readable
proof documents. In R. Matuszewski and A. Zalewska, editors, From Insight
to Proof — Festschrift in Honour of Andrzej Trybulec, volume 10(23) of
Studies in Logic, Grammar, and Rhetoric. University of Bia lystok, 2007.
http://www.in.tum.de/∼wenzelm/papers/isar-framework.pdf.

[21] Markus Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[22] Markus Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs ’99,
volume 1690 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

[23] Markus Wenzel. Isabelle/Isar — a versatile environment for human-readable
formal proof documents. PhD thesis, Institut für Informatik, Technische
Universität München, 2002.
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.

http://isabelle.in.tum.de/doc/logics-HOL.pdf

http://isabelle.in.tum.de/doc/intro.pdf

http://isabelle.in.tum.de/doc/ref.pdf

http://isabelle.in.tum.de/doc/logics-ZF.pdf

http://www.haskell.org/definition/

http://x-symbol.sourceforge.net

http://www.in.tum.de/~wenzelm/papers/isar-framework.pdf

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

BIBLIOGRAPHY 151

[24] Markus Wenzel and Stefan Berghofer. The Isabelle System Manual.
http://isabelle.in.tum.de/doc/system.pdf.

[25] Freek Wiedijk. The mathematical vernacular. Unpublished paper, 2000.
http://www.cs.kun.nl/∼freek/notes/mv.ps.gz.

http://isabelle.in.tum.de/doc/system.pdf

http://www.cs.kun.nl/~freek/notes/mv.ps.gz

Index

- (method), 55
. (command), 53
.. (command), 53
?thesis (variable), 52

(fact), 49
{ (command), 59
} (command), 59

abbrev (antiquotation), 77
abbreviation (command), 20
also (command), 64
altstring (syntax), 7, 15
and (keyword), 17, 48
apply (command), 49, 50, 60
apply end (command), 60
args (syntax), 14
arith (HOL method), 122
arith split (HOL attribute), 122
arities (command), 37
arity (syntax), 9
assms (fact), 50
assume (command), 46
assumes (element), 23
assumption (method), 55
atom (syntax), 14
atomize (attribute), 106
atomize (method), 106
attributes (syntax), 14
auto (method), 103
ax specification (HOL command),

133
axclass (command), 33
axiomatization (command), 20
axioms (command), 40
axmdecl (syntax), 15

back (command), 60
best (method), 102
bestsimp (method), 103
blast (method), 102
by (command), 53

calculation (fact), 64
case (command), 66
case conclusion (attribute), 66
case names (attribute), 66
case tac (HOL method), 123
case tac (ZF method), 140
cases (attribute), 72
cases (method), 52, 67, 68
cd (command), 89
chapter (command), 75
clamod (syntax), 102
clarify (method), 102
clarsimp (method), 103
clasimpmod (syntax), 103
class (command), 30
class deps (command), 36
classdecl (syntax), 9
classes (command), 36
classrel (command), 36
codatatype (ZF command), 137
code (HOL attribute), 124, 127
code class (HOL command), 127
code const (HOL command), 127
code datatype (HOL command), 127
code deps (HOL command), 127
code exception (HOL command),

127
code include (HOL command), 127
code instance (HOL command), 127

152

INDEX 153

code library (HOL command), 124
code module (HOL command), 124
code modulename (HOL command),

127
code monad (HOL command), 127
code reserved (HOL command), 127
code thms (HOL command), 127
code type (HOL command), 127
coinduct (attribute), 72
coinduct (method), 68
coinductive (HOL command), 120
coinductive (ZF command), 137
coinductive set (HOL command),

120
comment (syntax), 9
COMP (attribute), 92
cong (attribute), 99
const (antiquotation), 77
constdefs (command), 38
constrains (element), 23
consts (command), 38
consts (HOLCF command), 135
consts code (HOL command), 124
consumes (attribute), 66
context (command), 19
contextelem (syntax), 23
contextexpr (syntax), 23
contradiction (method), 101
corollary (command), 50
cut tac (method), 95

datatype (HOL command), 114
datatype (ZF command), 137
declaration (command), 22
declare (command), 22
def (command), 46
defaultsort (command), 36
defer (command), 60
defines (element), 23
definition (command), 20
defn (attribute), 20

defs (command), 38
dest (attribute), 105
dest (Pure attribute), 55
display drafts (command), 82
domain (HOLCF command), 135
done (command), 60
drule (method), 91
drule tac (method), 95

elim (attribute), 105
elim (method), 101
elim (Pure attribute), 55
elim format (Pure attribute), 92
end (global command), 18
end (local command), 19, 32
erule (method), 91
erule tac (method), 95
export code (HOL command), 127

fact (method), 15, 55
fail (method), 91
fast (method), 102
fastsimp (method), 103
finally (command), 64
find theorems (command), 86
fix (command), 46
fixes (element), 23
fold (method), 91
folded (attribute), 92
force (method), 103
from (command), 48
frule (method), 91
frule tac (method), 95
full prf (antiquotation), 77
full prf (command), 84
fun (HOL command), 115
function (HOL command), 115

global (command), 41
goals (antiquotation), 77
goalspec (syntax), 13
guess (command), 62

INDEX 154

have (command), 50
header (command), 75, 76
hence (command), 50
hide (command), 41
hypsubst (method), 93

ident (syntax), 7
iff (attribute), 105
includes (element), 23
ind cases (HOL method), 123
ind cases (ZF method), 140
induct (attribute), 72
induct (method), 50, 67, 68
induct tac (HOL method), 123
induct tac (ZF method), 140
inductive (HOL command), 120
inductive (ZF command), 137
inductive cases (HOL command),

123
inductive cases (ZF command), 140
inductive set (HOL command), 120
infix (syntax), 11
insert (method), 91
inst (syntax), 10
instance (command), 30, 33, 36, 37
instantiation (command), 30
insts (syntax), 10
int (syntax), 8
interp (syntax), 27
interpret (command), 27
interpretation (command), 27
intro (attribute), 105
intro (method), 101
intro (Pure attribute), 55
intro classes (method), 30
intro locales (method), 23
iprover (method), 55
is (keyword), 58

judgment (command), 106

kill (command), 62, 88

lemma (command), 50
lemmas (command), 40
let (command), 58
lexicographic order (HOL method),

117
local (command), 41
locale (command), 23
longident (syntax), 7

method (syntax), 12
method setup (command), 34
mixfix (syntax), 11
ML (antiquotation), 77
ML (command), 34
ML command (command), 34
ML struct (antiquotation), 77
ML type (antiquotation), 77
ML val (command), 34
mono (HOL attribute), 120
moreover (command), 64

name (syntax), 8
nameref (syntax), 8
nat (syntax), 7
next (command), 59
no notation (command), 20
no syntax (command), 42
no translations (command), 42
no vars (attribute), 79, 92
nonterminals (command), 37
notation (command), 20
note (command), 48
notes (element), 23
nothing (fact), 49

obtain (command), 62
obtains (element), 50, 52
OF (attribute), 55
of (attribute), 55
oops (command), 61
oracle (command), 41
output (keyword), 43

INDEX 155

overloading (command), 34

params (attribute), 66
parname (syntax), 8
parse ast translation (command), 44
parse translation (command), 44
pat completeness (HOL method),

117
pr (command), 84
prefer (command), 60
prems (fact), 48
presume (command), 46
prf (antiquotation), 77
prf (command), 84
primrec (HOL command), 115
primrec (ZF command), 139
print abbrevs (command), 20
print ast translation (command), 44
print attributes (command), 86
print binds (command), 86
print cases (command), 66
print claset (command), 105
print classes (command), 30
print codesetup (HOL command),

127
print commands (command), 86
print configs (command), 90
print drafts (command), 82
print facts (command), 86
print induct rules (command), 72
print interps (command), 27
print locale (command), 23
print locales (command), 23
print methods (command), 86
print simpset (command), 99
print statement (command), 50
print syntax (command), 86
print tcset (ZF command), 137
print theorems (command), 86
print theory (command), 86
print trans rules (command), 64

print translation (command), 44
proof

default, 54
fake, 55
terminal, 54
trivial, 54

proof (command), 49, 50, 53, 53, 56
prop (antiquotation), 77
prop (command), 84
prop (syntax), 10
proppat (syntax), 16
props (syntax), 17
pwd (command), 89

qed (command), 53, 53

recdef (HOL command), 118
recdef cong (HOL attribute), 119
recdef simp (HOL attribute), 119
recdef tc (HOL command), 118
recdef wf (HOL attribute), 119
record (HOL command), 111
redo (command), 88
relation (HOL method), 117
rename tac (method), 95
rep datatype (HOL command), 114
rotate tac (method), 95
rotated (attribute), 92
rule (attribute), 55, 105
rule (method), 49, 53, 55, 57, 101
rule format (attribute), 106
rule tac (method), 95
rulify (attribute), 106

safe (method), 102
sect (command), 75
section (command), 75
selection (syntax), 15
setup (command), 34
show (command), 48, 50, 53
shows (element), 50
simp (attribute), 99

INDEX 156

simp (method), 97
simp all (method), 97
simplified (attribute), 100
simpmod (syntax), 97
simproc setup (command), 99
slow (method), 102
slowsimp (method), 103
sorry (command), 53, 61
sort (syntax), 9
specification (HOL command), 133
split (attribute), 99
split (method), 93
standard (attribute), 92
string (syntax), 7
structmixfix (syntax), 11
subclass (command), 30
subgoal tac (method), 95
subgoals (antiquotation), 77
subsect (command), 75
subsection (command), 75
subst (method), 93
subsubsect (command), 75
subsubsection (command), 75
succeed (method), 91
swapped (attribute), 106
symident (syntax), 7
syntax (command), 42

tactic (method), 95
tagged (attribute), 92
tags (syntax), 81
target (syntax), 19
TC (ZF attribute), 137
term (antiquotation), 77
term (command), 84
term (syntax), 10
term abbreviations, 59
term style (antiquotation), 77
termination (HOL command), 115
termpat (syntax), 16
text (antiquotation), 77

text (command), 75
text (syntax), 9
text raw (command), 75
THEN (attribute), 92
then (command), 48, 50
theorem (command), 50
theorems (command), 40
theory (antiquotation), 77
theory (command), 18
thesis (variable), 59
thin tac (method), 95
this (fact), 46, 48
this (method), 55
this (variable), 59
thm (antiquotation), 77
thm (command), 84
thm deps (command), 86
thm style (antiquotation), 77
thmdecl (syntax), 15
thmdef (syntax), 15
thmref (syntax), 15
thmrefs (syntax), 15
thus (command), 50
token translation (command), 44
translations (command), 42
txt (command), 75
txt raw (command), 75
typ (antiquotation), 77
typ (command), 84
type (syntax), 10
typecheck (ZF method), 137
typed print translation (command),

44
typedecl (command), 37
typedecl (HOL command), 108
typedef (HOL command), 108
typefree (syntax), 7
typeof (antiquotation), 77
types (command), 37
types code (HOL command), 124
typespec (syntax), 11

INDEX 157

typevar (syntax), 7

ultimately (command), 64
undo (command), 88
unfold (method), 91
unfold locales (method), 23
unfolded (attribute), 92
unfolding (command), 48
untagged (attribute), 92
use (command), 19, 34
use thy (command), 89
uses (keyword), 19, 35
using (command), 48

value (HOL command), 124
var (syntax), 7
vars (syntax), 17
verbatim (syntax), 7

where (attribute), 55
with (command), 48

			Introduction

			Overview

			User interfaces

			Terminal sessions

			Emacs Proof General

			Isabelle/Isar theories

			How to write Isar proofs anyway?

			Outer syntax

			Lexical matters

			Common syntax entities

			Names

			Comments

			Type classes, sorts and arities

			Types and terms

			Mixfix annotations

			Proof methods

			Attributes and theorems

			Term patterns and declarations

			Theory specifications

			Defining theories

			Local theory targets

			Basic specification elements

			Generic declarations

			Locales

			Locale specifications

			Interpretation of locales

			Classes

			The class target

			Old-style axiomatic type classes

			Unrestricted overloading

			Incorporating ML code

			Primitive specification elements

			Type classes and sorts

			Types and type abbreviations

			Constants and definitions

			Axioms and theorems

			Oracles

			Name spaces

			Syntax and translations

			Syntax translation functions

			Proofs

			Context elements

			Facts and forward chaining

			Goal statements

			Initial and terminal proof steps

			Fundamental methods and attributes

			Term abbreviations

			Block structure

			Emulating tactic scripts

			Omitting proofs

			Generalized elimination

			Calculational reasoning

			Proof by cases and induction

			Rule contexts

			Proof methods

			Declaring rules

			Document preparation

			Markup commands

			Antiquotations

			Tagged commands

			Draft presentation

			Other commands

			Diagnostics

			Inspecting the context

			History commands

			System commands

			Generic tools and packages

			Configuration options

			Basic proof tools

			Miscellaneous methods and attributes

			Low-level equational reasoning

			Further tactic emulations

			The Simplifier

			Simplification methods

			Declaring rules

			Simplification procedures

			Forward simplification

			The Classical Reasoner

			Basic methods

			Automated methods

			Combined automated methods

			Declaring rules

			Classical operations

			Object-logic setup

			Isabelle/HOL

			Primitive types

			Adhoc tuples

			Records

			Basic concepts

			Record specifications

			Record operations

			Derived rules and proof tools

			Datatypes

			Recursive functions

			Proof methods related to recursive definitions

			Old-style recursive function definitions (TFL)

			Inductive and coinductive definitions

			Derived rules

			Monotonicity theorems

			Arithmetic proof support

			Cases and induction: emulating tactic scripts

			Executable code

			Definition by specification

			Isabelle/HOLCF

			Mixfix syntax for continuous operations

			Recursive domains

			Isabelle/ZF

			Type checking

			(Co)Inductive sets and datatypes

			Set definitions

			Primitive recursive functions

			Cases and induction: emulating tactic scripts

			Isabelle/Isar quick reference

			Proof commands

			Primitives and basic syntax

			Abbreviations and synonyms

			Derived elements

			Diagnostic commands

			Proof methods

			Attributes

			Rule declarations and methods

			Emulating tactic scripts

			Commands

			Methods

			ML tactic expressions

			Resolution tactics

			Simplifier tactics

			Classical Reasoner tactics

			Miscellaneous tactics

			Tacticals

Isabelle2008/doc/locales.pdf

Technical Report TUM-I0723, Technische Universität München, 2007 1

Tutorial to Locales and Locale Interpretation

Clemens Ballarin

Abstract

Locales are Isabelle’s mechanism to deal with parametric theories.
We present typical examples of locale specifications, along with inter-
pretations between locales to change their hierarchic dependencies and
interpretations to reuse locales in theory contexts and proofs.

This tutorial is intended for locale novices; familiarity with Isabelle
and Isar is presumed.

1 Introduction

Locales are based on contexts. A context can be seen as a formula schema∧
x1. . . xn. [[A1; . . . ;Am]] =⇒ . . .

where variables x1, . . . , xn are called parameters and the premises A1, . . . , Am

assumptions. A formula C is a theorem in the context if it is a conclusion∧
x1. . . xn. [[A1; . . . ;Am]] =⇒ C.

Isabelle/Isar’s notion of context goes beyond this logical view. Its contexts
record, in a consecutive order, proved conclusions along with attributes,
which may control proof procedures. Contexts also contain syntax informa-
tion for parameters and for terms depending on them.

2 Simple Locales

Locales can be seen as persistent contexts. In its simplest form, a locale
declaration consists of a sequence of context elements declaring parameters
(keyword fixes) and assumptions (keyword assumes). The following is the
specification of partial orders, as locale partial_order.

locale partial_order =
fixes le :: "’a ⇒ ’a ⇒ bool" (infixl "v" 50)
assumes refl [intro, simp]: "x v x"

and anti_sym [intro]: "[[x v y; y v x]] =⇒ x = y"
and trans [trans]: "[[x v y; y v z]] =⇒ x v z"

definition definition through an equation
inductive inductive definition
fun, function recursive function
abbreviation syntactic abbreviation
theorem, etc. theorem statement with proof
theorems, etc. redeclaration of theorems

Table 1: Isar commands that accept a target.

The parameter of this locale is le, with infix syntax v. There is an implicit
type parameter ’a. It is not necessary to declare parameter types: most
general types will be inferred from the context elements for all parameters.
The above declaration not only introduces the locale, it also defines the
locale predicate partial_order with definition partial_order_def:

partial_order ?le ≡
(∀ x. ?le x x) ∧
(∀ x y. ?le x y −→ ?le y x −→ x = y) ∧
(∀ x y z. ?le x y −→ ?le y z −→ ?le x z)

The specification of a locale is fixed, but its list of conclusions may be ex-
tended through Isar commands that take a target argument. In the follow-
ing, definition and theorem are illustrated. Table 1 lists Isar commands
that accept a target. There are various ways of specifying the target. A tar-
get for a single command may be indicated with keyword in in the following
way:

definition (in partial_order)
less :: "’a ⇒ ’a ⇒ bool" (infixl "@" 50)
where "(x @ y) = (x v y ∧ x 6= y)"

A definition in a locale depends on the locale parameters. Here, a global
constant partial_order.less is declared, which is lifted over the locale pa-
rameter le. Its definition is the global theorem partial_order.less_def:

partial_order ?le =⇒
partial_order.less ?le ?x ?y = (?le ?x ?y ∧ ?x 6= ?y)

At the same time, the locale is extended by syntax information hiding this
construction in the context of the locale. That is, partial_order.less le

is printed and parsed as infix @. Finally, the conclusion of the definition is
added to the locale, less_def:

(?x @ ?y) = (?x v ?y ∧ ?x 6= ?y)

2

As an example of a theorem statement in the locale, here is the derivation
of a transitivity law.

lemma (in partial_order) less_le_trans [trans]:
"[[x @ y; y v z]] =⇒ x @ z"
unfolding less_def by (blast intro: trans)

In the context of the proof, assumptions and theorems of the locale may be
used. Attributes are effective: anti_sym was declared as introduction rule,
hence it is in the context’s set of rules used by the classical reasoner by
default.

When working with locales, sequences of commands with the same target
are frequent. A block of commands, delimited by begin and end, makes a
theory-like style of working possible. All commands inside the block refer
to the same target. A block may immediately follow a locale declaration,
which makes that locale the target. Alternatively the target for a block may
be given with the context command.
In the block below, notions of infimum and supremum together with theo-
rems are introduced for partial orders.

context partial_order begin

definition
is_inf where "is_inf x y i =
(i v x ∧ i v y ∧ (∀ z. z v x ∧ z v y −→ z v i))"

definition
is_sup where "is_sup x y s =
(x v s ∧ y v s ∧ (∀ z. x v z ∧ y v z −→ s v z))"

theorem is_inf_uniq: "[[is_inf x y i; is_inf x y i’]] =⇒ i = i’"
〈proof 〉

theorem is_sup_uniq: "[[is_sup x y s; is_sup x y s’]] =⇒ s = s’"
〈proof 〉

end

In fact, many more theorems need to be shown for a usable theory of partial
orders. The above two serve as illustrative examples.

Two commands are provided to inspect locales: print locales lists the
names of all locales of the theory; print locale n prints the parameters
and assumptions of locale n; print locale! n additionally outputs the con-
clusions.
The syntax of the locale commands discussed in this tutorial is shown in
Table 4. See the Isabelle/Isar Reference Manual [6] for full documentation.

3

3 Import

Algebraic structures are commonly defined by adding operations and prop-
erties to existing structures. For example, partial orders are extended to
lattices and total orders. Lattices are extended to distributive lattices.
With locales, this inheritance is achieved through import of a locale. The
import comes before the context elements.

locale lattice = partial_order +
assumes ex_inf: "∃ inf. partial_order.is_inf le x y inf"

and ex_sup: "∃ sup. partial_order.is_sup le x y sup"
begin

Note that the assumptions above refer to the predicates for infimum and
supremum defined in partial_order. In the current implementation of lo-
cales, syntax from definitions of the imported locale is unavailable in the
locale declaration, neither are their names. Hence we refer to the constants
of the theory. The names and syntax is available below, in the context of
the locale.

definition
meet (infixl "u" 70) where "x u y = (THE inf. is_inf x y inf)"

definition
join (infixl "t" 65) where "x t y = (THE sup. is_sup x y sup)"

end

Locales for total orders and distributive lattices follow. Each comes with an
example theorem.

locale total_order = partial_order +
assumes total: "x v y ∨ y v x"

lemma (in total_order) less_total: "x @ y ∨ x = y ∨ y @ x"
〈proof 〉

locale distrib_lattice = lattice +
assumes meet_distr:
"lattice.meet le x (lattice.join le y z) =
lattice.join le (lattice.meet le x y) (lattice.meet le x z)"

lemma (in distrib_lattice) join_distr:
"x t (y u z) = (x t y) u (x t z)"
〈proof 〉

The locale hierachy obtained through these declarations is shown in Fig-
ure 1(a).

4

partial_order

lattice

distrib_lattice

total_order

(a) Declared hierachy

partial_order

lattice

distrib_lattice total_order

(b) Total orders are lattices

partial_order

lattice

distrib_lattice

total_order

(c) Total orders are
distributive lattices

Figure 1: Hierarchy of Lattice Locales.

4 Changing the Locale Hierarchy

Total orders are lattices. Hence, by deriving the lattice axioms for to-
tal orders, the hierarchy may be changed and lattice be placed between
partial_order and total_order, as shown in Figure 1(b). Changes to the
locale hierarchy may be declared with the interpretation command.

interpretation total_order ⊆ lattice

This enters the context of locale total_order, in which the goal

1. lattice op v

must be shown. First, the locale predicate needs to be unfolded — for example
using its definition or by introduction rules provided by the locale package. The
methods intro_locales and unfold_locales automate this. They are aware of
the current context and dependencies between locales and automatically discharge
goals implied by these. While unfold_locales always unfolds locale predicates
to assumptions, intro_locales only unfolds definitions along the locale hierarchy,
leaving a goal consisting of predicates defined by the locale package. Occasionally
the latter is of advantage since the goal is smaller.
For the current goal, we would like to get hold of the assumptions of lattice, hence
unfold_locales is appropriate.

proof unfold_locales

5

Since both lattice and total_order inherit partial_order, the assumptions of
the latter are discharged, and the only subgoals that remain are the assumptions
introduced in lattice

1.
∧
x y. ∃ inf. is_inf x y inf

2.
∧
x y. ∃ sup. is_sup x y sup

The proof for the first subgoal is

fix x y
from total have "is_inf x y (if x v y then x else y)"

by (auto simp: is_inf_def)
then show "∃ inf. is_inf x y inf" ..

The proof for the second subgoal is analogous and not reproduced here.

qed

Similarly, total orders are distributive lattices.

interpretation total_order ⊆ distrib_lattice
〈proof 〉

The locale hierarchy is now as shown in Figure 1(c).

5 Use of Locales in Theories and Proofs

Locales enable to prove theorems abstractly, relative to sets of assumptions.
These theorems can then be used in other contexts where the assumptions
themselves, or instances of the assumptions, are theorems. This form of
theorem reuse is called interpretation.
The changes of the locale hierarchy from the previous sections are examples
of interpretations. The command interpretation l1 ⊆ l2 is said to interpret
locale l2 in the context of l1. It causes all theorems of l2 to be made available
in l1. The interpretation is dynamic: not only theorems already present in
l2 are available in l1. Theorems that will be added to l2 in future will
automatically be propagated to l1.
Locales can also be interpreted in the contexts of theories and structured
proofs. These interpretations are dynamic, too. Theorems added to locales
will be propagated to theories. In this section the interpretation in theories
is illustrated; interpretation in proofs is analogous. As an example consider,
the type of natural numbers nat. The order relation ≤ is a total order over
nat, divisibility dvd is a distributive lattice.
We start with the interpretation that ≤ is a partial order. The facilities of
the interpretation command are explored in three versions.

6

5.1 First Version: Replacement of Parameters Only

In the most basic form, interpretation just replaces the locale parameters by
terms. The following command interprets the locale partial_order in the
global context of the theory. The parameter le is replaced by op ≤.

interpretation nat: partial_order ["op ≤ :: nat ⇒ nat ⇒ bool"]

The locale name is succeeded by a parameter instantiation. In general, this is a list
of terms, which refer to the parameters in the order of declaration in the locale.
The locale name is preceded by an optional interpretation prefix, which is used to
qualify names from the locale in the global context.
The command creates the goal

1. partial_order op ≤

which can be shown easily:1

by unfold_locales auto

Now theorems from the locale are available in the theory, interpreted for
natural numbers, for example nat.trans:

[[?x ≤ ?y; ?y ≤ ?z]] =⇒ ?x ≤ ?z

In order to avoid unwanted hiding of theorems, interpretation accepts a
qualifier, nat in the example, which is applied to all names processed by the
interpretation. If present the qualifier is mandatory — that is, the above
theorem cannot be referred to simply as trans.

5.2 Second Version: Replacement of Definitions

The above interpretation also creates the theorem nat.less_le_trans:

[[partial_order.less op ≤ ?x ?y; ?y ≤ ?z]]
=⇒ partial_order.less op ≤ ?x ?z

Here, partial_order.less op ≤ represents the strict order, although < is
defined on nat. Interpretation enables to map concepts introduced in locales
through definitions to the corresponding concepts of the theory.2

This is achieved by unfolding suitable equations during interpretation. These
equations are given after the keyword where and require proofs. The revised
command, replacing @ by <, is:

1Note that op binds tighter than functions application: parentheses around op ≤ are
not necessary.

2This applies not only to definition but also to inductive, fun and function.

7

interpretation nat: partial_order ["op ≤ :: [nat, nat] ⇒ bool"]
where "partial_order.less op ≤ (x::nat) y = (x < y)"

proof -

The goals are

1. partial_order op ≤
2. partial_order.less op ≤ x y = (x < y)

The proof that ≤ is a partial order is a above.

show "partial_order (op ≤ :: nat ⇒ nat ⇒ bool)"
by unfold_locales auto

The second goal is shown by unfolding the definition of partial_order.less.

show "partial_order.less op ≤ (x::nat) y = (x < y)"
unfolding partial_order.less_def [OF ‘partial_order op ≤‘]
by auto

qed

Note that the above proof is not in the context of a locale. Hence, the
correct interpretation of partial_order.less_def is obtained manually with
OF.

5.3 Third Version: Local Interpretation

In the above example, the fact that ≤ is a partial order for the natural
numbers was used in the proof of the second goal. In general, proofs of the
equations may involve theorems implied by the fact the assumptions of the
instantiated locale hold for the instantiating structure. If these theorems
have been shown abstractly in the locale they can be made available con-
veniently in the context through an auxiliary local interpretation (keyword
interpret). This interpretation is inside the proof of the global interpreta-
tion. The third revision of the example illustrates this.

interpretation nat: partial_order ["op ≤ :: nat ⇒ nat ⇒ bool"]
where "partial_order.less (op ≤) (x::nat) y = (x < y)"

proof -
show "partial_order (op ≤ :: nat ⇒ nat ⇒ bool)"

by unfold_locales auto
then interpret nat: partial_order ["op ≤ :: [nat, nat] ⇒ bool"] .
show "partial_order.less (op ≤) (x::nat) y = (x < y)"

unfolding nat.less_def by auto
qed

The inner interpretation does not require an elaborate new proof, it is im-
mediate from the preceeding fact and proved with “.”. This interpretation

8

enriches the local proof context by the very theorems also obtained in the
interpretation from Section 5.1, and nat.less_def may directly be used to
unfold the definition. Theorems from the local interpretation disappear af-
ter leaving the proof context — that is, after the closing qed — and are
then replaced by those with the desired substitutions of the strict order.

5.4 Further Interpretations

Further interpretations are necessary to reuse theorems from the other lo-
cales. In lattice the operations u and t are substituted by min and max.
The entire proof for the interpretation is reproduced in order to give an
example of a more elaborate interpretation proof.

interpretation nat: lattice ["op ≤ :: nat ⇒ nat ⇒ bool"]
where "lattice.meet op ≤ (x::nat) y = min x y"

and "lattice.join op ≤ (x::nat) y = max x y"
proof -

show "lattice (op ≤ :: nat ⇒ nat ⇒ bool)"

We have already shown that this is a partial order,

apply unfold_locales

hence only the lattice axioms remain to be shown:

1.
∧
x y. ∃ inf. partial_order.is_inf op ≤ x y inf

2.
∧
x y. ∃ sup. partial_order.is_sup op ≤ x y sup

After unfolding is_inf and is_sup,

apply (unfold nat.is_inf_def nat.is_sup_def)

the goals become

1.
∧
x y. ∃ inf≤x. inf ≤ y ∧ (∀ z. z ≤ x ∧ z ≤ y −→ z ≤ inf)

2.
∧
x y. ∃ sup≥x. y ≤ sup ∧ (∀ z. x ≤ z ∧ y ≤ z −→ sup ≤ z)

which can be solved by Presburger arithmetic.

by arith+

In order to show the equations, we put ourselves in a situation where the lattice
theorems can be used in a convenient way.

then interpret nat: lattice ["op ≤ :: nat ⇒ nat ⇒ bool"] .
show "lattice.meet op ≤ (x::nat) y = min x y"

by (bestsimp simp: nat.meet_def nat.is_inf_def)
show "lattice.join op ≤ (x::nat) y = max x y"

by (bestsimp simp: nat.join_def nat.is_sup_def)
qed

That the relation ≤ is a total order completes this sequence of interpreta-
tions.

9

nat.less_def from locale partial_order:
(?x < ?y) = (?x ≤ ?y ∧ ?x 6= ?y)

nat.meet_left from locale lattice:
min ?x ?y ≤ ?x

nat.join_distr from locale distrib_lattice:
max ?x (min ?y ?z) = min (max ?x ?y) (max ?x ?z)

nat.less_total from locale total_order:
?x < ?y ∨ ?x = ?y ∨ ?y < ?x

Table 2: Interpreted theorems for ≤ on the natural numbers.

interpretation nat: total_order ["op ≤ :: nat ⇒ nat ⇒ bool"]
by unfold_locales arith

Theorems that are available in the theory at this point are shown in Table 2.
Note that since the locale hierarchy reflects that total orders are distribu-
tive lattices, an explicit interpretation of distributive lattices for the order
relation on natural numbers is not neccessary.
Why not push this idea further and just give the last interpretation as a
single interpretation instead of the sequence of three? The reasons for this
are twofold:

• Often it is easier to work in an incremental fashion, because later
interpretations require theorems provided by earlier interpretations.

• Assume that a definition is made in some locale l1, and that l2 imports
l1. Let an equation for the definition be proved in an interpretation of
l2. The equation will be unfolded in interpretations of theorems added
to l2 or below in the import hierarchy, but not for theorems added
above l2. Hence, an equation interpreting a definition should always
be given in an interpretation of the locale where the definition is made,
not in an interpretation of a locale further down the hierarchy.

5.5 Lattice dvd on nat

Divisibility on the natural numbers is a distributive lattice but not a total
order. Interpretation again proceeds incrementally.

interpretation nat_dvd: partial_order ["op dvd :: nat ⇒ nat ⇒ bool"]
where "partial_order.less op dvd (x::nat) y = (x dvd y ∧ x 6= y)"

〈proof 〉

Note that there is no symbol for strict divisibility. Instead, interpretation
substitutes x dvd y ∧ x 6= y.

10

nat_dvd.less_def from locale partial_order:
(?x dvd ?y ∧ ?x 6= ?y) = (?x dvd ?y ∧ ?x 6= ?y)

nat_dvd.meet_left from locale lattice:
gcd (?x, ?y) dvd ?x

nat_dvd.join_distr from locale distrib_lattice:
lcm (?x, gcd (?y, ?z)) = gcd (lcm (?x, ?y), lcm (?x, ?z))

Table 3: Interpreted theorems for dvd on the natural numbers.

interpretation nat_dvd: lattice ["op dvd :: nat ⇒ nat ⇒ bool"]
where nat_dvd_meet_eq:

"lattice.meet op dvd (x::nat) y = gcd (x, y)"
and nat_dvd_join_eq:
"lattice.join op dvd (x::nat) y = lcm (x, y)"

〈proof 〉

Equations nat_dvd_meet_eq and nat_dvd_join_eq are named since they are
handy in the proof of the subsequent interpretation.

interpretation nat_dvd:
distrib_lattice ["op dvd :: nat ⇒ nat ⇒ bool"]
apply unfold_locales

1.
∧
x y z.
lattice.meet op dvd x (lattice.join op dvd y z) =
lattice.join op dvd (lattice.meet op dvd x y)
(lattice.meet op dvd x z)

apply (unfold nat_dvd_meet_eq nat_dvd_join_eq)

1.
∧
x y z. gcd (x, lcm (y, z)) = lcm (gcd (x, y), gcd (x, z))

apply (rule gcd_lcm_distr) done

Theorems that are available in the theory after these interpretations are
shown in Table 3.

The full syntax of the interpretation commands is shown in Table 4. The
grammar refers to expr, which stands for a locale expression. Locale expres-
sions are discussed in Section 6.

11

6 Locale Expressions

A map ϕ between partial orders v and � is called order preserving if x v y

implies ϕ x � ϕ y. This situation is more complex than those encountered
so far: it involves two partial orders, and it is desirable to use the existing
locale for both.
Inspecting the grammar of locale commands in Table 4 reveals that the
import of a locale can be more than just a single locale. In general, the
import is a locale expression. Locale expressions enable to combine locales
and rename parameters. A locale name is a locale expression. If e1 and e2

are locale expressions then e1 + e2 is their merge. If e is an expression, then
e q1 . . . qn is a renamed expression where the parameters in e are renamed to
q1 . . . qn. Using a locale expression, a locale for order preserving maps can
be declared in the following way.

locale order_preserving =
partial_order + partial_order le’ (infixl "�" 50) +
fixes ϕ :: "’a ⇒ ’b"
assumes hom_le: "x v y =⇒ ϕ x � ϕ y"

The second line contains the expression, which is the merge of two partial
order locales. The parameter of the second one is le’ with new infix syntax
�. The parameters of the entire locale are le, le’ and ϕ. This is their
canonical order, which is obtained by a left-to-right traversal of the expres-
sion, where only the new parameters are appended to the end of the list.
The parameters introduced in the locale elements of the declaration follow.
In renamings parameters are referred to by position in the canonical order;
an underscore is used to skip a parameter position, which is then not re-
named. Renaming deletes the syntax of a parameter unless a new mixfix
annotation is given.
Parameter renamings are morphisms between locales. These can be lifted
to terms and theorems and thus be applied to assumptions and conclusions.
The assumption of a merge is the conjunction of the assumptions of the
merged locale. The conclusions of a merge are obtained by appending the
conclusions of the left locale and of the right locale.

The locale order_preserving contains theorems for both orders v and �.
How can one refer to a theorem for a particular order, v or �? Names
in locales are qualified by the locale parameters. More precisely, a name
is qualified by the parameters of the locale in which its declaration occurs.
Here are examples:

le.less_le_trans: [[?x @ ?y; ?y v ?z]] =⇒ ?x @ ?z

le_le’_ϕ.hom_le: ?x v ?y =⇒ ϕ ?x � ϕ ?y

When renaming a locale, the morphism is also applied to the qualifiers.

12

Hence theorems for the partial order � are qualified by le’. For example,
le’.less_le_trans:

[[partial_order.less op � ?x ?y; ?y � ?z]]
=⇒ partial_order.less op � ?x ?z

This example reveals that there is no infix syntax for the strict version of �!
This can, of course, not be introduced automatically, but it can be declared
manually through an abbreviation.

abbreviation (in order_preserving)
less’ (infixl "≺" 50) where "less’ ≡ partial_order.less le’"

Now the theorem is displayed nicely as [[?x ≺ ?y; ?y � ?z]] =⇒ ?x ≺ ?z.

Not only names of theorems are qualified. In fact, all names are qualified,
in particular names introduced by definitions and abbreviations. The name
of the strict order of v is le.less and therefore le’.less is the name of the
strict order of �. Hence, the equation in the above abbreviation could have
been written as less’ ≡ le’.less.

Two more locales illustrate working with locale expressions. A map ϕ is a
lattice homomorphism if it preserves meet and join.

locale lattice_hom = lattice + lattice le’ (infixl "�" 50) +
fixes ϕ
assumes hom_meet:

"ϕ (lattice.meet le x y) = lattice.meet le’ (ϕ x) (ϕ y)"
and hom_join:
"ϕ (lattice.join le x y) = lattice.join le’ (ϕ x) (ϕ y)"

abbreviation (in lattice_hom)
meet’ (infixl "u’’" 50) where "meet’ ≡ le’.meet"

abbreviation (in lattice_hom)
join’ (infixl "t’’" 50) where "join’ ≡ le’.join"

A homomorphism is an endomorphism if both orders coincide.

locale lattice_end =
lattice_hom le (infixl "v" 50) le (infixl "v" 50)

The inheritance diagram of the situation we have now is shown in Fig-
ure 2, where the dashed line depicts an interpretation which is introduced
below. Renamings are indicated by v7→� etc. The expression imported by
lattice_end identifies the first and second parameter of lattice_hom. By
looking at the inheritance diagram it would seem that two identical copies
of each of the locales partial_order and lattice are imported. This is not
the case! Inheritance paths with identical morphisms are detected and the
conclusions of the respecitve locales appear only once.

13

partial_order

order_preserving

v7→v

v7→�

lattice

lattice_hom

v7→v

v7→�

lattice_end

v7→v

�7→v

Figure 2: Hierarchy of Homomorphism Locales.

It can be shown easily that a lattice homomorphism is order preserving. As
the final example of this section, a locale interpretation is used to assert
this.

interpretation lattice_hom ⊆ order_preserving 〈proof 〉

Theorems and other declarations — syntax, in particular — from the locale
order_preserving are now active in lattice_hom, for example
le’.less_le_trans: [[?x ≺ ?y; ?y � ?z]] =⇒ ?x ≺ ?z

7 Further Reading

More information on locales and their interpretation is available. For the
locale hierarchy of import and interpretation dependencies see [1]; interpre-
tations in theories and proofs are covered in [2]. In the latter, we show
how interpretation in proofs enables to reason about families of algebraic
structures, which cannot be expressed with locales directly.
Haftmann and Wenzel [3] overcome a restriction of axiomatic type classes
through a combination with locale interpretation. The result is a Haskell-
style class system with a facility to generate Haskell code. Classes are suffi-
cient for simple specifications with a single type parameter. The locales for
orders and lattices presented in this tutorial fall into this category. Order
preserving maps, homomorphisms and vector spaces, on the other hand, do
not.
The original work of Kammüller on locales [5] may be of interest from a

14

historical perspective. The mathematical background on orders and lattices
is taken from Jacobson’s textbook on algebra [4, Chapter 8].

Acknowledgements. Alexander Krauss, Tobias Nipkow, Christian Ster-
nagel and Makarius Wenzel have made useful comments on a draft of this
document.

15

Miscellaneous
attr-name ::= name | attribute | name attribute

Context Elements
fixes ::= name [“::” type] [“(” structure “)” | mixfix]
assumes ::= [attr-name “:”] proposition
element ::= fixes fixes (and fixes)∗

| assumes assumes (and assumes)∗

Locale Expressions
rename ::= name [mixfix] | “ ”
expr ::= renamed-expr (“+” renamed-expr)∗

renamed-expr ::= (qualified-name | “(” expr “)”) rename∗

Declaration of Locales
locale ::= element+

| locale-expr [“+” element+]
toplevel ::= locale name [“=” locale]

Interpretation
equation ::= [attr-name “:”] prop
insts ::= [“[” term+ “]”]

[where equation (and equation)∗]
toplevel ::= interpretation name (“<” | “⊆”) expr proof

| interpretation [attr-name “:”] expr insts proof
| interpret [attr-name “:”] expr insts proof

Diagnostics
toplevel ::= print locale [“!”] locale

| print locales

Table 4: Syntax of Locale Commands.

16

References

[1] C. Ballarin. Interpretation of locales in Isabelle: Managing dependencies
between locales. Technical Report TUM-I0607, Technische Universität
München, 2006.

[2] C. Ballarin. Interpretation of locales in Isabelle: Theories and proof
contexts. In J. M. Borwein and W. M. Farmer, editors, Mathemati-
cal knowledge management, MKM 2006, Wokingham, UK, LNCS 4108,
pages 31–43. Springer, 2006.

[3] F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In
T. Altenkirch and C. McBride, editors, Types for Proofs and Programs,
TYPES 2006, Nottingham, UK, LNCS 4502, pages 160–174. Springer,
2007.

[4] N. Jacobson. Basic Algebra, volume I. Freeman, 2nd edition, 1985.

[5] F. Kammüller, M. Wenzel, and L. C. Paulson. Locales: A section-
ing concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Théry, editors, Theorem Proving in Higher Order Log-
ics: TPHOLs’99, Nice, France, LNCS 1690, pages 149–165. Springer,
1999.

[6] M. Wenzel. The Isabelle/Isar reference manual. Part of the Isabelle
distribution, http://isabelle.in.tum.de/doc/isar-ref.pdf.

17

http://isabelle.in.tum.de/doc/isar-ref.pdf

			Introduction

			Simple Locales

			Import

			Changing the Locale Hierarchy

			Use of Locales in Theories and Proofs

			First Version: Replacement of Parameters Only

			Second Version: Replacement of Definitions

			Third Version: Local Interpretation

			Further Interpretations

			Lattice dvd on nat

			Locale Expressions

			Further Reading

Isabelle2008/doc/logics-HOL.pdf

λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle’s Logics: HOL1

Tobias Nipkow2 and Lawrence C. Paulson3 and Markus Wenzel4

8 June 2008

1The research has been funded by the EPSRC (grants GR/G53279, GR/
H40570, GR/K57381, GR/K77051, GR/M75440), by ESPRIT (projects 3245:
Logical Frameworks, and 6453: Types) and by the DFG Schwerpunktprogramm
Deduktion.

2Institut für Informatik, Technische Universität München, nipkow@in.tum.de
3Computer Laboratory, University of Cambridge, lcp@cl.cam.ac.uk
4Institut für Informatik, Technische Universität München, wenzelm@in.tum.de

Abstract

This manual describes Isabelle’s formalization of Higher-Order Logic, a poly-
morphic version of Church’s Simple Theory of Types. HOL can be best un-
derstood as a simply-typed version of classical set theory. The monograph
Isabelle/HOL — A Proof Assistant for Higher-Order Logic provides a gentle
introduction on using Isabelle/HOL in practice.

Contents

1 Syntax definitions 1

2 Higher-Order Logic 3
2.1 Syntax . 3

2.1.1 Types and overloading 6
2.1.2 Binders . 7
2.1.3 The let and case constructions 8

2.2 Rules of inference . 8
2.3 A formulation of set theory 12

2.3.1 Syntax of set theory 15
2.3.2 Axioms and rules of set theory 15
2.3.3 Properties of functions 20

2.4 Generic packages . 20
2.4.1 Simplification and substitution 20
2.4.2 Classical reasoning . 22

2.5 Types . 22
2.5.1 Product and sum types 22
2.5.2 The type of natural numbers, nat 25
2.5.3 Numerical types and numerical reasoning 27
2.5.4 The type constructor for lists, list 28
2.5.5 Introducing new types 31

2.6 Datatype definitions . 34
2.6.1 Basics . 34
2.6.2 Defining datatypes . 38
2.6.3 Representing existing types as datatypes 41
2.6.4 Examples . 41

2.7 Recursive function definitions 43
2.7.1 Primitive recursive functions 44
2.7.2 General recursive functions 47

2.8 Inductive and coinductive definitions 50
2.8.1 The result structure 51
2.8.2 The syntax of a (co)inductive definition 52
2.8.3 *Monotonicity theorems 53

i

CONTENTS ii

2.8.4 Example of an inductive definition 53
2.9 Executable specifications . 54

2.9.1 Invoking the code generator 54
2.9.2 Configuring the code generator 57
2.9.3 Specific HOL code generators 58

2.10 The examples directories . 59
2.11 Example: Cantor’s Theorem 61

Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be
repeated 0 or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where ∃ has lower priority than ∨, which has lower priority than ∧.
There, P ∧ Q ∨ R abbreviates (P ∧ Q) ∨ R rather than P ∧ (Q ∨ R). Also,
∃x .P ∨Q abbreviates ∃x . (P ∨Q) rather than (∃x .P)∨Q . Note especially
that P ∨ (∃x . Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ) ⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All , which has
type (α⇒ o)⇒ o. This defines the syntax ∀x . t to mean All(λx . t). We can
also write ∀x1 . . . xm . t to abbreviate ∀x1∀xm . t ; this is possible for any
constant provided that τ and τ ′ are the same type. The Hilbert description
operator εx . P x has type (α ⇒ bool) ⇒ α and normally binds only one

1

CHAPTER 1. SYNTAX DEFINITIONS 2

variable. ZF’s bounded quantifier ∀x ∈ A . P(x) cannot be declared as a
binder because it has type [i , i ⇒ o] ⇒ o. The syntax for binders allows
type constraints on bound variables, as in

∀(x ::α) (y ::β) z ::γ . Q(x , y , z)

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric pri-
orities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For ex-
ample, the formulae of first-order logic have type o. Every Isabelle expression
of type o is therefore a formula. These include atomic formulae such as P ,
where P is a variable of type o, and more generally expressions such as
P(t , u), where P , t and u have suitable types. Therefore, ‘expression of
type o’ is listed as a separate possibility in the grammar for formulae.

Chapter 2

Higher-Order Logic

The theory HOL implements higher-order logic. It is based on Gordon’s hol
system [6], which itself is based on Church’s original paper [4]. Andrews’s
book [1] is a full description of the original Church-style higher-order logic.
Experience with the hol system has demonstrated that higher-order logic is
widely applicable in many areas of mathematics and computer science, not
just hardware verification, hol’s original raison d’être. It is weaker than ZF
set theory but for most applications this does not matter. If you prefer ml
to Lisp, you will probably prefer HOL to ZF.

The syntax of HOL1 follows λ-calculus and functional programming.
Function application is curried. To apply the function f of type τ1 ⇒ τ2 ⇒ τ3
to the arguments a and b in HOL, you simply write f a b. There is no ‘apply’
operator as in ZF. Note that f (a, b) means “f applied to the pair (a, b)” in
HOL. We write ordered pairs as (a, b), not 〈a, b〉 as in ZF.

HOL has a distinct feel, compared with ZF and CTT. It identifies object-
level types with meta-level types, taking advantage of Isabelle’s built-in type-
checker. It identifies object-level functions with meta-level functions, so it
uses Isabelle’s operations for abstraction and application.

These identifications allow Isabelle to support HOL particularly nicely,
but they also mean that HOL requires more sophistication from the user —
in particular, an understanding of Isabelle’s type system. Beginners should
work with show_types (or even show_sorts) set to true.

2.1 Syntax

Figure 2.1 lists the constants (including infixes and binders), while Fig. 2.2
presents the grammar of higher-order logic. Note that a~=b is translated to
¬(a = b).

1Earlier versions of Isabelle’s HOL used a different syntax. Ancient releases of Isabelle
included still another version of HOL, with explicit type inference rules [18]. This version
no longer exists, but ZF supports a similar style of reasoning.

3

CHAPTER 2. HIGHER-ORDER LOGIC 4

name meta-type description
Trueprop bool ⇒ prop coercion to prop

Not bool ⇒ bool negation (¬)
True bool tautology (>)
False bool absurdity (⊥)

If [bool , α, α]⇒ α conditional
Let [α, α⇒ β]⇒ β let binder

Constants

symbol name meta-type description
SOME or @ Eps (α⇒ bool)⇒ α Hilbert description (ε)
ALL or ! All (α⇒ bool)⇒ bool universal quantifier (∀)
EX or ? Ex (α⇒ bool)⇒ bool existential quantifier (∃)
EX! or ?! Ex1 (α⇒ bool)⇒ bool unique existence (∃!)

LEAST Least (α :: ord ⇒ bool)⇒ α least element

Binders

symbol meta-type priority description
o [β ⇒ γ, α⇒ β]⇒ (α⇒ γ) Left 55 composition (◦)
= [α, α]⇒ bool Left 50 equality (=)
< [α :: ord , α]⇒ bool Left 50 less than (<)
<= [α :: ord , α]⇒ bool Left 50 less than or equals (≤)
& [bool , bool]⇒ bool Right 35 conjunction (∧)
| [bool , bool]⇒ bool Right 30 disjunction (∨)

--> [bool , bool]⇒ bool Right 25 implication (→)

Infixes

Figure 2.1: Syntax of HOL

CHAPTER 2. HIGHER-ORDER LOGIC 5

term = expression of class term
| SOME id . formula | @ id . formula
| let id = term; . . . ; id = term in term
| if formula then term else term
| LEAST id . formula

formula = expression of type bool
| term = term
| term ~= term
| term < term
| term <= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| ALL id id∗ . formula | ! id id∗ . formula
| EX id id∗ . formula | ? id id∗ . formula
| EX! id id∗ . formula | ?! id id∗ . formula

Figure 2.2: Full grammar for HOL

CHAPTER 2. HIGHER-ORDER LOGIC 6

! HOL has no if-and-only-if connective; logical equivalence is expressed using
equality. But equality has a high priority, as befitting a relation, while if-and-

only-if typically has the lowest priority. Thus, ¬¬P = P abbreviates ¬¬(P = P)
and not (¬¬P) = P . When using = to mean logical equivalence, enclose both
operands in parentheses.

2.1.1 Types and overloading

The universal type class of higher-order terms is called term. By default,
explicit type variables have class term. In particular the equality symbol
and quantifiers are polymorphic over class term.

The type of formulae, bool , belongs to class term; thus, formulae are
terms. The built-in type fun, which constructs function types, is overloaded
with arity (term, term) term. Thus, σ ⇒ τ belongs to class term if σ and τ
do, allowing quantification over functions.

HOL allows new types to be declared as subsets of existing types; see §2.5.
ML-like datatypes can also be declared; see §2.6.

Several syntactic type classes — plus, minus, times and power — permit
overloading of the operators +, -, *. and ^. They are overloaded to denote
the obvious arithmetic operations on types nat, int and real. (With the ^

operator, the exponent always has type nat.) Non-arithmetic overloadings
are also done: the operator - can denote set difference, while ^ can denote
exponentiation of relations (iterated composition). Unary minus is also writ-
ten as - and is overloaded like its 2-place counterpart; it even can stand for
set complement.

The constant 0 is also overloaded. It serves as the zero element of several
types, of which the most important is nat (the natural numbers). The type
class plus_ac0 comprises all types for which 0 and + satisfy the laws x +y =
y +x , (x +y)+z = x +(y +z) and 0+x = x . These types include the numeric
ones nat, int and real and also multisets. The summation operator setsum
is available for all types in this class.

Theory Ord defines the syntactic class ord of order signatures. The rela-
tions < and ≤ are polymorphic over this class, as are the functions mono, min
and max, and the LEAST operator. Ord also defines a subclass order of ord
which axiomatizes the types that are partially ordered with respect to ≤. A
further subclass linorder of order axiomatizes linear orderings. For details,
see the file Ord.thy.

If you state a goal containing overloaded functions, you may need to
include type constraints. Type inference may otherwise make the goal more
polymorphic than you intended, with confusing results. For example, the
variables i , j and k in the goal i ≤ j =⇒ i ≤ j +k have type α :: {ord , plus},

CHAPTER 2. HIGHER-ORDER LOGIC 7

although you may have expected them to have some numeric type, e.g. nat .
Instead you should have stated the goal as (i :: nat) ≤ j =⇒ i ≤ j +k , which
causes all three variables to have type nat .

! If resolution fails for no obvious reason, try setting show_types to true, caus-
ing Isabelle to display types of terms. Possibly set show_sorts to true as well,

causing Isabelle to display type classes and sorts.
Where function types are involved, Isabelle’s unification code does not guar-

antee to find instantiations for type variables automatically. Be prepared to use
res_inst_tac instead of resolve_tac, possibly instantiating type variables. Set-
ting Unify.trace_types to true causes Isabelle to report omitted search paths
during unification.

2.1.2 Binders

Hilbert’s description operator εx . P [x] stands for some x satisfying P , if
such exists. Since all terms in HOL denote something, a description is always
meaningful, but we do not know its value unless P defines it uniquely. We
may write descriptions as Eps(λx . P [x]) or use the syntax SOME x. P [x].

Existential quantification is defined by

∃x . P x ≡ P(εx . P x).

The unique existence quantifier, ∃!x . P , is defined in terms of ∃ and ∀. An
Isabelle binder, it admits nested quantifications. For instance, ∃!x y . P x y
abbreviates ∃!x . ∃!y .P x y ; note that this does not mean that there exists a
unique pair (x , y) satisfying P x y .

The basic Isabelle/HOL binders have two notations. Apart from the usual
ALL and EX for ∀ and ∃, Isabelle/HOL also supports the original notation of
Gordon’s hol system: ! and ?. In the latter case, the existential quantifier
must be followed by a space; thus ?x is an unknown, while ? x. f x=y is a
quantification. Both notations are accepted for input. The print mode “HOL”
governs the output notation. If enabled (e.g. by passing option -m HOL to
the isabelle executable), then ! and ? are displayed.

If τ is a type of class ord, P a formula and x a variable of type τ , then
the term LEAST x . P [x] is defined to be the least (w.r.t. ≤) x such that P x
holds (see Fig. 2.4). The definition uses Hilbert’s ε choice operator, so Least

is always meaningful, but may yield nothing useful in case there is not a
unique least element satisfying P .2

2Class ord does not require much of its instances, so ≤ need not be a well-ordering,
not even an order at all!

CHAPTER 2. HIGHER-ORDER LOGIC 8

refl t = (t::’a)
subst [| s = t; P s |] ==> P (t::’a)
ext (!!x::’a. (f x :: ’b) = g x) ==> (%x. f x) = (%x. g x)
impI (P ==> Q) ==> P-->Q
mp [| P-->Q; P |] ==> Q
iff (P-->Q) --> (Q-->P) --> (P=Q)
someI P(x::’a) ==> P(@x. P x)
True_or_False (P=True) | (P=False)

Figure 2.3: The HOL rules

All these binders have priority 10.

! The low priority of binders means that they need to be enclosed in parenthesis
when they occur in the context of other operations. For example, instead of

P ∧ ∀x .Q you need to write P ∧ (∀x .Q).

2.1.3 The let and case constructions

Local abbreviations can be introduced by a let construct whose syntax ap-
pears in Fig. 2.2. Internally it is translated into the constant Let. It can be
expanded by rewriting with its definition, Let_def.

HOL also defines the basic syntax

case e of c1 => e1 | . . . | cn => en

as a uniform means of expressing case constructs. Therefore case and of

are reserved words. Initially, this is mere syntax and has no logical meaning.
By declaring translations, you can cause instances of the case construct
to denote applications of particular case operators. This is what happens
automatically for each datatype definition (see §2.6).

! Both if and case constructs have as low a priority as quantifiers, which re-
quires additional enclosing parentheses in the context of most other opera-

tions. For example, instead of f x = if . . . then . . . else . . . you need to write
f x = (if . . . then . . . else . . .).

2.2 Rules of inference

Figure 2.3 shows the primitive inference rules of HOL, with their ml names.
Some of the rules deserve additional comments:

CHAPTER 2. HIGHER-ORDER LOGIC 9

True_def True == ((%x::bool. x)=(%x. x))
All_def All == (%P. P = (%x. True))
Ex_def Ex == (%P. P(@x. P x))
False_def False == (!P. P)
not_def not == (%P. P-->False)
and_def op & == (%P Q. !R. (P-->Q-->R) --> R)
or_def op | == (%P Q. !R. (P-->R) --> (Q-->R) --> R)
Ex1_def Ex1 == (%P. ? x. P x & (! y. P y --> y=x))

o_def op o == (%(f::’b=>’c) g x::’a. f(g x))
if_def If P x y ==

(%P x y. @z::’a.(P=True --> z=x) & (P=False --> z=y))
Let_def Let s f == f s
Least_def Least P == @x. P(x) & (ALL y. P(y) --> x <= y)"

Figure 2.4: The HOL definitions

ext expresses extensionality of functions.

iff asserts that logically equivalent formulae are equal.

someI gives the defining property of the Hilbert ε-operator. It is a form of
the Axiom of Choice. The derived rule some_equality (see below) is
often easier to use.

True_or_False makes the logic classical.3

HOL follows standard practice in higher-order logic: only a few connec-
tives are taken as primitive, with the remainder defined obscurely (Fig. 2.4).
Gordon’s hol system expresses the corresponding definitions [6, page 270]
using object-equality (=), which is possible because equality in higher-order
logic may equate formulae and even functions over formulae. But the-
ory HOL, like all other Isabelle theories, uses meta-equality (==) for defi-
nitions.

! The definitions above should never be expanded and are shown for complete-
ness only. Instead users should reason in terms of the derived rules shown

below or, better still, using high-level tactics (see §2.4).

Some of the rules mention type variables; for example, refl mentions the
type variable ’a. This allows you to instantiate type variables explicitly by
calling res_inst_tac.

3In fact, the ε-operator already makes the logic classical, as shown by Diaconescu; see
Paulson [18] for details.

CHAPTER 2. HIGHER-ORDER LOGIC 10

sym s=t ==> t=s
trans [| r=s; s=t |] ==> r=t
ssubst [| t=s; P s |] ==> P t
box_equals [| a=b; a=c; b=d |] ==> c=d
arg_cong x = y ==> f x = f y
fun_cong f = g ==> f x = g x
cong [| f = g; x = y |] ==> f x = g y
not_sym t ~= s ==> s ~= t

Equality

TrueI True
FalseE False ==> P

conjI [| P; Q |] ==> P&Q
conjunct1 [| P&Q |] ==> P
conjunct2 [| P&Q |] ==> Q
conjE [| P&Q; [| P; Q |] ==> R |] ==> R

disjI1 P ==> P|Q
disjI2 Q ==> P|Q
disjE [| P | Q; P ==> R; Q ==> R |] ==> R

notI (P ==> False) ==> ~ P
notE [| ~ P; P |] ==> R
impE [| P-->Q; P; Q ==> R |] ==> R

Propositional logic

iffI [| P ==> Q; Q ==> P |] ==> P=Q
iffD1 [| P=Q; P |] ==> Q
iffD2 [| P=Q; Q |] ==> P
iffE [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R

Logical equivalence

Figure 2.5: Derived rules for HOL

CHAPTER 2. HIGHER-ORDER LOGIC 11

allI (!!x. P x) ==> !x. P x
spec !x. P x ==> P x
allE [| !x. P x; P x ==> R |] ==> R
all_dupE [| !x. P x; [| P x; !x. P x |] ==> R |] ==> R

exI P x ==> ? x. P x
exE [| ? x. P x; !!x. P x ==> Q |] ==> Q

ex1I [| P a; !!x. P x ==> x=a |] ==> ?! x. P x
ex1E [| ?! x. P x; !!x. [| P x; ! y. P y --> y=x |] ==> R

|] ==> R

some_equality [| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a

Quantifiers and descriptions

ccontr (~P ==> False) ==> P
classical (~P ==> P) ==> P
excluded_middle ~P | P

disjCI (~Q ==> P) ==> P|Q
exCI (! x. ~ P x ==> P a) ==> ? x. P x
impCE [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
iffCE [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R
notnotD ~~P ==> P
swap ~P ==> (~Q ==> P) ==> Q

Classical logic

if_P P ==> (if P then x else y) = x
if_not_P ~ P ==> (if P then x else y) = y
split_if P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))

Conditionals

Figure 2.6: More derived rules

CHAPTER 2. HIGHER-ORDER LOGIC 12

Some derived rules are shown in Figures 2.5 and 2.6, with their ml names.
These include natural rules for the logical connectives, as well as sequent-style
elimination rules for conjunctions, implications, and universal quantifiers.

Note the equality rules: ssubst performs substitution in backward proofs,
while box_equals supports reasoning by simplifying both sides of an equa-
tion.

The following simple tactics are occasionally useful:

strip_tac i applies allI and impI repeatedly to remove all outermost uni-
versal quantifiers and implications from subgoal i .

case_tac "P" i performs case distinction on P for subgoal i : the latter is
replaced by two identical subgoals with the added assumptions P and
¬P , respectively.

smp_tac j i applies j times spec and then mp in subgoal i , which is typi-
cally useful when forward-chaining from an induction hypothesis. As a
generalization of mp_tac, if there are assumptions ∀~x . P~x → Q~x and
P~a, (~x being a vector of j variables) then it replaces the universally
quantified implication by Q~a. It may instantiate unknowns. It fails if
it can do nothing.

2.3 A formulation of set theory

Historically, higher-order logic gives a foundation for Russell and Whitehead’s
theory of classes. Let us use modern terminology and call them sets, but
note that these sets are distinct from those of ZF set theory, and behave
more like ZF classes.

• Sets are given by predicates over some type σ. Types serve to define
universes for sets, but type-checking is still significant.

• There is a universal set (for each type). Thus, sets have complements,
and may be defined by absolute comprehension.

• Although sets may contain other sets as elements, the containing set
must have a more complex type.

Finite unions and intersections have the same behaviour in HOL as they do
in ZF. In HOL the intersection of the empty set is well-defined, denoting the
universal set for the given type.

CHAPTER 2. HIGHER-ORDER LOGIC 13

name meta-type description
{} α set the empty set

insert [α, α set]⇒ α set insertion of element
Collect (α⇒ bool)⇒ α set comprehension

INTER [α set , α⇒ β set]⇒ β set intersection over a set
UNION [α set , α⇒ β set]⇒ β set union over a set
Inter (α set)set ⇒ α set set of sets intersection
Union (α set)set ⇒ α set set of sets union

Pow α set ⇒ (α set)set powerset

range (α⇒ β)⇒ β set range of a function

Ball Bex [α set , α⇒ bool]⇒ bool bounded quantifiers

Constants

symbol name meta-type priority description
INT INTER1 (α⇒ β set)⇒ β set 10 intersection
UN UNION1 (α⇒ β set)⇒ β set 10 union

Binders

symbol meta-type priority description
‘‘ [α⇒ β, α set]⇒ β set Left 90 image

Int [α set , α set]⇒ α set Left 70 intersection (∩)
Un [α set , α set]⇒ α set Left 65 union (∪)
: [α, α set]⇒ bool Left 50 membership (∈)

<= [α set , α set]⇒ bool Left 50 subset (⊆)

Infixes

Figure 2.7: Syntax of the theory Set

CHAPTER 2. HIGHER-ORDER LOGIC 14

external internal description
a ~: b ~(a : b) not in

{a1, . . .} insert a1 . . . {} finite set
{x. P [x]} Collect(λx . P [x]) comprehension

INT x:A. B [x] INTER A λx . B [x] intersection
UN x:A. B [x] UNION A λx . B [x] union

ALL x:A. P [x] or ! x:A. P [x] Ball A λx . P [x] bounded ∀
EX x:A. P [x] or ? x:A. P [x] Bex A λx . P [x] bounded ∃

Translations

term = other terms. . .
| {}

| { term (,term)∗ }

| { id . formula }

| term ‘‘ term
| term Int term
| term Un term
| INT id:term . term
| UN id:term . term
| INT id id∗ . term
| UN id id∗ . term

formula = other formulae. . .
| term : term
| term ~: term
| term <= term
| ALL id:term . formula | ! id:term . formula
| EX id:term . formula | ? id:term . formula

Full Grammar

Figure 2.8: Syntax of the theory Set (continued)

CHAPTER 2. HIGHER-ORDER LOGIC 15

2.3.1 Syntax of set theory

HOL’s set theory is called Set. The type α set is essentially the same as
α ⇒ bool . The new type is defined for clarity and to avoid complications
involving function types in unification. The isomorphisms between the two
types are declared explicitly. They are very natural: Collect maps α⇒ bool
to α set , while op : maps in the other direction (ignoring argument order).

Figure 2.7 lists the constants, infixes, and syntax translations. Figure 2.8
presents the grammar of the new constructs. Infix operators include union
and intersection (A ∪ B and A ∩ B), the subset and membership relations,
and the image operator ‘‘. Note that a~:b is translated to ¬(a ∈ b).

The {a1, . . .} notation abbreviates finite sets constructed in the obvious
manner using insert and {}:

{a, b, c} ≡ insert a (insert b (insert c {}))

The set {x. P [x]} consists of all x (of suitable type) that satisfy P [x],
where P [x] is a formula that may contain free occurrences of x . This syntax
expands to Collect(λx . P [x]). It defines sets by absolute comprehension,
which is impossible in ZF; the type of x implicitly restricts the comprehen-
sion.

The set theory defines two bounded quantifiers:

∀x ∈ A . P [x] abbreviates ∀x . x ∈ A→ P [x]

∃x ∈ A . P [x] abbreviates ∃x . x ∈ A ∧ P [x]

The constants Ball and Bex are defined accordingly. Instead of Ball A
P and Bex A P we may write ALL x:A. P [x] and EX x:A. P [x]. The
original notation of Gordon’s hol system is supported as well: ! and ?.

Unions and intersections over sets, namely
⋃

x∈A B [x] and
⋂

x∈A B [x], are
written UN x:A. B [x] and INT x:A. B [x].

Unions and intersections over types, namely
⋃

x B [x] and
⋂

x B [x], are
written UN x. B [x] and INT x. B [x]. They are equivalent to the previous
union and intersection operators when A is the universal set.

The operators
⋃

A and
⋂

A act upon sets of sets. They are not binders,
but are equal to

⋃
x∈A x and

⋂
x∈A x , respectively.

2.3.2 Axioms and rules of set theory

Figure 2.9 presents the rules of theory Set. The axioms mem_Collect_eq

and Collect_mem_eq assert that the functions Collect and op : are iso-
morphisms. Of course, op : also serves as the membership relation.

CHAPTER 2. HIGHER-ORDER LOGIC 16

mem_Collect_eq (a : {x. P x}) = P a
Collect_mem_eq {x. x:A} = A

empty_def {} == {x. False}
insert_def insert a B == {x. x=a} Un B
Ball_def Ball A P == ! x. x:A --> P x
Bex_def Bex A P == ? x. x:A & P x
subset_def A <= B == ! x:A. x:B
Un_def A Un B == {x. x:A | x:B}
Int_def A Int B == {x. x:A & x:B}
set_diff_def A - B == {x. x:A & x~:B}
Compl_def -A == {x. ~ x:A}
INTER_def INTER A B == {y. ! x:A. y: B x}
UNION_def UNION A B == {y. ? x:A. y: B x}
INTER1_def INTER1 B == INTER {x. True} B
UNION1_def UNION1 B == UNION {x. True} B
Inter_def Inter S == (INT x:S. x)
Union_def Union S == (UN x:S. x)
Pow_def Pow A == {B. B <= A}
image_def f‘‘A == {y. ? x:A. y=f x}
range_def range f == {y. ? x. y=f x}

Figure 2.9: Rules of the theory Set

All the other axioms are definitions. They include the empty set, bounded
quantifiers, unions, intersections, complements and the subset relation. They
also include straightforward constructions on functions: image (‘‘) and
range.

Figures 2.10 and 2.11 present derived rules. Most are obvious and resem-
ble rules of Isabelle’s ZF set theory. Certain rules, such as subsetCE, bexCI
and UnCI, are designed for classical reasoning; the rules subsetD, bexI, Un1
and Un2 are not strictly necessary but yield more natural proofs. Similarly,
equalityCE supports classical reasoning about extensionality, after the fash-
ion of iffCE. See the file HOL/Set.ML for proofs pertaining to set theory.

Figure 2.12 presents lattice properties of the subset relation. Unions form
least upper bounds; non-empty intersections form greatest lower bounds.
Reasoning directly about subsets often yields clearer proofs than reasoning
about the membership relation. See the file HOL/subset.ML.

Figure 2.13 presents many common set equalities. They include commu-
tative, associative and distributive laws involving unions, intersections and
complements. For a complete listing see the file HOL/equalities.ML.

! Blast_tac proves many set-theoretic theorems automatically. Hence you sel-
dom need to refer to the theorems above.

CHAPTER 2. HIGHER-ORDER LOGIC 17

CollectI [| P a |] ==> a : {x. P x}
CollectD [| a : {x. P x} |] ==> P a
CollectE [| a : {x. P x}; P a ==> W |] ==> W

ballI [| !!x. x:A ==> P x |] ==> ! x:A. P x
bspec [| ! x:A. P x; x:A |] ==> P x
ballE [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q

bexI [| P x; x:A |] ==> ? x:A. P x
bexCI [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A. P x
bexE [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q

Comprehension and Bounded quantifiers

subsetI (!!x. x:A ==> x:B) ==> A <= B
subsetD [| A <= B; c:A |] ==> c:B
subsetCE [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P

subset_refl A <= A
subset_trans [| A<=B; B<=C |] ==> A<=C

equalityI [| A <= B; B <= A |] ==> A = B
equalityD1 A = B ==> A<=B
equalityD2 A = B ==> B<=A
equalityE [| A = B; [| A<=B; B<=A |] ==> P |] ==> P

equalityCE [| A = B; [| c:A; c:B |] ==> P;
[| ~ c:A; ~ c:B |] ==> P

|] ==> P

The subset and equality relations

Figure 2.10: Derived rules for set theory

CHAPTER 2. HIGHER-ORDER LOGIC 18

emptyE a : {} ==> P

insertI1 a : insert a B
insertI2 a : B ==> a : insert b B
insertE [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P

ComplI [| c:A ==> False |] ==> c : -A
ComplD [| c : -A |] ==> ~ c:A

UnI1 c:A ==> c : A Un B
UnI2 c:B ==> c : A Un B
UnCI (~c:B ==> c:A) ==> c : A Un B
UnE [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P

IntI [| c:A; c:B |] ==> c : A Int B
IntD1 c : A Int B ==> c:A
IntD2 c : A Int B ==> c:B
IntE [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P

UN_I [| a:A; b: B a |] ==> b: (UN x:A. B x)
UN_E [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R

INT_I (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
INT_D [| b: (INT x:A. B x); a:A |] ==> b: B a
INT_E [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R

UnionI [| X:C; A:X |] ==> A : Union C
UnionE [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R

InterI [| !!X. X:C ==> A:X |] ==> A : Inter C
InterD [| A : Inter C; X:C |] ==> A:X
InterE [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R

PowI A<=B ==> A: Pow B
PowD A: Pow B ==> A<=B

imageI [| x:A |] ==> f x : f‘‘A
imageE [| b : f‘‘A; !!x.[| b=f x; x:A |] ==> P |] ==> P

rangeI f x : range f
rangeE [| b : range f; !!x.[| b=f x |] ==> P |] ==> P

Figure 2.11: Further derived rules for set theory

CHAPTER 2. HIGHER-ORDER LOGIC 19

Union_upper B:A ==> B <= Union A
Union_least [| !!X. X:A ==> X<=C |] ==> Union A <= C

Inter_lower B:A ==> Inter A <= B
Inter_greatest [| !!X. X:A ==> C<=X |] ==> C <= Inter A

Un_upper1 A <= A Un B
Un_upper2 B <= A Un B
Un_least [| A<=C; B<=C |] ==> A Un B <= C

Int_lower1 A Int B <= A
Int_lower2 A Int B <= B
Int_greatest [| C<=A; C<=B |] ==> C <= A Int B

Figure 2.12: Derived rules involving subsets

Int_absorb A Int A = A
Int_commute A Int B = B Int A
Int_assoc (A Int B) Int C = A Int (B Int C)
Int_Un_distrib (A Un B) Int C = (A Int C) Un (B Int C)

Un_absorb A Un A = A
Un_commute A Un B = B Un A
Un_assoc (A Un B) Un C = A Un (B Un C)
Un_Int_distrib (A Int B) Un C = (A Un C) Int (B Un C)

Compl_disjoint A Int (-A) = {x. False}
Compl_partition A Un (-A) = {x. True}
double_complement -(-A) = A
Compl_Un -(A Un B) = (-A) Int (-B)
Compl_Int -(A Int B) = (-A) Un (-B)

Union_Un_distrib Union(A Un B) = (Union A) Un (Union B)
Int_Union A Int (Union B) = (UN C:B. A Int C)

Inter_Un_distrib Inter(A Un B) = (Inter A) Int (Inter B)
Un_Inter A Un (Inter B) = (INT C:B. A Un C)

Figure 2.13: Set equalities

CHAPTER 2. HIGHER-ORDER LOGIC 20

name meta-type description
inj surj (α⇒ β)⇒ bool injective/surjective

inj_on [α⇒ β, α set]⇒ bool injective over subset
inv (α⇒ β)⇒ (β ⇒ α) inverse function

inj_def inj f == ! x y. f x=f y --> x=y
surj_def surj f == ! y. ? x. y=f x
inj_on_def inj_on f A == !x:A. !y:A. f x=f y --> x=y
inv_def inv f == (%y. @x. f(x)=y)

Figure 2.14: Theory Fun

2.3.3 Properties of functions

Figure 2.14 presents a theory of simple properties of functions. Note that
inv f uses Hilbert’s ε to yield an inverse of f . See the file HOL/Fun.ML for a
complete listing of the derived rules. Reasoning about function composition
(the operator o) and the predicate surj is done simply by expanding the
definitions.

There is also a large collection of monotonicity theorems for constructions
on sets in the file HOL/mono.ML.

2.4 Generic packages

HOL instantiates most of Isabelle’s generic packages, making available the
simplifier and the classical reasoner.

2.4.1 Simplification and substitution

Simplification tactics tactics such as Asm_simp_tac and Full_simp_tac use
the default simpset (simpset()), which works for most purposes. A quite
minimal simplification set for higher-order logic is HOL_ss; even more frugal
is HOL_basic_ss. Equality (=), which also expresses logical equivalence, may
be used for rewriting. See the file HOL/simpdata.ML for a complete listing of
the basic simplification rules.

See the Reference Manual for details of substitution and simplification.

! Reducing a = b ∧ P(a) to a = b ∧ P(b) is sometimes advantageous. The left
part of a conjunction helps in simplifying the right part. This effect is not

available by default: it can be slow. It can be obtained by including conj_cong
in a simpset, addcongs [conj_cong].

CHAPTER 2. HIGHER-ORDER LOGIC 21

! By default only the condition of an if is simplified but not the then and else
parts. Of course the latter are simplified once the condition simplifies to True

or False. To ensure full simplification of all parts of a conditional you must remove
if_weak_cong from the simpset, delcongs [if_weak_cong].

If the simplifier cannot use a certain rewrite rule — either because of
nontermination or because its left-hand side is too flexible — then you might
try stac:

stac thm i , where thm is of the form lhs = rhs , replaces in subgoal i in-
stances of lhs by corresponding instances of rhs . In case of multiple
instances of lhs in subgoal i , backtracking may be necessary to select
the desired ones.

If thm is a conditional equality, the instantiated condition becomes an
additional (first) subgoal.

HOL provides the tactic hyp_subst_tac, which substitutes for an equal-
ity throughout a subgoal and its hypotheses. This tactic uses HOL’s general
substitution rule.

Case splitting

HOL also provides convenient means for case splitting during rewriting.
Goals containing a subterm of the form if b then...else... often require
a case distinction on b. This is expressed by the theorem split_if:

?P(if ?b then ?x else ?y) = ((?b → ?P(?x)) ∧ (¬?b → ?P(?y))) (∗)

For example, a simple instance of (∗) is

x ∈ (if x ∈ A then A else {x}) = ((x ∈ A→ x ∈ A)∧(x /∈ A→ x ∈ {x}))

Because (∗) is too general as a rewrite rule for the simplifier (the left-hand
side is not a higher-order pattern in the sense of the Reference Manual),
there is a special infix function addsplits of type simpset * thm list ->

simpset (analogous to addsimps) that adds rules such as (∗) to a simpset,
as in

by(simp_tac (simpset() addsplits [split_if]) 1);

The effect is that after each round of simplification, one occurrence of if is
split acording to split_if, until all occurences of if have been eliminated.

It turns out that using split_if is almost always the right thing to do.
Hence split_if is already included in the default simpset. If you want to
delete it from a simpset, use delsplits, which is the inverse of addsplits:

CHAPTER 2. HIGHER-ORDER LOGIC 22

by(simp_tac (simpset() delsplits [split_if]) 1);

In general, addsplits accepts rules of the form

?P(c ?x1 . . . ?xn) = rhs

where c is a constant and rhs is arbitrary. Note that (∗) is of the right form
because internally the left-hand side is ?P(If ?b ?x ?y). Important further
examples are splitting rules for case expressions (see §2.5.4 and §2.6.1).

Analogous to Addsimps and Delsimps, there are also imperative versions
of addsplits and delsplits

Addsplits: thm list -> unit
Delsplits: thm list -> unit

for adding splitting rules to, and deleting them from the current simpset.

2.4.2 Classical reasoning

HOL derives classical introduction rules for ∨ and ∃, as well as classical
elimination rules for → and ↔, and the swap rule; recall Fig. 2.6 above.

The classical reasoner is installed. Tactics such as Blast_tac and
Best_tac refer to the default claset (claset()), which works for most
purposes. Named clasets include prop_cs, which includes the proposi-
tional rules, and HOL_cs, which also includes quantifier rules. See the file
HOL/cladata.ML for lists of the classical rules, and the Reference Manual for
more discussion of classical proof methods.

2.5 Types

This section describes HOL’s basic predefined types (α × β, α + β, nat and
α list) and ways for introducing new types in general. The most important
type construction, the datatype, is treated separately in §2.6.

2.5.1 Product and sum types

Theory Prod (Fig. 2.15) defines the product type α×β, with the ordered pair
syntax (a, b). General tuples are simulated by pairs nested to the right:

external internal
τ1 × . . .× τn τ1 × (. . . (τn−1 × τn) . . .)
(t1, . . . , tn) (t1, (. . . , (tn−1, tn) . . .)

CHAPTER 2. HIGHER-ORDER LOGIC 23

symbol meta-type description
Pair [α, β]⇒ α× β ordered pairs (a, b)
fst α× β ⇒ α first projection
snd α× β ⇒ β second projection

split [[α, β]⇒ γ, α× β]⇒ γ generalized projection
Sigma [α set , α⇒ β set]⇒ (α× β)set general sum of sets

Sigma_def Sigma A B == UN x:A. UN y:B x. {(x,y)}

Pair_eq ((a,b) = (a’,b’)) = (a=a’ & b=b’)
Pair_inject [| (a, b) = (a’,b’); [| a=a’; b=b’ |] ==> R |] ==> R
PairE [| !!x y. p = (x,y) ==> Q |] ==> Q

fst_conv fst (a,b) = a
snd_conv snd (a,b) = b
surjective_pairing p = (fst p,snd p)

split split c (a,b) = c a b
split_split R(split c p) = (! x y. p = (x,y) --> R(c x y))

SigmaI [| a:A; b:B a |] ==> (a,b) : Sigma A B

SigmaE [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P
|] ==> P

Figure 2.15: Type α× β

CHAPTER 2. HIGHER-ORDER LOGIC 24

In addition, it is possible to use tuples as patterns in abstractions:

%(x,y). t stands for split(%x y. t)

Nested patterns are also supported. They are translated stepwise:

%(x,y,z). t ; %(x,(y,z)). t

; split(%x.%(y,z). t)

; split(%x. split(%y z. t))

The reverse translation is performed upon printing.

! The translation between patterns and split is performed automatically by the
parser and printer. Thus the internal and external form of a term may differ,

which can affects proofs. For example the term (%(x,y).(y,x))(a,b) requires
the theorem split (which is in the default simpset) to rewrite to (b,a).

In addition to explicit λ-abstractions, patterns can be used in any variable
binding construct which is internally described by a λ-abstraction. Some
important examples are

Let: let pattern = t in u

Quantifiers: ALL pattern:A. P

Choice: SOME pattern. P

Set operations: UN pattern:A. B

Sets: {pattern. P}

There is a simple tactic which supports reasoning about patterns:

split_all_tac i replaces in subgoal i all !!-quantified variables of product
type by individual variables for each component. A simple example:

1. !!p. (%(x,y,z). (x, y, z)) p = p

by(split_all_tac 1);
1. !!x xa ya. (%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)

Theory Prod also introduces the degenerate product type unit which
contains only a single element named () with the property

CHAPTER 2. HIGHER-ORDER LOGIC 25

symbol meta-type description
Inl α⇒ α+ β first injection
Inr β ⇒ α+ β second injection

sum_case [α⇒ γ, β ⇒ γ, α+ β]⇒ γ conditional

Inl_not_Inr Inl a ~= Inr b

inj_Inl inj Inl
inj_Inr inj Inr

sumE [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s

sum_case_Inl sum_case f g (Inl x) = f x
sum_case_Inr sum_case f g (Inr x) = g x

surjective_sum sum_case (%x. f(Inl x)) (%y. f(Inr y)) s = f s
sum.split_case R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &

(! y. s = Inr(y) --> R(g(y))))

Figure 2.16: Type α + β

unit_eq u = ()

Theory Sum (Fig. 2.16) defines the sum type α+β which associates to the
right and has a lower priority than ∗: τ1+τ2+τ3∗τ4 means τ1+(τ2+(τ3∗τ4)).

The definition of products and sums in terms of existing types is not
shown. The constructions are fairly standard and can be found in the re-
spective theory files. Although the sum and product types are constructed
manually for foundational reasons, they are represented as actual datatypes
later (see §2.6.3). Therefore, the theory Datatype should be used instead of
Sum or Prod.

2.5.2 The type of natural numbers, nat

The theory Nat defines the natural numbers in a roundabout but traditional
way. The axiom of infinity postulates a type ind of individuals, which is
non-empty and closed under an injective operation. The natural numbers are
inductively generated by choosing an arbitrary individual for 0 and using the
injective operation to take successors. This is a least fixedpoint construction.

Type nat is an instance of class ord, which makes the overloaded functions
of this class (especially < and <=, but also min, max and LEAST) available on
nat . Theory Nat also shows that <= is a linear order, so nat is also an instance
of class linorder.

CHAPTER 2. HIGHER-ORDER LOGIC 26

symbol meta-type priority description
0 α zero

Suc nat ⇒ nat successor function
* [α, α]⇒ α Left 70 multiplication

div [α, α]⇒ α Left 70 division
mod [α, α]⇒ α Left 70 modulus
dvd [α, α]⇒ bool Left 70 “divides” relation
+ [α, α]⇒ α Left 65 addition
- [α, α]⇒ α Left 65 subtraction

Constants and infixes

nat_induct [| P 0; !!n. P n ==> P(Suc n) |] ==> P n

Suc_not_Zero Suc m ~= 0
inj_Suc inj Suc
n_not_Suc_n n~=Suc n

Basic properties

Figure 2.17: The type of natural numbers, nat

0+n = n
(Suc m)+n = Suc(m+n)

m-0 = m
0-n = n
Suc(m)-Suc(n) = m-n

0*n = 0
Suc(m)*n = n + m*n

mod_less m<n ==> m mod n = m
mod_geq [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n

div_less m<n ==> m div n = 0
div_geq [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)

Figure 2.18: Recursion equations for the arithmetic operators

CHAPTER 2. HIGHER-ORDER LOGIC 27

Theory NatArith develops arithmetic on the natural numbers. It defines
addition, multiplication and subtraction. Theory Divides defines division,
remainder and the “divides” relation. The numerous theorems proved include
commutative, associative, distributive, identity and cancellation laws. See
Figs. 2.17 and 2.18. The recursion equations for the operators +, - and * on
nat are part of the default simpset.

Functions on nat can be defined by primitive or well-founded recursion;
see §2.7. A simple example is addition. Here, op + is the name of the infix
operator +, following the standard convention.

primrec
"0 + n = n"

"Suc m + n = Suc (m + n)"

There is also a case-construct of the form

case e of 0 => a | Suc m => b

Note that Isabelle insists on precisely this format; you may not even change
the order of the two cases. Both primrec and case are realized by a recursion
operator nat_rec, which is available because nat is represented as a datatype
(see §2.6.3).

Tactic induct_tac "n" i performs induction on variable n in subgoal i
using theorem nat_induct. There is also the derived theorem less_induct:

[| !!n. [| ! m. m<n --> P m |] ==> P n |] ==> P n

2.5.3 Numerical types and numerical reasoning

The integers (type int) are also available in HOL, and the reals (type real)
are available in the logic image HOL-Complex. They support the expected
operations of addition (+), subtraction (-) and multiplication (*), and much
else. Type int provides the div and mod operators, while type real provides
real division and other operations. Both types belong to class linorder, so
they inherit the relational operators and all the usual properties of linear
orderings. For full details, please survey the theories in subdirectories Integ,
Real, and Complex.

All three numeric types admit numerals of the form sd . . . d , where s is an
optional minus sign and d . . . d is a string of digits. Numerals are represented
internally by a datatype for binary notation, which allows numerical calcu-
lations to be performed by rewriting. For example, the integer division of
54342339 by 3452 takes about five seconds. By default, the simplifier cancels
like terms on the opposite sites of relational operators (reducing z+x<x+y to

CHAPTER 2. HIGHER-ORDER LOGIC 28

z<y, for instance. The simplifier also collects like terms, replacing x+y+x*3

by 4*x+y.
Sometimes numerals are not wanted, because for example n+3 does not

match a pattern of the form Suc k . You can re-arrange the form of an arith-
metic expression by proving (via subgoal_tac) a lemma such as n+3 = Suc

(Suc (Suc n)). As an alternative, you can disable the fancier simplifica-
tions by using a basic simpset such as HOL_ss rather than the default one,
simpset().

Reasoning about arithmetic inequalities can be tedious. Fortunately,
HOL provides a decision procedure for linear arithmetic: formulae involv-
ing addition and subtraction. The simplifier invokes a weak version of this
decision procedure automatically. If this is not sufficent, you can invoke the
full procedure arith_tac explicitly. It copes with arbitrary formulae involv-
ing =, <, <=, +, -, Suc, min, max and numerical constants. Other subterms
are treated as atomic, while subformulae not involving numerical types are
ignored. Quantified subformulae are ignored unless they are positive univer-
sal or negative existential. The running time is exponential in the number of
occurrences of min, max, and - because they require case distinctions. If k is
a numeral, then div k, mod k and k dvd are also supported. The former two
are eliminated by case distinctions, again blowing up the running time. If the
formula involves explicit quantifiers, arith_tac may take super-exponential
time and space.

If arith_tac fails, try to find relevant arithmetic results in the library.
The theories Nat and NatArith contain theorems about <, <=, +, - and *.
Theory Divides contains theorems about div and mod. Use Proof General’s
find button (or other search facilities) to locate them.

2.5.4 The type constructor for lists, list

Figure 2.19 presents the theory List: the basic list operations with their
types and syntax. Type α list is defined as a datatype with the constructors
[] and #. As a result the generic structural induction and case analysis
tactics induct tac and cases tac also become available for lists. A case

construct of the form

case e of [] => a | x#xs => b

is defined by translation. For details see §2.6. There is also a case splitting
rule split_list_case

P(case e of [] => a | x#xs => f x xs) =
((e = []→ P(a)) ∧ (∀x xs . e = x#xs → P(f x xs)))

CHAPTER 2. HIGHER-ORDER LOGIC 29

symbol meta-type priority description
[] α list empty list
[α, α list]⇒ α list Right 65 list constructor

null α list ⇒ bool emptiness test
hd α list ⇒ α head
tl α list ⇒ α list tail

last α list ⇒ α last element
butlast α list ⇒ α list drop last element

@ [α list , α list]⇒ α list Left 65 append
map (α⇒ β)⇒ (α list ⇒ β list) apply to all

filter (α⇒ bool)⇒ (α list ⇒ α list) filter functional
set α list ⇒ α set elements
mem α⇒ α list ⇒ bool Left 55 membership

foldl (β ⇒ α⇒ β)⇒ β ⇒ α list ⇒ β iteration
concat (α list)list ⇒ α list concatenation

rev α list ⇒ α list reverse
length α list ⇒ nat length

! α list ⇒ nat ⇒ α Left 100 indexing
take, drop nat ⇒ α list ⇒ α list take/drop a prefix
takeWhile,
dropWhile (α⇒ bool)⇒ α list ⇒ α list take/drop a prefix

Constants and infixes

external internal description
[x1, . . ., xn] x1 # · · · # xn # [] finite list

[x:l. P] filter (λx .P) l list comprehension

Translations

Figure 2.19: The theory List

CHAPTER 2. HIGHER-ORDER LOGIC 30

null [] = True
null (x#xs) = False

hd (x#xs) = x

tl (x#xs) = xs
tl [] = []

[] @ ys = ys
(x#xs) @ ys = x # xs @ ys

set [] = {}
set (x#xs) = insert x (set xs)

x mem [] = False
x mem (y#ys) = (if y=x then True else x mem ys)

concat([]) = []
concat(x#xs) = x @ concat(xs)

rev([]) = []
rev(x#xs) = rev(xs) @ [x]

length([]) = 0
length(x#xs) = Suc(length(xs))

xs!0 = hd xs
xs!(Suc n) = (tl xs)!n

Figure 2.20: Simple list processing functions

CHAPTER 2. HIGHER-ORDER LOGIC 31

map f [] = []
map f (x#xs) = f x # map f xs

filter P [] = []
filter P (x#xs) = (if P x then x#filter P xs else filter P xs)

foldl f a [] = a
foldl f a (x#xs) = foldl f (f a x) xs

take n [] = []
take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)

drop n [] = []
drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)

takeWhile P [] = []
takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])

dropWhile P [] = []
dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)

Figure 2.21: Further list processing functions

which can be fed to addsplits just like split_if (see §2.4.1).
List provides a basic library of list processing functions defined by prim-

itive recursion (see §2.7.1). The recursion equations are shown in Figs. 2.20
and 2.21.

2.5.5 Introducing new types

The HOL-methodology dictates that all extensions to a theory should be
definitional. The type definition mechanism that meets this criterion is
typedef. Note that type synonyms, which are inherited from Pure and de-
scribed elsewhere, are just syntactic abbreviations that have no logical mean-
ing.

! Types in HOL must be non-empty; otherwise the quantifier rules would be
unsound, because ∃x . x = x is a theorem [18, §7].

A type definition identifies the new type with a subset of an existing
type. More precisely, the new type is defined by exhibiting an existing type τ ,
a set A :: τ set , and a theorem of the form x : A. Thus A is a non-empty
subset of τ , and the new type denotes this subset. New functions are defined
that establish an isomorphism between the new type and the subset. If type τ

CHAPTER 2. HIGHER-ORDER LOGIC 32

involves type variables α1, . . . , αn , then the type definition creates a type
constructor (α1, . . . , αn)ty rather than a particular type.

typedef

typedef
�� ��

� (
���name)

���
�

type =
���set witness

type

typevarlist name �
� (

���infix)
���

�

set

string

witness

�
� (

���id)
���

�

Figure 2.22: Syntax of type definitions

The syntax for type definitions is shown in Fig. 2.22. For the definition
of ‘typevarlist’ and ‘infix’ see the appendix of the Reference Manual . The
remaining nonterminals have the following meaning:

type: the new type constructor (α1, . . . , αn)ty with optional infix annotation.

name: an alphanumeric name T for the type constructor ty , in case ty is a
symbolic name. Defaults to ty .

set: the representing subset A.

witness: name of a theorem of the form a : A proving non-emptiness. It can
be omitted in case Isabelle manages to prove non-emptiness automati-
cally.

If all context conditions are met (no duplicate type variables in ‘typevarlist’,
no extra type variables in ‘set’, and no free term variables in ‘set’), the
following components are added to the theory:

CHAPTER 2. HIGHER-ORDER LOGIC 33

• a type ty :: (term, . . . , term)term

• constants

T :: τ set

Rep T :: (α1, . . . , αn)ty ⇒ τ

Abs T :: τ ⇒ (α1, . . . , αn)ty

• a definition and three axioms

T def T ≡ A
Rep T Rep T x ∈ T
Rep T inverse Abs T (Rep T x) = x
Abs T inverse y ∈ T =⇒ Rep T (Abs T y) = y

stating that (α1, . . . , αn)ty is isomorphic to A by Rep T and its inverse
Abs T .

Below are two simple examples of HOL type definitions. Non-emptiness is
proved automatically here.

typedef unit = "{True}"

typedef (prod)
(’a, ’b) "*" (infixr 20)

= "{f . EX (a::’a) (b::’b). f = (%x y. x = a & y = b)}"

Type definitions permit the introduction of abstract data types in a safe
way, namely by providing models based on already existing types. Given
some abstract axiomatic description P of a type, this involves two steps:

1. Find an appropriate type τ and subset A which has the desired prop-
erties P , and make a type definition based on this representation.

2. Prove that P holds for ty by lifting P from the representation.

You can now forget about the representation and work solely in terms of the
abstract properties P .

! If you introduce a new type (constructor) ty axiomatically, i.e. by declaring the
type and its operations and by stating the desired axioms, you should make

sure the type has a non-empty model. You must also have a clause

arities ty :: (term, . . ., term) term

in your theory file to tell Isabelle that ty is in class term, the class of all HOL
types.

CHAPTER 2. HIGHER-ORDER LOGIC 34

2.6 Datatype definitions

Inductive datatypes, similar to those of ml, frequently appear in applica-
tions of Isabelle/HOL. In principle, such types could be defined by hand via
typedef (see §2.5.5), but this would be far too tedious. The datatype defi-
nition package of Isabelle/HOL (cf. [3]) automates such chores. It generates
an appropriate typedef based on a least fixed-point construction, and proves
freeness theorems and induction rules, as well as theorems for recursion and
case combinators. The user just has to give a simple specification of new
inductive types using a notation similar to ml or Haskell.

The current datatype package can handle both mutual and indirect re-
cursion. It also offers to represent existing types as datatypes giving the
advantage of a more uniform view on standard theories.

2.6.1 Basics

A general datatype definition is of the following form:

datatype (~α)t1 = C 1
1 τ 1

1,1 . . . τ 1
1,m1

1
| . . . | C 1

k1
τ 1
k1,1 . . . τ 1

k1,m1
k1

...
and (~α)tn = C n

1 τn
1,1 . . . τn

1,mn
1
| . . . | C n

kn τ
n
kn ,1 . . . τn

kn ,mn
kn

where ~α = (α1, . . . , αh) is a list of type variables, C j
i are distinct constructor

names and τ j
i ,i ′ are admissible types containing at most the type variables

α1, . . . , αh . A type τ occurring in a datatype definition is admissible if and
only if

• τ is non-recursive, i.e. τ does not contain any of the newly defined type
constructors t1, . . . , tn , or

• τ = (~α)tj ′ where 1 ≤ j ′ ≤ n, or

• τ = (τ ′1, . . . , τ
′
h ′)t ′, where t ′ is the type constructor of an already existing

datatype and τ ′1, . . . , τ
′
h ′ are admissible types.

• τ = σ → τ ′, where τ ′ is an admissible type and σ is non-recursive (i.e.
the occurrences of the newly defined types are strictly positive)

If some (~α)tj ′ occurs in a type τ j
i ,i ′ of the form

(. . . , . . . (~α)tj ′ . . . , . . .)t ′

this is called a nested (or indirect) occurrence. A very simple example of a
datatype is the type list, which can be defined by

CHAPTER 2. HIGHER-ORDER LOGIC 35

datatype ’a list = Nil
| Cons ’a (’a list)

Arithmetic expressions aexp and boolean expressions bexp can be modelled
by the mutually recursive datatype definition

datatype ’a aexp = If_then_else (’a bexp) (’a aexp) (’a aexp)
| Sum (’a aexp) (’a aexp)
| Diff (’a aexp) (’a aexp)
| Var ’a
| Num nat

and ’a bexp = Less (’a aexp) (’a aexp)
| And (’a bexp) (’a bexp)
| Or (’a bexp) (’a bexp)

The datatype term, which is defined by

datatype (’a, ’b) term = Var ’a
| App ’b (((’a, ’b) term) list)

is an example for a datatype with nested recursion. Using nested recursion
involving function spaces, we may also define infinitely branching datatypes,
e.g.

datatype ’a tree = Atom ’a | Branch "nat => ’a tree"

Types in HOL must be non-empty. Each of the new datatypes (~α)tj
with 1 ≤ j ≤ n is non-empty if and only if it has a constructor C j

i with the
following property: for all argument types τ j

i ,i ′ of the form (~α)tj ′ the datatype
(~α)tj ′ is non-empty.

If there are no nested occurrences of the newly defined datatypes, ob-
viously at least one of the newly defined datatypes (~α)tj must have a con-
structor C j

i without recursive arguments, a base case, to ensure that the new
types are non-empty. If there are nested occurrences, a datatype can even
be non-empty without having a base case itself. Since list is a non-empty
datatype, datatype t = C (t list) is non-empty as well.

Freeness of the constructors

The datatype constructors are automatically defined as functions of their
respective type:

C j
i :: [τ j

i ,1, . . . , τ
j

i ,mj
i

]⇒ (α1, . . . , αh)tj

These functions have certain freeness properties. They construct distinct
values:

C j
i x1 . . . xmj

i
6= C j

i ′ y1 . . . ymj

i′
for all i 6= i ′.

CHAPTER 2. HIGHER-ORDER LOGIC 36

The constructor functions are injective:

(C j
i x1 . . . xmj

i
= C j

i y1 . . . ymj
i
) = (x1 = y1 ∧ . . . ∧ xmj

i
= ymj

i
)

Since the number of distinctness inequalities is quadratic in the number of
constructors, the datatype package avoids proving them separately if there
are too many constructors. Instead, specific inequalities are proved by a
suitable simplification procedure on demand.4

Structural induction

The datatype package also provides structural induction rules. For datatypes
without nested recursion, this is of the following form:∧

x1 . . . xm1
1
. [[Ps1

1,1
xr1

1,1
; . . . ; Ps1

1,l1
1

xr1

1,l1
1

]] =⇒ P1

(
C 1

1 x1 . . . xm1
1

)
...∧

x1 . . . xm1
k1
. [[Ps1

k1,1
xr1

k1,1
; . . . ; Ps1

k1,l1
k1

xr1

k1,l1
k1

]] =⇒ P1

(
C 1

k1
x1 . . . xm1

k1

)
...∧

x1 . . . xmn
1
. [[Psn

1,1
xrn

1,1
; . . . ; Psn

1,ln
1

xrn
1,ln

1

]] =⇒ Pn

(
C n

1 x1 . . . xmn
1

)
...∧

x1 . . . xmn
kn
. [[Psn

kn ,1
xrn

kn ,1
; . . .Psn

kn ,ln
kn

xrn
kn ,ln

kn

]] =⇒ Pn

(
C n

kn x1 . . . xmn
kn

)
P1 x1 ∧ . . . ∧ Pn xn

where

Recj
i :=

{(
r j
i ,1, s

j
i ,1

)
, . . . ,

(
r j

i ,l ji
, s j

i ,l ji

)}
={

(i ′, i ′′)
∣∣∣ 1 ≤ i ′ ≤ m j

i ∧ 1 ≤ i ′′ ≤ n ∧ τ j
i ,i ′ = (α1, . . . , αh)ti ′′

}
i.e. the properties Pj can be assumed for all recursive arguments.

For datatypes with nested recursion, such as the term example from
above, things are a bit more complicated. Conceptually, Isabelle/HOL un-
folds a definition like

datatype (’a,’b) term = Var ’a
| App ’b (((’a, ’b) term) list)

to an equivalent definition without nesting:

4This procedure, which is already part of the default simpset, may be referred to by
the ML identifier DatatypePackage.distinct_simproc.

CHAPTER 2. HIGHER-ORDER LOGIC 37

datatype (’a,’b) term = Var
| App ’b ((’a, ’b) term_list)

and (’a,’b) term_list = Nil’
| Cons’ ((’a,’b) term) ((’a,’b) term_list)

Note however, that the type (’a,’b) term_list and the constructors Nil’
and Cons’ are not really introduced. One can directly work with the original
(isomorphic) type ((’a, ’b) term) list and its existing constructors Nil
and Cons. Thus, the structural induction rule for term gets the form∧

x . P1 (Var x)∧
x1 x2 . P2 x2 =⇒ P1 (App x1 x2)

P2 Nil∧
x1 x2 . [[P1 x1; P2 x2]] =⇒ P2 (Cons x1 x2)

P1 x1 ∧ P2 x2

Note that there are two predicates P1 and P2, one for the type (’a,’b) term

and one for the type ((’a, ’b) term) list.
For a datatype with function types such as ’a tree, the induction rule

is of the form∧
a . P (Atom a)

∧
ts . (∀x . P (ts x)) =⇒ P (Branch ts)

P t

In principle, inductive types are already fully determined by freeness and
structural induction. For convenience in applications, the following derived
constructions are automatically provided for any datatype.

The case construct

The type comes with an ml-like case-construct:

case e of C j
1 x1,1 . . . x1,mj

1
⇒ e1

...

| C j
kj

xkj ,1 . . . xkj ,m
j
kj

⇒ ekj

where the xi ,j are either identifiers or nested tuple patterns as in §2.5.1.

! All constructors must be present, their order is fixed, and nested patterns are
not supported (with the exception of tuples). Violating this restriction results

in strange error messages.

CHAPTER 2. HIGHER-ORDER LOGIC 38

To perform case distinction on a goal containing a case-construct, the
theorem tj .split is provided:

P(tj case f1 . . . fkj e) = ((∀x1 . . . xmj
1
. e = C j

1 x1 . . . xmj
1
→ P(f1 x1 . . . xmj

1
))

∧ . . . ∧
(∀x1 . . . xmj

kj

. e = C j
kj

x1 . . . xmj
kj

→ P(fkj x1 . . . xmj
kj

)))

where tj_case is the internal name of the case-construct. This theorem can
be added to a simpset via addsplits (see §2.4.1).

Case splitting on assumption works as well, by using the rule tj .split_asm
in the same manner. Both rules are available under tj .splits (this name is
not bound in ML, though).

! By default only the selector expression (e above) in a case-construct is simpli-
fied, in analogy with if (see page 21). Only if that reduces to a constructor is

one of the arms of the case-construct exposed and simplified. To ensure full simpli-
fication of all parts of a case-construct for datatype t , remove t.case_weak_cong
from the simpset, for example by delcongs [thm "t.weak_case_cong"].

The function size

Theory NatArith declares a generic function size of type α ⇒ nat . Each
datatype defines a particular instance of size by overloading according to
the following scheme:

size(C j
i x1 . . . xmj

i
) =

0 if Recj

i = ∅

1 +
l ji∑

h=1
size xr j

i,h
if Recj

i =
{(

r j
i ,1, s

j
i ,1

)
, . . . ,

(
r j

i ,l ji
, s j

i ,l ji

)}

where Recj
i is defined above. Viewing datatypes as generalised trees, the size

of a leaf is 0 and the size of a node is the sum of the sizes of its subtrees + 1.

2.6.2 Defining datatypes

The theory syntax for datatype definitions is shown in Fig. 2.23. In order
to be well-formed, a datatype definition has to obey the rules stated in the
previous section. As a result the theory is extended with the new types, the
constructors, and the theorems listed in the previous section.

Most of the theorems about datatypes become part of the default simpset
and you never need to see them again because the simplifier applies them
automatically. Only induction or case distinction are usually invoked by
hand.

CHAPTER 2. HIGHER-ORDER LOGIC 39

datatype

datatype
�� �typedecls

typedecls

newtype =
��� cons�

� |
���

�

�
� and

�� �

�

newtype

typevarlist id �
� (

���infix)
���

�

cons

name �
�argtype

�

�
� (

���mixfix)
���

�

argtype

id�
� tid

� (
���typevarlist id)

���

�

Figure 2.23: Syntax of datatype declarations

CHAPTER 2. HIGHER-ORDER LOGIC 40

induct_tac "x" i applies structural induction on variable x to subgoal i ,
provided the type of x is a datatype.

induct_tac "x1 . . . xn" i applies simultaneous structural induction on the
variables x1, . . . , xn to subgoal i . This is the canonical way to prove
properties of mutually recursive datatypes such as aexp and bexp, or
datatypes with nested recursion such as term.

In some cases, induction is overkill and a case distinction over all constructors
of the datatype suffices.

case_tac "u" i performs a case analysis for the term u whose type must be
a datatype. If the datatype has kj constructors C j

1 , . . . C j
kj

, subgoal i is
replaced by kj new subgoals which contain the additional assumption
u = C j

i ′ x1 . . . xmj

i′
for i ′ = 1, . . ., kj .

Note that induction is only allowed on free variables that should not occur
among the premises of the subgoal. Case distinction applies to arbitrary
terms.

For the technically minded, we exhibit some more details. Processing
the theory file produces an ml structure which, in addition to the usual
components, contains a structure named t for each datatype t defined in the
file. Each structure t contains the following elements:

val distinct : thm list
val inject : thm list
val induct : thm
val exhaust : thm
val cases : thm list
val split : thm
val split_asm : thm
val recs : thm list
val size : thm list
val simps : thm list

distinct, inject, induct, size and split contain the theorems described
above. For user convenience, distinct contains inequalities in both direc-
tions. The reduction rules of the case-construct are in cases. All theorems
from distinct, inject and cases are combined in simps. In case of mut-
ually recursive datatypes, recs, size, induct and simps are contained in a
separate structure named t1 . . . tn .

CHAPTER 2. HIGHER-ORDER LOGIC 41

2.6.3 Representing existing types as datatypes

For foundational reasons, some basic types such as nat, *, +, bool and unit

are not defined in a datatype section, but by more primitive means using
typedef. To be able to use the tactics induct_tac and case_tac and to
define functions by primitive recursion on these types, such types may be
represented as actual datatypes. This is done by specifying an induction rule,
as well as theorems stating the distinctness and injectivity of constructors in
a rep_datatype section. For type nat this works as follows:

rep_datatype nat
distinct Suc_not_Zero, Zero_not_Suc
inject Suc_Suc_eq
induct nat_induct

The datatype package automatically derives additional theorems for recur-
sion and case combinators from these rules. Any of the basic HOL types
mentioned above are represented as datatypes. Try an induction on bool

today.

2.6.4 Examples

The datatype α mylist

We want to define a type α mylist . To do this we have to build a new theory
that contains the type definition. We start from the theory Datatype instead
of Main in order to avoid clashes with the List theory of Isabelle/HOL.

MyList = Datatype +
datatype ’a mylist = Nil | Cons ’a (’a mylist)

end

After loading the theory, we can prove Cons x xs 6= xs , for example. To
ease the induction applied below, we state the goal with x quantified at the
object-level. This will be stripped later using qed_spec_mp.

Goal "!x. Cons x xs ~= xs";
Level 0

! x. Cons x xs ~= xs

1. ! x. Cons x xs ~= xs

This can be proved by the structural induction tactic:

CHAPTER 2. HIGHER-ORDER LOGIC 42

by (induct_tac "xs" 1);
Level 1

! x. Cons x xs ~= xs

1. ! x. Cons x Nil ~= Nil

2. !!a mylist.

! x. Cons x mylist ~= mylist ==>

! x. Cons x (Cons a mylist) ~= Cons a mylist

The first subgoal can be proved using the simplifier. Isabelle/HOL has al-
ready added the freeness properties of lists to the default simplification set.

by (Simp_tac 1);
Level 2

! x. Cons x xs ~= xs

1. !!a mylist.

! x. Cons x mylist ~= mylist ==>

! x. Cons x (Cons a mylist) ~= Cons a mylist

Similarly, we prove the remaining goal.

by (Asm_simp_tac 1);
Level 3

! x. Cons x xs ~= xs

No subgoals!

qed_spec_mp "not_Cons_self";
val not_Cons_self = "Cons x xs ~= xs" : thm

Because both subgoals could have been proved by Asm_simp_tac we could
have done that in one step:

by (ALLGOALS Asm_simp_tac);

The datatype α mylist with mixfix syntax

In this example we define the type α mylist again but this time we want to
write [] for Nil and we want to use infix notation # for Cons. To do this we
simply add mixfix annotations after the constructor declarations as follows:

MyList = Datatype +
datatype ’a mylist =
Nil ("[]") |
Cons ’a (’a mylist) (infixr "#" 70)

end

Now the theorem in the previous example can be written x#xs ~= xs.

CHAPTER 2. HIGHER-ORDER LOGIC 43

A datatype for weekdays

This example shows a datatype that consists of 7 constructors:

Days = Main +
datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun

end

Because there are more than 6 constructors, inequality is expressed via a func-
tion days_ord. The theorem Mon ~= Tue is not directly contained among
the distinctness theorems, but the simplifier can prove it thanks to rewrite
rules inherited from theory NatArith:

Goal "Mon ~= Tue";
by (Simp_tac 1);

You need not derive such inequalities explicitly: the simplifier will dispose of
them automatically.

2.7 Recursive function definitions

Isabelle/HOL provides two main mechanisms of defining recursive functions.

1. Primitive recursion is available only for datatypes, and it is some-
what restrictive. Recursive calls are only allowed on the argument’s
immediate constituents. On the other hand, it is the form of recursion
most often wanted, and it is easy to use.

2. Well-founded recursion requires that you supply a well-founded re-
lation that governs the recursion. Recursive calls are only allowed if
they make the argument decrease under the relation. Complicated re-
cursion forms, such as nested recursion, can be dealt with. Termination
can even be proved at a later time, though having unsolved termination
conditions around can make work difficult.5

Following good HOL tradition, these declarations do not assert arbitrary
axioms. Instead, they define the function using a recursion operator. Both
HOL and ZF derive the theory of well-founded recursion from first prin-
ciples [15]. Primitive recursion over some datatype relies on the recursion
operator provided by the datatype package. With either form of function
definition, Isabelle proves the desired recursion equations as theorems.

5This facility is based on Konrad Slind’s TFL package [21]. Thanks are due to Konrad
for implementing TFL and assisting with its installation.

CHAPTER 2. HIGHER-ORDER LOGIC 44

2.7.1 Primitive recursive functions

Datatypes come with a uniform way of defining functions, primitive re-
cursion. In principle, one could introduce primitive recursive functions by
asserting their reduction rules as new axioms, but this is not recommended:

Append = Main +

consts app :: [’a list, ’a list] => ’a list

rules

app_Nil "app [] ys = ys"

app_Cons "app (x#xs) ys = x#app xs ys"

end

Asserting axioms brings the danger of accidentally asserting nonsense, as in
app [] ys = us.

The primrec declaration is a safe means of defining primitive recursive
functions on datatypes:

Append = Main +
consts app :: [’a list, ’a list] => ’a list
primrec

"app [] ys = ys"
"app (x#xs) ys = x#app xs ys"

end

Isabelle will now check that the two rules do indeed form a primitive recursive
definition. For example

primrec
"app [] ys = us"

is rejected with an error message “Extra variables on rhs”.

The general form of a primitive recursive definition is

primrec
reduction rules

where reduction rules specify one or more equations of the form

f x1 . . . xm (C y1 . . . yk) z1 . . . zn = r

such that C is a constructor of the datatype, r contains only the free variables
on the left-hand side, and all recursive calls in r are of the form f . . . yi . . .
for some i . There must be at most one reduction rule for each constructor.
The order is immaterial. For missing constructors, the function is defined to
return a default value.

CHAPTER 2. HIGHER-ORDER LOGIC 45

If you would like to refer to some rule by name, then you must prefix the
rule with an identifier. These identifiers, like those in the rules section of a
theory, will be visible at the ml level.

The primitive recursive function can have infix or mixfix syntax:

consts "@" :: [’a list, ’a list] => ’a list (infixr 60)
primrec

"[] @ ys = ys"
"(x#xs) @ ys = x#(xs @ ys)"

The reduction rules become part of the default simpset, which leads to
short proof scripts:

Goal "(xs @ ys) @ zs = xs @ (ys @ zs)";
by (induct tac "xs" 1);
by (ALLGOALS Asm simp tac);

Example: Evaluation of expressions

Using mutual primitive recursion, we can define evaluation functions evala

and eval_bexp for the datatypes of arithmetic and boolean expressions men-
tioned in §2.6.1:

consts
evala :: "[’a => nat, ’a aexp] => nat"
evalb :: "[’a => nat, ’a bexp] => bool"

primrec
"evala env (If_then_else b a1 a2) =

(if evalb env b then evala env a1 else evala env a2)"
"evala env (Sum a1 a2) = evala env a1 + evala env a2"
"evala env (Diff a1 a2) = evala env a1 - evala env a2"
"evala env (Var v) = env v"
"evala env (Num n) = n"

"evalb env (Less a1 a2) = (evala env a1 < evala env a2)"
"evalb env (And b1 b2) = (evalb env b1 & evalb env b2)"
"evalb env (Or b1 b2) = (evalb env b1 & evalb env b2)"

Since the value of an expression depends on the value of its variables, the
functions evala and evalb take an additional parameter, an environment of
type ’a => nat, which maps variables to their values.

Similarly, we may define substitution functions substa and substb for
expressions: The mapping f of type ’a => ’a aexp given as a parameter is
lifted canonically on the types ’a aexp and ’a bexp:

CHAPTER 2. HIGHER-ORDER LOGIC 46

consts
substa :: "[’a => ’b aexp, ’a aexp] => ’b aexp"
substb :: "[’a => ’b aexp, ’a bexp] => ’b bexp"

primrec
"substa f (If_then_else b a1 a2) =

If_then_else (substb f b) (substa f a1) (substa f a2)"
"substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)"
"substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)"
"substa f (Var v) = f v"
"substa f (Num n) = Num n"

"substb f (Less a1 a2) = Less (substa f a1) (substa f a2)"
"substb f (And b1 b2) = And (substb f b1) (substb f b2)"
"substb f (Or b1 b2) = Or (substb f b1) (substb f b2)"

In textbooks about semantics one often finds substitution theorems, which
express the relationship between substitution and evaluation. For ’a aexp

and ’a bexp, we can prove such a theorem by mutual induction, followed by
simplification:

Goal
"evala env (substa (Var(v := a’)) a) =

evala (env(v := evala env a’)) a &
evalb env (substb (Var(v := a’)) b) =
evalb (env(v := evala env a’)) b";

by (induct_tac "a b" 1);
by (ALLGOALS Asm_full_simp_tac);

Example: A substitution function for terms

Functions on datatypes with nested recursion, such as the type term men-
tioned in §2.6.1, are also defined by mutual primitive recursion. A substitu-
tion function subst_term on type term, similar to the functions substa and
substb described above, can be defined as follows:

CHAPTER 2. HIGHER-ORDER LOGIC 47

consts
subst_term :: "[’a => (’a,’b) term, (’a,’b) term] => (’a,’b) term"
subst_term_list ::
"[’a => (’a,’b) term, (’a,’b) term list] => (’a,’b) term list"

primrec
"subst_term f (Var a) = f a"
"subst_term f (App b ts) = App b (subst_term_list f ts)"

"subst_term_list f [] = []"
"subst_term_list f (t # ts) =

subst_term f t # subst_term_list f ts"

The recursion scheme follows the structure of the unfolded definition of type
term shown in §2.6.1. To prove properties of this substitution function,
mutual induction is needed:

Goal
"(subst_term ((subst_term f1) o f2) t) =

(subst_term f1 (subst_term f2 t)) &
(subst_term_list ((subst_term f1) o f2) ts) =
(subst_term_list f1 (subst_term_list f2 ts))";

by (induct_tac "t ts" 1);
by (ALLGOALS Asm_full_simp_tac);

Example: A map function for infinitely branching trees

Defining functions on infinitely branching datatypes by primitive recursion
is just as easy. For example, we can define a function map_tree on ’a tree

as follows:

consts
map_tree :: "(’a => ’b) => ’a tree => ’b tree"

primrec
"map_tree f (Atom a) = Atom (f a)"
"map_tree f (Branch ts) = Branch (%x. map_tree f (ts x))"

Note that all occurrences of functions such as ts in the primrec clauses must
be applied to an argument. In particular, map_tree f o ts is not allowed.

2.7.2 General recursive functions

Using recdef, you can declare functions involving nested recursion and
pattern-matching. Recursion need not involve datatypes and there are few
syntactic restrictions. Termination is proved by showing that each recursive

CHAPTER 2. HIGHER-ORDER LOGIC 48

call makes the argument smaller in a suitable sense, which you specify by
supplying a well-founded relation.

Here is a simple example, the Fibonacci function. The first line declares
fib to be a constant. The well-founded relation is simply < (on the natural
numbers). Pattern-matching is used here: 1 is a macro for Suc 0.

consts fib :: "nat => nat"
recdef fib "less_than"

"fib 0 = 0"
"fib 1 = 1"
"fib (Suc(Suc x)) = (fib x + fib (Suc x))"

With recdef, function definitions may be incomplete, and patterns may
overlap, as in functional programming. The recdef package disambiguates
overlapping patterns by taking the order of rules into account. For missing
patterns, the function is defined to return a default value.

The well-founded relation defines a notion of “smaller” for the function’s
argument type. The relation ≺ is well-founded provided it admits no in-
finitely decreasing chains

· · · ≺ xn ≺ · · · ≺ x1.

If the function’s argument has type τ , then ≺ has to be a relation over τ : it
must have type (τ × τ)set .

Proving well-foundedness can be tricky, so Isabelle/HOL provides a col-
lection of operators for building well-founded relations. The package recog-
nises these operators and automatically proves that the constructed relation
is well-founded. Here are those operators, in order of importance:

• less_than is “less than” on the natural numbers. (It has type (nat ×
nat)set , while < has type [nat , nat]⇒ bool .

• measure f , where f has type τ ⇒ nat , is the relation ≺ on type τ such
that x ≺ y if and only if f (x) < f (y). Typically, f takes the recursive
function’s arguments (as a tuple) and returns a result expressed in
terms of the function size. It is called a measure function. Recall
that size is overloaded and is defined on all datatypes (see §2.6.1).

• inv imageR f is a generalisation of measure. It specifies a relation
such that x ≺ y if and only if f (x) is less than f (y) according to R,
which must itself be a well-founded relation.

• R1<*lex*>R2 is the lexicographic product of two relations. It is a
relation on pairs and satisfies (x1, x2) ≺ (y1, y2) if and only if x1 is less
than y1 according to R1 or x1 = y1 and x2 is less than y2 according
to R2.

CHAPTER 2. HIGHER-ORDER LOGIC 49

• finite_psubset is the proper subset relation on finite sets.

We can use measure to declare Euclid’s algorithm for the greatest com-
mon divisor. The measure function, λ(m, n) . n, specifies that the recursion
terminates because argument n decreases.

recdef gcd "measure ((%(m,n). n) ::nat*nat=>nat)"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

The general form of a well-founded recursive definition is

recdef function rel
congs congruence rules (optional)
simpset simplification set (optional)
reduction rules

where

• function is the name of the function, either as an id or a string.

• rel is a HOL expression for the well-founded termination relation.

• congruence rules are required only in highly exceptional circumstances.

• The simplification set is used to prove that the supplied relation is
well-founded. It is also used to prove the termination conditions:
assertions that arguments of recursive calls decrease under rel. By
default, simplification uses simpset(), which is sufficient to prove well-
foundedness for the built-in relations listed above.

• reduction rules specify one or more recursion equations. Each left-hand
side must have the form f t , where f is the function and t is a tuple of
distinct variables. If more than one equation is present then f is defined
by pattern-matching on components of its argument whose type is a
datatype.

The ml identifier f .simps contains the reduction rules as a list of
theorems.

With the definition of gcd shown above, Isabelle/HOL is unable to prove
one termination condition. It remains as a precondition of the recursion
theorems:

gcd.simps;
["! m n. n ~= 0 --> m mod n < n

==> gcd (?m,?n) = (if ?n=0 then ?m else gcd (?n, ?m mod ?n))"]

: thm list

The theory HOL/ex/Primes illustrates how to prove termination conditions
afterwards. The function Tfl.tgoalw is like the standard function goalw,

CHAPTER 2. HIGHER-ORDER LOGIC 50

which sets up a goal to prove, but its argument should be the identifier
f .simps and its effect is to set up a proof of the termination conditions:

Tfl.tgoalw thy [] gcd.simps;
Level 0

! m n. n ~= 0 --> m mod n < n

1. ! m n. n ~= 0 --> m mod n < n

This subgoal has a one-step proof using simp_tac. Once the theorem is
proved, it can be used to eliminate the termination conditions from elements
of gcd.simps. Theory HOL/Subst/Unify is a much more complicated exam-
ple of this process, where the termination conditions can only be proved by
complicated reasoning involving the recursive function itself.

Isabelle/HOL can prove the gcd function’s termination condition auto-
matically if supplied with the right simpset.

recdef gcd "measure ((%(m,n). n) ::nat*nat=>nat)"
simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

If all termination conditions were proved automatically, f .simps is added
to the simpset automatically, just as in primrec. The simplification rules
corresponding to clause i (where counting starts at 0) are called f .i and can
be accessed as thms "f .i", which returns a list of theorems. Thus you can,
for example, remove specific clauses from the simpset. Note that a single
clause may give rise to a set of simplification rules in order to capture the
fact that if clauses overlap, their order disambiguates them.

A recdef definition also returns an induction rule specialised for the
recursive function. For the gcd function above, the induction rule is

gcd.induct;
"(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm

This rule should be used to reason inductively about the gcd function. It
usually makes the induction hypothesis available at all recursive calls, leading
to very direct proofs. If any termination conditions remain unproved, they
will become additional premises of this rule.

2.8 Inductive and coinductive definitions

An inductive definition specifies the least set R closed under given rules.
(Applying a rule to elements of R yields a result within R.) For example,
a structural operational semantics is an inductive definition of an evalua-
tion relation. Dually, a coinductive definition specifies the greatest set R

CHAPTER 2. HIGHER-ORDER LOGIC 51

consistent with given rules. (Every element of R can be seen as arising by ap-
plying a rule to elements of R.) An important example is using bisimulation
relations to formalise equivalence of processes and infinite data structures.

A theory file may contain any number of inductive and coinductive defi-
nitions. They may be intermixed with other declarations; in particular, the
(co)inductive sets must be declared separately as constants, and may have
mixfix syntax or be subject to syntax translations.

Each (co)inductive definition adds definitions to the theory and also
proves some theorems. Each definition creates an ml structure, which is
a substructure of the main theory structure.

This package is related to the ZF one, described in a separate paper,6

which you should refer to in case of difficulties. The package is simpler than
ZF’s thanks to HOL’s extra-logical automatic type-checking. The types of
the (co)inductive sets determine the domain of the fixedpoint definition, and
the package does not have to use inference rules for type-checking.

2.8.1 The result structure

Many of the result structure’s components have been discussed in the paper;
others are self-explanatory.

defs is the list of definitions of the recursive sets.

mono is a monotonicity theorem for the fixedpoint operator.

unfold is a fixedpoint equation for the recursive set (the union of the recur-
sive sets, in the case of mutual recursion).

intrs is the list of introduction rules, now proved as theorems, for the re-
cursive sets. The rules are also available individually, using the names
given them in the theory file.

elims is the list of elimination rule. This is for compatibility with ML
scripts; within the theory the name is cases.

elim is the head of the list elims. This is for compatibility only.

mk_cases is a function to create simplified instances of elim using freeness
reasoning on underlying datatypes.

6It appeared in CADE [14]; a longer version is distributed with Isabelle.

CHAPTER 2. HIGHER-ORDER LOGIC 52

sig
val defs : thm list
val mono : thm
val unfold : thm
val intrs : thm list
val elims : thm list
val elim : thm
val mk_cases : string -> thm
(Inductive definitions only)
val induct : thm
(coinductive definitions only)
val coinduct : thm
end

Figure 2.24: The ml result of a (co)inductive definition

For an inductive definition, the result structure contains the rule induct.
For a coinductive definition, it contains the rule coinduct.

Figure 2.24 summarises the two result signatures, specifying the types of
all these components.

2.8.2 The syntax of a (co)inductive definition

An inductive definition has the form

inductive inductive sets
intrs introduction rules
monos monotonicity theorems

A coinductive definition is identical, except that it starts with the keyword
coinductive.

The monos section is optional; if present it is specified by a list of identi-
fiers.

• The inductive sets are specified by one or more strings.

• The introduction rules specify one or more introduction rules in the
form ident string, where the identifier gives the name of the rule in the
result structure.

• The monotonicity theorems are required for each operator applied to
a recursive set in the introduction rules. There must be a theorem of
the form A ⊆ B =⇒ M (A) ⊆ M (B), for each premise t ∈ M (Ri) in an
introduction rule!

CHAPTER 2. HIGHER-ORDER LOGIC 53

• The constructor definitions contain definitions of constants appearing
in the introduction rules. In most cases it can be omitted.

2.8.3 *Monotonicity theorems

Each theory contains a default set of theorems that are used in monotonicity
proofs. New rules can be added to this set via the mono attribute. Theory
Inductive shows how this is done. In general, the following monotonicity
theorems may be added:

• Theorems of the form A ⊆ B =⇒ M (A) ⊆ M (B), for proving mono-
tonicity of inductive definitions whose introduction rules have premises
involving terms such as t ∈ M (Ri).

• Monotonicity theorems for logical operators, which are of the general
form [[· · · → · · · ; . . . ; · · · → · · ·]] =⇒ · · · → · · ·. For example, in the
case of the operator ∨, the corresponding theorem is

P1 → Q1 P2 → Q2

P1 ∨ P2 → Q1 ∨Q2

• De Morgan style equations for reasoning about the “polarity” of ex-
pressions, e.g.

(¬¬P) = P (¬(P ∧Q)) = (¬P ∨ ¬Q)

• Equations for reducing complex operators to more primitive ones whose
monotonicity can easily be proved, e.g.

(P → Q) = (¬P ∨Q) Ball A P ≡ ∀x . x ∈ A→ P x

2.8.4 Example of an inductive definition

Two declarations, included in a theory file, define the finite powerset opera-
tor. First we declare the constant Fin. Then we declare it inductively, with
two introduction rules:

consts Fin :: ’a set => ’a set set
inductive "Fin A"
intrs
emptyI "{} : Fin A"
insertI "[| a: A; b: Fin A |] ==> insert a b : Fin A"

The resulting theory structure contains a substructure, called Fin. It con-
tains the Fin A introduction rules as the list Fin.intrs, and also individually
as Fin.emptyI and Fin.consI. The induction rule is Fin.induct.

CHAPTER 2. HIGHER-ORDER LOGIC 54

For another example, here is a theory file defining the accessible part of
a relation. The paper [14] discusses a ZF version of this example in more
detail.

Acc = WF + Inductive +

consts acc :: "(’a * ’a)set => ’a set" (* accessible part *)

inductive "acc r"
intrs
accI "ALL y. (y, x) : r --> y : acc r ==> x : acc r"

end

The Isabelle distribution contains many other inductive definitions. Sim-
ple examples are collected on subdirectory HOL/Induct. The theory
HOL/Induct/LList contains coinductive definitions. Larger examples may
be found on other subdirectories of HOL, such as IMP, Lambda and Auth.

2.9 Executable specifications

For validation purposes, it is often useful to execute specifications. In princi-
ple, specifications could be “executed” using Isabelle’s inference kernel, i.e.
by a combination of resolution and simplification. Unfortunately, this ap-
proach is rather inefficient. A more efficient way of executing specifications
is to translate them into a functional programming language such as ML.
Isabelle’s built-in code generator supports this.

2.9.1 Invoking the code generator

The code generator is invoked via the code_module and code_library com-
mands (see Fig. 2.25), which correspond to incremental and modular code
generation, respectively.

Modular For each theory, an ML structure is generated, containing the
code generated from the constants defined in this theory.

Incremental All the generated code is emitted into the same structure.
This structure may import code from previously generated structures,
which can be specified via imports. Moreover, the generated structure
may also be referred to in later invocations of the code generator.

After the code_module and code_library keywords, the user may specify
an optional list of “modes” in parentheses. These can be used to instruct the

CHAPTER 2. HIGHER-ORDER LOGIC 55

codegen

code_module
�� ��

�code_library
�� �

�

�
�modespec

�

�
�name

�

�
�

��
�file

�� �name

�

�
�imports

�� � name�
�

�

�

�

�
�contains

�� � name =
���term�

�
�

�
� term�

�
�

�

modespec

(
����

�name

�

)
���

Figure 2.25: Code generator invocation syntax

CHAPTER 2. HIGHER-ORDER LOGIC 56

constscode

consts_code
�� � codespec�

�
�

codespec

const template �
�attachment

�

typescode

types_code
�� � tycodespec�

�
�

tycodespec

name template �
�attachment

�

const

term

template

(
���string)

���
attachment

attach
�� ��

�modespec

�

{*
�� �text *}

�� �

Figure 2.26: Code generator configuration syntax

CHAPTER 2. HIGHER-ORDER LOGIC 57

code generator to emit additional code for special purposes, e.g. functions
for converting elements of generated datatypes to Isabelle terms, or test data
generators. The list of modes is followed by a module name. The module
name is optional for modular code generation, but must be specified for
incremental code generation. The code can either be written to a file, in
which case a file name has to be specified after the file keyword, or be
loaded directly into Isabelle’s ML environment. In the latter case, the ML

theory command can be used to inspect the results interactively. The terms
from which to generate code can be specified after the contains keyword,
either as a list of bindings, or just as a list of terms. In the latter case, the
code generator just produces code for all constants and types occuring in the
term, but does not bind the compiled terms to ML identifiers. For example,

code_module Test
contains
test = "foldl op + (0::int) [1,2,3,4,5]"

binds the result of compiling the term foldl op + (0::int) [1,2,3,4,5]

(i.e. 15) to the ML identifier Test.test.

2.9.2 Configuring the code generator

When generating code for a complex term, the code generator recursively
calls itself for all subterms. When it arrives at a constant, the default strat-
egy of the code generator is to look up its definition and try to generate code
for it. Constants which have no definitions that are immediately executable,
may be associated with a piece of ML code manually using the consts_code

command (see Fig. 2.26). It takes a list whose elements consist of a con-
stant (given in usual term syntax – an explicit type constraint accounts for
overloading), and a mixfix template describing the ML code. The latter is
very much the same as the mixfix templates used when declaring new con-
stants. The most notable difference is that terms may be included in the
ML template using antiquotation brackets {* . . . *}. A similar mechanism
is available for types: types_code associates type constructors with specific
ML code. For example, the declaration

types_code
"*" ("(_ */ _)")

consts_code
"Pair" ("(_,/ _)")

in theory Product_Type describes how the product type of Isabelle/HOL
should be compiled to ML. Sometimes, the code associated with a con-
stant or type may need to refer to auxiliary functions, which have to be

CHAPTER 2. HIGHER-ORDER LOGIC 58

emitted when the constant is used. Code for such auxiliary functions can
be declared using attach. For example, the wfrec function from theory
Wellfounded_Recursion is implemented as follows:

consts_code
"wfrec" ("\<module>wfrec?")

attach {*
fun wfrec f x = f (wfrec f) x;
*}

If the code containing a call to wfrec resides in an ML structure different
from the one containing the function definition attached to wfrec, the name
of the ML structure (followed by a “.”) is inserted in place of “\<module>”
in the above template. The “?” means that the code generator should ignore
the first argument of wfrec, i.e. the termination relation, which is usually
not executable.

Another possibility of configuring the code generator is to register theo-
rems to be used for code generation. Theorems can be registered via the code
attribute. It takes an optional name as an argument, which indicates the for-
mat of the theorem. Currently supported formats are equations (this is the
default when no name is specified) and horn clauses (this is indicated by the
name ind). The left-hand sides of equations may only contain constructors
and distinct variables, whereas horn clauses must have the same format as
introduction rules of inductive definitions. For example, the declaration

lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)" 〈. . .〉
lemma [code]: "((n::nat) < 0) = False" by simp
lemma [code]: "(0 < Suc n) = True" by simp

in theory Nat specifies three equations from which to generate code for < on
natural numbers.

2.9.3 Specific HOL code generators

The basic code generator framework offered by Isabelle/Pure has already
been extended with additional code generators for specific HOL constructs.
These include datatypes, recursive functions and inductive relations. The
code generator for inductive relations can handle expressions of the form
(t1, . . . , tn) ∈ r , where r is an inductively defined relation. If at least one of
the ti is a dummy pattern “ ”, the above expression evaluates to a sequence
of possible answers. If all of the ti are proper terms, the expression evaluates
to a boolean value.

theory Test = Lambda:

CHAPTER 2. HIGHER-ORDER LOGIC 59

code_module Test
contains
test1 = "Abs (Var 0) ◦ Var 0 -> Var 0"
test2 = "Abs (Abs (Var 0 ◦ Var 0) ◦ (Abs (Var 0) ◦ Var 0)) -> _"

In the above example, Test.test1 evaluates to the boolean value true,
whereas Test.test2 is a sequence whose elements can be inspected using
Seq.pull or similar functions.

ML {* Seq.pull Test.test2 *} -- {* This is the first answer *}
ML {* Seq.pull (snd (the it)) *} -- {* This is the second answer *}

The theory underlying the HOL code generator is described more de-
tailed in [2]. More examples that illustrate the usage of the code gen-
erator can be found e.g. in theories MicroJava/J/JListExample and
MicroJava/JVM/JVMListExample.

2.10 The examples directories

Directory HOL/Auth contains theories for proving the correctness of crypto-
graphic protocols [17]. The approach is based upon operational semantics
rather than the more usual belief logics. On the same directory are proofs
for some standard examples, such as the Needham-Schroeder public-key au-
thentication protocol and the Otway-Rees protocol.

Directory HOL/IMP contains a formalization of various denotational, op-
erational and axiomatic semantics of a simple while-language, the neces-
sary equivalence proofs, soundness and completeness of the Hoare rules
with respect to the denotational semantics, and soundness and complete-
ness of a verification condition generator. Much of development is taken
from Winskel [22]. For details see [12].

Directory HOL/Hoare contains a user friendly surface syntax for Hoare
logic, including a tactic for generating verification-conditions.

Directory HOL/MiniML contains a formalization of the type system of the
core functional language Mini-ML and a correctness proof for its type infer-
ence algorithm W [8, 10].

Directory HOL/Lambda contains a formalization of untyped λ-calculus in
de Bruijn notation and Church-Rosser proofs for β and η reduction [11].

Directory HOL/Subst contains Martin Coen’s mechanization of a theory of
substitutions and unifiers. It is based on Paulson’s previous mechanisation in
LCF [13] of Manna and Waldinger’s theory [7]. It demonstrates a complicated
use of recdef, with nested recursion.

CHAPTER 2. HIGHER-ORDER LOGIC 60

Directory HOL/Induct presents simple examples of (co)inductive defini-
tions and datatypes.

• Theory PropLog proves the soundness and completeness of classical
propositional logic, given a truth table semantics. The only connective
is→. A Hilbert-style axiom system is specified, and its set of theorems
defined inductively. A similar proof in ZF is described elsewhere [15].

• Theory Term defines the datatype term.

• Theory ABexp defines arithmetic and boolean expressions as mutually
recursive datatypes.

• The definition of lazy lists demonstrates methods for handling infinite
data structures and coinduction in higher-order logic [16].7 Theory
LList defines an operator for corecursion on lazy lists, which is used to
define a few simple functions such as map and append. A coinduction
principle is defined for proving equations on lazy lists.

• Theory LFilter defines the filter functional for lazy lists. This func-
tional is notoriously difficult to define because finding the next element
meeting the predicate requires possibly unlimited search. It is not
computable, but can be expressed using a combination of induction
and corecursion.

• Theory Exp illustrates the use of iterated inductive definitions to ex-
press a programming language semantics that appears to require mu-
tual induction. Iterated induction allows greater modularity.

Directory HOL/ex contains other examples and experimental proofs in
HOL.

• Theory Recdef presents many examples of using recdef to define re-
cursive functions. Another example is Fib, which defines the Fibonacci
function.

• Theory Primes defines the Greatest Common Divisor of two natural
numbers and proves a key lemma of the Fundamental Theorem of Arith-
metic: if p is prime and p divides m×n then p divides m or p divides n.

• Theory Primrec develops some computation theory. It inductively de-
fines the set of primitive recursive functions and presents a proof that
Ackermann’s function is not primitive recursive.

7To be precise, these lists are potentially infinite rather than lazy. Lazy implies a
particular operational semantics.

CHAPTER 2. HIGHER-ORDER LOGIC 61

• File cla.ML demonstrates the classical reasoner on over sixty predi-
cate calculus theorems, ranging from simple tautologies to moderately
difficult problems involving equality and quantifiers.

• File meson.ML contains an experimental implementation of the meson
proof procedure, inspired by Plaisted [20]. It is much more powerful
than Isabelle’s classical reasoner. But it is less useful in practice because
it works only for pure logic; it does not accept derived rules for the set
theory primitives, for example.

• File mesontest.ML contains test data for the meson proof procedure.
These are mostly taken from Pelletier [19].

• File set.ML proves Cantor’s Theorem, which is presented in §2.11 be-
low, and the Schröder-Bernstein Theorem.

• Theory MT contains Jacob Frost’s formalization [5] of Milner and Tofte’s
coinduction example [9]. This substantial proof concerns the soundness
of a type system for a simple functional language. The semantics of
recursion is given by a cyclic environment, which makes a coinductive
argument appropriate.

2.11 Example: Cantor’s Theorem

Cantor’s Theorem states that every set has more subsets than it has elements.
It has become a favourite example in higher-order logic since it is so easily
expressed:

∀f :: α⇒ α⇒ bool . ∃S :: α⇒ bool . ∀x :: α . f x 6= S

Viewing types as sets, α ⇒ bool represents the powerset of α. This version
states that for every function from α to its powerset, some subset is outside
its range.

The Isabelle proof uses HOL’s set theory, with the type α set and the
operator range.

context Set.thy;

The set S is given as an unknown instead of a quantified variable so that we
may inspect the subset found by the proof.

CHAPTER 2. HIGHER-ORDER LOGIC 62

Goal "?S ~: range (f :: ’a=>’a set)";
Level 0

?S ~: range f

1. ?S ~: range f

The first two steps are routine. The rule rangeE replaces ?S ∈ range f by
?S = f x for some x .

by (resolve_tac [notI] 1);
Level 1

?S ~: range f

1. ?S : range f ==> False

by (eresolve_tac [rangeE] 1);
Level 2

?S ~: range f

1. !!x. ?S = f x ==> False

Next, we apply equalityCE, reasoning that since ?S = f x , we have ?c ∈ ?S
if and only if ?c ∈ f x for any ?c.

by (eresolve_tac [equalityCE] 1);
Level 3

?S ~: range f

1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False

2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False

Now we use a bit of creativity. Suppose that ?S has the form of a comprehen-
sion. Then ?c ∈ {x .?P x} implies ?P ?c. Destruct-resolution using CollectD

instantiates ?S and creates the new assumption.

by (dresolve_tac [CollectD] 1);
Level 4

{x. ?P7 x} ~: range f

1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False

2. !!x. [| ?c3 x ~: {x. ?P7 x}; ?c3 x ~: f x |] ==> False

Forcing a contradiction between the two assumptions of subgoal 1 completes
the instantiation of S . It is now the set {x . x 6∈ f x}, which is the standard
diagonal construction.

by (contr_tac 1);
Level 5

{x. x ~: f x} ~: range f

1. !!x. [| x ~: {x. x ~: f x}; x ~: f x |] ==> False

The rest should be easy. To apply CollectI to the negated assumption, we
employ swap_res_tac:

CHAPTER 2. HIGHER-ORDER LOGIC 63

by (swap_res_tac [CollectI] 1);
Level 6

{x. x ~: f x} ~: range f

1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x

by (assume_tac 1);
Level 7

{x. x ~: f x} ~: range f

No subgoals!

How much creativity is required? As it happens, Isabelle can prove this theo-
rem automatically. The default classical set claset() contains rules for most
of the constructs of HOL’s set theory. We must augment it with equalityCE

to break up set equalities, and then apply best-first search. Depth-first search
would diverge, but best-first search successfully navigates through the large
search space.

choplev 0;
Level 0

?S ~: range f

1. ?S ~: range f

by (best_tac (claset() addSEs [equalityCE]) 1);
Level 1

{x. x ~: f x} ~: range f

No subgoals!

If you run this example interactively, make sure your current theory con-
tains theory Set, for example by executing context Set.thy. Otherwise the
default claset may not contain the rules for set theory.

Bibliography

[1] Peter Andrews. An Introduction to Mathematical Logic and Type The-
ory: to Truth through Proof. Computer Science and Applied Mathemat-
ics. Academic Press, 1986.

[2] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for
Proofs and Programs: TYPES’2000, volume 2277 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[3] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL —
lessons learned in Formal-Logic Engineering. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving in
Higher Order Logics: TPHOLs ’99, volume 1690 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[4] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[5] Jacob Frost. A case study of co-induction in Isabelle HOL. Technical
Report 308, Computer Laboratory, University of Cambridge, August
1993.

[6] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[7] Zohar Manna and Richard Waldinger. Deductive synthesis of the unifi-
cation algorithm. Science of Computer Programming, 1(1):5–48, 1981.

[8] Robin Milner. A theory of type polymorphism in programming. J.
Comp. Sys. Sci., 17:348–375, 1978.

[9] Robin Milner and Mads Tofte. Co-induction in relational semantics.
Theoretical Computer Science, 87:209–220, 1991.

[10] Wolfgang Naraschewski and Tobias Nipkow. Type inference verified:
Algorithm W in Isabelle/HOL. In E. Giménez and C. Paulin-Mohring,

64

BIBLIOGRAPHY 65

editors, Types for Proofs and Programs: Intl. Workshop TYPES ’96,
volume 1512 of Lecture Notes in Computer Science, pages 317–332.
Springer-Verlag, 1998.

[11] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). In
M. McRobbie and J.K. Slaney, editors, Automated Deduction — CADE-
13, volume 1104 of Lecture Notes in Computer Science, pages 733–747.
Springer-Verlag, 1996.

[12] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized se-
mantics textbook. Formal Aspects of Computing, 10:171–186, 1998.

[13] Lawrence C. Paulson. Verifying the unification algorithm in LCF. Sci-
ence of Computer Programming, 5:143–170, 1985.

[14] Lawrence C. Paulson. A fixedpoint approach to implementing
(co)inductive definitions. In Alan Bundy, editor, Automated Deduc-
tion — CADE-12 International Conference, LNAI 814, pages 148–161.
Springer, 1994.

[15] Lawrence C. Paulson. Set theory for verification: II. Induction and
recursion. Journal of Automated Reasoning, 15(2):167–215, 1995.

[16] Lawrence C. Paulson. Mechanizing coinduction and corecursion in
higher-order logic. Journal of Logic and Computation, 7(2):175–204,
March 1997.

[17] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6:85–128, 1998.

[18] Lawrence C. Paulson. A formulation of the simple theory of types (for
Isabelle). In P. Martin-Löf and G. Mints, editors, COLOG-88: In-
ternational Conference on Computer Logic, LNCS 417, pages 246–274,
Tallinn, Published 1990. Estonian Academy of Sciences, Springer.

[19] F. J. Pelletier. Seventy-five problems for testing automatic theorem
provers. Journal of Automated Reasoning, 2:191–216, 1986. Errata,
JAR 4 (1988), 235–236 and JAR 18 (1997), 135.

[20] David A. Plaisted. A sequent-style model elimination strategy and a pos-
itive refinement. Journal of Automated Reasoning, 6(4):389–402, 1990.

[21] Konrad Slind. Function definition in higher order logic. In J. von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order

BIBLIOGRAPHY 66

Logics: TPHOLs ’96, volume 1125 of Lecture Notes in Computer Sci-
ence, pages 381–397. Springer-Verlag, 1996.

[22] Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993.

Index

! symbol, 4, 7, 14, 15, 29
[] symbol, 29
symbol, 29
& symbol, 4
* symbol, 6, 26
* type, 22
+ symbol, 6, 26
+ type, 22
- symbol, 6, 26
--> symbol, 4
: symbol, 13
< constant, 25
< symbol, 26
<= constant, 25
<= symbol, 13
= symbol, 4
? symbol, 4, 7, 15
?! symbol, 4
@ symbol, 4, 29
^ symbol, 6
‘‘ symbol, 13
{} symbol, 13
| symbol, 4

0 constant, 6, 26

Addsplits, 22
addsplits, 21, 31, 38
ALL symbol, 4, 14, 15
All constant, 4
All_def theorem, 9
all_dupE theorem, 11
allE theorem, 11
allI theorem, 11
and_def theorem, 9

arg_cong theorem, 10
arith_tac, 28

Ball constant, 13, 15
Ball_def theorem, 16
ballE theorem, 17
ballI theorem, 17
Bex constant, 13, 15
Bex_def theorem, 16
bexCI theorem, 16, 17
bexE theorem, 17
bexI theorem, 16, 17
bool type, 6
box_equals theorem, 10, 12
bspec theorem, 17
butlast constant, 29

case symbol, 27, 28, 37
case_tac, 12, 40
case_weak_cong, 38
ccontr theorem, 11
classical theorem, 11
code, 58
code generator, 54
code_library, 54
code_module, 54
coinductive, 50–54
Collect constant, 13, 15
Collect_mem_eq theorem, 15, 16
CollectD theorem, 17, 62
CollectE theorem, 17
CollectI theorem, 17, 62
Compl_def theorem, 16
Compl_disjoint theorem, 19
Compl_Int theorem, 19

67

INDEX 68

Compl_partition theorem, 19
Compl_Un theorem, 19
ComplD theorem, 18
ComplI theorem, 18
concat constant, 29
cong theorem, 10
conj_cong, 20
conjE theorem, 10
conjI theorem, 10
conjunct1 theorem, 10
conjunct2 theorem, 10
consts_code, 57
context, 63

datatype, 34–43
Delsplits, 22
delsplits, 21
disjCI theorem, 11
disjE theorem, 10
disjI1 theorem, 10
disjI2 theorem, 10
div symbol, 26
div_geq theorem, 26
div_less theorem, 26
Divides theory, 27
double_complement theorem, 19
drop constant, 29
dropWhile constant, 29
dvd symbol, 26

empty_def theorem, 16
emptyE theorem, 18
Eps constant, 4, 7
equalityCE theorem, 16, 17, 62, 63
equalityD1 theorem, 17
equalityD2 theorem, 17
equalityE theorem, 17
equalityI theorem, 17
EX symbol, 4, 14, 15
Ex constant, 4
EX! symbol, 4

Ex1 constant, 4
Ex1_def theorem, 9
ex1E theorem, 11
ex1I theorem, 11
Ex_def theorem, 9
exCI theorem, 11
excluded_middle theorem, 11
exE theorem, 11
exI theorem, 11
Exp theory, 60
ext theorem, 8, 9

False constant, 4
False_def theorem, 9
FalseE theorem, 10
filter constant, 29
foldl constant, 29
fst constant, 23
fst_conv theorem, 23
Fun theory, 20
fun type, 6
fun_cong theorem, 10

hd constant, 29
higher-order logic, 3–63
HOL, 7
HOL theory, 3
hol system, 3, 7
HOL_basic_ss, 20
HOL_cs, 22
HOL_ss, 20
hyp_subst_tac, 21

If constant, 4
if, 21
if_def theorem, 9
if_not_P theorem, 11
if_P theorem, 11
if_weak_cong, 21
iff theorem, 8, 9
iffCE theorem, 11, 16
iffD1 theorem, 10

INDEX 69

iffD2 theorem, 10
iffE theorem, 10
iffI theorem, 10
image_def theorem, 16
imageE theorem, 18
imageI theorem, 18
impCE theorem, 11
impE theorem, 10
impI theorem, 8
in symbol, 5
ind type, 25
induct_tac, 27, 40
inductive, 50–54
inj constant, 20
inj_def theorem, 20
inj_Inl theorem, 25
inj_Inr theorem, 25
inj_on constant, 20
inj_on_def theorem, 20
inj_Suc theorem, 26
Inl constant, 25
Inl_not_Inr theorem, 25
Inr constant, 25
insert constant, 13
insert_def theorem, 16
insertE theorem, 18
insertI1 theorem, 18
insertI2 theorem, 18
INT symbol, 13–15
Int symbol, 13
int theorem, 6, 27
Int_absorb theorem, 19
Int_assoc theorem, 19
Int_commute theorem, 19
INT_D theorem, 18
Int_def theorem, 16
INT_E theorem, 18
Int_greatest theorem, 19
INT_I theorem, 18
Int_lower1 theorem, 19
Int_lower2 theorem, 19

Int_Un_distrib theorem, 19
Int_Union theorem, 19
IntD1 theorem, 18
IntD2 theorem, 18
IntE theorem, 18
INTER constant, 13
Inter constant, 13
INTER1 constant, 13
INTER1_def theorem, 16
INTER_def theorem, 16
Inter_def theorem, 16
Inter_greatest theorem, 19
Inter_lower theorem, 19
Inter_Un_distrib theorem, 19
InterD theorem, 18
InterE theorem, 18
InterI theorem, 18
IntI theorem, 18
inv constant, 20
inv_def theorem, 20

last constant, 29
LEAST constant, 6, 7, 25
Least constant, 4
Least_def theorem, 9
length constant, 29
less_induct theorem, 27
Let constant, 4, 8
let symbol, 5
Let_def theorem, 8, 9
LFilter theory, 60
linorder class, 6, 25, 27
List theory, 28, 29
list type, 28–31
LList theory, 60

map constant, 29
max constant, 6, 25
mem symbol, 29
mem_Collect_eq theorem, 15, 16
min constant, 6, 25

INDEX 70

minus class, 6
mod symbol, 26
mod_geq theorem, 26
mod_less theorem, 26
mono constant, 6
mp theorem, 8

n_not_Suc_n theorem, 26
Nat theory, 25
nat type, 25–27
nat type, 25–28
nat theorem, 6
nat_induct theorem, 26
nat_rec constant, 27
NatArith theory, 27
Not constant, 4
not_def theorem, 9
not_sym theorem, 10
notE theorem, 10
notI theorem, 10
notnotD theorem, 11
null constant, 29

o symbol, 4, 20
o_def theorem, 9
of symbol, 8
or_def theorem, 9
Ord theory, 6
ord class, 6, 7, 25
order class, 6

Pair constant, 23
Pair_eq theorem, 23
Pair_inject theorem, 23
PairE theorem, 23
plus class, 6
plus_ac0 class, 6
Pow constant, 13
Pow_def theorem, 16
PowD theorem, 18
power class, 6
PowI theorem, 18

primrec, 44–47
primrec symbol, 27
priorities, 1
Prod theory, 22
prop_cs, 22

qed_spec_mp, 41

range constant, 13, 61
range_def theorem, 16
rangeE theorem, 18, 62
rangeI theorem, 18
real theorem, 6, 27
recdef, 47–50
recursion

general, 47–50
primitive, 44–47

recursive functions, see recursion
refl theorem, 8
res_inst_tac, 7
rev constant, 29

search
best-first, 63

Set theory, 15
set constant, 29
set type, 15
set_diff_def theorem, 16
setsum constant, 6
show_sorts, 7
show_types, 7
Sigma constant, 23
Sigma_def theorem, 23
SigmaE theorem, 23
SigmaI theorem, 23
simplification

of case, 38
of if, 21
of conjunctions, 20

size constant, 38
smp_tac, 12
snd constant, 23

INDEX 71

snd_conv theorem, 23
SOME symbol, 4
some_equality theorem, 9, 11
someI theorem, 8, 9
spec theorem, 11
split constant, 23
split theorem, 23
split_all_tac, 24
split_if theorem, 11, 21
split_list_case theorem, 28
split_split theorem, 23
ssubst theorem, 10, 12
stac, 21
strip_tac, 12
subset_def theorem, 16
subset_refl theorem, 17
subset_trans theorem, 17
subsetCE theorem, 16, 17
subsetD theorem, 16, 17
subsetI theorem, 17
subst theorem, 8
Suc constant, 26
Suc_not_Zero theorem, 26
Sum theory, 25
sum.split_case theorem, 25
sum_case constant, 25
sum_case_Inl theorem, 25
sum_case_Inr theorem, 25
sumE theorem, 25
surj constant, 20
surj_def theorem, 20
surjective_pairing theorem, 23
surjective_sum theorem, 25
swap theorem, 11
swap_res_tac, 62
sym theorem, 10

take constant, 29
takeWhile constant, 29
term class, 6
times class, 6

tl constant, 29
tracing

of unification, 7
trans theorem, 10
True constant, 4
True_def theorem, 9
True_or_False theorem, 8, 9
TrueI theorem, 10
Trueprop constant, 4
type definition, 31
typedef, 31
types_code, 57

UN symbol, 13–15
Un symbol, 13
Un1 theorem, 16
Un2 theorem, 16
Un_absorb theorem, 19
Un_assoc theorem, 19
Un_commute theorem, 19
Un_def theorem, 16
UN_E theorem, 18
UN_I theorem, 18
Un_Int_distrib theorem, 19
Un_Inter theorem, 19
Un_least theorem, 19
Un_upper1 theorem, 19
Un_upper2 theorem, 19
UnCI theorem, 16, 18
UnE theorem, 18
UnI1 theorem, 18
UnI2 theorem, 18
unification

incompleteness of, 7
Unify.trace_types, 7
UNION constant, 13
Union constant, 13
UNION1 constant, 13
UNION1_def theorem, 16
UNION_def theorem, 16
Union_def theorem, 16

INDEX 72

Union_least theorem, 19
Union_Un_distrib theorem, 19
Union_upper theorem, 19
UnionE theorem, 18
UnionI theorem, 18
unit_eq theorem, 25

ZF theory, 3

			Syntax definitions

			Higher-Order Logic

			Syntax

			Types and overloading

			Binders

			The let and case constructions

			Rules of inference

			A formulation of set theory

			Syntax of set theory

			Axioms and rules of set theory

			Properties of functions

			Generic packages

			Simplification and substitution

			Classical reasoning

			Types

			Product and sum types

			The type of natural numbers, nat

			Numerical types and numerical reasoning

			The type constructor for lists, list

			Introducing new types

			Datatype definitions

			Basics

			Defining datatypes

			Representing existing types as datatypes

			Examples

			Recursive function definitions

			Primitive recursive functions

			General recursive functions

			Inductive and coinductive definitions

			The result structure

			The syntax of a (co)inductive definition

			*Monotonicity theorems

			Example of an inductive definition

			Executable specifications

			Invoking the code generator

			Configuring the code generator

			Specific HOL code generators

			The examples directories

			Example: Cantor's Theorem

Isabelle2008/doc/logics.pdf

λ →

∀
=Isa

be
lle

β
α

Isabelle’s Logics

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel1

8 June 2008

1Markus Wenzel made numerous improvements. Sara Kalvala contributed
Chap. 3. Philippe de Groote wrote the first version of the logic LK. Tobias Nip-
kow developed LCF and Cube. Martin Coen developed Modal with assistance from
Rajeev Goré. The research has been funded by the EPSRC (grants GR/G53279,
GR/H40570, GR/K57381, GR/K77051, GR/M75440) and by ESPRIT (projects
3245: Logical Frameworks, and 6453: Types), and by the DFG Schwerpunktpro-
gramm Deduktion.

Contents

1 Syntax definitions 3

2 First-Order Sequent Calculus 5
2.1 Syntax and rules of inference 5
2.2 Automatic Proof . 11
2.3 Tactics for the cut rule . 11
2.4 Tactics for sequents . 12
2.5 A simple example of classical reasoning 13
2.6 A more complex proof . 15
2.7 *Unification for lists . 16
2.8 *Packaging sequent rules . 17
2.9 *Proof procedures . 18

2.9.1 Method A . 18
2.9.2 Method B . 19

3 Defining A Sequent-Based Logic 20
3.1 Concrete syntax of sequences 20
3.2 Basis . 21
3.3 Object logics . 21
3.4 What’s in Sequents.thy . 22

4 Constructive Type Theory 24
4.1 Syntax . 26
4.2 Rules of inference . 30
4.3 Rule lists . 33
4.4 Tactics for subgoal reordering 34
4.5 Rewriting tactics . 34
4.6 Tactics for logical reasoning 35
4.7 A theory of arithmetic . 36
4.8 The examples directory . 36
4.9 Example: type inference . 38
4.10 An example of logical reasoning 39
4.11 Example: deriving a currying functional 42
4.12 Example: proving the Axiom of Choice 44

i

CONTENTS ii

Preface

Several logics come with Isabelle. Many of them are sufficiently developed
to serve as comfortable reasoning environments. They are also good starting
points for defining new logics. Each logic is distributed with sample proofs,
some of which are described in this document.

HOL is currently the best developed Isabelle object-logic, including an
extensive library of (concrete) mathematics, and various packages for ad-
vanced definitional concepts (like (co-)inductive sets and types, well-founded
recursion etc.). The distribution also includes some large applications. See
the separate manual Isabelle’s Logics: HOL. There is also a comprehensive
tutorial on Isabelle/HOL available.

ZF provides another starting point for applications, with a slightly less
developed library than HOL. ZF’s definitional packages are similar to those
of HOL. Untyped ZF set theory provides more advanced constructions for
sets than simply-typed HOL. ZF is built on FOL (first-order logic), both are
described in a separate manual Isabelle’s Logics: FOL and ZF [10].

There are some further logics distributed with Isabelle:

CCL is Martin Coen’s Classical Computational Logic, which is the basis of a
preliminary method for deriving programs from proofs [1]. It is built
upon classical FOL.

LCF is a version of Scott’s Logic for Computable Functions, which is also
implemented by the lcf system [11]. It is built upon classical FOL.

HOLCF is a version of lcf, defined as an extension of HOL. See [8] for more
details on HOLCF.

CTT is a version of Martin-Löf’s Constructive Type Theory [9], with exten-
sional equality. Universes are not included.

Cube is Barendregt’s λ-cube.

The directory Sequents contains several logics based upon the sequent
calculus. Sequents have the form A1, . . . ,Am ` B1, . . . ,Bn ; rules are applied
using associative matching.

1

CONTENTS 2

LK is classical first-order logic as a sequent calculus.

Modal implements the modal logics T , S4, and S43.

ILL implements intuitionistic linear logic.

The logics CCL, LCF, Modal, ILL and Cube are undocumented. All object-
logics’ sources are distributed with Isabelle (see the directory src). They are
also available for browsing on the WWW at

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
http://isabelle.in.tum.de/library/

Note that this is not necessarily consistent with your local sources!

Do not read the Isabelle’s Logics manuals before reading Isabelle/HOL —
The Tutorial or Introduction to Isabelle, and performing some Isabelle proofs.
Consult the Reference Manual for more information on tactics, packages, etc.

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/

http://isabelle.in.tum.de/library/

Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be
repeated 0 or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where ∃ has lower priority than ∨, which has lower priority than ∧.
There, P ∧ Q ∨ R abbreviates (P ∧ Q) ∨ R rather than P ∧ (Q ∨ R). Also,
∃x .P ∨Q abbreviates ∃x . (P ∨Q) rather than (∃x .P)∨Q . Note especially
that P ∨ (∃x . Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ) ⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All , which has
type (α⇒ o)⇒ o. This defines the syntax ∀x . t to mean All(λx . t). We can
also write ∀x1 . . . xm . t to abbreviate ∀x1∀xm . t ; this is possible for any
constant provided that τ and τ ′ are the same type. The Hilbert description
operator εx . P x has type (α ⇒ bool) ⇒ α and normally binds only one

3

CHAPTER 1. SYNTAX DEFINITIONS 4

variable. ZF’s bounded quantifier ∀x ∈ A . P(x) cannot be declared as a
binder because it has type [i , i ⇒ o] ⇒ o. The syntax for binders allows
type constraints on bound variables, as in

∀(x ::α) (y ::β) z ::γ . Q(x , y , z)

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric pri-
orities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For ex-
ample, the formulae of first-order logic have type o. Every Isabelle expression
of type o is therefore a formula. These include atomic formulae such as P ,
where P is a variable of type o, and more generally expressions such as
P(t , u), where P , t and u have suitable types. Therefore, ‘expression of
type o’ is listed as a separate possibility in the grammar for formulae.

Chapter 2

First-Order Sequent Calculus

The theory LK implements classical first-order logic through Gentzen’s se-
quent calculus (see Gallier [4] or Takeuti [13]). Resembling the method of
semantic tableaux, the calculus is well suited for backwards proof. Asser-
tions have the form Γ ` ∆, where Γ and ∆ are lists of formulae. Associative
unification, simulated by higher-order unification, handles lists (§2.7 presents
details, if you are interested).

The logic is many-sorted, using Isabelle’s type classes. The class of first-
order terms is called term. No types of individuals are provided, but ex-
tensions can define types such as nat::term and type constructors such as
list::(term)term. Below, the type variable α ranges over class term; the
equality symbol and quantifiers are polymorphic (many-sorted). The type of
formulae is o, which belongs to class logic.

LK implements a classical logic theorem prover that is nearly as powerful
as the generic classical reasoner. The simplifier is now available too.

To work in LK, start up Isabelle specifying Sequents as the object-logic.
Once in Isabelle, change the context to theory LK.thy:

isabelle Sequents
context LK.thy;

Modal logic and linear logic are also available, but unfortunately they are
not documented.

2.1 Syntax and rules of inference

Figure 2.1 gives the syntax for LK, which is complicated by the representation
of sequents. Type sobj ⇒ sobj represents a list of formulae.

The definite description operator ιx . P [x] stands for some a satisfy-
ing P [a], if one exists and is unique. Since all terms in LK denote something,
a description is always meaningful, but we do not know its value unless P [x]
defines it uniquely. The Isabelle notation is THE x. P [x]. The correspond-
ing rule (Fig. 2.4) does not entail the Axiom of Choice because it requires
uniqueness.

5

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 6

name meta-type description
Trueprop [sobj ⇒ sobj , sobj ⇒ sobj]⇒ prop coercion to prop

Seqof [o, sobj]⇒ sobj singleton sequence
Not o ⇒ o negation (¬)

True o tautology (>)
False o absurdity (⊥)

Constants

symbol name meta-type priority description
ALL All (α⇒ o)⇒ o 10 universal quantifier (∀)
EX Ex (α⇒ o)⇒ o 10 existential quantifier (∃)
THE The (α⇒ o)⇒ α 10 definite description (ι)

Binders

symbol meta-type priority description
= [α, α]⇒ o Left 50 equality (=)
& [o, o]⇒ o Right 35 conjunction (∧)
| [o, o]⇒ o Right 30 disjunction (∨)

--> [o, o]⇒ o Right 25 implication (→)
<-> [o, o]⇒ o Right 25 biconditional (↔)

Infixes

external internal description
Γ |- ∆ Trueprop(Γ, ∆) sequent Γ ` ∆

Translations

Figure 2.1: Syntax of LK

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 7

prop = sequence |- sequence

sequence = elem (, elem)∗

| empty

elem = $ term
| formula
| <<sequence>>

formula = expression of type o
| term = term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id id∗ . formula
| EX id id∗ . formula
| THE id . formula

Figure 2.2: Grammar of LK

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 8

basic $H, P, $G |- $E, P, $F

contRS $H |- $E, $S, $S, $F ==> $H |- $E, $S, $F
contLS $H, $S, $S, $G |- $E ==> $H, $S, $G |- $E

thinRS $H |- $E, $F ==> $H |- $E, $S, $F
thinLS $H, $G |- $E ==> $H, $S, $G |- $E

cut [| $H |- $E, P; $H, P |- $E |] ==> $H |- $E

Structural rules

refl $H |- $E, a=a, $F
subst $H(a), $G(a) |- $E(a) ==> $H(b), a=b, $G(b) |- $E(b)

Equality rules

Figure 2.3: Basic Rules of LK

Conditional expressions are available with the notation

if formula then term else term.

Figure 2.2 presents the grammar of LK. Traditionally, Γ and ∆ are meta-
variables for sequences. In Isabelle’s notation, the prefix $ on a term makes
it range over sequences. In a sequent, anything not prefixed by $ is taken as
a formula.

The notation <<sequence>> stands for a sequence of formulæ. For exam-
ple, you can declare the constant imps to consist of two implications:

consts P,Q,R :: o
constdefs imps :: seq’=>seq’

"imps == <<P --> Q, Q --> R>>"

Then you can use it in axioms and goals, for example

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 9

True_def True == False-->False
iff_def P<->Q == (P-->Q) & (Q-->P)

conjR [| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F
conjL $H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E

disjR $H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F
disjL [| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E

impR $H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F
impL [| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E

notR $H, P |- $E, $F ==> $H |- $E, ~P, $F
notL $H, $G |- $E, P ==> $H, ~P, $G |- $E

FalseL $H, False, $G |- $E

allR (!!x. $H|- $E, P(x), $F) ==> $H|- $E, ALL x. P(x), $F
allL $H, P(x), $G, ALL x. P(x) |- $E ==> $H, ALL x. P(x), $G|- $E

exR $H|- $E, P(x), $F, EX x. P(x) ==> $H|- $E, EX x. P(x), $F
exL (!!x. $H, P(x), $G|- $E) ==> $H, EX x. P(x), $G|- $E

The [| $H |- $E, P(a), $F; !!x. $H, P(x) |- $E, x=a, $F |] ==>
$H |- $E, P(THE x. P(x)), $F

Logical rules

Figure 2.4: Rules of LK

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 10

thinR $H |- $E, $F ==> $H |- $E, P, $F
thinL $H, $G |- $E ==> $H, P, $G |- $E

contR $H |- $E, P, P, $F ==> $H |- $E, P, $F
contL $H, P, P, $G |- $E ==> $H, P, $G |- $E

symR $H |- $E, $F, a=b ==> $H |- $E, b=a, $F
symL $H, $G, b=a |- $E ==> $H, a=b, $G |- $E

transR [| $H|- $E, $F, a=b; $H|- $E, $F, b=c |]
==> $H|- $E, a=c, $F

TrueR $H |- $E, True, $F

iffR [| $H, P |- $E, Q, $F; $H, Q |- $E, P, $F |]
==> $H |- $E, P<->Q, $F

iffL [| $H, $G |- $E, P, Q; $H, Q, P, $G |- $E |]
==> $H, P<->Q, $G |- $E

allL_thin $H, P(x), $G |- $E ==> $H, ALL x. P(x), $G |- $E
exR_thin $H |- $E, P(x), $F ==> $H |- $E, EX x. P(x), $F

the_equality [| $H |- $E, P(a), $F;
!!x. $H, P(x) |- $E, x=a, $F |]

==> $H |- $E, (THE x. P(x)) = a, $F

Figure 2.5: Derived rules for LK

Goalw [imps_def] "P, $imps |- R";
Level 0

P, $imps |- R

1. P, P --> Q, Q --> R |- R

by (Fast_tac 1);
Level 1

P, $imps |- R

No subgoals!

Figures 2.3 and 2.4 present the rules of theory LK. The connective ↔ is
defined using ∧ and →. The axiom for basic sequents is expressed in a form
that provides automatic thinning: redundant formulae are simply ignored.
The other rules are expressed in the form most suitable for backward proof;
exchange and contraction rules are not normally required, although they are
provided anyway.

Figure 2.5 presents derived rules, including rules for ↔. The weakened
quantifier rules discard each quantification after a single use; in an automatic

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 11

proof procedure, they guarantee termination, but are incomplete. Multiple
use of a quantifier can be obtained by a contraction rule, which in backward
proof duplicates a formula. The tactic res_inst_tac can instantiate the
variable ?P in these rules, specifying the formula to duplicate. See theory
Sequents/LK0 in the sources for complete listings of the rules and derived
rules.

To support the simplifier, hundreds of equivalences are proved for
the logical connectives and for if-then-else expressions. See the file
Sequents/simpdata.ML.

2.2 Automatic Proof

LK instantiates Isabelle’s simplifier. Both equality (=) and the biconditional
(↔) may be used for rewriting. The tactic Simp_tac refers to the default
simpset (simpset()). With sequents, the full_ and asm_ forms of the sim-
plifier are not required; all the formulae in the sequent will be simplified.
The left-hand formulae are taken as rewrite rules. (Thus, the behaviour is
what you would normally expect from calling Asm_full_simp_tac.)

For classical reasoning, several tactics are available:

Safe_tac : int -> tactic
Step_tac : int -> tactic
Fast_tac : int -> tactic
Best_tac : int -> tactic
Pc_tac : int -> tactic

These refer not to the standard classical reasoner but to a separate one
provided for the sequent calculus. Two commands are available for adding
new sequent calculus rules, safe or unsafe, to the default “theorem pack”:

Add_safes : thm list -> unit
Add_unsafes : thm list -> unit

To control the set of rules for individual invocations, lower-case versions of
all these primitives are available. Sections 2.8 and 2.9 give full details.

2.3 Tactics for the cut rule

According to the cut-elimination theorem, the cut rule can be eliminated
from proofs of sequents. But the rule is still essential. It can be used to
structure a proof into lemmas, avoiding repeated proofs of the same formula.
More importantly, the cut rule cannot be eliminated from derivations of rules.

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 12

For example, there is a trivial cut-free proof of the sequent P ∧ Q ` Q ∧ P .
Noting this, we might want to derive a rule for swapping the conjuncts in a
right-hand formula:

Γ ` ∆,P ∧Q

Γ ` ∆,Q ∧ P

The cut rule must be used, for P ∧Q is not a subformula of Q∧P . Most cuts
directly involve a premise of the rule being derived (a meta-assumption). In
a few cases, the cut formula is not part of any premise, but serves as a bridge
between the premises and the conclusion. In such proofs, the cut formula is
specified by calling an appropriate tactic.

cutR_tac : string -> int -> tactic
cutL_tac : string -> int -> tactic

These tactics refine a subgoal into two by applying the cut rule. The cut
formula is given as a string, and replaces some other formula in the sequent.

cutR_tac P i reads an LK formula P , and applies the cut rule to subgoal i .
It then deletes some formula from the right side of subgoal i , replacing
that formula by P .

cutL_tac P i reads an LK formula P , and applies the cut rule to subgoal i .
It then deletes some formula from the left side of the new subgoal i +1,
replacing that formula by P .

All the structural rules — cut, contraction, and thinning — can be applied
to particular formulae using res_inst_tac.

2.4 Tactics for sequents

forms_of_seq : term -> term list
could_res : term * term -> bool
could_resolve_seq : term * term -> bool
filseq_resolve_tac : thm list -> int -> int -> tactic

Associative unification is not as efficient as it might be, in part because the
representation of lists defeats some of Isabelle’s internal optimisations. The
following operations implement faster rule application, and may have other
uses.

forms_of_seq t returns the list of all formulae in the sequent t , removing
sequence variables.

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 13

could_res (t,u) tests whether two formula lists could be resolved. List
t is from a premise or subgoal, while u is from the conclusion of an
object-rule. Assuming that each formula in u is surrounded by sequence
variables, it checks that each conclusion formula is unifiable (using
could_unify) with some subgoal formula.

could_resolve_seq (t,u) tests whether two sequents could be resolved.
Sequent t is a premise or subgoal, while u is the conclusion of an
object-rule. It simply calls could_res twice to check that both the left
and the right sides of the sequents are compatible.

filseq_resolve_tac thms maxr i uses filter_thms could_resolve to
extract the thms that are applicable to subgoal i . If more than
maxr theorems are applicable then the tactic fails. Otherwise it
calls resolve_tac. Thus, it is the sequent calculus analogue of
filt_resolve_tac.

2.5 A simple example of classical reasoning

The theorem ` ∃y . ∀x . P(y)→ P(x) is a standard example of the classical
treatment of the existential quantifier. Classical reasoning is easy using LK,
as you can see by comparing this proof with the one given in the FOL man-
ual [10]. From a logical point of view, the proofs are essentially the same;
the key step here is to use exR rather than the weaker exR_thin.

Goal "|- EX y. ALL x. P(y)-->P(x)";
Level 0

|- EX y. ALL x. P(y) --> P(x)

1. |- EX y. ALL x. P(y) --> P(x)

by (resolve_tac [exR] 1);
Level 1

|- EX y. ALL x. P(y) --> P(x)

1. |- ALL x. P(?x) --> P(x), EX x. ALL xa. P(x) --> P(xa)

There are now two formulae on the right side. Keeping the existential one in
reserve, we break down the universal one.

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 14

by (resolve_tac [allR] 1);
Level 2

|- EX y. ALL x. P(y) --> P(x)

1. !!x. |- P(?x) --> P(x), EX x. ALL xa. P(x) --> P(xa)

by (resolve_tac [impR] 1);
Level 3

|- EX y. ALL x. P(y) --> P(x)

1. !!x. P(?x) |- P(x), EX x. ALL xa. P(x) --> P(xa)

Because LK is a sequent calculus, the formula P(?x) does not become an
assumption; instead, it moves to the left side. The resulting subgoal cannot
be instantiated to a basic sequent: the bound variable x is not unifiable with
the unknown ?x .

by (resolve_tac [basic] 1);
by: tactic failed

We reuse the existential formula using exR_thin, which discards it; we shall
not need it a third time. We again break down the resulting formula.

by (resolve_tac [exR_thin] 1);
Level 4

|- EX y. ALL x. P(y) --> P(x)

1. !!x. P(?x) |- P(x), ALL xa. P(?x7(x)) --> P(xa)

by (resolve_tac [allR] 1);
Level 5

|- EX y. ALL x. P(y) --> P(x)

1. !!x xa. P(?x) |- P(x), P(?x7(x)) --> P(xa)

by (resolve_tac [impR] 1);
Level 6

|- EX y. ALL x. P(y) --> P(x)

1. !!x xa. P(?x), P(?x7(x)) |- P(x), P(xa)

Subgoal 1 seems to offer lots of possibilities. Actually the only useful step is
instantiating ?x7 to λx . x , transforming ?x7(x) into x .

by (resolve_tac [basic] 1);
Level 7

|- EX y. ALL x. P(y) --> P(x)

No subgoals!

This theorem can be proved automatically. Because it involves quantifier
duplication, we employ best-first search:

Goal "|- EX y. ALL x. P(y)-->P(x)";
Level 0

|- EX y. ALL x. P(y) --> P(x)

1. |- EX y. ALL x. P(y) --> P(x)

by (best_tac LK_dup_pack 1);
Level 1

|- EX y. ALL x. P(y) --> P(x)

No subgoals!

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 15

2.6 A more complex proof

Many of Pelletier’s test problems for theorem provers [12] can be solved auto-
matically. Problem 39 concerns set theory, asserting that there is no Russell
set — a set consisting of those sets that are not members of themselves:

` ¬(∃x . ∀y . y ∈ x ↔ y 6∈ y)

This does not require special properties of membership; we may generalize
x ∈ y to an arbitrary predicate F (x , y). The theorem, which is trivial for
Fast_tac, has a short manual proof. See the directory Sequents/LK for
many more examples.

We set the main goal and move the negated formula to the left.

Goal "|- ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))";
Level 0

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. |- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

by (resolve_tac [notR] 1);
Level 1

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. EX x. ALL y. F(y,x) <-> ~ F(y,y) |-

The right side is empty; we strip both quantifiers from the formula on the
left.

by (resolve_tac [exL] 1);
Level 2

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. ALL y. F(y,x) <-> ~ F(y,y) |-

by (resolve_tac [allL_thin] 1);
Level 3

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. F(?x2(x),x) <-> ~ F(?x2(x),?x2(x)) |-

The rule iffL says, if P ↔ Q then P and Q are either both true or both
false. It yields two subgoals.

by (resolve_tac [iffL] 1);
Level 4

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(?x2(x),x), ~ F(?x2(x),?x2(x))

2. !!x. ~ F(?x2(x),?x2(x)), F(?x2(x),x) |-

We must instantiate ?x2, the shared unknown, to satisfy both subgoals. Be-
ginning with subgoal 2, we move a negated formula to the left and create a
basic sequent.

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 16

by (resolve_tac [notL] 2);
Level 5

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(?x2(x),x), ~ F(?x2(x),?x2(x))

2. !!x. F(?x2(x),x) |- F(?x2(x),?x2(x))

by (resolve_tac [basic] 2);
Level 6

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(x,x), ~ F(x,x)

Thanks to the instantiation of ?x2, subgoal 1 is obviously true.

by (resolve_tac [notR] 1);
Level 7

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. F(x,x) |- F(x,x)

by (resolve_tac [basic] 1);
Level 8

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

No subgoals!

2.7 *Unification for lists

Higher-order unification includes associative unification as a special case, by
an encoding that involves function composition [5, page 37]. To represent
lists, let C be a new constant. The empty list is λx . x , while [t1, t2, . . . , tn]
is represented by

λx . C (t1,C (t2, . . . ,C (tn , x))).

The unifiers of this with λx . ?f (?g(x)) give all the ways of expressing
[t1, t2, . . . , tn] as the concatenation of two lists.

Unlike orthodox associative unification, this technique can represent cer-
tain infinite sets of unifiers by flex-flex equations. But note that the term
λx .C (t , ?a) does not represent any list. Flex-flex constraints containing such
garbage terms may accumulate during a proof.

This technique lets Isabelle formalize sequent calculus rules, where the
comma is the associative operator:

Γ,P ,Q ,∆ ` Θ

Γ,P ∧Q ,∆ ` Θ
(∧-left)

Multiple unifiers occur whenever this is resolved against a goal containing
more than one conjunction on the left.

LK exploits this representation of lists. As an alternative, the sequent
calculus can be formalized using an ordinary representation of lists, with a

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 17

logic program for removing a formula from a list. Amy Felty has applied this
technique using the language λProlog [3].

Explicit formalization of sequents can be tiresome. But it gives precise
control over contraction and weakening, and is essential to handle relevant
and linear logics.

2.8 *Packaging sequent rules

The sequent calculi come with simple proof procedures. These are incomplete
but are reasonably powerful for interactive use. They expect rules to be
classified as safe or unsafe. A rule is safe if applying it to a provable goal
always yields provable subgoals. If a rule is safe then it can be applied
automatically to a goal without destroying our chances of finding a proof.
For instance, all the standard rules of the classical sequent calculus lk are
safe. An unsafe rule may render the goal unprovable; typical examples are
the weakened quantifier rules allL_thin and exR_thin.

Proof procedures use safe rules whenever possible, using an unsafe rule as
a last resort. Those safe rules are preferred that generate the fewest subgoals.
Safe rules are (by definition) deterministic, while the unsafe rules require a
search strategy, such as backtracking.

A pack is a pair whose first component is a list of safe rules and whose
second is a list of unsafe rules. Packs can be extended in an obvious way
to allow reasoning with various collections of rules. For clarity, LK declares
pack as an ml datatype, although is essentially a type synonym:

datatype pack = Pack of thm list * thm list;

Pattern-matching using constructor Pack can inspect a pack’s contents.
Packs support the following operations:

pack : unit -> pack
pack_of : theory -> pack
empty_pack : pack
prop_pack : pack
LK_pack : pack
LK_dup_pack : pack
add_safes : pack * thm list -> pack infix 4
add_unsafes : pack * thm list -> pack infix 4

pack returns the pack attached to the current theory.

pack_of thy returns the pack attached to theory thy .

empty_pack is the empty pack.

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 18

prop_pack contains the propositional rules, namely those for ∧, ∨, ¬, →
and ↔, along with the rules basic and refl. These are all safe.

LK_pack extends prop_pack with the safe rules allR and exL and the unsafe
rules allL_thin and exR_thin. Search using this is incomplete since
quantified formulae are used at most once.

LK_dup_pack extends prop_pack with the safe rules allR and exL and the
unsafe rules allL and exR. Search using this is complete, since quan-
tified formulae may be reused, but frequently fails to terminate. It is
generally unsuitable for depth-first search.

pack add_safes rules adds some safe rules to the pack pack .

pack add_unsafes rules adds some unsafe rules to the pack pack .

2.9 *Proof procedures

The LK proof procedure is similar to the classical reasoner described in the
Reference Manual . In fact it is simpler, since it works directly with sequents
rather than simulating them. There is no need to distinguish introduction
rules from elimination rules, and of course there is no swap rule. As always,
Isabelle’s classical proof procedures are less powerful than resolution theorem
provers. But they are more natural and flexible, working with an open-ended
set of rules.

Backtracking over the choice of a safe rule accomplishes nothing: applying
them in any order leads to essentially the same result. Backtracking may be
necessary over basic sequents when they perform unification. Suppose that 0,
1, 2, 3 are constants in the subgoals

P(0),P(1),P(2) ` P(?a)
P(0),P(2),P(3) ` P(?a)
P(1),P(3),P(2) ` P(?a)

The only assignment that satisfies all three subgoals is ?a 7→ 2, and this can
only be discovered by search. The tactics given below permit backtracking
only over axioms, such as basic and refl; otherwise they are deterministic.

2.9.1 Method A

reresolve_tac : thm list -> int -> tactic
repeat_goal_tac : pack -> int -> tactic
pc_tac : pack -> int -> tactic

These tactics use a method developed by Philippe de Groote. A subgoal

CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 19

is refined and the resulting subgoals are attempted in reverse order. For
some reason, this is much faster than attempting the subgoals in order. The
method is inherently depth-first.

At present, these tactics only work for rules that have no more than two
premises. They fail — return no next state — if they can do nothing.

reresolve_tac thms i repeatedly applies the thms to subgoal i and the
resulting subgoals.

repeat_goal_tac pack i applies the safe rules in the pack to a goal and
the resulting subgoals. If no safe rule is applicable then it applies an
unsafe rule and continues.

pc_tac pack i applies repeat_goal_tac using depth-first search to solve
subgoal i .

2.9.2 Method B

safe_tac : pack -> int -> tactic
step_tac : pack -> int -> tactic
fast_tac : pack -> int -> tactic
best_tac : pack -> int -> tactic

These tactics are analogous to those of the generic classical reasoner. They
use ‘Method A’ only on safe rules. They fail if they can do nothing.

safe_goal_tac pack i applies the safe rules in the pack to a goal and the
resulting subgoals. It ignores the unsafe rules.

step_tac pack i either applies safe rules (using safe_goal_tac) or applies
one unsafe rule.

fast_tac pack i applies step_tac using depth-first search to solve sub-
goal i . Despite its name, it is frequently slower than pc_tac.

best_tac pack i applies step_tac using best-first search to solve subgoal i .
It is particularly useful for quantifier duplication (using LK_dup_pack).

Chapter 3

Defining A Sequent-Based
Logic

The Isabelle theory Sequents.thy provides facilities for using sequent nota-
tion in users’ object logics. This theory allows users to easily interface the
surface syntax of sequences with an underlying representation suitable for
higher-order unification.

3.1 Concrete syntax of sequences

Mathematicians and logicians have used sequences in an informal way much
before proof systems such as Isabelle were created. It seems sensible to allow
people using Isabelle to express sequents and perform proofs in this same
informal way, and without requiring the theory developer to spend a lot of
time in ml programming.

By using Sequents.thy appropriately, a logic developer can allow users
to refer to sequences in several ways:

• A sequence variable is any alphanumeric string with the first character
being a $ sign. So, consider the sequent $A |- B, where $A is intended
to match a sequence of zero or more items.

• A sequence with unspecified sub-sequences and unspecified or individ-
ual items is written as a comma-separated list of regular variables (rep-
resenting items), particular items, and sequence variables, as in

$A, B, C, $D(x) |- E

Here both $A and $D(x) are allowed to match any subsequences of
items on either side of the two items that match B and C . Moreover,
the sequence matching $D(x) may contain occurrences of x .

• An empty sequence can be represented by a blank space, as in
|- true.

20

CHAPTER 3. DEFINING A SEQUENT-BASED LOGIC 21

These syntactic constructs need to be assimilated into the object theory
being developed. The type that we use for these visible objects is given the
name seq. A seq is created either by the empty space, a seqobj or a seqobj

followed by a seq, with a comma between them. A seqobj is either an item
or a variable representing a sequence. Thus, a theory designer can specify
a function that takes two sequences and returns a meta-level proposition by
giving it the Isabelle type [seq, seq] => prop.

This is all part of the concrete syntax, but one may wish to exploit Isa-
belle’s higher-order abstract syntax by actually having a different, more pow-
erful internal syntax.

3.2 Basis

One could opt to represent sequences as first-order objects (such as simple
lists), but this would not allow us to use many facilities Isabelle provides
for matching. By using a slightly more complex representation, users of the
logic can reap many benefits in facilities for proofs and ease of reading logical
terms.

A sequence can be represented as a function — a constructor for fur-
ther sequences — by defining a binary abstract function Seq0’ with type
[o,seq’]=>seq’, and translating a sequence such as A, B, C into

%s. Seq0’(A, SeqO’(B, SeqO’(C, s)))

This sequence can therefore be seen as a constructor for further sequences.
The constructor Seq0’ is never given a value, and therefore it is not possible
to evaluate this expression into a basic value.

Furthermore, if we want to represent the sequence A, $B, C, we note
that $B already represents a sequence, so we can use B itself to refer to the
function, and therefore the sequence can be mapped to the internal form:
%s. SeqO’(A, B(SeqO’(C, s))).

So, while we wish to continue with the standard, well-liked external rep-
resentation of sequences, we can represent them internally as functions of
type seq’=>seq’.

3.3 Object logics

Recall that object logics are defined by mapping elements of particular types
to the Isabelle type prop, usually with a function called Trueprop. So, an ob-
ject logic proposition P is matched to the Isabelle proposition Trueprop(P).

CHAPTER 3. DEFINING A SEQUENT-BASED LOGIC 22

The name of the function is often hidden, so the user just sees P. Isabelle
is eager to make types match, so it inserts Trueprop automatically when an
object of type prop is expected. This mechanism can be observed in most of
the object logics which are direct descendants of Pure.

In order to provide the desired syntactic facilities for sequent calculi,
rather than use just one function that maps object-level propositions to
meta-level propositions, we use two functions, and separate internal from
the external representation.

These functions need to be given a type that is appropriate for the partic-
ular form of sequents required: single or multiple conclusions. So multiple-
conclusion sequents (used in the LK logic) can be specified by the following
two definitions, which are lifted from the inbuilt Sequents/LK.thy:

Trueprop :: two_seqi
"@Trueprop" :: two_seqe ("((_)/ |- (_))" [6,6] 5)

where the types used are defined in Sequents.thy as abbreviations:

two_seqi = [seq’=>seq’, seq’=>seq’] => prop
two_seqe = [seq, seq] => prop

The next step is to actually create links into the low-level parsing and
pretty-printing mechanisms, which map external and internal representa-
tions. These functions go below the user level and capture the underlying
structure of Isabelle terms in ml. Fortunately the theory developer need not
delve in this level; Sequents.thy provides the necessary facilities. All the
theory developer needs to add in the ml section is a specification of the two
translation functions:

ML
val parse_translation = [("@Trueprop",Sequents.two_seq_tr "Trueprop")];
val print_translation = [("Trueprop",Sequents.two_seq_tr’ "@Trueprop")];

In summary: in the logic theory being developed, the developer needs to
specify the types for the internal and external representation of the sequences,
and use the appropriate parsing and pretty-printing functions.

3.4 What’s in Sequents.thy

Theory Sequents.thy makes many declarations that you need to know
about:

1. The Isabelle types given below, which can be used for the constants
that map object-level sequents and meta-level propositions:

CHAPTER 3. DEFINING A SEQUENT-BASED LOGIC 23

single_seqe = [seq,seqobj] => prop
single_seqi = [seq’=>seq’,seq’=>seq’] => prop
two_seqi = [seq’=>seq’, seq’=>seq’] => prop
two_seqe = [seq, seq] => prop
three_seqi = [seq’=>seq’, seq’=>seq’, seq’=>seq’] => prop
three_seqe = [seq, seq, seq] => prop
four_seqi = [seq’=>seq’, seq’=>seq’, seq’=>seq’, seq’=>seq’] => prop
four_seqe = [seq, seq, seq, seq] => prop

The single_ and two_ sets of mappings for internal and external rep-
resentations are the ones used for, say single and multiple conclusion
sequents. The other functions are provided to allow rules that manip-
ulate more than two functions, as can be seen in the inbuilt object
logics.

2. An auxiliary syntactic constant has been defined that directly maps a
sequence to its internal representation:

"@Side" :: seq=>(seq’=>seq’) ("<<(_)>>")

Whenever a sequence (such as << A, $B, $C>>) is entered using this
syntax, it is translated into the appropriate internal representation.
This form can be used only where a sequence is expected.

3. The ml functions single tr, two seq tr, three seq tr, four seq

tr for parsing, that is, the translation from external to internal
form. Analogously there are single tr’, two seq tr’, three seq

tr’, four seq tr’ for pretty-printing, that is, the translation from in-
ternal to external form. These functions can be used in the ml section
of a theory file to specify the translations to be used. As an example
of use, note that in LK.thy we declare two identifiers:

val parse_translation =
[("@Trueprop",Sequents.two_seq_tr "Trueprop")];

val print_translation =
[("Trueprop",Sequents.two_seq_tr’ "@Trueprop")];

The given parse translation will be applied whenever a @Trueprop con-
stant is found, translating using two_seq_tr and inserting the constant
Trueprop. The pretty-printing translation is applied analogously; a
term that contains Trueprop is printed as a @Trueprop.

Chapter 4

Constructive Type Theory

Martin-Löf’s Constructive Type Theory [7, 9] can be viewed at many different
levels. It is a formal system that embodies the principles of intuitionistic
mathematics; it embodies the interpretation of propositions as types; it is a
vehicle for deriving programs from proofs.

Thompson’s book [14] gives a readable and thorough account of Type
Theory. Nuprl is an elaborate implementation [2]. alf is a more recent tool
that allows proof terms to be edited directly [6].

Isabelle’s original formulation of Type Theory was a kind of sequent cal-
culus, following Martin-Löf [7]. It included rules for building the context,
namely variable bindings with their types. A typical judgement was

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1)]

This sequent calculus was not satisfactory because assumptions like ‘suppose
A is a type’ or ‘suppose B(x) is a type for all x in A’ could not be formalized.

The theory CTT implements Constructive Type Theory, using natural
deduction. The judgement above is expressed using

∧
and =⇒:∧

x1 . . . xn .[[x1 ∈ A1; x2 ∈ A2(x1); · · · xn ∈ An(x1, . . . , xn−1)]] =⇒
a(x1, . . . , xn) ∈ A(x1, . . . , xn)

Assumptions can use all the judgement forms, for instance to express that B
is a family of types over A:∧

x . x ∈ A =⇒ B(x) type

To justify the CTT formulation it is probably best to appeal directly to the
semantic explanations of the rules [7], rather than to the rules themselves.
The order of assumptions no longer matters, unlike in standard Type Theory.
Contexts, which are typical of many modern type theories, are difficult to
represent in Isabelle. In particular, it is difficult to enforce that all the
variables in a context are distinct.

The theory does not use polymorphism. Terms in CTT have type i , the
type of individuals. Types in CTT have type t .

24

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 25

name meta-type description
Type t → prop judgement form

Eqtype [t , t]→ prop judgement form
Elem [i , t]→ prop judgement form

Eqelem [i , i , t]→ prop judgement form
Reduce [i , i]→ prop extra judgement form

N t natural numbers type
0 i constructor

succ i → i constructor
rec [i , i , [i , i]→ i]→ i eliminator

Prod [t , i → t]→ t general product type
lambda (i → i)→ i constructor

Sum [t , i → t]→ t general sum type
pair [i , i]→ i constructor

split [i , [i , i]→ i]→ i eliminator
fst snd i → i projections

inl inr i → i constructors for +
when [i , i → i , i → i]→ i eliminator for +

Eq [t , i , i]→ t equality type
eq i constructor

F t empty type
contr i → i eliminator

T t singleton type
tt i constructor

Figure 4.1: The constants of CTT

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 26

CTT supports all of Type Theory apart from list types, well-ordering
types, and universes. Universes could be introduced à la Tarski, adding new
constants as names for types. The formulation à la Russell, where types
denote themselves, is only possible if we identify the meta-types i and t.
Most published formulations of well-ordering types have difficulties involving
extensionality of functions; I suggest that you use some other method for
defining recursive types. List types are easy to introduce by declaring new
rules.

CTT uses the 1982 version of Type Theory, with extensional equality. The
computation a = b ∈ A and the equality c ∈ Eq(A, a, b) are interchangeable.
Its rewriting tactics prove theorems of the form a = b ∈ A. It could be
modified to have intensional equality, but rewriting tactics would have to
prove theorems of the form c ∈ Eq(A, a, b) and the computation rules might
require a separate simplifier.

4.1 Syntax

The constants are shown in Fig. 4.1. The infixes include the function appli-
cation operator (sometimes called ‘apply’), and the 2-place type operators.
Note that meta-level abstraction and application, λx . b and f (a), differ from
object-level abstraction and application, lam x. b and b‘a. A CTT func-
tion f is simply an individual as far as Isabelle is concerned: its Isabelle type
is i , not say i ⇒ i .

The notation for CTT (Fig. 4.2) is based on that of Nordström et al. [9].
The empty type is called F and the one-element type is T ; other finite types
are built as T + T + T , etc.

Quantification is expressed by sums
∑

x∈A B [x] and products
∏

x∈A B [x].
Instead of Sum(A,B) and Prod(A,B) we may write SUM x:A. B [x] and
PROD x:A. B [x]. For example, we may write

SUM y:B. PROD x:A. C(x,y) for Sum(B, %y. Prod(A, %x. C(x,y)))

The special cases as A*B and A-->B abbreviate general sums and products
over a constant family.1 Isabelle accepts these abbreviations in parsing and
uses them whenever possible for printing.

1Unlike normal infix operators, * and --> merely define abbreviations; there are no
constants op * and op -->.

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 27

symbol name meta-type priority description
lam lambda (i ⇒ o)⇒ i 10 λ-abstraction

Binders

symbol meta-type priority description
‘ [i , i]→ i Left 55 function application
+ [t , t]→ t Right 30 sum of two types

Infixes

external internal standard notation
PROD x:A . B [x] Prod(A, λx . B [x]) product

∏
x∈A B [x]

SUM x:A . B [x] Sum(A, λx . B [x]) sum
∑

x∈A B [x]
A --> B Prod(A, λx . B) function space A→ B

A * B Sum(A, λx . B) binary product A× B

Translations

prop = type type

| type = type
| term : type
| term = term : type

type = expression of type t
| PROD id : type . type
| SUM id : type . type

term = expression of type i
| lam id id∗ . term
| < term , term >

Grammar

Figure 4.2: Syntax of CTT

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 28

refl_type A type ==> A = A
refl_elem a : A ==> a = a : A

sym_type A = B ==> B = A
sym_elem a = b : A ==> b = a : A

trans_type [| A = B; B = C |] ==> A = C
trans_elem [| a = b : A; b = c : A |] ==> a = c : A

equal_types [| a : A; A = B |] ==> a : B
equal_typesL [| a = b : A; A = B |] ==> a = b : B

subst_type [| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type
subst_typeL [| a = c : A; !!z. z:A ==> B(z) = D(z)

|] ==> B(a) = D(c)

subst_elem [| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)
subst_elemL [| a = c : A; !!z. z:A ==> b(z) = d(z) : B(z)

|] ==> b(a) = d(c) : B(a)

refl_red Reduce(a,a)
red_if_equal a = b : A ==> Reduce(a,b)
trans_red [| a = b : A; Reduce(b,c) |] ==> a = c : A

Figure 4.3: General equality rules

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 29

NF N type

NI0 0 : N
NI_succ a : N ==> succ(a) : N
NI_succL a = b : N ==> succ(a) = succ(b) : N

NE [| p: N; a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(p, a, %u v. b(u,v)) : C(p)

NEL [| p = q : N; a = c : C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v)=d(u,v): C(succ(u))

|] ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)

NC0 [| a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(0, a, %u v. b(u,v)) = a : C(0)

NC_succ [| p: N; a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(succ(p), a, %u v. b(u,v)) =
b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))

zero_ne_succ [| a: N; 0 = succ(a) : N |] ==> 0: F

Figure 4.4: Rules for type N

ProdF [| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type
ProdFL [| A = C; !!x. x:A ==> B(x) = D(x) |] ==>

PROD x:A. B(x) = PROD x:C. D(x)

ProdI [| A type; !!x. x:A ==> b(x):B(x)
|] ==> lam x. b(x) : PROD x:A. B(x)

ProdIL [| A type; !!x. x:A ==> b(x) = c(x) : B(x)
|] ==> lam x. b(x) = lam x. c(x) : PROD x:A. B(x)

ProdE [| p : PROD x:A. B(x); a : A |] ==> p‘a : B(a)
ProdEL [| p=q: PROD x:A. B(x); a=b : A |] ==> p‘a = q‘b : B(a)

ProdC [| a : A; !!x. x:A ==> b(x) : B(x)
|] ==> (lam x. b(x)) ‘ a = b(a) : B(a)

ProdC2 p : PROD x:A. B(x) ==> (lam x. p‘x) = p : PROD x:A. B(x)

Figure 4.5: Rules for the product type
∏

x∈A B [x]

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 30

SumF [| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type
SumFL [| A = C; !!x. x:A ==> B(x) = D(x)

|] ==> SUM x:A. B(x) = SUM x:C. D(x)

SumI [| a : A; b : B(a) |] ==> <a,b> : SUM x:A. B(x)
SumIL [| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)

SumE [| p: SUM x:A. B(x);
!!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)

|] ==> split(p, %x y. c(x,y)) : C(p)

SumEL [| p=q : SUM x:A. B(x);
!!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)

|] ==> split(p, %x y. c(x,y)) = split(q, %x y. d(x,y)) : C(p)

SumC [| a: A; b: B(a);
!!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)

|] ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)

fst_def fst(a) == split(a, %x y. x)
snd_def snd(a) == split(a, %x y. y)

Figure 4.6: Rules for the sum type
∑

x∈A B [x]

4.2 Rules of inference

The rules obey the following naming conventions. Type formation rules have
the suffix F. Introduction rules have the suffix I. Elimination rules have the
suffix E. Computation rules, which describe the reduction of eliminators, have
the suffix C. The equality versions of the rules (which permit reductions on
subterms) are called long rules; their names have the suffix L. Introduction
and computation rules are often further suffixed with constructor names.

Figure 4.3 presents the equality rules. Most of them are straightforward:
reflexivity, symmetry, transitivity and substitution. The judgement Reduce

does not belong to Type Theory proper; it has been added to implement
rewriting. The judgement Reduce(a, b) holds when a = b : A holds. It also
holds when a and b are syntactically identical, even if they are ill-typed,
because rule refl_red does not verify that a belongs to A.

The Reduce rules do not give rise to new theorems about the standard
judgements. The only rule with Reduce in a premise is trans_red, whose
other premise ensures that a and b (and thus c) are well-typed.

Figure 4.4 presents the rules for N , the type of natural numbers. They
include zero_ne_succ, which asserts 0 6= n + 1. This is the fourth Peano

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 31

PlusF [| A type; B type |] ==> A+B type
PlusFL [| A = C; B = D |] ==> A+B = C+D

PlusI_inl [| a : A; B type |] ==> inl(a) : A+B
PlusI_inlL [| a = c : A; B type |] ==> inl(a) = inl(c) : A+B

PlusI_inr [| A type; b : B |] ==> inr(b) : A+B
PlusI_inrL [| A type; b = d : B |] ==> inr(b) = inr(d) : A+B

PlusE [| p: A+B;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(p, %x. c(x), %y. d(y)) : C(p)

PlusEL [| p = q : A+B;
!!x. x: A ==> c(x) = e(x) : C(inl(x));
!!y. y: B ==> d(y) = f(y) : C(inr(y))

|] ==> when(p, %x. c(x), %y. d(y)) =
when(q, %x. e(x), %y. f(y)) : C(p)

PlusC_inl [| a: A;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))

PlusC_inr [| b: B;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))

Figure 4.7: Rules for the binary sum type A + B

FF F type
FE [| p: F; C type |] ==> contr(p) : C
FEL [| p = q : F; C type |] ==> contr(p) = contr(q) : C

TF T type
TI tt : T
TE [| p : T; c : C(tt) |] ==> c : C(p)
TEL [| p = q : T; c = d : C(tt) |] ==> c = d : C(p)
TC p : T ==> p = tt : T)

Figure 4.8: Rules for types F and T

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 32

EqF [| A type; a : A; b : A |] ==> Eq(A,a,b) type
EqFL [| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)
EqI a = b : A ==> eq : Eq(A,a,b)
EqE p : Eq(A,a,b) ==> a = b : A
EqC p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)

Figure 4.9: Rules for the equality type Eq(A, a, b)

replace_type [| B = A; a : A |] ==> a : B
subst_eqtyparg [| a=c : A; !!z. z:A ==> B(z) type |] ==> B(a)=B(c)

subst_prodE [| p: Prod(A,B); a: A; !!z. z: B(a) ==> c(z): C(z)
|] ==> c(p‘a): C(p‘a)

SumIL2 [| c=a : A; d=b : B(a) |] ==> <c,d> = <a,b> : Sum(A,B)

SumE_fst p : Sum(A,B) ==> fst(p) : A

SumE_snd [| p: Sum(A,B); A type; !!x. x:A ==> B(x) type
|] ==> snd(p) : B(fst(p))

Figure 4.10: Derived rules for CTT

axiom and cannot be derived without universes [7, page 91].
The constant rec constructs proof terms when mathematical induction,

rule NE, is applied. It can also express primitive recursion. Since rec can be
applied to higher-order functions, it can even express Ackermann’s function,
which is not primitive recursive [14, page 104].

Figure 4.5 shows the rules for general product types, which include func-
tion types as a special case. The rules correspond to the predicate calculus
rules for universal quantifiers and implication. They also permit reasoning
about functions, with the rules of a typed λ-calculus.

Figure 4.6 shows the rules for general sum types, which include binary
product types as a special case. The rules correspond to the predicate cal-
culus rules for existential quantifiers and conjunction. They also permit
reasoning about ordered pairs, with the projections fst and snd.

Figure 4.7 shows the rules for binary sum types. They correspond to
the predicate calculus rules for disjunction. They also permit reasoning
about disjoint sums, with the injections inl and inr and case analysis oper-
ator when.

Figure 4.8 shows the rules for the empty and unit types, F and T . They
correspond to the predicate calculus rules for absurdity and truth.

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 33

Figure 4.9 shows the rules for equality types. If a = b ∈ A is provable
then eq is a canonical element of the type Eq(A, a, b), and vice versa. These
rules define extensional equality; the most recent versions of Type Theory
use intensional equality [9].

Figure 4.10 presents the derived rules. The rule subst_prodE is derived
from prodE, and is easier to use in backwards proof. The rules SumE_fst

and SumE_snd express the typing of fst and snd; together, they are roughly
equivalent to SumE with the advantage of creating no parameters. Section 4.12
below demonstrates these rules in a proof of the Axiom of Choice.

All the rules are given in η-expanded form. For instance, every occur-
rence of λu v . b(u, v) could be abbreviated to b in the rules for N . The
expanded form permits Isabelle to preserve bound variable names during
backward proof. Names of bound variables in the conclusion (here, u and v)
are matched with corresponding bound variables in the premises.

4.3 Rule lists

The Type Theory tactics provide rewriting, type inference, and logical rea-
soning. Many proof procedures work by repeatedly resolving certain Type
Theory rules against a proof state. CTT defines lists — each with type
thm list — of related rules.

form_rls contains formation rules for the types N , Π, Σ, +, Eq , F , and T .

formL_rls contains long formation rules for Π, Σ, +, and Eq . (For other
types use refl_type.)

intr_rls contains introduction rules for the types N , Π, Σ, +, and T .

intrL_rls contains long introduction rules for N , Π, Σ, and +. (For T use
refl_elem.)

elim_rls contains elimination rules for the types N , Π, Σ, +, and F . The
rules for Eq and T are omitted because they involve no eliminator.

elimL_rls contains long elimination rules for N , Π, Σ, +, and F .

comp_rls contains computation rules for the types N , Π, Σ, and +. Those
for Eq and T involve no eliminator.

basic_defs contains the definitions of fst and snd.

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 34

4.4 Tactics for subgoal reordering

test_assume_tac : int -> tactic
typechk_tac : thm list -> tactic
equal_tac : thm list -> tactic
intr_tac : thm list -> tactic

Blind application of CTT rules seldom leads to a proof. The elimination
rules, especially, create subgoals containing new unknowns. These subgoals
unify with anything, creating a huge search space. The standard tactic
filt_resolve_tac (see the Reference Manual) fails for goals that are too
flexible; so does the CTT tactic test_assume_tac. Used with the tactical
REPEAT_FIRST they achieve a simple kind of subgoal reordering: the less flex-
ible subgoals are attempted first. Do some single step proofs, or study the
examples below, to see why this is necessary.

test_assume_tac i uses assume_tac to solve the subgoal by assumption,
but only if subgoal i has the form a ∈ A and the head of a is not an
unknown. Otherwise, it fails.

typechk_tac thms uses thms with formation, introduction, and elimination
rules to check the typing of constructions. It is designed to solve goals
of the form a ∈ ?A, where a is rigid and ?A is flexible; thus it performs
type inference. The tactic can also solve goals of the form A type.

equal_tac thms uses thms with the long introduction and elimination rules
to solve goals of the form a = b ∈ A, where a is rigid. It is intended
for deriving the long rules for defined constants such as the arithmetic
operators. The tactic can also perform type-checking.

intr_tac thms uses thms with the introduction rules to break down a type.
It is designed for goals like ?a ∈ A where ?a is flexible and A rigid.
These typically arise when trying to prove a proposition A, expressed
as a type.

4.5 Rewriting tactics

rew_tac : thm list -> tactic
hyp_rew_tac : thm list -> tactic

Object-level simplification is accomplished through proof, using the CTT

equality rules and the built-in rewriting functor TSimpFun.2 The rewrites

2This should not be confused with Isabelle’s main simplifier; TSimpFun is only useful
for CTT and similar logics with type inference rules. At present it is undocumented.

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 35

include the computation rules and other equations. The long versions of
the other rules permit rewriting of subterms and subtypes. Also used are
transitivity and the extra judgement form Reduce. Meta-level simplification
handles only definitional equality.

rew_tac thms applies thms and the computation rules as left-to-right
rewrites. It solves the goal a = b ∈ A by rewriting a to b. If b is
an unknown then it is assigned the rewritten form of a. All subgoals
are rewritten.

hyp_rew_tac thms is like rew_tac, but includes as rewrites any equations
present in the assumptions.

4.6 Tactics for logical reasoning

Interpreting propositions as types lets CTT express statements of intuition-
istic logic. However, Constructive Type Theory is not just another syntax
for first-order logic. There are fundamental differences.

Can assumptions be deleted after use? Not every occurrence of a type
represents a proposition, and Type Theory assumptions declare variables. In
first-order logic, ∨-elimination with the assumption P∨Q creates one subgoal
assuming P and another assuming Q , and P ∨ Q can be deleted safely. In
Type Theory, +-elimination with the assumption z ∈ A + B creates one
subgoal assuming x ∈ A and another assuming y ∈ B (for arbitrary x and
y). Deleting z ∈ A + B when other assumptions refer to z may render the
subgoal unprovable: arguably, meaningless.

Isabelle provides several tactics for predicate calculus reasoning in CTT:

mp_tac : int -> tactic
add_mp_tac : int -> tactic
safestep_tac : thm list -> int -> tactic
safe_tac : thm list -> int -> tactic
step_tac : thm list -> int -> tactic
pc_tac : thm list -> int -> tactic

These are loosely based on the intuitionistic proof procedures of FOL. For the
reasons discussed above, a rule that is safe for propositional reasoning may
be unsafe for type-checking; thus, some of the ‘safe’ tactics are misnamed.

mp_tac i searches in subgoal i for assumptions of the form f ∈ Π(A,B)
and a ∈ A, where A may be found by unification. It replaces f ∈
Π(A,B) by z ∈ B(a), where z is a new parameter. The tactic can
produce multiple outcomes for each suitable pair of assumptions. In
short, mp_tac performs Modus Ponens among the assumptions.

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 36

add_mp_tac i is like mp_tac i but retains the assumption f ∈ Π(A,B). It
avoids information loss but obviously loops if repeated.

safestep_tac thms i attacks subgoal i using formation rules and certain
other ‘safe’ rules (FE, ProdI, SumE, PlusE), calling mp_tac when appro-
priate. It also uses thms , which are typically premises of the rule being
derived.

safe_tac thms i attempts to solve subgoal i by means of backtracking,
using safestep_tac.

step_tac thms i tries to reduce subgoal i using safestep_tac, then tries
unsafe rules. It may produce multiple outcomes.

pc_tac thms i tries to solve subgoal i by backtracking, using step_tac.

4.7 A theory of arithmetic

Arith is a theory of elementary arithmetic. It proves the properties of ad-
dition, multiplication, subtraction, division, and remainder, culminating in
the theorem

a mod b + (a/b)× b = a.

Figure 4.11 presents the definitions and some of the key theorems, including
commutative, distributive, and associative laws.

The operators #+, -, |-|, #*, mod and div stand for sum, difference,
absolute difference, product, remainder and quotient, respectively. Since
Type Theory has only primitive recursion, some of their definitions may be
obscure.

The difference a−b is computed by taking b predecessors of a, where the
predecessor function is λv . rec(v , 0, λx y . x).

The remainder a mod b counts up to a in a cyclic fashion, using 0 as the
successor of b−1. Absolute difference is used to test the equality succ(v) = b.

The quotient a/b is computed by adding one for every number x such
that 0 ≤ x ≤ a and x mod b = 0.

4.8 The examples directory

This directory contains examples and experimental proofs in CTT.

CTT/ex/typechk.ML contains simple examples of type-checking and type de-
duction.

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 37

symbol meta-type priority description
#* [i , i]⇒ i Left 70 multiplication
div [i , i]⇒ i Left 70 division
mod [i , i]⇒ i Left 70 modulus
#+ [i , i]⇒ i Left 65 addition
- [i , i]⇒ i Left 65 subtraction

|-| [i , i]⇒ i Left 65 absolute difference

add_def a#+b == rec(a, b, %u v. succ(v))
diff_def a-b == rec(b, a, %u v. rec(v, 0, %x y. x))
absdiff_def a|-|b == (a-b) #+ (b-a)
mult_def a#*b == rec(a, 0, %u v. b #+ v)

mod_def a mod b ==
rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))

div_def a div b ==
rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))

add_typing [| a:N; b:N |] ==> a #+ b : N
addC0 b:N ==> 0 #+ b = b : N
addC_succ [| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N

add_assoc [| a:N; b:N; c:N |] ==>
(a #+ b) #+ c = a #+ (b #+ c) : N

add_commute [| a:N; b:N |] ==> a #+ b = b #+ a : N

mult_typing [| a:N; b:N |] ==> a #* b : N
multC0 b:N ==> 0 #* b = 0 : N
multC_succ [| a:N; b:N |] ==> succ(a) #* b = b #+ (a#*b) : N
mult_commute [| a:N; b:N |] ==> a #* b = b #* a : N

add_mult_dist [| a:N; b:N; c:N |] ==>
(a #+ b) #* c = (a #* c) #+ (b #* c) : N

mult_assoc [| a:N; b:N; c:N |] ==>
(a #* b) #* c = a #* (b #* c) : N

diff_typing [| a:N; b:N |] ==> a - b : N
diffC0 a:N ==> a - 0 = a : N
diff_0_eq_0 b:N ==> 0 - b = 0 : N
diff_succ_succ [| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N
diff_self_eq_0 a:N ==> a - a = 0 : N
add_inverse_diff [| a:N; b:N; b-a=0 : N |] ==> b #+ (a-b) = a : N

Figure 4.11: The theory of arithmetic

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 38

CTT/ex/elim.ML contains some examples from Martin-Löf [7], proved using
pc_tac.

CTT/ex/equal.ML contains simple examples of rewriting.

CTT/ex/synth.ML demonstrates the use of unknowns with some trivial ex-
amples of program synthesis.

4.9 Example: type inference

Type inference involves proving a goal of the form a ∈ ?A, where a is a term
and ?A is an unknown standing for its type. The type, initially unknown,
takes shape in the course of the proof. Our example is the predecessor func-
tion on the natural numbers.

Goal "lam n. rec(n, 0, %x y. x) : ?A";
Level 0

lam n. rec(n,0,%x y. x) : ?A

1. lam n. rec(n,0,%x y. x) : ?A

Since the term is a Constructive Type Theory λ-abstraction (not to be
confused with a meta-level abstraction), we apply the rule ProdI, for Π-
introduction. This instantiates ?A to a product type of unknown domain
and range.

by (resolve_tac [ProdI] 1);
Level 1

lam n. rec(n,0,%x y. x) : PROD x:?A1. ?B1(x)

1. ?A1 type

2. !!n. n : ?A1 ==> rec(n,0,%x y. x) : ?B1(n)

Subgoal 1 is too flexible. It can be solved by instantiating ?A1 to any type,
but most instantiations will invalidate subgoal 2. We therefore tackle the
latter subgoal. It asks the type of a term beginning with rec, which can be
found by N -elimination.

by (eresolve_tac [NE] 2);
Level 2

lam n. rec(n,0,%x y. x) : PROD x:N. ?C2(x,x)

1. N type

2. !!n. 0 : ?C2(n,0)

3. !!n x y. [| x : N; y : ?C2(n,x) |] ==> x : ?C2(n,succ(x))

Subgoal 1 is no longer flexible: we now know ?A1 is the type of natural
numbers. However, let us continue proving nontrivial subgoals. Subgoal 2
asks, what is the type of 0?

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 39

by (resolve_tac [NI0] 2);
Level 3

lam n. rec(n,0,%x y. x) : N --> N

1. N type

2. !!n x y. [| x : N; y : N |] ==> x : N

The type ?A is now fully determined. It is the product type
∏

x∈N N , which
is shown as the function type N → N because there is no dependence on x .
But we must prove all the subgoals to show that the original term is validly
typed. Subgoal 2 is provable by assumption and the remaining subgoal falls
by N -formation.

by (assume_tac 2);
Level 4

lam n. rec(n,0,%x y. x) : N --> N

1. N type

by (resolve_tac [NF] 1);
Level 5

lam n. rec(n,0,%x y. x) : N --> N

No subgoals!

Calling typechk_tac can prove this theorem in one step.
Even if the original term is ill-typed, one can infer a type for it, but

unprovable subgoals will be left. As an exercise, try to prove the following
invalid goal:

Goal "lam n. rec(n, 0, %x y. tt) : ?A";

4.10 An example of logical reasoning

Logical reasoning in Type Theory involves proving a goal of the form ?a ∈ A,
where type A expresses a proposition and ?a stands for its proof term, a value
of type A. The proof term is initially unknown and takes shape during the
proof.

Our example expresses a theorem about quantifiers in a sorted logic:

∃x ∈ A . P(x) ∨Q(x)

(∃x ∈ A . P(x)) ∨ (∃x ∈ A . Q(x))

By the propositions-as-types principle, this is encoded using Σ and + types.
A special case of it expresses a distributive law of Type Theory:

A× (B + C)

(A× B) + (A× C)

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 40

Generalizing this from × to Σ, and making the typing conditions explicit,
yields the rule we must derive:

A type

[x ∈ A]
....

B(x) type

[x ∈ A]
....

C (x) type p ∈ ∑
x∈A B(x) + C (x)

?a ∈ (
∑

x∈A B(x)) + (
∑

x∈A C (x))

To begin, we bind the rule’s premises — returned by the goal command —
to the ml variable prems.

val prems = Goal
"[| A type; \

\ !!x. x:A ==> B(x) type; \
\ !!x. x:A ==> C(x) type; \
\ p: SUM x:A. B(x) + C(x) \
\ |] ==> ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))";
Level 0

?a : (SUM x:A. B(x)) + (SUM x:A. C(x))

1. ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"?x : A ==> C(?x) type [!!x. x : A ==> C(x) type]",

"p : SUM x:A. B(x) + C(x) [p : SUM x:A. B(x) + C(x)]"]

: thm list

The last premise involves the sum type Σ. Since it is a premise rather than
the assumption of a goal, it cannot be found by eresolve_tac. We could
insert it (and the other atomic premise) by calling

cut_facts_tac prems 1;

A forward proof step is more straightforward here. Let us resolve the Σ-
elimination rule with the premises using RL. This inference yields one result,
which we supply to resolve_tac.

by (resolve_tac (prems RL [SumE]) 1);
Level 1

split(p,?c1) : (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y.

[| x : A; y : B(x) + C(x) |] ==>

?c1(x,y) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The subgoal has two new parameters, x and y . In the main goal, ?a has
been instantiated with a split term. The assumption y ∈ B(x) + C (x) is
eliminated next, causing a case split and creating the parameter xa. This
inference also inserts when into the main goal.

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 41

by (eresolve_tac [PlusE] 1);
Level 2

split(p,%x y. when(y,?c2(x,y),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa.

[| x : A; xa : B(x) |] ==>

?c2(x,y,xa) : (SUM x:A. B(x)) + (SUM x:A. C(x))

2. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

To complete the proof object for the main goal, we need to instantiate the
terms ?c2(x , y , xa) and ?d2(x , y , xa). We attack subgoal 1 by a +-introduction
rule; since the goal assumes xa ∈ B(x), we take the left injection (inl).

by (resolve_tac [PlusI_inl] 1);
Level 3

split(p,%x y. when(y,%xa. inl(?a3(x,y,xa)),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a3(x,y,xa) : SUM x:A. B(x)

2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

3. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

A new subgoal 2 has appeared, to verify that
∑

x∈A C (x) is a type. Continu-
ing to work on subgoal 1, we apply the Σ-introduction rule. This instantiates
the term ?a3(x , y , xa); the main goal now contains an ordered pair, whose
components are two new unknowns.

by (resolve_tac [SumI] 1);
Level 4

split(p,%x y. when(y,%xa. inl(<?a4(x,y,xa),?b4(x,y,xa)>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a4(x,y,xa) : A

2. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(?a4(x,y,xa))

3. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

4. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The two new subgoals both hold by assumption. Observe how the unknowns
?a4 and ?b4 are instantiated throughout the proof state.

by (assume_tac 1);
Level 5

split(p,%x y. when(y,%xa. inl(<x,?b4(x,y,xa)>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 42

1. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(x)

2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

3. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

by (assume_tac 1);
Level 6

split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

2. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

Subgoal 1 is an example of a well-formedness subgoal [2]. Such subgoals
are usually trivial; this one yields to typechk_tac, given the current list of
premises.

by (typechk_tac prems);
Level 7

split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

This subgoal is the other case from the +-elimination above, and can be
proved similarly. Quicker is to apply pc_tac. The main goal finally gets a
fully instantiated proof object.

by (pc_tac prems 1);
Level 8

split(p,%x y. when(y,%xa. inl(<x,xa>),%y. inr(<x,y>)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

No subgoals!

Calling pc_tac after the first Σ-elimination above also proves this theorem.

4.11 Example: deriving a currying functional

In simply-typed languages such as ml, a currying functional has the type

(A× B → C)→ (A→ (B → C)).

Let us generalize this to the dependent types Σ and Π. The functional takes
a function f that maps z : Σ(A,B) to C (z); the resulting function maps
x ∈ A and y ∈ B(x) to C (〈x , y〉).

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 43

Formally, there are three typing premises. A is a type; B is an A-indexed
family of types; C is a family of types indexed by Σ(A,B). The goal is
expressed using PROD f to ensure that the parameter corresponding to the
functional’s argument is really called f ; Isabelle echoes the type using -->

because there is no explicit dependence upon f .

val prems = Goal
"[| A type; !!x. x:A ==> B(x) type; \

\ !!z. z: (SUM x:A. B(x)) ==> C(z) type \
\ |] ==> ?a : PROD f: (PROD z : (SUM x:A . B(x)) . C(z)). \
\ (PROD x:A . PROD y:B(x) . C(<x,y>))";
Level 0

?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))

1. ?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"?z : SUM x:A. B(x) ==> C(?z) type

[!!z. z : SUM x:A. B(x) ==> C(z) type]"] : thm list

This is a chance to demonstrate intr_tac. Here, the tactic repeatedly applies
Π-introduction and proves the rather tiresome typing conditions.

Note that ?a becomes instantiated to three nested λ-abstractions. It
would be easier to read if the bound variable names agreed with the param-
eters in the subgoal. Isabelle attempts to give parameters the same names
as corresponding bound variables in the goal, but this does not always work.
In any event, the goal is logically correct.

by (intr_tac prems);
Level 1

lam x xa xb. ?b7(x,xa,xb)

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

1. !!f x y.

[| f : PROD z:SUM x:A. B(x). C(z); x : A; y : B(x) |] ==>

?b7(f,x,y) : C(<x,y>)

Using Π-elimination, we solve subgoal 1 by applying the function f .

by (eresolve_tac [ProdE] 1);
Level 2

lam x xa xb. x ‘ <xa,xb>

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

1. !!f x y. [| x : A; y : B(x) |] ==> <x,y> : SUM x:A. B(x)

Finally, we verify that the argument’s type is suitable for the function appli-
cation. This is straightforward using introduction rules.

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 44

by (intr_tac prems);
Level 3

lam x xa xb. x ‘ <xa,xb>

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

No subgoals!

Calling pc_tac would have proved this theorem in one step; it can also prove
an example by Martin-Löf, related to ∨-elimination [7, page 58].

4.12 Example: proving the Axiom of Choice

Suppose we have a function h ∈ ∏
x∈A

∑
y∈B(x) C (x , y), which takes x ∈ A to

some y ∈ B(x) paired with some z ∈ C (x , y). Interpreting propositions as
types, this asserts that for all x ∈ A there exists y ∈ B(x) such that C (x , y).
The Axiom of Choice asserts that we can construct a function f ∈ ∏

x∈A B(x)
such that C (x , f ‘x) for all x ∈ A, where the latter property is witnessed by
a function g ∈ ∏

x∈A C (x , f ‘x).
In principle, the Axiom of Choice is simple to derive in Constructive Type

Theory. The following definitions work:

f ≡ fst ◦ h

g ≡ snd ◦ h

But a completely formal proof is hard to find. The rules can be applied
in countless ways, yielding many higher-order unifiers. The proof can get
bogged down in the details. But with a careful selection of derived rules
(recall Fig. 4.10) and the type-checking tactics, we can prove the theorem in
nine steps.

val prems = Goal
"[| A type; !!x. x:A ==> B(x) type; \

\ !!x y.[| x:A; y:B(x) |] ==> C(x,y) type \
\ |] ==> ?a : PROD h: (PROD x:A. SUM y:B(x). C(x,y)). \
\ (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f‘x))";
Level 0

?a : (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. ?a : (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"[| ?x : A; ?y : B(?x) |] ==> C(?x, ?y) type

[!!x y. [| x : A; y : B(x) |] ==> C(x, y) type]"]

: thm list

First, intr_tac applies introduction rules and performs routine type-
checking. This instantiates ?a to a construction involving a λ-abstraction

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 45

and an ordered pair. The pair’s components are themselves λ-abstractions
and there is a subgoal for each.

by (intr_tac prems);
Level 1

lam x. <lam xa. ?b7(x,xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b7(h,x) : B(x)

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. ?b7(h,x)) ‘ x)

Subgoal 1 asks to find the choice function itself, taking x ∈ A to some
?b7(h, x) ∈ B(x). Subgoal 2 asks, given x ∈ A, for a proof object ?b8(h, x) to
witness that the choice function’s argument and result lie in the relation C .
This latter task will take up most of the proof.

by (eresolve_tac [ProdE RS SumE_fst] 1);
Level 2

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x. x : A ==> x : A

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. fst(h ‘ x)) ‘ x)

Above, we have composed fst with the function h. Unification has deduced
that the function must be applied to x ∈ A. We have our choice function.

by (assume_tac 1);
Level 3

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. fst(h ‘ x)) ‘ x)

Before we can compose snd with h, the arguments of C must be simplified.
The derived rule replace_type lets us replace a type by any equivalent type,
shown below as the schematic term ?A13(h, x):

by (resolve_tac [replace_type] 1);
Level 4

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 46

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

C(x,(lam x. fst(h ‘ x)) ‘ x) = ?A13(h,x)

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : ?A13(h,x)

The derived rule subst_eqtyparg lets us simplify a type’s argument (by
currying, C (x) is a unary type operator):

by (resolve_tac [subst_eqtyparg] 1);
Level 5

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

(lam x. fst(h ‘ x)) ‘ x = ?c14(h,x) : ?A14(h,x)

2. !!h x z.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

z : ?A14(h,x) |] ==>

C(x,z) type

3. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,?c14(h,x))

Subgoal 1 requires simply β-contraction, which is the rule ProdC. The term
?c14(h, x) in the last subgoal receives the contracted result.

by (resolve_tac [ProdC] 1);
Level 6

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

x : ?A15(h,x)

2. !!h x xa.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

xa : ?A15(h,x) |] ==>

fst(h ‘ xa) : ?B15(h,x,xa)

3. !!h x z.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

z : ?B15(h,x,x) |] ==>

C(x,z) type

4. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,fst(h ‘ x))

Routine type-checking goals proliferate in Constructive Type Theory, but

CHAPTER 4. CONSTRUCTIVE TYPE THEORY 47

typechk_tac quickly solves them. Note the inclusion of SumE_fst along
with the premises.

by (typechk_tac (SumE_fst::prems));
Level 7

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,fst(h ‘ x))

We are finally ready to compose snd with h.

by (eresolve_tac [ProdE RS SumE_snd] 1);
Level 8

lam x. <lam xa. fst(x ‘ xa),lam xa. snd(x ‘ xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x. x : A ==> x : A

2. !!h x. x : A ==> B(x) type

3. !!h x xa. [| x : A; xa : B(x) |] ==> C(x,xa) type

The proof object has reached its final form. We call typechk_tac to finish
the type-checking.

by (typechk_tac prems);
Level 9

lam x. <lam xa. fst(x ‘ xa),lam xa. snd(x ‘ xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

No subgoals!

It might be instructive to compare this proof with Martin-Löf’s forward proof
of the Axiom of Choice [7, page 50].

Bibliography

[1] Martin D. Coen. Interactive Program Derivation. PhD thesis, University
of Cambridge, November 1992. Computer Laboratory Technical Report
272.

[2] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, 1986.

[3] Amy Felty. A logic program for transforming sequent proofs to natural
deduction proofs. In Peter Schroeder-Heister, editor, Extensions of Logic
Programming, LNAI 475, pages 157–178. Springer, 1991.

[4] J. H. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving. Harper & Row, 1986.

[5] G. P. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

[6] Lena Magnusson and Bengt Nordström. The ALF proof editor and its
proof engine. In Henk Barendregt and Tobias Nipkow, editors, Types
for Proofs and Programs: International Workshop TYPES ’93, LNCS
806, pages 213–237. Springer, published 1994.

[7] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

[8] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch.
HOLCF = HOL + LCF. Journal of Functional Programming, 9:191–
223, 1999.

[9] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in
Martin-Löf’s Type Theory. An Introduction. Oxford University Press,
1990.

[10] Lawrence C. Paulson. Isabelle’s Logics: FOL and ZF. http://isabelle.
in.tum.de/doc/logics-ZF.pdf.

[11] Lawrence C. Paulson. Logic and Computation: Interactive proof with
Cambridge LCF. Cambridge University Press, 1987.

48

http://isabelle.in.tum.de/doc/logics-ZF.pdf

http://isabelle.in.tum.de/doc/logics-ZF.pdf

BIBLIOGRAPHY 49

[12] F. J. Pelletier. Seventy-five problems for testing automatic theorem
provers. Journal of Automated Reasoning, 2:191–216, 1986. Errata,
JAR 4 (1988), 235–236 and JAR 18 (1997), 135.

[13] G. Takeuti. Proof Theory. North-Holland, 2nd edition, 1987.

[14] Simon Thompson. Type Theory and Functional Programming. Addison-
Wesley, 1991.

Index

#* symbol, 37
#+ symbol, 37
& symbol, 6
* symbol, 27
+ symbol, 27
- symbol, 37
--> symbol, 6, 27
<-> symbol, 6
= symbol, 6, 27
‘ symbol, 27
| symbol, 6
|-| symbol, 37

0 constant, 25

absdiff_def theorem, 37
add_assoc theorem, 37
add_commute theorem, 37
add_def theorem, 37
add_inverse_diff theorem, 37
add_mp_tac, 36
add_mult_dist theorem, 37
add_safes, 18
add_typing theorem, 37
add_unsafes, 18
addC0 theorem, 37
addC_succ theorem, 37
ALL symbol, 6
All constant, 6
allL theorem, 9, 18
allL_thin theorem, 10
allR theorem, 9
Arith theory, 36
assumptions

in CTT, 24, 35

basic theorem, 8
basic_defs, 33
best_tac, 19

CCL theory, 1
comp_rls, 33
conjL theorem, 9
conjR theorem, 9
Constructive Type Theory, 24–47
contL theorem, 10
contLS theorem, 8
contR theorem, 10
contr constant, 25
contRS theorem, 8
could_res, 13
could_resolve_seq, 13
CTT theory, 1, 24
Cube theory, 1
cut theorem, 8
cutL_tac, 12
cutR_tac, 12

diff_0_eq_0 theorem, 37
diff_def theorem, 37
diff_self_eq_0 theorem, 37
diff_succ_succ theorem, 37
diff_typing theorem, 37
diffC0 theorem, 37
disjL theorem, 9
disjR theorem, 9
div symbol, 37
div_def theorem, 37

Elem constant, 25
elim_rls, 33
elimL_rls, 33

50

INDEX 51

empty_pack, 17
Eq constant, 25
eq constant, 25, 33
EqC theorem, 32
EqE theorem, 32
Eqelem constant, 25
EqF theorem, 32
EqFL theorem, 32
EqI theorem, 32
Eqtype constant, 25
equal_tac, 34
equal_types theorem, 28
equal_typesL theorem, 28
EX symbol, 6
Ex constant, 6
exL theorem, 9
exR theorem, 9, 13, 18
exR_thin theorem, 10, 13, 14

F constant, 25
False constant, 6
FalseL theorem, 9
fast_tac, 19
FE theorem, 31, 36
FEL theorem, 31
FF theorem, 31
filseq_resolve_tac, 13
filt_resolve_tac, 13, 34
flex-flex constraints, 16
FOL theory, 35
form_rls, 33
formL_rls, 33
forms_of_seq, 12
fst constant, 25, 32, 33
fst_def theorem, 30
function applications

in CTT, 27

HOLCF theory, 1
hyp_rew_tac, 35

i type, 24

iff_def theorem, 9
iffL theorem, 10, 15
iffR theorem, 10
ILL theory, 2
impL theorem, 9
impR theorem, 9
inl constant, 25, 32, 41
inr constant, 25, 32
intr_rls, 33
intr_tac, 34, 43, 44
intrL_rls, 33

lam symbol, 27
lambda constant, 25, 27
λ-abstractions

in CTT, 27
LCF theory, 1
LK theory, 2, 5, 10
LK_dup_pack, 18, 19
LK_pack, 18

mod symbol, 37
mod_def theorem, 37
Modal theory, 2
mp_tac, 35
mult_assoc theorem, 37
mult_commute theorem, 37
mult_def theorem, 37
mult_typing theorem, 37
multC0 theorem, 37
multC_succ theorem, 37

N constant, 25
NC0 theorem, 29
NC_succ theorem, 29
NE theorem, 29, 32, 38
NEL theorem, 29
NF theorem, 29, 39
NI0 theorem, 29
NI_succ theorem, 29
NI_succL theorem, 29
NIO theorem, 38

INDEX 52

Not constant, 6
notL theorem, 9
notR theorem, 9

o type, 5

pack, 17
pack ML type, 17
pack_of thy , 17
pair constant, 25
pc_tac, 19, 36, 42, 44
PlusC_inl theorem, 31
PlusC_inr theorem, 31
PlusE theorem, 31, 36, 40
PlusEL theorem, 31
PlusF theorem, 31
PlusFL theorem, 31
PlusI_inl theorem, 31, 41
PlusI_inlL theorem, 31
PlusI_inr theorem, 31
PlusI_inrL theorem, 31
priorities, 3
PROD symbol, 26, 27
Prod constant, 25
ProdC theorem, 29, 46
ProdC2 theorem, 29
ProdE theorem, 29, 43, 45, 47
ProdEL theorem, 29
ProdF theorem, 29
ProdFL theorem, 29
ProdI theorem, 29, 36, 38
ProdIL theorem, 29
prop_pack, 18

rec constant, 25, 32
red_if_equal theorem, 28
Reduce constant, 25, 30, 35
refl theorem, 8
refl_elem theorem, 28, 33
refl_red theorem, 28
refl_type theorem, 28, 33
REPEAT_FIRST, 34

repeat_goal_tac, 19
replace_type theorem, 32, 45
reresolve_tac, 19
rew_tac, 35
RL, 40
RS, 45, 47

safe_goal_tac, 19
safe_tac, 36
safestep_tac, 36
Seqof constant, 6
sequent calculus, 5–19
snd constant, 25, 32, 33
snd_def theorem, 30
sobj type, 5
split constant, 25, 40
step_tac, 19, 36
subst theorem, 8
subst_elem theorem, 28
subst_elemL theorem, 28
subst_eqtyparg theorem, 32, 46
subst_prodE theorem, 32, 33
subst_type theorem, 28
subst_typeL theorem, 28
succ constant, 25
SUM symbol, 26, 27
Sum constant, 25
SumC theorem, 30
SumE theorem, 30, 36, 40
SumE_fst theorem, 32, 33, 45, 47
SumE_snd theorem, 32, 33, 47
SumEL theorem, 30
SumF theorem, 30
SumFL theorem, 30
SumI theorem, 30, 41
SumIL theorem, 30
SumIL2 theorem, 32
sym_elem theorem, 28
sym_type theorem, 28
symL theorem, 10
symR theorem, 10

INDEX 53

T constant, 25
t type, 24
TC theorem, 31
TE theorem, 31
TEL theorem, 31
term class, 5
test_assume_tac, 34
TF theorem, 31
THE symbol, 6
The constant, 6
The theorem, 9
the_equality theorem, 10
thinL theorem, 10
thinLS theorem, 8
thinR theorem, 10
thinRS theorem, 8
TI theorem, 31
trans_elem theorem, 28
trans_red theorem, 28
trans_type theorem, 28
transR theorem, 10
True constant, 6
True_def theorem, 9
Trueprop constant, 6
TrueR theorem, 10
tt constant, 25
Type constant, 25
typechk_tac, 34, 39, 42, 47

when constant, 25, 32, 40

zero_ne_succ theorem, 29, 30

			Syntax definitions

			First-Order Sequent Calculus

			Syntax and rules of inference

			Automatic Proof

			Tactics for the cut rule

			Tactics for sequents

			A simple example of classical reasoning

			A more complex proof

			*Unification for lists

			*Packaging sequent rules

			*Proof procedures

			Method A

			Method B

			Defining A Sequent-Based Logic

			Concrete syntax of sequences

			 Basis

			Object logics

			What's in Sequents.thy

			Constructive Type Theory

			Syntax

			Rules of inference

			Rule lists

			Tactics for subgoal reordering

			Rewriting tactics

			Tactics for logical reasoning

			A theory of arithmetic

			The examples directory

			Example: type inference

			An example of logical reasoning

			Example: deriving a currying functional

			Example: proving the Axiom of Choice

Isabelle2008/doc/logics-ZF.pdf

λ →

∀
=Isa

be
lle

β
α

ZF

Isabelle’s Logics: FOL and ZF

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel

June 8, 2008

Abstract

This manual describes Isabelle’s formalizations of many-sorted first-order
logic (FOL) and Zermelo-Fraenkel set theory (ZF). See the Reference Manual
for general Isabelle commands, and Introduction to Isabelle for an overall
tutorial.

This manual is part of the earlier Isabelle documentation, which is some-
what superseded by the Isabelle/HOL Tutorial [11]. However, the present
document is the only available documentation for Isabelle’s versions of first-
order logic and set theory. Much of it is concerned with the primitives for
conducting proofs using the ML top level. It has been rewritten to use the
Isar proof language, but evidence of the old ml orientation remains.

i

Acknowledgements

Markus Wenzel made numerous improvements. Philippe de Groote con-
tributed to ZF. Philippe Noël and Martin Coen made many contributions
to ZF. The research has been funded by the EPSRC (grants GR/G53279,
GR/H40570, GR/K57381, GR/K77051, GR/M75440) and by ESPRIT
(projects 3245: Logical Frameworks, and 6453: Types) and by the DFG
Schwerpunktprogramm Deduktion.

Contents

1 Syntax definitions 1

2 First-Order Logic 3
2.1 Syntax and rules of inference 3
2.2 Generic packages . 4
2.3 Intuitionistic proof procedures 4
2.4 Classical proof procedures . 9
2.5 An intuitionistic example . 10
2.6 An example of intuitionistic negation 11
2.7 A classical example . 12
2.8 Derived rules and the classical tactics 14

2.8.1 Deriving the introduction rule 15
2.8.2 Deriving the elimination rule 15
2.8.3 Using the derived rules 15
2.8.4 Derived rules versus definitions 17

3 Zermelo-Fraenkel Set Theory 19
3.1 Which version of axiomatic set theory? 19
3.2 The syntax of set theory . 20
3.3 Binding operators . 22
3.4 The Zermelo-Fraenkel axioms 27
3.5 From basic lemmas to function spaces 29

3.5.1 Fundamental lemmas 29
3.5.2 Unordered pairs and finite sets 29
3.5.3 Subset and lattice properties 32
3.5.4 Ordered pairs . 32
3.5.5 Relations . 34
3.5.6 Functions . 36

3.6 Further developments . 36
3.6.1 Disjoint unions . 39
3.6.2 Non-standard ordered pairs 39
3.6.3 Least and greatest fixedpoints 39
3.6.4 Finite sets and lists 41

ii

CONTENTS iii

3.6.5 Miscellaneous . 41
3.7 Automatic Tools . 44

3.7.1 Simplification and Classical Reasoning 44
3.7.2 Type-Checking Tactics 44

3.8 Natural number and integer arithmetic 45
3.9 Datatype definitions . 48

3.9.1 Basics . 48
3.9.2 Defining datatypes . 51
3.9.3 Examples . 53
3.9.4 Recursive function definitions 55

3.10 Inductive and coinductive definitions 57
3.10.1 The syntax of a (co)inductive definition 57
3.10.2 Example of an inductive definition 58
3.10.3 Further examples . 60
3.10.4 Theorems generated 61

3.11 The outer reaches of set theory 62
3.12 The examples directories . 63
3.13 A proof about powersets . 64
3.14 Monotonicity of the union operator 66
3.15 Low-level reasoning about functions 67

Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be
repeated 0 or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where ∃ has lower priority than ∨, which has lower priority than ∧.
There, P ∧Q ∨ R abbreviates (P ∧Q) ∨ R rather than P ∧ (Q ∨ R). Also,
∃x .P ∨Q abbreviates ∃x . (P ∨Q) rather than (∃x .P)∨Q . Note especially
that P ∨ (∃x .Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ)⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All , which has
type (α⇒ o)⇒ o. This defines the syntax ∀x .t to mean All(λx .t). We can
also write ∀x1 . . . xm . t to abbreviate ∀x1 ∀xm . t ; this is possible for any

1

CHAPTER 1. SYNTAX DEFINITIONS 2

constant provided that τ and τ ′ are the same type. The Hilbert description
operator εx . P x has type (α ⇒ bool) ⇒ α and normally binds only one
variable. ZF’s bounded quantifier ∀x ∈ A . P(x) cannot be declared as a
binder because it has type [i , i ⇒ o] ⇒ o. The syntax for binders allows
type constraints on bound variables, as in

∀(x ::α) (y ::β) z ::γ .Q(x , y , z)

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric pri-
orities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For
example, the formulae of first-order logic have type o. Every Isabelle ex-
pression of type o is therefore a formula. These include atomic formulae
such as P , where P is a variable of type o, and more generally expressions
such as P(t , u), where P , t and u have suitable types. Therefore, ‘expression
of type o’ is listed as a separate possibility in the grammar for formulae.

Chapter 2

First-Order Logic

Isabelle implements Gentzen’s natural deduction systems nj and nk. In-
tuitionistic first-order logic is defined first, as theory IFOL . Classical logic,
theory FOL , is obtained by adding the double negation rule. Basic proof
procedures are provided. The intuitionistic prover works with derived rules
to simplify implications in the assumptions. Classical FOL employs Isabelle’s
classical reasoner, which simulates a sequent calculus.

2.1 Syntax and rules of inference

The logic is many-sorted, using Isabelle’s type classes. The class of first-
order terms is called term and is a subclass of logic. No types of individuals
are provided, but extensions can define types such as nat::term and type
constructors such as list::(term)term (see the examples directory, FOL/ex).
Below, the type variable α ranges over class term ; the equality symbol and
quantifiers are polymorphic (many-sorted). The type of formulae is o , which
belongs to class logic . Figure 2.1 gives the syntax. Note that a~=b is
translated to ¬(a = b).

Figure 2.2 shows the inference rules with their names. Negation is de-
fined in the usual way for intuitionistic logic; ¬P abbreviates P → ⊥. The
biconditional (↔) is defined through ∧ and→; introduction and elimination
rules are derived for it.

The unique existence quantifier, ∃!x .P(x), is defined in terms of ∃ and ∀.
An Isabelle binder, it admits nested quantifications. For instance, ∃!x y .
P(x , y) abbreviates ∃!x . ∃!y . P(x , y); note that this does not mean that
there exists a unique pair (x , y) satisfying P(x , y).

Some intuitionistic derived rules are shown in Fig. 2.3, again with their
names. These include rules for the defined symbols ¬, ↔ and ∃!. Nat-
ural deduction typically involves a combination of forward and backward
reasoning, particularly with the destruction rules (∧E), (→E), and (∀E).
Isabelle’s backward style handles these rules badly, so sequent-style rules

3

CHAPTER 2. FIRST-ORDER LOGIC 4

are derived to eliminate conjunctions, implications, and universal quanti-
fiers. Used with elim-resolution, allE eliminates a universal quantifier while
all_dupE re-inserts the quantified formula for later use. The rules conj

impE, etc., support the intuitionistic proof procedure (see Sect. 2.3).
See the on-line theory library for complete listings of the rules and de-

rived rules.

2.2 Generic packages

FOL instantiates most of Isabelle’s generic packages.

• It instantiates the simplifier, which is invoked through the method
simp. Both equality (=) and the biconditional (↔) may be used for
rewriting.

• It instantiates the classical reasoner, which is invoked mainly through
the methods blast and auto. See Sect. 2.4 for details.

! Simplifying a = b∧P(a) to a = b∧P(b) is often advantageous. The left part of
a conjunction helps in simplifying the right part. This effect is not available by

default: it can be slow. It can be obtained by including the theorem conj_congas
a congruence rule in simplification, simp cong: conj cong.

2.3 Intuitionistic proof procedures

Implication elimination (the rules mp and impE) pose difficulties for auto-
mated proof. In intuitionistic logic, the assumption P → Q cannot be
treated like ¬P ∨Q . Given P → Q , we may use Q provided we can prove P ;
the proof of P may require repeated use of P → Q . If the proof of P fails
then the whole branch of the proof must be abandoned. Thus intuitionistic
propositional logic requires backtracking.

For an elementary example, consider the intuitionistic proof of Q from
P → Q and (P → Q)→ P . The implication P → Q is needed twice:

P → Q
(P → Q)→ P P → Q

P
(→E)

Q
(→E)

The theorem prover for intuitionistic logic does not use impE. Instead, it
simplifies implications using derived rules (Fig. 2.3). It reduces the an-
tecedents of implications to atoms and then uses Modus Ponens: from
P → Q and P deduce Q . The rules conj_impE and disj_impE are straight-
forward: (P ∧ Q) → S is equivalent to P → (Q → S), and (P ∨ Q) → S
is equivalent to the conjunction of P → S and Q → S . The other . . . impE

CHAPTER 2. FIRST-ORDER LOGIC 5

name meta-type description
Trueprop o ⇒ prop coercion to prop

Not o ⇒ o negation (¬)
True o tautology (>)

False o absurdity (⊥)

Constants

symbol name meta-type priority description
ALL All (α⇒ o)⇒ o 10 universal quantifier (∀)
EX Ex (α⇒ o)⇒ o 10 existential quantifier (∃)
EX! Ex1 (α⇒ o)⇒ o 10 unique existence (∃!)

Binders

symbol meta-type priority description
= [α, α]⇒ o Left 50 equality (=)
& [o, o]⇒ o Right 35 conjunction (∧)
| [o, o]⇒ o Right 30 disjunction (∨)

--> [o, o]⇒ o Right 25 implication (→)
<-> [o, o]⇒ o Right 25 biconditional (↔)

Infixes

formula = expression of type o
| term = term | term ~= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id id∗ . formula
| EX id id∗ . formula
| EX! id id∗ . formula

Grammar

Figure 2.1: Syntax of FOL

CHAPTER 2. FIRST-ORDER LOGIC 6

refl a=a

subst [| a=b; P(a) |] ==> P(b)

Equality rules

conjI [| P; Q |] ==> P&Q

conjunct1 P&Q ==> P

conjunct2 P&Q ==> Q

disjI1 P ==> P|Q

disjI2 Q ==> P|Q

disjE [| P|Q; P ==> R; Q ==> R |] ==> R

impI (P ==> Q) ==> P-->Q

mp [| P-->Q; P |] ==> Q

FalseE False ==> P

Propositional rules

allI (!!x. P(x)) ==> (ALL x.P(x))

spec (ALL x.P(x)) ==> P(x)

exI P(x) ==> (EX x.P(x))

exE [| EX x.P(x); !!x. P(x) ==> R |] ==> R

Quantifier rules

True_def True == False-->False

not_def ~P == P-->False

iff_def P<->Q == (P-->Q) & (Q-->P)

ex1_def EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)

Definitions

Figure 2.2: Rules of intuitionistic logic

CHAPTER 2. FIRST-ORDER LOGIC 7

sym a=b ==> b=a

trans [| a=b; b=c |] ==> a=c

ssubst [| b=a; P(a) |] ==> P(b)

Derived equality rules

TrueI True

notI (P ==> False) ==> ~P

notE [| ~P; P |] ==> R

iffI [| P ==> Q; Q ==> P |] ==> P<->Q

iffE [| P <-> Q; [| P-->Q; Q-->P |] ==> R |] ==> R

iffD1 [| P <-> Q; P |] ==> Q

iffD2 [| P <-> Q; Q |] ==> P

ex1I [| P(a); !!x. P(x) ==> x=a |] ==> EX! x. P(x)

ex1E [| EX! x.P(x); !!x.[| P(x); ALL y. P(y) --> y=x |] ==> R

|] ==> R

Derived rules for >, ¬, ↔ and ∃!

conjE [| P&Q; [| P; Q |] ==> R |] ==> R

impE [| P-->Q; P; Q ==> R |] ==> R

allE [| ALL x.P(x); P(x) ==> R |] ==> R

all_dupE [| ALL x.P(x); [| P(x); ALL x.P(x) |] ==> R |] ==> R

Sequent-style elimination rules

conj_impE [| (P&Q)-->S; P-->(Q-->S) ==> R |] ==> R

disj_impE [| (P|Q)-->S; [| P-->S; Q-->S |] ==> R |] ==> R

imp_impE [| (P-->Q)-->S; [| P; Q-->S |] ==> Q; S ==> R |] ==> R

not_impE [| ~P --> S; P ==> False; S ==> R |] ==> R

iff_impE [| (P<->Q)-->S; [| P; Q-->S |] ==> Q; [| Q; P-->S |] ==> P;

S ==> R |] ==> R

all_impE [| (ALL x.P(x))-->S; !!x.P(x); S ==> R |] ==> R

ex_impE [| (EX x.P(x))-->S; P(a)-->S ==> R |] ==> R

Intuitionistic simplification of implication

Figure 2.3: Derived rules for intuitionistic logic

CHAPTER 2. FIRST-ORDER LOGIC 8

rules are unsafe; the method requires backtracking. All the rules are derived
in the same simple manner.

Dyckhoff has independently discovered similar rules, and (more impor-
tantly) has demonstrated their completeness for propositional logic [8]. How-
ever, the tactics given below are not complete for first-order logic because
they discard universally quantified assumptions after a single use. These are
ml functions, and are listed below with their ml type:

mp_tac : int -> tactic

eq_mp_tac : int -> tactic

IntPr.safe_step_tac : int -> tactic

IntPr.safe_tac : tactic

IntPr.inst_step_tac : int -> tactic

IntPr.step_tac : int -> tactic

IntPr.fast_tac : int -> tactic

IntPr.best_tac : int -> tactic

Most of these belong to the structure ml structure IntPr and resemble
the tactics of Isabelle’s classical reasoner. There are no corresponding Isar
methods, but you can use the tactic method to call ml tactics in an Isar
script:

apply (tactic * IntPr.fast tac 1*)

Here is a description of each tactic:

mp_tac i attempts to use notE or impE within the assumptions in subgoal
i . For each assumption of the form ¬P or P → Q , it searches for
another assumption unifiable with P . By contradiction with ¬P it
can solve the subgoal completely; by Modus Ponens it can replace the
assumption P → Q by Q . The tactic can produce multiple outcomes,
enumerating all suitable pairs of assumptions.

eq_mp_tac i is like mp_tac i, but may not instantiate unknowns — thus, it
is safe.

IntPr.safe_step_tac i performs a safe step on subgoal i . This may in-
clude proof by assumption or Modus Ponens (taking care not to in-
stantiate unknowns), or hyp_subst_tac.

IntPr.safe_tac repeatedly performs safe steps on all subgoals. It is deter-
ministic, with at most one outcome.

IntPr.inst_step_tac i is like safe_step_tac, but allows unknowns to be
instantiated.

IntPr.step_tac i tries safe_tac or inst_step_tac, or applies an unsafe
rule. This is the basic step of the intuitionistic proof procedure.

CHAPTER 2. FIRST-ORDER LOGIC 9

excluded_middle ~P | P

disjCI (~Q ==> P) ==> P|Q

exCI (ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)

impCE [| P-->Q; ~P ==> R; Q ==> R |] ==> R

iffCE [| P<->Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R

notnotD ~~P ==> P

swap ~P ==> (~Q ==> P) ==> Q

Figure 2.4: Derived rules for classical logic

IntPr.fast_tac i applies step_tac, using depth-first search, to solve sub-
goal i .

IntPr.best_tac i applies step_tac, using best-first search (guided by the
size of the proof state) to solve subgoal i .

Here are some of the theorems that IntPr.fast_tac proves automati-
cally. The latter three date from Principia Mathematica (*11.53, *11.55,
*11.61) [23].

~~P & ~~(P --> Q) --> ~~Q

(ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))

(EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))

(EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))

2.4 Classical proof procedures

The classical theory, FOL , consists of intuitionistic logic plus the rule

[¬P]....
P
P

(classical)

Natural deduction in classical logic is not really all that natural. FOL derives
classical introduction rules for ∨ and ∃, as well as classical elimination rules
for → and ↔, and the swap rule (see Fig. 2.4).

The classical reasoner is installed. The most useful methods are blast

(pure classical reasoning) and auto (classical reasoning combined with sim-
plification), but the full range of methods is available, including clarify,
fast, best and force. See the the Reference Manual and the Tutorial [11]
for more discussion of classical proof methods.

CHAPTER 2. FIRST-ORDER LOGIC 10

2.5 An intuitionistic example

Here is a session similar to one in the book Logic and Computation [14,
pages 222–3]. It illustrates the treatment of quantifier reasoning, which is
different in Isabelle than it is in lcf-based theorem provers such as hol.

The theory header specifies that we are working in intuitionistic logic by
designating IFOL rather than FOL as the parent theory:

theory IFOL examples = IFOL:

The proof begins by entering the goal, then applying the rule (→I).

lemma "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))"

1. (∃ y. ∀ x. Q(x, y)) −→ (∀ x. ∃ y. Q(x, y))

apply (rule impI)

1. ∃ y. ∀ x. Q(x, y) =⇒ ∀ x. ∃ y. Q(x, y)

Isabelle’s output is shown as it would appear using Proof General. In this
example, we shall never have more than one subgoal. Applying (→I) re-
places −→ by =⇒, so that ∃y .∀x .Q(x , y) becomes an assumption. We have
the choice of (∃E) and (∀I); let us try the latter.

apply (rule allI)

1.
∧
x. ∃ y. ∀ x. Q(x, y) =⇒ ∃ y. Q(x, y) (∗)

Applying (∀I) replaces the ∀ x (in ASCII, ALL x) by
∧
x (or !!x), replac-

ing FOL’s universal quantifier by Isabelle’s meta universal quantifier. The
bound variable is a parameter of the subgoal. We now must choose between
(∃I) and (∃E). What happens if the wrong rule is chosen?

apply (rule exI)

1.
∧
x. ∃ y. ∀ x. Q(x, y) =⇒ Q(x, ?y2(x))

The new subgoal 1 contains the function variable ?y2. Instantiating ?y2 can
replace ?y2(x) by a term containing x, even though x is a bound variable.
Now we analyse the assumption ∃y . ∀x .Q(x , y) using elimination rules:

apply (erule exE)

1.
∧
x y. ∀ x. Q(x, y) =⇒ Q(x, ?y2(x))

Applying (∃E) has produced the parameter y and stripped the existential
quantifier from the assumption. But the subgoal is unprovable: there is no
way to unify ?y2(x) with the bound variable y. Using Proof General, we can
return to the critical point, marked (∗) above. This time we apply (∃E):

apply (erule exE)

1.
∧
x y. ∀ x. Q(x, y) =⇒ ∃ y. Q(x, y)

We now have two parameters and no scheme variables. Applying (∃I) and
(∀E) produces two scheme variables, which are applied to those parameters.
Parameters should be produced early, as this example demonstrates.

CHAPTER 2. FIRST-ORDER LOGIC 11

apply (rule exI)

1.
∧
x y. ∀ x. Q(x, y) =⇒ Q(x, ?y3(x, y))

apply (erule allE)

1.
∧
x y. Q(?x4(x, y), y) =⇒ Q(x, ?y3(x, y))

The subgoal has variables ?y3 and ?x4 applied to both parameters. The
obvious projection functions unify ?x4(x,y) with x and ?y3(x,y) with y.

apply assumption

No subgoals!

done

The theorem was proved in six method invocations, not counting the
abandoned ones. But proof checking is tedious, and the ml tactic
IntPr.fast_tac can prove the theorem in one step.

lemma "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))"

1. (∃ y. ∀ x. Q(x, y)) −→ (∀ x. ∃ y. Q(x, y))

by (tactic *IntPr.fast_tac 1*)

No subgoals!

2.6 An example of intuitionistic negation

The following example demonstrates the specialized forms of implication
elimination. Even propositional formulae can be difficult to prove from the
basic rules; the specialized rules help considerably.

Propositional examples are easy to invent. As Dummett notes [7, page
28], ¬P is classically provable if and only if it is intuitionistically provable;
therefore, P is classically provable if and only if ¬¬P is intuitionistically
provable.1 Proving ¬¬P intuitionistically is much harder than proving P
classically.

Our example is the double negation of the classical tautology (P →
Q) ∨ (Q → P). The first step is apply the unfold method, which expands
negations to implications using the definition ¬P ≡ P → ⊥ and allows use
of the special implication rules.

lemma "~ ~ ((P-->Q) | (Q-->P))"

1. ¬ ¬ ((P −→ Q) ∨ (Q −→ P))

apply (unfold not def)

1. ((P −→ Q) ∨ (Q −→ P) −→ False) −→ False

The next step is a trivial use of (→ I).

apply (rule impI)

1. (P −→ Q) ∨ (Q −→ P) −→ False =⇒ False

1This remark holds only for propositional logic, not if P is allowed to contain quantifiers.

CHAPTER 2. FIRST-ORDER LOGIC 12

By (→ E) it would suffice to prove (P → Q) ∨ (Q → P), but that formula
is not a theorem of intuitionistic logic. Instead, we apply the specialized
implication rule disj_impE . It splits the assumption into two assumptions,
one for each disjunct.

apply (erule disj impE)

1. [[(P −→ Q) −→ False; (Q −→ P) −→ False]] =⇒ False

We cannot hope to prove P → Q or Q → P separately, but their negations
are inconsistent. Applying imp_impE breaks down the assumption ¬(P →
Q), asking to show Q while providing new assumptions P and ¬Q .

apply (erule imp impE)

1. [[(Q −→ P) −→ False; P; Q −→ False]] =⇒ Q

2. [[(Q −→ P) −→ False; False]] =⇒ False

Subgoal 2 holds trivially; let us ignore it and continue working on subgoal 1.
Thanks to the assumption P , we could prove Q → P ; applying imp_impE is
simpler.

apply (erule imp impE)

1. [[P; Q −→ False; Q; P −→ False]] =⇒ P

2. [[P; Q −→ False; False]] =⇒ Q

3. [[(Q −→ P) −→ False; False]] =⇒ False

The three subgoals are all trivial.

apply assumption

1. [[P; Q −→ False; False]] =⇒ Q

2. [[(Q −→ P) −→ False; False]] =⇒ False

apply (erule FalseE)+

No subgoals!

done

This proof is also trivial for the ml tactic IntPr.fast_tac.

2.7 A classical example

To illustrate classical logic, we shall prove the theorem ∃y .∀x .P(y)→ P(x).
Informally, the theorem can be proved as follows. Choose y such that ¬P(y),
if such exists; otherwise ∀x . P(x) is true. Either way the theorem holds.
First, we must work in a theory based on classical logic, the theory FOL :

theory FOL examples = FOL:

The formal proof does not conform in any obvious way to the sketch
given above. Its key step is its first rule, exCI , a classical version of (∃I)
that allows multiple instantiation of the quantifier.

CHAPTER 2. FIRST-ORDER LOGIC 13

lemma "EX y. ALL x. P(y)-->P(x)"

1. ∃ y. ∀ x. P(y) −→ P(x)

apply (rule exCI)

1. ∀ y. ¬ (∀ x. P(y) −→ P(x)) =⇒ ∀ x. P(?a) −→ P(x)

We can either exhibit a term ?a to satisfy the conclusion of subgoal 1, or
produce a contradiction from the assumption. The next steps are routine.

apply (rule allI)

1.
∧
x. ∀ y. ¬ (∀ x. P(y) −→ P(x)) =⇒ P(?a) −→ P(x)

apply (rule impI)

1.
∧
x. [[∀ y. ¬ (∀ x. P(y) −→ P(x)); P(?a)]] =⇒ P(x)

By the duality between ∃ and ∀, applying (∀E) is equivalent to applying (∃I)
again.

apply (erule allE)

1.
∧
x. [[P(?a); ¬ (∀ xa. P(?y3(x)) −→ P(xa))]] =⇒ P(x)

In classical logic, a negated assumption is equivalent to a conclusion. To get
this effect, we create a swapped version of (∀I) and apply it using erule.

apply (erule allI [THEN [2] swap])

1.
∧
x xa. [[P(?a); ¬ P(x)]] =⇒ P(?y3(x)) −→ P(xa)

The operand of erule above denotes the following theorem:

[[¬ (∀ x. ?P1(x));
∧
x. ¬ ?P =⇒ ?P1(x)]] =⇒ ?P

The previous conclusion, P(x), has become a negated assumption.

apply (rule impI)

1.
∧
x xa. [[P(?a); ¬ P(x); P(?y3(x))]] =⇒ P(xa)

The subgoal has three assumptions. We produce a contradiction between
the assumptions ¬P(x) and P(?y3(x)). The proof never instantiates the
unknown ?a.

apply (erule notE)

1.
∧
x xa. [[P(?a); P(?y3(x))]] =⇒ P(x)

apply assumption

No subgoals!

done

The civilised way to prove this theorem is using the blast method, which
automatically uses the classical form of the rule (∃I):

lemma "EX y. ALL x. P(y)-->P(x)"

1. ∃ y. ∀ x. P(y) −→ P(x)

by blast

No subgoals!

If this theorem seems counterintuitive, then perhaps you are an intuitionist.
In constructive logic, proving ∃y . ∀x . P(y) → P(x) requires exhibiting a
particular term t such that ∀x . P(t)→ P(x), which we cannot do without
further knowledge about P .

CHAPTER 2. FIRST-ORDER LOGIC 14

2.8 Derived rules and the classical tactics

Classical first-order logic can be extended with the propositional connective
if (P ,Q ,R), where

if (P ,Q ,R) ≡ P ∧Q ∨ ¬P ∧ R. (if)

Theorems about if can be proved by treating this as an abbreviation, re-
placing if (P ,Q ,R) by P ∧Q ∨ ¬P ∧ R in subgoals. But this duplicates P ,
causing an exponential blowup and an unreadable formula. Introducing
further abbreviations makes the problem worse.

Natural deduction demands rules that introduce and eliminate
if (P ,Q ,R) directly, without reference to its definition. The simple identity

if (P ,Q ,R) ↔ (P → Q) ∧ (¬P → R)

suggests that the if -introduction rule should be

[P]....
Q

[¬P]....
R

if (P ,Q ,R)
(if I)

The if -elimination rule reflects the definition of if (P ,Q ,R) and the elimi-
nation rules for ∨ and ∧.

if (P ,Q ,R)

[P ,Q]....
S

[¬P ,R]....
S

S
(if E)

Having made these plans, we get down to work with Isabelle. The theory
of classical logic, FOL, is extended with the constant if :: [o, o, o]⇒ o. The
axiom if_def asserts the equation (if).

theory If = FOL:

constdefs
if :: "[o,o,o]=>o"

"if(P,Q,R) == P&Q | ~P&R"

We create the file If.thy containing these declarations. (This file is on
directory FOL/ex in the Isabelle distribution.) Typing

use_thy "If";

loads that theory and sets it to be the current context.

CHAPTER 2. FIRST-ORDER LOGIC 15

2.8.1 Deriving the introduction rule

The derivations of the introduction and elimination rules demonstrate the
methods for rewriting with definitions. Classical reasoning is required, so
we use blast.

The introduction rule, given the premises P =⇒ Q and ¬P =⇒ R,
concludes if (P ,Q ,R). We propose this lemma and immediately simplify
using if def to expand the definition of if in the subgoal.

lemma ifI: "[| P ==> Q; ~P ==> R |] ==> if(P,Q,R)"

1. [[P =⇒ Q; ¬ P =⇒ R]] =⇒ if(P, Q, R)

apply (simp add: if def)

1. [[P =⇒ Q; ¬ P =⇒ R]] =⇒ P ∧ Q ∨ ¬ P ∧ R

The rule’s premises, although expressed using meta-level implication (=⇒)
are passed as ordinary implications to blast .

apply blast

No subgoals!

done

2.8.2 Deriving the elimination rule

The elimination rule has three premises, two of which are themselves rules.
The conclusion is simply S .

lemma ifE:

"[| if(P,Q,R); [|P; Q|] ==> S; [|~P; R|] ==> S |] ==> S"

1. [[if(P, Q, R); [[P; Q]] =⇒ S; [[¬ P; R]] =⇒ S]] =⇒ S

apply (simp add: if def)

1. [[P ∧ Q ∨ ¬ P ∧ R; [[P; Q]] =⇒ S; [[¬ P; R]] =⇒ S]] =⇒ S

The proof script is the same as before: simp followed by blast :

apply blast

No subgoals!

done

2.8.3 Using the derived rules

Our new derived rules, ifI and ifE , permit natural proofs of theorems such
as the following:

if (P , if (Q ,A,B), if (Q ,C ,D)) ↔ if (Q , if (P ,A,C), if (P ,B ,D))
if (if (P ,Q ,R),A,B) ↔ if (P , if (Q ,A,B), if (R,A,B))

Proofs also require the classical reasoning rules and the↔ introduction rule
(called iffI : do not confuse with ifI).

To display the if -rules in action, let us analyse a proof step by step.

CHAPTER 2. FIRST-ORDER LOGIC 16

lemma if commute:

"if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"

apply (rule iffI)

1. if(P, if(Q, A, B), if(Q, C, D)) =⇒
if(Q, if(P, A, C), if(P, B, D))

2. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

The if -elimination rule can be applied twice in succession.

apply (erule ifE)

1. [[P; if(Q, A, B)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

2. [[¬ P; if(Q, C, D)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

3. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

apply (erule ifE)

1. [[P; Q; A]] =⇒ if(Q, if(P, A, C), if(P, B, D))

2. [[P; ¬ Q; B]] =⇒ if(Q, if(P, A, C), if(P, B, D))

3. [[¬ P; if(Q, C, D)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

4. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

In the first two subgoals, all assumptions have been reduced to atoms. Now
if -introduction can be applied. Observe how the if -rules break down occur-
rences of if when they become the outermost connective.

apply (rule ifI)

1. [[P; Q; A; Q]] =⇒ if(P, A, C)

2. [[P; Q; A; ¬ Q]] =⇒ if(P, B, D)

3. [[P; ¬ Q; B]] =⇒ if(Q, if(P, A, C), if(P, B, D))

4. [[¬ P; if(Q, C, D)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

5. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

apply (rule ifI)

1. [[P; Q; A; Q; P]] =⇒ A

2. [[P; Q; A; Q; ¬ P]] =⇒ C

3. [[P; Q; A; ¬ Q]] =⇒ if(P, B, D)

4. [[P; ¬ Q; B]] =⇒ if(Q, if(P, A, C), if(P, B, D))

5. [[¬ P; if(Q, C, D)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

6. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

Where do we stand? The first subgoal holds by assumption; the second and
third, by contradiction. This is getting tedious. We could use the classical
reasoner, but first let us extend the default claset with the derived rules
for if .

declare ifI [intro!]

declare ifE [elim!]

CHAPTER 2. FIRST-ORDER LOGIC 17

With these declarations, we could have proved this theorem with a single
call to blast. Here is another example:

lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"

1. if(if(P, Q, R), A, B) ←→ if(P, if(Q, A, B), if(R, A, B))

by blast

2.8.4 Derived rules versus definitions

Dispensing with the derived rules, we can treat if as an abbreviation, and
let blast_tac prove the expanded formula. Let us redo the previous proof:

lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"

1. if(if(P, Q, R), A, B) ←→ if(P, if(Q, A, B), if(R, A, B))

This time, we simply unfold using the definition of if :

apply (simp add: if def)

1. (P ∧ Q ∨ ¬ P ∧ R) ∧ A ∨ (¬ P ∨ ¬ Q) ∧ (P ∨ ¬ R) ∧ B ←→
P ∧ (Q ∧ A ∨ ¬ Q ∧ B) ∨ ¬ P ∧ (R ∧ A ∨ ¬ R ∧ B)

We are left with a subgoal in pure first-order logic, and it falls to blast :

apply blast

No subgoals!

Expanding definitions reduces the extended logic to the base logic. This
approach has its merits, but it can be slow. In these examples, proofs using
the derived rules for if run about six times faster than proofs using just the
rules of first-order logic.

Expanding definitions can also make it harder to diagnose errors. Sup-
pose we are having difficulties in proving some goal. If by expanding defi-
nitions we have made it unreadable, then we have little hope of diagnosing
the problem.

Attempts at program verification often yield invalid assertions. Let us
try to prove one:

lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))"

1. if(if(P, Q, R), A, B) ←→ if(P, if(Q, A, B), if(R, B, A))

Calling blast yields an uninformative failure message. We can get a closer
look at the situation by applying auto .

apply auto

1. [[A; ¬ P; R]] =⇒ B

2. [[B; ¬ P; ¬ R]] =⇒ A

3. [[B; ¬ P; R]] =⇒ A

4. [[¬ R; A; ¬ B; ¬ P]] =⇒ False

CHAPTER 2. FIRST-ORDER LOGIC 18

Subgoal 1 is unprovable and yields a countermodel: P and B are false
while R and A are true. This truth assignment reduces the main goal to
true ↔ false, which is of course invalid.

We can repeat this analysis by expanding definitions, using just the rules
of first-order logic:

lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))"

1. if(if(P, Q, R), A, B) ←→ if(P, if(Q, A, B), if(R, B, A))

apply (simp add: if def)

1. (P ∧ Q ∨ ¬ P ∧ R) ∧ A ∨ (¬ P ∨ ¬ Q) ∧ (P ∨ ¬ R) ∧ B ←→
P ∧ (Q ∧ A ∨ ¬ Q ∧ B) ∨ ¬ P ∧ (R ∧ B ∨ ¬ R ∧ A)

Again blast would fail, so we try auto :

apply (auto)

1. [[A; ¬ P; R]] =⇒ B

2. [[A; ¬ P; R; ¬ B]] =⇒ Q

3. [[B; ¬ R; ¬ P; ¬ A]] =⇒ False

4. [[B; ¬ P; ¬ A; ¬ R; Q]] =⇒ False

5. [[B; ¬ Q; ¬ R; ¬ P; ¬ A]] =⇒ False

6. [[B; ¬ A; ¬ P; R]] =⇒ False

7. [[¬ P; A; ¬ B; ¬ R]] =⇒ False

8. [[¬ P; A; ¬ B; ¬ R]] =⇒ Q

Subgoal 1 yields the same countermodel as before. But each proof step has
taken six times as long, and the final result contains twice as many subgoals.

Expanding your definitions usually makes proofs more difficult. This is
why the classical prover has been designed to accept derived rules.

Chapter 3

Zermelo-Fraenkel Set Theory

The theory ZF implements Zermelo-Fraenkel set theory [9, 22] as an exten-
sion of FOL, classical first-order logic. The theory includes a collection of
derived natural deduction rules, for use with Isabelle’s classical reasoner.
Some of it is based on the work of Noël [12].

A tremendous amount of set theory has been formally developed, includ-
ing the basic properties of relations, functions, ordinals and cardinals. Sig-
nificant results have been proved, such as the Schröder-Bernstein Theorem,
the Wellordering Theorem and a version of Ramsey’s Theorem. ZF provides
both the integers and the natural numbers. General methods have been de-
veloped for solving recursion equations over monotonic functors; these have
been applied to yield constructions of lists, trees, infinite lists, etc.

ZF has a flexible package for handling inductive definitions, such as in-
ference systems, and datatype definitions, such as lists and trees. Moreover
it handles coinductive definitions, such as bisimulation relations, and co-
datatype definitions, such as streams. It provides a streamlined syntax for
defining primitive recursive functions over datatypes.

Published articles [15, 17] describe ZF less formally than this chap-
ter. Isabelle employs a novel treatment of non-well-founded data structures
within the standard zf axioms including the Axiom of Foundation [19].

3.1 Which version of axiomatic set theory?

The two main axiom systems for set theory are Bernays-Gödel (bg) and
Zermelo-Fraenkel (zf). Resolution theorem provers can use bg because it is
finite [3, 21]. zf does not have a finite axiom system because of its Axiom
Scheme of Replacement. This makes it awkward to use with many theorem
provers, since instances of the axiom scheme have to be invoked explicitly.
Since Isabelle has no difficulty with axiom schemes, we may adopt either
axiom system.

These two theories differ in their treatment of classes, which are col-

19

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 20

lections that are ‘too big’ to be sets. The class of all sets, V , cannot be a
set without admitting Russell’s Paradox. In bg, both classes and sets are
individuals; x ∈ V expresses that x is a set. In zf, all variables denote
sets; classes are identified with unary predicates. The two systems define
essentially the same sets and classes, with similar properties. In particular,
a class cannot belong to another class (let alone a set).

Modern set theorists tend to prefer zf because they are mainly concerned
with sets, rather than classes. bg requires tiresome proofs that various
collections are sets; for instance, showing x ∈ {x} requires showing that x
is a set.

3.2 The syntax of set theory

The language of set theory, as studied by logicians, has no constants. The
traditional axioms merely assert the existence of empty sets, unions, pow-
ersets, etc.; this would be intolerable for practical reasoning. The Isa-
belle theory declares constants for primitive sets. It also extends FOL
with additional syntax for finite sets, ordered pairs, comprehension, gen-
eral union/intersection, general sums/products, and bounded quantifiers.
In most other respects, Isabelle implements precisely Zermelo-Fraenkel set
theory.

Figure 3.1 lists the constants and infixes of ZF, while Figure 3.2 presents
the syntax translations. Finally, Figure 3.3 presents the full grammar for
set theory, including the constructs of FOL.

Local abbreviations can be introduced by a let construct whose syntax
appears in Fig. 3.3. Internally it is translated into the constant Let . It can
be expanded by rewriting with its definition, Let_def .

Apart from let, set theory does not use polymorphism. All terms in ZF
have type i , which is the type of individuals and has class term . The type
of first-order formulae, remember, is o .

Infix operators include binary union and intersection (A∪B and A∩B),
set difference (A−B), and the subset and membership relations. Note that
a~:b is translated to ¬(a ∈ b), which is equivalent to a /∈ b. The union
and intersection operators (

⋃
A and

⋂
A) form the union or intersection of

a set of sets;
⋃

A means the same as
⋃

x∈A x . Of these operators, only
⋃

A
is primitive.

The constant Upair constructs unordered pairs; thus Upair(A,B) de-
notes the set {A,B} and Upair(A,A) denotes the singleton {A}. General
union is used to define binary union. The Isabelle version goes on to define
the constant cons :

A ∪ B ≡
⋃

(Upair(A,B))
cons(a,B) ≡ Upair(a, a) ∪ B

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 21

name meta-type description
Let [α, α⇒ β]⇒ β let binder
0 i empty set

cons [i , i]⇒ i finite set constructor
Upair [i , i]⇒ i unordered pairing
Pair [i , i]⇒ i ordered pairing
Inf i infinite set
Pow i ⇒ i powerset

Union Inter i ⇒ i set union/intersection
split [[i , i]⇒ i , i]⇒ i generalized projection

fst snd i ⇒ i projections
converse i ⇒ i converse of a relation

succ i ⇒ i successor
Collect [i , i ⇒ o]⇒ i separation
Replace [i , [i , i]⇒ o]⇒ i replacement

PrimReplace [i , [i , i]⇒ o]⇒ i primitive replacement
RepFun [i , i ⇒ i]⇒ i functional replacement

Pi Sigma [i , i ⇒ i]⇒ i general product/sum
domain i ⇒ i domain of a relation
range i ⇒ i range of a relation
field i ⇒ i field of a relation
Lambda [i , i ⇒ i]⇒ i λ-abstraction

restrict [i , i]⇒ i restriction of a function
The [i ⇒ o]⇒ i definite description
if [o, i , i]⇒ i conditional

Ball Bex [i , i ⇒ o]⇒ o bounded quantifiers

Constants

symbol meta-type priority description
‘‘ [i , i]⇒ i Left 90 image
-‘‘ [i , i]⇒ i Left 90 inverse image
‘ [i , i]⇒ i Left 90 application

Int [i , i]⇒ i Left 70 intersection (∩)
Un [i , i]⇒ i Left 65 union (∪)
- [i , i]⇒ i Left 65 set difference (−)

: [i , i]⇒ o Left 50 membership (∈)
<= [i , i]⇒ o Left 50 subset (⊆)

Infixes

Figure 3.1: Constants of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 22

external internal description
a ~: b ~(a : b) negated membership

{a1, . . ., an} cons(a1,. . .,cons(an,0)) finite set
<a1, . . ., an−1, an> Pair(a1,...,Pair(an−1,an)...) ordered n-tuple

{x:A . P [x]} Collect(A,λx . P [x]) separation
{y . x:A, Q [x , y]} Replace(A,λx y .Q [x , y]) replacement

{b[x] . x:A} RepFun(A,λx . b[x]) functional replacement
INT x:A . B [x] Inter({B [x] . x:A}) general intersection
UN x:A . B [x] Union({B [x] . x:A}) general union

PROD x:A . B [x] Pi(A,λx . B [x]) general product
SUM x:A . B [x] Sigma(A,λx . B [x]) general sum

A -> B Pi(A,λx . B) function space
A * B Sigma(A,λx . B) binary product

THE x . P [x] The(λx . P [x]) definite description
lam x:A . b[x] Lambda(A,λx . b[x]) λ-abstraction

ALL x:A . P [x] Ball(A,λx . P [x]) bounded ∀
EX x:A . P [x] Bex(A,λx . P [x]) bounded ∃

Figure 3.2: Translations for ZF

The {a1, . . .} notation abbreviates finite sets constructed in the obvious man-
ner using cons and ∅ (the empty set) ∈

{a, b, c} ≡ cons(a, cons(b, cons(c, ∅)))

The constant Pair constructs ordered pairs, as in Pair(a,b). Ordered
pairs may also be written within angle brackets, as <a,b>. The n-tuple
<a1,...,an−1,an> abbreviates the nest of pairs

Pair(a1,...,Pair(an−1,an)...).

In ZF, a function is a set of pairs. A ZF function f is simply an individual
as far as Isabelle is concerned: its Isabelle type is i , not say i ⇒ i . The
infix operator ‘ denotes the application of a function set to its argument; we
must write f ‘x , not f (x). The syntax for image is f “A and that for inverse
image is f−“A.

3.3 Binding operators

The constant Collect constructs sets by the principle of separation. The
syntax for separation is {x:A. P [x]}, where P [x] is a formula that may
contain free occurrences of x . It abbreviates the set Collect(A,λx . P [x]),
which consists of all x ∈ A that satisfy P [x]. Note that Collect is an un-
fortunate choice of name: some set theories adopt a set-formation principle,
related to replacement, called collection.

The constant Replace constructs sets by the principle of replacement.
The syntax {y. x:A,Q [x , y]} denotes the set Replace(A,λx y . Q [x , y]),
which consists of all y such that there exists x ∈ A satisfying Q [x , y]. The

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 23

term = expression of type i
| let id = term; . . . ; id = term in term
| if term then term else term
| { term (,term)∗ }
| < term (,term)∗ >
| { id:term . formula }
| { id . id:term, formula }
| { term . id:term }
| term ‘‘ term
| term -‘‘ term
| term ‘ term
| term * term
| term ∩term
| term ∪term
| term - term
| term -> term
| THE id . formula
| lam id:term . term
| INT id:term . term
| UN id:term . term
| PROD id:term . term
| SUM id:term . term

formula = expression of type o
| term : term
| term ~: term
| term <= term
| term = term
| term ~= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id:term . formula
| EX id:term . formula
| ALL id id∗ . formula
| EX id id∗ . formula
| EX! id id∗ . formula

Figure 3.3: Full grammar for ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 24

Replacement Axiom has the condition that Q must be single-valued over A:
for all x ∈ A there exists at most one y satisfying Q [x , y]. A single-valued
binary predicate is also called a class function.

The constant RepFun expresses a special case of replacement, where
Q [x , y] has the form y = b[x]. Such a Q is trivially single-valued, since
it is just the graph of the meta-level function λx . b[x]. The resulting set
consists of all b[x] for x ∈ A. This is analogous to the ml functional map,
since it applies a function to every element of a set. The syntax is {b[x].
x:A}, which expands to RepFun(A,λx . b[x]).

General unions and intersections of indexed families of sets, namely⋃
x∈A B [x] and

⋂
x∈A B [x], are written UN x:A. B [x] and INT x:A. B [x].

Their meaning is expressed using RepFun as⋃
({B [x] . x ∈ A}) and

⋂
({B [x] . x ∈ A}).

General sums
∑

x∈A B [x] and products
∏

x∈A B [x] can be constructed in set
theory, where B [x] is a family of sets over A. They have as special cases
A×B and A→ B , where B is simply a set. This is similar to the situation
in Constructive Type Theory (set theory has ‘dependent sets’) and calls for
similar syntactic conventions. The constants Sigma and Pi construct general
sums and products. Instead of Sigma(A,B) and Pi(A,B) we may write
SUM x:A. B [x] and PROD x:A. B [x]. The special cases as A*B and A->B
abbreviate general sums and products over a constant family.1 Isabelle
accepts these abbreviations in parsing and uses them whenever possible for
printing.

As mentioned above, whenever the axioms assert the existence and
uniqueness of a set, Isabelle’s set theory declares a constant for that set.
These constants can express the definite description operator ιx . P [x],
which stands for the unique a satisfying P [a], if such exists. Since all terms
in ZF denote something, a description is always meaningful, but we do not
know its value unless P [x] defines it uniquely. Using the constant The , we
may write descriptions as The(λx . P [x]) or use the syntax THE x. P [x].

Function sets may be written in λ-notation; λx ∈ A . b[x] stands for
the set of all pairs 〈x , b[x]〉 for x ∈ A. In order for this to be a set, the
function’s domain A must be given. Using the constant Lambda , we may
express function sets as Lambda(A,λx .b[x]) or use the syntax lam x:A. b[x].

Isabelle’s set theory defines two bounded quantifiers:

∀x ∈ A . P [x] abbreviates ∀x . x ∈ A→ P [x]
∃x ∈ A . P [x] abbreviates ∃x . x ∈ A ∧ P [x]

The constants Ball and Bex are defined accordingly. Instead of Ball(A,P)

and Bex(A,P) we may write ALL x:A. P [x] and EX x:A. P [x].
1Unlike normal infix operators, * and -> merely define abbreviations; there are no

constants op * and op ->.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 25

Let_def: Let(s, f) == f(s)

Ball_def: Ball(A,P) == ∀ x. x ∈ A --> P(x)

Bex_def: Bex(A,P) == ∃ x. x ∈ A & P(x)

subset_def: A ⊆ B == ∀ x ∈ A. x ∈ B

extension: A = B <-> A ⊆ B & B ⊆ A

Union_iff: A ∈ Union(C) <-> (∃ B ∈ C. A ∈ B)

Pow_iff: A ∈ Pow(B) <-> A ⊆ B

foundation: A=0 | (∃ x ∈ A. ∀ y ∈ x. y /∈ A)

replacement: (∀ x ∈ A. ∀ y z. P(x,y) & P(x,z) --> y=z) ==>

b ∈ PrimReplace(A,P) <-> (∃ x∈A. P(x,b))

The Zermelo-Fraenkel Axioms

Replace_def: Replace(A,P) ==

PrimReplace(A, %x y. (∃ !z. P(x,z)) & P(x,y))

RepFun_def: RepFun(A,f) == {y . x ∈ A, y=f(x)}

the_def: The(P) == Union({y . x ∈ {0}, P(y)})

if_def: if(P,a,b) == THE z. P & z=a | ~P & z=b

Collect_def: Collect(A,P) == {y . x ∈ A, x=y & P(x)}

Upair_def: Upair(a,b) ==

{y. x∈Pow(Pow(0)), x=0 & y=a | x=Pow(0) & y=b}

Consequences of replacement

Inter_def: Inter(A) == {x ∈ Union(A) . ∀ y ∈ A. x ∈ y}

Un_def: A ∪ B == Union(Upair(A,B))

Int_def: A ∩ B == Inter(Upair(A,B))

Diff_def: A - B == {x ∈ A . x /∈ B}

Union, intersection, difference

Figure 3.4: Rules and axioms of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 26

cons_def: cons(a,A) == Upair(a,a) ∪ A

succ_def: succ(i) == cons(i,i)

infinity: 0 ∈ Inf & (∀ y ∈ Inf. succ(y) ∈ Inf)

Finite and infinite sets

Pair_def: <a,b> == {{a,a}, {a,b}}

split_def: split(c,p) == THE y. ∃ a b. p=<a,b> & y=c(a,b)

fst_def: fst(A) == split(%x y. x, p)

snd_def: snd(A) == split(%x y. y, p)

Sigma_def: Sigma(A,B) ==
⋃
x ∈ A.

⋃
y ∈ B(x). {<x,y>}

Ordered pairs and Cartesian products

converse_def: converse(r) == {z. w∈r, ∃ x y. w=<x,y> & z=<y,x>}

domain_def: domain(r) == {x. w ∈ r, ∃ y. w=<x,y>}

range_def: range(r) == domain(converse(r))

field_def: field(r) == domain(r) ∪ range(r)

image_def: r ‘‘ A == {y∈range(r) . ∃ x ∈ A. <x,y> ∈ r}

vimage_def: r -‘‘ A == converse(r)‘‘A

Operations on relations

lam_def: Lambda(A,b) == {<x,b(x)> . x ∈ A}

apply_def: f‘a == THE y. <a,y> ∈ f

Pi_def: Pi(A,B) == {f∈Pow(Sigma(A,B)). ∀ x∈A. ∃ !y. <x,y>∈f}
restrict_def: restrict(f,A) == lam x ∈ A. f‘x

Functions and general product

Figure 3.5: Further definitions of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 27

3.4 The Zermelo-Fraenkel axioms

The axioms appear in Fig. 3.4. They resemble those presented by Sup-
pes [22]. Most of the theory consists of definitions. In particular, bounded
quantifiers and the subset relation appear in other axioms. Object-level
quantifiers and implications have been replaced by meta-level ones wherever
possible, to simplify use of the axioms.

The traditional replacement axiom asserts

y ∈ PrimReplace(A,P)↔ (∃x ∈ A . P(x , y))

subject to the condition that P(x , y) is single-valued for all x ∈ A. The
Isabelle theory defines Replace to apply PrimReplace to the single-valued
part of P , namely

(∃!z . P(x , z)) ∧ P(x , y).

Thus y ∈ Replace(A,P) if and only if there is some x such that P(x ,−)
holds uniquely for y . Because the equivalence is unconditional, Replace is
much easier to use than PrimReplace ; it defines the same set, if P(x , y) is
single-valued. The nice syntax for replacement expands to Replace.

Other consequences of replacement include replacement for meta-level
functions (RepFun) and definite descriptions (The). Axioms for separation
(Collect) and unordered pairs (Upair) are traditionally assumed, but they
actually follow from replacement [22, pages 237–8].

The definitions of general intersection, etc., are straightforward. Note
the definition of cons, which underlies the finite set notation. The axiom of
infinity gives us a set that contains 0 and is closed under successor (succ).
Although this set is not uniquely defined, the theory names it (Inf) in order
to simplify the construction of the natural numbers.

Further definitions appear in Fig. 3.5. Ordered pairs are defined in the
standard way, 〈a, b〉 ≡ {{a}, {a, b}}. Recall that Sigma(A,B) generalizes
the Cartesian product of two sets. It is defined to be the union of all singleton
sets {〈x , y〉}, for x ∈ A and y ∈ B(x). This is a typical usage of general
union.

The projections fst and snd are defined in terms of the generalized
projection split . The latter has been borrowed from Martin-Löf’s Type
Theory, and is often easier to use than fst and snd .

Operations on relations include converse, domain, range, and image. The
set Pi(A,B) generalizes the space of functions between two sets. Note the
simple definitions of λ-abstraction (using RepFun) and application (using a
definite description). The function restrict(f ,A) has the same values as f ,
but only over the domain A.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 28

ballI: [| !!x. x∈A ==> P(x) |] ==> ∀ x∈A. P(x)

bspec: [| ∀ x∈A. P(x); x∈A |] ==> P(x)

ballE: [| ∀ x∈A. P(x); P(x) ==> Q; x /∈ A ==> Q |] ==> Q

ball_cong: [| A=A’; !!x. x∈A’ ==> P(x) <-> P’(x) |] ==>

(∀ x∈A. P(x)) <-> (∀ x∈A’. P’(x))

bexI: [| P(x); x∈A |] ==> ∃ x∈A. P(x)

bexCI: [| ∀ x∈A. ~P(x) ==> P(a); a∈A |] ==> ∃ x∈A. P(x)

bexE: [| ∃ x∈A. P(x); !!x. [| x∈A; P(x) |] ==> Q |] ==> Q

bex_cong: [| A=A’; !!x. x∈A’ ==> P(x) <-> P’(x) |] ==>

(∃ x∈A. P(x)) <-> (∃ x∈A’. P’(x))

Bounded quantifiers

subsetI: (!!x. x ∈ A ==> x ∈ B) ==> A ⊆ B

subsetD: [| A ⊆ B; c ∈ A |] ==> c ∈ B

subsetCE: [| A ⊆ B; c /∈ A ==> P; c ∈ B ==> P |] ==> P

subset_refl: A ⊆ A

subset_trans: [| A ⊆ B; B ⊆ C |] ==> A ⊆ C

equalityI: [| A ⊆ B; B ⊆ A |] ==> A = B

equalityD1: A = B ==> A ⊆ B

equalityD2: A = B ==> B ⊆ A

equalityE: [| A = B; [| A ⊆ B; B ⊆ A |] ==> P |] ==> P

Subsets and extensionality

emptyE: a ∈ 0 ==> P

empty_subsetI: 0 ⊆ A

equals0I: [| !!y. y ∈ A ==> False |] ==> A=0

equals0D: [| A=0; a ∈ A |] ==> P

PowI: A ⊆ B ==> A ∈ Pow(B)

PowD: A ∈ Pow(B) ==> A ⊆ B

The empty set; power sets

Figure 3.6: Basic derived rules for ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 29

3.5 From basic lemmas to function spaces

Faced with so many definitions, it is essential to prove lemmas. Even trivial
theorems like A∩B = B ∩A would be difficult to prove from the definitions
alone. Isabelle’s set theory derives many rules using a natural deduction
style. Ideally, a natural deduction rule should introduce or eliminate just
one operator, but this is not always practical. For most operators, we may
forget its definition and use its derived rules instead.

3.5.1 Fundamental lemmas

Figure 3.6 presents the derived rules for the most basic operators. The rules
for the bounded quantifiers resemble those for the ordinary quantifiers, but
note that ballE uses a negated assumption in the style of Isabelle’s classical
reasoner. The congruence rules ball_cong and bex_cong are required by
Isabelle’s simplifier, but have few other uses. Congruence rules must be
specially derived for all binding operators, and henceforth will not be shown.

Figure 3.6 also shows rules for the subset and equality relations (proof by
extensionality), and rules about the empty set and the power set operator.

Figure 3.7 presents rules for replacement and separation. The rules for
Replace and RepFun are much simpler than comparable rules for PrimReplace
would be. The principle of separation is proved explicitly, although most
proofs should use the natural deduction rules for Collect. The elimina-
tion rule CollectE is equivalent to the two destruction rules CollectD1 and
CollectD2 , but each rule is suited to particular circumstances. Although
too many rules can be confusing, there is no reason to aim for a minimal set
of rules.

Figure 3.8 presents rules for general union and intersection. The empty
intersection should be undefined. We cannot have

⋂
(∅) = V because V ,

the universal class, is not a set. All expressions denote something in ZF
set theory; the definition of intersection implies

⋂
(∅) = ∅, but this value is

arbitrary. The rule InterI must have a premise to exclude the empty inter-
section. Some of the laws governing intersections require similar premises.

3.5.2 Unordered pairs and finite sets

Figure 3.9 presents the principle of unordered pairing, along with its derived
rules. Binary union and intersection are defined in terms of ordered pairs
(Fig. 3.10). Set difference is also included. The rule UnCI is useful for clas-
sical reasoning about unions, like disjCI ; it supersedes UnI1 and UnI2 , but
these rules are often easier to work with. For intersection and difference we
have both elimination and destruction rules. Again, there is no reason to
provide a minimal rule set.

Figure 3.11 is concerned with finite sets: it presents rules for cons, the

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 30

ReplaceI: [| x∈A; P(x,b); !!y. P(x,y) ==> y=b |] ==>

b∈{y. x∈A, P(x,y)}

ReplaceE: [| b∈{y. x∈A, P(x,y)};

!!x. [| x∈A; P(x,b); ∀ y. P(x,y)-->y=b |] ==> R

|] ==> R

RepFunI: [| a∈A |] ==> f(a)∈{f(x). x∈A}
RepFunE: [| b∈{f(x). x∈A};

!!x.[| x∈A; b=f(x) |] ==> P |] ==> P

separation: a∈{x∈A. P(x)} <-> a∈A & P(a)

CollectI: [| a∈A; P(a) |] ==> a∈{x∈A. P(x)}

CollectE: [| a∈{x∈A. P(x)}; [| a∈A; P(a) |] ==> R |] ==> R

CollectD1: a∈{x∈A. P(x)} ==> a∈A
CollectD2: a∈{x∈A. P(x)} ==> P(a)

Figure 3.7: Replacement and separation

UnionI: [| B∈C; A∈B |] ==> A∈Union(C)
UnionE: [| A∈Union(C); !!B.[| A∈B; B∈C |] ==> R |] ==> R

InterI: [| !!x. x∈C ==> A∈x; c∈C |] ==> A∈Inter(C)
InterD: [| A∈Inter(C); B∈C |] ==> A∈B
InterE: [| A∈Inter(C); A∈B ==> R; B /∈ C ==> R |] ==> R

UN_I: [| a∈A; b∈B(a) |] ==> b∈(
⋃
x∈A. B(x))

UN_E: [| b∈(
⋃
x∈A. B(x)); !!x.[| x∈A; b∈B(x) |] ==> R

|] ==> R

INT_I: [| !!x. x∈A ==> b∈B(x); a∈A |] ==> b∈(
⋂
x∈A. B(x))

INT_E: [| b∈(
⋂
x∈A. B(x)); a∈A |] ==> b∈B(a)

Figure 3.8: General union and intersection

pairing: a∈Upair(b,c) <-> (a=b | a=c)

UpairI1: a∈Upair(a,b)
UpairI2: b∈Upair(a,b)
UpairE: [| a∈Upair(b,c); a=b ==> P; a=c ==> P |] ==> P

Figure 3.9: Unordered pairs

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 31

UnI1: c∈A ==> c∈A ∪ B

UnI2: c∈B ==> c∈A ∪ B

UnCI: (c /∈ B ==> c∈A) ==> c∈A ∪ B

UnE: [| c∈A ∪ B; c∈A ==> P; c∈B ==> P |] ==> P

IntI: [| c∈A; c∈B |] ==> c∈A ∩ B

IntD1: c∈A ∩ B ==> c∈A
IntD2: c∈A ∩ B ==> c∈B
IntE: [| c∈A ∩ B; [| c∈A; c∈B |] ==> P |] ==> P

DiffI: [| c∈A; c /∈ B |] ==> c∈A - B

DiffD1: c∈A - B ==> c∈A
DiffD2: c∈A - B ==> c /∈ B

DiffE: [| c∈A - B; [| c∈A; c /∈ B |] ==> P |] ==> P

Figure 3.10: Union, intersection, difference

consI1: a∈cons(a,B)
consI2: a∈B ==> a∈cons(b,B)
consCI: (a /∈ B ==> a=b) ==> a∈cons(b,B)
consE: [| a∈cons(b,A); a=b ==> P; a∈A ==> P |] ==> P

singletonI: a∈{a}
singletonE: [| a∈{b}; a=b ==> P |] ==> P

Figure 3.11: Finite and singleton sets

succI1: i∈succ(i)
succI2: i∈j ==> i∈succ(j)
succCI: (i /∈ j ==> i=j) ==> i∈succ(j)
succE: [| i∈succ(j); i=j ==> P; i∈j ==> P |] ==> P

succ_neq_0: [| succ(n)=0 |] ==> P

succ_inject: succ(m) = succ(n) ==> m=n

Figure 3.12: The successor function

the_equality: [| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x))=a

theI: ∃ ! x. P(x) ==> P(THE x. P(x))

if_P: P ==> (if P then a else b) = a

if_not_P: ~P ==> (if P then a else b) = b

mem_asym: [| a∈b; b∈a |] ==> P

mem_irrefl: a∈a ==> P

Figure 3.13: Descriptions; non-circularity

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 32

Union_upper: B∈A ==> B ⊆ Union(A)

Union_least: [| !!x. x∈A ==> x ⊆ C |] ==> Union(A) ⊆ C

Inter_lower: B∈A ==> Inter(A) ⊆ B

Inter_greatest: [| a∈A; !!x. x∈A ==> C ⊆ x |] ==> C⊆Inter(A)

Un_upper1: A ⊆ A ∪ B

Un_upper2: B ⊆ A ∪ B

Un_least: [| A ⊆ C; B ⊆ C |] ==> A ∪ B ⊆ C

Int_lower1: A ∩ B ⊆ A

Int_lower2: A ∩ B ⊆ B

Int_greatest: [| C ⊆ A; C ⊆ B |] ==> C ⊆ A ∩ B

Diff_subset: A-B ⊆ A

Diff_contains: [| C ⊆ A; C ∩ B = 0 |] ==> C ⊆ A-B

Collect_subset: Collect(A,P) ⊆ A

Figure 3.14: Subset and lattice properties

finite set constructor, and rules for singleton sets. Figure 3.12 presents
derived rules for the successor function, which is defined in terms of cons.
The proof that succ is injective appears to require the Axiom of Foundation.

Definite descriptions (THE) are defined in terms of the singleton set {0},
but their derived rules fortunately hide this (Fig. 3.13). The rule theI is dif-
ficult to apply because of the two occurrences of ?P . However, the_equality
does not have this problem and the files contain many examples of its use.

Finally, the impossibility of having both a ∈ b and b ∈ a (mem_asym)
is proved by applying the Axiom of Foundation to the set {a, b}. The
impossibility of a ∈ a is a trivial consequence.

3.5.3 Subset and lattice properties

The subset relation is a complete lattice. Unions form least upper bounds;
non-empty intersections form greatest lower bounds. Figure 3.14 shows the
corresponding rules. A few other laws involving subsets are included. Rea-
soning directly about subsets often yields clearer proofs than reasoning about
the membership relation. Section 3.13 below presents an example of this,
proving the equation Pow(A) ∩ Pow(B) = Pow(A ∩ B).

3.5.4 Ordered pairs

Figure 3.15 presents the rules governing ordered pairs, projections and
general sums — in particular, that {{a}, {a, b}} functions as an ordered

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 33

Pair_inject1: <a,b> = <c,d> ==> a=c

Pair_inject2: <a,b> = <c,d> ==> b=d

Pair_inject: [| <a,b> = <c,d>; [| a=c; b=d |] ==> P |] ==> P

Pair_neq_0: <a,b>=0 ==> P

fst_conv: fst(<a,b>) = a

snd_conv: snd(<a,b>) = b

split: split(%x y. c(x,y), <a,b>) = c(a,b)

SigmaI: [| a∈A; b∈B(a) |] ==> <a,b>∈Sigma(A,B)

SigmaE: [| c∈Sigma(A,B);
!!x y.[| x∈A; y∈B(x); c=<x,y> |] ==> P |] ==> P

SigmaE2: [| <a,b>∈Sigma(A,B);
[| a∈A; b∈B(a) |] ==> P |] ==> P

Figure 3.15: Ordered pairs; projections; general sums

pair. This property is expressed as two destruction rules, Pair_inject1 and
Pair_inject2 , and equivalently as the elimination rule Pair_inject .

The rule Pair_neq_0 asserts 〈a, b〉 6= ∅. This is a property of
{{a}, {a, b}}, and need not hold for other encodings of ordered pairs. The
non-standard ordered pairs mentioned below satisfy 〈∅; ∅〉 = ∅.

The natural deduction rules SigmaI and SigmaE assert that Sigma(A,B)
consists of all pairs of the form 〈x , y〉, for x ∈ A and y ∈ B(x). The rule
SigmaE2 merely states that 〈a, b〉 ∈ Sigma(A,B) implies a ∈ A and b ∈ B(a).

In addition, it is possible to use tuples as patterns in abstractions:

%<x,y>. t stands for split(%x y. t)

Nested patterns are translated recursively: %<x,y,z>. t ; %<x,<y,z>>.
t ; split(%x.%<y,z>. t) ; split(%x. split(%y z. t)). The reverse
translation is performed upon printing.

! The translation between patterns and split is performed automatically by the
parser and printer. Thus the internal and external form of a term may differ,

which affects proofs. For example the term (%<x,y>.<y,x>)<a,b> requires the
theorem split to rewrite to <b,a>.

In addition to explicit λ-abstractions, patterns can be used in any vari-
able binding construct which is internally described by a λ-abstraction. Here
are some important examples:

Let: let pattern = t in u

Choice: THE pattern . P

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 34

domainI: <a,b>∈r ==> a∈domain(r)
domainE: [| a∈domain(r); !!y. <a,y>∈r ==> P |] ==> P

domain_subset: domain(Sigma(A,B)) ⊆ A

rangeI: <a,b>∈r ==> b∈range(r)
rangeE: [| b∈range(r); !!x. <x,b>∈r ==> P |] ==> P

range_subset: range(A*B) ⊆ B

fieldI1: <a,b>∈r ==> a∈field(r)
fieldI2: <a,b>∈r ==> b∈field(r)
fieldCI: (<c,a> /∈ r ==> <a,b>∈r) ==> a∈field(r)

fieldE: [| a∈field(r);
!!x. <a,x>∈r ==> P;

!!x. <x,a>∈r ==> P

|] ==> P

field_subset: field(A*A) ⊆ A

Figure 3.16: Domain, range and field of a relation

imageI: [| <a,b>∈r; a∈A |] ==> b∈r‘‘A
imageE: [| b∈r‘‘A; !!x.[| <x,b>∈r; x∈A |] ==> P |] ==> P

vimageI: [| <a,b>∈r; b∈B |] ==> a∈r-‘‘B
vimageE: [| a∈r-‘‘B; !!x.[| <a,x>∈r; x∈B |] ==> P |] ==> P

Figure 3.17: Image and inverse image

Set operations:
⋃

pattern:A. B

Comprehension: { pattern:A . P }

3.5.5 Relations

Figure 3.16 presents rules involving relations, which are sets of ordered pairs.
The converse of a relation r is the set of all pairs 〈y , x 〉 such that 〈x , y〉 ∈ r ;
if r is a function, then converse(r) is its inverse. The rules for the domain
operation, namely domainI and domainE , assert that domain(r) consists of
all x such that r contains some pair of the form 〈x , y〉. The range operation
is similar, and the field of a relation is merely the union of its domain and
range.

Figure 3.17 presents rules for images and inverse images. Note that these
operations are generalisations of range and domain, respectively.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 35

fun_is_rel: f∈Pi(A,B) ==> f ⊆ Sigma(A,B)

apply_equality: [| <a,b>∈f; f∈Pi(A,B) |] ==> f‘a = b

apply_equality2: [| <a,b>∈f; <a,c>∈f; f∈Pi(A,B) |] ==> b=c

apply_type: [| f∈Pi(A,B); a∈A |] ==> f‘a∈B(a)
apply_Pair: [| f∈Pi(A,B); a∈A |] ==> <a,f‘a>∈f
apply_iff: f∈Pi(A,B) ==> <a,b>∈f <-> a∈A & f‘a = b

fun_extension: [| f∈Pi(A,B); g∈Pi(A,D);
!!x. x∈A ==> f‘x = g‘x |] ==> f=g

domain_type: [| <a,b>∈f; f∈Pi(A,B) |] ==> a∈A
range_type: [| <a,b>∈f; f∈Pi(A,B) |] ==> b∈B(a)

Pi_type: [| f∈A->C; !!x. x∈A ==> f‘x∈B(x) |] ==> f∈Pi(A,B)
domain_of_fun: f∈Pi(A,B) ==> domain(f)=A

range_of_fun: f∈Pi(A,B) ==> f∈A->range(f)

restrict: a∈A ==> restrict(f,A) ‘ a = f‘a

restrict_type: [| !!x. x∈A ==> f‘x∈B(x) |] ==>

restrict(f,A)∈Pi(A,B)

Figure 3.18: Functions

lamI: a∈A ==> <a,b(a)>∈(lam x∈A. b(x))

lamE: [| p∈(lam x∈A. b(x)); !!x.[| x∈A; p=<x,b(x)> |] ==> P

|] ==> P

lam_type: [| !!x. x∈A ==> b(x)∈B(x) |] ==> (lam x∈A. b(x))∈Pi(A,B)

beta: a∈A ==> (lam x∈A. b(x)) ‘ a = b(a)

eta: f∈Pi(A,B) ==> (lam x∈A. f‘x) = f

Figure 3.19: λ-abstraction

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 36

fun_empty: 0∈0->0
fun_single: {<a,b>}∈{a} -> {b}

fun_disjoint_Un: [| f∈A->B; g∈C->D; A ∩ C = 0 |] ==>

(f ∪ g)∈(A ∪ C) -> (B ∪ D)

fun_disjoint_apply1: [| a∈A; f∈A->B; g∈C->D; A∩C = 0 |] ==>

(f ∪ g)‘a = f‘a

fun_disjoint_apply2: [| c∈C; f∈A->B; g∈C->D; A∩C = 0 |] ==>

(f ∪ g)‘c = g‘c

Figure 3.20: Constructing functions from smaller sets

3.5.6 Functions

Functions, represented by graphs, are notoriously difficult to reason about.
The ZF theory provides many derived rules, which overlap more than they
ought. This section presents the more important rules.

Figure 3.18 presents the basic properties of Pi(A,B), the generalized
function space. For example, if f is a function and 〈a, b〉 ∈ f , then f ‘a = b
(apply_equality). Two functions are equal provided they have equal do-
mains and deliver equals results (fun_extension).

By Pi_type , a function typing of the form f ∈ A → C can be refined
to the dependent typing f ∈

∏
x∈A B(x), given a suitable family of sets

{B(x)}x∈A. Conversely, by range_of_fun , any dependent typing can be
flattened to yield a function type of the form A→ C ; here, C = range(f).

Among the laws for λ-abstraction, lamI and lamE describe the graph of
the generated function, while beta and eta are the standard conversions.
We essentially have a dependently-typed λ-calculus (Fig. 3.19).

Figure 3.20 presents some rules that can be used to construct functions
explicitly. We start with functions consisting of at most one pair, and may
form the union of two functions provided their domains are disjoint.

3.6 Further developments

The next group of developments is complex and extensive, and only high-
lights can be covered here. It involves many theories and proofs.

Figure 3.21 presents commutative, associative, distributive, and idem-
potency laws of union and intersection, along with other equations.

Theory Bool defines {0, 1} as a set of booleans, with the usual operators
including a conditional (Fig. 3.22). Although ZF is a first-order theory, you
can obtain the effect of higher-order logic using bool -valued functions, for
example. The constant 1 is translated to succ(0).

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 37

Int_absorb: A ∩ A = A

Int_commute: A ∩ B = B ∩ A

Int_assoc: (A ∩ B) ∩ C = A ∩ (B ∩ C)

Int_Un_distrib: (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Un_absorb: A ∪ A = A

Un_commute: A ∪ B = B ∪ A

Un_assoc: (A ∪ B) ∪ C = A ∪ (B ∪ C)

Un_Int_distrib: (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

Diff_cancel: A-A = 0

Diff_disjoint: A ∩ (B-A) = 0

Diff_partition: A ⊆ B ==> A ∪ (B-A) = B

double_complement: [| A ⊆ B; B ⊆ C |] ==> (B - (C-A)) = A

Diff_Un: A - (B ∪ C) = (A-B) ∩ (A-C)

Diff_Int: A - (B ∩ C) = (A-B) ∪ (A-C)

Union_Un_distrib: Union(A ∪ B) = Union(A) ∪ Union(B)

Inter_Un_distrib: [| a ∈ A; b ∈ B |] ==>

Inter(A ∪ B) = Inter(A) ∩ Inter(B)

Int_Union_RepFun: A ∩ Union(B) = (
⋃
C ∈ B. A ∩ C)

Un_Inter_RepFun: b ∈ B ==>

A ∪ Inter(B) = (
⋂
C ∈ B. A ∪ C)

SUM_Un_distrib1: (SUM x ∈ A ∪ B. C(x)) =

(SUM x ∈ A. C(x)) ∪ (SUM x ∈ B. C(x))

SUM_Un_distrib2: (SUM x ∈ C. A(x) ∪ B(x)) =

(SUM x ∈ C. A(x)) ∪ (SUM x ∈ C. B(x))

SUM_Int_distrib1: (SUM x ∈ A ∩ B. C(x)) =

(SUM x ∈ A. C(x)) ∩ (SUM x ∈ B. C(x))

SUM_Int_distrib2: (SUM x ∈ C. A(x) ∩ B(x)) =

(SUM x ∈ C. A(x)) ∩ (SUM x ∈ C. B(x))

Figure 3.21: Equalities

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 38

bool_def: bool == {0,1}

cond_def: cond(b,c,d) == if b=1 then c else d

not_def: not(b) == cond(b,0,1)

and_def: a and b == cond(a,b,0)

or_def: a or b == cond(a,1,b)

xor_def: a xor b == cond(a,not(b),b)

bool_1I: 1 ∈ bool

bool_0I: 0 ∈ bool

boolE: [| c ∈ bool; c=1 ==> P; c=0 ==> P |] ==> P

cond_1: cond(1,c,d) = c

cond_0: cond(0,c,d) = d

Figure 3.22: The booleans

symbol meta-type priority description
+ [i , i]⇒ i Right 65 disjoint union operator

Inl Inr i ⇒ i injections
case [i ⇒ i , i ⇒ i , i]⇒ i conditional for A + B

sum_def: A+B == {0}*A ∪ {1}*B

Inl_def: Inl(a) == <0,a>

Inr_def: Inr(b) == <1,b>

case_def: case(c,d,u) == split(%y z. cond(y, d(z), c(z)), u)

InlI: a ∈ A ==> Inl(a) ∈ A+B

InrI: b ∈ B ==> Inr(b) ∈ A+B

Inl_inject: Inl(a)=Inl(b) ==> a=b

Inr_inject: Inr(a)=Inr(b) ==> a=b

Inl_neq_Inr: Inl(a)=Inr(b) ==> P

sum_iff: u ∈ A+B <-> (∃ x∈A. u=Inl(x)) | (∃ y∈B. u=Inr(y))

case_Inl: case(c,d,Inl(a)) = c(a)

case_Inr: case(c,d,Inr(b)) = d(b)

Figure 3.23: Disjoint unions

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 39

QPair_def: <a;b> == a+b

qsplit_def: qsplit(c,p) == THE y. ∃ a b. p=<a;b> & y=c(a,b)

qfsplit_def: qfsplit(R,z) == ∃ x y. z=<x;y> & R(x,y)

qconverse_def: qconverse(r) == {z. w ∈ r, ∃ x y. w=<x;y> & z=<y;x>}

QSigma_def: QSigma(A,B) ==
⋃
x ∈ A.

⋃
y ∈ B(x). {<x;y>}

qsum_def: A <+> B == ({0} <*> A) ∪ ({1} <*> B)

QInl_def: QInl(a) == <0;a>

QInr_def: QInr(b) == <1;b>

qcase_def: qcase(c,d) == qsplit(%y z. cond(y, d(z), c(z)))

Figure 3.24: Non-standard pairs, products and sums

3.6.1 Disjoint unions

Theory Sum defines the disjoint union of two sets, with injections and a
case analysis operator (Fig. 3.23). Disjoint unions play a role in datatype
definitions, particularly when there is mutual recursion [17].

3.6.2 Non-standard ordered pairs

Theory QPair defines a notion of ordered pair that admits non-well-founded
tupling (Fig. 3.24). Such pairs are written <a;b>. It also defines the elimina-
tor qsplit , the converse operator qconverse , and the summation operator
QSigma . These are completely analogous to the corresponding versions for
standard ordered pairs. The theory goes on to define a non-standard notion
of disjoint sum using non-standard pairs. All of these concepts satisfy the
same properties as their standard counterparts; in addition, <a;b> is con-
tinuous. The theory supports coinductive definitions, for example of infinite
lists [19].

3.6.3 Least and greatest fixedpoints

The Knaster-Tarski Theorem states that every monotone function over a
complete lattice has a fixedpoint. Theory Fixedpt proves the Theorem only
for a particular lattice, namely the lattice of subsets of a set (Fig. 3.25). The
theory defines least and greatest fixedpoint operators with corresponding
induction and coinduction rules. These are essential to many definitions that
follow, including the natural numbers and the transitive closure operator.
The (co)inductive definition package also uses the fixedpoint operators [16].
See Davey and Priestley [5] for more on the Knaster-Tarski Theorem and
my paper [17] for discussion of the Isabelle proofs.

Monotonicity properties are proved for most of the set-forming opera-
tions: union, intersection, Cartesian product, image, domain, range, etc.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 40

bnd_mono_def: bnd_mono(D,h) ==

h(D)⊆D & (∀ W X. W⊆X --> X⊆D --> h(W)⊆h(X))

lfp_def: lfp(D,h) == Inter({X ∈ Pow(D). h(X) ⊆ X})

gfp_def: gfp(D,h) == Union({X ∈ Pow(D). X ⊆ h(X)})

lfp_lowerbound: [| h(A) ⊆ A; A ⊆ D |] ==> lfp(D,h) ⊆ A

lfp_subset: lfp(D,h) ⊆ D

lfp_greatest: [| bnd_mono(D,h);

!!X. [| h(X) ⊆ X; X ⊆ D |] ==> A ⊆ X

|] ==> A ⊆ lfp(D,h)

lfp_Tarski: bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))

induct: [| a ∈ lfp(D,h); bnd_mono(D,h);

!!x. x ∈ h(Collect(lfp(D,h),P)) ==> P(x)

|] ==> P(a)

lfp_mono: [| bnd_mono(D,h); bnd_mono(E,i);

!!X. X ⊆ D ==> h(X) ⊆ i(X)

|] ==> lfp(D,h) ⊆ lfp(E,i)

gfp_upperbound: [| A ⊆ h(A); A ⊆ D |] ==> A ⊆ gfp(D,h)

gfp_subset: gfp(D,h) ⊆ D

gfp_least: [| bnd_mono(D,h);

!!X. [| X ⊆ h(X); X ⊆ D |] ==> X ⊆ A

|] ==> gfp(D,h) ⊆ A

gfp_Tarski: bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))

coinduct: [| bnd_mono(D,h); a ∈ X; X ⊆ h(X ∪ gfp(D,h)); X ⊆ D

|] ==> a ∈ gfp(D,h)

gfp_mono: [| bnd_mono(D,h); D ⊆ E;

!!X. X ⊆ D ==> h(X) ⊆ i(X)

|] ==> gfp(D,h) ⊆ gfp(E,i)

Figure 3.25: Least and greatest fixedpoints

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 41

Fin.emptyI 0 ∈ Fin(A)

Fin.consI [| a ∈ A; b ∈ Fin(A) |] ==> cons(a,b) ∈ Fin(A)

Fin_induct

[| b ∈ Fin(A);

P(0);

!!x y. [| x∈A; y∈Fin(A); x /∈y; P(y) |] ==> P(cons(x,y))

|] ==> P(b)

Fin_mono: A ⊆ B ==> Fin(A) ⊆ Fin(B)

Fin_UnI: [| b ∈ Fin(A); c ∈ Fin(A) |] ==> b ∪ c ∈ Fin(A)

Fin_UnionI: C ∈ Fin(Fin(A)) ==> Union(C) ∈ Fin(A)

Fin_subset: [| c ⊆ b; b ∈ Fin(A) |] ==> c ∈ Fin(A)

Figure 3.26: The finite set operator

These are useful for applying the Knaster-Tarski Fixedpoint Theorem. The
proofs themselves are trivial applications of Isabelle’s classical reasoner.

3.6.4 Finite sets and lists

Theory Finite (Figure 3.26) defines the finite set operator; Fin(A) is the set
of all finite sets over A. The theory employs Isabelle’s inductive definition
package, which proves various rules automatically. The induction rule shown
is stronger than the one proved by the package. The theory also defines the
set of all finite functions between two given sets.

Figure 3.27 presents the set of lists over A, list(A). The definition
employs Isabelle’s datatype package, which defines the introduction and
induction rules automatically, as well as the constructors, case operator
(list case) and recursion operator. The theory then defines the usual list
functions by primitive recursion. See theory List.

3.6.5 Miscellaneous

The theory Perm is concerned with permutations (bijections) and related
concepts. These include composition of relations, the identity relation, and
three specialized function spaces: injective, surjective and bijective. Fig-
ure 3.28 displays many of their properties that have been proved. These
results are fundamental to a treatment of equipollence and cardinality.

Theory Univ defines a ‘universe’ univ(A), which is used by the datatype
package. This set contains A and the natural numbers. Vitally, it is closed
under finite products: univ(A) × univ(A) ⊆ univ(A). This theory also
defines the cumulative hierarchy of axiomatic set theory, which traditionally
is written Vα for an ordinal α. The ‘universe’ is a simple generalization
of Vω.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 42

symbol meta-type priority description
list i ⇒ i lists over some set

list_case [i , [i , i]⇒ i , i]⇒ i conditional for list(A)
map [i ⇒ i , i]⇒ i mapping functional

length i ⇒ i length of a list
rev i ⇒ i reverse of a list

@ [i , i]⇒ i Right 60 append for lists
flat i ⇒ i append of list of lists

NilI: Nil ∈ list(A)

ConsI: [| a ∈ A; l ∈ list(A) |] ==> Cons(a,l) ∈ list(A)

List.induct

[| l ∈ list(A);

P(Nil);

!!x y. [| x ∈ A; y ∈ list(A); P(y) |] ==> P(Cons(x,y))

|] ==> P(l)

Cons_iff: Cons(a,l)=Cons(a’,l’) <-> a=a’ & l=l’

Nil_Cons_iff: Nil 6= Cons(a,l)

list_mono: A ⊆ B ==> list(A) ⊆ list(B)

map_ident: l∈list(A) ==> map(%u. u, l) = l

map_compose: l∈list(A) ==> map(h, map(j,l)) = map(%u. h(j(u)), l)

map_app_distrib: xs∈list(A) ==> map(h, xs@ys) = map(h,xs)@map(h,ys)

map_type

[| l∈list(A); !!x. x∈A ==> h(x)∈B |] ==> map(h,l)∈list(B)
map_flat

ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))

Figure 3.27: Lists

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 43

symbol meta-type priority description
O [i , i]⇒ i Right 60 composition (◦)

id i ⇒ i identity function
inj [i , i]⇒ i injective function space
surj [i , i]⇒ i surjective function space
bij [i , i]⇒ i bijective function space

comp_def: r O s == {xz ∈ domain(s)*range(r) .

∃ x y z. xz=<x,z> & <x,y> ∈ s & <y,z> ∈ r}

id_def: id(A) == (lam x ∈ A. x)

inj_def: inj(A,B) == { f∈A->B. ∀ w∈A. ∀ x∈A. f‘w=f‘x --> w=x }

surj_def: surj(A,B) == { f∈A->B . ∀ y∈B. ∃ x∈A. f‘x=y }

bij_def: bij(A,B) == inj(A,B) ∩ surj(A,B)

left_inverse: [| f∈inj(A,B); a∈A |] ==> converse(f)‘(f‘a) = a

right_inverse: [| f∈inj(A,B); b∈range(f) |] ==>

f‘(converse(f)‘b) = b

inj_converse_inj: f∈inj(A,B) ==> converse(f) ∈ inj(range(f),A)

bij_converse_bij: f∈bij(A,B) ==> converse(f) ∈ bij(B,A)

comp_type: [| s ⊆ A*B; r ⊆ B*C |] ==> (r O s) ⊆ A*C

comp_assoc: (r O s) O t = r O (s O t)

left_comp_id: r ⊆ A*B ==> id(B) O r = r

right_comp_id: r ⊆ A*B ==> r O id(A) = r

comp_func: [| g∈A->B; f∈B->C |] ==> (f O g) ∈ A->C

comp_func_apply: [| g∈A->B; f∈B->C; a∈A |] ==> (f O g)‘a = f‘(g‘a)

comp_inj: [| g∈inj(A,B); f∈inj(B,C) |] ==> (f O g)∈inj(A,C)
comp_surj: [| g∈surj(A,B); f∈surj(B,C) |] ==> (f O g)∈surj(A,C)
comp_bij: [| g∈bij(A,B); f∈bij(B,C) |] ==> (f O g)∈bij(A,C)

left_comp_inverse: f∈inj(A,B) ==> converse(f) O f = id(A)

right_comp_inverse: f∈surj(A,B) ==> f O converse(f) = id(B)

bij_disjoint_Un:

[| f∈bij(A,B); g∈bij(C,D); A ∩ C = 0; B ∩ D = 0 |] ==>

(f ∪ g)∈bij(A ∪ C, B ∪ D)

restrict_bij: [| f∈inj(A,B); C⊆A |] ==> restrict(f,C)∈bij(C, f‘‘C)

Figure 3.28: Permutations

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 44

a ∈ ∅ ↔ ⊥
a ∈ A ∪ B ↔ a ∈ A ∨ a ∈ B
a ∈ A ∩ B ↔ a ∈ A ∧ a ∈ B
a ∈ A− B ↔ a ∈ A ∧ ¬(a ∈ B)

〈a, b〉 ∈ Sigma(A,B) ↔ a ∈ A ∧ b ∈ B(a)
a ∈ Collect(A,P) ↔ a ∈ A ∧ P(a)

(∀x ∈ ∅ . P(x)) ↔ >
(∀x ∈ A .>) ↔ >

Figure 3.29: Some rewrite rules for set theory

Theory QUniv defines a ‘universe’ quniv(A), which is used by the data-
type package to construct codatatypes such as streams. It is analogous to
univ(A) (and is defined in terms of it) but is closed under the non-standard
product and sum.

3.7 Automatic Tools

ZF provides the simplifier and the classical reasoner. Moreover it supplies a
specialized tool to infer ‘types’ of terms.

3.7.1 Simplification and Classical Reasoning

ZF inherits simplification from FOL but adopts it for set theory. The
extraction of rewrite rules takes the ZF primitives into account. It
can strip bounded universal quantifiers from a formula; for example,
∀x ∈ A . f (x) = g(x) yields the conditional rewrite rule x ∈ A =⇒ f (x) =
g(x). Given a ∈ {x ∈ A . P(x)} it extracts rewrite rules from a ∈ A
and P(a). It can also break down a ∈ A ∩ B and a ∈ A− B .

The default simpset used by simp contains congruence rules for all of
ZF’s binding operators. It contains all the conversion rules, such as fst and
snd, as well as the rewrites shown in Fig. 3.29.

Classical reasoner methods such as blast and auto refer to a rich collec-
tion of built-in axioms for all the set-theoretic primitives.

3.7.2 Type-Checking Tactics

Isabelle/ZF provides simple tactics to help automate those proofs that are
essentially type-checking. Such proofs are built by applying rules such as
these:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 45

[| ?P ==> ?a ∈ ?A; ~?P ==> ?b ∈ ?A |]

==> (if ?P then ?a else ?b) ∈ ?A

[| ?m ∈ nat; ?n ∈ nat |] ==> ?m #+ ?n ∈ nat

?a ∈ ?A ==> Inl(?a) ∈ ?A + ?B

In typical applications, the goal has the form t ∈ ?A: in other words, we
have a specific term t and need to infer its ‘type’ by instantiating the set
variable ?A. Neither the simplifier nor the classical reasoner does this job
well. The if-then-else rule, and many similar ones, can make the classical
reasoner loop. The simplifier refuses (on principle) to instantiate variables
during rewriting, so goals such as i#+j ∈ ?A are left unsolved.

The simplifier calls the type-checker to solve rewritten subgoals: this
stage can indeed instantiate variables. If you have defined new constants
and proved type-checking rules for them, then declare the rules using the
attribute TC and the rest should be automatic. In particular, the simplifier
will use type-checking to help satisfy conditional rewrite rules. Call the
method typecheck to break down all subgoals using type-checking rules.
You can add new type-checking rules temporarily like this:

apply (typecheck add: inj_is_fun)

3.8 Natural number and integer arithmetic

Theory Nat defines the natural numbers and mathematical induction, along
with a case analysis operator. The set of natural numbers, here called nat,
is known in set theory as the ordinal ω.

Theory Arith develops arithmetic on the natural numbers (Fig. 3.30).
Addition, multiplication and subtraction are defined by primitive recursion.
Division and remainder are defined by repeated subtraction, which requires
well-founded recursion; the termination argument relies on the divisor’s be-
ing non-zero. Many properties are proved: commutative, associative and
distributive laws, identity and cancellation laws, etc. The most interesting
result is perhaps the theorem a mod b + (a/b)× b = a.

To minimize the need for tedious proofs of t ∈ nat, the arithmetic
operators coerce their arguments to be natural numbers. The function
natify is defined such that natify(n) = n if n is a natural number,
natify(succ(x)) = succ(natify(x)) for all x , and finally natify(x) = 0 in
all other cases. The benefit is that the addition, subtraction, multiplication,
division and remainder operators always return natural numbers, regardless
of their arguments. Algebraic laws (commutative, associative, distributive)
are unconditional. Occurrences of natify as operands of those operators are
simplified away. Any remaining occurrences can either be tolerated or else
eliminated by proving that the argument is a natural number.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 46

symbol meta-type priority description
nat i set of natural numbers

nat_case [i , i ⇒ i , i]⇒ i conditional for nat
#* [i , i]⇒ i Left 70 multiplication
div [i , i]⇒ i Left 70 division
mod [i , i]⇒ i Left 70 modulus
#+ [i , i]⇒ i Left 65 addition
#- [i , i]⇒ i Left 65 subtraction

nat_def: nat == lfp(lam r ∈ Pow(Inf). {0} ∪ {succ(x). x ∈ r}

nat_case_def: nat_case(a,b,k) ==

THE y. k=0 & y=a | (∃ x. k=succ(x) & y=b(x))

nat_0I: 0 ∈ nat

nat_succI: n ∈ nat ==> succ(n) ∈ nat

nat_induct:

[| n ∈ nat; P(0); !!x. [| x ∈ nat; P(x) |] ==> P(succ(x))

|] ==> P(n)

nat_case_0: nat_case(a,b,0) = a

nat_case_succ: nat_case(a,b,succ(m)) = b(m)

add_0_natify: 0 #+ n = natify(n)

add_succ: succ(m) #+ n = succ(m #+ n)

mult_type: m #* n ∈ nat

mult_0: 0 #* n = 0

mult_succ: succ(m) #* n = n #+ (m #* n)

mult_commute: m #* n = n #* m

add_mult_dist: (m #+ n) #* k = (m #* k) #+ (n #* k)

mult_assoc: (m #* n) #* k = m #* (n #* k)

mod_div_equality: m ∈ nat ==> (m div n)#*n #+ m mod n = m

Figure 3.30: The natural numbers

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 47

symbol meta-type priority description
int i set of integers
$* [i , i]⇒ i Left 70 multiplication
$+ [i , i]⇒ i Left 65 addition
$- [i , i]⇒ i Left 65 subtraction
$< [i , i]⇒ o Left 50 < on integers

$<= [i , i]⇒ o Left 50 ≤ on integers

zadd_0_intify: 0 $+ n = intify(n)

zmult_type: m $* n ∈ int

zmult_0: 0 $* n = 0

zmult_commute: m $* n = n $* m

zadd_zmult_dist: (m $+ n) $* k = (m $* k) $+ (n $* k)

zmult_assoc: (m $* n) $* k = m $* (n $* k)

Figure 3.31: The integers

The simplifier automatically cancels common terms on the opposite sides
of subtraction and of relations (=, < and ≤). Here is an example:

1. i #+ j #+ k #- j < k #+ l

apply simp

1. natify(i) < natify(l)

Given the assumptions i ∈nat and l ∈nat, both occurrences of natify

would be simplified away.
Theory Int defines the integers, as equivalence classes of natural num-

bers. Figure 3.31 presents a tidy collection of laws. In fact, a large library of
facts is proved, including monotonicity laws for addition and multiplication,
covering both positive and negative operands.

As with the natural numbers, the need for typing proofs is minimized.
All the operators defined in Fig. 3.31 coerce their operands to integers by
applying the function intify . This function is the identity on integers and
maps other operands to zero.

Decimal notation is provided for the integers. Numbers, written as #nnn
or #-nnn, are represented internally in two’s-complement binary. Expres-
sions involving addition, subtraction and multiplication of numeral constants
are evaluated (with acceptable efficiency) by simplification. The simplifier
also collects similar terms, multiplying them by a numerical coefficient. It
also cancels occurrences of the same terms on the other side of the relational
operators. Example:

1. y $+ z $+ #-3 $* x $+ y $<= x $* #2 $+ z

apply simp

1. #2 $* y $<= #5 $* x

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 48

For more information on the integers, please see the theories on directory
ZF/Integ.

3.9 Datatype definitions

The datatype definition package of ZF constructs inductive datatypes simi-
lar to ml’s. It can also construct coinductive datatypes (codatatypes), which
are non-well-founded structures such as streams. It defines the set using a
fixed-point construction and proves induction rules, as well as theorems for
recursion and case combinators. It supplies mechanisms for reasoning about
freeness. The datatype package can handle both mutual and indirect recur-
sion.

3.9.1 Basics

A datatype definition has the following form:

datatype t1(A1, . . . ,Ah) = constructor1
1 | . . . | constructor1

k1
...

and tn(A1, . . . ,Ah) = constructorn
1 | . . . | constructorn

kn

Here t1, . . . , tn are identifiers and A1, . . . , Ah are variables: the datatype’s
parameters. Each constructor specification has the form

C ("x1:T1", . . . , "xm:Tm")

Here C is the constructor name, and variables x1, . . . , xm are the constructor
arguments, belonging to the sets T1, . . . , Tm , respectively. Typically each
Tj is either a constant set, a datatype parameter (one of A1, . . . , Ah) or
a recursive occurrence of one of the datatypes, say ti(A1, . . . ,Ah). More
complex possibilities exist, but they are much harder to realize. Often,
additional information must be supplied in the form of theorems.

A datatype can occur recursively as the argument of some function F .
This is called a nested (or indirect) occurrence. It is only allowed if the
datatype package is given a theorem asserting that F is monotonic. If the
datatype has indirect occurrences, then Isabelle/ZF does not support recur-
sive function definitions.

A simple example of a datatype is list, which is built-in, and is defined
by

consts list :: "i=>i"

datatype "list(A)" = Nil | Cons ("a ∈ A", "l ∈ list(A)")

Note that the datatype operator must be declared as a constant first. How-
ever, the package declares the constructors. Here, Nil gets type i and Cons

gets type [i , i]⇒ i .

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 49

Trees and forests can be modelled by the mutually recursive datatype
definition

consts

tree :: "i=>i"

forest :: "i=>i"

tree_forest :: "i=>i"

datatype "tree(A)" = Tcons ("a∈A", "f∈forest(A)")
and "forest(A)" = Fnil | Fcons ("t∈tree(A)", "f∈forest(A)")

Here tree(A) is the set of trees over A, forest(A) is the set of forests over
A, and tree_forest(A) is the union of the previous two sets. All three
operators must be declared first.

The datatype term, which is defined by

consts term :: "i=>i"

datatype "term(A)" = Apply ("a ∈ A", "l ∈ list(term(A))")

monos list_mono

is an example of nested recursion. (The theorem list_mono is proved in
theory List, and the term example is developed in theory Induct/Term .)

Freeness of the constructors

Constructors satisfy freeness properties. Constructions are distinct, for ex-
ample Nil 6= Cons(a, l), and they are injective, for example Cons(a, l) =
Cons(a ′, l ′) ↔ a = a ′ ∧ l = l ′. Because the number of freeness is quadratic
in the number of constructors, the datatype package does not prove them.
Instead, it ensures that simplification will prove them dynamically: when
the simplifier encounters a formula asserting the equality of two datatype
constructors, it performs freeness reasoning.

Freeness reasoning can also be done using the classical reasoner, but it is
more complicated. You have to add some safe elimination rules rules to the
claset. For the list datatype, they are called list.free_elims. Occasionally
this exposes the underlying representation of some constructor, which can
be rectified using the command unfold list.con_defs [symmetric].

Structural induction

The datatype package also provides structural induction rules. For data-
types without mutual or nested recursion, the rule has the form exempli-
fied by list.induct in Fig. 3.27. For mutually recursive datatypes, the
induction rule is supplied in two forms. Consider datatype TF. The rule
tree_forest.induct performs induction over a single predicate P, which is
presumed to be defined for both trees and forests:

[| x ∈ tree_forest(A);

!!a f. [| a ∈ A; f ∈ forest(A); P(f) |] ==> P(Tcons(a, f));

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 50

P(Fnil);

!!f t. [| t ∈ tree(A); P(t); f ∈ forest(A); P(f) |]

==> P(Fcons(t, f))

|] ==> P(x)

The rule tree_forest.mutual_induct performs induction over two distinct
predicates, P_tree and P_forest.

[| !!a f.

[| a∈A; f∈forest(A); P_forest(f) |] ==> P_tree(Tcons(a,f));

P_forest(Fnil);

!!f t. [| t∈tree(A); P_tree(t); f∈forest(A); P_forest(f) |]

==> P_forest(Fcons(t, f))

|] ==> (∀ za. za ∈ tree(A) --> P_tree(za)) &

(∀ za. za ∈ forest(A) --> P_forest(za))

For datatypes with nested recursion, such as the term example from
above, things are a bit more complicated. The rule term.induct refers to
the monotonic operator, list :

[| x ∈ term(A);

!!a l. [| a∈A; l∈list(Collect(term(A), P)) |] ==> P(Apply(a,l))

|] ==> P(x)

The theory Induct/Term.thy derives two higher-level induction rules, one of
which is particularly useful for proving equations:

[| t ∈ term(A);

!!x zs. [| x ∈ A; zs ∈ list(term(A)); map(f, zs) = map(g, zs) |]

==> f(Apply(x, zs)) = g(Apply(x, zs))

|] ==> f(t) = g(t)

How this can be generalized to other nested datatypes is a matter for future
research.

The case operator

The package defines an operator for performing case analysis over the data-
type. For list, it is called list_case and satisfies the equations

list_case(f_Nil, f_Cons, []) = f_Nil

list_case(f_Nil, f_Cons, Cons(a, l)) = f_Cons(a, l)

Here f_Nil is the value to return if the argument is Nil and f_Cons is a
function that computes the value to return if the argument has the form
Cons(a, l). The function can be expressed as an abstraction, over patterns
if desired (Sect. 3.5.4).

For mutually recursive datatypes, there is a single case operator. In
the tree/forest example, the constant tree_forest_case handles all of the
constructors of the two datatypes.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 51

datatype

datatype
�� ��

�codatatype
�� �

�

datadecls

datadecls

"
���id arglist "

���=
��� constructor�

� |
���

�

�
� and

�� �

�

constructor

name �
� consargs

�

�
� (

���mixfix)
���

�

consargs

(
��� "

���var :
�� �term "

����
� ,

���
�

)
���

Figure 3.32: Syntax of datatype declarations

3.9.2 Defining datatypes

The theory syntax for datatype definitions is shown in Fig. 3.32. In order
to be well-formed, a datatype definition has to obey the rules stated in the
previous section. As a result the theory is extended with the new types, the
constructors, and the theorems listed in the previous section. The quotation
marks are necessary because they enclose general Isabelle formulæ.

Codatatypes are declared like datatypes and are identical to them in
every respect except that they have a coinduction rule instead of an induc-
tion rule. Note that while an induction rule has the effect of limiting the
values contained in the set, a coinduction rule gives a way of constructing
new values of the set.

Most of the theorems about datatypes become part of the default
simpset. You never need to see them again because the simplifier applies
them automatically.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 52

Specialized methods for datatypes

Induction and case-analysis can be invoked using these special-purpose
methods:

induct_tac x applies structural induction on variable x to subgoal 1, pro-
vided the type of x is a datatype. The induction variable should not
occur among other assumptions of the subgoal.

In some situations, induction is overkill and a case distinction over all con-
structors of the datatype suffices.

case_tac x performs a case analysis for the variable x .

Both tactics can only be applied to a variable, whose typing must be
given in some assumption, for example the assumption x ∈ list(A). The
tactics also work for the natural numbers (nat) and disjoint sums, although
these sets were not defined using the datatype package. (Disjoint sums are
not recursive, so only case_tac is available.)

Structured Isar methods are also available. Below, t stands for the name
of the datatype.

induct set: t is the Isar induction tactic.

cases set: t is the Isar case-analysis tactic.

The theorems proved by a datatype declaration

Here are some more details for the technically minded. Processing the data-
type declaration of a set t produces a name space t containing the following
theorems:

intros the introduction rules
cases the case analysis rule
induct the standard induction rule
mutual_induct the mutual induction rule, if needed
case_eqns equations for the case operator
recursor_eqns equations for the recursor
simps the union of case_eqns and recursor_eqns

con_defs definitions of the case operator and constructors
free_iffs logical equivalences for proving freeness
free_elims elimination rules for proving freeness
defs datatype definition(s)

Furthermore there is the theorem C for every constructor C ; for example,
the list datatype’s introduction rules are bound to the identifiers Nil and
Cons.

For a codatatype, the component coinduct is the coinduction rule, re-
placing the induct component.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 53

See the theories Induct/Ntree and Induct/Brouwer for examples of in-
finitely branching datatypes. See theory Induct/LList for an example of a
codatatype. Some of these theories illustrate the use of additional, undocu-
mented features of the datatype package. Datatype definitions are reduced
to inductive definitions, and the advanced features should be understood in
that light.

3.9.3 Examples

The datatype of binary trees

Let us define the set bt(A) of binary trees over A. The theory must contain
these lines:

consts bt :: "i=>i"

datatype "bt(A)" = Lf | Br ("a∈A", "t1∈bt(A)", "t2∈bt(A)")

After loading the theory, we can prove some theorem. We begin by declaring
the constructor’s typechecking rules as simplification rules:

declare bt.intros [simp]

Our first example is the theorem that no tree equals its left branch. To
make the inductive hypothesis strong enough, the proof requires a quantified
induction formula, but the rule format attribute will remove the quantifiers
before the theorem is stored.

lemma Br neq left [rule format]: "l∈bt(A) ==> ∀ x r. Br(x,l,r) 6=l"

1. l ∈ bt(A) =⇒ ∀ x r. Br(x, l, r) 6= l

This can be proved by the structural induction tactic:

apply (induct tac l)

1. ∀ x r. Br(x, Lf, r) 6= Lf

2.
∧
a t1 t2.

[[a ∈ A; t1 ∈ bt(A); ∀ x r. Br(x, t1, r) 6= t1; t2 ∈ bt(A);

∀ x r. Br(x, t2, r) 6= t2]]
=⇒ ∀ x r. Br(x, Br(a, t1, t2), r) 6= Br(a, t1, t2)

Both subgoals are proved using auto, which performs the necessary freeness
reasoning.

apply auto

No subgoals!

done

An alternative proof uses Isar’s fancy induct method, which automati-
cally quantifies over all free variables:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 54

lemma Br neq left’: "l ∈ bt(A) ==> (!!x r. Br(x, l, r) 6= l)"

apply (induct set: bt)

1.
∧
x r. Br(x, Lf, r) 6= Lf

2.
∧
a t1 t2 x r.

[[a ∈ A; t1 ∈ bt(A);
∧
x r. Br(x, t1, r) 6= t1; t2 ∈ bt(A);∧

x r. Br(x, t2, r) 6= t2]]
=⇒ Br(x, Br(a, t1, t2), r) 6= Br(a, t1, t2)

Compare the form of the induction hypotheses with the corresponding ones
in the previous proof. As before, to conclude requires only auto.

When there are only a few constructors, we might prefer to prove the
freenness theorems for each constructor. This is simple:

lemma Br iff: "Br(a,l,r) = Br(a’,l’,r’) <-> a=a’ & l=l’ & r=r’"

by (blast elim!: bt.free elims)

Here we see a demonstration of freeness reasoning using bt.free elims, but
simpler still is just to apply auto.

An inductive cases declaration generates instances of the case analysis
rule that have been simplified using freeness reasoning.

inductive cases Br in bt: "Br(a, l, r) ∈ bt(A)"

The theorem just created is

[[Br(a, l, r) ∈ bt(A); [[a ∈ A; l ∈ bt(A); r ∈ bt(A)]] =⇒ Q]] =⇒ Q.

It is an elimination rule that from Br(a, l , r) ∈ bt(A) lets us infer a ∈ A,
l ∈ bt(A) and r ∈ bt(A).

Mixfix syntax in datatypes

Mixfix syntax is sometimes convenient. The theory Induct/PropLog makes
a deep embedding of propositional logic:

consts prop :: i

datatype "prop" = Fls

| Var ("n ∈ nat") ("#_" [100] 100)

| "=>" ("p ∈ prop", "q ∈ prop") (infixr 90)

The second constructor has a special #n syntax, while the third constructor
is an infixed arrow.

A giant enumeration type

This example shows a datatype that consists of 60 constructors:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 55

consts enum :: i

datatype

"enum" = C00 | C01 | C02 | C03 | C04 | C05 | C06 | C07 | C08 | C09

| C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19

| C20 | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C28 | C29

| C30 | C31 | C32 | C33 | C34 | C35 | C36 | C37 | C38 | C39

| C40 | C41 | C42 | C43 | C44 | C45 | C46 | C47 | C48 | C49

| C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59

end

The datatype package scales well. Even though all properties are proved
rather than assumed, full processing of this definition takes around two
seconds (on a 1.8GHz machine). The constructors have a balanced repre-
sentation, related to binary notation, so freeness properties can be proved
fast.

lemma "C00 6= C01"

by simp

You need not derive such inequalities explicitly. The simplifier will dispose
of them automatically.

3.9.4 Recursive function definitions

Datatypes come with a uniform way of defining functions, primitive recur-
sion. Such definitions rely on the recursion operator defined by the datatype
package. Isabelle proves the desired recursion equations as theorems.

In principle, one could introduce primitive recursive functions by assert-
ing their reduction rules as axioms. Here is a dangerous way of defining a
recursive function over binary trees:

consts n nodes :: "i => i"

axioms
n nodes Lf: "n nodes(Lf) = 0"

n nodes Br: "n nodes(Br(a,l,r)) = succ(n nodes(l) #+ n nodes(r))"

Asserting axioms brings the danger of accidentally introducing contradic-
tions. It should be avoided whenever possible.

The primrec declaration is a safe means of defining primitive recursive
functions on datatypes:

consts n nodes :: "i => i"

primrec
"n nodes(Lf) = 0"

"n nodes(Br(a, l, r)) = succ(n nodes(l) #+ n nodes(r))"

Isabelle will now derive the two equations from a low-level definition based
upon well-founded recursion. If they do not define a legitimate recursion,
then Isabelle will reject the declaration.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 56

Syntax of recursive definitions

The general form of a primitive recursive definition is

primrec

reduction rules

where reduction rules specify one or more equations of the form

f x1 . . . xm (C y1 . . . yk) z1 . . . zn = r

such that C is a constructor of the datatype, r contains only the free vari-
ables on the left-hand side, and all recursive calls in r are of the form
f . . . yi . . . for some i . There must be at most one reduction rule for each
constructor. The order is immaterial. For missing constructors, the function
is defined to return zero.

All reduction rules are added to the default simpset. If you would like to
refer to some rule by name, then you must prefix the rule with an identifier.
These identifiers, like those in the rules section of a theory, will be visible
in proof scripts.

The reduction rules become part of the default simpset, which leads to
short proof scripts:

lemma n nodes type [simp]: "t ∈ bt(A) ==> n nodes(t) ∈ nat"

by (induct tac t, auto)

You can even use the primrec form with non-recursive datatypes and
with codatatypes. Recursion is not allowed, but it provides a convenient
syntax for defining functions by cases.

Example: varying arguments

All arguments, other than the recursive one, must be the same in each
equation and in each recursive call. To get around this restriction, use
explict λ-abstraction and function application. For example, let us define
the tail-recursive version of n nodes, using an accumulating argument for
the counter. The second argument, k , varies in recursive calls.

consts n nodes aux :: "i => i"

primrec
"n nodes aux(Lf) = (λk ∈ nat. k)"

"n nodes aux(Br(a,l,r)) =

(λk ∈ nat. n nodes aux(r) ‘ (n nodes aux(l) ‘ succ(k)))"

Now n nodes aux(t) ‘ k is our function in two arguments. We can prove a
theorem relating it to n nodes. Note the quantification over k ∈ nat :

lemma n nodes aux eq [rule format]:

"t ∈ bt(A) ==> ∀ k ∈ nat. n nodes aux(t)‘k = n nodes(t) #+ k"

by (induct tac t, simp all)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 57

Now, we can use n nodes aux to define a tail-recursive version of n nodes :

constdefs
n nodes tail :: "i => i"

"n nodes tail(t) == n nodes aux(t) ‘ 0"

It is easy to prove that n nodes tail is equivalent to n nodes :

lemma "t ∈ bt(A) ==> n nodes tail(t) = n nodes(t)"

by (simp add: n nodes tail def n nodes aux eq)

3.10 Inductive and coinductive definitions

An inductive definition specifies the least set R closed under given rules.
(Applying a rule to elements of R yields a result within R.) For example,
a structural operational semantics is an inductive definition of an evalua-
tion relation. Dually, a coinductive definition specifies the greatest set R
consistent with given rules. (Every element of R can be seen as arising by ap-
plying a rule to elements of R.) An important example is using bisimulation
relations to formalise equivalence of processes and infinite data structures.

A theory file may contain any number of inductive and coinductive defi-
nitions. They may be intermixed with other declarations; in particular, the
(co)inductive sets must be declared separately as constants, and may have
mixfix syntax or be subject to syntax translations.

Each (co)inductive definition adds definitions to the theory and also
proves some theorems. It behaves identially to the analogous inductive defi-
nition except that instead of an induction rule there is a coinduction rule. Its
treatment of coinduction is described in detail in a separate paper,2 which
you might refer to for background information.

3.10.1 The syntax of a (co)inductive definition

An inductive definition has the form

inductive

domains domain declarations
intros introduction rules
monos monotonicity theorems
con_defs constructor definitions
type_intros introduction rules for type-checking
type_elims elimination rules for type-checking

A coinductive definition is identical, but starts with the keyword co-

inductive.
2It appeared in CADE [16]; a longer version is distributed with Isabelle as A Fixedpoint

Approach to (Co)Inductive and (Co)Datatype Definitions.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 58

The monos, con defs, type intros and type elims sections are optional.
If present, each is specified as a list of theorems, which may contain Isar
attributes as usual.

domain declarations are items of the form string ⊆ string, associating each
recursive set with its domain. (The domain is some existing set that
is large enough to hold the new set being defined.)

introduction rules specify one or more introduction rules in the form
ident string, where the identifier gives the name of the rule in the
result structure.

monotonicity theorems are required for each operator applied to a recursive
set in the introduction rules. There must be a theorem of the form
A ⊆ B =⇒ M (A) ⊆ M (B), for each premise t ∈ M (R i) in an
introduction rule!

constructor definitions contain definitions of constants appearing in the in-
troduction rules. The (co)datatype package supplies the construc-
tors’ definitions here. Most (co)inductive definitions omit this section;
one exception is the primitive recursive functions example; see theory
Induct/Primrec.

type intros consists of introduction rules for type-checking the definition:
for demonstrating that the new set is included in its domain. (The
proof uses depth-first search.)

type elims consists of elimination rules for type-checking the definition.
They are presumed to be safe and are applied as often as possible
prior to the type intros search.

The package has a few restrictions:

• The theory must separately declare the recursive sets as constants.

• The names of the recursive sets must be identifiers, not infix operators.

• Side-conditions must not be conjunctions. However, an introduction
rule may contain any number of side-conditions.

• Side-conditions of the form x = t , where the variable x does not occur
in t , will be substituted through the rule mutual induct.

3.10.2 Example of an inductive definition

Below, we shall see how Isabelle/ZF defines the finite powerset operator. The
first step is to declare the constant Fin. Then we must declare it inductively,
with two introduction rules:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 59

consts Fin :: "i=>i"

inductive
domains "Fin(A)" ⊆ "Pow(A)"

intros
emptyI: "0 ∈ Fin(A)"

consI: "[| a ∈ A; b ∈ Fin(A) |] ==> cons(a,b) ∈ Fin(A)"

type intros empty subsetI cons subsetI PowI

type elims PowD [THEN revcut rl]

The resulting theory contains a name space, called Fin. The Fin A introduc-
tion rules can be referred to collectively as Fin.intros, and also individually
as Fin.emptyI and Fin.consI. The induction rule is Fin.induct.

The chief problem with making (co)inductive definitions involves type-
checking the rules. Sometimes, additional theorems need to be supplied
under type_intros or type_elims. If the package fails when trying to prove
your introduction rules, then set the flag trace_induct to true and try
again. (See the manual A Fixedpoint Approach . . . for more discussion of
type-checking.)

In the example above, Pow(A) is given as the domain of Fin(A), for
obviously every finite subset of A is a subset of A. However, the inductive
definition package can only prove that given a few hints. Here is the output
that results (with the flag set) when the type_intros and type_elims are
omitted from the inductive definition above:

Inductive definition Finite.Fin

Fin(A) ==

lfp(Pow(A),

%X. z∈Pow(A) . z = 0 | (∃ a b. z = cons(a,b) & a∈A & b∈X))
Proving monotonicity...

Proving the introduction rules...

The type-checking subgoal:

0 ∈ Fin(A)

1. 0 ∈ Pow(A)

The subgoal after monos, type_elims:

0 ∈ Fin(A)

1. 0 ∈ Pow(A)

*** prove_goal: tactic failed

We see the need to supply theorems to let the package prove ∅ ∈ Pow(A).
Restoring the type_intros but not the type_elims, we again get an error
message:

The type-checking subgoal:

0 ∈ Fin(A)

1. 0 ∈ Pow(A)

The subgoal after monos, type_elims:

0 ∈ Fin(A)

1. 0 ∈ Pow(A)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 60

The type-checking subgoal:

cons(a, b) ∈ Fin(A)

1. [| a ∈ A; b ∈ Fin(A) |] ==> cons(a, b) ∈ Pow(A)

The subgoal after monos, type_elims:

cons(a, b) ∈ Fin(A)

1. [| a ∈ A; b ∈ Pow(A) |] ==> cons(a, b) ∈ Pow(A)

*** prove_goal: tactic failed

The first rule has been type-checked, but the second one has failed. The
simplest solution to such problems is to prove the failed subgoal separately
and to supply it under type_intros. The solution actually used is to supply,
under type_elims, a rule that changes b ∈ Pow(A) to b ⊆ A; together with
cons_subsetI and PowI, it is enough to complete the type-checking.

3.10.3 Further examples

An inductive definition may involve arbitrary monotonic operators. Here is
a standard example: the accessible part of a relation. Note the use of Pow

in the introduction rule and the corresponding mention of the rule Pow mono

in the monos list. If the desired rule has a universally quantified premise,
usually the effect can be obtained using Pow.

consts acc :: "i => i"

inductive
domains "acc(r)" ⊆ "field(r)"

intros
vimage: "[| r-‘‘{a} ∈ Pow(acc(r)); a ∈ field(r) |]

==> a ∈ acc(r)"

monos Pow mono

Finally, here are some coinductive definitions. We begin by defining lazy
(potentially infinite) lists as a codatatype:

consts llist :: "i=>i"

codatatype
"llist(A)" = LNil | LCons ("a ∈ A", "l ∈ llist(A)")

The notion of equality on such lists is modelled as a bisimulation:

consts lleq :: "i=>i"

coinductive
domains "lleq(A)" <= "llist(A) * llist(A)"

intros
LNil: "<LNil, LNil> ∈ lleq(A)"

LCons: "[| a ∈ A; <l,l’> ∈ lleq(A) |]

==> <LCons(a,l), LCons(a,l’)> ∈ lleq(A)"

type intros llist.intros

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 61

This use of type_intros is typical: the relation concerns the codatatype
llist, so naturally the introduction rules for that codatatype will be re-
quired for type-checking the rules.

The Isabelle distribution contains many other inductive definitions. Sim-
ple examples are collected on subdirectory ZF/Induct. The directory Coind

and the theory ZF/Induct/LList contain coinductive definitions. Larger ex-
amples may be found on other subdirectories of ZF, such as IMP, and Resid.

3.10.4 Theorems generated

Each (co)inductive set defined in a theory file generates a name space con-
taining the following elements:

intros the introduction rules
elim the elimination (case analysis) rule
induct the standard induction rule
mutual_induct the mutual induction rule, if needed
defs definitions of inductive sets
bnd_mono monotonicity property
dom_subset inclusion in ‘bounding set’

Furthermore, each introduction rule is available under its declared name. For
a codatatype, the component coinduct is the coinduction rule, replacing the
induct component.

Recall that the inductive cases declaration generates simplified in-
stances of the case analysis rule. It is as useful for inductive definitions as it
is for datatypes. There are many examples in the theory Induct/Comb, which
is discussed at length elsewhere [18]. The theory first defines the datatype
comb of combinators:

consts comb :: i

datatype "comb" = K

| S

| "#" ("p ∈ comb", "q ∈ comb") (infixl 90)

The theory goes on to define contraction and parallel contraction inductively.
Then the theory Induct/Comb.thy defines special cases of contraction, such
as this one:

inductive cases K contractE [elim!]: "K -1-> r"

The theorem just created is K -1-> r =⇒ Q, which expresses that the com-
binator K cannot reduce to anything. (From the assumption K-1->r, we can
conclude any desired formula Q .) Similar elimination rules for S and appli-
cation are also generated. The attribute elim! shown above supplies the
generated theorem to the classical reasoner. This mode of working allows
effective reasoniung about operational semantics.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 62

3.11 The outer reaches of set theory

The constructions of the natural numbers and lists use a suite of operators for
handling recursive function definitions. I have described the developments
in detail elsewhere [17]. Here is a brief summary:

• Theory Trancl defines the transitive closure of a relation (as a least
fixedpoint).

• Theory WF proves the well-founded recursion theorem, using an elegant
approach of Tobias Nipkow. This theorem permits general recursive
definitions within set theory.

• Theory Ord defines the notions of transitive set and ordinal number.
It derives transfinite induction. A key definition is less than: i < j
if and only if i and j are both ordinals and i ∈ j . As a special case, it
includes less than on the natural numbers.

• Theory Epsilon derives ε-induction and ε-recursion, which are general-
isations of transfinite induction and recursion. It also defines rank(x),
which is the least ordinal α such that x is constructed at stage α of
the cumulative hierarchy (thus x ∈ Vα+1).

Other important theories lead to a theory of cardinal numbers. They
have not yet been written up anywhere. Here is a summary:

• Theory Rel defines the basic properties of relations, such as reflexivity,
symmetry and transitivity.

• Theory EquivClass develops a theory of equivalence classes, not using
the Axiom of Choice.

• Theory Order defines partial orderings, total orderings and wellorder-
ings.

• Theory OrderArith defines orderings on sum and product sets. These
can be used to define ordinal arithmetic and have applications to car-
dinal arithmetic.

• Theory OrderType defines order types. Every wellordering is equivalent
to a unique ordinal, which is its order type.

• Theory Cardinal defines equipollence and cardinal numbers.

• Theory CardinalArith defines cardinal addition and multiplication,
and proves their elementary laws. It proves that there is no greatest
cardinal. It also proves a deep result, namely κ⊗ κ = κ for every infi-
nite cardinal κ; see Kunen [10, page 29]. None of these results assume
the Axiom of Choice, which complicates their proofs considerably.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 63

The following developments involve the Axiom of Choice (AC):

• Theory AC asserts the Axiom of Choice and proves some simple equiv-
alent forms.

• Theory Zorn proves Hausdorff’s Maximal Principle, Zorn’s Lemma and
the Wellordering Theorem, following Abrial and Laffitte [1].

• Theory Cardinal AC uses AC to prove simplified theorems about the
cardinals. It also proves a theorem needed to justify infinitely branch-
ing datatype declarations: if κ is an infinite cardinal and |X (α)| ≤ κ
for all α < κ then |

⋃
α<κ X (α)| ≤ κ.

• Theory InfDatatype proves theorems to justify infinitely branching
datatypes. Arbitrary index sets are allowed, provided their cardinal-
ities have an upper bound. The theory also justifies some unusual
cases of finite branching, involving the finite powerset operator and
the finite function space operator.

3.12 The examples directories

Directory HOL/IMP contains a mechanised version of a semantic equivalence
proof taken from Winskel [24]. It formalises the denotational and operational
semantics of a simple while-language, then proves the two equivalent. It
contains several datatype and inductive definitions, and demonstrates their
use.

The directory ZF/ex contains further developments in ZF set theory.
Here is an overview; see the files themselves for more details. I describe
much of this material in other publications [15, 17, 20].

• File misc.ML contains miscellaneous examples such as Cantor’s Theo-
rem, the Schröder-Bernstein Theorem and the ‘Composition of homo-
morphisms’ challenge [3].

• Theory Ramsey proves the finite exponent 2 version of Ramsey’s The-
orem, following Basin and Kaufmann’s presentation [2].

• Theory Integ develops a theory of the integers as equivalence classes
of pairs of natural numbers.

• Theory Primrec develops some computation theory. It inductively
defines the set of primitive recursive functions and presents a proof
that Ackermann’s function is not primitive recursive.

• Theory Primes defines the Greatest Common Divisor of two natural
numbers and and the “divides” relation.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 64

• Theory Bin defines a datatype for two’s complement binary integers,
then proves rewrite rules to perform binary arithmetic. For instance,
1359×−2468 = −3354012 takes 0.3 seconds.

• Theory BT defines the recursive data structure bt(A), labelled binary
trees.

• Theory Term defines a recursive data structure for terms and term lists.
These are simply finite branching trees.

• Theory TF defines primitives for solving mutually recursive equations
over sets. It constructs sets of trees and forests as an example, includ-
ing induction and recursion rules that handle the mutual recursion.

• Theory Prop proves soundness and completeness of propositional
logic [17]. This illustrates datatype definitions, inductive definitions,
structural induction and rule induction.

• Theory ListN inductively defines the lists of n elements [13].

• Theory Acc inductively defines the accessible part of a relation [13].

• Theory Comb defines the datatype of combinators and inductively de-
fines contraction and parallel contraction. It goes on to prove the
Church-Rosser Theorem. This case study follows Camilleri and Mel-
ham [4].

• Theory LList defines lazy lists and a coinduction principle for proving
equations between them.

3.13 A proof about powersets

To demonstrate high-level reasoning about subsets, let us prove the equa-
tion Pow(A) ∩ Pow(B) = Pow(A ∩ B). Compared with first-order logic, set
theory involves a maze of rules, and theorems have many different proofs.
Attempting other proofs of the theorem might be instructive. This proof
exploits the lattice properties of intersection. It also uses the monotonicity
of the powerset operation, from ZF/mono.ML :

Pow_mono: A ⊆B ==> Pow(A) ⊆Pow(B)

We enter the goal and make the first step, which breaks the equation into
two inclusions by extensionality:

lemma "Pow(A Int B) = Pow(A) Int Pow(B)"

1. Pow(A ∩ B) = Pow(A) ∩ Pow(B)

apply (rule equalityI)

1. Pow(A ∩ B) ⊆ Pow(A) ∩ Pow(B)

2. Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 65

Both inclusions could be tackled straightforwardly using subsetI. A shorter
proof results from noting that intersection forms the greatest lower bound:

apply (rule Int greatest)

1. Pow(A ∩ B) ⊆ Pow(A)

2. Pow(A ∩ B) ⊆ Pow(B)

3. Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B)

Subgoal 1 follows by applying the monotonicity of Pow to A ∩ B ⊆ A; sub-
goal 2 follows similarly:

apply (rule Int lower1 [THEN Pow mono])

1. Pow(A ∩ B) ⊆ Pow(B)

2. Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B)

apply (rule Int lower2 [THEN Pow mono])

1. Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B)

We are left with the opposite inclusion, which we tackle in the straightfor-
ward way:

apply (rule subsetI)

1.
∧
x. x ∈ Pow(A) ∩ Pow(B) =⇒ x ∈ Pow(A ∩ B)

The subgoal is to show x ∈ Pow(A ∩ B) assuming x ∈ Pow(A) ∩ Pow(B);
eliminating this assumption produces two subgoals. The rule IntE treats
the intersection like a conjunction instead of unfolding its definition.

apply (erule IntE)

1.
∧
x. [[x ∈ Pow(A); x ∈ Pow(B)]] =⇒ x ∈ Pow(A ∩ B)

The next step replaces the Pow by the subset relation (⊆).

apply (rule PowI)

1.
∧
x. [[x ∈ Pow(A); x ∈ Pow(B)]] =⇒ x ⊆ A ∩ B

We perform the same replacement in the assumptions. This is a good demon-
stration of the tactic drule:

apply (drule PowD)+

1.
∧
x. [[x ⊆ A; x ⊆ B]] =⇒ x ⊆ A ∩ B

The assumptions are that x is a lower bound of both A and B , but A ∩ B
is the greatest lower bound:

apply (rule Int greatest)

1.
∧
x. [[x ⊆ A; x ⊆ B]] =⇒ x ⊆ A

2.
∧
x. [[x ⊆ A; x ⊆ B]] =⇒ x ⊆ B

To conclude the proof, we clear up the trivial subgoals:

apply (assumption+)

done

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 66

We could have performed this proof instantly by calling blast:

lemma "Pow(A Int B) = Pow(A) Int Pow(B)"

by

Past researchers regarded this as a difficult proof, as indeed it is if all the
symbols are replaced by their definitions.

3.14 Monotonicity of the union operator

For another example, we prove that general union is monotonic: C ⊆ D
implies

⋃
(C) ⊆

⋃
(D). To begin, we tackle the inclusion using subsetI :

lemma "C⊆D ==> Union(C) ⊆ Union(D)"

apply (rule subsetI)

1.
∧
x. [[C ⊆ D; x ∈

⋃
C]] =⇒ x ∈

⋃
D

Big union is like an existential quantifier — the occurrence in the assump-
tions must be eliminated early, since it creates parameters.

apply (erule UnionE)

1.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ x ∈

⋃
D

Now we may apply UnionI , which creates an unknown involving the param-
eters. To show x ∈

⋃
D it suffices to show that x belongs to some element,

say ?B2(x,B), of D .

apply (rule UnionI)

1.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ ?B2(x, B) ∈ D

2.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ x ∈ ?B2(x, B)

Combining the rule subsetD with the assumption C ⊆ D yields ?a ∈ C =⇒
?a ∈ D , which reduces subgoal 1. Note that erule removes the subset
assumption.

apply (erule subsetD)

1.
∧
x B. [[x ∈ B; B ∈ C]] =⇒ ?B2(x, B) ∈ C

2.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ x ∈ ?B2(x, B)

The rest is routine. Observe how the first call to assumption instantiates
?B2(x,B) to B .

apply assumption

1.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ x ∈ B

apply assumption

No subgoals!

done

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 67

Again, blast can prove this theorem in one step.
The theory ZF/equalities.thy has many similar proofs. Reasoning

about general intersection can be difficult because of its anomalous be-
haviour on the empty set. However, blast copes well with these. Here
is a typical example, borrowed from Devlin [6, page 12]:

a ∈ C =⇒
⋂

x∈C

(
A(x) ∩ B(x)

)
=
(⋂
x∈C

A(x)
)
∩
(⋂
x∈C

B(x)
)

3.15 Low-level reasoning about functions

The derived rules lamI, lamE, lam_type, beta and eta support reasoning
about functions in a λ-calculus style. This is generally easier than regarding
functions as sets of ordered pairs. But sometimes we must look at the
underlying representation, as in the following proof of fun_disjoint_apply1 .
This states that if f and g are functions with disjoint domains A and C ,
and if a ∈ A, then (f ∪ g)‘a = f ‘a:

lemma "[| a ∈ A; f ∈ A->B; g ∈ C->D; A ∩ C = 0 |]

==> (f ∪ g)‘a = f‘a"

Using apply_equality , we reduce the equality to reasoning about ordered
pairs. The second subgoal is to verify that f ∪ g is a function, since
Pi(?A,?B) denotes a dependent function space.

apply (rule apply equality)

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ 〈a, f ‘ a〉 ∈ f ∪ g

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

We must show that the pair belongs to f or g ; by UnI1 we choose f :

apply (rule UnI1)

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ 〈a, f ‘ a〉 ∈ f

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

To show 〈a, f ‘a〉 ∈ f we use apply_Pair , which is essentially the converse of
apply_equality :

apply (rule apply Pair)

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ f ∈ Pi(?A2,?B2)

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ a ∈ ?A2

3. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

Using the assumptions f ∈ A → B and a ∈ A, we solve the two subgoals
from apply_Pair . Recall that a Π-set is merely a generalized function space,
and observe that ?A2 gets instantiated to A.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 68

apply assumption

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ a ∈ A

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

apply assumption

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

To construct functions of the form f ∪ g , we apply fun_disjoint_Un :

apply (rule fun disjoint Un)

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ f ∈ ?A3 → ?B3

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ g ∈ ?C3 → ?D3

3. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ ?A3 ∩ ?C3 = 0

The remaining subgoals are instances of the assumptions. Again, observe
how unknowns become instantiated:

apply assumption

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ g ∈ ?C3 → ?D3

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ A ∩ ?C3 = 0

apply assumption

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ A ∩ C = 0

apply assumption

No subgoals!

done

See the theories ZF/func.thy and ZF/WF.thy for more examples of reasoning
about functions.

Bibliography

[1] J. R. Abrial and G. Laffitte. Towards the mechanization of the proofs
of some classical theorems of set theory. preprint, February 1993.

[2] David Basin and Matt Kaufmann. The Boyer-Moore prover and Nuprl:
An experimental comparison. In Gérard Huet and Gordon Plotkin,
editors, Logical Frameworks, pages 89–119. Cambridge University Press,
1991.

[3] Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark
Stickel, and Lawrence Wos. Set theory in first-order logic: Clauses for
Gödel’s axioms. Journal of Automated Reasoning, 2(3):287–327, 1986.

[4] J. Camilleri and T. F. Melham. Reasoning with inductively defined
relations in the HOL theorem prover. Technical Report 265, Computer
Laboratory, University of Cambridge, August 1992.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[6] Keith J. Devlin. Fundamentals of Contemporary Set Theory. Springer,
1979.

[7] Michael Dummett. Elements of Intuitionism. Oxford University Press,
1977.

[8] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic, 57(3):795–807, 1992.

[9] Paul R. Halmos. Naive Set Theory. Van Nostrand, 1960.

[10] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs.
North-Holland, 1980.

[11] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isa-
belle/HOL: A Proof Assistant for Higher-Order Logic. Springer, 2002.
LNCS Tutorial 2283.

69

BIBLIOGRAPHY 70

[12] Philippe Noël. Experimenting with Isabelle in ZF set theory. Journal
of Automated Reasoning, 10(1):15–58, 1993.

[13] Christine Paulin-Mohring. Inductive definitions in the system Coq:
Rules and properties. In M. Bezem and J.F. Groote, editors, Typed
Lambda Calculi and Applications, LNCS 664, pages 328–345. Springer,
1993.

[14] Lawrence C. Paulson. Logic and Computation: Interactive proof with
Cambridge LCF. Cambridge University Press, 1987.

[15] Lawrence C. Paulson. Set theory for verification: I. From foundations
to functions. Journal of Automated Reasoning, 11(3):353–389, 1993.

[16] Lawrence C. Paulson. A fixedpoint approach to implementing
(co)inductive definitions. In Alan Bundy, editor, Automated Deduc-
tion — CADE-12 International Conference, LNAI 814, pages 148–161.
Springer, 1994.

[17] Lawrence C. Paulson. Set theory for verification: II. Induction and
recursion. Journal of Automated Reasoning, 15(2):167–215, 1995.

[18] Lawrence C. Paulson. Generic automatic proof tools. In Robert Veroff,
editor, Automated Reasoning and its Applications: Essays in Honor of
Larry Wos, chapter 3. MIT Press, 1997.

[19] Lawrence C. Paulson. Final coalgebras as greatest fixed points in ZF
set theory. Mathematical Structures in Computer Science, 9(5):545–567,
1999.

[20] Lawrence C. Paulson. A fixedpoint approach to (co)inductive and
(co)datatype definitions. In Gordon Plotkin, Colin Stirling, and Mads
Tofte, editors, Proof, Language, and Interaction: Essays in Honor of
Robin Milner, pages 187–211. MIT Press, 2000.

[21] Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set
theory. Journal of Automated Reasoning, 8(1):91–147, 1992.

[22] Patrick Suppes. Axiomatic Set Theory. Dover, 1972.

[23] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge
University Press, 1962. Paperback edition to *56, abridged from the
2nd edition (1927).

[24] Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, 1993.

Index

#* symbol, 46
#+ symbol, 46
#- symbol, 46
$* symbol, 47
$+ symbol, 47
$- symbol, 47
& symbol, 5
* symbol, 22
+ symbol, 38
- symbol, 21
--> symbol, 5
-> symbol, 22
-‘‘ symbol, 21
: symbol, 21
<-> symbol, 5
<= symbol, 21
= symbol, 5
‘ symbol, 21
‘‘ symbol, 21
| symbol, 5

0 (constant), 21

add_0_natify (theorem), 46
add_mult_dist (theorem), 46
add_succ (theorem), 46
ALL (symbol), 5, 22
All (constant), 5
all_dupE (theorem), 4, 7
all_impE (theorem), 7
allE (theorem), 4, 7
allI (theorem), 6
and_def (theorem), 38
apply_def (theorem), 26
apply_equality (theorem), 35, 36, 67
apply_equality2 (theorem), 35

apply_iff (theorem), 35
apply_Pair (theorem), 35, 67
apply_type (theorem), 35
Arith (theory), 45
arithmetic, 45–48
assumptions

contradictory, 13
auto (method), 17, 18

Ball (constant), 21, 24
ball_cong (theorem), 28, 29
Ball_def (theorem), 25
ballE (theorem), 28, 29
ballI (theorem), 28
beta (theorem), 35, 36
Bex (constant), 21, 24
bex_cong (theorem), 28, 29
Bex_def (theorem), 25
bexCI (theorem), 28
bexE (theorem), 28
bexI (theorem), 28
bij (constant), 43
bij_converse_bij (theorem), 43
bij_def (theorem), 43
bij_disjoint_Un (theorem), 43
blast (method), 13, 15
blast, 66
blast_tac, 17
bnd_mono_def (theorem), 40
Bool (theory), 36
bool_0I (theorem), 38
bool_1I (theorem), 38
bool_def (theorem), 38
boolE (theorem), 38
bspec (theorem), 28

case (constant), 38

71

INDEX 72

case_def (theorem), 38
case_Inl (theorem), 38
case_Inr (theorem), 38
case_tac (method), 52
cases (method), 52
coinduct (theorem), 40
coinductive, 57–61
Collect (constant), 21, 22, 27
Collect_def (theorem), 25
Collect_subset (theorem), 32
CollectD1 (theorem), 29, 30
CollectD2 (theorem), 29, 30
CollectE (theorem), 29, 30
CollectI (theorem), 30
comp_assoc (theorem), 43
comp_bij (theorem), 43
comp_def (theorem), 43
comp_func (theorem), 43
comp_func_apply (theorem), 43
comp_inj (theorem), 43
comp_surj (theorem), 43
comp_type (theorem), 43
cond_0 (theorem), 38
cond_1 (theorem), 38
cond_def (theorem), 38
congruence rules, 29
conj_cong (rule), 4
conj_impE (theorem), 4, 7
conjE (theorem), 7
conjI (theorem), 6
conjunct1 (theorem), 6
conjunct2 (theorem), 6
cons (constant), 20, 21
cons_def (theorem), 26
Cons_iff (theorem), 42
consCI (theorem), 31
consE (theorem), 31
ConsI (theorem), 42
consI1 (theorem), 31
consI2 (theorem), 31
converse (constant), 21, 34
converse_def (theorem), 26

datatype, 48

datatype, 48–55
Diff_cancel (theorem), 37
Diff_contains (theorem), 32
Diff_def (theorem), 25
Diff_disjoint (theorem), 37
Diff_Int (theorem), 37
Diff_partition (theorem), 37
Diff_subset (theorem), 32
Diff_Un (theorem), 37
DiffD1 (theorem), 31
DiffD2 (theorem), 31
DiffE (theorem), 31
DiffI (theorem), 31
disj_impE (theorem), 4, 7, 12
disjCI (theorem), 9
disjE (theorem), 6
disjI1 (theorem), 6
disjI2 (theorem), 6
div symbol, 46
domain (constant), 21, 34
domain_def (theorem), 26
domain_of_fun (theorem), 35
domain_subset (theorem), 34
domain_type (theorem), 35
domainE (theorem), 34
domainI (theorem), 34
double_complement (theorem), 37
drule, 65

empty_subsetI (theorem), 28
emptyE (theorem), 28
eq_mp_tac, 8
equalityD1 (theorem), 28
equalityD2 (theorem), 28
equalityE (theorem), 28
equalityI (theorem), 28
equalityI theorem, 64
equals0D (theorem), 28
equals0I (theorem), 28
erule, 13
eta (theorem), 35, 36
EX (symbol), 5, 22
Ex (constant), 5
EX! symbol, 5

INDEX 73

Ex1 (constant), 5
ex1_def (theorem), 6
ex1E (theorem), 7
ex1I (theorem), 7
ex_impE (theorem), 7
exCI (theorem), 9, 12
excluded_middle (theorem), 9
exE (theorem), 6
exI (theorem), 6
extension (theorem), 25

False (constant), 5
FalseE (theorem), 6
field (constant), 21
field_def (theorem), 26
field_subset (theorem), 34
fieldCI (theorem), 34
fieldE (theorem), 34
fieldI1 (theorem), 34
fieldI2 (theorem), 34
Fin.consI (theorem), 41
Fin.emptyI (theorem), 41
Fin_induct (theorem), 41
Fin_mono (theorem), 41
Fin_subset (theorem), 41
Fin_UnI (theorem), 41
Fin_UnionI (theorem), 41
first-order logic, 3–18
Fixedpt (theory), 39
flat (constant), 42
FOL (theory), 3, 9
foundation (theorem), 25
fst (constant), 21, 27
fst_conv (theorem), 33
fst_def (theorem), 26
fun_disjoint_apply1 (theorem), 36,

67
fun_disjoint_apply2 (theorem), 36
fun_disjoint_Un (theorem), 36, 68
fun_empty (theorem), 36
fun_extension (theorem), 35, 36
fun_is_rel (theorem), 35
fun_single (theorem), 36
function applications, 21

gfp_def (theorem), 40
gfp_least (theorem), 40
gfp_mono (theorem), 40
gfp_subset (theorem), 40
gfp_Tarski (theorem), 40
gfp_upperbound (theorem), 40

i (type), 20
id (constant), 43
id_def (theorem), 43
if (constant), 21
if_def (theorem), 14, 25
if_not_P (theorem), 31
if_P (theorem), 31
ifE (theorem), 15
iff_def (theorem), 6
iff_impE (theorem), 7
iffCE (theorem), 9
iffD1 (theorem), 7
iffD2 (theorem), 7
iffE (theorem), 7
iffI (theorem), 7, 15
ifI (theorem), 15
IFOL (theory), 3
image_def (theorem), 26
imageE (theorem), 34
imageI (theorem), 34
imp_impE (theorem), 7, 12
impCE (theorem), 9
impE (theorem), 7, 8
impI (theorem), 6
in symbol, 23
induct (method), 52
induct (theorem), 40
Induct/Term (theory), 49
induct_tac (method), 52
inductive, 57–61
Inf (constant), 21, 27
infinity (theorem), 26
inj (constant), 43
inj_converse_inj (theorem), 43
inj_def (theorem), 43
Inl (constant), 38
Inl_def (theorem), 38

INDEX 74

Inl_inject (theorem), 38
Inl_neq_Inr (theorem), 38
InlI (theorem), 38
Inr (constant), 38
Inr_def (theorem), 38
Inr_inject (theorem), 38
InrI (theorem), 38
INT (symbol), 22
INT symbol, 24
Int (symbol), 21
Int (theory), 47
int (constant), 47
Int_absorb (theorem), 37
Int_assoc (theorem), 37
Int_commute (theorem), 37
Int_def (theorem), 25
INT_E (theorem), 30
Int_greatest (theorem), 32
Int_greatest theorem, 65
INT_I (theorem), 30
Int_lower1 (theorem), 32
Int_lower1 theorem, 65
Int_lower2 (theorem), 32
Int_lower2 theorem, 65
Int_Un_distrib (theorem), 37
Int_Union_RepFun (theorem), 37
IntD1 (theorem), 31
IntD2 (theorem), 31
IntE (theorem), 31, 65
integers, 47
Inter (constant), 21
Inter_def (theorem), 25
Inter_greatest (theorem), 32
Inter_lower (theorem), 32
Inter_Un_distrib (theorem), 37
InterD (theorem), 30
InterE (theorem), 30
InterI (theorem), 29, 30
IntI (theorem), 31
intify (constant), 47
IntPr.best_tac, 9
IntPr.fast_tac, 9, 11
IntPr.inst_step_tac, 8
IntPr.safe_step_tac, 8

IntPr.safe_tac, 8
IntPr.step_tac, 8

lam (symbol), 22
lam symbol, 24
lam_def (theorem), 26
lam_type (theorem), 35
Lambda (constant), 21, 24
λ-abstractions, 22
lamE (theorem), 35, 36
lamI (theorem), 35, 36
left_comp_id (theorem), 43
left_comp_inverse (theorem), 43
left_inverse (theorem), 43
length (constant), 42
Let (constant), 20, 21
let symbol, 23
Let_def (theorem), 20, 25
lfp_def (theorem), 40
lfp_greatest (theorem), 40
lfp_lowerbound (theorem), 40
lfp_mono (theorem), 40
lfp_subset (theorem), 40
lfp_Tarski (theorem), 40
list (constant), 42
List.induct (theorem), 42
list_case (constant), 42
list_mono (theorem), 42
logic (class), 3

map (constant), 42
map_app_distrib (theorem), 42
map_compose (theorem), 42
map_flat (theorem), 42
map_ident (theorem), 42
map_type (theorem), 42
mem_asym (theorem), 31, 32
mem_irrefl (theorem), 31
mod symbol, 46
mod_div_equality (theorem), 46
mp (theorem), 6
mp_tac, 8
mult_0 (theorem), 46
mult_assoc (theorem), 46

INDEX 75

mult_commute (theorem), 46
mult_succ (theorem), 46
mult_type (theorem), 46

Nat (theory), 45
nat (constant), 46
nat_0I (theorem), 46
nat_case (constant), 46
nat_case_0 (theorem), 46
nat_case_def (theorem), 46
nat_case_succ (theorem), 46
nat_def (theorem), 46
nat_induct (theorem), 46
nat_succI (theorem), 46
natify (constant), 45, 47
natural numbers, 45
Nil_Cons_iff (theorem), 42
NilI (theorem), 42
Not (constant), 5
not_def (theorem), 6, 38
not_impE (theorem), 7
notE (theorem), 7, 8
notI (theorem), 7
notnotD (theorem), 9

O (symbol), 43
o (type), 3, 20
or_def (theorem), 38

Pair (constant), 21, 22
Pair_def (theorem), 26
Pair_inject (theorem), 33
Pair_inject1 (theorem), 33
Pair_inject2 (theorem), 33
Pair_neq_0 (theorem), 33
pairing (theorem), 30
Perm (theory), 41
Pi (constant), 21, 24, 36
Pi_def (theorem), 26
Pi_type (theorem), 35, 36
Pow (constant), 21
Pow_iff (theorem), 25
Pow_mono (theorem), 64
PowD (theorem), 28
PowD theorem, 65

PowI (theorem), 28
PowI theorem, 65
primrec, 55
primrec, 55–57
PrimReplace (constant), 21, 27
priorities, 1
PROD (symbol), 22
PROD symbol, 24

qcase_def (theorem), 39
qconverse (constant), 39
qconverse_def (theorem), 39
qfsplit_def (theorem), 39
QInl_def (theorem), 39
QInr_def (theorem), 39
QPair (theory), 39
QPair_def (theorem), 39
QSigma (constant), 39
QSigma_def (theorem), 39
qsplit (constant), 39
qsplit_def (theorem), 39
qsum_def (theorem), 39
QUniv (theory), 44

range (constant), 21
range_def (theorem), 26
range_of_fun (theorem), 35, 36
range_subset (theorem), 34
range_type (theorem), 35
rangeE (theorem), 34
rangeI (theorem), 34
rank (constant), 62
recursion

primitive, 55–57
recursive functions, see recursion
refl (theorem), 6
RepFun (constant), 21, 24, 27, 29
RepFun_def (theorem), 25
RepFunE (theorem), 30
RepFunI (theorem), 30
Replace (constant), 21, 22, 27, 29
Replace_def (theorem), 25
ReplaceE (theorem), 30
ReplaceI (theorem), 30

INDEX 76

replacement (theorem), 25
restrict (constant), 21, 27
restrict (theorem), 35
restrict_bij (theorem), 43
restrict_def (theorem), 26
restrict_type (theorem), 35
rev (constant), 42
right_comp_id (theorem), 43
right_comp_inverse (theorem), 43
right_inverse (theorem), 43

separation (theorem), 30
set theory, 19–68
Sigma (constant), 21, 24, 27, 33
Sigma_def (theorem), 26
SigmaE (theorem), 33
SigmaE2 (theorem), 33
SigmaI (theorem), 33
simplification

of conjunctions, 4
singletonE (theorem), 31
singletonI (theorem), 31
snd (constant), 21, 27
snd_conv (theorem), 33
snd_def (theorem), 26
spec (theorem), 6
split (constant), 21, 27
split (theorem), 33
split_def (theorem), 26
ssubst (theorem), 7
subset_def (theorem), 25
subset_refl (theorem), 28
subset_trans (theorem), 28
subsetCE (theorem), 28
subsetD (theorem), 28, 66
subsetI (theorem), 28, 66
subsetI theorem, 65
subst (theorem), 6
succ (constant), 21, 27
succ_def (theorem), 26
succ_inject (theorem), 31
succ_neq_0 (theorem), 31
succCI (theorem), 31
succE (theorem), 31

succI1 (theorem), 31
succI2 (theorem), 31
SUM (symbol), 22
SUM symbol, 24
Sum (theory), 39
sum_def (theorem), 38
sum_iff (theorem), 38
SUM_Int_distrib1 (theorem), 37
SUM_Int_distrib2 (theorem), 37
SUM_Un_distrib1 (theorem), 37
SUM_Un_distrib2 (theorem), 37
surj (constant), 43
surj_def (theorem), 43
swap (theorem), 9
sym (theorem), 7

term (class), 3, 20
THE (symbol), 22, 32
THE symbol, 24
The (constant), 21, 24, 27
the_def (theorem), 25
the_equality (theorem), 31, 32
theI (theorem), 31, 32
trace_induct, 59
trans (theorem), 7
True (constant), 5
True_def (theorem), 6
TrueI (theorem), 7
Trueprop (constant), 5
type-checking tactics, 44
typecheck, 45

UN (symbol), 22
UN symbol, 24
Un (symbol), 21
Un_absorb (theorem), 37
Un_assoc (theorem), 37
Un_commute (theorem), 37
Un_def (theorem), 25
UN_E (theorem), 30
UN_I (theorem), 30
Un_Int_distrib (theorem), 37
Un_Inter_RepFun (theorem), 37
Un_least (theorem), 32

INDEX 77

Un_upper1 (theorem), 32
Un_upper2 (theorem), 32
UnCI (theorem), 29, 31
UnE (theorem), 31
UnI1 (theorem), 29, 31, 67
UnI2 (theorem), 29, 31
Union (constant), 21
Union_iff (theorem), 25
Union_least (theorem), 32
Union_Un_distrib (theorem), 37
Union_upper (theorem), 32
UnionE (theorem), 30
UnionE theorem, 66
UnionI (theorem), 30, 66
Univ (theory), 41
Upair (constant), 20, 21, 27
Upair_def (theorem), 25
UpairE (theorem), 30
UpairI1 (theorem), 30
UpairI2 (theorem), 30

vimage_def (theorem), 26
vimageE (theorem), 34
vimageI (theorem), 34

xor_def (theorem), 38

zadd_0_intify (theorem), 47
zadd_zmult_dist (theorem), 47
ZF (theory), 19
zmult_0 (theorem), 47
zmult_assoc (theorem), 47
zmult_commute (theorem), 47
zmult_type (theorem), 47

			Syntax definitions

			First-Order Logic

			Syntax and rules of inference

			Generic packages

			Intuitionistic proof procedures

			Classical proof procedures

			An intuitionistic example

			An example of intuitionistic negation

			A classical example

			Derived rules and the classical tactics

			Deriving the introduction rule

			Deriving the elimination rule

			Using the derived rules

			Derived rules versus definitions

			Zermelo-Fraenkel Set Theory

			Which version of axiomatic set theory?

			The syntax of set theory

			Binding operators

			The Zermelo-Fraenkel axioms

			From basic lemmas to function spaces

			Fundamental lemmas

			Unordered pairs and finite sets

			Subset and lattice properties

			Ordered pairs

			Relations

			Functions

			Further developments

			Disjoint unions

			Non-standard ordered pairs

			Least and greatest fixedpoints

			Finite sets and lists

			Miscellaneous

			Automatic Tools

			Simplification and Classical Reasoning

			Type-Checking Tactics

			Natural number and integer arithmetic

			Datatype definitions

			Basics

			Defining datatypes

			Examples

			Recursive function definitions

			Inductive and coinductive definitions

			The syntax of a (co)inductive definition

			Example of an inductive definition

			Further examples

			Theorems generated

			The outer reaches of set theory

			The examples directories

			A proof about powersets

			Monotonicity of the union operator

			Low-level reasoning about functions

Isabelle2008/doc/ref.pdf

λ →

∀
=Isa

be
lle

β
α

The Isabelle Reference Manual

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel

8 June 2008

i

Note: this document is part of the earlier Isabelle documentation, which
is somewhat superseded by the Isabelle/HOL Tutorial [11]. Much of it is
concerned with the old-style theory syntax and the primitives for conducting
proofs using the ML top level. This style of interaction is largely obsolete:
most Isabelle proofs are now written using the Isar language and the Proof
General interface. However, this is the only comprehensive Isabelle reference
manual.

See also the Introduction to Isabelle, which has tutorial examples on con-
ducting proofs using the ML top-level.

Acknowledgements

Tobias Nipkow, of T. U. Munich, wrote most of Chapters 7 and 10, and part of
Chapter 6. Carsten Clasohm also contributed to Chapter 6. Markus Wenzel
contributed to Chapter 8. Jeremy Dawson, Sara Kalvala, Martin Simons
and others suggested changes and corrections. The research has been funded
by the EPSRC (grants GR/G53279, GR/H40570, GR/K57381, GR/K77051,
GR/M75440) and by ESPRIT (projects 3245: Logical Frameworks, and 6453:
Types), and by the DFG Schwerpunktprogramm Deduktion.

Contents

1 Basic Use of Isabelle 1
1.1 Basic interaction with Isabelle 1
1.2 Ending a session . 3
1.3 Reading ML files . 3
1.4 Reading theories . 4
1.5 Setting flags . 5
1.6 Printing of terms and theorems 5

1.6.1 Printing limits . 5
1.6.2 Printing of hypotheses, brackets, types etc. 5
1.6.3 Eta-contraction before printing 6

1.7 Diagnostic messages . 7
1.8 Displaying exceptions as error messages 7

2 Proof Management: The Subgoal Module 9
2.1 Basic commands . 9

2.1.1 Starting a backward proof 9
2.1.2 Applying a tactic . 10
2.1.3 Extracting and storing the proved theorem 11
2.1.4 Extracting axioms and stored theorems 12
2.1.5 Retrieving theorems 13
2.1.6 Undoing and backtracking 14
2.1.7 Printing the proof state 15
2.1.8 Timing . 15

2.2 Shortcuts for applying tactics 15
2.2.1 Refining a given subgoal 15
2.2.2 Scanning shortcuts . 16
2.2.3 Other shortcuts . 17

2.3 Executing batch proofs . 17
2.4 Internal proofs . 18
2.5 Managing multiple proofs . 19

2.5.1 The stack of proof states 19
2.5.2 Saving and restoring proof states 20

2.6 *Debugging and inspecting . 20

ii

CONTENTS iii

2.6.1 Reading and printing terms 20
2.6.2 Inspecting the proof state 20
2.6.3 Filtering lists of rules 21

3 Tactics 22
3.1 Resolution and assumption tactics 22

3.1.1 Resolution tactics . 22
3.1.2 Assumption tactics . 23
3.1.3 Matching tactics . 23
3.1.4 Explicit instantiation 24

3.2 Other basic tactics . 25
3.2.1 Tactic shortcuts . 25
3.2.2 Inserting premises and facts 26
3.2.3 “Putting off” a subgoal 26
3.2.4 Definitions and meta-level rewriting 27
3.2.5 Theorems useful with tactics 27

3.3 Obscure tactics . 28
3.3.1 Renaming parameters in a goal 28
3.3.2 Manipulating assumptions 28
3.3.3 Tidying the proof state 29
3.3.4 Composition: resolution without lifting 29

3.4 *Managing lots of rules . 30
3.4.1 Combined resolution and elim-resolution 30
3.4.2 Discrimination nets for fast resolution 31

3.5 Programming tools for proof strategies 32
3.5.1 Operations on tactics 32
3.5.2 Tracing . 33

3.6 *Sequences . 33
3.6.1 Basic operations on sequences 33
3.6.2 Converting between sequences and lists 34
3.6.3 Combining sequences 34

4 Tacticals 35
4.1 The basic tacticals . 35

4.1.1 Joining two tactics . 35
4.1.2 Joining a list of tactics 36
4.1.3 Repetition tacticals . 36
4.1.4 Identities for tacticals 37

4.2 Control and search tacticals 38
4.2.1 Filtering a tactic’s results 38
4.2.2 Depth-first search . 38

CONTENTS iv

4.2.3 Other search strategies 39
4.2.4 Auxiliary tacticals for searching 39
4.2.5 Predicates and functions useful for searching 40

4.3 Tacticals for subgoal numbering 40
4.3.1 Restricting a tactic to one subgoal 41
4.3.2 Scanning for a subgoal by number 42
4.3.3 Joining tactic functions 43
4.3.4 Applying a list of tactics to 1 43

5 Theorems and Forward Proof 44
5.1 Basic operations on theorems 44

5.1.1 Pretty-printing a theorem 44
5.1.2 Forward proof: joining rules by resolution 45
5.1.3 Expanding definitions in theorems 46
5.1.4 Instantiating unknowns in a theorem 46
5.1.5 Miscellaneous forward rules 47
5.1.6 Taking a theorem apart 48
5.1.7 *Sort hypotheses . 49
5.1.8 Tracing flags for unification 50

5.2 *Primitive meta-level inference rules 50
5.2.1 Assumption rule . 52
5.2.2 Implication rules . 52
5.2.3 Logical equivalence rules 52
5.2.4 Equality rules . 53
5.2.5 The λ-conversion rules 53
5.2.6 Forall introduction rules 53
5.2.7 Forall elimination rules 54
5.2.8 Instantiation of unknowns 54
5.2.9 Freezing/thawing type unknowns 55

5.3 Derived rules for goal-directed proof 55
5.3.1 Proof by assumption 55
5.3.2 Resolution . 55
5.3.3 Composition: resolution without lifting 56
5.3.4 Other meta-rules . 56

5.4 Proof terms . 57
5.4.1 Reconstructing and checking proof terms 59
5.4.2 Parsing and printing proof terms 60

CONTENTS v

6 Theories, Terms and Types 62
6.1 Defining theories . 62

6.1.1 *Classes and arities . 65
6.2 The theory loader . 66
6.3 Locales . 67

6.3.1 Declaring Locales . 67
6.3.2 Locale Scope . 69
6.3.3 Functions for Locales 71

6.4 Basic operations on theories 72
6.4.1 *Theory inclusion . 72
6.4.2 *Primitive theories . 73
6.4.3 Inspecting a theory . 73

6.5 Terms . 73
6.6 *Variable binding . 75
6.7 Certified terms . 76

6.7.1 Printing terms . 76
6.7.2 Making and inspecting certified terms 76

6.8 Types . 77
6.9 Certified types . 77

6.9.1 Printing types . 78
6.9.2 Making and inspecting certified types 78

6.10 Oracles: calling trusted external reasoners 78

7 Defining Logics 81
7.1 Priority grammars . 81
7.2 The Pure syntax . 82

7.2.1 Logical types and default syntax 84
7.2.2 Lexical matters . 85
7.2.3 *Inspecting the syntax 86

7.3 Mixfix declarations . 88
7.3.1 The general mixfix form 88
7.3.2 Example: arithmetic expressions 90
7.3.3 The mixfix template 90
7.3.4 Infixes . 91
7.3.5 Binders . 92

7.4 *Alternative print modes . 93
7.5 Ambiguity of parsed expressions 93
7.6 Example: some minimal logics 94

CONTENTS vi

8 Syntax Transformations 98
8.1 Abstract syntax trees . 98
8.2 Transforming parse trees to ASTs 99
8.3 Transforming ASTs to terms 101
8.4 Printing of terms . 102
8.5 Macros: syntactic rewriting 103

8.5.1 Specifying macros . 105
8.5.2 Applying rules . 106
8.5.3 Example: the syntax of finite sets 108
8.5.4 Example: a parse macro for dependent types 109

8.6 Translation functions . 110
8.6.1 Declaring translation functions 110
8.6.2 The translation strategy 111
8.6.3 Example: a print translation for dependent types . . . 112

8.7 Token translations . 113

9 Substitution Tactics 115
9.1 Substitution rules . 115
9.2 Substitution in the hypotheses 116
9.3 Setting up the package . 117

10 Simplification 120
10.1 Simplification for dummies . 120

10.1.1 Simplification tactics 120
10.1.2 Modifying the current simpset 122

10.2 Simplification sets . 123
10.2.1 Inspecting simpsets . 124
10.2.2 Building simpsets . 124
10.2.3 Accessing the current simpset 125
10.2.4 Rewrite rules . 125
10.2.5 *Simplification procedures 126
10.2.6 *Congruence rules . 127
10.2.7 *The subgoaler . 128
10.2.8 *The solver . 129
10.2.9 *The looper . 131

10.3 The simplification tactics . 132
10.4 Forward rules and conversions 133
10.5 Examples of using the Simplifier 134

10.5.1 A trivial example . 134
10.5.2 An example of tracing 135
10.5.3 Free variables and simplification 136

CONTENTS vii

10.6 Permutative rewrite rules . 137
10.6.1 Example: sums of natural numbers 138
10.6.2 Re-orienting equalities 139

10.7 *Coding simplification procedures 140
10.8 *Setting up the Simplifier . 141

10.8.1 A collection of standard rewrite rules 142
10.8.2 Functions for preprocessing the rewrite rules 142
10.8.3 Making the initial simpset 144
10.8.4 Splitter setup . 145

11 The Classical Reasoner 147
11.1 The sequent calculus . 148
11.2 Simulating sequents by natural deduction 149
11.3 Extra rules for the sequent calculus 150
11.4 Classical rule sets . 151

11.4.1 Adding rules to classical sets 152
11.4.2 Modifying the search step 154

11.5 The classical tactics . 155
11.5.1 The tableau prover . 155
11.5.2 Automatic tactics . 156
11.5.3 Semi-automatic tactics 157
11.5.4 Other classical tactics 158
11.5.5 Depth-limited automatic tactics 158
11.5.6 Single-step tactics . 159
11.5.7 The current claset . 159
11.5.8 Accessing the current claset 160
11.5.9 Other useful tactics . 161
11.5.10 Creating swapped rules 161

11.6 Setting up the classical reasoner 161
11.7 Setting up the combination with the simplifier 162

A Syntax of Isabelle Theories 165

CONTENTS viii

Chapter 1

Basic Use of Isabelle

The Reference Manual is a comprehensive description of Isabelle proper,
including all ml commands, functions and packages. It really is intended
for reference, perhaps for browsing, but not for reading through. It is not a
tutorial, but assumes familiarity with the basic logical concepts of Isabelle.

When you are looking for a way of performing some task, scan the Table
of Contents for a relevant heading. Functions are organized by their purpose,
by their operands (subgoals, tactics, theorems), and by their usefulness. In
each section, basic functions appear first, then advanced functions, and finally
esoteric functions. Use the Index when you are looking for the definition of
a particular Isabelle function.

A few examples are presented. Many example files are distributed with
Isabelle, however; please experiment interactively.

1.1 Basic interaction with Isabelle

We assume that your local Isabelle administrator (this might be you!) has
already installed the Isabelle system together with appropriate object-logics
— otherwise see the README and INSTALL files in the top-level directory of
the distribution on how to do this.

Let 〈isabellehome〉 denote the location where the distribution has been
installed. To run Isabelle from a the shell prompt within an ordinary text
terminal session, simply type

〈isabellehome〉/bin/isabelle

This should start an interactive ml session with the default object-logic (usu-
ally HOL) already pre-loaded.

Subsequently, we assume that the isabelle executable is determined
automatically by the shell, e.g. by adding 〈isabellehome〉/bin to your search
path.1

1Depending on your installation, there may be stand-alone binaries located in some
global directory such as /usr/bin. Do not attempt to copy 〈isabellehome〉/bin/isabelle,
though! See isatool install in The Isabelle System Manual of how to do this properly.

1

CHAPTER 1. BASIC USE OF ISABELLE 2

The object-logic image to load may be also specified explicitly as an
argument to the isabelle command, e.g.

isabelle FOL

This should put you into the world of polymorphic first-order logic (assuming
that an image of FOL has been pre-built).

Isabelle provides no means of storing theorems or internal proof objects
on files. Theorems are simply part of the ml state. To save your work
between sessions, you may dump the ml system state to a file. This is done
automatically when ending the session normally (e.g. by typing control-D),
provided that the image has been opened writable in the first place. The
standard object-logic images are usually read-only, so you have to create a
private working copy first. For example, the following shell command puts
you into a writable Isabelle session of name Foo that initially contains just
plain HOL:

isabelle HOL Foo

Ending the Foo session with control-D will cause the complete ml-world to
be saved somewhere in your home directory2. Make sure there is enough
space available! Then one may later continue at exactly the same point by
running

isabelle Foo

Saving the ml state is not enough. Record, on a file, the top-level com-
mands that generate your theories and proofs. Such a record allows you to
replay the proofs whenever required, for instance after making minor changes
to the axioms. Ideally, these sources will be somewhat intelligible to others
as a formal description of your work.

It is good practice to put all source files that constitute a separate Isabelle
session into an individual directory, together with an ml file called ROOT.ML

that contains appropriate commands to load all other files required. Run-
ning isabelle with option -u automatically loads ROOT.ML on entering the
session. The isatool usedir utility provides some more options to manage
Isabelle sessions, such as automatic generation of theory browsing informa-
tion.

More details about the isabelle and isatool commands may be found
in The Isabelle System Manual.

2The default location is in ~/isabelle/heaps, but this depends on your local config-
uration.

CHAPTER 1. BASIC USE OF ISABELLE 3

There are more comfortable user interfaces than the bare-bones ml top-
level run from a text terminal. The Isabelle executable (note the capital
I) runs one such interface, depending on your local configuration. Again, see
The Isabelle System Manual for more information.

1.2 Ending a session

quit : unit -> unit
exit : int -> unit
commit : unit -> bool

quit(); ends the Isabelle session, without saving the state.

exit i; similar to quit, passing return code i to the operating system.

commit(); saves the current state without ending the session, provided that
the logic image is opened read-write; return value false indicates an
error.

Typing control-D also finishes the session in essentially the same way as
the sequence commit(); quit(); would.

1.3 Reading ML files

cd : string -> unit
pwd : unit -> string
use : string -> unit
time_use : string -> unit

cd "dir"; changes the current directory to dir. This is the default directory
for reading files.

pwd(); returns the full path of the current directory.

use "file"; reads the given file as input to the ml session. Reading a file of
Isabelle commands is the usual way of replaying a proof.

time_use "file"; performs use "file" and prints the total execution time.

The dir and file specifications of the cd and use commands may contain
path variables (e.g. $ISABELLE_HOME) that are expanded appropriately. Note
that ~ abbreviates $HOME, and ~~ abbreviates $ISABELLE_HOME. The syntax
for path specifications follows Unix conventions.

CHAPTER 1. BASIC USE OF ISABELLE 4

1.4 Reading theories

In Isabelle, any kind of declarations, definitions, etc. are organized around
named theory objects. Logical reasoning always takes place within a certain
theory context, which may be switched at any time. Theory name is defined
by a theory file name.thy, containing declarations of consts, types, defs,
etc. (see §6.1 for more details on concrete syntax). Furthermore, there may
be an associated ml file name.ML with proof scripts that are to be run in
the context of the theory.

context : theory -> unit
the_context : unit -> theory
theory : string -> theory
use_thy : string -> unit
time_use_thy : string -> unit
update_thy : string -> unit

context thy; switches the current theory context. Any subsequent com-
mand with “implicit theory argument” (e.g. Goal) will refer to thy as
its theory.

the_context(); obtains the current theory context, or raises an error if
absent.

theory "name"; retrieves the theory called name from the internal data-
base of loaded theories, raising an error if absent.

use_thy "name"; reads theory name from the file system, looking for
name.thy and name.ML (the latter being optional). It also ensures
that all parent theories are loaded as well. In case some older versions
have already been present, use_thy only tries to reload name itself,
but is content with any version of its ancestors.

time_use_thy "name"; same as use_thy, but reports the time taken to
process the actual theory parts and ml files separately.

update_thy "name"; is similar to use_thy, but ensures that theory name
is fully up-to-date with respect to the file system — apart from theory
name itself, any of its ancestors may be reloaded as well.

Note that theories of pre-built logic images (e.g. HOL) are marked as
finished and cannot be updated any more. See §6.2 for further information
on Isabelle’s theory loader.

CHAPTER 1. BASIC USE OF ISABELLE 5

1.5 Setting flags

set : bool ref -> bool
reset : bool ref -> bool
toggle : bool ref -> bool

These are some shorthands for manipulating boolean references. The new
value is returned.

1.6 Printing of terms and theorems

Isabelle’s pretty printer is controlled by a number of parameters.

1.6.1 Printing limits

Pretty.setdepth : int -> unit
Pretty.setmargin : int -> unit
print_depth : int -> unit

These set limits for terminal output. See also goals_limit, which limits the
number of subgoals printed (§2.1.7).

Pretty.setdepth d; tells Isabelle’s pretty printer to limit the printing
depth to d . This affects the display of theorems and terms. The default
value is 0, which permits printing to an arbitrary depth. Useful values
for d are 10 and 20.

Pretty.setmargin m; tells Isabelle’s pretty printer to assume a right mar-
gin (page width) of m. The initial margin is 76.

print_depth n; limits the printing depth of complex ml values, such as
theorems and terms. This command affects the ml top level and its
effect is compiler-dependent. Typically n should be less than 10.

1.6.2 Printing of hypotheses, brackets, types etc.

show_hyps : bool ref initially false
show_tags : bool ref initially false
show_brackets : bool ref initially false
show_types : bool ref initially false
show_sorts : bool ref initially false
show_consts : bool ref initially false
long_names : bool ref initially false

These flags allow you to control how much information is displayed for types,
terms and theorems. The hypotheses of theorems are normally shown. Su-

CHAPTER 1. BASIC USE OF ISABELLE 6

perfluous parentheses of types and terms are not. Types and sorts of variables
are normally hidden.

Note that displaying types and sorts may explain why a polymorphic
inference rule fails to resolve with some goal, or why a rewrite rule does not
apply as expected.

reset show_hyps; makes Isabelle show each meta-level hypothesis as a dot.

set show_tags; makes Isabelle show tags of theorems (which are basically
just comments that may be attached by some tools).

set show_brackets; makes Isabelle show full bracketing. In particular, this
reveals the grouping of infix operators.

set show_types; makes Isabelle show types when printing a term or theo-
rem.

set show_sorts; makes Isabelle show both types and the sorts of type vari-
ables, independently of the value of show_types.

set show_consts; makes Isabelle show types of constants when printing
proof states. Note that the output can be enormous as polymorphic
constants often occur at several different type instances.

set long_names; forces names of all objects (types, constants, theorems,
etc.) to be printed in their fully qualified internal form.

1.6.3 Eta-contraction before printing

eta_contract: bool ref

The η-contraction law asserts (λx . f (x)) ≡ f , provided x is not free in
f . It asserts extensionality of functions: f ≡ g if f (x) ≡ g(x) for all x .
Higher-order unification frequently puts terms into a fully η-expanded form.
For example, if F has type (τ ⇒ τ)⇒ τ then its expanded form is λh .F (λx .
h(x)). By default, the user sees this expanded form.

set eta_contract; makes Isabelle perform η-contractions before printing,
so that λh .F (λx . h(x)) appears simply as F . The distinction between
a term and its η-expanded form occasionally matters.

CHAPTER 1. BASIC USE OF ISABELLE 7

1.7 Diagnostic messages

Isabelle conceptually provides three output channels for different kinds of
messages: ordinary text, warnings, errors. Depending on the user interface
involved, these messages may appear in different text styles or colours.

The default setup of an isabelle terminal session is as follows: plain
output of ordinary text, warnings prefixed by ###’s, errors prefixed by ***’s.
For example, a typical warning would look like this:

Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub Bird, and shun
The frumious Bandersnatch!

ML programs may output diagnostic messages using the following func-
tions:

writeln : string -> unit
warning : string -> unit
error : string -> ’a

Note that error fails by raising exception ERROR after having output the
text, while writeln and warning resume normal program execution.

1.8 Displaying exceptions as error messages

print_exn: exn -> ’a

Certain Isabelle primitives, such as the forward proof functions RS and RSN,
are called both interactively and from programs. They indicate errors not
by printing messages, but by raising exceptions. For interactive use, ml’s
reporting of an uncaught exception may be uninformative. The Poly/ML
function exception_trace can generate a backtrace.

print_exn e displays the exception e in a readable manner, and then re-
raises e. Typical usage is EXP handle e => print_exn e;, where
EXP is an expression that may raise an exception.

print_exn can display the following common exceptions, which con-
cern types, terms, theorems and theories, respectively. Each carries a
message and related information.

exception TYPE of string * typ list * term list
exception TERM of string * term list
exception THM of string * int * thm list
exception THEORY of string * theory list

CHAPTER 1. BASIC USE OF ISABELLE 8

! print_exn prints terms by calling prin, which obtains pretty printing infor-
mation from the proof state last stored in the subgoal module. The appearance

of the output thus depends upon the theory used in the last interactive proof.

Chapter 2

Proof Management: The
Subgoal Module

The subgoal module stores the current proof state and many previous states;
commands can produce new states or return to previous ones. The state list
at level n is a list of pairs

[(ψn ,Ψn), (ψn−1,Ψn−1), . . . , (ψ0, [])]

where ψn is the current proof state, ψn−1 is the previous one, . . . , and ψ0

is the initial proof state. The Ψi are sequences (lazy lists) of proof states,
storing branch points where a tactic returned a list longer than one. The
state lists permit various forms of backtracking.

Chopping elements from the state list reverts to previous proof states.
Besides this, the undo command keeps a list of state lists. The module
actually maintains a stack of state lists, to support several proofs at the
same time.

The subgoal module always contains some proof state. At the start of
the Isabelle session, this state consists of a dummy formula.

2.1 Basic commands

Most proofs begin with Goal or Goalw and require no other commands than
by, chop and undo. They typically end with a call to qed.

2.1.1 Starting a backward proof

Goal : string -> thm list
Goalw : thm list -> string -> thm list
goal : theory -> string -> thm list
goalw : theory -> thm list -> string -> thm list
goalw_cterm : thm list -> cterm -> thm list
premises : unit -> thm list

The goal commands start a new proof by setting the goal. They replace
the current state list by a new one consisting of the initial proof state. They

9

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 10

also empty the undo list; this command cannot be undone!
They all return a list of meta-hypotheses taken from the main goal. If

this list is non-empty, bind its value to an ml identifier by typing something
like

val prems = goal theory formula;

These assumptions typically serve as the premises when you are deriving
a rule. They are also stored internally and can be retrieved later by the
function premises. When the proof is finished, qed compares the stored
assumptions with the actual assumptions in the proof state.

The capital versions of Goal are the basic user level commands and should
be preferred over the more primitive lowercase goal commands. Apart from
taking the current theory context as implicit argument, the former ones try
to be smart in handling meta-hypotheses when deriving rules. Thus prems

have to be seldom bound explicitly, the effect is as if cut_facts_tac had
been called automatically.

Some of the commands unfold definitions using meta-rewrite rules. This
expansion affects both the initial subgoal and the premises, which would
otherwise require use of rewrite_goals_tac and rewrite_rule.

Goal formula; begins a new proof, where formula is written as an ml string.

Goalw defs formula; is like Goal but also applies the list of defs as meta-
rewrite rules to the first subgoal and the premises.

goal theory formula; begins a new proof, where theory is usually an ml
identifier and the formula is written as an ml string.

goalw theory defs formula; is like goal but also applies the list of defs as
meta-rewrite rules to the first subgoal and the premises.

goalw_cterm defs ct; is a version of goalw intended for programming.
The main goal is supplied as a cterm, not as a string. See also
prove_goalw_cterm, §2.3.

premises() returns the list of meta-hypotheses associated with the current
proof (in case you forgot to bind them to an ml identifier).

2.1.2 Applying a tactic

by : tactic -> unit
byev : tactic list -> unit

These commands extend the state list. They apply a tactic to the current
proof state. If the tactic succeeds, it returns a non-empty sequence of next

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 11

states. The head of the sequence becomes the next state, while the tail is
retained for backtracking (see back).

by tactic; applies the tactic to the proof state.

byev tactics; applies the list of tactics, one at a time. It is useful for testing
calls to prove_goal, and abbreviates by (EVERY tactics).

Error indications:

• "by: tactic failed" means that the tactic returned an empty sequence
when applied to the current proof state.

• "Warning: same as previous level" means that the new proof state is
identical to the previous state.

• "Warning: signature of proof state has changed" means that some rule
was applied whose theory is outside the theory of the initial proof state.
This could signify a mistake such as expressing the goal in intuitionistic
logic and proving it using classical logic.

2.1.3 Extracting and storing the proved theorem

qed : string -> unit
no_qed : unit -> unit
result : unit -> thm
uresult : unit -> thm
bind_thm : string * thm -> unit
bind_thms : string * thm list -> unit
store_thm : string * thm -> thm
store_thms : string * thm list -> thm list

qed name; is the usual way of ending a proof. It combines result and
bind_thm: it gets the theorem using result() and stores it the theorem
database associated with its theory. See below for details.

no_qed(); indicates that the proof is not concluded by a proper qed com-
mand. This is a do-nothing operation, it merely helps user interfaces
such as Proof General [1] to figure out the structure of the ml text.

result() returns the final theorem, after converting the free variables to
schematics. It discharges the assumptions supplied to the matching
goal command.

It raises an exception unless the proof state passes certain checks. There
must be no assumptions other than those supplied to goal. There must

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 12

be no subgoals. The theorem proved must be a (first-order) instance of
the original goal, as stated in the goal command. This allows answer
extraction — instantiation of variables — but no other changes to the
main goal. The theorem proved must have the same signature as the
initial proof state.

These checks are needed because an Isabelle tactic can return any proof
state at all.

uresult() is like result() but omits the checks. It is needed when the
initial goal contains function unknowns, when definitions are unfolded
in the main goal (by calling rewrite_tac), or when assume_ax has
been used.

bind_thm (name, thm); stores standard thm (see §5.1.5) in the theorem
database associated with its theory and in the ml variable name. The
theorem can be retrieved from the database using get_thm (see §6.4).

store_thm (name, thm) stores thm in the theorem database associated
with its theory and returns that theorem.

bind_thms and store_thms are similar to bind_thm and store_thm, but
store lists of theorems.

The name argument of qed, bind_thm etc. may be the empty string as
well; in that case the result is not stored, but proper checks and presentation
of the result still apply.

2.1.4 Extracting axioms and stored theorems

thm : xstring -> thm
thms : xstring -> thm list
get_axiom : theory -> xstring -> thm
get_thm : theory -> xstring -> thm
get_thms : theory -> xstring -> thm list
axioms_of : theory -> (string * thm) list
thms_of : theory -> (string * thm) list
assume_ax : theory -> string -> thm

thm name is the basic user function for extracting stored theorems from the
current theory context.

thms name is like thm, but returns a whole list associated with name rather
than a single theorem. Typically this will be collections stored by
packages, e.g. list.simps.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 13

get_axiom thy name returns an axiom with the given name from thy or
any of its ancestors, raising exception THEORY if none exists. Merging
theories can cause several axioms to have the same name; get_axiom
returns an arbitrary one. Usually, axioms are also stored as theorems
and may be retrieved via get_thm as well.

get_thm thy name is analogous to get_axiom, but looks for a theorem
stored in the theory’s database. Like get_axiom it searches all par-
ents of a theory if the theorem is not found directly in thy .

get_thms thy name is like get_thm for retrieving theorem lists stored
within the theory. It returns a singleton list if name actually refers
to a theorem rather than a theorem list.

axioms_of thy returns the axioms of this theory node, not including the
ones of its ancestors.

thms_of thy returns all theorems stored within the database of this theory
node, not including the ones of its ancestors.

assume_ax thy formula reads the formula using the syntax of thy , following
the same conventions as axioms in a theory definition. You can thus
pretend that formula is an axiom and use the resulting theorem like an
axiom. Actually assume_ax returns an assumption; qed and result

complain about additional assumptions, but uresult does not.

For example, if formula is a=b ==> b=a then the resulting theorem has
the form ?a=?b ==> ?b=?a [!!a b. a=b ==> b=a]

2.1.5 Retrieving theorems

The following functions retrieve theorems (together with their names) from
the theorem database that is associated with the current proof state’s theory.
They can only find theorems that have explicitly been stored in the database
using qed, bind_thm or related functions.

findI : int -> (string * thm) list
findE : int -> int -> (string * thm) list
findEs : int -> (string * thm) list
thms_containing : xstring list -> (string * thm) list

findI i returns all “introduction rules” applicable to subgoal i — all the-
orems whose conclusion matches (rather than unifies with) subgoal i .
Useful in connection with resolve_tac.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 14

findE n i returns all “elimination rules” applicable to premise n of subgoal
i — all those theorems whose first premise matches premise n of subgoal
i . Useful in connection with eresolve_tac and dresolve_tac.

findEs i returns all “elimination rules” applicable to subgoal i — all those
theorems whose first premise matches some premise of subgoal i . Useful
in connection with eresolve_tac and dresolve_tac.

thms_containing consts returns all theorems that contain all of the given
constants.

2.1.6 Undoing and backtracking

chop : unit -> unit
choplev : int -> unit
back : unit -> unit
undo : unit -> unit

chop(); deletes the top level of the state list, cancelling the last by com-
mand. It provides a limited undo facility, and the undo command can
cancel it.

choplev n; truncates the state list to level n, if n ≥ 0. A negative value
of n refers to the nth previous level: choplev ~1 has the same effect
as chop.

back(); searches the state list for a non-empty branch point, starting from
the top level. The first one found becomes the current proof state —
the most recent alternative branch is taken. This is a form of interactive
backtracking.

undo(); cancels the most recent change to the proof state by the commands
by, chop, choplev, and back. It cannot cancel goal or undo itself. It
can be repeated to cancel a series of commands.

Error indications for back:

• "Warning: same as previous choice at this level" means back found a
non-empty branch point, but that it contained the same proof state as
the current one.

• "Warning: signature of proof state has changed" means the signature
of the alternative proof state differs from that of the current state.

• "back: no alternatives" means back could find no alternative proof
state.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 15

2.1.7 Printing the proof state

pr : unit -> unit
prlev : int -> unit
prlim : int -> unit
goals_limit: int ref initially 10

See also the printing control options described in §1.6.

pr(); prints the current proof state.

prlev n; prints the proof state at level n, if n ≥ 0. A negative value of n
refers to the nth previous level. This command allows you to review
earlier stages of the proof.

prlim k; prints the current proof state, limiting the number of subgoals
to k . It updates goals_limit (see below) and is helpful when there
are many subgoals.

goals_limit := k; specifies k as the maximum number of subgoals to print.

2.1.8 Timing

timing: bool ref initially false

set timing; enables global timing in Isabelle. In particular, this makes the
by and prove_goal commands display how much processor time was
spent. This information is compiler-dependent.

2.2 Shortcuts for applying tactics

These commands call by with common tactics. Their chief purpose is to
minimise typing, although the scanning shortcuts are useful in their own
right. Chapter 3 explains the tactics themselves.

2.2.1 Refining a given subgoal

ba : int -> unit
br : thm -> int -> unit
be : thm -> int -> unit
bd : thm -> int -> unit
brs : thm list -> int -> unit
bes : thm list -> int -> unit
bds : thm list -> int -> unit

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 16

ba i; performs by (assume_tac i);

br thm i; performs by (resolve_tac [thm] i);

be thm i; performs by (eresolve_tac [thm] i);

bd thm i; performs by (dresolve_tac [thm] i);

brs thms i; performs by (resolve_tac thms i);

bes thms i; performs by (eresolve_tac thms i);

bds thms i; performs by (dresolve_tac thms i);

2.2.2 Scanning shortcuts

These shortcuts scan for a suitable subgoal (starting from subgoal 1). They
refine the first subgoal for which the tactic succeeds. Thus, they require
less typing than br, etc. They display the selected subgoal’s number; please
watch this, for it may not be what you expect!

fa : unit -> unit
fr : thm -> unit
fe : thm -> unit
fd : thm -> unit
frs : thm list -> unit
fes : thm list -> unit
fds : thm list -> unit

fa(); solves some subgoal by assumption.

fr thm; refines some subgoal using resolve_tac [thm]

fe thm; refines some subgoal using eresolve_tac [thm]

fd thm; refines some subgoal using dresolve_tac [thm]

frs thms; refines some subgoal using resolve_tac thms

fes thms; refines some subgoal using eresolve_tac thms

fds thms; refines some subgoal using dresolve_tac thms

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 17

2.2.3 Other shortcuts

bw : thm -> unit
bws : thm list -> unit
ren : string -> int -> unit

bw def; performs by (rewrite_goals_tac [def]); It unfolds definitions in
the subgoals (but not the main goal), by meta-rewriting with the given
definition (see also §3.2.4).

bws is like bw but takes a list of definitions.

ren names i; performs by (rename_tac names i); it renames parameters
in subgoal i . (Ignore the message Warning: same as previous level.)

2.3 Executing batch proofs

To save space below, let type tacfn abbreviate thm list -> tactic list,
which is the type of a tactical proof.

prove_goal : theory -> string -> tacfn -> thm
qed_goal : string -> theory -> string -> tacfn -> unit
prove_goalw: theory -> thm list -> string -> tacfn -> thm
qed_goalw : string -> theory -> thm list -> string -> tacfn -> unit
prove_goalw_cterm: thm list -> cterm -> tacfn -> thm

These batch functions create an initial proof state, then apply a tactic to
it, yielding a sequence of final proof states. The head of the sequence is
returned, provided it is an instance of the theorem originally proposed. The
forms prove_goal, prove_goalw and prove_goalw_cterm are analogous to
goal, goalw and goalw_cterm.

The tactic is specified by a function from theorem lists to tactic lists. The
function is applied to the list of meta-assumptions taken from the main goal.
The resulting tactics are applied in sequence (using EVERY). For example, a
proof consisting of the commands

val prems = goal theory formula;
by tac1; ... by tacn;
qed "my_thm";

can be transformed to an expression as follows:

qed_goal "my_thm" theory formula
(fn prems=> [tac1, ..., tacn]);

The methods perform identical processing of the initial formula and the final
proof state. But prove_goal executes the tactic as a atomic operation,
bypassing the subgoal module; the current interactive proof is unaffected.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 18

prove_goal theory formula tacsf; executes a proof of the formula in the
given theory, using the given tactic function.

qed_goal name theory formula tacsf ; acts like prove_goal but it also
stores the resulting theorem in the theorem database associated with
its theory and in the ml variable name (see §2.1.3).

prove_goalw theory defs formula tacsf; is like prove_goal but also ap-
plies the list of defs as meta-rewrite rules to the first subgoal and the
premises.

qed_goalw name theory defs formula tacsf ; is analogous to qed_goal.

prove_goalw_cterm defs ct tacsf; is a version of prove_goalw intended
for programming. The main goal is supplied as a cterm, not as a
string. A cterm carries a theory with it, and can be created from a
term t by

cterm_of (sign_of thy) t

2.4 Internal proofs

Tactic.prove: Sign.sg -> string list -> term list -> term ->
(thm list -> tactic) -> thm

Tactic.prove_standard: Sign.sg -> string list -> term list -> term ->
(thm list -> tactic) -> thm

These functions provide a clean internal interface for programmed proofs.
The special overhead of top-level statements (cf. prove_goalw_cterm) is
omitted. Statements may be established within a local contexts of fixed
variables and assumptions, which are the only hypotheses to be discharged
in the result.

Tactic.prove sg xs As C tacf establishes the result
∧

xs .As =⇒ C via
the given tactic (which is a function taking the assumptions as local
premises).

Tactic.prove_standard is simular to Tactic.prove, but performs the
standard operation on the result, essentially turning it into a top-level
statement. Never do this for local proofs within other proof tools!

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 19

2.5 Managing multiple proofs

You may save the current state of the subgoal module and resume work on
it later. This serves two purposes.

1. At some point, you may be uncertain of the next step, and wish to
experiment.

2. During a proof, you may see that a lemma should be proved first.

Each saved proof state consists of a list of levels; chop behaves independently
for each of the saved proofs. In addition, each saved state carries a separate
undo list.

2.5.1 The stack of proof states

push_proof : unit -> unit
pop_proof : unit -> thm list
rotate_proof : unit -> thm list

The subgoal module maintains a stack of proof states. Most subgoal com-
mands affect only the top of the stack. The Goal command replaces the
top of the stack; the only command that pushes a proof on the stack is
push_proof.

To save some point of the proof, call push_proof. You may now state a
lemma using goal, or simply continue to apply tactics. Later, you can return
to the saved point by calling pop_proof or rotate_proof.

To view the entire stack, call rotate_proof repeatedly; as it rotates the
stack, it prints the new top element.

push_proof(); duplicates the top element of the stack, pushing a copy of
the current proof state on to the stack.

pop_proof(); discards the top element of the stack. It returns the list of
assumptions associated with the new proof; you should bind these to
an ml identifier. They can also be obtained by calling premises.

rotate_proof(); rotates the stack, moving the top element to the bottom.
It returns the list of assumptions associated with the new proof.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 20

2.5.2 Saving and restoring proof states

save_proof : unit -> proof
restore_proof : proof -> thm list

States of the subgoal module may be saved as ml values of type proof, and
later restored.

save_proof(); returns the current state, which is on top of the stack.

restore_proof prf; replaces the top of the stack by prf. It returns the list
of assumptions associated with the new proof.

2.6 *Debugging and inspecting

These functions can be useful when you are debugging a tactic. They refer to
the current proof state stored in the subgoal module. A tactic should never
call them; it should operate on the proof state supplied as its argument.

2.6.1 Reading and printing terms

read : string -> term
prin : term -> unit
printyp : typ -> unit

These read and print terms (or types) using the syntax associated with the
proof state.

read string reads the string as a term, without type-checking.

prin t; prints the term t at the terminal.

printyp T; prints the type T at the terminal.

2.6.2 Inspecting the proof state

topthm : unit -> thm
getgoal : int -> term
gethyps : int -> thm list

topthm() returns the proof state as an Isabelle theorem. This is what by

would supply to a tactic at this point. It omits the post-processing of
result and uresult.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 21

getgoal i returns subgoal i of the proof state, as a term. You may print
this using prin, though you may have to examine the internal data
structure in order to locate the problem!

gethyps i returns the hypotheses of subgoal i as meta-level assumptions. In
these theorems, the subgoal’s parameters become free variables. This
command is supplied for debugging uses of METAHYPS.

2.6.3 Filtering lists of rules

filter_goal: (term*term->bool) -> thm list -> int -> thm list

filter_goal could ths i applies filter_thms could to subgoal i of the
proof state and returns the list of theorems that survive the filtering.

Chapter 3

Tactics

Tactics have type tactic. This is just an abbreviation for functions from
theorems to theorem sequences, where the theorems represent states of a
backward proof. Tactics seldom need to be coded from scratch, as functions;
instead they are expressed using basic tactics and tacticals.

This chapter only presents the primitive tactics. Substantial proofs re-
quire the power of automatic tools like simplification (Chapter 10) and clas-
sical tableau reasoning (Chapter 11).

3.1 Resolution and assumption tactics

Resolution is Isabelle’s basic mechanism for refining a subgoal using a rule.
Elim-resolution is particularly suited for elimination rules, while destruct-
resolution is particularly suited for destruction rules. The r, e, d naming
convention is maintained for several different kinds of resolution tactics, as
well as the shortcuts in the subgoal module.

All the tactics in this section act on a subgoal designated by a positive
integer i . They fail (by returning the empty sequence) if i is out of range.

3.1.1 Resolution tactics

resolve_tac : thm list -> int -> tactic
eresolve_tac : thm list -> int -> tactic
dresolve_tac : thm list -> int -> tactic
forward_tac : thm list -> int -> tactic

These perform resolution on a list of theorems, thms , representing a list of
object-rules. When generating next states, they take each of the rules in the
order given. Each rule may yield several next states, or none: higher-order
resolution may yield multiple resolvents.

resolve_tac thms i refines the proof state using the rules, which should
normally be introduction rules. It resolves a rule’s conclusion with
subgoal i of the proof state.

22

CHAPTER 3. TACTICS 23

eresolve_tac thms i performs elim-resolution with the rules, which should
normally be elimination rules. It resolves with a rule, proves its
first premise by assumption, and finally deletes that assumption from
any new subgoals. (To rotate a rule’s premises, see rotate_prems

in §5.1.5.)

dresolve_tac thms i performs destruct-resolution with the rules, which
normally should be destruction rules. This replaces an assumption
by the result of applying one of the rules.

forward_tac is like dresolve_tac except that the selected assumption is
not deleted. It applies a rule to an assumption, adding the result as a
new assumption.

3.1.2 Assumption tactics

assume_tac : int -> tactic
eq_assume_tac : int -> tactic

assume_tac i attempts to solve subgoal i by assumption.

eq_assume_tac is like assume_tac but does not use unification. It succeeds
(with a unique next state) if one of the assumptions is identical to the
subgoal’s conclusion. Since it does not instantiate variables, it cannot
make other subgoals unprovable. It is intended to be called from proof
strategies, not interactively.

3.1.3 Matching tactics

match_tac : thm list -> int -> tactic
ematch_tac : thm list -> int -> tactic
dmatch_tac : thm list -> int -> tactic

These are just like the resolution tactics except that they never instantiate
unknowns in the proof state. Flexible subgoals are not updated willy-nilly,
but are left alone. Matching — strictly speaking — means treating the
unknowns in the proof state as constants; these tactics merely discard unifiers
that would update the proof state.

match_tac thms i refines the proof state using the rules, matching a rule’s
conclusion with subgoal i of the proof state.

ematch_tac is like match_tac, but performs elim-resolution.

dmatch_tac is like match_tac, but performs destruct-resolution.

CHAPTER 3. TACTICS 24

3.1.4 Explicit instantiation

res_inst_tac : (string*string)list -> thm -> int -> tactic
eres_inst_tac : (string*string)list -> thm -> int -> tactic
dres_inst_tac : (string*string)list -> thm -> int -> tactic
forw_inst_tac : (string*string)list -> thm -> int -> tactic
instantiate_tac : (string*string)list -> tactic

The first four of these tactics are designed for applying rules by resolution
such as substitution and induction, which cause difficulties for higher-order
unification. The tactics accept explicit instantiations for unknowns in the
rule —typically, in the rule’s conclusion. The last one, instantiate_tac,
may be used to instantiate unknowns in the proof state, independently of
rule application.

Each instantiation is a pair (v,e), where v is an unknown without its
leading question mark!

• If v is the type unknown ’a, then the rule must contain a type unknown
?’a of some sort s , and e should be a type of sort s .

• If v is the unknown P, then the rule must contain an unknown ?P of
some type τ , and e should be a term of some type σ such that τ and
σ are unifiable. If the unification of τ and σ instantiates any type
unknowns in τ , these instantiations are recorded for application to the
rule.

Types are instantiated before terms are. Because type instantiations are in-
ferred from term instantiations, explicit type instantiations are seldom nec-
essary — if ?t has type ?’a, then the instantiation list [("’a","bool"),

("t","True")] may be simplified to [("t","True")]. Type unknowns in
the proof state may cause failure because the tactics cannot instantiate them.

The first four instantiation tactics act on a given subgoal. Terms in the
instantiations are type-checked in the context of that subgoal — in particular,
they may refer to that subgoal’s parameters. Any unknowns in the terms
receive subscripts and are lifted over the parameters; thus, you may not refer
to unknowns in the subgoal.

res_inst_tac insts thm i instantiates the rule thm with the instantiations
insts, as described above, and then performs resolution on subgoal i .
Resolution typically causes further instantiations; you need not give
explicit instantiations for every unknown in the rule.

eres_inst_tac is like res_inst_tac, but performs elim-resolution.

CHAPTER 3. TACTICS 25

dres_inst_tac is like res_inst_tac, but performs destruct-resolution.

forw_inst_tac is like dres_inst_tac except that the selected assumption
is not deleted. It applies the instantiated rule to an assumption, adding
the result as a new assumption.

instantiate_tac insts instantiates unknowns in the proof state. This af-
fects the main goal as well as all subgoals.

3.2 Other basic tactics

3.2.1 Tactic shortcuts

rtac : thm -> int -> tactic
etac : thm -> int -> tactic
dtac : thm -> int -> tactic
ftac : thm -> int -> tactic
atac : int -> tactic
eatac : thm -> int -> int -> tactic
datac : thm -> int -> int -> tactic
fatac : thm -> int -> int -> tactic
ares_tac : thm list -> int -> tactic
rewtac : thm -> tactic

These abbreviate common uses of tactics.

rtac thm i abbreviates resolve_tac [thm] i, doing resolution.

etac thm i abbreviates eresolve_tac [thm] i, doing elim-resolution.

dtac thm i abbreviates dresolve_tac [thm] i, doing destruct-resolution.

ftac thm i abbreviates forward_tac [thm] i, doing destruct-resolution
without deleting the assumption.

atac i abbreviates assume_tac i, doing proof by assumption.

eatac thm j i performs etac thm and then j times atac, solving addition-
ally j premises of the rule thm by assumption.

datac thm j i performs dtac thm and then j times atac, solving addition-
ally j premises of the rule thm by assumption.

fatac thm j i performs ftac thm and then j times atac, solving addition-
ally j premises of the rule thm by assumption.

CHAPTER 3. TACTICS 26

ares_tac thms i tries proof by assumption and resolution; it abbreviates

assume_tac i ORELSE resolve_tac thms i

rewtac def abbreviates rewrite_goals_tac [def], unfolding a definition.

3.2.2 Inserting premises and facts

cut_facts_tac : thm list -> int -> tactic
cut_inst_tac : (string*string)list -> thm -> int -> tactic
subgoal_tac : string -> int -> tactic
subgoals_tac : string list -> int -> tactic

These tactics add assumptions to a subgoal.

cut_facts_tac thms i adds the thms as new assumptions to subgoal i .
Once they have been inserted as assumptions, they become subject
to tactics such as eresolve_tac and rewrite_goals_tac. Only rules
with no premises are inserted: Isabelle cannot use assumptions that
contain =⇒ or

∧
. Sometimes the theorems are premises of a rule being

derived, returned by goal; instead of calling this tactic, you could state
the goal with an outermost meta-quantifier.

cut_inst_tac insts thm i instantiates the thm with the instantiations in-
sts, as described in §3.1.4. It adds the resulting theorem as a new
assumption to subgoal i .

subgoal_tac formula i adds the formula as an assumption to subgoal i ,
and inserts the same formula as a new subgoal, i + 1.

subgoals_tac formulae i uses subgoal_tac to add the members of the list
of formulae as assumptions to subgoal i .

3.2.3 “Putting off” a subgoal

defer_tac : int -> tactic

defer_tac i moves subgoal i to the last position in the proof state. It can
be useful when correcting a proof script: if the tactic given for subgoal i
fails, calling defer_tac instead will let you continue with the rest of
the script.

The tactic fails if subgoal i does not exist or if the proof state contains
type unknowns.

CHAPTER 3. TACTICS 27

3.2.4 Definitions and meta-level rewriting

Definitions in Isabelle have the form t ≡ u, where t is typically a constant
or a constant applied to a list of variables, for example sqr(n) ≡ n × n.
Conditional definitions, φ =⇒ t ≡ u, are also supported. Unfolding the
definition t ≡ u means using it as a rewrite rule, replacing t by u throughout
a theorem. Folding t ≡ u means replacing u by t . Rewriting continues until
no rewrites are applicable to any subterm.

There are rules for unfolding and folding definitions; Isabelle does not do
this automatically. The corresponding tactics rewrite the proof state, yielding
a single next state. See also the goalw command, which is the easiest way of
handling definitions.

rewrite_goals_tac : thm list -> tactic
rewrite_tac : thm list -> tactic
fold_goals_tac : thm list -> tactic
fold_tac : thm list -> tactic

rewrite_goals_tac defs unfolds the defs throughout the subgoals of the
proof state, while leaving the main goal unchanged. Use SELECT_GOAL

to restrict it to a particular subgoal.

rewrite_tac defs unfolds the defs throughout the proof state, including the
main goal — not normally desirable!

fold_goals_tac defs folds the defs throughout the subgoals of the proof
state, while leaving the main goal unchanged.

fold_tac defs folds the defs throughout the proof state.

! These tactics only cope with definitions expressed as meta-level equalities (≡).
More general equivalences are handled by the simplifier, provided that it is set

up appropriately for your logic (see Chapter 10).

3.2.5 Theorems useful with tactics

asm_rl: thm
cut_rl: thm

asm_rl is ψ =⇒ ψ. Under elim-resolution it does proof by assumption, and
eresolve_tac (asm_rl::thms) i is equivalent to

assume_tac i ORELSE eresolve_tac thms i

cut_rl is [[ψ =⇒ θ, ψ]] =⇒ θ. It is useful for inserting assumptions; it
underlies forward_tac, cut_facts_tac and subgoal_tac.

CHAPTER 3. TACTICS 28

3.3 Obscure tactics

3.3.1 Renaming parameters in a goal

rename_tac : string -> int -> tactic
rename_last_tac : string -> string list -> int -> tactic
Logic.set_rename_prefix : string -> unit
Logic.auto_rename : bool ref initially false

When creating a parameter, Isabelle chooses its name by matching variable
names via the object-rule. Given the rule (∀I) formalized as (

∧
x . P(x)) =⇒

∀x .P(x), Isabelle will note that the
∧

-bound variable in the premise has the
same name as the ∀-bound variable in the conclusion.

Sometimes there is insufficient information and Isabelle chooses an arbi-
trary name. The renaming tactics let you override Isabelle’s choice. Because
renaming parameters has no logical effect on the proof state, the by command
prints the message Warning: same as previous level.

Alternatively, you can suppress the naming mechanism described above
and have Isabelle generate uniform names for parameters. These names have
the form pa, pb, pc, . . . , where p is any desired prefix. They are ugly but
predictable.

rename_tac str i interprets the string str as a series of blank-separated vari-
able names, and uses them to rename the parameters of subgoal i . The
names must be distinct. If there are fewer names than parameters,
then the tactic renames the innermost parameters and may modify the
remaining ones to ensure that all the parameters are distinct.

rename_last_tac prefix suffixes i generates a list of names by attaching
each of the suffixes to the prefix. It is intended for coding structural
induction tactics, where several of the new parameters should have
related names.

Logic.set_rename_prefix prefix; sets the prefix for uniform renaming
to prefix. The default prefix is "k".

set Logic.auto_rename; makes Isabelle generate uniform names for pa-
rameters.

3.3.2 Manipulating assumptions

thin_tac : string -> int -> tactic
rotate_tac : int -> int -> tactic

CHAPTER 3. TACTICS 29

thin_tac formula i deletes the specified assumption from subgoal i . Of-
ten the assumption can be abbreviated, replacing subformulæ by un-
knowns; the first matching assumption will be deleted. Removing use-
less assumptions from a subgoal increases its readability and can make
search tactics run faster.

rotate_tac n i rotates the assumptions of subgoal i by n positions: from
right to left if n is positive, and from left to right if n is negative. This
is sometimes necessary in connection with asm_full_simp_tac, which
processes assumptions from left to right.

3.3.3 Tidying the proof state

distinct_subgoals_tac : tactic
prune_params_tac : tactic
flexflex_tac : tactic

distinct_subgoals_tac removes duplicate subgoals from a proof state.
(These arise especially in ZF, where the subgoals are essentially type
constraints.)

prune_params_tac removes unused parameters from all subgoals of the
proof state. It works by rewriting with the theorem (

∧
x . V) ≡ V .

This tactic can make the proof state more readable. It is used with
rule_by_tactic to simplify the resulting theorem.

flexflex_tac removes all flex-flex pairs from the proof state by applying
the trivial unifier. This drastic step loses information, and should only
be done as the last step of a proof.

Flex-flex constraints arise from difficult cases of higher-order unifica-
tion. To prevent this, use res_inst_tac to instantiate some variables
in a rule (§3.1.4). Normally flex-flex constraints can be ignored; they
often disappear as unknowns get instantiated.

3.3.4 Composition: resolution without lifting

compose_tac: (bool * thm * int) -> int -> tactic

Composing two rules means resolving them without prior lifting or renam-
ing of unknowns. This low-level operation, which underlies the resolution
tactics, may occasionally be useful for special effects. A typical application
is res_inst_tac, which lifts and instantiates a rule, then passes the result
to compose_tac.

CHAPTER 3. TACTICS 30

compose_tac (flag, rule, m) i refines subgoal i using rule, without lift-
ing. The rule is taken to have the form [[ψ1; . . . ;ψm]] =⇒ ψ, where ψ
need not be atomic; thus m determines the number of new subgoals.
If flag is true then it performs elim-resolution — it solves the first
premise of rule by assumption and deletes that assumption.

3.4 *Managing lots of rules

These operations are not intended for interactive use. They are concerned
with the processing of large numbers of rules in automatic proof strategies.
Higher-order resolution involving a long list of rules is slow. Filtering tech-
niques can shorten the list of rules given to resolution, and can also detect
whether a subgoal is too flexible, with too many rules applicable.

3.4.1 Combined resolution and elim-resolution

biresolve_tac : (bool*thm)list -> int -> tactic
bimatch_tac : (bool*thm)list -> int -> tactic
subgoals_of_brl : bool*thm -> int
lessb : (bool*thm) * (bool*thm) -> bool

Bi-resolution takes a list of (flag , rule) pairs. For each pair, it applies
resolution if the flag is false and elim-resolution if the flag is true. A single
tactic call handles a mixture of introduction and elimination rules.

biresolve_tac brls i refines the proof state by resolution or elim-resolution
on each rule, as indicated by its flag. It affects subgoal i of the proof
state.

bimatch_tac is like biresolve_tac, but performs matching: unknowns in
the proof state are never updated (see §3.1.3).

subgoals_of_brl(flag,rule) returns the number of new subgoals that bi-
resolution would yield for the pair (if applied to a suitable subgoal).
This is n if the flag is false and n − 1 if the flag is true, where n is
the number of premises of the rule. Elim-resolution yields one fewer
subgoal than ordinary resolution because it solves the major premise
by assumption.

lessb (brl1,brl2) returns the result of

subgoals_of_brl brl1 < subgoals_of_brl brl2

CHAPTER 3. TACTICS 31

Note that sort lessb brls sorts a list of (flag , rule) pairs by the number
of new subgoals they will yield. Thus, those that yield the fewest subgoals
should be tried first.

3.4.2 Discrimination nets for fast resolution

net_resolve_tac : thm list -> int -> tactic
net_match_tac : thm list -> int -> tactic
net_biresolve_tac: (bool*thm) list -> int -> tactic
net_bimatch_tac : (bool*thm) list -> int -> tactic
filt_resolve_tac : thm list -> int -> int -> tactic
could_unify : term*term->bool
filter_thms : (term*term->bool) -> int*term*thm list -> thm list

The module Net implements a discrimination net data structure for fast selec-
tion of rules [4, Chapter 14]. A term is classified by the symbol list obtained
by flattening it in preorder. The flattening takes account of function appli-
cations, constants, and free and bound variables; it identifies all unknowns
and also regards λ-abstractions as unknowns, since they could η-contract to
anything.

A discrimination net serves as a polymorphic dictionary indexed by terms.
The module provides various functions for inserting and removing items from
nets. It provides functions for returning all items whose term could match or
unify with a target term. The matching and unification tests are overly lax
(due to the identifications mentioned above) but they serve as useful filters.

A net can store introduction rules indexed by their conclusion, and elim-
ination rules indexed by their major premise. Isabelle provides several func-
tions for ‘compiling’ long lists of rules into fast resolution tactics. When
supplied with a list of theorems, these functions build a discrimination net;
the net is used when the tactic is applied to a goal. To avoid repeatedly con-
structing the nets, use currying: bind the resulting tactics to ml identifiers.

net_resolve_tac thms builds a discrimination net to obtain the effect of a
similar call to resolve_tac.

net_match_tac thms builds a discrimination net to obtain the effect of a
similar call to match_tac.

net_biresolve_tac brls builds a discrimination net to obtain the effect of
a similar call to biresolve_tac.

net_bimatch_tac brls builds a discrimination net to obtain the effect of a
similar call to bimatch_tac.

CHAPTER 3. TACTICS 32

filt_resolve_tac thms maxr i uses discrimination nets to extract the
thms that are applicable to subgoal i . If more than maxr theorems
are applicable then the tactic fails. Otherwise it calls resolve_tac.

This tactic helps avoid runaway instantiation of unknowns, for example
in type inference.

could_unify (t,u) returns false if t and u are ‘obviously’ non-unifiable,
and otherwise returns true. It assumes all variables are distinct, re-
porting that ?a=?a may unify with 0=1.

filter_thms could (limit , prem, thms) returns the list of potentially resolv-
able rules (in thms) for the subgoal prem, using the predicate could to
compare the conclusion of the subgoal with the conclusion of each rule.
The resulting list is no longer than limit.

3.5 Programming tools for proof strategies

Do not consider using the primitives discussed in this section unless you really
need to code tactics from scratch.

3.5.1 Operations on tactics

A tactic maps theorems to sequences of theorems. The type constructor for
sequences (lazy lists) is called Seq.seq. To simplify the types of tactics and
tacticals, Isabelle defines a type abbreviation:

type tactic = thm -> thm Seq.seq

The following operations provide means for coding tactics in a clean style.

PRIMITIVE : (thm -> thm) -> tactic
SUBGOAL : ((term*int) -> tactic) -> int -> tactic

PRIMITIVE f packages the meta-rule f as a tactic that applies f to the proof
state and returns the result as a one-element sequence. If f raises an
exception, then the tactic’s result is the empty sequence.

SUBGOAL f i extracts subgoal i from the proof state as a term t , and com-
putes a tactic by calling f (t , i). It applies the resulting tactic to the
same state. The tactic body is expressed using tactics and tacticals,
but may peek at a particular subgoal:

SUBGOAL (fn (t,i) => tactic-valued expression)

CHAPTER 3. TACTICS 33

3.5.2 Tracing

pause_tac: tactic
print_tac: string -> tactic

These tactics print tracing information when they are applied to a proof
state. Their output may be difficult to interpret. Note that certain of the
searching tacticals, such as REPEAT, have built-in tracing options.

pause_tac prints ** Press RETURN to continue: and then reads a line from
the terminal. If this line is blank then it returns the proof state un-
changed; otherwise it fails (which may terminate a repetition).

print_tac msg returns the proof state unchanged, with the side effect of
printing it at the terminal.

3.6 *Sequences

The module Seq declares a type of lazy lists. It uses Isabelle’s type option

to represent the possible presence (Some) or absence (None) of a value:

datatype ’a option = None | Some of ’a;

The Seq structure is supposed to be accessed via fully qualified names and
should not be open.

3.6.1 Basic operations on sequences

Seq.empty : ’a seq
Seq.make : (unit -> (’a * ’a seq) option) -> ’a seq
Seq.single : ’a -> ’a seq
Seq.pull : ’a seq -> (’a * ’a seq) option

Seq.empty is the empty sequence.

Seq.make (fn () => Some (x, xq)) constructs the sequence with head x
and tail xq , neither of which is evaluated.

Seq.single x constructs the sequence containing the single element x .

Seq.pull xq returns None if the sequence is empty and Some (x, xq ′) if
the sequence has head x and tail xq ′. Warning: calling Seq.pull xq
again will recompute the value of x ; it is not stored!

CHAPTER 3. TACTICS 34

3.6.2 Converting between sequences and lists

Seq.chop : int * ’a seq -> ’a list * ’a seq
Seq.list_of : ’a seq -> ’a list
Seq.of_list : ’a list -> ’a seq

Seq.chop (n, xq) returns the first n elements of xq as a list, paired with
the remaining elements of xq . If xq has fewer than n elements, then so
will the list.

Seq.list_of xq returns the elements of xq , which must be finite, as a list.

Seq.of_list xs creates a sequence containing the elements of xs .

3.6.3 Combining sequences

Seq.append : ’a seq * ’a seq -> ’a seq
Seq.interleave : ’a seq * ’a seq -> ’a seq
Seq.flat : ’a seq seq -> ’a seq
Seq.map : (’a -> ’b) -> ’a seq -> ’b seq
Seq.filter : (’a -> bool) -> ’a seq -> ’a seq

Seq.append (xq, yq) concatenates xq to yq .

Seq.interleave (xq, yq) joins xq with yq by interleaving their elements.
The result contains all the elements of the sequences, even if both are
infinite.

Seq.flat xqq concatenates a sequence of sequences.

Seq.map f xq applies f to every element of xq = x1, x2, . . ., yielding the
sequence f (x1), f (x2),

Seq.filter p xq returns the sequence consisting of all elements x of xq
such that p(x) is true.

Chapter 4

Tacticals

Tacticals are operations on tactics. Their implementation makes use of func-
tional programming techniques, especially for sequences. Most of the time,
you may forget about this and regard tacticals as high-level control struc-
tures.

4.1 The basic tacticals

4.1.1 Joining two tactics

The tacticals THEN and ORELSE, which provide sequencing and alterna-
tion, underlie most of the other control structures in Isabelle. APPEND and
INTLEAVE provide more sophisticated forms of alternation.

THEN : tactic * tactic -> tactic infix 1
ORELSE : tactic * tactic -> tactic infix
APPEND : tactic * tactic -> tactic infix
INTLEAVE : tactic * tactic -> tactic infix

tac1 THEN tac2 is the sequential composition of the two tactics. Applied to
a proof state, it returns all states reachable in two steps by applying
tac1 followed by tac2. First, it applies tac1 to the proof state, getting
a sequence of next states; then, it applies tac2 to each of these and
concatenates the results.

tac1 ORELSE tac2 makes a choice between the two tactics. Applied to a
state, it tries tac1 and returns the result if non-empty; if tac1 fails then
it uses tac2. This is a deterministic choice: if tac1 succeeds then tac2 is
excluded.

tac1 APPEND tac2 concatenates the results of tac1 and tac2. By not making a
commitment to either tactic, APPEND helps avoid incompleteness during
search.

35

CHAPTER 4. TACTICALS 36

tac1 INTLEAVE tac2 interleaves the results of tac1 and tac2. Thus, it includes
all possible next states, even if one of the tactics returns an infinite
sequence.

4.1.2 Joining a list of tactics

EVERY : tactic list -> tactic
FIRST : tactic list -> tactic

EVERY and FIRST are block structured versions of THEN and ORELSE.

EVERY [tac1, . . . , tacn] abbreviates tac1 THEN ... THEN tacn . It is useful
for writing a series of tactics to be executed in sequence.

FIRST [tac1, . . . , tacn] abbreviates tac1 ORELSE ... ORELSE tacn . It is
useful for writing a series of tactics to be attempted one after another.

4.1.3 Repetition tacticals

TRY : tactic -> tactic
REPEAT_DETERM : tactic -> tactic
REPEAT_DETERM_N : int -> tactic -> tactic
REPEAT : tactic -> tactic
REPEAT1 : tactic -> tactic
DETERM_UNTIL : (thm -> bool) -> tactic -> tactic
trace_REPEAT : bool ref initially false

TRY tac applies tac to the proof state and returns the resulting sequence, if
non-empty; otherwise it returns the original state. Thus, it applies tac
at most once.

REPEAT_DETERM tac applies tac to the proof state and, recursively, to the
head of the resulting sequence. It returns the first state to make tac
fail. It is deterministic, discarding alternative outcomes.

REPEAT_DETERM_N n tac is like REPEAT_DETERM tac but the number of repi-
titions is bound by n (unless negative).

REPEAT tac applies tac to the proof state and, recursively, to each element of
the resulting sequence. The resulting sequence consists of those states
that make tac fail. Thus, it applies tac as many times as possible
(including zero times), and allows backtracking over each invocation of
tac. It is more general than REPEAT_DETERM, but requires more space.

CHAPTER 4. TACTICALS 37

REPEAT1 tac is like REPEAT tac but it always applies tac at least once, failing
if this is impossible.

DETERM_UNTIL p tac applies tac to the proof state and, recursively, to the
head of the resulting sequence, until the predicate p (applied on the
proof state) yields true. It fails if tac fails on any of the intermediate
states. It is deterministic, discarding alternative outcomes.

set trace_REPEAT; enables an interactive tracing mode for the tacticals
REPEAT_DETERM and REPEAT. To view the tracing options, type h at the
prompt.

4.1.4 Identities for tacticals

all_tac : tactic
no_tac : tactic

all_tac maps any proof state to the one-element sequence containing that
state. Thus, it succeeds for all states. It is the identity element of the
tactical THEN.

no_tac maps any proof state to the empty sequence. Thus it succeeds for
no state. It is the identity element of ORELSE, APPEND, and INTLEAVE.
Also, it is a zero element for THEN, which means that tac THEN no_tac

is equivalent to no_tac.

These primitive tactics are useful when writing tacticals. For example, TRY
and REPEAT (ignoring tracing) can be coded as follows:

fun TRY tac = tac ORELSE all_tac;

fun REPEAT tac =
(fn state => ((tac THEN REPEAT tac) ORELSE all_tac) state);

If tac can return multiple outcomes then so can REPEAT tac. Since REPEAT

uses ORELSE and not APPEND or INTLEAVE, it applies tac as many times as
possible in each outcome.

! Note REPEAT’s explicit abstraction over the proof state. Recursive tacticals
must be coded in this awkward fashion to avoid infinite recursion. With the

following definition, REPEAT tac would loop due to ml’s eager evaluation strategy:

fun REPEAT tac = (tac THEN REPEAT tac) ORELSE all_tac;

The built-in REPEAT avoids THEN, handling sequences explicitly and using tail re-
cursion. This sacrifices clarity, but saves much space by discarding intermediate
proof states.

CHAPTER 4. TACTICALS 38

4.2 Control and search tacticals

A predicate on theorems, namely a function of type thm->bool, can test
whether a proof state enjoys some desirable property — such as having no
subgoals. Tactics that search for satisfactory states are easy to express. The
main search procedures, depth-first, breadth-first and best-first, are provided
as tacticals. They generate the search tree by repeatedly applying a given
tactic.

4.2.1 Filtering a tactic’s results

FILTER : (thm -> bool) -> tactic -> tactic
CHANGED : tactic -> tactic

FILTER p tac applies tac to the proof state and returns a sequence consisting
of those result states that satisfy p.

CHANGED tac applies tac to the proof state and returns precisely those states
that differ from the original state. Thus, CHANGED tac always has some
effect on the state.

4.2.2 Depth-first search

DEPTH_FIRST : (thm->bool) -> tactic -> tactic
DEPTH_SOLVE : tactic -> tactic
DEPTH_SOLVE_1 : tactic -> tactic
trace_DEPTH_FIRST: bool ref initially false

DEPTH_FIRST satp tac returns the proof state if satp returns true. Other-
wise it applies tac, then recursively searches from each element of the
resulting sequence. The code uses a stack for efficiency, in effect apply-
ing tac THEN DEPTH_FIRST satp tac to the state.

DEPTH_SOLVE tac uses DEPTH_FIRST to search for states having no subgoals.

DEPTH_SOLVE_1 tac uses DEPTH_FIRST to search for states having fewer sub-
goals than the given state. Thus, it insists upon solving at least one
subgoal.

set trace_DEPTH_FIRST; enables interactive tracing for DEPTH_FIRST. To
view the tracing options, type h at the prompt.

CHAPTER 4. TACTICALS 39

4.2.3 Other search strategies

BREADTH_FIRST : (thm->bool) -> tactic -> tactic
BEST_FIRST : (thm->bool)*(thm->int) -> tactic -> tactic
THEN_BEST_FIRST : tactic * ((thm->bool) * (thm->int) * tactic)

-> tactic infix 1
trace_BEST_FIRST: bool ref initially false

These search strategies will find a solution if one exists. However, they do
not enumerate all solutions; they terminate after the first satisfactory result
from tac.

BREADTH_FIRST satp tac uses breadth-first search to find states for which
satp is true. For most applications, it is too slow.

BEST_FIRST (satp, distf) tac does a heuristic search, using distf to estimate
the distance from a satisfactory state. It maintains a list of states or-
dered by distance. It applies tac to the head of this list; if the re-
sult contains any satisfactory states, then it returns them. Otherwise,
BEST_FIRST adds the new states to the list, and continues.

The distance function is typically size_of_thm, which computes the
size of the state. The smaller the state, the fewer and simpler subgoals
it has.

tac0 THEN_BEST_FIRST (satp, distf , tac) is like BEST_FIRST, except that the
priority queue initially contains the result of applying tac0 to the proof
state. This tactical permits separate tactics for starting the search and
continuing the search.

set trace_BEST_FIRST; enables an interactive tracing mode for the tactical
BEST_FIRST. To view the tracing options, type h at the prompt.

4.2.4 Auxiliary tacticals for searching

COND : (thm->bool) -> tactic -> tactic -> tactic
IF_UNSOLVED : tactic -> tactic
SOLVE : tactic -> tactic
DETERM : tactic -> tactic
DETERM_UNTIL_SOLVED : tactic -> tactic

COND p tac1 tac2 applies tac1 to the proof state if it satisfies p, and applies
tac2 otherwise. It is a conditional tactical in that only one of tac1

and tac2 is applied to a proof state. However, both tac1 and tac2 are
evaluated because ml uses eager evaluation.

CHAPTER 4. TACTICALS 40

IF_UNSOLVED tac applies tac to the proof state if it has any subgoals, and
simply returns the proof state otherwise. Many common tactics, such
as resolve_tac, fail if applied to a proof state that has no subgoals.

SOLVE tac applies tac to the proof state and then fails iff there are subgoals
left.

DETERM tac applies tac to the proof state and returns the head of the result-
ing sequence. DETERM limits the search space by making its argument
deterministic.

DETERM_UNTIL_SOLVED tac forces repeated deterministic application of tac
to the proof state until the goal is solved completely.

4.2.5 Predicates and functions useful for searching

has_fewer_prems : int -> thm -> bool
eq_thm : thm * thm -> bool
eq_thm_prop : thm * thm -> bool
size_of_thm : thm -> int

has_fewer_prems n thm reports whether thm has fewer than n premises.
By currying, has_fewer_prems n is a predicate on theorems; it may
be given to the searching tacticals.

eq_thm (thm1, thm2) reports whether thm1 and thm2 are equal. Both the-
orems must have compatible signatures. Both theorems must have the
same conclusions, the same hypotheses (in the same order), and the
same set of sort hypotheses. Names of bound variables are ignored.

eq_thm_prop (thm1, thm2) reports whether the propositions of thm1 and
thm2 are equal. Names of bound variables are ignored.

size_of_thm thm computes the size of thm, namely the number of variables,
constants and abstractions in its conclusion. It may serve as a distance
function for BEST_FIRST.

4.3 Tacticals for subgoal numbering

When conducting a backward proof, we normally consider one goal at a
time. A tactic can affect the entire proof state, but many tactics — such
as resolve_tac and assume_tac — work on a single subgoal. Subgoals are
designated by a positive integer, so Isabelle provides tacticals for combining
values of type int->tactic.

CHAPTER 4. TACTICALS 41

4.3.1 Restricting a tactic to one subgoal

SELECT_GOAL : tactic -> int -> tactic
METAHYPS : (thm list -> tactic) -> int -> tactic

SELECT_GOAL tac i restricts the effect of tac to subgoal i of the proof state.
It fails if there is no subgoal i , or if tac changes the main goal (do
not use rewrite_tac). It applies tac to a dummy proof state and uses
the result to refine the original proof state at subgoal i . If tac returns
multiple results then so does SELECT_GOAL tac i .

SELECT_GOAL works by creating a state of the form φ =⇒ φ, with
the one subgoal φ. If subgoal i has the form ψ =⇒ θ then (ψ =⇒
θ) =⇒ (ψ =⇒ θ) is in fact [[ψ =⇒ θ; ψ]] =⇒ θ, a proof state with two
subgoals. Such a proof state might cause tactics to go astray. Therefore
SELECT_GOAL inserts a quantifier to create the state

(
∧

x . ψ =⇒ θ) =⇒ (
∧

x . ψ =⇒ θ).

METAHYPS tacf i takes subgoal i , of the form∧
x1 . . . xl . [[θ1; . . . ; θk]] =⇒ θ,

and creates the list θ′1, . . . , θ′k of meta-level assumptions. In these
theorems, the subgoal’s parameters (x1, . . . , xl) become free variables.
It supplies the assumptions to tacf and applies the resulting tactic to
the proof state θ =⇒ θ.

If the resulting proof state is [[φ1; . . . ;φn]] =⇒ φ, possibly containing
θ′1, . . . , θ

′
k as assumptions, then it is lifted back into the original context,

yielding n subgoals.

Meta-level assumptions may not contain unknowns. Unknowns in the
hypotheses θ1, . . . , θk become free variables in θ′1, . . . , θ′k , and are re-
stored afterwards; the METAHYPS call cannot instantiate them. Un-
knowns in θ may be instantiated. New unknowns in φ1, . . . , φn are
lifted over the parameters.

Here is a typical application. Calling hyp_res_tac i resolves subgoal i
with one of its own assumptions, which may itself have the form of an
inference rule (these are called higher-level assumptions).

val hyp_res_tac = METAHYPS (fn prems => resolve_tac prems 1);

The function gethyps is useful for debugging applications of METAHYPS.

! METAHYPS fails if the context or new subgoals contain type unknowns. In
principle, the tactical could treat these like ordinary unknowns.

CHAPTER 4. TACTICALS 42

4.3.2 Scanning for a subgoal by number

ALLGOALS : (int -> tactic) -> tactic
TRYALL : (int -> tactic) -> tactic
SOMEGOAL : (int -> tactic) -> tactic
FIRSTGOAL : (int -> tactic) -> tactic
REPEAT_SOME : (int -> tactic) -> tactic
REPEAT_FIRST : (int -> tactic) -> tactic
trace_goalno_tac : (int -> tactic) -> int -> tactic

These apply a tactic function of type int -> tactic to all the subgoal num-
bers of a proof state, and join the resulting tactics using THEN or ORELSE.
Thus, they apply the tactic to all the subgoals, or to one subgoal.

Suppose that the original proof state has n subgoals.

ALLGOALS tacf is equivalent to tacf (n) THEN ... THEN tacf (1).

It applies tacf to all the subgoals, counting downwards (to avoid prob-
lems when subgoals are added or deleted).

TRYALL tacf is equivalent to TRY(tacf (n)) THEN ... THEN TRY(tacf (1)).

It attempts to apply tacf to all the subgoals. For instance, the tactic
TRYALL assume_tac attempts to solve all the subgoals by assumption.

SOMEGOAL tacf is equivalent to tacf (n) ORELSE ... ORELSE tacf (1).

It applies tacf to one subgoal, counting downwards. For instance, the
tactic SOMEGOAL assume_tac solves one subgoal by assumption, failing
if this is impossible.

FIRSTGOAL tacf is equivalent to tacf (1) ORELSE ... ORELSE tacf (n).

It applies tacf to one subgoal, counting upwards.

REPEAT_SOME tacf applies tacf once or more to a subgoal, counting down-
wards.

REPEAT_FIRST tacf applies tacf once or more to a subgoal, counting upwards.

trace_goalno_tac tac i applies tac i to the proof state. If the resulting
sequence is non-empty, then it is returned, with the side-effect of print-
ing Subgoal i selected. Otherwise, trace_goalno_tac returns the
empty sequence and prints nothing.

It indicates that ‘the tactic worked for subgoal i ’ and is mainly used
with SOMEGOAL and FIRSTGOAL.

CHAPTER 4. TACTICALS 43

4.3.3 Joining tactic functions

THEN’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix 1
ORELSE’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix
APPEND’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix
INTLEAVE’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix
EVERY’ : (’a -> tactic) list -> ’a -> tactic
FIRST’ : (’a -> tactic) list -> ’a -> tactic

These help to express tactics that specify subgoal numbers. The tactic

SOMEGOAL (fn i => resolve_tac rls i ORELSE eresolve_tac erls i)

can be simplified to

SOMEGOAL (resolve_tac rls ORELSE’ eresolve_tac erls)

Note that TRY’, REPEAT’, DEPTH_FIRST’, etc. are not provided, because func-
tion composition accomplishes the same purpose. The tactic

ALLGOALS (fn i => REPEAT (etac exE i ORELSE atac i))

can be simplified to

ALLGOALS (REPEAT o (etac exE ORELSE’ atac))

These tacticals are polymorphic; x need not be an integer.

(tacf1 THEN’ tacf2)(x) yields tacf1(x) THEN tacf2(x)
(tacf1 ORELSE’ tacf2)(x) yields tacf1(x) ORELSE tacf2(x)
(tacf1 APPEND’ tacf2)(x) yields tacf1(x) APPEND tacf2(x)

(tacf1 INTLEAVE’ tacf2)(x) yields tacf1(x) INTLEAVE tacf2(x)
EVERY’ [tacf1, . . . , tacfn] (x) yields EVERY [tacf1(x), . . . , tacfn(x)]
FIRST’ [tacf1, . . . , tacfn] (x) yields FIRST [tacf1(x), . . . , tacfn(x)]

4.3.4 Applying a list of tactics to 1

EVERY1: (int -> tactic) list -> tactic
FIRST1: (int -> tactic) list -> tactic

A common proof style is to treat the subgoals as a stack, always restricting
attention to the first subgoal. Such proofs contain long lists of tactics, each
applied to 1. These can be simplified using EVERY1 and FIRST1:

EVERY1 [tacf1, . . . , tacfn] abbreviates EVERY [tacf1(1), . . . , tacfn(1)]
FIRST1 [tacf1, . . . , tacfn] abbreviates FIRST [tacf1(1), . . . , tacfn(1)]

Chapter 5

Theorems and Forward Proof

Theorems, which represent the axioms, theorems and rules of object-logics,
have type thm. This chapter begins by describing operations that print the-
orems and that join them in forward proof. Most theorem operations are
intended for advanced applications, such as programming new proof pro-
cedures. Many of these operations refer to signatures, certified terms and
certified types, which have the ml types Sign.sg, cterm and ctyp and are
discussed in Chapter 6. Beginning users should ignore such complexities —
and skip all but the first section of this chapter.

The theorem operations do not print error messages. Instead, they raise
exception THM. Use print_exn to display exceptions nicely:

allI RS mp handle e => print_exn e;
Exception THM raised:

RSN: no unifiers -- premise 1

(!!x. ?P(x)) ==> ALL x. ?P(x)

[| ?P --> ?Q; ?P |] ==> ?Q

uncaught exception THM

5.1 Basic operations on theorems

5.1.1 Pretty-printing a theorem

prth : thm -> thm
prths : thm list -> thm list
prthq : thm Seq.seq -> thm Seq.seq
print_thm : thm -> unit
print_goals : int -> thm -> unit
string_of_thm : thm -> string

The first three commands are for interactive use. They are identity functions
that display, then return, their argument. The ml identifier it will refer to
the value just displayed.

The others are for use in programs. Functions with result type unit are
convenient for imperative programming.

44

CHAPTER 5. THEOREMS AND FORWARD PROOF 45

prth thm prints thm at the terminal.

prths thms prints thms, a list of theorems.

prthq thmq prints thmq, a sequence of theorems. It is useful for inspecting
the output of a tactic.

print_thm thm prints thm at the terminal.

print_goals limit thm prints thm in goal style, with the premises as sub-
goals. It prints at most limit subgoals. The subgoal module calls
print_goals to display proof states.

string_of_thm thm converts thm to a string.

5.1.2 Forward proof: joining rules by resolution

RSN : thm * (int * thm) -> thm infix
RS : thm * thm -> thm infix
MRS : thm list * thm -> thm infix
OF : thm * thm list -> thm infix
RLN : thm list * (int * thm list) -> thm list infix
RL : thm list * thm list -> thm list infix
MRL : thm list list * thm list -> thm list infix

Joining rules together is a simple way of deriving new rules. These functions
are especially useful with destruction rules. To store the result in the theorem
database, use bind_thm (§2.1.3).

thm1 RSN (i , thm2) resolves the conclusion of thm1 with the ith premise
of thm2. Unless there is precisely one resolvent it raises exception THM;
in that case, use RLN.

thm1 RS thm2 abbreviates thm1 RSN (1, thm2). Thus, it resolves the conclu-
sion of thm1 with the first premise of thm2.

[thm1, . . . , thmn] MRS thm uses RSN to resolve thmi against premise i of thm,
for i = n, . . . , 1. This applies thmn , . . . , thm1 to the first n premises
of thm. Because the theorems are used from right to left, it does not
matter if the thmi create new premises. MRS is useful for expressing
proof trees.

thm OF [thm1, . . . , thmn] is the same as [thm1, . . . , thmn] MRS thm, with
slightly more readable argument order, though.

CHAPTER 5. THEOREMS AND FORWARD PROOF 46

thms1 RLN (i , thms2) joins lists of theorems. For every thm1 in thms1 and
thm2 in thms2, it resolves the conclusion of thm1 with the ith premise
of thm2, accumulating the results.

thms1 RL thms2 abbreviates thms1 RLN (1, thms2).

[thms1, . . . , thmsn] MRL thms is analogous to MRS, but combines theorem lists
rather than theorems. It too is useful for expressing proof trees.

5.1.3 Expanding definitions in theorems

rewrite_rule : thm list -> thm -> thm
rewrite_goals_rule : thm list -> thm -> thm

rewrite_rule defs thm unfolds the defs throughout the theorem thm.

rewrite_goals_rule defs thm unfolds the defs in the premises of thm,
but it leaves the conclusion unchanged. This rule is the basis for
rewrite_goals_tac, but it serves little purpose in forward proof.

5.1.4 Instantiating unknowns in a theorem

read_instantiate : (string*string) list -> thm -> thm
read_instantiate_sg : Sign.sg -> (string*string) list -> thm -> thm
cterm_instantiate : (cterm*cterm) list -> thm -> thm
instantiate’ : ctyp option list -> cterm option list -> thm -> thm

These meta-rules instantiate type and term unknowns in a theorem. They
are occasionally useful. They can prevent difficulties with higher-order uni-
fication, and define specialized versions of rules.

read_instantiate insts thm processes the instantiations insts and instan-
tiates the rule thm. The processing of instantiations is described in
§3.1.4, under res_inst_tac.

Use res_inst_tac, not read_instantiate, to instantiate a rule and
refine a particular subgoal. The tactic allows instantiation by the sub-
goal’s parameters, and reads the instantiations using the signature as-
sociated with the proof state.

Use read_instantiate_sg below if insts appears to be treated incor-
rectly.

CHAPTER 5. THEOREMS AND FORWARD PROOF 47

read_instantiate_sg sg insts thm is like read_instantiate insts thm,
but it reads the instantiations under signature sg. This is necessary to
instantiate a rule from a general theory, such as first-order logic, using
the notation of some specialized theory. Use the function sign_of to
get a theory’s signature.

cterm_instantiate ctpairs thm is similar to read_instantiate, but the
instantiations are provided as pairs of certified terms, not as strings to
be read.

instantiate’ ctyps cterms thm instantiates thm according to the posi-
tional arguments ctyps and cterms. Counting from left to right,
schematic variables ?x are either replaced by t for any argument Some t ,
or left unchanged in case of None or if the end of the argument list is
encountered. Types are instantiated before terms.

5.1.5 Miscellaneous forward rules

standard : thm -> thm
zero_var_indexes : thm -> thm
make_elim : thm -> thm
rule_by_tactic : tactic -> thm -> thm
rotate_prems : int -> thm -> thm
permute_prems : int -> int -> thm -> thm
rearrange_prems : int list -> thm -> thm

standard thm puts thm into the standard form of object-rules. It discharges
all meta-assumptions, replaces free variables by schematic variables,
renames schematic variables to have subscript zero, also strips outer
(meta) quantifiers and removes dangling sort hypotheses.

zero_var_indexes thm makes all schematic variables have subscript zero,
renaming them to avoid clashes.

make_elim thm converts thm, which should be a destruction rule of the form
[[P1; . . . ; Pm]] =⇒ Q , to the elimination rule [[P1; . . . ; Pm ; Q =⇒ R]] =⇒
R. This is the basis for destruct-resolution: dresolve_tac, etc.

rule_by_tactic tac thm applies tac to the thm, freezing its variables first,
then yields the proof state returned by the tactic. In typical usage,
the thm represents an instance of a rule with several premises, some
with contradictory assumptions (because of the instantiation). The
tactic proves those subgoals and does whatever else it can, and returns
whatever is left.

CHAPTER 5. THEOREMS AND FORWARD PROOF 48

rotate_prems k thm rotates the premises of thm to the left by k positions
(to the right if k < 0). It simply calls permute_prems, below, with
j = 0. Used with eresolve_tac, it gives the effect of applying the
tactic to some other premise of thm than the first.

permute_prems j k thm rotates the premises of thm leaving the first j
premises unchanged. It requires 0 ≤ j ≤ n, where n is the num-
ber of premises. If k is positive then it rotates the remaining n − j
premises to the left; if k is negative then it rotates the premises to the
right.

rearrange_prems ps thm permutes the premises of thm where the value
at the i -th position (counting from 0) in the list ps gives the position
within the original thm to be transferred to position i . Any remaining
trailing positions are left unchanged.

5.1.6 Taking a theorem apart

cprop_of : thm -> cterm
concl_of : thm -> term
prems_of : thm -> term list
cprems_of : thm -> cterm list
nprems_of : thm -> int
tpairs_of : thm -> (term*term) list
sign_of_thm : thm -> Sign.sg
theory_of_thm : thm -> theory
dest_state : thm * int -> (term*term) list * term list * term * term
rep_thm : thm -> {sign_ref: Sign.sg_ref, der: bool * deriv, maxidx: int,

shyps: sort list, hyps: term list, prop: term}
crep_thm : thm -> {sign_ref: Sign.sg_ref, der: bool * deriv, maxidx: int,

shyps: sort list, hyps: cterm list, prop: cterm}

cprop_of thm returns the statement of thm as a certified term.

concl_of thm returns the conclusion of thm as a term.

prems_of thm returns the premises of thm as a list of terms.

cprems_of thm returns the premises of thm as a list of certified terms.

nprems_of thm returns the number of premises in thm, and is equivalent to
length (prems_of thm).

tpairs_of thm returns the flex-flex constraints of thm.

sign_of_thm thm returns the signature associated with thm.

CHAPTER 5. THEOREMS AND FORWARD PROOF 49

theory_of_thm thm returns the theory associated with thm. Note that this
does a lookup in Isabelle’s global database of loaded theories.

dest_state (thm, i) decomposes thm as a tuple containing a list of flex-flex
constraints, a list of the subgoals 1 to i − 1, subgoal i , and the rest
of the theorem (this will be an implication if there are more than i
subgoals).

rep_thm thm decomposes thm as a record containing the statement of thm
(prop), its list of meta-assumptions (hyps), its derivation (der), a
bound on the maximum subscript of its unknowns (maxidx), and a
reference to its signature (sign_ref). The shyps field is discussed
below.

crep_thm thm like rep_thm, but returns the hypotheses and statement as
certified terms.

5.1.7 *Sort hypotheses

strip_shyps : thm -> thm
strip_shyps_warning : thm -> thm

Isabelle’s type variables are decorated with sorts, constraining them to
certain ranges of types. This has little impact when sorts only serve for
syntactic classification of types — for example, FOL distinguishes between
terms and other types. But when type classes are introduced through axioms,
this may result in some sorts becoming empty : where one cannot exhibit a
type belonging to it because certain sets of axioms are unsatisfiable.

If a theorem contains a type variable that is constrained by an empty sort,
then that theorem has no instances. It is basically an instance of ex falso
quodlibet. But what if it is used to prove another theorem that no longer
involves that sort? The latter theorem holds only if under an additional
non-emptiness assumption.

Therefore, Isabelle’s theorems carry around sort hypotheses. The shyps

field is a list of sorts occurring in type variables in the current prop and hyps

fields. It may also includes sorts used in the theorem’s proof that no longer
appear in the prop or hyps fields — so-called dangling sort constraints. These
are the critical ones, asserting non-emptiness of the corresponding sorts.

Isabelle automatically removes extraneous sorts from the shyps field at
the end of a proof, provided that non-emptiness can be established by looking
at the theorem’s signature: from the classes and arities information. This
operation is performed by strip_shyps and strip_shyps_warning.

CHAPTER 5. THEOREMS AND FORWARD PROOF 50

strip_shyps thm removes any extraneous sort hypotheses that can be wit-
nessed from the type signature.

strip_shyps_warning is like strip_shyps, but issues a warning message of
any pending sort hypotheses that do not have a (syntactic) witness.

5.1.8 Tracing flags for unification

Unify.trace_simp : bool ref initially false
Unify.trace_types : bool ref initially false
Unify.trace_bound : int ref initially 10
Unify.search_bound : int ref initially 20

Tracing the search may be useful when higher-order unification behaves un-
expectedly. Letting res_inst_tac circumvent the problem is easier, though.

set Unify.trace_simp; causes tracing of the simplification phase.

set Unify.trace_types; generates warnings of incompleteness, when uni-
fication is not considering all possible instantiations of type unknowns.

Unify.trace_bound := n; causes unification to print tracing information
once it reaches depth n. Use n = 0 for full tracing. At the default
value of 10, tracing information is almost never printed.

Unify.search_bound := n; prevents unification from searching past the
depth n. Because of this bound, higher-order unification cannot return
an infinite sequence, though it can return an exponentially long one.
The search rarely approaches the default value of 20. If the search is
cut off, unification prints a warning Unification bound exceeded.

5.2 *Primitive meta-level inference rules

These implement the meta-logic in the style of the lcf system, as functions
from theorems to theorems. They are, rarely, useful for deriving results in
the pure theory. Mainly, they are included for completeness, and most users
should not bother with them. The meta-rules raise exception THM to signal
malformed premises, incompatible signatures and similar errors.

The meta-logic uses natural deduction. Each theorem may depend on
meta-level assumptions. Certain rules, such as (=⇒I), discharge assump-
tions; in most other rules, the conclusion depends on all of the assumptions
of the premises. Formally, the system works with assertions of the form

φ [φ1, . . . , φn],

CHAPTER 5. THEOREMS AND FORWARD PROOF 51

where φ1, . . . , φn are the assumptions. This can be also read as a single
conclusion sequent φ1, . . . , φn ` φ. Do not confuse meta-level assumptions
with the object-level assumptions in a subgoal, which are represented in the
meta-logic using =⇒.

Each theorem has a signature. Certified terms have a signature. When
a rule takes several premises and certified terms, it merges the signatures to
make a signature for the conclusion. This fails if the signatures are incom-
patible.

The following presentation of primitive rules ignores sort hypotheses (see
also §5.1.7). These are handled transparently by the logic implementation.

The implication rules are (=⇒I) and (=⇒E):

[φ]
....
ψ

φ =⇒ ψ
(=⇒I)

φ =⇒ ψ φ

ψ
(=⇒E)

Equality of truth values means logical equivalence:

φ =⇒ ψ ψ =⇒ φ

φ ≡ ψ
(≡I)

φ ≡ ψ φ

ψ
(≡E)

The equality rules are reflexivity, symmetry, and transitivity:

a ≡ a (refl)
a ≡ b
b ≡ a

(sym) a ≡ b b ≡ c
a ≡ c (trans)

The λ-conversions are α-conversion, β-conversion, and extensionality:1

(λx . a) ≡ (λy . a[y/x]) ((λx . a)(b)) ≡ a[b/x]

f (x) ≡ g(x)

f ≡ g
(ext)

The abstraction and combination rules let conversions be applied to
subterms:2

a ≡ b
(λx . a) ≡ (λx . b)

(abs)
f ≡ g a ≡ b

f (a) ≡ g(b)
(comb)

The universal quantification rules are (
∧

I) and (
∧

E):3

φ∧
x . φ

(
∧

I)

∧
x . φ

φ[b/x]
(
∧

E)

1α-conversion holds if y is not free in a; (ext) holds if x is not free in the assumptions,
f , or g .

2Abstraction holds if x is not free in the assumptions.
3(

∧
I) holds if x is not free in the assumptions.

CHAPTER 5. THEOREMS AND FORWARD PROOF 52

5.2.1 Assumption rule

assume: cterm -> thm

assume ct makes the theorem φ [φ], where φ is the value of ct . The rule
checks that ct has type prop and contains no unknowns, which are not
allowed in assumptions.

5.2.2 Implication rules

implies_intr : cterm -> thm -> thm
implies_intr_list : cterm list -> thm -> thm
implies_intr_hyps : thm -> thm
implies_elim : thm -> thm -> thm
implies_elim_list : thm -> thm list -> thm

implies_intr ct thm is (=⇒I), where ct is the assumption to discharge,
say φ. It maps the premise ψ to the conclusion φ =⇒ ψ, removing all
occurrences of φ from the assumptions. The rule checks that ct has
type prop.

implies_intr_list cts thm applies (=⇒I) repeatedly, on every element
of the list cts .

implies_intr_hyps thm applies (=⇒I) to discharge all the hypotheses (as-
sumptions) of thm. It maps the premise φ [φ1, . . . , φn] to the conclusion
[[φ1, . . . , φn]] =⇒ φ.

implies_elim thm1 thm2 applies (=⇒E) to thm1 and thm2. It maps the
premises φ =⇒ ψ and φ to the conclusion ψ.

implies_elim_list thm thms applies (=⇒E) repeatedly to thm, using
each element of thms in turn. It maps the premises [[φ1, . . . , φn]] =⇒ ψ
and φ1,. . . ,φn to the conclusion ψ.

5.2.3 Logical equivalence rules

equal_intr : thm -> thm -> thm
equal_elim : thm -> thm -> thm

equal_intr thm1 thm2 applies (≡I) to thm1 and thm2. It maps the
premises ψ and φ to the conclusion φ ≡ ψ; the assumptions are those
of the first premise with φ removed, plus those of the second premise
with ψ removed.

equal_elim thm1 thm2 applies (≡E) to thm1 and thm2. It maps the
premises φ ≡ ψ and φ to the conclusion ψ.

CHAPTER 5. THEOREMS AND FORWARD PROOF 53

5.2.4 Equality rules

reflexive : cterm -> thm
symmetric : thm -> thm
transitive : thm -> thm -> thm

reflexive ct makes the theorem ct ≡ ct .

symmetric thm maps the premise a ≡ b to the conclusion b ≡ a.

transitive thm1 thm2 maps the premises a ≡ b and b ≡ c to the conclu-
sion a ≡ c.

5.2.5 The λ-conversion rules

beta_conversion : cterm -> thm
extensional : thm -> thm
abstract_rule : string -> cterm -> thm -> thm
combination : thm -> thm -> thm

There is no rule for α-conversion because Isabelle regards α-convertible the-
orems as equal.

beta_conversion ct makes the theorem ((λx . a)(b)) ≡ a[b/x], where ct is
the term (λx . a)(b).

extensional thm maps the premise f (x) ≡ g(x) to the conclusion f ≡ g .
Parameter x is taken from the premise. It may be an unknown or a
free variable (provided it does not occur in the assumptions); it must
not occur in f or g .

abstract_rule v x thm maps the premise a ≡ b to the conclusion (λx .
a) ≡ (λx . b), abstracting over all occurrences (if any!) of x . Parame-
ter x is supplied as a cterm. It may be an unknown or a free variable
(provided it does not occur in the assumptions). In the conclusion, the
bound variable is named v .

combination thm1 thm2 maps the premises f ≡ g and a ≡ b to the conclu-
sion f (a) ≡ g(b).

5.2.6 Forall introduction rules

forall_intr : cterm -> thm -> thm
forall_intr_list : cterm list -> thm -> thm
forall_intr_frees : thm -> thm

CHAPTER 5. THEOREMS AND FORWARD PROOF 54

forall_intr x thm applies (
∧

I), abstracting over all occurrences (if any!)
of x . The rule maps the premise φ to the conclusion

∧
x . φ. Parame-

ter x is supplied as a cterm. It may be an unknown or a free variable
(provided it does not occur in the assumptions).

forall_intr_list xs thm applies (
∧

I) repeatedly, on every element of the
list xs .

forall_intr_frees thm applies (
∧

I) repeatedly, generalizing over all the
free variables of the premise.

5.2.7 Forall elimination rules

forall_elim : cterm -> thm -> thm
forall_elim_list : cterm list -> thm -> thm
forall_elim_var : int -> thm -> thm
forall_elim_vars : int -> thm -> thm

forall_elim ct thm applies (
∧

E), mapping the premise
∧

x . φ to the con-
clusion φ[ct/x]. The rule checks that ct and x have the same type.

forall_elim_list cts thm applies (
∧

E) repeatedly, on every element of
the list cts .

forall_elim_var k thm applies (
∧

E), mapping the premise
∧

x . φ to the
conclusion φ[?xk/x]. Thus, it replaces the outermost

∧
-bound variable

by an unknown having subscript k .

forall_elim_vars k thm applies forall_elim_var k repeatedly until the
theorem no longer has the form

∧
x . φ.

5.2.8 Instantiation of unknowns

instantiate: (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm

There are two versions of this rule. The primitive one is Thm.instantiate,
which merely performs the instantiation and can produce a conclusion not
in normal form. A derived version is Drule.instantiate, which normalizes
its conclusion.

instantiate (tyinsts,insts) thm simultaneously substitutes types for type
unknowns (the tyinsts) and terms for term unknowns (the insts). In-
stantiations are given as (v , t) pairs, where v is an unknown and t is a

CHAPTER 5. THEOREMS AND FORWARD PROOF 55

term (of the same type as v) or a type (of the same sort as v). All the
unknowns must be distinct.

In some cases, instantiate’ (see §5.1.4) provides a more convenient
interface to this rule.

5.2.9 Freezing/thawing type unknowns

freezeT: thm -> thm
varifyT: thm -> thm

freezeT thm converts all the type unknowns in thm to free type variables.

varifyT thm converts all the free type variables in thm to type unknowns.

5.3 Derived rules for goal-directed proof

Most of these rules have the sole purpose of implementing particular tactics.
There are few occasions for applying them directly to a theorem.

5.3.1 Proof by assumption

assumption : int -> thm -> thm Seq.seq
eq_assumption : int -> thm -> thm

assumption i thm attempts to solve premise i of thm by assumption.

eq_assumption is like assumption but does not use unification.

5.3.2 Resolution

biresolution : bool -> (bool*thm)list -> int -> thm
-> thm Seq.seq

biresolution match rules i state performs bi-resolution on subgoal i of
state, using the list of (flag , rule) pairs. For each pair, it applies res-
olution if the flag is false and elim-resolution if the flag is true. If
match is true, the state is not instantiated.

CHAPTER 5. THEOREMS AND FORWARD PROOF 56

5.3.3 Composition: resolution without lifting

compose : thm * int * thm -> thm list
COMP : thm * thm -> thm
bicompose : bool -> bool * thm * int -> int -> thm

-> thm Seq.seq

In forward proof, a typical use of composition is to regard an assertion of the
form φ =⇒ ψ as atomic. Schematic variables are not renamed, so beware of
clashes!

compose (thm1, i, thm2) uses thm1, regarded as an atomic formula, to
solve premise i of thm2. Let thm1 and thm2 be ψ and [[φ1; . . . ;φn]] =⇒ φ.
For each s that unifies ψ and φi , the result list contains the theorem

([[φ1; . . . ;φi−1;φi+1; . . . ;φn]] =⇒ φ)s .

thm1 COMP thm2 calls compose (thm1, 1, thm2) and returns the result, if
unique; otherwise, it raises exception THM. It is analogous to RS.

For example, suppose that thm1 is a = b =⇒ b = a, a symmetry
rule, and that thm2 is [[P =⇒ Q ;¬Q]] =⇒ ¬P , which is the principle
of contrapositives. Then the result would be the derived rule ¬(b =
a) =⇒ ¬(a = b).

bicompose match (flag, rule, m) i state refines subgoal i of state us-
ing rule, without lifting. The rule is taken to have the form
[[ψ1; . . . ;ψm]] =⇒ ψ, where ψ need not be atomic; thus m determines the
number of new subgoals. If flag is true then it performs elim-resolution
— it solves the first premise of rule by assumption and deletes that as-
sumption. If match is true, the state is not instantiated.

5.3.4 Other meta-rules

trivial : cterm -> thm
lift_rule : (thm * int) -> thm -> thm
rename_params_rule : string list * int -> thm -> thm
flexflex_rule : thm -> thm Seq.seq

trivial ct makes the theorem φ =⇒ φ, where φ is the value of ct . This is
the initial state for a goal-directed proof of φ. The rule checks that ct
has type prop.

lift_rule (state, i) rule prepares rule for resolution by lifting it over the
parameters and assumptions of subgoal i of state.

CHAPTER 5. THEOREMS AND FORWARD PROOF 57

rename_params_rule (names, i) thm uses the names to rename the pa-
rameters of premise i of thm. The names must be distinct. If there
are fewer names than parameters, then the rule renames the innermost
parameters and may modify the remaining ones to ensure that all the
parameters are distinct.

flexflex_rule thm removes all flex-flex pairs from thm using the trivial
unifier.

5.4 Proof terms

Isabelle can record the full meta-level proof of each theorem. The proof term
contains all logical inferences in detail. Resolution and rewriting steps are
broken down to primitive rules of the meta-logic. The proof term can be
inspected by a separate proof-checker, for example.

According to the well-known Curry-Howard isomorphism, a proof can be
viewed as a λ-term. Following this idea, proofs in Isabelle are internally
represented by a datatype similar to the one for terms described in §6.5.

infix 8 % %%;

datatype proof =
PBound of int

| Abst of string * typ option * proof
| AbsP of string * term option * proof
| op % of proof * term option
| op %% of proof * proof
| Hyp of term
| PThm of (string * (string * string list) list) *

proof * term * typ list option
| PAxm of string * term * typ list option
| Oracle of string * term * typ list option
| MinProof of proof list;

Abst (a, τ, prf) is the abstraction over a term variable of type τ in the
body prf . Logically, this corresponds to

∧
introduction. The name a

is used only for parsing and printing.

AbsP (a, ϕ, prf) is the abstraction over a proof variable standing for a
proof of proposition ϕ in the body prf . This corresponds to =⇒ intro-
duction.

prf % t is the application of proof prf to term t which corresponds to
∧

elimination.

CHAPTER 5. THEOREMS AND FORWARD PROOF 58

prf1 %% prf2 is the application of proof prf1 to proof prf2 which corresponds
to =⇒ elimination.

PBound i is a proof variable with de Bruijn [5] index i .

Hyp ϕ corresponds to the use of a meta level hypothesis ϕ.

PThm ((name, tags), prf , ϕ, τ) stands for a pre-proved theorem, where
name is the name of the theorem, prf is its actual proof, ϕ is the proven
proposition, and τ is a type assignment for the type variables occurring
in the proposition.

PAxm (name, ϕ, τ) corresponds to the use of an axiom with name name
and proposition ϕ, where τ is a type assignment for the type variables
occurring in the proposition.

Oracle (name, ϕ, τ) denotes the invocation of an oracle with name name
which produced a proposition ϕ, where τ is a type assignment for the
type variables occurring in the proposition.

MinProof prfs represents a minimal proof where prfs is a list of theorems,
axioms or oracles.

Note that there are no separate constructors for abstraction and application
on the level of types, since instantiation of type variables is accomplished via
the type assignments attached to Thm, Axm and Oracle.

Each theorem’s derivation is stored as the der field of its internal record:

#2 (#der (rep_thm conjI));
PThm (("HOL.conjI", []),

AbsP ("H", None, AbsP ("H", None, ...)), ..., None) %

None % None : Proofterm.proof

This proof term identifies a labelled theorem, conjI of theory HOL, whose
underlying proof is AbsP ("H", None, AbsP ("H", None, . . .)). The the-
orem is applied to two (implicit) term arguments, which correspond to the
two variables occurring in its proposition.

Isabelle’s inference kernel can produce proof objects with different levels
of detail. This is controlled via the global reference variable proofs:

proofs := 0; only record uses of oracles

proofs := 1; record uses of oracles as well as dependencies on other theo-
rems and axioms

CHAPTER 5. THEOREMS AND FORWARD PROOF 59

proofs := 2; record inferences in full detail

Reconstruction and checking of proofs as described in §5.4.1 will not work for
proofs constructed with proofs set to 0 or 1. Theorems involving oracles will
be printed with a suffixed [!] to point out the different quality of confidence
achieved.

The dependencies of theorems can be viewed using the function thm_deps:

thm_deps [thm1, . . ., thmn];

generates the dependency graph of the theorems thm1, . . ., thmn and displays
it using Isabelle’s graph browser. For this to work properly, the theorems in
question have to be proved with proofs set to a value greater than 0. You
can use

ThmDeps.enable : unit -> unit
ThmDeps.disable : unit -> unit

to set proofs appropriately.

5.4.1 Reconstructing and checking proof terms

When looking at the above datatype of proofs more closely, one notices that
some arguments of constructors are optional. The reason for this is that
keeping a full proof term for each theorem would result in enormous memory
requirements. Fortunately, typical proof terms usually contain quite a lot of
redundant information that can be reconstructed from the context. There-
fore, Isabelle’s inference kernel creates only partial (or implicit) proof terms,
in which all typing information in terms, all term and type labels of abstrac-
tions AbsP and Abst, and (if possible) some argument terms of % are omitted.
The following functions are available for reconstructing and checking proof
terms:

Reconstruct.reconstruct_proof :
Sign.sg -> term -> Proofterm.proof -> Proofterm.proof

Reconstruct.expand_proof :
Sign.sg -> string list -> Proofterm.proof -> Proofterm.proof

ProofChecker.thm_of_proof : theory -> Proofterm.proof -> thm

Reconstruct.reconstruct_proof sg t prf turns the partial proof prf
into a full proof of the proposition denoted by t , with respect to sig-
nature sg . Reconstruction will fail with an error message if prf is not
a proof of t , is ill-formed, or does not contain sufficient information
for reconstruction by higher order pattern unification [10, 2]. The lat-
ter may only happen for proofs built up “by hand” but not for those
produced automatically by Isabelle’s inference kernel.

CHAPTER 5. THEOREMS AND FORWARD PROOF 60

proof = Lam params. proof | Λparams. proof
| proof % any | proof · any
| proof %% proof | proof · proof
| id | longid

param = idt | idt : prop | (param)

params = param | param params

Figure 5.1: Proof term syntax

Reconstruct.expand_proof sg [name1, . . ., namen] prf expands and
reconstructs the proofs of all theorems with names name1, . . ., namen

in the (full) proof prf .

ProofChecker.thm_of_proof thy prf turns the (full) proof prf into a the-
orem with respect to theory thy by replaying it using only primitive
rules from Isabelle’s inference kernel.

5.4.2 Parsing and printing proof terms

Isabelle offers several functions for parsing and printing proof terms. The
concrete syntax for proof terms is described in Fig. 5.1. Implicit term argu-
ments in partial proofs are indicated by “_”. Type arguments for theorems
and axioms may be specified using % or “·” with an argument of the form
TYPE(type) (see §7.2). They must appear before any other term argument
of a theorem or axiom. In contrast to term arguments, type arguments may
be completely omitted.

ProofSyntax.read_proof : theory -> bool -> string -> Proofterm.proof
ProofSyntax.pretty_proof : Sign.sg -> Proofterm.proof -> Pretty.T
ProofSyntax.pretty_proof_of : bool -> thm -> Pretty.T
ProofSyntax.print_proof_of : bool -> thm -> unit

The function read_proof reads in a proof term with respect to a given
theory. The boolean flag indicates whether the proof term to be parsed
contains explicit typing information to be taken into account. Usually, typing
information is left implicit and is inferred during proof reconstruction. The
pretty printing functions operating on theorems take a boolean flag as an
argument which indicates whether the proof term should be reconstructed
before printing.

CHAPTER 5. THEOREMS AND FORWARD PROOF 61

The following example (based on Isabelle/HOL) illustrates how to parse
and check proof terms. We start by parsing a partial proof term

val prf = ProofSyntax.read_proof Main.thy false
"impI % _ % _ %% (Lam H : _. conjE % _ % _ % _ %% H %%

(Lam (H1 : _) H2 : _. conjI % _ % _ %% H2 %% H1))";
val prf = PThm (("HOL.impI", []), ..., ..., None) % None % None %%

AbsP ("H", None, PThm (("HOL.conjE", []), ..., ..., None) %

None % None % None %% PBound 0 %%

AbsP ("H1", None, AbsP ("H2", None, ...))) : Proofterm.proof

The statement to be established by this proof is

val t = term_of
(read_cterm (sign_of Main.thy) ("A & B --> B & A", propT));
val t = Const ("Trueprop", "bool => prop") $

(Const ("op -->", "[bool, bool] => bool") $

... $... : Term.term

Using t we can reconstruct the full proof

val prf’ = Reconstruct.reconstruct_proof (sign_of Main.thy) t prf;
val prf’ = PThm (("HOL.impI", []), ..., ..., Some []) %

Some (Const ("op &", ...) $ Free ("A", ...) $ Free ("B", ...)) %

Some (Const ("op &", ...) $ Free ("B", ...) $ Free ("A", ...)) %%

AbsP ("H", Some (Const ("Trueprop", ...) $...), ...)

: Proofterm.proof

This proof can finally be turned into a theorem

val thm = ProofChecker.thm_of_proof Main.thy prf’;
val thm = "A & B --> B & A" : Thm.thm

Chapter 6

Theories, Terms and Types

Theories organize the syntax, declarations and axioms of a mathematical
development. They are built, starting from the Pure or CPure theory, by
extending and merging existing theories. They have the ml type theory.
Theory operations signal errors by raising exception THEORY, returning a
message and a list of theories.

Signatures, which contain information about sorts, types, constants and
syntax, have the ml type Sign.sg. For identification, each signature carries
a unique list of stamps, which are ml references to strings. The strings serve
as human-readable names; the references serve as unique identifiers. Each
primitive signature has a single stamp. When two signatures are merged,
their lists of stamps are also merged. Every theory carries a unique signature.

Terms and types are the underlying representation of logical syntax.
Their ml definitions are irrelevant to naive Isabelle users. Programmers
who wish to extend Isabelle may need to know such details, say to code a
tactic that looks for subgoals of a particular form. Terms and types may be
‘certified’ to be well-formed with respect to a given signature.

6.1 Defining theories

Theories are defined via theory files name.thy (there are also ml-level inter-
faces which are only intended for people building advanced theory definition
packages). Appendix A presents the concrete syntax for theory files; here
follows an explanation of the constituent parts.

theoryDef is the full definition. The new theory is called id . It is the union of
the named parent theories, possibly extended with new components.
Pure and CPure are the basic theories, which contain only the meta-
logic. They differ just in their concrete syntax for function applications.

The new theory begins as a merge of its parents.

62

CHAPTER 6. THEORIES, TERMS AND TYPES 63

Attempt to merge different versions of theories: "T1", . . ., "Tn"

This error may especially occur when a theory is redeclared — say
to change an inappropriate definition — and bindings to old versions
persist. Isabelle ensures that old and new theories of the same name
are not involved in a proof.

classes is a series of class declarations. Declaring id < id1 ... idn makes
id a subclass of the existing classes id1 . . . idn . This rules out cyclic
class structures. Isabelle automatically computes the transitive closure
of subclass hierarchies; it is not necessary to declare c < e in addition
to c < d and d < e.

default introduces sort as the new default sort for type variables. This ap-
plies to unconstrained type variables in an input string but not to type
variables created internally. If omitted, the default sort is the listwise
union of the default sorts of the parent theories (i.e. their logical inter-
section).

sort is a finite set of classes. A single class id abbreviates the sort {id}.

types is a series of type declarations. Each declares a new type construc-
tor or type synonym. An n-place type constructor is specified by
(α1, . . . , αn)name, where the type variables serve only to indicate the
number n.

A type synonym is an abbreviation (α1, . . . , αn)name = τ , where
name and τ can be strings.

infix declares a type or constant to be an infix operator having pri-
ority nat and associating to the left (infixl) or right (infixr).
Only 2-place type constructors can have infix status; an example is
(’a,’b) "*" (infixr 20), which may express binary product types.

arities is a series of type arity declarations. Each assigns arities to type
constructors. The name must be an existing type constructor, which
is given the additional arity arity .

nonterminals declares purely syntactic types to be used as nonterminal sym-
bols of the context free grammar.

consts is a series of constant declarations. Each new constant name is given
the specified type. The optional mixfix annotations may attach con-
crete syntax to the constant.

CHAPTER 6. THEORIES, TERMS AND TYPES 64

syntax is a variant of consts which adds just syntax without actually declar-
ing logical constants. This gives full control over a theory’s context free
grammar. The optional mode specifies the print mode where the mixfix
productions should be added. If there is no output option given, all
productions are also added to the input syntax (regardless of the print
mode).

mixfix annotations can take three forms:

• A mixfix template given as a string of the form ". "
where the i -th underscore indicates the position where the i -th
argument should go. The list of numbers gives the priority of
each argument. The final number gives the priority of the whole
construct.

• A constant f of type τ1 ⇒ (τ2 ⇒ τ) can be given infix status.

• A constant f of type (τ1 ⇒ τ2) ⇒ τ can be given binder status.
The declaration binder Q p causes Q x . F (x) to be treated like
f (F), where p is the priority.

trans specifies syntactic translation rules (macros). There are three forms:
parse rules (=>), print rules (<=), and parse/print rules (==).

rules is a series of rule declarations. Each has a name id and the formula
is given by the string . Rule names must be distinct within any single
theory.

defs is a series of definitions. They are just like rules , except that every
string must be a definition (see below for details).

constdefs combines the declaration of constants and their definition. The
first string is the type, the second the definition.

axclass defines an axiomatic type class [16] as the intersection of existing
classes, with additional axioms holding. Class axioms may not con-
tain more than one type variable. The class axioms (with implicit
sort constraints added) are bound to the given names. Furthermore a
class introduction rule is generated, which is automatically employed
by instance to prove instantiations of this class.

instance proves class inclusions or type arities at the logical level and then
transfers these to the type signature. The instantiation is proven and
checked properly. The user has to supply sufficient witness information:

CHAPTER 6. THEORIES, TERMS AND TYPES 65

theorems (longident), axioms (string), or even arbitrary ml tactic code
verbatim.

oracle links the theory to a trusted external reasoner. It is allowed to create
theorems, but each theorem carries a proof object describing the oracle
invocation. See §6.10 for details.

local , global change the current name declaration mode. Initially, theories
start in local mode, causing all names of types, constants, axioms etc.
to be automatically qualified by the theory name. Changing this to
global causes all names to be declared as short base names only.

The local and global declarations act like switches, affecting all following
theory sections until changed again explicitly. Also note that the final
state at the end of the theory will persist. In particular, this determines
how the names of theorems stored later on are handled.

setup applies a list of ML functions to the theory. The argument should de-
note a value of type (theory -> theory) list. Typically, ML pack-
ages are initialized in this way.

ml consists of ml code, typically for parse and print translation functions.

Chapters 7 and 8 explain mixfix declarations, translation rules and the ML

section in more detail.

6.1.1 *Classes and arities

In order to guarantee principal types [12], arity declarations must obey two
conditions:

• There must not be any two declarations ty :: (~r)c and ty :: (~s)c with
~r 6= ~s . For example, this excludes the following:

arities
foo :: ({logic}) logic
foo :: ({})logic

• If there are two declarations ty :: (s1, . . . , sn)c and ty :: (s ′1, . . . , s
′
n)c ′

such that c ′ < c then s ′i � si must hold for i = 1, . . . , n. The relation-
ship �, defined as

s ′ � s ⇐⇒ ∀c ∈ s . ∃c ′ ∈ s ′ . c′ ≤ c,

expresses that the set of types represented by s ′ is a subset of the set
of types represented by s . Assuming term � logic, the following is
forbidden:

CHAPTER 6. THEORIES, TERMS AND TYPES 66

arities
foo :: ({logic})logic
foo :: ({})term

6.2 The theory loader

Isabelle’s theory loader manages dependencies of the internal graph of theory
nodes (the theory database) and the external view of the file system. See
§1.4 for its most basic commands, such as use_thy. There are a few more
operations available.

use_thy_only : string -> unit
update_thy_only : string -> unit
touch_thy : string -> unit
remove_thy : string -> unit
delete_tmpfiles : bool ref initially true

use_thy_only "name"; is similar to use_thy, but processes the actual the-
ory file name.thy only, ignoring name.ML. This might be useful in re-
playing proof scripts by hand from the very beginning, starting with
the fresh theory.

update_thy_only "name"; is similar to update_thy, but processes the ac-
tual theory file name.thy only, ignoring name.ML.

touch_thy "name"; marks theory node name of the internal graph as out-
dated. While the theory remains usable, subsequent operations such
as use_thy may cause a reload.

remove_thy "name"; deletes theory node name, including all of its de-
scendants. Beware! This is a quick way to dispose a large number of
theories at once. Note that ml bindings to theorems etc. of removed
theories may still persist.

reset delete_tmpfiles; processing theory files usually involves tempo-
rary ml files to be created. By default, these are deleted afterwards.
Resetting the delete_tmpfiles flag inhibits this, leaving the gener-
ated code for debugging purposes. The basic location for temporary
files is determined by the ISABELLE_TMP environment variable (which is
private to the running Isabelle process and may be retrieved by getenv

from ml).

CHAPTER 6. THEORIES, TERMS AND TYPES 67

Theory and ml files are located by skimming through the directories listed
in Isabelle’s internal load path, which merely contains the current directory
“.” by default. The load path may be accessed by the following operations.

show_path: unit -> string list
add_path: string -> unit
del_path: string -> unit
reset_path: unit -> unit
with_path: string -> (’a -> ’b) -> ’a -> ’b
no_document: (’a -> ’b) -> ’a -> ’b

show_path(); displays the load path components in canonical string repre-
sentation (which is always according to Unix rules).

add_path "dir"; adds component dir to the beginning of the load path.

del_path "dir"; removes any occurrences of component dir from the load
path.

reset_path(); resets the load path to “.” (current directory) only.

with_path "dir" f x; temporarily adds component dir to the beginning
of the load path while executing (f x).

no_document f x; temporarily disables LATEX document generation while
executing (f x).

Furthermore, in operations referring indirectly to some file (e.g. use_dir)
the argument may be prefixed by a directory that will be temporarily ap-
pended to the load path, too.

6.3 Locales

Locales [7] are a concept of local proof contexts. They are introduced as
named syntactic objects within theories and can be opened in any descendant
theory.

6.3.1 Declaring Locales

A locale is declared in a theory section that starts with the keyword locale.
It consists typically of three parts, the fixes part, the assumes part, and
the defines part. Appendix A presents the full syntax.

CHAPTER 6. THEORIES, TERMS AND TYPES 68

Parts of Locales

The subsection introduced by the keyword fixes declares the locale con-
stants in a way that closely resembles a global consts declaration. In partic-
ular, there may be an optional pretty printing syntax for the locale constants.

The subsequent assumes part specifies the locale rules. They are defined
like rules: by an identifier followed by the rule given as a string. Locale rules
admit the statement of local assumptions about the locale constants. The
assumes part is optional. Non-fixed variables in locale rules are automatically
bound by the universal quantifier !! of the meta-logic.

Finally, the defines part introduces the definitions that are available
in the locale. Locale constants declared in the fixes section are defined
using the meta-equality ==. If the locale constant is a functiond then its
definition can (as usual) have variables on the left-hand side acting as formal
parameters; they are considered as schematic variables and are automatically
generalized by universal quantification of the meta-logic. The right hand side
of a definition must not contain variables that are not already on the left hand
side. In so far locale definitions behave like theory level definitions. However,
the locale concept realizes dependent definitions : any variable that is fixed
as a locale constant can occur on the right hand side of definitions. For
an illustration of these dependent definitions see the occurrence of the locale
constant G on the right hand side of the definitions of the locale group below.
Naturally, definitions can already use the syntax of the locale constants in
the fixes subsection. The defines part is, as the assumes part, optional.

Example for Definition

The concrete syntax of locale definitions is demonstrated by example below.
Locale group assumes the definition of groups in a theory file1. A locale

defining a convenient proof environment for group related proofs may be
added to the theory as follows:

1This and other examples are from HOL/ex.

CHAPTER 6. THEORIES, TERMS AND TYPES 69

locale group =
fixes
G :: "’a grouptype"
e :: "’a"
binop :: "’a => ’a => ’a" (infixr "#" 80)
inv :: "’a => ’a" ("i(_)" [90] 91)

assumes
Group_G "G: Group"

defines
e_def "e == unit G"
binop_def "x # y == bin_op G x y"
inv_def "i(x) == inverse G x"

Polymorphism

In contrast to polymorphic definitions in theories, the use of the same type
variable for the declaration of different locale constants in the fixes part
means the same type. In other words, the scope of the polymorphic variables
is extended over all constant declarations of a locale. In the above example
’a refers to the same type which is fixed inside the locale. In an exported
theorem (see §6.3.2) the constructors of locale group are polymorphic, yet
only simultaneously instantiatable.

Nested Locales

A locale can be defined as the extension of a previously defined locale. This
operation of extension is optional and is syntactically expressed as

locale foo = bar + ...

The locale foo builds on the constants and syntax of the locale bar. That
is, all contents of the locale bar can be used in definitions and rules of
the corresponding parts of the locale foo. Although locale foo assumes the
fixes part of bar it does not automatically subsume its rules and definitions.
Normally, one expects to use locale foo only if locale bar is already active.
These aspects of use and activation of locales are considered in the subsequent
section.

6.3.2 Locale Scope

Locales are by default inactive, but they can be invoked. The list of currently
active locales is called scope. The process of activating them is called opening ;
the reverse is closing.

CHAPTER 6. THEORIES, TERMS AND TYPES 70

Scope

The locale scope is part of each theory. It is a dynamic stack containing all
active locales at a certain point in an interactive session. The scope lives
until all locales are explicitly closed. At one time there can be more than one
locale open. The contents of these various active locales are all visible in the
scope. In case of nested locales for example, the nesting is actually reflected
to the scope, which contains the nested locales as layers. To check the state
of the scope during a development the function Print scope may be used.
It displays the names of all open locales on the scope. The function print

locales applied to a theory displays all locales contained in that theory and
in addition also the current scope.

The scope is manipulated by the commands for opening and closing of
locales.

Opening

Locales can be opened at any point during a session where we want to prove
theorems concerning the locale. Opening a locale means making its contents
visible by pushing it onto the scope of the current theory. Inside a scope of
opened locales, theorems can use all definitions and rules contained in the
locales on the scope. The rules and definitions may be accessed individually
using the function thm. This function is applied to the names assigned to
locale rules and definitions as strings. The opening command is called Open

locale and takes the name of the locale to be opened as its argument.
If one opens a locale foo that is defined by extension from locale bar,

the function Open locale checks if locale bar is open. If so, then it just
opens foo, if not, then it prints a message and opens bar before opening
foo. Naturally, this carries on, if bar is again an extension.

Closing

Closing means to cancel the last opened locale, pushing it out of the scope.
Theorems proved during the life cycle of this locale will be disabled, unless
they have been explicitly exported, as described below. However, when the
same locale is opened again these theorems may be used again as well, pro-
vided that they were saved as theorems in the first place, using qed or ML
assignment. The command Close locale takes a locale name as a string
and checks if this locale is actually the topmost locale on the scope. If this
is the case, it removes this locale, otherwise it prints a warning message and
does not change the scope.

CHAPTER 6. THEORIES, TERMS AND TYPES 71

Export of Theorems

Export of theorems transports theorems out of the scope of locales. Lo-
cale rules that have been used in the proof of an exported theorem inside
the locale are carried by the exported form of the theorem as its individual
meta-assumptions. The locale constants are universally quantified variables
in these theorems, hence such theorems can be instantiated individually.
Definitions become unfolded; locale constants that were merely used for def-
initions vanish. Logically, exporting corresponds to a combined application
of introduction rules for implication and universal quantification. Exporting
forms a kind of normalization of theorems in a locale scope.

According to the possibility of nested locales there are two different forms
of export. The first one is realized by the function export that exports theo-
rems through all layers of opened locales of the scope. Hence, the application
of export to a theorem yields a theorem of the global level, that is, the current
theory context without any local assumptions or definitions.

When locales are nested we might want to export a theorem, not to
the global level of the current theory but just to the previous level. The
other export function, Export, transports theorems one level up in the scope;
the theorem still uses locale constants, definitions and rules of the locales
underneath.

6.3.3 Functions for Locales

Here is a quick reference list of locale functions.

Open_locale : xstring -> unit
Close_locale : xstring -> unit
export : thm -> thm
Export : thm -> thm
thm : xstring -> thm
Print_scope : unit -> unit
print_locales: theory -> unit

Open_locale xstring opens the locale xstring, adding it to the scope of the
theory of the current context. If the opened locale is built by extension,
the ancestors are opened automatically.

Close_locale xstring eliminates the locale xstring from the scope if it is
the topmost item on it, otherwise it does not change the scope and
produces a warning.

export thm locale definitions become expanded in thm and locale rules that
were used in the proof of thm become part of its individual assumptions.

CHAPTER 6. THEORIES, TERMS AND TYPES 72

This normalization happens with respect to all open locales on the
scope.

Export thm works like export but normalizes theorems only up to the pre-
vious level of locales on the scope.

thm xstring applied to the name of a locale definition or rule it returns the
definition as a theorem.

Print_scope() prints the names of the locales in the current scope of the
current theory context.

print_locale theory prints all locales that are contained in theory directly
or indirectly. It also displays the current scope similar to Print scope.

6.4 Basic operations on theories

6.4.1 *Theory inclusion

subthy : theory * theory -> bool
eq_thy : theory * theory -> bool
transfer : theory -> thm -> thm
transfer_sg : Sign.sg -> thm -> thm

Inclusion and equality of theories is determined by unique identification
stamps that are created when declaring new components. Theorems contain
a reference to the theory (actually to its signature) they have been derived
in. Transferring theorems to super theories has no logical significance, but
may affect some operations in subtle ways (e.g. implicit merges of signatures
when applying rules, or pretty printing of theorems).

subthy (thy1, thy2) determines if thy1 is included in thy2 wrt. identification
stamps.

eq_thy (thy1, thy2) determines if thy1 is exactly the same as thy2.

transfer thy thm transfers theorem thm to theory thy , provided the latter
includes the theory of thm.

transfer_sg sign thm is similar to transfer, but identifies the super the-
ory via its signature.

CHAPTER 6. THEORIES, TERMS AND TYPES 73

6.4.2 *Primitive theories

ProtoPure.thy : theory
Pure.thy : theory
CPure.thy : theory

ProtoPure.thy, Pure.thy, CPure.thy contain the syntax and signature of
the meta-logic. There are basically no axioms: meta-level inferences
are carried out by ml functions. Pure and CPure just differ in their
concrete syntax of prefix function application: t(u1, . . . , un) in Pure vs.
t u1, . . . un in CPure. ProtoPure is their common parent, containing
no syntax for printing prefix applications at all!

6.4.3 Inspecting a theory

print_syntax : theory -> unit
print_theory : theory -> unit
parents_of : theory -> theory list
ancestors_of : theory -> theory list
sign_of : theory -> Sign.sg
Sign.stamp_names_of : Sign.sg -> string list

These provide means of viewing a theory’s components.

print_syntax thy prints the syntax of thy (grammar, macros, translation
functions etc., see page 86 for more details).

print_theory thy prints the logical parts of thy , excluding the syntax.

parents_of thy returns the direct ancestors of thy .

ancestors_of thy returns all ancestors of thy (not including thy itself).

sign_of thy returns the signature associated with thy . It is useful with
functions like read_instantiate_sg, which take a signature as an ar-
gument.

Sign.stamp_names_of sg returns the names of the identification stamps of
ax signature. These coincide with the names of its full ancestry includ-
ing that of sg itself.

6.5 Terms

Terms belong to the ml type term, which is a concrete datatype with six
constructors:

CHAPTER 6. THEORIES, TERMS AND TYPES 74

type indexname = string * int;
infix 9 $;
datatype term = Const of string * typ

| Free of string * typ
| Var of indexname * typ
| Bound of int
| Abs of string * typ * term
| op $ of term * term;

Const (a, T) is the constant with name a and type T . Constants include
connectives like ∧ and ∀ as well as constants like 0 and Suc. Other
constants may be required to define a logic’s concrete syntax.

Free (a, T) is the free variable with name a and type T .

Var (v, T) is the scheme variable with indexname v and type T . An
indexname is a string paired with a non-negative index, or subscript; a
term’s scheme variables can be systematically renamed by incrementing
their subscripts. Scheme variables are essentially free variables, but
may be instantiated during unification.

Bound i is the bound variable with de Bruijn index i , which counts the
number of lambdas, starting from zero, between a variable’s occurrence
and its binding. The representation prevents capture of variables. For
more information see de Bruijn [5] or Paulson [14, page 376].

Abs (a, T, u) is the λ-abstraction with body u, and whose bound vari-
able has name a and type T . The name is used only for parsing and
printing; it has no logical significance.

t $ u is the application of t to u.

Application is written as an infix operator to aid readability. Here is an
ml pattern to recognize FOL formulae of the form A → B , binding the
subformulae to A and B :

Const("Trueprop",_) $ (Const("op -->",_) $ A $ B)

CHAPTER 6. THEORIES, TERMS AND TYPES 75

6.6 *Variable binding

loose_bnos : term -> int list
incr_boundvars : int -> term -> term
abstract_over : term*term -> term
variant_abs : string * typ * term -> string * term
aconv : term * term -> bool infix

These functions are all concerned with the de Bruijn representation of bound
variables.

loose_bnos t returns the list of all dangling bound variable references. In
particular, Bound 0 is loose unless it is enclosed in an abstraction. Sim-
ilarly Bound 1 is loose unless it is enclosed in at least two abstractions;
if enclosed in just one, the list will contain the number 0. A well-formed
term does not contain any loose variables.

incr_boundvars j increases a term’s dangling bound variables by the off-
set j . This is required when moving a subterm into a context where
it is enclosed by a different number of abstractions. Bound variables
with a matching abstraction are unaffected.

abstract_over (v , t) forms the abstraction of t over v , which may be any
well-formed term. It replaces every occurrence of v by a Bound variable
with the correct index.

variant_abs (a,T , u) substitutes into u, which should be the body of an
abstraction. It replaces each occurrence of the outermost bound vari-
able by a free variable. The free variable has type T and its name
is a variant of a chosen to be distinct from all constants and from all
variables free in u.

t aconv u tests whether terms t and u are α-convertible: identical up to
renaming of bound variables.

• Two constants, Frees, or Vars are α-convertible if their names
and types are equal. (Variables having the same name but dif-
ferent types are thus distinct. This confusing situation should be
avoided!)

• Two bound variables are α-convertible if they have the same num-
ber.

• Two abstractions are α-convertible if their bodies are, and their
bound variables have the same type.

CHAPTER 6. THEORIES, TERMS AND TYPES 76

• Two applications are α-convertible if the corresponding subterms
are.

6.7 Certified terms

A term t can be certified under a signature to ensure that every type in t is
well-formed and every constant in t is a type instance of a constant declared
in the signature. The term must be well-typed and its use of bound variables
must be well-formed. Meta-rules such as forall_elim take certified terms
as arguments.

Certified terms belong to the abstract type cterm. Elements of the type
can only be created through the certification process. In case of error, Isabelle
raises exception TERM.

6.7.1 Printing terms

string_of_cterm : cterm -> string
Sign.string_of_term : Sign.sg -> term -> string

string_of_cterm ct displays ct as a string.

Sign.string_of_term sign t displays t as a string, using the syntax
of sign.

6.7.2 Making and inspecting certified terms

cterm_of : Sign.sg -> term -> cterm
read_cterm : Sign.sg -> string * typ -> cterm
cert_axm : Sign.sg -> string * term -> string * term
read_axm : Sign.sg -> string * string -> string * term
rep_cterm : cterm -> {T:typ, t:term, sign:Sign.sg, maxidx:int}
Sign.certify_term : Sign.sg -> term -> term * typ * int

cterm_of sign t certifies t with respect to signature sign.

read_cterm sign (s, T) reads the string s using the syntax of sign, cre-
ating a certified term. The term is checked to have type T ; this type
also tells the parser what kind of phrase to parse.

cert_axm sign (name, t) certifies t with respect to sign as a meta-
proposition and converts all exceptions to an error, including the final
message

The error(s) above occurred in axiom "name"

CHAPTER 6. THEORIES, TERMS AND TYPES 77

read_axm sign (name, s) similar to cert_axm, but first reads the string s
using the syntax of sign.

rep_cterm ct decomposes ct as a record containing its type, the term itself,
its signature, and the maximum subscript of its unknowns. The type
and maximum subscript are computed during certification.

Sign.certify_term is a more primitive version of cterm_of, returning the
internal representation instead of an abstract cterm.

6.8 Types

Types belong to the ml type typ, which is a concrete datatype with three
constructor functions. These correspond to type constructors, free type vari-
ables and schematic type variables. Types are classified by sorts, which are
lists of classes (representing an intersection). A class is represented by a
string.

type class = string;
type sort = class list;

datatype typ = Type of string * typ list
| TFree of string * sort
| TVar of indexname * sort;

infixr 5 -->;
fun S --> T = Type ("fun", [S, T]);

Type (a, Ts) applies the type constructor named a to the type operand
list Ts . Type constructors include fun, the binary function space con-
structor, as well as nullary type constructors such as prop. Other type
constructors may be introduced. In expressions, but not in patterns,
S-->T is a convenient shorthand for function types.

TFree (a, s) is the type variable with name a and sort s .

TVar (v, s) is the type unknown with indexname v and sort s . Type
unknowns are essentially free type variables, but may be instantiated
during unification.

6.9 Certified types

Certified types, which are analogous to certified terms, have type ctyp.

CHAPTER 6. THEORIES, TERMS AND TYPES 78

6.9.1 Printing types

string_of_ctyp : ctyp -> string
Sign.string_of_typ : Sign.sg -> typ -> string

string_of_ctyp cT displays cT as a string.

Sign.string_of_typ sign T displays T as a string, using the syntax
of sign.

6.9.2 Making and inspecting certified types

ctyp_of : Sign.sg -> typ -> ctyp
rep_ctyp : ctyp -> {T: typ, sign: Sign.sg}
Sign.certify_typ : Sign.sg -> typ -> typ

ctyp_of sign T certifies T with respect to signature sign.

rep_ctyp cT decomposes cT as a record containing the type itself and its
signature.

Sign.certify_typ is a more primitive version of ctyp_of, returning the
internal representation instead of an abstract ctyp.

6.10 Oracles: calling trusted external reason-

ers

Oracles allow Isabelle to take advantage of external reasoners such as arith-
metic decision procedures, model checkers, fast tautology checkers or com-
puter algebra systems. Invoked as an oracle, an external reasoner can create
arbitrary Isabelle theorems. It is your responsibility to ensure that the exter-
nal reasoner is as trustworthy as your application requires. Isabelle’s proof
objects (§5.4) record how each theorem depends upon oracle calls.

invoke_oracle : theory -> xstring -> Sign.sg * object -> thm
Theory.add_oracle : bstring * (Sign.sg * object -> term) -> theory

-> theory

invoke_oracle thy name (sign, data) invokes the oracle name of theory
thy passing the information contained in the exception value data and
creating a theorem having signature sign. Note that type object is
just an abbreviation for exn. Errors arise if thy does not have an oracle
called name, if the oracle rejects its arguments or if its result is ill-
typed.

CHAPTER 6. THEORIES, TERMS AND TYPES 79

Theory.add_oracle name fun thy extends thy by oracle fun called name.
It is seldom called explicitly, as there is concrete syntax for oracles in
theory files.

A curious feature of ml exceptions is that they are ordinary constructors.
The ml type exn is a datatype that can be extended at any time. (See
my ML for the Working Programmer [14], especially page 136.) The oracle
mechanism takes advantage of this to allow an oracle to take any information
whatever.

There must be some way of invoking the external reasoner from ml,
either because it is coded in ml or via an operating system interface. Isabelle
expects the ml function to take two arguments: a signature and an exception
object.

• The signature will typically be that of a desendant of the theory declar-
ing the oracle. The oracle will use it to distinguish constants from
variables, etc., and it will be attached to the generated theorems.

• The exception is used to pass arbitrary information to the oracle. This
information must contain a full description of the problem to be solved
by the external reasoner, including any additional information that
might be required. The oracle may raise the exception to indicate that
it cannot solve the specified problem.

A trivial example is provided in theory FOL/ex/IffOracle. This oracle
generates tautologies of the form P ↔ · · · ↔ P , with an even number of Ps.

The ML section of IffOracle.thy begins by declaring a few auxiliary
functions (suppressed below) for creating the tautologies. Then it declares a
new exception constructor for the information required by the oracle: here,
just an integer. It finally defines the oracle function itself.

exception IffOracleExn of int;

fun mk_iff_oracle (sign, IffOracleExn n) =
if n > 0 andalso n mod 2 = 0
then Trueprop $ mk_iff n
else raise IffOracleExn n;

Observe the function’s two arguments, the signature sign and the exception
given as a pattern. The function checks its argument for validity. If n
is positive and even then it creates a tautology containing n occurrences
of P . Otherwise it signals error by raising its own exception (just by happy
coincidence). Errors may be signalled by other means, such as returning
the theorem True. Please ensure that the oracle’s result is correctly typed;

CHAPTER 6. THEORIES, TERMS AND TYPES 80

Isabelle will reject ill-typed theorems by raising a cryptic exception at top
level.

The oracle section of IffOracle.thy installs above ML function as fol-
lows:

IffOracle = FOL +

oracle
iff = mk_iff_oracle

end

Now in IffOracle.ML we first define a wrapper for invoking the oracle:

fun iff_oracle n = invoke_oracle IffOracle.thy "iff"
(sign_of IffOracle.thy, IffOracleExn n);

Here are some example applications of the iff oracle. An argument of
10 is allowed, but one of 5 is forbidden:

iff_oracle 10;
"P <-> P <-> P <-> P <-> P <-> P <-> P <-> P <-> P <-> P" : thm

iff_oracle 5;
Exception- IffOracleExn 5 raised

Chapter 7

Defining Logics

This chapter explains how to define new formal systems — in particular,
their concrete syntax. While Isabelle can be regarded as a theorem prover
for set theory, higher-order logic or the sequent calculus, its distinguishing
feature is support for the definition of new logics.

Isabelle logics are hierarchies of theories, which are described and illus-
trated in Introduction to Isabelle. That material, together with the theory
files provided in the examples directories, should suffice for all simple appli-
cations. The easiest way to define a new theory is by modifying a copy of an
existing theory.

This chapter documents the meta-logic syntax, mixfix declarations and
pretty printing. The extended examples in §7.6 demonstrate the logical as-
pects of the definition of theories.

7.1 Priority grammars

A context-free grammar contains a set of nonterminal symbols, a set of
terminal symbols and a set of productions. Productions have the form
A = γ, where A is a nonterminal and γ is a string of terminals and non-
terminals. One designated nonterminal is called the start symbol. The
language defined by the grammar consists of all strings of terminals that can
be derived from the start symbol by applying productions as rewrite rules.

The syntax of an Isabelle logic is specified by a priority grammar. Each
nonterminal is decorated by an integer priority, as in A(p). A nonterminal
A(p) in a derivation may be rewritten using a production A(q) = γ only
if p ≤ q . Any priority grammar can be translated into a normal context free
grammar by introducing new nonterminals and productions.

Formally, a set of context free productions G induces a derivation relation
−→G . Let α and β denote strings of terminal or nonterminal symbols. Then

αA(p) β −→G α γ β

if and only if G contains some production A(q) = γ for p ≤ q .

81

CHAPTER 7. DEFINING LOGICS 82

The following simple grammar for arithmetic expressions demonstrates
how binding power and associativity of operators can be enforced by priori-
ties.

A(9) = 0

A(9) = (A(0))

A(0) = A(0) + A(1)

A(2) = A(3) * A(2)

A(3) = - A(3)

The choice of priorities determines that - binds tighter than *, which binds
tighter than +. Furthermore + associates to the left and * to the right.

For clarity, grammars obey these conventions:

• All priorities must lie between 0 and max_pri, which is a some fixed
integer. Sometimes max_pri is written as ∞.

• Priority 0 on the right-hand side and priority max_pri on the left-hand
side may be omitted.

• The production A(p) = α is written as A = α (p); the priority of the
left-hand side actually appears in a column on the far right.

• Alternatives are separated by |.

• Repetition is indicated by dots (. . .) in an informal but obvious way.

Using these conventions and assuming ∞ = 9, the grammar takes the
form

A = 0

| (A)

| A + A(1) (0)
| A(3) * A(2) (2)
| - A(3) (3)

7.2 The Pure syntax

At the root of all object-logics lies the theory Pure. It contains, among many
other things, the Pure syntax. An informal account of this basic syntax
(types, terms and formulae) appears in Introduction to Isabelle. A more
precise description using a priority grammar appears in Fig. 7.1. It defines
the following nonterminals:

CHAPTER 7. DEFINING LOGICS 83

any = prop | logic

prop = (prop)
| prop(4) :: type (3)
| PROP aprop
| any(3) == any(2) (2)
| any(3) =?= any(2) (2)
| prop(2) ==> prop(1) (1)
| [| prop ; . . . ; prop |] ==> prop(1) (1)
| !! idts . prop (0)
| OFCLASS (type , logic)

aprop = id | longid | var | logic(∞) (any , . . . , any)

logic = (logic)
| logic(4) :: type (3)
| id | longid | var | logic(∞) (any , . . . , any)
| % pttrns . any(3) (3)
| TYPE (type)

idts = idt | idt (1) idts

idt = id | (idt)
| id :: type (0)

pttrns = pttrn | pttrn(1) pttrns

pttrn = idt

type = (type)
| tid | tvar | tid :: sort | tvar :: sort
| id | type(∞) id | (type , . . . , type) id
| longid | type(∞) longid | (type , . . . , type) longid
| type(1) => type (0)
| [type , . . . , type] => type (0)

sort = id | longid | {} | { id | longid,. . . , id | longid }

Figure 7.1: Meta-logic syntax

CHAPTER 7. DEFINING LOGICS 84

any denotes any term.

prop denotes terms of type prop. These are formulae of the meta-logic.
Note that user constants of result type prop (i.e. c :: . . . ⇒ prop)
should always provide concrete syntax. Otherwise atomic propositions
with head c may be printed incorrectly.

aprop denotes atomic propositions.

logic denotes terms whose type belongs to class logic, excluding type prop.

idts denotes a list of identifiers, possibly constrained by types.

pttrn, pttrns denote patterns for abstraction, cases etc. Initially the same
as idt and idts , these are intended to be augmented by user extensions.

type denotes types of the meta-logic.

sort denotes meta-level sorts.

! In idts, note that x::nat y is parsed as x::(nat y), treating y like a type
constructor applied to nat. The likely result is an error message. To avoid this

interpretation, use parentheses and write (x::nat) y.
Similarly, x::nat y::nat is parsed as x::(nat y::nat) and yields an error.

The correct form is (x::nat) (y::nat).

! Type constraints bind very weakly. For example, x<y::nat is normally parsed
as (x<y)::nat, unless < has priority of 3 or less, in which case the string is

likely to be ambiguous. The correct form is x<(y::nat).

7.2.1 Logical types and default syntax

Isabelle’s representation of mathematical languages is based on the simply
typed λ-calculus. All logical types, namely those of class logic, are auto-
matically equipped with a basic syntax of types, identifiers, variables, paren-
theses, λ-abstraction and application.

! Isabelle combines the syntaxes for all types of class logic by mapping all
those types to the single nonterminal logic. Thus all productions of logic, in

particular id , var etc, become available.

CHAPTER 7. DEFINING LOGICS 85

7.2.2 Lexical matters

The parser does not process input strings directly. It operates on token lists
provided by Isabelle’s lexer. There are two kinds of tokens: delimiters and
name tokens.

Delimiters can be regarded as reserved words of the syntax. You can add
new ones when extending theories. In Fig. 7.1 they appear in typewriter font,
for example ==, =?= and PROP.

Name tokens have a predefined syntax. The lexer distinguishes six disjoint
classes of names: identifiers, unknowns, type identifiers, type unknowns,
numerals, strings. They are denoted by id, var, tid, tvar, num, xnum, xstr,
respectively. Typical examples are x, ?x7, ’a, ?’a3, #42, ’’foo bar’’. Here
is the precise syntax:

id = letter quasiletter ∗

longid = id(.id)+

var = ?id | ?id.nat

tid = ’id

tvar = ?tid | ?tid.nat

num = nat | -nat | 0x hex+ | 0b bin+

xnum = #num

xstr = ’’ ... ’’

letter = latin | \<latin> | \<latin latin> | greek |
\<^isub> | \<^isup>

quasiletter = letter | digit | _ | ’
latin = a | . . . | z | A | . . . | Z
digit = 0 | . . . | 9
nat = digit+

bin = 0 | 1
hex = digit | a | . . . | f | A | . . . | F

greek = \<alpha> | \<beta> | \<gamma> | \<delta> |
\<epsilon> | \<zeta> | \<eta> | \<theta> |
\<iota> | \<kappa> | \<mu> | \<nu> |
\<xi> | \<pi> | \<rho> | \<sigma> |
\<tau> | \<upsilon> | \<phi> | \<psi> |
\<omega> | \<Gamma> | \<Delta> | \<Theta> |
\<Lambda> | \<Xi> | \<Pi> | \<Sigma> |

CHAPTER 7. DEFINING LOGICS 86

\<Upsilon> | \<Phi> | \<Psi> | \<Omega>

The lexer repeatedly takes the longest prefix of the input string that forms a
valid token. A maximal prefix that is both a delimiter and a name is treated
as a delimiter. Spaces, tabs, newlines and formfeeds are separators; they
never occur within tokens, except those of class xstr .

Delimiters need not be separated by white space. For example, if - is
a delimiter but -- is not, then the string -- is treated as two consecutive
occurrences of the token -. In contrast, ml treats -- as a single symbolic
name. The consequence of Isabelle’s more liberal scheme is that the same
string may be parsed in different ways after extending the syntax: after
adding -- as a delimiter, the input -- is treated as a single token.

A var or tvar describes an unknown, which is internally a pair of base
name and index (ml type indexname). These components are either sepa-
rated by a dot as in ?x.1 or ?x7.3 or run together as in ?x1. The latter
form is possible if the base name does not end with digits. If the index is 0,
it may be dropped altogether: ?x abbreviates both ?x0 and ?x.0.

Tokens of class num, xnum or xstr are not used by the meta-logic. Object-
logics may provide numerals and string constants by adding appropriate pro-
ductions and translation functions.

Although name tokens are returned from the lexer rather than the parser,
it is more logical to regard them as nonterminals. Delimiters, however, are
terminals; they are just syntactic sugar and contribute nothing to the ab-
stract syntax tree.

7.2.3 *Inspecting the syntax

syn_of : theory -> Syntax.syntax
print_syntax : theory -> unit
Syntax.print_syntax : Syntax.syntax -> unit
Syntax.print_gram : Syntax.syntax -> unit
Syntax.print_trans : Syntax.syntax -> unit

The abstract type Syntax.syntax allows manipulation of syntaxes in ml.
You can display values of this type by calling the following functions:

syn_of thy returns the syntax of the Isabelle theory thy as an ml value.

print_syntax thy uses Syntax.print_syntax to display the syntax part
of theory thy .

CHAPTER 7. DEFINING LOGICS 87

Syntax.print_syntax syn shows virtually all information contained in the
syntax syn. The displayed output can be large. The following two
functions are more selective.

Syntax.print_gram syn shows the grammar part of syn, namely the lexi-
con, logical types and productions. These are discussed below.

Syntax.print_trans syn shows the translation part of syn, namely the con-
stants, parse/print macros and parse/print translations.

The output of the above print functions is divided into labelled sections.
The grammar is represented by lexicon, logtypes and prods. The rest
refers to syntactic translations and macro expansion. Here is an explanation
of the various sections.

lexicon lists the delimiters used for lexical analysis.

logtypes lists the types that are regarded the same as logic syntacti-
cally. Thus types of object-logics (e.g. nat, say) will be automatically
equipped with the standard syntax of λ-calculus.

prods lists the productions of the priority grammar. The nonterminal A(n) is
rendered in ascii as A[n]. Each delimiter is quoted. Some productions
are shown with => and an attached string. These strings later become
the heads of parse trees; they also play a vital role when terms are
printed (see §8.1).

Productions with no strings attached are called copy productions.
Their right-hand side must have exactly one nonterminal symbol (or
name token). The parser does not create a new parse tree node for
copy productions, but simply returns the parse tree of the right-hand
symbol.

If the right-hand side consists of a single nonterminal with no delim-
iters, then the copy production is called a chain production. Chain
productions act as abbreviations: conceptually, they are removed from
the grammar by adding new productions. Priority information attached
to chain productions is ignored; only the dummy value −1 is displayed.

print_modes lists the alternative print modes provided by this syntax (see
§7.4).

consts, parse_rules, print_rules relate to macros (see §8.5).

CHAPTER 7. DEFINING LOGICS 88

parse_ast_translation, print_ast_translation list sets of constants
that invoke translation functions for abstract syntax trees. Section
§8.1 below discusses this obscure matter.

parse_translation, print_translation list the sets of constants that in-
voke translation functions for terms (see §8.6).

7.3 Mixfix declarations

When defining a theory, you declare new constants by giving their names,
their type, and an optional mixfix annotation. Mixfix annotations allow
you to extend Isabelle’s basic λ-calculus syntax with readable notation. They
can express any context-free priority grammar. Isabelle syntax definitions are
inspired by obj [6]; they are more general than the priority declarations of
ml and Prolog.

A mixfix annotation defines a production of the priority grammar. It
describes the concrete syntax, the translation to abstract syntax, and the
pretty printing. Special case annotations provide a simple means of specifying
infix operators and binders.

7.3.1 The general mixfix form

Here is a detailed account of mixfix declarations. Suppose the following line
occurs within a consts or syntax section of a .thy file:

c :: "σ" ("template" ps p)

This constant declaration and mixfix annotation are interpreted as follows:

• The string c is the name of the constant associated with the production;
unless it is a valid identifier, it must be enclosed in quotes. If c is
empty (given as "") then this is a copy production. Otherwise, parsing
an instance of the phrase template generates the ast ("c" a1 . . . an),
where ai is the ast generated by parsing the i -th argument.

• The constant c, if non-empty, is declared to have type σ (consts section
only).

• The string template specifies the right-hand side of the production. It
has the form

w0 w1 . . . wn ,

CHAPTER 7. DEFINING LOGICS 89

where each occurrence of _ denotes an argument position and the wi

do not contain _. (If you want a literal _ in the concrete syntax, you
must escape it as described below.) The wi may consist of delimiters,
spaces or pretty printing annotations (see below).

• The type σ specifies the production’s nonterminal symbols (or name
tokens). If template is of the form above then σ must be a function
type with at least n argument positions, say σ = [τ1, . . . , τn]⇒ τ . Non-
terminal symbols are derived from the types τ1, . . . , τn , τ as described
below. Any of these may be function types.

• The optional list ps may contain at most n integers, say [p1, . . .,
pm], where pi is the minimal priority required of any phrase that may
appear as the i -th argument. Missing priorities default to 0.

• The integer p is the priority of this production. If omitted, it defaults
to the maximal priority. Priorities range between 0 and max_pri (=
1000).

The resulting production is

A(p) = w0 A
(p1)
1 w1 A

(p2)
2 . . . A(pn)

n wn

where A and the Ai are the nonterminals corresponding to the types τ and
τi respectively. The nonterminal symbol associated with a type (. . .)ty is
logic, if this is a logical type (namely one of class logic excluding prop).
Otherwise it is ty (note that only the outermost type constructor is taken
into account). Finally, the nonterminal of a type variable is any.

! Theories must sometimes declare types for purely syntactic purposes — merely
playing the role of nonterminals. One example is type, the built-in type of

types. This is a ‘type of all types’ in the syntactic sense only. Do not declare
such types under arities as belonging to class logic, for that would make them
useless as separate nonterminal symbols.

Associating nonterminals with types allows a constant’s type to specify
syntax as well. We can declare the function f to have type [τ1, . . . , τn] ⇒ τ
and, through a mixfix annotation, specify the layout of the function’s n
arguments. The constant’s name, in this case f , will also serve as the label
in the abstract syntax tree.

You may also declare mixfix syntax without adding constants to the the-
ory’s signature, by using a syntax section instead of consts. Thus a pro-
duction need not map directly to a logical function (this typically requires
additional syntactic translations, see also Chapter 8).

As a special case of the general mixfix declaration, the form

CHAPTER 7. DEFINING LOGICS 90

c :: "σ" ("template")

specifies no priorities. The resulting production puts no priority constraints
on any of its arguments and has maximal priority itself. Omitting priorities
in this manner is prone to syntactic ambiguities unless the production’s right-
hand side is fully bracketed, as in "if _ then _ else _ fi".

Omitting the mixfix annotation completely, as in c :: "σ", is sensible
only if c is an identifier. Otherwise you will be unable to write terms involv-
ing c.

7.3.2 Example: arithmetic expressions

This theory specification contains a syntax section with mixfix declarations
encoding the priority grammar from §7.1:

ExpSyntax = Pure +
types
exp

syntax
"0" :: exp ("0" 9)
"+" :: [exp, exp] => exp ("_ + _" [0, 1] 0)
"*" :: [exp, exp] => exp ("_ * _" [3, 2] 2)
"-" :: exp => exp ("- _" [3] 3)

end

Executing Syntax.print_gram reveals the productions derived from the
above mixfix declarations (lots of additional information deleted):

Syntax.print_gram (syn_of ExpSyntax.thy);
exp = "0" => "0" (9)

exp = exp[0] "+" exp[1] => "+" (0)

exp = exp[3] "*" exp[2] => "*" (2)

exp = "-" exp[3] => "-" (3)

Note that because exp is not of class logic, it has been retained as a
separate nonterminal. This also entails that the syntax does not provide
for identifiers or paranthesized expressions. Normally you would also want
to add the declaration arities exp::logic after types and use consts

instead of syntax. Try this as an exercise and study the changes in the
grammar.

7.3.3 The mixfix template

Let us now take a closer look at the string template appearing in mixfix
annotations. This string specifies a list of parsing and printing directives:

CHAPTER 7. DEFINING LOGICS 91

delimiters, arguments, spaces, blocks of indentation and line breaks. These
are encoded by the following character sequences:

d is a delimiter, namely a non-empty sequence of characters other than the
special characters _, (,) and /. Even these characters may appear if
escaped; this means preceding it with a ’ (single quote). Thus you have
to write ’’ if you really want a single quote. Furthermore, a ’ followed
by a space separates delimiters without extra white space being added
for printing.

_ is an argument position, which stands for a nonterminal symbol or name
token.

s is a non-empty sequence of spaces for printing. This and the following
specifications do not affect parsing at all.

(n opens a pretty printing block. The optional number n specifies how
much indentation to add when a line break occurs within the block. If
(is not followed by digits, the indentation defaults to 0.

) closes a pretty printing block.

// forces a line break.

/s allows a line break. Here s stands for the string of spaces (zero or more)
right after the / character. These spaces are printed if the break is not
taken.

For example, the template "(_ +/ _)" specifies an infix operator. There are
two argument positions; the delimiter + is preceded by a space and followed
by a space or line break; the entire phrase is a pretty printing block. Other
examples appear in Fig. 8.4 below. Isabelle’s pretty printer resembles the one
described in Paulson [14].

7.3.4 Infixes

Infix operators associating to the left or right can be declared using infixl

or infixr. Basically, the form c :: σ (infixl p) abbreviates the mixfix
declarations

"op c" :: σ ("(_ c/ _)" [p, p + 1] p)
"op c" :: σ ("op c")

and c :: σ (infixr p) abbreviates the mixfix declarations

CHAPTER 7. DEFINING LOGICS 92

"op c" :: σ ("(_ c/ _)" [p + 1, p] p)
"op c" :: σ ("op c")

The infix operator is declared as a constant with the prefix op. Thus, pre-
fixing infixes with op makes them behave like ordinary function symbols, as
in ml. Special characters occurring in c must be escaped, as in delimiters,
using a single quote.

A slightly more general form of infix declarations allows constant names
to be independent from their concrete syntax, namely c :: σ (infixl "sy"
p), the same for infixr. As an example consider:

and :: [bool, bool] => bool (infixr "&" 35)

The internal constant name will then be just and, without any op prefixed.

7.3.5 Binders

A binder is a variable-binding construct such as a quantifier. The constant
declaration

c :: σ (binder "Q" [pb] p)

introduces a constant c of type σ, which must have the form (τ1 ⇒ τ2)⇒ τ3.
Its concrete syntax is Q x . P , where x is a bound variable of type τ1, the
body P has type τ2 and the whole term has type τ3. The optional integer pb
specifies the body’s priority, by default p. Special characters in Q must be
escaped using a single quote.

The declaration is expanded internally to something like

c :: (τ1 => τ2) => τ3
"Q" :: [idts, τ2] => τ3 ("(3Q_./ _)" [0, pb] p)

Here idts is the nonterminal symbol for a list of identifiers with optional type
constraints (see Fig. 7.1). The declaration also installs a parse translation
for Q and a print translation for c to translate between the internal and
external forms.

A binder of type (σ ⇒ τ)⇒ τ can be nested by giving a list of variables.
The external form Q x1 x2 . . . xn . P corresponds to the internal form

c(λx1 . c(λx2 c(λxn . P) . . .)).

For example, let us declare the quantifier ∀:
All :: (’a => o) => o (binder "ALL " 10)

This lets us write ∀x . P as either All(%x.P) or ALL x.P . When printing,
Isabelle prefers the latter form, but must fall back on All(P) if P is not an
abstraction. Both P and ALL x.P have type o, the type of formulae, while
the bound variable can be polymorphic.

CHAPTER 7. DEFINING LOGICS 93

7.4 *Alternative print modes

Isabelle’s pretty printer supports alternative output syntaxes. These may
be used independently or in cooperation. The currently active print modes
(with precedence from left to right) are determined by a reference variable.

print_mode: string list ref

Initially this may already contain some print mode identifiers, depending
on how Isabelle has been invoked (e.g. by some user interface). So changes
should be incremental — adding or deleting modes relative to the current
value.

Any ml string is a legal print mode identifier, without any predeclaration
required. The following names should be considered reserved, though: ""

(the empty string), symbols, xsymbols, and latex.
There is a separate table of mixfix productions for pretty printing as-

sociated with each print mode. The currently active ones are conceptually
just concatenated from left to right, with the standard syntax output table
always coming last as default. Thus mixfix productions of preceding modes
in the list may override those of later ones. Also note that token translations
are always relative to some print mode (see §8.7).

The canonical application of print modes is optional printing of mathe-
matical symbols from a special screen font instead of ascii. Another example
is to re-use Isabelle’s advanced λ-term printing mechanisms to generate com-
pletely different output, say for interfacing external tools like model checkers
(see also HOL/Modelcheck).

7.5 Ambiguity of parsed expressions

To keep the grammar small and allow common productions to be shared all
logical types (except prop) are internally represented by one nonterminal,
namely logic. This and omitted or too freely chosen priorities may lead to
ways of parsing an expression that were not intended by the theory’s maker.
In most cases Isabelle is able to select one of multiple parse trees that an
expression has lead to by checking which of them can be typed correctly.
But this may not work in every case and always slows down parsing. The
warning and error messages that can be produced during this process are as
follows:

If an ambiguity can be resolved by type inference the following warn-
ing is shown to remind the user that parsing is (unnecessarily) slowed
down. In cases where it’s not easily possible to eliminate the ambiguity

CHAPTER 7. DEFINING LOGICS 94

the frequency of the warning can be controlled by changing the value of
Syntax.ambiguity_level which has type int ref. Its default value is 1
and by increasing it one can control how many parse trees are necessary to
generate the warning.

Ambiguous input "..."

produces the following parse trees:

...

Fortunately, only one parse tree is type correct.

You may still want to disambiguate your grammar or your input.

The following message is normally caused by using the same syntax in
two different productions:

Ambiguous input "..."

produces the following parse trees:

...

More than one term is type correct:

...

Ambiguities occuring in syntax translation rules cannot be resolved by
type inference because it is not necessary for these rules to be type cor-
rect. Therefore Isabelle always generates an error message and the ambiguity
should be eliminated by changing the grammar or the rule.

7.6 Example: some minimal logics

This section presents some examples that have a simple syntax. They demon-
strate how to define new object-logics from scratch.

First we must define how an object-logic syntax is embedded into the
meta-logic. Since all theorems must conform to the syntax for prop (see
Fig. 7.1), that syntax has to be extended with the object-level syntax. As-
sume that the syntax of your object-logic defines a meta-type o of formulae
which refers to the nonterminal logic. These formulae can now appear in
axioms and theorems wherever prop does if you add the production

prop = logic.

This is not supposed to be a copy production but an implicit coercion from
formulae to propositions:

CHAPTER 7. DEFINING LOGICS 95

Base = Pure +
types
o

arities
o :: logic

consts
Trueprop :: o => prop ("_" 5)

end

The constant Trueprop (the name is arbitrary) acts as an invisible coercion
function. Assuming this definition resides in a file Base.thy, you have to
load it with the command use_thy "Base".

One of the simplest nontrivial logics is minimal logic of implication. Its
definition in Isabelle needs no advanced features but illustrates the overall
mechanism nicely:

Hilbert = Base +
consts
"-->" :: [o, o] => o (infixr 10)

rules
K "P --> Q --> P"
S "(P --> Q --> R) --> (P --> Q) --> P --> R"
MP "[| P --> Q; P |] ==> Q"

end

After loading this definition from the file Hilbert.thy, you can start to prove
theorems in the logic:

Goal "P --> P";
Level 0

P --> P

1. P --> P

by (resolve_tac [Hilbert.MP] 1);
Level 1

P --> P

1. ?P --> P --> P

2. ?P

by (resolve_tac [Hilbert.MP] 1);
Level 2

P --> P

1. ?P1 --> ?P --> P --> P

2. ?P1

3. ?P

by (resolve_tac [Hilbert.S] 1);
Level 3

P --> P

1. P --> ?Q2 --> P

2. P --> ?Q2

CHAPTER 7. DEFINING LOGICS 96

by (resolve_tac [Hilbert.K] 1);
Level 4

P --> P

1. P --> ?Q2

by (resolve_tac [Hilbert.K] 1);
Level 5

P --> P

No subgoals!

As we can see, this Hilbert-style formulation of minimal logic is easy to define
but difficult to use. The following natural deduction formulation is better:

MinI = Base +
consts
"-->" :: [o, o] => o (infixr 10)

rules
impI "(P ==> Q) ==> P --> Q"
impE "[| P --> Q; P |] ==> Q"

end

Note, however, that although the two systems are equivalent, this fact cannot
be proved within Isabelle. Axioms S and K can be derived in MinI (exercise!),
but impI cannot be derived in Hilbert. The reason is that impI is only an
admissible rule in Hilbert, something that can only be shown by induction
over all possible proofs in Hilbert.

We may easily extend minimal logic with falsity:

MinIF = MinI +
consts
False :: o

rules
FalseE "False ==> P"

end

On the other hand, we may wish to introduce conjunction only:

MinC = Base +
consts
"&" :: [o, o] => o (infixr 30)

rules
conjI "[| P; Q |] ==> P & Q"
conjE1 "P & Q ==> P"
conjE2 "P & Q ==> Q"

end

And if we want to have all three connectives together, we create and load a
theory file consisting of a single line:

CHAPTER 7. DEFINING LOGICS 97

MinIFC = MinIF + MinC

Now we can prove mixed theorems like

Goal "P & False --> Q";
by (resolve_tac [MinI.impI] 1);
by (dresolve_tac [MinC.conjE2] 1);
by (eresolve_tac [MinIF.FalseE] 1);

Try this as an exercise!

Chapter 8

Syntax Transformations

This chapter is intended for experienced Isabelle users who need to define
macros or code their own translation functions. It describes the transforma-
tions between parse trees, abstract syntax trees and terms.

8.1 Abstract syntax trees

The parser, given a token list from the lexer, applies productions to yield a
parse tree. By applying some internal transformations the parse tree becomes
an abstract syntax tree, or ast. Macro expansion, further translations and
finally type inference yields a well-typed term. The printing process is the
reverse, except for some subtleties to be discussed later.

Figure 8.1 outlines the parsing and printing process. Much of the com-
plexity is due to the macro mechanism. Using macros, you can specify most
forms of concrete syntax without writing any ml code.

Abstract syntax trees are an intermediate form between the raw parse
trees and the typed λ-terms. An ast is either an atom (constant or variable)
or a list of at least two subtrees. Internally, they have type Syntax.ast:

datatype ast = Constant of string
| Variable of string
| Appl of ast list

Isabelle uses an S-expression syntax for abstract syntax trees. Constant
atoms are shown as quoted strings, variable atoms as non-quoted strings and
applications as a parenthesised list of subtrees. For example, the ast

Appl [Constant "_constrain",
Appl [Constant "_abs", Variable "x", Variable "t"],
Appl [Constant "fun", Variable "’a", Variable "’b"]]

is shown as ("_constrain" ("_abs" x t) ("fun" ’a ’b)). Both () and
(f) are illegal because they have too few subtrees.

The resemblance to Lisp’s S-expressions is intentional, but there are two
kinds of atomic symbols: Constant x and Variable x . Do not take the

98

CHAPTER 8. SYNTAX TRANSFORMATIONS 99

string
↓ lexer, parser

parse tree
↓ parse ast translation

ast
↓ ast rewriting (macros)

ast
↓ parse translation, type inference

— well-typed term —
↓ print translation

ast
↓ ast rewriting (macros)

ast
↓ print ast translation, token translation

string

Figure 8.1: Parsing and printing

names Constant and Variable too literally; in the later translation to terms,
Variable x may become a constant, free or bound variable, even a type
constructor or class name; the actual outcome depends on the context.

Similarly, you can think of (f x1 . . . xn) as the application of f to the
arguments x1, . . . , xn . But the kind of application is determined later by
context; it could be a type constructor applied to types.

Forms like (("_abs" x t) u) are legal, but asts are first-order: the
"_abs" does not bind the x in any way. Later at the term level, ("_abs"
x t) will become an Abs node and occurrences of x in t will be replaced by
bound variables (the term constructor Bound).

8.2 Transforming parse trees to ASTs

The parse tree is the raw output of the parser. Translation functions, called
parse AST translations, transform the parse tree into an abstract syntax
tree.

The parse tree is constructed by nesting the right-hand sides of the pro-
ductions used to recognize the input. Such parse trees are simply lists of
tokens and constituent parse trees, the latter representing the nonterminals
of the productions. Let us refer to the actual productions in the form dis-
played by print_syntax (see §6.4.3 for an example).

CHAPTER 8. SYNTAX TRANSFORMATIONS 100

input string ast
"f" f

"’a" ’a

"t == u" ("==" t u)

"f(x)" ("_appl" f x)

"f(x, y)" ("_appl" f ("_args" x y))

"f(x, y, z)" ("_appl" f ("_args" x ("_args" y z)))

"%x y. t" ("_lambda" ("_idts" x y) t)

Figure 8.2: Parsing examples using the Pure syntax

Ignoring parse ast translations, parse trees are transformed to asts by
stripping out delimiters and copy productions. More precisely, the mapping
[[−]] is derived from the productions as follows:

• Name tokens: [[t]] = Variable s , where t is an id, var, tid, tvar, num,
xnum or xstr token, and s its associated string. Note that for xstr

this does not include the quotes.

• Copy productions: [[. . .P . . .]] = [[P]]. Here . . . stands for strings of
delimiters, which are discarded. P stands for the single constituent
that is not a delimiter; it is either a nonterminal symbol or a name
token.

• 0-ary productions: [[. . . =>c]] = Constant c. Here there are no con-
stituents other than delimiters, which are discarded.

• n-ary productions, where n ≥ 1: delimiters are discarded and the
remaining constituents P1, . . . , Pn are built into an application whose
head constant is c:

[[. . .P1 . . .Pn . . . =>c]] = Appl [Constant c, [[P1]], . . . , [[Pn]]]

Figure 8.2 presents some simple examples, where ==, _appl, _args, and so
forth name productions of the Pure syntax. These examples illustrate the
need for further translations to make asts closer to the typed λ-calculus.
The Pure syntax provides predefined parse ast translations for ordinary
applications, type applications, nested abstractions, meta implications and
function types. Figure 8.3 shows their effect on some representative input
strings.

The names of constant heads in the ast control the translation process.
The list of constants invoking parse ast translations appears in the output
of print_syntax under parse_ast_translation.

CHAPTER 8. SYNTAX TRANSFORMATIONS 101

input string ast
"f(x, y, z)" (f x y z)

"’a ty" (ty ’a)

"(’a, ’b) ty" (ty ’a ’b)

"%x y z. t" ("_abs" x ("_abs" y ("_abs" z t)))

"%x :: ’a. t" ("_abs" ("_constrain" x ’a) t)

"[| P; Q; R |] => S" ("==>" P ("==>" Q ("==>" R S)))

"[’a, ’b, ’c] => ’d" ("fun" ’a ("fun" ’b ("fun" ’c ’d)))

Figure 8.3: Built-in parse ast translations

8.3 Transforming ASTs to terms

The ast, after application of macros (see §8.5), is transformed into a term.
This term is probably ill-typed since type inference has not occurred yet.
The term may contain type constraints consisting of applications with head
"_constrain"; the second argument is a type encoded as a term. Type
inference later introduces correct types or rejects the input.

Another set of translation functions, namely parse translations, may affect
this process. If we ignore parse translations for the time being, then asts are
transformed to terms by mapping ast constants to constants, ast variables
to schematic or free variables and ast applications to applications.

More precisely, the mapping [[−]] is defined by

• Constants: [[Constant x]] = Const(x , dummyT).

• Schematic variables: [[Variable "?xi"]] = Var((x , i), dummyT), where x
is the base name and i the index extracted from xi .

• Free variables: [[Variable x]] = Free(x , dummyT).

• Function applications with n arguments:

[[Appl [f , x1, . . . , xn]]] = [[f]] $ [[x1]] $. . . $ [[xn]]

Here Const, Var, Free and $ are constructors of the datatype term, while
dummyT stands for some dummy type that is ignored during type inference.

So far the outcome is still a first-order term. Abstractions and bound
variables (constructors Abs and Bound) are introduced by parse translations.
Such translations are attached to "_abs", "!!" and user-defined binders.

CHAPTER 8. SYNTAX TRANSFORMATIONS 102

8.4 Printing of terms

The output phase is essentially the inverse of the input phase. Terms are
translated via abstract syntax trees into strings. Finally the strings are
pretty printed.

Print translations (§8.6) may affect the transformation of terms into asts.
Ignoring those, the transformation maps term constants, variables and appli-
cations to the corresponding constructs on asts. Abstractions are mapped
to applications of the special constant _abs.

More precisely, the mapping [[−]] is defined as follows:

• [[Const(x , τ)]] = Constant x .

• [[Free(x , τ)]] = constrain(Variable x , τ).

• [[Var((x , i), τ)]] = constrain(Variable "?xi", τ), where ?xi is the string
representation of the indexname (x , i).

• For the abstraction λx :: τ . t , let x ′ be a variant of x renamed to
differ from all names occurring in t , and let t ′ be obtained from t
by replacing all bound occurrences of x by the free variable x ′. This
replaces corresponding occurrences of the constructor Bound by the
term Free(x ′, dummyT):

[[Abs(x , τ, t)]] = Appl [Constant "_abs", constrain(Variable x ′, τ), [[t ′]]]

• [[Bound i]] = Variable "B.i". The occurrence of constructor Bound

should never happen when printing well-typed terms; it indicates a de
Bruijn index with no matching abstraction.

• Where f is not an application,

[[f $ x1 $. . . $ xn]] = Appl [[[f]], [[x1]], . . . , [[xn]]]

Type constraints are inserted to allow the printing of types. This is governed
by the boolean variable show_types:

• constrain(x , τ) = x if τ = dummyT or show_types is set to false.

• constrain(x , τ) = Appl [Constant "_constrain", x , [[τ]]] otherwise.

Here, [[τ]] is the ast encoding of τ : type constructors go to Constants;
type identifiers go to Variables; type applications go to Appls with
the type constructor as the first element. If show_sorts is set to true,
some type variables are decorated with an ast encoding of their sort.

CHAPTER 8. SYNTAX TRANSFORMATIONS 103

The ast, after application of macros (see §8.5), is transformed into the final
output string. The built-in print AST translations reverse the parse ast
translations of Fig. 8.3.

For the actual printing process, the names attached to productions of
the form . . .A

(p1)
1 . . .A(pn)

n . . . =>c play a vital role. Each ast with constant
head c, namely "c" or ("c" x1 . . . xn), is printed according to the production
for c. Each argument xi is converted to a string, and put in parentheses if
its priority (pi) requires this. The resulting strings and their syntactic sugar
(denoted by . . . above) are joined to make a single string.

If an application ("c" x1 . . . xm) has more arguments than the correspond-
ing production, it is first split into (("c" x1 . . . xn) xn+1 . . . xm). Applications
with too few arguments or with non-constant head or without a correspond-
ing production are printed as f (x1, . . . , xl) or (α1, . . . , αl)ty . Multiple pro-
ductions associated with some name c are tried in order of appearance. An
occurrence of Variable x is simply printed as x .

Blanks are not inserted automatically. If blanks are required to sepa-
rate tokens, specify them in the mixfix declaration, possibly preceded by a
slash (/) to allow a line break.

8.5 Macros: syntactic rewriting

Mixfix declarations alone can handle situations where there is a direct con-
nection between the concrete syntax and the underlying term. Sometimes we
require a more elaborate concrete syntax, such as quantifiers and list nota-
tion. Isabelle’s macros and translation functions can perform translations
such as

ALL x:A.P ⇀↽ Ball(A, %x.P)

[x, y, z] ⇀↽ Cons(x, Cons(y, Cons(z, Nil)))

Translation functions (see §8.6) must be coded in ML; they are the most
powerful translation mechanism but are difficult to read or write. Macros
are specified by first-order rewriting systems that operate on abstract syntax
trees. They are usually easy to read and write, and can express all but the
most obscure translations.

Figure 8.4 defines a fragment of first-order logic and set theory.1 Theory
SetSyntax declares constants for set comprehension (Collect), replacement
(Replace) and bounded universal quantification (Ball). Each of these binds

1This and the following theories are complete working examples, though they specify
only syntax, no axioms. The file ZF/ZF.thy presents a full set theory definition, including
many macro rules.

CHAPTER 8. SYNTAX TRANSFORMATIONS 104

SetSyntax = Pure +
types
i o

arities
i, o :: logic

consts
Trueprop :: o => prop ("_" 5)
Collect :: [i, i => o] => i
Replace :: [i, [i, i] => o] => i
Ball :: [i, i => o] => o

syntax
"@Collect" :: [idt, i, o] => i ("(1{_:_./ _})")
"@Replace" :: [idt, idt, i, o] => i ("(1{_./ _:_, _})")
"@Ball" :: [idt, i, o] => o ("(3ALL _:_./ _)" 10)

translations
"{x:A. P}" == "Collect(A, %x. P)"
"{y. x:A, Q}" == "Replace(A, %x y. Q)"
"ALL x:A. P" == "Ball(A, %x. P)"

end

Figure 8.4: Macro example: set theory

some variables. Without additional syntax we should have to write ∀x ∈ A.P
as Ball(A,%x.P), and similarly for the others.

The theory specifies a variable-binding syntax through additional produc-
tions that have mixfix declarations. Each non-copy production must specify
some constant, which is used for building asts. The additional constants
are decorated with @ to stress their purely syntactic purpose; they may not
occur within the final well-typed terms, being declared as syntax rather than
consts.

The translations cause the replacement of external forms by internal forms
after parsing, and vice versa before printing of terms. As a specification of the
set theory notation, they should be largely self-explanatory. The syntactic
constants, @Collect, @Replace and @Ball, appear implicitly in the macro
rules via their mixfix forms.

Macros can define variable-binding syntax because they operate on asts,
which have no inbuilt notion of bound variable. The macro variables x and y

have type idt and therefore range over identifiers, in this case bound vari-
ables. The macro variables P and Q range over formulae containing bound
variable occurrences.

Other applications of the macro system can be less straightforward, and
there are peculiarities. The rest of this section will describe in detail how
Isabelle macros are preprocessed and applied.

CHAPTER 8. SYNTAX TRANSFORMATIONS 105

8.5.1 Specifying macros

Macros are basically rewrite rules on asts. But unlike other macro systems
found in programming languages, Isabelle’s macros work in both directions.
Therefore a syntax contains two lists of rewrites: one for parsing and one for
printing.

The translations section specifies macros. The syntax for a macro is

(root) string

=>

<=

==

 (root) string

This specifies a parse rule (=>), a print rule (<=), or both (==). The two
strings specify the left and right-hand sides of the macro rule. The (root)
specification is optional; it specifies the nonterminal for parsing the string
and if omitted defaults to logic. ast rewrite rules (l , r) must obey certain
conditions:

• Rules must be left linear: l must not contain repeated variables.

• Every variable in r must also occur in l .

Macro rules may refer to any syntax from the parent theories. They may
also refer to anything defined before the current translations section —
including any mixfix declarations.

Upon declaration, both sides of the macro rule undergo parsing and parse
ast translations (see §8.1), but do not themselves undergo macro expansion.
The lexer runs in a different mode that additionally accepts identifiers of the
form letter quasiletter ∗ (like _idt, _K). Thus, a constant whose name starts
with an underscore can appear in macro rules but not in ordinary terms.

Some atoms of the macro rule’s ast are designated as constants for match-
ing. These are all names that have been declared as classes, types or constants
(logical and syntactic).

The result of this preprocessing is two lists of macro rules, each stored as a
pair of asts. They can be viewed using print_syntax (sections parse_rules
and print_rules). For theory SetSyntax of Fig. 8.4 these are

parse_rules:
("@Collect" x A P) -> ("Collect" A ("_abs" x P))
("@Replace" y x A Q) -> ("Replace" A ("_abs" x ("_abs" y Q)))
("@Ball" x A P) -> ("Ball" A ("_abs" x P))

print_rules:
("Collect" A ("_abs" x P)) -> ("@Collect" x A P)
("Replace" A ("_abs" x ("_abs" y Q))) -> ("@Replace" y x A Q)
("Ball" A ("_abs" x P)) -> ("@Ball" x A P)

CHAPTER 8. SYNTAX TRANSFORMATIONS 106

! Avoid choosing variable names that have previously been used as constants,
types or type classes; the consts section in the output of print_syntax lists all

such names. If a macro rule works incorrectly, inspect its internal form as shown
above, recalling that constants appear as quoted strings and variables without
quotes.

! If eta_contract is set to true, terms will be η-contracted before the ast
rewriter sees them. Thus some abstraction nodes needed for print rules to

match may vanish. For example, Ball(A, %x. P(x)) contracts to Ball(A, P);
the print rule does not apply and the output will be Ball(A, P). This problem
would not occur if ml translation functions were used instead of macros (as is done
for binder declarations).

! Another trap concerns type constraints. If show_types is set to true, bound
variables will be decorated by their meta types at the binding place (but not

at occurrences in the body). Matching with Collect(A, %x. P) binds x to some-
thing like ("_constrain" y "i") rather than only y. ast rewriting will cause
the constraint to appear in the external form, say {y::i:A::i. P::o}.

To allow such constraints to be re-read, your syntax should specify bound
variables using the nonterminal idt. This is the case in our example. Choosing
id instead of idt is a common error.

8.5.2 Applying rules

As a term is being parsed or printed, an ast is generated as an intermediate
form (recall Fig. 8.1). The ast is normalised by applying macro rules in the
manner of a traditional term rewriting system. We first examine how a single
rule is applied.

Let t be the abstract syntax tree to be normalised and (l , r) some trans-
lation rule. A subtree u of t is a redex if it is an instance of l ; in this case
l is said to match u. A redex matched by l may be replaced by the corre-
sponding instance of r , thus rewriting the ast t . Matching requires some
notion of place-holders that may occur in rule patterns but not in ordinary
asts; Variable atoms serve this purpose.

The matching of the object u by the pattern l is performed as follows:

• Every constant matches itself.

• Variable x in the object matches Constant x in the pattern. This
point is discussed further below.

• Every ast in the object matches Variable x in the pattern, binding x
to u.

CHAPTER 8. SYNTAX TRANSFORMATIONS 107

• One application matches another if they have the same number of sub-
trees and corresponding subtrees match.

• In every other case, matching fails. In particular, Constant x can only
match itself.

A successful match yields a substitution that is applied to r , generating the
instance that replaces u.

The second case above may look odd. This is where Variables of non-
rule asts behave like Constants. Recall that asts are not far removed from
parse trees; at this level it is not yet known which identifiers will become
constants, bounds, frees, types or classes. As §8.1 describes, former parse
tree heads appear in asts as Constants, while the name tokens id, var, tid,
tvar, num, xnum and xstr become Variables. On the other hand, when asts
generated from terms for printing, all constants and type constructors become
Constants; see §8.1. Thus asts may contain a messy mixture of Variables
and Constants. This is insignificant at macro level because matching treats
them alike.

Because of this behaviour, different kinds of atoms with the same name
are indistinguishable, which may make some rules prone to misbehaviour.
Example:

types
Nil

consts
Nil :: ’a list

syntax
"[]" :: ’a list ("[]")

translations
"[]" == "Nil"

The term Nil will be printed as [], just as expected. The term %Nil.t will
be printed as %[].t, which might not be expected! Guess how type Nil is
printed?

Normalizing an ast involves repeatedly applying macro rules until none
are applicable. Macro rules are chosen in order of appearance in the theory
definitions. You can watch the normalization of asts during parsing and
printing by setting Syntax.trace_ast to true. The information displayed
when tracing includes the ast before normalization (pre), redexes with re-
sults (rewrote), the normal form finally reached (post) and some statistics
(normalize).

CHAPTER 8. SYNTAX TRANSFORMATIONS 108

8.5.3 Example: the syntax of finite sets

This example demonstrates the use of recursive macros to implement a con-
venient notation for finite sets.

FinSyntax = SetSyntax +
types
is

syntax
"" :: i => is ("_")
"@Enum" :: [i, is] => is ("_,/ _")

consts
empty :: i ("{}")
insert :: [i, i] => i

syntax
"@Finset" :: is => i ("{(_)}")

translations
"{x, xs}" == "insert(x, {xs})"
"{x}" == "insert(x, {})"

end

Finite sets are internally built up by empty and insert. The declarations
above specify {x, y, z} as the external representation of

insert(x, insert(y, insert(z, empty)))

The nonterminal symbol is stands for one or more objects of type i separated
by commas. The mixfix declaration "_,/ _" allows a line break after the
comma for pretty printing; if no line break is required then a space is printed
instead.

The nonterminal is declared as the type is, but with no arities dec-
laration. Hence is is not a logical type and may be used safely as a new
nonterminal for custom syntax. The nonterminal is can later be re-used for
other enumerations of type i like lists or tuples. If we had needed polymor-
phic enumerations, we could have used the predefined nonterminal symbol
args and skipped this part altogether.

Next follows empty, which is already equipped with its syntax {}, and
insert without concrete syntax. The syntactic constant @Finset provides
concrete syntax for enumerations of i enclosed in curly braces. Remember
that a pair of parentheses, as in "{(_)}", specifies a block of indentation for
pretty printing.

The translations may look strange at first. Macro rules are best under-
stood in their internal forms:

CHAPTER 8. SYNTAX TRANSFORMATIONS 109

parse_rules:
("@Finset" ("@Enum" x xs)) -> ("insert" x ("@Finset" xs))
("@Finset" x) -> ("insert" x "empty")

print_rules:
("insert" x ("@Finset" xs)) -> ("@Finset" ("@Enum" x xs))
("insert" x "empty") -> ("@Finset" x)

This shows that {x,xs} indeed matches any set enumeration of at least two
elements, binding the first to x and the rest to xs. Likewise, {xs} and {x}

represent any set enumeration. The parse rules only work in the order given.

! The ast rewriter cannot distinguish constants from variables and looks only
for names of atoms. Thus the names of Constants occurring in the (internal)

left-hand side of translation rules should be regarded as reserved words. Choose
non-identifiers like @Finset or sufficiently long and strange names. If a bound
variable’s name gets rewritten, the result will be incorrect; for example, the term

%empty insert. insert(x, empty)

is incorrectly printed as %empty insert. {x}.

8.5.4 Example: a parse macro for dependent types

As stated earlier, a macro rule may not introduce new Variables on the
right-hand side. Something like "K(B)" => "%x.B" is illegal; if allowed, it
could cause variable capture. In such cases you usually must fall back on
translation functions. But a trick can make things readable in some cases:
calling translation functions by parse macros:

ProdSyntax = SetSyntax +
consts
Pi :: [i, i => i] => i

syntax
"@PROD" :: [idt, i, i] => i ("(3PROD _:_./ _)" 10)
"@->" :: [i, i] => i ("(_ ->/ _)" [51, 50] 50)

translations
"PROD x:A. B" => "Pi(A, %x. B)"
"A -> B" => "Pi(A, _K(B))"

end
ML
val print_translation = [("Pi", dependent_tr’ ("@PROD", "@->"))];

Here Pi is a logical constant for constructing general products. Two
external forms exist: the general case PROD x:A.B and the function space A

-> B, which abbreviates Pi(A, %x.B) when B does not depend on x.

CHAPTER 8. SYNTAX TRANSFORMATIONS 110

The second parse macro introduces _K(B), which later becomes %x.B due
to a parse translation associated with _K. Unfortunately there is no such
trick for printing, so we have to add a ML section for the print translation
dependent_tr’.

Recall that identifiers with a leading _ are allowed in translation rules,
but not in ordinary terms. Thus we can create asts containing names that
are not directly expressible.

The parse translation for _K is already installed in Pure, and the function
dependent_tr’ is exported by the syntax module for public use. See §8.6
below for more of the arcane lore of translation functions.

8.6 Translation functions

This section describes the translation function mechanism. By writing ml
functions, you can do almost everything to terms or asts during parsing
and printing. The logic LK is a good example of sophisticated transforma-
tions between internal and external representations of sequents; here, macros
would be useless.

A full understanding of translations requires some familiarity with Isa-
belle’s internals, especially the datatypes term, typ, Syntax.ast and the
encodings of types and terms as such at the various stages of the parsing or
printing process. Most users should never need to use translation functions.

8.6.1 Declaring translation functions

There are four kinds of translation functions, with one of these coming in two
variants. Each such function is associated with a name, which triggers calls
to it. Such names can be constants (logical or syntactic) or type constructors.

Function print_syntax displays the sets of names associated with the
translation functions of a theory under parse_ast_translation, etc. You
can add new ones via the ML section of a theory definition file. Even though
the ML section is the very last part of the file, newly installed translation
functions are already effective when processing all of the preceding sections.

The ML section’s contents are simply copied verbatim near the beginning
of the ml file generated from a theory definition file. Definitions made here
are accessible as components of an ml structure; to make some parts private,
use an ml local declaration. The ml code may install translation functions
by declaring any of the following identifiers:

CHAPTER 8. SYNTAX TRANSFORMATIONS 111

val parse_ast_translation : (string * (ast list -> ast)) list
val print_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list
val typed_print_translation :

(string * (bool -> typ -> term list -> term)) list

8.6.2 The translation strategy

The different kinds of translation functions are called during the transfor-
mations between parse trees, asts and terms (recall Fig. 8.1). Whenever
a combination of the form ("c" x1 . . . xn) is encountered, and a translation
function f of appropriate kind exists for c, the result is computed by the ml
function call f [x1, . . . , xn].

For ast translations, the arguments x1, . . . , xn are asts. A combination
has the form Constant c or Appl [Constant c, x1, . . . , xn]. For term transla-
tions, the arguments are terms and a combination has the form Const(c, τ)
or Const(c, τ) $ x1 $. . . $ xn . Terms allow more sophisticated transfor-
mations than asts do, typically involving abstractions and bound variables.
Typed print translations may even peek at the type τ of the constant they are
invoked on; they are also passed the current value of the show_sorts flag.

Regardless of whether they act on terms or asts, translation functions
called during the parsing process differ from those for printing more funda-
mentally in their overall behaviour:

Parse translations are applied bottom-up. The arguments are already in
translated form. The translations must not fail; exceptions trigger an
error message. There may never be more than one function associated
with any syntactic name.

Print translations are applied top-down. They are supplied with argu-
ments that are partly still in internal form. The result again undergoes
translation; therefore a print translation should not introduce as head
the very constant that invoked it. The function may raise exception
Match to indicate failure; in this event it has no effect. Multiple func-
tions associated with some syntactic name are tried in an unspecified
order.

Only constant atoms — constructor Constant for asts and Const for
terms — can invoke translation functions. This causes another difference
between parsing and printing.

Parsing starts with a string and the constants are not yet identified.
Only parse tree heads create Constants in the resulting ast, as described in

CHAPTER 8. SYNTAX TRANSFORMATIONS 112

§8.2. Macros and parse ast translations may introduce further Constants.
When the final ast is converted to a term, all Constants become Consts, as
described in §8.3.

Printing starts with a well-typed term and all the constants are known.
So all logical constants and type constructors may invoke print translations.
These, and macros, may introduce further constants.

8.6.3 Example: a print translation for dependent types

Let us continue the dependent type example (page 109) by examining the
parse translation for _K and the print translation dependent_tr’, which are
both built-in. By convention, parse translations have names ending with _tr

and print translations have names ending with _tr’. Search for such names
in the Isabelle sources to locate more examples.

Here is the parse translation for _K:

fun k_tr [t] = Abs ("x", dummyT, incr_boundvars 1 t)
| k_tr ts = raise TERM ("k_tr", ts);

If k_tr is called with exactly one argument t , it creates a new Abs node
with a body derived from t . Since terms given to parse translations are
not yet typed, the type of the bound variable in the new Abs is simply
dummyT. The function increments all Bound nodes referring to outer abstrac-
tions by calling incr_boundvars, a basic term manipulation function defined
in Pure/term.ML.

Here is the print translation for dependent types:

fun dependent_tr’ (q, r) (A :: Abs (x, T, B) :: ts) =
if 0 mem (loose_bnos B) then
let val (x’, B’) = Syntax.variant_abs’ (x, dummyT, B) in
list_comb
(Const (q,dummyT) $
Syntax.mark_boundT (x’, T) $ A $ B’, ts)

end
else list_comb (Const (r, dummyT) $ A $ B, ts)

| dependent_tr’ _ _ = raise Match;

The argument (q, r) is supplied to the curried function dependent_tr’ by
a partial application during its installation. For example, we could set up
print translations for both Pi and Sigma by including

val print_translation =
[("Pi", dependent_tr’ ("@PROD", "@->")),
("Sigma", dependent_tr’ ("@SUM", "@*"))];

within the ML section. The first of these transforms Pi(A, Abs(x ,T ,B)) into
@PROD(x ′,A,B ′) or @->(A,B), choosing the latter form if B does not de-

CHAPTER 8. SYNTAX TRANSFORMATIONS 113

pend on x . It checks this using loose_bnos, yet another function from
Pure/term.ML. Note that x ′ is a version of x renamed away from all names
in B , and B ′ is the body B with Bound nodes referring to the Abs node
replaced by Free(x ′, dummyT) (but marked as representing a bound variable).

We must be careful with types here. While types of Consts are ignored,
type constraints may be printed for some Frees and Vars if show_types is set
to true. Variables of type dummyT are never printed with constraint, though.
The line

let val (x’, B’) = Syntax.variant_abs’ (x, dummyT, B);

replaces bound variable occurrences in B by the free variable x ′ with type
dummyT. Only the binding occurrence of x ′ is given the correct type T, so this
is the only place where a type constraint might appear.

Also note that we are responsible to mark free identifiers that actually
represent bound variables. This is achieved by Syntax.variant_abs’ and
Syntax.mark_boundT above. Failing to do so may cause these names to be
printed in the wrong style.

8.7 Token translations

Isabelle’s meta-logic features quite a lot of different kinds of identifiers,
namely class, tfree, tvar, free, bound, var. One might want to have these
printed in different styles, e.g. in bold or italic, or even transcribed into
something more readable like α, α′, β instead of ’a, ’aa, ’b for type vari-
ables. Token translations provide a means to such ends, enabling the user
to install certain ml functions associated with any logical token class and
depending on some print mode.

The logical class of identifiers can not necessarily be determined by its
syntactic category, though. For example, consider free vs. bound variables.
So Isabelle’s pretty printing mechanism, starting from fully typed terms,
has to be careful to preserve this additional information2. In particular,
user-supplied print translation functions operating on terms have to be well-
behaved in this respect. Free identifiers introduced to represent bound vari-
ables have to be marked appropriately (cf. the example at the end of §8.6).

Token translations may be installed by declaring the token_translation
value within the ML section of a theory definition file:

2This is done by marking atoms in abstract syntax trees appropriately. The marks are
actually visible by print translation functions – they are just special constants applied to
atomic asts, for example ("_bound" x).

CHAPTER 8. SYNTAX TRANSFORMATIONS 114

val token_translation:
(string * string * (string -> string * real)) list

The elements of this list are of the form (m, c, f), where m is a print mode
identifier, c a token class, and f : string → string×real the actual translation
function. Assuming that x is of identifier class c, and print mode m is the first
(active) mode providing some translation for c, then x is output according to
f (x) = (x ′, len). Thereby x ′ is the modified identifier name and len its visual
length in terms of characters (e.g. length 1.0 would correspond to 1/2 em in
LATEX). Thus x ′ may include non-printing parts like control sequences or
markup information for typesetting systems.

Chapter 9

Substitution Tactics

Replacing equals by equals is a basic form of reasoning. Isabelle supports
several kinds of equality reasoning. Substitution means replacing free oc-
currences of t by u in a subgoal. This is easily done, given an equality t = u,
provided the logic possesses the appropriate rule. The tactic hyp_subst_tac

performs substitution even in the assumptions. But it works via object-level
implication, and therefore must be specially set up for each suitable object-
logic.

Substitution should not be confused with object-level rewriting. Given
equalities of the form t = u, rewriting replaces instances of t by corresponding
instances of u, and continues until it reaches a normal form. Substitution
handles ‘one-off’ replacements by particular equalities while rewriting handles
general equations. Chapter 10 discusses Isabelle’s rewriting tactics.

9.1 Substitution rules

Many logics include a substitution rule of the form

[[?a = ?b; ?P(?a)]] =⇒ ?P(?b) (subst)

In backward proof, this may seem difficult to use: the conclusion ?P(?b)
admits far too many unifiers. But, if the theorem eqth asserts t = u, then
eqth RS subst is the derived rule

?P(t) =⇒ ?P(u).

Provided u is not an unknown, resolution with this rule is well-behaved.1 To
replace u by t in subgoal i , use

resolve_tac [eqth RS subst] i .

To replace t by u in subgoal i , use

1Unifying ?P(u) with a formula Q expresses Q in terms of its dependence upon u.
There are still 2k unifiers, if Q has k occurrences of u, but Isabelle ensures that the first
unifier includes all the occurrences.

115

CHAPTER 9. SUBSTITUTION TACTICS 116

resolve_tac [eqth RS ssubst] i ,

where ssubst is the ‘swapped’ substitution rule

[[?a = ?b; ?P(?b)]] =⇒ ?P(?a). (ssubst)

If sym denotes the symmetry rule ?a = ?b =⇒ ?b = ?a, then ssubst is
just sym RS subst. Many logics with equality include the rules subst and
ssubst, as well as refl, sym and trans (for the usual equality laws). Ex-
amples include FOL and HOL, but not CTT (Constructive Type Theory).

Elim-resolution is well-behaved with assumptions of the form t = u. To
replace u by t or t by u in subgoal i , use

eresolve_tac [subst] i or eresolve_tac [ssubst] i .

Logics HOL, FOL and ZF define the tactic stac by

fun stac eqth = CHANGED o rtac (eqth RS ssubst);

Now stac eqth is like resolve_tac [eqth RS ssubst] but with the valu-
able property of failing if the substitution has no effect.

9.2 Substitution in the hypotheses

Substitution rules, like other rules of natural deduction, do not affect the
assumptions. This can be inconvenient. Consider proving the subgoal

[[c = a; c = b]] =⇒ a = b.

Calling eresolve_tac [ssubst] i simply discards the assumption c = a,
since c does not occur in a = b. Of course, we can work out a solution. First
apply eresolve_tac [subst] i , replacing a by c:

c = b =⇒ c = b

Equality reasoning can be difficult, but this trivial proof requires nothing
more sophisticated than substitution in the assumptions. Object-logics that
include the rule (subst) provide tactics for this purpose:

hyp_subst_tac : int -> tactic
bound_hyp_subst_tac : int -> tactic

hyp_subst_tac i selects an equality assumption of the form t = u or u = t ,
where t is a free variable or parameter. Deleting this assumption, it
replaces t by u throughout subgoal i , including the other assumptions.

CHAPTER 9. SUBSTITUTION TACTICS 117

bound_hyp_subst_tac i is similar but only substitutes for parameters
(bound variables). Uses for this are discussed below.

The term being replaced must be a free variable or parameter. Substitution
for constants is usually unhelpful, since they may appear in other theorems.
For instance, the best way to use the assumption 0 = 1 is to contradict a
theorem that states 0 6= 1, rather than to replace 0 by 1 in the subgoal!

Substitution for unknowns, such as ?x = 0, is a bad idea: we might
prove the subgoal more easily by instantiating ?x to 1. Substitution for
free variables is unhelpful if they appear in the premises of a rule being
derived: the substitution affects object-level assumptions, not meta-level as-
sumptions. For instance, replacing a by b could make the premise P(a)
worthless. To avoid this problem, use bound_hyp_subst_tac; alternatively,
call cut_facts_tac to insert the atomic premises as object-level assump-
tions.

9.3 Setting up the package

Many Isabelle object-logics, such as FOL, HOL and their descendants, come
with hyp_subst_tac already defined. A few others, such as CTT, do not
support this tactic because they lack the rule (subst). When defining a
new logic that includes a substitution rule and implication, you must set
up hyp_subst_tac yourself. It is packaged as the ml functor HypsubstFun,
which takes the argument signature HYPSUBST_DATA:

signature HYPSUBST_DATA =
sig
structure Simplifier : SIMPLIFIER
val dest_Trueprop : term -> term
val dest_eq : term -> (term*term)*typ
val dest_imp : term -> term*term
val eq_reflection : thm (* a=b ==> a==b *)
val rev_eq_reflection: thm (* a==b ==> a=b *)
val imp_intr : thm (*(P ==> Q) ==> P-->Q *)
val rev_mp : thm (* [| P; P-->Q |] ==> Q *)
val subst : thm (* [| a=b; P(a) |] ==> P(b) *)
val sym : thm (* a=b ==> b=a *)
val thin_refl : thm (* [|x=x; P|] ==> P *)
end;

Thus, the functor requires the following items:

Simplifier should be an instance of the simplifier (see Chapter 10).

CHAPTER 9. SUBSTITUTION TACTICS 118

dest_Trueprop should coerce a meta-level formula to the corresponding
object-level one. Typically, it should return P when applied to the
term TruepropP (see example below).

dest_eq should return the triple ((t , u),T), where T is the type of t and u,
when applied to the ml term that represents t = u. For other terms,
it should raise an exception.

dest_imp should return the pair (P ,Q) when applied to the ml term that
represents the implication P → Q . For other terms, it should raise an
exception.

eq_reflection is the theorem discussed in §10.8.

rev_eq_reflection is the reverse of eq_reflection.

imp_intr should be the implies introduction rule (?P =⇒ ?Q) =⇒ ?P → ?Q .

rev_mp should be the ‘reversed’ implies elimination rule [[?P ; ?P → ?Q]] =⇒
?Q .

subst should be the substitution rule [[?a = ?b; ?P(?a)]] =⇒ ?P(?b).

sym should be the symmetry rule ?a = ?b =⇒ ?b = ?a.

thin_refl should be the rule [[?a = ?a; ?P]] =⇒ ?P , which is used to erase
trivial equalities.

The functor resides in file Provers/hypsubst.ML in the Isabelle distribution
directory. It is not sensitive to the precise formalization of the object-logic.
It is not concerned with the names of the equality and implication symbols,
or the types of formula and terms.

Coding the functions dest_Trueprop, dest_eq and dest_imp requires
knowledge of Isabelle’s representation of terms. For FOL, they are declared
by

fun dest_Trueprop (Const ("Trueprop", _) $ P) = P
| dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);

fun dest_eq (Const("op =",T) $ t $ u) = ((t, u), domain_type T)

fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
| dest_imp t = raise TERM ("dest_imp", [t]);

Recall that Trueprop is the coercion from type o to type prop, while op = is
the internal name of the infix operator =. Function domain_type, given the

CHAPTER 9. SUBSTITUTION TACTICS 119

function type S ⇒ T , returns the type S . Pattern-matching expresses the
function concisely, using wildcards (_) for the types.

The tactic hyp_subst_tac works as follows. First, it identifies a suit-
able equality assumption, possibly re-orienting it using sym. Then it moves
other assumptions into the conclusion of the goal, by repeatedly calling
etac rev_mp. Then, it uses asm_full_simp_tac or ssubst to substitute
throughout the subgoal. (If the equality involves unknowns then it must use
ssubst.) Then, it deletes the equality. Finally, it moves the assumptions
back to their original positions by calling resolve_tac [imp_intr].

Chapter 10

Simplification

This chapter describes Isabelle’s generic simplification package. It performs
conditional and unconditional rewriting and uses contextual information (‘lo-
cal assumptions’). It provides several general hooks, which can provide au-
tomatic case splits during rewriting, for example. The simplifier is already
set up for many of Isabelle’s logics: FOL, ZF, HOL, HOLCF.

The first section is a quick introduction to the simplifier that should be
sufficient to get started. The later sections explain more advanced features.

10.1 Simplification for dummies

Basic use of the simplifier is particularly easy because each theory is equipped
with sensible default information controlling the rewrite process — namely
the implicit current simpset. A suite of simple commands is provided that
refer to the implicit simpset of the current theory context.

! Make sure that you are working within the correct theory context. Executing
proofs interactively, or loading them from ML files without associated theories

may require setting the current theory manually via the context command.

10.1.1 Simplification tactics

Simp_tac : int -> tactic
Asm_simp_tac : int -> tactic
Full_simp_tac : int -> tactic
Asm_full_simp_tac : int -> tactic
trace_simp : bool ref initially false
debug_simp : bool ref initially false

Simp_tac i simplifies subgoal i using the current simpset. It may solve the
subgoal completely if it has become trivial, using the simpset’s solver
tactic.

Asm_simp_tac is like Simp_tac, but extracts additional rewrite rules from
the local assumptions.

120

CHAPTER 10. SIMPLIFICATION 121

Full_simp_tac is like Simp_tac, but also simplifies the assumptions (with-
out using the assumptions to simplify each other or the actual goal).

Asm_full_simp_tac is like Asm_simp_tac, but also simplifies the assump-
tions. In particular, assumptions can simplify each other. 1

set trace_simp; makes the simplifier output internal operations. This in-
cludes rewrite steps, but also bookkeeping like modifications of the
simpset.

set debug_simp; makes the simplifier output some extra information about
internal operations. This includes any attempted invocation of simpli-
fication procedures.

As an example, consider the theory of arithmetic in HOL. The (rather
trivial) goal 0+(x +0) = x +0+0 can be solved by a single call of Simp_tac
as follows:

context Arith.thy;
Goal "0 + (x + 0) = x + 0 + 0";

1. 0 + (x + 0) = x + 0 + 0

by (Simp_tac 1);
Level 1

0 + (x + 0) = x + 0 + 0

No subgoals!

The simplifier uses the current simpset of Arith.thy, which contains
suitable theorems like ?n + 0 = ?n and 0 + ?n = ?n.

In many cases, assumptions of a subgoal are also needed in the simplifica-
tion process. For example, x = 0 ==> x + x = 0 is solved by Asm_simp_tac

as follows:

1. x = 0 ==> x + x = 0

by (Asm_simp_tac 1);

Asm_full_simp_tac is the most powerful of this quartet of tactics but
may also loop where some of the others terminate. For example,

1. ALL x. f x = g (f (g x)) ==> f 0 = f 0 + 0

is solved by Simp_tac, but Asm_simp_tac and Asm_full_simp_tac loop be-
cause the rewrite rule f ?x = g (f (g ?x)) extracted from the assumption does

1Asm_full_simp_tac used to process the assumptions from left to right. For back-
wards compatibilty reasons only there is now Asm_lr_simp_tac that behaves like the old
Asm_full_simp_tac.

CHAPTER 10. SIMPLIFICATION 122

not terminate. Isabelle notices certain simple forms of nontermination, but
not this one. Because assumptions may simplify each other, there can be very
subtle cases of nontermination. For example, invoking Asm_full_simp_tac

on

1. [| P (f x); y = x; f x = f y |] ==> Q

gives rise to the infinite reduction sequence

P (f x)
f x=f y7−→ P (f y)

y=x7−→ P (f x)
f x=f y7−→ · · ·

whereas applying the same tactic to

1. [| y = x; f x = f y; P (f x) |] ==> Q

terminates.

Using the simplifier effectively may take a bit of experimentation. Set
the trace_simp flag to get a better idea of what is going on. The resulting
output can be enormous, especially since invocations of the simplifier are
often nested (e.g. when solving conditions of rewrite rules).

10.1.2 Modifying the current simpset

Addsimps : thm list -> unit
Delsimps : thm list -> unit
Addsimprocs : simproc list -> unit
Delsimprocs : simproc list -> unit
Addcongs : thm list -> unit
Delcongs : thm list -> unit
Addsplits : thm list -> unit
Delsplits : thm list -> unit

Depending on the theory context, the Add and Del functions manipulate
basic components of the associated current simpset. Internally, all rewrite
rules have to be expressed as (conditional) meta-equalities. This form is
derived automatically from object-level equations that are supplied by the
user. Another source of rewrite rules are simplification procedures, that is
ml functions that produce suitable theorems on demand, depending on the
current redex. Congruences are a more advanced feature; see §10.2.6.

Addsimps thms; adds rewrite rules derived from thms to the current
simpset.

Delsimps thms; deletes rewrite rules derived from thms from the current
simpset.

CHAPTER 10. SIMPLIFICATION 123

Addsimprocs procs; adds simplification procedures procs to the current
simpset.

Delsimprocs procs; deletes simplification procedures procs from the cur-
rent simpset.

Addcongs thms; adds congruence rules to the current simpset.

Delcongs thms; deletes congruence rules from the current simpset.

Addsplits thms; adds splitting rules to the current simpset.

Delsplits thms; deletes splitting rules from the current simpset.

When a new theory is built, its implicit simpset is initialized by the union
of the respective simpsets of its parent theories. In addition, certain theory
definition constructs (e.g. datatype and primrec in HOL) implicitly aug-
ment the current simpset. Ordinary definitions are not added automatically!

It is up the user to manipulate the current simpset further by explicitly
adding or deleting theorems and simplification procedures.

Good simpsets are hard to design. Rules that obviously simplify, like
?n + 0 = ?n, should be added to the current simpset right after they have
been proved. More specific ones (such as distributive laws, which duplicate
subterms) should be added only for specific proofs and deleted afterwards.
Conversely, sometimes a rule needs to be removed for a certain proof and
restored afterwards. The need of frequent additions or deletions may indicate
a badly designed simpset.

! The union of the parent simpsets (as described above) is not always a good
starting point for the new theory. If some ancestors have deleted simplification

rules because they are no longer wanted, while others have left those rules in, then
the union will contain the unwanted rules. After this union is formed, changes to
a parent simpset have no effect on the child simpset.

10.2 Simplification sets

The simplifier is controlled by information contained in simpsets. These
consist of several components, including rewrite rules, simplification proce-
dures, congruence rules, and the subgoaler, solver and looper tactics. The
simplifier should be set up with sensible defaults so that most simplifier calls
specify only rewrite rules or simplification procedures. Experienced users
can exploit the other components to streamline proofs in more sophisticated
manners.

CHAPTER 10. SIMPLIFICATION 124

10.2.1 Inspecting simpsets

print_ss : simpset -> unit
rep_ss : simpset -> {mss : meta_simpset,

subgoal_tac: simpset -> int -> tactic,
loop_tacs : (string * (int -> tactic))list,
finish_tac : solver list,

unsafe_finish_tac : solver list}

print_ss ss; displays the printable contents of simpset ss . This includes
the rewrite rules and congruences in their internal form expressed as
meta-equalities. The names of the simplification procedures and the
patterns they are invoked on are also shown. The other parts, functions
and tactics, are non-printable.

rep_ss ss; decomposes ss as a record of its internal components, namely
the meta˙simpset, the subgoaler, the loop, and the safe and unsafe
solvers.

10.2.2 Building simpsets

empty_ss : simpset
merge_ss : simpset * simpset -> simpset

empty_ss is the empty simpset. This is not very useful under normal cir-
cumstances because it doesn’t contain suitable tactics (subgoaler etc.).
When setting up the simplifier for a particular object-logic, one will
typically define a more appropriate “almost empty” simpset. For ex-
ample, in HOL this is called HOL_basic_ss.

merge_ss (ss1, ss2) merges simpsets ss1 and ss2 by building the union of
their respective rewrite rules, simplification procedures and congru-
ences. The other components (tactics etc.) cannot be merged, though;
they are taken from either simpset2.

2Actually from ss1, but it would unwise to count on that.

CHAPTER 10. SIMPLIFICATION 125

10.2.3 Accessing the current simpset

simpset : unit -> simpset
simpset_ref : unit -> simpset ref
simpset_of : theory -> simpset
simpset_ref_of : theory -> simpset ref
print_simpset : theory -> unit
SIMPSET :(simpset -> tactic) -> tactic
SIMPSET’ :(simpset -> ’a -> tactic) -> ’a -> tactic

Each theory contains a current simpset stored within a private ML refer-
ence variable. This can be retrieved and modified as follows.

simpset(); retrieves the simpset value from the current theory context.

simpset_ref(); retrieves the simpset reference variable from the current
theory context. This can be assigned to by using := in ML.

simpset_of thy; retrieves the simpset value from theory thy .

simpset_ref_of thy; retrieves the simpset reference variable from theory
thy .

print_simpset thy; prints the current simpset of theory thy in the same
way as print_ss.

SIMPSET tacf , SIMPSET’ tacf ′ are tacticals that make a tactic depend on
the implicit current simpset of the theory associated with the proof
state they are applied on.

! There is a small difference between (SIMPSET’ tacf) and (tacf (simpset())).
For example (SIMPSET’ simp_tac) would depend on the theory of the proof

state it is applied to, while (simp_tac (simpset())) implicitly refers to the cur-
rent theory context. Both are usually the same in proof scripts, provided that
goals are only stated within the current theory. Robust programs would not count
on that, of course.

10.2.4 Rewrite rules

addsimps : simpset * thm list -> simpset infix 4
delsimps : simpset * thm list -> simpset infix 4

CHAPTER 10. SIMPLIFICATION 126

Rewrite rules are theorems expressing some form of equality, for example:

Suc(?m) + ?n = ?m + Suc(?n)

?P ∧ ?P ↔ ?P

?A ∪ ?B ≡ {x . x ∈ ?A ∨ x ∈ ?B}

Conditional rewrites such as ?m < ?n =⇒ ?m/?n = 0 are also permitted; the
conditions can be arbitrary formulas.

Internally, all rewrite rules are translated into meta-equalities, theorems
with conclusion lhs ≡ rhs . Each simpset contains a function for extracting
equalities from arbitrary theorems. For example, ¬(?x ∈ {}) could be turned
into ?x ∈ {} ≡ False. This function can be installed using setmksimps but
only the definer of a logic should need to do this; see §10.8.2. The function
processes theorems added by addsimps as well as local assumptions.

ss addsimps thms adds rewrite rules derived from thms to the simpset ss .

ss delsimps thms deletes rewrite rules derived from thms from the simpset
ss .

! The simplifier will accept all standard rewrite rules: those where all unknowns
are of base type. Hence ?i + (?j + ?k) = (?i + ?j) + ?k is OK.
It will also deal gracefully with all rules whose left-hand sides are so-called

higher-order patterns [10]. These are terms in β-normal form (this will always
be the case unless you have done something strange) where each occurrence of an
unknown is of the form ?F (x1, . . . , xn), where the xi are distinct bound variables.
Hence (∀x .?P(x)∧?Q(x))↔ (∀x .?P(x))∧(∀x .?Q(x)) is also OK, in both directions.

In some rare cases the rewriter will even deal with quite general rules: for
example ?f (?x) ∈ range(?f) = True rewrites g(a) ∈ range(g) to True, but will fail
to match g(h(b)) ∈ range(λx . g(h(x))). However, you can replace the offending
subterms (in our case ?f (?x), which is not a pattern) by adding new variables and
conditions: ?y = ?f (?x) =⇒ ?y ∈ range(?f) = True is acceptable as a conditional
rewrite rule since conditions can be arbitrary terms.

There is basically no restriction on the form of the right-hand sides. They may
not contain extraneous term or type variables, though.

10.2.5 *Simplification procedures

addsimprocs : simpset * simproc list -> simpset
delsimprocs : simpset * simproc list -> simpset

Simplification procedures are ml objects of abstract type simproc. Ba-
sically they are just functions that may produce proven rewrite rules on

CHAPTER 10. SIMPLIFICATION 127

demand. They are associated with certain patterns that conceptually rep-
resent left-hand sides of equations; these are shown by print_ss. During
its operation, the simplifier may offer a simplification procedure the current
redex and ask for a suitable rewrite rule. Thus rules may be specifically
fashioned for particular situations, resulting in a more powerful mechanism
than term rewriting by a fixed set of rules.

ss addsimprocs procs adds the simplification procedures procs to the cur-
rent simpset.

ss delsimprocs procs deletes the simplification procedures procs from the
current simpset.

For example, simplification procedures nat_cancel of HOL/Arith cancel
common summands and constant factors out of several relations of sums over
natural numbers.

Consider the following goal, which after cancelling a on both sides con-
tains a factor of 2. Simplifying with the simpset of Arith.thy will do the
cancellation automatically:

1. x + a + x < y + y + 2 + a + a + a + a + a

by (Simp_tac 1);
1. x < Suc (a + (a + y))

10.2.6 *Congruence rules

addcongs : simpset * thm list -> simpset infix 4
delcongs : simpset * thm list -> simpset infix 4
addeqcongs : simpset * thm list -> simpset infix 4
deleqcongs : simpset * thm list -> simpset infix 4

Congruence rules are meta-equalities of the form

. . . =⇒ f (?x1, . . . , ?xn) ≡ f (?y1, . . . , ?yn).

This governs the simplification of the arguments of f . For example, some
arguments can be simplified under additional assumptions:

[[?P1 ↔ ?Q1; ?Q1 =⇒ ?P2 ↔ ?Q2]] =⇒ (?P1 → ?P2) ≡ (?Q1 → ?Q2)

Given this rule, the simplifier assumes Q1 and extracts rewrite rules from
it when simplifying P2. Such local assumptions are effective for rewriting
formulae such as x = 0 → y + x = y . The local assumptions are also
provided as theorems to the solver; see § 10.2.8 below.

CHAPTER 10. SIMPLIFICATION 128

ss addcongs thms adds congruence rules to the simpset ss . These are de-
rived from thms in an appropriate way, depending on the underlying
object-logic.

ss delcongs thms deletes congruence rules derived from thms .

ss addeqcongs thms adds congruence rules in their internal form (conclu-
sions using meta-equality) to simpset ss . This is the basic mechanism
that addcongs is built on. It should be rarely used directly.

ss deleqcongs thms deletes congruence rules in internal form from simpset
ss .

Here are some more examples. The congruence rule for bounded quanti-
fiers also supplies contextual information, this time about the bound variable:

[[?A = ?B ;
∧

x . x ∈ ?B =⇒ ?P(x) = ?Q(x)]] =⇒
(∀x ∈ ?A . ?P(x)) = (∀x ∈ ?B . ?Q(x))

The congruence rule for conditional expressions can supply contextual infor-
mation for simplifying the arms:

[[?p = ?q ; ?q =⇒ ?a = ?c; ¬?q =⇒ ?b = ?d]] =⇒ if (?p, ?a, ?b) ≡ if (?q , ?c, ?d)

A congruence rule can also prevent simplification of some arguments. Here
is an alternative congruence rule for conditional expressions:

?p = ?q =⇒ if (?p, ?a, ?b) ≡ if (?q , ?a, ?b)

Only the first argument is simplified; the others remain unchanged. This can
make simplification much faster, but may require an extra case split to prove
the goal.

10.2.7 *The subgoaler

setsubgoaler :
simpset * (simpset -> int -> tactic) -> simpset infix 4

prems_of_ss : simpset -> thm list

The subgoaler is the tactic used to solve subgoals arising out of conditional
rewrite rules or congruence rules. The default should be simplification itself.
Occasionally this strategy needs to be changed. For example, if the premise
of a conditional rule is an instance of its conclusion, as in Suc(?m) < ?n =⇒
?m < ?n, the default strategy could loop.

CHAPTER 10. SIMPLIFICATION 129

ss setsubgoaler tacf sets the subgoaler of ss to tacf . The function tacf
will be applied to the current simplifier context expressed as a simpset.

prems_of_ss ss retrieves the current set of premises from simplifier context
ss . This may be non-empty only if the simplifier has been told to utilize
local assumptions in the first place, e.g. if invoked via asm_simp_tac.

As an example, consider the following subgoaler:

fun subgoaler ss =
assume_tac ORELSE’
resolve_tac (prems_of_ss ss) ORELSE’
asm_simp_tac ss;

This tactic first tries to solve the subgoal by assumption or by resolving with
with one of the premises, calling simplification only if that fails.

10.2.8 *The solver

mk_solver : string -> (thm list -> int -> tactic) -> solver
setSolver : simpset * solver -> simpset infix 4
addSolver : simpset * solver -> simpset infix 4
setSSolver : simpset * solver -> simpset infix 4
addSSolver : simpset * solver -> simpset infix 4

A solver is a tactic that attempts to solve a subgoal after simplification.
Typically it just proves trivial subgoals such as True and t = t . It could
use sophisticated means such as blast_tac, though that could make simpli-
fication expensive. To keep things more abstract, solvers are packaged up in
type solver. The only way to create a solver is via mk_solver.

Rewriting does not instantiate unknowns. For example, rewriting cannot
prove a ∈ ?A since this requires instantiating ?A. The solver, however, is
an arbitrary tactic and may instantiate unknowns as it pleases. This is the
only way the simplifier can handle a conditional rewrite rule whose condition
contains extra variables. When a simplification tactic is to be combined with
other provers, especially with the classical reasoner, it is important whether
it can be considered safe or not. For this reason a simpset contains two
solvers, a safe and an unsafe one.

The standard simplification strategy solely uses the unsafe solver, which
is appropriate in most cases. For special applications where the simplification
process is not allowed to instantiate unknowns within the goal, simplification
starts with the safe solver, but may still apply the ordinary unsafe one in
nested simplifications for conditional rules or congruences. Note that in this
way the overall tactic is not totally safe: it may instantiate unknowns that
appear also in other subgoals.

CHAPTER 10. SIMPLIFICATION 130

mk_solver s tacf converts tacf into a new solver; the string s is only at-
tached as a comment and has no other significance.

ss setSSolver tacf installs tacf as the safe solver of ss .

ss addSSolver tacf adds tacf as an additional safe solver; it will be tried
after the solvers which had already been present in ss .

ss setSolver tacf installs tacf as the unsafe solver of ss .

ss addSolver tacf adds tacf as an additional unsafe solver; it will be tried
after the solvers which had already been present in ss .

The solver tactic is invoked with a list of theorems, namely assumptions
that hold in the local context. This may be non-empty only if the simplifier
has been told to utilize local assumptions in the first place, e.g. if invoked
via asm_simp_tac. The solver is also presented the full goal including its
assumptions in any case. Thus it can use these (e.g. by calling assume_tac),
even if the list of premises is not passed.

As explained in §10.2.7, the subgoaler is also used to solve the premises
of congruence rules. These are usually of the form s = ?x , where s needs to
be simplified and ?x needs to be instantiated with the result. Typically, the
subgoaler will invoke the simplifier at some point, which will eventually call
the solver. For this reason, solver tactics must be prepared to solve goals of
the form t = ?x , usually by reflexivity. In particular, reflexivity should be
tried before any of the fancy tactics like blast_tac.

It may even happen that due to simplification the subgoal is no longer
an equality. For example False ↔ ?Q could be rewritten to ¬?Q . To cover
this case, the solver could try resolving with the theorem ¬False.

! If a premise of a congruence rule cannot be proved, then the congruence is
ignored. This should only happen if the rule is conditional — that is, contains

premises not of the form t = ?x ; otherwise it indicates that some congruence rule,
or possibly the subgoaler or solver, is faulty.

CHAPTER 10. SIMPLIFICATION 131

10.2.9 *The looper

setloop : simpset * (int -> tactic) -> simpset infix 4
addloop : simpset * (string * (int -> tactic)) -> simpset infix 4
delloop : simpset * string -> simpset infix 4
addsplits : simpset * thm list -> simpset infix 4
delsplits : simpset * thm list -> simpset infix 4

The looper is a list of tactics that are applied after simplification, in
case the solver failed to solve the simplified goal. If the looper succeeds, the
simplification process is started all over again. Each of the subgoals generated
by the looper is attacked in turn, in reverse order.

A typical looper is : the expansion of a conditional. Another possibility is
to apply an elimination rule on the assumptions. More adventurous loopers
could start an induction.

ss setloop tacf installs tacf as the only looper tactic of ss .

ss addloop (name, tacf) adds tacf as an additional looper tactic with name
name; it will be tried after the looper tactics that had already been
present in ss .

ss delloop name deletes the looper tactic name from ss .

ss addsplits thms adds split tactics for thms as additional looper tactics
of ss .

ss addsplits thms deletes the split tactics for thms from the looper tactics
of ss .

The splitter replaces applications of a given function; the right-hand side
of the replacement can be anything. For example, here is a splitting rule for
conditional expressions:

?P(if (?Q , ?x , ?y))↔ (?Q → ?P(?x)) ∧ (¬?Q → ?P(?y))

Another example is the elimination operator for Cartesian products (which
happens to be called split):

?P(split(?f , ?p))↔ (∀a b . ?p = 〈a, b〉 → ?P(?f (a, b)))

For technical reasons, there is a distinction between case splitting in the
conclusion and in the premises of a subgoal. The former is done by split_tac

with rules like split_if or option.split, which do not split the subgoal,
while the latter is done by split_asm_tac with rules like split_if_asm

or option.split_asm, which split the subgoal. The operator addsplits

automatically takes care of which tactic to call, analyzing the form of the
rules given as argument.

CHAPTER 10. SIMPLIFICATION 132

! Due to split_asm_tac, the simplifier may split subgoals!

Case splits should be allowed only when necessary; they are expensive
and hard to control. Here is an example of use, where split_if is the first
rule above:

by (simp_tac (simpset()
addloop ("split if", split_tac [split_if])) 1);

Users would usually prefer the following shortcut using addsplits:

by (simp_tac (simpset() addsplits [split_if]) 1);

Case-splitting on conditional expressions is usually beneficial, so it is enabled
by default in the object-logics HOL and FOL.

10.3 The simplification tactics

generic_simp_tac : bool -> bool * bool * bool ->
simpset -> int -> tactic

simp_tac : simpset -> int -> tactic
asm_simp_tac : simpset -> int -> tactic
full_simp_tac : simpset -> int -> tactic
asm_full_simp_tac : simpset -> int -> tactic
safe_asm_full_simp_tac : simpset -> int -> tactic

generic_simp_tac is the basic tactic that is underlying any actual sim-
plification work. The others are just instantiations of it. The rewriting
strategy is always strictly bottom up, except for congruence rules, which are
applied while descending into a term. Conditions in conditional rewrite rules
are solved recursively before the rewrite rule is applied.

generic_simp_tac safe (simp asm, use asm, mutual) gives direct ac-
cess to the various simplification modes:

• if safe is true, the safe solver is used as explained in §10.2.8,

• simp asm determines whether the local assumptions are simpli-
fied,

• use asm determines whether the assumptions are used as local
rewrite rules, and

• mutual determines whether assumptions can simplify each other
rather than being processed from left to right.

CHAPTER 10. SIMPLIFICATION 133

This generic interface is intended for building special tools, e.g. for
combining the simplifier with the classical reasoner. It is rarely used
directly.

simp_tac, asm_simp_tac, full_simp_tac, asm_full_simp_tac are the
basic simplification tactics that work exactly like their namesakes in
§10.1, except that they are explicitly supplied with a simpset.

Local modifications of simpsets within a proof are often much cleaner by
using above tactics in conjunction with explicit simpsets, rather than their
capitalized counterparts. For example

Addsimps thms;
by (Simp_tac i);
Delsimps thms;

can be expressed more appropriately as

by (simp_tac (simpset() addsimps thms) i);

Also note that functions depending implicitly on the current theory con-
text (like capital Simp_tac and the other commands of §10.1) should be con-
sidered harmful outside of actual proof scripts. In particular, ML programs
like theory definition packages or special tactics should refer to simpsets only
explicitly, via the above tactics used in conjunction with simpset_of or the
SIMPSET tacticals.

10.4 Forward rules and conversions

simplify : simpset -> thm -> thm
asm_simplify : simpset -> thm -> thm
full_simplify : simpset -> thm -> thm
asm_full_simplify : simpset -> thm -> thm

Simplifier.rewrite : simpset -> cterm -> thm
Simplifier.asm_rewrite : simpset -> cterm -> thm
Simplifier.full_rewrite : simpset -> cterm -> thm
Simplifier.asm_full_rewrite : simpset -> cterm -> thm

The first four of these functions provide forward rules for simplification.
Their effect is analogous to the corresponding tactics described in §10.3, but
affect the whole theorem instead of just a certain subgoal. Also note that
the looper / solver process as described in §10.2.9 and §10.2.8 is omitted in
forward simplification.

The latter four are conversions, establishing proven equations of the form
t ≡ u where the l.h.s. t has been given as argument.

CHAPTER 10. SIMPLIFICATION 134

! Forward simplification rules and conversions should be used rarely in ordinary
proof scripts. The main intention is to provide an internal interface to the

simplifier for special utilities.

10.5 Examples of using the Simplifier

Assume we are working within FOL (see the file FOL/ex/Nat) and that

Nat.thy is a theory including the constants 0, Suc and +,

add_0 is the rewrite rule 0 + ?n = ?n,

add_Suc is the rewrite rule Suc(?m) + ?n = Suc(?m + ?n),

induct is the induction rule [[?P(0);
∧

x .?P(x) =⇒ ?P(Suc(x))]] =⇒ ?P(?n).

We augment the implicit simpset inherited from Nat with the basic rewrite
rules for addition of natural numbers:

Addsimps [add_0, add_Suc];

10.5.1 A trivial example

Proofs by induction typically involve simplification. Here is a proof that 0 is
a right identity:

Goal "m+0 = m";
Level 0

m + 0 = m

1. m + 0 = m

The first step is to perform induction on the variable m. This returns a base
case and inductive step as two subgoals:

by (res_inst_tac [("n","m")] induct 1);
Level 1

m + 0 = m

1. 0 + 0 = 0

2. !!x. x + 0 = x ==> Suc(x) + 0 = Suc(x)

Simplification solves the first subgoal trivially:

by (Simp_tac 1);
Level 2

m + 0 = m

1. !!x. x + 0 = x ==> Suc(x) + 0 = Suc(x)

The remaining subgoal requires Asm_simp_tac in order to use the induction
hypothesis as a rewrite rule:

CHAPTER 10. SIMPLIFICATION 135

by (Asm_simp_tac 1);
Level 3

m + 0 = m

No subgoals!

10.5.2 An example of tracing

Let us prove a similar result involving more complex terms. We prove that
addition is commutative.

Goal "m+Suc(n) = Suc(m+n)";
Level 0

m + Suc(n) = Suc(m + n)

1. m + Suc(n) = Suc(m + n)

Performing induction on m yields two subgoals:

by (res_inst_tac [("n","m")] induct 1);
Level 1

m + Suc(n) = Suc(m + n)

1. 0 + Suc(n) = Suc(0 + n)

2. !!x. x + Suc(n) = Suc(x + n) ==>

Suc(x) + Suc(n) = Suc(Suc(x) + n)

Simplification solves the first subgoal, this time rewriting two occurrences
of 0:

by (Simp_tac 1);
Level 2

m + Suc(n) = Suc(m + n)

1. !!x. x + Suc(n) = Suc(x + n) ==>

Suc(x) + Suc(n) = Suc(Suc(x) + n)

Switching tracing on illustrates how the simplifier solves the remaining sub-
goal:

set trace_simp;
by (Asm_simp_tac 1);
Adding rewrite rule:

.x + Suc n == Suc (.x + n)

Applying instance of rewrite rule:

?m + Suc ?n == Suc (?m + ?n)

Rewriting:

Suc .x + Suc n == Suc (Suc .x + n)

Applying instance of rewrite rule:

Suc ?m + ?n == Suc (?m + ?n)

Rewriting:

Suc .x + n == Suc (.x + n)

CHAPTER 10. SIMPLIFICATION 136

Applying instance of rewrite rule:

Suc ?m + ?n == Suc (?m + ?n)

Rewriting:

Suc .x + n == Suc (.x + n)

Applying instance of rewrite rule:

?x = ?x == True

Rewriting:

Suc (Suc (.x + n)) = Suc (Suc (.x + n)) == True

Level 3

m + Suc(n) = Suc(m + n)

No subgoals!

Many variations are possible. At Level 1 (in either example) we could have
solved both subgoals at once using the tactical ALLGOALS:

by (ALLGOALS Asm_simp_tac);
Level 2

m + Suc(n) = Suc(m + n)

No subgoals!

10.5.3 Free variables and simplification

Here is a conjecture to be proved for an arbitrary function f satisfying the
law f (Suc(?n)) = Suc(f (?n)):

val [prem] = Goal
"(!!n. f(Suc(n)) = Suc(f(n))) ==> f(i+j) = i+f(j)";

Level 0

f(i + j) = i + f(j)

1. f(i + j) = i + f(j)

val prem = "f(Suc(?n)) = Suc(f(?n))

[!!n. f(Suc(n)) = Suc(f(n))]" : thm

In the theorem prem, note that f is a free variable while ?n is a schematic
variable.

by (res_inst_tac [("n","i")] induct 1);
Level 1

f(i + j) = i + f(j)

1. f(0 + j) = 0 + f(j)

2. !!x. f(x + j) = x + f(j) ==> f(Suc(x) + j) = Suc(x) + f(j)

We simplify each subgoal in turn. The first one is trivial:

by (Simp_tac 1);
Level 2

f(i + j) = i + f(j)

1. !!x. f(x + j) = x + f(j) ==> f(Suc(x) + j) = Suc(x) + f(j)

The remaining subgoal requires rewriting by the premise, so we add it to the
current simpset:

CHAPTER 10. SIMPLIFICATION 137

by (asm_simp_tac (simpset() addsimps [prem]) 1);
Level 3

f(i + j) = i + f(j)

No subgoals!

10.6 Permutative rewrite rules

A rewrite rule is permutative if the left-hand side and right-hand side are
the same up to renaming of variables. The most common permutative rule is
commutativity: x +y = y+x . Other examples include (x−y)−z = (x−z)−y
in arithmetic and insert(x , insert(y ,A)) = insert(y , insert(x ,A)) for sets.
Such rules are common enough to merit special attention.

Because ordinary rewriting loops given such rules, the simplifier employs
a special strategy, called ordered rewriting. There is a standard lexico-
graphic ordering on terms. This should be perfectly OK in most cases, but
can be changed for special applications.

settermless : simpset * (term * term -> bool) -> simpset infix 4

ss settermless rel installs relation rel as term order in simpset ss .

A permutative rewrite rule is applied only if it decreases the given term
with respect to this ordering. For example, commutativity rewrites b + a to
a+b, but then stops because a+b is strictly less than b+a. The Boyer-Moore
theorem prover [3] also employs ordered rewriting.

Permutative rewrite rules are added to simpsets just like other rewrite
rules; the simplifier recognizes their special status automatically. They are
most effective in the case of associative-commutative operators. (Associativ-
ity by itself is not permutative.) When dealing with an AC-operator f , keep
the following points in mind:

• The associative law must always be oriented from left to right, namely
f (f (x , y), z) = f (x , f (y , z)). The opposite orientation, if used with
commutativity, leads to looping in conjunction with the standard term
order.

• To complete your set of rewrite rules, you must add not just associa-
tivity (A) and commutativity (C) but also a derived rule, left-com-
mutativity (LC): f (x , f (y , z)) = f (y , f (x , z)).

Ordered rewriting with the combination of A, C, and LC sorts a term lexi-
cographically:

(b + c) + a
A7−→ b + (c + a)

C7−→ b + (a + c)
LC7−→ a + (b + c)

CHAPTER 10. SIMPLIFICATION 138

Martin and Nipkow [9] discuss the theory and give many examples; other
algebraic structures are amenable to ordered rewriting, such as boolean rings.

10.6.1 Example: sums of natural numbers

This example is again set in HOL (see HOL/ex/NatSum). Theory Arith

contains natural numbers arithmetic. Its associated simpset contains many
arithmetic laws including distributivity of × over +, while add_ac is a list
consisting of the A, C and LC laws for + on type nat. Let us prove the
theorem

n∑
i=1

i = n × (n + 1)/2.

A functional sum represents the summation operator under the interpretation
sum f (n + 1) =

∑n
i=0 f i . We extend Arith as follows:

NatSum = Arith +
consts sum :: [nat=>nat, nat] => nat
primrec
"sum f 0 = 0"
"sum f (Suc n) = f(n) + sum f n"

end

The primrec declaration automatically adds rewrite rules for sum to the
default simpset. We now remove the nat_cancel simplification procedures
(in order not to spoil the example) and insert the AC-rules for +:

Delsimprocs nat_cancel;
Addsimps add_ac;

Our desired theorem now reads sum (λi . i) (n + 1) = n × (n + 1)/2. The
Isabelle goal has both sides multiplied by 2:

Goal "2 * sum (%i.i) (Suc n) = n * Suc n";
Level 0

2 * sum (%i. i) (Suc n) = n * Suc n

1. 2 * sum (%i. i) (Suc n) = n * Suc n

Induction should not be applied until the goal is in the simplest form:

by (Simp_tac 1);
Level 1

2 * sum (%i. i) (Suc n) = n * Suc n

1. n + (sum (%i. i) n + sum (%i. i) n) = n * n

Ordered rewriting has sorted the terms in the left-hand side. The subgoal is
now ready for induction:

CHAPTER 10. SIMPLIFICATION 139

by (induct_tac "n" 1);
Level 2

2 * sum (%i. i) (Suc n) = n * Suc n

1. 0 + (sum (%i. i) 0 + sum (%i. i) 0) = 0 * 0

2. !!n. n + (sum (%i. i) n + sum (%i. i) n) = n * n

==> Suc n + (sum (%i. i) (Suc n) + sum (%i. i) (Suc n)) =

Suc n * Suc n

Simplification proves both subgoals immediately:

by (ALLGOALS Asm_simp_tac);
Level 3

2 * sum (%i. i) (Suc n) = n * Suc n

No subgoals!

Simplification cannot prove the induction step if we omit add_ac from the
simpset. Observe that like terms have not been collected:

Level 3

2 * sum (%i. i) (Suc n) = n * Suc n

1. !!n. n + sum (%i. i) n + (n + sum (%i. i) n) = n + n * n

==> n + (n + sum (%i. i) n) + (n + (n + sum (%i. i) n)) =

n + (n + (n + n * n))

Ordered rewriting proves this by sorting the left-hand side. Proving arith-
metic theorems without ordered rewriting requires explicit use of commuta-
tivity. This is tedious; try it and see!

Ordered rewriting is equally successful in proving
∑n

i=1 i3 = n2 × (n +
1)2/4.

10.6.2 Re-orienting equalities

Ordered rewriting with the derived rule symmetry can reverse equations:

val symmetry = prove_goal HOL.thy "(x=y) = (y=x)"
(fn _ => [Blast_tac 1]);

This is frequently useful. Assumptions of the form s = t , where t occurs
in the conclusion but not s , can often be brought into the right form. For
example, ordered rewriting with symmetry can prove the goal

f (a) = b ∧ f (a) = c → b = c.

Here symmetry reverses both f (a) = b and f (a) = c because f (a) is lexi-
cographically greater than b and c. These re-oriented equations, as rewrite
rules, replace b and c in the conclusion by f (a).

CHAPTER 10. SIMPLIFICATION 140

Another example is the goal ¬(t = u)→ ¬(u = t). The differing orienta-
tions make this appear difficult to prove. Ordered rewriting with symmetry

makes the equalities agree. (Without knowing more about t and u we cannot
say whether they both go to t = u or u = t .) Then the simplifier can prove
the goal outright.

10.7 *Coding simplification procedures

val Simplifier.simproc: Sign.sg -> string -> string list
-> (Sign.sg -> simpset -> term -> thm option) -> simproc

val Simplifier.simproc_i: Sign.sg -> string -> term list
-> (Sign.sg -> simpset -> term -> thm option) -> simproc

Simplifier.simproc sign name lhss proc makes proc a simplification
procedure for left-hand side patterns lhss . The name just serves as
a comment. The function proc may be invoked by the simplifier for
redex positions matched by one of lhss as described below (which are
be specified as strings to be read as terms).

Simplifier.simproc_i is similar to Simplifier.simproc, but takes well-
typed terms as pattern argument.

Simplification procedures are applied in a two-stage process as follows:
The simplifier tries to match the current redex position against any one of the
lhs patterns of any simplification procedure. If this succeeds, it invokes the
corresponding ml function, passing with the current signature, local assump-
tions and the (potential) redex. The result may be either None (indicating
failure) or Some thm.

Any successful result is supposed to be a (possibly conditional) rewrite
rule t ≡ u that is applicable to the current redex. The rule will be applied
just as any ordinary rewrite rule. It is expected to be already in internal form,
though, bypassing the automatic preprocessing of object-level equivalences.

As an example of how to write your own simplification procedures, con-
sider eta-expansion of pair abstraction (see also HOL/Modelcheck/MCSyn

where this is used to provide external model checker syntax).
The HOL theory of tuples (see HOL/Prod) provides an operator split

together with some concrete syntax supporting λ (x , y) . b abstractions. As-
sume that we would like to offer a tactic that rewrites any function λ p . f p
(where p is of some pair type) to λ (x , y) . f (x , y). The corresponding rule
is:

CHAPTER 10. SIMPLIFICATION 141

pair_eta_expand: (f::’a*’b=>’c) = (%(x, y). f (x, y))

Unfortunately, term rewriting using this rule directly would not terminate!
We now use the simplification procedure mechanism in order to stop the
simplifier from applying this rule over and over again, making it rewrite only
actual abstractions. The simplification procedure pair_eta_expand_proc is
defined as follows:

val pair_eta_expand_proc =
Simplifier.simproc (Theory.sign_of (the_context ()))
"pair_eta_expand" ["f::’a*’b=>’c"]
(fn _ => fn _ => fn t =>
case t of Abs _ => Some (mk_meta_eq pair_eta_expand)
| _ => None);

This is an example of using pair_eta_expand_proc:

1. P (%p::’a * ’a. fst p + snd p + z)

by (simp_tac (simpset() addsimprocs [pair_eta_expand_proc]) 1);
1. P (%(x::’a,y::’a). x + y + z)

In the above example the simplification procedure just did fine grained
control over rule application, beyond higher-order pattern matching. Usually,
procedures would do some more work, in particular prove particular theorems
depending on the current redex.

10.8 *Setting up the Simplifier

Setting up the simplifier for new logics is complicated in the general case.
This section describes how the simplifier is installed for intuitionistic first-
order logic; the code is largely taken from FOL/simpdata.ML of the Isabelle
sources.

The case splitting tactic, which resides on a separate files, is not part of
Pure Isabelle. It needs to be loaded explicitly by the object-logic as follows
(below ~~ refers to $ISABELLE_HOME):

use "~~/src/Provers/splitter.ML";

Simplification requires converting object-equalities to meta-level rewrite
rules. This demands rules stating that equal terms and equivalent formu-
lae are also equal at the meta-level. The rule declaration part of the file
FOL/IFOL.thy contains the two lines

CHAPTER 10. SIMPLIFICATION 142

eq_reflection "(x=y) ==> (x==y)"
iff_reflection "(P<->Q) ==> (P==Q)"

Of course, you should only assert such rules if they are true for your par-
ticular logic. In Constructive Type Theory, equality is a ternary relation of
the form a = b ∈ A; the type A determines the meaning of the equality
essentially as a partial equivalence relation. The present simplifier cannot
be used. Rewriting in CTT uses another simplifier, which resides in the file
Provers/typedsimp.ML and is not documented. Even this does not work for
later variants of Constructive Type Theory that use intensional equality [13].

10.8.1 A collection of standard rewrite rules

We first prove lots of standard rewrite rules about the logical connectives.
These include cancellation and associative laws. We define a function that
echoes the desired law and then supplies it the prover for intuitionistic FOL:

fun int_prove_fun s =
(writeln s;
prove_goal IFOL.thy s
(fn prems => [(cut_facts_tac prems 1),

(IntPr.fast_tac 1)]));

The following rewrite rules about conjunction are a selection of those proved
on FOL/simpdata.ML. Later, these will be supplied to the standard simpset.

val conj_simps = map int_prove_fun
["P & True <-> P", "True & P <-> P",
"P & False <-> False", "False & P <-> False",
"P & P <-> P",
"P & ~P <-> False", "~P & P <-> False",
"(P & Q) & R <-> P & (Q & R)"];

The file also proves some distributive laws. As they can cause exponential
blowup, they will not be included in the standard simpset. Instead they are
merely bound to an ml identifier, for user reference.

val distrib_simps = map int_prove_fun
["P & (Q | R) <-> P&Q | P&R",
"(Q | R) & P <-> Q&P | R&P",
"(P | Q --> R) <-> (P --> R) & (Q --> R)"];

10.8.2 Functions for preprocessing the rewrite rules

setmksimps : simpset * (thm -> thm list) -> simpset infix 4

The next step is to define the function for preprocessing rewrite rules. This
will be installed by calling setmksimps below. Preprocessing occurs when-
ever rewrite rules are added, whether by user command or automatically.

CHAPTER 10. SIMPLIFICATION 143

Preprocessing involves extracting atomic rewrites at the object-level, then
reflecting them to the meta-level.

To start, the function gen_all strips any meta-level quantifiers from the
front of the given theorem.

The function atomize analyses a theorem in order to extract atomic
rewrite rules. The head of all the patterns, matched by the wildcard _,
is the coercion function Trueprop.

fun atomize th = case concl_of th of
_ $ (Const("op &",_) $ _ $ _) => atomize(th RS conjunct1) @

atomize(th RS conjunct2)
| _ $ (Const("op -->",_) $ _ $ _) => atomize(th RS mp)
| _ $ (Const("All",_) $ _) => atomize(th RS spec)
| _ $ (Const("True",_)) => []
| _ $ (Const("False",_)) => []
| _ => [th];

There are several cases, depending upon the form of the conclusion:

• Conjunction: extract rewrites from both conjuncts.

• Implication: convert P → Q to the meta-implication P =⇒ Q and
extract rewrites from Q ; these will be conditional rewrites with the
condition P .

• Universal quantification: remove the quantifier, replacing the bound
variable by a schematic variable, and extract rewrites from the body.

• True and False contain no useful rewrites.

• Anything else: return the theorem in a singleton list.

The resulting theorems are not literally atomic — they could be disjunc-
tive, for example — but are broken down as much as possible. See the file
ZF/simpdata.ML for a sophisticated translation of set-theoretic formulae into
rewrite rules.

For standard situations like the above, there is a generic auxiliary func-
tion mk_atomize that takes a list of pairs (name, thms), where name is an
operator name and thms is a list of theorems to resolve with in case the
pattern matches, and returns a suitable atomize function.

The simplified rewrites must now be converted into meta-equalities. The
rule eq_reflection converts equality rewrites, while iff_reflection con-
verts if-and-only-if rewrites. The latter possibility can arise in two other
ways: the negative theorem ¬P is converted to P ≡ False, and any other
theorem P is converted to P ≡ True. The rules iff_reflection_F and
iff_reflection_T accomplish this conversion.

CHAPTER 10. SIMPLIFICATION 144

val P_iff_F = int_prove_fun "~P ==> (P <-> False)";
val iff_reflection_F = P_iff_F RS iff_reflection;
val P_iff_T = int_prove_fun "P ==> (P <-> True)";
val iff_reflection_T = P_iff_T RS iff_reflection;

The function mk_eq converts a theorem to a meta-equality using the case
analysis described above.

fun mk_eq th = case concl_of th of
_ $ (Const("op =",_)$_$_) => th RS eq_reflection

| _ $ (Const("op <->",_)$_$_) => th RS iff_reflection
| _ $ (Const("Not",_)$_) => th RS iff_reflection_F
| _ => th RS iff_reflection_T;

The three functions gen_all, atomize and mk_eq will be composed together
and supplied below to setmksimps.

10.8.3 Making the initial simpset

It is time to assemble these items. The list IFOL_simps contains the default
rewrite rules for intuitionistic first-order logic. The first of these is the reflex-
ive law expressed as the equivalence (a = a)↔ True; the rewrite rule a = a
is clearly useless.

val IFOL_simps =
[refl RS P_iff_T] @ conj_simps @ disj_simps @ not_simps @
imp_simps @ iff_simps @ quant_simps;

The list triv_rls contains trivial theorems for the solver. Any subgoal that
is simplified to one of these will be removed.

val notFalseI = int_prove_fun "~False";
val triv_rls = [TrueI,refl,iff_refl,notFalseI];

We also define the function mk_meta_cong to convert the conclusion of con-
gruence rules into meta-equalities.

fun mk_meta_cong rl = standard (mk_meta_eq (mk_meta_prems rl));

The basic simpset for intuitionistic FOL is FOL_basic_ss. It preprocess
rewrites using gen_all, atomize and mk_eq. It solves simplified subgoals
using triv_rls and assumptions, and by detecting contradictions. It uses
asm_simp_tac to tackle subgoals of conditional rewrites.

Other simpsets built from FOL_basic_ss will inherit these items. In
particular, IFOL_ss, which introduces IFOL_simps as rewrite rules. FOL_ss

will later extend IFOL_ss with classical rewrite rules such as ¬¬P ↔ P .

CHAPTER 10. SIMPLIFICATION 145

fun unsafe_solver prems = FIRST’[resolve_tac (triv_rls @ prems),
atac, etac FalseE];

fun safe_solver prems = FIRST’[match_tac (triv_rls @ prems),
eq_assume_tac, ematch_tac [FalseE]];

val FOL_basic_ss =
empty_ss setsubgoaler asm_simp_tac

addsimprocs [defALL_regroup, defEX_regroup]
setSSolver safe_solver
setSolver unsafe_solver
setmksimps (map mk_eq o atomize o gen_all)
setmkcong mk_meta_cong;

val IFOL_ss =
FOL_basic_ss addsimps (IFOL_simps @

int_ex_simps @ int_all_simps)
addcongs [imp_cong];

This simpset takes imp_cong as a congruence rule in order to use contextual
information to simplify the conclusions of implications:

[[?P ↔ ?P ′; ?P ′ =⇒ ?Q ↔ ?Q ′]] =⇒ (?P → ?Q)↔ (?P ′ → ?Q ′)

By adding the congruence rule conj_cong, we could obtain a similar effect
for conjunctions.

10.8.4 Splitter setup

To set up case splitting, we have to call the ml functor SplitterFun,
which takes the argument signature SPLITTER_DATA. So we prove the theorem
meta_eq_to_iff below and store it, together with the mk_eq function de-
scribed above and several standard theorems, in the structure SplitterData.
Calling the functor with this data yields a new instantiation of the splitter
for our logic.

val meta_eq_to_iff = prove_goal IFOL.thy "x==y ==> x<->y"
(fn [prem] => [rewtac prem, rtac iffI 1, atac 1, atac 1]);

CHAPTER 10. SIMPLIFICATION 146

structure SplitterData =
struct
structure Simplifier = Simplifier
val mk_eq = mk_eq
val meta_eq_to_iff = meta_eq_to_iff
val iffD = iffD2
val disjE = disjE
val conjE = conjE
val exE = exE
val contrapos = contrapos
val contrapos2 = contrapos2
val notnotD = notnotD
end;

structure Splitter = SplitterFun(SplitterData);

Chapter 11

The Classical Reasoner

Although Isabelle is generic, many users will be working in some extension of
classical first-order logic. Isabelle’s set theory ZF is built upon theory FOL,
while HOL conceptually contains first-order logic as a fragment. Theorem-
proving in predicate logic is undecidable, but many researchers have devel-
oped strategies to assist in this task.

Isabelle’s classical reasoner is an ml functor that accepts certain infor-
mation about a logic and delivers a suite of automatic tactics. Each tactic
takes a collection of rules and executes a simple, non-clausal proof procedure.
They are slow and simplistic compared with resolution theorem provers, but
they can save considerable time and effort. They can prove theorems such
as Pelletier’s [15] problems 40 and 41 in seconds:

(∃y . ∀x . J (y , x)↔ ¬J (x , x))→ ¬(∀x . ∃y . ∀z . J (z , y)↔ ¬J (z , x))

(∀z . ∃y . ∀x . F (x , y)↔ F (x , z) ∧ ¬F (x , x))→ ¬(∃z . ∀x . F (x , z))

The tactics are generic. They are not restricted to first-order logic, and have
been heavily used in the development of Isabelle’s set theory. Few interactive
proof assistants provide this much automation. The tactics can be traced,
and their components can be called directly; in this manner, any proof can
be viewed interactively.

The simplest way to apply the classical reasoner (to subgoal i) is to type

by (Blast_tac i);

This command quickly proves most simple formulas of the predicate calculus
or set theory. To attempt to prove subgoals using a combination of rewriting
and classical reasoning, try

auto(); applies to all subgoals
force i; applies to one subgoal

To do all obvious logical steps, even if they do not prove the subgoal, type
one of the following:

147

CHAPTER 11. THE CLASSICAL REASONER 148

by Safe_tac; applies to all subgoals
by (Clarify_tac i); applies to one subgoal

You need to know how the classical reasoner works in order to use it
effectively. There are many tactics to choose from, including Fast_tac and
Best_tac.

We shall first discuss the underlying principles, then present the classical
reasoner. Finally, we shall see how to instantiate it for new logics. The logics
FOL, ZF, HOL and HOLCF have it already installed.

11.1 The sequent calculus

Isabelle supports natural deduction, which is easy to use for interactive proof.
But natural deduction does not easily lend itself to automation, and has a
bias towards intuitionism. For certain proofs in classical logic, it can not be
called natural. The sequent calculus, a generalization of natural deduction,
is easier to automate.

A sequent has the form Γ ` ∆, where Γ and ∆ are sets of formulae.1

The sequent
P1, . . . ,Pm ` Q1, . . . ,Qn

is valid if P1 ∧ . . . ∧ Pm implies Q1 ∨ . . . ∨ Qn . Thus P1, . . . ,Pm represent
assumptions, each of which is true, while Q1, . . . ,Qn represent alternative
goals. A sequent is basic if its left and right sides have a common formula,
as in P ,Q ` Q ,R; basic sequents are trivially valid.

Sequent rules are classified as right or left, indicating which side of the
` symbol they operate on. Rules that operate on the right side are analogous
to natural deduction’s introduction rules, and left rules are analogous to
elimination rules. Recall the natural deduction rules for first-order logic,
from Introduction to Isabelle. The sequent calculus analogue of (→I) is the
rule

P ,Γ` ∆,Q
Γ` ∆,P → Q

(→R)

This breaks down some implication on the right side of a sequent; Γ and
∆ stand for the sets of formulae that are unaffected by the inference. The
analogue of the pair (∨I 1) and (∨I 2) is the single rule

Γ` ∆,P ,Q
Γ` ∆,P ∨Q

(∨R)

1For first-order logic, sequents can equivalently be made from lists or multisets of
formulae.

CHAPTER 11. THE CLASSICAL REASONER 149

This breaks down some disjunction on the right side, replacing it by both
disjuncts. Thus, the sequent calculus is a kind of multiple-conclusion logic.

To illustrate the use of multiple formulae on the right, let us prove the
classical theorem (P → Q) ∨ (Q → P). Working backwards, we reduce this
formula to a basic sequent:

P ,Q ` Q ,P

P ` Q , (Q → P)
(→)R

` (P → Q), (Q → P)
(→)R

` (P → Q) ∨ (Q → P)
(∨)R

This example is typical of the sequent calculus: start with the desired the-
orem and apply rules backwards in a fairly arbitrary manner. This yields
a surprisingly effective proof procedure. Quantifiers add few complications,
since Isabelle handles parameters and schematic variables. See Chapter 10
of ML for the Working Programmer [14] for further discussion.

11.2 Simulating sequents by natural deduc-

tion

Isabelle can represent sequents directly, as in the object-logic LK. But natural
deduction is easier to work with, and most object-logics employ it. Fortu-
nately, we can simulate the sequent P1, . . . ,Pm ` Q1, . . . ,Qn by the Isabelle
formula

[[P1; . . . ; Pm ;¬Q2; . . . ;¬Qn]] =⇒ Q1,

where the order of the assumptions and the choice of Q1 are arbitrary. Elim-
resolution plays a key role in simulating sequent proofs.

We can easily handle reasoning on the left. As discussed in Introduction
to Isabelle, elim-resolution with the rules (∨E), (⊥E) and (∃E) achieves a
similar effect as the corresponding sequent rules. For the other connectives,
we use sequent-style elimination rules instead of destruction rules such as
(∧E1, 2) and (∀E). But note that the rule (¬L) has no effect under our
representation of sequents!

Γ` ∆,P
¬P ,Γ` ∆

(¬L)

What about reasoning on the right? Introduction rules can only affect the
formula in the conclusion, namely Q1. The other right-side formulae are
represented as negated assumptions, ¬Q2, . . . , ¬Qn . In order to operate on

CHAPTER 11. THE CLASSICAL REASONER 150

one of these, it must first be exchanged with Q1. Elim-resolution with the
swap rule has this effect:

[[¬P ; ¬R =⇒ P]] =⇒ R (swap)

To ensure that swaps occur only when necessary, each introduction rule
is converted into a swapped form: it is resolved with the second premise
of (swap). The swapped form of (∧I), which might be called (¬∧E), is

[[¬(P ∧Q); ¬R =⇒ P ; ¬R =⇒ Q]] =⇒ R.

Similarly, the swapped form of (→I) is

[[¬(P → Q); [[¬R; P]] =⇒ Q]] =⇒ R

Swapped introduction rules are applied using elim-resolution, which deletes
the negated formula. Our representation of sequents also requires the use
of ordinary introduction rules. If we had no regard for readability, we could
treat the right side more uniformly by representing sequents as

[[P1; . . . ; Pm ;¬Q1; . . . ;¬Qn]] =⇒ ⊥.

11.3 Extra rules for the sequent calculus

As mentioned, destruction rules such as (∧E1, 2) and (∀E) must be replaced
by sequent-style elimination rules. In addition, we need rules to embody
the classical equivalence between P → Q and ¬P ∨ Q . The introduction
rules (∨I 1, 2) are replaced by a rule that simulates (∨R):

(¬Q =⇒ P) =⇒ P ∨Q

The destruction rule (→E) is replaced by

[[P → Q ; ¬P =⇒ R; Q =⇒ R]] =⇒ R.

Quantifier replication also requires special rules. In classical logic, ∃x .P is
equivalent to ¬∀x .¬P ; the rules (∃R) and (∀L) are dual:

Γ` ∆,∃x .P ,P [t/x]
Γ` ∆,∃x .P (∃R)

P [t/x],∀x .P ,Γ` ∆
∀x .P ,Γ` ∆

(∀L)

Thus both kinds of quantifier may be replicated. Theorems requiring multiple
uses of a universal formula are easy to invent; consider

(∀x . P(x)→ P(f (x))) ∧ P(a)→ P(f n(a)),

CHAPTER 11. THE CLASSICAL REASONER 151

for any n > 1. Natural examples of the multiple use of an existential formula
are rare; a standard one is ∃x . ∀y . P(x)→ P(y).

Forgoing quantifier replication loses completeness, but gains decidability,
since the search space becomes finite. Many useful theorems can be proved
without replication, and the search generally delivers its verdict in a reason-
able time. To adopt this approach, represent the sequent rules (∃R), (∃L)
and (∀R) by (∃I), (∃E) and (∀I), respectively, and put (∀E) into elimination
form:

[[∀x .P(x); P(t) =⇒ Q]] =⇒ Q (∀E2)

Elim-resolution with this rule will delete the universal formula after a single
use. To replicate universal quantifiers, replace the rule by

[[∀x .P(x); [[P(t);∀x .P(x)]] =⇒ Q]] =⇒ Q . (∀E3)

To replicate existential quantifiers, replace (∃I) by

[[¬(∃x .P(x)) =⇒ P(t)]] =⇒ ∃x .P(x).

All introduction rules mentioned above are also useful in swapped form.
Replication makes the search space infinite; we must apply the rules with

care. The classical reasoner distinguishes between safe and unsafe rules,
applying the latter only when there is no alternative. Depth-first search may
well go down a blind alley; best-first search is better behaved in an infinite
search space. However, quantifier replication is too expensive to prove any
but the simplest theorems.

11.4 Classical rule sets

Each automatic tactic takes a classical set — a collection of rules, classified
as introduction or elimination and as safe or unsafe. In general, safe rules
can be attempted blindly, while unsafe rules must be used with care. A safe
rule must never reduce a provable goal to an unprovable set of subgoals.

The rule (∨I 1) is unsafe because it reduces P∨Q to P . Any rule is unsafe
whose premises contain new unknowns. The elimination rule (∀E2) is unsafe,
since it is applied via elim-resolution, which discards the assumption ∀x .P(x)
and replaces it by the weaker assumption P(?t). The rule (∃I) is unsafe for
similar reasons. The rule (∀E3) is unsafe in a different sense: since it keeps
the assumption ∀x .P(x), it is prone to looping. In classical first-order logic,
all rules are safe except those mentioned above.

The safe/unsafe distinction is vague, and may be regarded merely as a
way of giving some rules priority over others. One could argue that (∨E)

CHAPTER 11. THE CLASSICAL REASONER 152

is unsafe, because repeated application of it could generate exponentially
many subgoals. Induction rules are unsafe because inductive proofs are dif-
ficult to set up automatically. Any inference is unsafe that instantiates an
unknown in the proof state — thus match_tac must be used, rather than
resolve_tac. Even proof by assumption is unsafe if it instantiates unknowns
shared with other subgoals — thus eq_assume_tac must be used, rather than
assume_tac.

11.4.1 Adding rules to classical sets

Classical rule sets belong to the abstract type claset, which supports the
following operations (provided the classical reasoner is installed!):

empty_cs : claset
print_cs : claset -> unit
rep_cs : claset -> {safeEs: thm list, safeIs: thm list,

hazEs: thm list, hazIs: thm list,
swrappers: (string * wrapper) list,
uwrappers: (string * wrapper) list,
safe0_netpair: netpair, safep_netpair: netpair,
haz_netpair: netpair, dup_netpair: netpair}

addSIs : claset * thm list -> claset infix 4
addSEs : claset * thm list -> claset infix 4
addSDs : claset * thm list -> claset infix 4
addIs : claset * thm list -> claset infix 4
addEs : claset * thm list -> claset infix 4
addDs : claset * thm list -> claset infix 4
delrules : claset * thm list -> claset infix 4

The add operations ignore any rule already present in the claset with the
same classification (such as safe introduction). They print a warning if the
rule has already been added with some other classification, but add the rule
anyway. Calling delrules deletes all occurrences of a rule from the claset,
but see the warning below concerning destruction rules.

empty_cs is the empty classical set.

print_cs cs displays the printable contents of cs , which is the rules. All
other parts are non-printable.

rep_cs cs decomposes cs as a record of its internal components, namely
the safe introduction and elimination rules, the unsafe introduction and
elimination rules, the lists of safe and unsafe wrappers (see 11.4.2), and
the internalized forms of the rules.

cs addSIs rules adds safe introduction rules to cs .

CHAPTER 11. THE CLASSICAL REASONER 153

cs addSEs rules adds safe elimination rules to cs .

cs addSDs rules adds safe destruction rules to cs .

cs addIs rules adds unsafe introduction rules to cs .

cs addEs rules adds unsafe elimination rules to cs .

cs addDs rules adds unsafe destruction rules to cs .

cs delrules rules deletes rules from cs . It prints a warning for those rules
that are not in cs .

! If you added rule using addSDs or addDs, then you must delete it as follows:

cs delrules [make_elim rule]

This is necessary because the operators addSDs and addDs convert the destruction
rules to elimination rules by applying make_elim, and then insert them using
addSEs and addEs, respectively.

Introduction rules are those that can be applied using ordinary resolution.
The classical set automatically generates their swapped forms, which will
be applied using elim-resolution. Elimination rules are applied using elim-
resolution. In a classical set, rules are sorted by the number of new subgoals
they will yield; rules that generate the fewest subgoals will be tried first (see
§3.4.1).

For elimination and destruction rules there are variants of the add oper-
ations adding a rule in a way such that it is applied only if also its second
premise can be unified with an assumption of the current proof state:

addSE2 : claset * (string * thm) -> claset infix 4
addSD2 : claset * (string * thm) -> claset infix 4
addE2 : claset * (string * thm) -> claset infix 4
addD2 : claset * (string * thm) -> claset infix 4

! A rule to be added in this special way must be given a name, which is used
to delete it again – when desired – using delSWrappers or delWrappers, re-

spectively. This is because these add operations are implemented as wrappers (see
11.4.2 below).

CHAPTER 11. THE CLASSICAL REASONER 154

11.4.2 Modifying the search step

For a given classical set, the proof strategy is simple. Perform as many safe
inferences as possible; or else, apply certain safe rules, allowing instantiation
of unknowns; or else, apply an unsafe rule. The tactics also eliminate as-
sumptions of the form x = t by substitution if they have been set up to do so
(see hyp_subst_tacs in §11.6 below). They may perform a form of Modus
Ponens: if there are assumptions P → Q and P , then replace P → Q by Q .

The classical reasoning tactics — except blast_tac! — allow you to
modify this basic proof strategy by applying two lists of arbitrary wrapper
tacticals to it. The first wrapper list, which is considered to contain safe
wrappers only, affects safe_step_tac and all the tactics that call it. The
second one, which may contain unsafe wrappers, affects the unsafe parts
of step_tac, slow_step_tac, and the tactics that call them. A wrapper
transforms each step of the search, for example by attempting other tactics
before or after the original step tactic. All members of a wrapper list are
applied in turn to the respective step tactic.

Initially the two wrapper lists are empty, which means no modification
of the step tactics. Safe and unsafe wrappers are added to a claset with the
functions given below, supplying them with wrapper names. These names
may be used to selectively delete wrappers.

type wrapper = (int -> tactic) -> (int -> tactic);

addSWrapper : claset * (string * wrapper) -> claset infix 4
addSbefore : claset * (string * (int -> tactic)) -> claset infix 4
addSafter : claset * (string * (int -> tactic)) -> claset infix 4
delSWrapper : claset * string -> claset infix 4

addWrapper : claset * (string * wrapper) -> claset infix 4
addbefore : claset * (string * (int -> tactic)) -> claset infix 4
addafter : claset * (string * (int -> tactic)) -> claset infix 4
delWrapper : claset * string -> claset infix 4

addSss : claset * simpset -> claset infix 4
addss : claset * simpset -> claset infix 4

cs addSWrapper (name,wrapper) adds a new wrapper, which should yield
a safe tactic, to modify the existing safe step tactic.

cs addSbefore (name, tac) adds the given tactic as a safe wrapper, such
that it is tried before each safe step of the search.

cs addSafter (name, tac) adds the given tactic as a safe wrapper, such that
it is tried when a safe step of the search would fail.

CHAPTER 11. THE CLASSICAL REASONER 155

cs delSWrapper name deletes the safe wrapper with the given name.

cs addWrapper (name,wrapper) adds a new wrapper to modify the existing
(unsafe) step tactic.

cs addbefore (name, tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated before the result of each unsafe step.

cs addafter (name, tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated after the result of each unsafe step.

cs delWrapper name deletes the unsafe wrapper with the given name.

cs addSss ss adds the simpset ss to the classical set. The assumptions and
goal will be simplified, in a rather safe way, after each safe step of the
search.

cs addss ss adds the simpset ss to the classical set. The assumptions and
goal will be simplified, before the each unsafe step of the search.

Strictly speaking, the operators addss and addSss are not part of the
classical reasoner. , which are used as primitives for the automatic tactics
described in §11.5.2, are implemented as wrapper tacticals. they

! Being defined as wrappers, these operators are inappropriate for adding more
than one simpset at a time: the simpset added last overwrites any earlier ones.

When a simpset combined with a claset is to be augmented, this should done before
combining it with the claset.

11.5 The classical tactics

If installed, the classical module provides powerful theorem-proving tactics.
Most of them have capitalized analogues that use the default claset; see
§11.5.7.

11.5.1 The tableau prover

The tactic blast_tac searches for a proof using a fast tableau prover, coded
directly in ml. It then reconstructs the proof using Isabelle tactics. It is
faster and more powerful than the other classical reasoning tactics, but has
major limitations too.

• It does not use the wrapper tacticals described above, such as addss.

CHAPTER 11. THE CLASSICAL REASONER 156

• It ignores types, which can cause problems in HOL. If it applies a rule
whose types are inappropriate, then proof reconstruction will fail.

• It does not perform higher-order unification, as needed by the rule
rangeI in HOL and RepFunI in ZF. There are often alternatives to
such rules, for example range_eqI and RepFun_eqI.

• Function variables may only be applied to parameters of the sub-
goal. (This restriction arises because the prover does not use higher-
order unification.) If other function variables are present then the
prover will fail with the message Function Var’s argument not a

bound variable.

• Its proof strategy is more general than fast_tac’s but can be slower.
If blast_tac fails or seems to be running forever, try fast_tac and
the other tactics described below.

blast_tac : claset -> int -> tactic
Blast.depth_tac : claset -> int -> int -> tactic
Blast.trace : bool ref initially false

The two tactics differ on how they bound the number of unsafe steps used
in a proof. While blast_tac starts with a bound of zero and increases it
successively to 20, Blast.depth_tac applies a user-supplied search bound.

blast_tac cs i tries to prove subgoal i , increasing the search bound using
iterative deepening [8].

Blast.depth_tac cs lim i tries to prove subgoal i using a search bound
of lim. Sometimes a slow proof using blast_tac can be made much
faster by supplying the successful search bound to this tactic instead.

set Blast.trace; causes the tableau prover to print a trace of its search.
At each step it displays the formula currently being examined and
reports whether the branch has been closed, extended or split.

11.5.2 Automatic tactics

type clasimpset = claset * simpset;
auto_tac : clasimpset -> tactic
force_tac : clasimpset -> int -> tactic
auto : unit -> unit
force : int -> unit

The automatic tactics attempt to prove goals using a combination of simpli-
fication and classical reasoning.

CHAPTER 11. THE CLASSICAL REASONER 157

auto_tac (cs , ss) is intended for situations where there are a lot of mostly
trivial subgoals; it proves all the easy ones, leaving the ones it cannot
prove. (Unfortunately, attempting to prove the hard ones may take a
long time.)

force_tac (cs , ss) i is intended to prove subgoal i completely. It tries to
apply all fancy tactics it knows about, performing a rather exhaustive
search.

They must be supplied both a simpset and a claset; therefore they are most
easily called as Auto_tac and Force_tac, which use the default claset and
simpset (see §11.5.7 below). For interactive use, the shorthand auto();

abbreviates by Auto_tac; while force 1; abbreviates by (Force_tac 1);

11.5.3 Semi-automatic tactics

clarify_tac : claset -> int -> tactic
clarify_step_tac : claset -> int -> tactic
clarsimp_tac : clasimpset -> int -> tactic

Use these when the automatic tactics fail. They perform all the obvious
logical inferences that do not split the subgoal. The result is a simpler subgoal
that can be tackled by other means, such as by instantiating quantifiers
yourself.

clarify_tac cs i performs a series of safe steps on subgoal i by repeatedly
calling clarify_step_tac.

clarify_step_tac cs i performs a safe step on subgoal i . No splitting step
is applied; for example, the subgoal A∧B is left as a conjunction. Proof
by assumption, Modus Ponens, etc., may be performed provided they
do not instantiate unknowns. Assumptions of the form x = t may be
eliminated. The user-supplied safe wrapper tactical is applied.

clarsimp_tac cs i acts like clarify_tac, but also does simplification with
the given simpset. Note that if the simpset includes a splitter for the
premises, the subgoal may still be split.

CHAPTER 11. THE CLASSICAL REASONER 158

11.5.4 Other classical tactics

fast_tac : claset -> int -> tactic
best_tac : claset -> int -> tactic
slow_tac : claset -> int -> tactic
slow_best_tac : claset -> int -> tactic

These tactics attempt to prove a subgoal using sequent-style reasoning. Un-
like blast_tac, they construct proofs directly in Isabelle. Their effect is
restricted (by SELECT_GOAL) to one subgoal; they either prove this subgoal
or fail. The slow_ versions conduct a broader search.2

The best-first tactics are guided by a heuristic function: typically, the
total size of the proof state. This function is supplied in the functor call that
sets up the classical reasoner.

fast_tac cs i applies step_tac using depth-first search to prove subgoal i .

best_tac cs i applies step_tac using best-first search to prove subgoal i .

slow_tac cs i applies slow_step_tac using depth-first search to prove sub-
goal i .

slow_best_tac cs i applies slow_step_tac with best-first search to prove
subgoal i .

11.5.5 Depth-limited automatic tactics

depth_tac : claset -> int -> int -> tactic
deepen_tac : claset -> int -> int -> tactic

These work by exhaustive search up to a specified depth. Unsafe rules are
modified to preserve the formula they act on, so that it be used repeatedly.
They can prove more goals than fast_tac can but are much slower, for
example if the assumptions have many universal quantifiers.

The depth limits the number of unsafe steps. If you can estimate the
minimum number of unsafe steps needed, supply this value as m to save
time.

depth_tac cs m i tries to prove subgoal i by exhaustive search up to
depth m.

deepen_tac cs m i tries to prove subgoal i by iterative deepening. It calls
depth_tac repeatedly with increasing depths, starting with m.

2They may, when backtracking from a failed proof attempt, undo even the step of
proving a subgoal by assumption.

CHAPTER 11. THE CLASSICAL REASONER 159

11.5.6 Single-step tactics

safe_step_tac : claset -> int -> tactic
safe_tac : claset -> tactic
inst_step_tac : claset -> int -> tactic
step_tac : claset -> int -> tactic
slow_step_tac : claset -> int -> tactic

The automatic proof procedures call these tactics. By calling them yourself,
you can execute these procedures one step at a time.

safe_step_tac cs i performs a safe step on subgoal i . The safe wrapper
tacticals are applied to a tactic that may include proof by assump-
tion or Modus Ponens (taking care not to instantiate unknowns), or
substitution.

safe_tac cs repeatedly performs safe steps on all subgoals. It is determin-
istic, with at most one outcome.

inst_step_tac cs i is like safe_step_tac, but allows unknowns to be in-
stantiated.

step_tac cs i is the basic step of the proof procedure. The unsafe wrapper
tacticals are applied to a tactic that tries safe_tac, inst_step_tac,
or applies an unsafe rule from cs .

slow_step_tac resembles step_tac, but allows backtracking between using
safe rules with instantiation (inst_step_tac) and using unsafe rules.
The resulting search space is larger.

11.5.7 The current claset

Each theory is equipped with an implicit current claset . This is a default
set of classical rules. The underlying idea is quite similar to that of a current
simpset described in §10.1; please read that section, including its warnings.

The tactics

CHAPTER 11. THE CLASSICAL REASONER 160

Blast_tac : int -> tactic
Auto_tac : tactic
Force_tac : int -> tactic
Fast_tac : int -> tactic
Best_tac : int -> tactic
Deepen_tac : int -> int -> tactic
Clarify_tac : int -> tactic
Clarify_step_tac : int -> tactic
Clarsimp_tac : int -> tactic
Safe_tac : tactic
Safe_step_tac : int -> tactic
Step_tac : int -> tactic

make use of the current claset. For example, Blast_tac is defined as

fun Blast_tac i st = blast_tac (claset()) i st;

and gets the current claset, only after it is applied to a proof state. The
functions

AddSIs, AddSEs, AddSDs, AddIs, AddEs, AddDs: thm list -> unit

are used to add rules to the current claset. They work exactly like their lower
case counterparts, such as addSIs. Calling

Delrules : thm list -> unit

deletes rules from the current claset.

11.5.8 Accessing the current claset

the functions to access the current claset are analogous to the functions for
the current simpset, so please see 10.2.3 for a description.

claset : unit -> claset
claset_ref : unit -> claset ref
claset_of : theory -> claset
claset_ref_of : theory -> claset ref
print_claset : theory -> unit
CLASET :(claset -> tactic) -> tactic
CLASET’ :(claset -> ’a -> tactic) -> ’a -> tactic
CLASIMPSET :(clasimpset -> tactic) -> tactic
CLASIMPSET’ :(clasimpset -> ’a -> tactic) -> ’a -> tactic

CHAPTER 11. THE CLASSICAL REASONER 161

11.5.9 Other useful tactics

contr_tac : int -> tactic
mp_tac : int -> tactic
eq_mp_tac : int -> tactic
swap_res_tac : thm list -> int -> tactic

These can be used in the body of a specialized search.

contr_tac i solves subgoal i by detecting a contradiction among two as-
sumptions of the form P and ¬P , or fail. It may instantiate unknowns.
The tactic can produce multiple outcomes, enumerating all possible
contradictions.

mp_tac i is like contr_tac, but also attempts to perform Modus Ponens
in subgoal i . If there are assumptions P → Q and P , then it replaces
P → Q by Q . It may instantiate unknowns. It fails if it can do nothing.

eq_mp_tac i is like mp_tac i, but may not instantiate unknowns — thus, it
is safe.

swap_res_tac thms i refines subgoal i of the proof state using thms, which
should be a list of introduction rules. First, it attempts to prove the
goal using assume_tac or contr_tac. It then attempts to apply each
rule in turn, attempting resolution and also elim-resolution with the
swapped form.

11.5.10 Creating swapped rules

swapify : thm list -> thm list
joinrules : thm list * thm list -> (bool * thm) list

swapify thms returns a list consisting of the swapped versions of thms, re-
garded as introduction rules.

joinrules (intrs, elims) joins introduction rules, their swapped versions,
and elimination rules for use with biresolve_tac. Each rule is paired
with false (indicating ordinary resolution) or true (indicating elim-
resolution).

11.6 Setting up the classical reasoner

Isabelle’s classical object-logics, including FOL and HOL, have the classical
reasoner already set up. When defining a new classical logic, you should set

CHAPTER 11. THE CLASSICAL REASONER 162

up the reasoner yourself. It consists of the ml functor ClassicalFun, which
takes the argument signature CLASSICAL_DATA:

signature CLASSICAL_DATA =
sig
val mp : thm
val not_elim : thm
val swap : thm
val sizef : thm -> int
val hyp_subst_tacs : (int -> tactic) list
end;

Thus, the functor requires the following items:

mp should be the Modus Ponens rule [[?P → ?Q ; ?P]] =⇒ ?Q .

not_elim should be the contradiction rule [[¬?P ; ?P]] =⇒ ?R.

swap should be the swap rule [[¬?P ; ¬?R =⇒ ?P]] =⇒ ?R.

sizef is the heuristic function used for best-first search. It should esti-
mate the size of the remaining subgoals. A good heuristic function
is size_of_thm, which measures the size of the proof state. Another
size function might ignore certain subgoals (say, those concerned with
type-checking). A heuristic function might simply count the subgoals.

hyp_subst_tacs is a list of tactics for substitution in the hypotheses, typi-
cally created by HypsubstFun (see Chapter 9). This list can, of course,
be empty. The tactics are assumed to be safe!

The functor is not at all sensitive to the formalization of the object-logic. It
does not even examine the rules, but merely applies them according to its
fixed strategy. The functor resides in Provers/classical.ML in the Isabelle
sources.

11.7 Setting up the combination with the

simplifier

To combine the classical reasoner and the simplifier, we simply call the ml
functor ClasimpFun that assembles the parts as required. It takes a structure
(of signature CLASIMP_DATA) as argment, which can be contructed on the fly:

structure Clasimp = ClasimpFun
(structure Simplifier = Simplifier

and Classical = Classical
and Blast = Blast);

Bibliography

[1] David Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.

[2] Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher
order logic. In J. Harrison and M. Aagaard, editors, Theorem Proving in
Higher Order Logics: TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 38–52. Springer-Verlag, 2000.

[3] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook.
Academic Press, 1988.

[4] E. Charniak, C. K. Riesbeck, and D. V. McDermott. Artificial Intelligence
Programming. Lawrence Erlbaum Associates, 1980.

[5] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indag. Math., 34:381–392, 1972.

[6] K. Futatsugi, J.A. Goguen, Jean-Pierre Jouannaud, and J. Meseguer.
Principles of OBJ2. In Symposium on Principles of Programming
Languages, pages 52–66, 1985.

[7] Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales: A
sectioning concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order Logics:
TPHOLs ’99, volume 1690 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[8] R. E. Korf. Depth-first iterative-deepening: an optimal admissible tree
search. Artificial Intelligence, 27:97–109, 1985.

[9] Ursula Martin and Tobias Nipkow. Ordered rewriting and confluence. In
Mark E. Stickel, editor, 10th International Conference on Automated
Deduction, LNAI 449, pages 366–380. Springer, 1990.

[10] Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science, pages
64–74. ieee Computer Society Press, 1993.

[11] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

163

http://proofgeneral.inf.ed.ac.uk/

BIBLIOGRAPHY 164

[12] Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201–224, 1995.

[13] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in
Martin-Löf’s Type Theory. An Introduction. Oxford University Press, 1990.

[14] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 2nd edition, 1996.

[15] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191–216, 1986. Errata, JAR 4 (1988),
235–236 and JAR 18 (1997), 135.

[16] Markus Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

Appendix A

Syntax of Isabelle Theories

Below we present the full syntax of theory definition files as provided by
Pure Isabelle — object-logics may add their own sections. §6.1 explains the
meanings of these constructs. The syntax obeys the following conventions:

• Typewriter font denotes terminal symbols.

• id , tid , nat , string and longident are the lexical classes of identifiers,
type identifiers, natural numbers, quoted strings (without the need for
\. . . \ between lines) and long qualified ml identifiers. The categories
id , tid , nat are fully defined in §7.

• text is all text from the current position to the end of file, verbatim is
any text enclosed in {|. . . |}

• Comments in theories take the form (*. . . *) and may be nested, just
as in ml.

theoryDef

id =
���� name�

� +
����

�
�

+
����extension�

�
�
�

name

id�
�string

�
�

extension

section�
�

�
�

end
�� ���

�ml

�
�

165

APPENDIX A. SYNTAX OF ISABELLE THEORIES 166

section

classes�
�default

�types

�arities

�nonterminals

�consts

�syntax

�trans

�defs

�constdefs

�rules

�axclass

�instance

�oracle

�locale

�local

�global

�setup

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

APPENDIX A. SYNTAX OF ISABELLE THEORIES 167

classes

classes
�� �� classDecl�

�
�
�

classDecl

id �
� <

���� id�
� ,

����
�
�

�
�

default

default
�� ��sort

sort

id�
� {

�����
� id�

� ,
����

�
�

�
�

}
����

�
�

types

types
�� �� typeDecl �

� (
����infix)

����
�
�

�

�

�

�
infix

infixr
�� ���

�infixl
�� ��

�
�

�
�string

�
�

nat

APPENDIX A. SYNTAX OF ISABELLE THEORIES 168

typeDecl

typevarlist name �
� =

���� string�
�type

�
�

�
�

typevarlist

�
�tid

� (
���� tid�

� ,
����

�
�

)
����

�
�
�

type

simpleType�
� (

����type)
�����type =>

�� ��type

� [
���� type�

� ,
����

�
�

]
����=>

�� ��type

�
�
�
�

APPENDIX A. SYNTAX OF ISABELLE THEORIES 169

simpleType

id�
�tid �

�::
�� ��id

�
�

� (
���� type�

� ,
����

�
�

)
����id

�simpleType id

�
�

�

�
arities

arities
�� �� name�

� ,
����

�
�

::
�� ��arity�

�

�

�
arity

�
� (

���� sort�
� ,

����
�
�

)
����

�
�

sort

nonterminals

nonterminals
�� �� name�

�
�
�

consts

consts
�� �� mixfixConstDecl�

�
�
�

APPENDIX A. SYNTAX OF ISABELLE THEORIES 170

syntax

syntax
�� ���

�mode

�
�

mixfixConstDecl�
�

�
�

mode

(
����name �

�output
�� ��

�
�

)
����

mixfixConstDecl

constDecl �
� (

����mixfix)
����

�
�

constDecl

name�
� ,

����
�
�

::
�� �� string�

�type

�
�

mixfix

string �
��

� [
���� nat�

� ,
����

�
�

]
����

�
�

nat

�
�

�

�infix

�binder
�� ��string nat

�

�
�

APPENDIX A. SYNTAX OF ISABELLE THEORIES 171

trans

translations
�� �� pat ==

�� ���
�=>

�� ���<=
�� ��

�
�
�

pat�

�

�

�
pat

�
� (

����id)
����

�
�

string

rules

rules
�� �� id string�

�
�
�

defs

defs
�� �� id string�

�
�
�

constdefs

constdefs
�� �� name ::

�� �� string�
�type

�
�

�
�mixfix

�
�

string�

�

�

�
axclass

axclass
�� ��classDecl �

� id string�
�

�
�

�
�

APPENDIX A. SYNTAX OF ISABELLE THEORIES 172

instance

instance
�� �� name <

����name�
�name ::

�� ��arity

�
�

witness

witness

�
� (

���� string�
�id

�longident

�
�
�

�

� ,
����

�

�

)
����

�
�

�
�verbatim

�
�

locale

locale
�� ��name =

�����
�name +

����
�
�

localeBody

localeBody

localeConsts �
�localeAsms

�
�

�
�localeDefs

�
�

localeConsts

fixes
�� �� name ::

�� �� string�
�type

�
�

�
� (

����mixfix)
����

�
�

�

�

�

�
localeAsms

assumes
�� �� id string�

�
�
�

APPENDIX A. SYNTAX OF ISABELLE THEORIES 173

localeDefs

defines
�� �� id string�

�
�
�

oracle

oracle
�� ��name =

����name

local

local
�� ��

global

global
�� ��

setup

setup
�� �� id�

�longident

�
�

ml

ML
�� ��text

Index

!! symbol, 83
$, 74, 101
% symbol, 83
* SplitterFun, 145
:: symbol, 83, 84
== symbol, 83
==> symbol, 83
=> symbol, 83
=?= symbol, 83
@Enum constant, 108
@Finset constant, 108
[symbol, 83
[| symbol, 83
$ISABELLE_HOME, 3
%, 57
%%, 58
] symbol, 83
_K constant, 110, 112
{} symbol, 108
{ symbol, 83
} symbol, 83
|] symbol, 83

Abs, 74, 101
AbsP, 57
Abst, 57
abstract_over, 75
abstract_rule, 53
aconv, 75
add_path, 67
addafter, 155
addbefore, 155
Addcongs, 123
addcongs, 128, 144
addD2, 153

AddDs, 160
addDs, 153
addE2, 153
addeqcongs, 128
AddEs, 160
addEs, 153
AddIs, 160
addIs, 153
addloop, 131
addSafter, 154
addSbefore, 154
addSD2, 153
AddSDs, 160
addSDs, 153
addSE2, 153
AddSEs, 160
addSEs, 153
Addsimprocs, 123
addsimprocs, 127
Addsimps, 122
addsimps, 126, 144
AddSIs, 160
addSIs, 152
addSolver, 130
Addsplits, 123
addsplits, 131
addss, 155, 155
addSSolver, 130
addSWrapper, 154
addWrapper, 155
all_tac, 37
ALLGOALS, 42, 136, 139
ambiguity

of parsed expressions, 93

174

INDEX 175

ancestors_of, 73
any nonterminal, 84
APPEND, 35, 37
APPEND’, 43
Appl, 98
aprop nonterminal, 84
ares_tac, 26
args nonterminal, 108
Arith theory, 138
arities

context conditions, 65
Asm_full_simp_tac, 121
asm_full_simp_tac, 29, 133
asm_full_simplify, 133
asm_rl theorem, 27
Asm_simp_tac, 120, 134
asm_simp_tac, 133, 144
asm_simplify, 133
associative-commutative operators,

137
assume, 52
assume_ax, 12, 13
assume_tac, 23, 152
assumption, 55
assumptions

contradictory, 161
deleting, 29
in simplification, 120, 130
inserting, 26
negated, 149
of main goal, 10, 11, 13, 19, 20
rotating, 28, 29
substitution in, 116
tactics for, 23

ASTs, 98–103
made from parse trees, 99
made from terms, 102

atac, 25
Auto_tac, 160
auto_tac (cs , ss), 157
axclass section, 64

axiomatic type class, 64
axioms

extracting, 12
axioms_of, 13

ba, 16
back, 14
batch execution, 17
bd, 16
bds, 16
be, 16
bes, 16
BEST_FIRST, 39, 40
Best_tac, 160
best_tac, 158
beta_conversion, 53
bicompose, 56
bimatch_tac, 30
bind_thm, 12, 13, 45
bind_thms, 12
binders, 92
biresolution, 55
biresolve_tac, 30, 161
Blast.depth_tac, 156
Blast.trace, 156
Blast_tac, 160
blast_tac, 156
Bound, 74, 99, 101, 102
bound_hyp_subst_tac, 117
br, 16
BREADTH_FIRST, 39
brs, 16
bw, 17
bws, 17
by, 11, 14, 15, 20
byev, 11

case splitting, 131
cd, 3
cert_axm, 76
CHANGED, 38

INDEX 176

chop, 14, 19
choplev, 14
Clarify_step_tac, 160
clarify_step_tac, 157
Clarify_tac, 160
clarify_tac, 157
Clarsimp_tac, 160
clarsimp_tac, 157
claset

current, 159
claset ML type, 152
ClasimpFun, 162
classes

context conditions, 65
classical reasoner, 147–162

setting up, 161
tactics, 155

classical sets, 151
ClassicalFun, 162
Close_locale, 71
combination, 53
commit, 3
COMP, 56
compose, 56
compose_tac, 30
concl_of, 48
COND, 39
congruence rules, 127
Const, 74, 101, 111
Constant, 98, 111
constants, 74

for translations, 88
syntactic, 104

context, 4, 120
contr_tac, 161
could_unify, 32
cprems_of, 48
cprop_of, 48
CPure theory, 62
CPure.thy, 73
crep_thm, 49

cterm ML type, 76
cterm_instantiate, 47
cterm_of, 18, 76
ctyp, 77
ctyp_of, 78
cut_facts_tac, 26, 117
cut_inst_tac, 26
cut_rl theorem, 27

datac, 25
datatype, 123
debug_simp, 121
Deepen_tac, 160
deepen_tac, 158
defer_tac, 26
definitions, see rewriting, meta-level,

27
unfolding, 10, 12

del_path, 67
Delcongs, 123
delcongs, 128
deleqcongs, 128
delete_tmpfiles, 66
delimiters, 85, 87, 89, 91
delloop, 131
delrules, 153
Delsimprocs, 123
delsimprocs, 127
Delsimps, 122
delsimps, 126
Delsplits, 123
delSWrapper, 155
delWrapper, 155
dependent_tr’, 110, 112
DEPTH_FIRST, 38
DEPTH_SOLVE, 38
DEPTH_SOLVE_1, 38
depth_tac, 158
dest_eq, 118
dest_imp, 118
dest_state, 49

INDEX 177

dest_Trueprop, 118
destruct-resolution, 23
DETERM, 40
DETERM_UNTIL, 37
DETERM_UNTIL_SOLVED, 40
discrimination nets, 31
distinct_subgoals_tac, 29
dmatch_tac, 23
domain_type, 118
dres_inst_tac, 25
dresolve_tac, 23
Drule.instantiate, 54
dtac, 25
dummyT, 101, 102, 113
duplicate subgoals

removing, 29

eatac, 25
elim-resolution, 23
ematch_tac, 23
empty constant, 108
empty_cs, 152
empty_ss, 124
eq_assume_tac, 23, 152
eq_assumption, 55
eq_mp_tac, 161
eq_reflection theorem, 118, 142
eq_thm, 40
eq_thm_prop, 40
eq_thy, 72
equal_elim, 52
equal_intr, 52
equality, 115–119
eres_inst_tac, 24
eresolve_tac, 23

on other than first premise, 48
ERROR, 7
error, 7
error messages, 7
eta_contract, 6, 106
etac, 25

EVERY, 36
EVERY’, 43
EVERY1, 43
examples

of logic definitions, 94
of macros, 108, 109
of mixfix declarations, 90
of simplification, 134
of translations, 112

exceptions
printing of, 7

exit, 3
Export, 72
export, 71
extensional, 53

fa, 16
Fast_tac, 160
fast_tac, 158
fatac, 25
fd, 16
fds, 16
fe, 16
fes, 16
files

reading, 3, 66
filt_resolve_tac, 32
FILTER, 38
filter_goal, 21
filter_thms, 32
findE, 14
findEs, 14
findI, 13
FIRST, 36
FIRST’, 43
FIRST1, 43
FIRSTGOAL, 42
flex-flex constraints, 29, 48, 57
flexflex_rule, 57
flexflex_tac, 29
FOL_basic_ss, 144

INDEX 178

FOL_ss, 144
fold_goals_tac, 27
fold_tac, 27
forall_elim, 54
forall_elim_list, 54
forall_elim_var, 54
forall_elim_vars, 54
forall_intr, 54
forall_intr_frees, 54
forall_intr_list, 54
Force_tac, 160
force_tac, 157
forw_inst_tac, 25
forward proof, 23, 45
forward_tac, 23
fr, 16
Free, 74, 101
freezeT, 55
frs, 16
ftac, 25
Full_simp_tac, 121
full_simp_tac, 133
full_simplify, 133
fun type, 77
function applications, 74

generic_simp_tac, 132
get_axiom, 13
get_thm, 13
get_thms, 13
getenv, 66
getgoal, 21
gethyps, 21, 41
Goal, 10, 19
goal, 10
goals_limit, 15
Goalw, 10
goalw, 10
goalw_cterm, 10

has_fewer_prems, 40

higher-order pattern, 126
HOL_basic_ss, 124
Hyp, 58
hyp_subst_tac, 116
hyp_subst_tacs, 162
HypsubstFun, 117, 162

id nonterminal, 85, 100, 107
identifiers, 85
idt nonterminal, 106
idts nonterminal, 84, 92
IF_UNSOLVED, 40
iff_reflection theorem, 142
IFOL_ss, 144
imp_intr theorem, 118
implies_elim, 52
implies_elim_list, 52
implies_intr, 52
implies_intr_hyps, 52
implies_intr_list, 52
incr_boundvars, 75, 112
indexname ML type, 74, 86
infixes, 91
insert constant, 108
inst_step_tac, 159
instance section, 64
instantiate, 54
instantiate’, 47, 55
instantiate_tac, 25
instantiation, 24, 46, 54
INTLEAVE, 36, 37
INTLEAVE’, 43
invoke_oracle, 78
is nonterminal, 108

joinrules, 161

λ-abstractions, 31, 74
λ-calculus, 51, 53, 84
lessb, 30
lexer, 85
lift_rule, 56

INDEX 179

lifting, 56
locales

functions, 71
logic class, 84, 89
logic nonterminal, 84
Logic.auto_rename, 28
Logic.set_rename_prefix, 28
long_names, 6
loose_bnos, 75, 113

macros, 103–110
make_elim, 47, 153
Match exception, 111
match_tac, 23, 152
max_pri, 82, 89
merge_ss, 124
meta-assumptions, 41, 50, 52, 55

printing of, 5
meta-equality, 51–53
meta-implication, 51, 52
meta-quantifiers, 51, 53
meta-rewriting, 10, 17, 18, 27, see

also tactics, theorems
in theorems, 46

meta-rules, see meta-rules, 50–57
METAHYPS, 21, 41
MinProof, 58
mixfix declarations, 64, 88–92
mk_atomize, 143
mk_meta_cong, 144
mk_solver, 130
ML section, 65, 110, 112
model checkers, 93
mp theorem, 162
mp_tac, 161
MRL, 46
MRS, 45

name tokens, 85
nat_cancel, 127
net_bimatch_tac, 31

net_biresolve_tac, 31
net_match_tac, 31
net_resolve_tac, 31
no_document, 67
no_qed, 11
no_tac, 37
None, 33
nonterminal symbols, 63
not_elim theorem, 162
nprems_of, 48
num nonterminal, 85, 100, 107
numerals, 85

o type, 94
object, 78
OF, 45
op symbol, 92
Open_locale, 71
option ML type, 33
Oracle, 58
oracles, 78–80
ORELSE, 35, 37, 42
ORELSE’, 43

parameters
removing unused, 29
renaming, 17, 28, 57

parents_of, 73
parse trees, 98
parse_rules, 105
pattern, higher-order, 126
pause_tac, 33
PAxm, 58
PBound, 58
permute_prems, 48
Poly/ml compiler, 7
pop_proof, 19
pr, 15
premises, 10, 19
prems_of, 48
prems_of_ss, 129

INDEX 180

pretty printing, 89, 91, 108
Pretty.setdepth, 5
Pretty.setmargin, 5
PRIMITIVE, 32
primrec, 123
prin, 8, 20
print mode, 64, 113
print modes, 93
print_cs, 152
print_depth, 5
print_exn, 7, 44
print_goals, 45
print_locale, 72
print_mode, 93
print_modes, 87
print_rules, 105
Print_scope, 72
print_simpset, 125
print_ss, 124
print_syntax, 73, 86
print_tac, 33
print_theory, 73
print_thm, 45
printing control, 5–6
printyp, 20
priorities, 81, 89
priority grammars, 81–82
prlev, 15
prlim, 15
productions, 81, 87, 88

copy, 87, 88, 100
proof ML type, 20
proof state, 9

printing of, 15
proof terms, 57–61

checking, 59
parsing, 60
partial, 59
printing, 60
reconstructing, 59

proofs, 9–21

inspecting the state, 20
managing multiple, 19
saving and restoring, 20
stacking, 19
starting, 9
timing, 15

proofs, 58
PROP symbol, 83
prop type, 77, 84
prop nonterminal, 84, 94
ProtoPure.thy, 73
prove_goal, 15, 18
prove_goalw, 18
prove_goalw_cterm, 18
prth, 45
prthq, 45
prths, 45
prune_params_tac, 29
PThm, 58
pttrn nonterminal, 84
pttrns nonterminal, 84
Pure theory, 62, 82
Pure.thy, 73
push_proof, 19
pwd, 3

qed, 11, 13
qed_goal, 18
qed_goalw, 18
quantifiers, 92
quit, 3

read, 20
read_axm, 77
read_cterm, 76
read_instantiate, 46
read_instantiate_sg, 47
reading

axioms, see assume_ax

goals, see proofs, starting
rearrange_prems, 48

INDEX 181

reflexive, 53
remove_thy, 66
ren, 17
rename_last_tac, 28
rename_params_rule, 57
rename_tac, 28
rep_cs, 152
rep_cterm, 77
rep_ctyp, 78
rep_ss, 124
rep_thm, 49
REPEAT, 36, 37
REPEAT1, 37
REPEAT_DETERM, 36
REPEAT_DETERM_N, 36
REPEAT_FIRST, 42
REPEAT_SOME, 42
res_inst_tac, 24, 29
reserved words, 85, 109
reset, 5
reset_path, 67
resolution, 45, 55

tactics, 22
without lifting, 56

resolve_tac, 22, 152
restore_proof, 20
result, 11, 13, 20
rev_eq_reflection theorem, 118
rev_mp theorem, 118
rewrite rules, 125–126

permutative, 137–140
rewrite_goals_rule, 46
rewrite_goals_tac, 27, 46
rewrite_rule, 46
rewrite_tac, 12, 27
rewriting

object-level, see simplification
ordered, 137
syntactic, 103–110

rewtac, 26
RL, 46

RLN, 46
rotate_prems, 48
rotate_proof, 19
rotate_tac, 29
RS, 45
RSN, 45
rtac, 25
rule_by_tactic, 29, 47
rules

converting destruction to elimi-
nation, 47

Safe_step_tac, 160
safe_step_tac, 154, 159
Safe_tac, 160
safe_tac, 159
save_proof, 20
saving your session, 2
search, 35

tacticals, 38–40
SELECT_GOAL, 27, 41
Seq.seq ML type, 32
sequences (lazy lists), 33
sequent calculus, 148
sessions, 1–8
set, 5
setloop, 131
setmksimps, 126, 142, 144
setSolver, 130, 144
setSSolver, 130, 144
setsubgoaler, 129, 144
settermless, 137
setup

theory, 65
shortcuts

for by commands, 15
for tactics, 25

show_brackets, 6
show_consts, 6
show_hyps, 6
show_path, 67

INDEX 182

show_sorts, 6, 102, 111
show_tags, 6
show_types, 6, 102, 106, 113
Sign.certify_term, 77
Sign.certify_typ, 78
Sign.sg ML type, 62
Sign.stamp_names_of, 73
Sign.string_of_term, 76
Sign.string_of_typ, 78
sign_of, 18, 73
sign_of_thm, 48
signatures, 62, 73, 76, 78
Simp_tac, 120
simp_tac, 133
simplification, 120–146

conversions, 133
forward rules, 133
from classical reasoner, 155
setting up, 141
setting up the splitter, 145
tactics, 132

simplification sets, 123
Simplifier.asm_full_rewrite,

133
Simplifier.asm_rewrite, 133
Simplifier.full_rewrite, 133
Simplifier.rewrite, 133
Simplifier.simproc, 140
Simplifier.simproc_i, 140
simplify, 133
SIMPSET, 125
simpset

current, 120, 125
simpset, 125
SIMPSET’, 125
simpset_of, 125
simpset_ref, 125
simpset_ref_of, 125
size_of_thm, 39, 40, 162
sizef, 162
slow_best_tac, 158

slow_step_tac, 154, 159
slow_tac, 158
SOLVE, 40
Some, 33
SOMEGOAL, 42
sort nonterminal, 84
sort constraints, 83
sort hypotheses, 49, 51
sorts

printing of, 5
ssubst theorem, 116
stac, 116
stamps, 62, 73
standard, 47
starting up, 1
Step_tac, 160
step_tac, 154, 159
store_thm, 12
store_thms, 12
string_of_cterm, 76
string_of_ctyp, 78
string_of_thm, 45
strings, 85
strip_shyps, 50
strip_shyps_warning, 50
SUBGOAL, 32
subgoal module, 9–21
subgoal_tac, 26
subgoals_of_brl, 30
subgoals_tac, 26
subst theorem, 115, 118
substitution

rules, 115
subthy, 72
swap theorem, 162
swap_res_tac, 161
swapify, 161
sym theorem, 116, 118
symmetric, 53
syn_of, 86
syntax

INDEX 183

Pure, 82–88
transformations, 98–113

syntax section, 64
Syntax.ast ML type, 98
Syntax.mark_boundT, 113
Syntax.print_gram, 87
Syntax.print_syntax, 87
Syntax.print_trans, 87
Syntax.syntax ML type, 86
Syntax.trace_ast, 107
Syntax.variant_abs’, 113

tactic ML type, 22
Tactic.prove, 18
Tactic.prove_standard, 18
tacticals, 35–43

conditional, 39
deterministic, 39
for filtering, 38
for restriction to a subgoal, 41
identities for, 37
joining a list of tactics, 36
joining tactic functions, 43
joining two tactics, 35
repetition, 36
scanning for subgoals, 42
searching, 38, 39

tactics, 22–34
assumption, 23, 25
commands for applying, 10
debugging, 20
filtering results of, 38
for composition, 29
for contradiction, 161
for inserting facts, 26
for Modus Ponens, 161
instantiation, 24
matching, 23
meta-rewriting, 25, 27
primitives for coding, 32
resolution, 22, 25, 30, 31

restricting to a subgoal, 41
simplification, 132
substitution, 115–119
tracing, 33

TERM, 76
term ML type, 73, 101
terms, 73

certified, 76
made from ASTs, 101
printing of, 20, 76
reading of, 20

TFree, 77
the_context, 4
THEN, 35, 37, 42
THEN’, 43
THEN_BEST_FIRST, 39
theorems, 44–61

dependencies, 59
equality of, 40
extracting, 12
extracting proved, 11
joining by resolution, 45
of pure theory, 27
printing of, 44
retrieving, 13
size of, 40
standardizing, 47
storing, 12
taking apart, 48

theories, 62–80
axioms of, 12
inspecting, 73
parent, 62
reading, 4, 66
theorems of, 12

THEORY exception, 13, 62
theory, 4
theory ML type, 62
Theory.add_oracle, 79
theory_of_thm, 49
thin_refl theorem, 118

INDEX 184

thin_tac, 29
THM exception, 44, 45, 50, 56
thm, 12, 70, 72
thm ML type, 44
Thm.instantiate, 54
thm_deps, 59
thms, 12
thms_containing, 14
thms_of, 13
tid nonterminal, 85, 100, 107
time_use, 3
time_use_thy, 4
timing, 15
timing statistics, 15
toggle, 5
token class, 113
token translations, 113–114
token_translation, 113
topthm, 20
touch_thy, 66
tpairs_of, 48
trace_BEST_FIRST, 39
trace_DEPTH_FIRST, 38
trace_goalno_tac, 42
trace_REPEAT, 37
trace_simp, 121, 135
tracing

of classical prover, 156
of macros, 107
of searching tacticals, 38, 39
of simplification, 122, 135–136
of tactics, 33
of unification, 50

transfer, 72
transfer_sg, 72
transitive, 53
translations, 110–113

parse, 92, 101
parse AST, 99, 100
print, 92
print AST, 103

translations section, 105
trivial, 56
Trueprop constant, 95
TRY, 36, 37
TRYALL, 42
TVar, 77
tvar nonterminal, 85, 86, 100, 107
typ ML type, 77
Type, 77
type type, 89
type nonterminal, 84
type constraints, 84, 92, 102
type constructors, 77
type identifiers, 85
type synonyms, 63
type unknowns, 77, 85

freezing/thawing of, 55
type variables, 77
types, 77

certified, 77
printing of, 5, 20, 78

undo, 9, 10, 14, 19
unknowns, 74, 85
update_thy, 4
update_thy_only, 66
uresult, 12, 13, 20
use, 3
use_thy, 4
use_thy_only, 66

Var, 74, 101
var nonterminal, 85, 86, 100, 107
Variable, 98
variables

bound, 74
free, 74

variant_abs, 75
varifyT, 55

warning, 7
warnings, 7

INDEX 185

with_path, 67
writeln, 7

xnum nonterminal, 85, 100, 107
xstr nonterminal, 85, 100, 107

zero_var_indexes, 47

			Basic Use of Isabelle

			Basic interaction with Isabelle

			Ending a session

			Reading ML files

			Reading theories

			Setting flags

			Printing of terms and theorems

			Printing limits

			Printing of hypotheses, brackets, types etc.

			Eta-contraction before printing

			Diagnostic messages

			Displaying exceptions as error messages

			Proof Management: The Subgoal Module

			Basic commands

			Starting a backward proof

			Applying a tactic

			Extracting and storing the proved theorem

			Extracting axioms and stored theorems

			Retrieving theorems

			Undoing and backtracking

			Printing the proof state

			Timing

			Shortcuts for applying tactics

			Refining a given subgoal

			Scanning shortcuts

			Other shortcuts

			Executing batch proofs

			Internal proofs

			Managing multiple proofs

			The stack of proof states

			Saving and restoring proof states

			*Debugging and inspecting

			Reading and printing terms

			Inspecting the proof state

			Filtering lists of rules

			Tactics

			Resolution and assumption tactics

			Resolution tactics

			Assumption tactics

			Matching tactics

			Explicit instantiation

			Other basic tactics

			Tactic shortcuts

			Inserting premises and facts

			``Putting off'' a subgoal

			Definitions and meta-level rewriting

			Theorems useful with tactics

			Obscure tactics

			Renaming parameters in a goal

			Manipulating assumptions

			Tidying the proof state

			Composition: resolution without lifting

			*Managing lots of rules

			Combined resolution and elim-resolution

			Discrimination nets for fast resolution

			Programming tools for proof strategies

			Operations on tactics

			Tracing

			*Sequences

			Basic operations on sequences

			Converting between sequences and lists

			Combining sequences

			Tacticals

			The basic tacticals

			Joining two tactics

			Joining a list of tactics

			Repetition tacticals

			Identities for tacticals

			Control and search tacticals

			Filtering a tactic's results

			Depth-first search

			Other search strategies

			Auxiliary tacticals for searching

			Predicates and functions useful for searching

			Tacticals for subgoal numbering

			Restricting a tactic to one subgoal

			Scanning for a subgoal by number

			Joining tactic functions

			Applying a list of tactics to 1

			Theorems and Forward Proof

			Basic operations on theorems

			Pretty-printing a theorem

			Forward proof: joining rules by resolution

			Expanding definitions in theorems

			Instantiating unknowns in a theorem

			Miscellaneous forward rules

			Taking a theorem apart

			*Sort hypotheses

			Tracing flags for unification

			*Primitive meta-level inference rules

			Assumption rule

			Implication rules

			Logical equivalence rules

			Equality rules

			The -conversion rules

			Forall introduction rules

			Forall elimination rules

			Instantiation of unknowns

			Freezing/thawing type unknowns

			Derived rules for goal-directed proof

			Proof by assumption

			Resolution

			Composition: resolution without lifting

			Other meta-rules

			Proof terms

			Reconstructing and checking proof terms

			Parsing and printing proof terms

			Theories, Terms and Types

			Defining theories

			*Classes and arities

			The theory loader

			Locales

			Declaring Locales

			Locale Scope

			Functions for Locales

			Basic operations on theories

			*Theory inclusion

			*Primitive theories

			Inspecting a theory

			Terms

			*Variable binding

			Certified terms

			Printing terms

			Making and inspecting certified terms

			Types

			Certified types

			Printing types

			Making and inspecting certified types

			Oracles: calling trusted external reasoners

			Defining Logics

			Priority grammars

			The Pure syntax

			Logical types and default syntax

			Lexical matters

			*Inspecting the syntax

			Mixfix declarations

			The general mixfix form

			Example: arithmetic expressions

			The mixfix template

			Infixes

			Binders

			*Alternative print modes

			Ambiguity of parsed expressions

			Example: some minimal logics

			Syntax Transformations

			Abstract syntax trees

			Transforming parse trees to ASTs

			Transforming ASTs to terms

			Printing of terms

			Macros: syntactic rewriting

			Specifying macros

			Applying rules

			Example: the syntax of finite sets

			Example: a parse macro for dependent types

			Translation functions

			Declaring translation functions

			The translation strategy

			Example: a print translation for dependent types

			Token translations

			Substitution Tactics

			Substitution rules

			Substitution in the hypotheses

			Setting up the package

			Simplification

			Simplification for dummies

			Simplification tactics

			Modifying the current simpset

			Simplification sets

			Inspecting simpsets

			Building simpsets

			Accessing the current simpset

			Rewrite rules

			*Simplification procedures

			*Congruence rules

			*The subgoaler

			*The solver

			*The looper

			The simplification tactics

			Forward rules and conversions

			Examples of using the Simplifier

			A trivial example

			An example of tracing

			Free variables and simplification

			Permutative rewrite rules

			Example: sums of natural numbers

			Re-orienting equalities

			*Coding simplification procedures

			*Setting up the Simplifier

			A collection of standard rewrite rules

			Functions for preprocessing the rewrite rules

			Making the initial simpset

			Splitter setup

			The Classical Reasoner

			The sequent calculus

			Simulating sequents by natural deduction

			Extra rules for the sequent calculus

			Classical rule sets

			Adding rules to classical sets

			Modifying the search step

			The classical tactics

			The tableau prover

			Automatic tactics

			Semi-automatic tactics

			Other classical tactics

			Depth-limited automatic tactics

			Single-step tactics

			The current claset

			Accessing the current claset

			Other useful tactics

			Creating swapped rules

			Setting up the classical reasoner

			Setting up the combination with the simplifier

			Syntax of Isabelle Theories

Isabelle2008/doc/sugar.pdf

LATEX Sugar for Isabelle documents

Florian Haftmann, Gerwin Klein, Tobias Nipkow, Norbert Schirmer

June 8, 2008

Abstract

This document shows how to typset mathematics in Isabelle-based
documents in a style close to that in ordinary computer science papers.

1 Introduction

This document is for those Isabelle users who have mastered the art of
mixing LATEX text and Isabelle theories and never want to typeset a the-
orem by hand anymore because they have experienced the bliss of writing
@{thm[display]setsum_cartesian_product[no_vars]} and seeing Isabelle
typeset it for them:

(
∑

x∈A.
∑

y∈B . f x y) = (
∑

(x , y)∈A × B . f x y)

No typos, no omissions, no sweat. If you have not experienced that joy, read
Chapter 4, Presenting Theories, [1] first.

If you have mastered the art of Isabelle’s antiquotations, i.e. things like
the above @{thm...}, beware: in your vanity you may be tempted to think
that all readers of the stunning ps or pdf documents you can now produce at
the drop of a hat will be struck with awe at the beauty unfolding in front of
their eyes. Until one day you come across that very critical of readers known
as the “common referee”. He has the nasty habit of refusing to understand
unfamiliar notation like Isabelle’s infamous [[]] =⇒ no matter how many
times you explain it in your paper. Even worse, he thinks that using [[]] for
anything other than denotational semantics is a cardinal sin that must be
punished by instant rejection.

This document shows you how to make Isabelle and LATEX cooperate
to produce ordinary looking mathematics that hides the fact that it was
typeset by a machine. You merely need to load the right files:

• Import theory LaTeXsugar in the header of your own theory. You
may also want bits of OptionalSugar, which you can copy selectively
into your own theory or import as a whole. Both theories live in
HOL/Library and are found automatically.

1

• Should you need additional LATEX packages (the text will tell you so),
you include them at the beginning of your LATEX document, typically
in root.tex. For a start, you should \usepackage{amssymb} — oth-
erwise typesetting ¬(∃ x . P x) will fail because the AMS symbol @ is
missing.

2 HOL syntax

2.1 Logic

The formula ¬(∃ x . P x) is typeset as @ x . P x.
The predefined constructs if, let and case are set in sans serif font to

distinguish them from other functions. This improves readability:

• if b then e1 else e2 instead of if b then e1 else e2.

• let x = e1 in e2 instead of let x = e1 in e2.

• case x of True ⇒ e1 | False ⇒ e2 instead of
case x of True ⇒ e1 | False ⇒ e2.

2.2 Sets

Although set syntax in HOL is already close to standard, we provide a few
further improvements:

• {x | P} instead of {x . P}.

• ∅ instead of {}.

• {a, b, c} ∪ M instead of insert a (insert b (insert c M)).

2.3 Lists

If lists are used heavily, the following notations increase readability:

• x ·xs instead of x # xs. Exceptionally, x ·xs is also input syntax. If you
prefer more space around the · you have to redefine \isasymcdot in
LATEX: \renewcommand{\isasymcdot}{\isamath{\,\cdot\,}}

• |xs| instead of length xs.

• xs[n] instead of nth xs n, the nth element of xs.

2

• Human readers are good at converting automatically from lists to sets.
Hence OptionalSugar contains syntax for supressing the conversion
function set : for example, x ∈ set xs becomes x ∈ xs.

• The @ operation associates implicitly to the right, which leads to un-
pleasant line breaks if the term is too long for one line. To avoid this,
OptionalSugar contains syntax to group @-terms to the left before
printing, which leads to better line breaking behaviour:

term0 @ term1 @ term2 @ term3 @ term4 @ term5 @ term6 @ term7 @
term8 @ term9 @ term10

3 Printing theorems

3.1 Question marks

If you print anything, especially theorems, containing schematic variables
they are prefixed with a question mark: @{thm conjI} results in [[?P ; ?Q]]
=⇒ ?P ∧ ?Q. Most of the time you would rather not see the question marks.
There is an attribute no_vars that you can attach to the theorem that turns
its schematic into ordinary free variables: @{thm conjI[no_vars]} results
in [[P ; Q]] =⇒ P ∧ Q.

This no_vars business can become a bit tedious. If you would rather
never see question marks, simply put

reset show_question_marks;

at the beginning of your file ROOT.ML. The rest of this document is produced
with this flag reset.

Hint: Resetting show_question_marks only supresses question marks;
variables that end in digits, e.g. x1, are still printed with a trailing .0, e.g.
x1 .0, their internal index. This can be avoided by turning the last digit into
a subscript: write x\<^isub>1 and obtain the much nicer x 1.

3.2 Qualified names

If there are multiple declarations of the same name, Isabelle prints the qual-
ified name, for example T .length, where T is the theory it is defined in,
to distinguish it from the predefined List .length. In case there is no dan-
ger of confusion, you can insist on short names (no qualifiers) by setting
short_names, typically in ROOT.ML:

set short_names;

3

3.3 Variable names

It sometimes happens that you want to change the name of a variable in
a theorem before printing it. This can easily be achieved with the help of
Isabelle’s instantiation attribute where: [[ϕ; ψ]] =⇒ ϕ ∧ ψ is the result of

@{thm conjI[where P = \<phi> and Q = \<psi>]}

To support the “ ”-notation for irrelevant variables the constant DUMMY has
been introduced: fst (a,) = a is produced by

@{thm fst_conv[where b = DUMMY]}

3.4 Inference rules

To print theorems as inference rules you need to include Didier Rémy’s
mathpartir package [2] for typesetting inference rules in your LATEX file.

Writing @{thm[mode=Rule] conjI} produces
P Q
P ∧ Q

, even in the mid-

dle of a sentence. If you prefer your inference rule on a separate line, maybe
with a name,

P Q
P ∧ Q

conjI

is produced by

\begin{center}
@{thm[mode=Rule] conjI} {\sc conjI}
\end{center}

It is not recommended to use the standard display option together with
Rule because centering does not work and because the line breaking mech-
anisms of display and mathpartir can clash.

Of course you can display multiple rules in this fashion:

\begin{center}
@{thm[mode=Rule] conjI} {\sc conjI} \\[1ex]
@{thm[mode=Rule] conjE} {\sc disjI$_1$} \qquad
@{thm[mode=Rule] disjE} {\sc disjI$_2$}
\end{center}

yields

P Q
P ∧ Q

conjI

P
P ∨ Q

disjI1
Q

P ∨ Q
disjI2

4

The mathpartir package copes well if there are too many premises for
one line:

A −→ B B −→ C C −→ D D −→ E E −→ F
F −→ G G −→ H H −→ I I −→ J J −→ K

A −→ K

Limitations: 1. Premises and conclusion must each not be longer than
the line. 2. Premises that are =⇒-implications are again displayed with a
horizontal line, which looks at least unusual.

In case you print theorems without premises no rule will be printed by
the Rule print mode. However, you can use Axiom instead:

\begin{center}
@{thm[mode=Axiom] refl} {\sc refl}
\end{center}

yields

t = t
refl

3.5 Displays and font sizes

When displaying theorems with the display option, e.g. @{thm[display] refl}

t = t

the theorem is set in small font. It uses the LATEX-macro \isastyle, which
is also the style that regular theory text is set in, e.g.

lemma t = t

Otherwise \isastyleminor is used, which does not modify the font size
(assuming you stick to the default \isabellestyle{it} in root.tex). If
you prefer normal font size throughout your text, include

\renewcommand{\isastyle}{\isastyleminor}

in root.tex. On the other hand, if you like the small font, just put
\isastyle in front of the text in question, e.g. at the start of one of the
center-environments above.

The advantage of the display option is that you can display a whole
list of theorems in one go. For example, @{thm[display] foldl.simps}
generates

foldl f a [] = a
foldl f a (x ·xs) = foldl f (f a x) xs

5

3.6 If-then

If you prefer a fake “natural language” style you can produce the body of

Theorem 1 If i ≤ j and j ≤ k then i ≤ k .

by typing

@{thm[mode=IfThen] le_trans}

In order to prevent odd line breaks, the premises are put into boxes. At
times this is too drastic:

Theorem 2 If longpremise and longerpremise and P (f (f (f (f (f (f (f (f (f x)))))))))
and longestpremise then conclusion.

In which case you should use IfThenNoBox instead of IfThen:

Theorem 3 If longpremise and longerpremise and P (f (f (f (f (f (f (f
(f (f x))))))))) and longestpremise then conclusion.

3.7 Doing it yourself

If for some reason you want or need to present theorems your own way, you
can extract the premises and the conclusion explicitly and combine them as
you like:

• @{thm_style prem1 thm} prints premise 1 of thm (and similarly up
to prem9).

• @{thm_style concl thm} prints the conclusion of thm.

For example, “from Q and P we conclude P ∧ Q” is produced by

from @{thm_style prem2 conjI} and @{thm_style prem1 conjI}
we conclude @{thm_style concl conjI}

Thus you can rearrange or hide premises and typeset the theorem as you
like. The thm_style antiquotation is a general mechanism explained in §5.

3.8 Patterns

In §3.3 we shows how to create patterns containing “ ”. You can drive this
game even further and extend the syntax of let bindings such that certain
functions like fst, hd, etc. are printed as patterns. OptionalSugar provides
the following:

let (x ,) = p in t produced by @{term "let x = fst p in t"}
let (, x) = p in t produced by @{term "let x = snd p in t"}
let x · = xs in t produced by @{term "let x = hd xs in t"}
let ·x = xs in t produced by @{term "let x = tl xs in t"}
let Some x = y in t produced by @{term "let x = the y in t"}

6

lemma True
proof −

— pretty trivial
show True by force

qed

Figure 1: Example proof in a figure.

4 Proofs

Full proofs, even if written in beautiful Isar style, are likely to be too long
and detailed to be included in conference papers, but some key lemmas
might be of interest. It is usually easiest to put them in figures like the one
in Fig. 1. This was achieved with the text raw command:

text_raw {*
\begin{figure}
\begin{center}\begin{minipage}{0.6\textwidth}
\isastyleminor\isamarkuptrue

*}
lemma True
proof -
-- "pretty trivial"
show True by force

qed
text_raw {*
\end{minipage}\end{center}
\caption{Example proof in a figure.}\label{fig:proof}
\end{figure}

*}

Other theory text, e.g. definitions, can be put in figures, too.

5 Styles

The thm antiquotation works nicely for single theorems, but sets of equations
as used in definitions are more difficult to typeset nicely: people tend to
prefer aligned = signs.

To deal with such cases where it is desirable to dive into the structure
of terms and theorems, Isabelle offers antiquotations featuring “styles”:

@{thm_style stylename thm}
@{term_style stylename term}

7

A “style” is a transformation of propositions. There are predefined styles,
namely lhs and rhs, prem1 up to prem9, and concl. For example, the
output

foldl f a [] = a
foldl f a (x ·xs) = foldl f (f a x) xs

is produced by the following code:

\begin{center}
\begin{tabular}{l@ {~~@{text "="}~~}l}
@{thm_style lhs foldl_Nil} & @{thm_style rhs foldl_Nil}
@{thm_style lhs foldl_Cons} & @{thm_style rhs foldl_Cons}
\end{tabular}
\end{center}

Note the space between @ and { in the tabular argument. It prevents Isabelle
from interpreting @ {~~...~~} as an antiquotation. The styles lhs and
rhs extract the left hand side (or right hand side respectively) from the
conclusion of propositions consisting of a binary operator (e. g. =, ≡, <).

Likewise, concl may be used as a style to show just the conclusion of a
proposition. For example, take hd_Cons_tl:

(xs:: ′a list) 6= [] =⇒ hd xs·tl xs = xs

To print just the conclusion,

hd (xs:: ′a list)·tl xs = xs

type

\begin{center}
@{thm_style [show_types] concl hd_Cons_tl}
\end{center}

Beware that any options must be placed before the name of the style, as in
this example.

Further use cases can be found in §3.7.
If you are not afraid of ML, you may also define your own styles. A style is

implemented by an ML function of type Proof.context -> term -> term.
Have a look at the following example:

setup {*
let
fun my_concl ctxt = Logic.strip_imp_concl
in TermStyle.add_style "my_concl" my_concl

end;
*}

8

This example shows how the concl style is implemented and may be used
as as a “copy-and-paste” pattern to write your own styles.

The code should go into your theory file, separate from the LATEX text.
The let expression avoids polluting the ML global namespace. Each style
receives the current proof context as first argument; this is helpful in situa-
tions where the style has some object-logic specific behaviour for example.

The mapping from identifier name to the style function is done by the
TermStyle.add_style expression which expects the desired style name and
the style function as arguments.

After this setup, there will be a new style available named my_concl,
thus allowing antiquoations like @{thm_style my_concl hd_Cons_tl} yield-
ing hd xs·tl xs = xs.

References

[1] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, volume 2283. 2002. http://www.in.tum.
de/∼nipkow/LNCS2283/.

[2] D. Rémy. mathpartir. http://cristal.inria.fr/∼remy/latex/.

9

http://www.in.tum.de/~nipkow/LNCS2283/

http://www.in.tum.de/~nipkow/LNCS2283/

http://cristal.inria.fr/~remy/latex/

			Introduction

			HOL syntax

			Logic

			Sets

			Lists

			Printing theorems

			Question marks

			Qualified names

			Variable names

			Inference rules

			Displays and font sizes

			If-then

			Doing it yourself

			Patterns

			Proofs

			Styles

Isabelle2008/doc/system.pdf

λ →

∀
=Isa

be
lle

β
α

The Isabelle System Manual

Markus Wenzel and Stefan Berghofer
TU München

June 8, 2008

Contents

1 The Isabelle system environment 1
1.1 Isabelle settings . 1

Building the environment . 2
Common variables . 3

1.2 The Isabelle tools wrapper . 5
1.3 The raw Isabelle process . 6
1.4 The Isabelle interface wrapper 9

2 Presenting theories 11
2.1 Generating theory browser information 12
2.2 Browsing theory graphs . 13

Invoking the graph browser 13
Using the graph browser . 14

2.3 Creating Isabelle session directories — isatool mkdir 16
2.4 Running Isabelle sessions — isatool usedir 18
2.5 Preparing Isabelle session documents — isatool document . 21
2.6 Running LATEX within the Isabelle environment — isatool

latex . 23

3 Miscellaneous tools 25
3.1 Converting legacy ML scripts — isatool convert 25
3.2 Displaying documents — isatool display 25
3.3 Viewing documentation — isatool doc 26
3.4 Getting logic images — isatool findlogics 26
3.5 Inspecting the settings environment — isatool getenv . . . 27
3.6 Installing standalone Isabelle executables — isatool install 28
3.7 Creating instances of the Isabelle logo — isatool logo . . . 28
3.8 Isabelle’s version of make — isatool make 29
3.9 Make all logics — isatool makeall 29
3.10 Printing documents — isatool print 29
3.11 Run Isabelle with plain tty interaction — isatool tty 30
3.12 Remove awkward symbol names from theory sources —

isatool unsymbolize . 30

i

CONTENTS ii

3.13 Output the version identifier of the Isabelle distribution —
isatool version . 31

3.14 Convert XML to YXML — isatool yxml 31

A Standard Isabelle symbols 32

Chapter 1

The Isabelle system
environment

This manual describes Isabelle together with related tools and user interfaces
as seen from an outside (system oriented) view. See also the Isabelle/Isar
Reference Manual [3] and the Isabelle Reference Manual [2] for the actual
Isabelle commands and related functions.

The Isabelle system environment emerges from a few general concepts.

� The Isabelle settings mechanism provides environment variables to all
Isabelle programs (including tools and user interfaces).

� The Isabelle tools wrapper (isatool) provides a generic startup plat-
form for Isabelle related utilities. Thus tools automatically benefit from
the settings mechanism.

� The raw Isabelle process (isabelle or isabelle-process) runs logic
sessions either interactively or in batch mode. In particular, this view
abstracts over the invocation of the actual ml system to be used.

� The Isabelle interface wrapper (Isabelle or isabelle-interface)
provides some abstraction over the actual user interface to be used.
The de-facto standard interface for Isabelle is Proof General [1].

The beginning user would probably just run the default user interface (by
invoking the capital Isabelle). This assumes that the system has already
been installed, of course. In case you have to do this yourself, see the INSTALL
file in the top-level directory of the distribution of how to proceed; binary
packages for various system components are available as well.

1.1 Isabelle settings

The Isabelle system heavily depends on the settings mechanism. Essen-
tially, this is a statically scoped collection of environment variables, such as

1

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 2

ISABELLE_HOME, ML_SYSTEM, ML_HOME. These variables are not intended to
be set directly from the shell, though. Isabelle employs a somewhat more
sophisticated scheme of settings files — one for site-wide defaults, another
for additional user-specific modifications. With all configuration variables in
at most two places, this scheme is more maintainable and user-friendly than
global shell environment variables.

In particular, we avoid the typical situation where prospective users of
a software package are told to put several things into their shell startup
scripts, before being able to actually run the program. Isabelle requires none
such administrative chores of its end-users — the executables can be invoked
straight away.1

Building the environment

Whenever any of the Isabelle executables is run, their settings environment
is put together as follows.

1. The special variable ISABELLE_HOME is determined automatically from
the location of the binary that has been run.

You should not try to set ISABELLE_HOME manually. Also note that the
Isabelle executables either have to be run from their original location
in the distribution directory, or via the executable objects created by
the install utility (see §3.6). Just doing a plain copy of the bin files
will not work!

2. The file $ISABELLE_HOME/etc/settings ist run as a shell script with
the auto-export option for variables enabled.

This file holds a rather long list of shell variable assigments, thus pro-
viding the site-wide default settings. The Isabelle distribution already
contains a global settings file with sensible defaults for most variables.
When installing the system, only a few of these may have to be adapted
(probably ML_SYSTEM etc.).

3. The file $ISABELLE_HOME_USER/etc/settings (if it exists) is run
in the same way as the site default settings. Note that the vari-
able ISABELLE_HOME_USER has already been set before — usually to
~/isabelle.

Thus individual users may override the site-wide defaults. See also
file etc/user-settings.sample in the distribution. Typically, a user

1Occasionally, users would still want to put the Isabelle bin directory into their shell’s
search path, but this is not required.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 3

settings file would contain only a few lines, just the assigments that
are really changed. One should definitely not start with a full copy the
basic $ISABELLE_HOME/etc/settings. This could cause very annoying
maintainance problems later, when the Isabelle installation is updated
or changed otherwise.

Note that settings files are actually full GNU bash scripts. So one may
use complex shell commands, such as if or case statements to set variables
depending on the system architecture or other environment variables. Such
advanced features should be added only with great care, though. In partic-
ular, external environment references should be kept at a minimum.

A few variables are somewhat special:

� ISABELLE and ISATOOL are set automatically to the absolute path
names of the isabelle-process and isatool executables, respec-
tively.

� ISABELLE_OUTPUT will have the identifiers of the Isabelle distribution
(cf. ISABELLE_IDENTIFIER) and the ml system (cf. ML_IDENTIFIER)
appended automatically to its value.

The Isabelle settings scheme is conceptually simple, but not completely
trivial. For debugging purposes, the resulting environment may be inspected
with the getenv utility, see §3.5.

Common variables

This is a reference of common Isabelle settings variables. Note that the list
is somewhat open-ended. Third-party utilities or interfaces may add their
own selection. Variables that are special in some sense are marked with *.

ISABELLE_HOME* is the location of the top-level Isabelle distribution direc-
tory. This is automatically determined from the Isabelle executable
that has been invoked. Do not attempt to set ISABELLE_HOME yourself
from the shell.

ISABELLE_HOME_USER is the user-specific counterpart of ISABELLE_HOME.
The default value is ~/isabelle, under rare circumstances this may be
changed in the global setting file. Typically, the ISABELLE_HOME_USER

directory mimics ISABELLE_HOME to some extend. In particular, site-
wide defaults may be overridden by a private etc/settings.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 4

ISABELLE*, ISATOOL* are automatically set to the full path names of the
isabelle-process and isatool executables, respectively. Thus other
tools and scripts need not assume that the Isabelle bin directory is on
the current search path of the shell.

ISABELLE_IDENTIFIER* refers to the name of this Isabelle distribution, e.g.
“Isabelle2007”.

ML_SYSTEM, ML_HOME, ML_OPTIONS, ML_PLATFORM, ML_IDENTIFIER* specify
the underlying ml system to be used for Isabelle. There is only a fixed
set of admissable ML_SYSTEM names (see the etc/settings file of the
distribution).

The actual compiler binary will be run from the directory ML_HOME,
with ML_OPTIONS as first arguments on the command line. The op-
tional ML_PLATFORM may specify the binary format of ML heap im-
ages, which is useful for cross-platform installations. The value of
ML_IDENTIFIER is automatically obtained by composing the values of
ML_SYSTEM, ML_PLATFORM and the Isabelle version values.

ISABELLE_PATH is a list of directories (separated by colons) where Isabelle
logic images may reside. When looking up heaps files, the value of
ML_IDENTIFIER is appended to each component internally.

ISABELLE_OUTPUT* is a directory where output heap files should be stored
by default. The ml system and Isabelle version identifier is appended
here, too.

ISABELLE_BROWSER_INFO is the directory where theory browser information
(HTML text, graph data, and printable documents) is stored (see also
§2.1). The default value is $ISABELLE_HOME_USER/browser_info.

ISABELLE_LOGIC specifies the default logic to load if none is given explicitely
by the user. The default value is HOL.

ISABELLE_LINE_EDITOR specifies the default line editor for isatool tty

(see also §3.11).

ISABELLE_USEDIR_OPTIONS is implicitly prefixed to the command line of
any isatool usedir invocation (see also §2.4). This typically contains
compilation options for object-logics — usedir is the basic utility for
managing logic sessions (cf. the IsaMakefiles in the distribution).

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 5

ISABELLE_FILE_IDENT specifies a shell command for producing a source file
identification, based on the actual content instead of the full physical
path and date stamp (which is the default). A typical identification
would produce a “digest” of the text, using a cryptographic hash func-
tion like SHA-1, for example.

ISABELLE_LATEX, ISABELLE_PDFLATEX, ISABELLE_BIBTEX, ISABELLE_DVIPS
refer to LATEX related tools for Isabelle document preparation (see also
§2.6).

ISABELLE_TOOLS is a colon separated list of directories that are scanned by
isatool for external utility programs (see also §1.2).

ISABELLE_DOCS is a colon separated list of directories with documentation
files.

ISABELLE_DOC_FORMAT specifies the preferred document format, typically
dvi or pdf.

DVI_VIEWER specifies the command to be used for displaying dvi files.

PDF_VIEWER specifies the command to be used for displaying pdf files.

PRINT_COMMAND specifies the standard printer spool command, which is ex-
pected to accept ps files.

ISABELLE_TMP_PREFIX* is the prefix from which any running isabelle pro-
cess derives an individual directory for temporary files. The default is
somewhere in /tmp.

ISABELLE_INTERFACE is an identifier that specifies the actual user interface
that the capital Isabelle or isabelle-interface should invoke. See
§1.4 for more details.

1.2 The Isabelle tools wrapper

All Isabelle related utilities are called via a common wrapper — isatool:

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 6

Usage: isatool TOOL [ARGS ...]

Start Isabelle utility program TOOL with ARGS. Pass "-?" to TOOL
for more specific help.

Available tools are:

browser - Isabelle graph browser
...

In principle, Isabelle tools are ordinary executable scripts that are run within
the Isabelle settings environment, see §1.1. The set of available tools is col-
lected by isatool from the directories listed in the ISABELLE_TOOLS setting.
Do not try to call the scripts directly from the shell. Neither should you add
the tool directories to your shell’s search path!

Examples

Show the list of available documentation of the current Isabelle installation
like this:

isatool doc

View a certain document as follows:

isatool doc isar-ref

Create an Isabelle session derived from HOL (see also §2.3 and §3.8):

isatool mkdir HOL Test && isatool make

Note that isatool mkdir is usually only invoked once; existing sessions
(including document output etc.) are then updated by isatool make alone.

1.3 The raw Isabelle process

The isabelle (or isabelle-process) executable runs bare-bones Isabelle
logic sessions — either interactively or in batch mode. It provides an abstrac-
tion over the underlying ml system, and over the actual heap file locations.
Its usage is:

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 7

Usage: isabelle [OPTIONS] [INPUT] [OUTPUT]

Options are:
-C tell ML system to copy output image
-I startup Isar interaction mode
-P startup Proof General interaction mode
-S secure mode -- disallow critical operations
-W startup process wrapper (interaction via external program)
-X startup PGIP interaction mode
-c tell ML system to compress output image
-e MLTEXT pass MLTEXT to the ML session
-f pass ’Session.finish();’ to the ML session
-m MODE add print mode for output
-q non-interactive session
-r open heap file read-only
-u pass ’use"ROOT.ML";’ to the ML session
-w reset write permissions on OUTPUT

INPUT (default "$ISABELLE_LOGIC") and OUTPUT specify in/out heaps.
These are either names to be searched in the Isabelle path, or
actual file names (containing at least one /).
If INPUT is "RAW_ML_SYSTEM", just start the bare bones ML system.

Input files without path specifications are looked up in the ISABELLE_PATH

setting, which may consist of multiple components separated by colons —
these are tried in the given order with the value of ML_IDENTIFIER appended
internally. In a similar way, base names are relative to the directory specified
by ISABELLE_OUTPUT. In any case, actual file locations may also be given
by including at least one slash (/) in the name (hint: use ./ to refer to the
current directory).

Options

If the input heap file does not have write permission bits set, or the -r option
is given explicitely, then the session started will be read-only. That is, the ml
world cannot be committed back into the image file. Otherwise, a writable
session enables commits into either the input file, or into another output
heap file (if that is given as the second argument on the command line).

The read-write state of sessions is determined at startup only, it cannot be
changed intermediately. Also note that heap images may require considerable
amounts of disk space (approximately 40–80 MB). Users are responsible for
themselves to dispose their heap files when they are no longer needed.

The -w option makes the output heap file read-only after terminating.
Thus subsequent invocations cause the logic image to be read-only automat-
ically.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 8

The -c option tells the underlying ML system to compress the output
heap (fully transparently). On Poly/ML for example, the image is garbage
collected and all stored values are maximally shared, resulting in up to 50%
less disk space consumption.

The -C option tells the ML system to produce a completely self-contained
output image, probably including a copy of the ML runtime system itself.

Using the -e option, arbitrary ml code may be passed to the Isabelle
session from the command line. Multiple -e’s are evaluated in the given
order. Strange things may happen when errorneous ml code is provided.
Also make sure that the ml commands are terminated properly by semicolon.

The -u option is a shortcut for -e passing “use"ROOT.ML";” to the ml ses-
sion. The -f option passes “Session.finish();”, which is intended mainly
for administrative purposes.

The -m option adds identifiers of print modes to be made active for this
session. Typically, this is used by some user interface, e.g. to enable output
of proper mathematical symbols.

Isabelle normally enters an interactive top-level loop (after processing the
-e texts). The -q option inhibits interaction, thus providing a pure batch
mode facility.

The -I option makes Isabelle enter Isar interaction mode on startup,
instead of the primitive ml top-level. The -P option configures the top-level
loop for interaction with the Proof General user interface, and the -X option
enables XML-based PGIP communication. The -W option makes Isabelle
enter a special process wrapper for interaction via an external program; the
protocol is a stripped-down version of Proof General the interaction mode.

The -S option makes the Isabelle process more secure by disabling some
critical operations, notably runtime compilation and evaluation of ML source
code.

Examples

Run an interactive session of the default object-logic (as specified by the
ISABELLE_LOGIC setting) like this:

isabelle

Usually ISABELLE_LOGIC refers to one of the standard logic images, which
are read-only by default. A writable session — based on FOL, but output to
Foo (in the directory specified by the ISABELLE_OUTPUT setting) — may be
invoked as follows:

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 9

isabelle FOL Foo

Ending this session normally (e.g. by typing control-D) dumps the whole ml
system state into Foo. Be prepared for several tens of megabytes.

The Foo session may be continued later (still in writable state) by:

isabelle Foo

A read-only Foo session may be started by:

isabelle -r Foo

Note that manual session management like this does not provide proper
setup for theory presentation. This would require the usedir utility, see §2.4.

The next example demonstrates batch execution of Isabelle. We print a
certain theorem of FOL:

isabelle -e "prth allE;" -q -r FOL

Note that the output text will be interspersed with additional junk messages
by the ml runtime environment.

1.4 The Isabelle interface wrapper

Isabelle is a generic theorem prover, even w.r.t. its user interface. The
Isabelle (or isabelle-interface) executable provides a uniform way for
end-users to invoke a certain interface; which one to start is determined by
the ISABELLE_INTERFACE setting variable, which should give a full path spec-
ification to the actual executable. Also note that the install utility provides
some options to install desktop environment icons (see §3.6).

Presently, the most prominent Isabelle interface is Proof General [1].
There are separate versions for the raw ML top-level and the proper Isa-
belle/Isar interpreter loop. The Proof General distribution includes separate
interface wrapper scripts (in ProofGeneral/isa and ProofGeneral/isar)
for either of these. The canonical settings for Isabelle/Isar are as follows:

ISABELLE_INTERFACE=$ISABELLE_HOME/contrib/ProofGeneral/isar/interface
PROOFGENERAL_OPTIONS=""

Thus Isabelle would automatically invoke Emacs with proper setup of the
Proof General Lisp packages. There are some options available, such as -l

for passing the logic image to be used by default, or -m to tune the standard

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 10

print mode. The -I option allows to switch between the Isar and ML view,
independently of the interface script being used.

Note that the world may be also seen the other way round: Emacs may
be started first (with proper setup of Proof General mode), and isabelle

run from within. This requires further Emacs Lisp configuration, see the
Proof General documentation [1] for more information.

Chapter 2

Presenting theories

Isabelle provides several ways to present the outcome of formal developments,
including WWW-based browsable libraries or actual printable documents.
Presentation is centered around the concept of logic sessions. The global
session structure is that of a tree, with Isabelle Pure at its root, further
object-logics derived (e.g. HOLCF from HOL, and HOL from Pure), and
application sessions in leaf positions (usually without a separate image).

The mkdir (see §2.3) and make (see §3.8) tools of Isabelle provide the
primary means for managing Isabelle sessions, including proper setup for
presentation. Here the usedir (see §2.4) tool takes care to let the isabelle

process run any additional stages required for document preparation, notably
the tools document (see §2.5) and latex (see §2.6). The complete tool chain
for managing batch-mode Isabelle sessions is illustrated in figure 2.1.

isatool mkdir invoked once by the user to create the ini-
tial source setup (common IsaMakefile plus
a single session directory);

isatool make invoked repeatedly by the user to keep session
output up-to-date (HTML, documents etc.);

isatool usedir part of the standard IsaMakefile entry of a
session;

isabelle run through isatool usedir;
isatool document run by the Isabelle process if document prepa-

ration is enabled;
isatool latex universal LATEX tool wrapper invoked multiple

times by isatool document; also useful for
manual experiments;

Figure 2.1: The tool chain of Isabelle session presentation

11

CHAPTER 2. PRESENTING THEORIES 12

2.1 Generating theory browser information

As a side-effect of running a logic sessions, Isabelle is able to generate the-
ory browsing information, including HTML documents that show a theory’s
definition, the theorems proved in its ML file and the relationship with its
ancestors and descendants. Besides the HTML file that is generated for ev-
ery theory, Isabelle stores links to all theories in an index file. These indexes
are linked with other indexes to represent the overall tree structure of logic
sessions.

Isabelle also generates graph files that represent the theory hierarchy of
a logic. There is a graph browser Java applet embedded in the generated
HTML pages, and also a stand-alone application that allows browsing theory
graphs without having to start a WWW client first. The latter version also
includes features such as generating Postscript files, which are not available
in the applet version. See §2.2 for further information.

The easiest way to let Isabelle generate theory browsing information for
existing sessions is to append “-i true” to the ISABELLE_USEDIR_OPTIONS

before invoking isatool make (or ./build in the distribution). For example,
add something like this to your Isabelle settings file

ISABELLE_USEDIR_OPTIONS="-i true"

and then change into the src/FOL directory of the Isabelle distribution
and run isatool make, or even isatool make all. The presentation out-
put will appear in $ISABELLE_BROWSER_INFO/FOL, which usually refers to
~/isabelle/browser_info/FOL. Note that option -v true will make the
internal runs of usedir more explicit about such details.

Many standard Isabelle sessions (such as HOL/ex) also provide actual
printable documents. These are prepared automatically as well if enabled
like this, using the -d option

ISABELLE_USEDIR_OPTIONS="-i true -d dvi"

Enabling options -i and -d simultaneausly as shown above causes an appro-
priate “document” link to be included in the HTML index. Documents (or
raw document sources) may be generated independently of browser informa-
tion as well, see §2.5 for further details.

The theory browsing information is stored in a sub-directory directory de-
termined by the ISABELLE_BROWSER_INFO setting plus a prefix corresponding
to the session identifier (according to the tree structure of sub-sessions by
default). A complete WWW view of all standard object-logics and examples
of the Isabelle distribution is available at the Cambridge or Munich Isabelle
sites:

CHAPTER 2. PRESENTING THEORIES 13

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
http://isabelle.in.tum.de/library/

In order to present your own theories on the web, simply copy the corre-
sponding subdirectory from ISABELLE_BROWSER_INFO to your WWW server,
having generated browser info like this:

isatool usedir -i true HOL Foo

This assumes that directory Foo contains some ROOT.ML file to load all your
theories, and HOL is your parent logic image (isatool mkdir assists in
setting up Isabelle session directories, see §2.3). Theory browser information
for HOL should have been generated already beforehand. Alternatively, one
may specify an external link to an existing body of HTML data by giving
usedir a -P option like this:

isatool usedir -i true -P http://isabelle.in.tum.de/library/ HOL Foo

For production use, the usedir tool is usually invoked in an appropriate
IsaMakefile, via the Isabelle make utility. There is a separate mkdir tool
to provide easy setup of all this, with only minimal manual editing required.

isatool mkdir HOL Foo && isatool make

See §2.3 for more information on preparing Isabelle session directories, in-
cluding the setup for documents.

2.2 Browsing theory graphs

The Isabelle graph browser is a general tool for visualizing dependency
graphs. Certain nodes of the graph (i.e. theories) can be grouped together
in “directories”, whose contents may be hidden, thus enabling the user to
collapse irrelevant portions of information. The browser is written in Java,
it can be used both as a stand-alone application and as an applet. Note that
the option -g of isatool usedir (see §2.4) creates graph presentations in
batch mode for inclusion in session documents.

Invoking the graph browser

The stand-alone version of the graph browser is wrapped up as an Isabelle
tool called browser:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/

http://isabelle.in.tum.de/library/

CHAPTER 2. PRESENTING THEORIES 14

Usage: browser [OPTIONS] [GRAPHFILE]

Options are:
-c cleanup -- remove GRAPHFILE after use
-o FILE output to FILE (ps, eps, pdf)

When no filename is specified, the browser automatically changes to the
directory ISABELLE_BROWSER_INFO.

The -c option causes the input file to be removed after use.
The -o option indicates batch-mode operation, with the output written

to the indicated file; note that pdf produces an eps copy as well.

The applet version of the browser is part of the standard WWW theory
presentation, see the link “theory dependencies” within each session index.

Using the graph browser

The browser’s main window, which is shown in figure 2.2, consists of two
sub-windows: In the left sub-window, the directory tree is displayed. The
graph itself is displayed in the right sub-window.

Figure 2.2: Browser main window

CHAPTER 2. PRESENTING THEORIES 15

The directory tree window

We describe the usage of the directory browser and the meaning of the dif-
ferent items in the browser window.

� A red arrow before a directory name indicates that the directory is
currently “folded”, i.e. the nodes in this directory are collapsed to one
single node. In the right sub-window, the names of nodes corresponding
to folded directories are enclosed in square brackets and displayed in
red color.

� A green downward arrow before a directory name indicates that the
directory is currently “unfolded”. It can be folded by clicking on the
directory name. Clicking on the name for a second time unfolds the
directory again. Alternatively, a directory can also be unfolded by
clicking on the corresponding node in the right sub-window.

� Blue arrows stand before ordinary node names. When clicking on such
a name (i.e. that of a theory), the graph display window focuses to the
corresponding node. Double clicking invokes a text viewer window in
which the contents of the theory file are displayed.

The graph display window

When pointing on an ordinary node, an upward and a downward arrow is
shown. Initially, both of these arrows are green. Clicking on the upward
or downward arrow collapses all predecessor or successor nodes, respectively.
The arrow’s color then changes to red, indicating that the predecessor or
successor nodes are currently collapsed. The node corresponding to the col-
lapsed nodes has the name “[....]”. To uncollapse the nodes again, simply
click on the red arrow or on the node with the name “[....]”. Similar to
the directory browser, the contents of theory files can be displayed by double
clicking on the corresponding node.

The “File” menu

Please note that due to Java security restrictions this menu is not available
in the applet version. The meaning of the menu items is as follows:

Open . . . Open a new graph file.

Export to PostScript Outputs the current graph in Postscript format, ap-
propriately scaled to fit on one single sheet of A4 paper. The resulting
file can be printed directly.

CHAPTER 2. PRESENTING THEORIES 16

Export to EPS Outputs the current graph in Encapsulated Postscript for-
mat. The resulting file can be included in other documents.

Quit Quit the graph browser.

*Syntax of graph definition files

A graph definition file has the following syntax:

graph = { vertex ; }+

vertex = vertexname vertexID dirname [+] path [<|>] { vertexID }∗

The meaning of the items in a vertex description is as follows:

vertexname The name of the vertex.

vertexID The vertex identifier. Note that there may be two vertices with
equal names, whereas identifiers must be unique.

dirname The name of the “directory” the vertex should be placed in. A
“+” sign after dirname indicates that the nodes in the directory are
initially visible. Directories are initially invisible by default.

path The path of the corresponding theory file. This is specified relatively
to the path of the graph definition file.

List of successor/predecessor nodes A “<” sign before the list means
that successor nodes are listed, a “>” sign means that predecessor nodes
are listed. If neither “<” nor “>” is found, the browser assumes that
successor nodes are listed.

2.3 Creating Isabelle session directories —

isatool mkdir

The mkdir utility prepares Isabelle session source directories, including a
sensible default setup of IsaMakefile, ROOT.ML, and a document directory
with a minimal root.tex that is sufficient to print all theories of the session
(in the order of appearance); see §2.5 for further information on Isabelle
document preparation. The usage of isatool mkdir is:

CHAPTER 2. PRESENTING THEORIES 17

Usage: mkdir [OPTIONS] [LOGIC] NAME

Options are:
-I FILE alternative IsaMakefile output
-P include parent logic target
-b setup build mode (session outputs heap image)
-q quiet mode

Prepare session directory, including IsaMakefile and document source,
with parent LOGIC (default ISABELLE_LOGIC=$ISABELLE_LOGIC)

The mkdir tool is conservative in the sense that any existing IsaMakefile

etc. is left unchanged. Thus it is safe to invoke it multiple times, although
later runs may not have the desired effect.

Note that mkdir is unable to change IsaMakefile incrementally — man-
ual changes are required for multiple sub-sessions. On order to get an initial
working session, the only editing needed is to add appropriate use_thy calls
to the generated ROOT.ML file.

Options

The -I option specifies an alternative to IsaMakefile for dependencies. Note
that “-” refers to stdout, i.e. “-I-” provides an easy way to peek at mkdir’s
idea of make setup required for some particular of Isabelle session.

The -P option includes a target for the parent LOGIC session in the gen-
erated IsaMakefile. The corresponding sources are assumed to be located
within the Isabelle distribution.

The -b option sets up the current directory as the base for a new session
that provides an actual logic image, as opposed to one that only runs several
theories based on an existing image. Note that in the latter case, everything
except IsaMakefile would be placed into a separate directory NAME, rather
than the current one. See §2.4 for further information on build mode vs.
example mode of the usedir utility.

The -q enables quiet mode, suppressing further notes on how to proceed.

Examples

The standard setup of a single “example session” based on the default logic,
with proper document generation is generated like this:

isatool mkdir Foo && isatool make

The theory sources should be put into the Foo directory, and its ROOT.ML

should be edited to load all required theories. Invoking isatool make again

CHAPTER 2. PRESENTING THEORIES 18

would run the whole session, generating browser information and the docu-
ment automatically. The IsaMakefile is typically tuned manually later, e.g.
adding source dependencies, or changing the options passed to usedir.

Large projects may demand further sessions, potentially with separate
logic images being created. This usually requires manual editing of the gen-
erated IsaMakefile, which is meant to cover all of the sub-session directo-
ries at the same time (this is the deeper reasong why IsaMakefile is not
made part of the initial session directory created by isatool mkdir). See
src/HOL/IsaMakefile of the Isabelle distribution for a full-blown example.

2.4 Running Isabelle sessions — isatool

usedir

The usedir utility builds object-logic images, or runs example sessions based
on existing logics. Its usage is:

CHAPTER 2. PRESENTING THEORIES 19

Usage: usedir [OPTIONS] LOGIC NAME

Options are:
-C BOOL copy existing document directory to -D PATH (default true)
-D PATH dump generated document sources into PATH
-M MAX multithreading: maximum number of worker threads (default 1)
-P PATH set path for remote theory browsing information
-T LEVEL multithreading: trace level (default 0)
-V VERSION declare alternative document VERSION
-b build mode (output heap image, using current dir)
-c BOOL tell ML system to compress output image (default true)
-d FORMAT build document as FORMAT (default false)
-f NAME use ML file NAME (default ROOT.ML)
-g BOOL generate session graph image for document (default false)
-i BOOL generate theory browser information (default false)
-m MODE add print mode for output
-p LEVEL set level of detail for proof objects
-r reset session path
-s NAME override session NAME
-v BOOL be verbose (default false)

Build object-logic or run examples. Also creates browsing
information (HTML etc.) according to settings.

ISABELLE_USEDIR_OPTIONS=
HOL_USEDIR_OPTIONS=

Note that the value of the ISABELLE_USEDIR_OPTIONS setting is implicitly
prefixed to any usedir call. Since the IsaMakefiles of all object-logics
distributed with Isabelle just invoke usedir for the real work, one may control
compilation options globally via above variable. In particular, generation of
HTML browsing information and document preparation is controlled here.

The HOL_USEDIR_OPTIONS setting is specific to the main Isabelle/HOL
image; its value is appended to ISABELLE_USEDIR_OPTIONS for that partic-
ular session only.

Options

Basically, there are two different modes of operation: build mode (enabled
through the -b option) and example mode (default).

Calling usedir with -b runs isabelle with input image LOGIC and out-
put to NAME, as provided on the command line. This will be a batch session,
running ROOT.ML from the current directory and then quitting. It is assumed
that ROOT.ML contains all ml commands required to build the logic.

CHAPTER 2. PRESENTING THEORIES 20

In example mode, usedir runs a read-only session of LOGIC and auto-
matically runs ROOT.ML from within directory NAME. It assumes that this file
contains appropriate ml commands to run the desired examples.

The -i option controls theory browser data generation. It may be explic-
itly turned on or off — as usual, the last occurrence of -i on the command
line wins.

The -P option specifies a path (or actual URL) to be prefixed to any
non-local reference of existing theories. Thus user sessions may easily link to
existing Isabelle libraries already present on the WWW.

The -m options specifies additional print modes to be activated temporar-
ily while the session is processed.

The -d option controls document preparation. Valid arguments are false
(do not prepare any document; this is default), or any of dvi, dvi.gz, ps,
ps.gz, pdf. The logic session has to provide a properly setup document

directory. See §2.5 and §2.6 for more details.

The -V option declares alternative document versions, consisting of
name/tags pairs (cf. options -n and -t of the document tool, §2.5). The
standard document is equivalent to “document=theory,proof,ML”, which
means that all theory begin/end commands, proof body texts, and ML code
will be presented faithfully. An alternative version “outline=/proof/ML”
would fold proof and ML parts, replacing the original text by a short place-
holder. The form “name=-” means to remove document name from the list
of versions to be processed. Any number of -V options may be given; later
declarations have precedence over earlier ones.

The -g option produces images of the theory dependency graph (cf.
§2.2) for inclusion in the generated document, both as session_graph.eps

and session_graph.pdf at the same time. To include this in the fi-
nal LATEX document one could say \includegraphics{session_graph} in
document/root.tex (omitting the file-name extension enables LATEX to se-
lect to correct version, either for the DVI or PDF output path).

The -D option causes the generated document sources to be dumped at
location PATH; this path is relative to the session’s main directory. If the
-C option is true, this will include a copy of an existing document directory
as provided by the user. For example, isatool usedir -D generated HOL

Foo produces a complete set of document sources at Foo/generated. Subse-
quent invocation of isatool document Foo/generated (see also §2.5) will
process the final result independently of an Isabelle job. This decoupled
mode of operation facilitates debugging of serious LATEX errors, for example.

CHAPTER 2. PRESENTING THEORIES 21

The -p option determines the level of detail for internal proof objects, see
also the Isabelle Reference Manual [2].

The -v option causes additional information to be printed while running
the session, notably the location of prepared documents.

The -M option specifies the maximum number of parallel threads used
for processing independent theory files (multithreading only works on suit-
able ML platforms). The special value of “0” or “max” refers to the number
of actual CPU cores of the underlying machine, which is a good starting
point for optimal performance tuning. The -T option determines the level
of detail in tracing output concerning the internal locking and scheduling
in multithreaded operation. This may be helpful in isolating performance
bottle-necks, e.g. due to excessive wait states when locking critical code sec-
tions.

Any usedir session is named by some session identifier. These accumu-
late, documenting the way sessions depend on others. For example, consider
Pure/FOL/ex, which refers to the examples of FOL, which in turn is built
upon Pure.

The current session’s identifier is by default just the base name of the
LOGIC argument (in build mode), or of the NAME argument (in example mode).
This may be overridden explicitly via the -s option.

Examples

Refer to the IsaMakefiles of the Isabelle distribution’s object-logics as a
model for your own developments. For example, see src/FOL/IsaMakefile.
The Isabelle mkdir tool (see §2.3) creates IsaMakefiles with proper invoca-
tion of usedir as well.

2.5 Preparing Isabelle session documents —

isatool document

The document utility prepares logic session documents, processing the
sources both as provided by the user and generated by Isabelle. Its usage is:

CHAPTER 2. PRESENTING THEORIES 22

Usage: document [OPTIONS] [DIR]

Options are:
-c cleanup -- be aggressive in removing old stuff
-n NAME specify document name (default ’document’)
-o FORMAT specify output format: dvi (default), dvi.gz, ps,

ps.gz, pdf
-t TAGS specify tagged region markup

Prepare the theory session document in DIR (default ’document’)
producing the specified output format.

This tool is usually run automatically as part of the corresponding Isabelle
batch process, provided document preparation has been enabled (cf. the -d

option of the usedir utility, §2.4). It may be manually invoked on the
generated browser information document output as well, e.g. in case of errors
encountered in the batch run.

The -c option tells the document tool to dispose the document sources
after successful operation. This is the right thing to do for sources gener-
ated by an Isabelle process, but take care of your files in manual document
preparation!

The -n and -o option specify the final output file name and format, the
default is “document.dvi”. Note that the result will appear in the parent of
the target DIR.

The -t option tells LATEX how to interpret tagged Isabelle command
regions. Tags are specified as a comma separated list of modifier/name pairs:
“+foo” (or just “foo”) means to keep, “-foo” to drop, and “/foo” to fold
text tagged as foo. The builtin default is equivalent to the tag specification
“/theory,/proof,/ML,+visible,-invisible”; see also the LATEX macros
\isakeeptag, \isadroptag, and \isafoldtag in isabelle.sty.

Document preparation requires a properly setup “document” directory
within the logic session sources. This directory is supposed to contain all the
files needed to produce the final document — apart from the actual theories
which are generated by Isabelle.

For most practical purposes, the document tool is smart enough to create
any of the specified output formats, taking root.tex supplied by the user as
a starting point. This even includes multiple runs of LATEX to accommodate
references and bibliographies (the latter assumes root.bib within the same
directory).

In more complex situations, a separate IsaMakefile for the document
sources may be given instead. This should provide targets for any admissible

CHAPTER 2. PRESENTING THEORIES 23

document format; these have to produce corresponding output files named
after root as well, e.g. root.dvi for target format dvi.

When running the session, Isabelle copies the original document directory
into its proper place within ISABELLE_BROWSER_INFO according to the session
path. Then, for any processed theory A some LATEX source is generated and
put there as A.tex. Furthermore, a list of all generated theory files is put
into session.tex. Typically, the root LATEX file provided by the user would
include session.tex to get a document containing all the theories.

The LATEX versions of the theories require some macros defined in
isabelle.sty as distributed with Isabelle. Doing \usepackage{isabelle}

in root.tex should be fine; the underlying Isabelle latex utility already
includes an appropriate TEX inputs path.

If the text contains any references to Isabelle symbols (such as \<forall>)
then isabellesym.sty should be included as well. This package contains a
standard set of LATEX macro definitions \isasymfoo corresponding to \<foo>
(see Appendix A for a complete list of predefined Isabelle symbols). Users
may invent further symbols as well, just by providing LATEX macros in a
similar fashion as in isabellesym.sty of the distribution.

For proper setup of PDF documents (with hyperlinks and bookmarks),
we recommend to include pdfsetup.sty as well. It is safe to do so even
without using PDF LATEX.

As a final step of document preparation within Isabelle, isatool

document -c is run on the resulting document directory. Thus the actual
output document is built and installed in its proper place (as linked by the
session’s index.html if option -i of usedir has been enabled, cf. §2.1). The
generated sources are deleted after successful run of LATEX and friends. Note
that a separate copy of the sources may be retained by passing an option -D

to the usedir utility when running the session (see also §2.4).

2.6 Running LATEX within the Isabelle envi-

ronment — isatool latex

The latex utility provides the basic interface for Isabelle document prepa-
ration. Its usage is:

CHAPTER 2. PRESENTING THEORIES 24

Usage: latex [OPTIONS] [FILE]

Options are:
-o FORMAT specify output format: dvi (default), dvi.gz, ps,

ps.gz, pdf, bbl, idx, sty, syms

Run LaTeX (and related tools) on FILE (default root.tex),
producing the specified output format.

Appropriate LATEX-related programs are run on the input file, according to
the given output format: latex, pdflatex, dvips, bibtex (for bbl), and
makeindex (for idx). The actual commands are determined from the settings
environment (ISABELLE_LATEX etc., see §1.1).

The sty output format causes the Isabelle style files to be updated from
the distribution. This is useful in special situations where the document
sources are to be processed another time by separate tools (cf. option -D of
the usedir utility, see §2.4).

The syms output is for internal use; it generates lists of symbols that are
available without loading additional LATEX packages.

Examples

Invoking isatool latex by hand may be occasionally useful when debugging
failed attempts of the automatic document preparation stage of batch-mode
Isabelle. The abortive process leaves the sources at a certain place within
ISABELLE_BROWSER_INFO, see the runtime error message for details. This
enables users to inspect LATEX runs in further detail, e.g. like this:

cd ~/isabelle/browser_info/HOL/Test/document
isatool latex -o pdf

Chapter 3

Miscellaneous tools

Subsequently we describe various Isabelle related utilities, given in alphabet-
ical order.

3.1 Converting legacy ML scripts — isatool

convert

The convert utility assists in converting legacy ML proof scripts into the
new-style format of Isabelle/Isar:

Usage: convert [FILES|DIRS...]

Recursively find .ML files, converting legacy tactic scripts to
Isabelle/Isar tactic emulation.
Note: conversion is only approximated, based on some heuristics.

Renames old versions of FILES by appending "~0~".
Creates new versions of FILES by appending ".thy".

The resulting theory text uses the tactic emulation facilities of Isabelle/Isar
(see also [2], especially the “Conversion guide” in the appendix). Usually
there is some manual tuning required to get an automatically converted script
work again — the success rate is around 99% for common ML scripts.

3.2 Displaying documents — isatool

display

The display utility displays documents in DVI format:

25

CHAPTER 3. MISCELLANEOUS TOOLS 26

Usage: display [OPTIONS] FILE

Options are:
-c cleanup -- remove FILE after use

Display document FILE (in DVI format).

The -c option causes the input file to be removed after use. The program
for viewing dvi files is determined by the DVI_VIEWER setting.

3.3 Viewing documentation — isatool doc

The doc utility displays online documentation:

Usage: doc [DOC]

View Isabelle documentation DOC, or show list of available documents.

If called without arguments, it lists all available documents. Each line starts
with an identifier, followed by a short description. Any of these identifiers
may be specified as the first argument in order to have the corresponding
document displayed.

The ISABELLE_DOCS setting specifies the list of directories (separated by
colons) to be scanned for documentations. The program for viewing dvi files
is determined by the DVI_VIEWER setting.

3.4 Getting logic images — isatool findlogics

The findlogics utility traverses all directories specified in ISABELLE_PATH,
looking for Isabelle logic images. Its usage is:

Usage: findlogics

Collect heap file names from ISABELLE_PATH.

The base names of all files found on the path are printed — sorted and with
duplicates removed. Also note that lookup in ISABELLE_PATH includes the
current values of ML_SYSTEM and ML_PLATFORM. Thus switching to another
ml compiler may change the set of logic images available.

CHAPTER 3. MISCELLANEOUS TOOLS 27

3.5 Inspecting the settings environment —

isatool getenv

The Isabelle settings environment — as provided by the site-default and
user-specific settings files — can be inspected with the getenv utility:

Usage: getenv [OPTIONS] [VARNAMES ...]

Options are:
-a display complete environment
-b print values only (doesn’t work for -a)

Get value of VARNAMES from the Isabelle settings.

With the -a option, one may inspect the full process environment that
Isabelle related programs are run in. This usually contains much more vari-
ables than are actually Isabelle settings. Normally, output is a list of lines of
the form name=value. The -b option causes only the values to be printed.

Examples

Get the ml system name and the location where the compiler binaries are
supposed to reside as follows:

isatool getenv ML_SYSTEM ML_HOME
ML_SYSTEM=polyml

ML_HOME=/usr/share/polyml/x86-linux

The next one peeks at the output directory for isabelle logic images:

isatool getenv -b ISABELLE_OUTPUT
/home/me/isabelle/heaps/polyml_x86-linux

Here we have used the -b option to suppress the ISABELLE_OUTPUT= prefix.
The value above is what became of the following assignment in the default
settings file:

ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"

Note how the ML_IDENTIFIER value got appended automatically to each path
component. This is a special feature of ISABELLE_OUTPUT.

CHAPTER 3. MISCELLANEOUS TOOLS 28

3.6 Installing standalone Isabelle executables

— isatool install

By default, the Isabelle binaries (isabelle, isatool etc.) are just run from
their location within the distribution directory, probably indirectly by the
shell through its PATH. Other schemes of installation are supported by the
install utility:

Usage: install [OPTIONS]

Options are:
-d DISTDIR use DISTDIR as Isabelle distribution

(default ISABELLE_HOME)
-p DIR install standalone binaries in DIR

Install Isabelle executables with absolute references to the current
distribution directory.

The -d option overrides the current Isabelle distribution directory as de-
termined by ISABELLE_HOME.

The -p option installs executable wrapper scripts for isabelle, isatool,
Isabelle, containing proper absolute references to the Isabelle distribution
directory. A typical DIR specification would be some directory expected to
be in the shell’s PATH, such as /usr/local/bin. It is important to note that
a plain manual copy of the original Isabelle executables just would not work!

3.7 Creating instances of the Isabelle logo —

isatool logo

The logo utility creates any instance of the generic Isabelle logo as an En-
capsuled Postscript file (EPS):

Usage: logo [OPTIONS] NAME

Create instance NAME of the Isabelle logo (as EPS).

Options are:
-o OUTFILE set output file (default determined from NAME)
-q quiet mode

You are encouraged to use this to create a derived logo for your Isabelle
project. For example, isatool logo Bali creates isabelle_bali.eps.

CHAPTER 3. MISCELLANEOUS TOOLS 29

3.8 Isabelle’s version of make — isatool make

The Isabelle make utility is a very simple wrapper for ordinary Unix make:

Usage: make [ARGS ...]

Compile the logic in current directory using IsaMakefile.
ARGS are directly passed to the system make program.

Note that the Isabelle settings environment is also active. Thus one may
refer to its values within the IsaMakefile, e.g. $(ISABELLE_OUTPUT). Fur-
thermore, programs started from the make file also inherit this environment.
Typically, IsaMakefiles defer the real work to the usedir utility, see §2.4.

The basic IsaMakefile convention is that the default target builds the
actual logic, including its parents if appropriate. The images target is in-
tended to build all local logic images, while the test target shall build all
related examples. The all target shall do images and test.

Examples

Refer to the IsaMakefiles of the Isabelle distribution’s object-logics as a
model for your own developments. For example, see src/FOL/IsaMakefile.

3.9 Make all logics — isatool makeall

The makeall utility applies Isabelle make to all logic directories of the dis-
tribution:

Usage: makeall [ARGS ...]

Apply isatool make to all logics (passing ARGS).

The arguments ARGS are just passed verbatim to each make invocation.

3.10 Printing documents — isatool print

The print utility prints documents:

CHAPTER 3. MISCELLANEOUS TOOLS 30

Usage: print [OPTIONS] FILE

Options are:
-c cleanup -- remove FILE after use

Print document FILE.

The -c option causes the input file to be removed after use. The printer
spool command is determined by the PRINT_COMMAND setting.

3.11 Run Isabelle with plain tty interaction

— isatool tty

The tty utility runs the Isabelle process interactively within a plain terminal
session:

Usage: tty [OPTIONS]

Options are:
-l NAME logic image name (default ISABELLE_LOGIC)
-m MODE add print mode for output
-p NAME line editor program name (default ISABELLE_LINE_EDITOR)

Run Isabelle process with plain tty interaction, and optional line editor.

The -l option specifies the logic image. The -m option specifies additional
print modes. The The -p option specifies an alternative line editor (such as
the rlwrap wrapper for GNU readline); the fall-back is to use raw standard
input.

3.12 Remove awkward symbol names from

theory sources — isatool unsymbolize

The unsymbolize utility tunes Isabelle theory sources to improve readabil-
ity for plain ASCII output (e.g. in email communication). Most notably,
unsymbolize replaces awkward arrow symbols such as \<Longrightarrow>

by ==>.

Usage: unsymbolize [FILES|DIRS...]

Recursively find .thy/.ML files, removing unreadable symbol names.
Note: this is an ad-hoc script; there is no systematic way to replace
symbols independently of the inner syntax of a theory!

Renames old versions of FILES by appending "~~".

CHAPTER 3. MISCELLANEOUS TOOLS 31

3.13 Output the version identifier of the Isa-

belle distribution — isatool version

The version utility outputs the full version string of the Isabelle distribution
being used, e.g. “Isabelle2007: November 2007”. There are no options
nor arguments.

3.14 Convert XML to YXML — isatool

yxml

The yxml utility converts a standard XML document (stdin) to the much
simpler and more efficient YXML format of Isabelle (stdout). The YXML
format is defined as follows.

1. The encoding is always UTF-8.

2. Body text is represented verbatim (no escaping, no named entities, no
CDATA chunks, no comments).

3. Markup elements are represented via ASCII control characters X = 5
and Y = 6 as follows:

XML YXML
<name attribute=value . . . > X Y name Y attribute=value. . . X
</name> X Y X

There is no special case for empty body text, i.e. <foo/> is treated like
<foo></foo>. Also note that X and Y may never occur in well-formed
XML documents.

Parsing YXML is pretty straight-forward: split the text into chunks sep-
arated by X, then split each chunk into sub-chunks separated by Y. Markup
chunks start with an empty sub-chunk, and a second empty sub-chunk in-
dicates close of an element. Any other non-empty chunk consists of plain
text.

YXML documents may be detected quickly by checking that the first two
characters are X Y.

Appendix A

Standard Isabelle symbols

Isabelle supports an infinite number of non-ASCII symbols, which are repre-
sented in source text as \<name> (where name may be any identifier). It is
left to front-end tools how to present these symbols to the user. The collec-
tion of predefined standard symbols given below is available by default for
Isabelle document output, due to appropriate definitions of \isasymname
for each \<name> in the isabellesym.sty file. Most of these symbols are
displayed properly in Proof General if used with the X-Symbol package.

Moreover, any single symbol (or ASCII character) may be prefixed by
\<^sup> for superscript and \<^sub> for subscript, such as A\<^sup>\<star>
for A?; the alternative versions \<^isub> and \<^isup> are considered as
quasi letters and may be used within identifiers. Sub- and superscripts
that span a region of text are marked up with \<^bsub>. . . \<^esub> and
\<^bsup>. . . \<^esup>, respectively. Furthermore, all ASCII characters and
most other symbols may be printed in bold by prefixing \<^bold>, such as
\<^bold>\<alpha> for α. Note that \<^bold> may not be combined with
sub- or superscripts for single symbols.

Further details of Isabelle document preparation are covered in chapter 2.

\<zero> 0 \<one> 1
\<two> 2 \<three> 3
\<four> 4 \<five> 5
\<six> 6 \<seven> 7
\<eight> 8 \<nine> 9
\<A> A \ B
\<C> C \<D> D
\<E> E \<F> F
\<G> G \<H> H
\<I> I \<J> J
\<K> K \<L> L
\<M> M \<N> N
\<O> O \<P> P
\<Q> Q \<R> R

32

APPENDIX A. STANDARD ISABELLE SYMBOLS 33

\<S> S \<T> T
\<U> U \<V> V
\<W> W \<X> X
\<Y> Y \<Z> Z
\<a> a \ b
\<c> c \<d> d
\<e> e \<f> f
\<g> g \<h> h
\<i> i \<j> j
\<k> k \<l> l
\<m> m \<n> n
\<o> o \<p> p
\<q> q \<r> r
\<s> s \<t> t
\<u> u \<v> v
\<w> w \<x> x
\<y> y \<z> z
\<AA> A \<BB> B

\<CC> C \<DD> D

\<EE> E \<FF> F

\<GG> G \<HH> H

\<II> I \<JJ> J

\<KK> K \<LL> L

\<MM> M \<NN> N

\<OO> O \<PP> P

\<QQ> Q \<RR> R

\<SS> S \<TT> T

\<UU> U \<VV> V

\<WW> W \<XX> X

\<YY> Y \<ZZ> Z

\<aa> a \<bb> b

\<cc> c \<dd> d

\<ee> e \<ff> f

\<gg> g \<hh> h

\<ii> i \<jj> j

\<kk> k \<ll> l

\<mm> m \<nn> n

\<oo> o \<pp> p

\<qq> q \<rr> r

APPENDIX A. STANDARD ISABELLE SYMBOLS 34

\<ss> s \<tt> t

\<uu> u \<vv> v

\<ww> w \<xx> x

\<yy> y \<zz> z

\<alpha> α \<beta> β
\<gamma> γ \<delta> δ
\<epsilon> ε \<zeta> ζ
\<eta> η \<theta> ϑ
\<iota> ι \<kappa> κ
\<lambda> λ \<mu> µ
\<nu> ν \<xi> ξ
\<pi> π \<rho> %
\<sigma> σ \<tau> τ
\<upsilon> υ \<phi> ϕ
\<chi> χ \<psi> ψ
\<omega> ω \<Gamma> Γ
\<Delta> ∆ \<Theta> Θ
\<Lambda> Λ \<Xi> Ξ
\<Pi> Π \<Sigma> Σ
\<Upsilon> Υ \<Phi> Φ
\<Psi> Ψ \<Omega> Ω
\<bool> IB \<complex> C
\<nat> IN \<rat> Q
\<real> IR \<int> ZZ
\<leftarrow> ← \<longleftarrow> ←−
\<rightarrow> → \<longrightarrow> −→
\<Leftarrow> ⇐ \<Longleftarrow> ⇐=
\<Rightarrow> ⇒ \<Longrightarrow> =⇒
\<leftrightarrow> ↔ \<longleftrightarrow> ←→
\<Leftrightarrow> ⇔ \<Longleftrightarrow> ⇐⇒
\<mapsto> 7→ \<longmapsto> 7−→
\<midarrow> − \<Midarrow> =
\<hookleftarrow> ←↩ \<hookrightarrow> ↪→
\<leftharpoondown> ↽ \<rightharpoondown> ⇁
\<leftharpoonup> ↼ \<rightharpoonup> ⇀
\<rightleftharpoons>
 \<leadsto>
\<downharpoonleft> � \<downharpoonright> �
\<upharpoonleft> � \<upharpoonright> �
\<restriction> � \<Colon> ::

APPENDIX A. STANDARD ISABELLE SYMBOLS 35

\<up> ↑ \<Up> ⇑
\<down> ↓ \<Down> ⇓
\<updown> l \<Updown> m
\<langle> 〈 \<rangle> 〉
\<lceil> d \<rceil> e
\<lfloor> b \<rfloor> c
\<lparr> (| \<rparr> |)
\<lbrakk> [[\<rbrakk>]]
\<lbrace> {| \<rbrace> |}
\<guillemotleft> � \<guillemotright> �

\<bottom> ⊥ \<top> >
\<and> ∧ \<And>

∧
\<or> ∨ \<Or>

∨
\<forall> ∀ \<exists> ∃
\<nexists> @ \<not> ¬
\<box> � \<diamond> ♦
\<turnstile> ` \<Turnstile> |=
\<tturnstile> `̀ \<TTurnstile> ||=
\<stileturn> a \<surd>

√

\<le> ≤ \<ge> ≥
\<lless> � \<ggreater> �
\<lesssim> . \<greatersim> &
\<lessapprox> / \<greaterapprox> '
\<in> ∈ \<notin> /∈
\<subset> ⊂ \<supset> ⊃
\<subseteq> ⊆ \<supseteq> ⊇
\<sqsubset> @ \<sqsupset> A
\<sqsubseteq> v \<sqsupseteq> w
\<inter> ∩ \<Inter>

⋂
\<union> ∪ \<Union>

⋃
\<squnion> t \<Squnion>

⊔
\<sqinter> u \<Sqinter>

d

\<setminus> \ \<propto> ∝
\<uplus>] \<Uplus>

⊎
\<noteq> 6= \<sim> ∼
\<doteq>

.= \<simeq> '
\<approx> ≈ \<asymp> �
\<cong> ∼= \<smile> ^
\<equiv> ≡ \<frown> _

APPENDIX A. STANDARD ISABELLE SYMBOLS 36

\<Join> on \<bowtie> ./
\<prec> ≺ \<succ> �
\<preceq> � \<succeq> �
\<parallel> ‖ \<bar> |
\<plusminus> ± \<minusplus> ∓
\<times> × \<div> ÷
\<cdot> · \<star> ?
\<bullet> · \<circ> ◦
\<dagger> † \<ddagger> ‡
\<lhd> C \<rhd> B
\<unlhd> E \<unrhd> D
\<triangleleft> / \<triangleright> .

\<triangle> 4 \<triangleq> ,
\<oplus> ⊕ \<Oplus>

⊕
\<otimes> ⊗ \<Otimes>

⊗
\<odot> � \<Odot>

⊙
\<ominus> 	 \<oslash> �
\<dots> . . . \<cdots> · · ·
\<Sum>

∑
\<Prod>

∏
\<Coprod>

∐
\<infinity> ∞

\<integral>
∫

\<ointegral>
∮

\<clubsuit> ♣ \<diamondsuit> ♦
\<heartsuit> ♥ \<spadesuit> ♠
\<aleph> ℵ \<emptyset> ∅
\<nabla> ∇ \<partial> ∂
\<Re> < \<Im> =
\<flat> [\<natural> \
\<sharp>] \<angle> ∠
\<copyright> © \<registered> ®
\<hyphen> - \<inverse> −1

\<onesuperior> 1 \<onequarter> ¼
\<twosuperior> 2 \<onehalf> ½
\<threesuperior> 3 \<threequarters> ¾
\<ordfeminine> ª \<ordmasculine> º
\<section> § \<paragraph> ¶
\<exclamdown> ¡ \<questiondown> ¿
\<euro> � \<pounds> £
\<yen> U \<cent> ¢
\<currency> ¤ \<degree> °

APPENDIX A. STANDARD ISABELLE SYMBOLS 37

\<amalg> q \<mho> f
\<lozenge> ♦ \<wp> ℘
\<wrong> o \<struct> �
\<acute> ´ \<index> ı
\<dieresis> ¨ \<cedilla> ¸
\<hungarumlaut> ˝ \<spacespace>
\<module> 〈module〉 \<some> ε

Bibliography

[1] David Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.

[2] Lawrence C. Paulson. The Isabelle Reference Manual.
http://isabelle.in.tum.de/doc/ref.pdf.

[3] Markus Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

38

http://proofgeneral.inf.ed.ac.uk/

http://isabelle.in.tum.de/doc/ref.pdf

http://isabelle.in.tum.de/doc/isar-ref.pdf

Index

browser tool, 13

convert tool, 25

display tool, 25
doc tool, 26
document tool, 21
DVI_VIEWER setting, 5

findlogics tool, 26

getenv tool, 27

HOL_USEDIR_OPTIONS setting, 19
HTML, 19

INSTALL, 1
install tool, 28
ISABELLE setting, 3, 4
Isabelle, 1, 9
isabelle, 1, 6
isabelle-interface, 9
isabelle-process, 6
ISABELLE_BIBTEX setting, 5
ISABELLE_BROWSER_INFO setting, 4,

12
ISABELLE_DOC_FORMAT setting, 5
ISABELLE_DOCS setting, 5
ISABELLE_DVIPS setting, 5
ISABELLE_FILE_IDENT setting, 5
ISABELLE_HOME setting, 2, 3
ISABELLE_HOME_USER setting, 3
ISABELLE_IDENTIFIER setting, 4
ISABELLE_INTERFACE setting, 5, 9
ISABELLE_LATEX setting, 5
ISABELLE_LINE_EDITOR setting, 4
ISABELLE_LOGIC setting, 4

ISABELLE_OUTPUT setting, 3, 4
ISABELLE_PATH setting, 4
ISABELLE_PDFLATEX setting, 5
ISABELLE_TMP_PREFIX setting, 5
ISABELLE_TOOLS setting, 5
ISABELLE_USEDIR_OPTIONS setting,

4, 12, 19
IsaMakefile, 19, 29
ISATOOL setting, 3, 4
isatool, 1, 5

latex tool, 23
logo tool, 28

make tool, 29
makeall tool, 29
mkdir tool, 16
ML_HOME setting, 4
ML_IDENTIFIER setting, 4
ML_OPTIONS setting, 4
ML_PLATFORM setting, 4
ML_SYSTEM setting, 4

PDF_VIEWER setting, 5
print tool, 29
PRINT_COMMAND setting, 5

settings, 1

theory browsing information, 12
theory graph browser, 13
tty tool, 30

unsymbolize tool, 30
usedir tool, 18
user interface

Proof General, 9

39

INDEX 40

version tool, 31

yxml tool, 31

			The Isabelle system environment

			Isabelle settings

			Building the environment

			Common variables

			The Isabelle tools wrapper

			The raw Isabelle process

			The Isabelle interface wrapper

			Presenting theories

			Generating theory browser information

			Browsing theory graphs

			Invoking the graph browser

			Using the graph browser

			Creating Isabelle session directories --- isatool mkdir

			Running Isabelle sessions --- isatool usedir

			Preparing Isabelle session documents --- isatool document

			Running LaTeX within the Isabelle environment --- isatool latex

			Miscellaneous tools

			Converting legacy ML scripts --- isatool convert

			Displaying documents --- isatool display

			Viewing documentation --- isatool doc

			Getting logic images --- isatool findlogics

			Inspecting the settings environment --- isatool getenv

			Installing standalone Isabelle executables --- isatool install

			Creating instances of the Isabelle logo --- isatool logo

			Isabelle's version of make --- isatool make

			Make all logics --- isatool makeall

			Printing documents --- isatool print

			Run Isabelle with plain tty interaction --- isatool tty

			Remove awkward symbol names from theory sources --- isatool unsymbolize

			Output the version identifier of the Isabelle distribution --- isatool version

			Convert XML to YXML --- isatool yxml

			Standard Isabelle symbols

Isabelle2008/doc/tutorial.pdf

Tobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ →

∀
=Isa

be
lle

β
α

HOL

A Proof Assistant for
Higher-Order Logic

June 8, 2008

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
HongKong Barcelona
Budapest

Preface

This volume is a self-contained introduction to interactive proof in higher-
order logic (HOL), using the proof assistant Isabelle. It is written for potential
users rather than for our colleagues in the research world.

The book has three parts.

– The first part, Elementary Techniques, shows how to model functional
programs in higher-order logic. Early examples involve lists and the natural
numbers. Most proofs are two steps long, consisting of induction on a
chosen variable followed by the auto tactic. But even this elementary part
covers such advanced topics as nested and mutual recursion.

– The second part, Logic and Sets, presents a collection of lower-level
tactics that you can use to apply rules selectively. It also describes Isa-
belle/HOL’s treatment of sets, functions and relations and explains how to
define sets inductively. One of the examples concerns the theory of model
checking, and another is drawn from a classic textbook on formal languages.

– The third part, Advanced Material, describes a variety of other topics.
Among these are the real numbers, records and overloading. Advanced
techniques for induction and recursion are described. A whole chapter is
devoted to an extended example: the verification of a security protocol.

The typesetting relies on Wenzel’s theory presentation tools. An anno-
tated source file is run, typesetting the theory in the form of a LATEX source
file. This book is derived almost entirely from output generated in this way.
The final chapter of Part I explains how users may produce their own formal
documents in a similar fashion.

Isabelle’s web site1 contains links to the download area and to documen-
tation and other information. Most Isabelle sessions are now run from within
David Aspinall’s wonderful user interface, Proof General2, even together with
the X-Symbol3 package for XEmacs. This book says very little about Proof
General, which has its own documentation. In order to run Isabelle, you will
need a Standard ML compiler. We recommend Poly/ML4, which is free and

1 http://isabelle.in.tum.de/
2 http://proofgeneral.inf.ed.ac.uk/
3 http://x-symbol.sourceforge.net
4 http://www.polyml.org/

http://isabelle.in.tum.de/

http://proofgeneral.inf.ed.ac.uk/

http://x-symbol.sourceforge.net

http://www.polyml.org/

http://isabelle.in.tum.de/

http://proofgeneral.inf.ed.ac.uk/

http://x-symbol.sourceforge.net

http://www.polyml.org/

vi Preface

gives the best performance. The other fully supported compiler is Standard
ML of New Jersey5.

This tutorial owes a lot to the constant discussions with and the valuable
feedback from the Isabelle group at Munich: Stefan Berghofer, Olaf Müller,
Wolfgang Naraschewski, David von Oheimb, Leonor Prensa Nieto, Cornelia
Pusch, Norbert Schirmer and Martin Strecker. Stephan Merz was also kind
enough to read and comment on a draft version. We received comments from
Stefano Bistarelli, Gergely Buday, John Matthews and Tanja Vos.

The research has been funded by many sources, including the dfg
grants NI 491/2, NI 491/3, NI 491/4, NI 491/6, bmbf project Verisoft,
the epsrc grants GR/K57381, GR/K77051, GR/M75440, GR/R01156/01
GR/S57198/01 and by the esprit working groups 21900 and IST-1999-29001
(the Types project).

5 http://www.smlnj.org/index.html

http://www.smlnj.org/index.html

http://www.smlnj.org/index.html

http://www.smlnj.org/index.html

Contents

Part I. Elementary Techniques

1. The Basics . 3
1.1 Introduction . 3
1.2 Theories . 4
1.3 Types, Terms and Formulae . 4
1.4 Variables . 7
1.5 Interaction and Interfaces . 7
1.6 Getting Started . 8

2. Functional Programming in HOL . 9
2.1 An Introductory Theory . 9
2.2 Evaluation . 11
2.3 An Introductory Proof . 12
2.4 Some Helpful Commands . 16
2.5 Datatypes . 16

2.5.1 Lists . 17
2.5.2 The General Format . 17
2.5.3 Primitive Recursion . 17
2.5.4 Case Expressions . 18
2.5.5 Structural Induction and Case Distinction 19
2.5.6 Case Study: Boolean Expressions 19

2.6 Some Basic Types . 21
2.6.1 Natural Numbers . 22
2.6.2 Pairs . 23
2.6.3 Datatype option . 24

2.7 Definitions . 24
2.7.1 Type Synonyms . 24
2.7.2 Constant Definitions . 24

2.8 The Definitional Approach . 25

3. More Functional Programming . 27
3.1 Simplification . 27

3.1.1 What is Simplification? . 27
3.1.2 Simplification Rules . 28

viii Contents

3.1.3 The simp Method . 28
3.1.4 Adding and Deleting Simplification Rules 29
3.1.5 Assumptions . 29
3.1.6 Rewriting with Definitions . 30
3.1.7 Simplifying let-Expressions . 30
3.1.8 Conditional Simplification Rules . 31
3.1.9 Automatic Case Splits . 31
3.1.10 Tracing . 32
3.1.11 Finding Theorems . 33

3.2 Induction Heuristics . 35
3.3 Case Study: Compiling Expressions . 37
3.4 Advanced Datatypes . 39

3.4.1 Mutual Recursion . 39
3.4.2 Nested Recursion . 41
3.4.3 The Limits of Nested Recursion . 43
3.4.4 Case Study: Tries . 44

3.5 Total Recursive Functions: fun . 47
3.5.1 Definition . 47
3.5.2 Termination . 48
3.5.3 Simplification . 49
3.5.4 Induction . 50

4. Presenting Theories . 53
4.1 Concrete Syntax . 53

4.1.1 Infix Annotations . 53
4.1.2 Mathematical Symbols . 54
4.1.3 Prefix Annotations . 55
4.1.4 Abbreviations . 56

4.2 Document Preparation . 57
4.2.1 Isabelle Sessions . 58
4.2.2 Structure Markup . 59
4.2.3 Formal Comments and Antiquotations 60
4.2.4 Interpretation of Symbols . 62
4.2.5 Suppressing Output . 63

Part II. Logic and Sets

5. The Rules of the Game . 67
5.1 Natural Deduction . 67
5.2 Introduction Rules . 68
5.3 Elimination Rules . 69
5.4 Destruction Rules: Some Examples . 71
5.5 Implication . 72
5.6 Negation . 73

Contents ix

5.7 Interlude: the Basic Methods for Rules . 75
5.8 Unification and Substitution . 76

5.8.1 Substitution and the subst Method 77
5.8.2 Unification and Its Pitfalls . 78

5.9 Quantifiers . 80
5.9.1 The Universal Introduction Rule 80
5.9.2 The Universal Elimination Rule . 81
5.9.3 The Existential Quantifier . 82
5.9.4 Renaming an Assumption: rename_tac 83
5.9.5 Reusing an Assumption: frule . 83
5.9.6 Instantiating a Quantifier Explicitly 84

5.10 Description Operators . 85
5.10.1 Definite Descriptions . 86
5.10.2 Indefinite Descriptions . 86

5.11 Some Proofs That Fail . 88
5.12 Proving Theorems Using the blast Method. 89
5.13 Other Classical Reasoning Methods . 91
5.14 Finding More Theorems . 93
5.15 Forward Proof: Transforming Theorems 93

5.15.1 Modifying a Theorem using of, where and THEN 94
5.15.2 Modifying a Theorem using OF . 96

5.16 Forward Reasoning in a Backward Proof 97
5.16.1 The Method insert . 98
5.16.2 The Method subgoal_tac . 99

5.17 Managing Large Proofs . 100
5.17.1 Tacticals, or Control Structures . 100
5.17.2 Subgoal Numbering . 101

5.18 Proving the Correctness of Euclid’s Algorithm 102

6. Sets, Functions and Relations . 107
6.1 Sets . 107

6.1.1 Finite Set Notation . 109
6.1.2 Set Comprehension . 109
6.1.3 Binding Operators . 110
6.1.4 Finiteness and Cardinality . 111

6.2 Functions . 111
6.2.1 Function Basics . 111
6.2.2 Injections, Surjections, Bijections 112
6.2.3 Function Image . 113

6.3 Relations . 113
6.3.1 Relation Basics . 114
6.3.2 The Reflexive and Transitive Closure 114
6.3.3 A Sample Proof . 115

6.4 Well-Founded Relations and Induction . 116
6.5 Fixed Point Operators . 117

x Contents

6.6 Case Study: Verified Model Checking . 118
6.6.1 Propositional Dynamic Logic — PDL 120
6.6.2 Computation Tree Logic — CTL 123

7. Inductively Defined Sets . 129
7.1 The Set of Even Numbers . 129

7.1.1 Making an Inductive Definition . 129
7.1.2 Using Introduction Rules . 130
7.1.3 Rule Induction . 130
7.1.4 Generalization and Rule Induction 131
7.1.5 Rule Inversion . 132
7.1.6 Mutually Inductive Definitions . 133
7.1.7 Inductively Defined Predicates . 134

7.2 The Reflexive Transitive Closure . 135
7.3 Advanced Inductive Definitions . 137

7.3.1 Universal Quantifiers in Introduction Rules 138
7.3.2 Alternative Definition Using a Monotone Function 139
7.3.3 A Proof of Equivalence . 140
7.3.4 Another Example of Rule Inversion 142

7.4 Case Study: A Context Free Grammar . 143

Part III. Advanced Material

8. More about Types . 151
8.1 Pairs and Tuples . 151

8.1.1 Pattern Matching with Tuples . 151
8.1.2 Theorem Proving . 152

8.2 Records . 154
8.2.1 Record Basics . 154
8.2.2 Extensible Records and Generic Operations 155
8.2.3 Record Equality . 157
8.2.4 Extending and Truncating Records 158

8.3 Axiomatic Type Classes . 160
8.3.1 Overloading . 160
8.3.2 Axioms . 162

8.4 Numbers . 166
8.4.1 Numeric Literals . 166
8.4.2 The Type of Natural Numbers, nat 167
8.4.3 The Type of Integers, int . 169
8.4.4 The Types of Rational, Real and Complex Numbers . . 170
8.4.5 The Numeric Type Classes . 171

8.5 Introducing New Types . 173
8.5.1 Declaring New Types . 173
8.5.2 Defining New Types . 174

Contents xi

9. Advanced Simplification and Induction 177
9.1 Simplification . 177

9.1.1 Advanced Features . 177
9.1.2 How the Simplifier Works . 179

9.2 Advanced Induction Techniques . 180
9.2.1 Massaging the Proposition . 180
9.2.2 Beyond Structural and Recursion Induction 182
9.2.3 Derivation of New Induction Schemas 184
9.2.4 CTL Revisited . 185

10. Case Study: Verifying a Security Protocol 189
10.1 The Needham-Schroeder Public-Key Protocol 189
10.2 Agents and Messages . 191
10.3 Modelling the Adversary . 192
10.4 Event Traces . 193
10.5 Modelling the Protocol . 194
10.6 Proving Elementary Properties . 195
10.7 Proving Secrecy Theorems . 197

A. Appendix . 203

xii Contents

Part I

Elementary Techniques

1. The Basics

1.1 Introduction

This book is a tutorial on how to use the theorem prover Isabelle/HOL as a
specification and verification system. Isabelle is a generic system for imple-
menting logical formalisms, and Isabelle/HOL is the specialization of Isabelle
for HOL, which abbreviates Higher-Order Logic. We introduce HOL step by
step following the equation

HOL = Functional Programming + Logic.

We do not assume that you are familiar with mathematical logic. However, we
do assume that you are used to logical and set theoretic notation, as covered
in a good discrete mathematics course [36], and that you are familiar with
the basic concepts of functional programming [5, 16, 31, 37]. Although this
tutorial initially concentrates on functional programming, do not be misled:
HOL can express most mathematical concepts, and functional programming
is just one particularly simple and ubiquitous instance.

Isabelle [30] is implemented in ML [21]. This has influenced some of Isa-
belle/HOL’s concrete syntax but is otherwise irrelevant for us: this tutorial
is based on Isabelle/Isar [38], an extension of Isabelle which hides the im-
plementation language almost completely. Thus the full name of the system
should be Isabelle/Isar/HOL, but that is a bit of a mouthful.

There are other implementations of HOL, in particular the one by Mike
Gordon et al., which is usually referred to as “the HOL system” [11]. For
us, HOL refers to the logical system, and sometimes its incarnation Isa-
belle/HOL.

A tutorial is by definition incomplete. Currently the tutorial only intro-
duces the rudiments of Isar’s proof language. To fully exploit the power of
Isar, in particular the ability to write readable and structured proofs, you
should start with Nipkow’s overview [26] and consult the Isabelle/Isar Refer-
ence Manual [38] and Wenzel’s PhD thesis [39] (which discusses many proof
patterns) for further details. If you want to use Isabelle’s ML level directly
(for example for writing your own proof procedures) see the Isabelle Reference
Manual [28]; for details relating to HOL see the Isabelle/HOL manual [27].
All manuals have a comprehensive index.

4 1. The Basics

1.2 Theories

Working with Isabelle means creating theories. Roughly speaking, a theory
is a named collection of types, functions, and theorems, much like a module
in a programming language or a specification in a specification language. In
fact, theories in HOL can be either. The general format of a theory T is

theory T
imports B1 . . . Bn

begin
declarations, definitions, and proofs
end

where B1 . . . Bn are the names of existing theories that T is based on and
declarations, definitions, and proofs represents the newly introduced concepts
(types, functions etc.) and proofs about them. The Bi are the direct parent
theories of T. Everything defined in the parent theories (and their parents,
recursively) is automatically visible. To avoid name clashes, identifiers can
be qualified by theory names as in T.f and B.f. Each theory T must reside
in a theory file named T.thy.

This tutorial is concerned with introducing you to the different linguistic
constructs that can fill the declarations, definitions, and proofs above. A com-
plete grammar of the basic constructs is found in the Isabelle/Isar Reference
Manual [38].

!! HOL contains a theory Main , the union of all the basic predefined theories like
arithmetic, lists, sets, etc. Unless you know what you are doing, always include

Main as a direct or indirect parent of all your theories.

HOL’s theory collection is available online at

http://isabelle.in.tum.de/library/HOL/

and is recommended browsing. In subdirectory Library you find a growing
library of useful theories that are not part of Main but can be included among
the parents of a theory and will then be loaded automatically.

For the more adventurous, there is the Archive of Formal Proofs, a
journal-like collection of more advanced Isabelle theories:

http://afp.sourceforge.net/

We hope that you will contribute to it yourself one day.

1.3 Types, Terms and Formulae

Embedded in a theory are the types, terms and formulae of HOL. HOL is
a typed logic whose type system resembles that of functional programming
languages like ML or Haskell. Thus there are

http://isabelle.in.tum.de/library/HOL/

http://afp.sourceforge.net/

1.3 Types, Terms and Formulae 5

base types, in particular bool , the type of truth values, and nat , the type of
natural numbers.

type constructors, in particular list , the type of lists, and set , the type of
sets. Type constructors are written postfix, e.g. (nat)list is the type
of lists whose elements are natural numbers. Parentheses around single
arguments can be dropped (as in nat list), multiple arguments are sep-
arated by commas (as in (bool,nat)ty).

function types, denoted by⇒. In HOL⇒ represents total functions only. As
is customary, τ1 ⇒ τ2 ⇒ τ3 means τ1 ⇒ (τ2 ⇒ τ3). Isabelle also sup-
ports the notation [τ1, . . . , τn] ⇒ τ which abbreviates τ1 ⇒ · · · ⇒ τn
⇒ τ .

type variables, denoted by ’a , ’b etc., just like in ML. They give rise to
polymorphic types like ’a ⇒ ’a, the type of the identity function.

!! Types are extremely important because they prevent us from writing nonsense.
Isabelle insists that all terms and formulae must be well-typed and will print an

error message if a type mismatch is encountered. To reduce the amount of explicit
type information that needs to be provided by the user, Isabelle infers the type of
all variables automatically (this is called type inference) and keeps quiet about
it. Occasionally this may lead to misunderstandings between you and the system. If
anything strange happens, we recommend that you ask Isabelle to display all type
information via the Proof General menu item Isabelle > Settings > Show Types (see
Sect. 1.5 for details).

Terms are formed as in functional programming by applying functions
to arguments. If f is a function of type τ1 ⇒ τ2 and t is a term of type
τ1 then f t is a term of type τ2. HOL also supports infix functions like +

and some basic constructs from functional programming, such as conditional
expressions:

if b then t1 else t2 Here b is of type bool and t1 and t2 are of the same
type.

let x = t in u is equivalent to u where all free occurrences of x have been
replaced by t . For example, let x = 0 in x+x is equivalent to 0+0. Mul-
tiple bindings are separated by semicolons: let x1 = t1;...; xn = tn in

u.
case e of c1 ⇒ e1 | ... | cn ⇒ en evaluates to ei if e is of the form ci .

Terms may also contain λ-abstractions. For example, λx. x+1 is the func-
tion that takes an argument x and returns x+1. Instead of λx.λy.λz. t we
can write λx y z. t .

Formulae are terms of type bool . There are the basic constants True

and False and the usual logical connectives (in decreasing order of priority):
¬, ∧, ∨, and −→, all of which (except the unary ¬) associate to the right.
In particular A −→ B −→ C means A −→ (B −→ C) and is thus logically
equivalent to A ∧ B −→ C (which is (A ∧ B) −→ C).

Equality is available in the form of the infix function = of type ’a ⇒ ’a

⇒ bool. Thus t1 = t2 is a formula provided t1 and t2 are terms of the same

6 1. The Basics

type. If t1 and t2 are of type bool then = acts as if-and-only-if. The formula
t1 6= t2 is merely an abbreviation for ¬(t1 = t2).

Quantifiers are written as ∀ x. P and ∃ x. P . There is even ∃! x. P , which
means that there exists exactly one x that satisfies P . Nested quantifications
can be abbreviated: ∀ x y z. P means ∀ x.∀ y.∀ z. P .

Despite type inference, it is sometimes necessary to attach explicit type
constraints to a term. The syntax is t::τ as in x < (y::nat). Note that
:: binds weakly and should therefore be enclosed in parentheses. For in-
stance, x < y::nat is ill-typed because it is interpreted as (x < y)::nat. Type
constraints may be needed to disambiguate expressions involving overloaded
functions such as +, * and <. Section 8.3.1 discusses overloading, while Ta-
ble A.2 presents the most important overloaded function symbols.

In general, HOL’s concrete syntax tries to follow the conventions of func-
tional programming and mathematics. Here are the main rules that you
should be familiar with to avoid certain syntactic traps:

– Remember that f t u means (f t) u and not f(t u) !
– Isabelle allows infix functions like +. The prefix form of function application

binds more strongly than anything else and hence f x + y means (f x) + y

and not f(x+y).
– Remember that in HOL if-and-only-if is expressed using equality. But

equality has a high priority, as befitting a relation, while if-and-only-if
typically has the lowest priority. Thus, ¬ ¬ P = P means ¬¬(P = P) and
not (¬¬P) = P. When using = to mean logical equivalence, enclose both
operands in parentheses, as in (A ∧ B) = (B ∧ A).

– Constructs with an opening but without a closing delimiter bind very
weakly and should therefore be enclosed in parentheses if they appear in
subterms, as in (λx. x) = f. This includes if, let, case, λ, and quantifiers.

– Never write λx.x or ∀ x.x=x because x.x is always taken as a single qualified
identifier. Write λx. x and ∀ x. x=x instead.

– Identifiers may contain the characters _ and ’, except at the beginning.

For the sake of readability, we use the usual mathematical symbols
throughout the tutorial. Their ascii-equivalents are shown in table A.1 in
the appendix.

!! A particular problem for novices can be the priority of operators. If you are
unsure, use additional parentheses. In those cases where Isabelle echoes your

input, you can see which parentheses are dropped — they were superfluous. If you
are unsure how to interpret Isabelle’s output because you don’t know where the
(dropped) parentheses go, set the Proof General flag Isabelle > Settings > Show
Brackets (see Sect. 1.5).

1.4 Variables 7

1.4 Variables

Isabelle distinguishes free and bound variables, as is customary. Bound vari-
ables are automatically renamed to avoid clashes with free variables. In ad-
dition, Isabelle has a third kind of variable, called a schematic variable or
unknown, which must have a ? as its first character. Logically, an unknown
is a free variable. But it may be instantiated by another term during the proof
process. For example, the mathematical theorem x = x is represented in Isa-
belle as ?x = ?x, which means that Isabelle can instantiate it arbitrarily. This
is in contrast to ordinary variables, which remain fixed. The programming
language Prolog calls unknowns logical variables.

Most of the time you can and should ignore unknowns and work with
ordinary variables. Just don’t be surprised that after you have finished the
proof of a theorem, Isabelle will turn your free variables into unknowns. It
indicates that Isabelle will automatically instantiate those unknowns suitably
when the theorem is used in some other proof. Note that for readability we
often drop the ?s when displaying a theorem.

!! For historical reasons, Isabelle accepts ? as an ASCII representation of the
∃ symbol. However, the ? character must then be followed by a space, as in

? x. f(x) = 0. Otherwise, ?x is interpreted as a schematic variable. The preferred
ASCII representation of the ∃ symbol is EX .

1.5 Interaction and Interfaces

The recommended interface for Isabelle/Isar is the (X)Emacs-based Proof
General [1, 2]. Interaction with Isabelle at the shell level, although possible,
should be avoided. Most of the tutorial is independent of the interface and is
phrased in a neutral language. For example, the phrase “to abandon a proof”
corresponds to the obvious action of clicking on the Undo symbol in Proof
General. Proof General specific information is often displayed in paragraphs
identified by a miniature Proof General icon. Here are two examples:

Proof General supports a special font with mathematical symbols known as “x-
symbols”. All symbols have ascii-equivalents: for example, you can enter either

& or \<and> to obtain ∧. For a list of the most frequent symbols see table A.1 in
the appendix.

Note that by default x-symbols are not enabled. You have to switch them on
via the menu item Proof-General > Options > X-Symbols (and save the option via
the top-level Options menu).

Proof General offers the Isabelle menu for displaying information and setting
flags. A particularly useful flag is Isabelle > Settings > Show Types which causes

Isabelle to output the type information that is usually suppressed. This is indis-
pensible in case of errors of all kinds because often the types reveal the source of
the problem. Once you have diagnosed the problem you may no longer want to see
the types because they clutter all output. Simply reset the flag.

8 1. The Basics

1.6 Getting Started

Assuming you have installed Isabelle and Proof General, you start it by typing
Isabelle in a shell window. This launches a Proof General window. By
default, you are in HOL1.

You can choose a different logic via the Isabelle > Logics menu. For example, you
may want to work in the real numbers, an extension of HOL (see Sect. 8.4.4).

1 This is controlled by the ISABELLE_LOGIC setting, see The Isabelle System Manual
for more details.

2. Functional Programming in HOL

This chapter describes how to write functional programs in HOL and how
to verify them. However, most of the constructs and proof procedures in-
troduced are general and recur in any specification or verification task. We
really should speak of functional modelling rather than functional program-
ming : our primary aim is not to write programs but to design abstract models
of systems. HOL is a specification language that goes well beyond what can
be expressed as a program. However, for the time being we concentrate on
the computable.

If you are a purist functional programmer, please note that all functions in
HOL must be total: they must terminate for all inputs. Lazy data structures
are not directly available.

2.1 An Introductory Theory

Functional programming needs datatypes and functions. Both of them can be
defined in a theory with a syntax reminiscent of languages like ML or Haskell.
As an example consider the theory in figure 2.1. We will now examine it line
by line.

theory ToyList
imports Datatype
begin

HOL already has a predefined theory of lists called List — ToyList is merely
a small fragment of it chosen as an example. In contrast to what is recom-
mended in Sect. 1.2, ToyList is not based on Main but on Datatype, a theory
that contains pretty much everything but lists, thus avoiding ambiguities
caused by defining lists twice.

datatype ’a list = Nil ("[]")
| Cons ’a "’a list" (infixr "#" 65)

The datatype list introduces two constructors Nil and Cons , the empty list
and the operator that adds an element to the front of a list. For example,
the term Cons True (Cons False Nil) is a value of type bool list, namely
the list with the elements True and False. Because this notation quickly

10 2. Functional Programming in HOL

theory ToyList
imports Datatype
begin

datatype ’a list = Nil ("[]")
| Cons ’a "’a list" (infixr "#" 65)

primrec app :: "’a list => ’a list => ’a list" (infixr "@" 65)
where
"[] @ ys = ys" |
"(x # xs) @ ys = x # (xs @ ys)"

primrec rev :: "’a list => ’a list" where
"rev [] = []" |
"rev (x # xs) = (rev xs) @ (x # [])"

Figure 2.1. A Theory of Lists

becomes unwieldy, the datatype declaration is annotated with an alternative
syntax: instead of Nil and Cons x xs we can write [] and x # xs . In fact,
this alternative syntax is the familiar one. Thus the list Cons True (Cons

False Nil) becomes True # False # []. The annotation infixr means that #

associates to the right: the term x # y # z is read as x # (y # z) and not as
(x # y) # z. The 65 is the priority of the infix #.

!! Syntax annotations can be powerful, but they are difficult to master and are
never necessary. You could drop them from theory ToyList and go back to the

identifiers Nil and Cons. Novices should avoid using syntax annotations in their
own theories.

Next, two functions app and rev are defined recursively, in this order,
because Isabelle insists on definition before use:

primrec app :: "’a list ⇒ ’a list ⇒ ’a list" (infixr "@" 65) where
"[] @ ys = ys" |
"(x # xs) @ ys = x # (xs @ ys)"

primrec rev :: "’a list ⇒ ’a list" where
"rev [] = []" |
"rev (x # xs) = (rev xs) @ (x # [])"

Each function definition is of the form

primrec name :: type (optional syntax) where equations

The equations must be separated by |. Function app is annotated with con-
crete syntax. Instead of the prefix syntax app xs ys the infix xs @ ys becomes
the preferred form.

The equations for app and rev hardly need comments: app appends two
lists and rev reverses a list. The keyword primrec indicates that the recur-
sion is of a particularly primitive kind where each recursive call peels off a

2.2 Evaluation 11

datatype constructor from one of the arguments. Thus the recursion always
terminates, i.e. the function is total.

The termination requirement is absolutely essential in HOL, a logic of
total functions. If we were to drop it, inconsistencies would quickly arise: the
“definition” f (n) = f (n) + 1 immediately leads to 0 = 1 by subtracting f (n)
on both sides.

!! As we have indicated, the requirement for total functions is an essential char-
acteristic of HOL. It is only because of totality that reasoning in HOL is com-

paratively easy. More generally, the philosophy in HOL is to refrain from asserting
arbitrary axioms (such as function definitions whose totality has not been proved)
because they quickly lead to inconsistencies. Instead, fixed constructs for introduc-
ing types and functions are offered (such as datatype and primrec) which are
guaranteed to preserve consistency.

A remark about syntax. The textual definition of a theory follows a fixed
syntax with keywords like datatype and end. Embedded in this syntax are
the types and formulae of HOL, whose syntax is extensible (see Sect. 4.1), e.g.
by new user-defined infix operators. To distinguish the two levels, everything
HOL-specific (terms and types) should be enclosed in ". . . ". To lessen this
burden, quotation marks around a single identifier can be dropped, unless the
identifier happens to be a keyword, for example "end". When Isabelle prints
a syntax error message, it refers to the HOL syntax as the inner syntax and
the enclosing theory language as the outer syntax.

2.2 Evaluation

Assuming you have processed the declarations and definitions of ToyList
presented so far, you may want to test your functions by running them. For
example, what is the value of rev (True # False # [])? Command

value "rev (True # False # [])"

yields the correct result False # True # []. But we can go beyond mere func-
tional programming and evaluate terms with variables in them, executing
functions symbolically:

normal form "rev (a # b # c # [])"

yields c # b # a # []. Command normal form works for arbitrary terms
but can be slower than command value, which is restricted to variable-free
terms and executable functions. To appreciate the subtleties of evaluating
terms with variables, try this one:

normal form "rev (a # b # c # xs)"

12 2. Functional Programming in HOL

2.3 An Introductory Proof

Having convinced ourselves (as well as one can by testing) that our definitions
capture our intentions, we are ready to prove a few simple theorems. This
will illustrate not just the basic proof commands but also the typical proof
process.

Main Goal. Our goal is to show that reversing a list twice produces the
original list.

theorem rev_rev [simp]: "rev(rev xs) = xs"

This theorem command does several things:

– It establishes a new theorem to be proved, namely rev (rev xs) = xs.
– It gives that theorem the name rev_rev, for later reference.
– It tells Isabelle (via the bracketed attribute simp) to take the eventual

theorem as a simplification rule: future proofs involving simplification will
replace occurrences of rev (rev xs) by xs.

The name and the simplification attribute are optional. Isabelle’s response
is to print the initial proof state consisting of some header information (like
how many subgoals there are) followed by

1. rev (rev xs) = xs

For compactness reasons we omit the header in this tutorial. Until we have
finished a proof, the proof state proper always looks like this:

1. G1

...
n. Gn

The numbered lines contain the subgoals G1, . . . , Gn that we need to prove to
establish the main goal. Initially there is only one subgoal, which is identical
with the main goal. (If you always want to see the main goal as well, set the
flag Proof.show_main_goal — this flag used to be set by default.)

Let us now get back to rev (rev xs) = xs. Properties of recursively de-
fined functions are best established by induction. In this case there is nothing
obvious except induction on xs :

apply(induct_tac xs)

This tells Isabelle to perform induction on variable xs. The suffix tac stands
for tactic, a synonym for “theorem proving function”. By default, induction
acts on the first subgoal. The new proof state contains two subgoals, namely
the base case (Nil) and the induction step (Cons):

1. rev (rev []) = []
2.

V
a list.
rev (rev list) = list =⇒ rev (rev (a # list)) = a # list

The induction step is an example of the general format of a subgoal:

2.3 An Introductory Proof 13

i.
V

x1 ...xn. assumptions =⇒ conclusion

The prefix of bound variables
∧

x1 . . . xn can be ignored most of the time, or
simply treated as a list of variables local to this subgoal. Their deeper signif-
icance is explained in Chapter 5. The assumptions are the local assumptions
for this subgoal and conclusion is the actual proposition to be proved. Typical
proof steps that add new assumptions are induction and case distinction. In
our example the only assumption is the induction hypothesis rev (rev list)

= list, where list is a variable name chosen by Isabelle. If there are multiple
assumptions, they are enclosed in the bracket pair [[and]] and separated by
semicolons.

Let us try to solve both goals automatically:

apply(auto)

This command tells Isabelle to apply a proof strategy called auto to all sub-
goals. Essentially, auto tries to simplify the subgoals. In our case, subgoal 1
is solved completely (thanks to the equation rev [] = []) and disappears;
the simplified version of subgoal 2 becomes the new subgoal 1:

1.
V
a list.
rev (rev list) = list =⇒ rev (rev list @ a # []) = a # list

In order to simplify this subgoal further, a lemma suggests itself.

First Lemma. After abandoning the above proof attempt (at the shell level
type oops) we start a new proof:

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"

The keywords theorem and lemma are interchangeable and merely indi-
cate the importance we attach to a proposition. Therefore we use the words
theorem and lemma pretty much interchangeably, too.

There are two variables that we could induct on: xs and ys. Because @ is
defined by recursion on the first argument, xs is the correct one:

apply(induct_tac xs)

This time not even the base case is solved automatically:

apply(auto)

1. rev ys = rev ys @ []

Again, we need to abandon this proof attempt and prove another simple
lemma first. In the future the step of abandoning an incomplete proof before
embarking on the proof of a lemma usually remains implicit.

14 2. Functional Programming in HOL

Second Lemma. We again try the canonical proof procedure:

lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induct_tac xs)
apply(auto)

It works, yielding the desired message No subgoals! :

xs @ [] = xs
No subgoals!

We still need to confirm that the proof is now finished:

done

As a result of that final done, Isabelle associates the lemma just proved with
its name. In this tutorial, we sometimes omit to show that final done if it is
obvious from the context that the proof is finished.

Notice that in lemma app_Nil2, as printed out after the final done, the
free variable xs has been replaced by the unknown ?xs, just as explained in
Sect. 1.4.

Going back to the proof of the first lemma

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induct_tac xs)
apply(auto)

we find that this time auto solves the base case, but the induction step merely
simplifies to

1.
V
a list.
rev (list @ ys) = rev ys @ rev list =⇒
(rev ys @ rev list) @ a # [] = rev ys @ rev list @ a # []

Now we need to remember that @ associates to the right, and that # and @

have the same priority (namely the 65 in their infixr annotation). Thus the
conclusion really is

(rev ys @ rev list) @ (a # []) = rev ys @ (rev list @ (a # []))

and the missing lemma is associativity of @.

Third Lemma. Abandoning the previous attempt, the canonical proof pro-
cedure succeeds without further ado.

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induct_tac xs)
apply(auto)
done

Now we can prove the first lemma:

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induct_tac xs)
apply(auto)
done

2.3 An Introductory Proof 15

Finally, we prove our main theorem:

theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induct_tac xs)
apply(auto)
done

The final end tells Isabelle to close the current theory because we are finished
with its development:

end

The complete proof script is shown in Fig. 2.2. The concatenation of
Figs. 2.1 and 2.2 constitutes the complete theory ToyList and should reside
in file ToyList.thy.

lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induct_tac xs)
apply(auto)
done

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induct_tac xs)
apply(auto)
done

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induct_tac xs)
apply(auto)
done

theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induct_tac xs)
apply(auto)
done

end

Figure 2.2. Proofs about Lists

Review This is the end of our toy proof. It should have familiarized you
with

– the standard theorem proving procedure: state a goal (lemma or theorem);
proceed with proof until a separate lemma is required; prove that lemma;
come back to the original goal.

– a specific procedure that works well for functional programs: induction
followed by all-out simplification via auto.

– a basic repertoire of proof commands.

16 2. Functional Programming in HOL

!! It is tempting to think that all lemmas should have the simp attribute just
because this was the case in the example above. However, in that example all

lemmas were equations, and the right-hand side was simpler than the left-hand
side — an ideal situation for simplification purposes. Unless this is clearly the case,
novices should refrain from awarding a lemma the simp attribute, which has a
global effect. Instead, lemmas can be applied locally where they are needed, which
is discussed in the following chapter.

2.4 Some Helpful Commands

This section discusses a few basic commands for manipulating the proof state
and can be skipped by casual readers.

There are two kinds of commands used during a proof: the actual proof
commands and auxiliary commands for examining the proof state and con-
trolling the display. Simple proof commands are of the form apply(method),
where method is typically induct_tac or auto. All such theorem proving oper-
ations are referred to as methods, and further ones are introduced through-
out the tutorial. Unless stated otherwise, you may assume that a method
attacks merely the first subgoal. An exception is auto, which tries to solve all
subgoals.

The most useful auxiliary commands are as follows:

Modifying the order of subgoals: defer moves the first subgoal to the end
and prefer n moves subgoal n to the front.

Printing theorems: thm name1 . . . namen prints the named theorems.
Reading terms and types: term string reads, type-checks and prints the

given string as a term in the current context; the inferred type is output
as well. typ string reads and prints the given string as a type in the
current context.

Further commands are found in the Isabelle/Isar Reference Manual [38].

Clicking on the State button redisplays the current proof state. This is helpful
in case commands like thm have overwritten it.

We now examine Isabelle’s functional programming constructs systemat-
ically, starting with inductive datatypes.

2.5 Datatypes

Inductive datatypes are part of almost every non-trivial application of HOL.
First we take another look at an important example, the datatype of lists,
before we turn to datatypes in general. The section closes with a case study.

2.5 Datatypes 17

2.5.1 Lists

Lists are one of the essential datatypes in computing. We expect that you are
already familiar with their basic operations. Theory ToyList is only a small
fragment of HOL’s predefined theory List1. The latter contains many further
operations. For example, the functions hd (“head”) and tl (“tail”) return
the first element and the remainder of a list. (However, pattern matching is
usually preferable to hd and tl.) Also available are higher-order functions like
map and filter. Theory List also contains more syntactic sugar: [x1, . . . ,xn]

abbreviates x1# . . . #xn#[]. In the rest of the tutorial we always use HOL’s
predefined lists by building on theory Main.

2.5.2 The General Format

The general HOL datatype definition is of the form

datatype (α1, . . . , αn) t = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

where αi are distinct type variables (the parameters), Ci are distinct con-
structor names and τij are types; it is customary to capitalize the first letter
in constructor names. There are a number of restrictions (such as that the
type should not be empty) detailed elsewhere [27]. Isabelle notifies you if you
violate them.

Laws about datatypes, such as [] 6= x#xs and (x#xs = y#ys) = (x=y

∧ xs=ys), are used automatically during proofs by simplification. The same
is true for the equations in primitive recursive function definitions.

Every2 datatype t comes equipped with a size function from t into the
natural numbers (see Sect. 2.6.1 below). For lists, size is just the length, i.e.
size [] = 0 and size(x # xs) = size xs + 1. In general, size returns

– zero for all constructors that do not have an argument of type t ,
– one plus the sum of the sizes of all arguments of type t , for all other

constructors.

Note that because size is defined on every datatype, it is overloaded; on lists
size is also called length , which is not overloaded. Isabelle will always show
size on lists as length.

2.5.3 Primitive Recursion

Functions on datatypes are usually defined by recursion. In fact, most of
the time they are defined by what is called primitive recursion over some
datatype t . This means that the recursion equations must be of the form
1 http://isabelle.in.tum.de/library/HOL/List.html
2 Except for advanced datatypes where the recursion involves “⇒” as in Sect. 3.4.3.

http://isabelle.in.tum.de/library/HOL/List.html

18 2. Functional Programming in HOL

f x1 . . . (C y1 . . . yk) . . . xn = r

such that C is a constructor of t and all recursive calls of f in r are of the
form f . . . yi . . . for some i . Thus Isabelle immediately sees that f terminates
because one (fixed!) argument becomes smaller with every recursive call.
There must be at most one equation for each constructor. Their order is
immaterial. A more general method for defining total recursive functions is
introduced in Sect. 3.5.

Exercise 2.5.1 Define the datatype of binary trees:

datatype ’a tree = Tip | Node "’a tree" ’a "’a tree"

Define a function mirror that mirrors a binary tree by swapping subtrees
recursively. Prove

lemma mirror_mirror: "mirror(mirror t) = t"

Define a function flatten that flattens a tree into a list by traversing it in
infix order. Prove

lemma "flatten(mirror t) = rev(flatten t)"

2.5.4 Case Expressions

HOL also features case -expressions for analyzing elements of a datatype. For
example,

case xs of [] ⇒ [] | y # ys ⇒ y

evaluates to [] if xs is [] and to y if xs is y # ys. (Since the result in both
branches must be of the same type, it follows that y is of type ’a list and
hence that xs is of type ’a list list.)

In general, case expressions are of the form

case e of pattern1 ⇒ e1 | . . . | patternm ⇒ em

Like in functional programming, patterns are expressions consisting of data-
type constructors (e.g. [] and #) and variables, including the wildcard “_”.
Not all cases need to be covered and the order of cases matters. However,
one is well-advised not to wallow in complex patterns because complex case
distinctions tend to induce complex proofs.

!! Internally Isabelle only knows about exhaustive case expressions with non-
nested patterns: patterni must be of the form Ci xi1 . . . xiki and C1, . . . ,Cm

must be exactly the constructors of the type of e. More complex case expressions are
automatically translated into the simpler form upon parsing but are not translated
back for printing. This may lead to surprising output.

!! Like if, case -expressions may need to be enclosed in parentheses to indicate
their scope.

2.5 Datatypes 19

2.5.5 Structural Induction and Case Distinction

Induction is invoked by induct_tac , as we have seen above; it works for any
datatype. In some cases, induction is overkill and a case distinction over all
constructors of the datatype suffices. This is performed by case_tac . Here is
a trivial example:

lemma "(case xs of [] ⇒ [] | y#ys ⇒ xs) = xs"
apply(case_tac xs)

results in the proof state

1. xs = [] =⇒ (case xs of [] ⇒ [] | y # ys ⇒ xs) = xs
2.

V
a list.
xs = a # list =⇒ (case xs of [] ⇒ [] | y # ys ⇒ xs) = xs

which is solved automatically:

apply(auto)

Note that we do not need to give a lemma a name if we do not intend
to refer to it explicitly in the future. Other basic laws about a datatype
are applied automatically during simplification, so no special methods are
provided for them.

!! Induction is only allowed on free (or
V

-bound) variables that should not occur
among the assumptions of the subgoal; see Sect. 9.2.1 for details. Case distinc-

tion (case_tac) works for arbitrary terms, which need to be quoted if they are
non-atomic. However, apart from

V
-bound variables, the terms must not contain

variables that are bound outside. For example, given the goal ∀ xs. xs = [] ∨
(∃ y ys. xs = y # ys), case_tac xs will not work as expected because Isabelle
interprets the xs as a new free variable distinct from the bound xs in the goal.

2.5.6 Case Study: Boolean Expressions

The aim of this case study is twofold: it shows how to model boolean expres-
sions and some algorithms for manipulating them, and it demonstrates the
constructs introduced above.

Modelling Boolean Expressions. We want to represent boolean expres-
sions built up from variables and constants by negation and conjunction. The
following datatype serves exactly that purpose:

datatype boolex = Const bool | Var nat | Neg boolex
| And boolex boolex

The two constants are represented by Const True and Const False. Variables
are represented by terms of the form Var n, where n is a natural number
(type nat). For example, the formula P0 ∧ ¬P1 is represented by the term
And (Var 0) (Neg (Var 1)).

20 2. Functional Programming in HOL

The Value of a Boolean Expression. The value of a boolean expression
depends on the value of its variables. Hence the function value takes an addi-
tional parameter, an environment of type nat ⇒ bool, which maps variables
to their values:

primrec "value" :: "boolex ⇒ (nat ⇒ bool) ⇒ bool" where
"value (Const b) env = b" |
"value (Var x) env = env x" |
"value (Neg b) env = (¬ value b env)" |
"value (And b c) env = (value b env ∧ value c env)"

If-Expressions. An alternative and often more efficient (because in a cer-
tain sense canonical) representation are so-called If-expressions built up from
constants (CIF), variables (VIF) and conditionals (IF):

datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex

The evaluation of If-expressions proceeds as for boolex :

primrec valif :: "ifex ⇒ (nat ⇒ bool) ⇒ bool" where
"valif (CIF b) env = b" |
"valif (VIF x) env = env x" |
"valif (IF b t e) env = (if valif b env then valif t env

else valif e env)"

Converting Boolean and If-Expressions. The type boolex is close to
the customary representation of logical formulae, whereas ifex is designed
for efficiency. It is easy to translate from boolex into ifex :

primrec bool2if :: "boolex ⇒ ifex" where
"bool2if (Const b) = CIF b" |
"bool2if (Var x) = VIF x" |
"bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)" |
"bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)"

At last, we have something we can verify: that bool2if preserves the value
of its argument:

lemma "valif (bool2if b) env = value b env"

The proof is canonical:

apply(induct_tac b)
apply(auto)
done

In fact, all proofs in this case study look exactly like this. Hence we do not
show them below.

More interesting is the transformation of If-expressions into a normal
form where the first argument of IF cannot be another IF but must be a
constant or variable. Such a normal form can be computed by repeatedly
replacing a subterm of the form IF (IF b x y) z u by IF b (IF x z u) (IF

y z u), which has the same value. The following primitive recursive functions
perform this task:

2.6 Some Basic Types 21

primrec normif :: "ifex ⇒ ifex ⇒ ifex ⇒ ifex" where
"normif (CIF b) t e = IF (CIF b) t e" |
"normif (VIF x) t e = IF (VIF x) t e" |
"normif (IF b t e) u f = normif b (normif t u f) (normif e u f)"

primrec norm :: "ifex ⇒ ifex" where
"norm (CIF b) = CIF b" |
"norm (VIF x) = VIF x" |
"norm (IF b t e) = normif b (norm t) (norm e)"

Their interplay is tricky; we leave it to you to develop an intuitive under-
standing. Fortunately, Isabelle can help us to verify that the transformation
preserves the value of the expression:
theorem "valif (norm b) env = valif b env"

The proof is canonical, provided we first show the following simplification
lemma, which also helps to understand what normif does:
lemma [simp]:

"∀ t e. valif (normif b t e) env = valif (IF b t e) env"

Note that the lemma does not have a name, but is implicitly used in the
proof of the theorem shown above because of the [simp] attribute.

But how can we be sure that norm really produces a normal form in the
above sense? We define a function that tests If-expressions for normality:
primrec normal :: "ifex ⇒ bool" where
"normal(CIF b) = True" |
"normal(VIF x) = True" |
"normal(IF b t e) = (normal t ∧ normal e ∧

(case b of CIF b ⇒ True | VIF x ⇒ True | IF x y z ⇒ False))"

Now we prove normal (norm b). Of course, this requires a lemma about nor-
mality of normif :
lemma [simp]: "∀ t e. normal(normif b t e) = (normal t ∧ normal e)"

How do we come up with the required lemmas? Try to prove the main
theorems without them and study carefully what auto leaves unproved. This
can provide the clue. The necessity of universal quantification (∀ t e) in the
two lemmas is explained in Sect. 3.2

Exercise 2.5.2 We strengthen the definition of a normal If-expression as
follows: the first argument of all IFs must be a variable. Adapt the above
development to this changed requirement. (Hint: you may need to formulate
some of the goals as implications (−→) rather than equalities (=).)

2.6 Some Basic Types

This section introduces the types of natural numbers and ordered pairs. Also
described is type option, which is useful for modelling exceptional cases.

22 2. Functional Programming in HOL

2.6.1 Natural Numbers

The type nat of natural numbers is predefined to have the constructors 0

and Suc . It behaves as if it were declared like this:

datatype nat = 0 | Suc nat

In particular, there are case -expressions, for example

case n of 0 ⇒ 0 | Suc m ⇒ m

primitive recursion, for example

primrec sum :: "nat ⇒ nat" where
"sum 0 = 0" |
"sum (Suc n) = Suc n + sum n"

and induction, for example

lemma "sum n + sum n = n*(Suc n)"
apply(induct_tac n)
apply(auto)
done

The arithmetic operations + , - , * , div , mod , min and max are predefined,
as are the relations ≤ and < . As usual, m - n = 0 if m < n. There is even a
least number operation LEAST . For example, (LEAST n. 0 < n) = Suc 0.

!! The constants 0 and 1 and the operations + , - , * , min , max , ≤ and < are
overloaded: they are available not just for natural numbers but for other types

as well. For example, given the goal x + 0 = x, there is nothing to indicate that you
are talking about natural numbers. Hence Isabelle can only infer that x is of some
arbitrary type where 0 and + are declared. As a consequence, you will be unable
to prove the goal. To alert you to such pitfalls, Isabelle flags numerals without a
fixed type in its output: x + (0 ::’a) = x. (In the absence of a numeral, it may
take you some time to realize what has happened if Show Types is not set). In this
particular example, you need to include an explicit type constraint, for example x+0
= (x::nat). If there is enough contextual information this may not be necessary:
Suc x = x automatically implies x::nat because Suc is not overloaded.

For details on overloading see Sect. 8.3.1. Table A.2 in the appendix shows the
most important overloaded operations.

!! The symbols > and ≥ are merely syntax: x > y stands for y < x and similary
for ≥ and ≤.

!! Constant 1::nat is defined to equal Suc 0. This definition (see Sect. 2.7.2) is
unfolded automatically by some tactics (like auto, simp and arith) but not by

others (especially the single step tactics in Chapter 5). If you need the full set of
numerals, see Sect. 8.4.1. Novices are advised to stick to 0 and Suc.

Both auto and simp (a method introduced below, Sect. 3.1) prove simple
arithmetic goals automatically:

lemma " [[¬ m < n; m < n + (1::nat)]] =⇒ m = n"

2.6 Some Basic Types 23

For efficiency’s sake, this built-in prover ignores quantified formulae, many
logical connectives, and all arithmetic operations apart from addition. In
consequence, auto and simp cannot prove this slightly more complex goal:

lemma "m 6= (n::nat) =⇒ m < n ∨ n < m"

The method arith is more general. It attempts to prove the first subgoal
provided it is a linear arithmetic formula. Such formulas may involve the
usual logical connectives (¬, ∧, ∨, −→, =, ∀ , ∃), the relations =, ≤ and <, and
the operations +, -, min and max. For example,

lemma "min i (max j (k*k)) = max (min (k*k) i) (min i (j::nat))"
apply(arith)

succeeds because k * k can be treated as atomic. In contrast,

lemma "n*n = n =⇒ n=0 ∨ n=1"

is not proved even by arith because the proof relies on properties of mul-
tiplication. Only multiplication by numerals (which is the same as iterated
addition) is allowed.

!! The running time of arith is exponential in the number of occurrences of - ,
min and max because they are first eliminated by case distinctions.
If k is a numeral, div k, mod k and k dvd are also supported, where the former

two are eliminated by case distinctions, again blowing up the running time.
If the formula involves quantifiers, arith may take super-exponential time and

space.

2.6.2 Pairs

HOL also has ordered pairs: (a1,a2) is of type τ1 × τ2 provided each ai

is of type τi . The functions fst and snd extract the components of a pair:
fst(x,y) = x and snd(x,y) = y. Tuples are simulated by pairs nested to the
right: (a1,a2,a3) stands for (a1,(a2,a3)) and τ1 × τ2 × τ3 for τ1 × (τ2 × τ3).
Therefore we have fst(snd(a1,a2,a3)) = a2.

Remarks:

– There is also the type unit , which contains exactly one element denoted
by () . This type can be viewed as a degenerate product with 0 components.

– Products, like type nat, are datatypes, which means in particular that
induct_tac and case_tac are applicable to terms of product type. Both
replace the term by a pair of variables.

– Tuples with more than two or three components become unwieldy; records
are preferable.

For more information on pairs and records see Chapter 8.

24 2. Functional Programming in HOL

2.6.3 Datatype option

Our final datatype is very simple but still eminently useful:
datatype ’a option = None | Some ’a

Frequently one needs to add a distinguished element to some existing type.
For example, type t option can model the result of a computation that may
either terminate with an error (represented by None) or return some value
v (represented by Some v). Similarly, nat extended with ∞ can be modeled
by type nat option. In both cases one could define a new datatype with
customized constructors like Error and Infinity, but it is often simpler to
use option. For an application see Sect. 3.4.4.

2.7 Definitions

A definition is simply an abbreviation, i.e. a new name for an existing con-
struction. In particular, definitions cannot be recursive. Isabelle offers defini-
tions on the level of types and terms. Those on the type level are called type
synonyms; those on the term level are simply called definitions.

2.7.1 Type Synonyms

Type synonyms are similar to those found in ML. They are created by a
types command:
types number = nat

gate = "bool ⇒ bool ⇒ bool"
(’a,’b)alist = "(’a × ’b)list"

Internally all synonyms are fully expanded. As a consequence Isabelle’s out-
put never contains synonyms. Their main purpose is to improve the readabil-
ity of theories. Synonyms can be used just like any other type.

2.7.2 Constant Definitions

Nonrecursive definitions can be made with the definition command, for
example nand and xor gates (based on type gate above):
definition nand :: gate where "nand A B ≡ ¬(A ∧ B)"
definition xor :: gate where "xor A B ≡ A ∧ ¬B ∨ ¬A ∧ B"

The symbol ≡ is a special form of equality that must be used in constant
definitions. Pattern-matching is not allowed: each definition must be of the
form f x1 . . . xn ≡ t . Section 3.1.6 explains how definitions are used in proofs.
The default name of each definition is f _def, where f is the name of the
defined constant.

2.8 The Definitional Approach 25

!! A common mistake when writing definitions is to introduce extra free variables
on the right-hand side. Consider the following, flawed definition (where dvd

means “divides”):

"prime p ≡ 1 < p ∧ (m dvd p −→ m = 1 ∨ m = p)"

Isabelle rejects this “definition” because of the extra m on the right-hand side, which
would introduce an inconsistency (why?). The correct version is

"prime p ≡ 1 < p ∧ (∀ m. m dvd p −→ m = 1 ∨ m = p)"

2.8 The Definitional Approach

As we pointed out at the beginning of the chapter, asserting arbitrary ax-
ioms such as f (n) = f (n) + 1 can easily lead to contradictions. In order to
avoid this danger, we advocate the definitional rather than the axiomatic ap-
proach: introduce new concepts by definitions. However, Isabelle/HOL seems
to support many richer definitional constructs, such as primrec. The point
is that Isabelle reduces such constructs to first principles. For example, each
primrec function definition is turned into a proper (nonrecursive!) definition
from which the user-supplied recursion equations are automatically proved.
This process is hidden from the user, who does not have to understand the
details. Other commands described later, like fun and inductive, work sim-
ilarly. This strict adherence to the definitional approach reduces the risk of
soundness errors.

3. More Functional Programming

The purpose of this chapter is to deepen your understanding of the con-
cepts encountered so far and to introduce advanced forms of datatypes and
recursive functions. The first two sections give a structured presentation of
theorem proving by simplification (Sect. 3.1) and discuss important heuris-
tics for induction (Sect. 3.2). You can skip them if you are not planning to
perform proofs yourself. We then present a case study: a compiler for ex-
pressions (Sect. 3.3). Advanced datatypes, including those involving function
spaces, are covered in Sect. 3.4; it closes with another case study, search trees
(“tries”). Finally we introduce fun, a general form of recursive function def-
inition that goes well beyond primrec (Sect. 3.5).

3.1 Simplification

So far we have proved our theorems by auto, which simplifies all subgoals.
In fact, auto can do much more than that. To go beyond toy examples, you
need to understand the ingredients of auto. This section covers the method
that auto always applies first, simplification.

Simplification is one of the central theorem proving tools in Isabelle and
many other systems. The tool itself is called the simplifier. This section
introduces the many features of the simplifier and is required reading if you
intend to perform proofs. Later on, Sect. 9.1 explains some more advanced
features and a little bit of how the simplifier works. The serious student should
read that section as well, in particular to understand why the simplifier did
something unexpected.

3.1.1 What is Simplification?

In its most basic form, simplification means repeated application of equations
from left to right. For example, taking the rules for @ and applying them to
the term [0,1] @ [] results in a sequence of simplification steps:

(0#1#[]) @ [] ; 0#((1#[]) @ []) ; 0#(1#([] @ [])) ; 0#1#[]

This is also known as term rewriting and the equations are referred to as
rewrite rules. “Rewriting” is more honest than “simplification” because the
terms do not necessarily become simpler in the process.

28 3. More Functional Programming

The simplifier proves arithmetic goals as described in Sect. 2.6.1 above.
Arithmetic expressions are simplified using built-in procedures that go be-
yond mere rewrite rules. New simplification procedures can be coded and
installed, but they are definitely not a matter for this tutorial.

3.1.2 Simplification Rules

To facilitate simplification, the attribute [simp] declares theorems to be sim-
plification rules, which the simplifier will use automatically. In addition,
datatype and primrec declarations (and a few others) implicitly declare
some simplification rules. Explicit definitions are not declared as simplifica-
tion rules automatically!

Nearly any theorem can become a simplification rule. The simplifier will
try to transform it into an equation. For example, the theorem ¬ P is turned
into P = False. The details are explained in Sect. 9.1.2.

The simplification attribute of theorems can be turned on and off:

declare theorem-name[simp]
declare theorem-name[simp del]

Only equations that really simplify, like rev (rev xs) = xs and xs @ [] = xs,
should be declared as default simplification rules. More specific ones should
only be used selectively and should not be made default. Distributivity laws,
for example, alter the structure of terms and can produce an exponential
blow-up instead of simplification. A default simplification rule may need to
be disabled in certain proofs. Frequent changes in the simplification status of
a theorem may indicate an unwise use of defaults.

!! Simplification can run forever, for example if both f (x) = g(x) and g(x) = f (x)
are simplification rules. It is the user’s responsibility not to include simplification

rules that can lead to nontermination, either on their own or in combination with
other simplification rules.

!! It is inadvisable to toggle the simplification attribute of a theorem from a parent
theory A in a child theory B for good. The reason is that if some theory C

is based both on B and (via a different path) on A, it is not defined what the
simplification attribute of that theorem will be in C : it could be either.

3.1.3 The simp Method

The general format of the simplification method is

simp list of modifiers

where the list of modifiers fine tunes the behaviour and may be empty. Spe-
cific modifiers are discussed below. Most if not all of the proofs seen so far

3.1 Simplification 29

could have been performed with simp instead of auto, except that simp at-
tacks only the first subgoal and may thus need to be repeated — use simp_all

to simplify all subgoals. If nothing changes, simp fails.

3.1.4 Adding and Deleting Simplification Rules

If a certain theorem is merely needed in a few proofs by simplification, we do
not need to make it a global simplification rule. Instead we can modify the
set of simplification rules used in a simplification step by adding rules to it
and/or deleting rules from it. The two modifiers for this are

add: list of theorem names
del: list of theorem names

Or you can use a specific list of theorems and omit all others:

only: list of theorem names

In this example, we invoke the simplifier, adding two distributive laws:

apply(simp add: mod_mult_distrib add_mult_distrib)

3.1.5 Assumptions

By default, assumptions are part of the simplification process: they are used
as simplification rules and are simplified themselves. For example:

lemma " [[xs @ zs = ys @ xs; [] @ xs = [] @ []]] =⇒ ys = zs"
apply simp
done

The second assumption simplifies to xs = [], which in turn simplifies the first
assumption to zs = ys, thus reducing the conclusion to ys = ys and hence
to True.

In some cases, using the assumptions can lead to nontermination:

lemma "∀ x. f x = g (f (g x)) =⇒ f [] = f [] @ []"

An unmodified application of simp loops. The culprit is the simplification rule
f x = g (f (g x)), which is extracted from the assumption. (Isabelle notices
certain simple forms of nontermination but not this one.) The problem can
be circumvented by telling the simplifier to ignore the assumptions:

apply(simp (no_asm))
done

Three modifiers influence the treatment of assumptions:

(no_asm) means that assumptions are completely ignored.
(no_asm_simp) means that the assumptions are not simplified but are used

in the simplification of the conclusion.

30 3. More Functional Programming

(no_asm_use) means that the assumptions are simplified but are not used in
the simplification of each other or the conclusion.

Only one of the modifiers is allowed, and it must precede all other modifiers.

3.1.6 Rewriting with Definitions

Constant definitions (Sect. 2.7.2) can be used as simplification rules, but by
default they are not: the simplifier does not expand them automatically.
Definitions are intended for introducing abstract concepts and not merely as
abbreviations. Of course, we need to expand the definition initially, but once
we have proved enough abstract properties of the new constant, we can forget
its original definition. This style makes proofs more robust: if the definition
has to be changed, only the proofs of the abstract properties will be affected.

For example, given

definition xor :: "bool ⇒ bool ⇒ bool" where
"xor A B ≡ (A ∧ ¬B) ∨ (¬A ∧ B)"

we may want to prove

lemma "xor A (¬A)"

Typically, we begin by unfolding some definitions:

apply(simp only: xor_def)

In this particular case, the resulting goal

1. A ∧ ¬ ¬ A ∨ ¬ A ∧ ¬ A

can be proved by simplification. Thus we could have proved the lemma out-
right by

apply(simp add: xor_def)

Of course we can also unfold definitions in the middle of a proof.

!! If you have defined f x y ≡ t then you can only unfold occurrences of f with at
least two arguments. This may be helpful for unfolding f selectively, but it may

also get in the way. Defining f ≡ λx y . t allows to unfold all occurrences of f .

There is also the special method unfold which merely unfolds one or
several definitions, as in apply(unfold xor_def). This is can be useful in
situations where simp does too much. Warning: unfold acts on all subgoals!

3.1.7 Simplifying let-Expressions

Proving a goal containing let -expressions almost invariably requires the let -
constructs to be expanded at some point. Since let . . . = . . . in . . . is just syn-
tactic sugar for the predefined constant Let, expanding let -constructs means
rewriting with Let_def :

3.1 Simplification 31

lemma "(let xs = [] in xs@ys@xs) = ys"
apply(simp add: Let_def)
done

If, in a particular context, there is no danger of a combinatorial explosion
of nested lets, you could even simplify with Let_def by default:

declare Let_def [simp]

3.1.8 Conditional Simplification Rules

So far all examples of rewrite rules were equations. The simplifier also accepts
conditional equations, for example

lemma hd_Cons_tl[simp]: "xs 6= [] =⇒ hd xs # tl xs = xs"
apply(case_tac xs, simp, simp)
done

Note the use of “,” to string together a sequence of methods. Assuming
that the simplification rule (rev xs = []) = (xs = []) is present as well, the
lemma below is proved by plain simplification:

lemma "xs 6= [] =⇒ hd(rev xs) # tl(rev xs) = rev xs"

The conditional equation hd_Cons_tl above can simplify hd (rev xs) # tl

(rev xs) to rev xs because the corresponding precondition rev xs 6= [] sim-
plifies to xs 6= [], which is exactly the local assumption of the subgoal.

3.1.9 Automatic Case Splits

Goals containing if -expressions are usually proved by case distinction on the
boolean condition. Here is an example:

lemma "∀ xs. if xs = [] then rev xs = [] else rev xs 6= []"

The goal can be split by a special method, split :

apply(split split_if)

1. ∀ xs. (xs = [] −→ rev xs = []) ∧ (xs 6= [] −→ rev xs 6= [])

where split_if is a theorem that expresses splitting of ifs. Because splitting
the ifs is usually the right proof strategy, the simplifier does it automatically.
Try apply(simp) on the initial goal above.

This splitting idea generalizes from if to case . Let us simplify a case
analysis over lists:

lemma "(case xs of [] ⇒ zs | y#ys ⇒ y#(ys@zs)) = xs@zs"
apply(split list.split)

1. (xs = [] −→ zs = xs @ zs) ∧
(∀ a list. xs = a # list −→ a # list @ zs = xs @ zs)

32 3. More Functional Programming

The simplifier does not split case -expressions, as it does if -expressions, be-
cause with recursive datatypes it could lead to nontermination. Instead, the
simplifier has a modifier split for adding splitting rules explicitly. The lemma
above can be proved in one step by

apply(simp split: list.split)

whereas apply(simp) alone will not succeed.
Every datatype t comes with a theorem t.split which can be declared

to be a split rule either locally as above, or by giving it the split attribute
globally:

declare list.split [split]

The split attribute can be removed with the del modifier, either locally

apply(simp split del: split_if)

or globally:

declare list.split [split del]

Polished proofs typically perform splitting within simp rather than in-
voking the split method. However, if a goal contains several if and case

expressions, the split method can be helpful in selectively exploring the
effects of splitting.

The split rules shown above are intended to affect only the subgoal’s
conclusion. If you want to split an if or case -expression in the assumptions,
you have to apply split_if_asm or t.split_asm :

lemma "if xs = [] then ys 6= [] else ys = [] =⇒ xs @ ys 6= []"
apply(split split_if_asm)

Unlike splitting the conclusion, this step creates two separate subgoals, which
here can be solved by simp_all :

1. [[xs = []; ys 6= []]] =⇒ xs @ ys 6= []
2. [[xs 6= []; ys = []]] =⇒ xs @ ys 6= []

If you need to split both in the assumptions and the conclusion, use t.splits
which subsumes t.split and t.split_asm. Analogously, there is if_splits.

!! The simplifier merely simplifies the condition of an if but not the then or
else parts. The latter are simplified only after the condition reduces to True

or False, or after splitting. The same is true for case -expressions: only the selector
is simplified at first, until either the expression reduces to one of the cases or it is
split.

3.1.10 Tracing

Using the simplifier effectively may take a bit of experimentation. Set the
Proof General flag Isabelle > Settings > Trace Simplifier to get a better idea
of what is going on:

3.1 Simplification 33

lemma "rev [a] = []"
apply(simp)

produces the following trace in Proof General’s Trace buffer:

[1]Applying instance of rewrite rule "List.rev.simps_2":
rev (?x1 # ?xs1) ≡ rev ?xs1 @ [?x1]

[1]Rewriting:
rev [a] ≡ rev [] @ [a]

[1]Applying instance of rewrite rule "List.rev.simps_1":
rev [] ≡ []

[1]Rewriting:
rev [] ≡ []

[1]Applying instance of rewrite rule "List.op @.append_Nil":
[] @ ?y ≡ ?y

[1]Rewriting:
[] @ [a] ≡ [a]

[1]Applying instance of rewrite rule
?x2 # ?t1 = ?t1 ≡ False

[1]Rewriting:
[a] = [] ≡ False

The trace lists each rule being applied, both in its general form and the
instance being used. The [i] in front (where above i is always 1) indicates
that we are inside the ith invocation of the simplifier. Each attempt to apply
a conditional rule shows the rule followed by the trace of the (recursive!)
simplification of the conditions, the latter prefixed by [i + 1] instead of
[i]. Another source of recursive invocations of the simplifier are proofs of
arithmetic formulae.

Many other hints about the simplifier’s actions may appear.
In more complicated cases, the trace can be very lengthy. Thus it is ad-

visable to reset the Trace Simplifier flag after having obtained the desired
trace.

3.1.11 Finding Theorems

Isabelle’s large database of proved theorems offers a powerful search engine.
Its chief limitation is its restriction to the theories currently loaded.

The search engine is started by clicking on Proof General’s Find icon. You specify
your search textually in the input buffer at the bottom of the window.

34 3. More Functional Programming

The simplest form of search finds theorems containing specified patterns.
A pattern can be any term (even a single identifier). It may contain “ ”, a
wildcard standing for any term. Here are some examples:

length
"_ # _ = _ # _"
"_ + _"
"_ * (_ - (_::nat))"

Specifying types, as shown in the last example, constrains searches involving
overloaded operators.

!! Always use “ ” rather than variable names: searching for "x + y" will usually
not find any matching theorems because they would need to contain x and y

literally. When searching for infix operators, do not just type in the symbol, such
as +, but a proper term such as "_ + _". This remark applies to more complicated
syntaxes, too.

If you are looking for rewrite rules (possibly conditional) that could sim-
plify some term, prefix the pattern with simp:.

simp: "_ * (_ + _)"

This finds all equations—not just those with a simp attribute—whose con-
clusion has the form

_ * (_ + _) = . . .

It only finds equations that can simplify the given pattern at the root, not
somewhere inside: for example, equations of the form _ + _ = . . . do not
match.

You may also search for theorems by name—you merely need to specify
a substring. For example, you could search for all commutativity theorems
like this:

name: comm

This retrieves all theorems whose name contains comm.
Search criteria can also be negated by prefixing them with “-”. For ex-

ample,
-name: List

finds theorems whose name does not contain List. You can use this to exclude
particular theories from the search: the long name of a theorem contains the
name of the theory it comes from.

Finallly, different search criteria can be combined arbitrarily. The effect
is conjuctive: Find returns the theorems that satisfy all of the criteria. For
example,

"_ + _" -"_ - _" -simp: "_ * (_ + _)" name: assoc

looks for theorems containing plus but not minus, and which do not simplify
_ * (_ + _) at the root, and whose name contains assoc.

Further search criteria are explained in Sect. 5.14.

3.2 Induction Heuristics 35

Proof General keeps a history of all your search expressions. If you click on Find,
you can use the arrow keys to scroll through previous searches and just modify

them. This saves you having to type in lengthy expressions again and again.

3.2 Induction Heuristics

The purpose of this section is to illustrate some simple heuristics for inductive
proofs. The first one we have already mentioned in our initial example:

Theorems about recursive functions are proved by induction.

In case the function has more than one argument

Do induction on argument number i if the function is defined by
recursion in argument number i.

When we look at the proof of (xs@ys) @ zs = xs @ (ys@zs) in Sect. 2.3 we
find

– @ is recursive in the first argument
– xs occurs only as the first argument of @
– both ys and zs occur at least once as the second argument of @

Hence it is natural to perform induction on xs.
The key heuristic, and the main point of this section, is to generalize the

goal before induction. The reason is simple: if the goal is too specific, the
induction hypothesis is too weak to allow the induction step to go through.
Let us illustrate the idea with an example.

Function rev has quadratic worst-case running time because it calls func-
tion @ for each element of the list and @ is linear in its first argument. A linear
time version of rev reqires an extra argument where the result is accumulated
gradually, using only # :
primrec itrev :: "’a list ⇒ ’a list ⇒ ’a list" where
"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"

The behaviour of itrev is simple: it reverses its first argument by stacking
its elements onto the second argument, and returning that second argument
when the first one becomes empty. Note that itrev is tail-recursive: it can
be compiled into a loop.

Naturally, we would like to show that itrev does indeed reverse its first
argument provided the second one is empty:
lemma "itrev xs [] = rev xs"

There is no choice as to the induction variable, and we immediately simplify:
apply(induct_tac xs, simp_all)

Unfortunately, this attempt does not prove the induction step:

36 3. More Functional Programming

1.
V
a list.
itrev list [] = rev list =⇒ itrev list [a] = rev list @ [a]

The induction hypothesis is too weak. The fixed argument, [], prevents it
from rewriting the conclusion. This example suggests a heuristic:

Generalize goals for induction by replacing constants by variables.

Of course one cannot do this näıvely: itrev xs ys = rev xs is just not true.
The correct generalization is

lemma "itrev xs ys = rev xs @ ys"

If ys is replaced by [], the right-hand side simplifies to rev xs, as required.
In this instance it was easy to guess the right generalization. Other situ-

ations can require a good deal of creativity.
Although we now have two variables, only xs is suitable for induction,

and we repeat our proof attempt. Unfortunately, we are still not there:

1.
V
a list.
itrev list ys = rev list @ ys =⇒
itrev list (a # ys) = rev list @ a # ys

The induction hypothesis is still too weak, but this time it takes no intuition
to generalize: the problem is that ys is fixed throughout the subgoal, but the
induction hypothesis needs to be applied with a # ys instead of ys. Hence
we prove the theorem for all ys instead of a fixed one:

lemma "∀ ys. itrev xs ys = rev xs @ ys"

This time induction on xs followed by simplification succeeds. This leads to
another heuristic for generalization:

Generalize goals for induction by universally quantifying all free vari-
ables (except the induction variable itself!).

This prevents trivial failures like the one above and does not affect the validity
of the goal. However, this heuristic should not be applied blindly. It is not
always required, and the additional quantifiers can complicate matters in
some cases. The variables that should be quantified are typically those that
change in recursive calls.

A final point worth mentioning is the orientation of the equation we just
proved: the more complex notion (itrev) is on the left-hand side, the sim-
pler one (rev) on the right-hand side. This constitutes another, albeit weak
heuristic that is not restricted to induction:

The right-hand side of an equation should (in some sense) be simpler
than the left-hand side.

This heuristic is tricky to apply because it is not obvious that rev xs @ ys is
simpler than itrev xs ys. But see what happens if you try to prove rev xs

@ ys = itrev xs ys !

3.3 Case Study: Compiling Expressions 37

If you have tried these heuristics and still find your induction does not go
through, and no obvious lemma suggests itself, you may need to generalize
your proposition even further. This requires insight into the problem at hand
and is beyond simple rules of thumb. Additionally, you can read Sect. 9.2 to
learn about some advanced techniques for inductive proofs.

Exercise 3.2.1 Define the following addition function

primrec add :: "nat ⇒ nat ⇒ nat" where
"add m 0 = m" |
"add m (Suc n) = add (Suc m) n"

and prove

lemma "add m n = m+n"

Exercise 3.2.2 In Exercise 2.5.1 we defined a function flatten from trees
to lists. The straightforward version of flatten is based on @ and is thus,
like rev, quadratic. A linear time version of flatten again reqires an extra
argument, the accumulator. Define

flatten2 :: "’a tree ⇒ ’a list ⇒ ’a list"

and prove

lemma "flatten2 t [] = flatten t"

3.3 Case Study: Compiling Expressions

The task is to develop a compiler from a generic type of expressions (built
from variables, constants and binary operations) to a stack machine. This
generic type of expressions is a generalization of the boolean expressions
in Sect. 2.5.6. This time we do not commit ourselves to a particular type of
variables or values but make them type parameters. Neither is there a fixed set
of binary operations: instead the expression contains the appropriate function
itself.

types ’v binop = "’v ⇒ ’v ⇒ ’v"
datatype (’a,’v)expr = Cex ’v

| Vex ’a
| Bex "’v binop" "(’a,’v)expr" "(’a,’v)expr"

The three constructors represent constants, variables and the application of
a binary operation to two subexpressions.

The value of an expression with respect to an environment that maps
variables to values is easily defined:

primrec "value" :: "(’a,’v)expr ⇒ (’a ⇒ ’v) ⇒ ’v" where
"value (Cex v) env = v" |
"value (Vex a) env = env a" |
"value (Bex f e1 e2) env = f (value e1 env) (value e2 env)"

38 3. More Functional Programming

The stack machine has three instructions: load a constant value onto the
stack, load the contents of an address onto the stack, and apply a binary
operation to the two topmost elements of the stack, replacing them by the
result. As for expr, addresses and values are type parameters:
datatype (’a,’v) instr = Const ’v

| Load ’a
| Apply "’v binop"

The execution of the stack machine is modelled by a function exec that
takes a list of instructions, a store (modelled as a function from addresses
to values, just like the environment for evaluating expressions), and a stack
(modelled as a list) of values, and returns the stack at the end of the execution
— the store remains unchanged:
primrec exec :: "(’a,’v)instr list ⇒ (’a⇒’v) ⇒ ’v list ⇒ ’v list"
where
"exec [] s vs = vs" |
"exec (i#is) s vs = (case i of

Const v ⇒ exec is s (v#vs)
| Load a ⇒ exec is s ((s a)#vs)
| Apply f ⇒ exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))"

Recall that hd and tl return the first element and the remainder of a list.
Because all functions are total, hd is defined even for the empty list, although
we do not know what the result is. Thus our model of the machine always
terminates properly, although the definition above does not tell us much
about the result in situations where Apply was executed with fewer than two
elements on the stack.

The compiler is a function from expressions to a list of instructions. Its
definition is obvious:
primrec compile :: "(’a,’v)expr ⇒ (’a,’v)instr list" where
"compile (Cex v) = [Const v]" |
"compile (Vex a) = [Load a]" |
"compile (Bex f e1 e2) = (compile e2) @ (compile e1) @ [Apply f]"

Now we have to prove the correctness of the compiler, i.e. that the exe-
cution of a compiled expression results in the value of the expression:
theorem "exec (compile e) s [] = [value e s]"

This theorem needs to be generalized:
theorem "∀ vs. exec (compile e) s vs = (value e s) # vs"

It will be proved by induction on e followed by simplification. First, we
must prove a lemma about executing the concatenation of two instruction
sequences:
lemma exec_app[simp]:

"∀ vs. exec (xs@ys) s vs = exec ys s (exec xs s vs)"

This requires induction on xs and ordinary simplification for the base cases.
In the induction step, simplification leaves us with a formula that contains

3.4 Advanced Datatypes 39

two case -expressions over instructions. Thus we add automatic case splitting,
which finishes the proof:

apply(induct_tac xs, simp, simp split: instr.split)

Note that because both simp_all and auto perform simplification, they can
be modified in the same way as simp. Thus the proof can be rewritten as

apply(induct_tac xs, simp_all split: instr.split)

Although this is more compact, it is less clear for the reader of the proof.
We could now go back and prove exec (compile e) s [] = [value e s]

merely by simplification with the generalized version we just proved. How-
ever, this is unnecessary because the generalized version fully subsumes its
instance.

3.4 Advanced Datatypes

This section presents advanced forms of datatypes: mutual and nested re-
cursion. A series of examples will culminate in a treatment of the trie data
structure.

3.4.1 Mutual Recursion

Sometimes it is necessary to define two datatypes that depend on each other.
This is called mutual recursion. As an example consider a language of
arithmetic and boolean expressions where

– arithmetic expressions contain boolean expressions because there are con-
ditional expressions like “if m < n then n −m else m − n”, and

– boolean expressions contain arithmetic expressions because of comparisons
like “m < n”.

In Isabelle this becomes

datatype ’a aexp = IF "’a bexp" "’a aexp" "’a aexp"
| Sum "’a aexp" "’a aexp"
| Diff "’a aexp" "’a aexp"
| Var ’a
| Num nat

and ’a bexp = Less "’a aexp" "’a aexp"
| And "’a bexp" "’a bexp"
| Neg "’a bexp"

Type aexp is similar to expr in Sect. 3.3, except that we have added an IF

constructor, fixed the values to be of type nat and declared the two binary
operations Sum and Diff. Boolean expressions can be arithmetic comparisons,
conjunctions and negations. The semantics is given by two evaluation func-
tions:

40 3. More Functional Programming

primrec evala :: "’a aexp ⇒ (’a ⇒ nat) ⇒ nat" and
evalb :: "’a bexp ⇒ (’a ⇒ nat) ⇒ bool" where

"evala (IF b a1 a2) env =
(if evalb b env then evala a1 env else evala a2 env)" |

"evala (Sum a1 a2) env = evala a1 env + evala a2 env" |
"evala (Diff a1 a2) env = evala a1 env - evala a2 env" |
"evala (Var v) env = env v" |
"evala (Num n) env = n" |

"evalb (Less a1 a2) env = (evala a1 env < evala a2 env)" |
"evalb (And b1 b2) env = (evalb b1 env ∧ evalb b2 env)" |
"evalb (Neg b) env = (¬ evalb b env)"

Both take an expression and an environment (a mapping from variables ’a
to values nat) and return its arithmetic/boolean value. Since the datatypes
are mutually recursive, so are functions that operate on them. Hence they
need to be defined in a single primrec section. Notice the and separating
the declarations of evala and evalb. Their defining equations need not be
split into two groups; the empty line is purely for readability.

In the same fashion we also define two functions that perform substitution:

primrec substa :: "(’a ⇒ ’b aexp) ⇒ ’a aexp ⇒ ’b aexp" and
substb :: "(’a ⇒ ’b aexp) ⇒ ’a bexp ⇒ ’b bexp" where

"substa s (IF b a1 a2) =
IF (substb s b) (substa s a1) (substa s a2)" |

"substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)" |
"substa s (Diff a1 a2) = Diff (substa s a1) (substa s a2)" |
"substa s (Var v) = s v" |
"substa s (Num n) = Num n" |

"substb s (Less a1 a2) = Less (substa s a1) (substa s a2)" |
"substb s (And b1 b2) = And (substb s b1) (substb s b2)" |
"substb s (Neg b) = Neg (substb s b)"

Their first argument is a function mapping variables to expressions, the sub-
stitution. It is applied to all variables in the second argument. As a result,
the type of variables in the expression may change from ’a to ’b. Note that
there are only arithmetic and no boolean variables.

Now we can prove a fundamental theorem about the interaction between
evaluation and substitution: applying a substitution s to an expression a
and evaluating the result in an environment env yields the same result as
evaluation a in the environment that maps every variable x to the value of
s(x) under env . If you try to prove this separately for arithmetic or boolean
expressions (by induction), you find that you always need the other theorem
in the induction step. Therefore you need to state and prove both theorems
simultaneously:

lemma "evala (substa s a) env = evala a (λx. evala (s x) env) ∧
evalb (substb s b) env = evalb b (λx. evala (s x) env)"

apply(induct_tac a and b)

The resulting 8 goals (one for each constructor) are proved in one fell swoop:

3.4 Advanced Datatypes 41

apply simp_all

In general, given n mutually recursive datatypes τ1, . . . , τn , an inductive
proof expects a goal of the form

P1(x1) ∧ · · · ∧ Pn(xn)

where each variable xi is of type τi . Induction is started by

apply(induct_tac x1 and ... and xn)

Exercise 3.4.1 Define a function norma of type ’a aexp ⇒ ’a aexp that re-
places IFs with complex boolean conditions by nested IFs; it should eliminate
the constructors And and Neg, leaving only Less. Prove that norma preserves
the value of an expression and that the result of norma is really normal, i.e.
no more Ands and Negs occur in it. (Hint: proceed as in Sect. 2.5.6 and read
the discussion of type annotations following lemma subst_id below).

3.4.2 Nested Recursion

So far, all datatypes had the property that on the right-hand side of their
definition they occurred only at the top-level: directly below a constructor.
Now we consider nested recursion, where the recursive datatype occurs nested
in some other datatype (but not inside itself!). Consider the following model
of terms where function symbols can be applied to a list of arguments:

datatype (’v,’f)"term" = Var ’v | App ’f "(’v,’f)term list"

Note that we need to quote term on the left to avoid confusion with the
Isabelle command term. Parameter ’v is the type of variables and ’f the
type of function symbols. A mathematical term like f (x , g(y)) becomes App

f [Var x, App g [Var y]], where f, g, x, y are suitable values, e.g. numbers
or strings.

What complicates the definition of term is the nested occurrence of term
inside list on the right-hand side. In principle, nested recursion can be elim-
inated in favour of mutual recursion by unfolding the offending datatypes,
here list. The result for term would be something like

datatype (’v,’f)"term" = Var ’v | App ’f "(’v,’f)term_list"
and (’v,’f)term_list = Nil | Cons "(’v,’f)term" "(’v,’f)term_list"

Although we do not recommend this unfolding to the user, it shows how to
simulate nested recursion by mutual recursion. Now we return to the initial
definition of term using nested recursion.

Let us define a substitution function on terms. Because terms involve term
lists, we need to define two substitution functions simultaneously:

primrec
subst :: "(’v⇒(’v,’f)term) ⇒ (’v,’f)term ⇒ (’v,’f)term" and

42 3. More Functional Programming

substs:: "(’v⇒(’v,’f)term) ⇒ (’v,’f)term list ⇒ (’v,’f)term list"
where
"subst s (Var x) = s x" |

subst_App:
"subst s (App f ts) = App f (substs s ts)" |

"substs s [] = []" |
"substs s (t # ts) = subst s t # substs s ts"

Individual equations in a primrec definition may be named as shown for
subst_App. The significance of this device will become apparent below.

Similarly, when proving a statement about terms inductively, we need
to prove a related statement about term lists simultaneously. For example,
the fact that the identity substitution does not change a term needs to be
strengthened and proved as follows:

lemma subst_id: "subst Var t = (t ::(’v,’f)term) ∧
substs Var ts = (ts::(’v,’f)term list)"

apply(induct_tac t and ts, simp_all)
done

Note that Var is the identity substitution because by definition it leaves vari-
ables unchanged: subst Var (Var x) = Var x. Note also that the type anno-
tations are necessary because otherwise there is nothing in the goal to enforce
that both halves of the goal talk about the same type parameters (’v,’f).
As a result, induction would fail because the two halves of the goal would be
unrelated.

Exercise 3.4.2 The fact that substitution distributes over composition can
be expressed roughly as follows:

subst (f ◦ g) t = subst f (subst g t)

Correct this statement (you will find that it does not type-check), strengthen
it, and prove it. (Note: ◦ is function composition; its definition is found in
theorem o_def).

Exercise 3.4.3 Define a function trev of type (’v, ’f) term ⇒ (’v, ’f)

term that recursively reverses the order of arguments of all function symbols
in a term. Prove that trev (trev t) = t.

The experienced functional programmer may feel that our definition of
subst is too complicated in that substs is unnecessary. The App -case can be
defined directly as

subst s (App f ts) = App f (map (subst s) ts)

where map is the standard list function such that map f [x1,...,xn] = [f

x1,...,f xn]. This is true, but Isabelle insists on the conjunctive format.
Fortunately, we can easily prove that the suggested equation holds:

3.4 Advanced Datatypes 43

lemma [simp]: "subst s (App f ts) = App f (map (subst s) ts)"
apply(induct_tac ts, simp_all)
done

What is more, we can now disable the old defining equation as a simplification
rule:

declare subst_App [simp del]

The advantage is that now we have replaced substs by map, we can profit from
the large number of pre-proved lemmas about map. Unfortunately, inductive
proofs about type term are still awkward because they expect a conjunc-
tion. One could derive a new induction principle as well (see Sect. 9.2.3), but
simpler is to stop using primrec and to define functions with fun instead.
Simple uses of fun are described in Sect. 3.5 below. Advanced applications,
including functions over nested datatypes like term, are discussed in a sepa-
rate tutorial [19].

Of course, you may also combine mutual and nested recursion of data-
types. For example, constructor Sum in Sect. 3.4.1 could take a list of expres-
sions as its argument: Sum "’a aexp list".

3.4.3 The Limits of Nested Recursion

How far can we push nested recursion? By the unfolding argument above,
we can reduce nested to mutual recursion provided the nested recursion only
involves previously defined datatypes. This does not include functions:

datatype t = C "t ⇒ bool"

This declaration is a real can of worms. In HOL it must be ruled out because
it requires a type t such that t and its power set t ⇒ bool have the same
cardinality — an impossibility. For the same reason it is not possible to allow
recursion involving the type t set, which is isomorphic to t ⇒ bool.

Fortunately, a limited form of recursion involving function spaces is per-
mitted: the recursive type may occur on the right of a function arrow, but
never on the left. Hence the above can of worms is ruled out but the following
example of a potentially infinitely branching tree is accepted:
datatype (’a,’i)bigtree = Tip | Br ’a "’i ⇒ (’a,’i)bigtree"

Parameter ’a is the type of values stored in the Branches of the tree, whereas
’i is the index type over which the tree branches. If ’i is instantiated to bool,
the result is a binary tree; if it is instantiated to nat, we have an infinitely
branching tree because each node has as many subtrees as there are natural
numbers. How can we possibly write down such a tree? Using functional
notation! For example, the term

Br 0 (λi. Br i (λn. Tip))

44 3. More Functional Programming

of type (nat, nat) bigtree is the tree whose root is labeled with 0 and whose
ith subtree is labeled with i and has merely Tips as further subtrees.

Function map_bt applies a function to all labels in a bigtree :

primrec map_bt :: "(’a ⇒ ’b) ⇒ (’a,’i)bigtree ⇒ (’b,’i)bigtree"
where
"map_bt f Tip = Tip" |
"map_bt f (Br a F) = Br (f a) (λi. map_bt f (F i))"

This is a valid primrec definition because the recursive calls of map_bt in-
volve only subtrees of F, which is itself a subterm of the left-hand side. Thus
termination is assured. The seasoned functional programmer might try ex-
pressing λi. map_bt f (F i) as map_bt f ◦ F, which Isabelle however will
reject. Applying map_bt to only one of its arguments makes the termination
proof less obvious.

The following lemma has a simple proof by induction:

lemma "map_bt (g o f) T = map_bt g (map_bt f T)"
apply(induct_tac T, simp_all)
done

Because of the function type, the proof state after induction looks unusual.
Notice the quantified induction hypothesis:

1. map_bt (g ◦ f) Tip = map_bt g (map_bt f Tip)
2.

V
a F. (

V
x. map_bt (g ◦ f) (F x) = map_bt g (map_bt f (F x))) =⇒

map_bt (g ◦ f) (Br a F) = map_bt g (map_bt f (Br a F))

If you need nested recursion on the left of a function arrow, there are
alternatives to pure HOL. In the Logic for Computable Functions (LCF),
types like

datatype lam = C "lam → lam"

do indeed make sense [29]. Note the different arrow,→ instead of ⇒, express-
ing the type of continuous functions. There is even a version of LCF on top
of HOL, called HOLCF [22].

3.4.4 Case Study: Tries

Tries are a classic search tree data structure [18] for fast indexing with strings.
Figure 3.1 gives a graphical example of a trie containing the words “all”, “an”,
“ape”, “can”, “car” and “cat”. When searching a string in a trie, the letters of
the string are examined sequentially. Each letter determines which subtrie to
search next. In this case study we model tries as a datatype, define a lookup
and an update function, and prove that they behave as expected.

Proper tries associate some value with each string. Since the information
is stored only in the final node associated with the string, many nodes do not
carry any value. This distinction is modeled with the help of the predefined
datatype option (see Sect. 2.6.3).

3.4 Advanced Datatypes 45

l e n r t

�
��

Q
QQ

l n p a

�
��

Q
QQ

a c

�
�

��

Q
Q
QQ

Figure 3.1. A Sample Trie

To minimize running time, each node of a trie should contain an array that
maps letters to subtries. We have chosen a representation where the subtries
are held in an association list, i.e. a list of (letter,trie) pairs. Abstracting over
the alphabet ’a and the values ’v we define a trie as follows:

datatype (’a,’v)trie = Trie "’v option" "(’a * (’a,’v)trie)list"

The first component is the optional value, the second component the associa-
tion list of subtries. This is an example of nested recursion involving products,
which is fine because products are datatypes as well. We define two selector
functions:

primrec "value" :: "(’a,’v)trie ⇒ ’v option" where
"value(Trie ov al) = ov"
primrec alist :: "(’a,’v)trie ⇒ (’a * (’a,’v)trie)list" where
"alist(Trie ov al) = al"

Association lists come with a generic lookup function. Its result involves type
option because a lookup can fail:

primrec assoc :: "(’key * ’val)list ⇒ ’key ⇒ ’val option" where
"assoc [] x = None" |
"assoc (p#ps) x =

(let (a,b) = p in if a=x then Some b else assoc ps x)"

Now we can define the lookup function for tries. It descends into the trie
examining the letters of the search string one by one. As recursion on lists is
simpler than on tries, let us express this as primitive recursion on the search
string argument:

primrec lookup :: "(’a,’v)trie ⇒ ’a list ⇒ ’v option" where
"lookup t [] = value t" |
"lookup t (a#as) = (case assoc (alist t) a of

None ⇒ None
| Some at ⇒ lookup at as)"

As a first simple property we prove that looking up a string in the empty
trie Trie None [] always returns None. The proof merely distinguishes the
two cases whether the search string is empty or not:

lemma [simp]: "lookup (Trie None []) as = None"

46 3. More Functional Programming

apply(case_tac as, simp_all)
done

Things begin to get interesting with the definition of an update func-
tion that adds a new (string, value) pair to a trie, overwriting the old value
associated with that string:
primrec update:: "(’a,’v)trie ⇒ ’a list ⇒ ’v ⇒ (’a,’v)trie" where
"update t [] v = Trie (Some v) (alist t)" |
"update t (a#as) v =

(let tt = (case assoc (alist t) a of
None ⇒ Trie None [] | Some at ⇒ at)

in Trie (value t) ((a,update tt as v) # alist t))"

The base case is obvious. In the recursive case the subtrie tt associated
with the first letter a is extracted, recursively updated, and then placed in
front of the association list. The old subtrie associated with a is still in the
association list but no longer accessible via assoc. Clearly, there is room here
for optimizations!

Before we start on any proofs about update we tell the simplifier to expand
all lets and to split all case -constructs over options:
declare Let_def[simp] option.split[split]

The reason becomes clear when looking (probably after a failed proof at-
tempt) at the body of update : it contains both let and a case distinction
over type option.

Our main goal is to prove the correct interaction of update and lookup :
theorem "∀ t v bs. lookup (update t as v) bs =

(if as=bs then Some v else lookup t bs)"

Our plan is to induct on as ; hence the remaining variables are quantified.
From the definitions it is clear that induction on either as or bs is required.
The choice of as is guided by the intuition that simplification of lookup might
be easier if update has already been simplified, which can only happen if as
is instantiated. The start of the proof is conventional:
apply(induct_tac as, auto)

Unfortunately, this time we are left with three intimidating looking subgoals:
1. ... =⇒ lookup ... bs = lookup t bs
2. ... =⇒ lookup ... bs = lookup t bs
3. ... =⇒ lookup ... bs = lookup t bs

Clearly, if we want to make headway we have to instantiate bs as well now.
It turns out that instead of induction, case distinction suffices:
apply(case_tac[!] bs, auto)
done

All methods ending in tac take an optional first argument that specifies the
range of subgoals they are applied to, where [!] means all subgoals, i.e. [1-3]
in our case. Individual subgoal numbers, e.g. [2] are also allowed.

3.5 Total Recursive Functions: fun 47

This proof may look surprisingly straightforward. However, note that this
comes at a cost: the proof script is unreadable because the intermediate
proof states are invisible, and we rely on the (possibly brittle) magic of auto
(simp_all will not do — try it) to split the subgoals of the induction up in
such a way that case distinction on bs makes sense and solves the proof.

Exercise 3.4.4 Modify update (and its type) such that it allows both in-
sertion and deletion of entries with a single function. Prove the correspond-
ing version of the main theorem above. Optimize your function such that it
shrinks tries after deletion if possible.

Exercise 3.4.5 Write an improved version of update that does not suffer
from the space leak (pointed out above) caused by not deleting overwritten
entries from the association list. Prove the main theorem for your improved
update.

Exercise 3.4.6 Conceptually, each node contains a mapping from letters to
optional subtries. Above we have implemented this by means of an association
list. Replay the development replacing (’a × (’a, ’v) trie) list with ’a

⇀ (’a, ’v) trie.

3.5 Total Recursive Functions: fun

Although many total functions have a natural primitive recursive definition,
this is not always the case. Arbitrary total recursive functions can be defined
by means of fun: you can use full pattern matching, recursion need not involve
datatypes, and termination is proved by showing that the arguments of all
recursive calls are smaller in a suitable sense. In this section we restrict our-
selves to functions where Isabelle can prove termination automatically. More
advanced function definitions, including user supplied termination proofs,
nested recursion and partiality, are discussed in a separate tutorial [19].

3.5.1 Definition

Here is a simple example, the Fibonacci function:

fun fib :: "nat ⇒ nat" where
"fib 0 = 0" |
"fib (Suc 0) = 1" |
"fib (Suc(Suc x)) = fib x + fib (Suc x)"

This resembles ordinary functional programming languages. Note the oblig-
atory where and |. Command fun declares and defines the function in one
go. Isabelle establishes termination automatically because fib ’s argument
decreases in every recursive call.

48 3. More Functional Programming

Slightly more interesting is the insertion of a fixed element between any
two elements of a list:

fun sep :: "’a ⇒ ’a list ⇒ ’a list" where
"sep a [] = []" |
"sep a [x] = [x]" |
"sep a (x#y#zs) = x # a # sep a (y#zs)"

This time the length of the list decreases with the recursive call; the first
argument is irrelevant for termination.

Pattern matching need not be exhaustive and may employ wildcards:

fun last :: "’a list ⇒ ’a" where
"last [x] = x" |
"last (_#y#zs) = last (y#zs)"

Overlapping patterns are disambiguated by taking the order of equations
into account, just as in functional programming:

fun sep1 :: "’a ⇒ ’a list ⇒ ’a list" where
"sep1 a (x#y#zs) = x # a # sep1 a (y#zs)" |
"sep1 _ xs = xs"

To guarantee that the second equation can only be applied if the first one
does not match, Isabelle internally replaces the second equation by the two
possibilities that are left: sep1 a [] = [] and sep1 a [x] = [x]. Thus the
functions sep and sep1 are identical.

Because of its pattern matching syntax, fun is also useful for the definition
of non-recursive functions:

fun swap12 :: "’a list ⇒ ’a list" where
"swap12 (x#y#zs) = y#x#zs" |
"swap12 zs = zs"

After a function f has been defined via fun, its defining equations (or vari-
ants derived from them) are available under the name f .simps as theorems.
For example, look (via thm) at sep.simps and sep1.simps to see that they
define the same function. What is more, those equations are automatically
declared as simplification rules.

3.5.2 Termination

Isabelle’s automatic termination prover for fun has a fixed notion of the size
(of type nat) of an argument. The size of a natural number is the number
itself. The size of a list is its length. For the general case see Sect. 2.5.2.
A recursive function is accepted if fun can show that the size of one fixed
argument becomes smaller with each recursive call.

More generally, fun allows any lexicographic combination of size measures
in case there are multiple arguments. For example, the following version of
Ackermann’s function is accepted:

fun ack2 :: "nat ⇒ nat ⇒ nat" where

3.5 Total Recursive Functions: fun 49

"ack2 n 0 = Suc n" |
"ack2 0 (Suc m) = ack2 (Suc 0) m" |
"ack2 (Suc n) (Suc m) = ack2 (ack2 n (Suc m)) m"

The order of arguments has no influence on whether fun can prove ter-
mination of a function. For more details see elsewhere [6].

3.5.3 Simplification

Upon a successful termination proof, the recursion equations become simpli-
fication rules, just as with primrec. In most cases this works fine, but there
is a subtle problem that must be mentioned: simplification may not terminate
because of automatic splitting of if. Let us look at an example:

fun gcd :: "nat ⇒ nat ⇒ nat" where
"gcd m n = (if n=0 then m else gcd n (m mod n))"

The second argument decreases with each recursive call. The termination
condition

n 6= 0 =⇒ m mod n < n

is proved automatically because it is already present as a lemma in HOL. Thus
the recursion equation becomes a simplification rule. Of course the equation
is nonterminating if we are allowed to unfold the recursive call inside the
else branch, which is why programming languages and our simplifier don’t
do that. Unfortunately the simplifier does something else that leads to the
same problem: it splits each if -expression unless its condition simplifies to
True or False. For example, simplification reduces

gcd m n = k

in one step to

(if n = 0 then m else gcd n (m mod n)) = k

where the condition cannot be reduced further, and splitting leads to

(n = 0 −→ m = k) ∧ (n 6= 0 −→ gcd n (m mod n) = k)

Since the recursive call gcd n (m mod n) is no longer protected by an if, it
is unfolded again, which leads to an infinite chain of simplification steps.
Fortunately, this problem can be avoided in many different ways.

The most radical solution is to disable the offending theorem split_if,
as shown in Sect. 3.1.9. However, we do not recommend this approach: you
will often have to invoke the rule explicitly when if is involved.

If possible, the definition should be given by pattern matching on the
left rather than if on the right. In the case of gcd the following alternative
definition suggests itself:

fun gcd1 :: "nat ⇒ nat ⇒ nat" where
"gcd1 m 0 = m" |
"gcd1 m n = gcd1 n (m mod n)"

50 3. More Functional Programming

The order of equations is important: it hides the side condition n 6= 0. Un-
fortunately, not all conditionals can be expressed by pattern matching.

A simple alternative is to replace if by case, which is also available for
bool and is not split automatically:

fun gcd2 :: "nat ⇒ nat ⇒ nat" where
"gcd2 m n = (case n=0 of True ⇒ m | False ⇒ gcd2 n (m mod n))"

This is probably the neatest solution next to pattern matching, and it is
always available.

A final alternative is to replace the offending simplification rules by de-
rived conditional ones. For gcd it means we have to prove these lemmas:

lemma [simp]: "gcd m 0 = m"
apply(simp)
done

lemma [simp]: "n 6= 0 =⇒ gcd m n = gcd n (m mod n)"
apply(simp)
done

Simplification terminates for these proofs because the condition of the if

simplifies to True or False. Now we can disable the original simplification
rule:

declare gcd.simps [simp del]

3.5.4 Induction

Having defined a function we might like to prove something about it. Since the
function is recursive, the natural proof principle is again induction. But this
time the structural form of induction that comes with datatypes is unlikely
to work well — otherwise we could have defined the function by primrec.
Therefore fun automatically proves a suitable induction rule f .induct that
follows the recursion pattern of the particular function f . We call this re-
cursion induction. Roughly speaking, it requires you to prove for each fun
equation that the property you are trying to establish holds for the left-hand
side provided it holds for all recursive calls on the right-hand side. Here is a
simple example involving the predefined map functional on lists:

lemma "map f (sep x xs) = sep (f x) (map f xs)"

Note that map f xs is the result of applying f to all elements of xs. We prove
this lemma by recursion induction over sep :

apply(induct_tac x xs rule: sep.induct)

The resulting proof state has three subgoals corresponding to the three
clauses for sep :

3.5 Total Recursive Functions: fun 51

1.
V
a. map f (sep a []) = sep (f a) (map f [])

2.
V
a x. map f (sep a [x]) = sep (f a) (map f [x])

3.
V
a x y zs.
map f (sep a (y # zs)) = sep (f a) (map f (y # zs)) =⇒
map f (sep a (x # y # zs)) = sep (f a) (map f (x # y # zs))

The rest is pure simplification:

apply simp_all
done

The proof goes smoothly because the induction rule follows the recursion of
sep. Try proving the above lemma by structural induction, and you find that
you need an additional case distinction.

In general, the format of invoking recursion induction is

apply(induct_tac x1 . . . xn rule: f .induct)

where x1 . . . xn is a list of free variables in the subgoal and f the name
of a function that takes an n arguments. Usually the subgoal will contain
the term fx1 . . . xn but this need not be the case. The induction rules do not
mention f at all. Here is sep.induct :

[[
V
a. P a [];V
a x. P a [x];V
a x y zs. P a (y # zs) =⇒ P a (x # y # zs)]]

=⇒ P u v

It merely says that in order to prove a property P of u and v you need to
prove it for the three cases where v is the empty list, the singleton list, and
the list with at least two elements. The final case has an induction hypothesis:
you may assume that P holds for the tail of that list.

4. Presenting Theories

By now the reader should have become sufficiently acquainted with elemen-
tary theory development in Isabelle/HOL. The following interlude describes
how to present theories in a typographically pleasing manner. Isabelle pro-
vides a rich infrastructure for concrete syntax of the underlying λ-calculus
language (see Sect. 4.1), as well as document preparation of theory texts based
on existing PDF-LATEX technology (see Sect. 4.2).

As pointed out by Leibniz more than 300 years ago, notions are in princi-
ple more important than notations, but suggestive textual representation of
ideas is vital to reduce the mental effort to comprehend and apply them.

4.1 Concrete Syntax

The core concept of Isabelle’s framework for concrete syntax is that of mixfix
annotations. Associated with any kind of constant declaration, mixfixes
affect both the grammar productions for the parser and output templates for
the pretty printer.

In full generality, parser and pretty printer configuration is a subtle af-
fair [28]. Your syntax specifications need to interact properly with the existing
setup of Isabelle/Pure and Isabelle/HOL. To avoid creating ambiguities with
existing elements, it is particularly important to give new syntactic constructs
the right precedence.

Below we introduce a few simple syntax declaration forms that already
cover many common situations fairly well.

4.1.1 Infix Annotations

Syntax annotations may be included wherever constants are declared, such as
definition and primrec — and also datatype, which declares constructor
operations. Type-constructors may be annotated as well, although this is less
frequently encountered in practice (the infix type × comes to mind).

Infix declarations provide a useful special case of mixfixes. The following
example of the exclusive-or operation on boolean values illustrates typical
infix declarations.

54 4. Presenting Theories

definition xor :: "bool ⇒ bool ⇒ bool" (infixl "[+]" 60)
where "A [+] B ≡ (A ∧ ¬ B) ∨ (¬ A ∧ B)"

Now xor A B and A [+] B refer to the same expression internally. Any cur-
ried function with at least two arguments may be given infix syntax. For
partial applications with fewer than two operands, there is a notation using
the prefix op. For instance, xor without arguments is represented as op [+] ;
together with ordinary function application, this turns xor A into op [+] A.

The keyword infixl seen above specifies an infix operator that is nested
to the left : in iterated applications the more complex expression appears on
the left-hand side, and A [+] B [+] C stands for (A [+] B) [+] C. Similarly,
infixr means nesting to the right, reading A [+] B [+] C as A [+] (B [+] C).
A non-oriented declaration via infix would render A [+] B [+] C illegal, but
demand explicit parentheses to indicate the intended grouping.

The string "[+]" in our annotation refers to the concrete syntax to rep-
resent the operator (a literal token), while the number 60 determines the
precedence of the construct: the syntactic priorities of the arguments and
result. Isabelle/HOL already uses up many popular combinations of ASCII
symbols for its own use, including both + and ++. Longer character combina-
tions are more likely to be still available for user extensions, such as our [+].

Operator precedences have a range of 0–1000. Very low or high priorities
are reserved for the meta-logic. HOL syntax mainly uses the range of 10–100:
the equality infix = is centered at 50; logical connectives (like ∨ and ∧) are
below 50; algebraic ones (like + and *) are above 50. User syntax should
strive to coexist with common HOL forms, or use the mostly unused range
100–900.

4.1.2 Mathematical Symbols

Concrete syntax based on ASCII characters has inherent limitations. Math-
ematical notation demands a larger repertoire of glyphs. Several standards
of extended character sets have been proposed over decades, but none has
become universally available so far. Isabelle has its own notion of symbols
as the smallest entities of source text, without referring to internal encodings.
There are three kinds of such “generalized characters”:

1. 7-bit ASCII characters
2. named symbols: \<ident>
3. named control symbols: \<^ident>

Here ident is any sequence of letters. This results in an infinite store of
symbols, whose interpretation is left to further front-end tools. For example,
the user-interface of Proof General + X-Symbol and the Isabelle document
processor (see Sect. 4.2) display the \<forall> symbol as ∀ .

A list of standard Isabelle symbols is given in [40, appendix A]. You
may introduce your own interpretation of further symbols by configuring the

4.1 Concrete Syntax 55

appropriate front-end tool accordingly, e.g. by defining certain LATEX macros
(see also Sect. 4.2.4). There are also a few predefined control symbols, such
as \<^sub> and \<^sup> for sub- and superscript of the subsequent printable
symbol, respectively. For example, A\<^sup>\<star> is output as A?.

A number of symbols are considered letters by the Isabelle lexer and can
be used as part of identifiers. These are the greek letters α (\<alpha>), β
(\<beta>), etc. (excluding λ), special letters like A (\<A>) and A (\<AA>),
and the control symbols \<^isub> and \<^isup> for single letter sub and
super scripts. This means that the input

\<forall>\<alpha>\<^isub>1. \<alpha>\<^isub>1 = \<Pi>\<^isup>\<A>

is recognized as the term ∀α1. α1 = ΠA by Isabelle. Note that ΠA is a single
syntactic entity, not an exponentiation.

Replacing our previous definition of xor by the following specifies an Isa-
belle symbol for the new operator:

definition xor :: "bool ⇒ bool ⇒ bool" (infixl "⊕" 60)
where "A ⊕ B ≡ (A ∧ ¬ B) ∨ (¬ A ∧ B)"

The X-Symbol package within Proof General provides several input methods
to enter ⊕ in the text. If all fails one may just type a named entity \<oplus>
by hand; the corresponding symbol will be displayed after further input.

More flexible is to provide alternative syntax forms through the print
mode concept [28]. By convention, the mode of “xsymbols” is enabled when-
ever Proof General’s X-Symbol mode or LATEX output is active. Now consider
the following hybrid declaration of xor :

definition xor :: "bool ⇒ bool ⇒ bool" (infixl "[+]" 60)
where "A [+] B ≡ (A ∧ ¬ B) ∨ (¬ A ∧ B)"

notation (xsymbols) xor (infixl "⊕" 60)

The notation command associates a mixfix annotation with a known con-
stant. The print mode specification, here (xsymbols), is optional.

We may now write A [+] B or A ⊕ B in input, while output uses the nicer
syntax of xsymbols whenever that print mode is active. Such an arrange-
ment is particularly useful for interactive development, where users may type
ASCII text and see mathematical symbols displayed during proofs.

4.1.3 Prefix Annotations

Prefix syntax annotations are another form of mixfixes [28], without any
template arguments or priorities — just some literal syntax. The following
example associates common symbols with the constructors of a datatype.

datatype currency =
Euro nat ("�")

| Pounds nat ("£")

56 4. Presenting Theories

| Yen nat ("U")
| Dollar nat ("$")

Here the mixfix annotations on the rightmost column happen to consist of a
single Isabelle symbol each: \<euro>, \<pounds>, \<yen>, and $. Recall that
a constructor like Euro actually is a function nat ⇒ currency. The expression
Euro 10 will be printed as � 10 ; only the head of the application is subject to
our concrete syntax. This rather simple form already achieves conformance
with notational standards of the European Commission.

Prefix syntax works the same way for other commands that introduce new
constants, e.g. primrec.

4.1.4 Abbreviations

Mixfix syntax annotations merely decorate particular constant application
forms with concrete syntax, for instance replacing xor A B by A ⊕ B. Occa-
sionally, the relationship between some piece of notation and its internal form
is more complicated. Here we need abbreviations.

Command abbreviation introduces an uninterpreted notational constant
as an abbreviation for a complex term. Abbreviations are unfolded upon
parsing and re-introduced upon printing. This provides a simple mechanism
for syntactic macros.

A typical use of abbreviations is to introduce relational notation for mem-
bership in a set of pairs, replacing (x, y) ∈ sim by x ≈ y. We assume that
a constant sim of type (’a × ’a) set has been introduced at this point.
abbreviation sim2 :: "’a ⇒ ’a ⇒ bool" (infix "≈" 50)
where "x ≈ y ≡ (x, y) ∈ sim"

The given meta-equality is used as a rewrite rule after parsing (replacing
x ≈ y by (x,y) ∈ sim) and before printing (turning (x,y) ∈ sim back into
x ≈ y). The name of the dummy constant sim2 does not matter, as long as
it is unique.

Another common application of abbreviations is to provide variant ver-
sions of fundamental relational expressions, such as 6= for negated equalities.
The following declaration stems from Isabelle/HOL itself:
abbreviation not_equal :: "’a ⇒ ’a ⇒ bool" (infixl "~=" 50)
where "x ~= y ≡ ¬ (x = y)"

notation (xsymbols) not_equal (infix " 6=" 50)

The notation 6= is introduced separately to restrict it to the xsymbols mode.
Abbreviations are appropriate when the defined concept is a simple vari-

ation on an existing one. But because of the automatic folding and unfolding
of abbreviations, they do not scale up well to large hierarchies of concepts.
Abbreviations do not replace definitions.

Abbreviations are a simplified form of the general concept of syntax trans-
lations; even heavier transformations may be written in ML [28].

4.2 Document Preparation 57

4.2 Document Preparation

Isabelle/Isar is centered around the concept of formal proof documents.
The outcome of a formal development effort is meant to be a human-readable
record, presented as browsable PDF file or printed on paper. The overall
document structure follows traditional mathematical articles, with sections,
intermediate explanations, definitions, theorems and proofs.

The Isabelle document preparation system essentially acts as a front-
end to LATEX. After checking specifications and proofs formally, the theory
sources are turned into typesetting instructions in a schematic manner. This
lets you write authentic reports on theory developments with little effort:
many technical consistency checks are handled by the system.

Here is an example to illustrate the idea of Isabelle document preparation.

The following datatype definition of ’a bintree models binary
trees with nodes being decorated by elements of type ’a.

datatype ’a bintree =
Leaf | Branch ’a "’a bintree" "’a bintree"

The datatype induction rule generated here is of the form
[[P Leaf;V

a bintree1 bintree2.
[[P bintree1; P bintree2]] =⇒ P (Branch a bintree1 bintree2)]]

=⇒ P bintree

The above document output has been produced as follows:

text {*
The following datatype definition of @{text "’a bintree"}
models binary trees with nodes being decorated by elements
of type @{typ ’a}.

*}

datatype ’a bintree =
Leaf | Branch ’a "’a bintree" "’a bintree"

text {*
\noindent The datatype induction rule generated here is
of the form @{thm [display] bintree.induct [no_vars]}

*}

Here we have augmented the theory by formal comments (using text blocks),
the informal parts may again refer to formal entities by means of “antiquota-
tions” (such as @{text "’a bintree"} or @{typ ’a}), see also Sect. 4.2.3.

58 4. Presenting Theories

4.2.1 Isabelle Sessions

In contrast to the highly interactive mode of Isabelle/Isar theory develop-
ment, the document preparation stage essentially works in batch-mode. An
Isabelle session consists of a collection of source files that may contribute
to an output document. Each session is derived from a single parent, usu-
ally an object-logic image like HOL. This results in an overall tree structure,
which is reflected by the output location in the file system (usually rooted at
~/isabelle/browser_info).

The easiest way to manage Isabelle sessions is via isatool mkdir (gen-
erates an initial session source setup) and isatool make (run sessions con-
trolled by IsaMakefile). For example, a new session MySession derived from
HOL may be produced as follows:

isatool mkdir HOL MySession
isatool make

The isatool make job also informs about the file-system location of
the ultimate results. The above dry run should be able to produce some
document.pdf (with dummy title, empty table of contents etc.). Any failure
at this stage usually indicates technical problems of the LATEX installation.

The detailed arrangement of the session sources is as follows.

– Directory MySession holds the required theory files T1.thy, . . . , Tn.thy.
– File MySession/ROOT.ML holds appropriate ML commands for loading all

wanted theories, usually just “use_thy"Ti";” for any Ti in leaf position
of the dependency graph.

– Directory MySession/document contains everything required for the LATEX
stage; only root.tex needs to be provided initially.
The latter file holds appropriate LATEX code to commence a document
(\documentclass etc.), and to include the generated files Ti.tex for each
theory. Isabelle will generate a file session.tex holding LATEX commands
to include all generated theory output files in topologically sorted order, so
\input{session} in the body of root.tex does the job in most situations.

– IsaMakefile holds appropriate dependencies and invocations of Isabelle
tools to control the batch job. In fact, several sessions may be managed
by the same IsaMakefile. See the Isabelle System Manual [40] for further
details, especially on isatool usedir and isatool make.

One may now start to populate the directory MySession, and the file
MySession/ROOT.ML accordingly. The file MySession/document/root.tex
should also be adapted at some point; the default version is mostly self-
explanatory. Note that \isabellestyle enables fine-tuning of the general
appearance of characters and mathematical symbols (see also Sect. 4.2.4).

Especially observe the included LATEX packages isabelle (mandatory),
isabellesym (required for mathematical symbols), and the final pdfsetup

4.2 Document Preparation 59

(provides sane defaults for hyperref, including URL markup). All three are
distributed with Isabelle. Further packages may be required in particular
applications, say for unusual mathematical symbols.

Any additional files for the LATEX stage go into the MySession/document
directory as well. In particular, adding a file named root.bib causes an au-
tomatic run of bibtex to process a bibliographic database; see also isatool
document [40].

Any failure of the document preparation phase in an Isabelle batch ses-
sion leaves the generated sources in their target location, identified by the
accompanying error message. This lets you trace LATEX problems with the
generated files at hand.

4.2.2 Structure Markup

The large-scale structure of Isabelle documents follows existing LATEX conven-
tions, with chapters, sections, subsubsections etc. The Isar language includes
separate markup commands, which do not affect the formal meaning of a
theory (or proof), but result in corresponding LATEX elements.

There are separate markup commands depending on the textual context:
in header position (just before theory), within the theory body, or within a
proof. The header needs to be treated specially here, since ordinary theory
and proof commands may only occur after the initial theory specification.

header theory proof default meaning
chapter \chapter

header section sect \section
subsection subsect \subsection
subsubsection subsubsect \subsubsection

From the Isabelle perspective, each markup command takes a single text
argument (delimited by " . . . " or {* . . . *}). After stripping any surrounding
white space, the argument is passed to a LATEX macro \isamarkupXYZ for
command XYZ. These macros are defined in isabelle.sty according to
the meaning given in the rightmost column above.

The following source fragment illustrates structure markup of a theory.
Note that LATEX labels may be included inside of section headings as well.

60 4. Presenting Theories

header {* Some properties of Foo Bar elements *}

theory Foo_Bar
imports Main
begin

subsection {* Basic definitions *}

definition foo :: ...

definition bar :: ...

subsection {* Derived rules *}

lemma fooI: ...
lemma fooE: ...

subsection {* Main theorem \label{sec:main-theorem} *}

theorem main: ...

end

You may occasionally want to change the meaning of markup commands,
say via \renewcommand in root.tex. For example, \isamarkupheader is a
good candidate for some tuning. We could move it up in the hierarchy to
become \chapter.

\renewcommand{\isamarkupheader}[1]{\chapter{#1}}

Now we must change the document class given in root.tex to something
that supports chapters. A suitable command is \documentclass{report}.

The LATEX macro \isabellecontext is maintained to hold the name of
the current theory context. This is particularly useful for document headings:

\renewcommand{\isamarkupheader}[1]
{\chapter{#1}\markright{THEORY~\isabellecontext}}

Make sure to include something like \pagestyle{headings} in root.tex;
the document should have more than two pages to show the effect.

4.2.3 Formal Comments and Antiquotations

Isabelle source comments, which are of the form (* . . . *), essentially act
like white space and do not really contribute to the content. They mainly
serve technical purposes to mark certain oddities in the raw input text. In
contrast, formal comments are portions of text that are associated with
formal Isabelle/Isar commands (marginal comments), or as standalone
paragraphs within a theory or proof context (text blocks).

4.2 Document Preparation 61

Marginal comments are part of each command’s concrete syntax [28]; the
common form is “-- text” where text is delimited by ". . ." or {* . . . *} as
before. Multiple marginal comments may be given at the same time. Here is
a simple example:

lemma "A --> A"
— a triviality of propositional logic
— (should not really bother)
by (rule impI) — implicit assumption step involved here

The above output has been produced as follows:

lemma "A --> A"
-- "a triviality of propositional logic"
-- "(should not really bother)"
by (rule impI) -- "implicit assumption step involved here"

From the LATEX viewpoint, “--” acts like a markup command, associated
with the macro \isamarkupcmt (taking a single argument).

Text blocks are introduced by the commands text and txt, for the-
ory and proof contexts, respectively. Each takes again a single text argu-
ment, which is interpreted as a free-form paragraph in LATEX (surrounded
by some additional vertical space). This behavior may be changed by re-
defining the LATEX environments of isamarkuptext or isamarkuptxt, re-
spectively (via \renewenvironment) The text style of the body is determined
by \isastyletext and \isastyletxt; the default setup uses a smaller font
within proofs. This may be changed as follows:

\renewcommand{\isastyletxt}{\isastyletext}

The text part of Isabelle markup commands essentially inserts quoted ma-
terial into a formal text, mainly for instruction of the reader. An antiquo-
tation is again a formal object embedded into such an informal portion. The
interpretation of antiquotations is limited to some well-formedness checks,
with the result being pretty printed to the resulting document. Quoted text
blocks together with antiquotations provide an attractive means of referring
to formal entities, with good confidence in getting the technical details right
(especially syntax and types).

The general syntax of antiquotations is as follows: @{name arguments},
or @{name [options] arguments} for a comma-separated list of options con-
sisting of a name or name=value each. The syntax of arguments depends on
the kind of antiquotation, it generally follows the same conventions for types,
terms, or theorems as in the formal part of a theory.

This sentence demonstrates quotations and antiquotations: λx y. x is a
well-typed term.

The output above was produced as follows:

62 4. Presenting Theories

text {*
This sentence demonstrates quotations and antiquotations:
@{term "%x y. x"} is a well-typed term.

*}

The notational change from the ASCII character % to the symbol λ reveals
that Isabelle printed this term, after parsing and type-checking. Document
preparation enables symbolic output by default.

The next example includes an option to show the type of all variables.
The antiquotation @{term [show_types] "%x y. x"} produces the output
λ(x ::’a) y ::’b. x. Type inference has figured out the most general typings in
the present theory context. Terms may acquire different typings due to con-
straints imposed by their environment; within a proof, for example, variables
are given the same types as they have in the main goal statement.

Several further kinds of antiquotations and options are available [40]. Here
are a few commonly used combinations:

@{typ τ} print type τ
@{const c} check existence of c and print it
@{term t} print term t
@{prop φ} print proposition φ
@{prop [display] φ} print large proposition φ (with linebreaks)
@{prop [source] φ} check proposition φ, print its input
@{thm a} print fact a
@{thm a [no_vars]} print fact a, fixing schematic variables
@{thm [source] a} check availability of fact a, print its name
@{text s} print uninterpreted text s

Note that no_vars given above is not an antiquotation option, but an
attribute of the theorem argument given here. This might be useful with a
diagnostic command like thm, too.

The @{text s} antiquotation is particularly interesting. Embedding un-
interpreted text within an informal body might appear useless at first sight.
Here the key virtue is that the string s is processed as Isabelle output, inter-
preting Isabelle symbols appropriately.

For example, @{text "\<forall>\<exists>"} produces ∀∃ , according
to the standard interpretation of these symbol (cf. Sect. 4.2.4). Thus we
achieve consistent mathematical notation in both the formal and informal
parts of the document very easily, independently of the term language of Isa-
belle. Manual LATEX code would leave more control over the typesetting, but
is also slightly more tedious.

4.2.4 Interpretation of Symbols

As has been pointed out before (Sect. 4.1.2), Isabelle symbols are the smallest
syntactic entities — a straightforward generalization of ASCII characters.

4.2 Document Preparation 63

While Isabelle does not impose any interpretation of the infinite collection of
named symbols, LATEX documents use canonical glyphs for certain standard
symbols [40, appendix A].

The LATEX code produced from Isabelle text follows a simple scheme. You
can tune the final appearance by redefining certain macros, say in root.tex
of the document.

1. 7-bit ASCII characters: letters A...Z and a...z are output directly, dig-
its are passed as an argument to the \isadigit macro, other characters
are replaced by specifically named macros of the form \isacharXYZ.

2. Named symbols: \<XYZ> is turned into {\isasymXYZ}; note the additional
braces.

3. Named control symbols: \<^XYZ> is turned into \isactrlXYZ; subsequent
symbols may act as arguments if the control macro is defined accordingly.

You may occasionally wish to give new LATEX interpretations of named
symbols. This merely requires an appropriate definition of \isasymXYZ,
for \<XYZ> (see isabelle.sty for working examples). Control symbols are
slightly more difficult to get right, though.

The \isabellestyle macro provides a high-level interface to tune the
general appearance of individual symbols. For example, \isabellestyle{it}
uses the italics text style to mimic the general appearance of the LATEX math
mode; double quotes are not printed at all. The resulting quality of type-
setting is quite good, so this should be the default style for work that gets
distributed to a broader audience.

4.2.5 Suppressing Output

By default, Isabelle’s document system generates a LATEX file for each theory
that gets loaded while running the session. The generated session.tex will
include all of these in order of appearance, which in turn gets included by
the standard root.tex. Certainly one may change the order or suppress
unwanted theories by ignoring session.tex and load individual files directly
in root.tex. On the other hand, such an arrangement requires additional
maintenance whenever the collection of theories changes.

Alternatively, one may tune the theory loading process in ROOT.ML it-
self: traversal of the theory dependency graph may be fine-tuned by adding
use_thy invocations, although topological sorting still has to be observed.
Moreover, the ML operator no_document temporarily disables document gen-
eration while executing a theory loader command. Its usage is like this:

no_document use_thy "T";

Theory output may be suppressed more selectively, either via tagged
command regions or ignored material.

64 4. Presenting Theories

Tagged command regions works by annotating commands with named
tags, which correspond to certain LATEX markup that tells how to treat par-
ticular parts of a document when doing the actual type-setting. By default,
certain Isabelle/Isar commands are implicitly marked up using the predefined
tags “theory” (for theory begin and end), “proof ” (for proof commands), and
“ML” (for commands involving ML code). Users may add their own tags us-
ing the %tag notation right after a command name. In the subsequent example
we hide a particularly irrelevant proof:

lemma "x = x"

The original source has been “lemma "x = x" by %invisible (simp)”.
Tags observe the structure of proofs; adjacent commands with the same tag
are joined into a single region. The Isabelle document preparation system
allows the user to specify how to interpret a tagged region, in order to keep,
drop, or fold the corresponding parts of the document. See the Isabelle System
Manual [40] for further details, especially on isatool usedir and isatool
document.

Ignored material is specified by delimiting the original formal source with
special source comments (*<*) and (*>*). These parts are stripped before
the type-setting phase, without affecting the formal checking of the theory, of
course. For example, we may hide parts of a proof that seem unfit for general
public inspection. The following “fully automatic” proof is actually a fake:

lemma "x 6= (0::int) =⇒ 0 < x * x"
by (auto)

The real source of the proof has been as follows:

by (auto(*<*)simp add: zero_less_mult_iff(*>*))

Suppressing portions of printed text demands care. You should not mis-
represent the underlying theory development. It is easy to invalidate the
visible text by hiding references to questionable axioms, for example.

Part II

Logic and Sets

5. The Rules of the Game

This chapter outlines the concepts and techniques that underlie reasoning
in Isabelle. Until now, we have proved everything using only induction and
simplification, but any serious verification project requires more elaborate
forms of inference. The chapter also introduces the fundamentals of predicate
logic. The first examples in this chapter will consist of detailed, low-level proof
steps. Later, we shall see how to automate such reasoning using the methods
blast, auto and others. Backward or goal-directed proof is our usual style,
but the chapter also introduces forward reasoning, where one theorem is
transformed to yield another.

5.1 Natural Deduction

In Isabelle, proofs are constructed using inference rules. The most familiar
inference rule is probably modus ponens:

P → Q P
Q

This rule says that from P → Q and P we may infer Q .
Natural deduction is an attempt to formalize logic in a way that mirrors

human reasoning patterns. For each logical symbol (say, ∧), there are two
kinds of rules: introduction and elimination rules. The introduction rules
allow us to infer this symbol (say, to infer conjunctions). The elimination
rules allow us to deduce consequences from this symbol. Ideally each rule
should mention one symbol only. For predicate logic this can be done, but
when users define their own concepts they typically have to refer to other
symbols as well. It is best not to be dogmatic.

Natural deduction generally deserves its name. It is easy to use. Each proof
step consists of identifying the outermost symbol of a formula and applying
the corresponding rule. It creates new subgoals in an obvious way from parts
of the chosen formula. Expanding the definitions of constants can blow up
the goal enormously. Deriving natural deduction rules for such constants
lets us reason in terms of their key properties, which might otherwise be
obscured by the technicalities of its definition. Natural deduction rules also

68 5. The Rules of the Game

lend themselves to automation. Isabelle’s classical reasoner accepts any
suitable collection of natural deduction rules and uses them to search for
proofs automatically. Isabelle is designed around natural deduction and many
of its tools use the terminology of introduction and elimination rules.

5.2 Introduction Rules

An introduction rule tells us when we can infer a formula containing a specific
logical symbol. For example, the conjunction introduction rule says that if
we have P and if we have Q then we have P ∧Q . In a mathematics text, it
is typically shown like this:

P Q
P ∧Q

The rule introduces the conjunction symbol (∧) in its conclusion. In Isabelle
proofs we mainly reason backwards. When we apply this rule, the subgoal
already has the form of a conjunction; the proof step makes this conjunction
symbol disappear.

In Isabelle notation, the rule looks like this:

[[?P; ?Q]] =⇒ ?P ∧ ?Q (conjI)

Carefully examine the syntax. The premises appear to the left of the arrow
and the conclusion to the right. The premises (if more than one) are grouped
using the fat brackets. The question marks indicate schematic variables
(also called unknowns): they may be replaced by arbitrary formulas. If we
use the rule backwards, Isabelle tries to unify the current subgoal with the
conclusion of the rule, which has the form ?P ∧ ?Q. (Unification is discussed
below, Sect. 5.8.) If successful, it yields new subgoals given by the formulas
assigned to ?P and ?Q.

The following trivial proof illustrates how rules work. It also introduces
a style of indentation. If a command adds a new subgoal, then the next
command’s indentation is increased by one space; if it proves a subgoal, then
the indentation is reduced. This provides the reader with hints about the
subgoal structure.

lemma conj_rule: " [[P; Q]] =⇒ P ∧ (Q ∧ P)"
apply (rule conjI)
apply assumption

apply (rule conjI)
apply assumption

apply assumption

At the start, Isabelle presents us with the assumptions (P and Q) and with
the goal to be proved, P ∧ (Q ∧ P). We are working backwards, so when we
apply conjunction introduction, the rule removes the outermost occurrence
of the ∧ symbol. To apply a rule to a subgoal, we apply the proof method
rule — here with conjI, the conjunction introduction rule.

5.3 Elimination Rules 69

1. [[P; Q]] =⇒ P
2. [[P; Q]] =⇒ Q ∧ P

Isabelle leaves two new subgoals: the two halves of the original conjunction.
The first is simply P, which is trivial, since P is among the assumptions.
We can apply the assumption method, which proves a subgoal by finding a
matching assumption.
1. [[P; Q]] =⇒ Q ∧ P

We are left with the subgoal of proving Q ∧ P from the assumptions P and Q.
We apply rule conjI again.
1. [[P; Q]] =⇒ Q
2. [[P; Q]] =⇒ P

We are left with two new subgoals, Q and P, each of which can be proved
using the assumption method.

5.3 Elimination Rules

Elimination rules work in the opposite direction from introduction rules. In
the case of conjunction, there are two such rules. From P ∧ Q we infer P .
also, from P ∧Q we infer Q :

P ∧Q
P

P ∧Q
Q

Now consider disjunction. There are two introduction rules, which resem-
ble inverted forms of the conjunction elimination rules:

P
P ∨Q

Q
P ∨Q

What is the disjunction elimination rule? The situation is rather different
from conjunction. From P ∨ Q we cannot conclude that P is true and we
cannot conclude that Q is true; there are no direct elimination rules of the sort
that we have seen for conjunction. Instead, there is an elimination rule that
works indirectly. If we are trying to prove something else, say R, and we know
that P ∨ Q holds, then we have to consider two cases. We can assume that
P is true and prove R and then assume that Q is true and prove R a second
time. Here we see a fundamental concept used in natural deduction: that of
the assumptions. We have to prove R twice, under different assumptions.
The assumptions are local to these subproofs and are visible nowhere else.

In a logic text, the disjunction elimination rule might be shown like this:

P ∨Q

[P]....
R

[Q]....
R

R

70 5. The Rules of the Game

The assumptions [P] and [Q] are bracketed to emphasize that they are local
to their subproofs. In Isabelle notation, the already-familiar =⇒ syntax serves
the same purpose:

[[?P ∨ ?Q; ?P =⇒ ?R; ?Q =⇒ ?R]] =⇒ ?R (disjE)

When we use this sort of elimination rule backwards, it produces a case
split. (We have seen this before, in proofs by induction.) The following proof
illustrates the use of disjunction elimination.

lemma disj_swap: "P ∨ Q =⇒ Q ∨ P"
apply (erule disjE)
apply (rule disjI2)
apply assumption

apply (rule disjI1)
apply assumption

We assume P ∨ Q and must prove Q ∨ P . Our first step uses the disjunction
elimination rule, disjE . We invoke it using erule , a method designed to work
with elimination rules. It looks for an assumption that matches the rule’s
first premise. It deletes the matching assumption, regards the first premise as
proved and returns subgoals corresponding to the remaining premises. When
we apply erule to disjE, only two subgoals result. This is better than applying
it using rule to get three subgoals, then proving the first by assumption:
the other subgoals would have the redundant assumption P ∨ Q . Most of
the time, erule is the best way to use elimination rules, since it replaces
an assumption by its subformulas; only rarely does the original assumption
remain useful.

1. P =⇒ Q ∨ P
2. Q =⇒ Q ∨ P

These are the two subgoals returned by erule. The first assumes P and the
second assumes Q. Tackling the first subgoal, we need to show Q ∨ P . The
second introduction rule (disjI2) can reduce this to P, which matches the
assumption. So, we apply the rule method with disjI2 . . .

1. P =⇒ P
2. Q =⇒ Q ∨ P

. . . and finish off with the assumption method. We are left with the other
subgoal, which assumes Q.

1. Q =⇒ Q ∨ P

Its proof is similar, using the introduction rule disjI1.
The result of this proof is a new inference rule disj_swap, which is neither

an introduction nor an elimination rule, but which might be useful. We can
use it to replace any goal of the form Q ∨ P by a one of the form P ∨Q .

5.4 Destruction Rules: Some Examples 71

5.4 Destruction Rules: Some Examples

Now let us examine the analogous proof for conjunction.

lemma conj_swap: "P ∧ Q =⇒ Q ∧ P"
apply (rule conjI)
apply (drule conjunct2)
apply assumption

apply (drule conjunct1)
apply assumption

Recall that the conjunction elimination rules — whose Isabelle names are
conjunct1 and conjunct2 — simply return the first or second half of a con-
junction. Rules of this sort (where the conclusion is a subformula of a premise)
are called destruction rules because they take apart and destroy a premise.1

The first proof step applies conjunction introduction, leaving two sub-
goals:

1. P ∧ Q =⇒ Q
2. P ∧ Q =⇒ P

To invoke the elimination rule, we apply a new method, drule. Think of
the d as standing for destruction (or direct, if you prefer). Applying the
second conjunction rule using drule replaces the assumption P ∧ Q by Q.

1. Q =⇒ Q
2. P ∧ Q =⇒ P

The resulting subgoal can be proved by applying assumption. The other sub-
goal is similarly proved, using the conjunct1 rule and the assumption method.

Choosing among the methods rule, erule and drule is up to you. Isabelle
does not attempt to work out whether a rule is an introduction rule or an
elimination rule. The method determines how the rule will be interpreted.
Many rules can be used in more than one way. For example, disj_swap can
be applied to assumptions as well as to goals; it replaces any assumption of
the form P ∨Q by a one of the form Q ∨ P .

Destruction rules are simpler in form than indirect rules such as disjE,
but they can be inconvenient. Each of the conjunction rules discards half of
the formula, when usually we want to take both parts of the conjunction
as new assumptions. The easiest way to do so is by using an alternative
conjunction elimination rule that resembles disjE . It is seldom, if ever, seen
in logic books. In Isabelle syntax it looks like this:

[[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R (conjE)

Exercise 5.4.1 Use the rule conjE to shorten the proof above.
1 This Isabelle terminology has no counterpart in standard logic texts, although

the distinction between the two forms of elimination rule is well known. Girard
[10, page 74], for example, writes “The elimination rules [for ∨ and ∃] are very
bad. What is catastrophic about them is the parasitic presence of a formula [R]
which has no structural link with the formula which is eliminated.”

72 5. The Rules of the Game

5.5 Implication

At the start of this chapter, we saw the rule modus ponens. It is, in fact, a
destruction rule. The matching introduction rule looks like this in Isabelle:

(?P =⇒ ?Q) =⇒ ?P −→ ?Q (impI)

And this is modus ponens:

[[?P −→ ?Q; ?P]] =⇒ ?Q (mp)

Here is a proof using the implication rules. This lemma performs a sort
of uncurrying, replacing the two antecedents of a nested implication by a
conjunction. The proof illustrates how assumptions work. At each proof step,
the subgoals inherit the previous assumptions, perhaps with additions or
deletions. Rules such as impI and disjE add assumptions, while applying
erule or drule deletes the matching assumption.

lemma imp_uncurry: "P −→ (Q −→ R) =⇒ P ∧ Q −→ R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption

apply (drule mp)
apply assumption

apply assumption

First, we state the lemma and apply implication introduction (rule impI),
which moves the conjunction to the assumptions.

1. [[P −→ Q −→ R; P ∧ Q]] =⇒ R

Next, we apply conjunction elimination (erule conjE), which splits this con-
junction into two parts.

1. [[P −→ Q −→ R; P; Q]] =⇒ R

Now, we work on the assumption P −→ (Q −→ R), where the parentheses
have been inserted for clarity. The nested implication requires two applica-
tions of modus ponens: drule mp. The first use yields the implication Q −→
R, but first we must prove the extra subgoal P, which we do by assumption.

1. [[P; Q]] =⇒ P
2. [[P; Q; Q −→ R]] =⇒ R

Repeating these steps for Q −→ R yields the conclusion we seek, namely R.

1. [[P; Q; Q −→ R]] =⇒ R

The symbols =⇒ and −→ both stand for implication, but they differ in
many respects. Isabelle uses =⇒ to express inference rules; the symbol is
built-in and Isabelle’s inference mechanisms treat it specially. On the other
hand, −→ is just one of the many connectives available in higher-order logic.
We reason about it using inference rules such as impI and mp, just as we

5.6 Negation 73

reason about the other connectives. You will have to use −→ in any context
that requires a formula of higher-order logic. Use =⇒ to separate a theorem’s
preconditions from its conclusion.

The by command is useful for proofs like these that use assumption heav-
ily. It executes an apply command, then tries to prove all remaining subgoals
using assumption. Since (if successful) it ends the proof, it also replaces the
done symbol. For example, the proof above can be shortened:

lemma imp_uncurry: "P −→ (Q −→ R) =⇒ P ∧ Q −→ R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption

by (drule mp)

We could use by to replace the final apply and done in any proof, but
typically we use it to eliminate calls to assumption. It is also a nice way of
expressing a one-line proof.

5.6 Negation

Negation causes surprising complexity in proofs. Its natural deduction rules
are straightforward, but additional rules seem necessary in order to han-
dle negated assumptions gracefully. This section also illustrates the intro

method: a convenient way of applying introduction rules.
Negation introduction deduces ¬P if assuming P leads to a contradiction.

Negation elimination deduces any formula in the presence of ¬P together
with P :

(?P =⇒ False) =⇒ ¬ ?P (notI)
[[¬ ?P; ?P]] =⇒ ?R (notE)

Classical logic allows us to assume ¬P when attempting to prove P :

(¬ ?P =⇒ ?P) =⇒ ?P (classical)

The implications P → Q and ¬Q → ¬P are logically equivalent, and
each is called the contrapositive of the other. Four further rules support
reasoning about contrapositives. They differ in the placement of the negation
symbols:

[[?Q; ¬ ?P =⇒ ¬ ?Q]] =⇒ ?P (contrapos_pp)
[[?Q; ?P =⇒ ¬ ?Q]] =⇒ ¬ ?P (contrapos_pn)
[[¬ ?Q; ¬ ?P =⇒ ?Q]] =⇒ ?P (contrapos_np)
[[¬ ?Q; ?P =⇒ ?Q]] =⇒ ¬ ?P (contrapos_nn)

These rules are typically applied using the erule method, where their effect
is to form a contrapositive from an assumption and the goal’s conclusion.

The most important of these is contrapos_np. It is useful for applying
introduction rules to negated assumptions. For instance, the assumption

74 5. The Rules of the Game

¬(P → Q) is equivalent to the conclusion P → Q and we might want to
use conjunction introduction on it. Before we can do so, we must move that
assumption so that it becomes the conclusion. The following proof demon-
strates this technique:

lemma " [[¬(P−→Q); ¬(R−→Q)]] =⇒ R"
apply (erule_tac Q = "R−→Q" in contrapos_np)
apply (intro impI)
by (erule notE)

There are two negated assumptions and we need to exchange the conclusion
with the second one. The method erule contrapos_np would select the first
assumption, which we do not want. So we specify the desired assumption
explicitly using a new method, erule_tac. This is the resulting subgoal:

1. [[¬ (P −→ Q); ¬ R]] =⇒ R −→ Q

The former conclusion, namely R, now appears negated among the assump-
tions, while the negated formula R −→ Q becomes the new conclusion.

We can now apply introduction rules. We use the intro method, which
repeatedly applies the given introduction rules. Here its effect is equivalent
to rule impI.

1. [[¬ (P −→ Q); ¬ R; R]] =⇒ Q

We can see a contradiction in the form of assumptions ¬ R and R, which
suggests using negation elimination. If applied on its own, notE will select
the first negated assumption, which is useless. Instead, we invoke the rule
using the by command. Now when Isabelle selects the first assumption, it
tries to prove P −→ Q and fails; it then backtracks, finds the assumption ¬ R

and finally proves R by assumption. That concludes the proof.

The following example may be skipped on a first reading. It involves a
peculiar but important rule, a form of disjunction introduction:

(¬ ?Q =⇒ ?P) =⇒ ?P ∨ ?Q (disjCI)

This rule combines the effects of disjI1 and disjI2. Its great advantage
is that we can remove the disjunction symbol without deciding which dis-
junction to prove. This treatment of disjunction is standard in sequent and
tableau calculi.

lemma "(P ∨ Q) ∧ R =⇒ P ∨ (Q ∧ R)"
apply (intro disjCI conjI)
apply (elim conjE disjE)
apply assumption

by (erule contrapos_np, rule conjI)

The first proof step uses intro to apply the introduction rules disjCI and
conjI. The resulting subgoal has the negative assumption ¬(Q ∧ R) .

1. [[(P ∨ Q) ∧ R; ¬ (Q ∧ R)]] =⇒ P

5.7 Interlude: the Basic Methods for Rules 75

Next we apply the elim method, which repeatedly applies elimination rules;
here, the elimination rules given in the command. One of the subgoals is
trivial (apply assumption), leaving us with one other:

1. [[¬ (Q ∧ R); R; Q]] =⇒ P

Now we must move the formula Q ∧ R to be the conclusion. The combination

(erule contrapos_np, rule conjI)

is robust: the conjI forces the erule to select a conjunction. The two subgoals
are the ones we would expect from applying conjunction introduction to
Q ∧ R :

1. [[R; Q; ¬ P]] =⇒ Q
2. [[R; Q; ¬ P]] =⇒ R

They are proved by assumption, which is implicit in the by command.

5.7 Interlude: the Basic Methods for Rules

We have seen examples of many tactics that operate on individual rules. It
may be helpful to review how they work given an arbitrary rule such as this:

P1 . . . Pn

Q

Below, we refer to P1 as the major premise. This concept applies only to
elimination and destruction rules. These rules act upon an instance of their
major premise, typically to replace it by subformulas of itself.

Suppose that the rule above is called R . Here are the basic rule methods,
most of which we have already seen:

– Method rule R unifies Q with the current subgoal, replacing it by n new
subgoals: instances of P1, . . . , Pn . This is backward reasoning and is ap-
propriate for introduction rules.

– Method erule R unifies Q with the current subgoal and simultaneously
unifies P1 with some assumption. The subgoal is replaced by the n−1 new
subgoals of proving instances of P2, . . . , Pn , with the matching assump-
tion deleted. It is appropriate for elimination rules. The method (rule R,

assumption) is similar, but it does not delete an assumption.
– Method drule R unifies P1 with some assumption, which it then deletes.

The subgoal is replaced by the n − 1 new subgoals of proving P2, . . . , Pn ;
an nth subgoal is like the original one but has an additional assumption:
an instance of Q . It is appropriate for destruction rules.

– Method frule R is like drule R except that the matching assumption is
not deleted. (See Sect. 5.9.5 below.)

76 5. The Rules of the Game

Other methods apply a rule while constraining some of its variables. The
typical form is

rule_tac v1 = t1 and ...and vk = tk in R

This method behaves like rule R, while instantiating the variables v1, . . . , vk

as specified. We similarly have erule_tac , drule_tac and frule_tac . These
methods also let us specify which subgoal to operate on. By default it is
the first subgoal, as with nearly all methods, but we can specify that rule R

should be applied to subgoal number i :

rule_tac [i] R

5.8 Unification and Substitution

As we have seen, Isabelle rules involve schematic variables, which begin with a
question mark and act as placeholders for terms. Unification — well known
to Prolog programmers — is the act of making two terms identical, possi-
bly replacing their schematic variables by terms. The simplest case is when
the two terms are already the same. Next simplest is pattern-matching,
which replaces variables in only one of the terms. The rule method typically
matches the rule’s conclusion against the current subgoal. The assumption

method matches the current subgoal’s conclusion against each of its assump-
tions. Unification can instantiate variables in both terms; the rule method
can do this if the goal itself contains schematic variables. Other occurrences
of the variables in the rule or proof state are updated at the same time.

Schematic variables in goals represent unknown terms. Given a goal such
as ∃x .P , they let us proceed with a proof. They can be filled in later, some-
times in stages and often automatically.

If unification fails when you think it should succeed, try setting the Proof Gen-
eral flag Isabelle > Settings > Trace Unification, which makes Isabelle show the

cause of unification failures (in Proof General’s Trace buffer).

For example, suppose we are trying to prove this subgoal by assumption:

1. P (a, f (b, g (e, a), b), a) =⇒ P (a, f (b, g (c, a), b), a)

The assumption method having failed, we try again with the flag set:

apply assumption

In this trivial case, the output clearly shows that e clashes with c :

Clash: e =/= c

Isabelle uses higher-order unification, which works in the typed λ-
calculus. The procedure requires search and is potentially undecidable. For
our purposes, however, the differences from ordinary unification are straight-
forward. It handles bound variables correctly, avoiding capture. The two

5.8 Unification and Substitution 77

terms λx. f(x,z) and λy. f(y,z) are trivially unifiable because they dif-
fer only by a bound variable renaming. The two terms λx. ?P and λx. t x

are not unifiable; replacing ?P by t x is forbidden because the free occur-
rence of x would become bound. Unfortunately, even if trace_unify_fail is
set, Isabelle displays no information about this type of failure.

!! Higher-order unification sometimes must invent λ-terms to replace function
variables, which can lead to a combinatorial explosion. However, Isabelle proofs

tend to involve easy cases where there are few possibilities for the λ-term being
constructed. In the easiest case, the function variable is applied only to bound
variables, as when we try to unify λx y. f(?h x y) and λx y. f(x+y+a). The
only solution is to replace ?h by λx y. x+y+a. Such cases admit at most one unifier,
like ordinary unification. A harder case is unifying ?h a with a+b ; it admits two
solutions for ?h, namely λx. a+b and λx. x+b. Unifying ?h a with a+a+b admits
four solutions; their number is exponential in the number of occurrences of a in the
second term.

5.8.1 Substitution and the subst Method

Isabelle also uses function variables to express substitution. A typical sub-
stitution rule allows us to replace one term by another if we know that two
terms are equal.

s = t P [s/x]
P [t/x]

The rule uses a notation for substitution: P [t/x] is the result of replacing x
by t in P . The rule only substitutes in the positions designated by x . For
example, it can derive symmetry of equality from reflexivity. Using x = s
for P replaces just the first s in s = s by t :

s = t s = s
t = s

The Isabelle version of the substitution rule looks like this:

[[?t = ?s; ?P ?s]] =⇒ ?P ?t (ssubst)

Crucially, ?P is a function variable. It can be replaced by a λ-term with
one bound variable, whose occurrences identify the places in which s will be
replaced by t . The proof above requires ?P to be replaced by λx. x=s ; the
second premise will then be s=s and the conclusion will be t=s.

The simp method also replaces equals by equals, but the substitution rule
gives us more control. Consider this proof:

lemma " [[x = f x; odd(f x)]] =⇒ odd x"
by (erule ssubst)

The assumption x = f x, if used for rewriting, would loop, replacing x by f x

and then by f(f x) and so forth. (Here simp would see the danger and would

78 5. The Rules of the Game

re-orient the equality, but in more complicated cases it can be fooled.) When
we apply the substitution rule, Isabelle replaces every x in the subgoal by f

x just once. It cannot loop. The resulting subgoal is trivial by assumption,
so the by command proves it implicitly.

We are using the erule method in a novel way. Hitherto, the conclusion of
the rule was just a variable such as ?R, but it may be any term. The conclusion
is unified with the subgoal just as it would be with the rule method. At
the same time erule looks for an assumption that matches the rule’s first
premise, as usual. With ssubst the effect is to find, use and delete an equality
assumption.

The subst method performs individual substitutions. In simple cases, it
closely resembles a use of the substitution rule. Suppose a proof has reached
this point:

1. [[P x y z; Suc x < y]] =⇒ f z = x * y

Now we wish to apply a commutative law:

?m * ?n = ?n * ?m (mult_commute)

Isabelle rejects our first attempt:

apply (simp add: mult_commute)

The simplifier notices the danger of looping and refuses to apply the rule.2

The subst method applies mult_commute exactly once.

apply (subst mult_commute)
1. [[P x y z; Suc x < y]] =⇒ f z = y * x

As we wanted, x * y has become y * x.

This use of the subst method has the same effect as the command

apply (rule mult_commute [THEN ssubst])

The attribute THEN, which combines two rules, is described in Sect. 5.15.1 be-
low. The subst method is more powerful than applying the substitution rule.
It can perform substitutions in a subgoal’s assumptions. Moreover, if the sub-
goal contains more than one occurrence of the left-hand side of the equality,
the subst method lets us specify which occurrence should be replaced.

5.8.2 Unification and Its Pitfalls

Higher-order unification can be tricky. Here is an example, which you may
want to skip on your first reading:
2 More precisely, it only applies such a rule if the new term is smaller under a

specified ordering; here, x * y is already smaller than y * x.

5.8 Unification and Substitution 79

lemma " [[x = f x; triple (f x) (f x) x]] =⇒ triple x x x"
apply (erule ssubst)
back
back
back
back
apply assumption
done

By default, Isabelle tries to substitute for all the occurrences. Applying erule

ssubst yields this subgoal:

1. triple (f x) (f x) x =⇒ triple (f x) (f x) (f x)

The substitution should have been done in the first two occurrences of x

only. Isabelle has gone too far. The back command allows us to reject this
possibility and demand a new one:

1. triple (f x) (f x) x =⇒ triple x (f x) (f x)

Now Isabelle has left the first occurrence of x alone. That is promising but
it is not the desired combination. So we use back again:

1. triple (f x) (f x) x =⇒ triple (f x) x (f x)

This also is wrong, so we use back again:

1. triple (f x) (f x) x =⇒ triple x x (f x)

And this one is wrong too. Looking carefully at the series of alternatives, we
see a binary countdown with reversed bits: 111, 011, 101, 001. Invoke back
again:

1. triple (f x) (f x) x =⇒ triple (f x) (f x) x

At last, we have the right combination! This goal follows by assumption.

This example shows that unification can do strange things with function
variables. We were forced to select the right unifier using the back command.
That is all right during exploration, but back should never appear in the final
version of a proof. You can eliminate the need for back by giving Isabelle
less freedom when you apply a rule.

One way to constrain the inference is by joining two methods in a apply
command. Isabelle applies the first method and then the second. If the second
method fails then Isabelle automatically backtracks. This process continues
until the first method produces an output that the second method can use.
We get a one-line proof of our example:

lemma " [[x = f x; triple (f x) (f x) x]] =⇒ triple x x x"
apply (erule ssubst, assumption)
done

The by command works too, since it backtracks when proving subgoals by
assumption:

80 5. The Rules of the Game

lemma " [[x = f x; triple (f x) (f x) x]] =⇒ triple x x x"
by (erule ssubst)

The most general way to constrain unification is by instantiating variables
in the rule. The method rule_tac is similar to rule, but it makes some of
the rule’s variables denote specified terms. Also available are drule_tac and
erule_tac. Here we need erule_tac since above we used erule.

lemma " [[x = f x; triple (f x) (f x) x]] =⇒ triple x x x"
by (erule_tac P = "λu. triple u u x" in ssubst)

To specify a desired substitution requires instantiating the variable ?P with
a λ-expression. The bound variable occurrences in λu. P u u x indicate that
the first two arguments have to be substituted, leaving the third unchanged.
With this instantiation, backtracking is neither necessary nor possible.

An alternative to rule_tac is to use rule with a theorem modified us-
ing of, described in Sect. 5.15 below. But rule_tac, unlike of, can express
instantiations that refer to

∧
-bound variables in the current subgoal.

5.9 Quantifiers

Quantifiers require formalizing syntactic substitution and the notion of arbi-
trary value. Consider the universal quantifier. In a logic book, its introduction
rule looks like this:

P
∀x .P

Typically, a proviso written in English says that x must not occur in the as-
sumptions. This proviso guarantees that x can be regarded as arbitrary, since
it has not been assumed to satisfy any special conditions. Isabelle’s under-
lying formalism, called the meta-logic, eliminates the need for English. It
provides its own universal quantifier (

∧
) to express the notion of an arbitrary

value. We have already seen another symbol of the meta-logic, namely =⇒,
which expresses inference rules and the treatment of assumptions. The only
other symbol in the meta-logic is ≡, which can be used to define constants.

5.9.1 The Universal Introduction Rule

Returning to the universal quantifier, we find that having a similar quantifier
as part of the meta-logic makes the introduction rule trivial to express:

(
V
x. ?P x) =⇒ ∀ x. ?P x (allI)

The following trivial proof demonstrates how the universal introduction
rule works.

lemma "∀ x. P x −→ P x"
apply (rule allI)
by (rule impI)

5.9 Quantifiers 81

The first step invokes the rule by applying the method rule allI.

1.
V
x. P x −→ P x

Note that the resulting proof state has a bound variable, namely x. The rule
has replaced the universal quantifier of higher-order logic by Isabelle’s meta-
level quantifier. Our goal is to prove P x −→ P x for arbitrary x ; it is an
implication, so we apply the corresponding introduction rule (impI).

1.
V
x. P x =⇒ P x

This last subgoal is implicitly proved by assumption.

5.9.2 The Universal Elimination Rule

Now consider universal elimination. In a logic text, the rule looks like this:

∀x .P
P [t/x]

The conclusion is P with t substituted for the variable x . Isabelle expresses
substitution using a function variable:

∀ x. ?P x =⇒ ?P ?x (spec)

This destruction rule takes a universally quantified formula and removes the
quantifier, replacing the bound variable x by the schematic variable ?x. Re-
call that a schematic variable starts with a question mark and acts as a
placeholder: it can be replaced by any term.

The universal elimination rule is also available in the standard elimination
format. Like conjE, it never appears in logic books:

[[∀ x. ?P x; ?P ?x =⇒ ?R]] =⇒ ?R (allE)

The methods drule spec and erule allE do precisely the same inference.
To see how ∀-elimination works, let us derive a rule about reducing the

scope of a universal quantifier. In mathematical notation we write

∀x .P → Q
P → ∀x .Q

with the proviso “x not free in P .” Isabelle’s treatment of substitution makes
the proviso unnecessary. The conclusion is expressed as P −→ (∀ x. Q x).
No substitution for the variable P can introduce a dependence upon x : that
would be a bound variable capture. Let us walk through the proof.

lemma "(∀ x. P −→ Q x) =⇒ P −→ (∀ x. Q x)"

First we apply implies introduction (impI), which moves the P from the con-
clusion to the assumptions. Then we apply universal introduction (allI).

apply (rule impI, rule allI)
1.

V
x. [[∀ x. P −→ Q x; P]] =⇒ Q x

82 5. The Rules of the Game

As before, it replaces the HOL quantifier by a meta-level quantifier, producing
a subgoal that binds the variable x. The leading bound variables (here x)
and the assumptions (here ∀ x. P −→ Q x and P) form the context for the
conclusion, here Q x. Subgoals inherit the context, although assumptions can
be added or deleted (as we saw earlier), while rules such as allI add bound
variables.

Now, to reason from the universally quantified assumption, we apply the
elimination rule using the drule method. This rule is called spec because it
specializes a universal formula to a particular term.
apply (drule spec)
1.

V
x. [[P; P −→ Q (?x2 x)]] =⇒ Q x

Observe how the context has changed. The quantified formula is gone, re-
placed by a new assumption derived from its body. We have removed the
quantifier and replaced the bound variable by the curious term ?x2 x. This
term is a placeholder: it may become any term that can be built from x.
(Formally, ?x2 is an unknown of function type, applied to the argument x.)
This new assumption is an implication, so we can use modus ponens on it,
which concludes the proof.
by (drule mp)

Let us take a closer look at this last step. Modus ponens yields two subgoals:
one where we prove the antecedent (in this case P) and one where we may
assume the consequent. Both of these subgoals are proved by the assumption

method, which is implicit in the by command. Replacing the by command
by apply (drule mp, assumption) would have left one last subgoal:
1.

V
x. [[P; Q (?x2 x)]] =⇒ Q x

The consequent is Q applied to that placeholder. It may be replaced by any
term built from x, and here it should simply be x. The assumption need not
be identical to the conclusion, provided the two formulas are unifiable.

5.9.3 The Existential Quantifier

The concepts just presented also apply to the existential quantifier, whose
introduction rule looks like this in Isabelle:
?P ?x =⇒ ∃ x. ?P x (exI)

If we can exhibit some x such that P(x) is true, then ∃x .P(x) is also true.
It is a dual of the universal elimination rule, and logic texts present it using
the same notation for substitution.

The existential elimination rule looks like this in a logic text:

∃x .P

[P]....
Q

Q

5.9 Quantifiers 83

It looks like this in Isabelle:
[[∃ x. ?P x;

V
x. ?P x =⇒ ?Q]] =⇒ ?Q (exE)

Given an existentially quantified theorem and some formula Q to prove, it
creates a new assumption by removing the quantifier. As with the universal
introduction rule, the textbook version imposes a proviso on the quantified
variable, which Isabelle expresses using its meta-logic. It is enough to have a
universal quantifier in the meta-logic; we do not need an existential quantifier
to be built in as well.

Exercise 5.9.1 Prove the lemma

∃x .P ∧Q(x) =⇒ P ∧ (∃x .Q(x)).

Hint : the proof is similar to the one just above for the universal quantifier.

5.9.4 Renaming an Assumption: rename_tac

When you apply a rule such as allI, the quantified variable becomes a new
bound variable of the new subgoal. Isabelle tries to avoid changing its name,
but sometimes it has to choose a new name in order to avoid a clash. The
result may not be ideal:
lemma "x < y =⇒ ∀ x y. P x (f y)"
apply (intro allI)
1.

V
xa ya. x < y =⇒ P xa (f ya)

The names x and y were already in use, so the new bound variables are called
xa and ya. You can rename them by invoking rename_tac :

apply (rename_tac v w)
1.

V
v w. x < y =⇒ P v (f w)

Recall that rule_tac instantiates a theorem with specified terms. These terms
may involve the goal’s bound variables, but beware of referring to variables
like xa. A future change to your theories could change the set of names pro-
duced at top level, so that xa changes to xb or reverts to x. It is safer to
rename automatically-generated variables before mentioning them.

If the subgoal has more bound variables than there are names given to
rename_tac, the rightmost ones are renamed.

5.9.5 Reusing an Assumption: frule

Note that drule spec removes the universal quantifier and — as usual with
elimination rules — discards the original formula. Sometimes, a universal
formula has to be kept so that it can be used again. Then we use a new
method: frule. It acts like drule but copies rather than replaces the selected
assumption. The f is for forward.

In this example, going from P a to P(h(h a)) requires two uses of the
quantified assumption, one for each h in h(h a).

84 5. The Rules of the Game

lemma " [[∀ x. P x −→ P (h x); P a]] =⇒ P(h (h a))"

Examine the subgoal left by frule :

apply (frule spec)
1. [[∀ x. P x −→ P (h x); P a; P ?x −→ P (h ?x)]] =⇒ P (h (h a))

It is what drule would have left except that the quantified assumption is still
present. Next we apply mp to the implication and the assumption P a :

apply (drule mp, assumption)
1. [[∀ x. P x −→ P (h x); P a; P (h a)]] =⇒ P (h (h a))

We have created the assumption P(h a), which is progress. To continue the
proof, we apply spec again. We shall not need it again, so we can use drule.

apply (drule spec)
1. [[P a; P (h a); P ?x2 −→ P (h ?x2)]] =⇒ P (h (h a))

The new assumption bridges the gap between P(h a) and P(h(h a)).

by (drule mp)

A final remark. Replacing this by command with

apply (drule mp, assumption)

would not work: it would add a second copy of P(h a) instead of the desired
assumption, P(h(h a)). The by command forces Isabelle to backtrack until it
finds the correct one. Alternatively, we could have used the apply command
and bundled the drule mp with two calls of assumption. Or, of course, we
could have given the entire proof to auto.

5.9.6 Instantiating a Quantifier Explicitly

We can prove a theorem of the form ∃x .P x by exhibiting a suitable term t
such that P t is true. Dually, we can use an assumption of the form ∀x .P x to
generate a new assumption P t for a suitable term t . In many cases, Isabelle
makes the correct choice automatically, constructing the term by unification.
In other cases, the required term is not obvious and we must specify it our-
selves. Suitable methods are rule_tac, drule_tac and erule_tac.

We have seen (just above, Sect. 5.9.5) a proof of this lemma:

lemma " [[∀ x. P x −→ P (h x); P a]] =⇒ P(h (h a))"

We had reached this subgoal:

1. [[∀ x. P x −→ P (h x); P a; P (h a)]] =⇒ P (h (h a))

The proof requires instantiating the quantified assumption with the term h a.

apply (drule_tac x = "h a" in spec)
1. [[P a; P (h a); P (h a) −→ P (h (h a))]] =⇒ P (h (h a))

5.10 Description Operators 85

We have forced the desired instantiation.

Existential formulas can be instantiated too. The next example uses the
divides relation of number theory:

?m dvd ?n ≡ ∃ k. ?n = ?m * k (dvd_def)

Let us prove that multiplication of natural numbers is monotone with
respect to the divides relation:

lemma mult_dvd_mono: " [[i dvd m; j dvd n]] =⇒ i*j dvd (m*n :: nat)"
apply (simp add: dvd_def)

Unfolding the definition of divides has left this subgoal:

1. [[∃ k. m = i * k; ∃ k. n = j * k]] =⇒ ∃ k. m * n = i * j * k

Next, we eliminate the two existential quantifiers in the assumptions:

apply (erule exE)
1.

V
k. [[∃ k. n = j * k; m = i * k]] =⇒ ∃ k. m * n = i * j * k

apply (erule exE)
1.

V
k ka. [[m = i * k; n = j * ka]] =⇒ ∃ k. m * n = i * j * k

The term needed to instantiate the remaining quantifier is k*ka. But ka is an
automatically-generated name. As noted above, references to such variable
names makes a proof less resilient to future changes. So, first we rename the
most recent variable to l :

apply (rename_tac l)
1.

V
k l. [[m = i * k; n = j * l]] =⇒ ∃ k. m * n = i * j * k

We instantiate the quantifier with k*l :

apply (rule_tac x="k*l" in exI)
1.

V
k ka. [[m = i * k; n = j * ka]] =⇒ m * n = i * j * (k * ka)

The rest is automatic, by arithmetic.

apply simp
done

5.10 Description Operators

HOL provides two description operators. A definite description formalizes
the word “the,” as in “the greatest divisior of n.” It returns an arbitrary
value unless the formula has a unique solution. An indefinite description
formalizes the word “some,” as in “some member of S .” It differs from a
definite description in not requiring the solution to be unique: it uses the
axiom of choice to pick any solution.

!! Description operators can be hard to reason about. Novices should try to avoid
them. Fortunately, descriptions are seldom required.

86 5. The Rules of the Game

5.10.1 Definite Descriptions

A definite description is traditionally written ιx .P(x). It denotes the x such
that P(x) is true, provided there exists a unique such x ; otherwise, it re-
turns an arbitrary value of the expected type. Isabelle uses THE for the Greek
letter ι.

We reason using this rule, where a is the unique solution:

[[P a;
V
x. P x =⇒ x = a]] =⇒ (THE x. P x) = a (the_equality)

For instance, we can define the cardinality of a finite set A to be that n
such that A is in one-to-one correspondence with {1, . . . ,n}. We can then
prove that the cardinality of the empty set is zero (since n = 0 satisfies the
description) and proceed to prove other facts.

A more challenging example illustrates how Isabelle/HOL defines the least
number operator, which denotes the least x satisfying P :

(LEAST x. P x) = (THE x. P x ∧ (∀ y. P y −→ x ≤ y))

Let us prove the analogue of the_equality for LEAST .

theorem Least_equality:
" [[P (k::nat); ∀ x. P x −→ k ≤ x]] =⇒ (LEAST x. P x) = k"

apply (simp add: Least_def)

1. [[P k; ∀ x. P x −→ k ≤ x]]
=⇒ (THE x. P x ∧ (∀ y. P y −→ x ≤ y)) = k

The first step has merely unfolded the definition.

apply (rule the_equality)

1. [[P k; ∀ x. P x −→ k ≤ x]] =⇒ P k ∧ (∀ y. P y −→ k ≤ y)
2.

V
x. [[P k; ∀ x. P x −→ k ≤ x; P x ∧ (∀ y. P y −→ x ≤ y)]]

=⇒ x = k

As always with the_equality, we must show existence and uniqueness of the
claimed solution, k. Existence, the first subgoal, is trivial. Uniqueness, the
second subgoal, follows by antisymmetry:

[[x ≤ y; y ≤ x]] =⇒ x = y (order_antisym)

The assumptions imply both k ≤ x and x ≤ k. One call to auto does it all:

by (auto intro: order_antisym)

5.10.2 Indefinite Descriptions

An indefinite description is traditionally written εx .P(x) and is known as
Hilbert’s ε-operator. It denotes some x such that P(x) is true, provided one
exists. Isabelle uses SOME for the Greek letter ε.

Here is the definition of inv , which expresses inverses of functions:

inv f ≡ λy. SOME x. f x = y (inv_def)

5.10 Description Operators 87

Using SOME rather than THE makes inv f behave well even if f is not injective.
As it happens, most useful theorems about inv do assume the function to be
injective.

The inverse of f, when applied to y, returns some x such that f x = y.
For example, we can prove inv Suc really is the inverse of the Suc function
lemma "inv Suc (Suc n) = n"
by (simp add: inv_def)

The proof is a one-liner: the subgoal simplifies to a degenerate application of
SOME, which is then erased. In detail, the left-hand side simplifies to SOME x.

Suc x = Suc n, then to SOME x. x = n and finally to n.
We know nothing about what inv Suc returns when applied to zero. The

proof above still treats SOME as a definite description, since it only reasons
about situations in which the value is described uniquely. Indeed, SOME satis-
fies this rule:
[[P a;

V
x. P x =⇒ x = a]] =⇒ (SOME x. P x) = a (some_equality)

To go further is tricky and requires rules such as these:
P x =⇒ P (SOME x. P x) (someI)
[[P a;

V
x. P x =⇒ Q x]] =⇒ Q (SOME x. P x) (someI2)

Rule someI is basic: if anything satisfies P then so does SOME x. P x . The
repetition of P in the conclusion makes it difficult to apply in a backward
proof, so the derived rule someI2 is also provided.

For example, let us prove the axiom of choice:
theorem axiom_of_choice: "(∀ x. ∃ y. P x y) =⇒ ∃ f. ∀ x. P x (f x)"
apply (rule exI, rule allI)

1.
V
x. ∀ x. ∃ y. P x y =⇒ P x (?f x)

We have applied the introduction rules; now it is time to apply the elimination
rules.
apply (drule spec, erule exE)

1.
V
x y. P (?x2 x) y =⇒ P x (?f x)

The rule someI automatically instantiates f to λx. SOME y. P x y , which is
the choice function. It also instantiates ?x2 x to x.
by (rule someI)

Historical Note. The original purpose of Hilbert’s ε-operator was to ex-
press an existential destruction rule:

∃x .P
P [(εx .P)/ x]

This rule is seldom used for that purpose — it can cause exponential blow-up
— but it is occasionally used as an introduction rule for the ε-operator. Its
name in HOL is someI_ex .

88 5. The Rules of the Game

5.11 Some Proofs That Fail

Most of the examples in this tutorial involve proving theorems. But not every
conjecture is true, and it can be instructive to see how proofs fail. Here we
attempt to prove a distributive law involving the existential quantifier and
conjunction.

lemma "(∃ x. P x) ∧ (∃ x. Q x) =⇒ ∃ x. P x ∧ Q x"

The first steps are routine. We apply conjunction elimination to break the as-
sumption into two existentially quantified assumptions. Applying existential
elimination removes one of the quantifiers.

apply (erule conjE)
apply (erule exE)
1.

V
x. [[∃ x. Q x; P x]] =⇒ ∃ x. P x ∧ Q x

When we remove the other quantifier, we get a different bound variable in
the subgoal. (The name xa is generated automatically.)

apply (erule exE)
1.

V
x xa. [[P x; Q xa]] =⇒ ∃ x. P x ∧ Q x

The proviso of the existential elimination rule has forced the variables to
differ: we can hardly expect two arbitrary values to be equal! There is no
way to prove this subgoal. Removing the conclusion’s existential quantifier
yields two identical placeholders, which can become any term involving the
variables x and xa. We need one to become x and the other to become xa,
but Isabelle requires all instances of a placeholder to be identical.

apply (rule exI)
apply (rule conjI)
1.

V
x xa. [[P x; Q xa]] =⇒ P (?x3 x xa)

2.
V
x xa. [[P x; Q xa]] =⇒ Q (?x3 x xa)

We can prove either subgoal using the assumption method. If we prove the
first one, the placeholder changes into x.

apply assumption
1.

V
x xa. [[P x; Q xa]] =⇒ Q x

We are left with a subgoal that cannot be proved. Applying the assumption

method results in an error message:

*** empty result sequence -- proof command failed

When interacting with Isabelle via the shell interface, you can abandon a
proof using the oops command.

Here is another abortive proof, illustrating the interaction between bound
variables and unknowns. If R is a reflexive relation, is there an x such that
R x y holds for all y? Let us see what happens when we attempt to prove it.

lemma "∀ y. R y y =⇒ ∃ x. ∀ y. R x y"

5.12 Proving Theorems Using the blast Method 89

First, we remove the existential quantifier. The new proof state has an un-
known, namely ?x.

apply (rule exI)
1. ∀ y. R y y =⇒ ∀ y. R ?x y

It looks like we can just apply assumption, but it fails. Isabelle refuses to
substitute y, a bound variable, for ?x ; that would be a bound variable capture.
We can still try to finish the proof in some other way. We remove the universal
quantifier from the conclusion, moving the bound variable y into the subgoal.
But note that it is still bound!

apply (rule allI)
1.

V
y. ∀ y. R y y =⇒ R ?x y

Finally, we try to apply our reflexivity assumption. We obtain a new assump-
tion whose identical placeholders may be replaced by any term involving y.

apply (drule spec)
1.

V
y. R (?z2 y) (?z2 y) =⇒ R ?x y

This subgoal can only be proved by putting y for all the placeholders, making
the assumption and conclusion become R y y. Isabelle can replace ?z2 y by
y ; this involves instantiating ?z2 to the identity function. But, just as two
steps earlier, Isabelle refuses to substitute y for ?x. This example is typical
of how Isabelle enforces sound quantifier reasoning.

5.12 Proving Theorems Using the blast Method

It is hard to prove many theorems using the methods described above. A
proof may be hundreds of steps long. You may need to search among different
ways of proving certain subgoals. Often a choice that proves one subgoal
renders another impossible to prove. There are further complications that we
have not discussed, concerning negation and disjunction. Isabelle’s classical
reasoner is a family of tools that perform such proofs automatically. The
most important of these is the blast method.

In this section, we shall first see how to use the classical reasoner in its
default mode and then how to insert additional rules, enabling it to work in
new problem domains.

We begin with examples from pure predicate logic. The following exam-
ple is known as Andrew’s challenge. Peter Andrews designed it to be hard
to prove by automatic means. It is particularly hard for a resolution prover,
where converting the nested biconditionals to clause form produces a combi-
natorial explosion [35]. However, the blast method proves it in a fraction of
a second.

lemma "((∃ x. ∀ y. p(x)=p(y)) = ((∃ x. q(x))=(∀ y. p(y)))) =
((∃ x. ∀ y. q(x)=q(y)) = ((∃ x. p(x))=(∀ y. q(y))))"

by blast

90 5. The Rules of the Game

The next example is a logic problem composed by Lewis Carroll. The blast

method finds it trivial. Moreover, it turns out that not all of the assumptions
are necessary. We can experiment with variations of this formula and see
which ones can be proved.

lemma "(∀ x. honest(x) ∧ industrious(x) −→ healthy(x)) ∧
¬ (∃ x. grocer(x) ∧ healthy(x)) ∧
(∀ x. industrious(x) ∧ grocer(x) −→ honest(x)) ∧
(∀ x. cyclist(x) −→ industrious(x)) ∧
(∀ x. ¬healthy(x) ∧ cyclist(x) −→ ¬honest(x))
−→ (∀ x. grocer(x) −→ ¬cyclist(x))"

by blast

The blast method is also effective for set theory, which is described in the
next chapter. The formula below may look horrible, but the blast method
proves it in milliseconds.

lemma "(
S
i∈I. A(i)) ∩ (

S
j∈J. B(j)) =

(
S
i∈I.

S
j∈J. A(i) ∩ B(j))"

by blast

Few subgoals are couched purely in predicate logic and set theory. We can
extend the scope of the classical reasoner by giving it new rules. Extending
it effectively requires understanding the notions of introduction, elimination
and destruction rules. Moreover, there is a distinction between safe and un-
safe rules. A safe rule is one that can be applied backwards without losing
information; an unsafe rule loses information, perhaps transforming the sub-
goal into one that cannot be proved. The safe/unsafe distinction affects the
proof search: if a proof attempt fails, the classical reasoner backtracks to the
most recent unsafe rule application and makes another choice.

An important special case avoids all these complications. A logical equiv-
alence, which in higher-order logic is an equality between formulas, can be
given to the classical reasoner and simplifier by using the attribute iff . You
should do so if the right hand side of the equivalence is simpler than the
left-hand side.

For example, here is a simple fact about list concatenation. The result of
appending two lists is empty if and only if both of the lists are themselves
empty. Obviously, applying this equivalence will result in a simpler goal.
When stating this lemma, we include the iff attribute. Once we have proved
the lemma, Isabelle will make it known to the classical reasoner (and to the
simplifier).

lemma [iff]: "(xs@ys = []) = (xs=[] ∧ ys=[])"
apply (induct_tac xs)
apply (simp_all)
done

This fact about multiplication is also appropriate for the iff attribute:

(?m * ?n = 0) = (?m = 0 ∨ ?n = 0)

5.13 Other Classical Reasoning Methods 91

A product is zero if and only if one of the factors is zero. The reasoning
involves a disjunction. Proving new rules for disjunctive reasoning is hard,
but translating to an actual disjunction works: the classical reasoner handles
disjunction properly.

In more detail, this is how the iff attribute works. It converts the equiv-
alence P = Q to a pair of rules: the introduction rule Q =⇒ P and the
destruction rule P =⇒ Q . It gives both to the classical reasoner as safe rules,
ensuring that all occurrences of P in a subgoal are replaced by Q . The simpli-
fier performs the same replacement, since iff gives P = Q to the simplifier.

Classical reasoning is different from simplification. Simplification is deter-
ministic. It applies rewrite rules repeatedly, as long as possible, transforming
a goal into another goal. Classical reasoning uses search and backtracking in
order to prove a goal outright.

5.13 Other Classical Reasoning Methods

The blast method is our main workhorse for proving theorems automatically.
Other components of the classical reasoner interact with the simplifier. Still
others perform classical reasoning to a limited extent, giving the user fine
control over the proof.

Of the latter methods, the most useful is clarify . It performs all obvious
reasoning steps without splitting the goal into multiple parts. It does not
apply unsafe rules that could render the goal unprovable. By performing the
obvious steps, clarify lays bare the difficult parts of the problem, where
human intervention is necessary.

For example, the following conjecture is false:

lemma "(∀ x. P x) ∧ (∃ x. Q x) −→ (∀ x. P x ∧ Q x)"
apply clarify

The blast method would simply fail, but clarify presents a subgoal that
helps us see why we cannot continue the proof.

1.
V
x xa. [[∀ x. P x; Q xa]] =⇒ P x ∧ Q x

The proof must fail because the assumption Q xa and conclusion Q x refer to
distinct bound variables. To reach this state, clarify applied the introduction
rules for −→ and ∀ and the elimination rule for ∧. It did not apply the
introduction rule for ∧ because of its policy never to split goals.

Also available is clarsimp , a method that interleaves clarify and simp.
Also there is safe , which like clarify performs obvious steps but even applies
those that split goals.

The force method applies the classical reasoner and simplifier to one goal.
Unless it can prove the goal, it fails. Contrast that with the auto method,
which also combines classical reasoning with simplification. The latter’s pur-
pose is to prove all the easy subgoals and parts of subgoals. Unfortunately,

92 5. The Rules of the Game

it can produce large numbers of new subgoals; also, since it proves some
subgoals and splits others, it obscures the structure of the proof tree. The
force method does not have these drawbacks. Another difference: force tries
harder than auto to prove its goal, so it can take much longer to terminate.

Older components of the classical reasoner have largely been superseded
by blast, but they still have niche applications. Most important among these
are fast and best. While blast searches for proofs using a built-in first-
order reasoner, these earlier methods search for proofs using standard Isabelle
inference. That makes them slower but enables them to work in the presence
of the more unusual features of Isabelle rules, such as type classes and function
unknowns. For example, recall the introduction rule for Hilbert’s ε-operator:

?P ?x =⇒ ?P (SOME x. ?P x) (someI)

The repeated occurrence of the variable ?P makes this rule tricky to apply.
Consider this contrived example:

lemma " [[Q a; P a]]
=⇒ P (SOME x. P x ∧ Q x) ∧ Q (SOME x. P x ∧ Q x)"

apply (rule someI)

We can apply rule someI explicitly. It yields the following subgoal:

1. [[Q a; P a]] =⇒ P ?x ∧ Q ?x

The proof from this point is trivial. Could we have proved the theorem with
a single command? Not using blast : it cannot perform the higher-order uni-
fication needed here. The fast method succeeds:

apply (fast intro!: someI)

The best method is similar to fast but it uses a best-first search instead
of depth-first search. Accordingly, it is slower but is less susceptible to di-
vergence. Transitivity rules usually cause fast to loop where best can often
manage.

Here is a summary of the classical reasoning methods:

– blast works automatically and is the fastest
– clarify and clarsimp perform obvious steps without splitting the goal;

safe even splits goals
– force uses classical reasoning and simplification to prove a goal; auto is

similar but leaves what it cannot prove
– fast and best are legacy methods that work well with rules involving

unusual features

A table illustrates the relationships among four of these methods.

no split split
no simp clarify safe

simp clarsimp auto

5.14 Finding More Theorems 93

5.14 Finding More Theorems

In Sect. 3.1.11, we introduced Proof General’s Find button for finding theo-
rems in the database via pattern matching. If we are inside a proof, we can
be more specific; we can search for introduction, elimination and destruction
rules with respect to the current goal. For this purpose, Find provides three
aditional search criteria: intro, elim and dest.

For example, given the goal
1. A ∧ B

you can click on Find and type in the search expression intro. You will
be shown a few rules ending in =⇒ ?P ∧ ?Q, among them conjI . You may
even discover that the very theorem you are trying to prove is already in the
database. Given the goal
1. A −→ A

the search for intro finds not just impI but also imp_refl : ?P −→ ?P.
As before, search criteria can be combined freely: for example,
"_ @ _" intro

searches for all introduction rules that match the current goal and mention
the @ function.

Searching for elimination and destruction rules via elim and dest is anal-
ogous to intro but takes the assumptions into account, too.

5.15 Forward Proof: Transforming Theorems

Forward proof means deriving new facts from old ones. It is the most funda-
mental type of proof. Backward proof, by working from goals to subgoals, can
help us find a difficult proof. But it is not always the best way of presenting
the proof thus found. Forward proof is particularly good for reasoning from
the general to the specific. For example, consider this distributive law for the
greatest common divisor:

k × gcd(m,n) = gcd(k ×m, k × n)

Putting m = 1 we get (since gcd(1,n) = 1 and k × 1 = k)

k = gcd(k , k × n)

We have derived a new fact; if re-oriented, it might be useful for simplification.
After re-orienting it and putting n = 1, we derive another useful law:

gcd(k , k) = k

Substituting values for variables — instantiation — is a forward step. Re-
orientation works by applying the symmetry of equality to an equation, so it
too is a forward step.

94 5. The Rules of the Game

5.15.1 Modifying a Theorem using of, where and THEN

Let us reproduce our examples in Isabelle. Recall that in Sect. 3.5.3 we de-
clared the recursive function gcd :

fun gcd :: "nat ⇒ nat ⇒ nat" where
"gcd m n = (if n=0 then m else gcd n (m mod n))"

From this definition, it is possible to prove the distributive law. That takes
us to the starting point for our example.

?k * gcd ?m ?n = gcd (?k * ?m) (?k * ?n) (gcd_mult_distrib2)

The first step in our derivation is to replace ?m by 1. We instantiate the
theorem using of , which identifies variables in order of their appearance from
left to right. In this case, the variables are ?k, ?m and ?n. So, the expression
[of k 1] replaces ?k by k and ?m by 1.

lemmas gcd_mult_0 = gcd_mult_distrib2 [of k 1]

The keyword lemmas declares a new theorem, which can be derived from an
existing one using attributes such as [of k 1]. The command thm gcd_mult_0

displays the result:

k * gcd 1 ?n = gcd (k * 1) (k * ?n)

Something is odd: k is an ordinary variable, while ?n is schematic. We did
not specify an instantiation for ?n. In its present form, the theorem does not
allow substitution for k. One solution is to avoid giving an instantiation for
?k : instead of a term we can put an underscore (_). For example,

gcd_mult_distrib2 [of _ 1]

replaces ?m by 1 but leaves ?k unchanged.
An equivalent solution is to use the attribute where.

gcd mult distrib2 [where m=1]

While of refers to variables by their position, where refers to variables by
name. Multiple instantiations are separated by and, as in this example:

gcd mult distrib2 [where m=1 and k=1]

We now continue the present example with the version of gcd_mult_0

shown above, which has k instead of ?k. Once we have replaced ?m by 1, we
must next simplify the theorem gcd_mult_0, performing the steps gcd(1,n) =
1 and k × 1 = k . The simplified attribute takes a theorem and returns the
result of simplifying it, with respect to the default simplification rules:

lemmas gcd_mult_1 = gcd_mult_0 [simplified]

Again, we display the resulting theorem:

k = gcd k (k * ?n)

To re-orient the equation requires the symmetry rule:

5.15 Forward Proof: Transforming Theorems 95

?s = ?t =⇒ ?t = ?s (sym)

The following declaration gives our equation to sym :

lemmas gcd_mult = gcd_mult_1 [THEN sym]

Here is the result:

gcd k (k * ?n) = k

THEN sym gives the current theorem to the rule sym and returns the result-
ing conclusion. The effect is to exchange the two operands of the equality.
Typically THEN is used with destruction rules. Also useful is THEN spec, which
removes the quantifier from a theorem of the form ∀x .P , and THEN mp, which

converts the implication P → Q into the rule P
Q . Similar to mp are the follow-

ing two rules, which extract the two directions of reasoning about a boolean
equivalence:

[[?Q = ?P; ?Q]] =⇒ ?P (iffD1)
[[?P = ?Q; ?Q]] =⇒ ?P (iffD2)

Normally we would never name the intermediate theorems such as gcd_mult_0
and gcd_mult_1 but would combine the three forward steps:

lemmas gcd_mult = gcd_mult_distrib2 [of k 1, simplified, THEN sym]

The directives, or attributes, are processed from left to right. This declaration
of gcd_mult is equivalent to the previous one.

Such declarations can make the proof script hard to read. Better is to
state the new lemma explicitly and to prove it using a single rule method
whose operand is expressed using forward reasoning:

lemma gcd mult [simp]: "gcd k (k*n) = k"
by (rule gcd_mult_distrib2 [of k 1, simplified, THEN sym])

Compared with the previous proof of gcd_mult, this version shows the reader
what has been proved. Also, the result will be processed in the normal way.
In particular, Isabelle generalizes over all variables: the resulting theorem will
have ?k instead of k .

At the start of this section, we also saw a proof of gcd(k , k) = k . Here is
the Isabelle version:

lemma gcd self [simp]: "gcd k k = k"
by (rule gcd_mult [of k 1, simplified])

!! To give of a nonatomic term, enclose it in quotation marks, as in [of "k*m"].
The term must not contain unknowns: an attribute such as [of "?k*m"] will

be rejected.

96 5. The Rules of the Game

5.15.2 Modifying a Theorem using OF

Recall that of generates an instance of a rule by specifying values for its
variables. Analogous is OF, which generates an instance of a rule by specifying
facts for its premises.

We again need the divides relation of number theory, which as we recall
is defined by

?m dvd ?n ≡ ∃ k. ?n = ?m * k (dvd_def)

Suppose, for example, that we have proved the following rule. It states that
if k and n are relatively prime and if k divides m × n then k divides m.

[[gcd ?k ?n = 1; ?k dvd ?m * ?n]] =⇒ ?k dvd ?m (relprime_dvd_mult)

We can use OF to create an instance of this rule. First, we prove an instance
of its first premise:

lemma relprime 20 81: "gcd 20 81 = 1"
by (simp add: gcd.simps)

We have evaluated an application of the gcd function by simplification. Ex-
pression evaluation involving recursive functions is not guaranteed to termi-
nate, and it can be slow; Isabelle performs arithmetic by rewriting symbolic
bit strings. Here, however, the simplification takes less than one second. We
can give this new lemma to OF. The expression

relprime_dvd_mult [OF relprime_20_81]

yields the theorem

20 dvd (?m * 81) =⇒ 20 dvd ?m

OF takes any number of operands. Consider the following facts about the
divides relation:

[[?k dvd ?m; ?k dvd ?n]] =⇒ ?k dvd ?m + ?n (dvd_add)
?m dvd ?m (dvd_refl)

Let us supply dvd_refl for each of the premises of dvd_add :

dvd_add [OF dvd_refl dvd_refl]

Here is the theorem that we have expressed:

?k dvd (?k + ?k)

As with of, we can use the _ symbol to leave some positions unspecified:

dvd_add [OF _ dvd_refl]

The result is

?k dvd ?m =⇒ ?k dvd ?m + ?k

5.16 Forward Reasoning in a Backward Proof 97

You may have noticed that THEN and OF are based on the same idea,
namely to combine two rules. They differ in the order of the combination
and thus in their effect. We use THEN typically with a destruction rule to
extract a subformula of the current theorem. We use OF with a list of facts
to generate an instance of the current theorem.

Here is a summary of some primitives for forward reasoning:

– of instantiates the variables of a rule to a list of terms
– OF applies a rule to a list of theorems
– THEN gives a theorem to a named rule and returns the conclusion
– simplified applies the simplifier to a theorem
– lemmas assigns a name to the theorem produced by the attributes above

5.16 Forward Reasoning in a Backward Proof

We have seen that the forward proof directives work well within a backward
proof. There are many ways to achieve a forward style using our existing
proof methods. We shall also meet some new methods that perform forward
reasoning.

The methods drule, frule, drule_tac, etc., reason forward from a subgoal.
We have seen them already, using rules such as mp and spec to operate on
formulae. They can also operate on terms, using rules such as these:

x = y =⇒ f x = f y (arg_cong)
i ≤ j =⇒ i * k ≤ j * k (mult_le_mono1)

For example, let us prove a fact about divisibility in the natural numbers:

lemma "2 ≤ u =⇒ u*m 6= Suc(u*n)"
apply (intro notI)
1. [[2 ≤ u; u * m = Suc (u * n)]] =⇒ False

The key step is to apply the function . . . mod u to both sides of the equation
u*m = Suc(u*n) :

apply (drule_tac f="λx. x mod u" in arg_cong)
1. [[2 ≤ u; u * m mod u = Suc (u * n) mod u]] =⇒ False

Simplification reduces the left side to 0 and the right side to 1, yielding the
required contradiction.

apply (simp add: mod_Suc)
done

Our proof has used a fact about remainder:

Suc m mod n =
(if Suc (m mod n) = n then 0 else Suc (m mod n)) (mod_Suc)

98 5. The Rules of the Game

5.16.1 The Method insert

The insert method inserts a given theorem as a new assumption of the cur-
rent subgoal. This already is a forward step; moreover, we may (as always
when using a theorem) apply of, THEN and other directives. The new assump-
tion can then be used to help prove the subgoal.

For example, consider this theorem about the divides relation. The first
proof step inserts the distributive law for gcd. We specify its variables as
shown.

lemma relprime dvd mult:
" [[gcd k n = 1; k dvd m*n]] =⇒ k dvd m"

apply (insert gcd_mult_distrib2 [of m k n])

In the resulting subgoal, note how the equation has been inserted:

1. [[gcd k n = 1; k dvd m * n; m * gcd k n = gcd (m * k) (m * n)]]
=⇒ k dvd m

The next proof step utilizes the assumption gcd k n = 1 (note that Suc 0 is
another expression for 1):

apply(simp)
1. [[gcd k n = Suc 0; k dvd m * n; m = gcd (m * k) (m * n)]]

=⇒ k dvd m

Simplification has yielded an equation for m. The rest of the proof is omitted.

Here is another demonstration of insert. Division and remainder obey a
well-known law:

(?m div ?n) * ?n + ?m mod ?n = ?m (mod_div_equality)

We refer to this law explicitly in the following proof:

lemma div_mult_self_is_m:
"0<n =⇒ (m*n) div n = (m::nat)"

apply (insert mod_div_equality [of "m*n" n])
apply (simp)
done

The first step inserts the law, specifying m*n and n for its variables. Notice
that non-trivial expressions must be enclosed in quotation marks. Here is the
resulting subgoal, with its new assumption:

1. [[0 < n; (m * n) div n * n + (m * n) mod n = m * n]]
=⇒ (m * n) div n = m

Simplification reduces (m * n) mod n to zero. Then it cancels the factor n on
both sides of the equation (m * n) div n * n = m * n, proving the theorem.

!! Any unknowns in the theorem given to insert will be universally quantified in
the new assumption.

5.16 Forward Reasoning in a Backward Proof 99

5.16.2 The Method subgoal_tac

A related method is subgoal_tac, but instead of inserting a theorem as an
assumption, it inserts an arbitrary formula. This formula must be proved
later as a separate subgoal. The idea is to claim that the formula holds on
the basis of the current assumptions, to use this claim to complete the proof,
and finally to justify the claim. It gives the proof some structure. If you find
yourself generating a complex assumption by a long series of forward steps,
consider using subgoal_tac instead: you can state the formula you are aiming
for, and perhaps prove it automatically.

Look at the following example.
lemma " [[(z::int) < 37; 66 < 2*z; z*z 6= 1225; Q(34); Q(36)]]

=⇒ Q(z)"
apply (subgoal_tac "z = 34 ∨ z = 36")
apply blast
apply (subgoal_tac "z 6= 35")
apply arith
apply force
done

The first assumption tells us that z is no greater than 36. The second tells
us that z is at least 34. The third assumption tells us that z cannot be 35,
since 35 × 35 = 1225. So z is either 34 or 36, and since Q holds for both of
those values, we have the conclusion.

The Isabelle proof closely follows this reasoning. The first step is to claim
that z is either 34 or 36. The resulting proof state gives us two subgoals:
1. [[z < 37; 66 < 2 * z; z * z 6= 1225; Q 34; Q 36;

z = 34 ∨ z = 36]]
=⇒ Q z

2. [[z < 37; 66 < 2 * z; z * z 6= 1225; Q 34; Q 36]]
=⇒ z = 34 ∨ z = 36

The first subgoal is trivial (blast), but for the second Isabelle needs help to
eliminate the case z=35. The second invocation of subgoal_tac leaves two
subgoals:
1. [[z < 37; 66 < 2 * z; z * z 6= 1225; Q 34; Q 36;

z 6= 35]]
=⇒ z = 34 ∨ z = 36

2. [[z < 37; 66 < 2 * z; z * z 6= 1225; Q 34; Q 36]]
=⇒ z 6= 35

Assuming that z is not 35, the first subgoal follows by linear arithmetic
(arith). For the second subgoal we apply the method force, which proceeds
by assuming that z=35 and arriving at a contradiction.

Summary of these methods:

– insert adds a theorem as a new assumption
– subgoal_tac adds a formula as a new assumption and leaves the subgoal

of proving that formula

100 5. The Rules of the Game

5.17 Managing Large Proofs

Naturally you should try to divide proofs into manageable parts. Look for
lemmas that can be proved separately. Sometimes you will observe that they
are instances of much simpler facts. On other occasions, no lemmas suggest
themselves and you are forced to cope with a long proof involving many
subgoals.

5.17.1 Tacticals, or Control Structures

If the proof is long, perhaps it at least has some regularity. Then you can
express it more concisely using tacticals, which provide control structures.
Here is a proof (it would be a one-liner using blast, but forget that) that
contains a series of repeated commands:
lemma " [[P−→Q; Q−→R; R−→S; P]] =⇒ S"
apply (drule mp, assumption)
apply (drule mp, assumption)
apply (drule mp, assumption)
apply (assumption)
done

Each of the three identical commands finds an implication and proves its
antecedent by assumption. The first one finds P−→Q and P, concluding Q ; the
second one concludes R and the third one concludes S. The final step matches
the assumption S with the goal to be proved.

Suffixing a method with a plus sign (+) expresses one or more repetitions:
lemma " [[P−→Q; Q−→R; R−→S; P]] =⇒ S"
by (drule mp, assumption)+

Using by takes care of the final use of assumption. The new proof is more
concise. It is also more general: the repetitive method works for a chain of
implications having any length, not just three.

Choice is another control structure. Separating two methods by a vertical
bar (|) gives the effect of applying the first method, and if that fails, trying
the second. It can be combined with repetition, when the choice must be
made over and over again. Here is a chain of implications in which most of
the antecedents are proved by assumption, but one is proved by arithmetic:
lemma " [[Q−→R; P−→Q; x<5−→P; Suc x < 5]] =⇒ R"
by (drule mp, (assumption|arith))+

The arith method can prove x < 5 from x +1 < 5, but it cannot duplicate the
effect of assumption. Therefore, we combine these methods using the choice
operator.

A postfixed question mark (?) expresses zero or one repetitions of a
method. It can also be viewed as the choice between executing a method
and doing nothing. It is useless at top level but can be valuable within other
control structures; for example, (m+)? performs zero or more repetitions of
method m.

5.17 Managing Large Proofs 101

5.17.2 Subgoal Numbering

Another problem in large proofs is contending with huge subgoals or many
subgoals. Induction can produce a proof state that looks like this:

1. bigsubgoal1
2. bigsubgoal2
3. bigsubgoal3
4. bigsubgoal4
5. bigsubgoal5
6. bigsubgoal6

If each bigsubgoal is 15 lines or so, the proof state will be too big to scroll
through. By default, Isabelle displays at most 10 subgoals. The pr command
lets you change this limit:

pr 2
1. bigsubgoal1
2. bigsubgoal2

A total of 6 subgoals...

All methods apply to the first subgoal. Sometimes, not only in a large
proof, you may want to focus on some other subgoal. Then you should try
the commands defer or prefer.

In the following example, the first subgoal looks hard, while the others
look as if blast alone could prove them:

1. hard
2. ¬ ¬ P =⇒ P
3. Q =⇒ Q

The defer command moves the first subgoal into the last position.

defer 1
1. ¬ ¬ P =⇒ P
2. Q =⇒ Q
3. hard

Now we apply blast repeatedly to the easy subgoals:

apply blast+
1. hard

Using defer, we have cleared away the trivial parts of the proof so that we
can devote attention to the difficult part.

The prefer command moves the specified subgoal into the first position.
For example, if you suspect that one of your subgoals is invalid (not a theo-
rem), then you should investigate that subgoal first. If it cannot be proved,
then there is no point in proving the other subgoals.

1. ok1
2. ok2
3. doubtful

102 5. The Rules of the Game

We decide to work on the third subgoal.

prefer 3
1. doubtful
2. ok1
3. ok2

If we manage to prove doubtful, then we can work on the other subgoals,
confident that we are not wasting our time. Finally we revise the proof script
to remove the prefer command, since we needed it only to focus our ex-
ploration. The previous example is different: its use of defer stops trivial
subgoals from cluttering the rest of the proof. Even there, we should consider
proving hard as a preliminary lemma. Always seek ways to streamline your
proofs.

Summary:

– the control structures +, ? and | help express complicated proofs
– the pr command can limit the number of subgoals to display
– the defer and prefer commands move a subgoal to the last or first position

Exercise 5.17.1 Explain the use of ? and + in this proof.

lemma " [[P∧Q−→R; P−→Q; P]] =⇒ R"
by (drule mp, (intro conjI)?, assumption+)+

5.18 Proving the Correctness of Euclid’s Algorithm

A brief development will demonstrate the techniques of this chapter, includ-
ing blast applied with additional rules. We shall also see case_tac used to
perform a Boolean case split.

Let us prove that gcd computes the greatest common divisor of its two ar-
guments. We use induction: gcd.induct is the induction rule returned by fun.
We simplify using rules proved in Sect. 3.5.3, since rewriting by the definition
of gcd can loop.

lemma gcd dvd both: "(gcd m n dvd m) ∧ (gcd m n dvd n)"

The induction formula must be a conjunction. In the inductive step, each
conjunct establishes the other.

1.
V
m n. (n 6= 0 =⇒

gcd n (m mod n) dvd n ∧
gcd n (m mod n) dvd m mod n) =⇒

gcd m n dvd m ∧ gcd m n dvd n

The conditional induction hypothesis suggests doing a case analysis on
n=0. We apply case_tac with type bool — and not with a datatype, as we have
done until now. Since nat is a datatype, we could have written case_tac n

instead of case_tac "n=0". However, the definition of gcd makes a Boolean
decision:

5.18 Proving the Correctness of Euclid’s Algorithm 103

"gcd m n = (if n=0 then m else gcd n (m mod n))"

Proofs about a function frequently follow the function’s definition, so we
perform case analysis over the same formula.

apply (case_tac "n=0")
1.

V
m n. [[n 6= 0 =⇒

gcd n (m mod n) dvd n ∧ gcd n (m mod n) dvd m mod n;
n = 0]]

=⇒ gcd m n dvd m ∧ gcd m n dvd n
2.

V
m n. [[n 6= 0 =⇒

gcd n (m mod n) dvd n ∧ gcd n (m mod n) dvd m mod n;
n 6= 0]]

=⇒ gcd m n dvd m ∧ gcd m n dvd n

Simplification leaves one subgoal:

apply (simp_all)
1.

V
m n. [[gcd n (m mod n) dvd n ∧ gcd n (m mod n) dvd m mod n;

0 < n]]
=⇒ gcd n (m mod n) dvd m

Here, we can use blast. One of the assumptions, the induction hypothesis, is
a conjunction. The two divides relationships it asserts are enough to prove
the conclusion, for we have the following theorem at our disposal:

[[?k dvd (?m mod ?n); ?k dvd ?n]] =⇒ ?k dvd ?m (dvd_mod_imp_dvd)

This theorem can be applied in various ways. As an introduction rule, it
would cause backward chaining from the conclusion (namely ?k dvd ?m) to
the two premises, which also involve the divides relation. This process does
not look promising and could easily loop. More sensible is to apply the rule
in the forward direction; each step would eliminate an occurrence of the mod

symbol, so the process must terminate.

apply (blast dest: dvd_mod_imp_dvd)
done

Attaching the dest attribute to dvd_mod_imp_dvd tells blast to use it as de-
struction rule; that is, in the forward direction.

We have proved a conjunction. Now, let us give names to each of the two
halves:

lemmas gcd_dvd1 [iff] = gcd_dvd_both [THEN conjunct1]
lemmas gcd_dvd2 [iff] = gcd_dvd_both [THEN conjunct2]

Here we see lemmas used with the iff attribute, which supplies the new
theorems to the classical reasoner and the simplifier. Recall that THEN is
frequently used with destruction rules; THEN conjunct1 extracts the first half
of a conjunctive theorem. Given gcd_dvd_both it yields

gcd ?m1 ?n1 dvd ?m1

The variable names ?m1 and ?n1 arise because Isabelle renames schematic
variables to prevent clashes. The second lemmas declaration yields

104 5. The Rules of the Game

gcd ?m1 ?n1 dvd ?n1

To complete the verification of the gcd function, we must prove that it
returns the greatest of all the common divisors of its arguments. The proof
is by induction, case analysis and simplification.

lemma gcd greatest [rule format]:
"k dvd m −→ k dvd n −→ k dvd gcd m n"

The goal is expressed using HOL implication, −→, because the induction
affects the two preconditions. The directive rule_format tells Isabelle to re-
place each −→ by =⇒ before storing the eventual theorem. This directive can
also remove outer universal quantifiers, converting the theorem into the usual
format for inference rules. It can replace any series of applications of THEN to
the rules mp and spec. We did not have to write this:

lemma gcd_greatest [THEN mp, THEN mp]:
"k dvd m −→ k dvd n −→ k dvd gcd m n"

Because we are again reasoning about gcd, we perform the same induction
and case analysis as in the previous proof:

1.
V
m n. [[n 6= 0 =⇒

k dvd n −→ k dvd m mod n −→ k dvd gcd n (m mod n);
n = 0]]

=⇒ k dvd m −→ k dvd n −→ k dvd gcd m n
2.

V
m n. [[n 6= 0 =⇒

k dvd n −→ k dvd m mod n −→ k dvd gcd n (m mod n);
n 6= 0]]

=⇒ k dvd m −→ k dvd n −→ k dvd gcd m n

Simplification proves both subgoals.

apply (simp_all add: dvd_mod)
done

In the first, where n=0, the implication becomes trivial: k dvd gcd m n goes
to k dvd m. The second subgoal is proved by an unfolding of gcd, using this
rule about divides:

[[?f dvd ?m; ?f dvd ?n]] =⇒ ?f dvd ?m mod ?n (dvd_mod)

The facts proved above can be summarized as a single logical equivalence.
This step gives us a chance to see another application of blast.

theorem gcd greatest iff [iff]:
"(k dvd gcd m n) = (k dvd m ∧ k dvd n)"

by (blast intro!: gcd_greatest intro: dvd_trans)

This theorem concisely expresses the correctness of the gcd function. We state
it with the iff attribute so that Isabelle can use it to remove some occur-
rences of gcd. The theorem has a one-line proof using blast supplied with
two additional introduction rules. The exclamation mark (intro!) signifies

5.18 Proving the Correctness of Euclid’s Algorithm 105

safe rules, which are applied aggressively. Rules given without the exclama-
tion mark are applied reluctantly and their uses can be undone if the search
backtracks. Here the unsafe rule expresses transitivity of the divides relation:

[[?m dvd ?n; ?n dvd ?p]] =⇒ ?m dvd ?p (dvd_trans)

Applying dvd_trans as an introduction rule entails a risk of looping, for it
multiplies occurrences of the divides symbol. However, this proof relies on
transitivity reasoning. The rule gcd greatest is safe to apply aggressively
because it yields simpler subgoals. The proof implicitly uses gcd_dvd1 and
gcd_dvd2 as safe rules, because they were declared using iff.

6. Sets, Functions and Relations

This chapter describes the formalization of typed set theory, which is the
basis of much else in HOL. For example, an inductive definition yields a set,
and the abstract theories of relations regard a relation as a set of pairs. The
chapter introduces the well-known constants such as union and intersection,
as well as the main operations on relations, such as converse, composition
and transitive closure. Functions are also covered. They are not sets in HOL,
but many of their properties concern sets: the range of a function is a set,
and the inverse image of a function maps sets to sets.

This chapter will be useful to anybody who plans to develop a substantial
proof. Sets are convenient for formalizing computer science concepts such
as grammars, logical calculi and state transition systems. Isabelle can prove
many statements involving sets automatically.

This chapter ends with a case study concerning model checking for the
temporal logic CTL. Most of the other examples are simple. The chapter
presents a small selection of built-in theorems in order to point out some key
properties of the various constants and to introduce you to the notation.

Natural deduction rules are provided for the set theory constants, but
they are seldom used directly, so only a few are presented here.

6.1 Sets

HOL’s set theory should not be confused with traditional, untyped set theory,
in which everything is a set. Our sets are typed. In a given set, all elements
have the same type, say τ , and the set itself has type τ set .

We begin with intersection, union and complement. In addition to
the membership relation, there is a symbol for its negation. These points
can be seen below.

Here are the natural deduction rules for intersection. Note the resemblance
to those for conjunction.
[[c ∈ A; c ∈ B]] =⇒ c ∈ A ∩ B (IntI)
c ∈ A ∩ B =⇒ c ∈ A (IntD1)
c ∈ A ∩ B =⇒ c ∈ B (IntD2)

Here are two of the many installed theorems concerning set complement.
Note that it is denoted by a minus sign.

108 6. Sets, Functions and Relations

(c ∈ - A) = (c /∈ A) (Compl_iff)
- (A ∪ B) = - A ∩ - B (Compl_Un)

Set difference is the intersection of a set with the complement of another
set. Here we also see the syntax for the empty set and for the universal set.

A ∩ (B - A) = {} (Diff_disjoint)
A ∪ - A = UNIV (Compl_partition)

The subset relation holds between two sets just if every element of one
is also an element of the other. This relation is reflexive. These are its natural
deduction rules:

(
V
x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B (subsetI)

[[A ⊆ B; c ∈ A]] =⇒ c ∈ B (subsetD)

In harder proofs, you may need to apply subsetD giving a specific term for c.
However, blast can instantly prove facts such as this one:

(A ∪ B ⊆ C) = (A ⊆ C ∧ B ⊆ C) (Un_subset_iff)

Here is another example, also proved automatically:

lemma "(A ⊆ -B) = (B ⊆ -A)"
by blast

This is the same example using ascii syntax, illustrating a pitfall:

lemma "(A <= -B) = (B <= -A)"

The proof fails. It is not a statement about sets, due to overloading; the
relation symbol <= can be any relation, not just subset. In this general form,
the statement is not valid. Putting in a type constraint forces the variables
to denote sets, allowing the proof to succeed:

lemma "((A:: ’a set) <= -B) = (B <= -A)"

Section 8.3 below describes overloading. Incidentally, A ⊆ -B asserts that the
sets A and B are disjoint.

Two sets are equal if they contain the same elements. This is the principle
of extensionality for sets.

(
V
x. (x ∈ A) = (x ∈ B)) =⇒ A = B (set_ext)

Extensionality can be expressed as A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A). The
following rules express both directions of this equivalence. Proving a set equa-
tion using equalityI allows the two inclusions to be proved independently.

[[A ⊆ B; B ⊆ A]] =⇒ A = B (equalityI)

[[A = B; [[A ⊆ B; B ⊆ A]] =⇒ P]] =⇒ P (equalityE)

6.1 Sets 109

6.1.1 Finite Set Notation

Finite sets are expressed using the constant insert , which is a form of union:

insert a A = {a} ∪ A (insert_is_Un)

The finite set expression {a,b} abbreviates insert a (insert b {}). Many
facts about finite sets can be proved automatically:

lemma "{a,b} ∪ {c,d} = {a,b,c,d}"
by blast

Not everything that we would like to prove is valid. Consider this attempt:

lemma "{a,b} ∩ {b,c} = {b}"
apply auto

The proof fails, leaving the subgoal b=c. To see why it fails, consider a correct
version:

lemma "{a,b} ∩ {b,c} = (if a=c then {a,b} else {b})"
apply simp
by blast

Our mistake was to suppose that the various items were distinct. Another
remark: this proof uses two methods, namely simp and blast . Calling simp

eliminates the if -then -else expression, which blast cannot break down. The
combined methods (namely force and auto) can prove this fact in one step.

6.1.2 Set Comprehension

The set comprehension {x. P} expresses the set of all elements that satisfy the
predicate P. Two laws describe the relationship between set comprehension
and the membership relation:

(a ∈ {x. P x}) = P a (mem_Collect_eq)
{x. x ∈ A} = A (Collect_mem_eq)

Facts such as these have trivial proofs:

lemma "{x. P x ∨ x ∈ A} = {x. P x} ∪ A"

lemma "{x. P x −→ Q x} = -{x. P x} ∪ {x. Q x}"

Isabelle has a general syntax for comprehension, which is best described
through an example:

lemma "{p*q | p q. p∈prime ∧ q∈prime} =
{z. ∃ p q. z = p*q ∧ p∈prime ∧ q∈prime}"

The left and right hand sides of this equation are identical. The syntax used
in the left-hand side abbreviates the right-hand side: in this case, all numbers
that are the product of two primes. The syntax provides a neat way of ex-
pressing any set given by an expression built up from variables under specific

110 6. Sets, Functions and Relations

constraints. The drawback is that it hides the true form of the expression,
with its existential quantifiers.

Remark. We do not need sets at all. They are essentially equivalent to
predicate variables, which are allowed in higher-order logic. The main benefit
of sets is their notation; we can write x∈A and {z. P} where predicates would
require writing A(x) and λz. P.

6.1.3 Binding Operators

Universal and existential quantifications may range over sets, with the obvi-
ous meaning. Here are the natural deduction rules for the bounded universal
quantifier. Occasionally you will need to apply bspec with an explicit instan-
tiation of the variable x :

(
V
x. x ∈ A =⇒ P x) =⇒ ∀ x∈A. P x (ballI)

[[∀ x∈A. P x; x ∈ A]] =⇒ P x (bspec)

Dually, here are the natural deduction rules for the bounded existential quan-
tifier. You may need to apply bexI with an explicit instantiation:

[[P x; x ∈ A]] =⇒ ∃ x∈A. P x (bexI)
[[∃ x∈A. P x;

V
x. [[x ∈ A; P x]] =⇒ Q]] =⇒ Q (bexE)

Unions can be formed over the values of a given set. The syntax isS
x∈A. B or UN x:A. B in ascii. Indexed union satisfies this basic law:

(b ∈ (
S
x∈A. B x) = (∃ x∈A. b ∈ B x) (UN_iff)

It has two natural deduction rules similar to those for the existential quanti-
fier. Sometimes UN_I must be applied explicitly:

[[a ∈ A; b ∈ B a]] =⇒ b ∈ (
S
x∈A. B x) (UN_I)

[[b ∈ (
S
x∈A. B x);

V
x. [[x ∈ A; b ∈ B x]] =⇒ R]] =⇒ R (UN_E)

The following built-in abbreviation (see Sect. 4.1.4) lets us express the union
over a type:

(
S
x. B x) ≡ (

S
x∈UNIV. B x)

We may also express the union of a set of sets, written Union C in ascii:

(A ∈
S
C) = (∃ X∈C. A ∈ X) (Union_iff)

Intersections are treated dually, although they seem to be used less often
than unions. The syntax below would be INT x: A. B and Inter C in ascii.
Among others, these theorems are available:

(b ∈ (
T
x∈A. B x)) = (∀ x∈A. b ∈ B x) (INT_iff)

(A ∈
T
C) = (∀ X∈C. A ∈ X) (Inter_iff)

Isabelle uses logical equivalences such as those above in automatic proof.
Unions, intersections and so forth are not simply replaced by their definitions.
Instead, membership tests are simplified. For example, x ∈ A∪B is replaced
by x ∈ A ∨ x ∈ B .

6.2 Functions 111

The internal form of a comprehension involves the constant Collect ,
which occasionally appears when a goal or theorem is displayed. For example,
Collect P is the same term as {x. P x}. The same thing can happen with
quantifiers: All P is ∀ x. P x and Ex P is ∃ x. P x ; also Ball A P is ∀ x∈A. P

x and Bex A P is ∃ x∈A. P x. For indexed unions and intersections, you may
see the constants UNION and INTER . The internal constant for εx .P(x) is Eps .

We have only scratched the surface of Isabelle/HOL’s set theory, which
provides hundreds of theorems for your use.

6.1.4 Finiteness and Cardinality

The predicate finite holds of all finite sets. Isabelle/HOL includes many
familiar theorems about finiteness and cardinality (card). For example, we
have theorems concerning the cardinalities of unions, intersections and the
powerset:
[[finite A; finite B]]
=⇒ card A + card B = card (A ∪ B) + card (A ∩ B) (card_Un_Int)

finite A =⇒ card (Pow A) = 2 ^ card A (card_Pow)

finite A =⇒
card {B. B ⊆ A ∧ card B = k} = card A choose k (n_subsets)

Writing |A| as n, the last of these theorems says that the number of k -element
subsets of A is

(
n
k

)
.

!! The term finite A is defined via a syntax translation as an abbreviation for
A ∈ Finites, where the constant Finites denotes the set of all finite sets of

a given type. There is no constant finite.

6.2 Functions

This section describes a few concepts that involve functions. Some of the more
important theorems are given along with the names. A few sample proofs
appear. Unlike with set theory, however, we cannot simply state lemmas and
expect them to be proved using blast.

6.2.1 Function Basics

Two functions are equal if they yield equal results given equal arguments.
This is the principle of extensionality for functions:
(

V
x. f x = g x) =⇒ f = g (ext)

Function update is useful for modelling machine states. It has the obvi-
ous definition and many useful facts are proved about it. In particular, the
following equation is installed as a simplification rule:

112 6. Sets, Functions and Relations

(f(x:=y)) z = (if z = x then y else f z) (fun_upd_apply)

Two syntactic points must be noted. In (f(x:=y)) z we are applying an
updated function to an argument; the outer parentheses are essential. A series
of two or more updates can be abbreviated as shown on the left-hand side of
this theorem:

f(x:=y, x:=z) = f(x:=z) (fun_upd_upd)

Note also that we can write f(x:=z) with only one pair of parentheses when
it is not being applied to an argument.

The identity function and function composition are defined:

id ≡ λx. x (id_def)
f ◦ g ≡ λx. f (g x) (o_def)

Many familiar theorems concerning the identity and composition are proved.
For example, we have the associativity of composition:

f ◦ (g ◦ h) = f ◦ g ◦ h (o_assoc)

6.2.2 Injections, Surjections, Bijections

A function may be injective, surjective or bijective:

inj_on f A ≡ ∀ x∈A. ∀ y∈A. f x = f y −→ x = y (inj_on_def)
surj f ≡ ∀ y. ∃ x. y = f x (surj_def)
bij f ≡ inj f ∧ surj f (bij_def)

The second argument of inj_on lets us express that a function is injective over
a given set. This refinement is useful in higher-order logic, where functions are
total; in some cases, a function’s natural domain is a subset of its domain type.
Writing inj f abbreviates inj_on f UNIV, for when f is injective everywhere.

The operator inv expresses the inverse of a function. In general the
inverse may not be well behaved. We have the usual laws, such as these:

inj f =⇒ inv f (f x) = x (inv_f_f)
surj f =⇒ f (inv f y) = y (surj_f_inv_f)
bij f =⇒ inv (inv f) = f (inv_inv_eq)

Theorems involving these concepts can be hard to prove. The following
example is easy, but it cannot be proved automatically. To begin with, we
need a law that relates the equality of functions to equality over all arguments:

(f = g) = (∀ x. f x = g x) (expand_fun_eq)

This is just a restatement of extensionality. Our lemma states that an injec-
tion can be cancelled from the left side of function composition:

lemma "inj f =⇒ (f o g = f o h) = (g = h)"
apply (simp add: expand_fun_eq inj_on_def)
apply auto
done

6.3 Relations 113

The first step of the proof invokes extensionality and the definitions of
injectiveness and composition. It leaves one subgoal:

1. ∀ x y. f x = f y −→ x = y =⇒
(∀ x. f (g x) = f (h x)) = (∀ x. g x = h x)

This can be proved using the auto method.

6.2.3 Function Image

The image of a set under a function is a most useful notion. It has the
obvious definition:

f ‘ A ≡ {y. ∃ x∈A. y = f x} (image_def)

Here are some of the many facts proved about image:

(f ◦ g) ‘ r = f ‘ g ‘ r (image_compose)
f‘(A ∪ B) = f‘A ∪ f‘B (image_Un)
inj f =⇒ f‘(A ∩ B) = f‘A ∩ f‘B (image_Int)

Laws involving image can often be proved automatically. Here are two
examples, illustrating connections with indexed union and with the general
syntax for comprehension:

lemma "f‘A ∪ g‘A = (
S
x∈A. {f x, g x})"

lemma "f ‘ {(x,y). P x y} = {f(x,y) | x y. P x y}"

A function’s range is the set of values that the function can take on. It
is, in fact, the image of the universal set under that function. There is no
constant range. Instead, range abbreviates an application of image to UNIV :

range f
 f‘UNIV

Few theorems are proved specifically for range ; in most cases, you should
look for a more general theorem concerning images.

Inverse image is also useful. It is defined as follows:

f -‘ B ≡ {x. f x ∈ B} (vimage_def)

This is one of the facts proved about it:

f -‘ (- A) = - f -‘ A (vimage_Compl)

6.3 Relations

A relation is a set of pairs. As such, the set operations apply to them. For
instance, we may form the union of two relations. Other primitives are defined
specifically for relations.

114 6. Sets, Functions and Relations

6.3.1 Relation Basics

The identity relation, also known as equality, has the obvious definition:

Id ≡ {p. ∃ x. p = (x,x)} (Id_def)

Composition of relations (the infix O) is also available:

r O s ≡ {(x,z). ∃ y. (x,y) ∈ s ∧ (y,z) ∈ r} (rel_comp_def)

This is one of the many lemmas proved about these concepts:

R O Id = R (R_O_Id)

Composition is monotonic, as are most of the primitives appearing in this
chapter. We have many theorems similar to the following one:

[[r’ ⊆ r; s’ ⊆ s]] =⇒ r’ O s’ ⊆ r O s (rel_comp_mono)

The converse or inverse of a relation exchanges the roles of the two
operands. We use the postfix notation r−1 or r^-1 in ASCII.

((a,b) ∈ r−1) = ((b,a) ∈ r) (converse_iff)

Here is a typical law proved about converse and composition:

(r O s)−1 = s−1 O r−1 (converse_rel_comp)

The image of a set under a relation is defined analogously to image under
a function:

(b ∈ r ‘‘ A) = (∃ x∈A. (x,b) ∈ r) (Image_iff)

It satisfies many similar laws.
The domain and range of a relation are defined in the standard way:

(a ∈ Domain r) = (∃ y. (a,y) ∈ r) (Domain_iff)
(a ∈ Range r) = (∃ y. (y,a) ∈ r) (Range_iff)

Iterated composition of a relation is available. The notation overloads that
of exponentiation. Two simplification rules are installed:

R ^ 0 = Id
R ^ Suc n = R O R^n

6.3.2 The Reflexive and Transitive Closure

The reflexive and transitive closure of the relation r is written with a
postfix syntax. In ASCII we write r^* and in symbol notation r∗. It is the
least solution of the equation

r∗ = Id ∪ (r O r∗) (rtrancl_unfold)

Among its basic properties are three that serve as introduction rules:

(a, a) ∈ r∗ (rtrancl_refl)
p ∈ r =⇒ p ∈ r∗ (r_into_rtrancl)
[[(a,b) ∈ r∗; (b,c) ∈ r∗]] =⇒ (a,c) ∈ r∗ (rtrancl_trans)

6.3 Relations 115

Induction over the reflexive transitive closure is available:

[[(a, b) ∈ r∗; P a;
V
y z. [[(a, y) ∈ r∗; (y, z) ∈ r; P y]] =⇒ P z]]

=⇒ P b (rtrancl_induct)

Idempotence is one of the laws proved about the reflexive transitive closure:

(r∗)∗ = r∗ (rtrancl_idemp)

The transitive closure is similar. The ASCII syntax is r^+. It has two
introduction rules:

p ∈ r =⇒ p ∈ r+ (r_into_trancl)
[[(a, b) ∈ r+; (b, c) ∈ r+]] =⇒ (a, c) ∈ r+ (trancl_trans)

The induction rule resembles the one shown above. A typical lemma states
that transitive closure commutes with the converse operator:

(r−1)+ = (r+)−1 (trancl_converse)

6.3.3 A Sample Proof

The reflexive transitive closure also commutes with the converse operator. Let
us examine the proof. Each direction of the equivalence is proved separately.
The two proofs are almost identical. Here is the first one:

lemma rtrancl_converseD: "(x,y) ∈ (r−1)∗ =⇒ (y,x) ∈ r∗"
apply (erule rtrancl_induct)
apply (rule rtrancl_refl)

apply (blast intro: rtrancl_trans)
done

The first step of the proof applies induction, leaving these subgoals:

1. (x, x) ∈ r∗

2.
V
y z. [[(x,y) ∈ (r−1)∗; (y,z) ∈ r−1; (y,x) ∈ r∗]]

=⇒ (z,x) ∈ r∗

The first subgoal is trivial by reflexivity. The second follows by first elimi-
nating the converse operator, yielding the assumption (z,y) ∈ r, and then
applying the introduction rules shown above. The same proof script handles
the other direction:

lemma rtrancl_converseI: "(y,x) ∈ r∗ =⇒ (x,y) ∈ (r−1)∗"
apply (erule rtrancl_induct)
apply (rule rtrancl_refl)

apply (blast intro: rtrancl_trans)
done

Finally, we combine the two lemmas to prove the desired equation:

lemma rtrancl_converse: "(r−1)∗ = (r∗)−1"
by (auto intro: rtrancl_converseI dest: rtrancl_converseD)

116 6. Sets, Functions and Relations

!! This trivial proof requires auto rather than blast because of a subtle issue
involving ordered pairs. Here is a subgoal that arises internally after the rules

equalityI and subsetI have been applied:

1.
V
x. x ∈ (r−1)∗ =⇒ x ∈ (r∗)−1

We cannot apply rtrancl_converseD . It refers to ordered pairs, while x is a vari-
able of product type. The simp and blast methods can do nothing, so let us try
clarify :

1.
V
a b. (a,b) ∈ (r−1)∗ =⇒ (b,a) ∈ r∗

Now that x has been replaced by the pair (a,b), we can proceed. Other methods
that split variables in this way are force, auto, fast and best. Section 8.1 will
discuss proof techniques for ordered pairs in more detail.

6.4 Well-Founded Relations and Induction

A well-founded relation captures the notion of a terminating process. Com-
plex recursive functions definitions must specify a well-founded relation that
justifies their termination [19]. Most of the forms of induction found in math-
ematics are merely special cases of induction over a well-founded relation.

Intuitively, the relation ≺ is well-founded if it admits no infinite de-
scending chains

· · · ≺ a2 ≺ a1 ≺ a0.

Well-foundedness can be hard to show. The various formulations are all com-
plicated. However, often a relation is well-founded by construction. HOL pro-
vides theorems concerning ways of constructing a well-founded relation. The
most familiar way is to specify a measure function f into the natural num-
bers, when x ≺ y ⇐⇒ f x < f y; we write this particular relation as
measure f.

!! You may want to skip the rest of this section until you need to perform a
complex recursive function definition or induction. The induction rule returned

by fun is good enough for most purposes. We use an explicit well-founded induction
only in Sect. 9.2.4.

Isabelle/HOL declares less_than as a relation object, that is, a set of
pairs of natural numbers. Two theorems tell us that this relation behaves as
expected and that it is well-founded:

((x,y) ∈ less_than) = (x < y) (less_than_iff)
wf less_than (wf_less_than)

The notion of measure generalizes to the inverse image of a relation.
Given a relation r and a function f, we express a new relation using f as a
measure. An infinite descending chain on this new relation would give rise
to an infinite descending chain on r. Isabelle/HOL defines this concept and
proves a theorem stating that it preserves well-foundedness:

6.5 Fixed Point Operators 117

inv_image r f ≡ {(x,y). (f x, f y) ∈ r} (inv_image_def)
wf r =⇒ wf (inv_image r f) (wf_inv_image)

A measure function involves the natural numbers. The relation measure

size justifies primitive recursion and structural induction over a datatype.
Isabelle/HOL defines measure as shown:
measure ≡ inv_image less_than (measure_def)
wf (measure f) (wf_measure)

Of the other constructions, the most important is the lexicographic
product of two relations. It expresses the standard dictionary ordering over
pairs. We write ra <*lex*> rb, where ra and rb are the two operands. The
lexicographic product satisfies the usual definition and it preserves well-
foundedness:
ra <*lex*> rb ≡

{((a,b),(a’,b’)). (a,a’) ∈ ra ∨
a=a’ ∧ (b,b’) ∈ rb} (lex_prod_def)

[[wf ra; wf rb]] =⇒ wf (ra <*lex*> rb) (wf_lex_prod)

The multiset ordering, useful for hard termination proofs, is available
in the Library [4]. Baader and Nipkow [3, Sect. 2.5] discuss it.

Induction comes in many forms, including traditional mathematical in-
duction, structural induction on lists and induction on size. All are instances
of the following rule, for a suitable well-founded relation ≺:

[∀y . y ≺ x → P(y)]....
P(x)
P(a)

To show P(a) for a particular term a, it suffices to show P(x) for arbi-
trary x under the assumption that P(y) holds for y ≺ x . Intuitively, the
well-foundedness of ≺ ensures that the chains of reasoning are finite.

In Isabelle, the induction rule is expressed like this:
[[wf r;

V
x. ∀ y. (y,x) ∈ r −→ P y =⇒ P x]] =⇒ P a (wf_induct)

Here wf r expresses that the relation r is well-founded.
Many familiar induction principles are instances of this rule. For example,

the predecessor relation on the natural numbers is well-founded; induction
over it is mathematical induction. The “tail of” relation on lists is well-
founded; induction over it is structural induction.

6.5 Fixed Point Operators

Fixed point operators define sets recursively. They are invoked implicitly
when making an inductive definition, as discussed in Chap. 7 below. However,

118 6. Sets, Functions and Relations

they can be used directly, too. The least or strongest fixed point yields an
inductive definition; the greatest or weakest fixed point yields a coinductive
definition. Mathematicians may wish to note that the existence of these fixed
points is guaranteed by the Knaster-Tarski theorem.

!! Casual readers should skip the rest of this section. We use fixed point operators
only in Sect. 6.6.

The theory applies only to monotonic functions. Isabelle’s definition of
monotone is overloaded over all orderings:

mono f ≡ ∀ A B. A ≤ B −→ f A ≤ f B (mono_def)

For fixed point operators, the ordering will be the subset relation: if A ⊆ B
then we expect f (A) ⊆ f (B). In addition to its definition, monotonicity has
the obvious introduction and destruction rules:

(
V
A B. A ≤ B =⇒ f A ≤ f B) =⇒ mono f (monoI)

[[mono f; A ≤ B]] =⇒ f A ≤ f B (monoD)

The most important properties of the least fixed point are that it is a
fixed point and that it enjoys an induction rule:

mono f =⇒ lfp f = f (lfp f) (lfp_unfold)

[[a ∈ lfp f; mono f;V
x. x ∈ f (lfp f ∩ {x. P x}) =⇒ P x]] =⇒ P a (lfp_induct)

The induction rule shown above is more convenient than the basic one derived
from the minimality of lfp . Observe that both theorems demand mono f as
a premise.

The greatest fixed point is similar, but it has a coinduction rule:

mono f =⇒ gfp f = f (gfp f) (gfp_unfold)
[[mono f; a ∈ X; X ⊆ f (X ∪ gfp f)]] =⇒ a ∈ gfp f (coinduct)

A bisimulation is perhaps the best-known concept defined as a greatest
fixed point. Exhibiting a bisimulation to prove the equality of two agents in
a process algebra is an example of coinduction. The coinduction rule can be
strengthened in various ways.

6.6 Case Study: Verified Model Checking

This chapter ends with a case study concerning model checking for Com-
putation Tree Logic (CTL), a temporal logic. Model checking is a popular
technique for the verification of finite state systems (implementations) with
respect to temporal logic formulae (specifications) [8, 17]. Its foundations are
set theoretic and this section will explore them in HOL. This is done in two
steps. First we consider a simple modal logic called propositional dynamic
logic (PDL). We then proceed to the temporal logic CTL, which is used in

6.6 Case Study: Verified Model Checking 119

many real model checkers. In each case we give both a traditional semantics
(|=) and a recursive function mc that maps a formula into the set of all states
of the system where the formula is valid. If the system has a finite number
of states, mc is directly executable: it is a model checker, albeit an inefficient
one. The main proof obligation is to show that the semantics and the model
checker agree.

Our models are transition systems: sets of states with transitions between
them. Here is a simple example:

��
��

p, q
s0

�
�

�
�	�
�
�
�� @

@
@
@R

��
��

q , r
s1 -��

��
r
�

s2

Each state has a unique name or number (s0, s1, s2), and in each state certain
atomic propositions (p, q , r) hold. The aim of temporal logic is to formalize
statements such as “there is no path starting from s2 leading to a state
where p or q holds,” which is true, and “on all paths starting from s0, q
always holds,” which is false.

Abstracting from this concrete example, we assume there is a type of
states:

typedecl state

Command typedecl merely declares a new type but without defining it (see
Sect. 8.5.1). Thus we know nothing about the type other than its existence.
That is exactly what we need because state really is an implicit parameter
of our model. Of course it would have been more generic to make state a
type parameter of everything but declaring state globally as above reduces
clutter. Similarly we declare an arbitrary but fixed transition system, i.e. a
relation between states:

consts M :: "(state × state)set"

This is Isabelle’s way of declaring a constant without defining it. Finally we
introduce a type of atomic propositions

typedecl "atom"

and a labelling function

consts L :: "state ⇒ atom set"

telling us which atomic propositions are true in each state.

120 6. Sets, Functions and Relations

6.6.1 Propositional Dynamic Logic — PDL

The formulae of PDL are built up from atomic propositions via negation and
conjunction and the two temporal connectives AX and EF . Since formulae are
essentially syntax trees, they are naturally modelled as a datatype:1

datatype formula = Atom "atom"
| Neg formula
| And formula formula
| AX formula
| EF formula

This resembles the boolean expression case study in Sect. 2.5.6. A validity
relation between states and formulae specifies the semantics. The syntax an-
notation allows us to write s |= f instead of valid s f . The definition is by
recursion over the syntax:

primrec valid :: "state ⇒ formula ⇒ bool" ("(_ |= _)" [80,80] 80)
where
"s |= Atom a = (a ∈ L s)" |
"s |= Neg f = (¬(s |= f))" |
"s |= And f g = (s |= f ∧ s |= g)" |
"s |= AX f = (∀ t. (s,t) ∈ M −→ t |= f)" |
"s |= EF f = (∃ t. (s,t) ∈ M∗ ∧ t |= f)"

The first three equations should be self-explanatory. The temporal formula
AX f means that f is true in All neX t states whereas EF f means that there
Exists some Future state in which f is true. The future is expressed via ∗,
the reflexive transitive closure. Because of reflexivity, the future includes the
present.

Now we come to the model checker itself. It maps a formula into the set
of states where the formula is true. It too is defined by recursion over the
syntax:

primrec mc :: "formula ⇒ state set" where
"mc(Atom a) = {s. a ∈ L s}" |
"mc(Neg f) = -mc f" |
"mc(And f g) = mc f ∩ mc g" |
"mc(AX f) = {s. ∀ t. (s,t) ∈ M −→ t ∈ mc f}" |
"mc(EF f) = lfp(λT. mc f ∪ (M−1 ‘‘ T))"

Only the equation for EF deserves some comments. Remember that the postfix
−1 and the infix ‘‘ are predefined and denote the converse of a relation and
the image of a set under a relation. Thus M−1 ‘‘ T is the set of all predecessors
of T and the least fixed point (lfp) of λT. mc f ∪ M−1 ‘‘ T is the least set
T containing mc f and all predecessors of T. If you find it hard to see that
mc (EF f) contains exactly those states from which there is a path to a state
where f is true, do not worry — this will be proved in a moment.
1 The customary definition of PDL [14] looks quite different from ours, but the

two are easily shown to be equivalent.

6.6 Case Study: Verified Model Checking 121

First we prove monotonicity of the function inside lfp in order to make
sure it really has a least fixed point.

lemma mono_ef: "mono(λT. A ∪ (M−1 ‘‘ T))"
apply(rule monoI)
apply blast
done

Now we can relate model checking and semantics. For the EF case we need a
separate lemma:

lemma EF_lemma:
"lfp(λT. A ∪ (M−1 ‘‘ T)) = {s. ∃ t. (s,t) ∈ M∗ ∧ t ∈ A}"

The equality is proved in the canonical fashion by proving that each set
includes the other; the inclusion is shown pointwise:

apply(rule equalityI)
apply(rule subsetI)
apply(simp)

Simplification leaves us with the following first subgoal

1.
V
s. s ∈ lfp (λT. A ∪ M−1 ‘‘ T) =⇒ ∃ t. (s, t) ∈ M∗ ∧ t ∈ A

which is proved by lfp -induction:

apply(erule lfp_induct_set)
apply(rule mono_ef)

apply(simp)

Having disposed of the monotonicity subgoal, simplification leaves us with
the following goal:

1.
V
x. x ∈ A ∨

x ∈ M−1 ‘‘ (lfp (...) ∩ {x. ∃ t. (x, t) ∈ M∗ ∧ t ∈ A})
=⇒ ∃ t. (x, t) ∈ M∗ ∧ t ∈ A

It is proved by blast, using the transitivity of M∗.

apply(blast intro: rtrancl_trans)

We now return to the second set inclusion subgoal, which is again proved
pointwise:

apply(rule subsetI)
apply(simp, clarify)

After simplification and clarification we are left with

1.
V
x t. [[(x, t) ∈ M∗; t ∈ A]] =⇒ x ∈ lfp (λT. A ∪ M−1 ‘‘ T)

This goal is proved by induction on (s, t) ∈ M∗. But since the model
checker works backwards (from t to s), we cannot use the induction theorem
rtrancl_induct : it works in the forward direction. Fortunately the converse
induction theorem converse_rtrancl_induct already exists:

122 6. Sets, Functions and Relations

[[(a, b) ∈ r∗; P b;V
y z. [[(y, z) ∈ r; (z, b) ∈ r∗; P z]] =⇒ P y]]

=⇒ P a

It says that if (a, b) ∈ r∗ and we know P b then we can infer P a provided
each step backwards from a predecessor z of b preserves P.

apply(erule converse_rtrancl_induct)

The base case

1.
V
x t. t ∈ A =⇒ t ∈ lfp (λT. A ∪ M−1 ‘‘ T)

is solved by unrolling lfp once

apply(subst lfp_unfold[OF mono_ef])

1.
V
x t. t ∈ A =⇒ t ∈ A ∪ M−1 ‘‘ lfp (λT. A ∪ M−1 ‘‘ T)

and disposing of the resulting trivial subgoal automatically:

apply(blast)

The proof of the induction step is identical to the one for the base case:

apply(subst lfp_unfold[OF mono_ef])
apply(blast)
done

The main theorem is proved in the familiar manner: induction followed
by auto augmented with the lemma as a simplification rule.

theorem "mc f = {s. s |= f}"
apply(induct_tac f)
apply(auto simp add: EF_lemma)
done

Exercise 6.6.1 AX has a dual operator EN (“there exists a next state such
that”)2 with the intended semantics

s |= EN f = (∃ t. (s, t) ∈ M ∧ t |= f)

Fortunately, EN f can already be expressed as a PDL formula. How?
Show that the semantics for EF satisfies the following recursion equation:

s |= EF f = (s |= f ∨ s |= EN (EF f))

2 We cannot use the customary EX : it is reserved as the ascii-equivalent of ∃ .

6.6 Case Study: Verified Model Checking 123

6.6.2 Computation Tree Logic — CTL

The semantics of PDL only needs reflexive transitive closure. Let us be ad-
venturous and introduce a more expressive temporal operator. We extend the
datatype formula by a new constructor

| AF formula

which stands for “Always in the Future”: on all infinite paths, at some point
the formula holds. Formalizing the notion of an infinite path is easy in HOL:
it is simply a function from nat to state.
definition Paths :: "state ⇒ (nat ⇒ state)set" where
"Paths s ≡ {p. s = p 0 ∧ (∀ i. (p i, p(i+1)) ∈ M)}"

This definition allows a succinct statement of the semantics of AF : 3

"s |= AF f = (∀ p ∈ Paths s. ∃ i. p i |= f)"

Model checking AF involves a function which is just complicated enough to
warrant a separate definition:
definition af :: "state set ⇒ state set ⇒ state set" where
"af A T ≡ A ∪ {s. ∀ t. (s, t) ∈ M −→ t ∈ T}"

Now we define mc (AF f) as the least set T that includes mc f and all states
all of whose direct successors are in T :
"mc(AF f) = lfp(af(mc f))"

Because af is monotone in its second argument (and also its first, but that
is irrelevant), af A has a least fixed point:
lemma mono_af: "mono(af A)"
apply(simp add: mono_def af_def)
apply blast
done

All we need to prove now is mc (AF f) = {s. s |= AF f}, which states
that mc and |= agree for AF . This time we prove the two inclusions separately,
starting with the easy one:
theorem AF_lemma1: "lfp(af A) ⊆ {s. ∀ p ∈ Paths s. ∃ i. p i ∈ A}"

In contrast to the analogous proof for EF, and just for a change, we do not
use fixed point induction. Park-induction, named after David Park, is weaker
but sufficient for this proof:

f S ≤ S =⇒ lfp f ≤ S (lfp_lowerbound)

The instance of the premise f S ⊆ S is proved pointwise, a decision that auto
takes for us:
apply(rule lfp_lowerbound)
apply(auto simp add: af_def Paths_def)

3 Do not be misled: neither datatypes nor recursive functions can be extended
by new constructors or equations. This is just a trick of the presentation (see
Sect. 4.2.5). In reality one has to define a new datatype and a new function.

124 6. Sets, Functions and Relations

1.
V
p. [[∀ t. (p 0, t) ∈ M −→

(∀ p. t = p 0 ∧ (∀ i. (p i, p (Suc i)) ∈ M) −→
(∃ i. p i ∈ A));

∀ i. (p i, p (Suc i)) ∈ M]]
=⇒ ∃ i. p i ∈ A

In this remaining case, we set t to p 1. The rest is automatic, which is
surprising because it involves finding the instantiation λi. p (i + 1) for ∀ p.

apply(erule_tac x = "p 1" in allE)
apply(auto)
done

The opposite inclusion is proved by contradiction: if some state s is not in
lfp (af A), then we can construct an infinite A -avoiding path starting from s.
The reason is that by unfolding lfp we find that if s is not in lfp (af A),
then s is not in A and there is a direct successor of s that is again not in
lfp (af A) . Iterating this argument yields the promised infinite A -avoiding
path. Let us formalize this sketch.

The one-step argument in the sketch above is proved by a variant of
contraposition:

lemma not_in_lfp_afD:
"s /∈ lfp(af A) =⇒ s /∈ A ∧ (∃ t. (s,t) ∈ M ∧ t /∈ lfp(af A))"

apply(erule contrapos_np)
apply(subst lfp_unfold[OF mono_af])
apply(simp add: af_def)
done

We assume the negation of the conclusion and prove s ∈ lfp (af A). Un-
folding lfp once and simplifying with the definition of af finishes the proof.

Now we iterate this process. The following construction of the desired
path is parameterized by a predicate Q that should hold along the path:

primrec path :: "state ⇒ (state ⇒ bool) ⇒ (nat ⇒ state)" where
"path s Q 0 = s" |
"path s Q (Suc n) = (SOME t. (path s Q n,t) ∈ M ∧ Q t)"

Element n + 1 on this path is some arbitrary successor t of element n such
that Q t holds. Remember that SOME t. R t is some arbitrary but fixed t

such that R t holds (see Sect. 5.10). Of course, such a t need not exist, but
that is of no concern to us since we will only use path when a suitable t does
exist.

Let us show that if each state s that satisfies Q has a successor that again
satisfies Q, then there exists an infinite Q -path:

lemma infinity_lemma:
" [[Q s; ∀ s. Q s −→ (∃ t. (s,t) ∈ M ∧ Q t)]] =⇒
∃ p∈Paths s. ∀ i. Q(p i)"

First we rephrase the conclusion slightly because we need to prove simulta-
neously both the path property and the fact that Q holds:

6.6 Case Study: Verified Model Checking 125

apply(subgoal_tac
"∃ p. s = p 0 ∧ (∀ i::nat. (p i, p(i+1)) ∈ M ∧ Q(p i))")

From this proposition the original goal follows easily:

apply(simp add: Paths_def, blast)

The new subgoal is proved by providing the witness path s Q for p :

apply(rule_tac x = "path s Q" in exI)
apply(clarsimp)

After simplification and clarification, the subgoal has the following form:

1.
V
i. [[Q s; ∀ s. Q s −→ (∃ t. (s, t) ∈ M ∧ Q t)]]

=⇒ (path s Q i, SOME t. (path s Q i, t) ∈ M ∧ Q t) ∈ M ∧
Q (path s Q i)

It invites a proof by induction on i :

apply(induct_tac i)
apply(simp)

After simplification, the base case boils down to

1. [[Q s; ∀ s. Q s −→ (∃ t. (s, t) ∈ M ∧ Q t)]]
=⇒ (s, SOME t. (s, t) ∈ M ∧ Q t) ∈ M

The conclusion looks exceedingly trivial: after all, t is chosen such that (s,

t) ∈ M holds. However, we first have to show that such a t actually exists!
This reasoning is embodied in the theorem someI2_ex :

[[∃ a. ?P a;
V
x. ?P x =⇒ ?Q x]] =⇒ ?Q (SOME x. ?P x)

When we apply this theorem as an introduction rule, ?P x becomes (s, x) ∈
M ∧ Q x and ?Q x becomes (s, x) ∈ M and we have to prove two subgoals:
∃ a. (s, a) ∈ M ∧ Q a, which follows from the assumptions, and (s, x) ∈
M ∧ Q x =⇒ (s, x) ∈ M, which is trivial. Thus it is not surprising that fast

can prove the base case quickly:

apply(fast intro: someI2_ex)

What is worth noting here is that we have used fast rather than blast. The
reason is that blast would fail because it cannot cope with someI2_ex : unify-
ing its conclusion with the current subgoal is non-trivial because of the nested
schematic variables. For efficiency reasons blast does not even attempt such
unifications. Although fast can in principle cope with complicated unifica-
tion problems, in practice the number of unifiers arising is often prohibitive
and the offending rule may need to be applied explicitly rather than auto-
matically. This is what happens in the step case.

The induction step is similar, but more involved, because now we face
nested occurrences of SOME. As a result, fast is no longer able to solve the
subgoal and we apply someI2_ex by hand. We merely show the proof com-
mands but do not describe the details:

apply(simp)

126 6. Sets, Functions and Relations

apply(rule someI2_ex)
apply(blast)

apply(rule someI2_ex)
apply(blast)

apply(blast)
done

Function path has fulfilled its purpose now and can be forgotten. It was
merely defined to provide the witness in the proof of the infinity_lemma.
Aficionados of minimal proofs might like to know that we could have given
the witness without having to define a new function: the term

nat_rec s (λn t. SOME u. (t, u) ∈ M ∧ Q u)

is extensionally equal to path s Q, where nat_rec is the predefined primitive
recursor on nat.

At last we can prove the opposite direction of AF_lemma1 :

theorem AF_lemma2: "{s. ∀ p ∈ Paths s. ∃ i. p i ∈ A} ⊆ lfp(af A)"

The proof is again pointwise and then by contraposition:

apply(rule subsetI)
apply(erule contrapos_pp)
apply simp

1.
V
x. x /∈ lfp (af A) =⇒ ∃ p∈Paths x. ∀ i. p i /∈ A

Applying the infinity_lemma as a destruction rule leaves two subgoals, the
second premise of infinity_lemma and the original subgoal:

apply(drule infinity_lemma)

1.
V
x. ∀ s. s /∈ lfp (af A) −→ (∃ t. (s, t) ∈ M ∧ t /∈ lfp (af A))

2.
V
x. ∃ p∈Paths x. ∀ i. p i /∈ lfp (af A) =⇒
∃ p∈Paths x. ∀ i. p i /∈ A

Both are solved automatically:

apply(auto dest: not_in_lfp_afD)
done

If you find these proofs too complicated, we recommend that you read
Sect. 9.2.4, where we show how inductive definitions lead to simpler argu-
ments.

The main theorem is proved as for PDL, except that we also derive the
necessary equality lfp(af A) = ... by combining AF_lemma1 and AF_lemma2

on the spot:

theorem "mc f = {s. s |= f}"
apply(induct_tac f)
apply(auto simp add: EF_lemma equalityI[OF AF_lemma1 AF_lemma2])
done

6.6 Case Study: Verified Model Checking 127

The language defined above is not quite CTL. The latter also includes an
until-operator EU f g with semantics “there Exists a path where f is true
U ntil g becomes true”. We need an auxiliary function:

primrec
until:: "state set ⇒ state set ⇒ state ⇒ state list ⇒ bool" where
"until A B s [] = (s ∈ B)" |
"until A B s (t#p) = (s ∈ A ∧ (s,t) ∈ M ∧ until A B t p)"

Expressing the semantics of EU is now straightforward:

s |= EU f g = (∃ p. until {t. t |= f} {t. t |= g} s p)

Note that EU is not definable in terms of the other operators!
Model checking EU is again a least fixed point construction:

mc(EU f g) = lfp(λT. mc g ∪ mc f ∩ (M−1 ‘‘ T))

Exercise 6.6.2 Extend the datatype of formulae by the above until operator
and prove the equivalence between semantics and model checking, i.e. that

mc (EU f g) = {s. s |= EU f g}

For more CTL exercises see, for example, Huth and Ryan [17].

Let us close this section with a few words about the executability of our
model checkers. It is clear that if all sets are finite, they can be represented as
lists and the usual set operations are easily implemented. Only lfp requires
a little thought. Fortunately, theory While_Combinator in the Library [4] pro-
vides a theorem stating that in the case of finite sets and a monotone func-
tion F, the value of lfp F can be computed by iterated application of F to {}

until a fixed point is reached. It is actually possible to generate executable
functional programs from HOL definitions, but that is beyond the scope of
the tutorial.

7. Inductively Defined Sets

This chapter is dedicated to the most important definition principle after
recursive functions and datatypes: inductively defined sets.

We start with a simple example: the set of even numbers. A slightly
more complicated example, the reflexive transitive closure, is the subject
of Sect. 7.2. In particular, some standard induction heuristics are discussed.
Advanced forms of inductive definitions are discussed in Sect. 7.3. To demon-
strate the versatility of inductive definitions, the chapter closes with a case
study from the realm of context-free grammars. The first two sections are
required reading for anybody interested in mathematical modelling.

!! Predicates can also be defined inductively. See Sect. 7.1.7.

7.1 The Set of Even Numbers

The set of even numbers can be inductively defined as the least set containing
0 and closed under the operation +2. Obviously, even can also be expressed
using the divides relation (dvd). We shall prove below that the two formula-
tions coincide. On the way we shall examine the primary means of reasoning
about inductively defined sets: rule induction.

7.1.1 Making an Inductive Definition

Using inductive set, we declare the constant even to be a set of natural
numbers with the desired properties.

inductive set even :: "nat set" where
zero[intro!]: "0 ∈ even" |
step[intro!]: "n ∈ even =⇒ (Suc (Suc n)) ∈ even"

An inductive definition consists of introduction rules. The first one above
states that 0 is even; the second states that if n is even, then so is n +2. Given
this declaration, Isabelle generates a fixed point definition for even and proves
theorems about it, thus following the definitional approach (see Sect. 2.8).
These theorems include the introduction rules specified in the declaration,

130 7. Inductively Defined Sets

an elimination rule for case analysis and an induction rule. We can refer to
these theorems by automatically-generated names. Here are two examples:

0 ∈ even (even.zero)

n ∈ even =⇒ Suc (Suc n) ∈ even (even.step)

The introduction rules can be given attributes. Here both rules are spec-
ified as intro!, directing the classical reasoner to apply them aggressively.
Obviously, regarding 0 as even is safe. The step rule is also safe because
n + 2 is even if and only if n is even. We prove this equivalence later.

7.1.2 Using Introduction Rules

Our first lemma states that numbers of the form 2× k are even. Introduction
rules are used to show that specific values belong to the inductive set. Such
proofs typically involve induction, perhaps over some other inductive set.

lemma two_times_even[intro!]: "2*k ∈ even"
apply (induct_tac k)
apply auto

done

The first step is induction on the natural number k, which leaves two subgoals:

1. 2 * 0 ∈ even
2.

V
n. 2 * n ∈ even =⇒ 2 * Suc n ∈ even

Here auto simplifies both subgoals so that they match the introduction rules,
which are then applied automatically.

Our ultimate goal is to prove the equivalence between the traditional
definition of even (using the divides relation) and our inductive definition.
One direction of this equivalence is immediate by the lemma just proved,
whose intro! attribute ensures it is applied automatically.

lemma dvd_imp_even: "2 dvd n =⇒ n ∈ even"
by (auto simp add: dvd_def)

7.1.3 Rule Induction

From the definition of the set even, Isabelle has generated an induction rule:

[[x ∈ even; P 0;V
n. [[n ∈ even; P n]] =⇒ P (Suc (Suc n))]]

=⇒ P x (even.induct)

A property P holds for every even number provided it holds for 0 and is closed
under the operation Suc(Suc ·). Then P is closed under the introduction rules
for even, which is the least set closed under those rules. This type of inductive
argument is called rule induction.

Apart from the double application of Suc, the induction rule above resem-
bles the familiar mathematical induction, which indeed is an instance of rule

7.1 The Set of Even Numbers 131

induction; the natural numbers can be defined inductively to be the least set
containing 0 and closed under Suc.

Induction is the usual way of proving a property of the elements of an
inductively defined set. Let us prove that all members of the set even are
multiples of two.
lemma even_imp_dvd: "n ∈ even =⇒ 2 dvd n"

We begin by applying induction. Note that even.induct has the form of
an elimination rule, so we use the method erule. We get two subgoals:
apply (erule even.induct)

1. 2 dvd 0
2.

V
n. [[n ∈ even; 2 dvd n]] =⇒ 2 dvd Suc (Suc n)

We unfold the definition of dvd in both subgoals, proving the first one and
simplifying the second:
apply (simp_all add: dvd_def)

1.
V
n. [[n ∈ even; ∃ k. n = 2 * k]] =⇒ ∃ k. Suc (Suc n) = 2 * k

The next command eliminates the existential quantifier from the assumption
and replaces n by 2 * k.
apply clarify

1.
V
n k. 2 * k ∈ even =⇒ ∃ ka. Suc (Suc (2 * k)) = 2 * ka

To conclude, we tell Isabelle that the desired value is Suc k. With this hint,
the subgoal falls to simp.
apply (rule_tac x = "Suc k" in exI, simp)

Combining the previous two results yields our objective, the equivalence
relating even and dvd.
theorem even_iff_dvd: "(n ∈ even) = (2 dvd n)"
by (blast intro: dvd_imp_even even_imp_dvd)

7.1.4 Generalization and Rule Induction

Before applying induction, we typically must generalize the induction for-
mula. With rule induction, the required generalization can be hard to find
and sometimes requires a complete reformulation of the problem. In this ex-
ample, our first attempt uses the obvious statement of the result. It fails:
lemma "Suc (Suc n) ∈ even =⇒ n ∈ even"
apply (erule even.induct)
oops

Rule induction finds no occurrences of Suc (Suc n) in the conclusion,
which it therefore leaves unchanged. (Look at even.induct to see why this
happens.) We have these subgoals:

132 7. Inductively Defined Sets

1. n ∈ even
2.

V
na. [[na ∈ even; n ∈ even]] =⇒ n ∈ even

The first one is hopeless. Rule induction on a non-variable term discards
information, and usually fails. How to deal with such situations in general is
described in Sect. 9.2.1 below. In the current case the solution is easy because
we have the necessary inverse, subtraction:

lemma even_imp_even_minus_2: "n ∈ even =⇒ n - 2 ∈ even"
apply (erule even.induct)
apply auto

done

This lemma is trivially inductive. Here are the subgoals:

1. 0 - 2 ∈ even
2.

V
n. [[n ∈ even; n - 2 ∈ even]] =⇒ Suc (Suc n) - 2 ∈ even

The first is trivial because 0 - 2 simplifies to 0, which is even. The second is
trivial too: Suc (Suc n) - 2 simplifies to n, matching the assumption.

Using our lemma, we can easily prove the result we originally wanted:

lemma Suc_Suc_even_imp_even: "Suc (Suc n) ∈ even =⇒ n ∈ even"
by (drule even_imp_even_minus_2, simp)

We have just proved the converse of the introduction rule even.step. This
suggests proving the following equivalence. We give it the iff attribute be-
cause of its obvious value for simplification.

lemma [iff]: "((Suc (Suc n)) ∈ even) = (n ∈ even)"
by (blast dest: Suc_Suc_even_imp_even)

7.1.5 Rule Inversion

Case analysis on an inductive definition is called rule inversion. It is fre-
quently used in proofs about operational semantics. It can be highly effective
when it is applied automatically. Let us look at how rule inversion is done in
Isabelle/HOL.

Recall that even is the minimal set closed under these two rules:

0 ∈ even
n ∈ even =⇒ Suc (Suc n) ∈ even

Minimality means that even contains only the elements that these rules force
it to contain. If we are told that a belongs to even then there are only two
possibilities. Either a is 0 or else a has the form Suc (Suc n), for some suitable
n that belongs to even. That is the gist of the cases rule, which Isabelle proves
for us when it accepts an inductive definition:

[[a ∈ even; a = 0 =⇒ P;V
n. [[a = Suc (Suc n); n ∈ even]] =⇒ P]]

=⇒ P (even.cases)

7.1 The Set of Even Numbers 133

This general rule is less useful than instances of it for specific patterns. For
example, if a has the form Suc (Suc n) then the first case becomes irrelevant,
while the second case tells us that n belongs to even. Isabelle will generate
this instance for us:

inductive cases Suc_Suc_cases [elim!]: "Suc(Suc n) ∈ even"

The inductive cases command generates an instance of the cases rule
for the supplied pattern and gives it the supplied name:

[[Suc (Suc n) ∈ even; n ∈ even =⇒ P]] =⇒ P (Suc_Suc_cases)

Applying this as an elimination rule yields one case where even.cases would
yield two. Rule inversion works well when the conclusions of the introduc-
tion rules involve datatype constructors like Suc and # (list “cons”); freeness
reasoning discards all but one or two cases.

In the inductive cases command we supplied an attribute, elim!, in-
dicating that this elimination rule can be applied aggressively. The original
cases rule would loop if used in that manner because the pattern a matches
everything.

The rule Suc_Suc_cases is equivalent to the following implication:

Suc (Suc n) ∈ even =⇒ n ∈ even

Just above we devoted some effort to reaching precisely this result. Yet we
could have obtained it by a one-line declaration, dispensing with the lemma
even_imp_even_minus_2. This example also justifies the terminology rule in-
version: the new rule inverts the introduction rule even.step. In general, a
rule can be inverted when the set of elements it introduces is disjoint from
those of the other introduction rules.

For one-off applications of rule inversion, use the ind_cases method. Here
is an example:

apply (ind_cases "Suc(Suc n) ∈ even")

The specified instance of the cases rule is generated, then applied as an
elimination rule.

To summarize, every inductive definition produces a cases rule. The in-
ductive cases command stores an instance of the cases rule for a given
pattern. Within a proof, the ind_cases method applies an instance of the
cases rule.

The even numbers example has shown how inductive definitions can be
used. Later examples will show that they are actually worth using.

7.1.6 Mutually Inductive Definitions

Just as there are datatypes defined by mutual recursion, there are sets defined
by mutual induction. As a trivial example we consider the even and odd
natural numbers:

134 7. Inductively Defined Sets

inductive set
Even :: "nat set" and
Odd :: "nat set"

where
zero: "0 ∈ Even"

| EvenI: "n ∈ Odd =⇒ Suc n ∈ Even"
| OddI: "n ∈ Even =⇒ Suc n ∈ Odd"

The mutually inductive definition of multiple sets is no different from that
of a single set, except for induction: just as for mutually recursive datatypes,
induction needs to involve all the simultaneously defined sets. In the above
case, the induction rule is called Even_Odd.induct (simply concatenate the
names of the sets involved) and has the conclusion

(?x ∈ Even −→ ?P ?x) ∧ (?y ∈ Odd −→ ?Q ?y)

If we want to prove that all even numbers are divisible by two, we have
to generalize the statement as follows:

lemma "(m ∈ Even −→ 2 dvd m) ∧ (n ∈ Odd −→ 2 dvd (Suc n))"

The proof is by rule induction. Because of the form of the induction theorem,
it is applied by rule rather than erule as for ordinary inductive definitions:

apply(rule Even_Odd.induct)

1. 2 dvd 0
2.

V
n. [[n ∈ Odd; 2 dvd Suc n]] =⇒ 2 dvd Suc n

3.
V
n. [[n ∈ Even; 2 dvd n]] =⇒ 2 dvd Suc (Suc n)

The first two subgoals are proved by simplification and the final one can
be proved in the same manner as in Sect. 7.1.3 where the same subgoal was
encountered before. We do not show the proof script.

7.1.7 Inductively Defined Predicates

Instead of a set of even numbers one can also define a predicate on nat :

inductive evn :: "nat ⇒ bool" where
zero: "evn 0" |
step: "evn n =⇒ evn(Suc(Suc n))"

Everything works as before, except that you write inductive instead of in-
ductive set and evn n instead of n ∈ even. The notation is more lightweight
but the usual set-theoretic operations, e.g. Even ∪ Odd, are not directly avail-
able on predicates.

When defining an n-ary relation as a predicate it is recommended to curry
the predicate: its type should be τ1 ⇒ . . . ⇒ τn ⇒ bool rather than τ1 ×
. . . × τn ⇒ bool. The curried version facilitates inductions.

7.2 The Reflexive Transitive Closure 135

7.2 The Reflexive Transitive Closure

An inductive definition may accept parameters, so it can express functions
that yield sets. Relations too can be defined inductively, since they are just
sets of pairs. A perfect example is the function that maps a relation to its
reflexive transitive closure. This concept was already introduced in Sect. 6.3,
where the operator ∗ was defined as a least fixed point because inductive
definitions were not yet available. But now they are:

inductive set
rtc :: "(’a × ’a)set ⇒ (’a × ’a)set" ("_*" [1000] 999)
for r :: "(’a × ’a)set"

where
rtc_refl[iff]: "(x,x) ∈ r*"

| rtc_step: " [[(x,y) ∈ r; (y,z) ∈ r*]] =⇒ (x,z) ∈ r*"

The function rtc is annotated with concrete syntax: instead of rtc r we can
write r*. The actual definition consists of two rules. Reflexivity is obvious and
is immediately given the iff attribute to increase automation. The second
rule, rtc_step, says that we can always add one more r -step to the left.
Although we could make rtc_step an introduction rule, this is dangerous: the
recursion in the second premise slows down and may even kill the automatic
tactics.

The above definition of the concept of reflexive transitive closure may be
sufficiently intuitive but it is certainly not the only possible one: for a start,
it does not even mention transitivity. The rest of this section is devoted to
proving that it is equivalent to the standard definition. We start with a simple
lemma:

lemma [intro]: "(x,y) ∈ r =⇒ (x,y) ∈ r*"
by(blast intro: rtc_step)

Although the lemma itself is an unremarkable consequence of the basic rules,
it has the advantage that it can be declared an introduction rule without
the danger of killing the automatic tactics because r* occurs only in the
conclusion and not in the premise. Thus some proofs that would otherwise
need rtc_step can now be found automatically. The proof also shows that
blast is able to handle rtc_step. But some of the other automatic tactics are
more sensitive, and even blast can be lead astray in the presence of large
numbers of rules.

To prove transitivity, we need rule induction, i.e. theorem rtc.induct :

[[(?x1.0, ?x2.0) ∈ ?r*;
V
x. ?P x x;V

x y z. [[(x, y) ∈ ?r; (y, z) ∈ ?r*; ?P y z]] =⇒ ?P x z]]
=⇒ ?P ?x1.0 ?x2.0

It says that ?P holds for an arbitrary pair (?x1.0, ?x2.0) ∈ ?r* if ?P is
preserved by all rules of the inductive definition, i.e. if ?P holds for the con-
clusion provided it holds for the premises. In general, rule induction for an
n-ary inductive relation R expects a premise of the form (x1, . . . , xn) ∈ R.

136 7. Inductively Defined Sets

Now we turn to the inductive proof of transitivity:

lemma rtc_trans: " [[(x,y) ∈ r*; (y,z) ∈ r*]] =⇒ (x,z) ∈ r*"
apply(erule rtc.induct)

Unfortunately, even the base case is a problem:

1.
V
x. (y, z) ∈ r* =⇒ (x, z) ∈ r*

We have to abandon this proof attempt. To understand what is going on,
let us look again at rtc.induct. In the above application of erule, the first
premise of rtc.induct is unified with the first suitable assumption, which is
(x, y) ∈ r* rather than (y, z) ∈ r*. Although that is what we want, it is
merely due to the order in which the assumptions occur in the subgoal, which
it is not good practice to rely on. As a result, ?xb becomes x, ?xa becomes
y and ?P becomes λu v. (u, z) ∈ r*, thus yielding the above subgoal. So
what went wrong?

When looking at the instantiation of ?P we see that it does not depend
on its second parameter at all. The reason is that in our original goal, of
the pair (x, y) only x appears also in the conclusion, but not y. Thus our
induction statement is too weak. Fortunately, it can easily be strengthened:
transfer the additional premise (y, z) ∈ r* into the conclusion:

lemma rtc_trans[rule_format]:
"(x,y) ∈ r* =⇒ (y,z) ∈ r* −→ (x,z) ∈ r*"

This is not an obscure trick but a generally applicable heuristic:

When proving a statement by rule induction on (x1, . . . , xn) ∈ R, pull
all other premises containing any of the xi into the conclusion using
−→.

A similar heuristic for other kinds of inductions is formulated in Sect. 9.2.1.
The rule_format directive turns −→ back into =⇒: in the end we obtain the
original statement of our lemma.

apply(erule rtc.induct)

Now induction produces two subgoals which are both proved automatically:

1.
V
x. (x, z) ∈ r* −→ (x, z) ∈ r*

2.
V
x y za.

[[(x, y) ∈ r; (y, za) ∈ r*; (za, z) ∈ r* −→ (y, z) ∈ r*]]
=⇒ (za, z) ∈ r* −→ (x, z) ∈ r*

apply(blast)
apply(blast intro: rtc_step)
done

Let us now prove that r* is really the reflexive transitive closure of r, i.e.
the least reflexive and transitive relation containing r. The latter is easily
formalized

inductive set

7.3 Advanced Inductive Definitions 137

rtc2 :: "(’a × ’a)set ⇒ (’a × ’a)set"
for r :: "(’a × ’a)set"

where
"(x,y) ∈ r =⇒ (x,y) ∈ rtc2 r"

| "(x,x) ∈ rtc2 r"
| " [[(x,y) ∈ rtc2 r; (y,z) ∈ rtc2 r]] =⇒ (x,z) ∈ rtc2 r"

and the equivalence of the two definitions is easily shown by the obvious rule
inductions:

lemma "(x,y) ∈ rtc2 r =⇒ (x,y) ∈ r*"
apply(erule rtc2.induct)

apply(blast)
apply(blast)

apply(blast intro: rtc_trans)
done

lemma "(x,y) ∈ r* =⇒ (x,y) ∈ rtc2 r"
apply(erule rtc.induct)
apply(blast intro: rtc2.intros)

apply(blast intro: rtc2.intros)
done

So why did we start with the first definition? Because it is simpler. It
contains only two rules, and the single step rule is simpler than transitivity.
As a consequence, rtc.induct is simpler than rtc2.induct. Since inductive
proofs are hard enough anyway, we should always pick the simplest induction
schema available. Hence rtc is the definition of choice.

Exercise 7.2.1 Show that the converse of rtc_step also holds:

[[(x, y) ∈ r*; (y, z) ∈ r]] =⇒ (x, z) ∈ r*

Exercise 7.2.2 Repeat the development of this section, but starting with
a definition of rtc where rtc_step is replaced by its converse as shown in
exercise 7.2.1.

7.3 Advanced Inductive Definitions

The premises of introduction rules may contain universal quantifiers and
monotone functions. A universal quantifier lets the rule refer to any number
of instances of the inductively defined set. A monotone function lets the rule
refer to existing constructions (such as “list of”) over the inductively defined
set. The examples below show how to use the additional expressiveness and
how to reason from the resulting definitions.

138 7. Inductively Defined Sets

7.3.1 Universal Quantifiers in Introduction Rules

As a running example, this section develops the theory of ground terms:
terms constructed from constant and function symbols but not variables. To
simplify matters further, we regard a constant as a function applied to the
null argument list. Let us declare a datatype gterm for the type of ground
terms. It is a type constructor whose argument is a type of function symbols.

datatype ’f gterm = Apply ’f "’f gterm list"

To try it out, we declare a datatype of some integer operations: integer
constants, the unary minus operator and the addition operator.

datatype integer_op = Number int | UnaryMinus | Plus

Now the type integer_op gterm denotes the ground terms built over those
symbols.

The type constructor gterm can be generalized to a function over sets. It
returns the set of ground terms that can be formed over a set F of function
symbols. For example, we could consider the set of ground terms formed from
the finite set {Number 2, UnaryMinus, Plus}.

This concept is inductive. If we have a list args of ground terms over F

and a function symbol f in F, then we can apply f to args to obtain another
ground term. The only difficulty is that the argument list may be of any
length. Hitherto, each rule in an inductive definition referred to the induc-
tively defined set a fixed number of times, typically once or twice. A universal
quantifier in the premise of the introduction rule expresses that every element
of args belongs to our inductively defined set: is a ground term over F. The
function set denotes the set of elements in a given list.

inductive set
gterms :: "’f set ⇒ ’f gterm set"
for F :: "’f set"

where
step[intro!]: " [[∀ t ∈ set args. t ∈ gterms F; f ∈ F]]

=⇒ (Apply f args) ∈ gterms F"

To demonstrate a proof from this definition, let us show that the function
gterms is monotone. We shall need this concept shortly.

lemma gterms_mono: "F⊆G =⇒ gterms F ⊆ gterms G"
apply clarify
apply (erule gterms.induct)
apply blast
done

Intuitively, this theorem says that enlarging the set of function symbols
enlarges the set of ground terms. The proof is a trivial rule induction. First
we use the clarify method to assume the existence of an element of gterms
F. (We could have used intro subsetI.) We then apply rule induction. Here
is the resulting subgoal:

7.3 Advanced Inductive Definitions 139

1.
V
x args f.

[[F ⊆ G; ∀ t∈set args. t ∈ gterms F ∧ t ∈ gterms G; f ∈ F]]
=⇒ Apply f args ∈ gterms G

The assumptions state that f belongs to F, which is included in G, and that
every element of the list args is a ground term over G. The blast method
finds this chain of reasoning easily.

!! Why do we call this function gterms instead of gterm? A constant may have
the same name as a type. However, name clashes could arise in the theorems

that Isabelle generates. Our choice of names keeps gterms.induct separate from
gterm.induct.

Call a term well-formed if each symbol occurring in it is applied to the
correct number of arguments. (This number is called the symbol’s arity.)
We can express well-formedness by generalizing the inductive definition of
gterms. Suppose we are given a function called arity, specifying the arities
of all symbols. In the inductive step, we have a list args of such terms and a
function symbol f. If the length of the list matches the function’s arity then
applying f to args yields a well-formed term.

inductive set
well_formed_gterm :: "(’f ⇒ nat) ⇒ ’f gterm set"
for arity :: "’f ⇒ nat"

where
step[intro!]: " [[∀ t ∈ set args. t ∈ well_formed_gterm arity;

length args = arity f]]
=⇒ (Apply f args) ∈ well_formed_gterm arity"

The inductive definition neatly captures the reasoning above. The univer-
sal quantification over the set of arguments expresses that all of them are
well-formed.

7.3.2 Alternative Definition Using a Monotone Function

An inductive definition may refer to the inductively defined set through an
arbitrary monotone function. To demonstrate this powerful feature, let us
change the inductive definition above, replacing the quantifier by a use of the
function lists. This function, from the Isabelle theory of lists, is analogous
to the function gterms declared above: if A is a set then lists A is the set of
lists whose elements belong to A.

In the inductive definition of well-formed terms, examine the one intro-
duction rule. The first premise states that args belongs to the lists of well-
formed terms. This formulation is more direct, if more obscure, than using a
universal quantifier.

inductive set
well_formed_gterm’ :: "(’f ⇒ nat) ⇒ ’f gterm set"
for arity :: "’f ⇒ nat"

140 7. Inductively Defined Sets

where
step[intro!]: " [[args ∈ lists (well_formed_gterm’ arity);

length args = arity f]]
=⇒ (Apply f args) ∈ well_formed_gterm’ arity"

monos lists_mono

We cite the theorem lists_mono to justify using the function lists.1

A ⊆ B =⇒ lists A ⊆ lists B (lists_mono)

Why must the function be monotone? An inductive definition describes an
iterative construction: each element of the set is constructed by a finite num-
ber of introduction rule applications. For example, the elements of even are
constructed by finitely many applications of the rules

0 ∈ even
n ∈ even =⇒ Suc (Suc n) ∈ even

All references to a set in its inductive definition must be positive. Applications
of an introduction rule cannot invalidate previous applications, allowing the
construction process to converge. The following pair of rules do not constitute
an inductive definition:

0 ∈ even

n /∈ even =⇒ Suc n ∈ even

Showing that 4 is even using these rules requires showing that 3 is not even.
It is far from trivial to show that this set of rules characterizes the even
numbers.

Even with its use of the function lists, the premise of our introduction
rule is positive:

args ∈ lists (well_formed_gterm’ arity)

To apply the rule we construct a list args of previously constructed well-
formed terms. We obtain a new term, Apply f args. Because lists is mono-
tone, applications of the rule remain valid as new terms are constructed.
Further lists of well-formed terms become available and none are taken away.

7.3.3 A Proof of Equivalence

We naturally hope that these two inductive definitions of “well-formed” co-
incide. The equality can be proved by separate inclusions in each direction.
Each is a trivial rule induction.

lemma "well_formed_gterm arity ⊆ well_formed_gterm’ arity"
apply clarify
apply (erule well_formed_gterm.induct)
apply auto

1 This particular theorem is installed by default already, but we include the monos
declaration in order to illustrate its syntax.

7.3 Advanced Inductive Definitions 141

done

The clarify method gives us an element of well_formed_gterm arity on
which to perform induction. The resulting subgoal can be proved automati-
cally:

1.
V
x args f.

[[∀ t∈set args.
t ∈ well_formed_gterm arity ∧ t ∈ well_formed_gterm’ arity;

length args = arity f]]
=⇒ Apply f args ∈ well_formed_gterm’ arity

This proof resembles the one given in Sect. 7.3.1 above, especially in the form
of the induction hypothesis. Next, we consider the opposite inclusion:

lemma "well_formed_gterm’ arity ⊆ well_formed_gterm arity"
apply clarify
apply (erule well_formed_gterm’.induct)
apply auto
done

The proof script is identical, but the subgoal after applying induction may
be surprising:

1.
V
x args f.

[[args
∈ lists

(well_formed_gterm’ arity ∩
{a. a ∈ well_formed_gterm arity});

length args = arity f]]
=⇒ Apply f args ∈ well_formed_gterm arity

The induction hypothesis contains an application of lists. Using a monotone
function in the inductive definition always has this effect. The subgoal may
look uninviting, but fortunately lists distributes over intersection:

lists (A ∩ B) = lists A ∩ lists B (lists_Int_eq)

Thanks to this default simplification rule, the induction hypothesis is quickly
replaced by its two parts:

args ∈ lists (well_formed_gterm’ arity)

args ∈ lists (well_formed_gterm arity)

Invoking the rule well_formed_gterm.step completes the proof. The call to
auto does all this work.

This example is typical of how monotone functions can be used. In par-
ticular, many of them distribute over intersection. Monotonicity implies one
direction of this set equality; we have this theorem:

mono f =⇒ f (A ∩ B) ⊆ f A ∩ f B (mono_Int)

142 7. Inductively Defined Sets

7.3.4 Another Example of Rule Inversion

Does gterms distribute over intersection? We have proved that this function
is monotone, so mono_Int gives one of the inclusions. The opposite inclusion
asserts that if t is a ground term over both of the sets F and G then it is also
a ground term over their intersection, F ∩ G.
lemma gterms_IntI:

"t ∈ gterms F =⇒ t ∈ gterms G −→ t ∈ gterms (F∩G)"

Attempting this proof, we get the assumption Apply f args ∈ gterms G,
which cannot be broken down. It looks like a job for rule inversion:
inductive cases gterm_Apply_elim [elim!]: "Apply f args ∈ gterms F"

Here is the result.
[[Apply f args ∈ gterms F;
[[∀ t∈set args. t ∈ gterms F; f ∈ F]] =⇒ P]]

=⇒ P (gterm_Apply_elim)

This rule replaces an assumption about Apply f args by assumptions about
f and args. No cases are discarded (there was only one to begin with) but
the rule applies specifically to the pattern Apply f args. It can be applied
repeatedly as an elimination rule without looping, so we have given the elim!

attribute.
Now we can prove the other half of that distributive law.

lemma gterms_IntI [rule_format, intro!]:
"t ∈ gterms F =⇒ t ∈ gterms G −→ t ∈ gterms (F∩G)"

apply (erule gterms.induct)
apply blast
done

The proof begins with rule induction over the definition of gterms, which
leaves a single subgoal:
1.

V
args f.

[[∀ t∈set args.
t ∈ gterms F ∧ (t ∈ gterms G −→ t ∈ gterms (F ∩ G));

f ∈ F]]
=⇒ Apply f args ∈ gterms G −→

Apply f args ∈ gterms (F ∩ G)

To prove this, we assume Apply f args ∈ gterms G. Rule inversion, in the
form of gterm_Apply_elim, infers that every element of args belongs to gterms

G ; hence (by the induction hypothesis) it belongs to gterms (F ∩ G). Rule
inversion also yields f ∈ G and hence f ∈ F ∩ G. All of this reasoning is
done by blast.

Our distributive law is a trivial consequence of previously-proved results:
lemma gterms_Int_eq [simp]:

"gterms (F ∩ G) = gterms F ∩ gterms G"
by (blast intro!: mono_Int monoI gterms_mono)

7.4 Case Study: A Context Free Grammar 143

Exercise 7.3.1 A function mapping function symbols to their types is called
a signature. Given a type ranging over type symbols, we can represent a
function’s type by a list of argument types paired with the result type. Com-
plete this inductive definition:

inductive set
well_typed_gterm :: "(’f ⇒ ’t list * ’t) ⇒ (’f gterm * ’t)set"
for sig :: "’f ⇒ ’t list * ’t"

7.4 Case Study: A Context Free Grammar

Grammars are nothing but shorthands for inductive definitions of nontermi-
nals which represent sets of strings. For example, the production A→ Bc is
short for

w ∈ B =⇒ wc ∈ A

This section demonstrates this idea with an example due to Hopcroft and
Ullman, a grammar for generating all words with an equal number of a’s
and b’s:

S → ε | bA | aB
A → aS | bAA
B → bS | aBB

At the end we say a few words about the relationship between the original
proof [15, p. 81] and our formal version.

We start by fixing the alphabet, which consists only of a ’s and b ’s:

datatype alfa = a | b

For convenience we include the following easy lemmas as simplification rules:

lemma [simp]: "(x 6= a) = (x = b) ∧ (x 6= b) = (x = a)"
by (case_tac x, auto)

Words over this alphabet are of type alfa list, and the three nonterminals
are declared as sets of such words. The productions above are recast as a
mutual inductive definition of S, A and B :

inductive set
S :: "alfa list set" and
A :: "alfa list set" and
B :: "alfa list set"

where
"[] ∈ S"

| "w ∈ A =⇒ b#w ∈ S"
| "w ∈ B =⇒ a#w ∈ S"

| "w ∈ S =⇒ a#w ∈ A"

144 7. Inductively Defined Sets

| " [[v∈A; w∈A]] =⇒ b#v@w ∈ A"

| "w ∈ S =⇒ b#w ∈ B"
| " [[v ∈ B; w ∈ B]] =⇒ a#v@w ∈ B"

First we show that all words in S contain the same number of a ’s and b ’s.
Since the definition of S is by mutual induction, so is the proof: we show at
the same time that all words in A contain one more a than b and all words
in B contains one more b than a.

lemma correctness:
"(w ∈ S −→ size[x←w. x=a] = size[x←w. x=b]) ∧
(w ∈ A −→ size[x←w. x=a] = size[x←w. x=b] + 1) ∧
(w ∈ B −→ size[x←w. x=b] = size[x←w. x=a] + 1)"

These propositions are expressed with the help of the predefined filter func-
tion on lists, which has the convenient syntax [x←xs. P x], the list of all el-
ements x in xs such that P x holds. Remember that on lists size and length

are synonymous.
The proof itself is by rule induction and afterwards automatic:

by (rule S_A_B.induct, auto)

This may seem surprising at first, and is indeed an indication of the power
of inductive definitions. But it is also quite straightforward. For example,
consider the production A→ bAA: if v ,w ∈ A and the elements of A contain
one more a than b’s, then bvw must again contain one more a than b’s.

As usual, the correctness of syntactic descriptions is easy, but complete-
ness is hard: does S contain all words with an equal number of a ’s and b ’s? It
turns out that this proof requires the following lemma: every string with two
more a ’s than b ’s can be cut somewhere such that each half has one more a

than b. This is best seen by imagining counting the difference between the
number of a ’s and b ’s starting at the left end of the word. We start with
0 and end (at the right end) with 2. Since each move to the right increases
or decreases the difference by 1, we must have passed through 1 on our way
from 0 to 2. Formally, we appeal to the following discrete intermediate value
theorem nat0_intermed_int_val

[[∀ i<n. |f (i + 1) - f i | ≤ 1; f 0 ≤ k; k ≤ f n]]
=⇒ ∃ i≤n. f i = k

where f is of type nat ⇒ int, int are the integers, |. | is the absolute value
function2, and 1 is the integer 1 (see Sect. 8.4).

First we show that our specific function, the difference between the num-
bers of a ’s and b ’s, does indeed only change by 1 in every move to the right.
At this point we also start generalizing from a ’s and b ’s to an arbitrary prop-
erty P. Otherwise we would have to prove the desired lemma twice, once as
stated above and once with the roles of a ’s and b ’s interchanged.
2 See Table A.1 in the Appendix for the correct ascii syntax.

7.4 Case Study: A Context Free Grammar 145

lemma step1: "∀ i < size w.
|(int(size[x←take (i+1) w. P x])-int(size[x←take (i+1) w. ¬P x]))
- (int(size[x←take i w. P x])-int(size[x←take i w. ¬P x])) | ≤ 1"

The lemma is a bit hard to read because of the coercion function int :: nat

⇒ int. It is required because size returns a natural number, but subtraction
on type nat will do the wrong thing. Function take is predefined and take

i xs is the prefix of length i of xs ; below we also need drop i xs, which is
what remains after that prefix has been dropped from xs.

The proof is by induction on w, with a trivial base case, and a not so trivial
induction step. Since it is essentially just arithmetic, we do not discuss it.

apply(induct_tac w)
apply(auto simp add: abs_if take_Cons split: nat.split)
done

Finally we come to the above-mentioned lemma about cutting in half a
word with two more elements of one sort than of the other sort:

lemma part1:
"size[x←w. P x] = size[x←w. ¬P x]+2 =⇒
∃ i≤size w. size[x←take i w. P x] = size[x←take i w. ¬P x]+1"

This is proved by force with the help of the intermediate value theorem,
instantiated appropriately and with its first premise disposed of by lemma
step1 :

apply(insert nat0_intermed_int_val[OF step1, of "P" "w" "1"])
by force

Lemma part1 tells us only about the prefix take i w. An easy lemma
deals with the suffix drop i w :

lemma part2:
" [[size[x←take i w @ drop i w. P x] =

size[x←take i w @ drop i w. ¬P x]+2;
size[x←take i w. P x] = size[x←take i w. ¬P x]+1]]

=⇒ size[x←drop i w. P x] = size[x←drop i w. ¬P x]+1"
by(simp del: append_take_drop_id)

In the proof we have disabled the normally useful lemma

take n xs @ drop n xs = xs (append_take_drop_id)

to allow the simplifier to apply the following lemma instead:

[x∈xs@ys. P x] = [x∈xs. P x] @ [x∈ys. P x]

To dispose of trivial cases automatically, the rules of the inductive defini-
tion are declared simplification rules:

declare S_A_B.intros[simp]

This could have been done earlier but was not necessary so far.
The completeness theorem tells us that if a word has the same number of

a ’s and b ’s, then it is in S, and similarly for A and B :

146 7. Inductively Defined Sets

theorem completeness:
"(size[x←w. x=a] = size[x←w. x=b] −→ w ∈ S) ∧
(size[x←w. x=a] = size[x←w. x=b] + 1 −→ w ∈ A) ∧
(size[x←w. x=b] = size[x←w. x=a] + 1 −→ w ∈ B)"

The proof is by induction on w. Structural induction would fail here because,
as we can see from the grammar, we need to make bigger steps than merely
appending a single letter at the front. Hence we induct on the length of w,
using the induction rule length_induct :

apply(induct_tac w rule: length_induct)

The rule parameter tells induct_tac explicitly which induction rule to use.
For details see Sect. 9.2.2 below. In this case the result is that we may assume
the lemma already holds for all words shorter than w.

The proof continues with a case distinction on w, on whether w is empty
or not.

apply(case_tac w)
apply(simp_all)

Simplification disposes of the base case and leaves only a conjunction of two
step cases to be proved: if w = a # v and

length (if x = a then [x ∈ v] else []) =
length (if x = b then [x ∈ v] else []) + 2

then b # v ∈ A, and similarly for w = b # v. We only consider the first case
in detail.

After breaking the conjunction up into two cases, we can apply part1 to
the assumption that w contains two more a ’s than b ’s.

apply(rule conjI)
apply(clarify)
apply(frule part1[of "λx. x=a", simplified])
apply(clarify)

This yields an index i ≤ length v such that

length [x←take i v . x = a] = length [x←take i v . x = b] + 1

With the help of part2 it follows that

length [x←drop i v . x = a] = length [x←drop i v . x = b] + 1

apply(drule part2[of "λx. x=a", simplified])
apply(assumption)

Now it is time to decompose v in the conclusion b # v ∈ A into take i v @

drop i v,

apply(rule_tac n1=i and t=v in subst[OF append_take_drop_id])

(the variables n1 and t are the result of composing the theorems subst and
append_take_drop_id) after which the appropriate rule of the grammar re-
duces the goal to the two subgoals take i v ∈ A and drop i v ∈ A :

7.4 Case Study: A Context Free Grammar 147

apply(rule S_A_B.intros)

Both subgoals follow from the induction hypothesis because both take i

v and drop i v are shorter than w :

apply(force simp add: min_less_iff_disj)
apply(force split add: nat_diff_split)

The case w = b # v is proved analogously:

apply(clarify)
apply(frule part1[of "λx. x=b", simplified])
apply(clarify)
apply(drule part2[of "λx. x=b", simplified])
apply(assumption)

apply(rule_tac n1=i and t=v in subst[OF append_take_drop_id])
apply(rule S_A_B.intros)
apply(force simp add: min_less_iff_disj)

by(force simp add: min_less_iff_disj split add: nat_diff_split)

We conclude this section with a comparison of our proof with Hopcroft
and Ullman’s [15, p. 81]. For a start, the textbook grammar, for no good
reason, excludes the empty word, thus complicating matters just a little bit:
they have 8 instead of our 7 productions.

More importantly, the proof itself is different: rather than separating the
two directions, they perform one induction on the length of a word. This
deprives them of the beauty of rule induction, and in the easy direction
(correctness) their reasoning is more detailed than our auto. For the hard
part (completeness), they consider just one of the cases that our simp_all

disposes of automatically. Then they conclude the proof by saying about the
remaining cases: “We do this in a manner similar to our method of proof
for part (1); this part is left to the reader”. But this is precisely the part
that requires the intermediate value theorem and thus is not at all similar to
the other cases (which are automatic in Isabelle). The authors are at least
cavalier about this point and may even have overlooked the slight difficulty
lurking in the omitted cases. Such errors are found in many pen-and-paper
proofs when they are scrutinized formally.

Part III

Advanced Material

8. More about Types

So far we have learned about a few basic types (for example bool and nat),
type abbreviations (types) and recursive datatypes (datatype). This chap-
ter will introduce more advanced material:

– Pairs (Sect. 8.1) and records (Sect. 8.2), and how to reason about them.
– Type classes: how to specify and reason about axiomatic collections of

types (Sect. 8.3). This section leads on to a discussion of Isabelle’s numeric
types (Sect. 8.4).

– Introducing your own types: how to define types that cannot be constructed
with any of the basic methods (Sect. 8.5).

The material in this section goes beyond the needs of most novices. Serious
users should at least skim the sections as far as type classes. That material
is fairly advanced; read the beginning to understand what it is about, but
consult the rest only when necessary.

8.1 Pairs and Tuples

Ordered pairs were already introduced in Sect. 2.6.2, but only with a minimal
repertoire of operations: pairing and the two projections fst and snd. In
any non-trivial application of pairs you will find that this quickly leads to
unreadable nests of projections. This section introduces syntactic sugar to
overcome this problem: pattern matching with tuples.

8.1.1 Pattern Matching with Tuples

Tuples may be used as patterns in λ-abstractions, for example λ(x,y,z).x+y+z
and λ((x,y),z).x+y+z. In fact, tuple patterns can be used in most variable
binding constructs, and they can be nested. Here are some typical examples:

let (x, y) = f z in (y, x)

case xs of [] ⇒ 0 | (x, y) # zs ⇒ x + y

∀ (x,y)∈A. x=y

{(x,y,z). x=z}S
(x, y)∈A {x + y}

152 8. More about Types

The intuitive meanings of these expressions should be obvious. Unfortunately,
we need to know in more detail what the notation really stands for once
we have to reason about it. Abstraction over pairs and tuples is merely a
convenient shorthand for a more complex internal representation. Thus the
internal and external form of a term may differ, which can affect proofs. If
you want to avoid this complication, stick to fst and snd and write λp. fst

p + snd p instead of λ(x,y). x+y. These terms are distinct even though they
denote the same function.

Internally, λ(x, y). t becomes split (λx y. t), where split is the un-
currying function of type (’a ⇒ ’b ⇒ ’c) ⇒ ’a × ’b ⇒ ’c defined as

split ≡ λc p. c (fst p) (snd p) (split_def)

Pattern matching in other variable binding constructs is translated similarly.
Thus we need to understand how to reason about such constructs.

8.1.2 Theorem Proving

The most obvious approach is the brute force expansion of split :

lemma "(λ(x,y).x) p = fst p"
by(simp add: split_def)

This works well if rewriting with split_def finishes the proof, as it does
above. But if it does not, you end up with exactly what we are trying to
avoid: nests of fst and snd. Thus this approach is neither elegant nor very
practical in large examples, although it can be effective in small ones.

If we consider why this lemma presents a problem, we realize that we need
to replace variable p by some pair (a, b). Then both sides of the equation
would simplify to a by the simplification rules split f (a, b) = f a b and
fst (a, b) = a. To reason about tuple patterns requires some way of con-
verting a variable of product type into a pair. In case of a subterm of the
form split f p this is easy: the split rule split_split replaces p by a pair:

lemma "(λ(x,y).y) p = snd p"
apply(split split_split)

1. ∀ x y. p = (x, y) −→ y = snd p

This subgoal is easily proved by simplification. Thus we could have combined
simplification and splitting in one command that proves the goal outright:

by(simp split: split_split)

Let us look at a second example:

lemma "let (x,y) = p in fst p = x"
apply(simp only: Let_def)

1. (λ(x, y). fst p = x) p

8.1 Pairs and Tuples 153

A paired let reduces to a paired λ-abstraction, which can be split as above.
The same is true for paired set comprehension:

lemma "p ∈ {(x,y). x=y} −→ fst p = snd p"
apply simp

1. split op = p −→ fst p = snd p

Again, simplification produces a term suitable for split_split as above. If
you are worried about the strange form of the premise: λ(x, y). x = y is
short for λ(x,y). x=y. The same proof procedure works for

lemma "p ∈ {(x,y). x=y} =⇒ fst p = snd p"

except that we now have to use split_split_asm, because split occurs in the
assumptions.

However, splitting split is not always a solution, as no split may be
present in the goal. Consider the following function:

primrec swap :: "’a × ’b ⇒ ’b × ’a" where "swap (x,y) = (y,x)"

Note that the above primrec definition is admissible because × is a datatype.
When we now try to prove

lemma "swap(swap p) = p"

simplification will do nothing, because the defining equation for swap expects
a pair. Again, we need to turn p into a pair first, but this time there is no
split in sight. The only thing we can do is to split the term by hand:

apply(case_tac p)

1.
V
a b. p = (a, b) =⇒ swap (swap p) = p

Again, case_tac is applicable because × is a datatype. The subgoal is easily
proved by simp.

Splitting by case_tac also solves the previous examples and may thus
appear preferable to the more arcane methods introduced first. However, see
the warning about case_tac in Sect. 2.5.5.

Alternatively, you can split all
V

-quantified variables in a goal with the
rewrite rule split_paired_all :

lemma "
V
p q. swap(swap p) = q −→ p = q"

apply(simp only: split_paired_all)

1.
V
a b aa ba. swap (swap (a, b)) = (aa, ba) −→ (a, b) = (aa, ba)

apply simp
done

Note that we have intentionally included only split_paired_all in the first
simplification step, and then we simplify again. This time the reason was not
merely pedagogical: split_paired_all may interfere with other functions of

154 8. More about Types

the simplifier. The following command could fail (here it does not) where two
separate simp applications succeed.

apply(simp add: split_paired_all)

Finally, the simplifier automatically splits all ∀ and ∃ -quantified variables:

lemma "∀ p. ∃ q. swap p = swap q"
by simp

To turn off this automatic splitting, disable the responsible simplification
rules:

(∀ x. P x) = (∀ a b. P (a, b)) (split_paired_All)
(∃ x. P x) = (∃ a b. P (a, b)) (split_paired_Ex)

8.2 Records

Records are familiar from programming languages. A record of n fields is
essentially an n-tuple, but the record’s components have names, which can
make expressions easier to read and reduces the risk of confusing one field
for another.

A record of Isabelle/HOL covers a collection of fields, with select and
update operations. Each field has a specified type, which may be polymorphic.
The field names are part of the record type, and the order of the fields is
significant — as it is in Pascal but not in Standard ML. If two different
record types have field names in common, then the ambiguity is resolved in
the usual way, by qualified names.

Record types can also be defined by extending other record types. Exten-
sible records make use of the reserved pseudo-field more , which is present in
every record type. Generic record operations work on all possible extensions
of a given type scheme; polymorphism takes care of structural sub-typing
behind the scenes. There are also explicit coercion functions between fixed
record types.

8.2.1 Record Basics

Record types are not primitive in Isabelle and have a delicate internal rep-
resentation [23], based on nested copies of the primitive product type. A
record declaration introduces a new record type scheme by specifying its
fields, which are packaged internally to hold up the perception of the record
as a distinguished entity. Here is a simple example:

record point =
Xcoord :: int
Ycoord :: int

8.2 Records 155

Records of type point have two fields named Xcoord and Ycoord, both of
type int. We now define a constant of type point :

definition pt1 :: point where
"pt1 ≡ (| Xcoord = 999, Ycoord = 23 |)"

We see above the ASCII notation for record brackets. You can also use the
symbolic brackets (| and |). Record type expressions can be also written di-
rectly with individual fields. The type name above is merely an abbreviation.

definition pt2 :: "(|Xcoord :: int, Ycoord :: int |)" where
"pt2 ≡ (|Xcoord = -45, Ycoord = 97 |)"

For each field, there is a selector function of the same name. For exam-
ple, if p has type point then Xcoord p denotes the value of the Xcoord field
of p. Expressions involving field selection of explicit records are simplified
automatically:

lemma "Xcoord (|Xcoord = a, Ycoord = b |) = a"
by simp

The update operation is functional. For example, p(|Xcoord := 0 |) is a
record whose Xcoord value is zero and whose Ycoord value is copied from p.
Updates of explicit records are also simplified automatically:

lemma "(|Xcoord = a, Ycoord = b |)(|Xcoord := 0 |) =
(|Xcoord = 0, Ycoord = b |)"

by simp

!! Field names are declared as constants and can no longer be used as variables. It
would be unwise, for example, to call the fields of type point simply x and y.

8.2.2 Extensible Records and Generic Operations

Now, let us define coloured points (type cpoint) to be points extended with
a field col of type colour :

datatype colour = Red | Green | Blue

record cpoint = point +
col :: colour

The fields of this new type are Xcoord, Ycoord and col, in that order.

definition cpt1 :: cpoint where
"cpt1 ≡ (|Xcoord = 999, Ycoord = 23, col = Green |)"

We can define generic operations that work on arbitrary instances of a
record scheme, e.g. covering point, cpoint, and any further extensions. Every
record structure has an implicit pseudo-field, more , that keeps the extension
as an explicit value. Its type is declared as completely polymorphic: ’a. When
a fixed record value is expressed using just its standard fields, the value of

156 8. More about Types

more is implicitly set to (), the empty tuple, which has type unit. Within the
record brackets, you can refer to the more field by writing “. . . ” (three dots):

lemma "Xcoord (|Xcoord = a, Ycoord = b, . . . = p |) = a"
by simp

This lemma applies to any record whose first two fields are Xcoord

and Ycoord. Note that (|Xcoord = a, Ycoord = b, . . . = () |) is exactly the
same as (|Xcoord = a, Ycoord = b |). Selectors and updates are always poly-
morphic wrt. the more part of a record scheme, its value is just ignored (for
select) or copied (for update).

The more pseudo-field may be manipulated directly as well, but the iden-
tifier needs to be qualified:

lemma "point.more cpt1 = (|col = Green |)"
by (simp add: cpt1_def)

We see that the colour part attached to this point is a rudimentary record
in its own right, namely (|col = Green |). In order to select or update col, this
fragment needs to be put back into the context of the parent type scheme,
say as more part of another point.

To define generic operations, we need to know a bit more about records.
Our definition of point above has generated two type abbreviations:

point = (|Xcoord :: int, Ycoord :: int |)
’a point_scheme = (|Xcoord :: int, Ycoord :: int, . . . :: ’a |)

Type point is for fixed records having exactly the two fields Xcoord and Ycoord,
while the polymorphic type ’a point_scheme comprises all possible extensions
to those two fields. Note that unit point_scheme coincides with point, and
(|col :: colour |) point_scheme with cpoint.

In the following example we define two operations — methods, if we regard
records as objects — to get and set any point’s Xcoord field.

definition getX :: "’a point_scheme ⇒ int" where
"getX r ≡ Xcoord r"
definition setX :: "’a point_scheme ⇒ int ⇒ ’a point_scheme" where
"setX r a ≡ r(|Xcoord := a |)"

Here is a generic method that modifies a point, incrementing its Xcoord

field. The Ycoord and more fields are copied across. It works for any record
type scheme derived from point (including cpoint etc.):

definition incX :: "’a point_scheme ⇒ ’a point_scheme" where
"incX r ≡

(|Xcoord = Xcoord r + 1, Ycoord = Ycoord r, . . . = point.more r |)"

Generic theorems can be proved about generic methods. This trivial
lemma relates incX to getX and setX :

lemma "incX r = setX r (getX r + 1)"
by (simp add: getX_def setX_def incX_def)

8.2 Records 157

!! If you use the symbolic record brackets (| and |), then you must also use the
symbolic ellipsis, “. . . ”, rather than three consecutive periods, “...”. Mixing

the ASCII and symbolic versions causes a syntax error. (The two versions are more
distinct on screen than they are on paper.)

8.2.3 Record Equality

Two records are equal if all pairs of corresponding fields are equal. Concrete
record equalities are simplified automatically:

lemma "((|Xcoord = a, Ycoord = b |) = (|Xcoord = a’, Ycoord = b’ |)) =
(a = a’ ∧ b = b’)"

by simp

The following equality is similar, but generic, in that r can be any instance
of ’a point_scheme :

lemma "r(|Xcoord := a, Ycoord := b |) = r(|Ycoord := b, Xcoord := a |)"
by simp

We see above the syntax for iterated updates. We could equivalently have
written the left-hand side as r(|Xcoord := a |)(|Ycoord := b |).

Record equality is extensional : a record is determined entirely by the
values of its fields.

lemma "r = (|Xcoord = Xcoord r, Ycoord = Ycoord r |)"
by simp

The generic version of this equality includes the pseudo-field more :

lemma "r = (|Xcoord = Xcoord r, Ycoord = Ycoord r, . . . = point.more r |)"
by simp

The simplifier can prove many record equalities automatically, but general
equality reasoning can be tricky. Consider proving this obvious fact:

lemma "r(|Xcoord := a |) = r(|Xcoord := a’ |) =⇒ a = a’"
apply simp?
oops

Here the simplifier can do nothing, since general record equality is not elimi-
nated automatically. One way to proceed is by an explicit forward step that
applies the selector Xcoord to both sides of the assumed record equality:

lemma "r(|Xcoord := a |) = r(|Xcoord := a’ |) =⇒ a = a’"
apply (drule_tac f = Xcoord in arg_cong)

1. Xcoord (r(|Xcoord := a |)) = Xcoord (r(|Xcoord := a’ |)) =⇒ a = a’

Now, simp will reduce the assumption to the desired conclusion.

apply simp
done

158 8. More about Types

The cases method is preferable to such a forward proof. We state the
desired lemma again:

lemma "r(|Xcoord := a |) = r(|Xcoord := a’ |) =⇒ a = a’"

The cases method adds an equality to replace the named record term by
an explicit record expression, listing all fields. It even includes the pseudo-field
more, since the record equality stated here is generic for all extensions.

apply (cases r)

1.
V
Xcoord Ycoord more.

[[r(|Xcoord := a |) = r(|Xcoord := a’ |);
r = (|Xcoord = Xcoord, Ycoord = Ycoord, . . . = more |)]]

=⇒ a = a’

Again, simp finishes the proof. Because r is now represented as an explicit
record construction, the updates can be applied and the record equality can
be replaced by equality of the corresponding fields (due to injectivity).

apply simp
done

The generic cases method does not admit references to locally bound
parameters of a goal. In longer proof scripts one might have to fall back on
the primitive rule_tac used together with the internal field representation
rules of records. The above use of (cases r) would become (rule_tac r = r

in point.cases_scheme).

8.2.4 Extending and Truncating Records

Each record declaration introduces a number of derived operations to refer
collectively to a record’s fields and to convert between fixed record types.
They can, for instance, convert between types point and cpoint. We can add
a colour to a point or convert a cpoint to a point by forgetting its colour.

– Function make takes as arguments all of the record’s fields (including those
inherited from ancestors). It returns the corresponding record.

– Function fields takes the record’s very own fields and returns a record
fragment consisting of just those fields. This may be filled into the more

part of the parent record scheme.
– Function extend takes two arguments: a record to be extended and a record

containing the new fields.
– Function truncate takes a record (possibly an extension of the original

record type) and returns a fixed record, removing any additional fields.

These functions provide useful abbreviations for standard record expressions
involving constructors and selectors. The definitions, which are not unfolded
by default, are made available by the collective name of defs (point.defs,

8.2 Records 159

cpoint.defs, etc.). For example, here are the versions of those functions gen-
erated for record point. We omit point.fields, which happens to be the same
as point.make.

point.make Xcoord Ycoord ≡ (|Xcoord = Xcoord, Ycoord = Ycoord |)
point.extend r more ≡
(|Xcoord = Xcoord r, Ycoord = Ycoord r, . . . = more |)
point.truncate r ≡ (|Xcoord = Xcoord r, Ycoord = Ycoord r |)

Contrast those with the corresponding functions for record cpoint. Observe
cpoint.fields in particular.
cpoint.make Xcoord Ycoord col ≡
(|Xcoord = Xcoord, Ycoord = Ycoord, col = col |)
cpoint.fields col ≡ (|col = col |)
cpoint.extend r more ≡
(|Xcoord = Xcoord r, Ycoord = Ycoord r, col = col r, . . . = more |)
cpoint.truncate r ≡
(|Xcoord = Xcoord r, Ycoord = Ycoord r, col = col r |)

To demonstrate these functions, we declare a new coloured point by
extending an ordinary point. Function point.extend augments pt1 with a
colour value, which is converted into an appropriate record fragment by
cpoint.fields.
definition cpt2 :: cpoint where
"cpt2 ≡ point.extend pt1 (cpoint.fields Green)"

The coloured points cpt1 and cpt2 are equal. The proof is trivial, by
unfolding all the definitions. We deliberately omit the definition of pt1 in
order to reveal the underlying comparison on type point.
lemma "cpt1 = cpt2"

apply (simp add: cpt1_def cpt2_def point.defs cpoint.defs)

1. Xcoord pt1 = 999 ∧ Ycoord pt1 = 23

apply (simp add: pt1_def)
done

In the example below, a coloured point is truncated to leave a point. We
use the truncate function of the target record.
lemma "point.truncate cpt2 = pt1"

by (simp add: pt1_def cpt2_def point.defs)

Exercise 8.2.1 Extend record cpoint to have a further field, intensity, of
type nat. Experiment with generic operations (using polymorphic selectors
and updates) and explicit coercions (using extend, truncate etc.) among the
three record types.

Exercise 8.2.2 (For Java programmers.) Model a small class hierarchy using
records.

160 8. More about Types

8.3 Axiomatic Type Classes

The programming language Haskell has popularized the notion of type
classes. In its simplest form, a type class is a set of types with a common
interface: all types in that class must provide the functions in the interface.
Isabelle offers the related concept of an axiomatic type class. Roughly
speaking, an axiomatic type class is a type class with axioms, i.e. an ax-
iomatic specification of a class of types. Thus we can talk about a type τ
being in a class C , which is written τ :: C . This is the case if τ satisfies the
axioms of C . Furthermore, type classes can be organized in a hierarchy. Thus
there is the notion of a class D being a subclass of a class C , written D < C .
This is the case if all axioms of C are also provable in D . We introduce these
concepts by means of a running example, ordering relations.

!! The material in this section describes a low-level approach to type classes. It
is recommended to use the new class command instead. For details see the

appropriate tutorial [12] and the related article [13].

8.3.1 Overloading

We start with a concept that is required for type classes but already useful
on its own: overloading. Isabelle allows overloading: a constant may have
multiple definitions at non-overlapping types.

An Initial Example. If we want to introduce the notion of an inverse for
arbitrary types we give it a polymorphic type
consts inverse :: "’a ⇒ ’a"

and provide different definitions at different instances:
defs (overloaded)
inverse_bool: "inverse(b::bool) ≡ ¬ b"
inverse_set: "inverse(A::’a set) ≡ -A"
inverse_pair: "inverse(p) ≡ (inverse(fst p), inverse(snd p))"

Isabelle will not complain because the three definitions do not overlap: no
two of the three types bool, ’a set and ’a × ’b have a common instance.
What is more, the recursion in inverse_pair is benign because the type of
inverse becomes smaller: on the left it is ’a × ’b ⇒ ’a × ’b but on the
right ’a ⇒ ’a and ’b ⇒ ’b. The annotation (overloaded) tells Isabelle
that the definitions do intentionally define inverse only at instances of its
declared type ’a ⇒ ’a — this merely suppresses warnings to that effect.

However, there is nothing to prevent the user from forming terms such
as inverse [] and proving theorems such as inverse [] = inverse [] when
inverse is not defined on lists. Proving theorems about unspecified constants
does not endanger soundness, but it is pointless. To prevent such terms from
even being formed requires the use of type classes.

8.3 Axiomatic Type Classes 161

Controlled Overloading with Type Classes. We now start with the
theory of ordering relations, which we shall phrase in terms of the two binary
symbols << and <<= to avoid clashes with < and <= in theory Main. To restrict
the application of << and <<= we introduce the class ordrel :

axclass ordrel < type

This introduces a new class ordrel and makes it a subclass of the predefined
class type, which is the class of all HOL types. This is a degenerate form of
axiomatic type class without any axioms. Its sole purpose is to restrict the
use of overloaded constants to meaningful instances:

consts lt :: "(’a::ordrel) ⇒ ’a ⇒ bool" (infixl "<<" 50)
le :: "(’a::ordrel) ⇒ ’a ⇒ bool" (infixl "<<=" 50)

Note that only one occurrence of a type variable in a type needs to be con-
strained with a class; the constraint is propagated to the other occurrences
automatically.

So far there are no types of class ordrel. To breathe life into ordrel we
need to declare a type to be an instance of ordrel :

instance bool :: ordrel

Command instance actually starts a proof, namely that bool satisfies all
axioms of ordrel. There are none, but we still need to finish that proof,
which we do by invoking the intro_classes method:

by intro_classes

More interesting instance proofs will arise below in the context of proper
axiomatic type classes.

Although terms like False <<= P are now legal, we still need to say what
the relation symbols actually mean at type bool :

defs (overloaded)
le_bool_def: "P <<= Q ≡ P −→ Q"
lt_bool_def: "P << Q ≡ ¬P ∧ Q"

Now False <<= P is provable:

lemma "False <<= P"
by(simp add: le_bool_def)

At this point, [] <<= [] is not even well-typed. To make it well-typed, we
need to make lists a type of class ordrel :

instance list :: (type)ordrel
by intro_classes

This instance declaration can be read like the declaration of a function on
types. The constructor list maps types of class type (all HOL types), to
types of class ordrel ; in other words, if ty :: type then ty list :: ordrel.
Of course we should also define the meaning of <<= and << on lists:

defs (overloaded)

162 8. More about Types

prefix_def:
"xs <<= (ys::’a::ordrel list) ≡ ∃ zs. ys = xs@zs"

strict_prefix_def:
"xs << (ys::’a::ordrel list) ≡ xs <<= ys ∧ xs 6= ys"

Of course this is not the only possible definition of the two relations.
Componentwise comparison of lists of equal length also makes sense. This
time the elements of the list must also be of class ordrel to permit their
comparison:

instance list :: (ordrel)ordrel
by intro_classes

defs (overloaded)
le_list_def: "xs <<= (ys::’a::ordrel list) ≡

size xs = size ys ∧ (∀ i<size xs. xs!i <<= ys!i)"

The infix function ! yields the nth element of a list.

!! A type constructor can be instantiated in only one way to a given type class.
For example, our two instantiations of list must reside in separate theories

with disjoint scopes.

Predefined Overloading. HOL comes with a number of overloaded con-
stants and corresponding classes. The most important ones are listed in Ta-
ble A.2 in the appendix. They are defined on all numeric types and sometimes
on other types as well, for example − and ≤ on sets.

In addition there is a special syntax for bounded quantifiers:

∀ x≤y. P x
 "∀ x. x ≤ y −→ P x"

∃ x≤y. P x
 "∃ x. x ≤ y ∧ P x"

And analogously for < instead of ≤.

8.3.2 Axioms

Attaching axioms to our classes lets us reason on the level of classes. The
results will be applicable to all types in a class, just as in axiomatic mathe-
matics. These ideas are demonstrated by means of our ordering relations.

Partial Orders. A partial order is a subclass of ordrel where certain axioms
need to hold:

axclass parord < ordrel
refl: "x <<= x"
trans: " [[x <<= y; y <<= z]] =⇒ x <<= z"
antisym: " [[x <<= y; y <<= x]] =⇒ x = y"
lt_le: "x << y = (x <<= y ∧ x 6= y)"

The first three axioms are the familiar ones, and the final one requires that
<< and <<= are related as expected. Note that behind the scenes, Isabelle has

8.3 Axiomatic Type Classes 163

restricted the axioms to class parord. For example, the axiom refl really is
(?x ::?’a ::parord) <<= ?x.

We have not made lt_le a global definition because it would fix once and
for all that << is defined in terms of <<= and never the other way around.
Below you will see why we want to avoid this asymmetry. The drawback of
our choice is that we need to define both <<= and << for each instance.

We can now prove simple theorems in this abstract setting, for example
that << is not symmetric:

lemma [simp]: "(x::’a::parord) << y =⇒ (¬ y << x) = True"

The conclusion is not just ¬ y << x because the simplifier’s preprocessor (see
Sect. 9.1.2) would turn it into (y << x) = False, yielding a nonterminating
rewrite rule. (It would be used to try to prove its own precondition ad infini-
tum.) In the form above, the rule is useful. The type constraint is necessary
because otherwise Isabelle would only assume ’a::ordrel (as required in the
type of <<), when the proposition is not a theorem. The proof is easy:

by(simp add: lt_le antisym)

We could now continue in this vein and develop a whole theory of results
about partial orders. Eventually we will want to apply these results to con-
crete types, namely the instances of the class. Thus we first need to prove
that the types in question, for example bool, are indeed instances of parord :

instance bool :: parord
apply intro_classes

This time intro_classes leaves us with the four axioms, specialized to type
bool, as subgoals:

1.
V
x ::bool. x <<= x

2.
V
(x ::bool) (y ::bool) z ::bool. [[x <<= y; y <<= z]] =⇒ x <<= z

3.
V
(x ::bool) y ::bool. [[x <<= y; y <<= x]] =⇒ x = y

4.
V
(x ::bool) y ::bool. (x << y) = (x <<= y ∧ x 6= y)

Fortunately, the proof is easy for blast once we have unfolded the definitions
of << and <<= at type bool :

apply(simp_all (no_asm_use) only: le_bool_def lt_bool_def)
by(blast, blast, blast, blast)

Can you figure out why we have to include (no_asm_use)?
We can now apply our single lemma above in the context of booleans:

lemma "(P::bool) << Q =⇒ ¬(Q << P)"
by simp

The effect is not stunning, but it demonstrates the principle. It also shows
that tools like the simplifier can deal with generic rules. The main advantage
of the axiomatic method is that theorems can be proved in the abstract and
freely reused for each instance.

164 8. More about Types

Linear Orders. If any two elements of a partial order are comparable it is
a linear or total order:

axclass linord < parord
linear: "x <<= y ∨ y <<= x"

By construction, linord inherits all axioms from parord. Therefore we can
show that linearity can be expressed in terms of << as follows:

lemma "
V
x::’a::linord. x << y ∨ x = y ∨ y << x"

apply(simp add: lt_le)
apply(insert linear)
apply blast
done

Linear orders are an example of subclassing by construction, which is the
most common case. Subclass relationships can also be proved. This is the
topic of the following paragraph.

Strict Orders. An alternative axiomatization of partial orders takes <<

rather than <<= as the primary concept. The result is a strict order:

axclass strord < ordrel
irrefl: "¬ x << x"
lt_trans: " [[x << y; y << z]] =⇒ x << z"
le_less: "x <<= y = (x << y ∨ x = y)"

It is well known that partial orders are the same as strict orders. Let us prove
one direction, namely that partial orders are a subclass of strict orders.

instance parord < strord
apply intro_classes

1.
V
x ::’a. ¬ x << x

2.
V
(x ::’a) (y ::’a) z ::’a. [[x << y; y << z]] =⇒ x << z

3.
V
(x ::’a) y ::’a. (x <<= y) = (x << y ∨ x = y)

type variables:
’a :: parord

Because of ’a :: parord, the three axioms of class strord are easily proved:

apply(simp_all (no_asm_use) add: lt_le)
apply(blast intro: trans antisym)

apply(blast intro: refl)
done

The subclass relation must always be acyclic. Therefore Isabelle will com-
plain if you also prove the relationship strord < parord.

Multiple Inheritance and Sorts. A class may inherit from more than
one direct superclass. This is called multiple inheritance. For example, we
could define the classes of well-founded orderings and well-orderings:

axclass wford < parord
wford: "wf {(y,x). y << x}"

8.3 Axiomatic Type Classes 165

axclass wellord < linord, wford

The last line expresses the usual definition: a well-ordering is a linear well-
founded ordering. The result is the subclass diagram in Figure 8.1.

type
|

ordrel
|

strord
|

parord
/ \

linord wford
\ /
wellord

Figure 8.1. Subclass Diagram

Since class wellord does not introduce any new axioms, it can simply be
viewed as the intersection of the two classes linord and wford. Such inter-
sections need not be given a new name but can be created on the fly: the
expression {C1, . . . ,Cn}, where the Ci are classes, represents the intersec-
tion of the Ci . Such an expression is called a sort, and sorts can appear in
most places where we have only shown classes so far, for example in type
constraints: ’a::{linord,wford}. In fact, ’a::C is short for ’a::{C}. However,
we do not pursue this rarefied concept further.

This concludes our demonstration of type classes based on orderings. We
remind our readers that Main contains a theory of orderings phrased in terms
of the usual ≤ and <. If possible, base your own ordering relations on this
theory.

Inconsistencies. The reader may be wondering what happens if we attach
an inconsistent set of axioms to a class. So far we have always avoided to add
new axioms to HOL for fear of inconsistencies and suddenly it seems that we
are throwing all caution to the wind. So why is there no problem?

The point is that by construction, all type variables in the axioms of
an axclass are automatically constrained with the class being defined (as
shown for axiom refl above). These constraints are always carried around
and Isabelle takes care that they are never lost, unless the type variable is
instantiated with a type that has been shown to belong to that class. Thus
you may be able to prove False from your axioms, but Isabelle will remind
you that this theorem has the hidden hypothesis that the class is non-empty.

Even if each individual class is consistent, intersections of (unrelated)
classes readily become inconsistent in practice. Now we know this need not
worry us.

166 8. More about Types

8.4 Numbers

Until now, our numerical examples have used the type of natural num-
bers, nat. This is a recursive datatype generated by the constructors zero
and successor, so it works well with inductive proofs and primitive recursive
function definitions. HOL also provides the type int of integers, which lack
induction but support true subtraction. With subtraction, arithmetic reason-
ing is easier, which makes the integers preferable to the natural numbers for
complicated arithmetic expressions, even if they are non-negative. The logic
HOL-Complex also has the types rat, real and complex : the rational, real
and complex numbers. Isabelle has no subtyping, so the numeric types are
distinct and there are functions to convert between them. Most numeric op-
erations are overloaded: the same symbol can be used at all numeric types.
Table A.2 in the appendix shows the most important operations, together
with the priorities of the infix symbols. Algebraic properties are organized
using type classes around algebraic concepts such as rings and fields; a prop-
erty such as the commutativity of addition is a single theorem (add_commute)
that applies to all numeric types.

Many theorems involving numeric types can be proved automatically by
Isabelle’s arithmetic decision procedure, the method arith . Linear arithmetic
comprises addition, subtraction and multiplication by constant factors; sub-
terms involving other operators are regarded as variables. The procedure can
be slow, especially if the subgoal to be proved involves subtraction over type
nat, which causes case splits. On types nat and int, arith can deal with
quantifiers—this is known as Presburger arithmetic—whereas on type real

it cannot.
The simplifier reduces arithmetic expressions in other ways, such as di-

viding through by common factors. For problems that lie outside the scope
of automation, HOL provides hundreds of theorems about multiplication, di-
vision, etc., that can be brought to bear. You can locate them using Proof
General’s Find button. A few lemmas are given below to show what is avail-
able.

8.4.1 Numeric Literals

The constants 0 and 1 are overloaded. They denote zero and one, respectively,
for all numeric types. Other values are expressed by numeric literals, which
consist of one or more decimal digits optionally preceeded by a minus sign
(-). Examples are 2, -3 and 441223334678. Literals are available for the types
of natural numbers, integers, rationals, reals, etc.; they denote integer values
of arbitrary size.

Literals look like constants, but they abbreviate terms representing the
number in a two’s complement binary notation. Isabelle performs arithmetic
on literals by rewriting rather than using the hardware arithmetic. In most

8.4 Numbers 167

cases arithmetic is fast enough, even for numbers in the millions. The arith-
metic operations provided for literals include addition, subtraction, multipli-
cation, integer division and remainder. Fractions of literals (expressed using
division) are reduced to lowest terms.

!! The arithmetic operators are overloaded, so you must be careful to ensure that
each numeric expression refers to a specific type, if necessary by inserting type

constraints. Here is an example of what can go wrong:

lemma "2 * m = m + m"

Carefully observe how Isabelle displays the subgoal:

1. (2::’a) * m = m + m

The type ’a given for the literal 2 warns us that no numeric type has been specified.
The problem is underspecified. Given a type constraint such as nat, int or real,
it becomes trivial.

!! Numeric literals are not constructors and therefore must not be used in pat-
terns. For example, this declaration is rejected:

recdef h "{}"
"h 3 = 2"
"h i = i"

You should use a conditional expression instead:

"h i = (if i = 3 then 2 else i)"

8.4.2 The Type of Natural Numbers, nat

This type requires no introduction: we have been using it from the beginning.
Hundreds of theorems about the natural numbers are proved in the theories
Nat and Divides. Basic properties of addition and multiplication are available
through the axiomatic type class for semirings (Sect. 8.4.5).

Literals. The notational options for the natural numbers are confusing. Re-
call that an overloaded constant can be defined independently for each type;
the definition of 1 for type nat is

1 ≡ Suc 0 (One_nat_def)

This is installed as a simplification rule, so the simplifier will replace every
occurrence of 1::nat by Suc 0. Literals are obviously better than nested Sucs
at expressing large values. But many theorems, including the rewrite rules
for primitive recursive functions, can only be applied to terms of the form
Suc n.

The following default simplification rules replace small literals by zero and
successor:

168 8. More about Types

2 + n = Suc (Suc n) (add_2_eq_Suc)
n + 2 = Suc (Suc n) (add_2_eq_Suc’)

It is less easy to transform 100 into Suc 99 (for example), and the simpli-
fier will normally reverse this transformation. Novices should express natural
numbers using 0 and Suc only.

Division. The infix operators div and mod are overloaded. Isabelle/HOL
provides the basic facts about quotient and remainder on the natural num-
bers:

m mod n = (if m < n then m else (m - n) mod n) (mod_if)
m div n * n + m mod n = m (mod_div_equality)

Many less obvious facts about quotient and remainder are also provided.
Here is a selection:

a * b div c = a * (b div c) + a * (b mod c) div c (div_mult1_eq)
a * b mod c = a * (b mod c) mod c (mod_mult1_eq)
a div (b*c) = a div b div c (div_mult2_eq)
a mod (b*c) = b * (a div b mod c) + a mod b (mod_mult2_eq)
0 < c =⇒ (c * a) div (c * b) = a div b (div_mult_mult1)
(m mod n) * k = (m * k) mod (n * k) (mod_mult_distrib)
m ≤ n =⇒ m div k ≤ n div k (div_le_mono)

Surprisingly few of these results depend upon the divisors’ being nonzero.
That is because division by zero yields zero:

a div 0 = 0 (DIVISION_BY_ZERO_DIV)
a mod 0 = a (DIVISION_BY_ZERO_MOD)

In div_mult_mult1 above, one of the two divisors (namely c) must still be
nonzero.

The divides relation has the standard definition, which is overloaded over
all numeric types:

m dvd n ≡ ∃ k. n = m * k (dvd_def)

Section 5.18 discusses proofs involving this relation. Here are some of the
facts proved about it:

[[m dvd n; n dvd m]] =⇒ m = n (dvd_anti_sym)
[[k dvd m; k dvd n]] =⇒ k dvd (m + n) (dvd_add)

Subtraction. There are no negative natural numbers, so m - n equals zero
unless m exceeds n. The following is one of the few facts about m - n that is
not subject to the condition n ≤ m.

(m - n) * k = m * k - n * k (diff_mult_distrib)

Natural number subtraction has few nice properties; often you should remove
it by simplifying with this split rule.

P(a-b) = ((a<b −→ P 0) ∧ (∀ d. a = b+d −→ P d)) (nat_diff_split)

For example, splitting helps to prove the following fact.

8.4 Numbers 169

lemma "(n - 2) * (n + 2) = n * n - (4::nat)"
apply (simp split: nat_diff_split, clarify)
1.

V
d. [[n < 2; n * n = 4 + d]] =⇒ d = 0

The result lies outside the scope of linear arithmetic, but it is easily found if
we explicitly split n<2 as n=0 or n=1 :

apply (subgoal_tac "n=0 | n=1", force, arith)
done

8.4.3 The Type of Integers, int

Reasoning methods for the integers resemble those for the natural numbers,
but induction and the constant Suc are not available. HOL provides many
lemmas for proving inequalities involving integer multiplication and division,
similar to those shown above for type nat. The laws of addition, subtraction
and multiplication are available through the axiomatic type class for rings
(Sect. 8.4.5).

The absolute value function abs is overloaded, and is defined for all types
that involve negative numbers, including the integers. The arith method can
prove facts about abs automatically, though as it does so by case analysis,
the cost can be exponential.

lemma "abs (x+y) ≤ abs x + abs (y :: int)"
by arith

For division and remainder, the treatment of negative divisors follows
mathematical practice: the sign of the remainder follows that of the divisor:

0 < b =⇒ 0 ≤ a mod b (pos_mod_sign)
0 < b =⇒ a mod b < b (pos_mod_bound)
b < 0 =⇒ a mod b ≤ 0 (neg_mod_sign)
b < 0 =⇒ b < a mod b (neg_mod_bound)

ML treats negative divisors in the same way, but most computer hardware
treats signed operands using the same rules as for multiplication. Many facts
about quotients and remainders are provided:

(a + b) div c =
a div c + b div c + (a mod c + b mod c) div c (zdiv_zadd1_eq)

(a + b) mod c = (a mod c + b mod c) mod c (zmod_zadd1_eq)

(a * b) div c = a * (b div c) + a * (b mod c) div c (zdiv_zmult1_eq)
(a * b) mod c = a * (b mod c) mod c (zmod_zmult1_eq)

0 < c =⇒ a div (b*c) = a div b div c (zdiv_zmult2_eq)
0 < c =⇒ a mod (b*c) = b*(a div b mod c) + a mod b (zmod_zmult2_eq)

The last two differ from their natural number analogues by requiring c to
be positive. Since division by zero yields zero, we could allow c to be zero.
However, c cannot be negative: a counterexample is a = 7, b = 2 and c = −3,

170 8. More about Types

when the left-hand side of zdiv_zmult2_eq is −2 while the right-hand side
is −1. The prefix z in many theorem names recalls the use of Z to denote the
set of integers.

Induction is less important for integers than it is for the natural numbers,
but it can be valuable if the range of integers has a lower or upper bound.
There are four rules for integer induction, corresponding to the possible re-
lations of the bound (≥, >, ≤ and <):

[[k ≤ i; P k;
V
i. [[k ≤ i; P i]] =⇒ P(i+1)]] =⇒ P i (int_ge_induct)

[[k < i; P(k+1);
V
i. [[k < i; P i]] =⇒ P(i+1)]] =⇒ P i (int_gr_induct)

[[i ≤ k; P k;
V
i. [[i ≤ k; P i]] =⇒ P(i-1)]] =⇒ P i (int_le_induct)

[[i < k; P(k-1);
V
i. [[i < k; P i]] =⇒ P(i-1)]] =⇒ P i (int_less_induct)

8.4.4 The Types of Rational, Real and Complex Numbers

These types provide true division, the overloaded operator /, which differs
from the operator div of the natural numbers and integers. The rationals
and reals are dense: between every two distinct numbers lies another. This
property follows from the division laws, since if x 6= y then (x + y)/2 lies
between them:

a < b =⇒ ∃ r. a < r ∧ r < b (dense)

The real numbers are, moreover, complete: every set of reals that is
bounded above has a least upper bound. Completeness distinguishes the reals
from the rationals, for which the set {x | x 2 < 2} has no least upper bound.
(It could only be

√
2, which is irrational.) The formalization of completeness,

which is complicated, can be found in theory RComplete of directory Real.
Numeric literals for type real have the same syntax as those for type

int and only express integral values. Fractions expressed using the division
operator are automatically simplified to lowest terms:

1. P ((3 / 4) * (8 / 15))
apply simp
1. P (2 / 5)

Exponentiation can express floating-point values such as 2 * 10^6, but at
present no special simplification is performed.

!! Type real is only available in the logic HOL-Complex, which is HOL extended
with a definitional development of the real and complex numbers. Base your

theory upon theory Complex_Main , not the usual Main, and set the Proof General
menu item Isabelle > Logics > HOL-Complex.

Also available in HOL-Complex is the theory Hyperreal, which define the
type hypreal of non-standard reals. These hyperreals include infinitesimals,
which represent infinitely small and infinitely large quantities; they facilitate
proofs about limits, differentiation and integration [9]. The development de-
fines an infinitely large number, omega and an infinitely small positive num-
ber, epsilon. The relation x ≈ y means “x is infinitely close to y .” Theory

8.4 Numbers 171

Hyperreal also defines transcendental functions such as sine, cosine, expo-
nential and logarithm — even the versions for type real, because they are
defined using nonstandard limits.

8.4.5 The Numeric Type Classes

Isabelle/HOL organises its numeric theories using axiomatic type classes.
Hundreds of basic properties are proved in the theory Ring_and_Field. These
lemmas are available (as simprules if they were declared as such) for all
numeric types satisfying the necessary axioms. The theory defines dozens of
type classes, such as the following:

– semiring and ordered_semiring : a semiring provides the associative oper-
ators + and *, with 0 and 1 as their respective identities. The operators
enjoy the usual distributive law, and addition (+) is also commutative. An
ordered semiring is also linearly ordered, with addition and multiplication
respecting the ordering. Type nat is an ordered semiring.

– ring and ordered_ring : a ring extends a semiring with unary minus (the
additive inverse) and subtraction (both denoted -). An ordered ring in-
cludes the absolute value function, abs . Type int is an ordered ring.

– field and ordered_field : a field extends a ring with the multiplicative
inverse (called simply inverse and division (/)). An ordered field is based
on an ordered ring. Type complex is a field, while type real is an ordered
field.

– division_by_zero includes all types where inverse 0 = 0 and a / 0 = 0.
These include all of Isabelle’s standard numeric types. However, the basic
properties of fields are derived without assuming division by zero.

Hundreds of basic lemmas are proved, each of which holds for all types in
the corresponding type class. In most cases, it is obvious whether a property
is valid for a particular type. No abstract properties involving subtraction
hold for type nat ; instead, theorems such as diff_mult_distrib are proved
specifically about subtraction on type nat. All abstract properties involving
division require a field. Obviously, all properties involving orderings required
an ordered structure.

The class ring_no_zero_divisors of rings without zero divisors satisfies
a number of natural cancellation laws, the first of which characterizes this
class:

(a * b = (0::’a)) = (a = (0::’a) ∨ b = (0::’a)) (mult_eq_0_iff)
(a * c = b * c) = (c = (0::’a) ∨ a = b) (mult_cancel_right)

Setting the flag Isabelle > Settings > Show Sorts will display the type classes of
all type variables.

Here is how the theorem mult_cancel_left appears with the flag set.

172 8. More about Types

((c::’a::ring_no_zero_divisors) * (a::’a::ring_no_zero_divisors) =
c * (b::’a::ring_no_zero_divisors)) =

(c = (0::’a::ring_no_zero_divisors) ∨ a = b)

Simplifying with the AC-Laws. Suppose that two expressions are equal,
differing only in associativity and commutativity of addition. Simplifying with
the following equations sorts the terms and groups them to the right, making
the two expressions identical.
a + b + c = a + (b + c) (add_assoc)
a + b = b + a (add_commute)
a + (b + c) = b + (a + c) (add_left_commute)

The name add_ac refers to the list of all three theorems; similarly there is
mult_ac. They are all proved for semirings and therefore hold for all numeric
types.

Here is an example of the sorting effect. Start with this goal, which in-
volves type nat.
1. Suc (i + j * l * k + m * n) = f (n * m + i + k * j * l)

Simplify using add_ac and mult_ac.
apply (simp add: add_ac mult_ac)

Here is the resulting subgoal.
1. Suc (i + (m * n + j * (k * l))) = f (i + (m * n + j * (k * l)))

Division Laws for Fields. Here is a selection of rules about the division
operator. The following are installed as default simplification rules in order
to express combinations of products and quotients as rational expressions:
a * (b / c) = a * b / c (times_divide_eq_right)
b / c * a = b * a / c (times_divide_eq_left)
a / (b / c) = a * c / b (divide_divide_eq_right)
a / b / c = a / (b * c) (divide_divide_eq_left)

Signs are extracted from quotients in the hope that complementary terms
can then be cancelled:
- (a / b) = - a / b (minus_divide_left)
- (a / b) = a / - b (minus_divide_right)

The following distributive law is available, but it is not installed as a
simplification rule.
(a + b) / c = a / c + b / c (add_divide_distrib)

Absolute Value. The absolute value function abs is available for all ordered
rings, including types int, rat and real. It satisfies many properties, such as
the following:
|x * y | = |x | * |y | (abs_mult)
(|a | ≤ b) = (a ≤ b ∧ - a ≤ b) (abs_le_iff)
|a + b | ≤ |a | + |b | (abs_triangle_ineq)

8.5 Introducing New Types 173

!! The absolute value bars shown above cannot be typed on a keyboard. They can
be entered using the X-symbol package. In ascii, type abs x to get |x |.

Raising to a Power. Another type class, ringppower , specifies rings that
also have exponentation to a natural number power, defined using the obvi-
ous primitive recursion. Theory Power proves various theorems, such as the
following.
a ^ (m + n) = a ^ m * a ^ n (power_add)
a ^ (m * n) = (a ^ m) ^ n (power_mult)
|a ^ n | = |a | ^ n (power_abs)

8.5 Introducing New Types

For most applications, a combination of predefined types like bool and ⇒
with recursive datatypes and records is quite sufficient. Very occasionally
you may feel the need for a more advanced type. If you are certain that your
type is not definable by any of the standard means, then read on.

!! Types in HOL must be non-empty; otherwise the quantifier rules would be
unsound, because ∃x . x = x is a theorem.

8.5.1 Declaring New Types

The most trivial way of introducing a new type is by a type declaration:
typedecl my_new_type

This does not define my_new_type at all but merely introduces its name. Thus
we know nothing about this type, except that it is non-empty. Such declara-
tions without definitions are useful if that type can be viewed as a parameter
of the theory. A typical example is given in Sect. 6.6, where we define a tran-
sition relation over an arbitrary type of states.

In principle we can always get rid of such type declarations by making
those types parameters of every other type, thus keeping the theory generic.
In practice, however, the resulting clutter can make types hard to read.

If you are looking for a quick and dirty way of introducing a new type to-
gether with its properties: declare the type and state its properties as axioms.
Example:
axioms
just_one: "∃ x::my_new_type. ∀ y. x = y"

However, we strongly discourage this approach, except at explorative stages
of your development. It is extremely easy to write down contradictory sets
of axioms, in which case you will be able to prove everything but it will
mean nothing. In the example above, the axiomatic approach is unnecessary:
a one-element type called unit is already defined in HOL.

174 8. More about Types

8.5.2 Defining New Types

Now we come to the most general means of safely introducing a new type,
the type definition. All other means, for example datatype, are based on
it. The principle is extremely simple: any non-empty subset of an existing
type can be turned into a new type. More precisely, the new type is specified
to be isomorphic to some non-empty subset of an existing type.

Let us work a simple example, the definition of a three-element type. It
is easily represented by the first three natural numbers:

typedef three = "{0::nat, 1, 2}"

In order to enforce that the representing set on the right-hand side is non-
empty, this definition actually starts a proof to that effect:

1. ∃ x. x ∈ {0, 1, 2}

Fortunately, this is easy enough to show, even auto could do it. In general,
one has to provide a witness, in our case 0:

apply(rule_tac x = 0 in exI)
by simp

This type definition introduces the new type three and asserts that it is a
copy of the set {0, 1, 2}. This assertion is expressed via a bijection between
the type three and the set {0, 1, 2}. To this end, the command declares the
following constants behind the scenes:

three :: nat set

Rep_three :: three ⇒ nat

Abs_three :: nat ⇒ three

where constant three is explicitly defined as the representing set:

three ≡ {0, 1, 2} (three_def)

The situation is best summarized with the help of the following diagram,
where squares denote types and the irregular region denotes a set:

three

nat

{0,1,2}

Finally, typedef asserts that Rep_three is surjective on the subset three and
Abs_three and Rep_three are inverses of each other:

8.5 Introducing New Types 175

Rep_three x ∈ three (Rep_three)
Abs_three (Rep_three x) = x (Rep_three_inverse)

y ∈ three =⇒ Rep_three (Abs_three y) = y (Abs_three_inverse)

From this example it should be clear what typedef does in general given a
name (here three) and a set (here {0, 1, 2}).

Our next step is to define the basic functions expected on the new type.
Although this depends on the type at hand, the following strategy works well:

– define a small kernel of basic functions that can express all other functions
you anticipate.

– define the kernel in terms of corresponding functions on the representing
type using Abs and Rep to convert between the two levels.

In our example it suffices to give the three elements of type three names:

definition A :: three where "A ≡ Abs_three 0"
definition B :: three where "B ≡ Abs_three 1"
definition C :: three where "C ≡ Abs_three 2"

So far, everything was easy. But it is clear that reasoning about three

will be hell if we have to go back to nat every time. Thus our aim must be to
raise our level of abstraction by deriving enough theorems about type three

to characterize it completely. And those theorems should be phrased in terms
of A, B and C, not Abs_three and Rep_three. Because of the simplicity of the
example, we merely need to prove that A, B and C are distinct and that they
exhaust the type.

In processing our typedef declaration, Isabelle proves several helpful lem-
mas. The first two express injectivity of Rep_three and Abs_three :

(Rep_three x = Rep_three y) = (x = y) (Rep_three_inject)
[[x ∈ three; y ∈ three]]

=⇒ (Abs_three x = Abs_three y) = (x = y)
(Abs_three_inject)

The following ones allow to replace some x::three by Abs_three(y::nat), and
conversely y by Rep_three x :

[[y ∈ three;
V
x. y = Rep_three x =⇒ P]] =⇒ P (Rep_three_cases)

(
V
y. [[x = Abs_three y; y ∈ three]] =⇒ P) =⇒ P (Abs_three_cases)

[[y ∈ three;
V
x. P (Rep_three x)]] =⇒ P y (Rep_three_induct)

(
V
y. y ∈ three =⇒ P (Abs_three y)) =⇒ P x (Abs_three_induct)

These theorems are proved for any type definition, with three replaced by
the name of the type in question.

Distinctness of A, B and C follows immediately if we expand their defini-
tions and rewrite with the injectivity of Abs_three :

lemma "A 6= B ∧ B 6= A ∧ A 6= C ∧ C 6= A ∧ B 6= C ∧ C 6= B"
by(simp add: Abs_three_inject A_def B_def C_def three_def)

Of course we rely on the simplifier to solve goals like 0 6= 1.

176 8. More about Types

The fact that A, B and C exhaust type three is best phrased as a case
distinction theorem: if you want to prove P x (where x is of type three) it
suffices to prove P A, P B and P C :

lemma three_cases: " [[P A; P B; P C]] =⇒ P x"

Again this follows easily from a pre-proved general theorem:

apply(induct_tac x rule: Abs_three_induct)

1.
V
y. [[P A; P B; P C; y ∈ three]] =⇒ P (Abs_three y)

Simplification with three_def leads to the disjunction y = 0 ∨ y = 1 ∨ y =

2 which auto separates into three subgoals, each of which is easily solved by
simplification:

apply(auto simp add: three_def A_def B_def C_def)
done

This concludes the derivation of the characteristic theorems for type three.
The attentive reader has realized long ago that the above lengthy defini-

tion can be collapsed into one line:

datatype better_three = A | B | C

In fact, the datatype command performs internally more or less the same
derivations as we did, which gives you some idea what life would be like
without datatype.

Although three could be defined in one line, we have chosen this exam-
ple to demonstrate typedef because its simplicity makes the key concepts
particularly easy to grasp. If you would like to see a non-trivial example
that cannot be defined more directly, we recommend the definition of finite
multisets in the Library [4].

Let us conclude by summarizing the above procedure for defining a new
type. Given some abstract axiomatic description P of a type ty in terms of
a set of functions F , this involves three steps:

1. Find an appropriate type τ and subset A which has the desired properties
P , and make a type definition based on this representation.

2. Define the required functions F on ty by lifting analogous functions on
the representation via Abs ty and Rep ty .

3. Prove that P holds for ty by lifting P from the representation.

You can now forget about the representation and work solely in terms of the
abstract functions F and properties P .

9. Advanced Simplification and Induction

Although we have already learned a lot about simplification and induction,
there are some advanced proof techniques that we have not covered yet and
which are worth learning. The sections of this chapter are independent of
each other and can be read in any order.

9.1 Simplification

This section describes features not covered until now. It also outlines the
simplification process itself, which can be helpful when the simplifier does
not do what you expect of it.

9.1.1 Advanced Features

Congruence Rules. While simplifying the conclusion Q of P =⇒ Q , it is
legal to use the assumption P . For =⇒ this policy is hardwired, but contextual
information can also be made available for other operators. For example, xs
= [] −→ xs @ xs = xs simplifies to True because we may use xs = [] when
simplifying xs @ xs = xs. The generation of contextual information during
simplification is controlled by so-called congruence rules. This is the one
for −→:

[[P = P’; P’ =⇒ Q = Q’]] =⇒ (P −→ Q) = (P’ −→ Q’)

It should be read as follows: In order to simplify P −→ Q to P’ −→ Q’,
simplify P to P’ and assume P’ when simplifying Q to Q’.

Here are some more examples. The congruence rules for bounded quanti-
fiers supply contextual information about the bound variable:

[[A = B;
V
x. x ∈ B =⇒ P x = Q x]]

=⇒ (∀ x∈A. P x) = (∀ x∈B. Q x)

One congruence rule for conditional expressions supplies contextual informa-
tion for simplifying the then and else cases:

[[b = c; c =⇒ x = u; ¬ c =⇒ y = v]]
=⇒ (if b then x else y) = (if c then u else v)

178 9. Advanced Simplification and Induction

An alternative congruence rule for conditional expressions actually prevents
simplification of some arguments:

b = c =⇒ (if b then x else y) = (if c then x else y)

Only the first argument is simplified; the others remain unchanged. This
makes simplification much faster and is faithful to the evaluation strategy in
programming languages, which is why this is the default congruence rule for
if. Analogous rules control the evaluation of case expressions.

You can declare your own congruence rules with the attribute cong , either
globally, in the usual manner,

declare theorem-name [cong]

or locally in a simp call by adding the modifier

cong: list of theorem names

The effect is reversed by cong del instead of cong.

!! The congruence rule conj_cong

[[P = P’; P’ =⇒ Q = Q’]] =⇒ (P ∧ Q) = (P’ ∧ Q’)

is occasionally useful but is not a default rule; you have to declare it explicitly.

Permutative Rewrite Rules. An equation is a permutative rewrite
rule if the left-hand side and right-hand side are the same up to renaming of
variables. The most common permutative rule is commutativity: x + y = y +

x. Other examples include x - y - z = x - z - y in arithmetic and insert x

(insert y A) = insert y (insert x A) for sets. Such rules are problematic
because once they apply, they can be used forever. The simplifier is aware of
this danger and treats permutative rules by means of a special strategy, called
ordered rewriting: a permutative rewrite rule is only applied if the term
becomes smaller with respect to a fixed lexicographic ordering on terms. For
example, commutativity rewrites b + a to a + b, but then stops because a +

b is strictly smaller than b + a. Permutative rewrite rules can be turned into
simplification rules in the usual manner via the simp attribute; the simplifier
recognizes their special status automatically.

Permutative rewrite rules are most effective in the case of associative-
commutative functions. (Associativity by itself is not permutative.) When
dealing with an AC-function f , keep the following points in mind:

– The associative law must always be oriented from left to right, namely
f (f (x , y), z) = f (x , f (y , z)). The opposite orientation, if used with commu-
tativity, can lead to nontermination.

– To complete your set of rewrite rules, you must add not just associativ-
ity (A) and commutativity (C) but also a derived rule, left-commutativ-
ity (LC): f (x , f (y , z)) = f (y , f (x , z)).

9.1 Simplification 179

Ordered rewriting with the combination of A, C, and LC sorts a term lexi-
cographically:

f (f (b, c), a) A; f (b, f (c, a)) C; f (b, f (a, c)) LC; f (a, f (b, c))

Note that ordered rewriting for + and * on numbers is rarely necessary
because the built-in arithmetic prover often succeeds without such tricks.

9.1.2 How the Simplifier Works

Roughly speaking, the simplifier proceeds bottom-up: subterms are simplified
first. A conditional equation is only applied if its condition can be proved,
again by simplification. Below we explain some special features of the rewrit-
ing process.

Higher-Order Patterns. So far we have pretended the simplifier can deal
with arbitrary rewrite rules. This is not quite true. For reasons of feasibility,
the simplifier expects the left-hand side of each rule to be a so-called higher-
order pattern [25]. This restricts where unknowns may occur. Higher-order
patterns are terms in β-normal form. (This means there are no subterms
of the form (λx .M)(N).) Each occurrence of an unknown is of the form
?f x1 . . . xn , where the xi are distinct bound variables. Thus all ordinary
rewrite rules, where all unknowns are of base type, for example ?a + ?b + ?c

= ?a + (?b + ?c), are acceptable: if an unknown is of base type, it cannot
have any arguments. Additionally, the rule (∀ x. ?P x ∧ ?Q x) = ((∀ x. ?P

x) ∧ (∀ x. ?Q x)) is also acceptable, in both directions: all arguments of the
unknowns ?P and ?Q are distinct bound variables.

If the left-hand side is not a higher-order pattern, all is not lost. The
simplifier will still try to apply the rule provided it matches directly: with-
out much λ-calculus hocus pocus. For example, (?f ?x ∈ range ?f) = True

rewrites g a ∈ range g to True, but will fail to match g(h b) ∈ range(λx.

g(h x)). However, you can eliminate the offending subterms — those that are
not patterns — by adding new variables and conditions. In our example, we
eliminate ?f ?x and obtain ?y = ?f ?x =⇒ (?y ∈ range ?f) = True, which
is fine as a conditional rewrite rule since conditions can be arbitrary terms.
However, this trick is not a panacea because the newly introduced conditions
may be hard to solve.

There is no restriction on the form of the right-hand sides. They may not
contain extraneous term or type variables, though.

The Preprocessor. When a theorem is declared a simplification rule, it
need not be a conditional equation already. The simplifier will turn it into a
set of conditional equations automatically. For example, f x = g x ∧ h x =

k x becomes the two separate simplification rules f x = g x and h x = k x.
In general, the input theorem is converted as follows:

180 9. Advanced Simplification and Induction

¬P 7→ P = False

P −→ Q 7→ P =⇒ Q
P ∧Q 7→ P , Q
∀x . P x 7→ P ?x

∀x ∈ A. P x 7→ ?x ∈ A =⇒ P ?x
if P then Q else R 7→ P =⇒ Q , ¬P =⇒ R

Once this conversion process is finished, all remaining non-equations P are
turned into trivial equations P = True. For example, the formula

(p −→ t = u ∧ ¬ r) ∧ s

is converted into the three rules

p =⇒ t = u, p =⇒ r = False, s = True.

9.2 Advanced Induction Techniques

Now that we have learned about rules and logic, we take another look at
the finer points of induction. We consider two questions: what to do if the
proposition to be proved is not directly amenable to induction (Sect. 9.2.1),
and how to utilize (Sect. 9.2.2) and even derive (Sect. 9.2.3) new induction
schemas. We conclude with an extended example of induction (Sect. 9.2.4).

9.2.1 Massaging the Proposition

Often we have assumed that the theorem to be proved is already in a form
that is amenable to induction, but sometimes it isn’t. Here is an example.
Since hd and last return the first and last element of a non-empty list, this
lemma looks easy to prove:

lemma "xs 6= [] =⇒ hd(rev xs) = last xs"
apply(induct_tac xs)

But induction produces the warning

Induction variable occurs also among premises!

and leads to the base case

1. xs 6= [] =⇒ hd (rev []) = last []

Simplification reduces the base case to this:

1. xs 6= [] =⇒ hd [] = last []

9.2 Advanced Induction Techniques 181

We cannot prove this equality because we do not know what hd and last

return when applied to [].
We should not have ignored the warning. Because the induction formula

is only the conclusion, induction does not affect the occurrence of xs in the
premises. Thus the case that should have been trivial becomes unprovable.
Fortunately, the solution is easy:1

Pull all occurrences of the induction variable into the conclusion us-
ing −→.

Thus we should state the lemma as an ordinary implication (−→), letting
rule_format (Sect. 5.15) convert the result to the usual =⇒ form:

lemma hd_rev [rule_format]: "xs 6= [] −→ hd(rev xs) = last xs"

This time, induction leaves us with a trivial base case:

1. [] 6= [] −→ hd (rev []) = last []

And auto completes the proof.
If there are multiple premises A1, . . . , An containing the induction vari-

able, you should turn the conclusion C into

A1 −→ · · ·An −→ C .

Additionally, you may also have to universally quantify some other variables,
which can yield a fairly complex conclusion. However, rule_format can re-
move any number of occurrences of ∀ and −→.

A second reason why your proposition may not be amenable to induction
is that you want to induct on a complex term, rather than a variable. In
general, induction on a term t requires rephrasing the conclusion C as

∀y1 . . . yn . x = t −→ C . (9.1)

where y1 . . . yn are the free variables in t and x is a new variable. Now you
can perform induction on x . An example appears in Sect. 9.2.2 below.

The very same problem may occur in connection with rule induction.
Remember that it requires a premise of the form (x1, . . . , xk) ∈ R, where R
is some inductively defined set and the xi are variables. If instead we have a
premise t ∈ R, where t is not just an n-tuple of variables, we replace it with
(x1, . . . , xk) ∈ R, and rephrase the conclusion C as

∀y1 . . . yn . (x1, . . . , xk) = t −→ C .

For an example see Sect. 9.2.4 below.
Of course, all premises that share free variables with t need to be pulled

into the conclusion as well, under the ∀ , again using −→ as shown above.
1 A similar heuristic applies to rule inductions; see Sect. 7.2.

182 9. Advanced Simplification and Induction

Readers who are puzzled by the form of statement (9.1) above should
remember that the transformation is only performed to permit induction.
Once induction has been applied, the statement can be transformed back
into something quite intuitive. For example, applying wellfounded induction
on x (w.r.t. ≺) to (9.1) and transforming the result a little leads to the goal∧

y . ∀z . t z ≺ t y −→ C z =⇒ C y

where y stands for y1 . . . yn and the dependence of t and C on the free
variables of t has been made explicit. Unfortunately, this induction schema
cannot be expressed as a single theorem because it depends on the number
of free variables in t — the notation y is merely an informal device.

9.2.2 Beyond Structural and Recursion Induction

So far, inductive proofs were by structural induction for primitive recursive
functions and recursion induction for total recursive functions. But some-
times structural induction is awkward and there is no recursive function that
could furnish a more appropriate induction schema. In such cases a general-
purpose induction schema can be helpful. We show how to apply such induc-
tion schemas by an example.

Structural induction on nat is usually known as mathematical induc-
tion. There is also complete induction, where you prove P(n) under the
assumption that P(m) holds for all m < n. In Isabelle, this is the theorem
nat_less_induct :

(
V
n. ∀ m<n. P m =⇒ P n) =⇒ P n

As an application, we prove a property of the following function:
consts f :: "nat ⇒ nat"
axioms f_ax: "f(f(n)) < f(Suc(n))"

!! We discourage the use of axioms because of the danger of inconsistencies. Ax-
iom f_ax does not introduce an inconsistency because, for example, the identity

function satisfies it. Axioms can be useful in exploratory developments, say when
you assume some well-known theorems so that you can quickly demonstrate some
point about methodology. If your example turns into a substantial proof develop-
ment, you should replace axioms by theorems.

The axiom for f implies n ≤ f n, which can be proved by induction on f n .
Following the recipe outlined above, we have to phrase the proposition as
follows to allow induction:
lemma f_incr_lem: "∀ i. k = f i −→ i ≤ f i"

To perform induction on k using nat_less_induct, we use the same general
induction method as for recursion induction (see Sect. 3.5.4):
apply(induct_tac k rule: nat_less_induct)

We get the following proof state:

9.2 Advanced Induction Techniques 183

1.
V
n. ∀ m<n. ∀ i. m = f i −→ i ≤ f i =⇒ ∀ i. n = f i −→ i ≤ f i

After stripping the ∀ i, the proof continues with a case distinction on i. The
case i = 0 is trivial and we focus on the other case:

apply(rule allI)
apply(case_tac i)
apply(simp)

1.
V
n i nat.

[[∀ m<n. ∀ i. m = f i −→ i ≤ f i; i = Suc nat]] =⇒ n = f i −→ i
≤ f i

by(blast intro!: f_ax Suc_leI intro: le_less_trans)

If you find the last step puzzling, here are the two lemmas it employs:

m < n =⇒ Suc m ≤ n (Suc_leI)
[[x ≤ y; y < z]] =⇒ x < z (le_less_trans)

The proof goes like this (writing j instead of nat). Since i = Suc j it suffices
to show j < f (Suc j) , by Suc_leI . This is proved as follows. From f_ax we
have f (f j) < f (Suc j) (1) which implies f j ≤ f (f j) by the induc-
tion hypothesis. Using (1) once more we obtain f j < f (Suc j) (2) by the
transitivity rule le_less_trans. Using the induction hypothesis once more
we obtain j ≤ f j which, together with (2) yields j < f (Suc j) (again by
le_less_trans).

This last step shows both the power and the danger of automatic proofs.
They will usually not tell you how the proof goes, because it can be hard to
translate the internal proof into a human-readable format. Automatic proofs
are easy to write but hard to read and understand.

The desired result, i ≤ f i, follows from f_incr_lem :

lemmas f_incr = f_incr_lem[rule_format, OF refl]

The final refl gets rid of the premise ?k = f ?i. We could have included this
derivation in the original statement of the lemma:

lemma f_incr[rule_format, OF refl]: "∀ i. k = f i −→ i ≤ f i"

Exercise 9.2.1 From the axiom and lemma for f, show that f is the identity
function.

Method induct_tac can be applied with any rule r whose conclusion is of
the form ?P ?x1 . . .?xn , in which case the format is

apply(induct_tac y1 . . . yn rule: r)

where y1, . . . , yn are variables in the first subgoal. The conclusion of r can
even be an (iterated) conjunction of formulae of the above form in which case
the application is

184 9. Advanced Simplification and Induction

apply(induct_tac y1 . . . yn and . . . and z1 . . . zm rule: r)

A further useful induction rule is length_induct, induction on the length
of a list

(
V
xs. ∀ ys. length ys < length xs −→ P ys =⇒ P xs) =⇒ P xs

which is a special case of measure_induct

(
V
x. ∀ y. f y < f x −→ P y =⇒ P x) =⇒ P a

where f may be any function into type nat.

9.2.3 Derivation of New Induction Schemas

Induction schemas are ordinary theorems and you can derive new ones
whenever you wish. This section shows you how, using the example of
nat_less_induct. Assume we only have structural induction available for nat

and want to derive complete induction. We must generalize the statement as
shown:

lemma induct_lem: "(
V
n::nat. ∀ m<n. P m =⇒ P n) =⇒ ∀ m<n. P m"

apply(induct_tac n)

The base case is vacuously true. For the induction step (m < Suc n) we dis-
tinguish two cases: case m < n is true by induction hypothesis and case m =

n follows from the assumption, again using the induction hypothesis:

apply(blast)
by(blast elim: less_SucE)

The elimination rule less_SucE expresses the case distinction:

[[m < Suc n; m < n =⇒ P; m = n =⇒ P]] =⇒ P

Now it is straightforward to derive the original version of nat_less_induct
by manipulating the conclusion of the above lemma: instantiate n by Suc n

and m by n and remove the trivial condition n < Suc n. Fortunately, this
happens automatically when we add the lemma as a new premise to the
desired goal:

theorem nat_less_induct: "(
V
n::nat. ∀ m<n. P m =⇒ P n) =⇒ P n"

by(insert induct_lem, blast)

HOL already provides the mother of all inductions, well-founded in-
duction (see Sect. 6.4). For example theorem nat_less_induct is a special
case of wf_induct where r is < on nat. The details can be found in theory
Wellfounded_Recursion.

9.2 Advanced Induction Techniques 185

9.2.4 CTL Revisited

The purpose of this section is twofold: to demonstrate some of the induction
principles and heuristics discussed above and to show how inductive defi-
nitions can simplify proofs. In Sect. 6.6.2 we gave a fairly involved proof of
the correctness of a model checker for CTL. In particular the proof of the
infinity_lemma on the way to AF_lemma2 is not as simple as one might expect,
due to the SOME operator involved. Below we give a simpler proof of AF_lemma2
based on an auxiliary inductive definition.

Let us call a (finite or infinite) path A-avoiding if it does not touch any
node in the set A. Then AF_lemma2 says that if no infinite path from some state
s is A -avoiding, then s ∈ lfp (af A). We prove this by inductively defining
the set Avoid s A of states reachable from s by a finite A -avoiding path:

inductive set
Avoid :: "state ⇒ state set ⇒ state set"
for s :: state and A :: "state set"

where
"s ∈ Avoid s A"

| " [[t ∈ Avoid s A; t /∈ A; (t,u) ∈ M]] =⇒ u ∈ Avoid s A"

It is easy to see that for any infinite A -avoiding path f with f 0 ∈ Avoid

s A there is an infinite A -avoiding path starting with s because (by definition
of Avoid) there is a finite A -avoiding path from s to f 0. The proof is by
induction on f 0 ∈ Avoid s A. However, this requires the following reformu-
lation, as explained in Sect. 9.2.1 above; the rule_format directive undoes the
reformulation after the proof.

lemma ex_infinite_path[rule_format]:
"t ∈ Avoid s A =⇒
∀ f∈Paths t. (∀ i. f i /∈ A) −→ (∃ p∈Paths s. ∀ i. p i /∈ A)"

apply(erule Avoid.induct)
apply(blast)

apply(clarify)
apply(drule_tac x = "λi. case i of 0 ⇒ t | Suc i ⇒ f i" in bspec)
apply(simp_all add: Paths_def split: nat.split)
done

The base case (t = s) is trivial and proved by blast. In the induction step,
we have an infinite A -avoiding path f starting from u, a successor of t. Now
we simply instantiate the ∀ f∈Paths t in the induction hypothesis by the
path starting with t and continuing with f. That is what the above λ-term
expresses. Simplification shows that this is a path starting with t and that
the instantiated induction hypothesis implies the conclusion.

Now we come to the key lemma. Assuming that no infinite A -avoiding
path starts from s, we want to show s ∈ lfp (af A). For the inductive proof
this must be generalized to the statement that every point t “between” s

and A, in other words all of Avoid s A, is contained in lfp (af A) :

lemma Avoid_in_lfp[rule_format(no_asm)]:

186 9. Advanced Simplification and Induction

"∀ p∈Paths s. ∃ i. p i ∈ A =⇒ t ∈ Avoid s A −→ t ∈ lfp(af A)"

The proof is by induction on the “distance” between t and A. Remember that
lfp (af A) = A ∪ M−1 ‘‘ lfp (af A). If t is already in A, then t ∈ lfp (af

A) is trivial. If t is not in A but all successors are in lfp (af A) (induction
hypothesis), then t ∈ lfp (af A) is again trivial.

The formal counterpart of this proof sketch is a well-founded induction
on M restricted to Avoid s A - A, roughly speaking:

{(y, x). (x, y) ∈ M ∧ x ∈ Avoid s A ∧ x /∈ A}

As we shall see presently, the absence of infinite A -avoiding paths starting
from s implies well-foundedness of this relation. For the moment we assume
this and proceed with the induction:

apply(subgoal_tac "wf{(y,x). (x,y) ∈ M ∧ x ∈ Avoid s A ∧ x /∈ A}")
apply(erule_tac a = t in wf_induct)
apply(clarsimp)

1.
V
t. [[∀ p∈Paths s. ∃ i. p i ∈ A;

∀ y. (t, y) ∈ M ∧ t /∈ A −→
y ∈ Avoid s A −→ y ∈ lfp (af A);

t ∈ Avoid s A]]
=⇒ t ∈ lfp (af A)

2. ∀ p∈Paths s. ∃ i. p i ∈ A =⇒
wf {(y, x). (x, y) ∈ M ∧ x ∈ Avoid s A ∧ x /∈ A}

Now the induction hypothesis states that if t /∈ A then all successors of t

that are in Avoid s A are in lfp (af A). Unfolding lfp in the conclusion of
the first subgoal once, we have to prove that t is in A or all successors of
t are in lfp (af A). But if t is not in A, the second Avoid -rule implies that
all successors of t are in Avoid s A, because we also assume t ∈ Avoid s A.
Hence, by the induction hypothesis, all successors of t are indeed in lfp (af

A). Mechanically:

apply(subst lfp_unfold[OF mono_af])
apply(simp (no_asm) add: af_def)
apply(blast intro: Avoid.intros)

Having proved the main goal, we return to the proof obligation that the
relation used above is indeed well-founded. This is proved by contradiction: if
the relation is not well-founded then there exists an infinite A -avoiding path
all in Avoid s A, by theorem wf_iff_no_infinite_down_chain :

wf r = (¬ (∃ f. ∀ i. (f (Suc i), f i) ∈ r))

From lemma ex_infinite_path the existence of an infinite A -avoiding path
starting in s follows, contradiction.

apply(erule contrapos_pp)
apply(simp add: wf_iff_no_infinite_down_chain)
apply(erule exE)
apply(rule ex_infinite_path)

9.2 Advanced Induction Techniques 187

apply(auto simp add: Paths_def)
done

The (no_asm) modifier of the rule_format directive in the statement of
the lemma means that the assumption is left unchanged; otherwise the ∀ p
would be turned into a

V
p, which would complicate matters below. As it is,

Avoid_in_lfp is now

[[∀ p∈Paths s. ∃ i. p i ∈ A; t ∈ Avoid s A]] =⇒ t ∈ lfp (af A)

The main theorem is simply the corollary where t = s, when the assumption
t ∈ Avoid s A is trivially true by the first Avoid -rule. Isabelle confirms this:

theorem AF_lemma2: "{s. ∀ p ∈ Paths s. ∃ i. p i ∈ A} ⊆ lfp(af A)"
by(auto elim: Avoid_in_lfp intro: Avoid.intros)

10. Case Study: Verifying a Security Protocol

Communications security is an ancient art. Julius Caesar is said to have
encrypted his messages, shifting each letter three places along the alphabet.
Mary Queen of Scots was convicted of treason after a cipher used in her
letters was broken. Today’s postal system incorporates security features. The
envelope provides a degree of secrecy. The signature provides authenticity
(proof of origin), as do departmental stamps and letterheads.

Networks are vulnerable: messages pass through many computers, any of
which might be controlled by an adversary, who thus can capture or redirect
messages. People who wish to communicate securely over such a network can
use cryptography, but if they are to understand each other, they need to
follow a protocol : a pre-arranged sequence of message formats.

Protocols can be attacked in many ways, even if encryption is unbreak-
able. A splicing attack involves an adversary’s sending a message composed
of parts of several old messages. This fake message may have the correct for-
mat, fooling an honest party. The adversary might be able to masquerade as
somebody else, or he might obtain a secret key.

Nonces help prevent splicing attacks. A typical nonce is a 20-byte random
number. Each message that requires a reply incorporates a nonce. The reply
must include a copy of that nonce, to prove that it is not a replay of a past
message. The nonce in the reply must be cryptographically protected, since
otherwise an adversary could easily replace it by a different one. You should
be starting to see that protocol design is tricky!

Researchers are developing methods for proving the correctness of security
protocols. The Needham-Schroeder public-key protocol [24] has become a
standard test case. Proposed in 1978, it was found to be defective nearly two
decades later [20]. This toy protocol will be useful in demonstrating how to
verify protocols using Isabelle.

10.1 The Needham-Schroeder Public-Key Protocol

This protocol uses public-key cryptography. Each person has a private key,
known only to himself, and a public key, known to everybody. If Alice wants
to send Bob a secret message, she encrypts it using Bob’s public key (which

190 10. Case Study: Verifying a Security Protocol

everybody knows), and sends it to Bob. Only Bob has the matching private
key, which is needed in order to decrypt Alice’s message.

The core of the Needham-Schroeder protocol consists of three messages:

1. A→ B : {|Na,A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A→ B : {|Nb|}Kb

First, let’s understand the notation. In the first message, Alice sends Bob a
message consisting of a nonce generated by Alice (Na) paired with Alice’s
name (A) and encrypted using Bob’s public key (Kb). In the second message,
Bob sends Alice a message consisting of Na paired with a nonce generated
by Bob (Nb), encrypted using Alice’s public key (Ka). In the last message,
Alice returns Nb to Bob, encrypted using his public key.

When Alice receives Message 2, she knows that Bob has acted on her
message, since only he could have decrypted {|Na,A|}Kb and extracted Na.
That is precisely what nonces are for. Similarly, message 3 assures Bob that
Alice is active. But the protocol was widely believed [7] to satisfy a further
property: that Na and Nb were secrets shared by Alice and Bob. (Many
protocols generate such shared secrets, which can be used to lessen the re-
liance on slow public-key operations.) Lowe found this claim to be false: if
Alice runs the protocol with someone untrustworthy (Charlie say), then he
can start a new run with another agent (Bob say). Charlie uses Alice as an
oracle, masquerading as Alice to Bob [20].

1. A→ C : {|Na,A|}Kc 1′. C → B : {|Na,A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A→ C : {|Nb|}Kc 3′. C → B : {|Nb|}Kb

In messages 1 and 3, Charlie removes the encryption using his private key
and re-encrypts Alice’s messages using Bob’s public key. Bob is left thinking
he has run the protocol with Alice, which was not Alice’s intention, and Bob
is unaware that the “secret” nonces are known to Charlie. This is a typical
man-in-the-middle attack launched by an insider.

Whether this counts as an attack has been disputed. In protocols of
this type, we normally assume that the other party is honest. To be hon-
est means to obey the protocol rules, so Alice’s running the protocol with
Charlie does not make her dishonest, just careless. After Lowe’s attack, Alice
has no grounds for complaint: this protocol does not have to guarantee any-
thing if you run it with a bad person. Bob does have grounds for complaint,
however: the protocol tells him that he is communicating with Alice (who is
honest) but it does not guarantee secrecy of the nonces.

Lowe also suggested a correction, namely to include Bob’s name in mes-
sage 2:

10.2 Agents and Messages 191

1. A→ B : {|Na,A|}Kb

2. B → A : {|Na,Nb,B |}Ka

3. A→ B : {|Nb|}Kb

If Charlie tries the same attack, Alice will receive the message {|Na,Nb,B |}Ka

when she was expecting to receive {|Na,Nb,C |}Ka . She will abandon the run,
and eventually so will Bob. Below, we shall look at parts of this protocol’s
correctness proof.

In ground-breaking work, Lowe [20] showed how such attacks could be
found automatically using a model checker. An alternative, which we shall
examine below, is to prove protocols correct. Proofs can be done under more
realistic assumptions because our model does not have to be finite. The strat-
egy is to formalize the operational semantics of the system and to prove
security properties using rule induction.

10.2 Agents and Messages

All protocol specifications refer to a syntactic theory of messages. Datatype
agent introduces the constant Server (a trusted central machine, needed for
some protocols), an infinite population of friendly agents, and the Spy :

datatype agent = Server | Friend nat | Spy

Keys are just natural numbers. Function invKey maps a public key to the
matching private key, and vice versa:

types key = nat
consts invKey :: "key ⇒ key"

Datatype msg introduces the message forms, which include agent names,
nonces, keys, compound messages, and encryptions.

datatype
msg = Agent agent

| Nonce nat
| Key key
| MPair msg msg
| Crypt key msg

The notation {|X1, . . .Xn−1,Xn |} abbreviates MPairX1 . . . (MPairXn−1 Xn).
Since datatype constructors are injective, we have the theorem

Crypt K X = Crypt K’ X’ =⇒ K = K’ ∧ X = X’

A ciphertext can be decrypted using only one key and can yield only one
plaintext. In the real world, decryption with the wrong key succeeds but
yields garbage. Our model of encryption is realistic if encryption adds some
redundancy to the plaintext, such as a checksum, so that garbage can be
detected.

192 10. Case Study: Verifying a Security Protocol

10.3 Modelling the Adversary

The spy is part of the system and must be built into the model. He is a mali-
cious user who does not have to follow the protocol. He watches the network
and uses any keys he knows to decrypt messages. Thus he accumulates ad-
ditional keys and nonces. These he can use to compose new messages, which
he may send to anybody.

Two functions enable us to formalize this behaviour: analz and synth.
Each function maps a sets of messages to another set of messages. The set
analz H formalizes what the adversary can learn from the set of messages H .
The closure properties of this set are defined inductively.

inductive set
analz :: "msg set ⇒ msg set"
for H :: "msg set"
where

Inj [intro,simp] : "X ∈ H =⇒ X ∈ analz H"
| Fst: "{|X,Y |} ∈ analz H =⇒ X ∈ analz H"
| Snd: "{|X,Y |} ∈ analz H =⇒ Y ∈ analz H"
| Decrypt [dest]:

" [[Crypt K X ∈ analz H; Key(invKey K) ∈ analz H]]
=⇒ X ∈ analz H"

Note the Decrypt rule: the spy can decrypt a message encrypted with
key K if he has the matching key, K−1. Properties proved by rule induction
include the following:

G ⊆ H =⇒ analz G ⊆ analz H (analz_mono)

analz (analz H) = analz H (analz_idem)

The set of fake messages that an intruder could invent starting from H is
synth(analz H), where synth H formalizes what the adversary can build from
the set of messages H .

inductive set
synth :: "msg set ⇒ msg set"
for H :: "msg set"
where

Inj [intro]: "X ∈ H =⇒ X ∈ synth H"
| Agent [intro]: "Agent agt ∈ synth H"
| MPair [intro]:

" [[X ∈ synth H; Y ∈ synth H]] =⇒ {|X,Y |} ∈ synth H"
| Crypt [intro]:

" [[X ∈ synth H; Key K ∈ H]] =⇒ Crypt K X ∈ synth H"

The set includes all agent names. Nonces and keys are assumed to be
unguessable, so none are included beyond those already in H . Two elements
of synth H can be combined, and an element can be encrypted using a key
present in H .

Like analz, this set operator is monotone and idempotent. It also satisfies
an interesting equation involving analz :

10.4 Event Traces 193

analz (synth H) = analz H ∪ synth H (analz_synth)

Rule inversion plays a major role in reasoning about synth, through declara-
tions such as this one:

inductive cases Nonce_synth [elim!]: "Nonce n ∈ synth H"

The resulting elimination rule replaces every assumption of the form Nonce n

∈ synth H by Nonce n ∈ H, expressing that a nonce cannot be guessed.
A third operator, parts, is useful for stating correctness properties. The set

parts H consists of the components of elements of H . This set includes H and
is closed under the projections from a compound message to its immediate
parts. Its definition resembles that of analz except in the rule corresponding
to the constructor Crypt :

Crypt K X ∈ parts H =⇒ X ∈ parts H

The body of an encrypted message is always regarded as part of it. We can
use parts to express general well-formedness properties of a protocol, for
example, that an uncompromised agent’s private key will never be included
as a component of any message.

10.4 Event Traces

The system’s behaviour is formalized as a set of traces of events. The most
important event, Says A B X, expresses A → B : X , which is the attempt
by A to send B the message X . A trace is simply a list, constructed in
reverse using #. Other event types include reception of messages (when we
want to make it explicit) and an agent’s storing a fact.

Sometimes the protocol requires an agent to generate a new nonce. The
probability that a 20-byte random number has appeared before is effectively
zero. To formalize this important property, the set used evs denotes the set of
all items mentioned in the trace evs. The function used has a straightforward
recursive definition. Here is the case for Says event:

used (Says A B X # evs) = parts {X} ∪ used evs

The function knows formalizes an agent’s knowledge. Mostly we only care
about the spy’s knowledge, and knows Spy evs is the set of items available
to the spy in the trace evs. Already in the empty trace, the spy starts with
some secrets at his disposal, such as the private keys of compromised users.
After each Says event, the spy learns the message that was sent:

knows Spy (Says A B X # evs) = insert X (knows Spy evs)

Combinations of functions express other important sets of messages derived
from evs :

– analz (knows Spy evs) is everything that the spy could learn by decryption

194 10. Case Study: Verifying a Security Protocol

– synth (analz (knows Spy evs)) is everything that the spy could generate

The function pubK maps agents to their public keys. The function priK

maps agents to their private keys. It is merely an abbreviation (cf. Sect. 4.1.4)
defined in terms of invKey and pubK.

consts pubK :: "agent ⇒ key"
abbreviation priK :: "agent ⇒ key"
where "priK x ≡ invKey(pubK x)"

The set bad consists of those agents whose private keys are known to the spy.
Two axioms are asserted about the public-key cryptosystem. No two

agents have the same public key, and no private key equals any public key.

axioms
inj_pubK: "inj pubK"
priK_neq_pubK: "priK A 6= pubK B"

10.5 Modelling the Protocol

inductive set ns_public :: "event list set"
where

Nil: "[] ∈ ns_public"

| Fake: " [[evsf ∈ ns_public; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ ns_public"

| NS1: " [[evs1 ∈ ns_public; Nonce NA /∈ used evs1]]
=⇒ Says A B (Crypt (pubK B) {|Nonce NA, Agent A |})

evs1 ∈ ns_public"

| NS2: " [[evs2 ∈ ns_public; Nonce NB /∈ used evs2;
Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A |}) ∈ set evs2]]

=⇒ Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})
evs2 ∈ ns_public"

| NS3: " [[evs3 ∈ ns_public;
Says A B (Crypt (pubK B) {|Nonce NA, Agent A |}) ∈ set evs3;
Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})
∈ set evs3]]

=⇒ Says A B (Crypt (pubK B) (Nonce NB)) # evs3 ∈ ns_public"

Figure 10.1. An Inductive Protocol Definition

10.6 Proving Elementary Properties 195

Let us formalize the Needham-Schroeder public-key protocol, as corrected
by Lowe:

1. A→ B : {|Na,A|}Kb

2. B → A : {|Na,Nb,B |}Ka

3. A→ B : {|Nb|}Kb

Each protocol step is specified by a rule of an inductive definition. An
event trace has type event list, so we declare the constant ns_public to be
a set of such traces.

Figure 10.1 presents the inductive definition. The Nil rule introduces the
empty trace. The Fake rule models the adversary’s sending a message built
from components taken from past traffic, expressed using the functions synth

and analz. The next three rules model how honest agents would perform the
three protocol steps.

Here is a detailed explanation of rule NS2. A trace containing an event of
the form

Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A |})

may be extended by an event of the form

Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})

where NB is a fresh nonce: Nonce NB ∈ used evs2. Writing the sender as A’

indicates that B does not know who sent the message. Calling the trace vari-
able evs2 rather than simply evs helps us know where we are in a proof after
many case-splits: every subgoal mentioning evs2 involves message 2 of the
protocol.

Benefits of this approach are simplicity and clarity. The semantic model
is set theory, proofs are by induction and the translation from the informal
notation to the inductive rules is straightforward.

10.6 Proving Elementary Properties

Secrecy properties can be hard to prove. The conclusion of a typical secrecy
theorem is X /∈ analz (knows Spy evs). The difficulty arises from having to
reason about analz, or less formally, showing that the spy can never learn X.
Much easier is to prove that X can never occur at all. Such regularity prop-
erties are typically expressed using parts rather than analz.

The following lemma states that A ’s private key is potentially known to the
spy if and only if A belongs to the set bad of compromised agents. The state-
ment uses parts : the very presence of A ’s private key in a message, whether
protected by encryption or not, is enough to confirm that A is compromised.
The proof, like nearly all protocol proofs, is by induction over traces.

196 10. Case Study: Verifying a Security Protocol

lemma Spy_see_priK [simp]:
"evs ∈ ns_public
=⇒ (Key (priK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"

apply (erule ns_public.induct, simp_all)

The induction yields five subgoals, one for each rule in the definition of
ns_public. The idea is to prove that the protocol property holds initially (rule
Nil), is preserved by each of the legitimate protocol steps (rules NS1–3), and
even is preserved in the face of anything the spy can do (rule Fake).

The proof is trivial. No legitimate protocol rule sends any keys at all,
so only Fake is relevant. Indeed, simplification leaves only the Fake case, as
indicated by the variable name evsf :

1.
V
evsf X.

[[evsf ∈ ns_public;
(Key (priK A) ∈ parts (knows Spy evsf)) = (A ∈ bad);
X ∈ synth (analz (knows Spy evsf))]]

=⇒ (Key (priK A) ∈ parts (insert X (knows Spy evsf))) =
(A ∈ bad)

by blast

The Fake case is proved automatically. If priK A is in the extended trace
then either (1) it was already in the original trace or (2) it was generated by
the spy, who must have known this key already. Either way, the induction
hypothesis applies.

Unicity lemmas are regularity lemmas stating that specified items can
occur only once in a trace. The following lemma states that a nonce cannot
be used both as Na and as Nb unless it is known to the spy. Intuitively,
it holds because honest agents always choose fresh values as nonces; only
the spy might reuse a value, and he doesn’t know this particular value. The
proof script is short: induction, simplification, blast. The first line uses the
rule rev_mp to prepare the induction by moving two assumptions into the
induction formula.

lemma no_nonce_NS1_NS2:
" [[Crypt (pubK C) {|NA’, Nonce NA, Agent D |} ∈ parts (knows Spy evs);
Crypt (pubK B) {|Nonce NA, Agent A |} ∈ parts (knows Spy evs);
evs ∈ ns_public]]

=⇒ Nonce NA ∈ analz (knows Spy evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule ns_public.induct, simp_all)
apply (blast intro: analz_insertI)+
done

The following unicity lemma states that, if NA is secret, then its appear-
ance in any instance of message 1 determines the other components. The
proof is similar to the previous one.

lemma unique_NA:
" [[Crypt(pubK B) {|Nonce NA, Agent A |} ∈ parts(knows Spy evs);
Crypt(pubK B’) {|Nonce NA, Agent A’ |} ∈ parts(knows Spy evs);

10.7 Proving Secrecy Theorems 197

Nonce NA /∈ analz (knows Spy evs); evs ∈ ns_public]]
=⇒ A=A’ ∧ B=B’"

10.7 Proving Secrecy Theorems

The secrecy theorems for Bob (the second participant) are especially impor-
tant because they fail for the original protocol. The following theorem states
that if Bob sends message 2 to Alice, and both agents are uncompromised,
then Bob’s nonce will never reach the spy.

theorem Spy_not_see_NB [dest]:
" [[Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_public]]

=⇒ Nonce NB /∈ analz (knows Spy evs)"

To prove it, we must formulate the induction properly (one of the assump-
tions mentions evs), apply induction, and simplify:

apply (erule rev_mp, erule ns_public.induct, simp_all)

The proof states are too complicated to present in full. Let’s examine the
simplest subgoal, that for message 1. The following event has just occurred:

1. A′ → B ′ : {|Na ′,A′|}Kb′

The variables above have been primed because this step belongs to a different
run from that referred to in the theorem statement — the theorem refers to a
past instance of message 2, while this subgoal concerns message 1 being sent
just now. In the Isabelle subgoal, instead of primed variables like B ′ and Na ′

we have Ba and NAa :

1.
V
evs1 NAa Ba.

[[A /∈ bad; B /∈ bad; evs1 ∈ ns_public;
Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})
∈ set evs1 −→
Nonce NB /∈ analz (knows Spy evs1);
Nonce NAa /∈ used evs1]]

=⇒ Ba ∈ bad −→
Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |})
∈ set evs1 −→
NB 6= NAa

The simplifier has used a default simplification rule that does a case analysis
for each encrypted message on whether or not the decryption key is compro-
mised.

analz (insert (Crypt K X) H) =
(if Key (invKey K) ∈ analz H
then insert (Crypt K X) (analz (insert X H))
else insert (Crypt K X) (analz H)) (analz_Crypt_if)

198 10. Case Study: Verifying a Security Protocol

The simplifier has also used Spy_see_priK, proved in Sect. 10.6 above, to yield
Ba ∈ bad.

Recall that this subgoal concerns the case where the last message to be
sent was

1. A′ → B ′ : {|Na ′,A′|}Kb′ .

This message can compromise Nb only if Nb = Na ′ and B ′ is compromised,
allowing the spy to decrypt the message. The Isabelle subgoal says precisely
this, if we allow for its choice of variable names. Proving NB 6= NAa is easy: NB
was sent earlier, while NAa is fresh; formally, we have the assumption Nonce

NAa /∈ used evs1.
Note that our reasoning concerned B ’s participation in another run.

Agents may engage in several runs concurrently, and some attacks work by
interleaving the messages of two runs. With model checking, this possibility
can cause a state-space explosion, and for us it certainly complicates proofs.
The biggest subgoal concerns message 2. It splits into several cases, such as
whether or not the message just sent is the very message mentioned in the
theorem statement. Some of the cases are proved by unicity, others by the
induction hypothesis. For all those complications, the proofs are automatic
by blast with the theorem no_nonce_NS1_NS2.

The remaining theorems about the protocol are not hard to prove. The
following one asserts a form of authenticity : if B has sent an instance of
message 2 to A and has received the expected reply, then that reply really
originated with A. The proof is a simple induction.

theorem B_trusts_NS3:
" [[Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B |}) ∈ set evs;

Says A’ B (Crypt (pubK B) (Nonce NB)) ∈ set evs;
A /∈ bad; B /∈ bad; evs ∈ ns_public]]

=⇒ Says A B (Crypt (pubK B) (Nonce NB)) ∈ set evs"

From similar assumptions, we can prove that A started the protocol run
by sending an instance of message 1 involving the nonce NA . For this theorem,
the conclusion is

Says A B (Crypt (pubK B) {|Nonce NA, Agent A |}) ∈ set evs

Analogous theorems can be proved for A, stating that nonce NA remains se-
cret and that message 2 really originates with B. Even the flawed protocol
establishes these properties for A ; the flaw only harms the second participant.

Detailed information on this protocol verification technique can be found
elsewhere [32], including proofs of an Internet protocol [33]. We must stress
that the protocol discussed in this chapter is trivial. There are only three
messages; no keys are exchanged; we merely have to prove that encrypted
data remains secret. Real world protocols are much longer and distribute
many secrets to their participants. To be realistic, the model has to include
the possibility of keys being lost dynamically due to carelessness. If those
keys have been used to encrypt other sensitive information, there may be

10.7 Proving Secrecy Theorems 199

cascading losses. We may still be able to establish a bound on the losses and
to prove that other protocol runs function correctly [34]. Proofs of real-world
protocols follow the strategy illustrated above, but the subgoals can be much
bigger and there are more of them.

200

201

You know my methods. Apply them!

Sherlock Holmes

A. Appendix

[[[| \<lbrakk>
]] |] \<rbrakk>
=⇒ ==> \<Longrightarrow>V

!! \<And>
≡ == \<equiv>

 == \<rightleftharpoons>
⇀ => \<rightharpoonup>
↽ <= \<leftharpoondown>
λ % \<lambda>
⇒ => \<Rightarrow>
∧ & \<and>
∨ | \<or>
−→ --> \<longrightarrow>
¬ ~ \<not>
6= ~= \<noteq>
∀ ALL, ! \<forall>
∃ EX, ? \<exists>
∃! EX!, ?! \<exists>!
ε SOME, @ \<epsilon>
◦ o \<circ>
| | abs \<bar> \<bar>
≤ <= \<le>
× * \<times>
∈ : \<in>
/∈ ~: \<notin>
⊆ <= \<subseteq>
⊂ < \<subset>
∪ Un \<union>
∩ Int \<inter>S

UN, Union \<Union>T
INT, Inter \<Inter>

∗ ^* \<^sup>*
−1 ^-1 \<inverse>

Table A.1. Mathematical Symbols, Their ascii-Equivalents and Internal Names

204 A. Appendix

Constant Type Syntax
0 ’a::zero
1 ’a::one
+ (’a::plus) ⇒ ’a ⇒ ’a (infixl 65)
- (’a::minus) ⇒ ’a ⇒ ’a (infixl 65)
- (’a::minus) ⇒ ’a
* (’a::times) ⇒ ’a ⇒ ’a (infixl 70)
div (’a::div) ⇒ ’a ⇒ ’a (infixl 70)
mod (’a::div) ⇒ ’a ⇒ ’a (infixl 70)
dvd (’a::times) ⇒ ’a ⇒ bool (infixl 50)
/ (’a::inverse) ⇒ ’a ⇒ ’a (infixl 70)
^ (’a::power) ⇒ nat ⇒ ’a (infixr 80)
abs (’a::minus) ⇒ ’a |x |
≤ (’a::ord) ⇒ ’a ⇒ bool (infixl 50)
< (’a::ord) ⇒ ’a ⇒ bool (infixl 50)
min (’a::ord) ⇒ ’a ⇒ ’a
max (’a::ord) ⇒ ’a ⇒ ’a
Least (’a::ord ⇒ bool) ⇒ ’a LEAST x . P

Table A.2. Overloaded Constants in HOL

ALL BIT CHR EX GREATEST INT Int LEAST O
OFCLASS PI PROP SIGMA SOME THE TYPE UN Un
WRT case choose div dvd else funcset if in
let mem mod o of op then

Table A.3. Reserved Words in HOL Terms

Bibliography

[1] David Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.
[2] David Aspinall. Proof General: A generic tool for proof development.

In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1785 of Lecture Notes in Computer Science, pages
38–42. Springer-Verlag, 2000.

[3] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[4] Gertrud Bauer, Tobias Nipkow, David von Oheimb, Lawrence C Paulson,
Thomas M Rasmussen, Christophe Tabacznyj, and Markus Wenzel. The
supplemental Isabelle/HOL library. Part of the Isabelle distribution,
http://isabelle.in.tum.de/library/HOL/Library/document.pdf, 2002.

[5] Richard Bird. Introduction to Functional Programming using Haskell.
Prentice-Hall, 1998.

[6] Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow. Finding lexi-
cographic orders for termination proofs in Isabelle/HOL. In K. Schnei-
der and J. Brandt, editors, Theorem Proving in Higher Order Logics:
TPHOLs 2007, volume 4732 of Lecture Notes in Computer Science,
pages 38–53. Springer-Verlag, 2007.

[7] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication.
Proceedings of the Royal Society of London, 426:233–271, 1989.

[8] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 1999.

[9] Jacques Fleuriot and Lawrence C. Paulson. Mechanizing nonstandard
real analysis. LMS Journal of Computation and Mathematics, 3:140–190,
2000. http://www.lms.ac.uk/jcm/3/lms1999-027/.

[10] Jean-Yves Girard. Proofs and Types. Cambridge University Press, 1989.
Translated by Yves LaFont and Paul Taylor.

[11] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[12] Florian Haftmann. Haskell-style type classes with Isabelle/Isar. http:
//isabelle.in.tum.de/doc/classes.pdf.

http://proofgeneral.inf.ed.ac.uk/

http://isabelle.in.tum.de/library/HOL/Library/document.pdf

http://www.lms.ac.uk/jcm/3/lms1999-027/

http://isabelle.in.tum.de/doc/classes.pdf

http://isabelle.in.tum.de/doc/classes.pdf

206 BIBLIOGRAPHY

[13] Florian Haftmann and Makarius Wenzel. Constructive type classes in
Isabelle. In T. Altenkirch and C. McBride, editors, Types for Proofs and
Programs, TYPES 2006, volume 4502 of LNCS. Springer, 2007.

[14] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT
Press, 2000.

[15] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979.

[16] Paul Hudak. The Haskell School of Expression. Cambridge University
Press, 2000.

[17] Michael Huth and Mark Ryan. Logic in Computer Science. Modelling
and reasoning about systems. Cambridge University Press, 2000.

[18] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sort-
ing and Searching. Addison-Wesley, 1975.

[19] Alexander Krauss. Defining Recursive Functions in Isabelle/HOL. http:
//isabelle.in.tum.de/doc/functions.pdf.

[20] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using CSP and FDR. In T. Margaria and B. Steffen, editors,
Tools and Algorithms for the Construction and Analysis of Systems:
second international workshop, TACAS ’96, LNCS 1055, pages 147–166.
Springer, 1996.

[21] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

[22] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch.
HOLCF = HOL + LCF. Journal of Functional Programming, 9:191–
223, 1999.

[23] Wolfgang Naraschewski and Markus Wenzel. Object-oriented verifica-
tion based on record subtyping in higher-order logic. In Jim Grundy
and Malcom Newey, editors, Theorem Proving in Higher Order Log-
ics: TPHOLs ’98, volume 1479 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[24] Roger M. Needham and Michael D. Schroeder. Using encryption for
authentication in large networks of computers. Communications of the
ACM, 21(12):993–999, December 1978.

[25] Tobias Nipkow. Functional unification of higher-order patterns. In
M. Vardi, editor, Eighth Annual Symposium on Logic in Computer Sci-
ence, pages 64–74. ieee Computer Society Press, 1993.

[26] Tobias Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and
F. Wiedijk, editors, Types for Proofs and Programs (TYPES 2002),
volume 2646 of Lecture Notes in Computer Science, pages 259–278.
Springer-Verlag, 2003.

[27] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle’s
Logics: HOL. http://isabelle.in.tum.de/doc/logics-HOL.pdf.

[28] Lawrence C. Paulson. The Isabelle Reference Manual. http://isabelle.
in.tum.de/doc/ref.pdf.

http://isabelle.in.tum.de/doc/functions.pdf

http://isabelle.in.tum.de/doc/functions.pdf

http://isabelle.in.tum.de/doc/logics-HOL.pdf

http://isabelle.in.tum.de/doc/ref.pdf

http://isabelle.in.tum.de/doc/ref.pdf

BIBLIOGRAPHY 207

[29] Lawrence C. Paulson. Logic and Computation: Interactive proof with
Cambridge LCF. Cambridge University Press, 1987.

[30] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer,
1994. LNCS 828.

[31] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 2nd edition, 1996.

[32] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6:85–128, 1998.

[33] Lawrence C. Paulson. Inductive analysis of the Internet protocol TLS.
ACM Transactions on Information and System Security, 2(3):332–351,
August 1999.

[34] Lawrence C. Paulson. Relations between secrets: Two formal analyses
of the Yahalom protocol. Journal of Computer Security, 9(3):197–216,
2001.

[35] F. J. Pelletier. Seventy-five problems for testing automatic theorem
provers. Journal of Automated Reasoning, 2:191–216, 1986. Errata,
JAR 4 (1988), 235–236 and JAR 18 (1997), 135.

[36] Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw-
Hill, 1998.

[37] Simon Thompson. Haskell: The Craft of Functional Programming.
Addison-Wesley, 1999.

[38] Markus Wenzel. The Isabelle/Isar Reference Manual. http://isabelle.in.
tum.de/doc/isar-ref.pdf.

[39] Markus Wenzel. Isabelle/Isar — a versatile environment for human-
readable formal proof documents. PhD thesis, Institut für Infor-
matik, Technische Universität München, 2002. http://tumb1.biblio.
tu-muenchen.de/publ/diss/in/2002/wenzel.html.

[40] Markus Wenzel and Stefan Berghofer. The Isabelle System Manual.
http://isabelle.in.tum.de/doc/system.pdf.

http://isabelle.in.tum.de/doc/isar-ref.pdf

http://isabelle.in.tum.de/doc/isar-ref.pdf

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

http://isabelle.in.tum.de/doc/system.pdf

Index

!, 203
?, 203
∃! , 203
?!, 203
&, 203
~, 203
~=, 203
|, 203
*, 22
+, 22
-, 22
<=, 203
<, 22
>, 22
≥, 22
≤, 22
[], 10
#, 10
@, 10, 203
/∈, 203
~:, 203T

, 203S
, 203

−1, 203
^-1, 203
∗, 203
^*, 203V

, 13, 203
!!, 203
⇒, 5
[|, 203
|], 203
%, 203
() (constant), 23
+ (tactical), 100
<*lex*>, see lexicographic product
? (tactical), 100
| (tactical), 100

0 (constant), 22, 166
1 (constant), 22, 166, 167

abandoning a proof, 13
abbreviation (command), 56
abs (constant), 169, 171, 172
abs, 203
absolute value, 169, 172
Ackermann’s function, 48
add (modifier), 29
add_ac (theorems), 172
add_assoc (theorem), 172
add_commute (theorem), 172
ALL, 203
All (constant), 111
allE (theorem), 81
allI (theorem), 80
antiquotation, 61
append function, 10–15
apply (command), 16
arg_cong (theorem), 97
arith (method), 23, 166
arithmetic operations
– for nat, 22
ascii symbols, 203
Aspinall, David, v
associative-commutative function, 178
assumption (method), 69
assumptions
– of subgoal, 13
– renaming, 83
– reusing, 83–84
auto (method), 39, 92
axclass, 160–166
axiom of choice, 87
axiomatic type classes, 160–166

back (command), 79
Ball (constant), 111
ballI (theorem), 110
best (method), 92
Bex (constant), 111
bexE (theorem), 110
bexI (theorem), 110

Index 209

bij_def (theorem), 112
bijections, 112
binary trees, 18
binomial coefficients, 111
bisimulations, 118
blast (method), 89–92
bool (type), 5
boolean expressions example, 19–21
bspec (theorem), 110
by (command), 73

card (constant), 111
card_Pow (theorem), 111
card_Un_Int (theorem), 111
cardinality, 111
case (symbol), 31, 32
case expressions, 5, 6, 18
case distinctions, 19
case splits, 31
case_tac (method), 19, 102, 153
cases (method), 158
chapter (command), 59
clarify (method), 91, 92
clarsimp (method), 91, 92
classical (theorem), 73
coinduction, 118
Collect (constant), 111
compiling expressions example, 37–39
Compl_iff (theorem), 108
complement
– of a set, 107
complex (type), 170–171
complex numbers, 170–171
Complex_Main (theory), 170
composition
– of functions, 112
– of relations, 114
conclusion
– of subgoal, 13
conditional expressions, see if

expressions
conditional simplification rules, 31
cong (attribute), 178
congruence rules, 177
conjE (theorem), 71
conjI (theorem), 68
Cons (constant), 9
contrapositives, 73
converse
– of a relation, 114
converse_iff (theorem), 114
CTL, 123–127, 185–187

datatype (command), 9, 39–44

datatypes, 16–21
– and nested recursion, 41, 45
– mutually recursive, 39
defer (command), 16, 101
definition (command), 24
Definitional Approach, 25
definitions, 24
– unfolding, 30
del (modifier), 29
description operators, 85–87
descriptions
– definite, 86
– indefinite, 86
dest (attribute), 103
destruction rules, 71
diff_mult_distrib (theorem), 168
difference
– of sets, 108
disjCI (theorem), 74
disjE (theorem), 70
div (symbol), 22, 23
divides relation, 85, 96, 102–105, 168
division
– by negative numbers, 169
– by zero, 168
– for type nat, 168
division_by_zero (type class), 171
documents, 57
domain
– of a relation, 114
Domain_iff (theorem), 114
done (command), 14
drule_tac (method), 76, 97
dvd (symbol), 23
dvd_add (theorem), 168
dvd_anti_sym (theorem), 168
dvd_def (theorem), 168

elim! (attribute), 133
elimination rules, 69–70
end (command), 15
Eps (constant), 111
equality, 5
– of functions, 111
– of records, 157
– of sets, 108
equalityE (theorem), 108
equalityI (theorem), 108
erule (method), 70
erule_tac (method), 76
Euclid’s algorithm, 102–105
evaluation, 11
even numbers

210 Index

– defining inductively, 129–133
EX, 203
Ex (constant), 111
exE (theorem), 83
exI (theorem), 82
ext (theorem), 111
extend (constant), 158
extensionality
– for functions, 111, 112
– for records, 157
– for sets, 108
EX!, 203

False (constant), 5
fast (method), 92, 125
Fibonacci function, 47
field (type class), 171
fields (constant), 158
finding theorems, 33, 93
finite (symbol), 111
Finites (constant), 111
fixed points, 117–118
force (method), 91, 92
formal comments, 60
formal proof documents, 57
formulae, 5–6
forward proof, 93–99
frule (method), 83–84
frule_tac (method), 76
fst (constant), 23
fun (command), 47–51
function types, 5
functions, 111–113
– total, 11, 47–51

gcd (constant), 94–95, 102–105
generalizing for induction, 131
generalizing induction formulae, 36
Girard, Jean-Yves, 71n
Gordon, Mike, 3
grammars
– defining inductively, 143–147
ground terms example, 138–142

hd (constant), 17, 38
header (command), 59
Hilbert’s ε-operator, 86
HOLCF, 44
Hopcroft, J. E., 147
hypreal (type), 170

Id_def (theorem), 114
id_def (theorem), 112
identifiers, 6

– qualified, 4
identity function, 112
identity relation, 114
if expressions, 5, 6
– simplification of, 32
– splitting of, 31, 49
if-and-only-if, 6
iff (attribute), 90, 91, 103, 132
iffD1 (theorem), 95
iffD2 (theorem), 95
ignored material, 63
image
– under a function, 113
– under a relation, 114
image_def (theorem), 113
Image_iff (theorem), 114
impI (theorem), 72
implication, 72–73
imports (command), 4
ind_cases (method), 133
induct_tac (method), 12, 19, 51, 183
induction, 180–187
– complete, 182
– deriving new schemas, 184
– on a term, 181
– recursion, 50–51
– structural, 19
– well-founded, 117
induction heuristics, 35–37
inductive (command), 134
inductive definition
– simultaneous, 143
inductive definitions, 129–147
inductive predicates, 134
inductive cases (command), 133, 142
inductive set (command), 129
infinitely branching trees, 43
infix annotations, 53
infixr (annotation), 10
inj_on_def (theorem), 112
injections, 112
insert (constant), 109
insert (method), 98–99
instance, 161
INT, 203
Int, 203
int (type), 169–170
INT_iff (theorem), 110
IntD1 (theorem), 107
IntD2 (theorem), 107
integers, 169–170
INTER (constant), 111
Inter, 203

Index 211

Inter_iff (theorem), 110
intersection, 107
– indexed, 110
IntI (theorem), 107
intro (method), 74
intro! (attribute), 130
intro_classes (method), 161
introduction rules, 68–69
inv (constant), 86
inv_image_def (theorem), 117
inverse
– of a function, 112
– of a relation, 114
inverse (constant), 171
inverse image
– of a function, 113
– of a relation, 116
itrev (constant), 35

λ expressions, 5
LCF, 44
LEAST (symbol), 22, 86
least number operator, see LEAST
Leibniz, Gottfried Wilhelm, 53
lemma (command), 13
lemmas (command), 94, 103
length (symbol), 17
length_induct, 184
less_than (constant), 116
less_than_iff (theorem), 116
let expressions, 5, 6, 30
Let_def (theorem), 30
lex_prod_def (theorem), 117
lexicographic product, 117
lfp
– applications of, see CTL
linear arithmetic, 22–23, 166
List (theory), 17
list (type), 5, 9, 17
list.split (theorem), 31
Lowe, Gavin, 190–191

Main (theory), 4
major premise, 75
make (constant), 158
marginal comments, 60
markup commands, 59
max (constant), 22, 23
measure functions, 116
measure_def (theorem), 117
meta-logic, 80
methods, 16
min (constant), 22, 23

mixfix annotations, 53
mod (symbol), 22, 23
mod_div_equality (theorem), 168
mod_mult_distrib (theorem), 168
model checking example, 118–127
modus ponens, 67, 72
mono_def (theorem), 118
monotone functions, 118, 141
– and inductive definitions, 139–140
more (constant), 154, 155
mp (theorem), 72
mult_ac (theorems), 172
multiple inheritance, 164
multiset ordering, 117

nat (type), 5, 22, 167–169
nat_less_induct (theorem), 182
natural deduction, 67–68
natural numbers, 22, 167–169
Needham-Schroeder protocol, 189–191
negation, 73–75
Nil (constant), 9
no_asm (modifier), 29
no_asm_simp (modifier), 29
no_asm_use (modifier), 30
no_vars (attribute), 62
non-standard reals, 170
None (constant), 24
normal form (command), 11
notation (command), 55
notE (theorem), 73
notI (theorem), 73
numbers, 166–173
numeric literals, 166–167
– for type nat, 167
– for type real, 170

O (symbol), 114
o, 203
o_def (theorem), 112
OF (attribute), 96–97
of (attribute), 94, 97
only (modifier), 29
oops (command), 13
option (type), 24
ordered rewriting, 178
ordered_field (type class), 171
ordered_ring (type class), 171
ordered_semiring (type class), 171
overloading, 22, 160–162
– and arithmetic, 167

pairs and tuples, 23, 151–154
parent theories, 4

212 Index

pattern matching
– and fun, 48
patterns
– higher-order, 179
PDL, 120–122
Power (theory), 173
pr (command), 101
prefer (command), 16, 101
prefix annotation, 55
primitive recursion, see recursion,

primitive
primrec (command), 10, 39–44
print mode, 55
product type, see pairs and tuples
Proof General, 7
proof state, 12
proofs
– abandoning, 13
– examples of failing, 88–89
protocols
– security, 189–199

quantifiers, 6
– and inductive definitions, 138–139
– existential, 82–83
– for sets, 110
– instantiating, 84
– universal, 80–82

r_into_rtrancl (theorem), 114
r_into_trancl (theorem), 115
range
– of a function, 113
– of a relation, 114
range (symbol), 113
Range_iff (theorem), 114
rat (type), 170–171
rational numbers, 170–171
real (type), 170–171
real numbers, 170–171
recdef (command)
– and numeric literals, 167
record (command), 154
records, 154–159
– extensible, 155–157
recursion
– primitive, 17
recursion induction, 50–51
reflexive and transitive closure, 114–116
reflexive transitive closure
– defining inductively, 135–137
rel_comp_def (theorem), 114
relations, 113–116

– well-founded, 116–117
rename_tac (method), 83
rev (constant), 10–15, 35
rewrite rules, 27
– permutative, 178
rewriting, 27
ring (type class), 171
ring_no_zero_divisors (type class),

171
ringppower (type class), 173
rtrancl_refl (theorem), 114
rtrancl_trans (theorem), 114
rule induction, 130–132
rule inversion, 132–133, 142
rule_format (attribute), 181
rule_tac (method), 76
– and renaming, 83

safe (method), 91, 92
safe rules, 90
searching theorems, 33, 93
sect (command), 59
section (command), 59
selector
– record, 155
semiring (type class), 171
session, 58
set (type), 5, 107
set comprehensions, 109–110
set_ext (theorem), 108
sets, 107–111
– finite, 111
– notation for finite, 109
Show Types (Proof General), 7
show_main_goal (flag), 12
simp (attribute), 12, 28
simp (method), 28
simp del (attribute), 28
simp_all (method), 29, 39
simplification, 27–35, 177–180
– of let -expressions, 30
– with definitions, 30
– with/of assumptions, 29
simplification rule, 179–180
simplification rules, 28
– adding and deleting, 29
simplified (attribute), 94, 97
size (constant), 17
snd (constant), 23
SOME (symbol), 86
SOME, 203
Some (constant), 24
some_equality (theorem), 87

Index 213

someI (theorem), 87
someI2 (theorem), 87
someI_ex (theorem), 87
sorts, 165
source comments, 60
spec (theorem), 81
split (attribute), 32
split (constant), 152
split (method), 31, 152
split (modifier), 32
split rule, 32
split_if (theorem), 31
split_if_asm (theorem), 32
ssubst (theorem), 77
structural induction, see induction,

structural
subclasses, 160, 164
subgoal numbering, 46
subgoal_tac (method), 99
subgoals, 12
subsect (command), 59
subsection (command), 59
subset relation, 108
subsetD (theorem), 108
subsetI (theorem), 108
subst (method), 78
substitution, 77–80
subsubsect (command), 59
subsubsection (command), 59
Suc (constant), 22
surj_def (theorem), 112
surjections, 112
sym (theorem), 95
symbols, 54
syntax, 6, 11

tacticals, 100
tactics, 12
tagged command regions, 63
term (command), 16
term rewriting, 27
termination, see functions, total
terms, 5
text, 61
text blocks, 60
THE (symbol), 86
the_equality (theorem), 86
THEN (attribute), 95, 97, 103
theorem (command), 12, 13
theories, 4
theory (command), 4
theory files, 4
thm (command), 16

tl (constant), 17
ToyList example, 9–15
tracing the simplifier, 32
trancl_trans (theorem), 115
transition systems, 119
tries, 44–47
True (constant), 5
truncate (constant), 158
tuples, see pairs and tuples
txt, 61
typ (command), 16
type constraints, 6
type constructors, 5
type inference, 5
type synonyms, 24
type variables, 5
typedecl (command), 119, 173
typedef (command), 174–176
types, 4–5
– declaring, 173
– defining, 174–176
types (command), 24

Ullman, J. D., 147
UN, 203
Un, 203
UN_E (theorem), 110
UN_I (theorem), 110
UN_iff (theorem), 110
Un_subset_iff (theorem), 108
unfold (method), 30
unification, 76–79
UNION (constant), 111
Union, 203
union
– indexed, 110
Union_iff (theorem), 110
unit (type), 23
unknowns, 7, 68
unsafe rules, 90
update
– record, 155
updating a function, 111

value (command), 11
variables, 7
– schematic, 7
– type, 5
vimage_def (theorem), 113

wf_induct (theorem), 117
wf_inv_image (theorem), 117
wf_less_than (theorem), 116
wf_lex_prod (theorem), 117

214 Index

wf_measure (theorem), 117

			Part I. Elementary Techniques

			The Basics

			Introduction

			Theories

			Types, Terms and Formulae

			Variables

			Interaction and Interfaces

			Getting Started

			Functional Programming in HOL

			An Introductory Theory

			Evaluation

			An Introductory Proof

			Some Helpful Commands

			Datatypes

			Lists

			The General Format

			Primitive Recursion

			Case Expressions

			Structural Induction and Case Distinction

			Case Study: Boolean Expressions

			Some Basic Types

			Natural Numbers

			Pairs

			Datatype option

			Definitions

			Type Synonyms

			Constant Definitions

			The Definitional Approach

			More Functional Programming

			Simplification

			What is Simplification?

			Simplification Rules

			The simp Method

			Adding and Deleting Simplification Rules

			Assumptions

			Rewriting with Definitions

			Simplifying let-Expressions

			Conditional Simplification Rules

			Automatic Case Splits

			Tracing

			Finding Theorems

			Induction Heuristics

			Case Study: Compiling Expressions

			Advanced Datatypes

			Mutual Recursion

			Nested Recursion

			The Limits of Nested Recursion

			Case Study: Tries

			Total Recursive Functions: fun

			Definition

			Termination

			Simplification

			Induction

			Presenting Theories

			Concrete Syntax

			Infix Annotations

			Mathematical Symbols

			Prefix Annotations

			Abbreviations

			Document Preparation

			Isabelle Sessions

			Structure Markup

			Formal Comments and Antiquotations

			Interpretation of Symbols

			Suppressing Output

			Part II. Logic and Sets

			The Rules of the Game

			Natural Deduction

			Introduction Rules

			Elimination Rules

			Destruction Rules: Some Examples

			Implication

			Negation

			Interlude: the Basic Methods for Rules

			Unification and Substitution

			Substitution and the subst Method

			Unification and Its Pitfalls

			Quantifiers

			The Universal Introduction Rule

			The Universal Elimination Rule

			The Existential Quantifier

			Renaming an Assumption: rename_tac

			Reusing an Assumption: frule

			Instantiating a Quantifier Explicitly

			Description Operators

			Definite Descriptions

			Indefinite Descriptions

			Some Proofs That Fail

			Proving Theorems Using the blast Method

			Other Classical Reasoning Methods

			Finding More Theorems

			Forward Proof: Transforming Theorems

			Modifying a Theorem using of, where and THEN

			Modifying a Theorem using OF

			Forward Reasoning in a Backward Proof

			The Method insert

			The Method subgoal_tac

			Managing Large Proofs

			Tacticals, or Control Structures

			Subgoal Numbering

			Proving the Correctness of Euclid's Algorithm

			Sets, Functions and Relations

			Sets

			Finite Set Notation

			Set Comprehension

			Binding Operators

			Finiteness and Cardinality

			Functions

			Function Basics

			Injections, Surjections, Bijections

			Function Image

			Relations

			Relation Basics

			The Reflexive and Transitive Closure

			A Sample Proof

			Well-Founded Relations and Induction

			Fixed Point Operators

			Case Study: Verified Model Checking

			Propositional Dynamic Logic --- PDL

			Computation Tree Logic --- CTL

			Inductively Defined Sets

			The Set of Even Numbers

			Making an Inductive Definition

			Using Introduction Rules

			Rule Induction

			Generalization and Rule Induction

			Rule Inversion

			Mutually Inductive Definitions

			Inductively Defined Predicates

			The Reflexive Transitive Closure

			Advanced Inductive Definitions

			Universal Quantifiers in Introduction Rules

			Alternative Definition Using a Monotone Function

			A Proof of Equivalence

			Another Example of Rule Inversion

			Case Study: A Context Free Grammar

			Part III. Advanced Material

			More about Types

			Pairs and Tuples

			Pattern Matching with Tuples

			Theorem Proving

			Records

			Record Basics

			Extensible Records and Generic Operations

			Record Equality

			Extending and Truncating Records

			Axiomatic Type Classes

			Overloading

			Axioms

			Numbers

			Numeric Literals

			The Type of Natural Numbers, nat

			The Type of Integers, int

			The Types of Rational, Real and Complex Numbers

			The Numeric Type Classes

			Introducing New Types

			Declaring New Types

			Defining New Types

			Advanced Simplification and Induction

			Simplification

			Advanced Features

			How the Simplifier Works

			Advanced Induction Techniques

			Massaging the Proposition

			Beyond Structural and Recursion Induction

			Derivation of New Induction Schemas

			CTL Revisited

			Case Study: Verifying a Security Protocol

			The Needham-Schroeder Public-Key Protocol

			Agents and Messages

			Modelling the Adversary

			Event Traces

			Modelling the Protocol

			Proving Elementary Properties

			Proving Secrecy Theorems

			Appendix

