g ricrosy sleTmes

Sun Microsystems Inc.
Java Transaction API (JTA)

This is the Java Transaction API (JTA) specification. JTA specifies high-level
interfaces between a transaction manager and the parties involved in a distributed
transaction system: the application, the resource manager, and the application server.
This document also provides general usage scenarios and implementation
considerations to support JTA in a component-based enterprise application server
environment.

Please send technical comments on this specification to:

ta@eng.sun.com

Copyright © 1999 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

Susan Cheung & Vlada Matena
| Version1.0.1 April 29, 1999

Java Transaction API

Copyright 1997-1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved. Copyright in this document is owned by Sun Microsystems Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
perpetual, worldwide, limited license (without the right to sublicense) under SUN's intellectual property
rights that are essential to practice this specification for the limited purpose of creating and distributing
implementations of this specification, provided however, that such implementations do not derive from
any SUN source code or binary materials and do not include any SUN binary materials without an
appropriate and separate license from SUN. Other than this limited license, you acquire no right, title or
interest in or to this specification or any other SUN intellectual property. No right, title, or interest in or
to any trademarks, service marks, or trade names of SUN or SUN’s licensors is granted hereunder.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

This specification contains the proprietary information of SUN and may only be used in accordance with
the license terms set forth above.

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SPECIFICATION, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
YOUAS ARESULT OF USING, MODIFYING OR DISTRIBUTING THIS SPECIFICATION ORITS
DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Java, Enterprise JavaBeans, JDBC, and JDK are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Sun Microsystems Inc. 2 May 12, 1999

Java Transaction API

Table of Contents

R 11 Yo [T £ P UUPRR 4
1.1 BACKGIrOUNGovviiiiiiiiiiiieiicee ettt 4
1.2 Target AUIENCEcoeeiiiiieeeeee et e e e e e e eeees 6

2. Relationship to Other Java APIS ... 7
2.1 Enterprise JAVABEANScoooiiiiiiiiiiiiiiie e 7
2.2 JDBC 2.0 Standard EXENSIONccevvviiiiiiiiiiieieee e 7
2.3 .Java MESSAQE SEIVICEcceveieieeeeiiiiiiiiiaaea e e e e e e e e e e e e e e ee e eeeas 7
2.4 Java TranSacCtiON SEIVICEcccoeeeeeiiiiiieieieiiiiiees e e e e e e e eeeeeeeeeennes 7

3..Java TransSaction AP ... 8
3.1 UserTransaction INterfacecoooviiiiiiiiiiiiiiiiie e 8

3.1.1 UserTransaction Support in EJB Servercccccceeeviiiieeeeeeeennnnn, 8
3.1.2 UserTransaction Support for Transactional Clients 9
3.2 TransactionManager INterfaceccccveeeeeiiiiiiiiiieieeee, 9
3.2.1 Starting a TranSacationuuueeiiiiiineeee e 10
3.2.2 Completing a TranSacCtioNcc.uuvvuiiiiiiiiiiieieeee e e e e e 10
3.2.3 Suspending and Resuming a Transactioncccceeevvvvvveennnnns 10
3.3 Transaction INtErface ... 11
3.3.1 Resource Enlistmentouvvuiiiiiiiiiiieeeeeeeeeeeeeeee 12
3.3.2 Transaction Synchronization.................ueeeiiiininnieeeeeeeeeeeeeeiiiees 13
3.3.3 Transaction CoOmMPIEtioNcccccuviiiiiiiiiiiiiieeeee e 14
3.3.4 Transaction Equality and Hash Codecccccciiiiiiiiieeeeen, 14
3.4 XARESOUICE INEIACEcceeeiiiiiiiiee e 14
3.4.1 Opening a Resource Managercccceeveeeeeeeeeieeeeeeeeeiiiiieeeeens 16
3.4.2 Closing a Resource Managerccoooeeeeeeeiieeeeeeeiiiiiiiieeeea e 16
3.4.3 Thread of CONroluueiiiiiieii e 17
3.4.4 Transaction ASSOCIALIONuvuuiiiiiiiiiee e e 17
3.4.5 Externally Controlled Connectionsccooovvvveiiiiiiiieiicnnnenn. 18
3.4.6 ResSoUrce Sharingccccccuieeiiiiiiiiiii e 18
3.4.7 Local and Global Transactionscccoovvvvvviiiiiiiiiiiice e 19
3.4.8 FAIlUrES RECOVEIY ..ottt 19
3.4.9 ldentifying The Resource Manager Instancecccccccceeeeeeeennnn. 20
3.4.10 Dynamic RegiStrationuuueiiiiiiiieieee e 21
3.3 Xid INTEITACE ..evveeiiiie e 21

4. JTA Support in APPIICAtION SEIVETccovveiiiiiiiiiiie e 22
4.1 Connection-Based Resource Usage SCeNArioccoeeeeeeeeeeiiieeeeiiinnnnnnns 22
4.2 Transaction Association and Connection Request FlIow 24

5. Java Transaction APl Referencecccccceeeiiiiiiiii i, 26

6. Related DOCUMENTS........ccoiiiiieeeeeee e e e e e e e e e e e e e e e eeeaannes 60

Sun Microsystems Inc. 3 May 12, 1999

Java Transaction API

1 Introduction

This document describes the Java Transaction API (JTA). JTA specifies local Java
interfaces between a transaction manager and the parties involved in a distributed
transaction system: the application, the resource manager, and the application server.

The JTA package consists of three parts:

» A high-level application interface that allows a transactional application to
demarcate transaction boundaries.

» A Java mapping of the industry standard X/Open XA protocol that allows a
transactional resource manager to participate in a global transaction controlled
by an external transaction manager.

* A high-level transaction manager interface that allows an application server to
control transaction boundary demarcation for an application being managed by
the application server.

Note: The JTA interfaces are presented as high-level from the transaction
manager’s perspective. In contrast, a low-level API for the transaction
manager consists of interfaces that are used to implement the transaction
manager. For example, the Java mapping of the OTS are low-level interfaces
used internally by a transaction manager.

1.1 Background

Distributed transaction services in Enterprise Java middleware involves five players:
the transaction manager, the application server, the resource manager, the application
program, and the communication resource manager. Each of these players contributes
to the distributed transaction processing system by implementing different sets of
transaction APIs and functionalities.

» A transaction manager provides the services and management functions
required to support transaction demarcation, transactional resource
management, synchronization, and transaction context propagation.

* An application server (or TP monitor) provides the infrastructure required to
support the application run-time environment which includes transaction state
management. An example of such an application server is an EJB server.

» A resource manager (through a resource ad’a)mmvides the application
access to resources. The resource manager participates in distributed
transactions by implementing a transaction resource interface used by the

1.A Resource Adapter is a system level software library that is used by an application server or client to
connect to a Resource Manager. A Resource Adapter is typically specific to a Resource Manager. It is avail-
able as a library and is used within the address space of the client using it. Examples of resource adapters
are: JDBC driver to connect to a relational database, ODMG driver to connect to an object database, JRFC
library to connect to SAP R/3 system. A resource adapter may provide additional services besides the con-
nection API.

Sun Microsystems Inc. 4 May 12, 1999

Java Transaction API

transaction manager to communicate transaction association, transaction
completion and recovery work. An example of such a resource manager is a
relational database server.

* A component-based transactional application that is developed to operate in a
modern application server environment relies on the application server to
provide transaction management support through declarative transaction
attribute settings. An example of this type of applications is an application
developed using the industry standard Enterprise JavaBeans (EJB) component
architecture. In addition, some other stand-alone Java client programs may wish
to control their transaction boundaries using a high-level interface provided by
the application server or the transaction manager.

* A communication resource manager (CRM) supports transaction context
propagation and access to the transaction service for incoming and outgoing
requests. The JTA document does not specify requirements pertained to
communication. Refer to the JTS Specification [2] for more details on
interoperability between Transaction Managers.

From the transaction manager’s perspective, the actual implementation of the
transaction services does not need to be exposed; only high-level interfaces need to be
defined to allow transaction demarcation, resource enlistment, synchronization and
recovery process to be driven from the users of the transaction services. The purpose of
JTAIsto define the local Java interfaces required for the transaction manager to support
transaction management in the Java enterprise distributed computing environment. In
the diagram shown below, the small half-circle represents the JTA specification.
Chapter 3 of the document describes each portion of the specification in details.

Sun Microsystems Inc. 5 May 12, 1999

Java Transaction API

JTA
TransactionManager

EJB
Application JDBC, JMS
Server
Application Resource
Transaction Manager
/V Manager V\
JTA 4 Low-level \ ITA
UserTransaction Transaction
Service XAResource
Implementation
(for example, JTS)
A
Inbound tx Outbound tx
Protocol specific Communication Resource Protocol specific
Manager (CRM)

1.2 Target Audience
This document is intended for implementors of:
» Transaction managers such as JTS.

Resource adapters such as JDBC drivers and JMS providers.

Transactional resource managers such as RDBMS.

Application servers such as EJB Servers.

Advanced transactional applications written in the Jaymogramming
language.

Sun Microsystems Inc. 6 May 12, 1999

Java Transaction API

2 Relationship to Other Java APIs

2.1 Enterprise JavaBeans

The Enterprise JavaBeans architecture requires that an EJB Container support
application-level transaction demarcation by implementing the
javax.transaction.UserTransaction interface. ThaJserTransaction interface
isintended to be used by both the EJB Bean implementor (for TX_BEAN_MANAGED
Beans) and by the client programmer who wants to explicitly demarcate transaction
boundaries within programs that are written in the Java programming language.

Refer tohttp://java.sun.com/products/efbr further details on EJB.

Note: The EJB Spec and related Java files will be updated to reflect the current
JTA package naming. This work is planned for the next EJB spec release.

2.2 JDBC 2.0 Standard Extension API

One of the new features included in the JDBC 2.0 Extension Specification is support
for distributed transactions. Two new JDBC interfaces have been created for JDBC
drivers to support distributed transactions using the Java Transaction API's
XAResource interface. The new JDBC 2.0 interfacesjavex.sqgl.XAConnection
andjavax.sgl.XADataSource

A JDBC driver that supports distributed transactions implements the
javax.transaction.xa.XAResource interface, thgavax.sgl.XAConnection
interface, and thyvax.sql.XADataSource interface. Refer to the JDBC 2.0
Standard Extension Specification for further detdattp(//java.sun.com/products/
jdbc).

2.3 Java Message Service

The Java Transaction APl may be used by a Java Message Service provider to support
distributed transactions. A JMS provider that supports the XAResource interface is able
to participate as a resource manager in a distributed transaction processing system that
uses a two-phase commit transaction protocol. In particular, a IMS provider
implements thé¢avax.transaction.xa.XAResource interface, the

javax.jms.XAConnection and thgavax.jms.XASession interface. Refer to the

JMS 1.0 Specification for further detailsttf://java.sun.com/products/jms)

2.4 Java Transaction Service

Java Transaction Service (JTS) is a specification for building a transaction manager
which supports the JTA interfaces at the high-level and the standard Java mapping of
the CORBA Object Transaction Service 1.1 specification at the low-level. JTS provides
transaction interoperability using the CORBA standard IIOP protocol for transaction
propagation between servers. JTS is intended for vendors who provide the transaction
system infrastructure for enterprise middleware.

Sun Microsystems Inc. 7 May 12, 1999

Java Transaction API

3

Java Transaction API

The Java Transaction API consists of three elements: a high-level application
transaction demarcation interface, a high-level transaction manager interface intended
for an application server, and a standard Java mapping of the X/Open XA protocol
intended for a transactional resource manager. This chapter specifies each of these
elements in details.

3.1 UserTransaction Interface

3.1.1

Thejavax.transaction.UserTransaction interface provides the application the
ability to control transaction boundaries programmatically. This interface may be used
by Java client programs or EJB beans.

The UserTransaction.begin method starts a global transaction and associates the
transaction with the calling thread. The transaction-to-thread association is managed
transparently by the Transaction Manager.

Support for nested tranactions is not required. U@ Transaction.begin method

throws theNotSupportedException when the calling thread is already associated

with a transaction and the transaction manager implementation does not support nested
transactions.

Transaction context propagation between application programs is provided by the
underlying transaction manager implementations on the client and server machines.
The transaction context format used for propagation is protocol dependent and must be
negotiated between the client and server hosts. For example, if the transaction manager
is an implementation of the JTS specification, it will use the transaction context
propagation format as specified in the CORBA OTS 1.1 specification. Transaction
propagation is transparent to application programs.

UserTransaction Support in EJB Server

EJB servers are required to supportubkeTransaction interface for use by EJB

beans with the TX_BEAN_MANAGED transaction attribute. TiserTransaction

interface is exposed to EJB components througEtReontext interface using the
getUserTransaction method. Thus, an EJB application does not interface with the
Transaction Manager directly for transaction demarcation; instead, the EJB bean relies
on the EJB Server to provide support for all of its transaction work as defined in the
Enterprise JavaBeans Specification [3he underlying interaction between the EJB
Server and the TM is transparent to the application.)

The code sample below illustrates the usagéesefrransaction by a
TX_BEAN_MANAGED EJB session bean:

/I In the session bean’s setSessionContext method,
/I store the bean context in an instance variable
SessionContext ctx = sessionContext;

Sun Microsystems Inc. 8 May 12, 1999

Java Transaction API

/I somewhere else in the bean’s business logic
UserTransaction utx = ctx.getUserTransaction();

/] start a transaction
utx.begin();

.. do work

/I commit the work
utx.commit();

3.1.2 UserTransaction Support for Transactional Clients

TheuserTransaction interface may be used by Java client programs either through
support from the application server or support from the transaction manager on the
client host.

The application server vendor is expected to provide tools for an administrator to
configure theuserTransaction object binding in the JNDI namespace. The
implementation of the&serTransaction object must be both
javax.naming.Referenceable andjava.io.Serializable , SO that the object can
be stored in all INDI naming contexts.

If an application server supports transaction demarcation performed by transactional
clients, the application server must support the client program’s ability to use the JNDI
lookup mechanism for obtaining thwerTransaction object reference. As JTA does

not define the JNDI name faxserTransaction , the client program should use an
appropriate configuration mechanism to pass the name string to theéodNIpI

method.

An example of such an implementation is through the use of a system property. The
following sample code is provided for illustrative purposes:

/I get the system property value configured by administrator
String utxPropVal = System.getProperty(“jta.UserTransaction”);

I/l use JNDI to locate the UserTransaction object
Context ctx = new InitialContext();
UserTransaction utx = (UserTransaction)ctx.lookup(utxPropVal);

/I start transaction work..
utx.begin();

.. do work

utx.commit();

3.2 TransactionManager Interface

Thejavax.transaction. TransactionManager interface allows the application

server to control transaction boundaries on behalf of the application being managed.
For example, the EJB container manages the transaction states for transactional EJB
components; the container usesthasactionManager interface mainly to

Sun Microsystems Inc. 9 May 12, 1999

Java Transaction API

3.2.1

3.2.2

3.2.3

demarcate transaction boundaries where operations affect the calling thread’s
transaction context. The Transaction Manager maintains the transaction context
association with threads as part of its internal data structure. A thread’s transaction
context is eithenull or it refers to a specific global transaction. Multiple threads may
concurrently be associated with the same global transaction.

Support for nested tranactions is not required.

Each transaction context is encapsulated yasaction ~ object, which can be used
to perform operations which are specific to the target transaction, regardless of the
calling thread’s transaction context. The following sections provide more details.

Starting a Transaction

The TransactionManager.begin method starts a global transaction and associates
the transaction context with the calling thread.

If the Transaction Manager implementation does not support nested transactions, the
TransactionManager.begin method throws th&otSupportedException when the
calling thread is already associated with a transaction.

TheTransactionManager.getTransaction method returns theransaction object

that represents the transaction context currently associated with the calling thread. This
Transaction ~ Object can be used to perform various operations on the target
transaction. Examples ofansaction ~ object operations are resource enlistment and
synchronization registration. Theansaction interface is described in section 3.3
below.

Completing a Transaction

The TransactionManager.commit method completes the transaction currently
associated with the calling thread. After enmit method returns, the calling thread

is not associated with a transaction. If ¢hemit method is called when the thread is
not associated with any transaction context, the TM throws an exception. In some
implementations, the commit operation is restricted to the transaction originator only.
If the calling thread is not allowed to commit the transaction, the TM throws an
exception.

The TransactionManager.rollback method rolls back the transaction associated
with the current thread. After thellback method completes, the thread is associated
with no transaction.

Suspending and Resuming a Transaction

A call to theTransactionManager .suspend method temporarily suspends the
transaction that is currently associated with the calling thread. If the thread is not
associated with any transactiomual object reference is returned; otherwise, a valid
Transaction object is returned. Theansaction object can later be passed to the
resume method to reinstate the transaction context association with the calling thread.

The TransactionManager.resume method re-associates the specified transaction
context with the calling thread. If the transaction specified is a valid transaction, the

Sun Microsystems Inc. 10 May 12, 1999

Java Transaction API

transaction context is associated with the calling thread; otherwise, the thread is
associated with no transaction.

Transaction tobj = TransactionManager.suspend();

TransactionManager.resume(tobj);

If TransactionManager.resume is invoked when the calling thread is already
associated with another transaction, the Transaction Manager throws the
lllegalStateException exception.

Note that some transaction manager implementations allow a suspended transaction to
be resumed by a different thread. This feature is not required by JTA.

The application server is responsible for ensuring that the resources in use by the
application are properly delisted from the suspended transaction. A resource delist
operation triggers the Transaction Manager to inform the resource manager to
disassociate the transaction from the specified resource object
(XAResource.end(TMSUSPEND)).

When the application’s transaction context is resumed, the application server ensures
that the resource in use by the application is again enlisted with the transaction.
Enlisting a resource as a result of resuming a transaction triggers the Transaction
Manager to inform the resource manager to re-associate the resource object with the
resumed transactiox4Resource.startTMRESUME)). Refer to Sections 3.3.1 and

3.4.4 for more details on resource enlistment and transaction association.

In the EJB environment, the EJB server typically manages the transactional resources
in use by the applications (The EJB bean’s resource requests are tracked and maintained
in the bean’s instance context). When suspending a transaction currently associated
with an EJB instance, the application server examines the list of resources in use by the
bean instance to determine whether any resources need to be delisted. For each resource
that is currently enlisted with the suspended transaction, the application server calls the
Transaction.delistResource method to disassociate the resource from the
transaction. When the transaction is resumed for the EJB instance, the application
server examines the list of resources in use and enlists the resources with the transaction
manager before giving control to the bean’s business method. Refer to Chapter 4 for
further discussion on JTA support in an application server.

3.3 Transaction Interface

TheTransaction interface allows operations to be performed on the transaction
associated with the target object. Every global transaction is associated with one
Transaction object when the transaction is created. Tlaesaction object can be
used to:

 Enlist the transactional resources in use by the application.
» Register for transaction synchronization callbacks.
e Commit or rollback the transaction.

Sun Microsystems Inc. 11 May 12, 1999

Java Transaction API

3.3.1

« Obtain the status of the transaction.
These functions are described in the sections below.

Resource Enlistment

An application server provides the application run-time infrastructure that includes
transactional resource management. Transactional resources such as database
connections are typically managed by the application server in conjunction with some
resource adapter and optionally with connection pooling optimization. In order for an
external transaction manager to coordinate transactional work performed by the
resource managers, the application server must enlist and delist the resources used in
the transaction.

Resource enlistment performed by an application server serves two purposes:

* Itinforms the Transaction Manager about the resouce manager instance that is
participating in the global transaction. This allows the Transaction Manager to
inform the participating resource manager on transaction association with the
work performed through the connection (resource) object.

* |t enables the Transaction Manager to group the resource types in use by each
transaction. The resource grouping allows the Transaction Manager to conduct
the two-phase commit transaction protocol between the TM and the RMs, as
defined by the X/Open XA specification.

For each resource in use by the application, the application server invokes the
enlistResource method and specifies tx@Resource o0bject that identifies the
resource in use.

TheenlistResource request results in the Transaction Manager informing the
resource manager to start associating the transaction with the work performed through
the corresponding resource—by invoking Xa&esource.start method. The
Transaction Manager is responsible for passing the appropriate flag in its
XAResource.start method call to the resource manager. KA@esource interface

is described in section 3.4.

If the target transaction already has anoi#®esource object participating in the
transaction, the Transaction Manager invokes<#tResource.isSameRM method to
determine if the specifiedAResource represents the same resource manager instance.
This information allows the TM to group the resource managers who are performing
work on behalf of the transaction.

* |Ifthe XAResource o0bject represents a resource manager instance who has seen
the global transaction before, the TM groups the newly registered resource
together with the previousAResource object and ensures that the same RM
only receives one set of prepare-commit calls for completing the target global
transaction.

If the XAResource 0Object represents a resource manager who has not previously seen
the global transaction, the TM establishes a different transaction brahehdD

Sun Microsystems Inc. 12 May 12, 1999

Java Transaction API

3.3.2

ensures tha this new resource manager is informed about the transaction completion
with proper prepare-commit calls.

TheissameRM method is discussed in section 3.4.9.

The Transaction.delistResource method is used to disassociate the specified
resource from the transaction context in the target object. The application server
invokes thedelistResource method with the following two parameters:

» TheXAResource o0bject that represents the resource.
» Aflag to indicate whether the delistment was due to:

» The transaction being suspende&si{USPEND
A portion of the work has failed¥1FAIL).
* A normal resource release by the applicatimsUCCESS

An example offMFAIL could be the situation where an application receives an
exception on its connection operation.

The delist request results in the transaction manager informing the resource manager to
end the association of the transaction with the taxg&esource . The flag value allows

the application server to indicate whether it intends to come back to the same resource.
The transaction manager passes the appropriate flag valugArésource.end

method call to the underlying resource manager.

Transaction Synchronization

Transaction synchronization allows the application server to get notification from the
transaction manager before and after the transaction completes. For each transaction
started, the application server may optionally register a

javax.transaction.Synchronization callback object to be invoked by the
transaction manager:

e TheSynchronization.beforeCompletion method is called prior to the start
of the two-phase transaction commit process. This call is executed with the
transaction context of the transaction that is being committed.

e The Synchronization.afterCompletion method is called after the
transaction has completed. The status of the transaction is supplied in the
parameter.

1.Transaction Branch is defined in the X/Open XA spec [1] as follows: “A global transaction has one or
more transaction branches. A branch is a part of the work in support of a global transaction for which the
TM and the RM engage in a separate but coordinated transaction commitment protocol. Each of the RM’s
internal units of work in support of a global transaction is part of exactly one branch. .. After the TM begins
the transaction commitment protocol, the RM receives no additional work to do on that transaction branch.
The RM may receive additional work on behalf of the same transaction, from different branches. The differ-
ent branches are related in that they must be completed atomically. Each transaction branch identifier (or
XID) that the TM gives the RM identifies both a global transaction and a specific branch. The RM may use
this information to optimise its use of shared resources and locks.”

Sun Microsystems Inc. 13 May 12, 1999

Java Transaction API

3.3.3 Transaction Completion

The Transaction.commit andTransaction.rollback methods allow the target
object to be comitted or rolled back. The calling thread is not required to have the same
transaction associated with the thread.

If the calling thread is not allowed to commit the transaction, the transaction manager
throws an exception.

3.3.4 Transaction Equality and Hash Code

The transaction manager must implementraesaction object'sequals method
to allow comparison between the target object and anothrefaction object. The
equals method should returtnue if the target object and the parameter object both
refer to the same global transaction.

For example, the application server may need to comparerénwaaction objects
when trying to reuse a resource that is already enlisted with a transaction. This can be
done using thequals method.

Transaction txObj = TransactionManager.getTransaction();
Transaction someOtherTxObj = ..

boolean isSame = txObj.equals(someOtherTxObj);

In addition, the transaction manager must implementrthaction object’s
hashCode method so that if tw@ransaction ~ objects are equal, they have the same
hash code. However, the converse is not necessarily trueTramgaction objects
with the same hash code are not necessarily equal.

3.4 XAResource Interface

Thejavax.transaction.xa.XAResource interface is a Java mapping of the industry
standard XA interface based on the X/Open CAE Specification (Distributed
Transaction Processing: The XA Specification).

TheXxAResource interface defines the contract between a Resource Manager and a
Transaction Manager in a distributed transaction processing (DTP) environment. A
resource adapter for a resource manager implementamasource interface to
support association of a global transaction to a transaction resource, such as a
connection to a relational database.

A global transaction is a unit of work that is performed by one or more resource
managers (RM) in a DTP system. Such a system relies on an external transaction
manager, such as Java Transaction Service (JTS), to coordinate transactions.

Sun Microsystems Inc. 14 May 12, 1999

Java Transaction API

Java Application

Application Server

Database 1 JDBC 2.0 javax.transaction.

Database 2 % JMS 1.0 TransactionManager
%<

4— | Transaction

Resource
Message Managers M?I_R/?ger
Queue |g—m —— (RMs) « i
Server javax.transactiort:

xa.XAResource

TheXAResource interface can be supported by any transactional resource adapter that
is intended to be used by application programs in an environment where transactions
are controlled by an external transaction manager. An example of such a resource is a
database management system. An application may access data through multiple
database connections. Each database connection is associatedxaiesanrce

object that serves as a proxy object to the underlying resource manager instance. The
transaction manager obtains)Resource for each resource manager participating in

a global transaction. It uses ttert method to associate the global transaction with

the resource, and it uses #m@ method to disassociate the transaction from the
resource. The resource manager is responsible for associating the global transaction
with all work performed on its data between ¢ket andend method invocations.

At transaction commit time, these transactional resource managers are informed by the
transaction manager to prepare, commit, or rollback the transaction according to the
two-phase commit protocol.

TheXxAResource interface, in order to be better integrated with the Java environment,
differs from the standard X/Open XA interface in the following ways:

» The resource manager initialization is done implicitly by the resource adapter
when the resource (connection) is acquired. There isan@perequivalent in
the XAResource interface. This obviates the need for a resource manager to
provide a different syntax to open a resource for use within the distributed
transaction environment from the syntax used in the environment without
distributed transactions.

* Rmidis not passed as an argument. We use an object-oriented approach where
eachRmidis represented by a separat®Resource object.

» Asynchronous operations are not supported. Java supports multi-threaded
processing and most databases do not support asynchronous operations.

Sun Microsystems Inc. 15 May 12, 1999

Java Transaction API

3.4.1

3.4.2

3.4.3

» Error return values that are caused by the transaction manager’s improper
handling of thexAResource object are mapped to Java exceptions via the
XAException class.

» The DTP concept of “Thread of Control” maps to all Java threads that are given
access to theAResource andConnection objects. For example, it is legal
(although in practice rarely used) for two different Java threads to perform the
start andend operations on the sam¥@Resource 0Object.

» Association migration and dynamic registration (optional X/Open XA features)
are not supported. We’ve omitted these features for a sixysRessource
interface and simpler resource adapter implementation.

Opening a Resource Manager

The X/Open XA interface specifies that the transaction manager must initialize a
resource managexd openpriorto any otheka_calls. We believe that the knowledge

of initializing a resource manager should be embedded within the resource adapter that
represents the resource manager. The transaction manager does not need to know how
to initialize a resource manager. The TM is only responsible for informing the resource
manager about when to start and end work associated with a global transaction and
when to complete the transaction.

The resource adapter is responsible for opening (initializing) the resource manager
when the connection to the resource manager is established.

Closing a Resource Manager

A resource manager is closed by the resource adapter as a result of destroying the
transactional resource. A transaction resource at the resource adapter level is comprised
of two separate objects:

* An XAResource oObject that allows the transaction manager to start and end the
transaction association with the resource in use and to coordinate transaction
completion process.

» A connection object that allows the application to perform operations on the
underlying resource (for example, JDBC operations on an RDBMS).

The resource manager, once opened, is kept open until the resource is released (closed)
explicitly. When the application invokes the connectiasi'se method, the resource
adapter invalidates the connection object reference that was held by the application and
notifies the application server about the close. The transaction manager should invoke
theXAResource.end method to disassociate the transaction from that connection.

Theclose notification allows the application server to perform any necessary cleanup
work and to mark the physical XA connection as free for reuse, if connection pooling
is in place.

Thread of Control

The X/Open XA interface specifies that the transaction association retatedls must
be invoked from the same thread context. This thread-of-control requirement is not

Sun Microsystems Inc. 16 May 12, 1999

Java Transaction API

3.4.4

applicable to the object-oriented component-based application run-time environment,
in which application threads are dispatched dynamically at method invocation time.
Different Java threads may be using the same connection resource to access the
resource manager if the connection spans multiple method invocation. Depending on
the implementation of the application server, different Java threads may be involved
with the samé&AResource object. The resource context and the transaction context
may be operated independent of thread context. This means, for example, that it's
possible for different threads to be invoking ¥a®Resource .start and

XAResource.end methods.

If the application server allows multiple threads to use a sikgkesource object and

the associated connection to the resource manager, it is the responsibility of the
application server to ensure that there is only one transaction context associated with
the resource at any point of time.

Thus thexAResource interface specified in this document requires that the resource
managers be able to support the two-phase commit protocol from any thread context.

Transaction Association

Global transactions are associated with a transactional resource via the
XAResource.start method, and disassociated from the resource via the
XAResource.end method. The resource adapter is responsible for internally
maintaining an association between the resource connection object anrektseurce
object. At any given time, a connection is associated with a single transaction or it is
not associated with any transaction at all.

Interleaving multiple transaction contexts using the same resource may be done by the
transaction manager as longx@sResource.start andxAResource.end are invoked
properly for each transaction context switch. Each time the resource is used with a
different transaction, the meth@dResource.end must be invoked for the previous
transaction that was associated with the resourcex/s®ebource.start must be

invoked for the current transaction context.

XAResource does not support nested transactions. It is an error for the
XAResource.start method to be invoked on a connection that is currently associated
with a different transaction.

Table 1: Transaction Association

XAResource Transaction States
XAResource Not Associated | Association
Methods Associated Suspended
To Ty T
start() T
start (TMRESUME) T

Sun Microsystems Inc. 17 May 12, 1999

Java Transaction API

3.4.5

3.4.6

Table 1: Transaction Association

XAResource Transaction States
XAResource Not Associated | Association
Methods Associated Suspended
To Ty T2
start (TMJOIN) T
end(TMSUSPEND) D
end(TMFAIL) To To
end(TMSUCCESS) ry To
recover() To T T,

Externally Controlled Connections

Resources for transactional applications, whose transaction states are managed by an
application server, must also be managed by the application server so that transaction
association is performed properly. If an application is associated with a global
transaction, it is an error for the application to perform transactional work through the
connection without having the connection’s resource object already associated with the
global transaction. The application server must ensure thantheource object in

use is associated with the transaction. This is done by invoking the
Transaction.enlistResource method.

If a server side transactional application retains its database connection across multiple
client requests, the application server must ensure, before dispatching a client request
to the application thread, that the resource is enlisted with the application’s current
transaction context. This implies that the application server manages the connection
resource usage status across multiple method invocations.

Resource Sharing

When the same transactional resource is used to interleave multiple transactions, it is
the responsibility of the application server to ensure that only one transaction is enlisted
with the resource at any given time. To initiate the transaction commit process, the
transaction manager is allowed to use any of the resource objects connected to the same
resource manager instance. The resource object used for the two-phase commit
protocol need not have been involved with the transaction being completed.

The resource adapter must be able to handle multiple threads invokirngrbsource
methods concurrently for transaction commit processing. For example, suppose we
have a transactional resourtce Global transactioridl wasstartedandendedwith

r1 . Then a different global transactigin2 is associated witht . Meanwhile, the
transaction manager may start the two phase commit processiforusingrl or any

other transactional resource connected to the same resource manager. The resource

Sun Microsystems Inc. 18 May 12, 1999

Java Transaction API

adapter needs to allow the commit process to be executed while the resource is
currently associated with a different global transaction.

The sample code below illustrates the above scenario:

/I Suppose we have some transactional connection-based
/I resource rl that is connected to an enterprise information
/I service system.

1

XAResource xares = rl.getXAResource();

xares.start(xid1); // associate xid1 to the connection

xares.end(xidl); // dissociate xid1 to the connection
xares.start(xid2); // associate xid2 to the connection

/I While the connection is associated with xid2,
/I the TM starts the commit process for xid1

status = xares.prepare(xidl);

xares.commit(xidl, false);

3.4.7 Local and Global Transactions

The resource adapter is encouraged to support the usage of both local and global
transactions within the same transactional connection. Local transactions are
transactions that are started and coordinated by the resource manager internally. The
XAResource interface is not used for local transactions.

When using the same connection to perform both local and global transactions, the
following rules apply:

» The local transaction must be committed (or rolled back) before starting a
global transaction in the connection.

» The global transaction must be disassociated from the connection before any
local transaction is started.

If a resource adapter does not support mixing local and global transactions within the
same connection, the resource adapter should throw the resource specific exception.
For examplejava.sql.SQLException is thrown to the application if the resource
manager for the underlying RDBMS does not support mixing local and global
transactions within the same JDBC connection.

3.4.8 Failures Recovery

During recovery, the Transaction Manager must be able to communicate to all resource
managers that are in use by the applications in the system. For each resource manager,

Sun Microsystems Inc. 19 May 12, 1999

Java Transaction API

the Transaction Manager uses #trResource.recover method to retrieve the list of
transactions that are currently in a prepared or heuristically completed state.

Typically, the system administrator configures all transactional resource factories that
are used by the applications deployed on the system. An example of such a resource
factory is the JDB&ADataSource object, which is a factory for the JDBC

XAConnection objects. The implementation of these transactional resource factory
objects are botfavax.naming.Referenceable andjava.io.Serializable so that

they can be stored in all INDI naming contexts.

BecausexAResource Objects are not persistent across system failures, the Transaction
Manager needs to have some way to acquir&tifesource objects that represent the
resource managers which might have participated in the transactions prior to the system
failure. For example, a Transaction Manager might, through the use of the JNDI lookup
mechanism and cooperation from the application server, acquiarasource object
representing each of the Resource Manager configured in the system. The Transaction
Manager then invokes th&Resource.recover ~ method to ask each resource manager

to return any transactions that are currently in a prepared or heuristically completed
state. It is the responsibility of the Transaction Manager to ignore transactions that do
not belong to it.

3.4.9 Identifying Resource Manager Instance

TheissameRM method is invoked by the Transaction Manager to determine if the target
XAResource Object represents the same resource manager instance as that represented
by thexAResource o0bject in the parameter. TlssameRM method returnsrueif the
specified target object is connected to the same resource manager instance; otherwise,
the method returnglse The semi-pseudo code below illustrates the intended usage.

public boolean enlistResource(XAResource xares)

{

/I Assuming xid1 is the target transaction and
/I xid1 already has another resource object xaRes1
/I participating in the transaction

boolean sameRM = xares.isSameRM(xaRes1);
if (sameRM) {
1
/I Same underlying resource manager instance,
/I group together with xaRes1 and join the transaction
1
xares.start(xid1, TMJOIN);
}else {
1
/[This is a different RM instance,
/l make a new transaction branch for xid1
1
xid1NewBranch = makeNewBranch(xid1);
xares.start(xidiNewBranch, TMNOFLAGS);

Sun Microsystems Inc. 20 May 12, 1999

Java Transaction API

}
3.4.10 Dynamic Registration
Dynamic registration is not supportediaResource because of the following reasons:

* In the Java component-based application server environment, connections to
the resource manager are acquired dynamically when the application explicitly
requests for a connection. These resources are enlisted with the transaction
manager on an “as-needed” basis (unlike the static xa_switch table that exists in
the C-XA procedural model).

* If a resource manager requires a way to dynamically register its work to the
global transaction, then the implementation can be done at the resource adapter
level via a private interface between the resource adapter and the underlying
resource manager.

3.5 Xid Interface

The javax.transaction.xéd interface is a Java mapping of the X/Open transaction
identifier XID structure. This interface specifies three accessor methods which are used
to retrieve a global transaction’s format ID, a global transaction ID, and a branch
qualifier. Thexid interface is used by the transaction manager and the resource
managers. This interface is not visible to the application programs nor the application
server.

Sun Microsystems Inc. 21 May 12, 1999

Java Transaction API

4 JTA Support in the Application Server

This chapter provides a discussion on implementation and usage considerations for
application servers to support the Java Transaction API. Our discussion assumes the
application’s transactions and resource usage are managed by the application server.
We further assume that access to the underlying transactional resource manager is
through some Java APl implemented by the resource adapter representing the resource
manager. For example, a JDBC 2.0 driver may be used to access a relational database,
a SAP connector resource adapter may be used to access the SAP R/3 ERP system, and
so on. This section focuses on the usage of JTA and assumes a generic connection based
transactional resource is in use without being specific about a particular type of
resource manager.

4.1 Connection-Based Resource Usage Scenario

Let's assume that the resource adapter provides a connection-based resource API called
TransactionalResourc® access the underlying resource manager.

In a typical usage scenario, the application server invokes the resource adapter’s
resource factory to createlTeansactionalResourcaebject. The resource adapter
internally associates thEransactionalResourcgith two other entities: an object that
implements the specific resource adapter’s connection interface and an object that
implements théavax.transaction.xa.XAResource interface.

The application server obtaing eansactionalResourcebject and uses it in the
following way. The application server obtains ¥»Resource object via a

getXAResource method. The application server enlists XA®esource to the

Transaction Manager (TM) using tlensaction.enlistResource method. The

TM informs the Resource Manager to associate the work performed (through that
connection) with the transaction currently associated with the application. The TM does
it by invoking thexAResource.start ~ method.

The application server then invokes sayeonnection ~ method to obtain a

Connection object and returns it to the application. Note that the Connection interface
is implemented by the resource adapter and it is specific to the underlying resource
supported by the resource manager. The diagram below illustrates a general flow of
acquiring resource and enlisting the resource to the Transaction Manager.

Sun Microsystems Inc. 22 May 12, 1999

Java Transaction API

Transaction Java
Manager Application
A javax.transaction. javax.tbd
Transaction. M
enlistResource getResource

AppServer Y
obj-ref obj-ref
@ (obj-ref)

getConnection
getXAResour getTransactionalResource

\ /

\]

TransactionalResource

Adaptel

Javax.transaction.xa. Resource Manager
XAResource.start

In this usage scenario, tR@Resource interface is transparent to the application
program, and the€onnection interface is transparent to the transaction manager. The
application server is the only party that holds a reference to some
TransactionalResourcebject.

The code sample below illustrate how the application server obtaiksrlasource
object reference and enlists it with the Transaction Manager.

/I Acquire some connection-based transactional resource to
/I access the resource manager

Context ctx = InitialContext();
ResourceFactory rf =(ResourceFactory)ctx.lookup(“MyEISResource”);
TransactionalResource res = rf.getTransactionalResource();

/I Obtain the XAResource part of the connection and
/I enlist it with the Transaction Manager

XAResource xaRes = res.getXAResource();
(TransactionManager.getTransaction()).enlistResource(xaRes);

/I get the connection part of the transaction resource
Connection con = (Connection)res.getConnection();

.. return the connection to the application

Sun Microsystems Inc. 23 May 12, 1999

Java Transaction API

4.2 Transaction Association and Connection Request Flow

This session provides a brief walkthrough of how an application server may handle a
connection request from the application. The figure that follows illustrates the usage of
JTA. The steps shown are for illustrative purposes, they are not prescriptive:

1. Assuming a client invokes an EJB bean with a TX_REQUIRED transaction
attribute and the client is not associated with a global transaction, the EJB
container starts a global transaction by invoking the
TransactionManager.begin method.

2. After the the transaction starts, the container invokes the bean method. As part
of the business logic, the bean requests for a connection-based resource using
the API provided by the resource adapter of interest.

3. The application server obtains a resource from the resource adapter via some
ResourceFactory.getTransactionalResournethod.

4. The resource adapter createsTthansactionalResourcebject and the
associatetkAResource andConnection objects.

The application server invokes tXxAResource method.
The application server enlists the resource to the transaction manager.

The transaction manager invok@&sResource.start to associate the current
transaction to the resource.

The application server invokes tConnection ~ method.

The application server returns thennection object reference to the
application.

10. The application performs one or more operations on the connection.
11. The application closes the connection.

12. The application server delist the resource when notified by the resource adapter
about the connection close.

13. The transaction manager invok@®Resource.end to disassociate the
transaction from th&AResource .

14. The application server asks the transaction manager to commit the transaction.

15. The transaction manager invok@&Resource.prepare to inform the resource
manager to prepare the transaction work for commit.

16. The transaction manager invok@sResource.commit to commit the
transaction.

This example illustrates the application server’'s usage dfrdheactionManager
andXAResource interfaces as part of the application connection request handling.

Sun Microsystems Inc. 24 May 12, 1999

Java Transaction API

TransactionalApplication Transaction

Interfaces implemented by the resource adapter

Application Server Manager Resource- Transactional

|

| _

‘ getConnection
—_—

Factory Resource Connection XAResource

begin

getTransactionaIResdurce

| | |

\ \ \

\ \ \

new | >I | |
\

\ \ \

\ \

\

getXAResource

enlistResource

start

getConnection

application pe

foms operations

return connection

delistResource

|
\
\
\
\
:
\
g
\
l
\
"
\
\
|
\
\
\
\
\
\
\

commit

|
[
|
|
|
\
|
|
\
|

prepare)

commit

___Y.JTL,_Y}

Sun Microsystems Inc. 25

May 12, 1999

Java Transaction API

5 Java Transaction APl Reference

This chapter provides the documentation of the interfaces and classes that are part of
the Java Transaction API standard extension jaMag transaction package is
relevant to the Enterprise JavaBeans, JDBC, JMS, and JTS standard extension APIs.

packaggavax.transaction
Interface:

public interface javax.transaction.Status

public interface javax.transaction.Synchronization
public interface javax.transaction.Transaction

public interface javax.transaction.TransactionManager
public interface javax.transaction.UserTransaction

Classes:

public class javax.transaction.HeuristicCommitException

public class javax.transaction.HeuristicMixedException

public class javax.transaction.HeuristicRollbackException
public class javax.transaction.InvalidTransactionException
public class javax.transaction.NotSupportedException

public class javax.transaction.RollbackException

public class javax.transaction.TransactionRequiredException
public class javax.transaction.TransactionRolledbackException
public class javax.transaction.SystemException

packaggavax.transaction.xa

Interfaces:

public interface javax.transaction.xa.XAResource
public interface javax.transaction.xa.Xid

Classes:

public class javax.transaction.xa.XAException

Sun Microsystems Inc. 26 May 12, 1999

Java Transaction API

Interface Status

interface javax.transaction. Status

{
public final static int STATUS_ACTIVE
public final static int STATUS_COMMITTED
public final static int STATUS_COMMITTING
public final static int STATUS_MARKED_ROLLBACK
public final static int STATUS_NO_TRANSACTION
public final static int STATUS_PREPARED
public final static int STATUS_PREPARING
public final static int STATUS_ROLLEDBACK
public final static int STATUS_ROLLING_BACK
public final static int STATUS_UNKNOWN

}

Variables

* STATUS_ACTIVE
public final static int STATUS_ACTIVE

A transaction is associated with the target object and it is in the active state. An implementation returns this
status after a transaction has been started and prior to a transaction coordinator issuing any prepares unless
the transaction has been marked for rollback.

* STATUS_COMMITTED
public final static int STATUS_COMMITTED

A transaction is associated with the target object and it has been committed. It is likely that heuristics exists,
otherwise the transaction would have been destroyed and NoTransaction returned.

* STATUS_COMMITTING
public final static int STATUS_COMMITTING

A transaction is associated with the target object and it is in the process of committing. An implementation
returns this status if it has decided to commit, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

* STATUS_MARKED_ROLLBACK
public final static int STATUS_MARKED_ROLLBACK

A transaction is associated with the target object and it has been marked for rollback, perhaps as a result of a
setRollbackOnly operation.

« STATUS_NO_TRANSACTION
public final static int STATUS_NO_TRANSACTION

No transaction is currently associated with the target object. This will occur after a transaction has com-
pleted.

* STATUS_PREPARED
public final static int STATUS_PREPARED

Sun Microsystems Inc. 27 May 12, 1999

Java Transaction API

A transaction is associated with the target object and it has been prepared, i.e. all subordinates have
responded Vote.Commit. The target object may be waiting for a superior's instruction as how to proceed.

* STATUS_PREPARING
public final static int STATUS_PREPARING

A transaction is associated with the target object and it is in the process of preparing. An implementation
returns this status if it has started preparing, but has not yet completed the process, probably because it is
waiting for responses to prepare from one or more Resources.

* STATUS_ROLLEDBACK
public final static int STATUS_ROLLEDBACK

A transaction is associated with the target object and the outcome has been determined as rollback. It is
likely that heuristics exist, otherwise the transaction would have been destroyed and NoTransaction returned.

* STATUS_ROLLING_BACK
public final static int STATUS_ROLLING_BACK

A transaction is associated with the target object and it is in the process of rolling back. An implementation
returns this status if it has decided to rollback, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

¢ STATUS_UNKNOWN
public final static int STATUS_UNKNOWN

A transaction is associated with the target object but its current status cannot be determined. This is a tran-
sient condition and a subsequent invocation will ultimately return a different status.

Sun Microsystems Inc. 28 May 12, 1999

Java Transaction API

Interface Synchronization

interface javax.transaction. Synchronization
{

public abstract void beforeCompletion ();

public abstract void afterCompletion (int status);
}

The transaction manager provides a synchronization protocol that allows the interested party to be notified before
and after the transaction completes. Using the registerSynchronization method, the application server registers a
Synchronization object for the transaction currently associated with the target Transaction object.

Methods

* beforeCompletion
public abstract void beforeCompletion()

ThebeforeCompletion method is called by the transaction manager prior to the start of the transaction
completion process. This call is executed with the transaction context of the transaction that is being com-
mitted.

« afterCompletion
public abstract void afterCompletion(int status)

The afterCompletion method is called by the transaction manager after the transaction is committed or rolled

back.
Parameters:
status
Status of the transaction that was completed. The value provided is the same as that returned
by getStatus.

Sun Microsystems Inc. 29 May 12, 1999

Java Transaction API

Interface Transaction

interface javax.transaction. Transaction
{
public abstract void commit ();
public abstract boolean delistResource (XAResource xaRes, int flag);
public abstract boolean enlistResource (XAResource xaRes);
public abstract int getStatus ();
public abstract void registerSynchronization (Synchronization sync);
public abstract void rollback ();
public abstract void setRollbackOnly 0;
}

TheTransaction interface allows operations to be performed against the transaction in the target Transac-
tioin object. A Transaction object is created corresponding to each global transaction crealim$ae-

tion object can be used for resource enlistment, synchronization registration, transaction completion and status
guery operations.

Methods

e commit

public abstract void commit() throws RollbackException,
HeuristicMixedException, HeuristicRollbackException,
SecurityException, SystemException

Complete the transaction associated with the target Transaction object.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
rolled back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: lllegalStateException
Thrown if the transaction in the target object is inactive.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

« delistResource

public abstract boolean delistResource(XAResource xaRes, int flag)
throws lllegalStateException, SystemException

Disassociate the resource specified from the transaction associated with the target Transaction object.

Parameters:
xaRes

Sun Microsystems Inc. 30 May 12, 1999

Java Transaction API

The XAResource object associated with the resource (connection).

flag
TMSUSPEND - the resource should be dissociated with the suspend mode, the caller intends
to come back to the current state.
TMFAIL - the resource is dissociated because part of the work has failed. This typically can
be caused by an error exception encountered on the resource in use.
TMSUCCESS - the resource is dissociated as part of the normal work completion.

Returns:
true if the dissociation of the resource is successful; othefaise

Throws: lllegalStateException
Thrown if the transaction in the target object is inactive.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* enlistResource

public abstract boolean enlistResource (XAResource xaRes)
throws RollbackException , lllegalStateException,
SystemException

Enlist the resource specified with the transaction associated with the target Transaction object.

Parameters:
xaRes
The XAResource object associated with the resource (connection).

Returns:
true if the enlistment is successful; otherwiakse

Throws: lllegalStateException
Thrown if the transaction in the target object is in prepared state or the transaction is inactive.

Throws: RollbackException
Thrown to indicate that the transaction has been marked for rollback only.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* getStatus
public abstract int getStatus() throws SystemException

Obtain the status of the transaction associated with the target object.

Returns:
The transaction status. If no transaction is associated with the target object, this method returns the
STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* registerSynchronization

public void registerSynchronization (Synchronization sync)
throws RollbackException , lllegalStateException,
SystemException

Sun Microsystems Inc. 31 May 12, 1999

Java Transaction API

Register a synchronization object for the transaction currently associated with the target object. The transc-

tion manager invokes theeforeCompletion method prior to starting the transaction commit process.
After the transaction is completed, the transaction manager invokafgt@@ompletion method.
Parameters:

sync

The Synchronization object for the transaction currently associated with the target object.

Throws: lllegalStateException
Thrown if the transaction in the target object is in prepared state or the transaction is inactive.

Throws: RollbackException
Thrown to indicate that the transaction has been marked for rollback only.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

« rollback

public abstract void rollback()
throws lllegalStateException, SyetemException

Rollback the transaction associated with the target Transaction object.

Throws: lllegalStateException
Thrown if the target object is not associtated with any transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* setRollbackOnly

public abstract void setRollbackOnly()
throws lllegalStateException, SystemException

Modify the transaction associated with the target object such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: lllegalStateException
Thrown if the target object is not associtated with any transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

Variables

¢ TMSUCCESS
public final static int TMSUCCESS = 0x04000000

Dissociate caller from transaction branch.

* TMSUSPEND
public final static int TMSUSPEND = 0x02000000

Caller is suspending (not ending) association with transaction branch.

Sun Microsystems Inc. 32 May 12, 1999

Java Transaction API

* TMFAIL
public final static int TMFAIL = 0x20000000

Dissociates the caller and mark the transaction branch rollback-only.

Sun Microsystems Inc. 33 May 12, 1999

Java Transaction API

Interface TransactionManager

interface javax.transaction. TransactionManager
{
public abstract void begin ();
public abstract void commit ();
public abstract int getStatus ();
public abstract Transaction getTransaction 0;
public void resume (Transaction tobj);
public abstract void rollback ();
public abstract void setRollbackOnly 0;
public abstract void setTransactionTimeout (int seconds);
public abstract Transaction suspend () ;
}

The TransactionManager interface allows the application server to communicate to the Transaction Manager for
transaction boundaries demarcation on behalf of the application. For example, this interface is used by an EJB
server to communicate to the transaction manager on behalf of the container-managed EJB components.

Methods

* begin
public abstract void begin()
throws NotSupportedException, SystemException

Create a new transaction and associate it with the current thread.

Throws: NotSupportedException
Thrown if the thread is already associated with a transaction and the Transaction Manager does not
support nested transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

e commit

public abstract void commit()
throws RollbackException, HeuristicMixedException,
HeuristicRollbackException, SecurityException,
lllegalStateException, SystemException

Complete the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
rolled back.

Sun Microsystems Inc. 34 May 12, 1999

Java Transaction API

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: lllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* getStatus
public abstract int getStatus() throws SystemException

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. If no transaction is associated with the current thread, this method returns
the Status.STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* getTransaction
public abstract Transaction getTransaction () throws SystemException

Get the transaction object that represents the transaction context of the calling thread.

Returns:
The Transaction object that represents the transaction context of the calling thread. If the calling
thread is not associated with a transaction, a null object reference is returned.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* resume

public void resume(Transaction tobj)
throws InvalidTransactionException,
lllegalStateException, SystemException

Resume the transaction context association of the calling thread with the transaction represented by the sup-
plied Transaction object. When this method returns, the calling thread is associated with the transaction con-
text specified.

Parameters:
tobj
The Transaction object that consists of the transaction to be resumed for the calling thread.

Throws: InvalidTransactionException
Thrown if the parametdobj refers to an invalid transaction.

Throws: lllegalStateException
Thrown if the current thread is already associated with another transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* rollback
public abstract void rollback()

Sun Microsystems Inc. 35 May 12, 1999

Java Transaction API

throws lllegalStateException, SecurityException, SystemException

Roll back the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: lllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* setRollbackOnly

public abstract void setRollbackOnly()
throws lllegalStateException, SystemException

Modify the transaction associated with the current thread such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: lllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

« setTransactionTimeout

public abstract void setTransactionTimeout(int seconds)
throws SystemException

Modify the value of the timeout value that is associated with the transactions started by the current thread
with the begin method.

If an application has not called this method, the transaction service uses some default value for the transac-
tion timeout.

Parameters:
seconds
The value of the timeout in seconds. If the value is zero, the transaction service restores the
default value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* suspend
public abstract Transaction suspend () throws SystemException

Suspend the transaction currently associated with the calling thread and return a Transaction object that rep-
resents the transaction context being suspended. If the calling thread is not associated with a transaction, the
method returns a null object reference. When this method returns, the calling thread is associated with no
transaction.

Returns:
The Transaction object that represents the transaction context associated with the calling thread.
Null if the calling thread is not associated with a transaction.

Throws: SystemException

Sun Microsystems Inc. 36 May 12, 1999

Java Transaction API

Thrown if the transaction manager encounters an unexpected error condition.

Sun Microsystems Inc. 37 May 12, 1999

Java Transaction API

Interface UserTransaction

public interface javax.transaction. UserTransaction
{
public abstract void begin ();
public abstract void commit ();
public abstract int getStatus ();
public abstract void rollback ();
public abstract void setRollbackOnly 0;
public abstract void setTransactionTimeout (int seconds);
}
The UserTransaction interface defines the methods that allow an application to explicitly manage transaction
boundaries.
Methods
* begin

public abstract void begin()
throws NotSupportedException, SystemException

Create a new transaction and associate it with the current thread.

Throws: NotSupportedException
Thrown if the thread is already associated with a transaction and the Transaction Manager imple-
mentation does not support nested transactions.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

e commit

public abstract void commit()
throws RollbackException, HeuristicMixedException,
HeuristicRollbackException, SecurityException,
lllegalStateException, SystemException

Complete the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
rolled back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: lllegalStateException

Sun Microsystems Inc. 38 May 12, 1999

Java Transaction API

Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* getStatus
public abstract int getStatus() throws SystemException

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. If no transaction is associated with the current thread, this method returns
the STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

« rollback

public abstract void rollback()
throws lllegalStateException, SecurityException, SystemException

Roll back the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: lllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

* setRollbackOnly

public abstract void setRollbackOnly()
throws lllegalStateException, SystemException

Modify the transaction associated with the current thread such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: lllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

« setTransactionTimeout

public abstract void setTransactionTimeout(int seconds)
throws SystemException

Modify the value of the timeout value that is associated with the transactions started by the current thread
with the begin method.

If an application has not called this method, the transaction service uses some default value for the transac-
tion timeout.

Parameters:
seconds

Sun Microsystems Inc. 39 May 12, 1999

Java Transaction API

The value of the timeout in seconds. If the value is zero, the transaction service restores the
default value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

Sun Microsystems Inc. 40 May 12, 1999

Java Transaction API

Interface XAResource

public interface javax.transaction.xa. XAResource
{
public abstract void commit (Xid xid, boolean onePhase);
public abstract void end (Xid xid, int flags);
public abstract void forget (Xid xid);
public abstract int getTransactionTimeout 0;
public abstract boolean isSameRM(XAResource xares);
public abstract int prepare (Xid xid);
public abstract Xid[] recover (int flag);
public abstract void rollback (Xid xid);
public abstract boolean setTransactionTimeout (int seconds);
public abstract void start (Xid xid, int flags);
}

XAResource interface is a Java mapping of the industry standard XA resource manager interface. Please refer to:
X/Open CAE Specification — Distributed Transaction Processing: The XA Specification, X/Open Document No.
XO/CAE/91/300 or ISBN 1 872630 24 3.

Methods

e commit
commit(Xid xid, boolean onePhase) throws XAException

This method is called to commit the global transaction specifiedby

Parameters
xid
A global transaction identifier.

onePhase
If true, the resource manager should use a one-phase commit protocol to commit the work
done on behalf afid.

Throws: XAEXxception
An error has occurred. Possible XAExceptions are XA HEURHAZ, XA_HEURCOM,
XA_HEURRB, XA_HEURMIX, XAER_RMERR, XAER_RMFAIL, XAER_NOTA,
XAER_INVAL, or XAER_PRQOTO.

If the resource manager did not commit the transaction and the paramether onePhastug,set to
the resource manager may throw one of the XA_RB* exceptions. Upon return, the resource man-
ager has rolled back the branch’s work and has released all held resources.

» end
int end(Xid xid, int flags) throws XAException

This method ends the work performed on behalf of a transaction branch. The resource manager dissociates
the XA resource from the transaction branch specified and let the transaction be completed.

If TMSUSPEND is specified iflags the transaction branch is temporarily suspended in incomplete state.
The transaction context is in suspened state and must be resuratdtvisth TMRESUME specified.

Sun Microsystems Inc. 41 May 12, 1999

Java Transaction API

If TMFAIL is specified, the portion of work has failed. The resource manager may mark the transaction as
rollback-only.

If TMSUCCESS is specified, the portion of work has completed successfully.

Parameters
xid
A global transaction identifier that is the same as what was used previouslgtarthe
method.
flags
One of TMSUCCESS, TMFAIL, or TMSUSPEND.

Throws: XAException
An error has occurred. Possible XAException values are XAER_RMERR, XAER_RMFAILED,
XAER_NOTA, XAER_INVAL, XAER_PROTO, or XA_RB*.

« forget
void forget(Xid xid) throws XAException

This method is called to tell the resource manager to forget about a heuristically completed transaction
branch.

Parameters
xid
A global transaction identifier.

Throws: XAException
An error has occurred. Possible exception values are XAER_RMERR, XAER_RMFAIL,
XAER_NOTA, XAER_INVAL, or XAER_PROTO.

* getTransactionTimeout
int getTransactionTimeout() throws XAEXxception

This method returns the transaction timeout value set foXthiResource instance. IXARe-
source.setTransactionTimeout was not use prior to invoking this method, the return value is the
default timeout set for the resource manager; otherwise, the value used in the geViarsac-
tionTimeout call is returned.

Throws: XAException
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL.

Returns:
The transaction timeout values in seconds.

* isSameRM
boolean isSameRM(XAResource xares) throws XAException

This method is called to determine if the resource manager instance represented by the target object is the
same as the resource manager instance represented by the patamester

Parameters
xares
An XAResource object.

Returns:
true if same RM instance; otherwifase

Sun Microsystems Inc. 42 May 12, 1999

Java Transaction API

Throws: XAException
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL.

* prepare
int prepare(Xid xid) throws XAException

This method is called to ask the resource manager to prepare for a transaction commit of the transaction
specified inxid.

Parameters
xid
A global transaction identifier.
Throws: XAException

An error has occurred. Possible exception values are: XA_RB*, XAER_RMERR,
XAER_RMFAIL, XAER_NOTA, XAER_INVAL, or XAER_PROTO.

Returns :
A value indicating the resource manager’s vote on the outcome of the transaction. The possible val-
ues are: XA _RDONLY or XA _OK. If the resource manager wants to roll back the transaction, it
should do so by throwing an appropriate XAException imptiepare method.

* recover
xid[] recover(int flag) throws XAException

This method is called to obtain a list of prepared transaction branches from a resource manager. The transac-
tion manager calls this method during recovery to obtain the list of transaction branches that are currently in
prepared or heuristically completed states.

The flag parameter indicates where the recover scan should start or end, or start and end. This method may
be invoked one or more times during a recovery scan. The resource manager maintains a cursor which marks
the current position of the prepared or heuristically completed transaction list. Each invocation of the recover
method moves the cursor passed the set of Xids that are returned.

Two consecutive invocation of this method that starts from the beginning of the list must return the same list
of transaction branches unless one of the following takes place:

- the transaction manager invokes the commit, forget, prepare, or rollback method for that resource
manager, between the two consecutive invocation of the recovery scan.

- the resource manager heuristically completes some transaction branches between the two invocation
of the recovery scan.

Parameters
flag
One of TMSTARTRSCAN, TMENDRSCAN, TMNOFLAGS. TMNOFLAGS must be used
when no other flags are used.

TMSTARTRSCAN - indicates that the recovery scan should be started at the beginning of the
prepared or heuristically completed transaction list.

TMENDRSCAN - indicates that the recovery scan should be ended after the method returns
the Xid list. If this flag is used in conjunction with the TMSTARTRSCAN, this method invo-
cation starts and ends the recovery scan.

TMNOFLAGS - this flag must be used when no other flags are specified. This flag may be

Sun Microsystems Inc. 43 May 12, 1999

Java Transaction API

used only if the recovery scan has already been started. The list of Xids are returned

Returns: xid[]
The resource manager returns zero or more Xids for the transaction branches that are currently in a
prepared or heuristically completed state. If an error occurs during the operation, the resource man-
ager should throw the appropri2¢&Exception

Throws: XAEXxception
An error has occurred. Possible values are XAER_RMERR, XAER_RMFAIL, XAER_INVAL,
and XAER_PROTO.

* rollback
void rollback(Xid xid) throws XAException

This method informs the resource manager to roll back work done on behalf of a transaction branch.

Parameters
xid
A global transaction identifier.

Throws: XAException
An error has occurred.

* setTransactionTimeout
boolean setTransactionTimeout(int seconds) throws XAException

This method sets the transaction timeout value forXfiResource instance. Once set, this timeout value
is effective untilsetTransactionTimeout is invoked again with a different value. To reset the timeout
value to the default value used by the resource manager, set the value to zero.

If the timeout operation is performed successfully, the method rdtum®otherwisefalse If a resource
manager does not support transaction timeout value to be set explicitly, this methodakseirns

Parameters
seconds
An positive integer specifying the timout value in seconds. Zero resets the transaction timeout
value to the default one used by the resource manager. A negative value reXlExicep-
tion to be thrown with XAER_INVAL error code.

Returns :
true if transaction timeout value is set successfully; otherfailse

Throws: XAEXxception
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL, or
XAER_INVAL.

» start
void start(Xid xid, int flags) throws XAException

This method starts work on behalf of a transaction branch.

If TMJOIN is specified, the start is for joining an exisiting transaction braitch If TMRESUME is spec-
ified, the start is to resume a suspended transaction branch specifééd in

If neither TMJOIN nor TMRESUME is specified and the transaction branch specifiad iralready exists,
the resource manager throw the XAException with XAER_DUPID error code.

Sun Microsystems Inc. 44 May 12, 1999

Java Transaction API

Parameters
xid

A global transaction identifier to be associated with the resource.

flags
One of TMNOFLAGS, TMJOIN, or TMRESUME.

Throws: XAException

An error has occurred. Possible exceptions are XA_RB*, XAER_RMERR, XAER_RMFAIL,
XAER_DUPID, XAER_OUTSIDE, XAER_NOTA, XAER_INVAL, or XAER_PRQOTO.

Variables

TMENDRSCAN
public final static int TMENDRSCAN = 0x00800000

End a recovery scan.

TMFAIL
public final static int TMFAIL = 0x20000000

Dissociates the caller and mark the transaction branch rollback-only.

TMJOIN
public final static int TMJOIN = 0x00200000

Caller is joining existing transaction branch.

TMNOFLAGS
public final static int TMNOFLAGS = 0x00000000

Use TMNOFLAG to indicate no flags value is selected.

TMONEPHASE
public final static int TMONEPHASE = 0x40000000

Caller is using one-phase optimization.

TMRESUME
public final static int TMRESUME = 0x08000000

Caller is resuming association with with suspended transaction branch.

TMSTARTRSCAN
public final static int TMSTARTRSCAN = 0x01000000

Start a recovery scan.

TMSUCCESS
public final static int TMSUCCESS = 0x04000000

Dissociate caller from transaction branch.

Sun Microsystems Inc. 45

May 12, 1999

Java Transaction API

» TMSUSPEND
public final static int TMSUSPEND = 0x02000000

Caller is suspending (not ending) association with transaction branch.

Sun Microsystems Inc. 46 May 12, 1999

Java Transaction API

Interface Xid

public interface javax.transaction.xa. Xid
{
int getFormatld ();
byte(] getGlobalTransactionid 0;
byte(] getBranchQualifier 0;
}

ThexXid interface is a Java mapping of the X/Open transaction identidiestructure. This
interface is used by the transaction manager to communicate to the resource manager for asso-

ciating a transaction to th&\Resource .

Variables

* MAXGTRIDSIZE
final static int MAXGTRIDSIZE = 64

Maximum number of bytes returned bgtGlobalTransactionld method.
» MAXBQUALSIZE
final static int MAXBQUALSIZE = 64
method

Maximum number of bytes returned ggtBranchQualifier

Methods

e getFormatld
int getFormatiD()

Obtain the format identifier part of the Xid.

Returns:
Format identifier. 0 means the OSI| CCR format.

 getGlobalTransactionld
byte[] getGtrid()

Obtain the global transaction identifier part of the Xid in a byte array.

Returns:
A byte array containing the global transaction identifier.
» getBranchQualifier

byte[] getBqual()

Obtain the transaction branch qualifier part of the Xid in a byte array.

Returns:
A byte array containing the branch qualifier of the transaction.

Sun Microsystems Inc. 47 May 12, 1999

Java Transaction API

Class HeuristicCommitException

public class javax.transaction. HeuristicCommitException
extends java.lang. Exception
{
public HeuristicCommitException 0;
public HeuristicCommitException (String msg);
}

This exception is thrown by the rollback operation on a resource to report that a heuristic decision was made
and that all relevant updates have been committed.

Constructors

 HeuristicCommitException
public HeuristicCommitException()

* HeuristicCommitException
public HeuristicCommitException(String msg)

Sun Microsystems Inc. 48 May 12, 1999

Java Transaction API

Class HeuristicMixedException

public class javax.transaction. HeuristicMixedException
extends java.lang. Exception
{
public HeuristicMixedException 0;
public HeuristicMixedException (String msg);
}

This exception is thrown to report that a heuristic decision was made and that some relevant updates have
been committed and others have been rolled back.

Constructors

* HeuristicMixedException
public HeuristicMixedException()

* HeuristicMixedException
public HeuristicMixedException(String msg)

Sun Microsystems Inc. 49 May 12, 1999

Java Transaction API

Class HeuristicRollbackException

public class javax.transaction. HeuristicRollbackException
extends java.lang. Exception
{
public HeuristicRollbackException 0;
public HeuristicRollbackException (String msg);
}

This exception is thrown by the commit operation to report that a heuristic decision was made and that all
relevant updates have been rolled back.

Constructors

* HeuristicRollbackException
public HeuristicRollbackException()

* HeuristicRollbackException
public HeuristicRollbackException(String msg)

Sun Microsystems Inc. 50 May 12, 1999

Java Transaction API

Class InvalidTransactionException

public class javax.transaction. InvalidTransactionException
extends java.rmi. RemoteException
{
public InvalidTransactionException 0;
public InvalidTransactionException (String msg);
}

This exception indicates that the request carried an invalid transaction context. This exception is used by any
module that needs to indicate the invalid transaction context to the remote client.

Constructors

« InvalidTransactionException
public InvalidTransactionException()

* InvalidTransactionException
public InvalidTransactionException(String msg)

Sun Microsystems Inc. 51 May 12, 1999

Java Transaction API

Class NotSupportedException

public class javax.transaction. NotSupportedException
extends java.lang. Exception
{
public NotSupportedException 0;

public NotSupportedException (String msqQ);
}

This exception is thrown when the requested operation is not supported. For example, this exception can be
thrown by the Transaction Manager to indicate that nested transaction is not suppadrtads#ction begin
is called when the calling thread is already associated with a transaction context and the Transaction Man-

ager implementation does not support nested transactions, then this exception is thrown by the Transaction
Manager.

Constructors

» NotSupportedException
public NotSupportedException()

* NotSupportedException
public NotSupportedException(String msg)

Sun Microsystems Inc. 52 May 12, 1999

Java Transaction API

Class RollbackException

public class javax.transaction. RollbackException
extends java.lang. Exception
{
public RollbackException 0;
public RollbackException (String msg);
}

This exception is thrown when the transaction has been marked for rollback only or the transaction has been
rolledback instead of committed. This is a local exception thrown by methods Wsd ransaction
Transaction andTransactionManager interfaces.

Constructors

* RollbackException
public RollbackException()

* RollbackException
public RollbackExcpetion(String msg)

Sun Microsystems Inc. 53 May 12, 1999

Java Transaction API

Class SystemException

public class javax.transaction. SystemException extends java.lang. Exception

{
public SystemException ();

public SystemException (String s);
public SystemException (int errCode);

}

The SystemException is thrown by the Transaction Manager to indicate that it has encountered an unex-
pected error condition that prevents future transaction services from proceeding.

Constructors

» SystemException
public SystemException()

Create &ystemException

» SystemException
public SystemException(String S)

Create &ystemException with the specified string.

» SystemException
public SystemException(int errCode)

Create &8ystemException with the specified error code.

Variables

* errorCode
public int errorCode

Error code for the exception

Sun Microsystems Inc. 54 May 12, 1999

Java Transaction API

Class TransactionRequiredException

public class javax.transaction. TransactionRequiredException
extends java.rmi. RemoteException

{
public TransactionRequiredException 0;
public TransactionRequiredException (String msg);

}

This exception indicates that a request carried a null transaction context, but the target object requires an
active transaction. This exception is used by the system module that needs to indicate to the remote client
about the error condition.

Constructors

* TransactionRequiredException
public TransactionRequiredException()

* TransactionRequiredException
public TransactionRequiredException(String msg)

Sun Microsystems Inc. 55 May 12, 1999

Java Transaction API

Class TransactionRolledbackException

public class javax.transaction. TransactionRolledbackException
extends java.rmi. RemoteException

{
public TransactionRolledbackException 0;
public TransactionRolledbackException (String msg);

}

This exception indicates that the transaction associated with processing of the request has been rolled back,
or marked for roll back. Thus the requested operation either could not be performed or was not performed
because further computation on behalf of the transaction would be fruitless. This exception is thrown by a
system module to indicate to the remote client about the aborted transaction.

Constructors

* TransactionRolledbackException
public TransactionRolledbackException()

* TransactionRolledbackException
public TransactionRolledbackException(String msg)

Sun Microsystems Inc. 56 May 12, 1999

Java Transaction API

Class XAException

public class javax.transactioin.xa. XAException extends java.lang. Exception

{
public XAException ();

public XAException (String s);
public ~ XAException (int errCode);
}

The XAException is thown by the Resource Manager (RM) to inform the Transaction Manager of error encoun-
tered for the transaction involved.

Constructors

» XAException
public XAException()

Create an XAException.

» XAException
public XAExeption(String s)

Create an XAException with the specified string.

» XAException
public XAException(int errCode)

Create an XAException with the specified error code.

Variables

 errorCode
public int errorCode

Error code for the exception

XA RBBASE
public final static int XA_RBBASE = 100

The inclusive lower bound of the rollback code.

XA_RBROLLBACK
public final static int XA_RBROLLBACK = XA RBBASE

The rollback was caused by an unspecified reason.

XA_RBCOMMFAIL
public final static int XxA_RBCOMMFAIL = XA_RBBASE + 1

The rollback was caused by a communication failure.

Sun Microsystems Inc. 57 May 12, 1999

Java Transaction API

XA_RBDEADLOCK
public final static int XA_RBDEADLOCK = XA_RBBASE + 2

A deadlock was detected.

XA_RBINTEGRITY
public final static int XA_RBINTEGRITY = XA_RBBASE + 3

A condition that violates the integrity of the resources was detected.

XA_RBOTHER
public final static int XA_RBOTHER = XA_RBBASE + 4

The resouce manager rolled back the transaction branch for a reason not on this list.

XA RBPROTO
public final static int XA_RBPROTO = XA_RBBASE + 5

A protocol error occurred in the resource manager.

XA RBTIMEOUT
public final static int XA_RBRBTIMEOUT = XA RBBASE + 6

A transaction branch took too long.

XA _RBTRANSIENT
public final static int XA_RBTRANSIENT = XA RBBASE + 7

May retry the transaction branch

XA_RBEND
public final static int XA_RBEND = XA_RBTRANSIENT

The inclusive upper bound of the rollback codes.

XA_NOMIGRATE
public final static int XA_NOMIGRATE =9

Resumption must occur where suspension occurred.

XA_HEURHAZ
public final static int XA_ HEURHAZ = 8

The transaction branch may have been heuristically completed.

XA_HEURCOM
public final static int XA_ HEURCOM =7

The transaction branch has been heuristically committed.

XA HEURRB
public final static int XA HEURRB = 6

The transaction branch has been heuristically rolled back.

Sun Microsystems Inc. 58

May 12, 1999

Java Transaction API

XA_HEURMIX
public final static int XxA_HEURMIX =5

The transaction branch has been heuristically committed and rolled back.

* XA_RDONLY
public final static int XA_RDONLY = 3

The transaction branch was read-only and has been committed.

*+ XAER_RMERR
public final static int XAER_RMERR = -3

A resource manager error occurred in the transaction branch

+ XAER_NOTA
public final static int XAER_NOTA = -4

The XID is not valid.

* XAER_INVAL
public final static int XAER_INVAL = -5

Invalid arguments were given.

¢ XAER_PROTO
public final static int XAER_PROTO = -6

Routine invoked in an improper context.

* XAER_RMFAIL
public final static int XAER_RMFAIL = -7

Resource manager unavailable.

+ XAER_DUPID
public final static int XAER_DUPID = -8

The XID already exists.

+ XAER_OUTSIDE
public final static int XAER_OUTSIDE = -9

Resource manager doing work outside global transaction.

Sun Microsystems Inc. 59

May 12, 1999

Java Transaction API

6 Related documents
[1] X/Open CAE Specification — Distributed Transaction Processing: The XA Specifi-
cation, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3
[2] Java Transaction Service (JT8Btp://java.sun.com/products/jts

[3] OMG Object Transaction Service (OTS 1.1)
http://www.omg.org/corba/sectrans.html#trans

[4] ORB Portability Submission, OMG document orbos/97-04-14.
[5] Enterprise JavaBealh4 http://java.sun.com/products/ejb
[6] IDBC™ 2.0.http://java.sun.com/products/jdbc.

[7] Java Message Servidatp://java.sun.com/products/jms

Sun Microsystems Inc. 60 May 12, 1999

	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Target Audience

	2 Relationship to Other Java APIs
	2.1 Enterprise JavaBeans
	2.2 JDBC 2.0 Standard Extension API
	2.3 Java Message Service
	2.4 Java Transaction Service

	3 Java Transaction API
	3.1 UserTransaction Interface
	3.1.1 UserTransaction Support in EJB Server
	3.1.2 UserTransaction Support for Transactional Clients

	3.2 TransactionManager Interface
	3.2.1 Starting a Transaction
	3.2.2 Completing a Transaction
	3.2.3 Suspending and Resuming a Transaction

	3.3 Transaction Interface
	3.3.1 Resource Enlistment
	3.3.2 Transaction Synchronization
	3.3.3 Transaction Completion
	3.3.4 Transaction Equality and Hash Code

	3.4 XAResource Interface
	3.4.1 Opening a Resource Manager
	3.4.2 Closing a Resource Manager
	3.4.3 Thread of Control
	3.4.4 Transaction Association
	Table 1: Transaction Association

	3.4.5 Externally Controlled Connections
	3.4.6 Resource Sharing
	3.4.7 Local and Global Transactions
	3.4.8 Failures Recovery
	3.4.9 Identifying Resource Manager Instance
	3.4.10 Dynamic Registration

	3.5 Xid Interface

	4 JTA Support in the Application Server
	4.1 Connection-Based Resource Usage Scenario
	4.2 Transaction Association and Connection Request Flow
	1. Assuming a client invokes an EJB bean with a TX_REQUIRED transaction attribute and the client ...
	2. After the the transaction starts, the container invokes the bean method. As part of the busine...
	3. The application server obtains a resource from the resource adapter via some ResourceFactory.g...
	4. The resource adapter creates the TransactionalResource object and the associated XAResource an...
	5. The application server invokes the getXAResource method.
	6. The application server enlists the resource to the transaction manager.
	7. The transaction manager invokes XAResource.start to associate the current transaction to the r...
	8. The application server invokes the getConnection method.
	9. The application server returns the Connection object reference to the application.
	10. The application performs one or more operations on the connection.
	11. The application closes the connection.
	12. The application server delist the resource when notified by the resource adapter about the co...
	13. The transaction manager invokes XAResource.end to disassociate the transaction from the XARes...
	14. The application server asks the transaction manager to commit the transaction.
	15. The transaction manager invokes XAResource.prepare to inform the resource manager to prepare ...
	16. The transaction manager invokes XAResource.commit to commit the transaction.

	5 Java Transaction API Reference
	Interface Status
	Variables
	• STATUS_ACTIVE
	• STATUS_COMMITTED
	• STATUS_COMMITTING
	• STATUS_MARKED_ROLLBACK
	• STATUS_NO_TRANSACTION
	• STATUS_PREPARED
	• STATUS_PREPARING
	• STATUS_ROLLEDBACK
	• STATUS_ROLLING_BACK
	• STATUS_UNKNOWN

	Interface Synchronization
	Methods
	• beforeCompletion
	• afterCompletion

	Interface Transaction
	Methods
	• commit
	• delistResource
	• enlistResource
	• getStatus
	• registerSynchronization
	• rollback
	• setRollbackOnly

	Variables
	• TMSUCCESS
	• TMSUSPEND
	• TMFAIL

	Interface TransactionManager
	Methods
	• begin
	• commit
	• getStatus
	• getTransaction
	• resume
	• rollback
	• setRollbackOnly
	• setTransactionTimeout
	• suspend

	Interface UserTransaction
	Methods
	• begin
	• commit
	• getStatus
	• rollback
	• setRollbackOnly
	• setTransactionTimeout

	Interface XAResource
	Methods
	• commit
	• end
	• forget
	• getTransactionTimeout
	• isSameRM
	• prepare
	• recover
	• rollback
	• setTransactionTimeout
	• start

	Variables
	• TMENDRSCAN
	• TMFAIL
	• TMJOIN
	• TMNOFLAGS
	• TMONEPHASE
	• TMRESUME
	• TMSTARTRSCAN
	• TMSUCCESS
	• TMSUSPEND

	Interface Xid
	Variables
	• MAXGTRIDSIZE
	• MAXBQUALSIZE

	Methods
	• getFormatId
	• getGlobalTransactionId
	• getBranchQualifier

	Class HeuristicCommitException
	Constructors
	• HeuristicCommitException
	• HeuristicCommitException

	Class HeuristicMixedException
	Constructors
	• HeuristicMixedException
	• HeuristicMixedException

	Class HeuristicRollbackException
	Constructors
	• HeuristicRollbackException
	• HeuristicRollbackException

	Class InvalidTransactionException
	Constructors
	• InvalidTransactionException
	• InvalidTransactionException

	Class NotSupportedException
	Constructors
	• NotSupportedException
	• NotSupportedException

	Class RollbackException
	Constructors
	• RollbackException
	• RollbackException

	Class SystemException
	Constructors
	• SystemException
	• SystemException
	• SystemException

	Variables
	• errorCode

	Class TransactionRequiredException
	Constructors
	• TransactionRequiredException
	• TransactionRequiredException

	Class TransactionRolledbackException
	Constructors
	• TransactionRolledbackException
	• TransactionRolledbackException

	Class XAException
	Constructors
	• XAException
	• XAException
	• XAException

	Variables
	• errorCode
	• XA_RBBASE
	• XA_RBROLLBACK
	• XA_RBCOMMFAIL
	• XA_RBDEADLOCK
	• XA_RBINTEGRITY
	• XA_RBOTHER
	• XA_RBPROTO
	• XA_RBTIMEOUT
	• XA_RBTRANSIENT
	• XA_RBEND
	• XA_NOMIGRATE
	• XA_HEURHAZ
	• XA_HEURCOM
	• XA_HEURRB
	• XA_HEURMIX
	• XA_RDONLY
	• XAER_RMERR
	• XAER_NOTA
	• XAER_INVAL
	• XAER_PROTO
	• XAER_RMFAIL
	• XAER_DUPID
	• XAER_OUTSIDE

	6 Related documents
	[1] X/Open CAE Specification – Distributed Transaction Processing: The XA Specification, X/Open D...
	[2] Java Transaction Service (JTS). http://java.sun.com/products/jts
	[3] OMG Object Transaction Service (OTS 1.1)
	[4] ORB Portability Submission, OMG document orbos/97-04-14.
	[5] Enterprise JavaBeansTM. http://java.sun.com/products/ejb.
	[6] JDBCTM 2.0. http://java.sun.com/products/jdbc.
	[7] Java Message Service. http://java.sun.com/products/jms

