A-A-P Recipe Executive

Bram Moolenaar

A-A-P Recipe Executive
by Bram Moolenaar

Revision 1.023 (2003 Sep 01) Edition
Published 2002-2003
Copyright © 2002-2003 by Stichting NLnet Labs

This is the documentation for version 1.023 of the Recipe Executive, commonly known as the "aap" command. It is
part of the A-A-P project.

NOTE: Not all parts have been done properly. Some chapters do contain lots of information but still need to be
organized and the layout is to be done.

The web site of A-A-P can be found here: http://www.a-a-p.org/

The HTML version of this manual can be read on-line: http://www.a-a-p.org/exec/index.html As a single file:
http://www.a-a-p.org/exec/exec.html.

The PDF version of this manual can be found here: http://www.a-a-p.org/exec/exec.pdf

The plain text version of this manual: http://www.a-a-p.org/exec/exec.txt.

Copyright (C) 2002-2003 Stichting NLnet Labs

The license for copying, using, modifying, distributing, etc this documentation and the A-A-P files can be found in
Appendix A

Table of Contents

TR T o] = | ST %
I =1 o RS =4 (=T S 1
2. COMPIlING 8 PrOGIAML...c.cctiiiitiieeieieieeseee ettt sttt b e et st se st e et e e sbe e sbenenaeneneas 2
3. PUDIIShING @ WED SILE.....cuiiiiiiecic et 9
4. DiStriDULING @ PIOGIAIML....c.ccuiiieiiieeterieierte sttt s st sttt nnas 12
5. BUIIAING VAITANES.......eiiitiieciesetestee ettt ettt sttt 14
6. USING PYINOM.....oiiiiiiii et b e et bt bbb 17
7.Version Control With CVS.........oi et 21
8. FIletyPeS @NU ACLIONS.....cciieieere et st r et se e e s b e aesee st e seneens 23
9. MOre Than ONE RECIPE. ... eueetirie ettt ettt e e e neesesaesee e e seneens 26
10. COMMANAS IN @ PIE...c.eiieiie ettt st b e st e e et seebesbeseeseeeeneas 30
AN =l o T (=To 7Y o] o] o= 11T] o ISP 34

LI LT =T 1Y =T o U= | USSR 38
12, HOW it @l WOTKS ...ttt st et b e b b e e 39
13. Dependencies, Rules and ACHIQNS.cciiiiriiereeeeeese et 45
LA VATTANTS ..ttt et h et b et et et b e e b e b e se e se et e b e e beeb e s e et et e e eaeebenbeseeseenenea 53
ST U1 o] 1= 11 o O RUSS 56
G = (o 1 T PSS 59
A 1 T3 7=V T o RSOSSN 63
18. VEISION CONMIOL.....eiiiitiieieiet ettt b et st b st sb e s b et e e et e aeebesbeseeseeeenea 68
19, USING CV Sttt ettt e etttk st b et b e ettt 72
PO T TS 0T I = T 4 T S 76
22 T O £ g T Y1 T) o TR 78
2720 wdo) g il alo TE= Ta 1A o o] [1= i o T o R 82
23. Automatic CoNfIQUIALION.ccccviiiceeecere et s e e s re e aeneens 92
P22 SO T g I AN U | (o ToTo] o) /R 94
25. Automatic Package INStall...........ccceeeoerieii e 98
L T L= o T o o 1 aTo - =T o1 o =S 103
27. Differences from MaKe........cocvviiiiiecee e s nn 105
28. Customizing Filetype Detection and ACHQNS.........ccoeiieeririenerenrerese e 107
29. Customizing AUtOMALIC DEPEUENCIES.........ceririerieeriee ettt e 114
30. Customizing DEfaUIt TOOIS.........ciriiiirieirieeree ettt 116

1. REFErENCE MANUALceiiiiiie e et s et se e e e eneenesneseennan 118
31. Aap Command LiNe AFQUMENNES........coiiriririeirieiereet ettt be s eb e s 119
32, RECIPE SYNTAX....c.eitiuirieiirietiriete sttt sttt se ettt se b se b et et e st b esesaeb e seebeseebeseebeneenenenneneas 125
33. VariableS And SCOPES.......cerruerieiirieieierieeriee ettt sttt b e e eb e e b b sneaeas 128
34. CommON VariabIES ..ot e 135
RO LT =T To [] 4 1= USSR 139
BB, AHIIDULES. ...t b b ettt b e s bbb et et b e b e sb e se e e e neeaesae b ban 142
R 1121 4 o =30 (= (=T od 1o PSSR 147
38. A-A-P PYthon fUNCLIONS......couiiiii et e e 151
39. A-A-P COMMANGS......eitiitiiitieiieieere sttt se et s b b et ebesbesee e e e neeaesaesbeeas 159

Y o 01T T (=L 192
A LICEINSE. ...ttt bbb e bR R b e b e e R e b e Rt nh R e b et et re b e s 193

List of Tables

2 1 (=] 0 F T I W (=] 0= o =Y VoS 7
12-1. Special characters in the ":print" COMMANd..........cccoriererinienieree s 43
I O 1TSS = 1 T o =3 S 63
17-2. Settings for the INStall tArgeL..........ovi i e 64
1G22 I N[= 11 o 1 125
34-1. Naming Scheme fOr Variables...... ... e 135
34-2. Standard VariabI@S...........ooviirieeeeeeese e st nee s 135
36-1. VIFTUBL TAIGEIS ...ttt sttt sttt b e bbbt bt et b 142
BTG S i Tod VA= L1] o TU L =SS 143
36-3. supported check attribute VAlUES...........ccco e 144

|. Tutorial

Chapter 1. Getting Started

To start using Aap you must have two applications:

- Python version 1.5 or later

- Aap

Python is often installed already. Try this:
python -V

If you get a "Command not found" error you still need to install Python. Help for this can be found on
the Python web site: www.python.org/download/ (http://www.python.org/download/).

For obtaining and installing Aap look here: www.a-a-p.org/download.html
(http://lwww.a-a-p.org/download.html).

To check if your Aap program is working, type this command:
aap --help

You should get a list of the command line arguments. Note that there are two dashes before "help". You
can read details about the command line argumern@hapter 31

Chapter 2. Compiling a Program

A "Hello world" (of sorts)

Most programming languages start with a short example that prints a "hello world" message. With Aap,
this is also possible. In a file calleshin.aap , enter the following:

:print Hello, World!
Now run Aap by enteringap at the command line. Aap will respond something like this:

% aap
Hello, World!
Aap: No target on the command line and no $TARGET, build rules or "all" target in a recipe

As you can see, Aap outputs the desired text, but also prints an error message. This is because Aap is not
a programming language, but a language for describing haertgile and buildprograms (written in

other languages). In other words, if you have written a "hello world" program in some language, then

you can use Aap to compile that program.

Using Aap to compile "hello.c"

Suppose you have written a "hello world" program in C, and the sources are stored in a file called

hello.c . Aap already knows about the C language (and several others), so the instructions to Aap about
how to compile this program are very short. Instructions for Aap are stored in a file with the extension
.aap . Such afile is called a recipe.

This is the recipe for compiling such a program with Aap:
:program hello : hello.c

Write this text in a filemain.aap , in the same directory d®llo.c . Now invoke Aap to compile
hello.c into the progranhello

%ls
hello.c main.aap
% aap
1 Aap: Creating directory "/home/mool/tmp/build-FreeBSD4_5 RELEASE"
2 Aap: cc -l/ust/local/include -g -O2 -E -MM hello.c > build-FreeBSD4_5 RELEASE/hello.c.aap
3 Aap: cc -l/ust/locall/include -g -O2 -c -0 build-FreeBSD4_5_RELEASE/hello.o hello.c
4 Aap: cc -L/usr/local/lib -g -O2 -o hello build-FreeBSD4_5 RELEASE/hello.o

You see the commands Aap uses to compile the program:

1. Adirectory is created to write the intermediate results in. This directory is different for each
platform, thus you can compile the same program for different systems without cleaning up.

Chapter 2. Compiling a Program

2. Dependencies are figured out for the source file. Aap will automatically detect dependencies on
included files and knows that if one of the included files changed compilation needs to be done, even
when the file itself didn't change. In this example, Aap uses the C compiler witivittieption to
determine the included files.

3. The "hello.c" program file is compiled into the "hello.o" object file (on MS-Windows that would be
"hello.obj").

4. The "hello.o" object file is linked to produce the "hello" program (on MS-Windows this would be
"hello.exe", the ".exe" is added automatically).

Other things to do with "hello world"

The same simple recipe not only specifies how to build the "hello" program, it can also be used to install
the program:

% aap install PREFIX=try

Aap: Creating directory "try/bin/"

Aap: Copied "test/hello” to "try/bin/hello”
Aap: lusr/bin/strip 'try/bin/hello’

ThePREFIX variable specifies where to install the program. The defaulsidocal . For the
example we use they directory, which doesn’t exist. Aap creates it for you.
Other ways that this recipe can be used:

aap uninstall undo installing the program

aap clean cleanup the generated files
aap cleanALL cleanup all files (careful!)

See the reference manual for details abpragram

Several Source Files
When you have several files with source code you can specify them as a list:

program myprogram : main.c
version.c
help.c

There are three source filgsain.c , version.c andhelp.c . Notice that it is not necessary to use a
line continuation character, as you would have to do in a Makefile. The list ends at a line where the
indent is equal to or less than what the assignment started with. The amount of indent for the
continuation lines is irrelevant, so long as it's more than the indent of the first line.

The Makefile-style line continuation with a backslash just before the line break can also be used, by the
way.

Chapter 2. Compiling a Program
Indents are very important, just like in a Python script. Make sure your tabstop is always set to the
standard value of eight, otherwise you might run into trouble when mixing tabs and spaces!

When you give a list of files tqprogram Aap will determine dependencies and compile each of the
source files in turn, and then link them all together into an executable.

Variables and Assignments

Sometimes it is convenient to have an abbreviation for a long list of files. Aap supports this through
variables (just like the make command and the shell).

An assignment has the form:
variablename = expression

The variable name is the usual combination of letters, digits and underscore. It must start with a letter.
Upper and lower case letters can be used and case matters. To see this in action, write this recipe in a file
with the namery.aap

foo = one
Foo = two
FOO = three

:print $foo $Foo $FOO

Aap normally reads the recipe frommin.aap , but you can tell it to read a different file if you want to.
Use thef flag for this. Now execute the recipe:

% aap -f try.aap
one two three
Aap: No target on the command line and no build rules or "all" target in a recipe

The:print command prints its argument. You can see that a variable name preceded with a dollar is
replaced by the value of the variable. The three variables that only differ by case each have a different
value. Aap also complains that there is nothing to build, just like irheil world example

If you want text directly after the variable’s value, for example, to append an extension to the value of a
variable, the text may be impossible to distinguish from a variable name. In these cases you must put
parenthesis around the variable name, so that Aap knows where it ends:

all:
MakeName = Make
:print. $(MakeName)file # 'f' can be in a variable name
:print $(MakeName).txt # '’ can be in a variable name
:print $MakeName-more # - is not in a variable name

% aap -f try.aap
Makefile
Make.txt
Make-more

%

All Aap commands, except the assignment, start with a colon. That makes them easy to recognize.

Chapter 2. Compiling a Program

Some characters in the expression have a special meaningprifiteommand also handles a few
arguments in a special way. To avoid the special meaning use the $(x) form, where "x" is the special
character. For example, to print a literal dollar use $($).tBeaiser manudbr a complete list.

Comments

Someone who sees this recipe would like to know what it's for. This requires adding comments. These
start with a "#" character and extend until the end of the line (like in a Makefile and Python script).

It is also possible to associate a comment with a specific item:

A-A-P recipe for compiling "myprogram”
:program myprogram { comment = MyProgram is really great } :

main.c # startup stuff
version.c # just the date stamp
help.c # display a help message

Now run Aap with a "comment" argument:

% aap comment

target "myprogram™: MyProgram is really great
target "clean": delete generated files that are not distributed
target "cleanmore": delete all generated files

target "cleanALL": delete all generated files, AAPDIR and build-* directories
target "install": install files

target "uninstall": delete installed files
%

The text inside curly braces is called an attribute. In this case the attribute name is "comment" and the

attribute value is "MyProgram is really great". An attribute can be used to attach extra information to a
file name. We will encounter more attributes later on.

Dependencies

Let’s go back to the "Hello world" example and find out what happens when you change a source file.
Use thishello.c file:

#include <stdio.h >
#include "hello.h"
main()
{

printf("Hello %s\n", world);
}

The included "hello.h" file defines "world":

#define world "World!"

If you run Aap, the "hello" program will be built as before. If you run Aap again you will notice that
nothing happens. Aap remembers that "hello.c" was already compiled. Now try this:

Chapter 2. Compiling a Program

% touch hello.c
% aap
%

If you have been using the "make" program you would expect something to happen. But Aap checks the
contentsf the file, not the timestamp. A signature of "hello.c" is computed and if it is still the same as
before Aap knows that it does not need to be compiled, even though "hello.c" is newer than the "hello"
program.

Aap uses the mechanism of dependencies. When you ugegrttzggamcommand Aap knows that the
target depends on the sources. When one of the sources changes, the commands to build the target from
the sources must be executed. This can also be specified explicitly:

hello$EXESUF : $BDIR/hello$OBJSUF
:do build $source

$BDIR/hello$OBJSUF : hello.c
:do compile $source

The generic form of a dependency is:

target : list-of-sources
build-commands

The colon after the target is important, it separates the target from the sources. It is not required to put a
space before it, but there must be a space after it. We mostly put white space before the colon, so that it is
easy to spot. There could be several targets, but that is unusual.

There are two dependencies in the example. In the first one the target is "helloSEXESUF", the source file
is "$BDIR/hello$OBJSUF" and the build command is ":do build $source". This specifies how to build

the "hello$EXESUF" program from the "$BDIR/hello$OBJSUF" object file. The second dependency
specifies how to compile "hello.c" into "$BDIR/hello$OBJSUF" with the command ":do compile

$source". The "BDIR" variable holds the name of the platform-dependent directory for intermediate
results, as mentioned in the first example of this chapter. In case you need it, the SEXESUF variable Aap
is empty on Unix and ".exe" on MS-Windows.

The relation between the two dependencies in the example is that the source of the first one is the target
in the second one. The logic is that Aap follows the dependencies and executes the associated build
commands. In this case "hello$EXESUF" depends on "$BDIR/hello$OBJSUF", which then depends on
"hello.c". The last dependency is handled first, thus first hello.c is compiled by the build command of the
second dependency, and then linked into "hello$EXESUF" by the build command of the first dependency.

Now change the "hello.h" file by replacing "World" with "Universe™:

#define world "Universe!"

If you now run Aap with "aap hello" or "aap hello.exe" the "hello" program will be built. But you never
mentioned the "hello.h" file in the recipe. How did Aap find out the change in this file matters? When
Aap is run to update the "hello" program, this is what will happen:

Chapter 2. Compiling a Program

1. The first dependency with "hello$EXESUF" as the target is found, it depends on
"$BDIR/hello$OBJISUF".

2. The second dependency with "$BDIR/hello$OBJSUF" as the target is found. The source file
"hello.c" is recognized as a C program file. It is inspected for included files. This finds the "hello.h"
file. "stdio.h" is ignored, since it is a system file. "hello.h" is added to the list of files that the target
depends on.

3. Each file that the target depends on is updated. In this case "hello.c" and "hello.h". No dependency
has been specified for them and the files exist, thus nothing happens.

4. Aap computes signatures for "hello.c" and "hello.h". It also computes a signature for the build
commands. If one of them changed since the last time the target was built, or the target was never
built before, the target is considered "outdated" and the build commands are executed.

5. The second dependency is now finished, "$BDIR/hello$OBJSUF" is up-to-date. Aap goes back to
the first dependency.

6. Aap computes a signature for "$BDIR/hello$OBJSUF". Note that this happens after the second
dependency was handled, it may have changed the file. It also computes a signature for the build
command. If one of them changed since the last time the target was built, or the target was never
built before, the target is considered "outdated" and the build commands are executed.

Now try this: Append a comment to one of the lines in the "hello.c" file. This means the file is changed,
thus when invoking Aap it will compile "hello.c". But the program is not built, because the produced
intermediate file "$BDIR/hello$OBJSUF" is still equal to what it was the last time. When compiling a
large program with many dependencies this mechanism avoids that adding a comment may cause a
snowball effect. (Note: some compilers include line numbers or a timestamp in the object file, in that
case building the program will happen anyway).

Compiling Multiple Programs

Suppose you have a number of sources files that are used to build two programs. You need to specify
which files are used for which program. Here is an example:

Common = help.c util.c
all : foo bar

:program foo : $Common foo.c

NoouokrowhpE

:program bar : $Common bar.c

This recipe defines three targets: "all", "foo" and "bar". "foo" and "bar are programs that Aap can build
from source files. But the "all" target is not a file. This is called a virtual target: A name used for a target
that does not exist as a file. Let’s list the terminology of the items in a dependency:

Table 2-1. items in a dependency

source item on the right hand side of a dependency
source file source that is a file

Chapter 2. Compiling a Program

virtual source source that is NOT a file

target on the left hand side of a dependency
target file target that is a file

virtual target target that is NOT a file

node source or target

file node source or target that is a file

virtual node source or target that is NOT a file

Aap knows the target with the name "all" is always used as a virtual target. There are a few other names
which Aap knows are virtual, séable 36-1 For other targets you need to specify it with the "{virtual}"
attribute.

The first dependency has no build commands. This only specifies that "all" depends on "foo" and "bar".
Thus when Aap updates the "all" target, this dependency specifies that "foo" and "bar" need to be
updated. Since the "all" target is the default target, this dependency causes both "foo" and "bar" to be
updated when Aap is started without an argument. You can use "aap foo" to build "foo" only. The
dependencies for "all" and "bar" will not be used then.

The two fileshelp.c anduti.c are used by both the "foo" and the "bar" program. To avoid having to
type the file names twice, the "Common" variable is used.

Kinds of things you can build

Not everything you want to build is a program. Your recipe might need too build a library or a libtool
archive. In these casesib, :dll or :Itlib provide the same level of automation:psogramdoes for
programs. Theproducecommand is more generic, you can use this to build various kinds of things.

If all else fails, you can use Aap like the make program and explicitly list the commands you need to
build your project.

Chapter 3. Publishing a Web Site

If you are maintaining a web site it is often a good idea to edit the files on your local system. After trying
out the changes you then need to upload the changed files to the web server. A-A-P can be used to
identify the files that changed and upload these files only. This is called publishing.

Uploading The Files
Here is an example of a recipe:

Files = index.html
project.html
links.html
images/logo.png
:attr {publish = scp://luser@ftp.foo.org/public_html/%file%} $Files

That'’s all. You just need to specify the files you want to publish and the URL that says how and where to
upload them to. Now "aap publish" will find out which files have changed and upload them:

% aap publish

Aap: Uploading [/home/mool/www/foo/index.html’] to scp://user@ftp.foo.org/public_html/index.html
Aap: scp '’home/mool/www/vim/index.html’ 'user@ftp.foo.org:public_html/index.html’

Aap: Uploaded "/home/mool/wwwi/vim/index.html" to "scp://user@ftp.foo.org/public_html/index.html|"
%

The first time you execute the recipe all files will be uploaded. Aap will create the "images" directory for
you. If you had already uploaded the files and want to avoid doing it again, first run the recipe with: "aap
publish --touch”. Aap will compute the signatures of the files as they are now and remember them. Only
files that are changed will be uploaded from now on.

The:attrcommand uses its first argument as an attribute and further arguments as file names. It will
attach the attribute to each of the files. In this case the "publish" attribute is added, which specifies the
URL where to upload a file to. In the example the "scp" protocol is used, which is a good method for
uploading files to a public server. "ftp" can be used as well, but this means your password will go over
the internet, which is not safe. The special item "%file%" is replaced with the name of the file being
published.

Generating a HTML File

It is common for HTML files to consist of a standard header, a body with the useful info and a footer.
You don'’t want to manually add the header and footer to each page. When the header changes you would
have to make the same change in many different files. Instead, use the recipe to generate the HTML files.

Let’s start with a simple example: Generate the index.html file. Put the common header, containing a
logo and navigation links, in "header.part". The footer, containing contact info for the maintainer, goes in
"footer.part”. The useful contents of the page goes in "index_body.part”. Now you can use this recipe to
generate "index.html" and publish it:

Files = index.html

Chapter 3. Publishing a Web Site

images/logo.png
:attr {publish = scp://luser@ftp.foo.org/public_html/%file%} $Files

all: $Files
publish: $Files
:publishall

index.html: header.part index_body.part footer.part
:cat $source >! S$target

Notice that only the published files are put in the "Files" variable. These files get a "publish” attribute,
which tells Aap that these are the files that need to be uploaded. The ".part” files are not published, thus
they do not get the "publish” attribute.

Three dependencies follow. The "all" target is the virtual target we have seen before. It specifies that the
default work for this recipe is to update the files in the "Files" variable. This means you don't
accidentally upload the files by running "aap" without arguments. The normal way of use is to run "aap",
check if the produced HTML file looks OK, then use "aap publish" to upload the file.

For "index.html" a target is specified with a build command. Tdacommand concatenates the source
files. "$source" stands for the source files used in the dependency: "header.part, "index_body.part" and
"footer.part”. The resulting text is written to "$target”, which is the target of the dependency, thus
"index.html". The *>!" is used to redirect the output of theatcommand and overwrite any existing

result. This works just like the Unix "cat" command.

In the dependency with the "publish” target theblishallcommand is used. This command goes
through all the files which were given a "publish" attribute with tir command. Note that this does
not work:

This won’'t work.
Files = index.html {publish = scp://user@ftp.foo.org/public_html/%file%o}

Using a "publish” attribute in an assignment will not make it used withghblishallcommand.

Using ":rule" to Generate Several HTML Files

Your web site contains several pages, thus you need to specify how to generate each HTML page. This
quickly becomes a lot of typing. We would rather specify once how to make a "xxx.html" file from a
"xxx_body.part" file, and then give the list of names to use for "xxx" (if you have assocations with the
name "xxx_body.part" that is your own imagination! :-). This is how it's done:

Files = *html
images/*.png
:attr {publish = scp://luser@ftp.foo.org/public_html/%file%} $Files

all: $Files
publish: $Files
:publishall

rule %.html : header.part %_body.part footer.part

10

Chapter 3. Publishing a Web Site

:cat $source >! $target

This is very similar to the example that only generates the "index.html" file. The first difference is in the
value of "Files": It contains wildcards. These wildcards are expanded when they are used where a file
name is expected. The expansion is not done in the assignment! More about that later. In the three places
where $Files is used the wildcard expansion results in a list of all "*.html" files in the current directory

and all "*.png" files in the "images" directory.

The second difference is that there is no specific dependency for the "index.html" filerblet a

command. It looks very much the same, but the word "index" has been replaced by a percent character.
You could read the rule command as a dependency where the "%" stands for "anything". In the example
the target is "anything.html" and in the sources we find "anything_body.part". Obviously these two
occurrences of "anything" are the same word.

If you have made HTML pages, you know they contain a title. We ignored that until now. The following
recipe will handle a title, stored in the file "xxx_title.part”. You also need a file "start.part", which
contains the HTML code that goes before the title.

Files = * html
images/*.png
:attr {publish = scp://user@ftp.foo.org/public_html/%file%} $Files

all: $Files
publish: $Files
:publishall

rule %.html : start.part %_title.part header.part %_body.part footer.part
:cat $source >! $target

Notice that "%" is now used three times in thele command. It stands for the same word every time.

After writing this recipe you can forget what changes you made to what file. A-A-P will take care of
generating and uploading those HTML files that are affected. For example, if you change "header.part”,
all the HTML files are generated and uploaded. If you change "index _title.part" only “index.html" will

be done.

There is one catch: You must create an (empty) xxx.html file the first time, otherwise it will not be found
with "* html". And you have to be careful not to have other "xxx.html" files in this directory. You might
want to explicitly specify all the HTML files instead of using wildcards.

A similar recipe is actually used to update the A-A-P website. It's a bit more complicated, because not all
pages use the same header.

11

Chapter 4. Distributing a Program

Open source software needs to be distributed. This chapter gives a simple example of how you can
upload your files and make it easy for others to download and install your program.

Downloading

To make it easy for others to obtain the latest version of your program, you give them a recipe. That is all
they need. In the recipe you describe how to download the files and compile the program. Here is an

example:

1 Origin = ftp://ftp.mysite.org/pub/theprog
2

3 recipe {fetch = $Origin/main.aap}

4

5 Source = main.c

6 version.c

7 Header = common.h

8

9 :attr {fetch = $Origin/%file%} $Source $Header
10

11 :program theprog : $Source

The first line specifies the location where all the files can be found. It is good idea to specify this only
once. If you would use the text all over the recipe it is more difficult to read and it would be more work
when the URL changes.

Line 3 specifies where this recipe can be obtained. After obtaining this recipe once, it can be updated
with a simple command:

% aap refresh

Aap: Updating recipe "main.aap"

Aap: Attempting download of “ftp://ftp.mysite.org/pub/theprog/main.aap"”

Aap: Downloaded "ftp://ftp.mysite.org/pub/theprog/main.aap" to "/home/mool/.aap/cache/98092140.aap"
Aap: Copied file from cache: "main.aap"

%

The messages from Aap are a bit verbose. This is just in case the downloading is very slow, you will have
some idea of what is going on.

Lines 5 to 7 define the source files. This is not different from the examples that were used to compile a
program, except that we explicitly mention the header file used.

Line 9 specifies where the files can be fetched from. This is done by giving the source and header files
thefetch attribute. Theattr ~command does not cause the files to be fetched yet. When a file is used
somewhere and it hasfetch attribute, then it is fetched. Thus files that are not used will not be fetched.

A user of your program stores this recipenagin.aap and runsaap without arguments. What will
happen is:

12

Chapter 4. Distributing a Program
1. Dependencies will be created by tpeogram command to build "theprog” frommain.c and
version.c

2. The target "theprog" depends orain.c andversion.c . Since these files do not exist and they do
have afetch attribute, they are fetched.

3. Themain.c file is inspected for dependencies. It includesdbmon.h file, which is
automatically added to the list of dependencies. Steeemon.h does not exist and hadetch
attribute, it is fetched as well.

4. Now that all the files are present they are compiled and linked into "theprog".

Uploading

You need to upload the files mentioned in the recipe above. This needs to be repeated each time one of
the files changes. This is essentially the same as publishing a web site. You will need to upload both the
source files and the recipe itself. The {publish} attribute can be used for this. You can add the following
two lines to the recipe above in order to upload all the files:

URL = scp://user@ftp.mysite.org//pub/theprog/%file%
:attr {publish = $URL} $Source $Header main.aap

Now you can us@ap publish to upload your source files as well.

13

Chapter 5. Building Variants

A-A-P provides a way to build two variants of the same application. You just need to specify what is
different about them. A-A-P will then take care of putting the resulting files in a different directory, so
that you don'’t have to recompile everything when you toggle between two variants.

For the details sewariantin the reference manual.

One Choice

Quite often you want to compile an application for release with maximal optimizing. But the optimizer
confuses the debugger, thus when stepping through the program to locate a problem, you want to
recompile without optimizing. Here is an example:

1 Source = main.c version.c gui.c
2

3 :variant Build

4 release

5 OPTIMIZE = 4

6 Target = myprog
7 debug

8 DEBUG = yes

9 Target = myprogd
10

11 :program $Target : $Source

Write this recipe as "main.aap" and run Aap without arguments. This will build "myprog" and use a
directory for the object files that ends in "-release". The release variant is the first one mentioned, that
makes it the default choice.

The first argument for thevariant command iBuild . This is the name of the variable that specifies
what variant will be selected. The names of the alternatives are specified with a bit more indent in lines 4
and 7. For each alternative two commands are given, again with more indent. Note that the indent not
only makes it easy for you to see the parts of:tkegiant command, they are essential for Aap to
recognize them.

To select the "debug" variant tiBeiild variable must be set to "debug”. A convenient way to do this is
by specifying this on the command line:

% aap Build=debug

This will build the "myprogd" program for debugging instead of for release.O¥®@UGrariable is

recognized by Aap. The object files are stored in a directory ending in "-debug". Once you finished
debugging and fixed the problem in, for example, "gui.c", running Aap to build the release variant will
only compile the modified file. There is no need to compile all the C files, because the object files for the
"release" variant are still in the "-release" directory.

14

Chapter 5. Building Variants

Two Choices

You can extend thBuild variant with more items, for example "profile”. This is useful for alternatives
that exclude each other. Another possibility is to add a sec@mdnt command. Let us extend the
example with a selection of the user interface type.

1 Source = main.c version.c gui.c
2

3 :variant Build

4 release

5 OPTIMIZE = 4

6 Target = myprog

7 debug

8 DEBUG = yes

9 Target = myprogd

10
11 Gui ?= motif
12 variant Gui

13 console

14 motif

15 Source += motif.c
16 gtk

17 Source += gtk.c
18

19 DEFINE += -DGUI=$Gui

20

21 program $Target : $Source

The:variant command in line 12 uses titi variable to select one of "console”, "motif* or "gtk".
Together with the earlievariant ~ command this offers six alternatives: "release” with "console”,
"debug" with "console”, "release” with "motif", etc. To build "debug" with "gtk" use this command:

% aap Build=debug Gui=gtk

In line 11 an optional assignment "?="is used. This assignment is skippeddfitheariable already has
a value. Thus ifsui was given a value on the command line, as in the example above, it will keep this
value. Otherwise it will get the value "motif".

Note: Environment variables are not used for variables in the recipenkike does. When
you happen to have@ui environment variable, this will not influence the variant in the
recipe. This is especially useful if you are not aware of what environment variables ar¢ set
and/or which variables are used in the recipe. If you intentionally want to use an
environment variable this can be specified with a Python expression (see the next chgpter).

In line 15, 17 and 19 the append assignment "+="is used. This appends the argument to an existing
variable. A space is inserted if the value was not empty. For the variant "motif" the result of line 15 is
thatSource becomes "main.c version.c gui.c motif.c".

The "motif" and "gtk" variants each add a source file in line 15 and 17. For the console version no extra
file is needed. The object files for each combination of variants end up in a different directory. Ultimately
you get object files in each of the six directories ("SYS" stands for the platform being used):

15

directory

Chapter 5. Building Variants

contains files

build-SYS-release-console
build-SYS-debug-console
build-SY S-release-motif
build-SY S-debug-motif
build-SYS-release-gtk
build-SYS-debug-gtk

main, version, gui
main, version, gui
main, version, gui, motif
main, version, gui, motif
main, version, gui, gtk
main, version, gui, gtk

See thaiser manualor more examples of using variants.

16

Chapter 6. Using Python

In various places in the recipe Python commands and expressions can be used. Python is a powerful and

portable scripting language. In most recipes you will only use a few Python items. But where needed you
can do just about anything with it.

Conditionals

When a recipe needs to work both on Unix and on MS-Windows you quickly run into the problem that
the compiler does not use the same arguments. Here is an example how you can handle that.

@if OSTYPE == "posix":

INCLUDE += -l/usr/local/include
@else:

INCLUDE += -lc:/vcl/include

all:
:print INCLUDE is "$INCLUDE"

The first and third line start with the "@" character. This means a Python command follows. The other
lines are normal recipe lines. You can see how these two kinds of lines can be mixed.

The first line is a simple "if" statement. TI@&STYPEvariable is compared with the string "posix". If they
compare equal, the next line is executed. Wherg&YPEvariable has a different value the line below
@else: is executed. Executing this recipe on Unix:

% aap
INCLUDE is "-l/usr/local/include"
%

OSTYPEhas the value "posix" only on Unix and Unix-like systems. Executing the recipe on
MS-Windows, wheré®STYPEhas the value "mswin":

C:>aap
INCLUDE is "-lc:/vc/include"
C>

Note that the Python conditional commands end in a colon. Don'’t forget to add it, you will get an error
message! The indent is used to form blocks, thus you must take care to align the "@if" and "@else" lines.

You can include more lines in a block, without the need for extra characters, such as { } in C:

@if OSTYPE == "posix":
INCLUDE += -l/usr/local/include
LDFLAGS += -L/usr/local
@else:
INCLUDE += -lIc:/vclinclude
LDFLAGS += -Lc:/vcllib

17

Chapter 6. Using Python

Scope

In Aap commands a variable without a scope is searched for in other scopes. Unfortunately, this does not
happen for variables used in Python. To search other scopes you need to prepend "_no." before the
variable name. Changing the above example to print the result from Python:

@if OSTYPE == "posix":

INCLUDE += -l/ust/local/include
@else:

INCLUDE += -lIc:/vclinclude

all:
@print 'INCLUDE is "%s" % _no.INCLUDE

Loops
Python has a "for" loop that is very flexible. In a recipe it is often used to go over a list of items. Example:

@for name in ["solaris", "hpux”, "linux", "freebsd"]:
fname = README_$name
@if os.path.exists(fname):
Files += $fname
all:

OOk WN P

:print $Files

The first line contains a list of strings. A Python list uses square brackets. The lines 2 to 4 are executed
with the name variable set to each value in the list, thus four times. The indent of line 5 is equal to the
@for line, this indicates the "for" loop has ended.

Note how thename andfname variables are used without a dollar in the Python code. This might be a bit
confusing at first. Try to remember that you only put a dollar before a variable name in the argument of a
recipe command.

In line 2 thefname variable is set to "README_" plus the value wdme. Theos.path.exists()
function in line 3 tests if a file exists. Assuming all four files exist, this is the result of executing this
recipe:

% aap
README_solaris README_hpux README_linux README_ freebsd
%

Python Block

When the number of Python lines gets longer, the "@" characters become annoying. It is easier to put the
lines in a block. Example:

:python
Files =~
for name in ["solaris", "hpux”, "linux", "freebsd"]:
fnrame = "README_" + name
if os.path.exists(fname):

18

Chapter 6. Using Python

if Files:
Files = Files + '’
Files = Files + fname
all:
print $Files

This does the same thing as the above recipe, but now using Python commands. As uguthothe
block ends where the indent is equal to or less than that apstieon line.

When using thepython command, make sure you get the assignments right. Up to the "=" character
the Python assignment is the same as the recipe assignment, but what comes after it is different.

Expressions

In many places a Python expression can be used. For examptgoliie function can be used to
expand wildcards:

Source = ‘glob("*.c")"

Python users know that thgob() function returns a list of items. Aap automatically converts the list to

a string, because all Aap variables are strings. A space is inserted in between the items and quotes are
added around items that contain a space.

It is actually a bit dangerous to get the list of source files withgthe() function, because¢

a "test.c"” file that you temporarily used will accidentally be included. It is often better tf list
the source files explicitly.

Why useglob() when you can use wildcards directly? The difference is that the expansion with
glob() takes place immediately, thus $Source will get the expanded value. When using wildcards
directly the expansion is done when using the variable, but that depends on where it is used. For
example, theprint command does not do wildcard expansion:

pattern = *.c
expanded = ‘glob(pattern)’
all:
print pattern $pattern expands into $expanded

When "foo.c" and "bar.c" exist, the output will be:

% aap

pattern *.c expands into foo.c bar.c
%

The following example turns the list of source files into a list of header files:

Source = ‘glob("*.c")’
Header = ‘sufreplace(".c", ".h", Source)’
all:

:print Source is "$Source"

:print Header is "$Header"

19

Chapter 6. Using Python
Running Aap in a directory with "main.c" and "version.c"?

% aap

Source is "version.c main.c"
Header is "version.h main.h"
%

Thesufreplace(function takes three arguments. The first argument is the suffix which is to be replaced.
The middle argument is the replacement suffix. The last argument is the name of a variable that is a list
of names, or a Python expression. In this example each naBwiine ending in ".c" will be changed

to endin".h".

Further Reading

The User manuaChapter 2lhas more information. Documentation about Python can be found on its
web site: http://www.python.org/doc/

20

Chapter 7. Version Control with CVS

CVS is often used for development of Open Source Software. A-A-P provides facilities to obtain the
latest version of an application and for checking in changes you made.

Downloading (Checkout)

For downloading a whole module you only need to specify the location of the CVS server and the name
of the module. Here is an example that obtains the A-A-P Recipe Executive:

CVSROOT = :pserver:anonymous@cvs.a-a-p.sf.net:/cvsroot/a-a-p
all:
fetch {fetch = cvs://$CVSROOT} Exec

Write this recipe as "main.aap" and raap . The directory "Exec" will be created and all files in the
module obtained from the CVS server:

% aap

Aap: CVS checkout for node "Exec"

Aap: cvs -d:pserver:anonymous@cvs.a-a-p.sf.net:/cvsroot/a-a-p checkout 'Exec’
cvs server: Updating Exec

U Exec/Action.py

U Exec/Args.py

[....]
%

If there is a request for a password just hit enter (mostly there is no password).

The:fetch command takes care of obtaining the latest version of the items mentioned as arguments.
Usually the argument is one module, in this example it is "Exec". That CVS needs to be used is specified
with thefetch attribute. This is a kind of URL, starting with "cvs://" and then the CVS root

specification. In the example tl®/SROOVariable was used. This is not required, it just makes the

recipe easier to understand.

If the software has been updated, you can get the latest version by running "aap" again. CVS will take
care of obtaining the changed files.

Note that all this only works when you have the "cvs" command installed. When it cannot be found Aap
will ask you want Aap to install it for you. Whether this works depends on your system.

Getting Past A Firewall

Firewalls may block the use of a CVS connection. Some servers have setup another way to connect, so
that firewalls will not cause problems. This uses port 80, normally used for http connections. Here is the
above example using a different "pserver" address:

CVSROOT = :pserver:anonymous@cvs-pserver.sf.net:80/cvsroot/a-a-p
all:
fetch {fetch = cvs://$CVSROOT} Exec

21

Chapter 7. Version Control with CVS

This doesn’t always work through a proxy though. If you have problems connecting to the CVS server,
try reading the information at this link
(http://sourceforge.net/docman/display_doc.php?docid=768&group_id=1).

Uploading (Checkin)

You are the maintainer of a project and want to distribute your latest changes, so that others can obtain
the software with a recipe as used above. This means you need to checkin your files to the CVS server.
This is done by listing the files that need to be distributed and giving thesmait attribute. Example:

CVSUSER_FOO = johndoe
CVSROOT = :ext:3CVSUSER_FOO@cvs.foo.sf.net:/cvsroot/foo
Files = main.c
common.h
version.c
:attr {commit = cvs://$CVSROOT} $Files

Write this as "cvs.aap" and riaap -f cvs.aap revise . What will happen is:

1. Files that you changed since the last checkin will be checked in to the CVS server.
2. Files that you added to the list of files wittcammit attribute will be added to the CVS module.

3. Files that you removed from the list of files witlcammit attribute will be removed from the CVS
module.

This means that you must take care Hies variable lists exactly those files you want to appear in the
CVS module, nothing more and nothing less. Be careful with using somethingdikdt might find
more files that you intended.

Note: This only works when the CVS module was already setup. Read the CVS documentation on how
to do this. The A-A-P user manual has useful hints as well.

In the example th€VSUSER_FO@ariable is explicitly set, thus this recipe only works for one user.
Better is to move this line to your own default recipe, e.g., "~/.aap/startup/default.aap”. Then the above
recipe does not explicitly contain your user name and can also be used by others.

Once you tested this recipe and it works, you can easily distribute your softwaraagpithf

cvs.aap revise . You don't have to worry about the exact CVS commands to be used. However,

don't use this when you want to checkin only some of the changes you made. And the example does not
work well when others are also changing the same module.

Further Reading

The User manuaChapter 1&has more information about version control altiapter 1%bout using
CVS.

22

Chapter 8. Filetypes and Actions

A-A-P can recognize what the type of a file is, either by looking at the file name or by inspecting the
contents of the file. The filetype can then be used to decide how to perform an action with the file.

A New Type of File

Suppose you are using the "foo" programming language and want to use A-A-P to compile your
programs. Once this is has been setup you can compile "hello.foo" into the "hello" program with a
simple recipe:

:program hello : hello.foo
You need to explain Aap how to deal with "foo" files. This is done with a recipe:

filetype
suffix foo foo

:action compile foo
:sys foocomp $?FOOFLAGS $source -o $target

route foo object
compile

For Unix, write this recipe as "/usr/local/share/aap/startup/foo.aap" or "~/.aap/startup/foo.aap". The
recipes in these "startup" directories are always read when Aap starts up.
Now try it out, using the simple recipe at the top as "main.aap":

% aap

Aap: foocomp hello.foo -o build-FreeBSD4_5_RELEASE/hello.o

Aap: cc -L/usr/local/lib -g -O2 -0 hello build-FreeBSD4_5 RELEASE/hello.o
%

The "foo.aap" recipe does three things:

1. Thefiletype command is used to tell A-A-P to recognize your "hello.foo" file as being a "foo"
file.

2.The:action command is used to specify how the "foocomp" compiler is used to compile a "foo"
program into an object file. The user can set the FOOFLAGS variable to options he wants to use. The
convention is that the option variable is in uppercase, starts with the filetype and ends in "FLAGS".

3.The:route command is used to specify which actions are to be used to turn a "foo" file into an
"object" file.

23

Chapter 8. Filetypes and Actions

Defining a Filetype by Suffix

The filetype command is followed by the line "suffix foo foo". The first word "suffix" means that
recognizing is done by the suffix of the file name (the suffix is what comes after the last dot in the name).
The second word is the suffix and the third word is the type. Quite often the type is equal to the suffix,
but not always. Here are a few more examples of lines used:filéthipe

filetype
suffix fooh foo
suffix bash sh

It is also possible to recognize a file by matching the name with a pattern, checking the contents of the
file or using a Python script. See the user manual.

Defining a Compile Action
The lower half of "foo.aap" specifies the compile action for the "foo" filetype:

:action compile foo
:sys foocomp $source -0 $target

The:action command has two arguments. The first one specifies the kind of action that is being
defined. In this case "compile”. This action is used to make an object file from a source file. The second
argument specifies the type of source file this action is used for, in this case "foo".

Below the:action line the build commands are specified. In this case just one, there could be more.
The:sys command invokes an exteral program, "foocomp", and passes the arguments. In an action
$source is expanded to the source of the action &twlget to the target. These are obtained from the
:do command that invokes the action. Example:

:do compile {target = ‘src2obj("main.foo")’} main.foo

This:do command invokes the compile action, specified with its first argument. The target is specified
as an attribute to the action, the source is the following argument "main.foo". When executitg the
command the filetype of "main.foo" is detected to be "foo", resulting in the compile action for "foo" to
be invoked. In the build command of the act®source ands$target are replaced, resulting in:

:sys foocomp main.foo -0 ‘src2obj("main.foo")

Note that in many casearget is passed implicitly from a dependency and does not appear iddhe
command argument.

Another Use of Filetypes

When building a program you often want to include the date and time when it was built. A simple way of
doing this is creating a source file "version.c" that contains the timestamp. This file needs to be compiled
every time your program is built. Here is an example how this can be done:

1 :program prog : main.c work.c
2

3 :attr prog {filetype = myprog}

24

Chapter 8. Filetypes and Actions

:action build myprog object
version_obj = ‘src2obj("version.c")*
:do compile {target = $version_obj} version.c
:do build {filetype = program} $source $version_obj

o ~NO O A~

The target "prog" is explicitly given a different filetype in line 3. The default filetype for a program is
"program”, here it is set to "myprog". This allows us to specify a different build action for "prog".

Write the recipe as "main.aap"” (without the line numbers) and execute ibagih The first time all the
files will be compiled and linked together. Executiagp again will do nothing. Thus the timestamp
used in "version.c" will not be updated if the files were not changed. If you now make a change in
"main.c" and ruraap you will see that both "main.c" and "version.c" are compiled.

The:acton command in line 5 has three arguments. The first one "build" is the kind of action, like
before. The second argument "myprog" specifies the target filetype, the third one "object" the source
filetype. Thus the template is:

:action kind-of-action target-filetype source-filetype

This order may seem a bit strange. Remember that putting the target left of the source also happens in a
dependency and an assignment.

There are three commands for the build action, lines 6 to 8. The first one assigns the name of the object
file for "version.c" toversion_obj . "version.c" was not included in thprogram command at the top,

it is compiled here explicitly in line 7. This is what makes sure "version.c" is compiled each time "prog"”
is built. The other source files will be compiled with the default rulesdommand.

Finally the:do build command in line 8 invokes the build action to link all the object files together.
Note that the filetype for the build action is explicitly defined to "program”. This is required fordidis
command to use the default action for a program target. Otherwise the action would invoke itself, since
the filetype for $target is "myprog".

For more information about customizing filetype detection and action€lsapter 28

25

Chapter 9. More Than One Recipe

When you are working on a project that is split up in several directories it is convenient to use one recipe
for each directory. There are several ways to split up the work and use a recipe from another recipe.

Children

A large program can be split in several parts. This makes it easy for several persons to work in parallel.
You then need to allow the files in each part to be compiled separately and also want to build the
complete program. A convenient way to do this is putting files in separate directories and creating a
recipe in each directory. The recipe at the top level is called the parent. Here is an example that includes
two recipes in subdirectories, called the children:

1 :child core/main.aap # sets Core_obj

2 :child util/main.aap # sets Util_obj

3

4 :program theprog : core/$*Core_obj util/$*Util_obj

In the first two lines the child recipes are included. These specify how the source files in each directory
are to be compiled and assign the list of object fileSdee_obj andutil_obj . This parent recipe then
defines how the object files are linked together to build the program "theprog".

In line 4 a special mechanism is used. Assume@ha¢_obj has the value "main.c version.c". Then
"core/$*Core_obj" will expand into "core/main.c core/version.c". Thus "core/" is prepended to each item
in Core_obj . This is called rc-style expansion. You can remember it by thinking of the "*" to multiply

the items.

An important thing to notice is that the parent recipe does not need to know what files are present in the
subdirectories. Only the child recipes contain the list of files. Thus when afile is added, only one recipe
needs to be changed. The "core/main.aap"” recipe contains the list of files in the "core" directory:

Source = main.c
version.c

CPPFLAGS += -l../util

_top.Core_obj = ‘src2obj(Source)’

O ~NO O, WN PR

all: $_top.Core_obj

Variables in a child recipe are local to that recipe. TRPFLAGS/ariable that is changed in line 4 will
remain unchanged in the parent recipe and other children. That is desired here, since finding header files
in "../util" is only needed for source files used in this recipe.

TheCore_obj variable we do want to be available in the parent recipe. That is done by prepending the
" _top" scope name. The generic way to use a scope is:

{scopename} . {variablename}

Several scope names are defined, such as"_recipe"” for the current recipe and "_top" for the toplevel
recipe. The full list of scope names can be found in the reference manual, chapter "Recipe Syntax and

26

Chapter 9. More Than One Recipe

Semantics". When a variable is used without a scope name, it is looked up in the local scope and
surrounding scopes. Thus the variables from the parent recipe are also available in the child. But when
assigning to a variable without a scope, it is always set in the local scope only. To make the variable
appear in another scope you must give the scope name.

The value ofCore_obj is set with a Python expression. Tee2o0bj()function takes a list of source file
names and transforms them into object file names. This takes care of changing theSitesén to
prepend $BDIR and change the file suffix to $OBJSUF. It also takes care of using the "var_BDIR"
attribute if it is present.

In the last line is specified what happens when runiiag without arguments in the "core" directory:
The object files are built. There is no specification for how this is done, thus the default rules will be used.

All the files in the child recipe are defined without mentioning the "core" directory. That is because all
parent and child recipes are executed with the current directory set to where the recipe is. Note the files
in Core_obj are passed to the parent recipe, which is in a different directory. That is why the parent
recipe had to prepend "core/" when usidgre_obj . This is so that the child recipe doesn’t need to

know what its directory name is, only the parent recipe contains this directory name.

Sharing Settings

Another mechanism to use a recipe is by including it. This is useful to put common variables and rules in
a recipe that is included by several other recipes. Example:

CPPFLAGS += -DFOOBAR
rule %$OBJISUF : %.foo
:sys foocomp $source -0 $target

This recipe adds something @PFLAGSand defines a rule to turn a ".foo" file into an object file.
Suppose you want to include this recipe in all the recipes in your project. Write the above recipe as
"common.aap" in the top directory of the project. Then in "core/main.aap" and "util/main.aap" put this
command at the top:

sinclude ../common.aap

The:include = command works like the commands in the included recipe were typed instead of the
iinclude command. There is no change of directory, like with#tdld command and the included
recipe uses the same scope.

In the toplevel recipe you need include "common.aap" as well. Suppose you include it in the first line of
the recipe, before thehild commands. The children also include "common.aap". JPRFLAGS

variable would first be appended to in the toplevel recipe, then passed to the child and appended to again.
That is not what is supposed to happen.

To avoid this, add théonce} option to theincludecommand. This means that the recipe is only
included once and not a second time. The child recipes use:

sinclude {once} ../common.aap
And the parent uses:

1 sinclude {once} common.aap
2 :child core/main.aap # sets Core_obj

27

Chapter 9. More Than One Recipe

:child util/main.aap # sets Util_obj

theprog$EXESUF : core/$*Core_obj util/$*Util_obj

3

4

5 all: theprog$EXESUF
6

7

8 :do build $source

You might argue that another way would be to putihelude = command at the top of the parent
recipe, so that the children don’t have to include "common.aap". You could do this, but thenitis no
longer possible to execute a child recipe by itself.

Note that usingincludelike this will always use thetop scope for the variables set in the included
recipe. Be careful that theecipe scope isn’t used in one of the child recipes.

Executing a Recipe

Besideschild and:include there is a third way to use another recigaecute . This command
executes a recipe. This works as if Aap was run as a separate program with this recipe, except that it is
possible to access variables in the recipe that hagieeutecommand. Here is an example:

:program prog : main.c common.c

test:
:execute test.aap test
:print $TestResult

This recipe uses therogram command as we have seen before. This takes care of building the "prog”
program. For testing a separate recipe is used, called "test.aap”. The first argumerdxafciite

command is the recipe name. Further arguments are handled like the argumentsapf tenmand. In

this case the target "test" is used.

The "test.aap"” recipe sets thestResult variable to a message that summarizes the test results. To get
this variable back to the recipe that executed "test.aap” the " _parent" scope is used:

@if all_done:
_parent.TestResult

@else:
_parent.TestResult = Some tests failed!

All tests completed successfully.

It would also be possible to use thwhild command to reach the "test" target in it. The main difference

is that other targets in "test.aap" could interfere with targets in this recipe. For example, "test.aap" could
define a different "prog" target, to compile the program with specific test options. By esimite

we don't need to worry about this. In general, thisld command is useful when splitting up a tree of
dependencies in parts, whilexecute is useful for two tasks that have no common dependencies.

Fetching a Recipe

So far we assumed the included recipes were stored on the local system. It is also possible to obtain them
from elsewhere. The example with children above can be extended like this:

1 Origin = ftp://ftp.foo.org/recipes

28

Chapter 9. More Than One Recipe

sinclude {once} common.aap {fetch = $Origin/common.aap}
:child core/main.aap {fetch = $Origin/core.aap}
:child util/main.aap {fetch = $Origin/util.aap}

all: theprog$EXESUF

theprog$EXESUF : core/$*Core_obj util/$*Util_obj
:do build $source

O 00N Ol WwWN

Thefetch attribute is used to specify the URL where the recipe can be obtained from. This works just
like fetching source files. Notice in the example that the file name in the URL can be different from the
local file name. When Aap reads this recipe and discovers that a child or included recipe does not exist, it
will use thefetch attribute to download it. Théetch attribute can also be used with thsecute

command.

Once a recipe exists locally it will be used, even when the remote version has been updated. If you
explicitly want to get the latest version of the recipes usedaam -R oraap fetch

29

Chapter 10. Commands in a Pipe

A selection of commands can be connected together with a pipe. This means the output of one command
is the input for the next command. It is useful for filtering text from a variable or file and writing the
result in a variable or file.

Changing a timestamp
This example shows how you can change the timestamp in a file. It is done in-place.

all:
print Setting date in foobar.txt.
:cat foobar.txt
| :eval re.sub(’Last Change: .*\n’, 'Last Change: ' + DATESTR + '\n’, stdin)
>! foobar.txt

Lets see how this works:

% cat foobar.txt

This is example text for the A-A-P tutorial.
Last Change: 2002 Feb 29

The useful contents would start here.

% aap

Setting date in foobar.txt.

% cat foobar.txt

This is example text for the A-A-P tutorial.
Last Change: 2002 Oct 21

The useful contents would start here.

%

The last command in the example consists of three parts. First comeattheommand. It reads the
"foobar.txt" file and passes it throught the pipe to the next command. "cat" is short for "concatenate".
This is one of the good-old Unix commands that actually does much more than the name suggests. In
this example nothing is concatenated. Below you will see examples where it does.

The second part of the example is theal command. This is used to read the text coming in through

the pipe and modify it with a Python expression. In this case the expression is a "re.sub()" function call.
This Python function takes three arguments: A pattern, a replacement string and the text to operate on.
All occurences of the pattern in the text are changed to the replacement string. The pattern "Last Change:
An" matches a line with the date that was inserted previously. The replacement string contains
DATESTRwhich is an Aap variable that contains today’s date as a string, e.g., 2002 Oct 19". The text to
operate on istdin . This is the variable that holds the text that is coming in through the pipe.

The third and last part! foobar.txt redirects the output of theval command back to the file
"foobar.txt". Using just >" would cause an error, since the file already exists.

Note that in a Unix shell command this pipe would not work: The "foobar.txt" would be overwritten

before it was read. In Aap this does not happen, the commands in the pipe are executed one by one. That
makes it easier to use, but it does mean the text is kept in memory. Don’t use pipes for a file that is bigger
than half the memory you have available.

30

Chapter 10. Commands in a Pipe

Changing a file in-place has the disadvantage that the normal dependencies don’t work, since there is no
separate source and target file. Often it is better to use a file "foobar.txt.in" as source, change it like in the
example above and write it as a new file. The recipe would be:

foobar.txt: foobar.txt.in
:print Setting date in $target.
:cat $source
| :eval re.sub(’Last Change: .*\n’, 'Last Change: ' + DATESTR + ’\n’, stdin)
>! $target

Creating a file from pieces

Sometimes you need to generate a file from several pieces. Here is an example that concatenates two files
and puts a generated text line in between.

manual.html: body.html footer.html
@import time
:eval time.strftime("%A %d %B %Y", time.localtime(time.time()))
| :print $(It)BR$(gt)Last updated: $stdin$BR
| :cat body.html - footer.html >! S$target

There are quite a few items here that need to be explained. First of all, the "@import time" line. This is a
Python command to load the "time" module. So far we used modules that Aap has already loaded for
you. This one isn’t, and since we use the "time" module in the mext command it needs to be

loaded explicitly.

The Python function "strftime()" formats the date and time in a specified format. See the Python
documentation for the details. In this case the resulting string looks like "Monday 21 October 2002".

The output of theeval command is piped into @rint command. The variabkdin contains the
output of the previous command. Note that "$(It)" is used instead of "$It". The meaning is exactly the
same: the value of the variable. Without the extra parenthesis it would read "$ItBR", which would be
the value of the "ItBR" variable.

The resulting text is:

Last updated: Monday 21 October 2002\n

Note that the first "BR" is the HTML code for a line break, while the "$Br" at the end is the Aap variable
that contains a line break (here displayed as "\n").

Finally, the:cat command concatenates the file "body.html", the output ofdfi¢ command and
the file "footer.html". Thus the "-" stands for where the pipe input is used. The result is redirected to
target , which is "manual.html".

Pipe output in a variable

The generated date in the previous example could be used elsewhere in the recipe. Since we don’t want
to repeat a complicated expression the result oféh@ command should be redirected to a variable,
like this:

@import time

31

Chapter 10. Commands in a Pipe

:eval time.strftime("%A %d %B %Y", time.localtime(time.time()))
| :assign Datestamp

manual.html: body.html footer.html
:print $(It)BR$(gt)Last updated: $Datestamp$Br
| :cat body.html - footer.html >! S$target

The:assign command takes the input from the pipe and puts it in the variable mentioned as its
argument, which is "Datestamp" here. Actually, the same can be done with a normal assignment and a
Python expression in backticks, but we intentionally wanted to show using a pipe here.

Creating a file from scratch

It is also possible to completely generate a file from scratch. Here is an example that generates a C
header file:

1 sinclude config.aap

2 pathdef.c: config.aap

3 :print Creating $target

4 :print >! S$target /* pathdef.c */

5 :print >> $target /* This file is automatically created by main.aap */

6 :print >> $target /* DO NOT EDIT! Change main.aap only. */

7 :print >> S$target $#include "vim.h"

8 :print >> $target char_u *default_vim_dir = (char_u *)"$VIMRCLOC";

9 :print >> $target char_u *all_cflags = (char_u *)"$CC -c -I$srcdir $CFLAGS",

The first:print command displays a message, so that it's clear "pathdef.c" is being generated. The next
line contains >!" to overwrite an existing file. It doesn’t matter if the file already existed or not, it now

only contains the line "/* pathdef.c */". The third and following lines contain=". This will cause each

line to be appended to "pathdef.c".

In the example th&#IMRCLOCandsrcdir variables are defined in the recipe "config.aap". That is why
this file is used as a source in the dependency. Also note the use of "$#" in line 7. Since "#" normally
starts a comment it cannot be used directly here. "$#" is a special item that results in a "#piinthe
output. This is the resulting file:

[* pathdef.c */

[* This file is automatically created by main.aap */

/* DO NOT EDIT! Change main.aap only. */

#include "vim.h"

char_u *default_vim_dir = (char_u *)"/usr/local/share/vim61";
char_u *all_cflags = (char_u *)"cc -c -I. -g -O2";

The list of ">>" redirections is quite verbose. Fortunately there is a shorter way:

1 linclude config.aap

2 pathdef.c: config.aap

3 :print Creating $target

4 text << EOF

5 /* pathdef.c */

6 /* This file is automatically created by main.aap */

32

Chapter 10. Commands in a Pipe

7 /* DO NOT EDIT! Change main.aap only. */

8 $#include "vim.h"

9 char_u *default_vim_dir = (char_u *)"$VIMRCLOC";

10 char_u *all_cflags = (char_u *)"$CC -c -I$srcdir $CFLAGS";
11 EOF

12 print $text >! $target

In line 4 "text<< EOF" is used. This is called a block assignment. The following lines, up to the

matching "EOF" line, are assigned to the variable . You can use something else than "EOF" if you

want to. It must be a word that does not appear inside of the text as a line on its own. White space before
and after the word is ignored.

The indent of the text in the block assignment is removed. The indent of the first line is used, the same
amount of indent is removed from the following lines. Thus if the second line has two more spaces worth
of indent than the first line, it will have an indent of two spaces in the result. Half a tab is replace with
four spaces when necessary (a tab always counts for up to eight spaces).

33

Chapter 11. A Ported Application

When an application already exists but for your system it requires a few tweaks, a port recipe can do the
work. This can also be used for applications that work fine but you want to apply a number of patches or
to add a feature. The recipe can be distributed, so that others can install the application without knowing
the details. This works very much like the FreeBSD ports system.

This chapter is specifically for doing the port. If you are only interested in another kind of building you
might want to skip this chapter.

The Port Recipe

Since A-A-P is prepared for doing all the work, usually you only need to specify the relevant
information, such as where to find the files involved. Here is an example:

©CoOoO~NOOA~WNPRE

W WWWWWWNDNMNDNNNMNNMNNNNRPRERPRPEPRPRPEPRPEPRPRPR
OO, WNPFPOOO~NOUDMNWNPOOONOOGODMWDNPEO

A-A-P port recipe for Vim 6.1 plus a few patches.

RECIPEVERSION =

PORTNAME =
LASTPATCH =
PORTVERSION =
MAINTAINER =

CATEGORIES =
PORTCOMMENT =

1.0

vim
003
6.1.$LASTPATCH
Bram@vim.org

editors
Vim - Vi IMproved, the text editor

PORTDESCR<< EOF

This is the description for the Vim package.

A very nice editor, backwards compatible to Vi.
You can find all info on http://www.vim.org.

EOF

‘recipe {fetch = http://www.a-a-p.org/ports/vim/main.aap}

WRKSRC =
BUILDCMD =
TESTCMD =
INSTALLCMD =
PREFIX =

MASTER_SITES ?=
PATCH_SITES =
DISTFILES =

versionl =
PATCHFILES =

#>>> automatically
do-checksum:
:checksum

vim61

make

make test

make install DESTDIR=$PKGDIR
lusr/local

ftp://ftp.vim.org/pub/vim
ftp://ftp.us.vim.org/pub/vim
$*MASTER_SITES/patches

unix/vim-6.1.tar.bz2

‘range(1, int(LASTPATCH) + 1)
6.1.00$*versionl
inserted by "aap makesum" <<<

$DISTDIR/Vim-6.1.tar.bz2 {md5 = 7fd0f915adc7c0dab89772884268b030}

34

Chapter 11. A Ported Application

37 :checksum $PATCHDISTDIR/6.1.001 {md5 = 97bdbe371953b9d25f006f8b58b53532}
38 :checksum $PATCHDISTDIR/6.1.002 {md5 = f56455248658f019dcf3e2a56a470080}
39 :checksum $PATCHDISTDIR/6.1.003 {md5 = 0e000edba66562473a5f1e9b5b269bbh8}

40 #>>> end <<<
Well, that is the longest example we have had so far. Let's go through it from top to bottom.

1 # A-A-P port recipe for Vim 6.1 plus a few patches.
2 RECIPEVERSION = 1.0

RECIPEVERSIONtells Aap what version of Aap this recipe was written for. If in the future the recipe
format changes, this line causes Aap to interpret it as Aap version 1.0 would do.

4 PORTNAME = vim

SettingPORTNAMID the name of the port is what actually triggers Aap to read this recipe as a port

recipe. It makes the other settings to be used to set up a whole range of targets and build commands. The
result is that you can daap install to install the application, for example. Note tiRRORTNAME

does not include the version number.

5 LASTPATCH = 003

6 PORTVERSION = 6.1.3LASTPATCH

7 MAINTAINER = Bram@vim.org

8

9 CATEGORIES = editors

10 PORTCOMMENT = Vim - Vi IMproved, the text editor

11 PORTDESCR<< EOF
12 This is the description for the Vim package.

13 A very nice editor, backwards compatible to Vi.
14 You can find all info on http://www.vim.org.
15 EOF

In lines 5 to 15 a number of informative items about the port are specified. These are used in various
placesLASTPATCHSs not a standard item, it is used here to only have to define the patchlevel in one
place.

17 recipe {fetch = http://www.a-a-p.org/ports/vim/main.aap}

The:recipe command specifies where to obtain the recipe itself from. We have seen this before,
nothing special here.

19 WRKSRC = vim61
20 BUILDCMD = make
21 TESTCMD = make test

The assignments in lines 19 to 21 specify how building is to be doRKSRG the directory below

which the source files are unpacked. The default is "SPORTNAME-$PORTVERSION". The archive
used for Vim uses "vim61" instead, thus this needs to be specified. The "CMD" variables set the
commands to be used to build the application. The default is to use Aap. Since Vim uses "make" this
needs to be specified.

22 INSTALLCMD = make install DESTDIR=$PKGDIR
23 PREFIX = /usr/local

35

Chapter 11. A Ported Application

Installing a port is done by creating a binary package and installing that package. This makes it possible
to copy the package to another system and install it there without the need to compile from sources.
Lines 22 and 23 specify how to do a "fake install" with Vim. This copies all the files that are to be
installed to a specific directory, so that it is easy to include them in the padkBg€IX specifies below

which directory Vim installs its files.

25 MASTER_SITES ?= ftp://ftp.vim.org/pub/vim
26 ftp://ftp.us.vim.org/pub/vim
27 PATCH_SITES = $*MASTER_SITES/patches

MASTER_SITESandPATCH_SITESspecify the sites where the Vim files can be downloaded from. The
first is for the archives, the second for the patches. Note the use of "$*" in line 27, this causes "/patches"
to be appended to each itemNASTER_SITESnstead of appending it once at the end of the whole list.

29 DISTFILES = unix/vim-6.1.tar.bz2

DISTFILES is set to the name of the archive to download. This is appended to iteMsSMER_SITES
to form the URL.

31 versionl = ‘range(1, int(LASTPATCH) + 1)'
32 PATCHFILES = 6.1.00%*versionl

Lines 32 and 33 specify the list of patch file names. The Python function "range()" is used, this returns a
list of numbers in the specified range (up to and excluding the upper number). Note the user of "int()" to
turn the patch number IBASTPATCHNto an int type, all Aap variables are strings.

for three patch files this could also have been typed, but when the number of patches grows this
mechanism is easier. The example only works up to patch number 009. To make it work for numbers
from 100 up to 999:

versionl = ‘range(1, 10)

version2 = ‘range(10, 100)*

version3 = ‘range(100, int(LASTPATCH) + 1)

PATCHFILES = 6.1.00$*versionl 6.1.0%*version2 6.1.$*version3
34 #>>> automatically inserted by "aap makesum" <<<
35 do-checksum:
36 :checksum $DISTDIR/Vim-6.1.tar.bz2 {md5 = 7fd0f915adc7c0dab89772884268b030}
37 :checksum $PATCHDISTDIR/6.1.001 {md5 = 97bdbe371953b9d25f006f8b58b53532}
38 :checksum $PATCHDISTDIR/6.1.002 {md5 = f56455248658f019dcf3e2a56a470080}
39 :checksum $PATCHDISTDIR/6.1.003 {md5 = 0e000edba66562473a5f1e9b5b269bb8}

40 #>>> end <<<

Finally the "do-checksum" target is defined. This part was not typed, but added to the recipapvith
makesum. This is done by the port recipe maintainer, when he has verified that the files are correct.
When a user later uses the recipe Aap will check that the checksums match, so that problems with
downloading or a cracked distribution file are found and reported.

36

Chapter 11. A Ported Application

Using CVS

The port recipe specifies which source files and patches to download, thus it has to be adjusted for each
version. This is good for a stable release, but when you are releasing a new version every day it is a lot of
work. Another method is possible when the files are available from a CVS server. Adding these lines to
the recipe will do it:

CVSROOT 7= ‘pserver:anonymous@cvs.vim.sf.net:/cvsroot/vim
CVSMODULES = vim
CVSTAG = vim-6-1-$LASTPATCH

The first line specifies the cvsroot to use. This is specific for the cvs progra@MODULES the name

of the module to checkout. Mostly it is just one name, but you can specify several. SpeGH&TAGSs
optional. If it is defined, like here, a specific version of the application is obtained. When it is omitted the
latest version is obtained.

Much more about the port recipe can be foun€hapter 22

37

1. User Manual

Chapter 12. How it all works

How Recipes Are Executed

Executing recipes is a two step process:

1. recipe processing

Read and parse the toplevel recipe, child recipes and included recipes. Commands at the recipe level
are executed. Build commands (commands for dependencies, rules, actions, etc.) are stored.

2. target building

Build each of the specified targets, following dependencies. Build commands are executed.

Generally, one can say that in the first step the specification for the building is read and stored. In the
second step the actual building is done.

In a simple recipe the first step is used to set variables and define dependencies. In the second step the
dependencies are followed and their commands are executed to build the specified target.

:print executed during the first step

targetl : sourcel source2
:print executed during the second step

An exception is when Aap was started to execute a command directly. The recipe processing step will
still be done, but instead of building a target the specified command is executed. Example, using the
recipe above:

%aap -c ":print $BDIR’
executed during the first step
build-FreeBSD4_5 RELEASE
%

Common Recipe Structure

A recipe used for building an application often has these parts:

. global settings, include recipes with project and/or user settings
. automatic configuration
. specify variants (e.g., debug/release)

. build rules and actions

ga b W N P

. explicit dependencies

39

Chapter 12. How it all works

6. high level build commands:program :dll, etc.)

You are free to use this structure or something else, of course. This is an explanation that you can use as
a base. Many times you will be able to use this structure as a starting point and make small modifications
where it is needed.

Now let us look into each part in more detail.

1. global settings, include recipes with project and/or user settings

When the recipe is part of a project, it's often useful to move settings (and rules) that apply to the
whole project to one file. Then use theclude command in every recipe that can be used to build
something.

User preferences (e.g. configuration choices) should be in a separate file that the user edits (using a
template).

2. automatic configuration

Find out properties of the system and handle user preferences. This may result in building the
application in a different way. Seéghapter 24

3. specify variants

Usually debug and release, but can include many more choices (type of GUI, small or big builds,
etc.). This changes the value®DIR. SeeChapter 14

4. build rules and actions

Rules that define dependencies and build commands that apply to several files, definadewith
commands. Actions can be defined for what is not included in the default actions or to overrule the
defaults actions to do a different way of building.

5. explicit dependencies

Dependencies and build commands that apply to specific files. Use these where the automatic
dependency checking doesn’t work and for exceptions.

6. high level build commands

:;program , :dll , etc. can be used for standard programs, libraries, etc. This comes last, so that
explicitly defined dependencies for building some of the items can be used.

For larger projects sections can be moved to other recipes. How you want to do this depends on whether
these sub-recipes need to be executed by themselves and who is going to maintain each recipe. More
about that below.

40

Chapter 12. How it all works

Building A Target In The First Step

Since commands at the recipe level are executed in the first step, some building may already be done.
Especially theupdate command gives you a powerful mechanism. This means you can already build a
target halfway the first step. Note that only dependencies that have already been encountered will be used
then.

A good use for theupdate command at the recipe level is to generate a recipe that you want to include.
Useful for automatic configuration. You would do something like this:

config.aap : config.aap.in
:print executing the configuration script...
:sys ./conf.sh < $source > Starget

:update config.aap
sinclude config.aap

First a dependency is specified with build commands for the included recipe. In this case the
"config.aap.in” file is used as a template. The commapdhte config.aap invokes building
"config.aap". If it is outdated (config.aap.in was changed since config.aap was last build) the build
commands are executed. If "config.aap” is up-to-date nothing happens. Thigicltiie

config.aap includes the up-to-date "config.aap” recipe.

Nesting The Steps

In the second step commands of dependencies are executed. One of these commandsxeayee.

This means another recipe is read and targets are build. These are again the first and second step
mentioned before, but now nested inside the second step. Here is an example that executes a recipe when
"docfile.html" is to be build:

docfile.html :
:execute docs/main.aap $target

This construction is useful when you do not want to read the other recipe in the first step. Either because
it is a large recipe that is not always needed, because the recipe does not always exist, or because the
recipe must first be build by other commands. Here is an example of using a depencency on a recipe:

docfile.html : docs/main.aap
:execute docs/main.aap $target

docs/main.aap: docs/main.aap.in
:cd docs
:sys ./conf.sh < main.aap.in > main.aap

The:execute command can also be used at the recipe level. This means another recipe is executed
during the first step. A good example for this is building an application in different variants:

build the GTK version
:execute main.aap Gui=GTK myprog
‘move myprog myprog-GTK

build the Motif version

41

Chapter 12. How it all works

:execute main.aap Gui=Motif myprog
‘move myprog myprog-Motif

Using Multiple Recipes

There are many ways to split up a project into multiple recipes. If you are building one application, you
mostly build the whole application, using a toplevel recipe. This recipe specifies the configuration,
specifies variants and sets variables for choices. Separate recipes are used to handle specific tasks. For
example, you can move related sources to a sub-directory and put a recipe in that directory to build those
sources. For this situation you use tbhild command.

When a project gets bigger, and especially when working together with several people, you may want to
be able to split the project up in smaller pieces, which each can be build separately. To avoid replicating
commands, you should put the configuration, variants and setting variables in a separate recipe. Each
recipe can use théncludecommand to use this recipe. You need to take care that the recipe is not
included twice, because commands likeutegive an error when repeated and appending to variables
must only be done once. Aap will read a recipe only the first time it is included when you add the

{once} argument to theincludecommand.

Recipe Execution Details

The two-step processing of recipes is part of all the work that Aap does. There are a few other steps. This
is what happens when Aap is run:

1. Read the startup recipes, these define default rules and variables. These recipes are used:

default.aap from the distribution
all recipes matchingusr/local/share/aap/startup/ * .aap
all recipes matching/.aap/startup/ * .aap

2. Recipe processing: Read the recipgin.aap or the one specified with the "-f* argument and check
for obvious errors. Then execute the toplevel items in the recipe. Dependencies and rules are stored.
Also read included and child recipes and execute the toplevel items in them.

3. Apply the clever stuff to add missing dependencies and rules. This adds a "clean" rule only if the
recipe didn’t specify one, for example.

4. Target building. The first of the following that exists is used:
targets specified on the command line
items specified withprogram :dll and:lib
the "all" target

5.1f the "finally” target is specified, execute its build commands. Each recipe can have its own "finally"
target, they are all executed.

Use Of Variables

Variables with uppercase letters are generally used to pass choices and options to actions. For example,

42

Chapter 12. How it all works

$CC is the name of the C compiler and $CFLAGS optional arguments for the C compiler. The list of
predefined variables is in the reference mamesé

To avoid clashing with an existing or future variable that is defined by Aap, use one or more lower case
letters or prepend "MY". Examples:

$n
$sources
$FooFlags
$MYPROG

Also be careful with chosing a name for a user scope, it must be different from all variables used in
recipes! Prepending "s_" is recommended. Examples:

$s_debug.CFLAGS
$s_ovr.msg

Special Characters

Some characters in expressions have a special meaning. And a commapdnitk@so handles a few
arguments in a special way. This table gives an overview of which characters you need to watch out for
when using theprint command:

Table 12-1. Special characters in the ":print* command

:print argument resulting character
$($) $
$() * (backtick)
$(#) #
$(>) >
$(<) <
$(1) I
Example:

all:

print tie $(#)2 $()green$() $(|) price: $($) 13 $(<) incl vat $(>)

Write this in the file "try.aap”. Executing it results in:
% aap -f try.aap

tie #2 ‘green’ | price: $ 1X incl vat >
%

Line Syntax

Aap parses the recipe into a sequence of lines. A line is a sequence of characters terminated by a

43

Chapter 12. How it all works

newline. You can escape the newline with a backslash to continue a logical line over more than one
physical line, as follows:

One line

A longer line \

that continues \

over three physical lines.

A WNPE

You can always use backslash continuations to continue lines in Aap. Indentation does not matter.

In many constructions, Aap also supports Python-style line continuations, where a line is continued by
increasing the indentation of subsequent physical lines. The above example would look different with
Python-style continuation:

1 One line

2 A longer line

3 that continues

4 over three physical lines.

As you can see, the "block" of lines with an increased amount of indentation is considered to belong to
the line above it.

Python-style line continuations are supported in all Aap constructions except when the command cannot
be recognized if the linebreak comes early. For example, in dependencies the colon separating the targets
from the sources cannot be in a continuation line. This does not work:

myprog
. mysource
:print This Does Not Work!

Itis also not possible to split a dependency by indent when it does not have build commands:

myprog -

mysource

this = Does Not Work
You must use a backslash in this situation:

myprog : \

mysource
this = OK

44

Chapter 13. Dependencies, Rules and Actions

Build Commands

There are several methods to specify build commands to update a target:

1. A dependency

This is more or less the same as how this is used in a Makefile: One or more targets, a colon and any
number of sources. This specifies that the target(s) depends on the source(s). When build commands
are given these are the commands to build the target(s) from the source(s). Without build commands
the dependency is only used to check if the target is outdated and needs to be build.

2.Arule

Specified with arule command. A "%" in the target(s) and source(s) stands for any string. This is
used to specify a dependency that is to be used for files that match the pattern.

3. An action

Specified with aaction command. Unlike dependencies and rules an action does not specify a
build dependency. It must be invoked by other build commands withithecommand.

Nearly all recipe commands can be used in the build commands. But these are not allowed, they can only
be used at the recipe level:

a dependency specification
crule
route
:totype
:clearrules
:delrule
:program
dll

lib

recipe
variant

In short: all commands that define dependencies cannot be used in build commands. But don't forget you
can useexecute to do just about anything.

The Production Commands

The commandgprogram :lib, :dll and:ltlib are calledoroduction commandsecause they explicitly

state what things Aap should produce and what sources are involved. Everything the production
commands can do, can be done by hand with dependencies as well, but the automation the production
commands provide is quite useful. This section discusses how the production commands can be used and

45

Chapter 13. Dependencies, Rules and Actions

the variables that affect them.

The form of each of the production commandsésmmand targets : sources . Itis unusual to

have more than one target, since both targets would be built from the same sources, but it is allowed. The
list of sources should list the actual, original sources, i.e. only files that are actually written by the
programmer and that exist on disk. It is these sources that will be packaged together for distributing the
program or library in source form.

Each production command transforms all of the sources into objects using compile actions. The sources
are transformed into object files of a particular type — e.qg. libraries use files with type "libobject". Once
all of the sources have been compiled, a build action is invoked to turn the object files into the target. The
table below lists the production commands and the actions used.

Some of the production commands can use different programs to produce the final product, depending on
settings in the recipe. In particular, you may need to chose to link a program with the compiler or

through libtool, depending on whether your program links to any libtool libraries or not. The alternatives
are listed in the table below as well. To select an alternative form to build the final product, set the

filetype of the target to a specific value, e.g.

:program myProgram { filetype=Itprogram } : source.c

This example uses throgram alternative build command to build the program "myProgram.”

Command Object Type Build Command Build Alternatives
:program object build (normal)
Uses the C

compiler to link all
the objects into a
program. Uses
$LIBS and
$LDFLAGS.

[tprogram

Uses libtool to
link all the objects
into a program.
Uses $LIBS and
$LDFLAGS, but
also adds $LTLIBS
and $LT_RPATH if
defined.

lib libobject buildlib (normal) Uses thar
utility to link all the
objects into a static
library. Uses
$ARFLAGS.

46

Chapter 13. Dependencies, Rules and Actions

Command Object Type Build Command Build Alternatives

dll dllobject builddll (normal) Uses the C
compiler to link the
objects into a dynamic
(shared) library. The
object files are different
from regular library
objects, and use a
different extension. Uses
$SHLINK, and
$LDFLAGS, as well as
$SHLINKFLAGS.

:Itlib Itobject buildltlib (normal) Uses thébtool
utility to link the objects
together. Uses
$LDFLAGS.

In case you do want to have Aap figure out how to turn source files in to objects and then combine them
into a target, but the target is not one of the types mentioned above, you can yz®tlueecommand.

Rules And Dependencies

When a target is to be build Aap first searches for an explicit dependency with build commands that
produces the target. This dependency may come from a high level build command sudyesm
When such a dependency is not found then the rules definedrwighare checked:

1. All the matching rules without commands are used, but only if the source already exists. Thus this
cannot be used to depend on a file that is still to be created.

2. One rule with commands will be selected, in this order of preference:

A rule for which the sources exist. .] . .)
A rule for which one of the sources does not exist and was not defined with the {sourceexists} option.

If there are multiple matches, the rule with the longest pattern is used. Thus if you have these two rules:

crule test/%.html : test/%.in
:do something

rule %.html @ %.in
:do something-else

The first one will be used for a file "test/foo.html", the second one for a file "./foo.html". If there are
two with an equally long pattern, this is an error.

TRICK: When the source and target in a rule are equal, it is skipped. This avoids that a rule like this
becomes cyclic:

rule %.jpg : path/%.jpg
:copy $source $target

47

Chapter 13. Dependencies, Rules and Actions

Multiple targets

When a dependency with build commands has more than one target, this means that the build commands
will produce all these targets. This makes it possible to specify build commands that produce several files
at the same time. Here is an example that compiles a file and at the same time produces a documentation
file:

foo.o foo.html : foo.src
:sys srcit $source -0 $(target[0]) --html $(target[1])

People used to "make" must be careful, they might expect the build commands to be executed once for
each target. Aap doesn't work that way, because the above example would be impossible. To run
commands on each target this must be explicitly specified. Example:

dirl dir2 dir3 :
@for item in target_list:
:mkdir $item

The variable "target_list" is a Python list of the target items. Another such variable is "source_list", it is
the list of source files (this excludes virtual items; "depend_list" also has the virtual items). An extreme
example of executing build commands for each combination of sources and targets:

$OutputFiles : $InputFiles
@for trg in target_list:

:print start of file >! $trg
@for src in source_list:
:sys foofilter -D$trg $src >> $trg

When multiple targets are used and there are no build commands, this works as if each target depends on
the list of sources. Thus this dependency:

t1 t2 : sl s2 s3

Is equivalent to:

t1 : s1 s2 s3
12 : s1 s2 s3

Thus when t1 is outdated to s1, s2 or s3, this has no consequence for t2.

Automatic dependency checking

When a source file includes other files, the targets that depend on the source file also depend on the
included files. Thus when "foo.c" includes "foo.h" and "foo.h" is changed, the build commands to
produce "foo.0" from "foo.c" must be executed, even though "foo.c" itself didn’t change.

Aap detects these implied dependencies automatically for the types it knows about. Currently that is C
and C++. Either by using gcc or a Python function the "#include" statements are found in the source
code and turned into a dependency without build commands.

48

Chapter 13. Dependencies, Rules and Actions

This works recursively. Thus when "foo.c" includes "foo.h" and "foo.h" includes "common.h", the
dependency will look like this:

foo.c : foo.h common.h

For other types of files than C and C++ you can add your own dependency checker. For example, this is
how to define a checker for the "tt" filetype:

:action depend tt
:sys tt_checker $source > S$target

The "tt_checker" command reads the file "$source" and writes a dependency line in the file "$target".
This is a dependency like it is used in a recipe. In a Makefile this has the same syntax, thus tools that
produce dependencies for "make" will work. Here is an example:

foo.o : foo.tt foo.hh include/common.hh
This is interpreted as a dependency on "foo.hh" and "include/common.hh". Note that "foo.0" and "foo.tt"
are ignored. Tools designed for "make" produce these but they are irrelevant for Aap.

Since the build commands for ":action depend" are ordinary build commands, you can use Python
commands, system commands or a mix of both to do the dependency checking.

More about customizing dependency checkin@apter 29

Attributes Overruling Variables

Most variables like $CFLAGS and $BDIR are used for all source files. Sometimes it is useful to use a
different value for a group of files. This is done with an attribute that starts with "var_". What follows is
the name of the variable to be overruled. Thus attribute "var_XYZ" overrules variable "XYZ".

The overruling is done for:

dependencies

rules
actions

The attributes of all the sources are used. In case the same attribute is used twice, the last one wins.

Another method is to use an "add_" attribute. This works like "var_", but instead of overruling the
variable value it is appended. This is useful for variables that are a list of items, such as $DEFINE.
Example:

:attr thefile.c {add_DEFINE = -DEXTRA=yes}

Another method is to define a scope name. This scope is then used to find variables before searching
other scopes, but after using the local scope. For example, to specify that the "s_opt" scope is to be used
when compiling "filter.c™:

OPTIMIZE = 0O
DEBUG = yes
:program myprog : main.c filter.c version.c

49

Chapter 13. Dependencies, Rules and Actions

:attr {scope = s_opt} filter.c
s_opt.OPTIMIZE = 4
s_opt.DEBUG = no

Note that you can set the values of the variables in the user scope after adding the scope attribute to
"filter.c".

Virtual Targets

A virtual target is a target that is not an actual file. A Virtual target is used to trigger build commands
without creating a file with the name of the target. Common virtual targets are "clean”, "all", "publish”,
etc.

When a target is virtual it is always built. Aap does not remember if it was already done a previous time.
However, it is only build once for an invocation of Aap. Example:

clean:
del {r{f} temp/*

To remember the signatures for a virtual target use the "remember" attribute:

version {virtual}{remember} : version.txt.in
:print $Version | :cat - $source >! version.txt

Now "aap version" will only execute therint command if version.txt.in has changed since the last time
this was done.

Using {remember} for one of the known virtual targets (e.qg., "all" or "fetch") is unusual, except for
"publish”.

When using {remember} for a virtual target without a dependency, it will only be built once. This can be
used to remember the date of the first invocation.

all: firsttime
firsttime {virtual}{remember}:
:print First build on $DATESTR > firstbuild.txt

The difference with a direct dependency on "firstbuild.txt" is that when this file is deleted, it won't be
built again.

Source Path

The sources for a dependency are searched for in the directories specified with $SRCPATH. The default
is ". $BDIR", which means that the sources are searched for in the current directory and in the build
directory. The current directory usually is the directory in which the recipe is located, tditammand

may change this.

The "srcpath” attribute overrules using $SRCPATH for an item. Example:

:attr bar.c {srcpath = ~/src/lib}

50

Chapter 13. Dependencies, Rules and Actions

To avoid using $SRCPATH for a source, so that it is only found in the current directory, make the
"srcpath” attribute empty:

foo.o : src/foo.c {srcpath=}

When setting $SRCPATH to include the value of other variables, you may want to use "$=", so that the
value of the variable is not expanded right away but when $SRCPATH is used. This is especially
important when appending to $SRCPATH beforeariantcommand, since it changes $BDIR. Example:

SRCPATH $+= include

Warning: Using the search path means that the first encountered file will be used. When old files are
lying around the wrong file may be picked up. Use the full path to avoid this.

Depending On A Directory
When a target depends on the existence of a directory, it can be specified this way:

foodir/foo : foodir {directory}
:print >$target this is foo

The directory will be created if it doesn’t exist. The normal mode will be used (0777 with umask
applied). When a different mode is required specify it with an octal value: {directory = 0700}. The
number must start with a zero.

Build Command Signature

A special kind of signature is used to check if the build commands have changed. An example:

foo.o : {buildcheck = $CFLAGS} foo.c
:sys $CC $CFLAGS -c $source -0 $target

This defines a check for the value of $CFLAGS. When this value changes, the target is considered
outdated. When something else in the build command changes, e.g., $CC, this does not cause the target
to become outdated.

The default buildcheck is made from the build commands themselves. This is with variables expanded
before the commands have been executed. Thus when one of the commands is ":sys $CC $CFLAGS
$source" and $CC or $CFLAGS changes, the buildcheck signature changedo€tbenmands are also
expanded into the commands for the action specified. However, this only works when the action and
filetype can be estimated. The action must be specified plain, not with a variable, and the filetype used is
the first of:

1. a filetype attribute specified after action
2.if the first argument doesn’t contain a "$", the filetype of this argument

3. the filetype of the first source argument of the dependency.

51

Chapter 13. Dependencies, Rules and Actions

To add something to the default check for the build commands the $commands variable can be used.
Example:

Version = 1.4
foo.txt : {buildcheck = $commands $Version}
:del {force} $target
print >$target this is $target
:print >>$target version number: $Version

If you now change the value of $Version, change one ofphi@at commands or add one, "foo.txt" will
be rebuilt.

To simplify this, $xcommands can be used to check the build commands after expanding variables, thus
you don’t need to specify $\Version:

foo.txt : {buildcheck = $xcommands}
However, this only works when all $VAR in the commands can be expanded and variables used in
Python commands are not expanded.

To avoid checking the build commands, use an empty buildcheck. This is useful when you only want the
target to exist and don't care about the command used to create it:

objects : {buildcheck = }
print "empty" > objects

Sometimes you might change the build commands in a recipe, which would normally mean the target
should be updated, but you are sure that this isn’t necessary and want to avoid executing the build
commands. You can tell Aap to ignore the buildcheck once with-tantentsoption.

52

Chapter 14. Variants

You might first want to read thiutorial for a few examples of using variants.

Here is an example how build variants can be specified. This will be used to explain how it works.

:variant Opt
some
OPTIMIZE = 2
much
OPTIMIZE = 6
*
OPTIMIZE = 1

"Opt" is the name of a variable. It is used to select one of the variants. Each possible value is listed in the
following line and further lines with the same indent. In the example these are "some" and "much". "*" is
used to accept any value, it must be the last one. The first value mentioned is the default when the
variable isn't set.

You can now start Aap with various arguments to specify the kind of optimizing you want to use:
aap Opt=some will set OPTIMIZE to 2
aap Opt=much will set OPTIMIZE to 6

aap Opt=other will set OPTIMIZE to 1
aap will set OPTIMIZE to 2

Note that when "Opt" is not given a value the first entry is used, resultiagPifiIMIZE being set to 2.
But when it is set to a value that isn't mentioned the last entry "*" is used.

The BDIR Variable

The$BDIR variable will be adjusted for the variant used. CAREFUL: this means that $8DtR
before:variantcommands will use a different value, that might not always be what you want.

Inside theivariantcommand the value &fBDIR has already been adjusted.

When a target that is being build starts wiBDIR and$BDIR doesn't exist, it is created. (Actually, this
happens when an item in the path is "build" or starts with "build-".

$BDIR is relative to the recipe. When using ":child dir/main.aap" the child recipe will use a different
build directorydir/$BDIR . Note that when building the same source file twice from recipes that are in
different directories, you will get two results. Best is to always build a target from the same recipe (that
makes it easier to understand the recipe anyway).

Compile only when needed

This continues the last example of thutorial.

We happen to know that the main.c file does not depend on the GUI used. With the recipe above it will
nevertheless be compiled again for every GUI version. Although this is a small thing in this example, in a
bigger project it becomes more important to skip compilation when it is not needed. Here is the modified
recipe:

53

Chapter 14. Variants

1 Source = main.c version.c gui.c
2

3 :variant Build

4 release

5 OPTIMIZE = 4

6 Target = myprog
7 debug

8 DEBUG = yes

9 Target = myprogd
10

11 :attr {var_DEFINE = $DEFINE} {var_BDIR = $BDIR} main.c
12

13 Gui ?= motif

14 :variant Gui

15 console

16 motif

17 Source += motif.c
18 gtk

19 Source += gtk.c
20

21 DEFINE += -DGUI=$Gui

22

23 :program $Target : $Source

The only new line is line 11. The "main.c" file is given two extra attributes: DEFINE and

var_BDIR . What happens is that when "main.c" is being build, Aap will check for attributes of this
source file that start with "var_". The values will be used to set variables with the following name to the
value of the attribute. ThUSBEFINE gets the value ofar_DEFINE . This means that the variable is
overruled by the attribute while building "main.c".

Thevar_BDIR attribute is set to "$BDIR" before the secomdriant command. It does not yet have
the selected GUI appended there. The list of directories used is now:

directory contains files
build-SYS-release main
build-SYS-debug main
build-SYS-release-console version, gui
build-SYS-debug-console version, gui
build-SY S-release-motif version, gui, motif
build-SY S-debug-motif version, gui, motif
build-SYS-release-gtk version, gui, gtk
build-SYS-debug-gtk version, gui, gtk

Building multiple variants at once

If you want to build all the variants that are possible, use a few lines of Python code. Here is an example:

54

Chapter 14. Variants

1 variant license

2 trial

3 DEFINE += -DTRIAL

4 demo

5 DEFINE += -DDEMO

6 full

7 DEFINE += -DFULL

8

9 :variant language

10 chinese

11 DEFINE += -DCHINESE

12 bulgarian

13 DEFINE += -DBULGARIAN

14 *

15 DEFINE += -DENGLISH

16

17 build:

18 :print Building with $license license for language $language.
19 :print DEFINE=$DEFINE

10

21 alk

22 @for a in [trial’, 'demo’, 'full’]: #license
23 @ for ¢ in [chinese’, ’bulgarian’, 'english’]: #language
24 :execute main.aap build license=$a language=%c

Invoking Aap without arguments builds the "all" target, which loops over all possible variants and
invokes theexecutecommand with the "build” target. The reason to use the "build" target is that without
it the "all" target would be built again and result in an endless loop.

This is the resulting output:

Building with trial license for language chinese.
DEFINE=-DTRIAL -DCHINESE

Building with trial license for language bulgarian.
DEFINE=-DTRIAL -DBULGARIAN

Building with trial license for language english.
DEFINE=-DTRIAL -DENGLISH

Building with demo license for language chinese.
DEFINE=-DDEMO -DCHINESE

Building with demo license for language bulgarian.
DEFINE=-DDEMO -DBULGARIAN

Building with demo license for language english.
DEFINE=-DDEMO -DENGLISH

Building with full license for language chinese.
DEFINE=-DFULL -DCHINESE

Building with full license for language bulgarian.
DEFINE=-DFULL -DBULGARIAN

Building with full license for language english.
DEFINE=-DFULL -DENGLISH

55

Chapter 15. Publishing

Publishing means distributing the files of your project. This is a generic mechanism. You can use it to
maintain a web site or to release a new version of your application.

The most straightforward way to publish a file is with theblish command:
:publish file ...
This uses the "publish" attribute on each of the files. When the "publish" attribute is missing the

"commit" attribute is used. If both are missing this is an error.

When a file didn’t change since the last time it was published, it won’t be published again. This works
with signatures, like building a target. The remote file is the target in this case. But Aap won't read the
remote file to compute the signature, it will remember the signature from when the file was last uploaded
(otherwise checking for outdated files would be slow).

To publish all files with a "publish” attribute start Aap like this:
aap publish
If the "publish’ target is defined explicitly it will be executed. Otherwise, all files with the "publish”

attribute are given to thgpublishcommand, just like using th@ublishallcommand.

The "publish" attribute may consist of several items. Publishing will use all these items. This means a file
can be distributed to several sites at once. This is unlike fetching, which stops as soon as the file could be
obtained from one of the items.

When publishing fails for one of the sites, e.g., because the server is down, this is remembered. When
you publish again, uploading is done only for that site. The destinations for which pusblishing worked
will be skipped then.

Using Secure Copy

Uploading files requires write access to the server. There are several methods for this, but some have the
disadvantage that your password is sent as normal text over the internet. Or someone in between can
change the files that you send out. There is one that provides sufficient security: scp or secure copy.

To publish afile to a server through secure copy use a URL in this form:
:publish file {publish = scp://myname@the.server.com/dir/file}
"myname" is your login name on the server "the.server.com". The "file" will be written there as "dir/file",

relative to your login directory.

This requires the "scp" command, which is not a standard item. If it does not appear to exist then Aap
will offer you to install it for you. If the automatic mechanism fails you will have to install it yourself.
You might also want to do this if you have specific preferences for how the scp command is to be
installed (versions of scp exist with different kinds of encryption).

To avoid having to type a password each time you need to use public keys. For MS-Windows you can
find information here:

56

Chapter 15. Publishing

http://the.earth.li/~sgtatham/putty/0.53b/htmldoc/Chapter8.html
(http://the.earth.li/~sgtatham/putty/0.53b/htmldoc/Chapter8.html)

This is for the PUTTY version of scp, which is what Aap installs for you if you let it. For Unixitgn
ssh-keygen . Use "SSH protocol version 2" if possible.

You can specify the command to be executed withid@Pvariable, se¢he reference manudtxample:

SCP = scp -i c:/private/keyfile

Using Another Method

Using "rsync" has an advantage if you have files with only a few changes. The rsync program will only
transfer the differences. This adds a bit of overhead to find out what changed, thus it's a bit slower when
copying whole files.

Aap uses the same secure channel as with "scp" by default. This can be changed $#BtReE
variable, se¢he reference manual

If your server does not support "scp”, you might want to use "rcp”. However, this is insecure, information
is transferred unencoded over the internet and making a connection is not secure. Only use this when
"scp" is not possible.

Using "rcp" means changing the "scp://" part of the URL to "rcp://". The $RCP variable holds the name
of the command, sebe reference manual

You can also use "ftp". Some web servers require this, even though ftp sends your password as plain text
over the internet, thus it is insecure. Aap uses the Python ftp library, thus an external command is not
needed and there is no variable to specify the command.

Changing A Url
When you switch to another server you need to change the "publish" attribute. The next time you invoke
Aap for publishing it will automatically upload all the files to the new server.
If you didn’t actually change to another server, but the URL used for the server changed, invoke Aap
once with the "--contents" argument:

aap publish --contents

This will cause only files that changed to be published. It avoids that all the files with a changed
"publish” attribute are published again. It will still upload files that you changed since the last upload and
newly added files. But be careful: files that you once uploaded, deleted from the list of files and now
added will NOT be uploaded!

Distributing Generated Files

When publishing a new version of an application, you might want to include a number of generated files.
This reduces the number of tools someone needs to use when installing the application. For example, the
"configure” script that "autoconf" produces from "configure.in" can be included.

57

Chapter 15. Publishing

To avoid these generated results to be generated again when the user runs aap, explicitly specify a
signature file to be used and distribute this signature file together with the generated files. For example,
suppose you have a directory with these files you created:

main.aap
prog.c

Additionally there is the file "version.c" that is generated by the "main.aap" recipe. It contains the date of
last modification. To avoid it being generated again, include the "mysign" file in the distribution. The
files to be distributed are:

mysign
main.aap
prog.c
version.c

In the "main.aap" recipe the "signfile" attribute is used for the dependency that generates version.c:

version.c {signfile = mysign} : prog.c
:print char *timestamp = "$TIMESTR"; >! $target

The result is that "version.c" will only be generated when "prog.c" has changed. When the "signfile"
attribute would not have been used, "version.c" would have been generated after unpacking the
distributed files.

Copying All Files At Once

The "finally" target is always executed after the other targets have been successfully built. Here is an
example that uses the "finally" target to copy all files that need to be uploaded with one command.

Source = *.html
all: remote/$*Source {virtual} {remember}

CFile =
rule remote/% : %
_recipe.CFile += $source

finally:
@if _recipe.CFile:
:copy $_recipe.CFile ftp://my.org/www

Warning: When thecopycommand fails, aap doesn’t know the targets were not made properly and
won't do it again next time. Using the "publish" attribute works better.

58

Chapter 16. Fetching

Fetching And Updating

A convention about using the "update" and "fetch" targets makes it easy for users to know how to use a
recipe. The main recipe for a project should be able to be used in three ways:

1. Without specifying a target.

This should build the program in the usual way. Files with a "fetch" attribute are obtained when they
are missing.

2. With the "fetch" target.

This should obtain the latest version of all the files for the program, without building the program.

3. With the "update" target.

This should fetch all the files for the program and then build it. It's like the previous two ways
combined.

Here is an example of a recipe that works this way:

Status = status.txt

Source = main.c version.c
Header = common.h
Target = myprog

$Target : $Source $Status
:cat $Status
:do build $source

specify where to fetch the files from
:attr {fetch = cvs://:pserver:anonymous@cvs.myproject.sf.net:/cvsroot/myproject} $Source $Header
:attr {fetch = ftp://ftp.myproject.org/pub/%file%} $Status

Note that the header file "common.h" is given a "fetch" attribute, but it is not specified in the dependency.
The automatic dependency checking will notice the file is used and fetch it when it's missing.

When using files that include a version number in the file name, fetching isn’t needed, since these files
will never change. To reduce the overhead caused by checking for changes, give these files a "constant"”
attribute (with a non-empty non-zero value). Example:

PATCH = patches/fix-1.034.diff {fetch = $FTPDIR} {constant}

To fetch all files that have a "fetch" attribute start Aap with this command:

59

Chapter 16. Fetching
aap fetch

When the "fetch" target is not specified in the recipe or its children, it is automatically generated. Its
build commands will fetch all nodes with the "fetch" attribute, except ones with a "constant” attribute set
(non-empty non-zero). To do the same manually:

fetch:
:fetch $Source $Header $Status

Or use thefetchall command.

NOTE: When any child recipe defines a "fetch" target no automatic fetching is done for any of the
recipes. This may not be what you expect.

When there is no "update" target it is automatically generated. It will invoke the "fetch" target and the
default target(s) of the recipe. To do something similar manually:

update: fetch $Target

The Fetch Attribute

The "fetch" attribute is used to specify a list of locations where the file can be fetched from. The word at
the start defines the method used to fetch the file:

ftp from ftp server

http from http (www) server

scp secure copy

rcp remote copy (aka insecure copy)

rsync remote sync

file local file system

CVS from CVS repository For a module that was already checked out the part after

"cvs:/I" may be empty, CVS will then use the same server (CVSROOT) as when
the checkout was done.

other user defined

These kinds of locations can be used:

ftp://ftp.server.name//full/path/file

ftp://ftp.server.name/relative/path/file

http://www.server.name/path/file

scp://host.name/path:path/file

rcp://host.name/path:path/file

rsync://host.name/path:path/file

cvs://[METHOD:[[USER][: PASSWORD]@]HOSTNAME[:[PORT]]/path/to/repository
file:~user/dirffile

file:/lletc/fstab

For a local file there are two possibilities: using "file://* or "file:". They both have the same meaning.
"file:" is preferred, because the double slash is usually used before a machine name:

60

Chapter 16. Fetching

"method://machine/path”. A file is always local, thus leaving out "//machine" is the logical thing to do.

Note that for an absolute path, relative to the root of the file system, you use either one or three slashes,
but not two. Thus "file:/etc/fstab" and "file:///etc/fstab" are the file "/etc/fstab”. A relative path has two or
no slashes, but keep in mind that moving the recipe will make it invalid. You can also use “file:~/file" or
"file://~/file" for a file in your own home directory, and "file:~jan/file" or “file://~jan/file" for a file in the
home directory of user "jan".

In the "fetch" attribute the string "%file%" can be used where the path of the local target is to be inserted.
This is useful when several files have a common directory. Similarly "%basename%" can be used when
the last item in the path is to be used. This removes the path from the local file name, thus can be used
when the remote directory is called differently and only the file name is the same. Examples:

:attr {fetch = ftp://ftp.foo.org/pub/foo/%file%} src/include/bar.h
Gets the file "src/include/bar.h" from "ftp://ftp.foo.org/pub/foo/src/include/bar.h".

:attr {fetch = ftp://ftp.foo.org/pub/foo/src-2.0/include/%basename%}
src/include/bar.h

Gets the file "src/include/bar.h" from "ftp://ftp.foo.org/pub/foo/src-2.0/include/bar.h".

Defining Your Own Method

To add a new fetch method, define a Python function with the name "fetch_method", where "method" is
the word at the start. The function will be called with four arguments:

dict a dictionary with references to all variable scopes (for expert users only)

machine the machine name from the url: what comes after the "scheme://" upto the first slash
path the path from the url: what comes after the slash after "machine”

fname the name of the file where to write the result

The function should return a non-zero number for success, zero for failure. Or raise an IOError exception
with a meaningful error. Here is an example:

python
def fetch_foo(dict, machine, path, fname):
from foolib import foo_the_file, FooError
try:
foo_the_file(machine, path, fname)
except FooError, e:
raise IOError, 'fetch_foo() failed: %s’ % str(e)
return 1

Note that a version control function overrules a fetch function. Thus if "foo_command()" is defined
"fetch_foo" will not be called.

Caching

Remote files are downloaded when used. This can take quite a bit of time. Therefore downloaded files

61

Chapter 16. Fetching

are cached and only downloaded again when outdated.
The cache can be spread over several directories. The list is specified with the $CACHE variable.

NOTE: Using a global, writable directory makes it possible to share the cache with other users, but only
do this when you trust everybody who can login to the system! Someone who wants to do harm or make
a practical joke could put a bogus file in the cache.

A cached file becomes outdated as specified with the "cache_update" attribute or the $SCACHEUPDATE
variable. The value is a number and a name. Possible values for the name:

day number specifies days
hour number specifies hours
min number specifies minutes
sec number specifies seconds

The default is "12 hour".

When a file becomes outdated, its timestamp is obtained. When it differs from when the file was last
downloaded, the file is downloaded again. When the file changes but doesn’t get a new timestamp this
will not be noticed.

When fetching files the cached files are not used (but may be updated).

62

Chapter 17. Installing

This section contains details about the installation of the produced programs and other items. Those
other items can be libraries (produced by fite ,:dll , or:ltlib commands), header files for the
API of a library, documentation (like manpages or info files), and as a catch-all, "data."

Usually installing is done witlaap install . If you do not define an "install" target in the recipe, Aap
will add one for you. The default install target invokes up to 15 other install targets, one for each kind of
item you can install. This makes it easy to customize the installation of some particular kind of item
(e.g. libtool archives).

The default install target invokes two or three other targets: install-platform, install-shared, and
(optionally, only if you define it in the recipe) install-local. Each of these invokes other install targets for
specific kinds of files, as follows:

Table 17-1. Install targets

Higher-level Targets Install these Files

level

Tar-

get

install- This is for installing platform-dependent files.

platform

install-exec Install programs (generally produced through
:program command).

install-sbhin Install programs for system administration. These

may have additional security considerations, hence
a separate target.

install-lib Install static libraries (from thgib command).
install-dll Install shared libraries (from théll command).
install-Itlib Install shared libtool libraries (from thélib

command). These require special treatment by the
libtool program, hence a separate target.

install-conf Install platform-specific configuration files (such as
pkg-config files).

install-platform-local A catch-all for things that don't fit anywhere else.

install- This is for installing files shared between platforms.

shared

63

Chapter 17. Installing

Higher-level Targets Install these Files

level

Tar-

get

install-data Install data for the package. This would typically

include translation files, examples (if they’re not in
the manpage), and images used by the package.

install-man Install manpages.

install-info Install GNU-style info pages.

install-include Installs header files (also known as includes).

install-shared-local A catch-all for things that don't fit anywhere else.

install- this is an optional target that you can define for

local extra installing, without changing the other install
targets.

Each of these dependencies is only added automatically if you do not define it yourself. In other words, if
you do not define a dependency wiitlstall-data as a target, Aap will add such a dependency

internally. Unless you need special processing for specific kinds of items, you should rarely need to
define any of the install targets yourself. The exceptiongnatall-platform-local ,

install-shared-local andinstall-local , which you can define without disturbing Aap’s normal
mechanisms for installing the programs and libraries you create.

All these dependencies that Aap adds are at the toplevel (unlike "clean" and "cleanmore”, which are done
for each parent and child recipe).

All of Aap’s default install targets operate in roughly the same fashion: specific actions are invoked for
each install target. The default actions all use top-level variables neN8@dLL_target which collect
filenames to install. Other toplevel variables control where those files are instahgst (DIR) and

what file mode is useddrget MODE This table shows the specific settings for each of the default
install targets:

Table 17-2. Settings for the install target

target variable action directory default mode default
directory mode
install-exec $INSTALL_EXBGallexec =~ $EXECDIR bin/ $EXECMODEQ755
install-sbin ~ $INSTALL_SBhistallsbin $SBINDIR shin/ $EXECMODEO0755
install-lib SINSTALL_LIBstalllib $LIBDIR lib/ $LIBMODE 0644

64

Chapter 17. Installing

target variable action directory default mode default
directory mode
install-dll $INSTALL_Dirstalldll $DLLDIR lib/ $DLLMODE 0755

install-ltib ~ SINSTALL_LTNddefault settings for libtool libraries have been added to Aap yet. It seems likely the
install-conf ~ $INSTALL_CQiéfallconf $CONFDIR etc/ $CONFMODEO644

install-data ~ $INSTALL_DAT#alldata $DATADIR share/ $DATAMODEO0644

install-man $INSTALL Mialstallman $MANDIR man/ $MANMODE 0644

install-info $INSTALL_IN®Stallinfo $INFODIR info/ $INFOMODE 0644

install-include $INSTALL_IN@&taigclude $INCLUDEDIRclude/ $INCLUDEM@BE&4

Notes:a. A subdirectory will be added with the name $PKGNAME. You must set this variable to the name of you

The:programcommand adds its target to the SINSTALL_EXEC variable. Tibecommand adds its
target to the $INSTALL_LIB variable. Thalll command adds its target to the SINSTALL_DLL
variable. Theltlib command adds its target to the $INSTALL_LTLIB variable.

The "installexec" action will strip the program by default, if the "strip" program can be found. If you
don’t want this add the {nostrip} attribute to the program or set $STRIP to an empty value.

You can also overrule the default actions by one of your own. The install_files() function can be useful
then. See the default.aap recipe for examples.

Destination Directories

All the install targets prepend a path to the directory they install into. The directory mentioned above is
appended.

$DESTDIR Normally empty, which means that the root directory is used. Set this when you don’t
want to install to the local machine, but still pretend to install in the root. Examples:
"~/dummyroot”, "scp://foo.org/". Yes, you can do remote installing this way! Although
not everything that works locally will work remotely.

$PREFIX Default is "/usr/local/” on Unix. This specifies where to install to. The installed

program is aware of being installed here, $PREFIX may be put in configuration files.

The variables are concatenated. For example, programs are installed in
$DESTDIR$PREFIX$EXECDIR. Slashes are added in between where needed.

The directories that are used are automatically created when needed. Note that "uninstall" does not delete
the directories!

When installing the path to a file is normally removed. Thus when you produced a program

65

Chapter 17. Installing

"results/myprog" it will be installed as "myprog". If you need to keep the path use the "keepdir" attribute
on the file name.

INSTALL_INCLUDE += sys/myheader.h {keepdir}

As an alternative to {keepdir}, there is the {installdir} attribute, which explicitly sets the relative path of
the file to be installed. Files with an {installdir} attribute are installed in
$DESTDIR$PREFIX$target DIR$installdir . The above setting could also be done as:

INSTALL_INCLUDE += sys/myheader.h {installdir=sys}

The advantage of {installdir} over {keepdir} is that the relative paths (from toplevel recipe to file and
from install directory to the desired install location) need not be the same. For instance:

INSTALL_INCLUDE += api/2.2/c/Imyheader.h {installdir=sys}

The above mentioned mode variable is used to set the mode bits of the file after installing. If this is not
wanted, use the {keepmode} attribute. Example:

INSTALL_DATA += myscript.sh {keepmode}
To use another mode for a specific file add the {mode = 0555} attribute:

INSTALL_DATA += myscript.sh {mode = 0750}
Installing to a remote machine should work, although setting the file mode may not always work
properly, depending on the transfer method used.

Keep in mind that installation is done from the top directory. In a child recipe that is located in another
directory you need to specify the path to the file to install relative to the top directory. Using the
$TOPDIR variable and rc-style expansion should work. Example:

Filenames relative to the child directory
child_INSTALL_DATA = myscript.sh myicon.png

Now add those filenames, relative to the top
INSTALL_DATA += $TOPDIR/$*child_INSTALL_DATA

If you hard code the paths from the parent to the files to install, say by WiKIBGALL_DATA +=

child/myscript.sh , then you cannot execute the child recipe by itself (as if it were a toplevel recipe),
since the paths will be wrong. UsigFOPDIR, or equivalently theopdir function, is the safe way to
do so.

Uninstall

"aap uninstall" deletes the file that "aap install" has installed. All the targets and actions have the same
name with "install" replaced with "uninstall”. The same variables are used.

Files that do not exist are silently skipped. Files that do exist but cannot be deleted will cause a warning
message.

66

Chapter 17. Installing

Sometimes your recipe offers installing optional files. You probably want to uninstall those optional files
as well, without requiring the user the specify the same options again. For this you can set the
$UNINSTALL_* variables. For example, if you install either the "foo" or "bar" program:

:variant What
foo
Target = foo
UNINSTALL_EXEC = bar$EXESUF
bar
Target = bar
UNINSTALL_EXEC

foo$EXESUF

:program $Target : $Sources

67

Chapter 18. Version Control

This is about using Aap with a Version Control System (VCS)

The generic form of version control commands is:
:command file ...
Or:

:command {attr = val} ... file ...

The commands use the "commit" attribute of a file to obtain the kind of version control system and its
location. For example:

:attr foo.c {commit = cvs://:ext: 3CVSUSER_AAP@cvs.a-a-p.sf.net:/cvsroot/a-
a-p}

For CVS itis also possible to only specify the method. CVS will then use the same specification for the
repository as used when checking the files out.

:attr foo.c {commit = cvs://}

These commands can be used:

:commit Update each file in the repository. Add it when needed.

:checkout Like fetch and additionally lock for editing when possible.

:checkin Like commit, but unlock file.

:unlock Remove lock on file, don’t change file in repository or locally.

:add Add file to repository. File must exist locally. Implies a "commit" of the file.
‘remove Remove file from repository. File may exist locally. Implies a "commit" of the file.
‘tag Add a tag to the current version. Uses the "tag" attribute.

Additionally, there is the generic command:

‘verscont action {attr = val} ... file ...

This calls the Version control module as specified in the "commit" attribute for "action” with the supplied
arguments. What happens is specific for the VCS.

Operating On All Files

These commands work on all the files mentioned in the recipe and child recipes that have the "commit
attribute:

68

Chapter 18. Version Control

:checkoutall Checkout the files and locks them.

:commitall Commit the files . Files missing in the VCS will be added. No files will be
removed.

:checkinall Just like :commitall and also remove any locks.

:unlockall Unlock the files.

:addall Inspect directories and add items that do not exist in the VCS but are mentioned in

the recipe(s) with a "commit" attribute. Uses the current directory or specified
directories. May enter directories recursively.

:removeall Inspect directories and remove items that do exist in the VCS but are not mentioned
or do not have a "commit” attribute. Careful: Only use this command when it is
certain that all files that should be in the VCS are explicitly mentioned and do have
a "commit” attribute!

:reviseall Just like using bottcheckinall and:removeall

;tagall Add a tag to all items with a "commit" and "tag" attribute.

Related to these commands are targets that are handled automatically when not defined explicitly. When
defining a target for these, it would be highly unexpected if it works differently.

aap commit Normally uses the files you currently have to update the version control system.
This can be used after you are done making a change. Default is:usimgnitall

aap checkout Update all files from the VCS that have a "commit" attribute. When the VCS
supports locking all files will be locked. Without locking this does the same as "aap

fetch".

aap checkin Do :checkinfor all files that have been checked out of the VCS. For a VCS that
doesn’t do file locking this is the same as "aap commit".

aap unlock Unlock all files that are locked in the VCS. Doesn’t change any files in the VCS or
locally.

aap add Do :addfor all files that appear in the recipe with a "commit" attribute that do not
appear in the VCS.

aap remove Do :removeall remove all files that appear in the VCS but do not exist in the

recipe with a "commit" attribute or do not exist in the local directory. This works in
the current directory and recursively enters all subdirectories. Careful: files with a
search path may be accidentally removed!

aap tag Do :tagalt tag all files with a "commit" and "tag" attribute. The tag name should
be defined properly in the recipe, although "aap tag TAG=name" can be used if the
recipe contains something likeattr {tag = $TAG} $FILES

aap revise Same as "aap checkin" followed by "aap remove": checkin all changed files,
unlock all files and remove files that don't have the "commit" attribute.

For the above the "-I" or "--local" command line option can be used to restrict the operation to the
directory of the recipe and not recurse into subdirectories.

69

Chapter 18. Version Control

A variable can be used to set the default change log entries:
LOGENTRY=message

This variable is used for new, changed and deleted files that don’t have a {logentry} attribute.

When it's desired to commit one directory at a time the following construct can be used:

source_files = *.c
include_files = include/*.h
commit-src {virtual}:
:commit $source_files
:removeall .
commit-include {virtual}:
:commit $include_files
:removeall include

Note that this is not possible when the sources and include files are in one direetoigyeallonly
works per directory.

Using Subversion

Subversion is a new version control system that is going to replace CVS. It has many advantages, such as
atomic commits. But version 1.0 is not ready yet (although the current versions appear to be very stable
and usable).

Subversion support is not implemented yet. For the time being you can retrieve files from a Subversion
repository by using a URL. That works, because subversion is using an Apache server. You can obtain a
copy of single files by specifying the URL in the fetch attribute. Obviously you can’t commit changed

files this way.

Using Another Version Control System

To add support for a new version control system, define a Python function with the name
"method_command", where "method" is the word at the start of the commit attribute. The function will
be called with five arguments:

recdict a dictionary with references to all variable scopes (for expert users only)

name the name of the repository defined with the "commit” attribute with the "scheme://"
part removed.

commit_dict the dictionary holding attributes for the specified repository; e.g., for "{commit = foo://
{arg = blah}}" it is (in Python syntax): { "name" : "foo://", "arg" : "blah" }

nodelist a list of the nodes on which the action is to be performed

action the name of the action to be executed; can be "fetch”, "commit", etc.

The function should a list of nodes that failed. When the action worked without errors an empty list
should be returned.

For an example look at cvs_command() in the VersContCvs.py file of the Aap sources.

70

Chapter 18. Version Control

A second function that is to be defined is "method_list". It should return a list of the files that are
currently in a specified directory in the repository. Return an empty list if there are no files. The function
will be called with these arguments:

recdict a dictionary with references to all variable scopes (for expert users only)

name the name of the repository defined with the "commit" attribute with the "scheme://"
part removed.

commit_dict the dictionary holding attributes for the specified repository; e.g., for "{commit = foo://
{arg = blah}}" itis (in Python syntax): { "name" : "foo://", "arg" : "blah" }

dirname name of the directory to be listed

recursive boolean indicating whether recursive listing is to be done

For an example look at cvs_list() in the VersContCvs.py file of the Aap sources.

71

Chapter 19. Using CVS

A common way to distribute sources and working together on them is using CVS. This requires a certain
way of working. The basics are explained here. For more information on CVS see
http://www.cvshome.org.

Obtaining A Module

The idea is to hide the details from a user that wants to obtain the module. This requires making a
toplevel recipe that contains the instructions. Here is an example:

CVSROOT = :pserver:anonymous@cvs.myproject.sf.net:/cvsroot/myproject
:child mymodule/main.aap {fetch = cvs://$CVSROOT}
all fetch:

fetch {fetch = cvs://$CVSROOT} mymodule

Executing this recipe will use the "fetch" target. Tfetchcommand takes care of checking out the
whole module "mymodule” from the CVS repository with the specified name.

Note that this toplevel recipe cannot be obtained from CVS itself, that has a chicken-egg problem.

Fetching

The child recipe "mymodule/main.aap” may be totally unaware of coming from a CVS repository. If this
is the case, you can build and install with the recipe, but not fetch the files or send updates back into
CVS. You need to use the toplevel recipe above to obtain the latest updates of the files. This will then
update all the files in the module. However, the toplevel recipe itself will never be fetched.

To be able to fetch only some of the files of the module, the recipe must be made aware of which files are
coming from CVS. This is done by using an "fetch" attribute with a URL-like specification for the CVS
server: {fetch = cvs://servername/dir}. Since CVS remembers the name of the server, leaving out the
server name and just using "cvs://" is sufficient. Example:

source = foo.c version.c

header = common.h

:attr {fetch = cvs://} $source $header
:program myprogram : $source

If you now do "aap fetch" with this recipe, the files foo.c, version.c and common.h will be updated from
the CVS repository. The target myprogram isn’t updated, of course.

Note: When none of the used recipes specifies a "fetch" target, one will be generated automatically. This
will go through all the nodes used in the recipe and fetch the ones that have an "fetch" attribute.

The recipe itself may also be fetched from the CVS repository:
rrecipe {fetch = cvs://}

To update a whole directory, omit the "fetch" attribute from individual files and use it on the directory.
Example:

72

Chapter 19. Using CVS

source = main.c version.c
:attr {fetch = cvs:/f} .
:program myprog : $source

Alternatively, a specific "fetch” target may be specified. The automatic updates are not used then. You
can specify the "fetch" attribute right there.

fetch:
Afetch {fetch = cvs://} $source

If you decided to checkout only part of a module, and want to be able to get the rest later, you need to tell
where in the module of the file can be found. This is done by adding a "path" attribute to the cvs:// item
in the fetch attribute. Example:

fetch:
fetch {fetch = $CVSROOT {path = mymodule/foo}} foo.aap

What will happen is that aap will checkout "mymodule/foo/foo.aap", while standing in two directories
upwards. That's required for CVS to checkout the file correctly. Note: this only works as expected if the
recipe is located in the directory "mymodule/foo"!

If the "path" attribute is omitted, A-A-P will obtain the information from the "CVS/Repository" file. This
only works when something in the same directory was already checked out from CVS.

Checking In

When you have made changes to your local project files and want to upload them all into the CVS
repository, you can use this command:

:reviseall

You must make sure that _ALL_files in the current directory and below that you want to appear in CVS
have the "commit" attribute, and no others! Files that were previously not in CVS will be added ("cvs
add file") and that exist in CVS but don’t have a "commit” attribute are removed ("cvs remove file").
Then all files are committed ("cvs commit file™).

To be able to commit changes you made into the CVS repository, you need to specify the server name
and your user name on that server. Since the user name is different for everybody, you must specify it in
a recipe in your ~/.aap/startup/ directory. For example:

CVSUSER_AAP = foobar

The name of the variable starts with "CVSUSER" and is followed by the name of the project. That is
because you might have a different user name for each project.

The method to access the server also needs to be specified. For example, on SourceForge the "ext"
method is used, which sends passwords over an SSH connection for security. The name used for the
server then becomes:

:ext: $CVSUSER_AAP@cvs.a-a-p.sf.net:/cvsroot/a-a-p

You can see why this is specified in the recipe, you wouldn’t want to type this for commiting each
change!

73

Chapter 19. Using CVS

Distributing Your Project With CVS

This is a short how-to that explains how to start distributing a set of files (and directories) using CVS.

1. Copy the files you want to distribute to a separate directory

Mostly you have various files in your project for your own use that you don’t want to distribute.
These can be backup files and snippets of code that you want to keep for later. Since the cvs
command below imports all files it can find, you need to have a directory tree with exactly those files
you want to store in CVS. Best is to to make a copy of the project. On Unix:

cp -r projectdir tempdir

Then delete all files you don’t want to distribute. Be especially careful to delete "AAPDIR"
directories and hidden files (starting with a dot). It's better to delete too much than too few: you can
always add files later.

2. Import the project to the CVS repository

Move to the newly created directory ("tempdir" in the example above). Import the whole tree into
CVS with a single command. Example:

cd tempdir
cvs -d:ext:myname@-cvs.myproject.sf.net:/cvsroot/myproject import mymodule myproject start

Careful: This will create at least one new directory "mymodule”, which you can't delete with CVS
commands. This will create the module "mymodule” and put all the files and directories in it. If
there are any problems, read the documentation available for your CVS server.

3. Checkout a copy from CVS and merge

Move to a directory where you want to get your project back. Create the directory "myproject” with
this example:

cvs -d:ext:myname@-cvs.myproject.sf.net:/cvsroot/myproject checkout mymodule

You get back the files you imported in step 2, plus a bunch of "CVS" directories. These contain the
administration for the cvs program. Move each of these directories back to your original project.
Example:

mv myproject/CVS projectdir/CVS
mv myproject/include/CVS projectdir/include/CVS

If you have many directories, one complicated command does them all:

cd myproject
find . -name CVS -exec mv {} ../projectdir/{} \;

This is a bit tricky. Another method is to copy all the files from your original project into the newly
created directory. But then you have to be careful not to change relevant file attributes, which is
tricky as well. Obviously, the best solution is to have all files you need in CVS, so that you don't
have to copy any files.

74

Chapter 19. Using CVS

4. Commit changes

After making changes to your project and testing them, it's time to check them in. In the recipe you
use for building, add a "commit" attribute to all the files that should be in CVS..iEvéseall
command then does the work for you (see above). Example:

Files = $source $header main.aap
:attr {commit = cvs:/l:ext:3CVSUSER_MYPROJECT@cvs.myproject.sf.net:/cvsroot/myproject} $Files
:reviseall

Careful: $Files must contain all files that you want to publish in this directory and below. If $Files
has extra files they will be added in CVS. Files missing from $Files will be removed from CVS.

You must assign $CVSUSER_MYPROJECT your user name on the CVS server. Usually you do
this in one of your personal A-A-P startup files, for example "~/.aap/startup/main.aap".

Using Sourceforge

If you are making open source software and need to find a place to distribute it, you might consider using
SourceForge. It's free and relatively stable. They provide http access for your web pages, a CVS
repository and a server for downloading files. There are news groups and maillists to support
communication. Read more about it at http://sf.net.

Since you never know what happens with a free service, it's a good idea to keep all your precious work
on a local system and update the files on SourceForge from there. If several people are updating the
SourceForge site, either make sure everyone keeps copies, or make backup copies (at least weekly).

You can use A-A-P recipes to upload your files to the SourceForge servers. To avoid having to type
passwords each time, use an ssh client and put your public keys in your home directory (for the web
pages) or on your account page (for the CVS server). Read the SourceForge documentation for how to do
this.

For uploading web pages you can use a recipe like this:

Files = index.html

download.html

news.html

images/logo.qgif
:attr {publish = rsync://myname@myproject.sf.net//home/groups/m/my/myproject/htdocs/%file%}
$Files

Start this recipe with the "publish” target. If you don’t have the "rsync" command you might want to use
"scp" instead. The effect is the same, but "rsync" works more efficient.

For sourceforge, set environment variable CVS_RSH to "ssh". Otherwise you won't be able to login. Do
"touch ~/.cvspass" to be able to use "cvs login" Upload your ssh keys to your account to avoid having to
type your password each time.

75

Chapter 20. Issue Tracking

Bug Reporting

A recipe used to install an application should offer the "report" target. This is the standard way for a user
to report a problem. The recipe should then help the user with reporting a problem as much as possible.

An example is to send the developer an e-mail. Commands in the recipe are used to put useful
information in the message, so that the user only has to fill in his specific problem. Example:

report:
tmpfile = ‘tempfname()*
:syseval foobar --version | :assign Version
:print >$tmpfile Using foobar version: $Version
print >>$tmpfile system type: ‘os.name’
@if os.name == "posix":
:print >>$tmpfile system details: ‘os.uname()‘
print >>$tmpfile
print >>$tmpfile State your problem here
:do email {subject = 'problem in FOOBAR'}
{to = bugs@foobar.org}
{edit}
{remove}
$tmpfile

The "foobar --version" command is used to obtain the actual version of the "foobar" program being used.
Replace "foobar" with the actual name of your program.

When a web form is to be filled in, give the user hints about what information to fill in certain fields and
start a browser on the right location. Example:

report:
:do view {async} http://www.foo.org/bugreport/
tmpfile = ‘tempfname()’
print >$tmpfile use this information in the bug report:
print >>$tmpfile program version: $VERSION
print >>$tmpfile system type: ‘os.name’
:do view {remove} $tmpfile

Obviously this is a bit primitive, the user has to copy text from the text viewer to the browser. Try using a
better method, filling fields of the form directly if you can.

Bug Fixing

Once a bug has been fixed, the developer needs to update the related bug report. The "tracker" target is
the standard way for a developer to get to the place where the status of the bug report can be changed.

Since trackers work in many different ways the recipe has to specify the commands. Example:

tracker:
:do view {async} http://www.foo.org/tracker?assigned_to=$USER

76

Chapter 20. Issue Tracking

This is very primitive. The developer still has to locate the bug report and change the status and add
remarks. The above example at least lists the bug reports for the current user.

77

Chapter 21. Using Python

Python commands can be used where Aap commands are not sufficient. This includes flow control,
selecting the commands to be executed and repeating commands.

Using Python Lines

Single lines of Python code can be included in the recipe by prepending "@". This is most often used for
flow control:

@if os.path.isdir("/usr/local/bin"):
:copy $File /usr/local/bin

You can write multiple Python commands, just prefix a "@" to every line. Do remember that the amount
of indent is used to form command blocks. The indent that is used excludes the "@" character. When
there is a non-white character after the "@", the "@" is removed. When there is white space after the
"@" it is replaced with a space. Generally you don’t need to worry about this, if the indenting looks right
it probably is.

The main advantage of using single Python lines is that they can be mixed freely with Aap recipe
command lines. You can use Python lines both at the recipe level and in build commands. Again, just
make sure the indent indicates command blocks.

To learn using Python start at the Python web site: http://www.python.org/doc/

Using Python Expressions

In an assignment, command arguments and most other places a Python expression can be used in
backticks. Expanding this is done before expanding $VAR items, because this allows the possibility to
use the Python expression to result in the name of a variable. Example:

foovaridx = 5
Foo = $Src‘foovaridx’

Is equivalent to:
Foo = $Src5

The result of the Python expression in backticks should be a string or a list of strings. A list is
automatically converted to a white-separated string of all list items.

A Python expression cannot be used for the variable name in an assignment. This doesn’t work:
‘varname' = value

If you really need this, use a Python command instead:
@eval(varname + ' = "value")

When using a function from a module, it must be imported first. Example:

78

Chapter 21. Using Python

@from httplib import HTTP
Connection = ‘HTTP('www.microsoft.com’)*

For your convenience these things are imported for you already:

from glob import glob
from RecPython import *

The RecPython module defines the Python functions list&zhispter 3§.

A backtick in the Python expression has to be escaped to avoid it being recognized as the end of the
expression:

CMD = ‘my_func("$()grep -I foo *.c$()")'
contains the Python expression:
my_func(™grep -l foo *.c™)

In the result of the Python expression $ characters are doubled, to avoid them being interpreted as the
start of a variable reference. Otherwise Python expressions with arbitrary results would always have to
be filtered explicitly. When the resulting string is used the 3 will be reduced to a single $ again.

Aap variables can be

The result of the expression is used as a string in place of the expression and the backticks. Example:
Foo = foo/'glob("*.tmp")*

Would be equivalent to:
Foo = foo/one.tmp two.tmp

Note that "foo/" is only prepended to the whole result, not each white-separated item. If you do want
rc-style expansion, use two commands:

TT = ‘glob("™*.tmp")*
Foo = foo/$*TT

Equivalent to:
Foo = foo/one.tmp foo/two.tmp

Note that a following attribute is only attached to the last item resulting from the Python expression.
Source = ‘glob(*.c’)* {check = md5}

Can be equivalent to:
Source = foo.c bar.c {check = md5}

To apply it to all items, use thattr command:

Source = ‘glob(*.c’)’
:attr {check = md5} $Source

79

Chapter 21. Using Python

Watch out for unexpected results when rc-style expansion is done for $*VAR. Example:

VAR = one two
Foo = $*VAR/‘glob("*.tmp")’

Would result in:
Foo = one/one.tmp two/one.tmp two.tmp

because the “ part is expanded first, thus the assignment is executed like:
Foo = $*VAR/one.tmp two.tmp

The backticks for a Python expression are also recognized inside quotes. Thus you need to escape the
special meaning there:

Foo = "this$(")file" that$(‘)file
Backtick expressions can be used inside a string if you really need this:

DIR = /home/foo /home/bar
print “DIR + “/fi le™"

results in:
"/home/foo /home/barffi le"
Compare this to:
:print "$*DIR/fi le"
which results in:

"/home/foof/fi le" "/home/bar/fi le"

Python Block

A block of Python commands is started withpgthoncommand. If no terminator string is specified the
python code ends where the indent is equal to or less thapytioncommand:

Source = foo.c bar.c
:python
for i in items:
Source = Source + " " + |
Target = foo

Optionally a terminator string may be specified. The indent of the Python code may then drop below the
indent of thepythoncommand.

The terminator cannot contain white space. A comment may follow. The Python block continues until
the terminator string is found in a line by itself. It may be preceded and followed by white space and a
comment may follow. Example:

80

Chapter 21. Using Python

@if ok:
:print finding include files
:python EOF # start of the Python block
include = glob("include/*.c")
EOF # end of the Python block

Useful Python Items
A list of Python functions defined by Aap can be found in the reference mafhbapter 38
VAR = ‘os.environ.get('VAR’, 'default’)’
Obtain environment variable $VAR. If it is not set use "default".
@os.environ["PATH"] = mypath
Set an environment variable.
files = ‘glob("*.ext")’

Obtain a list of files matching "*.ext". Aap will take care of turning the list that glob() returns into a
string, using quotes where needed.

The difference with using "*.ext" directly is that the expansion is done right here, not later when $files is
used. The catch with using glob() here is that when a file name contains a wildcard character it may be
expanded again. So long as that expansion fails or matches the same file name it is still OK, but it
becomes rather unpredictable. Weiddescape(Wwhen needed.

choice = ‘raw_input("Enter the value: ")'
Prompt the user to enter a value.
tempfile = ‘tempfname()’

Get a file name to use for temporary files. The file will not exist. tegpfname()

If you create it you need to make sure it is deleted afterwards. Example:

tempfile = ‘tempfname()*
@try:
:print >$tempfile start of file
:print >>$tempfile $this variable may not exist and cause an error
:cat $tempfile
@finally:
this is executed whether there is an error or not
:del $tempfile

81

Chapter 22. Porting an Application

Porting an application means starting with the original sources and changing them a little bit to make the
application compile and install on a specific system. An Aap port recipe offers a simple way to create a

port, because all the standard work does not need to be specified.

NOTE: not all features mentioned here fully work. Make sure you test your port recipe before publishing

it.

The Port Recipe

The basic idea is that you assign values to a number of predefined variables. Aap will then generate the
steps for building and installing the package, using the values you have specified. The presence of the
"PORTNAME" variable triggers Aap to handle the recipe as a port recipe. The list of variables is in the

next section.

This is thee list of steps performed when executing Aap without arguments, in this order:

dependcheck early check to see if dependencies can be met; abort without doing anything if
something is known to falil

fetchdepend handle dependencies for fetch and checksum

fetch get the required files

checksum check if the files have correct checksums

extractdepend handle dependencies for extract and patch

extract unpack archives

patch apply patches

builddepend handle dependencies for configuring and building

config do pre-building configuration

build build

testdepend handle dependencies for testing

test check if building was done properly

package create a binary package

install install the binary package

rundepend handle runtime dependencies

installtest test if the package fully works and was installed properly

For each step a dependency with build commands is added. The purpose of each step is further explained

below.

The term "dependency" is ambiguous here. You should be able to guess from the context
whether it is used for a dependency of one software package on another package, orja
dependency of a target file on a source file.

You can do part of the work by starting Aap with one of the step names. The steps before it will also be
executed if necessary. For example, "aap package" will do all the steps necessary to generate the binary

82

Chapter 22. Porting an Application

package but not install it.

If your port requires non-standard stuff, you can specify your own build commands. You can replace the
normal step, prepend something to it and append something to it:

do-XXX replace the body of a step
pre-XXX do something before a step
pPoSt-XXX do something after a step
Example:

post-test:

delete the directory used for testing
:del {r{f} $WRKDIR/testdir

Variables

Various variables need to be set to specify properties of the port.

variable used for example

value
PORTNAME name of the port "foobar"
PORTVERSION app version number "3.8alpha"
PORTREVISION port patchlevel (optional) "32"
CVSMODULES names of CVS modules to checkout (optional) Exec
MAINTAINER_NAME maintainer name (optional) John Doe
MAINTAINER maintainer e-mail (optional) john@foobar.org
PORTCOMMENT short description get foo into

the bar
PORTDESCR long description blah blah blah
IS_INTERACTIVE requires user input (optional) yes or no

Variables that can be used by the port recipe:

variable used for default value
WRKDIR directory all files are "work"
extracted in and the
building is done in
DISTDIR directory where "distfiles"
downloaded distfiles
are stored

83

variable
PATCHDISTDIR

PKGDIR

Chapter 22. Porting an Application

used for default value
directory where "patches"
downloaded patches

are stored

directory where files "pack"

are stored before
creating a package

Variables that may be set by the port recipe, defaults are set only after reading the recipe:

variable used for default value

WRKSRC Directory inside SWRKDIR ~ $PORTNAME-$PORTVERSION
where the unpacked sources end
up. This should be the common
top directory in the unpacked
archives. When using CVS it is
always set to $CYSWRKSRC
(also when $WRKSRC was
already set).

CVSWRKSRC Directory inside $WRKDIR the first entry in
where files obtained with CVS $CVSMODULES
end up.

PATCHDIR Directory inside $WRKDIR $WRKSRC
where patches are to be applied.

Can be overruled for a specific
patch with a "patchdir" attribute.

BUILDDIR Directory inside $WRKDIR $WRKSRC
where building is to be done.

TESTDIR Directory inside $WRKDIR $WRKSRC
where testing is to be done.

INSTALLDIR Directory inside $WRKDIR $WRKSRC

CONFIGURECMD

BUILDCMD

TESTCMD

INSTALLCMD

where $SINSTALLCMD is to be

done.

Set to the command used to nothing
configure the application. Usually
"./configure".
Set to the command used to buildap"

the application. Usually just

"make".

Set to the command used to teshap test"
the application. Usually "make

test".
Set to the command used to do ‘@ap install
fake install of the application. DESTDIR=$PKGDIR"

84

Chapter 22. Porting an Application

Dependency Format
Dependencies on other modules are specified with the various DEPEND_ variables. The format of these
variables is a list of items.

NOTE: Although you can currently specify dependencies, the code for checking them has not been
implemented yet! Thus the user will have to figure it out by himself...

Items are normally white space separated, which means there is an "and" relation between them.
Alternatively "|" can be used to indicate an "or" relation.

DEPENDS = perl python # require both perl and python
DEPENDS perl | python # require perl or python

Parenthesis can be used to group items. Parenthesis must be used when combining "or" and "and"
relations. Example:

DEPENDS = (foo bar) | foobar # Either both "foo" and "bar" or "foo-
bar"
DEPENDS

DEPENDS

foo bar | foobar # lllegal
foo (bar | foobar) # "foo" and either "bar" or "foobar"

When a dependency is not met the first alternative will be installed, thus the order of "or" alternatives is
significant.

Each item is in one of these formats:

name-version_revision a specific version and revision

name any version

name-regexp a version specified with a regular expression (shell style)

name-=version_revision any version at or above a specific version and revision

name>version_revision any version above a specific version and revision

name<=version_revision any version at or below a specific version and revision

name<version_revision any version below a specific version and revision
namelversion_revision any version but a specific version
and revision

In the above "_revision" can be left out to ignore the revision number. It actually works as if there is a "*"
wildcard at the end of each item.

"name" can contain wildcards. When a part is following it is appended at the position of the wildcard (or
at -9 if it comes first).

foo-* matches foo-big, foo-big-1.2 and foo-1.2
foo-*11.2 matches foo-big, foo-big-1.2 and skips foo-1.2

85

Chapter 22. Porting an Application

The version specifications can be concatenated, this creates an "and" relation. Example:

foo>=1.2<=1.4 versions 1.2 to 1.4 (inclusive)
foo>=1.2!1.8 versions 1.2 and above, excluding 1.8
xv>3.10 versions above 3.10, accepts xv-3.10a

The "!" can be followed by parenthesis containing a list of specifications. This excludes the versions
matching the specifications in the parenthesis. Example:

foo>=1.11(>=1.3<=1.5) versions 1.1 and higher, but not versions 1.3 to 1.5
foo>=6.1!6.1[a-z]* version 6.1 and later but not 6.1a, 6.1rc3, etc.

When a dependency is not met the newest version that meets the description is used.

For systems that do not allow specifying dependencies like this in a binary pacakge, the specific package
version that exists when generating the package is used.

Dependencies For Various Steps

The various variables used to specify dependencies:

DEPEND_FETCH Required for fetching files. Also for computing checksums.

DEPEND_EXTRACT Required for unpacking archives.

DEPEND_BUILD Required for building but not necessarily for running; these are not
included in the binary package; items may also appear in
DEPEND_RUN.

DEPEND_TEST Required for testing only; don't include items that are already in
DEPEND_RUN.

DEPEND_RUN Required for running; these will also be included in the generated
binary package.

DEPENDS Used for DEPEND_BUILD and DEPEND_RUN when empty.

Only the dependencies specified with DEPEND_RUN will end up in the generated binary package.
When using a shared library, it is recommended to put a dependency on the developer version (includes
header files) in DEPEND_BUILD and a dependency on the library itself in DEPEND_RUN. The result

is that when installing binary packages the header files for the library don’t need to be installed.

The "CONFLICTS" variable should be set to specify modules with which this one conflits. That means
only one of the two packages can be installed in the same location. It should still be possible to install the
packages in different locations. The format of CONFLICTS is identical to that of the DEPENDS
variables.

NOTE: Although you can currently specify dependencies and conflicts, the code for checking them has

86

Steps

Chapter 22. Porting an Application

not been implemented yet! Thus the user will have to figure it out by himself...

Dependencies are automatically installed, unless "AUTODEPEND" is "no". The dependencies are
normally satisfied by installing a port. When a satisfying port can not be found a binary package is
installed. The ports and packages are first searched for on the local system. When not found the internet
is searched.

The order of searching can be changed with "AUTODEPEND":

binary only search for binary packages, default locations
source only search for ports, default locations
source {path = /usr/ports http://ports.a-a-p.org} only search for ports in /usr/ports and on the

ports.a-a-p.org web site.

These are the individual steps for installing a ported application. Each step up to "install" depends on the
previous one. Thus "aap install" will do all the preceding steps. But the steps that have already been

successfully done in a previous invocation of Aap will be skipped. The "rundepend", "installtest”,
"clean", etc. targets do not depend on previous steps, they can be used separately.

dependcheck

Check if required dependencies can be fulfilled.

This doesn't install anything yet, it does an early check if building and/or installing the port will
probably work before starting to download files.

This uses all the DEPEND _ variables that will actually be used. Fails if something is not available.

fetchdepend

fetch

Check dependencies for fetch and checksum.
Uses DEPEND_FETCH, unless disabled with AUTODEPEND=no

Get required files.

If SCVSMODULES is set and $CVS is not "no", obtain files from CVS:

Uses $CVSROOQOT or cvsroot attribute in SCYSMODULES.

$CVSWRKSRC is where the files will end up (default is first member in $SCYSMODULES).
Also obtain $CVSDISTFILES if defined.

Also obtain $CVSPATCHFILES if defined.

Use a post-fetch target if directories need to be renamed.

else
if $DISTFILES is set obtain them
if SPATCHFILES is set obtain them

87

checksum

extractdepend

extract

patch

Chapter 22. Porting an Application

Use MASTER_SITES for [CVS]DISTFILES. Use PATCH_SITES for [CVS]PATCHFILES. The
[CVSIDISTFILES are put in $DISTDIR. The [CVS]PATCHFILES are put in $PATCHDISTDIR.

The directory can be overruled with a {distdir = dir} attribute on individual patch files.

Files that already exist are skipped (if there is a checksum error, delete the file(s) manually).

Check if checksums are correct.

The port recipe writer must add the "do-checksum" target witlecksuntommands to verify that
downloaded files are not corrupted. Example:

>>> automatically inserted by "aap makesum" <<<
do-checksum:
:checksum $DISTDIR/foo-1.1.tgz {md5 = 2341423423423423434}
:checksum $PATCHDISTDIR/foo-patch3.gz {md5 = 3923858739234}
>>> end <<<

The "aap makesum" command can be used to generate the lines.

Check dependencies for extract and patch.
Uses DEPEND_EXTRACT, unless disabled with AUTODEPEND=no

Unpack archives in the right place. Use SEXTRACT_ONLY if defined, otherwise $DISTFILES or
$CVSDISTFILES when CVS was used.

Uses the "extract" action. To extract a new type of archive:
add filetype detection for this type of archive
define an "extract" action for this filetype

Extraction is done in $WRKDIR. A subdirectory may be specified with the "extractdir" attribute on
each archive.

DISTFILES = foo-1.1.tgz foo_doc-1.1.tgz {extractdir = doc}

Apply patches not applied already.

$PATCHCMD defines the patch command, default: "patck -p The patch file name is appended,
unless "%s" appears in the string, then it's replaced by the file name.

A "patchcmd" attribute on each patch file may specify a patch command that overrules
$PATCHCMD.

The patches are applied in $WRKDIR/$PATCHDIR (default: $WRKSRC). A "patchdir” attribute
on each patch file may overrule the value of $SPATCHDIR.

88

builddepend

config

build

testdepend

test

package

Chapter 22. Porting an Application

Check dependencies for configure and build.
Uses DEPEND_BUILD, unless disabled with "AUTODEPEND=n0".

Perform configuration.

Executes the command specified with CONFIGURECMD. Usually autoconf, imake, etc. May be
empty.

Run the command specified with BUILDCMD. When empty "aap" is used. Useful values are
"gmake", "make", etc. An argument may be included. Example: "BUILDCMD=make foo"

Done in $WRKDIR/$BUILDDIR, default: $WRKDIR/$WRKSRC

Check test dependencies.
Uses DEPEND_TEST.

check if all required items are present try to install them automatically, unless disabled
AUTODEPEND=no This is skipped when "SKIPTEST=yes"

Check if building was done properly.
Executes TESTCMD. When it is empty "aap test" is used. Example: "TESTCMD=make testall"

This is skipped when "SKIPTEST=yes" Done in $WRKDIR/$TESTDIR, default:
$WRKDIR/$WRKSRC

Create a package with selected files, usually including the compiled program.
There are two methods to select files to be included in the package:

1. Specify the list of files below $WRKDIR, with a "dest" attribute where they should end up.
Assign the list to $PACKFILES. Example:

PACKFILES = $WRKSRC/bin/prog {dest = /usr/local/bin/prog}
$WRKSRC/man/prog.1 {dest = usr/local/man/manl/prog.1}

89

Chapter 22. Porting an Application
2. Specify a command to fake-install into $PKGDIR and use all files that end up there. Set
SINSTALLCMD to the command to be used. Example:
INSTALLCMD = "aap install DESTDIR=$PKGDIR"

Set INSTALLDIR to the directory inside $WRKDIR where the files are put. Default is
SWRKSRC. $PKGDIR/$PREFIX is where files end up.

A packing list is generated with the files that exist in the package. Then "pkg_create" is executed to
actually create the package. Arguments are given such that SPORTDESCR is used as the description
of the package and SPORTCOMMENT for a short explanation of what the package is for.

install
Install the binary package.

This executes the "pkg_add" command in a separate shell. You are asked to type the root password.
This is reasonably safe, since the shell is only connected to Aap and it can only install a package.

Exception: This updates the "rundepend" and "installtest" targets after updating the post-install
target. This allows doing "aap install”, which is a lot more obvious than "aap installtest".

rundepend
Check runtime dependencies.

Check if all required items specified with $SDEPEND_RUN are present and tries to install them
automatically, unless SAUTODEPEND is "no".

This is skipped if $SKIPRUNTIME is "yes". The pre-rundepend and post-rundepend are still done,
they should check $SKIPRUNTIME themselves.

"aap rundepend" will _not_ cause previous steps to be updated.

installtest
Test if the installed package works.
This is empty by default, specify a "do-installtest” target to actually do something.

Note that when $SKIPRUNTIME is "yes" the dependencies have not been verified and running the
application might not work.

uninstall
Uninstall the binary package. Not implemented yet!

Execute pkg_delete or equivalent. Does not depend on other steps.

90

clean

distclean

makesum

srcpackage

Chapter 22. Porting an Application

Delete all generated, unpacked, patched and CVS files.

Does not delete the downloaded files. Does not depend on other steps. Does not clean packages this
one depends on.

Delete everything except the toplevel recipe. After this all steps must be redone.

Does not depend on other steps. Does not clean packages this one depends on.

Generates a "do-checksum" dependency that checks if the fetched files were not corrupted.

If the recipe already contained a "do-checksum" dependency that was generated it is replaced.
Otherwise a new one is appended. Do not change the markers before and after the "do-checksum”
dependency, otherwise you end up with two of these when doing "aap makesum" again.

Does not depend on other steps. The files must already be present. You can use "aap fetch
--nofetch-recipe" to obtain the files, if needed (it obtains the files but not the recipes).

Generate a package with recipe and source files. Not implemented yet!

Puts the main recipe and all downloaded files into an archive. The resulting archive can be installed
without downloading.

Depends on the "“fetch" target.

Port Description

The text to describe the port is usually a page full of plain text. Here is an example:

PORTDESCR<< EOF
This is the description of the port.
A very important application indeed.

See our website http://myport.org.
EOF

In the rare situation that "EOF" actually appears in the text you can use anything else, such as
"THEEND".

91

Chapter 23. Automatic Configuration

The:confcommand is used to discover properties of the compiler and the system. With this information
a program can be compiled to work on many different systems without the user to manually specify the
properties. For Unix systems an alternative is using AutoconfCéegter 24

TODO The ":conf" command is still under development.

:conf init Clean the configuration environment. Only needed when
configure checks were done before.

:conf language lang
Use "lang" as the language for tests that do not have a
{language} attribute.
Only "C" and "C++" are currently supported. "C" is the
default.
A test will be done if the compiler for the language
works. If not all tests for the language will fail.
Example:

.conf language C++

:conf header [mainoptions] headername [itemoptions] ...
Check for C or C++ header file(s) "headername".
Uses current value of INCLUDE.
Defines HAVE_headername if "headername" is available.

mainptions:
oneof first of the items that works is used, at
least one is required
required all items are required to exist
itemoptions:
header text included in the test program
language C or C++
Examples:

:conf header X11/Shell.h
:conf header {oneof} sys/time.h times.h

:conf function [mainoptions] functionname [itemoptions] ...
Check for C or C++ function(s) "functionname".
Uses the current value of $LIBS.
Defines HAVE_functionname if "functionname" is available.
Options: see ":conf header"
Example:
:conf function bcopy

:conf type [mainoptions] typename [itemoptions] ...
Check for C or C++ type(s) "typename".
Uses the current value of $LIBS.
Defines HAVE_typename if type "typename" is available.
Options: see ":conf header".
Additional itemoption:
fallback type definition to use for the type when
it is not available

92

Chapter 23. Automatic Configuration

Example:
:conf type size_t {fallback = unsigned long}

:conf lib [mainoptions] libname,funcname [itemoptions] ...
Check for library/libraries by testing if "funcname"
exists when using the "libname" library.
Uses the current value of $LIBS and appends "-llibname”
if the test succeeds. Also appends to $_conf.LIBS.
Defines HAVE_libname if library "libname" is available.
Options: see ":conf header".
Example:
:conf lib iconv,iconv_open

:conf write header filename
Write the HAVE_ and other symbols collected so far into
"filename”.
Example:
:conf write header $BDIR/config.h

:conf write recipe filename
Write the settings in the _conf scope into "filename".
Example:
:conf write recipe $BDIR/config.aap

The _conf scope stores variables set by configure tests. For example,
$_conf.LIBS the libraries that ":conf lib" found. The _conf scope is used in
the tree of scopes just before the toplevel scope, after all callstack and
recipe tree scopes.

Special characters in header, function and type names are changed to an
underscore before defining the HAVE_ symbol. Lowercase characters are changed
to uppercase.

The preprocessor symbols that are gathered from the tests are available in
the $_conf.have dictionary. Example:
:conf header sys/time.h
@if _conf.have["HAVE_SYS_TIME_H"]:
print we have time
@else:
‘print sorry, no time.

":conf write recipe" writes the variables in the _conf scope. You can remove
variables you do not want to be written. Example:
savelLIBS = $?_conf.LIBS
_conf.LIBS =
:conf lib foo,foobar
_conf.FOOLIB = $_conf.LIBS
_conf.LIBS = $savelIBS

93

Chapter 24. Using Autoconf

The autoconf system is often used to configure C programs to be able to compile them on any Unix
system. This section explains how to use autoconf with Aap in a nice way. An alternative is to use the
:confcommand of Aap. It is much easier to use and also works on non-Unix systemSh>er 23

Running The Configure Script

A recipe that uses the configure script that autoconf generates can start like this:

$BDIR/config.h $BDIR/config.aap :
configure config.arg config.h.in config.aap.in
:sys ./configure ‘file2string("config.arg")"
:move {force} config.h config.aap config.log
config.cache config.status $BDIR
config.arg:
‘touch {exist} config.arg

:update $BDIR/config.aap
sinclude $BDIR/config.aap

What happens here is that the "config.aap" target is updated before any of the building is done. This is
required, because running the configure script will generate or update the "config.aap" file that influences
how the building is done.

Remembering Configure Arguments

The arguments for configure are stored in the "config.arg" file. This makes it easy to run configure again
with the same arguments. The file is read withfile2string()function. There should be a "config.txt"

file that explains all the possible configure arguments, with examples that can be copied into
"config.arg". Example:

Select the library to be used for terminal access. When omitted a
series of libraries will be tried. Useful values:

--with-tlib=curses

--with-tlib=termcap

--with-tlib=termlib

The user can now copy one of the example lines to his "config.arg" file. Example:

select specific terminal library
--with-tlib=termcap

Comment lines can be used, they must start with a "#". Note: a comment after an argument doesn’t work,
it will be seen as an argument.

When updating to a new version of the program, the same "config.arg" file can still be used. A "diff"
between the old and the new "config.txt" will show what configure arguments have changed.

94

Chapter 24. Using Autoconf

Variants And Configure

"config.aap" and "config.h" are put in $BDIR, because they depend on the current system. They might
also depend on the variant to be built. In that casevhsantstatement must be before the use of

$BDIR. However, if the variant is selected by running configure, the variant must come later.
"config.aap" and "config.h" are then updated when selecting another variant.

For the program to find "config.h" in $BDIR you must add an option to the C compiler. And you have to
notify the compiler that the file exists, so that it will be included:

INCLUDE += -I$BDIR
DEFINE += -DHAVE_CONFIG_H

The "config.cache", "config.log" and "config.status" files are also moved to $BDIR. This means they are
not available when running "./configure" again., This may be a bit slower, since the cache isn't used, but
it is much more reliable. And you can view the log of each variant that was build.

Running Autoconf

For a developer there also needs to be a method to generate the configure script from configure.in. This
needs to be done even before configure is run. Prepending this to the example above should work:

configure {signfile = mysign} : configure.in
:sys autoconf

Normally the "configure" script is distributed with the program, so that a user does not need to install and
run autoconf. The "{signfile = mysign}" attribute on the target is used to avoid running autoconf when
the user builds the program and the "configure" and "configure.in" files are still as they were distributed.
The signatures in the "mysign" file, which you must include in the distribution, will match and Aap

knows that "configure" is up-to-date. If using the "mysign" file was omitted, there would be no signature
for the "configure” target and Aap would decide to run autoconf. When you change "configure.in” its
signature will be different from what is stored in "mysign" and autoconf will be run.

Using A Distributed Configure Script

If you are porting an application that already has a configure script you can filter it to make it work with
Aap. This means you can use the unmodified configure.in.

configure_aap : configure
:cat configure
| :eval re.sub("Makefile", "config.aap", stdin)
>! configure_aap
:chmod 755 configure_aap

Now you need to execute "configure_aap" instead of "configure” in the first example above.

Skipping Configuration

Running configure can take quite a bit of time. And when you are not going to build anything that can be
annoying. For example, "aap comment" doesn’t require configure to run.

95

Chapter 24. Using Autoconf

Also, configure doesn’t work on a nhon-Unix system. When you have taken care in your code to handle
this you can simply skip configure. This line above all the configure code should take care of this:

@if osname() == "posix" and has_build_target():

Thehas_build_targetunction checks for a target that will do some kind of building, which means
configure must be run.

A Complete Example

Using all the parts mentioned above together we have a fairly complete method to handle running
autoconf and configure. This code is used in the recipe that builds the Exuberant Ctags program.

#

On Unix we run configure to generate config.h and config.aap.

This is skipped if there is no building to be done (e.g., for "clean").
#

@if osname() == "posix" and has_build_target():

"config.h" and "config.aap" are generated in $BDIR, because the are
different for each system.

Tell the compiler to find config.h in $BDIR.

INCLUDE += -I$BDIR

DEFINE += -DHAVE_CONFIG_H

Run autoconf when needed, but avoid doing this always, not everybody has
autoconf installed. Include "mysign" in the distribution, it stores the
signature of the distributed configure script.
configure {signfile = mysign} : configure.in
@if not program_path("autoconf"):
:;print Can't find autoconf, using existing configure script.
@else:
:sys autoconf

Filter the configure script created by autoconf to generate config.aap
instead of Makefile. This means we can use the unmodified configure.in
distributed with ctags.
configure_aap : configure
:cat configure
| :eval re.sub("Makefile", "config.aap", stdin)
>! configure_aap
:.chmod 755 configure_aap

Dependency to create config.aap by running the configure script.
The "config.arg" file is used for configure arguments.
:attr config {virtual} {comment = Do configuration only}

config $BDIR/config.h $BDIR/config.aap :
configure_aap config.arg config.h.in config.aap.in
:sys .Jconfigure_aap ‘file2string("config.arg")‘
Move the results into $BDIR. This also means the cache isn't used
the next time, it is unreliable.

96

Chapter 24. Using Autoconf

:move {force} config.h config.aap config.log config.cache
config.status $BDIR

Create an empty config.arg when it's missing.
config.arg:
‘touch {exist} config.arg

Update config.aap before including it. Forcefully when the "reconfig"
target is used.
@if "reconfig" in var2list(_no.TARGETARG):
:del {force} config.cache config.status
:update {force} $BDIR/config.aap
@else:
:update $BDIR/config.aap

sinclude $BDIR/config.aap

97

Chapter 25. Automatic Package Install

Aap provides a very powerful feature: When a program is required and it does not exist on the system, it
can be installed automatically.

Suppose a recipe specifies that a file is to be uploaded to a server with secure copy. This requires the
"scp" command. When Aap cannot find this command it offers you the choice to install it. Aap will
check what kind of system you have and find a recipe for it. This recipe is executed and it will install the
package for you. Either by obtaining an executable program or by fetching the sources and building
them. Then the original recipe continues and uses the "scp" command that has just been installed.

Note: This requires an internet connection!

How Does It Work?

The first step is to detect if a required program is present on the system. This is done internally when
"scp" or "cvs" is to be used. You can also check explicitly in a recipe withabgertpkggommand. This
uses the $PATH environment variable. Aap will also look in its own directory, because this is where
previously installed programs are sometimes located. Also sepritgsearcitommand and the
program_path(junction.

When the program is not found, the user is asked what is to be done:

Cannot find package "scp"!

1. Let Aap attempt installing the package
2. Retry (install it yourself first)

a. Abort

Choice:

When the user types "1" the automatic install will be invoked. That will be explained below. An
alternative is to install the package yourself. This is useful if you know how to do this or when you don’t
think the automatic mechanism will work. After the package has been installed you can enter "2" and
Aap continues executing the recipe. The last choice is "a", which means you give up and abort executing
the recipe.

In situations where the package name differs from the command name, or there are more complicated
requirements, you can write a check yourself. When a package needs to be instailestalipkg
command can be used to have Aap install the package.

To install a package automatically Aap will download a recipe and execute it. To be able to execute the
recipe in a proper environment a directory is created. On Unix this will be
"~/.aap/packages/{package-name}/". The "boot.aap" recipe is downloaded from the A-A-P web site.
This uses a simple PHP script that selects the recipe to use. Example:

http://www.a-a-p.org/package.php?package=scp&osname=posix

The downloaded recipe contains further instructions for building and/or installing the package. This can
be anything, thus it is very flexible. Usually the recipe finds out what kind of system you are using and
selects another recipe to be used for it. Or it uses the standard package mechanism of your system.

98

Chapter 25. Automatic Package Install

If you are running a BSD system you probably have the BSD ports system installed (if not, you should
install it!). This is a very well maintained system that takes care of installing almost any software you
can think of. The only disadvantage is that you need to be super-user to use it. Aap will ask you if you
want to do this:

The devel/templ port appears to exist.
Do you want to become root and use the port? (y/n)

If you respond with "y" you will be asked to type the root password and Aap will invoke the commands
to build and install the BSD port. If you respond with "n" the generic Unix method will be used (if there
is one).

On MS-Windows it will often be possible to download an executable file. This works without asking
guestions. Since there is no standard directory for executables, they are often placed in the Aap directory.
You might want to move them to a directory in $PATH if you want to use them at the command line.

On generic Unix systems (Posix, Linux) the recipe will attempt to download a source archive, unpack it
and build and install it. This mostly works, but may fail on some systems. You may have to do some
steps manually then, possibly by running "configure" with specific arguments. You can find the
downloaded files in "~/.aap/packages/{package-name}/". The Aap message log "AAPDIR/log" may
contain hints about what went wrong. If you know the solution, please report this to the maintainer of the
recipe, so that it can be made to work automatically.

Adding Support For a Package

To make it possible to automatically install a package at least one recipe needs to be written. This recipe
is placed on the A-A-P website, so that every Aap user can find it without typing a URL. You need to
e-mail this recipe to the maintainer of the A-A-P website: webmaster AT a-a-p.org. Chose the package
name carefully, because it must be unique. Mostly it is the name of the command that was to be
executed, such as "scp" or "cvs".

If there is only one recipe it must take care of all systems. This is useful for a Python module, for
example. Or when you want to redirect to another site where the recipes for this specific package are
stored. Here is an example:

all install:
:execute generic.aap {fetch = http://www.foo.org/recipes/%file%} $build-
target

This recipe redirects everything to another recipe, which is downloaded from the URL specified with the
"fetch" attribute. Note that the "all" and "install" targets are supported. "all" is used to build the package
(as the current user) and "install" to install it (possibly requiring root privileges).

Installing on MS-Windows

For MS-Windows you often have a different method to install a package. Especially when the command
to be installed is available as one executable program. Here is an example for the "scp" command:

Package recipe for SCP on MS-Windows.
Maintainer. Bram Moolenaar <Bram@a-a-p.org >
Last Update: 2003 May 1

99

Chapter 25. Automatic Package Install

install:

We use the scp command from PuTTY, it appears to work well.

For info about PUTTY see:

http://lwww.chiark.greenend.org.uk/~sgtatham/putty/

:print This will install SCP on MS-Windows.

dir = "Global.aap_bindir"

:mkdir {force} $dir

fetch {fetch = http://the.earth.li/~sgtatham/putty/latest/x86/pscp.exe
ftp://ftp.chiark.greenend.org.uk/users/sgtatham/putty-latest/x86/pscp.exe}
$dir/scp.exe

That's all, it doesn't need to be installed.

The actual work is done with onétchcommand. It specifies two locations where the program can be
downloaded. Specifying several locations is useful, because servers may be down or unreachable from
behind a firewall (some companies disable access to ftp servers).

Note the use of "Global.aap_bindir". This is the directory where Aap itself is located with "bin" added.
Putting the executable there avoids asking the user to make a choice. This directory is always searched
for executable commands, it does not have to be in $PATH. Double quotes are used for the case the
directory contains a space (e.g., "C:\Program Files").

Building and Installing on Unix

For Unix things are generally a bit more complicated. The best is to use the package mechanism of the
system. Using a BSD port was mentioned above. Most systems have an equivalent mechanism. When
this is not available you need to fall back to compiling from sources. Here is an example for "cvs":

Package recipe for CVS on Posix.
Maintainer: Bram Moolenaar <Bram@a-a-p.org >
Last Update: 2003 May 1

PREFIX =

name = cvs-1.11.5
tarname = $(name).tar.gz

all install:
There is no check for a BSD port here, because BSD systems should have a
cvs command already.

Ask the prefix before compiling.
@if not _recipe.PREFIX:
@_recipe.use_asroot, _recipe.PREFIX = ask_prefix("cvs")
@if not _recipe.PREFIX:
:error No prefix given

Should use a port recipe for this...
@if buildtarget == "all":

Get the sources and build the executable.
This can be done by an ordinary user.

100

Chapter 25. Automatic Package Install

:print This will build "cvs" on Posix machines.
:update get-tar

:sys tar xfz $tarname

:cd $name

:sys ./configure --prefix=3PREFIX

The GSSAPI stuff breaks the build for me on FreeBSD. If we can find
a solution it can work on other systems..
:cat config.h | :eval re.sub(#define HAVE_GSSAPI\\b’, ”, stdin) >! config.h

'Ssys make
@else:

Install the executable.

This may need to be done by root.

:cd $name

@if _recipe.use_asroot:
Assume the directories already exist...
:asroot make $buildtarget

@else:
:sys make $buildtarget

get-tar {virtual}: $tarname {fetch = http://ftp.cvshome.org/$name/%file%}

Note that this recipe specifically mentions the version "1.11-5". This is a bit unusual. Better is to refer to
the latest stable version. Unfortunately, for CVS the proper link is not available. This means the recipe
has to be updated every time a new stable version is released.

The user has the choice of installing CVS for himself or for everybody on the system. Aap has a build-in
function for this:ask_prefix() When the user is root it will return "1" and "/usr/local/" without asking,
assuming the super-user will want to install for everybody (why else would he be doing this as root?).
Normal users will be asked to make a choice:

Select where to install cvs:

1. become root and install in "/usr/local/"

2. become root and install in specified location
3. install in your home directory "/home/mool/"
4. install in a specified location

a. abort

choice:

It is obvious what the choices will do. The "cvs" recipe then continues to obtain the sources, using
":update get-tar" to allow using a cached file. The archive is unpacked with "tar" and "configure" is run
before invoking "make". This is the standard way how most Unix programs are build.

There is one extra step: While testing the recipe it was discovered that the configuration makes a mistake
and defines "HAVE_GSSAPI", but that doesn’t work. The recipe modifes "config.h" to fix this. This is

not a nice solution, but it makes the building work. This kind of porting would actually better be done in

a separate recipe. And by reporting the problem to the maintainers of the CVS configure script.

When the recipe is invoked with the "install" target the choice to install as root or not is used. This was
stored in "_recipe.use_asroot" to avoid having to make the choice again when invoked a second time (the
recipe is first invoked with "all" to build the program as the current user and then with “install” to do the

101

Chapter 25. Automatic Package Install

actuall install, possibly as super-user). Tasrootcommand passes the command to a separate shell with
root privileges. The user is asked confirmation for every executed command for safety.

Installing a Specific Package

This automatic package installation system is a nice way of installing a program without the need to
know how it's done. You can also use it to install a package directly:

% aap --install scp

This will attempt to install the "scp" package on your system. It works just like when Aap discovered that
the "scp" command was needed for executing a recipe.

Obviously not just any package is available. Quite a few currently, but hopefully this will grow when
people submit their packages. When a package cannot be found you get an error message:

% aap --install foobar

Aap: Creating directory "/home/mool/.aap/packages/foobar"

Aap: Entering directory ‘/home/mool/.aap/packages/foobar’

Aap: Attempting download of "http://www.a-a-p.org/package.php?package=foobar&osname=posix"

Aap: Downloaded "http://www.a-a-p.org/package.php?package=foobar&osname=posix" to "boot.aap"
Aap: Error in recipe "/home/mool/.aap/packages/foobar/boot.aap" line 3: Sorry, package 'foobar’ is not available
%

Cleaning Up

Currently Aap does not delete the files downloaded and generated while installing a package. This is
useful especially when something fails, so that you can read the log file "AAPDIR/log" and/or do part of
the installation manually. But this does mean disk space is used.

In the comments produced while installing the package you can see which directory is used for the files.
This depends on the system and environment variables. It should be one of these:

$HOME/.aap/packages
$HOME/aap/packages
$HOMEDRIVE$HOMEPATH/aap/packages
C:/aap/packages

It is fairly safe to delete the "packages" directory and everything it contains.

In case you are really low on disk space, you might want to check the Aap install directory for any
programs that you no longer want to use. This is only relevant on MS-Windows.

102

Chapter 26. Debugging a Recipe

The log file shows what happened while A-A-P was executing. Often you can figure out what went
wrong by looking at the messages.

The log file is named "AAPDIR/log". It is located in the directory of the main recipe. If you executed aap
again and now want to see the previous log, it is named "AAPDIR/logl". Older logs are
"AAPDIR/log2", "AAPDIR/log3", etc. This goes up to "AAPDIR/log9".

Messages

The kind of messages given can be changed wittMBS&SAGEvariable. It is a comma separated list of
message types for which the message is displayed. Other messages are still written in the log file.

name display message for

all everything

error errors (Aap cannot continue)

warning warnings (things that are wrong but Aap can still continue)
note notes (warnings about things that are probably OK)
depend dependencies, the reasoning about what to build
info general info (file copy/delete, up/downloads)

extra extra info (why something was done)

system system (shell) commands that are executed

result the result of system (shell) commands

changedir changing directories

The command line arguments "-v" and "-s" can be used to make the most often used selections:

Aap argument $SMESSAGE value
(nothing) error,warning,system,info
-V all

--verbose all

-S error

--silent error

Other values can be assigned at the command line. For example, to only see error and dependency
messages:

aap MESSAGE=error,depend (other arguments)

Don't forget that excluding "error" means that no error messages are displayed!

103

Chapter 26. Debugging a Recipe

No matter what messages are displayed, all messages are written in the log file. This can be used
afterwards to see what actually happened.

104

Chapter 27. Differences from make

An Aap recipe has the same structure as a Makefile. But there are many differences. The most important
and unexpected ones are mentioned here.

Build if file does not exist

In a Makefile a dependency with only a target is not executed if the target exists. With Aap the build
commands will be executed in more situations:

« when the build commands were never executed

- when the build commands have changed

For example, this dependency is often used in a Makefile to create a symbolic link when it doesn’t exist
yet:

gvim:
In -s vim gvim

The Aap recipe for this would be:

gvim:
:symlink vim gvim

When running Aap with this recipe for the first time and the "gvim" link already exists, you will get an
error message.

To avoid this problem, set the buildcheck attribute to an empty string:

gvim: {buildcheck=}
:symlink vim gvim

Note: if the symbolic link exists but the file that it points to doesn't exist you still get an error. That's
probably what you want.

Use Of Environment Variables

The "make" program uses all environment variables for variables in the Makefile. This can cause
unexpected results, because you may have a large number of environment variables and some of them
you didn’t set yourself thus don’t even know about them.

Aap does not use environment variables for recipe variables. A few environment variables are explicitly
used. For example, $PATH is used to locate programs. To access an environment variable Python code
must be used. The "0s.environ" dictionary stores them. Example:

Home = ‘os.environ.get("HOME")‘

Note that some systems are case sensitive (e.g., Unix), some systems are not (e.g., MS-Windows).

105

Chapter 27. Differences from make

Signatures Instead Of Timestamps

Make checks for outdated files by comparing timestamps. A target file is considered out-of-date when
it's older than one of the source files. This means that Make will not notice a source file that was changed
back to an older version. And Make has big problems when a source file has a timestamp in the future
(happens when the system clock is turned back for some reason). The target will always be older, thus
Make will build it every time.

The default check for Aap is to use MD5 signatures. This means a target is considered out-of-date if one
of the source files is different from when this target was last build. Additionally, a signature is made for
the build commands. If you change the commands that build the target it will also be considered
out-of-date. Mostly this means Aap will build the target in many more situations.

If you want Aap to use timestamps like Make does, setlBEFAULTCHECK variable to "newer".
Also see theheckattribute, it can be used to change the check for a specific dependency.

106

Chapter 28. Customizing Filetype Detection
and Actions

SeeChapter &or a simple example how to define a new filetype.

Filetype Detection

A-A-P detects the type of a file automatically. This is used to decide what tools can be used for a certain
file.

The detection often uses the name of the file, especially the suffix. Extra suffixes like ".in" and ".gz" are
ignored. Sometimes the contents of the file is inspected. for example, on Unix a shell script is recognized
by "#!/bin/sh" in the first line.

To manually set the file type of an item add the "filetype" attribute. This overrules the automatic
detection. Example:

foo.o : foo.x {filetype = cpp}

Most detection is already built in. If this is not sufficient for your work, filetype detection instructions
can be used to change the way file type detection works. These instructions can either be in a file or
directly in the recipe:

filetype filename
filetype
suffix p pascal
script .*bash$ sh

The advantage of using a file is that it will also be possible to use it when running the filetype detection
as a separate program. The advantage of using the instructions directly in the recipe is that you don’t
have to create another file.

For the syntax of the file s€@éhapter 37

It is sometimes desired to handle a group of files in a different way. For example, to use a different
optimizer setting when compiling C files. An easy way to do this is to give these files a different filetype.
Then define a compile action specifically for this filetype. Example:

:attr {filetype = c_opt} bar.c foo.c
:action compile c_opt

OPTIMIZE = 3

:do compile $source

When you define an action (or a route), Aap checks that the filetypes you use are known filetypes,

i.e. mentioned somewhere infdetypecommand. If you just make up filetypes and use them in actions,
Aap will give you a warning. This helps detect misspellings and the like. However, for the "optimized C"
filetype above, this leads to a warning where you do not want@m@t is a proper filetype in this

context. In order to declare a filetype without giving any rules to detect files of that typeeclase in
a:filetypecommand:

filetype

107

Chapter 28. Customizing Filetype Detection and Actions

declare c_opt

The detected filetypes never contain an underscore. A-A-P knows that the underscore separates the
normal filetype from the additional part. When no action is found for the whole filetype, it is tried by
removing the " " and what comes after it. (This isn’t fully implemented yet!)

Care should be taken that an action should not invoke itself. For example, to always compile "version.c"
when linking a program:

:attr {filetype = my_prog} $TARGET
:action build my_prog object
:do compile {target = version$OBJSUF} version.c
:do build {target = S$target} {filetype = program}
$source version$OBISUF

Without "{filetype = program}" on the :do build" command, the action would invoke itself, since the
filetype for STARGET is "my_prog".

Attributes on source arguments of tit that start with "var_" are passed on to the executed action as
variables. Examples:

:do build foo.c {var_OPTIMIZE = 2}

:attr {var_OPTIMIZE = 2} foo.c
:do build foo.c

In the same way an attribute starting with "add_" is added to a variable. Example:
:do build foo.c {add_DEFINE = -DBIG}

Variable values for the executed action can also be passed by giving an attribute just after the action:
:do build {OPTIMIZE = 2} foo.c

And yet another method is to define a user scope and use this for the action:

s _foo.OPTIMIZE = 4
:do build {scope = s_foo} foo.c

Executing Actions

The user can select how to perform an action for each type of file. For example, the user may specify that
the "view" action on a file of type "html" uses Netscape, and the "edit" action on a "html" file uses Vim.

To start an application:

:do actionname filename

This starts the action "actionname" for file "filename". Variables to be used by the commands can be
specified after the action as attributes:

108

Chapter 28. Customizing Filetype Detection and Actions

:action convert default
:sys convertemd $?arg $source >$target

:do convert {arg = -r} filename

The filetype is automatically detected from the file name(s) and possibly its contents. To overrule the
automatic filetype detection, specify the filetype as an attribute on the file:

:do convert filename {filetype = text}

This changes the filetype of the source file, the input of the action. To change the filetype of the output,
the target of the action, use a "filetype" attribute on the action name:

:do convert {filetype = html} filename {filetype = text}
Multiple filename arguments can be used:
:do action filel file2 file3
For some actions a target can or must be specified. This is done as an attribute on the action name:

:do convert {target = outfile} infilel infile2

Attributes of the input filenames other than "filetype" are not used to select the action that will be
executed.

The "async" attribute can be used to start the application without waiting for it to finish. However, this
only works for system commands and when multi-tasking is possible. Example:

:do email {async} {remove} {to = piet} {subject = done building} logmes-
sage

The "remove" attribute specifies that the files are to be deleted after the command is done, also when it
fails.

When the filetype contains a"_" and no action can be found for it, the search for an action is done with
the part before the "_". This is useful for specifying a variant on a filetype where some commands are
different and the rest is the same.

"action" is usually one of these:

view Look at the file. The "readonly" attribute is normally set, it can be reset to
allow editing.

edit Edit the file.

emalil ENTRYTBL not supported.

build Build the file(s), resulting in a program file. The "target" attribute is needed to
specify the output file.

compile Build the file(s), resulting in object file(s). The "target" attribute may be used

to specify the output file. When "target" is not specified the action may use a
default, usually ‘src2obj(fname)‘. Séere

extract Unpack an archive. Requires the program for unpacking to be available.
Unpacks in the current directory.

109

Chapter 28. Customizing Filetype Detection and Actions

preproc Run the preprocessor on the file. The "target" attribute can be used to specify
the output file. When it is missing the output file name is formed from the
input file name with ‘src2obj(fname, sufname = None)* and then appending

reference Run a cross referencer, creating or updating a symbol database.
strip Strip symbols from a program. Used to make it smaller after installing.
Examples:

:do view COPYRIGHT ({filetype = text}

:do edit configargs.xml

:do email {edit} bugreport

:do build {target = myprog} main.c version.c
:do compile foo.cpp

Default Actions

These are defined in the default.aap recipe.

:action edit default

Uses the environment variable $VISUAL or $EDITOR. Falls back to "vi" for Posix systems or
"notepad" otherwise. You can set the Aap varigdi#®ITORto the editor program to be used.

The {line = 999} attribute can be used to specify a line number to jump to. The {byte = 999}
attribute can be used to jump to a character position in the file.

:action edit gif,jpeg,png

Uses the environment variable $PAINTER. You can set the Aap vaif#MNTERto the image
editor program to be used.

The {line = 999} attribute can be used to specify a line number to jump to. The {byte = 999}
attribute can be used to jump to a character position in the file.

:action depend

The default dependency checker. Works for C and C++ files. Uses gcc when available, because it is
faster and more reliable. Uses an internal function otherwise. This attempts to handle the situation
that a header file doesn’t exist (when it needs to be fetched or build) but that is not fully

implemented yet.

:action view html,xml,php

Uses the environment varial B 8ROWSER Searches a list of known browsers if it's not set.

110

Chapter 28. Customizing Filetype Detection and Actions

:action email default

Uses the environment variable $SMAILER. Falls back to "mail".

:action build default default
Does: ":sys $CC $LDFLAGS $CFLAGS -o $target $source $?LIBS"

:action compile object c,cpp
Does ":sys $CC $SCPPFLAGS $CFLAGS -c -0 $target” $source

:action preproc default c,cpp
Does ":sys $CC $CPPFLAGS -E $source > $target”

Specifying Actions
Applications for an action-filetype pair can be specified with this command:

:action action in-filetype
commands

This associates the commands with action "action" and filetype "“in-filetype". The commands are A-A-P
commands, just like what is used in the build commands in a dependency.

The "in-filetype" is used for the source of the action, the type of the target is undefined. It is also possible
to specify an action for turning a file of one filetype into another filetype. This is likelacommand,
but using filetypes instead of patterns.

:action action out-filetype in-filetype
commands

Actually, specifying an action with one filetype is like using "default" for the out-filetype.

Several variables are set and can be used by the commands:

$fname The first file name of thdocommand.

$source All the file names of thdo command.

$filetype The detected or specified filetype for the input.

$targettype The detected or specified filetype for the output.

$action The name of the action for which the commands are executed.

Furthermore, all attributes of the action are turned into variables. Thus when ":do action {arg = -x} file "
is used, $arg is set to "-x". Example for using an optional "arg" attribute:

:action view foo
:sys fooviewer $?arg $source

In Python code check if the {edit} attribute is specified:

111

Chapter 28. Customizing Filetype Detection and Actions

:action email default
when $subject and/or $to is missing editing is required
@if not globals().get("subject”) or not globals().get("to"):
edit = 1
@if globals().get("edit"):
:do edit $fname
:sys mail -s $subject $to < $fname

"action" and "ftype" can also be a comma-separated list of filetypes. There can’t be any white space
though. Examples:

:action view html,xml,php

'Sys netscape --remote $source
:action edit,view text,c,cpp

:sys vim $source

"filetype" can be "default" to specify an action used when there is no action specifically for the filetype.

Note that the "async" attribute of thedo command may cause th&scommand to work
asynchronously. That is done because the "async" attribute is turned into the "async" variable for the
:actioncommands. If you don’t want a specifisyscommand to work asynchronously, reset "async™:

:action view foo
tt = $?async

async =
:sys foo_prepare
async = $tt

:sys foo $source

However, since two consecutiveyscommands are executed together, this should do the same thing:

:action view foo
:sys foo_prepare
:sys foo $source

Quite often the program to be used depends on whether it is available on the system. For example,
viewing HTML files can be done with netscape, mozilla, konquerer or another browser. We don’t want to
search the system for all kinds of programs when starting, it would make the startup time quite long. And
we don’t want to search each time the action is invoked, the result of the first search can be used. This
construct can be used to achieve this:

BROWSER =
:action view html
@if not _recipe.BROWSER:
progsearch _recipe.BROWSER netscape mozilla konquerer
:sys $_recipe.BROWSER $source

The generic form form :progsearch is:

:progsearch varname progname ...

The "_recipe" scope needs to be used for variables set in the commands and need to be used after the
action is finished.

112

Chapter 28. Customizing Filetype Detection and Actions

The first argument is the variable name to which to assign the resulting program name. When none of the

programs is found an error message is given. Note that shell aliases are not found, only executable
programs.

When the action uses a temporary file, make sure it is deleted even when one of the commands fail. The
Python try/finally construction is ideal for this. Example:

:action filter .pdf .txt

tmp = ‘tempfname()‘

@try:
:sys extract_docs $source >$tmp
:sys docs2pdf $tmp $target

@finally:
:delete $tmp

:print Converted $source to $target

When the ":sys" commands execute without trouble the ":delete" and ":print" commands are executed.
When the first ":sys" commands causes an exception, execution continues with the ":delete" command

and then the exception is handled. Thus the second ":sys" command is skipped and the ":print" command
is not reached.

More examples:
:action compile c,cpp

:sys $CC $CPPFLAGS $CFLAGS -c $source
:action build object

:sys $CC $LDFLAGS $CFLAGS -o $target $source

113

Chapter 29. Customizing Automatic
Depedencies

For various file types A-A-P can scan a source file for header files it includes. This implies that when a
target depends on the source file, it also depends on the header files it includes. For example, a C
language source file uses #include lines to include code from header files. The object file generated from
this C source needs to be rebuilt when one of the header files changes. Thus the inclusing of the header
file has an implied dependency.

Aap defines a series of standard dependency checks. You don't need to do anything to use them.

The filetype used for the dependency check is detected automatically. For files with an ignored suffix like
".in" and ".gz" no dependency checking is done.

To avoid all automatic dependency checks, set the variable "AUTODEPEND" to "off":
AUTODEPEND = off

To avoid automatic dependencies for a specific file, set the attribute "autodepend" to "off":
foo.o : foo.c {autodepend = off}

You can add your own dependency checks. This is done withatttimncommand. Its arguments are
"depend" and the file types for which the check works. A block of commands follows, which is expected
to inspect $source and produce the detected dependencies in $target, which has the form of a
dependency. Example:

:action depend c,cpp
:sys $CC $CFLAGS -MM $source > $target

The build commands are expected to generate a file that specifies the dependency:
foo.o : foo.c foo.h

The first item (before the colon) is ignored. The items after the colon are used as implied dependencies.
The source file itself may appear, this is ignored. Thus these results have the same meaning:

foo.xyz : foo.c foo.h
foo.o : foo.h

Comments starting with "#" are ignored. Line continuation with "\" is supported. Only the first

(continued) line is read.

Aap will take care of executing the dependency check when the source changes or when the command
changes (e.g., the value of $CFLAGS). This can be changed with a "buildcheck" attribute after "depend".

:action depend {buildcheck = $CFLAGS} c
:sys $CC $CFLAGS -MM $source > $target

Aap expects the dependency checker to only inspect the source file. If it recursively inspects the files the
source files include, this must be indicated with a "recursive" attribute. That avoids Aap will take care of
this and do much more work than is required. Example:

114

Chapter 29. Customizing Automatic Depedencies

:action depend {recursive} c,cpp
'sys $CC $CFLAGS -MM $source > $target

115

Chapter 30. Customizing Default Tools

Tools are used to execute actions. Examples are a compiler and a linker. Each tool must be executed with
specific arguments. But the recipe attempts to be portable, thus not include the literal command to be
executed. The mechanism described in this chapter takes care of translating the generic action into
invoking a specific tool with its arguments.

It all starts with an action. Let us use the compile action as an example. In the default recipe a default
compile action is defined. This one works for most compilers that take arguments like the Unix "cc"
command. If another kind of compiler is to be used, the $COMPILE_ACTION variable is set to the
name of the action to be used, for example "compile_msvc". If SCOMPILE_ACTION is set then the
default action will invoke that action instead of using its generic compile command. $BUILD_ACTION
is used for building in a similar way.

During startup the default recipe will check for existence of tools. A specific sequence of tools is
checked for, depending on the platform. Thus in MS-Windows "msvc" will be checked for, while on
Unix this doesn’t happen. This is implemented with a Python module. For msvc it is "tools/msvc.py".

Each tool module defines an exists() function. It contains a check if the tool can be found. Mostly this is
done by looking for a certain executable program. The msvc tool searches for "cl" (the compiler) and
"vevars32" (a command to start using the MSVC command line tools).

If a tool is detected, the actions for it are defined. This is always done, also when another tool was
already detected. This allows the user to invoke specific actions or switch toolchain where he wants to.
For MSVC the "compile_msvc" action is defined. That is like the normal "compile" action but with
MSVC specific arguments.

The first tool that is detected will be used by default. The use_actions() function of the tool is invoked,
which sets a number of variables, such as $COMPILE_ACTION, to the name of the action to be used.
As mentioned above, the result will be that the generic actions will invoke the tool-specific action.

Adding A New Tool

You need to write a Python module and place it in the "tools" directory. Copy one of the existing tool
files to start with. Then make changes to the functions:

exists()

Return True if the tool can be located. This is mostly done by simply checking for an executable
program with thggrogram_path(junction. But you might do something more complicated, such as
running the program with a "--version" argument and check the output.

define_actions()

Define the actions that this tool can accomplish. Each action name should be formed from the basic
action name with "_toolname" appended. Thus a compile action for the MSVC compiler uses the
action name "compile_msvc". You can define this action for several file types.

The action usually supports using variables, so that the user can modify them in a recipe. Some
variables are generic and can be used by all tools, such as $CFLAGS. Your tool may need to

116

Chapter 30. Customizing Default Tools

translate it from the generic form to the tool-specific argument. For example, if $DEFINE contains
"-DFOO=fo0" you might have to translate this to "/D:FOO=foo".

You can also support specific variables for your tool. For example $MSVC is used to specify the
name of the compiler. You give it a default value in the toplevel scope, but only when the user didn'’t
do that already. The toplevel scope can be obtained from the Global module: "Global.globals".

use_actions(scope)

This function is called when the actions of the tool will be used as the default actions in "scope”.
When the tool is the first one found it will be called from the startup code. But the user may also use
this to select a specific tool to be used in one recipe, or even one dependency.

Using A Specific Tool

The:usetoolcommand can be used to specify a specific tool to be used in the current scope. When used
in the toplevel recipe the tool becomes the default tool. When used in a child recipe the tool will be used
in that recipe or by all actions invoked there. It can also be used in build commands, the tool will be used
by invoked actions and dependencies.

Example:
:usetool mingw
:update prog_A

:usetool msvc
:update prog_B

This actually works by defining the tool-specific actions and defining variables such as
$COMPILE_ACTION in the current scope.

117

l1l. Reference Manual

Chapter 31. Aap Command Line Arguments

Three Kinds Of Arguments

aap [option]... [assignment]... [target]...
The order of arguments is irrelevant. Options are explained in the next section.

Assignments take the form "VAR=value". This works just like putting this at the top of the main recipe
used. But the shell used to start Aap may require escaping special characters, such as spaces. Putting the
argument in double quotes often works (but not always).

Targets specify what needs to be done. If no target is given, one of the targets in the recipe is executed,
see Recipe Execution Details

Options

An option must appear only once, except for the ones that are noted to be allowed multiple times.

-a

--nocache
For a remote file, don’t use a cached copy. Download it once for this invocation. Note that the file
may be downloaded anyway, because it is not always possible to check if the cached copy is still
valid. Use the {usecache} or {constant} attribute on a file to use the cached version whenever
possible, sedetch

-c command

--command command

After reading the recipe, executemmand. May appear several times, all the commands are
executed.

Commands to be executed can be specified on the command line. This is useful, for example, to
fetch individual files:

aap -c "fetch main.c"
aap -c ":commit common.h"

Since the recipe is first read (and all child recipes), the attributes that are given to "main.c" will be
used for fetching.

119

--changed file

-C
--contents

-d flags
--debug flags

Chapter 31. Aap Command Line Arguments

The commands are executed before updating targets. When no target is specified nothing is built,
only the specified commands are executed. But the toplevel commands in the recipe are always
executed, before executing the command arguments.

Keep in mind that the shell must not change the argument, use single quotes to avoid $VAR to be
expanded by the shell:

aap -c print $SOURCE’

The filefile is considered changed, no matter whether it was really changed. Targets build from
file will also be considered changed, recursively.

Similar to the recipe commandhangedile

Only take action when file contents was changed, not when build commands or attributes changed.

For normal dependencies the buildcheck is ignored. This means that the build commands can be
changed without causing them to be executed. The commands are executed anyway when one of the
sources is out-of-date.

For publishing the "publish" attribute is ignored. The file is still published when its contents
changed since the last time it was published to any destination, or if it was never published.

The signatures are updated as usual (unless --nobuild is used as well). Thus the new buildcheck and
"publish" attribute are stored. This is useful if the buildcheck or "publish" argument changed in a
way that you know does not require building or publishing.

Switch on debugging foitags . Not implemented yet.

120

Chapter 31. Aap Command Line Arguments

-f file
--recipe file
Specify the main recipe to read. When an URL is used the recipe is downloaded to the current
directory before it is used. The name is the last part of the path. If it already exists the user is asked
whether it should be overwritten. Example:
cd /usr/local/share/vim/vim62/runtime
aap -f ftp://ftp.vim.org/pub/vim/runtime/main.aap
When the file is "NONE" no recipe is read. This is useful when only a command is to be executed.
Example:
aap -f NONE -c ":print $AAP’
-F
--force
Force rebuilding everything. That a target is already up-to-date is ignored.
-h
--help
Print a help message and exit. Does not read a recipe.
-I directory

--include directory

Add a directory to search for included recipes. This option may appear multiple times.

--install package

Install the packagpackage . Only works for those packages that are supported, such as "cvs" and

rep".

Does not read a recipe in the usual way, only the specified package is installed.

121

Chapter 31. Aap Command Line Arguments

-j number
--jobs number

Maximum number of parallel jobs. Not implemented yet.

-k
--continue
Continue after encountering an error.
When an error is detected in a block of build commands, the execution of that block is aborted.
Building continues for other targets, but a target that depends on a target that failed to build will not
be build.
To continue execution after an error in the same block of commands use the Python ":try"
statement. Example:
@try:
:print this is an S$error
@except UserError, e:
:print caught error: ‘str(e)"
Not fully implemented, still stops at some errors. Careful: When an error has side effects strange
things may happen.
-l
--local
Do not recurse into subdirectories. Only applies to "add" and "remove" targets on the command
line. Also for "revise" for its remove action.
-n
--nobuild

Only print messages about what will be done, don’t execute build rules. Commands at the toplevel
and commands to discover dependencies are executed, but system commands, commands that
download, upload, write or delete files and version control commands are skipped.

Note: since no files are downloadedhild commands won't work for not existing recipes.

122

Chapter 31. Aap Command Line Arguments

-N
--nofetch-recipe

Do not fetch recipes when using the "fetch" and "update" targets. Useful if the current recipe is to
be used while files must be fetched.

--profile file
Profile the execution of A-A-P and write the resultdile . This file can then be examined with
the standard Python module "pstats". The PrintProfile.py script can be used for this (it is located
with the other Aap modules).

-R

--fetch-recipe

Fetch the recipe and child recipes. This is impled by using a "refresh", "fetch" or "update" target,
unless "--nofetch-recipe" is used.

-S

--stop
Stop building after encountering an error. This is the default, thus this option has no effect. Also see
--continue

-S

--silent
Print less information, seeMESSAGE

-t

--touch

Update signatures on targets without executing build commands. After doing this the specified
targets and intermediate results are considered up-to-date.

Commands at the toplevel will be executed, except system commands, commands that write a file
and version control commands.

123

-u

--up
--search-up

-V
--version

-V
--verbose

Chapter 31. Aap Command Line Arguments

Search the directory tree upwards for the main.aap recipe. Useful when in a sub-directory of a large
project, where the main.aap recipe is an unknown number of directory levels upwards.

Print version information and exit. Does not read a recipe.

Print more information, sSeBMESSAGE

End of options, only targets and assignments follow. Use this when a target starts with a "-".

124

Chapter 32. Recipe Syntax

This defines the recipe syntax. It is not very strict, but you should be able to understand what is allowed
and what isn't.

The intention is that recipes are always encoded in UTF-8. Currently this is not fully supported yet.
US-ASCII works in any case.

Table 32-1. Notation

| separates alternatives

0 grouping a sequence of items or alternatives

I optional items (also does grouping)

contains literal text; """ is one double quote
indicates the preceding item or group can be

repeated
EOL an end-of-line, optionally preceded by a comment
INDENT an amount of white space, at least one space
INDENT2 an amount of white space, at least one space more
than INDENT

A comment starts with "#" and continues until the end-of-line. It continues in the next line if the last
character in the line is a backslash. A comment may appear where white space may appear, but not inside
quotes.

comment \
continued comment
another comment

White space may be inserted in between items. It is often ignored, but does have a meaning in a few
places.

Line continuation may be done with a backslash immediately before an end-of-line. It is not needed for
items that use extra indent to indicate that it continues on the next line.

The backslash can be also used for line continuation in Python commands. A leading @ char and white
space before it is removed. Example:

@ python command \
@ continued python command \
still continued

When lines are joined because a command continues in a line with more indent, the line break and
leading white space of the next line are replaced with a single space. An exception is when the line ends
in "$BR": The $BR is removed, the line break is inserted in the text and leading white space of the next
line is removed.

All indent is computed with a tabstop setting of eight spaces.

125

Chapter 32. Recipe Syntax

For items that have a build_block, the start of the build block is the line with the smallest indent that is
larger than the indent of the line that started the item. The lines before this are continuation lines of the
command itself. Example:

mytarget : sourcel
source2 # continuation line of dependency

:print $source # first line of the build block
something # continuation line of :print command

aapfile 2= ([aap_item]EOL) ...
aap_item == dependency | rule | variant | toplevel command | build_command
dependency = targets":"[attribute ...][sources] [EOL build_block]
targets = item_list
sources n= item_list
build_block = INDENT build_command [EOL [INDENT build_command]] ...
rule u= :rule[attribute ...] pattern ... ":" [attribute ...] pattern ... [EOL build_block]
variant = ":.variant"variable_name (EOL variant_item) ...
variant_item = INDENT varvalue EOL INDENT?2 build_block
toplevel_command = child_command | clearrules_command | delrule_command | dll_command | lib_

recipe_command | route_command | rule_command | totype_command | variant_

build_command = assignment | block_assignment | python_item | generic_command

assignment = variable_name ["$"] ("="|"+="|"?=") item_list

block_assignment = variable_name ["$"][€<&" | "+<<" | "?<<") marker (EOL item_list) ... EOL [INI
python_item = python_line | python_block

python_line = "@" python_command

python_block = "python"EOL (INDENT python_command EOL) ...

generic_command n= " command_name [command_argument]

An item_list can contain white-separated items and Python style expressions.

item_list = item[white_spaceitem] ...
item = simple_item [attribute ...]
simple_item = (expression | non_white_item) ...

126

attribute
expression
string_expr
python_expr
non_white_item
variable_reference
expand_type
variable_ext_name

variable__name,
attribute_name

scope_name
user_scope_name

Chapter 32

"{" attribute_name ["="item_list] "}"
string_expr | python_expr
" text "™ | " text "
""" python-expression "
non-white-text | variable_reference
"$" [expand_type] ... (variable_ext_name | "(" var
AN B B B B R B B
[scope_name "."] variable_name ["[" index "]"]
ascii-letter [ascii-letter | ascii-number | " "] ...

. Recipe Syntax

iable_ext_name ")" | "{" varial

("_no"|" _stack"|" tree"|" up"|" _recipe"|" _top"|" default"|" start"|" pare

ascii-letter [ascii-letter | ascii-number | "_"] ...

127

Chapter 33. Variables and Scopes

Using Variables

A variable value is normally a string. The meaning of the value depends on where it is used. For
example, "*" is interpreted as a wildcard when a variable is used where a file name is expected. Thus the
wildcard is not expanded in the assignment. If you need it, Bglaon expressioto expand wildcards.

When using Python you can assign any type of value to a variable. Only a few types are supported for
variables used in Aap commands:

String
Integer or Long converted to a string
ExpandVar object used for delayed expansion of variables

In Python code the ExpandVar object needs to be expanded before you can use the value it contains. Use
thevar2string()function for that.

Normally using $VAR gets what you want. Aap will use the kind of quoting expected and add attributes
when needed. This depends on the place where the variable is used. However, when you want something
else, this can be specified:

$var depends on where it's used

$?var when the variable is not set or defined use an empty string instead of generating an
error

$-var without attributes (may collapse white space)

$+var with attributes

$*var use rc-style expansion (may collapse white space)

$=var no quotes or backslashes

$var aap quoted (using ' and/or " where required, no backslashes)

$"var quoted with " (doubled for a literal ")

$\ar special characters escaped with a backslash

$lvar depends on the shell, either like $'var or $"var

In most places $var is expanded as $+'var (with attributes, using ' and " for quoting). The exceptions are:

128

Chapter 33. Variables and Scopes

'Sys $-lvar no attributes, shell quoting
$nin $(v[$n]) $-=var no attributes, no quoting
.del $-'var no attributes, normal quoting

The quoted variables don’t handle the backslash as a special character. This is useful for MS-Windows
file names. Example:

prog : "dir\file 1.c"
:print. $’'source

Results in: "dir\file 1.c"

Be careful with using "$\var" and quotes, you may not always get what you wanted.

RC-style expansion

RC-style expansion means that each item in a variable is concatenated to the item immediately before
and after the variable. Example:

var = one two three
:print dir/$*var

Results in:
dir/one dir/two dir/three

For the expansion the variable is used as a list of white-separated items. Quotes can be used to include
white space in an item. Use double quotes around a single quote and single quotes around a double
guote. Escaping the meaning of quotes with a backslash is not supported.

When concatenating variables and using rc-style expansion, the attributes of the last variable overrule the
identical attributes of a previous one.

vl = foo {check = 1}
v2 = bar {check = 2}
w = $*v1$v2

Is equivalent to:

v = foobar{check = 1}{check = 2}

When using rc-style expansion, quotes will not be kept as they are, but removed and re-inserted where
used or necessary. Example:

foo: "file 1.c" foo.c
:print "dir/$*source”

Results in:

"dir/file 1.c" "dir/foo.c"

129

Chapter 33. Variables and Scopes

Variable Indexing

To get one item out of a variable that is a list of items, use an index number in square brackets.
Parenthesis or curly braces must be used around the variable name and the index. The first item is
indexed with zero. Example:

BAR = beer coffee cola
:print. $(BAR[0])

BAR_ONE = $(BAR[2])
:print $BAR_ONE

Results in:

beer
cola

Using an index for which no item exists gives an empty result. When $SMESSAGE includes "warning" a
message is printed about this.

Using Scopes

A dot is considered part of the variable name. It separates the scope name from the variable name within
that scope. However, a trailing dot is not part of the variable name, so that this works:

:print $result. # print the result

In Python code you need to explicitly specify the scope name. When no scope name is given only the
local scope is used. To get the equivalent of an Aap command that does not specify a scope, you need to
use the "_no" scope in Python. The same example as above but now with a Python expression looks like
this:

:print ‘_no.result'. # print the result

Predefined Scopes

Aap defines a scope for each recipe and each block of commands.

A user may also define a specific scope, see below. These scope names must start with an alphabetical
name. Scope hames starting with an underscore are used for predefined scopes.

Each time a block of commands is executed a new scope is created. Thus when executing the commands
for a dependency a second time, its scope will not contain items from the first time.

A variable may exist in several scopes with a different value. To specify which scope is to be used, a
scope name is prepended before the variable name, using a dot to separate the two.

These scope specifiers can be used to access a specific scope:

130

Chapter 33. Variables and Scopes

_recipe The current recipe. Useful in build commands that are defined in the recipe.

_top The toplevel recipe. This can be regarded as the global scope.

_default The scope of default values, after the defaults settings have been done, but before
reading user or system startup recipes. Cannot be used in the recipe that sets the default
settings.

_start The scope of startup values, as it was before reading the toplevel recipe. Cannot be
used in the recipe that sets the default settings and in the startup recipes.

_arg The scope of variables set on the command line. Can be used to obtain the values set

when Aap was executed or arguments of :#ecutecommand. Although the scope is
writable, thus you can mess it up...

_parent The parent recipe. Only valid in a child recipe.

_caller The scope of the command block that invoked the current command block. Can only
be used in command blocks of dependencies, rules and actions.

These scope specifiers can be used to search scopes to find a variable. The first scope in which the
variable exists is used.

_no No scope, equal to leaving out the scope specifier in recipe commands, but required in
Python commands. First looks in the current scope, then"_stack” and then"_tree".
_stack Uses the scope of the command block that invoked the current scope, the command

blocks that invoked that scope, and further up the call stack. Excludes the toplevel. Can
only be used in command blocks of dependencies, rules and actions.

_tree Uses the scope of the current recipe, its parent, the parent of its parent, etc., up to the
toplevel. In the toplevel recipe it is equal to "_top".
_up First uses "_stack" and then "_tree", but excludes the current scope.

These are the scopes searched for a variable with the "_up" scope when it is used in a build command
block:

1. Invoking command blocks The scope of the command block that invoked the current command
block with a:do command;updatecommand or because of a dependency. Then the scope of the
command block that invoked that command block, and so on. This excludes the toplevel.

2. The recipe in which the command block was defined.

3. Parent of the recipe in which the command block was defined. This goes on until and including the
toplevel.

This is used both for reading a variable and assigning a new value. It is an error when assigning a new
value to a variable that does not exist.

The " _no" scope is used for a variable in recipe commands without a specified scope. Thus these two are
equivalent:

:print $foobar

131

Chapter 33. Variables and Scopes

:print $_no.foobar

But in Python commands a variable without a specified scope is always in the local scope. You must use
" no" to get the same effect:

foo = $bar # finds "bar" in local or " _up" scope
@foo = bar # finds "bar" in local scope only
@foo = _no.bar # finds "bar" in local or "_up" scope

When reading a variable with the "_no" scope it is first looked up in the local scope. If it does not exist,
the" stack"and"_tree" scopes are used, as explained above.

When writing a variable without a specified scope it is always put in the local scope. A specific situation
where this may lead to an unexpected result is appending:

foo += something

This is equivalent to:

foo = $foo something

This obtains the value of "foo" from the first scope where it is defined, but it is set in the current scope.
To change the variable where it is defined use the "_no" scope explicitly:

_no.foo += something

User Scopes
The user can define a new scope by assigning a value to a variable, using the scope name:
s_debug.foo = xxx
This creates the scope "s_debug" if it didn’t exist yet. The variable "foo" within that scope is assigned the

value "xxx".

The scope name must start with an alphabetic character. Following characters may be letters, digits and
the underscore.

A user defined scope is only used when explicitly specified. The "_no" and "_up" scopes do not use it.

The scope can be accessed from everywhere, except recipes that create a new toplevel scope have their
own set of user defined scopes. That is when usrgcuteor ":child {nopass}". ":execute {pass}" and
:child do share the user scopes.

There cannot be a scope name and a variable with the same name. This applies to variables in ALL
scopes! Thus when you have a scope "foo" in one place, you cannot use the variable "foo" anywhere
else. The only exception is that you can use the variable "foo" in scopes that have been abandoned when
the user scope "foo" is created, but that is tricky.

Recommendation: Let user scope names start with 's_

A user scope can be specified for a dependency:

s _foo.OPTIMIZE = 4

132

Chapter 33. Variables and Scopes
foo : {scope = s_foo} foo.c

:do build $source

A user scope can be specified for a rule:

rule %.a : {scope = s_aaa} %.b

A user scope can be specified for an action:

:do foobar {scope = s_some} foo.bar

Variables In Build Commands

A dependency and a rule can have a list of commands. For these commands the following variables are

available:

$source The list of input files as a string.

$source_list The list of input files as a Python list.

$source_dl Only for use in Python commands: A list of dictionaries, each input item is
one entry.

$depend The list of dependencies (source files plus virtual dependencies) as a string.

$depend_list The list of dependencies (source files plus virtual dependencies) as a Python
list.

$depend_dl Only for use in Python commands: A list of dictionaries, each dependency
item is one entry.

$target The list of output files as a string.

$target_list The list of output files as a Python list.

$target_dl Only for use in Python commands: A list of dictionaries, each output item is

$buildtarget

$match

Example:

one entry.

The name of the target for which the commands are executed. It is one of the
items in $target.

For a rule: the string that matched with %

doit {virtual}:
:print building $target
prog : "main file.c" doit
:print building $target from $source

Results in:

133

Chapter 33. Variables and Scopes

building doit{virtual=1}
building prog from "main file.c"

Note that quoting of expanded $var depends on the command used.

The Python lists $source_list and $target_list can be used to loop over each item. Example:

$OUT : foo.txt
@for item in target_list:
print $source > $item

Note the difference between $source and $depend: $source only contains real files, $depend also
contains virtual dependencies.

The list of dictionaries can be used to access the attributes of each item. Each dictionary has an entry
"name", which is the (file) name of the item. Other entries are attributes. Example:

prog : file.c {check = md5}
@print sourcelist[0]["'name"], sourcelist[0]["check"]

Results in: file.c md5

134

Chapter 34. Common Variables

This is a complete list of the variables that are currently used inside Aap, except the variables specifically
used for porting, se€hapter 2Zor that.

This list will be extended when more features are being added. To avoid the problem that your own
variables interfere with the use of common Aap variables, do not use variable names with only upper
case letters. Suggested scheme:

Table 34-1. Naming scheme for variables

$STANDARD_VARIABLE global variable defined by Aap
$YourVariable global variable used in your recipe(s)
$local_variable local variable used in build commands

The following table lists the predefined variables. These types are used:

Aap set by Aap and mostly not changed by the user

conf set depending on the configuration of the system, may be modified by the user

user set by the user

auto value updated when using commands (ggpgram), may also be appended to by
the user

Table 34-2. Standard Variables

name type description

$# Aap A single #. OBS
$$ Aap Assingle $. OBS
$AAP Aap Command that
$AAPVERSION Aap Version numbe
$AR conf Name of archiv
$ARFLAGS user Arguments for
$BDIR conf Directory to wri
$BR Aap A line break.
$BROWSER conf HTML browser
$BUILD_ACTION conf When not empt
$CACHEPATH conf List of directori
$CACHEUPDATE user Timeout after v
$CC conf Command to e
$CFLAGS user Arguments alw

135

Chapter 34. Common Variables

name type description
$CHILDDIR Aap In a child recipe
$CLEANDIRS auto Names of direc
$CLEANFILES auto Names of files
$CLEANMOREDIRS user Names of direc
$CLEANMOREFILES user Names of files
$COMPILE_ACTION conf When not empf
$CONFDIR Aap Sub-directory ti
$CONFMODE Aap Mode to use fo
$CPPFLAGS user Arguments for
$CVS conf Cvs program tc
$CXX conf Command for ¢
SCXXFLAGS user Arguments alw
$DATADIR Aap Sub-directory tc
$DATAMODE Aap Mode to use for
$DATESTR Aap Date as a string
$DEBUG user The kind of del
$DEFAULTCHECK Aap Check to use w
$DEFINE user Preprocessor ¢
$DISTDIRS Aap Names of direc
$DISTFILES auto Names of files
$DLLCFLAGS user Extra argumen
$DLLCXXFLAGS user Extra argumen
$DLLDIR Aap Sub-directory tc
$DLLMODE Aap Mode to use for
$DLLOBJSUF Aap Suffix for an ob
$DLLPRE conf Prefix for a dyn
$DLLSUF conf Suffix for a dyn:
$EDITOR conf Editor to be use
$EXECDIR Aap Sub-directory t
$EXECMODE Aap Mode to use fo
SEXESUF conf Suffix for an ex
$GMTIME Aap Time in second
$INCLUDE user Directories to fi
$INCLUDEDIR Aap Sub-directory tc
$INCLUDEMODE Aap Mode to use fol
$INFODIR Aap Sub-directory t
$INFOMODE Aap Mode to use fol
$LD conf Command to e»
$LDFLAGS user Arguments for
SLEX Aap Program to turn

136

name
$LEXFLAGS
$SLEXPP
$LEXPPFLAGS
$LIBDIR
$LIBMODE
$LIBOBJISUF
$LIBPRE
$LIBS
$LIBSUF
$LIBTOOL
$LNKSUF
$LOGENTRY
$LTOBISUF
$LTLIBPRE
$LTLIBS
$LTLIBSUF
$MANDIR
$MANMODE
$MESSAGE
$OBJISUF
$OPTIMIZE
$OSTYPE
$PAINTER
$RANLIB
$RANLIBFLAGS
$RCP
$RECIPEVERSION
$RSYNC
$SBINDIR
$SCP
$SHLINK
$SHLINKFLAGS
$SOURCE
$STRIP
$STRIPFLAGS
$TARGET
$TARGETARG
$TIMESTR
$TOPDIR
$USECXXLD

type
user
Aap
user
Aap
Aap
conf
conf
user
conf
conf
conf
user
conf
conf
user
conf
Aap
Aap
user
Aap
user
Aap
conf
conf
user
conf
user
user
Aap
user
conf
user
user
conf
user
user
Aap
Aap
Aap
Aap

Chapter 34. Common Variables

description

137

Flags for $LEX
Program to turr
Flags for $LEX
Sub-directory tc
Mode to use for
Suffix for an ob
Prefix for static
Arguments for |
Suffix for a stat
Actual name of
Suffix for a (syn
Default messal
Suffix for an ok
Prefix for libtoo
Arguments for |
Suffix for a libto
Sub-directory tc
Mode to use for
Comma separ:
Suffix for an ok
A number from
Type of operatil
Graphical edito
Program to run
Arguments for .
Remote copy p
Version of A-A
Remote sync
Sub-directory t
Secure copy p
Name of linker
Arguments for
List of source
Program to run
Arguments for
List of target fil
Target(s) speci
Time as a string
In a child recipe
When set to "ye

name
$VERSIONSTR
$YACC
$YACCFLAGS
$YACCPP
$YACCPPFLAGS
$bhar

$br

$empty

$at

St

$pipe

type
Aap
conf
user
Aap
user
Aap
Aap
Aap
Aap
Aap
Aap

Chapter 34. Common Variables

description

Version of A-A.
Program to turn
Flags for $YAC
Program to turi
Flags for $YAC
A single |. OBS
A line break. Ol
Empty. Can be
A single>. OBS
A single<. OBS
A single |. OBS

138

Chapter 35. Assignments

Assignment
overview:
var = value assign
var += value append (assign if not set yet)
var ?= value assign only when not set yet
var $= value assign, evaluate when used
var $+= value append, evaluate when used
var $?=value assign only when not set, evaluate when used

Assignment with "+=" or "$+=" appends the argument as a separate item. This is actually done by
inserting a space. But when the variable wasn'’t set yet and when it is empty it works like a normal
assignment:

VAR += something
is equal to:
@if globals().get("_no.VAR"):
@ VAR = noVAR + " " + "something"

@else:
@ VAR = "something"

Assignment with "?=" only does the assignment when the variable wasn't set yet. A variable that was set
to an empty string also counts as being set. Thus when using "aap VAR="the empty value overrules the
value set with "?=".

VAR ?= something
is equal to:

@if not globals().has_key("_no.VAR"):
VAR = something

When using "$=", "$+=" or "$?=" variables in the argument are not evaluated at the time of assignment,
but this is done when the variable is used. The expansion is done in the scope where it is used, thus the
result may depend on when and where the variable is used..

VAR =1
TT $= $VAR
VAR = 2
print $TT

prints "2".

139

Chapter 35. Assignments

A variable with delayed evaluation cannot be used directly in Python code, because it is set the the class
ExpandVar. See thear2string()function for expanding the variable in Python code.

When first setting a variable with "$=" and later appending with "+=" the evaluation is done before the
new value is appended:

VAR =1
TT $= $VAR
TT += 2
VAR = 3
print $TT

prints "1 2"

Note that evaluating a python expressions in “ is not postponed.

Block Assignment

The normal assignment command uses a single line of text. When broken into several lines they are
joined together, just like with other commands. $BR can be used to insert a line break. Example:

foo = first line$BR
second line$BR
third line $BR

The block assignment keeps the line breaks as they are. The same example but using a block assignment:

foo << EOF
first line
second line
third line
EOF

The generic format is:

{var} << {term}

linel

{term}
{term} can be any string without white space. The block ends when {term} is found in a line by itself,
optionally preceded by white space and followed by white space and a comment.

The amount of indent to be removed from all the lines is set by the first line. When the first line should
start with white space use $().

All the variations of the assignment command can be used:

var << term assign

var +<< term append (assign if not set yet)
var << term only assign when not set yet
var $<< term evaluate when used

140

Chapter 35. Assignments

var $+<< term append, evaluate when used
var $x < term only when not set, evaluate when used

141

Chapter 36. Attributes

Attributes can be added to an item with tla¢tr command and by using them in a dependency or rule.
Note that an assignment does not directly associate the attribute with a node. This only happens when the
variable is used in arattrcommand or a dependency.

The form for an attribute is:

{name = value}

"value" is expanded like other items, with the addition that "}" cannot appear outside of quotes.

This form is also possible and uses the default value of 1:
{name}
Examples:

bar : thatfile {check = $MYCHECK}
foo {virtual} : somefile

The "virtual" attribute is used for targets that don't exist (as file or directory) but are used for selecting
the dependency to be built. These targets have the "virtual" attribute set by default:

Table 36-1. Virtual Targets

Target Commonly used for

all build the default targets

clean remove generated files that are not distributed (added automatically)
cleanmore remove all generated files (added automatically)

cleanALL remove all generated files, AAPDIR and build-* directories below the

toplevel recipe

test run tests

check same as "test"

install build and install for use (added automatically)
uninstall uninstall for use (added automatically)

tryout build and install for trying out

reference generate or update the cross-reference database
fetch obtain the latest version of each file

update fetch and build the default targets

checkout checkout (and lock) from version control system

142

Chapter 36. Attributes

Target Commonly used for

commit commit changes to VCS without unlocking

checkin checkin and unlock to VCS

unlock unlock files from a VCS

add add new files to VCS

remove remove deleted files from VCS

revise like checkin + remove

tag add a tag to the current version

prepare prepare for publishing (generated docs but no exe)
publish distribute all files for the current version

finally always executed last (using "aap finally" is uncommon)

The targets marked with "(added automatically)" will be added by Aap if they are not present. This is
done for the toplevel and each child recipe.

These specific targets may have multiple build commands. They are all executed to update the virtual
target. Normally there is up to one target in each (child) recipe.

Note that virtual targets are not related to a specific directory. Make sure no other item in this recipe or
any child recipe has the same name as the virtual target to avoid confusion. Specifically using a directory
"test” while there also is a virtual target "test". Name the directory "testdir" to avoid confusion.

The "comment" attribute can be used for targets that are to be specified at the command line. "aap
comment" will show them.

% aap comment
target "all": build everything
target "foo": link the program

Sticky Attributes

When attributes are used in a rule or dependency, most of them are only used for that dependency. But
some attributes are "sticky": Once used for an item they are used everywhere for that item. Sticky
attributes are:

Table 36-2. Sticky attributes

virtual virtual target, not a file

remember virtual target that is remembered
directory item is a directory

filetype type of file

143

Chapter 36. Attributes

constant file contents never changes

fetch list of locations where to fetch from (first one that works is used)

commit list of locations for VCS

publish list of locations to publish to (they are all used)

force rebuild a target always

depdir directory to put an automatically generated dependency file in; when omitted $BDIR is
used

var_BDIR directory to put the related object or generated file in; when omitted $BDIR is used

signfile file used to store signatures for this target

The check attribute

The check attribute is used to specify what kind of signature is used for an item.

The default check for a file that was changed is an md5 checksum. Each time a recipe is executed the
checksums for the relevant items are computed and stored in the file "AAPDIR/sign". The next time the
recipe is executed the current and the old checksums are compared. When they are different, the build
commands are executed. This means that when you put back an old version of a file, rebuilding will take
place even though the timestamp of the source might be older than the target.

Another check can be specified with {check = nhame}, where "name" is the kind of check. Example:

foo.txt : foo.db {check = time}
:sys db_extract $source >$target

The default check is "md5". This is specified with the $SDEFAULTCHECK variable. You can set this
variable to "time" or "newer" to use timestamps instead of md5 signatures. The value of
$DEFAULTCHECK is used when a node does not have a "check" attribute.

Table 36-3. supported check attribute values

time Build the target when the timestamp of the source differs from the last time the target
was built.

newer Build the target if its timestamp is older than the timestamp of the source. This is what
the good old "make" program uses.

md5 Build the target if the md5 checksum of the source differs from the last time the target
was built. This is the default.

¢_md5 Like "md5", but ignore changes in comments and amount of white space. Appropriate
for C programs. Slows down computations considerably.

none Don’t check time or contents, only existence. Used for directories.

When mixing "newer" with other methods, the build rules are executed if the target is older than the
source with the "newer" check, or when one of the signatures for the other items differs.

144

Chapter 36. Attributes

The "AAPDIR/sign" file is normally stored in the directory of the target. This means it will be found

even when using several recipes that produce the same target. But for targets that get installed in system
directories (use an absolute path), virtual targets and remote targets this is avoided. For these targets the
"AAPDIR/sign" file is stored in the directory of the recipe that specifies how to build the target.

To overrule the directory where the "sign" file is written, use the attribute {signdirectory = name} for the
target. To overrule the file where the signatures are written, use the attribute {signfile = name} for the
target. "name" cannot end in "sign".

Handling Circular Dependencies

Two attributes can be used to handle circular dependencies:

update Can be set to "no" to avoid updating a source that a target depends on.
recursive Can be set to a number, which indicates the maximum recursive depth allowed.

The use can best be illustrated with an example:

:attr {recursive = 3} index file.out

index: file.out {update = no}
Get the current checksum for the index file.
@sum = get_md5("index")

Generate the new index file from the output file.
:system wec file.out >$target

Update the output file if the index file changed.
@if sum != get_md5("index"):
:update file.out

file.out: file.in index {update = no}
Make sure index exists.
@if not os.path.exists("index"):
print empty > index

Generate the output file.
:cat $source >! $target

Need to generate the index file again.
:update index

all: file.out

The goal is to produce the file "file.out". It is created from "test.in” and "index". The "index" is created
from "file.out", which includes the "index" file, thus a circular dependency exists. The idea is to repeat
generating "file.out" until it no longer changes.

145

Chapter 36. Attributes

The "recursive" attribute is set to 3 for "index" and "file.out". This allows rebuilding "file.out" three times
before giving up.

In the first dependency the "{update = no}" attribute is used to avoid updating "file.out". The build
commands first update the "index" file before usimgdateto update "file.out". But this is only done

when the index file has changed. That is where the circular dependency stops: When the generated index
file no longer changes.

In the second dependency a similar thing is done: The "index" file is not updated before executing the
build commands but as part of the build commands.

146

Chapter 37. Filetype detection

The filetype detection module basically takes a file name and returns the type of the file.

The A-A-P filetype detection is a separate module. You can use the filetype detection in recipes, as a
standalone program and from any Python program.

A filetype name is made of lowercase ASCII letters and digits: a-z and 0-9.

The Program
Usage:

Filetype.py [-I ruledir] ... [-f rulefile] ... filename

This will print the filetype of "filename" on stdout. When the type could not be detected the result is the
string "None".

The "-I ruledir" argument can be used to specify a directory to load *.afd (Aap Filetype Detection) files
from. These add rules for filetype detection. These are the default directories which are always scanned:

lusr/local/share/aap/afd/
~/.aap/afd/

The "-f rulefile" argument can be used to specify a file to load rules from.

Detection

Detection is done in this order:

1. early Python items

2. check the file name extensions

3. match the regular expressions with the file name

4. check the first line in the file for a matching script name

5. later Python items

When on a non-Posix system, the file name is forced to be lower case, so that case differences are
ignored. The rules must use lower case names for this to work properly. Rules with an upper case letter
will only match on a Posix system (this can be used for *.H to be recognized as cpp only on systems that
make a difference between *.h and *.H).

The Python Module

The "ft_detect" function can be called to detect the type of file "fname":

147

Chapter 37. Filetype detection

from Filetype import ft_detect
type = ft_detect(fname)

A string with the detected filetype is returned. If the type is not recognized, ft_detect() returns the None
value.

To ignore extra suffixes like ".in", ".gz", add an extra non-zero argument:
type = ft_detect(fname, 1)
To influence the messages given, add an extra "dict" argument. The "MESSAGE" item will be used, see

its explanation in the main documenation.

For more info about the Filetype module, see the comments at the start of Filetype.py.

Format Of Filetype Detection Rules

Blank lines and lines starting with "#" (preceded by any amount of white space) are ignored.

These filetype detection lines are supported:

suffix suffix type

Add detection of a filetype with a file name suffix. When a file name ends in .{suffix} it gets
filetype {type}. {suffix} is taken literally, it is not a regular expression.

When {type} is "ignore" filetype detection is done on the file name with this suffix is removed. For
example, "suffix gz ignore" causes "foo.c.gz" to be handled like "foo.c".

When {type} is "remove" a previously defined filetype detection for {suffix} is removed. This can
be used to remove a suffix rule and add another kind of detection instead.

regexp regexp type [append] [tail]

Add detection of a filetype with a Python regular expression. When {regexp} matches with the
name of a file it gets filetype {type}.

When "tail" is given, matching is done with the tail of the filename (without the path).
When {type} is "remove" a previously defined filetype detection for {regexp} is removed.

When "append" isn’t given, the new detection is put before existing regexp detections, thus
overruling them. When "append" is used it is put after the existing regexp detections.

148

Chapter 37. Filetype detection

script script type [append]

Add detection of a filetype by examining the first line of the file. When it starts with "#!" and
{script} matches with the script program name it gets filetype {type}.

{script} is used as a Python regular expression. It must match at the start of the program name. Use
".*" to ignore a path. End with "$" to match at the end of the program name

When {type} is "remove" a previously defined filetype detection for {script} is removed.

When "append" isn’t given, the new detection is put before existing script detections. When
"append" is used the new detection is put after the existing script detections.

python [after] [append] uffixlist]
python-code

Add detection of a filetype by executing Python code. When the optional "suffixlist" is specified the
Python code is only executed when the file name matches a suffix in this comma separated list of
suffixes. This speeds up detection by only executing the Python code on relevant files. For example,
to only check *.bas and *.frm files:

python bas,frm

The code is executed with these variables set:

fname the name of the file
fname_base the last part of the path
ignore 1 if extra suffixes are to be ignored, 0 otherwise

When the code detects the filetype it must assing it to the variable "type".

An [OError in the code is ignored. Other errors are reported. Thus an open() call can be used
without handling exceptions (when the file doesn't exist).

When "after" isn't given, the detection is done before the suffix, regexp and script detection. When
"after" is given it's done last.

When "append" isn't given, the new detection is put before existing python detections. When
"append" is used it is put after the existing python detections. The Python-code can use the
ft_detect() function on a modified fname when needed. Example:

python after

if ignore and fname[-1] == '~
type = ft_detect(fname[:-1], ignore)

This is actually one of the default rules. When the file name ends in "~" detection is done on the
name with this character removed. This finds the type of backup files.

149

Chapter 37. Filetype detection

declare type

Declare {type} to be a recognized filetype. This is needed for filetypes that are recognized through
Python codenly. All other filetypes (those that appear in suffix, regexp, and script rules) need not
be separately declared.

When you use an unknown filetype in a recipe, Aap prints a warning to alert you to the possibility
of a misspelling. The declare rule is needed because Aap cannot tell what filetype the Python code
is capable of detecting, so the declare rule is used to tell Aap specifically that the filetype {type} is a
known and recognized type.

In the above the first argument can be put in quotes to include white space. {type} can only consist of
ASCII lowercase letters and digits.

150

Chapter 38. A-A-P Python functions

These Aap specific functions can be used in Python code:

aap_has(name)

Returns non-zero if Aap supports feature "name”. These features can be checked:

: command-name Whether the command "command-name" is supported.

Example:

@if aap_has(":tree"):
itree . {filename = .*\.aap}
:print recipe found: $name

ask_prefix(name)

Ask the user where to install the package "name”. Returns a tuple (asroot, prefix). "asroot" is a
boolean indicating whether the package is to be installed as root (asirgp}. "prefix" is the root
for the install.

If the user is root it will return (1, "/usr/local/") without asking. When aborted it returns an empty
prefix.

childdir(arg)

Prepend $CHILDDIR to every item in "arg". This makes items with a path relative to the child
recipe relative to the parent recipe. Example:

_parent.DISTFILES += ‘childdir(DISTFILES)"

Can only be used in a child recipe. Also gepdir() andvar_abspath()

151

Chapter 38. A-A-P Python functions

do_BSD_port(name, target)

Attempt to install the BSD port "name". This includes the directory in which the port lives, e.g.:
"devel/templ".

The BSD port system will take care of dependencies. This may result in many more ports to be
installed than the one you asked for.

"target” is passed to the "make" command for the port. When "target” is "all" the port is build but
not installed. When "target” is "install" it will be build and installed.

When needed the user will be asked to enter the root password. The "make" command isrunina
separate root shell (every command must be confirmed for security reasons).

Returns non-zero for success.

expand2dictlist(expr)

Turns a variable with a string value into a list of dictionaries. Each dictionary has a "name" entry
for the item itself and other entries are attributes. Wildcards in "expr" are expanded. See
var2dictlist()for not expanding wildcards. Example:

source = filel {force} file2 file3
@for item in expand2dictlist(source):
@ if item.get("force"):
‘print forced item: ‘item["name"]'

expand2list(expr)

Turns a variable with a string value into a list of items. Attributes are discarded. Delayed evaluation
is taken care of.
Wildcards in "expr" are expanded. Ses2list()for not expanding wildcards. Example:

source = filel file2 file3

@for fname in expand2list(source):
:sys prog $fname

152

Chapter 38. A-A-P Python functions

expand2string(expr)

Expand wildcards, "~user" and "~/user" in "expr". Returns the expanded string. "expr" is handled
as a list of items, white space is collapsed into a single space.

file2string(fname, dict = None)

Reads the file "fname" and concatenates the lines into one string. Lines starting with a '# are
ignored. One space is inserted in between joined lines, other white space (including CR and VT) at
the start and end of a line is removed.

When "fname" doesn'’t exist or can’t be read an error message is given and an empty string is
returned. Aap does continue with the following commands.

"dict" is used to obtain the value for SMESSAGE. The default is None. To avoid the error message
for a not existing file use something like this:

@foofile = file2string("foo", {"MESSAGE" : "})

get_attr(name)

Returns a dictionary with the attributes of "name”. If "name" is unknown or has no attributes, an
empty dictionary is returned. Example:

:attr {logical = yes} foobar
@print "foobar attributes: ", get_attr("foobar")

has_target(target)

Returns a number, depending on whether a dependency exists in which "target" is a target item;

0 there is no dependency for "target"

1 a dependency for "target" exists, there is no dependency with build commands
2 a dependency for "target" with build commands exists

Example:

@if not has_target("fetch"):

153

Chapter 38. A-A-P Python functions

has_targetarg(targets)

Returns non-zero if one of the items in "targets" was used as a build target in the aap command.
Example:

@if has_targetarg("commit tar"):
:include maintainer.aap

has_build_target()

Returns non-zero if Aap was started with a target that will build something or no target at all (the
default target is expected to build something). Returns zero if the only targets are "clean"”,
"cleanmore", "cleanALL" or "fetch".

Useful to skip configuration when it’s pointless.

program_path(name, path = None, pathext = None, skip = None)

Returns the path for program "name". This uses the $PATH environment variable or os.defpath if it
isn't set.

Additionally, the directory where Aap is installed and the "bin" subdirectory are searched. This
finds tools supplied with Aap and installed packages. This is not done when the optional "path”
argument is supplied.

On MS-Windows and OS/2 also checks with extensions added. This uses the $PATHEXT
environment variable if set (The separator used is ’;’ if there is one, the system-dependent separator
otherwise). Otherwise the extnsions ".exe", ".com", ".bat", ".cmd" are used. When "name" includes
a suffix (a dot in the last component) adding extensions is not done.

Returns the first program found. Returns None when "name" could not be found.
Only finds executable files, not ordinary files.

Optional arguments:

path search path to use instead of $PATH; when a string items are separated with
os.pathsep

pathext extensions to try. Can be a list or a string. When a string is used items must be
separated with os.pathsep

skip name of directory to skip, "name" is not found in this directory

154

Chapter 38. A-A-P Python functions

Example, search for program "foo.py" and "foo.sh":

p = ‘program_path("foo", pathext = [".py’, ".sh’])

redir_system(cmd, use_tee = 1)

Execute shell commands "cmd" and return two items: a number indicating success and the stdout.
By default "tee" is used to display the output as well as redirecting it. When no output is desired set

"use_tee" to zero. Example:
ok, text = redir_system("Is", 0)

if ok:
print "Is output: %s" % text

else:
print "“Is failed"

skipbuild()

Returns non-zero when build commands are to be skipped. This is when Aap was started with the

--nobuild or --touch argument.
sort_list(list)

sorts a list and returns the list. Example:

INP = ‘sort_list(glob("*.inp"))’

The Python list.sort() method doesn't return the sorted list.

src2obj(source, sufname = "OBJSUF")

Transform a string, which is a list of source files, into the corresponding list of object files. Each
item in "source" is changed by prepending $BDIR and changing or appending the suffix specified
with "sufname" (defaults to $OBJSUF). The attribute "var_BDIR" is used when it exists.

155

Chapter 38. A-A-P Python functions

suffix(name)

Return the file name suffix. If there isn’t one an empty string is returned. Example: suffix("foo.c")
returns "c".

Note that the dot isn’t included, while variables like $OBJSUF do include the dot.

sufreplace(from, to, expr)

Returns "expr" with all occurences of the suffix "from" changed to "to". When "from" is empty any

suffix is changed to "to". "expr" can be a list of file names. Example:

OBJECT = ‘sufreplace("™, OBJSUF, SOURCE)'

tempfname()
Returns the name of a file which does not exist and can be used temporarily.
The recipe should take of deleting the file, but Aap may delete the directory in which the file resides
when it exits. Thus don’t depend on the file to continue to exist after Aap exits.

topdir(arg)

Prepend $TOPDIR to every item in "arg". This makes items with a path relative to the current
recipe relative to the toplevel recipe. Example:

_top.DISTFILES += ‘topdir(DISTFILES)’
Also seechilddir() andvar_abspath()

var_abspath(var)

Returns "var" with all file names turned into absolute paths. Prepends the current directory to each
item in "var" which isn’t an absolute path name. Example:

:print ‘var_abspath("foo bar")‘

156

varzdictlist(var)

var2list(var)

var2string(var)

Chapter 38. A-A-P Python functions

Running this in "/home/mool/test" results in:

/home/mool/test/foo /home/mool/test/bar

Turns "var" into a list of dictionaries. "var" must be a string or a variable. Each dictionary has a
"name" entry for the item itself and other entries are attributes. Example:
source = filel {force} file2 file3
@for item in var2dictlist(source):
@ if item.get("force"):
:print forced item: ‘item["'name"]’

Seeexpand2dictlist(for expanding wildcards.

Turns "var" into a list of items. "var" must be a string or a variable. Attributes are discarded.
Delayed evaluation is taken care of. Example:
source = filel file2 file3

@for fname in var2list(source):
:sys prog $fname

Seeexpand2list(¥or expanding wildcards.

Does delayed evaluation of "var" when necessary. Variables that should be expanded when used use
the ExpandVar class and cannot be used directly. The unexpanded value is accessible with "var.val".

Illustration:

bar = aaa
foo $= $bar
bar = bbb

:print $$foo: $foo
:print Unexpanded: ‘foo.val’
print Expanded: ‘var2string(foo)*

Output:

$foo: bbb
Unexpanded: $bar
Expanded: bbb

157

Chapter 38. A-A-P Python functions

This also takes care of changing a Python list and other variable types to a string. A None value is
turned into an empty string.

wildescape(expr)

Return the string "expr" with wildcard characters escaped, so that expanding wildcards will result
in "expr". This puts the characters ™', '?" and '[' inside []. Example:

files = ‘glob("images/*")"
:attr {asdf} ‘wildescape(files)*
Equivalent to:

:attr {asdf} images/*

While developing Aap some functions have been renamed. The old names are still available to keep old
recipes from working. But some day these will be removed.

obsolete name new name
aap_sufreplace() sufreplace()
aap_abspath() var_abspath()
aap_expand() var2string()
expandvar() expand2string()

158

Chapter 39. A-A-P Commands

Commands grouped by functionality

Dependencies
:program
lib
:Itlib
dll
:produce
‘totype
:rule
:delrule
:clearrules
:update
:changed

Recipes
:child
sinclude
:execute
‘recipe

Actions
:action
:do
route
filetype

Up- and Downloading
:fetch

:fetchall

‘publish

‘publishall
:mkdownload

:proxy

Version control
:add

Define the sources for an executable program.

Define the sources for a static library.

Define the sources for a library to be made with libtool.
Define the sources for a shared (dynamically loaded) library.
Generic way to build something from sources.

Use routes to turn one filetype into another.

Define build commands for files matching a pattern.
Delete a specific rule.

Delete all rules.

Update a target, build it when it is outdated.

Mark a file as changed.

Read a child recipe.

Include another recipe.

Execute a recipe.

Define the URL where the recipe can be obtaind from.

Define commands for an action.

Invoke an action.

Define a route of actions to turn one filetype into another.
Define filetype detection.

Download files.

Download all files with a "fetch" attribute.
Upload the specified files.

Upload all files with a "publish" attribute.
Create a recipe to download files.
Define a proxy server.

Add a file to the version control repository.

159

:addall

:checkin
:checkinall

:checkout
:checkoutall

:commit
:commitall

:remove
:removeall

reviseall
‘tag
;tagall

:unlock
:unlockall
:verscont

System commands
:asroot

:Sys

:system

‘start

:syseval

:syspath

Pipe commands
:assign

:cat

‘print

‘tee

:eval

:syseval

File system commands

:copy
‘move

Chapter 39. A-A-P Commands

Add all files with a "commit" attribute to the version control
repository.

Checkin a file into the version control repository.

Checkin all files with a "commot" attribute into the version control
repository.

Checkout a file from the version control repository.

Checkout all files with a "commot" attribute from the version
control repository.

Commit files to the version control repository.

Commit all files with a "commit" attribute to the version control
repository.

Remove a file from the version control repository.

Remove all file without the "commit" attribute from the version
control repository.

combination of :checkinall and :removeall.
Add a tag in the version control repository for a file.

Add a tag in the version control repository for all files with the
"commit" attribute .

Unlock a checked out file.
Unlock all checked out files with the "commit" attribute.
Generic version control command.

Execute a command as the system administrator.
Execute a system command.

Execute a system command.

Run a system command asynchronously.
Execute a system command and catch the output.
Execute one of a number of commands.

Assign stdin to a variable.

List or concatenate files.

Print a message

Echo stdin to stdout and also write it in afile.
Evaluate a Python expression

Execute a system command and catch the output.

Copy files.
Rename or move afile.

160

Chapter 39. A-A-P Commands

:symlink Create a symbolic link.

:chmod Change the protection bits of a file.

:del Delete files.

:delete Delete files.

:deldir Delete directories.

:mkdir Create a directory.

:touch Create a file and/or update its timestamp.
‘tree Execute commands for a directory tree.

:cd Change directory.

:chdir Change directory.

:pushdir Change directory and remember the previous one.
:popdir Change to an older directory.
Various

-attr Attach attributes to items.

:attribute Attach attributes to items.

:buildcheck Add a string to the build command signature.
.exit Stop execution.

:quit Stop execution.

‘pass Do nothing.

:variant Define build variants.

:python Execute Python commands.

:conf Do a configuration check.

:progsearch Search for an executable program.
:assertpkg Check if a package is present, install it when not.
;installpkg Install a package unconditionally.

:usetool Specify what tool to use.

Alphabetical list of Commands

This is the alphabetical list of all A-A-P commands. Common arguments are expkitteslend

Some commands can be used in a pipe. A pipe is a sequence of commands separated by '|', where the
output of one command is the input for the next command. Example:

:cat foo | :eval re.sub(this’, 'that’, stdin) | :assign bar

Unix tradition calls the output that can be redirected or piped "stdout". Reading input from a pipe is
called "stdin".

In the commands below [redir] indicates the possibility to redirect stdout.

161

Chapter 39. A-A-P Commands

:action action filetype-out [filetype-in]

Define the commands for an action. S&eapter 28

:do build {target = prog} foo.c

See:dofor executing actions.

:add [{attr =val }...] fname ...

Version control command, also s€aapter 18

Add the files to the repository. The files must exist locally. Implies a "commit" of the files.

:addall [option ..]J[{attr =val }...][directory ..]

Version control command, also s€aapter 18

Apply the:add command to all files in the directory that have been given the "commit" attribute in
the recipe (and child recipes) but do not exist in the repository.

options
{1} {local} don’t do current directory recursively
{r} {recursive} do handle arguments recursively

When no directory argument is given, the current directory is used. It is inspected recursively,
unless the "{local}" option was given.

When directory arguments are given, each directory is inspected. Recursively when the
"{recursive}" option was given.

When no "commit" attribute is specified here, it will be obtained from any node.

:asroot command

Execute shell command "command" in a separate shell with super-user privileges. Only the first
time the root password will have to be entered. Each executed command must be confirmed by the
user (for safety).

162

Chapter 39. A-A-P Commands

The command will be executed in the current directory of the recipe. Variables in "command" will
be expanded (no attributes, shell quoting). stdin and stdout are redirected, this cannot be used for
interactive commands.

On non-Unix systems and when running Aap as root this command is equivalepstem.

To execute recipe commands you need to start Aap, for example:

:asroot $AAP -c ’'copy {r} foodir /usr/local/share’

$AAP includes the Python interpreter, so that it works the same way as how the current Aap was
started.

.assertpkg package ...

For each argument check if the command by that name can be found. If not, ask the user and
attempt installing the package for it.

Option: {optional} after the package name indicates the user may chose not to install the package.
Without this option the user cannot chose to continue without the package being installed.

SeeChapter 25bout using packages. Sérstallpkgfor installing a package unconditionally.

sinstallpkg package ...

Install packages. Each argument is the name of a package. This workasiiegtpkdput without
checking if the package is already present or asking the user whether it should be installed.

SeeChapter 25bout using packages.

:assign varname

Assign stdin to a variable. Can only be used after a "|".

Seehereabout using stdin.

attr [{attrname} ...]Jitemname [{attrname} ..]

163

Chapter 39. A-A-P Commands

:attribute [{attrname} ...]itemname [{attrname} ..]

Any "{attrname"} given before the items is added to each item in the list of items "itemname ...".
The "{attrname"} give later are only added to the item just before it.

A node is created for each "itemname". This also means wildcards in item names will be expanded.
Example:
:attr {fetch = cvs:/f} foo.c patchl2 {constant}

This adds the "fetch" attribute to both foo.c and patch12, and the "constant” attribute only to
patch12. This does the same in two commands:

:attr {fetch = cvs://} foo.c patchl2
:attr {constant} patchl2

Note: the attributes are added internally. When using ":print $var" this only shows the attributes
given by an assignment, not the ones added wittn

:buildcheck argument ...

Doesn't do anything. Placeholder for variables that are used but don’t show up in build commands,
so that they will be included in the buildcheck.

:cat [redir]fname...

Concatenate the arguments and write the result to stdout. Files are read like text files. The "-"
argument can be used to get the output of a previous pipe command. When redirecting to a file this
output file is created before the arguments are read, thus you cannot use the same file for input.

Seeherefor [redir].

:cd dir ...

Change directory to "dir". When "dir" is "-" it goes back to the previous directory (it is an error if
there was no previousd command in the current command block).

When multiple arguments are given, they are concatenated with path separators inserted where
needed. This is similar to doing:ed for each argument, except that each argument but the first one
is as handled as a relative path:

:cd /tmp /usr/local bin

Is equivalent to:

164

Chapter 39. A-A-P Commands

:cd /tmp
:cd ./usr/local
:cd bin

If the target directory does not exist this command fails. ldedir first if needed (notemkdir
does not contatenate its arguments!).

Note that at the start of each command block Aap changes directory to the directory of the recipe.

WARNING: variables with a relative path become invalid! This includes $source and $target. Use
var_abspath(when needed.

:changed [option ...]name...

Consider file "name" changed, no matter whether it was really changed.

Similar to the command line argument "--changed FILE".

options
{r} {recursive} Targets build from file "name" will also be considered changed,
recursively.
:chdir dir
Same ascd.

:checkin [{attr =val }...] fname ...

Version control command, also s€aapter 18
Commit the files to the repository and unlock them. Just:tkenmit and:unlock

:.checkinall [{attr =val }...]

Version control command, also s€aapter 18

165

Chapter 39. A-A-P Commands

Apply the:checkin command to all files in the recipe (and child recipes) that have the "commit"
attribute.

:checkout [{attr =val }...] fname ...

Version control command, also s€aapter 18

Obtain the latest version of the files from the repository. Lock the files for editing if possible.

:checkoutall [{attr =val }...]

Version control command, also s€aapter 18

Apply the:checkout command to all files in the recipe (and child recipes) that have the "commit"
attribute.

:checksum file

For each file argument compute the MD5 checksum and compare it to the "md5" attribute of the
file. An error is generated when a file doesn’t exist or when the checksums differ.

This command is useful to check if a downloaded file was not damaged when downloading it.

:.child [{nopass}] name

Read recipe "name" as a child. Works like the commands were in the parent recipe, with a number
of exceptions:

1. When "name" is in another directory, change to that directory and accept all items in it relative
to that directory.

2. Build commands defined in the child are executed in the directory of the child. Thus it works
as if executing the child recipe in the directory where it is located.

3. The child recipe defines a new scope. Variables set there without a scope specification will be
local to the child recipe.

4. When the {nopass} option is used, the child recipe is used as if it is a toplevel recipe. Variables
from the parent recipe are not available to the child.

166

:chmod [option

.clearrules

:commit [{ attr

Chapter 39. A-A-P Commands

5. Build commands defined in the child recipe will be executed in the scope of that recipe.

The "fetch" attribute is supported like witinclude

The:child command can only appear at the recipe level.

... mode name..

Change the protection flags of a file or directory. Currently "mode" must be an octal number, like
used by the Unix "chmod" command. Useful values:

mode meaning

755 executable for everyone, writable by user
444 read-only

600 read-write for the user only

660 read-write for user and group

options

{f} {force} don't give an error when the file doesn't exist

Delete all rules. Also seglelrule

=val }...] fnrame ...

Version control command, also s€bapter 18

Update the repository for each file that was changed. This is also done for a file that didn’t change,
it's up to the version control software to check for an unchanged file (it might have been changed in
the repository).

Do checkout/checkin when checkout is required.
Don'’t change locking of the file.

Uses a "logentry"” attribute when a log entry is to be done. When there is no "logentry" attribute the
$LOGENTRY variable is used. If neither is given you are prompted to enter a message.

Adds new files when needed.

167

Chapter 39. A-A-P Commands

Creates directories when needed (CVS: only one level).

:commitall [{attr =val }..]

Version control command, also s€bapter 18

Apply the:commit command to all files in the recipe (and child recipes) that have the "commit"
attribute.

:.conf checkname [arg ...]

:copy [option

Configuration command. Sé&thapter 23

...]from ... to

Copy files or directory trees. "from" and "to" may be URLs. This means :copy can be used to
upload and download a file, or even copy a file from one remote location to another. Examples:
:copy file_org.c file_dup.c
:copy {r} onedir twodir
:copy *.c backups
:copy http://vim.sf.net/download.php download.php

:copy $ZIP ftp://upload.sf.net//incoming/$ZIP
:copy ftp://foo.org/README ftp://bar.org//mirrors/foo/README

Note that "ftp://machine/path" uses "path" relative to the login directory, while "ftp://machine//path
uses "/path" absolutely.

When "from" and "to" are directories, "from" is created in "to". Unlike the Unix "cp" command,
where this depends on whether "to" exists or not. Thus:

:copy {recursive} foo bar

will create the directory "bar/foo" if it doesn't exist yet. If the contents of "foo" is to be copied
without creating "bar/foo", use this:

:copy {recursive} foo/* bar

options

{e} {exist} {exists} don’t overwrite an existing file or directory

{f} {force} forcefully overwrite an existing file or dir (default)

{i} {interactive} before overwriting a local file, prompt for confirmation (currently

doesn’t work for remote files)

168

:del [option
:delete [option

Chapter 39. A-A-P Commands

options

{k} {keepdir} keep the directory of the source file if the target is a directory; the
targetfile name is the target directory with the source file name appended

{m} {mkdir} create destination directory when needed

{p} {preserve} preserve file permissions and timestamps as much as possible

{9} {quiet} don’t report copied files

{r} {recursive} recursive, copy a directory tree. "to" is created and should not exist yet.

{u} {unlink} when used with {recursive}, don’t copy a symlink, make a copy of the

file or dir it links to

Wildcards in local files are expanded. This uses Unix style wildcards. When there is no matching
file the command fails (also when there are enough other arguments).

When (after expanding wildcards) there is more than one "from" item, the "to" item must be a
directory.

For "to" only local files, ftp://, rcp://, rsync:// and scp:// can be used. See "URLs" for info on
forming URLSs.

Attributes for "from" and "to" are currently ignored.

] file

.]file

Delete files and/or directories.

options

{f} {force} don't fail when a file doesn'’t exist

{r} {recursive} delete directories and their contents recursively.
{9} {quiet} don't report deleted files

Wildcards in local files are expanded. This uses Unix style wildcards. When there is no matching
file the command fails (also when there are enough other arguments).

CAREFUL: if you make a mistake in the argument, anything might be deleted. For example,
accidentally inserting a space before a wildcard:

:del {r} dirtemp *

To give you some protection, the command aborts on the first error. Thus if "dir/temp" didn’t exist
in the example, "*" would not be deleted.

169

:deldir [option

Chapter 39. A-A-P Commands

L]dir

Delete a directory. Fails when the directory is not empty.

options

{f} {force} don't fail when a directory doesn'’t exist; still fails when it exists but is
not a directory or could not be deleted

{g} {quiet} don’t report deleted directories

:delrule [option ...]tpat ... spat ...

:dll [option

Delete an existing rule. Can be used when one of the default rules would be used when this is not
wanted.

options
{9} {quiet} don’t complain when there is no matching rule

Also seeclearrules

..Jtarget : [{attr =val }...] source ...

Specify that "target” is a shared (dynamic) library, build from "source". Dependencies will be
added to compile "source" into an object file and combine the object files together into "target".

When the basename of "target" does not contain a dot, $DLLPRE will be prepended and $DLLSUF
will be appended. The original name becomes an alias name for the target, so that this works:

all: foo bar
dll foo : foo.c
(dll bar : bar.c

On Unix this builds libfoo.so and libbar.so.

See:producefor the options. The default values used for ":dIl" are: $DLLSUF for "targetsuffix",
$DLLPRE for "targetprefix" $DLLOBJSUF for "objectsuffix", "dllobject" for "objecttype”,
"INSTALL_DLL" for "installvar" and "builddIl" for "buildaction".

"{attr = val}" is an optional attribute that apply to the generated dependencies. Use the "scope”
attribute to specify a user scope to be used before other scopes (except the local scope) in the
generated dependencies.

170

Chapter 39. A-A-P Commands

The target will be added to $INSTALL_DLL. Use the "installvar" option to select another variable
name. Use {installvar=} when installing the target is not wanted. The target and intermediate files
will be added to $CLEANFILES. The source files will be added to $DISTFILES, except the ones
with a {nodist} attribute.

Can only be used at the recipe level.

:do action [fname..]

Execute an action. The commands executed may depend on the types of the first input file and/or
the output file. Se€hapter 28

Attributes just after the "action", except the options mentioned below, are passed as variables to the
build commands. The name of the attribute is used as the name of the variable. Prepending "var_" is
optional.

:do build {target = prog} foo.c

options

{filetype} The "filetype" attribute can be used to override the output filetype
used to select the action to be executed. Example:
:do build {filetype = libtoolexe} $Objects When
this option is not used the filetype of the target is used. The filetype
of source files must be given with the source file.

{scope} The "scope" attribute has a special meaning: define the user scope from
which variables are obtained first. Variables in this scope overrule vari-
ablesin the recipe or other scopes. Only variables in the local scope come
first. s_opti.DEFINE = -DFOOBAR

:do build {scope = s_opti} foo.c

{remove} The "remove" attribute can be used to delete all the arguments after the
action was executed. This also happens when the action failed. This can
be used when the argument is a temporary file. Example: tmp = ‘tempf-
name()‘
print >tmp Buy more Spam!
:do email {remove} {to = every-
body@world.org} {subject = Spam} tmp

See:actionfor defining actions.

171

Chapter 39. A-A-P Commands

:eval [redir] python-expression

Filter stdin using a Python expression. $egefor [redir]. When not used after "|" evaluate the
Python expression.

The Python expression is evaluated as specified in the argument. The "stdin" variable holds the
value of the input as a string, it must be present wisealis used after "|".

Seevar2string()for information about using Aap variables in the Python expression.

The expression must result in the filtered string or something that can be converted to a string with
str(). This becomes stdout. The result may be empty. Examples:

print $foo | :eval re.sub(<.*?>', ", stdin) > tt
:eval os.name | :assign OSNAME

Note that the expression must not contain a "|" preceded by white space, it will be recognized as a
pipe. Also there must be no ">" preceded by white space, it will be recognized as redirection.

.execute [{pass}] name [argument ...]

Execute recipe "name" right away. This works like executing aap on "name".

The recipe is executed in a new scope. This is used as the toplevel scope, unless the "{pass}" option
is used.

The "fetch" attribute is supported like witinclude

Optional arguments may be given, like on the command line. This is useful for specifying targets
and variable values. "-f recipe" is ighored. Example:

TESTPROG = ./myprog
:execute test.aap testl test2

This command is useful when a recipe does not contain dependencies that interfere with sources
and targets in the current recipe. For example, to build a command the current recipe depends on.
For example, when the program "mytool" is required and it doesn't exist yet, execute a recipe to
build and install it:

@if not program_path("mytool"):
:execute mytool.aap install
'Ssys mytool

See theprogram_path(junction.

Another example: build two variants:

:execute build.aap GUI=maotif
:execute build.aap GUI=gtk

172

Chapter 39. A-A-P Commands

‘exit

Quit executing recipes. When used in build commands, the "finally" targets will still be executed.
But a:quit or :exit in the commands of a "finally" target will quit further execution.

fetch [{attr =val }...] file

Fetch the files mentioned according to their "fetch” or "commit" attribute. When a file does not
have these attributes or fetching fails you will get an error message.

An attribute that appears before the files it is applied to all files.
Files that exist and have a "fetch" attribute with value "no" are skipped.

The name "." can be used to update the current directory:
fetch . {fetch = cvs://$CVSROOT}

The "{usecache}" attribute can be used to use a cached version of the file. This skips downloading
when the file was downloaded before, but may use an older version of the file.

"{nocache}" does the opposite: never use a cached file.

The "{constant}" attribute can be used to skip fetching a file that already exists. This is useful for a
file that will never change (when it includes a version number). Implies "{usecache}".

fetchall [{attr =val }...]

Fetch all the files in the recipe (and child recipes) that have the "fetch" attribute.

Extra attributes for fetching can be specified here, they overrule the attributes of the file itself.

filetype [argument ...]

Specify filetype detection. S&ehapter 28

;include [option ...] name

Read recipe "name" as if it was included in the current recipe. Does not change directory and file
names are considered to be relative to the current recipe, not the included recipe.

The "fetch" attribute can be used to specify a list of locations where the recipe can be fetched from.

173

Jlib [option

JItlib [option

Chapter 39. A-A-P Commands

options

{9} {quiet} Don't give a warning for a file that can’t be read. Used to optionally
include a recipe.

{o} {once} Don't include the recipe if it was already read. Useful for project settings
that are only to be included once, while you have sub-projects that can
be build independendly.

...]target : [{attr =val }...] source ...

Specify that "target” is a static library, build from "source". Dependencies will be added to compile
"source" into an object file and combine the object files together into "target".

When the basename of "target" does not contain a dot, $SLIBPRE will be prepended and $LIBSUF
will be appended. The original name becomes an alias hame for the target, so that this works:

all: foo bar
lib foo : foo.c
lib bar : bar.c

On Unix this builds libfoo.a and libbar.a.

See:producefor the options. The default values used for ":lib" are: $LIBSUF for "targetsuffix",
$LIBPRE for "targetprefix" $LIBOBJSUF for "objectsuffix", "libobject" for "objecttype"”,
"INSTALL_LIB" for "installvar" and "buildlib" for "buildaction".

"{attr = val}" is an optional attribute that apply to the generated dependencies. Use the "scope"
attribute to specify a user scope to be used before other scopes (except the local scope) in the
generated dependencies.

The target will be added to $INSTALL_LIB. Use the "installvar" option to select another variable
name. Use {installvar=} when installing the target is not wanted. The target and intermediate files
will be added to $CLEANFILES. The source files will be added to $DISTFILES.

Can only be used at the recipe level.

...]target : [{attr =val }...] source ...

Specify that "target” is a library, build from "source" with the libtool program. Dependencies will
be added to compile each "source" into an object file and combine the object files together into
"target".

Very similar to:lib.

See:producefor the options. The default values used for ":Itlib" are: $LTLIBSUF for "targetsuffix",
$LTLIBPRE for "targetprefix" $LTOBJSUF for "objectsuffix", "Itobject" for "objecttype”,
"INSTALL_LTLIB" for "installvar" and "buildltlib" for "buildaction".

174

Chapter 39. A-A-P Commands

The target will be added to $SINSTALL_LTLIB. Use the "installvar" option to select another variable
name. Use {installvar=} when installing the target is not wanted. The target and intermediate files
will be added to $CLEANFILES. The source files will be added to $DISTFILES.

Can only be used at the recipe level.

:mkdir [option ..]dir ...

Create directory. This fails when "dir" already exists and is not a directory.

Each argument is handled separately (they are not concatenated likeditih "mode" attribute
on a directory can be used to specify the protection flags for the new directory.

Example:
:mkdir {r} ~/secret/dir {mode = 0700}

The default mode is 0644. The effective umask may reset some of the bits though.

options

{f} {force} Don't fail when a directory already exist; still fails when it is not a
directory or could not be created.

{a} {quiet} don't report created directories.

{r} {recursive} Also create intermediate directories, not just the deepest one.

Note: automatic creation of directories can be done by adding the {directory} attribute to a source
item.

:mkdownload name file

Generate a recipe "name" that downloads the specified files. Each file must have a "fetch" attribute,
which is used in the generated recipe.

When the file "name" already exists it is overwritten without warning.
Wildcards in "file ..." are expanded. Not in "name".

MD5 checksums are generated and used in the recipe to fetch a file only when the checksum differs.
Example of one item:

file = foobar.txt
@if get_md>5(file) !'= "a5dba5bce69918c040703e9b8eb35f1d":
:fetch {fetch = ftp://foo.org/files/%file%} $file

When there is a "fetch" attribute on "name", this will be used to attld@pecommand at the start
of the generated recipe.

175

Chapter 39. A-A-P Commands

‘move [option ..]from ... to

Move files or directories. Mostly likecopy, except that the "from" files/directories are renamed or,
when renaming isn’t possible, copied and deleted.

options

{f} {force} forcefully overwrite an existing file or directory (default)

{e} {exist} {exists} don’t overwrite an existing file or directory

{i} {interactive} before overwriting a local file, prompt for confirmation (currently
doesn’t work for remote files)

{m} {mkdir} create destination directory when needed

{9} {quiet} don’t report moved files

‘pass
Do nothing. Useful to define a target with build commands to avoid a dependency is added
automatically.
clean:
‘pass
:popdir

Change back to directory on top of the directory stack, undoing a preyposhdir It is an error if
the directory stack is empty (more :popdir than :pushdir used).

print [redir][text ..]

Print the arguments on stdout. Without arguments a line feed is produced. $var items are expanded,
otherwise the arguments are produced literally, including quotes:

:print "hello"
results in:

"hello"

176

Chapter 39. A-A-P Commands

Leading white space is skipped, but white space in between arguments is kept. To produce leading
white space write the first space as an escaped character:

print $() indented text
results in:
indented text
When used in a pipe thetdin variable holds the input.

Seeherefor [redir].

produce what [option ..]Jtarget : [{attr =val }...] source ...

Specify that "target” has filetype "what" and is build from "source ...". Aap will add dependencies
to invoke the actions that will accomplish the task of building "target".

For specific types of targets separate commands are available. You don't need to specify the
mandatory options then. For building a normal program:peegram for building a shared library
use:dll, for building a static library usgib, for building a libtool library useltlib.

The building is split up in two parts:

1. Dependencies are added to compile the source files into files specified with the "objecttype"
option. The routes specified wittouteare used to decide which actions to invoke. Thesete
commands must precede tipgoducecommand! Each step in the route becomes a separate
dependency, so that intermediate results are produced. This is similar to wtatyhe
command does.

2. The second step is to build the "target” from the "objecttype" files. This invokes the action
defined with "buildaction", using "what" as the target filetype. The "what" filetype is declared
when necessary, to avoid a warning for defining an action for an unknown filetype.

When the basename of "target” does not contain a dot, the "targetsuffix" option will be appended
and "targetprefix" prepended. The original name becomes an alias name for the target, so that this

works:
all: foo bar
:produce drink $drinkoptions foo : foo.c
:produce snack $snackoptions bar : bar.c
options
targetsuffix (optional) appended to the target if it doesn’t contain a dot
targetprefix (optional) prepended to the target if it doesn’t contain a dot
comment (optional) description of type of building displayed for "aap --comment
target". A "comment" attribute on the target overrules this.
objectprefix (optional) prefix for the intermediate results.

177

Chapter 39. A-A-P Commands

options

objectsuffix (optional) suffix for the intermediate results.

objecttype (mandatory) filetype for the intermediate results.

installvar (optional) name of the install variable to add the target to (default:
INSTALL_EXEC) Set to an empty value to omit installing

buildaction (mandatory) name of the action used to turn the intermediate results into
the target

Can only be used at the recipe level.

:program [option ..Jtarget : [{attr =val }...] source ...

Specify that "target” is a program, build from "source ...". Dependencies will be added to compile
"source ..." into an object file and link the object files together into "target".

When the basename of "target" does not contain a dot, SEXESUF will be appended. The original
name becomes an alias name for the target, so that this works:
all: foo bar

:program foo : foo.c
program bar : bar.c

On MS-Windows this builds foo.exe and bar.exe.

See:producefor the options. The default values used for ":program"” are: $EXESUF for
"targetsuffix", nothing for "targetprefix" $OBJSUF for "objectsuffix", "object" for "objecttype",
"INSTALL_EXEC" for "installvar" and "build" for "buildaction".

"{attr = val}" is an optional attribute that apply to the generated dependencies. Use the "scope"
attribute to specify a user scope to be used before other scopes, but after the local scope, in the
generated dependencies.

The target will be added to $INSTALL_EXEC. Use the "installvar" option to select another variable
name. Use {installvar=} when installing the target is not wanted. The target and intermediate files
will be added to $_recipe.CLEANFILES. The source files will be added to $_recipe.DISTFILES,
except the ones with a {nodist} attribute.

Can only be used at the recipe level.

‘progsearch varname progname ...

Check if an executable {progname} exists in $PATH. If not, check further arguments. The first one
found is assigned to variable {varname}. If none of the {progname} could be found {varname} will
be set to an empty string.

178

Chapter 39. A-A-P Commands

Example:

:progsearch BROWSER netscape opera
@if BROWSER:
:sys $BROWSER readme.html

:proxy [protocol] address

Specify a proxy server. Examples:

proxy ftp ftp:/ftp.proxy.net:1234
:proxy http://www.someproxy.com:1080

The "protocol" can be "ftp", "http" or "gopher". When omitted "http" is used. Case doesn’t matter.

The {address} is a URL with the port number included. The result of this command is that an
environment variable is set, as the Python library "urllib" requires. Therefore it must be done early
in the startup phase, before accessing the internet.

publish [{attr =val }...] file

Publish the files mentioned according to their "publish" or "commit" attribute.

Creates directories when needed (for CVS only one level).

‘publishall [{attr =val }...]

Publish all the files in the recipe (and child recipes) that have the "publish" attribute and changed
since the last time they were published.

Note that this doesn't fall back to the "commit" attribute likaiblishdoes.

:pushdir dir

Change directory to "dir". The current directory is pushed onto the directory stack, spapdir
goes back to the old current directory.

Note that at the start of each command block Aap changes directory to the directory of the recipe.

179

Chapter 39. A-A-P Commands

WARNING: variables with a relative path become invalid! This includes $source and $target. Use
var_abspath(when needed.

‘python
python-command-block

A block of Python code. The block ends when the indent drops to the leveyttfonor below.

‘python terminator
python-command-block

terminator
A block of Python code. The block ends when "terminator"” is found on a line by itself. The Python
commands may have any indent.
White space before and after "terminator"” is allowod and a comment after "terminator" is also
allowed. "terminator" can contain any characters except white space.
:quit

See:exit.

:recipe {fetch= URL.. }

Location of this recipe. The "fetch" attribute is used like withild: a list of locations. The first
URL that works is used.

When aap was started with the "fetch" argument, fetch the recipe and restart reading it. Using the
"fetch" or "update" target causes this as well. The commands beémipehave already been
executed, thus this may cause a difference from executing the new recipe directly. The values of
variables are restored to the values before executing the recipe.

Fetching a specific recipe is done only once per session.

remove [{attr =val }...] fname ...

Version control command, also s€aapter 18

180

Chapter 39. A-A-P Commands

Remove the files from the repository. The file may still exist locally. Implies a "commit" of the file.

:removeall [option ..]J[{attr =val }...][directory ..]

Version control command, also s€bapter 18

Apply the:remove command to all files in the directory that exist in the repository but do hot have
been given a "commit” attribute in the recipe (and child recipes).

Careful: Only use this command when it is certain that all files that should be in the VCS are
explicitly mentioned and do have a "commit" attribute!

options
{1} {local} don’t do current directory recursively
{r} {recursive} do handle arguments recursively

When no directory argument is given, the current directory is used. It is inspected recursively,
unless the "{local}" option was given.

When directory arguments are given, each directory is inspected. Recursively when the
"{recursive}" option was given.

When no "commit” attribute is specified here, it will be obtained from any node.

reviseall [{attr =val }...]

Version control command, also s€aapter 18

Just like using botlkcheckinall and:removeall on the current directory recursively.

:route [option ...]typelist ... typelist
action filename

action

Specify the actions to be used to build sources with a filetype in the first "typelist" into targets with
a filetype in the last "typelist". One or more steps can be defined, resulting in intermediate results.

181

Chapter 39. A-A-P Commands

Each "typelist" is usually a single filetype name, but the first and the last can also be a comma
separated list of filetype names. The route is defined for each combination of the mentioned
filetypes.

There must be an "action" line for each step. The number of steps is the number of "typelist” minus
one. All "action" lines except the last one must define a "filename". This is the file used for the
result of the action, which becomes the input for the next action. If the filename is not an absolute
path $BDIR will be prepended (the "var_BDIR" attribute is used if present on the source file).

Example:

‘route yacc c object
yacc $(source).c
compile

This defines the route from a "yacc" file to an "object" file, with an intermediate "c" result. The step
from "yacc" to "c" is done with an action called "yacc". It will be invoked like this:

:do yacc {target = $(source).c} $source
The step from "c" to "object" is done with a "compile" action. It will be invoked like this:
:do compile {target = $target} $(source).c

The steps will be generated as separate dependencies. Thus, for the above example, when an
included header file of the intermediate C file changes, only the "compile" action will be invoked.

options
{default} This is a default route. No warning is given if the route is redefined later.

The defined routes can be used explicitly with ftoidypecommand. They are also used with the
:producecommand and derivatives.

Note: In a later version of Aap the defined routes may be used for dependencies without build
commands and without a matching rule. Thus the routes may be used as rules based on filetypes.

:rule [option ..]Jtpat ... : [{attr =val }...] spat ...
command-block

Define a rule to build files matching the pattern "tpat” from a file matching "spat".

Example:

‘rule %.html : header.part %.part footer.part
:cat $source > S$target

There can be several "tpat" patterns, the rule is used if one of them matches.

182

Chapter 39. A-A-P Commands
There can be several "spat" patterns, the rule is used if they all exist (or no better rule is found).
When "commands" is missing this only defines that "tpat" depends on "spat".
Can only be used at the recipe level.

A rule is used in the recipe where it is defined and in its siblings, unless an option is used to specify

otherwise.

options

{global} use this rule in all places

{local} use this rule only for targets in this recipe

{default} default rule, redefining it will not cause a message

{sourceexists} only use the rule when the matching source file exists; useful for rules

that generate source code

"attributes” can be used to set attributes for when applying the rule.
The "skip" attribute on 'tpat’ can be used to skip certain matches.

$target and $source can be used in "commands" for the actual file names. $match is what the "%" in
the pattern matched.

Alternative: instead of matching the file name with a patteaationuses filetypes to specify
commands. On non-Unix systems the pattern should contain only lower case letters and forward
slashes, because the name it is compared with is made lower case and backslashes have been
replaced with forward slashes.

:ruleis introduced inChapter % of the tutorial. Also seadelruleand:clearrules

:start command

Like :sysand:system but don’t wait for the commands to finish. Errors of the executed command
are ignored.

Runs in the same terminal, which will cause problems when the command waits for input. Open a
new terminal to run that command in. Example:

start xterm -e more README

WARNING: Using:startprobably makes your recipe non-portable.

:symlink [option ...]from to

Create a symbolic link, so that "to" points to "from". Think of this as if making a copy of "from"
without actually copying the file.

183

Chapter 39. A-A-P Commands

Only for Unix and Mac OS X.

options
{q} or {quiet} Don’t complain when "to" already exists.
{f} or {force} Overwrite an existing "to" file or symlink

:sys [option ...] command
:system [option ...] command

Execute "cmds" as system (shell) commands. Example:

:system filter <foo >bar
:sys reboot universe

The following lines with more indent are appended, replacing the indent with a single space.
Example:

:sys echo one
two

This echos "one two".

options

{i} or {interactive} don't log output (see below)

{q} or {quiet} Don't echo the command

{I} or {log} Redirect all output to the log file, do not echo it
{f} or {force} Ignore a non-zero exit value

{interactive} and {log} cannot be used at the same time.
When using the {f} or {force} argument the exit value of the command is available in $sysresult.

Output is logged by default. If this is undesirable (e.g., when starting an interactive command)
prepend "{i}" or "{interactive}" to the command. It will be removed before executing it. Example:

:system {i} vi bugreport

Aap attempts to execute consecutive commands with one shell, to speed up the execution. This will
not be done when the {f} or {force} attribute is used, these commands are executed separately.

Aap waits for the command to finish. Alternatively you can wstart which runs the command
asynchronously.

When the "async" variable is set and it is not empysworks like :start except that consecutive
commands are executed all at once in one shell.

Also seeasrooffor executing a shell command with super-user privileges.

184

Chapter 39. A-A-P Commands

WARNING: Using:sysor :systemprobably makes your recipe non-portable.

:syseval [{stderr}] [redir] command

Execute shell command "command" and write its output to stdout. Only stdout of the command is
captured by default. When {stderr} is just after the command name, stderr is also captured.
Example:

:syseval hostname | :assign HOSTNAME
When used in a pipe, the stdin is passed to the command. Example:
:print $var | :syseval sort | :assign var

Leading and trailing blanks, including line breaks, are removed. Thus the last line never ends in a
newline character.

Seeherefor [redir].

Note the difference with thesyscommand: redirection irsysis handled by the shell, fosysevalt
is handled by Aap.

When executing the command fails, the result is empty. The exit value of the command is available
in $exit.

WARNING: Using:sysevaprobably makes your recipe non-portable.

:syspath path arg

Use "path" as a colon separated list of command names, use the first command that works.

When %s appears in "path", it is replaced with the arguments. If it does not appear, the arguments
are appended.

Other appearences of % in "path" are removed, thereby reducing %% to % and %: to : while
avoiding their special meaning.

Don't forget that "path" must be one argument, use quotes around it to include white space.
Example:

:syspath 'vim:vi:emacs’ foobar.txt

Output is not logged.

Note: on MS-Windows it's not possible to detect if a command worked, the first item in the path
will always be used.

WARNING: Using:syspattprobably makes your recipe non-portable.

185

‘tag [{attr

‘tagall [{attr

Chapter 39. A-A-P Commands

=val }...] fname ...

Version control command, also s€hapter 18

Adds a tag to the current version of the files in the repository. Uses the "tag" attribute.

=val }...]

Version control command, also s€hapter 18

Adds a tag to all items with a "commit" and "tag" attribute. The tag should be simple name without
special characters (no dot or dash).

:tee [redir] fname...

‘totype [option

Write stdin to each file in the argument list and also write it to stdout. This works like a T shaped
connection in a water pipe. Example:

:cat filel file2 | :tee totfile | :assign foo

...] targettype . [attribute ...] source ...

Specify that each item in "source ..." is to be turned into filetype "targettype". Dependencies will be
added to turn each source file into a file of type "targettype". How this is done must have been
defined with:routecommands before using thtypecommand!

Example:
‘totype footy {suffix = .foo} : aaa.cpp bbb.y

This turns the file "aaa.cpp" into a file "aaa.foo" with filetype "footy". Since "aaa.cpp" is recognized
as a file with filetype "cpp", this will use the route from "cpp" to "footy". "bbb.y" is turned into
"bbb.foo". "bbb.y" is recognized as a file with filetype "yacc", this will use the route from "yacc" to
"footy".

If the resulting "targettype" files are additionally to be build together into a program you can use the
:programcommand instead. A more generic form is theopducecommand.

The filename of each target is made from the source file name, prepending $BDIR. The "prefix" and
"suffix" attributes of "targettype" are used ("prefix" is prepended, "suffix" replaces an existing
suffix). When "targettype" is "object" the default for "suffix" is $OBJSUF, for "dllobject” the default

186

‘touch [option

:tree dirname

Chapter 39. A-A-P Commands

is $DLLOBJSUF and for "libobject” the default is $LIBOBJSUF. Otherwise the "suffix" attribute
must be specified to avoid that the source and target have the same file name.

[attributes] are optional attributes that apply to the generated dependencies. Use the "scope”
attribute to specify a user scope to be used before other scopes (except the local scope) in the
generated dependencies.

The targets and any intermediate files will be added to $_recipe.CLEANFILES. The source files
will be added to $_recipe.DISTFILES, except the ones with a {nodist} attribute.

Can only be used at the recipe level.

...] name...

Update timestamp of file or directory "name".

options
{f} {force} create the file when it doesn't exist
{e} {exist} create the file when it doesn't exist, don’t update timestamp when the file

already exists

If "name" doesn't exist and {force} and {exist} are not present the command fails.
If "name" doesn't exist and {force} or {exist} is present an empty file will be created.
If "name" does exist and {exist} is present nothing happens.

A "directory" attribute can be used to specify a non-existing "name" is to be created as a directory.
There is no check if an existing "name" actually is a directory.

A "mode" attribute can be used to specify the mode with which a new file or directory is to be
created. The value is in the usual octal form, e.g., "0644".

[option ...]

command-block

Inspect the directory tree "dirname" and invoke the command block for each selected file and/or
directory. In the command block $name has the name of the selected item.

Example:
:tree headers {filename = log} :delete $name

This deletes all "log" files below the "headers" directory, possibly including "headers/log" and
"headers/sub/log".

The dirname itself is not part of the selected items.

187

:unlock [{ attr

Chapter 39. A-A-P Commands

options

{filename = pattern} Select files that match this Python re pattern.

{dirname = pattern} Select directories that match this Python re pattern.

{reject = pattern} Exclude items matching this Python re pattern.

{contents = pattern} Exclude files that do not match the pattern in the file contents.

When neither the "filename" nor "dirname" is given, all directories and files are selected.

When the system ignores case for filenames the patterns will ignore case differences for "filename”,
"dirname" and "reject". The pattern for "contents" is used with matching case.

The pattern for "filename”, "dirname" and "reject” must match the whole name, "" is prepended
and "$" is appended. The pattern for "contents" is matched with every line in the file, including the
newline character, and may match part of the line.

Hidden and system files are found as well, but the directory entries "." and ".." are never selected.
The selected entries are ordered depth-first. For example, "tree foo" would select:

foo/sub/f1
foo/sub/subsub/f2
foo/sub/subsub/
foo/sub/f3
foo/sub/

foo/f4

Symbolic links to are not followed. The symbolic link itself is included in the results (if the pattern
matches). Use os.path.islink() to test for symbolic links. Hard links are not detected and may cause
an infinite loop.

=val }..] fname ...

Version control command, also s€aapter 18

Remove any lock on the files, don’t change the file in the repository.

:unlockall [{attr =val }...]

Version control command, also s€aapter 18

Apply the:unlock command to all files in the recipe (and child recipes) that have the "commit"
attribute.

188

Chapter 39. A-A-P Commands

:update [{force}] target

Update "target" now, if it is outdated or when "{force}" is used.
One or more targets can be specified, each will be updated.

When this appears at the top level, a dependency or rule for the target to be used must already have
been specified, there is no look-ahead.

When the target exists and no dependency or rule applies, the file is considered updated.

:usetool toolname

Specify a specific tool to be used. When used in the toplevel recipe the tool becomes the default
tool. Can also be used in a child recipe. k@pter 3Gor more info.

:variant varname
value
commands

Define build variants. The "varname" is the name of a variable that selects one of the possible
"value" items.

The last "value" item can be a star. This item will be used when the value of "varname" does not
match one of the other values.

When the variable "varname" is not set or has an empty value, the first entry is used.

The value of $BDIR is changed by appending a dash and the value of "varname". The value is
modified to avoid using an illegal filename.

See the User manu@hapter 14or examples.

Can only be used at the recipe level.

:verscont action [{attr =val }...] fname ...

Version control command, also s€hapter 18

Perform the version control "action” on the files. This uses the "commit" attribute. What happens is
specific for the VCS.

189

Chapter 39. A-A-P Commands

Common arguments for Commands

[redir]

Redirect the output of a command. Can be one of these items:

> fname write output to file "fname"; fails when "fname" already exists

>! fname write output to file "fname"; overwrite an existing file

>> fname append output to file "fname"; create the file if it does not exist yet
| command pipe output to the following "command"

The redirection can appear anywhere in the argument, except inside quotes. The normal place is
either as the first or the last argument. The pipe to the next command must appear at the end.

The file name can be a URL. The text will first be written to a local file and then the file is moved to
the final destination.

The white space before the file name may be omitted. White space before the ">" and "|" is
required. To avoid recognizing the ">" and "|" for redirection and pipes, use $gt and $pipe.

When a command produces text on stdout and no redirection or pipe is used, the stdout is printed to
the terminal.

URLS

In various places URLs can be used to specify remote locations and the method how to access it.

http://machine/path

HTTP protocol, commonly used for web sites. read-only "machine" can also be "machine:port".

ftp://machine/path

FTP protocol. "machine" can also be "machine:port". When ":port" is omitted the default port 21 is
used.

For authentication the ~/.netrc file is used if possible (unfortunately, the Python netrc module has a
bug that prevents it from understanding many netrc files).

Alternatively, login name and password can be specified just before the machine name:

ftp://luser@machine/path
ftp://user:password@machine/path

When ":password" is omitted, you will be prompted for entering the password.

190

Chapter 39. A-A-P Commands

Either way: ftp sends passwords literally over the net, thus THIS IS NOT SECURE! Should use
"scp://" instead.

scp://machine/path

SCP protocol (using SSH, secure shell). Requires the "scp" program installed (Aap will attempt
installing it for you when needed). Additionally a user name can be specified:

scp://luser@machine/path

"path” is a relative path to the directory where "ssh" logs in to. To use an absolute path prepend a
slash:

scp://machine//path

The resulting path for the "scp” command uses a ":" instead of the first slash.

Uses "scp -C" by default. Set the $SCPCMD variable to use another command.

rcp://machine/path

RCP protocol (using rcp, "remote copy"). Very much like using "scp://*, but WITHOUT
SECURITY. Requires the "rcp" program installed (Aap will attempt installing it for you when
needed).

Uses "rcp"” by default. Set the $RCPCMD variable to use another command.

rsync://machine/path

RSYNC protocol (using rsync, "remote sync"). Like using "scp://", but only the difference between
files is transported. This is slower for transferring a whole file but a lot faster if a file has few
changes.

Requires the "rsync"” program installed (Aap will attempt installing it for you when needed). Uses
"rsync --rsh==ssh" by default. Set the $SRSYNCCMD variable to use another command.

191

V. Appendixes

Appendix A. License

LICENSE FOR A-A-P PROJECT FILES

The files of the A-A-P project that refer to this file can be copied,
modified, distributed and used as described in the license below. If
this license does not meet your needs, contact the copyright holder(s)
to negotiate an alternate license.

Contact information for stichting NLnet Labs can be found at:
http://www.nInetlabs.nl

Further information about the A-A-P project can be found at:
http://www.a-a-p.org

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you

193

Appendix A. License

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at alll.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program"”, below,
refers to any such program or work, and a "work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

194

Appendix A. License

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the maodified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to

195

Appendix A. License

exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt

196

Appendix A. License

otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that

197

Appendix A. License

system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

198

Appendix A. License

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.
Copyright (C)<year- <name of authas

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

199

Appendix A. License

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General

Public License instead of this License.

200

