Contents

1 Python 3.0

What's New in Python

2 Changes to the Development Process

2.1 New Issue Tracker: Roundup
2.2 New Documentation Format: reStructuredText Using Sphinx

3 PEP 343: The ‘with’ statement

3.1 Writing Context Managers
3.2 The contextlib module

4 PEP 366: Explicit Relative Imports From a Main Module

5 PEP 370: Per-usesite-packages Directory

6 PEP 371: Themultiprocessing Package

7 PEP 3101: Advanced String Formatting

8 PEP 3105:print As a Function

9 PEP 3110:

Exception-Handling Changes

10

11

12

13

14

15

16

PEP 3112: Byte Literals

PEP 3116: New I/O Library

PEP 3118: Revised Buffer Protocol
PEP 3119: Abstract Base Classes

PEP 3127: Integer Literal Support and Syntax

PEP 3129: Class Decorators

PEP 3141: A Type Hierarchy for Numbers

16.1 Thefractions Module

Release 2.6.2

A. M. Kuchling

April 15, 2009

Python Software Foundation
Email: docs@python.org

Xi
Xiii
Xiv
Xiv

XV
XVi
XVii
Xix

XX

17 Other Language Changes XXi

17.1 Optimizations. o o e e XXiv
17.2 Interpreter Changes. e e e XXV
18 New, Improved, and Deprecated Modules XXV
18.1 Theast module e XXXVi
18.2 Thefuture_builtins module. e XXXViii
18.3 Thejson module: JavaScript Object Notation XXXViii
18.4 Theplistlib module: A Property-ListParser. 0. XXXViil
18.5 ctypes Enhancements. e e XXXIX
18.6 Improved SSL SUPPOIT o o e e e XXXIX
19 Build and C API Changes x|
19.1 Port-Specific Changes: WIiNdows o o 0t e xli
19.2 Port-Specific Changes: Mac OS X. e Xlii
19.3 Port-Specific Changes: IRIX e xlii
20 Porting to Python 2.6 xlii
21 Acknowledgements xliii
Indexxlv

Author A.M. Kuchling (amk at amk.ca)
Release2.6.2
Date April 15, 2009

This article explains the new features in Python 2.6, released on October 1 2008. The release schedule is described in
PEP 361

The major theme of Python 2.6 is preparing the migration path to Python 3.0, a major redesign of the language.
Whenever possible, Python 2.6 incorporates new features and syntax from 3.0 while remaining compatible with ex-
isting code by not removing older features or syntax. When it's not possible to do that, Python 2.6 tries to do what it
can, adding compatibility functions infature_builtins module and a3 switch to warn about usages that will
become unsupported in 3.0.

Some significant new packages have been added to the standard library, sucimakipinecessing andjson
modules, but there aren’t many new features that aren’t related to Python 3.0 in some way.

Python 2.6 also sees a number of improvements and bugfixes throughout the source. A search through the change logs
finds there were 259 patches applied and 612 bugs fixed between Python 2.5 and 2.6. Both figures are likely to be
underestimates.

This article doesn’t attempt to provide a complete specification of the new features, but instead provides a convenient
overview. For full details, you should refer to the documentation for Python 2.6. If you want to understand the rationale
for the design and implementation, refer to the PEP for a particular new feature. Whenever possible, “What's New in
Python” links to the bug/patch item for each change.

1 Python 3.0

The development cycle for Python versions 2.6 and 3.0 was synchronized, with the alpha and beta releases for both
versions being made on the same days. The development of 3.0 has influenced many features in 2.6.

http://www.python.org/dev/peps/pep-0361

Python 3.0 is a far-ranging redesign of Python that breaks compatibility with the 2.x series. This means that existing
Python code will need some conversion in order to run on Python 3.0. However, not all the changes in 3.0 necessarily
break compatibility. In cases where new features won't cause existing code to break, they've been backported to 2.6
and are described in this document in the appropriate place. Some of the 3.0-derived features are:

« A__complex_ () method for converting objects to a complex number.
« Alternate syntax for catching exceptiorexcept TypeError as exc

« The addition ofunctools.reduce() as a synonym for the built-ireduce() function.

Python 3.0 adds several new built-in functions and changes the semantics of some existing built-ins. Functions that are
new in 3.0 such akin() have simply been added to Python 2.6, but existing built-ins haven't been changed; instead,
the future_builtins module has versions with the new 3.0 semantics. Code written to be compatible with 3.0
can dofrom future_builtins import hex, map as necessatry.

A new command-line switch.3 , enables warnings about features that will be removed in Python 3.0. You can run
code with this switch to see how much work will be necessary to port code to 3.0. The value of this switch is available
to Python code as the boolean variabys.py3kwarning , and to C extension code By _Py3kWarningFlag

See Also:

The 3xxx series of PEPs, which contains proposals for PythonPEe. 3000describes the development process for
Python 3.0. Start witPEP 3100that describes the general goals for Python 3.0, and then explore the higher-numbered
PEPS that propose specific features.

2 Changes to the Development Process

While 2.6 was being developed, the Python development process underwent two significant changes: we switched
from SourceForge’s issue tracker to a customized Roundup installation, and the documentation was converted from
LaTeX to reStructuredText.

2.1 New Issue Tracker: Roundup

For a long time, the Python developers had been growing increasingly annoyed by SourceForge’s bug tracker. Source-
Forge’s hosted solution doesn’t permit much customization; for example, it wasn’t possible to customize the life cycle
of issues.

The infrastructure committee of the Python Software Foundation therefore posted a call for issue trackers, asking
volunteers to set up different products and import some of the bugs and patches from SourceForge. Four different
trackers were examinedira LaunchpagdRoundup andTrac. The committee eventually settled on Jira and Roundup

as the two candidates. Jira is a commercial product that offers no-cost hosted instances to free-software projects;
Roundup is an open-source project that requires volunteers to administer it and a server to host it.

After posting a call for volunteers, a new Roundup installation was set bfipat/bugs.python.otgOne installation

of Roundup can host multiple trackers, and this server now also hosts issue trackers for Jython and for the Python web
site. It will surely find other uses in the future. Where possible, this edition of “What’s New in Python” links to the
bug/patch item for each change.

Hosting of the Python bug tracker is kindly provided byfront System®f Stellenbosch, South Africa. Martin

von Loewis put a lot of effort into importing existing bugs and patches from SourceForge; his scripts for this import
operation are &ittp://svn.python.org/view/tracker/importamd may be useful to other projects wishing to move from
SourceForge to Roundup.

See Also:

http://www.python.org/dev/peps/pep-3000
http://www.python.org/dev/peps/pep-3100
http://www.atlassian.com/software/jira/
http://www.launchpad.net
http://roundup.sourceforge.net/
http://trac.edgewall.org/
http://bugs.python.org
http://www.upfrontsystems.co.za/
http://svn.python.org/view/tracker/importer/

http://bugs.python.org The Python bug tracker.
http://bugs.jython.org: The Jython bug tracker.
http://roundup.sourceforge.net/ Roundup downloads and documentation.

http://svn.python.org/view/tracker/importer/ Martin von Loewis’s conversion scripts.

2.2 New Documentation Format: reStructuredText Using Sphinx

The Python documentation was written using LaTeX since the project started around 1989. In the 1980s and early
1990s, most documentation was printed out for later study, not viewed online. LaTeX was widely used because it
provided attractive printed output while remaining straightforward to write once the basic rules of the markup were
learned.

Today LaTeX is still used for writing publications destined for printing, but the landscape for programming tools
has shifted. We no longer print out reams of documentation; instead, we browse through it online and HTML has
become the most important format to support. Unfortunately, converting LaTeX to HTML is fairly complicated and
Fred L. Drake Jr., the long-time Python documentation editor, spent a lot of time maintaining the conversion process.
Occasionally people would suggest converting the documentation into SGML and later XML, but performing a good
conversion is a major task and no one ever committed the time required to finish the job.

During the 2.6 development cycle, Georg Brandl put a lot of effort into building a new toolchain for processing the
documentation. The resulting package is called Sphinx, and is availablénftpriisphinx.pocoo.org/

Sphinx concentrates on HTML output, producing attractively styled and modern HTML; printed output is still sup-
ported through conversion to LaTeX. The input format is reStructuredText, a markup syntax supporting custom exten-
sions and directives that is commonly used in the Python community.

Sphinx is a standalone package that can be used for writing, and almost two dozen other pirggettsn(the Sphinx
web sit§ have adopted Sphinx as their documentation tool.

See Also:

Documenting Python(in Documenting Pythoh Describes how to write for Python’s documentation.
Sphinx Documentation and code for the Sphinx toolchain.

Docutils The underlying reStructuredText parser and toolset.

3 PEP 343: The ‘with’ statement

The previous version, Python 2.5, added thdth ‘ statement as an optional feature, to be enabled Iy
__future__ import with_statement directive. In 2.6 the statement no longer needs to be specially enabled;
this means thatith is now always a keyword. The rest of this section is a copy of the corresponding section from
the “What's New in Python 2.5” document; if you're familiar with theith ‘ statement from Python 2.5, you can
skip this section.

The ‘with ‘ statement clarifies code that previously would trye._finally blocks to ensure that clean-up code
is executed. In this section, I'll discuss the statement as it will commonly be used. In the next section, I'll examine the
implementation details and show how to write objects for use with this statement.

The ‘with ‘ statement is a control-flow structure whose basic structure is:

with expression [as variable]:
with-block

http://bugs.python.org
http://bugs.jython.org
http://roundup.sourceforge.net/
http://svn.python.org/view/tracker/importer/
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/examples.html
http://sphinx.pocoo.org/examples.html
http://sphinx.pocoo.org/
http://docutils.sf.net

The expression is evaluated, and it should result in an object that supports the context management protocol (that is,
has enter () and__exit () methods).

The object’s__enter__ () is called beforewith-blockis executed and therefore can run set-up code. It also may
return a value that is bound to the nar@iable, if given. (Note carefully thavariable is not assigned the result of
expressior)

After execution of thewith-blockis finished, the object’s_exit_ () method is called, even if the block raised an
exception, and can therefore run clean-up code.

Some standard Python objects now support the context management protocol and can be usedwitith tistate-
ment. File objects are one example:

with open(’ /etc/passwd ', 'r’) as f
for line in f
print line

more processing code

After this statement has executed, the file objedtvill have been automatically closed, even if floe loop raised
an exception part- way through the block.

Note: In this casef is the same object created bgen() , becausdile.__enter_ () returnsself

Thethreading module’s locks and condition variables also support thieh * statement:

lock = threading . Lock()
with lock:
Critical section of code

The lock is acquired before the block is executed and always released once the block is complete.

The localcontext() function in thedecimal module makes it easy to save and restore the current decimal
context, which encapsulates the desired precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal(' 578")
print v. sgrt()

with localcontext(Context(prec =16)):
All code in this block uses a precision of 16 digits.
The original context is restored on exiting the block.
print v. sqrt()

3.1 Writing Context Managers

Under the hood, thewith * statement is fairly complicated. Most people will only useith ‘in company with
existing objects and don't need to know these details, so you can skip the rest of this section if you like. Authors of
new objects will need to understand the details of the underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

* The expression is evaluated and should result in an object called a “context manager”. The context manager
must have _enter__ () and__exit_ () methods.

e The context manager’s enter_ () method is called. The value returned is assignedAR If noas VAR
clause is present, the value is simply discarded.

* The code iBBLOCK s executed.

« If BLOCKraises an exception, the exit__ (type, value, traceback)() is called with the excep-
tion details, the same values returnedslyg.exc_info() . The method’s return value controls whether the
exception is re-raised: any false value re-raises the exceptioraadwill result in suppressing it. You'll only
rarely want to suppress the exception, because if you do the author of the code containivithtHestatement
will never realize anything went wrong.

« If BLOCK didn't raise an exception, the exit__ () method is still called, butype value andtracebackare
all None.

Let's think through an example. | won't present detailed code but will only sketch the methods necessary for a database
that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the database are grouped into a transaction.
Transactions can be either committed, meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See any database textbook for more
information.)

Let’'s assume there’s an object representing a database connection. Our goal will be to let the user write code like this:

db_connection = DatabaseConnection()
with db_connection as cursor:
cursor . execute(’insert into ... ")
cursor . execute(' delete from ... ")

... more operations ...

The transaction should be committed if the code in the block runs flawlessly or rolled back if there’s an exception.
Here’s the basic interface f@atabaseConnection that I'll assume:

class DatabaseConnection
Database interface
def cursor (self):
"Returns a cursor object and starts a new transaction
def commit (self):
" Commits current transaction
def rollback (self):
"Rolls back current transaction

The _enter_ () method is pretty easy, having only to start a new transaction. For this application the resulting
cursor object would be a useful result, so the method will return it. The user can thas addsor to their ‘with
statement to bind the cursor to a variable name.

class DatabaseConnection

def __enter__ (self):
Code to start a new transaction
cursor = self . cursor()
return cursor

The__exit_ () method is the most complicated because it's where most of the work has to be done. The method
has to check if an exception occurred. If there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function, returning the default vald®wé. None is
false, so the exception will be re-raised automatically. If you wished, you could be more explicit andeddcha
statement at the marked location.

class DatabaseConnection

def _ exit (self , type , value, tb):

if tb is None:
No exception, so commit
self . commit()

else :
Exception occurred, so rollback.
self . rollback()
return False

3.2 The contextlib module

Thecontextlib module provides some functions and a decorator that are useful when writing objects for use with
the ‘with ‘ statement.

The decorator is calledontextmanager() , and lets you write a single generator function instead of defining
a new class. The generator should yield exactly one value. The code up yeelkthe will be executed as the
__enter__ () method, and the value yielded will be the method'’s return value that will get bound to the variable in
the ‘with * statement'sas clause, if any. The code after tyeeld will be executed in the _exit_ () method.

Any exception raised in the block will be raised by tfield statement.

Using this decorator, our database example from the previous section could be written as:

from contextlib import contextmanager
@contextmanager
def db_transaction (connection):
cursor = connection . cursor()
try :
yield cursor
except :
connection . rollback()
raise
else :

connection . commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:

The contextlib module also has mested(mgrl, mgr2, ...)() function that combines a number of con-
text managers so you don’t need to write nesteith * statements. In this example, the singhdth * statement both
starts a database transaction and acquires a thread lock:

lock = threading . Lock()

with nested (db_transaction(db), lock) as (cursor, locked):

Finally, the closing(object)() function returnsobject so that it can be bound to a variable, and calls
object.close at the end of the block.

import urllib , sys
from contextlib import closing

with closing(urllib . urlopen('’ http://www.yahoo.com ")) as f
for line in f
sys . stdout . write(line)

See Also:

PEP 343- The “with” statement PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike
Bland, Guido van Rossum, and Neal Norwitz. The PEP shows the code generatedvftir & statement,
which can be helpful in learning how the statement works.

The documentation for theontextlib module.

4 PEP 366: Explicit Relative Imports From a Main Module

Python’s-m switch allows running a module as a script. When you ran a module that was located inside a package,
relative imports didn’t work correctly.

The fix for Python 2.6 adds a package attribute to modules. When this attribute is present, relative imports
will be relative to the value of this attribute instead of thename___ attribute.

PEP 302-style importers can then sefpackage _ as necessary. Thainpy module that implements then
switch now does this, so relative imports will now work correctly in scripts running from inside a package.

5 PEP 370: Per-user site-packages Directory

When you run Python, the module search payts.path usually includes a directory whose path ends in
"site-packages" . This directory is intended to hold locally-installed packages available to all users using a
machine or a particular site installation.

Python 2.6 introduces a convention for user-specific site directories. The directory varies depending on the platform:

* Unix and Mac OS X=/.local/
* Windows: %APPDATA%/Python

Within this directory, there will be version-specific subdirectories, suditbgython2.6/site-packages on
Unix/Mac OS andPython26/site-packages on Windows.

If you don't like the default directory, it can be overridden by an environment varil@HONUSERBASE sets the

root directory used for all Python versions supporting this feature. On Windows, the directory for application-specific
data can be changed by setting &kiegPDATA environment variable. You can also modify thite.py file for your

Python installation.

The feature can be disabled entirely by running Python withsh®ption or setting th& YTHONNOUSERSITE
environment variable.

See Also:

PEP 370- Per-usersite-packages Directory PEP written and implemented by Christian Heimes.

http://www.python.org/dev/peps/pep-0343
http://www.python.org/dev/peps/pep-0370

6 PEP 371: The multiprocessing Package

The newmultiprocessing package lets Python programs create new processes that will perform a computation
and return a result to the parent. The parent and child processes can communicate using queues and pipes, synchronize
their operations using locks and semaphores, and can share simple arrays of data.

The multiprocessing module started out as an exact emulation of thmeading module using processes
instead of threads. That goal was discarded along the path to Python 2.6, but the general approach of the module is
still similar. The fundamental class is tReocess , which is passed a callable object and a collection of arguments.
Thestart() method sets the callable running in a subprocess, after which you can dall dlige() method

to check whether the subprocess is still running anddim§) method to wait for the process to exit.

Here’s a simple example where the subprocess will calculate a factorial. The function doing the calculation is written
strangely so that it takes significantly longer when the input argument is a multiple of 4.

import time
from multiprocessing import Process, Queue

def factorial (queue, N):
" Compute a factorial.
If N is a multiple of 4, this function will take much longer.
if (N %4) == 0:
time . sleep(.05 * N 4)

Calculate the result

fact = 1L

for i in range (1, N+1):
fact = fact * i

Put the result on the queue
queue . put(fact)

if __name__ == _main__’
queue = Queue()

N=5

p = Process(target =factorial, args =(queue, N))
p. start()

p. join()

result = queue. get()

print ' Factorial ', N, ' =", result

A Queue is used to communicate the input paramdteand the result. Th&ueue object is stored in a global
variable. The child process will use the value of the variable when the child was created; becau3aet®aparent

and child can use the object to communicate. (If the parent were to change the value of the global variable, the child’s
value would be unaffected, and vice versa.)

Two other classe$?ool andManager , provide higher-level interface®ool will create a fixed number of worker
processes, and requests can then be distributed to the workers by egltilyd) or apply_async() to add a
single request, antiap() ormap_async() toadd a number of requests. The following code udesa to spread
requests across 5 worker processes and retrieve a list of results:

from multiprocessing import

def factorial (N, dictionary):

"Compute a factorial.

Pool

p = Pool(5)
result = p. map(factorial, range (1, 1000, 10))
for v in result:

print v

This produces the following output:

1

39916800
51090942171709440000
8222838654177922817725562880000000
33452526613163807108170062053440751665152000000000

The other high-level interface, thdanager class, creates a separate server process that can hold master copies of
Python data structures. Other processes can then access and modify these data structures using proxy objects. The
following example creates a shared dictionary by callingdic{) =~ method; the worker processes then insert values

into the dictionary. (Locking is not done for you automatically, which doesn’t matter in this exafaeager ‘s

methods also includeock()

import time
from multiprocessing import

def factorial (N, dictionary):

if

" Compute a factorial.

Calculate the result

fact = 1L

for i in range (1, N+1):
fact = fact * i

Store result in dictionary

dictionary[N] = fact
__name__ == _main__ ’:
p = Pool(5)

mgr = Manager()

d = mgr. dict()

Run tasks using the pool
for N in range (1, 1000,

, RLock() , andSemaphore() to create shared locks.)

Pool, Manager

Create shared dictionary

10):

p. apply_async(factorial, (N, d))

Mark pool as closed -- no more tasks can be added.
p. close()

Wait for tasks to exit
p. join()

Output results
for k, v in sorted(d . items()):
print k, v

This will produce the output:

11

11 39916800

21 51090942171709440000

31 8222838654177922817725562880000000

41 33452526613163807108170062053440751665152000000000

51 15511187532873822802242430164693032110632597200169861120000...

See Also:
The documentation for theultiprocessing module.

PEP 371- Addition of the multiprocessing package PEP written by Jesse Noller and Richard Oudkerk; imple-
mented by Richard Oudkerk and Jesse Noller.

7 PEP 3101: Advanced String Formatting

In Python 3.0, théb operator is supplemented by a more powerful string formatting metbodat() . Support for
the str.format() method has been backported to Python 2.6.

In 2.6, both 8-bit and Unicode strings havefarmat() method that treats the string as a template and takes the
arguments to be formatted. The formatting template uses curly brag¢kgtsi¢ special characters:

>>> # Substitute positional argument 0 into the string.
>>> "User ID: {0} ".format("root ")

'User ID: root’

>>> # Use the named keyword arguments

>>> "User ID: {uid} Last seen: {last_login} " . format(
uid ="root ",
last_login = "5 Mar 2008 07:20 ")

'User ID: root Last seen: 5 Mar 2008 07:20
Curly brackets can be escaped by doubling them:

>>> "Empty dict: {{}} " . format()
"Empty dict: {}"

Field names can be integers indicating positional arguments, sybh a¢l} , etc. or names of keyword arguments.
You can also supply compound field names that read attributes or access dictionary keys:

>>> jmport sys

>>> print ' Platform: {0.platform} \n Python version: {0.version} " . format(sys)
Platform: darwin

Python version: 2.6al+ (trunk:61261M, Mar 5 2008, 20:29:41)

[GCC 4.0.1 (Apple Computer, Inc. build 5367)]

>>> import mimetypes
>>> ' Content-type: {O[.mp4]} ' . format(mimetypes . types_map)
'‘Content-type: video/mp4’

http://www.python.org/dev/peps/pep-0371

Note that when using dictionary-style notation sucH.am4] , you don’t need to put any quotation marks around
the string; it will look up the value usingnp4 as the key. Strings beginning with a number will be converted to an
integer. You can't write more complicated expressions inside a format string.

So far we've shown how to specify which field to substitute into the resulting string. The precise formatting used is
also controllable by adding a colon followed by a format specifier. For example:

>>> # Field 0: left justify, pad to 15 characters
>>> # Field 1: right justify, pad to 6 characters

>>> fmt = ' {0:15} ${1:>6}

>>> fmt . format(' Registration ", 35)
'Registration $ 35’

>>> fmt . format(' Tutorial ', 50)
"Tutorial $ 50’

>>> fmt . format(' Banquet ', 125)
'Banquet $ 125

Format specifiers can reference other fields through nesting:

>>> fmt = ' {0:{1}}
>>> width = 15
>>> fmt . format(' Invoice #1234 ', width)

'Invoice #1234

>>> width = 35

>>> fmt . format(' Invoice #1234 ', width)
‘Invoice #1234 '

The alignment of a field within the desired width can be specified:

Character | Effect

< (default) | Left-align
> Right-align
n Center

= (For numeric types only) Pad after the sign.

>

Format specifiers can also include a presentation type, which controls how the value is formatted. For example,
floating-point numbers can be formatted as a general number or in exponential notation:

>>> ' {0:g} ' .format(3.75)
'3.75’

>>> ' {0:e} ' .format(3.75)
’3.750000e+00’

A variety of presentation types are available. Consult the 2.6 documentationdar@ete lis{in The Python Library
Referencg here’s a sample:

b | Binary. Outputs the number in base 2.

¢ | Character. Converts the integer to the corresponding Unicode character before printing.

d | Decimal Integer. Outputs the number in base 10.

0 | Octal format. Outputs the number in base 8.

x | Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.

e | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exponent.

g | General format. This prints the number as a fixed-point number, unless the number is too large, in which case
it switches to ‘e’ exponent notation.

n | Number. This is the same as ‘g’ (for floats) or ‘d’ (for integers), except that it uses the current locale setting to
insert the appropriate number separator characters.

% | Percentage. Multiplies the number by 100 and displays in fixed (‘f") format, followed by a percent sign

Classes and types can define dormat__ () method to control how they're formatted. It receives a single argu-
ment, the format specifier:

def _ format__ (self , format_spec):
if isinstance (format_spec, unicode):
return unicode (str (self))
else :
return str (self)

There's also dormat() built-in that will format a single value. It calls the type’s format__ () method with
the provided specifier:

>>> format(75.6564 , ' .2f ')
'75.66’

See Also:

Format String Syntax(in The Python Library Reference The reference documentation for format fields.

PEP 3101- Advanced String Formatting PEP written by Talin. Implemented by Eric Smith.

8 PEP 3105: print As a Function

Theprint statementbecomes tpeint() function in Python 3.0. Makingrint() a function makes it possible
to replace the function by doindef print(...) or importing a new function from somewhere else.

Python 2.6 has a_future_ import that removesgrint as language syntax, letting you use the functional form
instead. For example:

>>> from _ future__ import print_function

>>> print (' # of entries , len (dictionary), file =sys . stderr)

The signature of the new function is:

[}

def print(*args, sep=" "', end="\n’, file=None)
The parameters are:

« args positional arguments whose values will be printed out.
« sep the separator, which will be printed between arguments.
< end the ending text, which will be printed after all of the arguments have been output.

« file: the file object to which the output will be sent.

See Also:

PEP 3105- Make print a function PEP written by Georg Brandl.

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3105

9 PEP 3110: Exception-Handling Changes

One error that Python programmers occasionally make is writing the following code:

try :

except TypeError , ValueError : # Wrong!

The author is probably trying to catch boltypeError and ValueError exceptions, but this code actually
does something different: it will catcliypeError and bind the resulting exception object to the local name
"ValueError" . TheValueError exception will not be caught at all. The correct code specifies a tuple of
exceptions:

try :

except (TypeError , ValueError):

This error happens because the use of the comma here is ambiguous: does it indicate two different nodes in the parse
tree, or a single node that's a tuple?

Python 3.0 makes this unambiguous by replacing the comma with the word “as”. To catch an exception and store the
exception object in the variabéxc , you must write:

try:

except TypeError as exc:

Python 3.0 will only support the use of “as”, and therefore interprets the first example as catching two different
exceptions. Python 2.6 supports both the comma and “as”, so existing code will continue to work. We therefore
suggest using “as” when writing new Python code that will only be executed with 2.6.

See Also:

PEP 3110 Catching Exceptions in Python 3000PEP written and implemented by Collin Winter.

10 PEP 3112: Byte Literals

Python 3.0 adopts Unicode as the language’s fundamental string type and denotes 8-bit literals differently, either as
b’string’ or using abytes constructor. For future compatibility, Python 2.6 adigses as a synonym for the
str type, and it also supports tié notation.

The 2.6str differs from 3.0'sbytes type in various ways; most notably, the constructor is completely different.
In 3.0,bytes([65, 66, 67]) is 3 elements long, containing the bytes represeriB@, in 2.6, bytes([65,
66, 67]) returns the 12-byte string representing ¢ii§) of the list.

The primary use obytes in 2.6 will be to write tests of object type suchiamstance(x, bytes) . This will

help the 2to3 converter, which can’t tell whether 2.x code intends strings to contain either characters or 8-bit bytes;
you can now use eithdaytes or str to represent your intention exactly, and the resulting code will also be correct

in Python 3.0.

There's also a_future_ import that causes all string literals to become Unicode strings. This means that
escape sequences can be used to include Unicode characters:

http://www.python.org/dev/peps/pep-3110

from _ future__ import unicode_literals

s = (’\u751f \u3080 \u304e \u3000 \u751f \u3054 ’
"\u3081 \u3000 \u751f \u305f \u307e \u3054 ')

print len (s) # 12 Unicode characters

At the C level, Python 3.0 will rename the existing 8-bit string type, cag&tringObject in Python 2.x, to
PyBytesObject . Python 2.6 useidefine to support using the nam@&yBytesObject , PyBytes Check
PyBytes_FromStringAndSize , and all the other functions and macros used with strings.

Instances of theytes type are immutable just as strings are. A feytearray type stores a mutable sequence of
bytes:

>>> bytearray(65, 66, 67])

bytearray(b’ABC")
>>> b = bytearray(u’ \u2lef \u3244 ', ’'utf-8 ")
>>> P

bytearray(b'\xe2\x87\xaf\xe3\x89\x84")
>>> p[0] =" \xe3'’

>>> b
bytearray(b’\xe3\x87\xaf\xe3\x89\x84")
>>> unicode (str (b), ' utf-8)
u\u3dlef \u3244’

Byte arrays support most of the methods of string types, such stastswith() /endswith()
find() /rfind() , and some of the methods of lists, suctappend() , pop() , andreverse()

>>> b = bytearray(' ABC)
>>> b. append(' d’)
>>> b. append(ord (' e’))

>>> P

bytearray(b’ABCde’)

There’s also a corresponding C API, with PyByteArray FromObject ,
PyByteArray_FromStringAndSize , and various other functions.

See Also:

PEP 3112- Bytes literals in Python 3000 PEP written by Jason Orendorff; backported to 2.6 by Christian Heimes.

11 PEP 3116: New I/O Library

Python’s built-in file objects support a number of methods, but file-like objects don’t necessarily support all of them.
Objects that imitate files usually suppoed() andwrite() , but they may not supporéadline() , for exam-

ple. Python 3.0 introduces a layered /O library in themodule that separates buffering and text-handling features
from the fundamental read and write operations.

There are three levels of abstract base classes provided ly tmedule:

* RawlOBase defines raw 1/O operations:read() , readinto() , write() , seek() , tell) ,
truncate() , andclose() . Most of the methods of this class will often map to a single system call. There

http://www.python.org/dev/peps/pep-3112

are alsareadable() , writable() , andseekable() methods for determining what operations a given
object will allow.

Python 3.0 has concrete implementations of this class for files and sockets, but Python 2.6 hasn'’t restructured
its file and socket objects in this way.

- BufferedlOBase s an abstract base class that buffers data in memory to reduce the number of system calls
used, making 1/0O processing more efficient. It supports all of the methoBawfOBase, and adds aaw
attribute holding the underlying raw object.

There are five concrete classes implementing this ABGfferedWriter and BufferedReader

are for objects that support write-only or read-only usage that hasee() method for random ac-
cess. BufferedRandom objects support read and write access upon the same underlying stream, and
BufferedRWPair is for objects such as TTYs that have both read and write operations acting upon un-
connected streams of data. TBgteslO class supports reading, writing, and seeking over an in-memory
buffer.

» TextlOBase : Provides functions for reading and writing strings (remember, strings will be Unicode in Python
3.0), and supporting universal newlinééextlOBase defines thaeadline() method and supports itera-
tion upon objects.

There are two concrete implementatiofiextiOWrapper wraps a buffered 1/0 object, supporting all of the
methods for text I/0 and addinglauffer attribute for access to the underlying obje8tringlO simply
buffers everything in memory without ever writing anything to disk.

(In Python 2.6jo.StringlO is implemented in pure Python, so it's pretty slow. You should therefore stick
with the existingStringlO module orcStringlO for now. At some point Python 3.0is module will be
rewritten into C for speed, and perhaps the C implementation will be backported to the 2.x releases.)

In Python 2.6, the underlying implementations haven’t been restructured to build on topiof thedule’s classes.
The module is being provided to make it easier to write code that's forward-compatible with 3.0, and to save developers
the effort of writing their own implementations of buffering and text I/O.

See Also:

PEP 3116- New I/O PEP written by Daniel Stutzbach, Mike Verdone, and Guido van Rossum. Code by Guido van
Rossum, Georg Brandl, Walter Doerwald, Jeremy Hylton, Martin von Loewis, Tony Lownds, and others.

12 PEP 3118: Revised Buffer Protocol

The buffer protocol is a C-level API that lets Python types exchange pointers into their internal representations. A
memory-mapped file can be viewed as a buffer of characters, for example, and this lets another moduleesuch as
treat memory-mapped files as a string of characters to be searched.

The primary users of the buffer protocol are numeric-processing packages such as NumPy, which expose the internal
representation of arrays so that callers can write data directly into an array instead of going through a slower API. This
PEP updates the buffer protocol in light of experience from NumPy development, adding a humber of new features
such as indicating the shape of an array or locking a memory region.

The most important new C API functioni®y/Object_GetBuffer(PyObject *obj, Py_buffer *view,

int flags) , which takes an object and a set of flags, and fills in Ryebuffer structure with information

about the object’s memory representation. Objects can use this operation to lock memory in place while an external
caller could be modifying the contents, so there's a corresporiejiBuffer Release(Py_buffer *view)

to indicate that the external caller is done.

The flagsargument tdPyObject_GetBuffer specifies constraints upon the memory returned. Some examples
are:

http://www.python.org/dev/peps/pep-3116

« PyBUF_WRITABLENdicates that the memory must be writable.
« PyBUF_LOCKrequests a read-only or exclusive lock on the memory.

« PyBUF_C_CONTIGUOUS8NdPyBUF _F_CONTIGUOU®quests a C-contiguous (last dimension varies the
fastest) or Fortran-contiguous (first dimension varies the fastest) array layout.

Two new argument codes fByArg_ParseTuple ,s* andz*, return locked buffer objects for a parameter.

See Also:

PEP 3118- Revising the buffer protocol PEP written by Travis Oliphant and Carl Banks; implemented by Travis
Oliphant.

13 PEP 3119: Abstract Base Classes

Some object-oriented languages such as Java support interfaces, declaring that a class has a given set of methods or
supports a given access protocol. Abstract Base Classes (or ABCs) are an equivalent feature for Python. The ABC
support consists of aambc module containing a metaclass callkBCMeta, special handling of this metaclass by the
isinstance() andissubclass() built-ins, and a collection of basic ABCs that the Python developers think

will be widely useful. Future versions of Python will probably add more ABCs.

Let's say you have a particular class and wish to know whether it supports dictionary-style access. The phrase
“dictionary-style” is vague, however. It probably means that accessing itemsobijith] works. Does it imply

that setting items witlobj[2] = value works? Or that the object will havdeys() ,values() , anditems()

methods? What about the iterative variants sucheakeys() ? copy() andupdate() ? Iterating over the

object withiter() ?

The Python 2.6collections module includes a number of different ABCs that represent these distinc-
tions. Iterable indicates that a class definesiter_ () , and Container means the class defines a
__contains__() method and therefore suppoKsin y expressions. The basic dictionary interface of getting
items, setting items, andeys() ,values() ,anditems() ,is defined by théMutableMapping ABC.

You can derive your own classes from a particular ABC to indicate they support that ABC'’s interface:

import collections

class Storage (collections . MutableMapping):

Alternatively, you could write the class without deriving from the desired ABC and instead register the class by calling
the ABC'sregister() method:

import collections

class Storage :

collections . MutableMapping . register(Storage)

For classes that you write, deriving from the ABC is probably clearer. régester() method is useful when
you've written a new ABC that can describe an existing type or class, or if you want to declare that some third-party
class implements an ABC. For example, if you defindttiatableType ABC, it’s legal to do:

http://www.python.org/dev/peps/pep-3118

Register Python’s types
PrintableType . register(int)
PrintableType . register(float)
PrintableType . register(str)

Classes should obey the semantics specified by an ABC, but Python can’t check this; it's up to the class author to
understand the ABC's requirements and to implement the code accordingly.

To check whether an object supports a particular interface, you can now write:

def func (d):
if not isinstance (d, collections . MutableMapping):
raise ValueError (" Mapping object expected, not " % d)

Don't feel that you must now begin writing lots of checks as in the above example. Python has a strong tradition
of duck-typing, where explicit type-checking is never done and code simply calls methods on an object, trusting that
those methods will be there and raising an exception if they aren’t. Be judicious in checking for ABCs and only do it

where it's absolutely necessary.

You can write your own ABCs by usingbc.ABCMeta as the metaclass in a class definition:

from abc import ABCMeta, abstractmethod

class Drawable ():

_ _metaclass__ = ABCMeta

@abstractmethod

def draw (self , x, y, scale =1.0):
pass

def draw_doubled (self , x, y):
self . draw(x, y, scale =2.0)

class Square (Drawable):
def draw (self , x, y, scale):

In theDrawable ABC above, thalraw_doubled() = method renders the object at twice its size and can be imple-
mented in terms of other methods describe®mawable . Classes implementing this ABC therefore don't need to
provide their own implementation alraw_doubled() , though they can do so. An implementationdow() is
necessary, though; the ABC can’t provide a useful generic implementation.

You can apply the@abstractmethod decorator to methods such @ésaw() that must be implemented; Python
will then raise an exception for classes that don’t define the method. Note that the exception is only raised when you
actually try to create an instance of a subclass lacking the method:

>>> class Circle (Drawable):
pass

>>> ¢ = Circle()
Traceback (most recent call last):
File "<stdin>" | line 1, in <module>
TypeError : Can't instantiate abstract class Circle with abstract methods draw
>>>

Abstract data attributes can be declared using@tadstractproperty decorator:

from abc import abstractproperty

@abstractproperty
def readonly (self):
return self . _x

Subclasses must then defineeadonly() property.

See Also:

PEP 3119- Introducing Abstract Base ClassesPEP written by Guido van Rossum and Talin. Implemented by
Guido van Rossum. Backported to 2.6 by Benjamin Aranguren, with Alex Martelli.

14 PEP 3127: Integer Literal Support and Syntax

Python 3.0 changes the syntax for octal (base-8) integer literals, prefixing them with “00” or “00” instead of a leading
zero, and adds support for binary (base-2) integer literals, signalled by a “Ob” or “OB” prefix.

Python 2.6 doesn't drop support for a leading 0 signalling an octal number, but it does add support for “00” and “Ob”:

>>> 0021, 2*8 + 1
a7, 17)

>>> 0b101111

47

Theoct() built-in still returns numbers prefixed with a leading zero, and a b{) built-in returns the binary
representation for a number:

>>> oct (42)

'052’

>>> future_builtins .oct(42)
'0052’

>>> bin(173)

'0b10101101"

Theint() andlong() built-ins will now accept the “00” and “Ob” prefixes when base-8 or base-2 are requested,
or when theébaseargument is zero (signalling that the base used should be determined from the string):

>>> int ('’ 0052", 0)

42

>>> int (' 1101', 2)
13

>>> int (' 0b1101’', 2)
13

>>> int (' 0b1101°, 0)
13

See Also:

PEP 3127- Integer Literal Support and Syntax PEP written by Patrick Maupin; backported to 2.6 by Eric Smith.

http://www.python.org/dev/peps/pep-3119
http://www.python.org/dev/peps/pep-3127

15 PEP 3129: Class Decorators

Decorators have been extended from functions to classes. It's now legal to write:

@foo

@bar

class A:
pass

This is equivalent to:

class A:
pass

A = foo(bar(A))
See Also:

PEP 3129- Class Decorators PEP written by Collin Winter.

16 PEP 3141: A Type Hierarchy for Numbers

Python 3.0 adds several abstract base classes for numeric types inspired by Scheme’s numeric tower. These classes
were backported to 2.6 as thembers module.

The most general ABC islumber. It defines no operations at all, and only exists to allow checking if an object is a
number by doingsinstance(obj, Number)

Complex is a subclass oNumber. Complex numbers can undergo the basic operations of addition, subtraction,
multiplication, division, and exponentiation, and you can retrieve the real and imaginary parts and obtain a number’s
conjugate. Python’s built-in complex type is an implementatioGafmplex .

Real further derives fronComplex , and adds operations that only work on real numb#osir() , trunc()
rounding, taking the remainder mod N, floor division, and comparisons.

Rational numbers derive froniReal , havenumerator anddenominator properties, and can be converted
to floats. Python 2.6 adds a simple rational-number clBss¢tion , in the fractions module. (It's called
Fraction instead oRational to avoid a name clash withumbers.Rational)

Integral numbers derive fronRRational , and can be shifted left and right wittk and>>, combined using
bitwise operations such &and| , and can be used as array indexes and slice boundaries.

In Python 3.0, the PEP slightly redefines the existing builtrmend() , math.floor() , math.ceil() , and
adds a new onemath.trunc() , that's been backported to Python 2.tath.trunc() rounds toward zero,
returning the closedhtegral that's between the function’s argument and zero.

See Also:
PEP 3141- A Type Hierarchy for Numbers PEP written by Jeffrey Yasskin.

Scheme’s numerical towgfrom the Guile manual.

Scheme’s number datatypfeem the R5RS Scheme specification.

http://www.python.org/dev/peps/pep-3129
http://www.python.org/dev/peps/pep-3141
http://www.gnu.org/software/guile/manual/html_node/Numerical-Tower.html#Numerical-Tower
http://schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2

16.1 The fractions Module

To fill out the hierarchy of numeric types, tifi@actions module provides a rational-number class. Rational num-
bers store their values as a numerator and denominator forming a fraction, and can exactly represent numbers such as
2/3 that floating-point numbers can only approximate.

TheFraction constructor takes twimtegral ~ values that will be the numerator and denominator of the resulting
fraction.

>>> from fractions import Fraction

>>> a = Fraction(2, 3)

>>> p = Fraction(2, 5)

>>> float (a), float (b)
(0.66666666666666663, 0.40000000000000002)
>>> a+b

Fraction(16, 15)

>>> alb

Fraction(5, 3)

For converting floating-point numbers to rationals, the float type now has ainteger_ratio() method that
returns the numerator and denominator for a fraction that evaluates to the same floating-point value:

>>> (2.5) .as_integer_ratio()

5, 2)

>>> (13.1415) . as_integer_ratio()
(7074029114692207L, 2251799813685248L)
>>> (1./3) .as_integer_ratio()
(6004799503160661L, 18014398509481984L)

Note that values that can only be approximated by floating-point numbers, such as 1./3, are not simplified to the
number being approximated; the fraction attempts to match the floating-pointesaaty.

The fractions module is based upon an implementation by Sjoerd Mullender that was in Python's
Demol/classes/ directory for a long time. This implementation was significantly updated by Jeffrey Yasskin.

17 Other Language Changes

Some smaller changes made to the core Python language are:

* The hasattr() function was catching and ignoring all errors, under the assumption that they meant a
__Qgetattr__ () method was failing somehow and the return valueha$attr() would therefore be
False . This logic shouldn’t be applied t&eyboardinterrupt and SystemExit , however; Python
2.6 will no longer discard such exceptions wheasattr() encounters them. (Fixed by Benjamin Peterson;
issue 2196

* When calling a function using th# syntax to provide keyword arguments, you are no longer required to use a
Python dictionary; any mapping will now work:

>>> def f(**kw):
print sorted(kw)

>>> ud=UserDict . UserDict()
>>>ud['a’'] =1

http://bugs.python.org/issue2196

>>> ud['b'] = 'string
>>> f(**ud)
[a, b

(Contributed by Alexander Belopolskissue 168648)
It's also become legal to provide keyword arguments afterrgs argument to a function call.

>>> def f(*args, **kw):
print args, kw

>>> f(1,2,3, *(4,5,6), keyword =13)
(1, 2, 3, 4, 5, 6) {’keyword: 13}

Previously this would have been a syntax error. (Contributed by Amaury Forgeot dsAve: 3473

* A new built-in, next(iterator, [default]) returns the next item from the specified iterator. If the
defaultargument is supplied, it will be returnedtiérator has been exhausted; otherwise, $t@plteration
exception will be raised. (Backportedigsue 2719

e Tuples now havindex() andcount() methods matching the list typdisdex() andcount() methods:

>>>t = (0,1,2,3,4,0,1,2)
>>> t.index(3)

3

>>> t. count(0)

2

(Contributed by Raymond Hettinger)

« The built-in types now have improved support for extended slicing syntax, accepting various combinations
of (start, stop, step) . Previously, the support was partial and certain corner cases wouldn’'t work.
(Implemented by Thomas Wouters.)

» Properties now have three attributggtter , setter anddeleter , that are decorators providing useful
shortcuts for adding a getter, setter or deleter function to an existing property. You would use them like this:

class C(object):
@property
def x(self):
return self . _x

@x setter
def x(self , value):
self ._x = value

@x deleter
def x(self):
del self . _x

class D(C):
@Cx. getter
def x(self):
return self . x * 2

@x setter
def x(self , value):
self . x = value [/ 2

http://bugs.python.org/issue1686487
http://bugs.python.org/issue3473
http://bugs.python.org/issue2719

e Several methods of the built-in set types now accept multiple iterablaatersection() ,
intersection_update() ,union() ,update() , difference() anddifference_update()

>>> s=set(' 1234567890 ')

>>> s, intersection("abcl23', ’'cdf246 ') # Intersection between all inputs
set(['2])

>>> . difference('246°, ' 789)

set(['1’, '0’, '3, '5)

(Contributed by Raymond Hettinger.)

* Many floating-point features were added. Tieat() function will now turn the stringhan into an IEEE
754 Not A Number value, andlinf and-inf into positive or negative infinity. This works on any platform
with IEEE 754 semantics. (Contributed by Christian Heimes;je 1635

Other functions in thenath module,isinf() andisnan() , return true if their floating-point argument is
infinite or Not A Number. isue 164)

Conversion functions were added to convert floating-point numbers into hexadecimal $st8ngs300R These
functions convert floats to and from a string representation without introducing rounding errors from the con-
version between decimal and binary. Floats hatex() method that returns a string representation, and the
float.fromhex() method converts a string back into a number:

>>> a = 3.75

>>> a. hex()

'0x1.e000000000000p+1’

>>> float . fromhex(' 0x1.e000000000000p+1 ")
3.75

>>> pb=1./3

>>> Pb. hex()

'0x1.5555555555555p-2

< A numerical nicety: when creating a complex number from two floats on systems that support signed zeros (-0
and +0), thecomplex() constructor will now preserve the sign of the zero. (Fixed by Mark T. Dickinson;
issue 1503

 Classes that inherit a hash__ () method from a parent class can sehash__ = None to indicate that
the class isn’t hashable. This will makash(obj) raise aTypeError and the class will not be indicated as
implementing theHashable ABC.

You should do this when you've defined_ acmp__ () or __eq_ () method that compares objects by
their value rather than by identity. All objects have a default hash method thatid(sdg) as the
hash value. There’s no tidy way to remove thehash () method inherited from a parent class,
so assigningNone was implemented as an override. At the C level, extensions campsbash to
PyObject_HashNotimplemented . (Fixed by Nick Coghlan and Amaury Forgeot d’Afssue 2235

» Changes to th&xception interface as dictated byEP 352continue to be made. For 2.6, theessage
attribute is being deprecated in favor of tugs attribute.

* The GeneratorExit exception now subclass&aseException instead ofException . This means
that an exception handler that daeecept Exception: will not inadvertently catclGeneratorExit
(Contributed by Chad Austingsue 1537

« Generator objects now havega code attribute that refers to the original code object backing the generator.
(Contributed by Collin Winterissue 1473257

e Thecompile() built-in function now accepts keyword arguments as well as positional parameters. (Con-
tributed by Thomas Wouterssue 1444529

http://bugs.python.org/issue1635
http://bugs.python.org/issue1640
http://bugs.python.org/issue3008
http://bugs.python.org/issue1507
http://bugs.python.org/issue2235
http://www.python.org/dev/peps/pep-0352
http://bugs.python.org/issue1537
http://bugs.python.org/issue1473257
http://bugs.python.org/issue1444529

« The complex() constructor now accepts strings containing parenthesized complex numbers, meaning that
complex(repr(cplx)) will now round-trip values. For examplepmplex('(3+4j)’) now returns
the value (3+4j). i6sue 1491866

» The stringtranslate() method now acceptdone as the translation table parameter, which is treated as the
identity transformation. This makes it easier to carry out operations that only delete characters. (Contributed by
Bengt Richter and implemented by Raymond Hettingexge 1193128

e The built-indir() function now checks for a _dir__ () method on the objects it receives. This method
must return a list of strings containing the names of valid attributes for the object, and lets the object control the
value thatdir() produces. Objects that havegetattr__ () or __getattribute_ () methods can
use this to advertise pseudo-attributes they will horiesug 1591666

« Instance method objects have new attributes for the object and function comprising the method; the new syn-
onym forim_self is__self , andim_func is also available as func__ . The old names are still
supported in Python 2.6, but are gone in 3.0.

» An obscure change: when you use tbeals() function inside alass statement, the resulting dictionary
no longer returns free variables. (Free variables, in this case, are variables referenceddassthestatement
that aren't attributes of the class.)

17.1 Optimizations

» Thewarnings module has been rewritten in C. This makes it possible to invoke warnings from the parser, and
may also make the interpreter’s startup faster. (Contributed by Neal Norwitz and Brett Cazsnent 63117.)

» Type objects now have a cache of methods that can reduce the work required to find the correct method imple-
mentation for a particular class; once cached, the interpreter doesn't need to traverse base classes to figure out
the right method to call. The cache is cleared if a base class or the class itself is modified, so the cache should
remain correct even in the face of Python’s dynamic nature. (Original optimization implemented by Armin
Rigo, updated for Python 2.6 by Kevin Jacolssue 1700283

By default, this change is only applied to types that are included with the Python core. Ex-
tension modules may not necessarily be compatible with this cache, so they must explicitly add
Py TPFLAGS HAVE_VERSION_TA® the module'stp_flags field to enable the method cache. (To

be compatible with the method cache, the extension module’s code must not directly access and modify the
tp_dict member of any of the types it implements. Most modules don't do this, but it's impossible for the
Python interpreter to determine that. Segie 1873or some discussion.)

 Function calls that use keyword arguments are significantly faster by doing a quick pointer comparison, usually
saving the time of a full string comparison. (Contributed by Raymond Hettinger, after an initial implementation
by Antoine Pitroujssue 1819

« All of the functions in thestruct module have been rewritten in C, thanks to work at the Need For Speed
sprint. (Contributed by Raymond Hettinger.)

« Some of the standard built-in types now set a bit in their type objects. This speeds up checking whether an
object is a subclass of one of these types. (Contributed by Neal Norwitz.)

« Unicode strings now use faster code for detecting whitespace and line breaks; this speedsplif)the
method by about 25% ansblitlines() by 35%. (Contributed by Antoine Pitrou.) Memory usage is
reduced by using pymalloc for the Unicode string’s data.

e Thewith statement now stores the exit_ () method on the stack, producing a small speedup. (Imple-
mented by Jeffrey Yasskin.)

« To reduce memory usage, the garbage collector will now clear internal free lists when garbage-collecting the
highest generation of objects. This may return memory to the operating system sooner.

http://bugs.python.org/issue1491866
http://bugs.python.org/issue1193128
http://bugs.python.org/issue1591665
http://bugs.python.org/issue1631171
http://bugs.python.org/issue1700288
http://bugs.python.org/issue1878
http://bugs.python.org/issue1819

17.2 Interpreter Changes

Two command-line options have been reserved for use by other Python implementations. $Wwich has been
reserved for use by Jython for Jython-specific options, such as switches that are passed to the underlyighhéM.

been reserved for options specific to a particular implementation of Python such as CPython, Jython, or IronPython.
If either option is used with Python 2.6, the interpreter will report that the option isn’t currently used.

Python can now be prevented from writiqgyc or .pyo files by supplying theB switch to the Python interpreter,
or by setting thePYTHONDONTWRITEBYTECODE environment variable before running the interpreter. This
setting is available to Python programs asshe.dont_write_bytecode variable, and Python code can change
the value to modify the interpreter’s behaviour. (Contributed by Neal Norwitz and Georg Brandl.)

The encoding used for standard input, output, and standard error can be specified by séfigHNIOENCOD-

ING environment variable before running the interpreter. The value should be a string in thedoomding> or
<encoding>:<errorhandler> . Theencodingpart specifies the encoding’s name, euf-8 or latin-1 ;

the optionalkerrorhandlerpart specifies what to do with characters that can’'t be handled by the encoding, and should
be one of “error”, “ignore”, or “replace”. (Contributed by Martin von Loewis.)

18 New, Improved, and Deprecated Modules

As in every release, Python’s standard library received a number of enhancements and bug fixes. Here’s a partial list
of the most notable changes, sorted alphabetically by module name. ConddistiREWS file in the source tree
for a more complete list of changes, or look through the Subversion logs for all the details.

* (3.0-warning mode) Python 3.0 will feature a reorganized standard library that will drop many outdated modules
and rename others. Python 2.6 running in 3.0-warning mode will warn about these modules when they are

imported.

The list of deprecated modules isaudiodev , bgenlocations , buildtools , bundlebuilder
Canvas, compiler , dircache ,dl, fpformat , gensuitemodule ,ihooks , imageop , imdfile
linuxaudiodev , mhlib , mimetools , multifile , new, pure, statvfs , sunaudiodev |,
test.testall , andtoaiff

* Theasyncore andasynchat modules are being actively maintained again, and a number of patches and
bugfixes were applied. (Maintained by Josiah Carlsonjsees 173619€or one patch.)

« Thebsddb module also has a new maintainer, Jesus Cea, and the package is now available as a standalone
package. The web page for the packagensw.jcea.es/programacion/pybsddb.hthe plan is to remove
the package from the standard library in Python 3.0, because its pace of releases is much more frequent than
Python’s.

Thebsddb.dbshelve module now uses the highest pickling protocol available, instead of restricting itself
to protocol 1. (Contributed by W. Barnessue 1551443

e Thecgi module will now read variables from the query string of an HTTP POST request. This makes it possible
to use form actions with URLs that include query strings such as “/cgi-bin/add.py?category=1". (Contributed
by Alexandre Fiori and Nubisssue 1813

Theparse_gs() andparse_gsl() functions have been relocated from ttgg¢ module to thaurlparse
module. The versions still available in tbgi module will triggerPendingDeprecationWarning mes-
sages in 2.6i¢sue 60036

» Thecmath module underwent extensive revision, contributed by Mark Dickinson and Christian Heimes. Five
new functions were added:

— polar() converts a complex number to polar form, returning the modulus and argument of the complex
number.

http://bugs.python.org/issue1736190
http://www.jcea.es/programacion/pybsddb.htm
http://bugs.python.org/issue1551443
http://bugs.python.org/issue1817
http://bugs.python.org/issue600362

—rect() does the opposite, turning a modulus, argument pair back into the corresponding complex num-
ber.

— phase() returns the argument (also called the angle) of a complex number.
—isnan() returns True if either the real or imaginary part of its argument is a NaN.
— isinf() returns True if either the real or imaginary part of its argument is infinite.

The revisions also improved the numerical soundness otitheth module. For all functions, the real and
imaginary parts of the results are accurate to within a few units of least precision (ulps) whenever possible. See
issue 138%or the details. The branch cuts fasinh() , atanh() :andatan() have also been corrected.

The tests for the module have been greatly expanded; nearly 2000 new test cases exercise the algebraic functions.

On IEEE 754 platforms, themath module now handles IEEE 754 special values and floating-point exceptions
in a manner consistent with Annex ‘G’ of the C99 standard.

A new data type in theollections module: namedtuple(typename, fieldnames) is a factory
function that creates subclasses of the standard tuple whose fields are accessible by name as well as index. For
example:

>>> var_type = collections . namedtuple('’ variable
"id name type size)

>>> # Names are separated by spaces or commas.

>>> # 'id, name, type, size’ would also work.

>>> var_type . _fields

(id’, 'name’, 'type’, ’'size’)

>>> var = var_type(1, 'frequency ', 'int ', 4)
>>> print var[0], var .id # Equivalent

11

>>> print var[2], var .type # Equivalent

int int

>>> var . _asdict()

{'size’: 4, 'type” 'int’, 'id: 1, 'name’ ’frequency’}
>>> v2 = var . _replace(name =" amplitude ')
>>> y2

variable(id=1, name="amplitude’, type='int’, size=4)

Several places in the standard library that returned tuples have been modified toasecituple instances.
For example, thédecimal.as_tuple() method now returns a named tuple witlgn , digits , and
exponent fields.

(Contributed by Raymond Hettinger.)

Another change to theollections module is that theleque type now supports an optionadaxlenparam-
eter; if supplied, the deque’s size will be restricted to no more tharlenitems. Adding more items to a full
deque causes old items to be discarded.

>>> from collections import deque

>>> dg=deque(maxlen =3)

>>> dq

deque([], maxlen=3)

>>> dq. append(1) ; dq . append(2) ; dg . append(3)
>>> dq

deque([1, 2, 3], maxlen=3)

>>> dq. append(4)

>>> dq

deque([2, 3, 4], maxlen=3)

http://bugs.python.org/issue1381

(Contributed by Raymond Hettinger.)

« TheCookie module’sMorsel objects now support dnttponly attribute. In some browsers. cookies with
this attribute set cannot be accessed or manipulated by JavaScript code. (Contributed by Arvin Seshegell;
1638033)

< A new window method in theurses module,chgat() , changes the display attributes for a certain number
of characters on a single line. (Contributed by Fabian Kreutz.)

Boldface text starting at y=0,x=21
and affecting the rest of the line.
stdscr . chgat(0, 21, curses .A _BOLD)

TheTextbox classin theurses.textpad module now supports editing in insert mode as well as overwrite
mode. Insert mode is enabled by supplying a true value folirthert _modeparameter when creating the
Textbox instance.

* Thedatetime module’sstrftime() methods now support%f format code that expands to the number of
microseconds in the object, zero-padded on the left to six places. (Contributed by Skip Montamerd;159

« Thedecimal module was updated to version 1.66loé General Decimal SpecificatioNew features include
some methods for some basic mathematical functions suekpds andlog10()

>>> Decimal(1) . exp()
Decimal("2.718281828459045235360287471")
>>> Decimal("2.7182818 ") . In()
Decimal("0.9999999895305022877376682436")
>>> Decimal(1000) . log10()

Decimal("3")

The as_tuple() method ofDecimal objects now returns a named tuple wisign , digits , and
exponent fields.

(Implemented by Facundo Batista and Mark Dickinson. Named tuple support added by Raymond Hettinger.)

« Thedifflib module’sSequenceMatcher class now returns named tuples representing matchesawith
b, andsize attributes. (Contributed by Raymond Hettinger.)

< An optionaltimeout parameter, specifying a timeout measured in seconds, was addedtgithETP
class constructor as well as teennect() = method. (Added by Facundo Batista.) Also, fREP class’s
storbinary() andstorlines() now take an optionatallback parameter that will be called with each
block of data after the data has been sent. (Contributed by Phil Schvgartz; 1221593

e Thereduce() built-in function is also available in thieinctools ~ module. In Python 3.0, the built-in has
been dropped anceduce() is only available fronfunctools ; currently there are no plans to drop the
built-in in the 2.x series. (Patched by Christian Heimesgye 173990§

« When possible, thgetpass module will now usddevi/tty to print a prompt message and read the pass-
word, falling back to standard error and standard input. If the password may be echoed to the terminal, a warning
is printed before the prompt is displayed. (Contributed by Gregory P. Smith.)

» The glob.glob() function can now return Unicode filenames if a Unicode path was used and Unicode
filenames are matched within the directoigs(ie 1001604

* Thegopherlib module has been removed.

* A new function in theheapq module,merge(iterl, iter2, ...) , takes any number of iterables re-
turning data in sorted order, and returns a new generator that returns the contents of all the iterators, also in
sorted order. For example:

http://bugs.python.org/issue1638033
http://bugs.python.org/issue1638033
http://bugs.python.org/issue1158
http://www2.hursley.ibm.com/decimal/decarith.html
http://bugs.python.org/issue1221598
http://bugs.python.org/issue1739906
http://bugs.python.org/issue1001604

>>> |ist (heapq . merge(] 1, 3, 5, 9], [2, 8, 16])
[1, 2, 3, 5, 8, 9, 16]

Another new functionheappushpop(heap, item) , pushestemontoheap then pops off and returns the
smallest item. This is more efficient than making a calhéappush() and therheappop()

heapq is now implemented to only use less-than comparison, instead of the less-than-or-equal comparison it
previously used. This makdweapq ‘s usage of a type match thist.sort() method. (Contributed by
Raymond Hettinger.)

An optional timeout parameter, specifying a timeout measured in seconds, was added to the
httplib.HTTPConnection andHTTPSConnection class constructors. (Added by Facundo Batista.)

Most of theinspect module’s functions, such agtmoduleinfo() andgetargs() , now return named
tuples. In addition to behaving like tuples, the elements of the return value can also be accessed as attributes.
(Contributed by Raymond Hettinger.)

Some new functions in the module includegenerator() , isgeneratorfunction() , and
isabstract()

Theitertools module gained several new functions.

izip_longest(iterl, iter2, ...[, fillvalue]) makes tuples from each of the elements; if
some of the iterables are shorter than others, the missing values ardilbetltee. For example:

>>> tuple (itertools . izip_longest([1,2,3), [1,2,3,4,5])
(1, 1), (2, 2), (3, 3), (None, 4), (None, 5))

product(iterl, iter2, ..., [repeat=N]) returns the Cartesian product of the supplied iterables,
a set of tuples containing every possible combination of the elements returned from each iterable.

>>> list (itertools .product((1,2,3], [4,5,6])
(1, 4, 1, 5), (1, 6),
2, 4, (2, 5), (2, 6),
B, 4, 3, 5), 3 6)]

The optionalrepeatkeyword argument is used for taking the product of an iterable or a set of iterables with
themselves, repeat@ditimes. With a single iterable argumenktuples are returned:

>>> list (itertools . product([1, 2], repeat =3))
(@, 1, 1), (1, 1, 2), 1, 2, 1), (14, 2, 2),
2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]

With two iterables2N-tuples are returned.

>>> |ist (itertools .product(1,2], [3, 4], repeat =2))
(@, 3, 1, 3), (1, 3, 1, 4), (1, 3, 2, 3), (4, 3, 2, 4),
1, 4,1, 3), (4, 4, 1, 4, (1, 4, 2, 3), (1, 4, 2, 4),
(2, 3,1, 3), (2, 3,1, 4), (2, 3, 2, 3), (2, 3, 2, 4),
(2, 4, 1, 3), (2, 4, 1, 4), (2, 4, 2, 3), (2, 4, 2, 4)]

combinations(iterable, r) returns sub-sequences of lengtllom the elements aferable
>>> [ist (itertools . combinations(' 123", 2))

[(!17, !27)’ (111, 131), (!21, !31)]

>>> list (itertools . combinations(' 123", 3))

(cr, 2, '3)]

>>> |ist (itertools . combinations(' 1234, 3))

[, 2, '3), (1, 2, '4),
cr, '3, '4), (2, '3, 4]

permutations(iter[, r]) returns all the permutations of lengttof the iterable’s elements. Kfis not
specified, it will default to the number of elements produced by the iterable.

>>> |ist (itertools . permutations([1,2,3,4], 2)
(1, 2), (1, 3), (1, 4),
2, 1), (2, 3), (2, 4,
G 1, 3 2, 3 4,
4, 1), (4, 2), (4, 3)]

itertools.chain(*iterables) is an existing function iftertools that gained a new constructor in
Python 2.6itertools.chain.from_iterable(iterable) takes a single iterable that should return
other iterables.chain() will then return all the elements of the first iterable, then all the elements of the
second, and so on.

>>> list (itertools . chain . from_iterable([[1,2,3], [4,5,6]))
[1, 2, 3, 4, 5, 6]

(All contributed by Raymond Hettinger.)

» The logging module’s FileHandler class and its subclassedVatchedFileHandler
RotatingFileHandler , and TimedRotatingFileHandler now have an optionatlelay param-
eter to their constructors. tfelayis true, opening of the log file is deferred until the fieshit() call is made.
(Contributed by Vinay Sajip.)

TimedRotatingFileHandler also has aitc constructor parameter. If the argument is true, UTC time will
be used in determining when midnight occurs and in generating filenames; otherwise local time will be used.
» Several new functions were added to thath module:
— isinf() andisnan() determine whether a given float is a (positive or negative) infinity or a NaN (Not
a Number), respectively.
— copysign() copies the sign bit of an IEEE 754 number, returning the absolute valueoohbined with

the sign bit ofy. For examplemath.copysign(1, -0.0) returns -1.0. (Contributed by Christian
Heimes.)
— factorial() computes the factorial of a number. (Contributed by Raymond Hettirgere 2139

— fsum() adds up the stream of numbers from an iterable, and is careful to avoid loss of precision through
using partial sums. (Contributed by Jean Brouwers, Raymond Hettinger, and Mark Dickassen?819

— acosh() ,asinh() andatanh() compute the inverse hyperbolic functions.
— loglp() returns the natural logarithm af-x (basee).
— trunc() rounds a number toward zero, returning the closesigral that's between the function’s
argument and zero. Added as part of the backpoREP 3141’s type hierarchy for numbers
« The math module has been improved to give more consistent behaviour across platforms, especially with
respect to handling of floating-point exceptions and IEEE 754 special values.

Whenever possible, the module follows the recommendations of the C99 standard about 754's special val-
ues. For examplesqgrt(-1.) should now give aValueError across almost all platforms, while
sqrt(float('NaN")) should return a NaN on all IEEE 754 platforms. Where Annex ‘F’ of the C99
standard recommends signaling ‘divide-by-zero’ or ‘invalid’, Python will rAfséueError . Where Annex

‘F’ of the C99 standard recommends signaling ‘overflow’, Python will ré@lserflowError . (Seeissue
711019andissue 1640

(Contributed by Christian Heimes and Mark Dickinson.)
« TheMimeWriter module andnimify module have been deprecated; usectmail package instead.

« Themd5module has been deprecated; usehthghlib module instead.

http://bugs.python.org/issue2138
http://bugs.python.org/issue2819
http://bugs.python.org/issue711019
http://bugs.python.org/issue711019
http://bugs.python.org/issue1640

* mmapobjects now have #ind() method that searches for a substring beginning at the end of the string
and searching backwards. Tfied() method also gained aandparameter giving an index at which to stop
searching. (Contributed by John Lenton.)

e Theoperator module gained aethodcaller() function that takes a name and an optional set of argu-
ments, returning a callable that will call the named function on any arguments passed to it. For example:

>>> # Equivalent to lambda s: s.replace(old’, 'new’)

>>> replacer = operator . methodcaller(’'replace ', 'old ', 'new)
>>> replacer(' old wine in old bottles ")

‘new wine in new bottles’

(Contributed by Georg Brandl, after a suggestion by Gregory Petrosyan.)

Theattrgetter() function now accepts dotted names and performs the corresponding attribute lookups:
>>> inst_name = operator . attrgetter(

" _class_._name__)

>>> jnst_name(')

'str’

>>> inst_name(help)

' Helper’

(Contributed by Georg Brandl, after a suggestion by Barry Warsaw.)

« Theos module now wraps several new system cdttemod(fd, mode) andfchown(fd, uid, gid)
change the mode and ownership of an opened fileJ@ndod(path, mode) changes the mode of a sym-
link. (Contributed by Georg Brandl and Christian Heimes.)

chflags() and Ichflags() are wrappers for the corresponding system calls (where they're available),
changing the flags set on a file. Constants for the flag values are definedsitathemodule; some possible
values include&JF_IMMUTABLEOo signal the file may not be changed ddB_APPENDo indicate that data

can only be appended to the file. (Contributed by M. Levinson.)

os.closerange(low, high) efficiently closes all file descriptors frofow to high, ignoring any errors
and not includindnighitself. This function is now used by tlseibprocess module to make starting processes
faster. (Contributed by Georg Brandisue 1663329

e The os.environ object’s clear() method will now unset the environment variables using
os.unsetenv() in addition to clearing the object’s keys. (Contributed by Martin Horcickaye 1187)

« Theos.walk() function now has &llowlinks parameter. If setto True, it will follow symlinks pointing
to directories and visit the directory’s contents. For backward compatibility, the parameter’s default value is
false. Note that the function can fall into an infinite recursion if there’s a symlink that points to a parent directory.
(issue 1273829

* In the os.path module, the splitext() function has been changed to not split on leading pe-
riod characters. This produces better results when operating on Unix's dot-files. For example,
os.path.splitext(’.ipython’) now returng.ipython’, ") instead of”, .ipython’)

(issue 11588p

A new function,os.path.relpath(path, start=".") , returns a relative path from ttstart path,
if it's supplied, or from the current working directory to the destinapeth . (Contributed by Richard Barran;
issue 133979%

On Windows ps.path.expandvars() will now expand environment variables given in the form “%var%”,
and “~user” will be expanded into the user’s home directory path. (Contributed by Josiah Castson;
957650)

http://bugs.python.org/issue1663329
http://bugs.python.org/issue1181
http://bugs.python.org/issue1273829
http://bugs.python.org/issue115886
http://bugs.python.org/issue1339796
http://bugs.python.org/issue957650
http://bugs.python.org/issue957650

The Python debugger provided by théb module gained a new command: “run” restarts the Python program
being debugged and can optionally take new command-line arguments for the program. (Contributed by Rocky
Bernsteinjssue 1393667

Theposixfile module has been deprecatézhtl.lockf() provides better locking.

Thepost_mortem() function, used to begin debugging a traceback, will now use the traceback returned by
sys.exc_info() if no traceback is supplied. (Contributed by Facundo Batistaje 110631%

The pickletools module now has aonptimize() function that takes a string containing a pickle and
removes some unused opcodes, returning a shorter pickle that contains the same data structure. (Contributed by
Raymond Hettinger.)

Thepopen2 module has been deprecated; usesthigprocess module.

Aget _data() function was added to thgkgutil module that returns the contents of resource files included
with an installed Python package. For example:

>>> jmport pkgutil
>>> print pkgutil . get data(’'test ', ' exception_hierarchy.txt ")
BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception
+-- Stoplteration
+-- StandardError

(Contributed by Paul Mooressue 2439

Thepyexpat module’sParser objects now allow setting thebuffer_size attribute to change the size
of the buffer used to hold character data. (Contributed by Achim Gaésikes 1137

TheQueue module now provides queue variants that retrieve entries in different order®.ribnigyQueue
class stores queued items in a heap and retrieves them in priority orddrifaQdieue retrieves the most
recently added entries first, meaning that it behaves like a stack. (Contributed by Raymond Hettinger.)

The random module’sRandom objects can now be pickled on a 32-bit system and unpickled on a 64-bit
system, and vice versa. Unfortunately, this change also means that PythoRR&@lem objects can't be
unpickled correctly on earlier versions of Python. (Contributed by Shawn Ligeckie 1727780

The newtriangular(low, high, mode) function returns random numbers following a triangular dis-
tribution. The returned values are betwdew andhigh, not includinghigh itself, and withmodeas the most
frequently occurring value in the distribution. (Contributed by Wladmir van der Laan and Raymond Hettinger;
issue 1681432

Long regular expression searches carried out byghenodule will check for signals being delivered, so time-
consuming searches can now be interrupted. (Contributed by Josh Hoyt and Ralf Sekhot§46383

The regular expression module is implemented by compiling bytecodes for a tiny regex-specific virtual machine.
Untrusted code could create malicious strings of bytecode directly and cause crashes, so Python 2.6 includes a
verifier for the regex bytecode. (Contributed by Guido van Rossum from work for Google App Erggine;

3487)

Thergbimg module has been removed.

The ricompleter module’s Completer.complete() method will now ignore exceptions triggered
while evaluating a name. (Fixed by Lorenz Quaickiie 2250

http://bugs.python.org/issue1393667
http://bugs.python.org/issue1106316
http://bugs.python.org/issue2439
http://bugs.python.org/issue1137
http://bugs.python.org/issue1727780
http://bugs.python.org/issue1681432
http://bugs.python.org/issue846388
http://bugs.python.org/issue3487
http://bugs.python.org/issue3487
http://bugs.python.org/issue2250

Thesched module’sscheduler instances now have a read-oglyeue attribute that returns the contents of
the scheduler’s queue, represented as a list of named tuples with thetfialels priority, action,
argument) . (Contributed by Raymond Hettingeéssue 1867

The select module now has wrapper functions for the Linepoll and BSDkqueue system calls.
modify() method was added to the existipgll objects;pollobj.modify(fd, eventmask) takes

a file descriptor or file object and an event mask, modifying the recorded event mask for that file. (Contributed
by Christian Heimesissue 1657

Thesets module has been deprecated; it's better to use the busktinandfrozenset types.
Thesha module has been deprecated; usetthghlib module instead.

The shutil.copytree() function now has an optionanore argument that takes a callable object. This
callable will receive each directory path and a list of the directory’s contents, and returns a list of names that
will be ignored, not copied.

The shutil module also provides aignore_patterns() function for use with this new parameter.
ignore_patterns() takes an arbitrary number of glob-style patterns and returns a callable that will ig-
nore any files and directories that match any of these patterns. The following example copies a directory tree,
but skips bothsvn directories and Emacs backup files, which have names ending with ‘~":

) ’

shutil . copytree(' Doc/library , " ltmpllibrary ,
ignore =shutil . ignore_patterns(TR~ T svn)

(Contributed by Tarek Ziadéssue 2663

Integrating signal handling with GUI handling event loops like those used by Tkinter or GTk+ has long been a
problem; most software ends up polling, waking up every fraction of a second to check if any GUI events have
occurred. Thesignal module can now make this more efficient. Callsignal.set_wakeup_fd(fd)

sets a file descriptor to be used; when a signal is received, a byte is written to that file descriptor. There’s also a
C-level function PySignal_SetWakeupFd , for setting the descriptor.

Event loops will use this by opening a pipe to create two descriptors, one for reading and one for writing. The
writable descriptor will be passed set_wakeup_fd() , and the readable descriptor will be added to the list

of descriptors monitored by the event loop silect or poll . On receiving a signal, a byte will be written

and the main event loop will be woken up, avoiding the need to poll.

(Contributed by Adam Olsemgsue 1583

Thesiginterrupt() function is now available from Python code, and allows changing whether signals can
interrupt system calls or not. (Contributed by Ralf Schmitt.)

The setitimer() and getitimer() functions have also been added (where they're available).
setitimer() allows setting interval timers that will cause a signal to be delivered to the process after a
specified time, measured in wall-clock time, consumed process time, or combined process+system time. (Con-
tributed by Guilherme Polassue 2240

The smtplib module now supports SMTP over SSL thanks to the addition ofSt&P_SSLclass. This
class supports an interface identical to the exis@igTPclass. (Contributed by Monty Taylor.) Both class
constructors also have an optiotisleout parameter that specifies a timeout for the initial connection attempt,
measured in seconds. (Contributed by Facundo Batista.)

An implementation of the LMTP protocoRFC 2033 was also added to the module. LMTP is used in place of
SMTP when transferring e-mail between agents that don’t manage a mail queue. (LMTP implemented by Leif
Hedstromjssue 957003

SMTP.starttls() now complies witRFC 3207and forgets any knowledge obtained from the server not obtained
from the TLS negotiation itself. (Patch contributed by Bill Fennesue 82995)

http://bugs.python.org/issue1861
http://bugs.python.org/issue1657
http://bugs.python.org/issue2663
http://bugs.python.org/issue1583
http://bugs.python.org/issue2240
http://tools.ietf.org/html/rfc2033.html
http://bugs.python.org/issue957003
http://tools.ietf.org/html/rfc3207.html
http://bugs.python.org/issue829951

The socket module now supports TIPQtp://tipc.sf.ne), a high-performance non-IP-based protocol de-
signed for use in clustered environments. TIPC addresses are 4- or 5-tuples. (Contributed by Alberto Bertogli;
issue 1649

A new function, create_connection() , takes an address and connects to it using an optional timeout
value, returning the connected socket object.

The base classes in tisocketServer module now support calling bandle_timeout() method after

a span of inactivity specified by the servetimeout attribute. (Contributed by Michael Pomraning.) The
serve_forever() method now takes an optional poll interval measured in seconds, controlling how often
the server will check for a shutdown request. (Contributed by Pedro Werneck and Jeffrey Yasskin425983

issue 119357

Thesqlite3 module, maintained by Gerhard Haering, has been updated from version 2.3.2 in Python 2.5 to
version 2.4.1.

The struct module now supports the C9Bool type, using the format charact&' . (Contributed by
David Remahl.)

The Popen objects provided by thesubprocess module now haveterminate() , kill() , and
send_signal() methods. On Windowssend_signal() only supports the&SIGTERMSsignal, and all
these methods are aliases for the Win32 API funcfl@mminateProcess . (Contributed by Christian
Heimes.)

A new variable in thesys module, float_info , is an object containing information derived from the
float.h file about the platform’s floating-point support. Attributes of this object inclmd@t _dig (number

of digits in the mantissagpsilon (smallest difference between 1.0 and the next largest value representable),
and several others. (Contributed by Christian Heinresje 1539

Another new variablegdont_write_bytecode , controls whether Python writes anyyc or .pyo files

on importing a module. If this variable is true, the compiled files are not written. The variable is initially set
on start-up by supplying theB switch to the Python interpreter, or by setting PéTHONDONTWRITE-
BYTECODE environment variable before running the interpreter. Python code can subsequently change the
value of this variable to control whether bytecode files are written or not. (Contributed by Neal Norwitz and
Georg Brandl.)

Information about the command-line arguments supplied to the Python interpreter is available by reading at-
tributes of a named tuple availablegss.flags . For example, theerbose attribute is true if Python was
executed in verbose moddebug is true in debugging mode, etc. These attributes are all read-only. (Con-
tributed by Christian Heimes.)

A new function,getsizeof() , takes a Python object and returns the amount of memory used by the object,
measured in bytes. Built-in objects return correct results; third-party extensions may not, but can define a
__sizeof_ () method to return the object’s size. (Contributed by Robert Schuppésies; 2899

It's now possible to determine the current profiler and tracer functions by calisgetprofile() and
sys.gettrace() . (Contributed by Georg Brandksue 1649

Thetarfile module now supports POSIX.1-2001 (pax) tarfiles in addition to the POSIX.1-1988 (ustar) and
GNU tar formats that were already supported. The default format is GNU tar; specifgrthat parameter
to open a file using a different format:

tar = tarfile . open(" output.tar "otw,
format =tarfile . PAX_FORMAT)

The newencoding anderrors parameters specify an encoding and an error handling scheme for character
conversions'strict’ ,'ignore’ |, and’replace’ are the three standard ways Python can handle errors,;
‘utf-8’ is a special value that replaces bad characters with their UTF-8 representation. (Character conversions
occur because the PAX format supports Unicode filenames, defaulting to UTF-8 encoding.)

http://tipc.sf.net
http://bugs.python.org/issue1646
http://bugs.python.org/issue742598
http://bugs.python.org/issue1193577
http://bugs.python.org/issue1534
http://bugs.python.org/issue2898
http://bugs.python.org/issue1648

TheTarFile.add() method now accepts @axclude argumentthat’s a function that can be used to exclude
certain filenames from an archive. The function must take a filename and return true if the file should be excluded
or false if it should be archived. The function is applied to both the name initially passeftifp and to the

names of files in recursively-added directories.

(All changes contributed by Lars Gustabel).

An optionaltimeout parameter was added to ttednetlib. Telnet class constructor, specifying a time-
out measured in seconds. (Added by Facundo Batista.)

Thetempfile.NamedTemporaryFile class usually deletes the temporary file it created when the file is
closed. This behaviour can now be changed by pastifgte=False to the constructor. (Contributed by
Damien Miller;issue 1537850

A new classSpooledTemporaryFile , behaves like a temporary file but stores its data in memory until a
maximum size is exceeded. On reaching that limit, the contents will be written to an on-disk temporary file.
(Contributed by Dustin J. Mitchell.)

The NamedTemporaryFile and SpooledTemporaryFile classes both work as context managers, so
you can writewith tempfile.NamedTemporaryFile() as tmp: (Contributed by Alexan-
der Belopolskyjssue 2021

The test.test_support module gained a number of context managers useful for writing tests.
EnvironmentVarGuard() is a context manager that temporarily changes environment variables and au-
tomatically restores them to their old values.

Another context managefransientResource , can surround calls to resources that may or may not be
available; it will catch and ignore a specified list of exceptions. For example, a hetwork test may ignore certain
failures when connecting to an external web site:

with test_support . TransientResource(IOError
errno =errno . ETIMEDOUT):
f = urllib . urlopen(' https://sf.net D)

Finally, check_warnings() resets thevarning module’s warning filters and returns an object that will
record all warning messages triggerexs(ie 378}

with test_support . check_warnings() as wrec:
warnings . simplefilter("always ")
... code that triggers a warning ...
assert str (wrec . message) == "function is outdated "
assert len (wrec . warnings) == 1, "Multiple warnings raised

(Contributed by Brett Cannon.)

Thetextwrap module can now preserve existing whitespace at the beginnings and ends of the newly-created

lines by specifyingrop_whitespace=False as an argument:
>>> § = "™ This sentence has a bunch of

extra whitespace.
>>> print textwrap . fill(S, width =15)

This sentence
has a bunch
of extra
whitespace.
>>> print textwrap . fill(S, drop_whitespace =False , width =15)
This sentence
has a bunch

http://bugs.python.org/issue1537850
http://bugs.python.org/issue2021
http://bugs.python.org/issue3781

of extra
whitespace.
>>>

(Contributed by Dwayne Baileyssue 1581073

Thethreading module API is being changed to use properties suateason instead ofsetDaemon()
andisDaemon() methods, and some methods have been renamed to use underscores instead of camel-case;
for example, thectiveCount() method is renamed tactive_count() . Both the 2.6 and 3.0 versions

of the module support the same properties and renamed methods, but don’t remove the old methods. No date
has been set for the deprecation of the old APIs in Python 3.x; the old APIs won’t be removed in any 2.x version.
(Carried out by several people, most notably Benjamin Peterson.)

Thethreading module’sThread objects gained aident property that returns the thread’s identifier, a
nonzero integer. (Contributed by Gregory P. Smighpe 2871

Thetimeit module now accepts callables as well as strings for the statement being timed and for the setup
code. Two convenience functions were added for creafimger instances:repeat(stmt, setup,

time, repeat, number) and timeit(stmt, setup, time, number) create an instance and

call the corresponding method. (Contributed by Erik Demaimje 1533909

TheTkinter module now accepts lists and tuples for options, separating the elements by spaces before passing
the resulting value to Tcl/Tk. (Contributed by Guilherme Padspe 2906

Theturtle module for turtle graphics was greatly enhanced by Gregor Lingl. New features in the module
include:

— Better animation of turtle movement and rotation.

— Control over turtle movement using the neelay() ,tracer() ,andspeed() methods.

— The ability to set new shapes for the turtle, and to define a new coordinate system.

— Turtles now have anndo() method that can roll back actions.

— Simple support for reacting to input events such as mouse and keyboard activity, making it possible to
write simple games.

— A turtle.cfg file can be used to customize the starting appearance of the turtle’s screen.
— The module’s docstrings can be replaced by new docstrings that have been translated into another language.

(issue 1513696

An optional timeout parameter was added to therllib.urlopen() function and the
urllib.ftpwrapper class constructor, as well as thdlib2.urlopen() function. The parameter
specifies a timeout measured in seconds. For example:

>>> u = urllib2 . urlopen(" http://slow.example.com
timeout=3)
Traceback (most recent call last):

urllib2.URLError . <urlopen error timed out>
>>>

(Added by Facundo Batista.)

The Unicode database provided by tiréicodedata module has been updated to version 5.1.0. (Updated by
Martin von Loewis;issue 3811)

http://bugs.python.org/issue1581073
http://bugs.python.org/issue2871
http://bugs.python.org/issue1533909
http://bugs.python.org/issue2906
http://bugs.python.org/issue1513695
http://bugs.python.org/issue3811

e Thewarnings module’sformatwarning() andshowwarning() gained an optiondine argument that
can be used to supply the line of source code. (Added as peartf 163117,Iwhich re-implemented part of
thewarnings module in C code.)

A new function,catch_warnings() , is a context manager intended for testing purposes that lets you tem-
porarily modify the warning filters and then restore their original valisesié 378).

¢ The XML-RPCSimpleXMLRPCServer andDocXMLRPCServer classes can now be prevented from im-
mediately opening and binding to their socket by passing True abititk and_activate constructor
parameter. This can be used to modify the instanalisv_reuse_address attribute before calling the
server_bind() andserver_activate() methods to open the socket and begin listening for connec-
tions. (Contributed by Peter Parentesue 159984%

SimpleXMLRPCServer also has a send_traceback_header attribute; if true, the exception and for-

matted traceback are returned as HTTP headers “X-Exception” and “X-Traceback”. This feature is for debug-
ging purposes only and should not be used on production servers because the tracebacks might reveal passwords
or other sensitive information. (Contributed by Alan Mcintyre as part of his project for Google’s Summer of
Code 2007.)

» Thexmirpclib module no longer automatically convedatetime.date anddatetime.time to the
xmlrpclib.DateTime type; the conversion semantics were not necessarily correct for all applications.
Code usingkmlrpclib should convertlate andtime instances.i§ésue 1330538The code can also handle
dates before 1900 (contributed by Ralf Schmittue 201)and 64-bit integers represented by us#ig> in
XML-RPC responses (contributed by Riku Lindbléskue 298h

« Thezipfile module'sZipFile class now haextract() andextractall() methods that will unpack
a single file or all the files in the archive to the current directory, or to a specified directory:

z = zipfile . ZipFile(' python-251.zip ")

Unpack a single file, writing it relative
to the /tmp directory.
z. extract(' Python/sysmodule.c ", ltmp)

#
#

Unpack all the files in the archive.
z. extractall()
(Contributed by Alan Mclintyreissue 4679224

Theopen() ,read() andextract() methods can now take either a filename @iginfo object. This
is useful when an archive accidentally contains a duplicated filename. (Contributed by Graham iskarter;
1775025)

Finally, zipfile now supports using Unicode filenames for archived files. (Contributed by Alexey Borzenkov;
issue 1734346

18.1 The ast module

Theast module provides an Abstract Syntax Tree representation of Python code, and Armin Ronacher contributed a
set of helper functions that perform a variety of common tasks. These will be useful for HTML templating packages,
code analyzers, and similar tools that process Python code.

Theparse() function takes an expression and returns an AST.dumap() function outputs a representation of a
tree, suitable for debugging:

import ast

||||||

t = ast . parse(

http://bugs.python.org/issue1631171
http://bugs.python.org/issue3781
http://bugs.python.org/issue1599845
http://bugs.python.org/issue1330538
http://bugs.python.org/issue2014
http://bugs.python.org/issue2985
http://bugs.python.org/issue467924
http://bugs.python.org/issue1775025
http://bugs.python.org/issue1775025
http://bugs.python.org/issue1734346

d={}
for i in " abcdefghijklm

dli + i] = ord(i) - ord(a') + 1
print d

This outputs a deeply nested tree:

Module(body=[
Assign(targets=[
Name(id="d’, ctx=Store())
], value=Dict(keys=[], values=[]))
For(target=Name(id="i", ctx=Store()),
iter=Str(s="abcdefghijklm’), body=[
Assign(targets=[
Subscript(value=
Name(id="d’, ctx=Load()),
slice=
Index(value=
BinOp(left=Name(id="', ctx=Load()), op=Add(),
right=Name(id="i", ctx=Load()))), ctx=Store())
], value=
BinOp(left=
BinOp(left=
Call(func=
Name(id="ord’, ctx=Load()), args=[
Name(id="i", ctx=Load())
], keywords=[], starargs=None, kwargs=None),
op=Sub(), right=Call(func=
Name(id="ord’, ctx=Load()), args=[
Str(s='a’)
], keywords=[], starargs=None, kwargs=None)),
op=Add(), right=Num(n=1)))
], orelse=[])
Print(dest=None, values=|
Name(id="d’, ctx=Load())
1, nI=True)

D

Theliteral_eval() method takes a string or an AST representing a literal expression, parses and evaluates it, and

returns the resulting value. A literal expression is a Python expression containing only strings, numbers, dictionaries,

etc. but no statements or function calls. If you need to evaluate an expression but cannot accept the security risk of
using areval() call, literal_eval() will handle it safely:

>>> literal =’ ("a", "b", {2:4, 3:8, 1:2))
>>> print ast . literal_eval(literal)

(a’, b, {1: 2, 2: 4, 3: 8})

>>> print ast . literal_eval(ta' o+ "b")
Traceback (most recent call last):

ValueError : malformed string

The module also includedodeVisitor ~ andNodeTransformer classes for traversing and modifying an AST,
and functions for common transformations such as changing line numbers.

18.2 The future_builtins module

Python 3.0 makes many changes to the repertoire of built-in functions, and most of the changes can't be introduced in
the Python 2.x series because they would break compatibility.fthee _builtins module provides versions
of these built-in functions that can be imported when writing 3.0-compatible code.

The functions in this module currently include:

« ascii(obj) : equivalent tarepr() . In Python 3.0repr() will return a Unicode string, whilascii()
will return a pure ASCII bytestring.

« filter(predicate, iterable) , map(func, iterablel, ... : the 3.0 versions return itera-
tors, unlike the 2.x built-ins which return lists.

* hex(value) , oct(value) : instead of callingthe _hex () or__oct_ () methods, these versions
will call the __index__ () method and convert the result to hexadecimal or oatal() will use the new
0o notation for its result.

18.3 The json module: JavaScript Object Notation

The newjson module supports the encoding and decoding of Python types in JSON (Javascript Object Notation).
JSON is a lightweight interchange format often used in web applications. For more information about JSON, see
http://www.json.org

json comes with support for decoding and encoding most builtin Python types. The following example encodes and
decodes a dictionary:

>>> jmport json

>>> data = {"spam" : "foo ", "parrot " : 42}

>>> in_json = json .dumps(data) # Encode the data
>>> in_json

{"parrot": 42, "spam": "foo"}

>>> json . loads(in_json) # Decode into a Python object
{"spam" : "foo", "parrot" : 42}

It's also possible to write your own decoders and encoders to support more types. Pretty-printing of the JSON strings
is also supported.

json (originally called simplejson) was written by Bob Ippolito.

18.4 The plistlib module: A Property-List Parser
The.plist formatis commonly used on Mac OS X to store basic data types (numbers, strings, lists, and dictionaries)
by serializing them into an XML-based format. It resembles the XML-RPC serialization of data types.

Despite being primarily used on Mac OS X, the format has nothing Mac-specific about it and the Python implemen-
tation works on any platform that Python supports, sofligtlib module has been promoted to the standard
library.

Using the module is simple:

http://www.json.org

import sys
import plistlib
import datetime

Create data structure

data_struct = dict (lastAccessed =datetime . datetime . now(),
version =1,
categories =(’ Personal ', Shared’,’ Private '))

Create string containing XML.

plist_str = plistlib . writePlistToString(data_struct)
new_struct = plistlib . readPlistFromString(plist_str)
print data_struct

print new_struct

Write data structure to a file and read it back.
plistlib . writePlist(data_struct, ' [tmp/customizations.plist ")
new_struct = plistlib . readPlist(' /tmp/customizations.plist ")

read/writePlist accepts file-like objects as well as paths.
plistlib . writePlist(data_struct, sys . stdout)

18.5 ctypes Enhancements

Thomas Heller continued to maintain and enhancetiyges module.

ctypes now supports & bool datatype that represents the Q8| type. (Contributed by David Remahssue
1649190)

Thectypes string, buffer and array types have improved support for extended slicing syntax, where various combi-
nations of(start, stop, step) are supplied. (Implemented by Thomas Wouters.)

All ctypes data types now suppditom_buffer() andfrom_buffer_copy() methods that create a ctypes
instance based on a provided buffer objeétom_buffer_copy() copies the contents of the object, while
from_buffer() will share the same memory area.

A new calling convention tellstypes to clear theerrno or Win32 LastError variables at the outset of each wrapped
call. (Implemented by Thomas Hellessue 1799

You can now retrieve the Unigrrno variable after a function call. When creating a wrapped function, you can
supplyuse_errno=True as a keyword parameter to tBe L() function and then call the module-level methods
set_errno() andget_errno() to set and retrieve the error value.

The Win32 LastError variable is similarly supported by tidL() , OleDLL() , and WinDLL() func-
tions. You supplyuse_last_error=True as a keyword parameter and then call the module-level methods
set_last_error() andget_last_error()

Thebyref() function, used to retrieve a pointer to a ctypes instance, how has an opiftssparameter that is a
byte count that will be added to the returned pointer.

18.6 Improved SSL Support

Bill Janssen made extensive improvements to Python 2.6's support for the Secure Sockets Layer by adding a new
module,ssl| , that’s built atop thédpenSSllibrary. This new module provides more control over the protocol negoti-

ated, the X.509 certificates used, and has better support for writing SSL servers (as opposed to clients) in Python. The
existing SSL support in theocket module hasn’t been removed and continues to work, though it will be removed

http://bugs.python.org/issue1649190
http://bugs.python.org/issue1649190
http://bugs.python.org/issue1798
http://www.openssl.org/

in Python 3.0.

To use the new module, you must first create a TCP connection in the usual way and then pass it to the
ssl.wrap_socket() function. It's possible to specify whether a certificate is required, and to obtain certificate
info by calling thegetpeercert() method.

See Also:

The documentation for thesl module.

19 Build and C API Changes

Changes to Python'’s build process and to the C API include:

Python now must be compiled with C89 compilers (after 19 years!). This means that the Python source tree has
dropped its own implementations mfemmoveandstrerror ~ , which are in the C89 standard library.

Python 2.6 can be built with Microsoft Visual Studio 2008 (version 9.0), and this is the new default compiler.
See théPCbuild directory for the build files. (Implemented by Christian Heimes.)

On Mac OS X, Python 2.6 can be compiled as a 4-way universal build. cohégure script can take a
--with-universal-archs=[32-bit|64-bit|all] switch, controlling whether the binaries are built

for 32-bit architectures (x86, PowerPC), 64-bit (x86-64 and PPC-64), or both. (Contributed by Ronald Ous-
soren.)

The BerkeleyDB module now has a C API object, availablesddb.db.api . This object can be used by
other C extensions that wish to use tiseldb module for their own purposes. (Contributed by Duncan Grisby;
issue 155189%

The new buffer interface, previously describedtie PEP 3118 sectipmddsPyObject_GetBuffer and
PyBuffer_Release , as well as a few other functions.

Python’s use of the C stdio library is now thread-safe, or at least as thread-safe as the underlying library is. A
long-standing potential bug occurred if one thread closed a file object while another thread was reading from or
writing to the object. In 2.6 file objects have a reference count, manipulated iByfike_IncUseCount

and PyFile_DecUseCount functions. File objects can't be closed unless the reference count is zero.
PyFile_IncUseCount should be called while the GIL is still held, before carrying out an I/O operation
using theFILE * pointer, andPyFile_DecUseCount should be called immediately after the GIL is re-
acquired. (Contributed by Antoine Pitrou and Gregory P. Smith.)

Importing modules simultaneously in two different threads no longer deadlocks; it will now raise an
ImportError . A new API function,Pylmport_ImportModuleNoBlock , will look for a module in
sys.modules first, then try to import it after acquiring an import lock. If the import lock is held by another
thread, aimportError is raised. (Contributed by Christian Heimes.)

Several functions return information about the platform’s floating-point suppBstFloat GetMax re-
turns the maximum representable floating point value,Ryfloat_GetMin returns the minimum positive
value. PyFloat_GetInfo returns an object containing more information from fluat.h file, such as
"mant_dig" (number of digits in the mantissdgpsilon” (smallest difference between 1.0 and the next
largest value representable), and several others. (Contributed by Christian Heime<s;5349

C functions and methods that us®yComplex_ AsCComplex will now accept arguments that have a
__complex__() method. In particular, the functions in tleenath module will now accept objects with
this method. This is a backport of a Python 3.0 change. (Contributed by Mark Dickisson; 1675423

Python's C APl now includes two functions for case-insensitive string comparisons,
PyOS_stricmp(char*, char*) and PyOS_strnicmp(char*, char*, Py ssize t)
(Contributed by Christian Heimessue 1635

http://bugs.python.org/issue1551895
http://bugs.python.org/issue1534
http://bugs.python.org/issue1675423
http://bugs.python.org/issue1635

Many C extensions define their own little macro for adding integers and strings to the module’s dictio-
nary in theinit* function. Python 2.6 finally defines standard macros for adding values to a module,
PyModule_AddStringMacro andPyModule_AddIntMacro() . (Contributed by Christian Heimes.)

Some macros were renamed in both 3.0 and 2.6 to make it clearer that they are macros, not func-
tions. Py_Size() becamePy SIZE() , Py _Type() becamePy TYPE() , andPy_Refcnt() became

Py REFCNT(). The mixed-case macros are still available in Python 2.6 for backward compatibiityie(

1629

Distutils now places C extensions it builds in a different directory when running on a debug version of Python.
(Contributed by Collin Winterissue 1530959

Several basic data types, such as integers and strings, maintain internal free lists of objects that can be re-
used. The data structures for these free lists now follow a naming convention: the variable is always named
free_list , the counter is always namedimfree , and a macrdy<typename> MAXFREELIST is al-

ways defined.

A new Makefile target, “make patchcheck”, prepares the Python source tree for making a patch: it fixes trailing
whitespace in all modifieqpy files, checks whether the documentation has been changed, and reports whether
theMisc/ACKS andMisc/NEWS files have been updated. (Contributed by Brett Cannon.)

Another new target, “make profile-opt”, compiles a Python binary using GCC'’s profile-guided optimization. It
compiles Python with profiling enabled, runs the test suite to obtain a set of profiling results, and then compiles
using these results for optimization. (Contributed by Gregory P. Smith.)

19.1 Port-Specific Changes: Windows

The support for Windows 95, 98, ME and NT4 has been dropped. Python 2.6 requires at least Windows 2000
SP4.

The new default compiler on Windows is Visual Studio 2008 (version 9.0). The build directories for Visual
Studio 2003 (version 7.1) and 2005 (version 8.0) were moved into the PC/ directory. ThECawd
directory supports cross compilation for X64, debug builds and Profile Guided Optimization (PGO). PGO builds
are roughly 10% faster than normal builds. (Contributed by Christian Heimes with help from Amaury Forgeot
d’Arc and Martin von Loewis.)

The msvcrt module now supports both the normal and wide char variants of the console 1/0 API. The
getwch() function reads a keypress and returns a Unicode value, as dogstthehe() function. The
putwch() function takes a Unicode character and writes it to the console. (Contributed by Christian Heimes.)

os.path.expandvars() will now expand environment variables in the form “%var%”, and “~user” will
be expanded into the user's home directory path. (Contributed by Josiah Céatsan95765()

Thesocket module’s socket objects now have iaatl() method that provides a limited interface to the
WSAloctl system interface.

The_winreg module now has a functiofExpandEnvironmentStrings() , that expands environment
variable references such@NAME® an input string. The handle objects provided by this module now support
the context protocol, so they can be usewith statements. (Contributed by Christian Heimes.)

_winreg also has better support for x64 systems, exposing EhisableReflectionKey())
EnableReflectionKey() , andQueryReflectionKey() functions, which enable and disable registry
reflection for 32-bit processes running on 64-bit systemsué 1753246

Themsilib module’sRecord object gainedsetinteger() andGetString() methods that return field
values as an integer or a string. (Contributed by Floris Bruynodghee 2125

http://bugs.python.org/issue1629
http://bugs.python.org/issue1629
http://bugs.python.org/issue1530959
http://bugs.python.org/issue957650
http://bugs.python.org/issue1753245
http://bugs.python.org/issue2125

19.2 Port-Specific Changes: Mac OS X

« When compiling a framework build of Python, you can now specify the framework name to be used by providing
the--with-framework-name= option to theconfigure script.

« Themacfs module has been removed. This in turn requirednttaeostools.touched() function to be
removed because it depended onriecfs module. (ssue 1490190

e Many other Mac OS modules have been deprecated and will removed in PythonbRitinSuites)
aepack , aetools , aetypes , applesingle , appletrawmain , appletrunner , argvemulator
Audio_mac , autoGIL , Carbon, cfmfile , CodeWarrior , ColorPicker , EasyDialogs |,
Explorer , Finder , FrameWork, findertools , ic , icglue , icopen , macerrors , MacOS
macfs , macostools , macresource , MiniAEFrame , Nav, Netscape , OSATerminology , pimp,
PixMapWrapper , StdSuites , SystemEvents , Terminal , andterminalcommand

19.3 Port-Specific Changes: IRIX

A number of old IRIX-specific modules were deprecated and will be removed in Pythoal3@ndAL, cd, cddb,
cdplayer ,CLandcl , DEVICE, ERRNOFILE , FL andfl ,flp ,fm, GET, GLWSGLandgl , IN, IOCTL, jpeg ,
panelparser ,readcd ,SVandsv,torgb ,videoreader ,andWAIT.

20 Porting to Python 2.6

This section lists previously described changes and other bugfixes that may require changes to your code:

* Classes that aren’t supposed to be hashable should kash__ = None in their definitions to indicate the
fact.

 String exceptions have been removed. Attempting to use them raiggee&rror

e The __init_ () method ofcollections.deque now clears any existing contents of the deque before
adding elements from the iterable. This change makes the behavior lstitchinit__ ()

e object.__init_ () previously accepted arbitrary arguments and keyword arguments, ignoring them. In
Python 2.6, this is no longer allowed and will result ifgpeError . This will affect__init_ () meth-
ods that end up calling the corresponding methombject (perhaps through usinguper()). Seeissue
1683368or discussion.

« The Decimal constructor now accepts leading and trailing whitespace when passed a string. Previously it
would raise arinvalidOperation exception. On the other hand, theeate_decimal() method of
Context objects now explicitly disallows extra whitespace, raisir@anversionSyntax exception.

« Due to an implementation accident, if you passed a file path to the builtimport__ () function, it would
actually import the specified file. This was never intended to work, however, and the implementation now
explicitly checks for this case and raiseslawportError

e C API: the Pylmport_Import and Pylmport_ImportModule functions now default to absolute im-
ports, not relative imports. This will affect C extensions that import other modules.

« C API: extension data types that shouldn't be hashable should define theivash slot to
PyObject_HashNotimplemented

» Thesocket module exceptiosocket.error now inherits fromOError . Previously it wasn’t a subclass
of StandardError ~ but now it is, througiOError . (Implemented by Gregory P. Smitlssue 170681)

http://bugs.python.org/issue1490190
http://bugs.python.org/issue1683368
http://bugs.python.org/issue1683368
http://bugs.python.org/issue1706815

e Thexmirpclib ~ module no longer automatically convedatetime.date anddatetime.time to the
xmlrpclib.DateTime type; the conversion semantics were not necessarily correct for all applications.
Code usingimlrpclib should converdate andtime instances.if¢sue 1330538

 (3.0-warning mode) Th&xception class now warns when accessed using slicing or index access; having
Exception behave like a tuple is being phased out.

 (3.0-warning mode) inequality comparisons between two dictionaries or two objects that don't implement com-
parison methods are reported as warnindgtl == dict2 still works, butdictl < dict2 is being
phased out.

Comparisons between cells, which are an implementation detail of Python’s scoping rules, also cause warnings
because such comparisons are forbidden entirely in 3.0.

21 Acknowledgements

The author would like to thank the following people for offering suggestions, corrections and assistance with various
drafts of this article: Georg Brandl, Steve Brown, Nick Coghlan, Ralph Corderoy, Jim Jewett, Kent Johnson, Chris
Lambacher, Martin Michlmayr, Antoine Pitrou, Brian Warner.

http://bugs.python.org/issue1330538

Index

A

APPDATA, viii

E

environment variable

P

APPDATA, viii

PYTHONDONTWRITEBYTECODE, XXV,
XXXiii

PYTHONIOENCODING xxv

PYTHONNOUSERSITEYViii

PYTHONUSERBASE iii

Python Enhancement Proposals

PEP 3000iii
PEP 3100iii
PEP 3101xiii
PEP 3105xiii
PEP 3110xiv
PEP 3112xv
PEP 3116xvi
PEP 3118xvii
PEP 3119xix
PEP 3127xix
PEP 3129xx
PEP 3141xx
PEP 343yiii
PEP 352xxiii
PEP 361ji
PEP 370viii
PEP 371xi

PYTHONDONTWRITEBYTECODE xxv, xxxiii
PYTHONIOENCODING xxv
PYTHONNOUSERSITEviii
PYTHONUSERBASEViii

R

RFC

RFC 2033 xxxii
RFC 3207 xxxii

xlv

	Python 3.0
	Changes to the Development Process
	New Issue Tracker: Roundup
	New Documentation Format: reStructuredText Using Sphinx

	PEP 343: The `with' statement
	Writing Context Managers
	The contextlib module

	PEP 366: Explicit Relative Imports From a Main Module
	PEP 370: Per-user site-packages Directory
	PEP 371: The multiprocessing Package
	PEP 3101: Advanced String Formatting
	PEP 3105: print As a Function
	PEP 3110: Exception-Handling Changes
	PEP 3112: Byte Literals
	PEP 3116: New I/O Library
	PEP 3118: Revised Buffer Protocol
	PEP 3119: Abstract Base Classes
	PEP 3127: Integer Literal Support and Syntax
	PEP 3129: Class Decorators
	PEP 3141: A Type Hierarchy for Numbers
	The fractions Module

	Other Language Changes
	Optimizations
	Interpreter Changes

	New, Improved, and Deprecated Modules
	The ast module
	The future_builtins module
	The json module: JavaScript Object Notation
	The plistlib module: A Property-List Parser
	ctypes Enhancements
	Improved SSL Support

	Build and C API Changes
	Port-Specific Changes: Windows
	Port-Specific Changes: Mac OS X
	Port-Specific Changes: IRIX

	Porting to Python 2.6
	Acknowledgements
	Index

