
 Requirements Final Version 1

Requirements
Final Version

PHP Group Ware Project
 ICS 125
 Summer 2002 – 10-Week Session
 Professor Hadar Ziv

Team 10 – Project X
http://tina.alinaghian.com/ics125/index.html

Tina Alinaghian (57291129)
Patrick Walsh (91105649)
Fang Ming Lo (52013421)

Austin Lee (50792270)
Siu Leung (51390400)

 Requirements Final Version 2

T A B L E O F C O N T E N T S

SECTION 1: INTRODUCTION ..5

PROJECT OVERVIEW ..5

SECTION 2: PROJECT PLAN..7

SCHEDULE...7

WEEK 4, JULY 15TH - 21ST...7

WEEK 5, JULY 22ND – 28TH ..7

WEEK 6, JULY 29TH – AUGUST 4TH..7

WEEK 7, AUGUST 5TH – 11TH ..7

WEEKS 8,9, AUGUST 12TH – 25TH ..7

WEEK 10, AUGUST 26TH – SEPTEMBER 1ST ..7

PROJECT RISKS AND CHALLENGES..8

A. KNOWLEDGE..8

B. CUSTOMER CONSTRAINTS...8

C. PERSONNEL CONSTRAINTS ..8

D. BETA PLATFORM..9

E. LACK OF DOCUMENTATION..9

F. TIME CONSTRAINTS..9

PROJECT RESOURCES .. 10

TECHNICAL AND PERSONAL TEAM RESOURCES:.................................... 10

SOFTWARE AND HARDWARE RESOURCES:.. 11

STAFF ORGANIZATION ... 12

TEAM MEMBERS:.. 12

SCHEDULE OF LEADERSHIP RESOURCES: ... 12

MEMBER RESPONSIBILITIES: .. 12

TRACKING AND CONTROL MECHANISMS .. 13

LIFECYCLE CONSIDERATIONS.. 14

 Requirements Final Version 3

SECTION 3: REQUIREMENTS.. 15

ADMINISTRATIVE FUNCTIONS.. 15

ADMINISTRATIVE PAGES: .. 15

CATEGORY MANAGEMENT: ... 15

MANAGEMENT OF SITE LOOK AND FEEL (TEMPLATES):............................. 15

MANAGEMENT OF SITE-WIDE CONTENT: .. 16

CONTRIBUTOR FUNCTIONS... 17

CONTRIBUTOR AUTHENTICATION:... 17

ADDITION OF PAGES IN EXISTING CATEGORIES: 17

MODIFICATION OF PAGES IN EXISTING CATEGORIES:............................. 17

DELETION OF PAGES FROM EXISTING CATEGORIES:............................... 17

PAGE GENERATION ENGINE FUNCTIONS .. 18

GENERATE DYNAMIC PAGES.. 18

PERMISSIONS CHECKING:.. 18

PHPNUKE BLOCK COMPATIBILITY:.. 18

ACTORS.. 19

SYSTEM REQUIREMENTS AND ENVIRONMENT CHARACTERISTICS........................... 21

THE SERVER ... 21

THE CLIENTS .. 21

SECTION 4: USE CASE SCENARIOS ... 22

ADMINISTRATIVE USE CASES.. 22

ADMINISTRATIVE USE CASE DIAGRAM:... 22

ADD CATEGORY:.. 23

EDIT CATEGORY:.. 25

EDIT SITE CONTENT:... 27

EDIT BLOCKS:... 29

CONTRIBUTOR USE CASES: ... 32

 Requirements Final Version 4

CONTRIBUTOR USE CASE DIAGRAM:.. 32

MANAGE PAGE: ... 33

EDIT PAGE:.. 35

PAGE GENERATION USE CASES: .. 38

PAGE GENERATION USE CASE DIAGRAM: .. 38

GENERATE PAGE: ... 38

SECTION 5: TEST CASE PLAN... 41

UNIT TESTING .. 41

INTEGRATION TESTING... 45

SYSTEM TESTING ... 49

SECTION 6: USER INTERFACE DIAGRAMS .. 52

ADMINISTRATIVE UI DIAGRAMS .. 52

FIGURE 1: ADMINISTRATIVE MENU UI DIAGRAM: 52

FIGURE 2: CATEGORY MANAGER UI DIAGRAM 1:................................. 52

FIGURE 3: ADD/EDIT CATEGORY UI DIAGRAM 2: 53

FIGURE 4: EDIT HEADER / FOOTER CONTENT UI DIAGRAM: 54

CONTRIBUTOR UI DIAGRAMS ... 55

FIGURE 5: PAGE MANAGER UI DIAGRAM: ... 55

FIGURE 6: ADD/EDIT PAGE UI DIAGRAM:... 56

PAGE GENERATION UI DIAGRAMS .. 57

FIGURE 7: GENERATED PAGE: SITE CONTENTS UI DIAGRAM: 57

FIGURE 8: GENERATED PAGE: SITE INDEX UI DIAGRAM: 58

FIGURE 9: GENERATED PAGE: CATEGORY TABLE OF CONTENTS UI DIAGRAM: 59

FIGURE 10: GENERATED PAGE UI DIAGRAM: 59

 Requirements Final Version 5

S E C T I O N 1 : I N T R O D U C T I O N

Project Overview
Team 10 will build a “Collaborative Web Content Management” application based

on the phpGroupWare platform. When complete, the application will be installed

on the phpGroupWare web site to demonstrate its capabilities and test it in a

real-world environment.

The system will allow a community of individuals to contribute to a web site by

granting individual members or groups within the community permission to view

and edit specific sections of the web site. In general, the viewers of the web site

function in one of three roles: Web Site Administrators, Web Site Contributors,

and Anonymous Web Site Viewers. For short, we will refer to these roles as

Administrators, Contributors, and Viewers. Administrators are the all-powerful

beings that manage the entire site. Contributors are authenticated users with

permissions to manage specific sections of the web site. Viewers are

unauthenticated viewers of the site. Sections of the web site, also called

Categories, may be viewable by anonymous viewers or by specified contributors.

Administrators may always view and edit all categories on the web site.

The Administrator’s functions are:

1. Manage categories and the view/edit permissions.

2. Manage the overall look and feel of the site.

The Contributor’s functions are:

1. Addition/ deletion of pages in an existing category.

2. Modification of the content in existing pages.

The Viewer’s functions are:

1. Browse the web site.

The entire web site will be dynamically generated from a database. Hence, there

will be a Page Generation Engine that generates web pages based on the

Administrators’ specified look and feel and the Contributors’ content. The Page

Generation Engine will evaluate whether the viewer has permissions to view a

particular page before generating it.

 Requirements Final Version 6

The entire application will be written using the phpGroupWare backend. This

means that the list of users and groups and administrators will be taken from an

existing phpGroupWare installation. phpGroupWare will handle the management

of these users and groups. phpGroupWare will also be responsible for storing

and retrieving all data that needs to be saved. This includes all of the content,

the list of categories and permissions, etc.

Finally, the completed application will have some compatibility with an already

established web application of similar functionality. PHPNuke is a program used

to generate dynamic web sites. It was built to allow third parties to create add-

ons called “blocks” that can be added to a web page. These PHPNuke blocks are

small pockets of information that usually sit on the side of a web page. For

example, a block may contain a list of stocks and their current prices in a box on

the left side of a page. There is a wide variety of these blocks already available

in which this application will support.

 Requirements Final Version 7

S E C T I O N 2 : P R O J E C T P L A N

Schedule
Week 4, July 15th - 21st

7/18: Requirements Iteration #2 and Test Plan Iteration #1 due.

Finish requirements document and begin work on the program design.

Investigate technical challenges and determine independent modules.

Week 5, July 22nd – 28th

7/25: Test Plan Iteration #2 and Design Iteration #1 due.

Submit the design document draft and divide up the programming assignments.

Each team member should become comfortable with what they’re going to have

to do, including understanding phpGroupWare and how it works and how we’ll be

using it.

Week 6, July 29th – August 4th

Nothing due.

Begin coding skeleton structure and determining how, if at all, the design will

have to be modified.

Week 7, August 5th – 11th

8/8: Design Iteration #2 and Code Iteration #1 due.

Complete coding the core functions – those functions and classes that will be

needed by all of the modules and that, unfinished, would hold up further

development, must be finished this week.

Weeks 8,9, August 12th – 25th

Nothing due.

Complete all of the core functionality and begin testing.

Week 10, August 26th – September 1st

8/27: Final code and all deliverables due.

Do full testing, install and test on phpGroupWare.org server, and, if time permits,

add gravy features.

 Requirements Final Version 8

S E C T I O N 2 : P R O J E C T P L A N (C O N T .)

Project Risks and Challenges
A. Knowledge

i. 3 of the 5 team members have either limited experience or no experience at all

developing web applications and particularly programming in PHP. This poses a

large risk as the learning curve associated in getting up-to-speed enough on

PHP and web application development is hard to predict. As such, the time

required for certain team members to complete certain coding tasks will be

highly variable. With the short time frame of the project, this presents a

monstrous risk.

ii. In addition to the basic programming language, 4 of the 5-team members have

not had experience using collaborative development tools such as the

Concurrent Versioning System (CVS) or Microsoft Visual Source Safe. This will

potentially slow development down and create a difficulty in finishing the

project in the specified time frame.

iii. 4 of the 5 team members have limited or no experience using Linux machines.

Since the web server and development will be taking place on a Linux machine,

team members will also have to pick up at least a rudimentary understanding of

Linux in order to develop for the project. This again may take up more time

than predicted.

iv. 3 of the 5 team members have limited or no experience with SQL and relational

databases. Again, this may have a negative effect on the team’s ability to get

the application finished on time.

B. Customer Constraints

i. The customer, Dan Kuykendall, the leader of the phpGroupWare project and

our technical adviser, is currently starting a new job, raising two children

including a three-week-old baby, and squeezing us in when he can. This means

that he is not as available to us as we would like and, as the project moves

forward and we need help and advice on technical matters, this may become a

problem.

C. Personnel Constraints

i. All of the team members are either working part-time or full-time jobs or

attending other summer school classes in addition to ICS 125. This means that

 Requirements Final Version 9

the time that each team member has to dedicate to the project is finite and

potentially more limited than is required to adequately finish the project in the

allotted time.

D. Beta Platform

i. phpGroupWare is the platform of choice for this project. It serves almost as an

operating system, handling the low level details such as data storage and

retrieval and user authentication and permissions. However, phpGroupWare is

not a released product and is currently in Beta testing. This project is being

built on a Beta Release Candidate, meaning that the code is not entirely stable

and far from bug-free. This may not be an issue at all, or we may run into

problems with phpGroupWare that will sidetrack us from the project at hand

and prevent or delay an adequate completion of the project.

E. Lack of Documentation

i. phpGroupWare and phpNuke both have limited up-to-date documentation for

developers. This means that much of the time we will have to reverse engineer

these programs and/ or attempt to talk with various developers, who may live

half way around the world, to resolve problems or issues.

F. Time Constraints

i. All of the above risks are risks that the project might not be done in time,

rather than that it might not be done at all. Given sufficient developer time and

attention, this project will certainly be completed. However, this project has a

very strict 10-week time line. In fact, the coding portion of the project will last

at most 4 weeks – a short amount of time to code, integrate, and test five

semi-independently developed portions of code.

These risks are all real and any one of them could be fatal to the project. Only

disciplined management, clear and uninterrupted organization, a well-defined

design document, and careful attention to the set schedule can overcome these

risks. Also, if any one-team member gets stuck somewhere, other team

members will have to help in order to keep the project moving forward.

 Requirements Final Version 10

S E C T I O N 2 : P R O J E C T P L A N (C O N T .)

Project Resources
Technical and Personal Team Resources:

Team 10 consists of five talented individuals all with their own unique personal

and technical strengths. These strengths will be utilized to accomplish our goals

in this project. Bellow are the personal and technical strengths of each member

on our team:

Patrick Walsh

Technical Strengths: Patrick can be characterized as having a strong

collaborative development experience as both a developer and a manager.

Patrick also has a strong php experience, strong program design experience,

good phpGroupWare experience, and strong Linux experience.

Personal Strengths: Patrick has very strong communication and leadership

skills. He is a very helpful individual who is always willing to assist others in their

responsibilities and tasks.

Tina Alinaghian

Technical Strengths: Tina has proficient knowledge of web page design and

development. She has experience with many database platforms including

mySQL and msSQL. She also has experience with HTML, PHP, ASP, Java and

C++.

Personal Strengths: Tina is a hard worker and a very quick learner.

Siu Leung

Technical Strengths: Siu is an adequate programmer with knowledge in Java

and C++. Although he is not familiar with php, he is excited to pick up a new

programming language.

Personal Strengths: Siu is able to socialize and work well with others both

inside and outside of a group project-type environment. He is an organized and

responsible individual who finishes assigned tasks on time.

 Requirements Final Version 11

Austin Lee

Technical Strengths: Austin is a programmer with knowledge in Java, Visual

Basic, C++, and other languages. Although he is not familiar with php, he can

quickly pick up new programming languages.

Personal Strengths : Austin had been a researching intern in a research center

in Korea (Samsung Advanced Institute of Technology). His solid mathematical

background could help others with logical problems.

Fang Ming Lo

Technical Strengths: Ming is knowledgeable in Java and C++. He has also used

HTML in the past, and although he may be a bit rusty with it, he is fairly

confident he can pick it up fast. He is currently trying to learn .NET and is

interested in learning the new and useful languages currently out.

Personal Strengths: Ming is very organized and can work well in a group. He

takes his assigned jobs very seriously. He is also a very easygoing person and

very easy to get along with.

Software and Hardware Resources:

We will also be utilizing the following software on our web and development

server to complete the project:

1. Mandrake Linux 8.2

2. Apache-AdvancedExtranetServer 1.3.23

3. PHP 4.1.2

4. phpGroupWare 0.9.14RC3

5. OpenSSH 3.4p1

6. CVS 1.11.1p1

7. MySQL 3.23.47

 Requirements Final Version 12

S E C T I O N 2 : P R O J E C T P L A N (C O N T .)

Staff Organization
Team Members:

Patrick Walsh 91105649

Siu Leung 51390400

Tina Alinaghian 57291129

Fang Ming Lo 52013421

Austin Lee 50792270

Schedule of Leadership Resources:

The leadership rotation schedule of Team 10 is based on the schedule of the

class. Since there are five deliverables, each team member is responsible for a

deliverable and takes leadership of the group for that deliverable. The following

is the leadership rotation schedule for each deliverable:

Deliverable Due date Leader

Requirements Iteration 1 July 11 Patrick Walsh

Requirements Iteration 2 / Test Plan iteration 1 July 19 Siu Leung

Test Plan Iteration2 / Design Iteration1 July 26 Tina Alinaghian

Design Iteration2 / Code –Iteration1 August 8 Fang Ming Lo

Code-Iteration2 (Final) + / All final deliverables August 27 Austin Lee

Member Responsibilities:

Each member of our development group is responsible for the development of

individual component of the project. The individual task includes the requirement

specification, testing plan, design, and implementation of their component:

Name Responsibility

Patrick Walsh PHPNuke blocks generation

Siu Leung Page (including Template) generation

Tina Alinaghian Category Management

Fang Ming Lo Site look & feel management

Austin Lee Contributor functions

 Requirements Final Version 13

S E C T I O N 2 : P R O J E C T P L A N (C O N T .)

Tracking and Control Mechanisms
We have laid out a specific schedule that may become more detailed when the

design document is created. Our progress will be closely measured against the

schedule to be sure that the project is not falling behind. If the project begins to

fall behind schedule, for whatever reason, steps will have to be taken to jump-

start the project. Those steps will be determined by the current project

manager, based on the specific problems causing the delay.

The code will be kept in a CVS repository. CVS, the Concurrent Versioning

System, tracks revisions in documents. Because most of the team is unfamiliar

with the program, their files will be automatically “checked in” to the versioning

system on a regular basis. In this way, a central depository will have a fairly up-

to-date picture of the state of development. Also, if something stops working

suddenly, developers can see what changes have been made since a certain date

and undo or fix those changes.

For the Word documents being created, including this document and the design

document, Word’s own built in versioning will be used. Each person’s individual

edits and the history of edits in the document are being saved. Each deliverable

version is being individually saved as well. Pieces of the document are being

worked on and the current project manager will add those pieces to the master

document by cutting and pasting.

 Requirements Final Version 14

S E C T I O N 2 : P R O J E C T P L A N (C O N T .)

Lifecycle Considerations
After much careful consideration and group feedback from each member, the

lifecycle best preferred for such a project at hand is the spiral model. Although

we do not have sufficient time to build a rapid prototype in this class, the spiral

model is still the perfect model for such a task. Before each phase, a risk analysis

is prepared. A verification phase proceeds each subsequent phase. The most

important risk factor to take into consideration deals with the programming

language being used to complete the project. Since only 2 members of our group

are familiar with php, they will need to do a bit of reading on their own time to be

prepared for the implementation phase of the project.

 Requirements Final Version 15

S E C T I O N 3 : R E Q U I R E M E N T S

Administrative Functions
Administrative Pages:

The administrative pages will all be housed in the phpGroupWare environment.

An administrator must successfully log in to phpGroupWare before being able to

access the administrative functions listed below.

Category Management:

Every category represents a section of the site. The administrator may define as

many categories as he/she wishes. Each category will have an ACL (Access

Control List) associated with it that defines the users and groups that have read

and edit permissions to the category. The administrator can manage the

categories of the site by

• Adding categories and category descriptions to the site

• Removing categories from the site

• Modifying existing category descriptions

• Adding a user or group to the list of people with read permissions for a

particular category

• Adding a user or group to the list of people with write permissions for a

particula r category

• Removing a user or group from the list of people with read permissions

• Removing a user or group from the list of people with write permissions

When setting “read and write” permissions on existing categories, administrators

have the option of choosing whether the category can be read and/or written to

by all groups (including anonymous viewers who have not been authenticated) or

whether the category can only be read and/or written to by selective groups.

These groups are already created and established in the phpGroupWare API.

Management of site look and feel (templates):

The look and feel of the administrative areas will be controlled by phpGroupWare,

but the Page Generation Engine will control the look and feel of the generated

pages. This involves two parts. First, the administrator will choose a template

 Requirements Final Version 16

from a list of installed PHPNuke templates. This will determine the color scheme,

fonts used, spacing, and so forth. Incorporation of PHPNuke Templates will not

be available till version 2.

Management of site-wide content:

The administrator will create site wide content, such as navigation links at the top

of the site and copyright notices at the bottom. Every web page generated by

the “Page Generation Engine” (see the section below for an explanation of the

Page Generation Engine) can be broken into five parts. These are the header,

footer, left menu bar, right menu bar, and main content area. The administrator

controls all of these areas except for the main content area. (The Contributors

control the main content area, though the template that the administrator

chooses will be applied to this area to keep a uniform look and feel.) If he/she

chooses, the administrator may choose not to use one of the page parts so that,

for instance, a site may have a header and footer, but no side menu bars.

In addition to putting static content into each of these page parts, the

administrator may choose to display selected “PHPNuke blocks” (explained

below) in either of the sidebars in an order specified by the administrator. These

blocks typically contain dynamic content, such as the number of users currently

logged in, breaking news headlines, or user polls. PHPNuke Blocks will not be

incorporated until verion 2.

 Requirements Final Version 17

S E C T I O N 3 : R E Q U I R E M E N T S (C O N T .)

Contributor Functions
Contributor Authenti cation:

Contributors of the site can add, modify, and delete pages in existing categories

that they have access to. However, before they can contribute to a category,

they must first log in and be authenticated. Once they are authenticated, they

will be told which categories they are able to contribute to along with which

categories they are able to read material from.

Addition of Pages in Existing Categories:

Contributors of the site can add pages to categories that they have write access

to. When adding a page to an existing category on the site, they will be asked to

specify a title, sub-title, short description of the page, and the main content of

the page. They must however first be logged in and be given authorization to be

able to write to a cat egory.

Modification of Pages in Existing Categories:

Site contributors can modify existing pages in categories that they have access

to. They must however first be logged in and be given authorization to be able to

write to a category.

Deletion of Pages from Existing Categories:

Site contributors can delete pages from categories that they have access to. They

must however first be logged in and be given authorization to be able to write to

a category.

 Requirements Final Version 18

S E C T I O N 3 : R E Q U I R E M E N T S (C O N T .)

Page Generation Engine Functions
Generate Dynamic Pages

The main function of the Page Generation Engine is to deliver web pages to web

site viewers. To do this, the Page Generation Engine will take the site-wide

content specified by the administrator and combine it with the page specific

content specified by the contributors, format it, apply the PHPNuke template to it,

and deliver it to the viewer.

Permissions Checking:

Before generating and delivering a page, the Page Generation Engine will ask the

phpGroupWare backend whether the current user (or, if no user is logged in, the

anonymous user) has permissions to view the requested category. If the

permission is granted, the page is generated and delivered. If the permission is

not granted, an error is shown.

PHPNuke Block Compatibility:

PHPNuke is a widely used dynamic website generator. It manages news articles

and user comments on each article, among other things. The community of

PHPNuke users has embraced a feature of PHPNuke called blocks. Blocks are a

mechanism for third party developers to add added functionality to a site in the

form of a box of information or a form on one of the sidebars of a page.

PHPNuke has its own set of functions and interfaces to make these blocks work.

This application will duplicate the necessary functions and routines to allow those

blocks to work (including, if necessary, ported routines for accessing session and

login information). So when a page is being generated, in addition to reading in

the static content for the sidebars, each block that the administrator has specified

will be executed and displayed within a box.

 Requirements Final Version 19

S E C T I O N 3 : R E Q U I R E M E N T S (C O N T .)

Actors
The actors are as follows:

1. Site Administrator

The Site Administrator is a logged-in user with an existing phpGroupWare

administrator account on a particular system. As such, that person may

install applications, change user permissions and group memberships and so

forth for phpGroupWare's many applications. Anyone who is an administrator

of the given phpGroupWare system, is also, by extension, an administrator of

the Web Content Management application.

The Site Administrator's function is to dictate which users or groups have

permission to edit portions of the web site. Also, the Site Administrator

determines the site-wide look and feel of the web site, including navigational

bars, menus, copyright notices, and other elements that do not change from

page to page.

2. Site Contributor

A Site Contributor is a logged-in user who has been granted the permission to

edit one or more categories on a site. The Site Administrator granted this

permission. This person can go to the category on the web site that they

have permission to maintain and then add pages or edit or delete existing

pages within that category.

3. Site Viewer

The Site Viewer is either a logged-in user who does not have permission to

edit any categories, or a user who has not logged in, but is an anonymous

viewer. This person may view all of the web pages in those sections that are

marked as publicly readable.

4. phpGroupWare ACL

The phpGroupWare ACL (Access Control List) is an external system to the

Web Content Manager. It has a number of functions and capabilities intended

to manage users, groups, and permissions. An application may define a

 Requirements Final Version 20

number of objects and then grant users or groups various types of

permissions for those objects. Then, at a later point, the application can

query the phpGroupWare ACL to see if the current user has a particular

permission for a given object.

5. phpGroupWare DB

The phpGroupWare DB (Database) is an external system that applications use

to manage the storage, retrieval, cataloging and management of data.

PhpGroupWare provides a set of routines that allow the details of the backend

database to remain hidden from the application. In this way, errors are

handled smoothly and many different database systems and configurations

may be used.

 Requirements Final Version 21

S E C T I O N 3 : R E Q U I R E M E N T S (C O N T .)

System Requirements and Environment
Characteristics

The Server

First and foremost the Web Content Manager will require phpGroupWare in order

to run. phpGroupWare is the equivalent of the Operating System. It will be used

to manage the storage and retrieval of data, the display and delivery of content,

the authentication and identification of users, and all other back-end activities.

phpGroupWare was designed to run on web servers that can interpret PHP files.

It works with both PHP3 and PHP4. It can use a number of databases for data

storage, including MySQL, Microsoft SQL Server, Oracle, and PostgreSQL. It will

also run under Apache on Microsoft NT, Internet Information Server on Microsoft

NT, and Apache on several flavors of Unix. It may even run under other

Operating Systems. It can draw its list of users from a database, from an LDAP

directory, or from a variety of other places including NIS.

Despite phpGroupWare’s tremendous cross-platform support, we are developing

our Web Content Manager specifically for use with PHP4 running under Apache on

a Red Hat Linux system and using a MySQL database for storing both regular

data and the user list. When the Web Content Manager is complete, it will be

installed under just such a system on the phpGroupWare.org web server. It will

also be tested under Mandrake Linux.

The Clients

While we are developing for one particular server configuration, we are

developing for multiple client configurations. If our product is successful, it will

be usable by Macintosh users, Windows users, and Linux users. It will be

viewable with Opera, Netscape, Mozilla, Konqueror, and Internet Explorer.

However, we do not have the resources to test all of these configurations. So we

will be sure that the site is viewable and usable under Konqueror on Linux, and

Opera and Internet Explorer under Windows. For this cross-platform

compatibility, client-side scripting will be kept to an absolute minimum, if it is

used at all.

 Requirements Final Version 22

S E C T I O N 4 : U S E C A S E S C E N A R I O S

Administrative Use Cases
Administrative Use Case Diagram:

Site Administrator

AddCategory

EditCategory

EditSiteContent

EditBlocks

 Requirements Final Version 23

Add Category:

Use Case Item Description

Name Add new category.

Status Approved - Completed

Author Tina Alinaghian

Purpose Allows an administrator to add a new category to the site

along with the categories permissions.

Overview The administrator can add new categories to the site to

allow contributors of the site to add pages to the site. When

the administrator adds a new category he will also set

permissions for the category. These permissions state

which users and/or groups have read and/or write access to

the categories.

When adding a new category, the administrator will be

asked to give a category name, category description, group

access permissions, individual access permissions (if any),

and whether or not anonymous viewers have read/write

access to the category. (See User Interface Figure 3) The

newly added category should be updated to the

phpGroupWare data backend. The title of the added

category should be included in the list of the categories on

the Category Manager Page (See User Interface Figure 2)

and on the Generated Site Index and Site Contents Pages

(See User Interface Figure 7 & 8). If the administrator

gives incorrect inputs, the page will be reloaded and an

error message should be shown to the administrator as a

notice.

Priority Since this functionality allows the administrators to create

categories in which contributors can contribute to, this

functionality has high priority.

Actors:

Primary Administrators

Secondary PhpGroupWare ACL and PhpGroupWare data backend

Pre-conditions 1. Administrative Accessibility

§ Before adding a new category, the administrator

 Requirements Final Version 24

Use Case Item Description

must be authenticated by the phpGroupWare ACL.

Post-Conditions:

Success The newly added category should be added to the

phpGroupWare data backend. The title of the added

category should be included in the list of the categories on

the Category Manager Page (See User Interface Figure 2)

and on the Generated Site Index and Site Contents Pages

(See User Interface Figure 7 & 8).

Failure 1. Duplicate Category Name

§ A new category must have a unique name; a

category by the same name can not already exists.

2. Missing Fields

§ All basic setting fields (the category name and the

category description must be filled out).

Related Use Cases 1. Edit Category

Cross-References

and Notes

Sample user interfaces

1. Category Manager UI (UI Interface Diagram 2).

2. Add/Edit Category UI (UI Interface Diagram 3).

3. Generated Page Site Contents UI (UI Diagram 7).

4. Generated Page Site Index UI (UI Diagram 8).

Basic Course 1. Go to Manage Categories from the Administrative Menu

(UI Diagram 1).

2. Click on the “Add Catagory” Button bellow the “Manage

Catagories” section.

3. Fill out the “Basic Settings”: Category Name and

Category Description.

4. Set group permissions (if any) by checking read and/or

write boxes next to existing group names.

5. Set user permissions (if any) by checking read and/or

write boxes next to existing user names.

6. Click “Save” button to add the new category to the site.

Successful

Alternative

Courses:

3a. If no category name or description is given, will come

back and prompt the administrator that he needs to fill

out those fields.

 Requirements Final Version 25

Use Case Item Description

3b. If category name already exists, will come back with

an error, prompting for a new category name.

7b. Instead of pressing save, the administrator can press

“reset” to undo changes made to the category.

Unsuccessful

Alternative

Courses:

N/A

Open Issues N/A

Edit Category:

Use Case Item Description

Name Edit Category

Status Approved - Completed

Author Tina Alinaghian

Purpose Allows an administrator to edit an existing categories basic

settings (i.e., its name and description) and permissions

(i.e., who has read/write access to the category).

Overview Many times, the name or description of a category will need

to be changed. This use case allows the administrator to

change the name and/or description of an existing

category.

Also, the access permissions to a certain category may

need to be changed. New groups may be formed that need

read/write access to a category, or new members will join

whom will need read/write access to a category. This use

case allows the administrator to change the permissions of

a category.

If the administrator does not fill in all the necessary info, or

renames the category to a name that already exists in the

phpGroupWare database, or does not set any permissions

when editing the category permissions, an error will be

returned.

Priority This functionality has a very high priority as it ultimately

 Requirements Final Version 26

Use Case Item Description

deals with site security since the administrator may want to

remove someones permissions from a category.

Actors:

Primary Administrators

Secondary PhpGroupWare ACL and PhpGroupWare data backend

Pre-conditions 1. Administrative Accessibility

§ Before editing the settings of an existing category,

the administrator must be authenticated by the

phpGroupWare ACL.

Post-Conditions:

Success 1. The category setting changes should modify the

category description in the phpGroupWare data

backend. The modifications to the category should be

seen in the list of categories on the Category Manager

Page (See User Interface Figure 2) and on the

Generated Site Index and Site Contents Pages (See

User Interface Figure 7 & 8).

2. The category permission changes should modify the

category permissions in the phpGroupWare data

backend. Groups/individuals who now have access to

the category should see the category name in the list of

categories on the Generated Site Index and Site

Contents Pages (See User Interface Figure 7 & 8), and

those groups/individuals who lost permissions to the

category should no longer see the category name in the

list of categories.

Failure 1. Duplicate Category Name

§ A new category must have a unique name; a

category by the same name can not already exists.

2. Missing Fields

§ All basic setting fields (the category name and the

category description must be filled out).

Related Use Cases 1. Add Category

Cross-References Sample user interfaces

 Requirements Final Version 27

Use Case Item Description

and Notes 1. Category Manager UI (UI Interface Diagram 2).

2. Add/Edit Category UI (UI Interface Diagram 3).

3. Generated Page Site Contents UI (UI Diagram 7).

4. Generated Page Site Index UI (UI Diagram 8).

Basic Course 1. Go to Manage Categories from the Administrative Menu

(UI Diagram 1).

2. Click on the “Edit” Button next to the Category name

you wish to edit.

3. Fill out the “Basic Settings”: Category Name and

Category Description.

4. Change group permissions (if any) by checking read

and/or write boxes next to existing group names.

5. Change user permissions (if any) by checking read

and/or write boxes next to existing group names.

6. Click “Save” button to save the changes to the category

to the phpGroupWare database.

Successful

Alternative

Courses:

3a. If no category name or description is given, will come

back and warn the administrator that he needs to fill

out those fields.

3b. If category name already exists, will come back with

an error, asking for a new category name.

7b. Instead of pressing save, the administrator can press

“reset” to undo changes made to the category.

Unsuccessful

Alternative

Courses:

N/A

Open Issues N/A

Edit Site Content:

Use Case Item Description

Name Edit Site Content

Status Approved – Completion of Header/Footer, Template

selection implementation due out in version 2.0

 Requirements Final Version 28

Use Case Item Description

Author Fang Ming Lo

Purpose It is used to manage the overall site look and format the

header and/or footer of the site.

Overview SiteFormatManager, the administrator uses this to control

the over all look/theme of the site. When the administrator

gets his permission checked, the administrator will be

redirected to a page where there he can modify the

header/footer and/or change the theme of the site.

Information on the current header/footer and theme will be

retrieved automatically from the database and displayed on

the page for the administrator to view and modify. The

administrator doesn’t have to modify both; he can choose

to modify either one or both. After the changes have been

made, the administrator can click on the “save” button on

the bottom of the page to save the page into the database

and administrator will be redirected back to the Home page.

The administrator doesn’t have to save the changes at the

end, he can just quit the Manager by clicking the “Quit”

button to go back to the Home page.

Priority High

Actors:

Primary Administrators

Secondary PhpGroupWare ACL and PhpGroupWare data backend

Pre-conditions 1. Before being able to modify the header/footer contents,

the administrator should log in to be authenticated from

phpGroupWare ACL.

2. Previous contents should be displayed in the text fields

for both the header and footer. If this is the first time

use then the text fields should be blank.

3. Theme list must be stored in the database.

Post-Conditions:

Success The Header/Footer will display exactly what the

administrator intends to show.

The overall look of the site should be as the same as the

 Requirements Final Version 29

Use Case Item Description

administrator chose.

Failure The Header/Footer do not display the correct contents or

the format is incorrect.

The theme of the site isn’t the same as the one chose by

the administrator.

Related Use Cases N/A

Cross-References

and Notes

Sample user interfaces

Edit Header/Footer User Interface(Figure 4 of UI Diagrams)

Basic Course 1. User permission check from PhpGW ACL.

2. Request information from PhpGW database.

3. Administrator changes the header/footer and/or site

theme.

4. Administrator saves the changes.

Successful

Alternative

Courses:

1. User Permission check from PhpGW ACL.

2. Request information from PhpGW database.

3. Requested data are loaded into respected fields.

4. Administrator clicks on the cancel button without save.

Unsuccessful

Alternative

Courses:

1. User permission check from PhpGW ACL.

2. Request information from PhpGW database.

3. PhpGW database can’t be loaded.

Open Issues The database might fail to operate.

Edit Blocks:

Use Case Item Description

Name Edit Blocks

Status Coming version 2.0

Author Fang Ming Lo

Purpose The administrator selects and organizes the block for the

sidebars here.

 Requirements Final Version 30

Use Case Item Description

Overview Blocks selection, it allows the administrator to modify the

sidebars. Changing the placement of the blocks modifies

the bars. First the user has to login to verify he/she is an

administrator. ACL will do the user verification. When the

user is verified as the administrator, the phpGroupWare

database will be accessed and the blocks will be retrieved.

Administrator then can select which blocks to activate and

where to put them. After everything is done, the

administrator can save the changes and generate a final

page to check for any errors.

Priority Very Low

Actors:

Primary Administrator

Secondary PhpGroupWare ACL and PhpGroupWare data backend

Pre-conditions The contents for the blocks are set, and total number of

blocks are determined.

Post-conditions:

Success The blocks on the side bars are placed in the proper place

as the administrator defined.

Failure The blocks on the sidebars are not in the order as the

administrator defined or the contents of the blocks are

incorrect.

Related Use Cases N/A

Cross-References

and Notes

Sample user interfaces

Manage Category User Interface (Figure 6 of User Interface

Diagrams)

Basic Course 1. Request.

2. Permission check.

3. Request blocks information from phpGroupWare

database.

4. Administrator modifies the blocks.

5. Save the modification.

6. Contents change saved confirmation window.

7. Return to the front page.

 Requirements Final Version 31

Use Case Item Description

Successful

Alternative

Courses:

1. Request.

2. Permission check.

3. Permission not granted.

4. Return to front page.

Unsuccessful

Alternative

Courses:

1. Request.

2. Permission check.

3. Request blocks information from phpGroupWare

database.

4. Database failure/can’t be found

Open Issues Blocks information can’t be retrieved from the database.

 Requirements Final Version 32

S E C T I O N 4 : U S E C A S E S C E N A R I O S (C O N T .)

Contributor Use Cases:
Contributor Use Case Diagram:

Site Contributor

ManagePage

EditPage

extends

 Requirements Final Version 33

Manage Page:

Use Case Item Description

Name Manage Page

Status Approved - Completed

Author Austin Lee

Purpose To allow the contributors of the site to manage the

categories that they have write access to.

Overview The site allows a community of people to contribute to a

web site by granting individual members within the

community permission. Contributors are authenticated

users with permission to manage certain categories of the

site. This “Page Managing” use case gives two

functionalities to contributors with authentication from

phpGroupWare ACL: Add/Remove pages in the available

categories.

After logging in to the site, the contributors can see the

available categories with the list of the pages in the

categories. (See User Interface of Category Managing

page.) After selecting adding a new page to an available

category, the blank page-managing page will be loaded.

(See User Interface of Page Managing page.) The site

contributor can provide the information of the page and the

page information should be updated by clicking “Save“

button. Removing process does not access the page-

editing page. Through clicking “Remove” button, the

selected page should be removed from the phpGroupWare

data backend.

Priority Since this functionality allows the contributors with

authentication to specific categories to manage the content

of the categories, this use case has the high priority.

Actors:

Primary Contributors

Secondary PhpGroupWare ACL and PhpGroupWare data backend

Pre-conditions Category accessibility

 Requirements Final Version 34

Use Case Item Description

§ Before adding new page to certain category, the

contributor should log in to be authenticated.

§ Before a page in a category, the contributor should

log in to be authenticated.

Duplicated page name

§ A new page cannot have duplicated page name,

which already exists in the category.

Existing page and category.

§ Authenticated contributor can add a page in existing

category.

Post-Conditions:

Success The add management choice should be bring the page-

editing page. Removing management choice should

remove the page from the data backend.

Failure Error message to the contributors

Related Use Cases Edit page

Cross-References

and Notes

Sample user interfaces

1. Page Manager User Interface (Figure 5 of UI Diagrams)

2. Add/Edit Page User Interface (Figure 6 of UI Diagrams)

Basic Course Adding new page

1. Choose the specific category to add a page

2. Click “Add new page” button

3. Blank Page-managing page will be loaded.

4. After providing the page information, clicking “Save”

button should be update the page to the data backend.

Removing a page

1. Choose the page to remove.

2. Click “Remove” button next to the page title.

3. The page will be removed from the PhpGroupWare data

backend.

Successful

Alternative

Courses:

1. Choose the specific category to add a page

2. Click “Add new page” button

3. Blank Page-managing page will be loaded.

4. Provide information of the page.

 Requirements Final Version 35

Use Case Item Description

5. Click “Reset” button.

6. Blank Page-managing page will be loaded.

Unsuccessful

Alternative

Courses:

Open Issues 1. The management of the large list of pages in certain

categories.

2. The contribution of the pages with illegal content, such

as adult site.

Edit Page:

Use Case Item Description

Name Edit a page

Status Approved - Completed

Author Austin Lee

Purpose To allow the contributors of the site to modify existing

pages or provide new information of the pages in categories

that they have access to.

Overview “Edit page” use case allows the authenticated contributors

modifying existing pages or providing information of the

new pages in categories that they have access to. To edit

an existing page in specific categories, the contributors

should log in to obtain the authentication from

phpGroupWare ACL. After logging in to the site, the

contributors can see the available categories with the list of

the pages in the categories. (See User Interface of

Category Managing page.) Through either selecting “Add

new page” or “Edit”, the page-managing page should be

viewable. Add mode will generate the page-managing page

with no information, and edit mode will generate the page-

managing page with the information of the page, including

its title, subtitle, short description of the page, and the

main content of the page, which are obtained from

 Requirements Final Version 36

Use Case Item Description

phpGroupWare data backend. (See User Interface of Page

Managing page.) After the modification of the information,

the modified information should be updated to

phpGroupware data backend, and the updated page should

be generated. If the modification fails, an error message

regarding modification should be shown to the contributor.

Priority Since this functionality allows the contributors with

authentication to specific categories to modify the content

of the categories, this functionality has high priority.

Actors:

Primary Site contributors

Secondary PhpGroupWare ACL & PhpGroupWare data backend

Pre-conditions Category accessibility

§ Before editing pages or adding a new page in certain

exiting category, the contributor should log in to be

authenticated by phpGroupWare ACL.

Existence of pages and categories

§ The contributor can only edit existing pages in

existing categories.

Post-conditions:

Success The modified information should be updated to

phpGroupware data backend, and the updated page should

be generated.

Failure If the modification fails, an error message regarding

modification should be shown to the contributor.

Related Use Cases N/A

Cross-References

and Notes

Sample user interfaces

1. Page Manager User Interface (Figure 5 of UI Diagrams)

2. Add/Edit Page User Interface (Figure 6 of UI Diagrams)

Basic Course Edit a page

1. Log in the site.

2. Choose the category management from the menu.

3. Choose the specific category to add a page.

 Requirements Final Version 37

Use Case Item Description

4. Click “Edit” button next to the page name.

5. Edit the loaded content of the page.

6. Click “Save” button to contribute the page to the

category

7. The modified information should be loaded to the data

backend..

Successful

Alternative

Courses:

1. Log in the site.

2. Choose the category management from the menu.

3. Choose the specific category to add a page.

4. Click “Edit” button next to the page name.

5. Edit the loaded content of the page.

6. Click “Reset” button to contribute the page to the

category

7. The original information of the page should be loaded

again.

Unsuccessful

Alternative

Courses:

N/A

Open Issues 1. Wrong modification

2. Available backup for modified page

 Requirements Final Version 38

S E C T I O N 4 : U S E C A S E S C E N A R I O S (C O N T .)

Page Generation Use Cases:
Page Generation Use Case Diagram:

Generate Page:

Use Case Item Description

Name Generate Page

Status Aproved - Completed

Author Siu Leung

Patrick Walsh

Purpose If a site viewer requests a page and has permission to view

the requested page, the page generator will take the

contributor and administrator specified content, apply a

theme to it, and send an html page back to the site viewer.

Overview The main function of the Page Generation Engine is to

deliver web pages to web site viewers. To do this, the Page

Generation Engine will take the site-wide content specified

by the administrator and combine it with the page specific

content specified by the contributors, format it, apply the

PHPNuke template to it, and deliver it to the viewer.

Priority Top Priority. Without the generation of pages, the entire

system is unusable and pointless.

Actors:

Primary Site Viewer

Secondary phpGroupWare DB

phpGroupWare ACL

Pre-conditions 1. Administrator has installed and selected a theme.

2. There are categories with pages in them.

Site Viewer GeneratePage

 Requirements Final Version 39

Use Case Item Description

Post-conditions:

Success

Failure

Related Use Cases None

Cross-References

and Notes

User Interfaces

1. See Fig 9.

2. See Fig 10.

Basic Course 1. Request for a page is made by the Site Viewer.

2. A check to be sure that requested the page exists is

made.

3. Assuming the page exists, a permission request is sent

to the phpGroupWare ACL actor to see if the current

user has access to view the requested page.

4. Assuming permission is granted, the template set

(theme) being used is looked up.

5. The header of the site is generated using header

content set by the Administrator and formatted using

the selected theme.

6. The blocks selected by the Administrator for the left

column (if any) are looked up and included in the left

column of the page and formatted using the selected

theme.

7. The Contributor specified page content is looked up and

formatted according to the selected theme.

8. The blocks selected by the Administrator for the right

column, if any, are included in the right column of the

page and formatted using the selected theme.

9. The footer content specified by the Administrator is

looked up and formatted according to the selected

theme.

10. The entire page, header, left column, content, right

column, and footer is delivered as an html document to

the Site Viewer.

 Requirements Final Version 40

Use Case Item Description

Successful

Alternative

Courses:

When the check is made to see if the page exists (2), it

may be found not to exist. In this case, the page is

generated as usual, but the content section (7) will display

an error message instead of normal content.

When the permissions check is made in step (3), the Site

Viewer is not found to have permission to view the page.

In this case, the page is generated as normal, but the

content section (7) will display an error message instead of

the content.

Unsuccessful

Alternative

Courses:

At any step there may be an error retrieving content from

the database (by way of the phpGroupWare DB actor). In

this case, an error message will be printed and no other

steps in the basic course taken.

At any step there may be a problem with the template

(theme) that may be unexpected. This will cause the basic

course to stop and an error to be printed.

Open Issues

 Requirements Final Version 41

S E C T I O N 5 : T E S T C A S E P L A N

Unit Testing
Test

Cas

e ID

Items being Tested Input(s) Expected Outputs Actual

Outputs

1 ManagePages() in

Contributor_ManagePage_UI

None Category Managing Page

should be generated.

Correct!

2 EditPage() in

Contributor_ManagePage_UI

Category ID

and Page ID

Page Editor page should

be generated

Correct!

3 GetPermittedCategoryIDList() in

Categories.BO

None An array of category ids Correct!

4 can_read_page($page_id) in

ACL_BO

Page ID True, if the contributor

has permission to read

the page.

Else, return false

Correct!

5 can_write_page($page_id) in

ACL.BO

Page ID True, if the contributor

has the permission to

write

Removed from

implementation

6 GetFullCategoryIDList() in

Categories.SO

None An array of category ids Correct!

7 GetPageIDList($cat_id) in

Pages.BO

Category ID Array of page IDs Correct!

8 AddPage($cat_id)in Pages.BO Category ID Return new page id,

which is created in DB.

Correct!

9 RemovePage($cat_id) in

Pages.BO

Category ID True, if the page is

removed, else False

Correct!

10 GetPage($page_id) in Pages.BO Page ID A Page class, which the

page id.

Correct!

11 SavePageInfo($page) in

Pages.BO

Page class True, if the page class is

saved in the data

backend.

Else, False

Correct!

12 GetPageIDList($cat_id) in Category ID Array of available pages Correct!

 Requirements Final Version 42

Pages.SO under the category id.

13 AddPage($cat_id) in Pages.SO Category ID New page id created in DB Correct!

14 RemovePage($page_id) in

Pages.SO

Page ID The query call from the

DB

Correct!

15 GetPage($page_id) in Pages.SO Page ID If the page id exists, a

page class with the page

ID. Else, return False.

Correct!

16 SavePage($page) in Pages.SO Page class True, if the page class is

saved.

Correct!

17 ChangeTheme() in

Admin.PHPNuke.UI

None Theme selection page

should appear.

Implemented in

next version

18 SelectBlocks() in

Admin.PHPNuke.UI

None Blocks managing page

should appear.

Implemented in

next version

19 is_admin() in ACL.BO None Allow the user to go to

the request page.

Correct!

20 GetLeftBlocks() in Blocks.Bo None The left side blocks should

be displayed in the block

selection page.

Implemented in

next version

21 GetRightBlocks() in Blocks.Bo None The right side blocks

should be displayed in the

block selection page.

Implemented in

next version

22 GetAvailableBlocks() in

Blocks.BO

None Blocks information should

be retrieved from the

database. Either blocks

are available or blocks

can’t be retrieved.

Implemented in

next version

23 SetBlock($filename, $side,

$position): Boolean in Blocks.BO

Block

filename,

Side

(left/right),

Position on

side (1-X)

Blocks should be

displayed in the way as

the administrator assigns

them.

Implemented in

next version

24 GetSiteHeader() in

HeaderFooter.BO

Variable

call.

The current header of the

site should be displayed in

Correct!,

displays “Team

 Requirements Final Version 43

the text field. X project.”

25 GetSiteFooter() in

HeaderFooter.BO

Variable

call.

The current footer of the

site should be displayed in

the text field.

Correct!,

displays

“Copyrighted

2002”

26 SetSiteHeader() in

HeaderFooter.BO

Header

(Team X

project)

The Administrator’s input

in the header text field

should be displayed in the

final generated page.

Correct!,

displays “Team

X project.”

27 SetSiteFooter() in

HeaderFooter.BO

Footer (

Copyrighted

2002)

The Administrator’s input

in the footer text field

should be displayed in the

final generated page.

Correct!,

displays

“Copyrighted

2002”

28 SetTheme() in Theme.BO Information

of Theme

The site should be looked

like the theme the

administrator selected.

Implemented in

next version

29 GetTheme() in Theme.BO. Information

of Theme

The Theme selected by

the administrator should

be retrieved.

Implemented in

next version

30 GetAvailableTheme() in

Theme.BO

None The themes in the

database should be

retrieved or a error

message should be

displayed

Implemented in

next version

31 GetLeftBlocks() in Blocks.SO None The chosen block should

be retrieved from the

database.

Implemented in

next version

32 GetRightBlocks() in Blocks.SO None The chosen block should

be retrieved from the

database.

Implemented in

next version

33 SetBlock() in Blocks.SO None The block selection setting

set by the administrator

should be saved into the

database.

Implemented in

next version

34 SetPreference($name, $value: name and The preference set by the Correct!

 Requirements Final Version 44

String) SitePreference.SO value administrator should be

saved into the database.

35 GetPreference($name)

SitePreference.SO

Name The requested preference

should be retrieved from

the database then

returned to the admin

Correct!

 Requirements Final Version 45

Integration Testing
Test

Case

ID

Items being

Tested

Input(s) Expected Output(s) Actual

Output(s)

1 Add new

category

1. Go to the “Manage

Categories” page in the

administrative section of

the website.

2. Select “Add new

Category” link

3. Fill in all the fields with

“valid” inputs.

4. Click “Save” button.

1. The newly added

category should be

available (either read

and/or write) to all the

groups/individuals

who were given those

access permissions.

2. The category should

NOT be available

(either read and/or

write) to

groups/individuals

who are not given

those access

permissions.

3. The name of the

category should be

listed in the

Administrative

Category Management

page so that the

administrator can edit

the categories settings

and/or permissions.

1. Correct!

2. Correct!

3. Correct!

2 Edit Category 1. Go to the “Manage

Categories” page in the

administrative section of

the website.

2. Select “Edit Category”

link

1. The edited category

should be available

(either read and/or

write) to all the

groups/individuals

who were given those

1. Correct!

2. Correct!

3. Correct!

 Requirements Final Version 46

3. Edit all fields w/ correct

inputs

4. Click “Save” button.

access permissions.

2. The category should

NOT be available

(either read and/or

write) to

groups/individuals

who are not given

those access

permissions.

3. The new name and

description of the

category should be

listed in the

Administrative

Category Management

page so that the

administrator can edit

the categories settings

and/or permissions.

3 Delete Category 1. Go to the “Manage

Category” page in the

administrative section of

the website.

2. Select “Delete Category”

for a category.

3. An alert box should pop

up; hit “ok” to delete

the category.

1. The category should

be removed from the

phpGroupWare

database.

2. All pages contributed

to the category should

also be removed.

3. The category should

no longer be listed on

the contributor page,

nor should it be listed

in the Administrative

Category Management

Page.

1. Correct!

2. Correct!

3. Correct!

4 Header / Footer

Change

1. Request for headerfooter

page.

Header: Team X project.

Footer: Copy righted 2002

Header:

Team X

 Requirements Final Version 47

2. Do a permission checks.

3. After permission is

checked, headerfooter

editing page appears.

4. Input “Team X project”

into header text field and

“Copy righted 2002” into

footer text field. Then

save it.

project.

Footer:

Copyrighted

2002

5 Select Blocks

Page

1. Request for block

selection.

2. Do a permission checks.

When permission is

checked, the selection

page shows up, block list

has been retrieved from

the database.

3. The admin changes the

selections.

The blocks in the final

generated page should

look like the one the

admin positioned

Implemented in

next version

6 Theme Selection

page

1. Request for theme

selection page.

Permission checks.

2. When the permission is

granted, the theme list

would be loaded from the

database.

3. The Admin can choose

the desired theme for the

site.

The theme of the site

should be exactly the

same as the one choose

by the admin.

Implemented in

next version

7 Add new page 1. Click add new page

button in the category-

managing page.

2. Provide the content of

the page in the page

managing page.

1. The new added page

should be viewable to the

contributor.

2. The name of the page

should be included in the

list of pages in the

1. Correct!

2. Correct!

 Requirements Final Version 48

3. Click “Save” button. category in category-

managing page.

8 remove a page Clicking “Remove” button in

category-managing page.

1. The removed page

should be removed

from phpGroupWare

data backend.

2. The removed page

name should be

removed from the list

of pages in the

category.

1. Correct!

2. Correct!

9 Edit a page 1. Click “Edit” button next to

the page name in

category managing page.

2. Edit the content of the

page.

3. Click “Save” button.

1. After the Edit button is

clicked, the page editor

page should be

generated.

2. After clicking “Save”

button, the edited page

should be appeared in a

separate window with

confirmation.

1. Correct!

2. Correct!

 Requirements Final Version 49

System Testing
Test

Case

ID

Items being

Tested

Input(s) Expected Output(s) Actual

Output(s)

1 Contributor_

ManagePage_

UI

Go to the category

managing page.

Category managing page

should be generated with

list of categories and the

list of the pages.

Correct!

2 Contributor_

ManagePage_

UI

Go to the category

managing page.

Click “Add new page” or

“Edit” button.

After clicking “Add new

page” or “Edit” button,

the page managing page

should be viewable with

proper content.

Correct!

3 add page

functions in

Pages_BO,

Pages_SO &

ACL_BO

Add number of pages.

The titles of the pages

should be added to the

category.

The write permission of

the contributor should be

checked whenever a page

is added.

Correct!

4 Editing page

functions in

Pages_BO,

Pages_SO &

ACL_BO

Edit a page The write permission of

the contributor should be

check before the page

managing page is

viewable.

The edited page should be

changed to the edited

information.

Correct!

5 Removing a

page in

Pages_BO,

Pages_SO &

ACL_BO

Remove a page The write & read

permission of the

contributor should be

checked whenever a page

is removed from the

category.

Correct!

 Requirements Final Version 50

The page title should be

removed from the

category in the category-

managing page.

The page should not be

viewable.

6 Admin_

PHPNuke_UI

Select Blocks selection

page.

The blocks list should be

generated and the

selection and position pull

down menu should be

displayed next to each

block

Implemented in

next version

7 Setblocks() in

both Block_BO

and Block_SO

Save blocks setting. The Blocks setting should

be saved into the

database. And the

displayed blocks should

be displayed as the way

they are positioned.

Implemented in

next version

8 theme list

database

retrieval in

both

Theme_BO and

Theme_SO

Retrieve the theme list from

the database.

The Permission should be

checked before the

retrieving process. The list

will then retrieve and

generate for the admin to

use;

Implemented in

next version

9 blocks data

retrieval in

both Blocks_BO

and Blocks_SO

Retrieve the block list from

the database

Before the retrieving

process, the permission of

the user will be checked.

The block list will then

retrieve and allow the

user to select them.

Implemented in

next version

10 save theme

function in both

Theme_BO and

Theme_SO

Select a theme and then

save it.

The theme will be saved

into the database. The

display page should

display the same theme

as selected.

Impleme nted in

next version

 Requirements Final Version 51

When the saved theme is

called, the saved theme

should be retrieved and

returned to the user’s

screen.

 Requirements Final Version 52

S E C T I O N 6 : U S E R I N T E R F A C E D I A G R A M S

Administrative UI Diagrams
Figure 1: Administrative Menu UI Diagram:

Figure 2: Category Manager UI Diagram 1:

h

Figure 1 – User Interface Diagram

Figure 2 – User Interface Diagram

 Requirements Final Version 53

Figure 3: Add/Edit Category UI Diagram 2:

Figure 3 – User Interface Diagram

 Requirements Final Version 54

Figure 4: Edit Header / Footer Content UI Diagram:

 Requirements Final Version 55

Contributor UI Diagrams
Figure 5: Page Manager UI Diagram:

Figure 5 – User Interface Diagram

 Requirements Final Version 56

Figure 6: Add/Edit Page UI Diagram:

Figure 6 – User Interface Diagram

 Requirements Final Version 57

Page Generation UI Diagrams
Figure 7: Generated Page: Site Contents UI Diagram:

Figure 7 – User Interface Diagram

 Requirements Final Version 58

Figure 8: Generated Page: Site Index UI Diagram:

Figure 8 – User Interface Diagram

 Requirements Final Version 59

Figure 9: Generated Page: Category Table of Contents UI Diagram:

Figure 10: Generated Page UI Diagram:

Figure 9 – User Interface Diagram

Figure 10 – User Interface Diagram

