// @(#)root/graf:$Name:  $:$Id: TGraphAsymmErrors.cxx,v 1.40 2004/07/06 14:55:04 brun Exp $

// Author: Rene Brun   03/03/99


/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

#include <string.h>

#include "Riostream.h"
#include "TROOT.h"
#include "TGraphAsymmErrors.h"
#include "TStyle.h"
#include "TMath.h"
#include "TArrow.h"
#include "TVirtualPad.h"
#include "TF1.h"
#include "TH1.h"

ClassImp(TGraphAsymmErrors)

namespace {
  unsigned long GLOBAL_k;   // used to pass k[i] into equations
  unsigned long GLOBAL_N;   // used to pass N[i] into equations
  double        CONFLEVEL;  // confidence level for the interval
}

//______________________________________________________________________________

//

//   A TGraphAsymmErrors is a TGraph with assymetric error bars.

//   The various format options to draw a TGraphAsymmErrors are explained in

//     TGraphAsymmErrors::Paint.

//

//  The picture below has been generated by the following macro:

//------------------------------------------------------------------------

//{

//   gROOT->Reset();

//   c1 = new TCanvas("c1","A Simple Graph with error bars",200,10,700,500);

//

//   c1->SetFillColor(42);

//   c1->SetGrid();

//   c1->GetFrame()->SetFillColor(21);

//   c1->GetFrame()->SetBorderSize(12);

//

//   Int_t n = 10;

//   Double_t x[n]  = {-0.22, 0.05, 0.25, 0.35, 0.5, 0.61,0.7,0.85,0.89,0.95};

//   Double_t y[n]  = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

//   Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};

//   Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

//   Double_t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};

//   Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

//   gr = new TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh);

//   gr->SetTitle("TGraphAsymmErrors Example");

//   gr->SetMarkerColor(4);

//   gr->SetMarkerStyle(21);

//   gr->Draw("ALP");

//

//   c1->Update();

//}

//
/* */ //

//


//______________________________________________________________________________

 TGraphAsymmErrors::TGraphAsymmErrors(): TGraph()
{
//*-*-*-*-*-*-*-*-*-*-*TGraphAsymmErrors default constructor*-*-*-*-*-*-*-*-*-*-*-*

//*-*                  =====================================

   fEXlow       = 0;
   fEYlow       = 0;
   fEXhigh      = 0;
   fEYhigh      = 0;
}


//______________________________________________________________________________

 TGraphAsymmErrors::TGraphAsymmErrors(const TGraphAsymmErrors &gr)
       : TGraph(gr)
{
// TGraphAsymmErrors copy constructor 

   
   fEXlow = fEYlow = fEXhigh = fEYhigh = 0;
   if (fNpoints == 0) return;
   fEXlow  = new Double_t[fNpoints];
   fEYlow  = new Double_t[fNpoints];
   fEXhigh = new Double_t[fNpoints];
   fEYhigh = new Double_t[fNpoints];
   for (Int_t i=0;i<fNpoints;i++) {
      fEXlow[i]  = gr.fEXlow[i];
      fEYlow[i]  = gr.fEYlow[i];
      fEXhigh[i] = gr.fEXhigh[i];
      fEYhigh[i] = gr.fEYhigh[i];
   }
}

//______________________________________________________________________________

 TGraphAsymmErrors::TGraphAsymmErrors(Int_t n)
       : TGraph(n)
{
//*-*-*-*-*-*-*-*-*-*-*TGraphAsymmErrors normal constructor*-*-*-*-*-*-*-*-*-*-*-*-*

//*-*                  ====================================

//

//  the arrays are preset to zero


   if (n <= 0) {
      Error("TGraphAsymmErrors", "illegal number of points (%d)", n);
      return;
   }

   fEXlow       = new Double_t[n];
   fEYlow       = new Double_t[n];
   fEXhigh      = new Double_t[n];
   fEYhigh      = new Double_t[n];

   for (Int_t i=0;i<n;i++) {
      fEXlow[i]  = 0;
      fEXhigh[i] = 0;
      fEYlow[i]  = 0;
      fEYhigh[i] = 0;
   }
}


//______________________________________________________________________________

 TGraphAsymmErrors::TGraphAsymmErrors(Int_t n, const Float_t *x, const Float_t *y, const Float_t *exl, const Float_t *exh, const Float_t *eyl, const Float_t *eyh)
       : TGraph(n,x,y)
{
//*-*-*-*-*-*-*-*-*-*-*TGraphAsymmErrors normal constructor*-*-*-*-*-*-*-*-*-*-*-*-*

//*-*                  ====================================

//

//  if exl,h or eyl,h are null, the corresponding arrays are preset to zero


   if (n <= 0) {
      Error("TGraphAsymmErrors", "illegal number of points (%d)", n);
      return;
   }

   fEXlow       = new Double_t[n];
   fEYlow       = new Double_t[n];
   fEXhigh      = new Double_t[n];
   fEYhigh      = new Double_t[n];

   for (Int_t i=0;i<n;i++) {
      if (exl) fEXlow[i]  = exl[i];
      else     fEXlow[i]  = 0;
      if (exh) fEXhigh[i] = exh[i];
      else     fEXhigh[i] = 0;
      if (eyl) fEYlow[i]  = eyl[i];
      else     fEYlow[i]  = 0;
      if (eyh) fEYhigh[i] = eyh[i];
      else     fEYhigh[i] = 0;
   }
}

//______________________________________________________________________________

 TGraphAsymmErrors::TGraphAsymmErrors(Int_t n, const Double_t *x, const Double_t *y, const Double_t *exl, const Double_t *exh, const Double_t *eyl, const Double_t *eyh)
       : TGraph(n,x,y)
{
//*-*-*-*-*-*-*-*-*-*-*TGraphAsymmErrors normal constructor*-*-*-*-*-*-*-*-*-*-*-*-*

//*-*                  ====================================

//

//  if exl,h or eyl,h are null, the corresponding arrays are preset to zero


   if (n <= 0) {
      Error("TGraphAsymmErrors", "illegal number of points (%d)", n);
      return;
   }

   fEXlow       = new Double_t[n];
   fEYlow       = new Double_t[n];
   fEXhigh      = new Double_t[n];
   fEYhigh      = new Double_t[n];

   for (Int_t i=0;i<n;i++) {
      if (exl) fEXlow[i]  = exl[i];
      else     fEXlow[i]  = 0;
      if (exh) fEXhigh[i] = exh[i];
      else     fEXhigh[i] = 0;
      if (eyl) fEYlow[i]  = eyl[i];
      else     fEYlow[i]  = 0;
      if (eyh) fEYhigh[i] = eyh[i];
      else     fEYhigh[i] = 0;
   }
}

//______________________________________________________________________________

 TGraphAsymmErrors::TGraphAsymmErrors(const TH1 *h)
       : TGraph(h)
{
// TGraphAsymmErrors constructor importing its parameters from the TH1 object passed as argument

// the low and high errors are set to the bin error of the histogram.

   
   if (fNpoints <= 0) return;
   fEXlow       = new Double_t[fNpoints];
   fEYlow       = new Double_t[fNpoints];
   fEXhigh      = new Double_t[fNpoints];
   fEYhigh      = new Double_t[fNpoints];

   for (Int_t i=0;i<fNpoints;i++) {
      fEXlow[i]  = h->GetBinWidth(i+1)*gStyle->GetErrorX();
      fEXhigh[i] = fEXlow[i];
      fEYlow[i]  = h->GetBinError(i+1);
      fEYhigh[i] = fEYlow[i];
   }
}   

//______________________________________________________________________________

 TGraphAsymmErrors::TGraphAsymmErrors(const TH1 *pass, const TH1 *total, Option_t *option)
       : TGraph()
{
// Creates a TGraphAsymmErrors by dividing two input TH1 histograms:

// pass/total. (see TGraphAsymmErrors::BayesDivide)

   
   BayesDivide(pass, total, option);
}

//______________________________________________________________________________

 TGraphAsymmErrors::~TGraphAsymmErrors()
{
//*-*-*-*-*-*-*-*-*-*-*TGraphAsymmErrors default destructor*-*-*-*-*-*-*-*-*-*-*-*-*

//*-*                  ===============================


   delete [] fEXlow;
   delete [] fEXhigh;
   delete [] fEYlow;
   delete [] fEYhigh;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::Apply(TF1 *f)
{
  // apply a function to all data points

  // y = f(x,y)

  //

  // Errors are calculated as eyh = f(x,y+eyh)-f(x,y) and

  // eyl = f(x,y)-f(x,y-eyl)

  //

  // Special treatment has to be applied for the functions where the

  // role of "up" and "down" is reversed.

  // function suggested/implemented by Miroslav Helbich <helbich@mail.desy.de>


  Double_t x,y,exl,exh,eyl,eyh,eyl_new,eyh_new,fxy;

  for (Int_t i=0;i<GetN();i++) {
     GetPoint(i,x,y);
     exl=GetEXlow()[i];
     exh=GetEXhigh()[i];
     eyl=GetEYlow()[i];
     eyh=GetEYhigh()[i];

     fxy = f->Eval(x,y);
     SetPoint(i,x,fxy);

     // in the case of the functions like y-> -1*y the roles of the

     // upper and lower error bars is reversed

     if (f->Eval(x,y-eyl)<f->Eval(x,y+eyh)) {
        eyl_new = TMath::Abs(fxy - f->Eval(x,y-eyl));
        eyh_new = TMath::Abs(f->Eval(x,y+eyh) - fxy);
     }
     else {
        eyh_new = TMath::Abs(fxy - f->Eval(x,y-eyl));
        eyl_new = TMath::Abs(f->Eval(x,y+eyh) - fxy);
     }

     //error on x doesn't change

     SetPointError(i,exl,exh,eyl_new,eyh_new);
   }
}

//______________________________________________________________________________

 void TGraphAsymmErrors::BayesDivide(const TH1 *pass, const TH1 *total, Option_t *option)
{
// Fills this TGraphAsymmErrors by dividing two input TH1 histograms pass/total. 

//

// Andy Haas (haas@fnal.gov)

// University of Washington

//

// Method and code directly taken from:

// Marc Paterno (paterno@fnal.gov)

// FNAL/CD

//

// The input histograms must be filled with weights of 1.

// By default the function does not check this assertion.

// if option "w" is specified, the function will fail if the histograms

// have been filled with weights not equal to 1.

//

// The assumption is that the entries in "pass" are a 

// subset of those in "total". That is, we create an "efficiency" 

// graph, where each entry is between 0 and 1, inclusive. 

// The resulting graph can be fit to functions, using standard methods:

// graph->Fit("erf")... for instance. (You have to define the erf

// function for yourself for now, sorry.)

//

// The points are assigned an x value at the center of each histogram bin.

// The y values are #pass/#total, between 0 and 1.

// The x errors span each histogram bin (lowedge->lowedge+width)

// The y errors are the fun part. :)

//

// The y errors are assigned based on applying Bayes theorem.

// The model is the Binomial distribution, and the "prior" is 

// the flat distribution from 0 to 1.

// If there is no data in a bin of the total histogram, no information

// can be obtained for that bin, so no point is made on the graph.

//

// The complete method and a beautiful discussion can be found here:

// http://home.fnal.gov/~paterno/images/effic.pdf

// And more information is on these pages:

// http://home.fnal.gov/~paterno/probability/localresources.html

// A backup of the main document is here:

// http://www-clued0.fnal.gov/~haas/documents/paterno_effic.pdf

//

// A 68.3% Confidence Level is used to assign the errors. 

// Warning! You should understand, the errors reported are the shortest

// ranges containing 68.3% of the probability distrubution. The errors are

// not exactly Gaussian! The Minuit fitting routines will assume that

// the errors are Gaussian. But this is a reasonable approximation.

// A fit using the full shape of the error distribution for each point

// would be far more difficult to perform.


	TString opt = option; opt.ToLower();

	Int_t nbins = pass->GetNbinsX();
	if (nbins != total->GetNbinsX()){
		Error("BayesDivide","Histograms must have the same number of X bins");
		return;
	}

	if (opt.Contains("w")) {
	   //compare sum of weights with sum of squares of weights

           Double_t stats[10];
	   pass->GetStats(stats);
	   if (TMath::Abs(stats[0] -stats[1]) > 1e-6) {
		Error("BayesDivide","Pass histogram has not been filled with weights = 1");
		return;
	   }
	   total->GetStats(stats);
	   if (TMath::Abs(stats[0] -stats[1]) > 1e-6) {
		Error("BayesDivide","Total histogram has not been filled with weights = 1");
		return;
	   }
	}

	//Set the graph to have a number of points equal to the number of histogram bins

	Set(nbins);

	// Ok, now set the points for each bin

	// (Note: the TH1 bin content is shifted to the right by one: 

	//  bin=0 is underflow, bin=nbins+1 is overflow.)


	double mode, low, high; //these will hold the result of the Bayes calculation
	int npoint=0;//this keeps track of the number of points added to the graph
	for (int b=1; b<=nbins; ++b) { // loop through the bins
		
		int t = (int)total->GetBinContent(b);
		if (!t) continue;  //don't add points for bins with no information

		int p = (int)pass->GetBinContent(b);
		if (p>t) {
			Warning("BayesDivide","Histogram bin %d in pass has more entries than corresponding bin in total! (%d>%d)",b,p,t);
			continue; //we may as well go on...
		}

		//This is the Bayes calculation...

		Efficiency(p,t,0.683,mode,low,high);

		//These are the low and high error bars

		low = mode-low;
		high = high-mode;

		//If either of the errors are 0, set them to 1/10 of the other error

		//so that the fitters don't get confused.

		if (low==0.0) low=high/10.;
		if (high==0.0) high=low/10.;

		//Set the point center and its errors

		SetPoint(npoint,pass->GetBinCenter(b),mode);
		SetPointError(npoint,
			pass->GetBinCenter(b)-pass->GetBinLowEdge(b),
			pass->GetBinLowEdge(b)-pass->GetBinCenter(b)+pass->GetBinWidth(b),
			low,high);
		npoint++;//we have added a point to the graph

	}

	Set(npoint);//tell the graph how many points we've really added

	if (opt.Contains("debug")) {
		printf("BayesDivide: made a graph with %d points from %d bins\n",npoint,nbins);
		Print();//The debug prints out what we get for each point
	}

}

//______________________________________________________________________________

 double TGraphAsymmErrors::Beta_ab(double a, double b, int k, int N) const
{
   // Calculates the fraction of the area under the

   // curve x^k*(1-x)^(N-k) between x=a and x=b

   
   if (a == b) return 0;    // don't bother integrating over zero range
   int c1 = k+1;
   int c2 = N-k+1;
   return Ibetai(c1,c2,b)-Ibetai(c1,c2,a);
}

//______________________________________________________________________________

 double TGraphAsymmErrors::Ibetai(double a, double b, double x) const
{
   // Calculates the incomplete beta function  I_x(a,b); this is

   // the incomplete beta function divided by the complete beta function

   
  double bt;
  if (x < 0.0 || x > 1.0) {
     Error("Ibetai","Illegal x in routine Ibetai: x = %g",x);
     return 0;
  }
  if (x == 0.0 || x == 1.0)
     bt=0.0;
  else
     bt=TMath::Exp(TMath::LnGamma(a+b)-TMath::LnGamma(a)-TMath::LnGamma(b)+a*log(x)+b*log(1.0-x));

  if (x < (a+1.0)/(a+b+2.0))
     return bt*TMath::BetaCf(x,a,b)/a;
  else
     return 1.0-bt*TMath::BetaCf(1-x,b,a)/b;
}

//______________________________________________________________________________

 double TGraphAsymmErrors::Betai(double a, double b, double x) const
{
   // Calculates the incomplete beta function B_x(a,b), as defined

   // in Gradshteyn and Ryzhik (4th edition) 8.391

   
   // calculates the complete beta function

   double beta = TMath::Exp(TMath::LnGamma(a)+TMath::LnGamma(b)-TMath::LnGamma(a+b));
   return Ibetai(a,b,x)*beta;
}

//______________________________________________________________________________

 double TGraphAsymmErrors::Brent(double ax, double bx, double cx, double tol, double *xmin) const 
{
// Implementation file for the numerical equation solver library.

// This includes root finding and minimum finding algorithms.

// Adapted from Numerical Recipes in C, 2nd edition.

// Translated to C++ by Marc Paterno

   
   const int    kITMAX = 100;
   const double kCGOLD = 0.3819660;
   const double kZEPS  = 1.0e-10;

   int iter;
   double a,b,d=0.,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm;
   double e=0.0;

   a=(ax < cx ? ax : cx);
   b=(ax > cx ? ax : cx);
   x=w=v=bx;
   fw=fv=fx=Interval(x);
   for (iter=1;iter<=kITMAX;iter++) {
      xm=0.5*(a+b);
      tol2=2.0*(tol1=tol*TMath::Abs(x)+kZEPS);
      if (TMath::Abs(x-xm) <= (tol2-0.5*(b-a))) {
         *xmin=x;
         return fx;
      }
      if (TMath::Abs(e) > tol1) {
         r=(x-w)*(fx-fv);
         q=(x-v)*(fx-fw);
         p=(x-v)*q-(x-w)*r;
         q=2.0*(q-r);
         if (q > 0.0) p = -p;
         q=TMath::Abs(q);
         etemp=e;
         e=d;
         if (TMath::Abs(p) >= TMath::Abs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
	    d=kCGOLD*(e=(x >= xm ? a-x : b-x));
         else {
	    d=p/q;
	    u=x+d;
	    if (u-a < tol2 || b-u < tol2)
	       d=TMath::Sign(tol1,xm-x);
         }
     } else {
        d=kCGOLD*(e=(x >= xm ? a-x : b-x));
     }
     u=(TMath::Abs(d) >= tol1 ? x+d : x+TMath::Sign(tol1,d));
     fu=Interval(u);
     if (fu <= fx) {
        if (u >= x) a=x; else b=x;
        v  = w;
        w  = x;
        x  = u;
        fv = fw;
        fw = fx;
        fx = fu;
     } else {
        if (u < x) a=u; else b=u;
        if (fu <= fw || w == x) {
	   v=w;
	   w=u;
	   fv=fw;
	   fw=fu;
        } else if (fu <= fv || v == x || v == w) {
	   v=u;
	   fv=fu;
        }
     }
   }
   Error("Brent","Too many interations");
   *xmin=x;
   return fx;
}


//______________________________________________________________________________

 void TGraphAsymmErrors::ComputeRange(Double_t &xmin, Double_t &ymin, Double_t &xmax, Double_t &ymax) const
{
  for (Int_t i=0;i<fNpoints;i++) {
     if (fX[i] -fEXlow[i] < xmin) {
        if (gPad && gPad->GetLogx()) {
           if (fEXlow[i] < fX[i]) xmin = fX[i]-fEXlow[i];
           else                   xmin = fX[i]/3;
        } else {
          xmin = fX[i]-fEXlow[i];
        }
     }
     if (fX[i] +fEXhigh[i] > xmax) xmax = fX[i]+fEXhigh[i];
     if (fY[i] -fEYlow[i] < ymin) {
        if (gPad && gPad->GetLogy()) {
           if (fEYlow[i] < fY[i]) ymin = fY[i]-fEYlow[i];
           else                   ymin = fY[i]/3;
        } else {
          ymin = fY[i]-fEYlow[i];
        }
     }
     if (fY[i] +fEYhigh[i] > ymax) ymax = fY[i]+fEYhigh[i];
  }
}

//______________________________________________________________________________

 void TGraphAsymmErrors::Efficiency(int k, int N, double conflevel, 
	   double& mode, double& low, double& high) const
{
   // Calculate the shortest central confidence interval containing the required

   // probability content.

   // Interval(low) returns the length of the interval starting at low

   // that contains CONFLEVEL probability. We use Brent's method,

   // except in two special cases: when k=0, or when k=N

   // Main driver routine

   // Author: Marc Paterno


   //If there are no entries, then we know nothing, thus return the prior...

   if (0==N) {
      mode = .5; low = 0.0; high = 1.0;
      return;
   }

   // Calculate the most probable value for the posterior cross section.

   // This is easy, 'cause it is just k/N

   double efficiency = (double)k/N;
   
   double low_edge;
   double high_edge;
  
   if (k == 0) {
      low_edge = 0.0;
      high_edge = SearchUpper(low_edge, k, N, conflevel);
   } else if (k == N) {
      high_edge = 1.0;
      low_edge = SearchLower(high_edge, k, N, conflevel);
   } else {
      GLOBAL_k = k;
      GLOBAL_N = N;
      CONFLEVEL = conflevel;
      Brent(0.0, 0.5, 1.0, 1.0e-9, &low_edge);
      high_edge = low_edge + Interval(low_edge);
    }

   // return output

   mode = efficiency;
   low = low_edge;
   high = high_edge;
}


//______________________________________________________________________________

 Double_t TGraphAsymmErrors::GetErrorX(Int_t i) const
{
//    This function is called by GraphFitChisquare.

//    It returns the error along X at point i.


   if (i < 0 || i >= fNpoints) return -1;
   if (!fEXlow && !fEXhigh) return -1;
   Double_t elow=0, ehigh=0;
   if (fEXlow)  elow  = fEXlow[i];
   if (fEXhigh) ehigh = fEXhigh[i];
   return TMath::Sqrt(0.5*(elow*elow + ehigh*ehigh));
}

//______________________________________________________________________________

 Double_t TGraphAsymmErrors::GetErrorY(Int_t i) const
{
//    This function is called by GraphFitChisquare.

//    It returns the error along Y at point i.


   if (i < 0 || i >= fNpoints) return -1;
   if (!fEYlow && !fEYhigh) return -1;
   Double_t elow=0, ehigh=0;
   if (fEYlow)  elow  = fEYlow[i];
   if (fEYhigh) ehigh = fEYhigh[i];
   return TMath::Sqrt(0.5*(elow*elow + ehigh*ehigh));
}

//______________________________________________________________________________

 Int_t TGraphAsymmErrors::InsertPoint()
{
// Insert a new point at the mouse position


   Int_t ipoint = TGraph::InsertPoint();

   Double_t *newEXlow  = new Double_t[fNpoints];
   Double_t *newEYlow  = new Double_t[fNpoints];
   Double_t *newEXhigh = new Double_t[fNpoints];
   Double_t *newEYhigh = new Double_t[fNpoints];
   Int_t i;
   for (i=0;i<ipoint;i++) {
      newEXlow[i]  = fEXlow[i];
      newEYlow[i]  = fEYlow[i];
      newEXhigh[i] = fEXhigh[i];
      newEYhigh[i] = fEYhigh[i];
  }
   newEXlow[ipoint]  = 0;
   newEYlow[ipoint]  = 0;
   newEXhigh[ipoint] = 0;
   newEYhigh[ipoint] = 0;
   for (i=ipoint+1;i<fNpoints;i++) {
      newEXlow[i]  = fEXlow[i-1];
      newEYlow[i]  = fEYlow[i-1];
      newEXhigh[i] = fEXhigh[i-1];
      newEYhigh[i] = fEYhigh[i-1];
   }
   delete [] fEXlow;
   delete [] fEYlow;
   delete [] fEXhigh;
   delete [] fEYhigh;
   fEXlow  = newEXlow;
   fEYlow  = newEYlow;
   fEXhigh = newEXhigh;
   fEYhigh = newEYhigh;
   return ipoint;
}

//______________________________________________________________________________

 double TGraphAsymmErrors::Interval(double low) const
{
   // Return the length of the interval starting at low

   // that contains CONFLEVEL of the x^GLOBAL_k*(1-x)^(GLOBAL_N-GLOBAL_k)

   // distribution.

   // If there is no sufficient interval starting at low, we return 2.0

   
   double high = SearchUpper(low, GLOBAL_k, GLOBAL_N, CONFLEVEL);
   if (high == -1.0) return 2.0; //  so that this won't be the shortest interval
   return (high - low);
}

//______________________________________________________________________________

 void TGraphAsymmErrors::Paint(Option_t *option)
{
   // Paint this TGraphAsymmErrors with its current attributes

   //

   // by default horizonthal and vertical small lines are drawn at

   // the end of the error bars. if option "z" or "Z" is specified,

   // these lines are not drawn.

   //

   // if option contains ">" an arrow is drawn at the end of the error bars

   // if option contains "|>" a full arrow is drawn at the end of the error bars

   // the size of the arrow is set to 2/3 of the marker size.

   //

   // By default, error bars are drawn. If option "X" is specified,

   // the errors are not drawn (TGraph::Paint equivalent).

   //

   // if option "[]" is specified only the end vertical/horizonthal lines

   // of the error bars are drawn. This option is interesting to superimpose

   // systematic errors on top of a graph with statistical errors.


   const Int_t BASEMARKER=8;
   Double_t s2x, s2y, symbolsize, sbase;
   Double_t x, y, xl1, xl2, xr1, xr2, yup1, yup2, ylow1, ylow2, tx, ty;
   static Float_t cxx[11] = {1,1,0.6,0.6,1,1,0.6,0.5,1,0.6,0.6};
   static Float_t cyy[11] = {1,1,1,1,1,1,1,1,1,0.5,0.6};

   if (strchr(option,'X') || strchr(option,'x')) {TGraph::Paint(option); return;}
   Bool_t brackets = kFALSE;
   if (strstr(option,"[]")) brackets = kTRUE;
   Bool_t endLines = kTRUE;
   if (strchr(option,'z')) endLines = kFALSE;
   if (strchr(option,'Z')) endLines = kFALSE;
   const char *arrowOpt = 0;
   if (strchr(option,'>'))  arrowOpt = ">";
   if (strstr(option,"|>")) arrowOpt = "|>";

   Bool_t axis = kFALSE;
   if (strchr(option,'a')) axis = kTRUE;
   if (strchr(option,'A')) axis = kTRUE;
   if (axis) TGraph::Paint(option);

   TAttLine::Modify();

   TArrow arrow;
   arrow.SetLineWidth(GetLineWidth());
   arrow.SetLineColor(GetLineColor());
   arrow.SetFillColor(GetFillColor());

   symbolsize  = GetMarkerSize();
   sbase       = symbolsize*BASEMARKER;
   Int_t mark  = GetMarkerStyle();
   Double_t cx  = 0;
   Double_t cy  = 0;
   if (mark >= 20 && mark < 31) {
      cx = cxx[mark-20];
      cy = cyy[mark-20];
   }

//*-*-      define the offset of the error bars due to the symbol size

   s2x  = gPad->PixeltoX(Int_t(0.5*sbase)) - gPad->PixeltoX(0);
   s2y  =-gPad->PixeltoY(Int_t(0.5*sbase)) + gPad->PixeltoY(0);
   Int_t dxend = Int_t(gStyle->GetEndErrorSize());
   tx    = gPad->PixeltoX(dxend) - gPad->PixeltoX(0);
   ty    =-gPad->PixeltoY(dxend) + gPad->PixeltoY(0);
   Float_t asize = 0.6*symbolsize*BASEMARKER/gPad->GetWh();

   gPad->SetBit(kClipFrame, TestBit(kClipFrame));
   for (Int_t i=0;i<fNpoints;i++) {
      x  = gPad->XtoPad(fX[i]);
      y  = gPad->YtoPad(fY[i]);
      if (x < gPad->GetUxmin()) continue;
      if (x > gPad->GetUxmax()) continue;
      if (y < gPad->GetUymin()) continue;
      if (y > gPad->GetUymax()) continue;
      xl1 = x - s2x*cx;
      xl2 = gPad->XtoPad(fX[i] - fEXlow[i]);
      if (xl1 > xl2) {
         if (arrowOpt) {
            arrow.PaintArrow(xl1,y,xl2,y,asize,arrowOpt);
         } else {
            if (!brackets) gPad->PaintLine(xl1,y,xl2,y);
            if (endLines)  gPad->PaintLine(xl2,y-ty,xl2,y+ty);
         }
      }
      xr1 = x + s2x*cx;
      xr2 = gPad->XtoPad(fX[i] + fEXhigh[i]);
      if (xr1 < xr2) {
         if (arrowOpt) {
            arrow.PaintArrow(xr1,y,xr2,y,asize,arrowOpt);
         } else {
            if (!brackets) gPad->PaintLine(xr1,y,xr2,y);
            if (endLines)  gPad->PaintLine(xr2,y-ty,xr2,y+ty);
         }
      }
      yup1 = y + s2y*cy;
      yup2 = gPad->YtoPad(fY[i] + fEYhigh[i]);
      if (yup2 > gPad->GetUymax()) yup2 =  gPad->GetUymax();
      if (yup2 > yup1) {
         if (arrowOpt) {
            arrow.PaintArrow(x,yup1,x,yup2,asize,arrowOpt);
         } else {
            if (!brackets) gPad->PaintLine(x,yup1,x,yup2);
            if (endLines)  gPad->PaintLine(x-tx,yup2,x+tx,yup2);
         }
      }
      ylow1 = y - s2y*cy;
      ylow2 = gPad->YtoPad(fY[i] - fEYlow[i]);
      if (ylow2 < gPad->GetUymin()) ylow2 =  gPad->GetUymin();
      if (ylow2 < ylow1) {
         if (arrowOpt) {
            arrow.PaintArrow(x,ylow1,x,ylow2,asize,arrowOpt);
         } else {
            if (!brackets) gPad->PaintLine(x,ylow1,x,ylow2);
            if (endLines)  gPad->PaintLine(x-tx,ylow2,x+tx,ylow2);
         }
      }
   }
   if (!brackets && !axis) TGraph::Paint(option);
   gPad->ResetBit(kClipFrame);
}


//______________________________________________________________________________

 void TGraphAsymmErrors::Print(Option_t *) const
{
//*-*-*-*-*-*-*-*-*-*-*Print graph and errors values*-*-*-*-*-*-*-*-*-*-*-*

//*-*                  =============================

//


   for (Int_t i=0;i<fNpoints;i++) {
      printf("x[%d]=%g, y[%d]=%g, exl[%d]=%g, exh[%d]=%g, eyl[%d]=%g, eyh[%d]=%g\n"
         ,i,fX[i],i,fY[i],i,fEXlow[i],i,fEXhigh[i],i,fEYlow[i],i,fEYhigh[i]);
   }
}

//______________________________________________________________________________

 Int_t TGraphAsymmErrors::RemovePoint()
{
// Delete point close to the mouse position


   Int_t ipoint = TGraph::RemovePoint();
   if (ipoint < 0) return ipoint;

   Double_t *newEXlow  = new Double_t[fNpoints];
   Double_t *newEYlow  = new Double_t[fNpoints];
   Double_t *newEXhigh = new Double_t[fNpoints];
   Double_t *newEYhigh = new Double_t[fNpoints];
   Int_t i, j = -1;
   for (i=0;i<fNpoints+1;i++) {
      if (i == ipoint) continue;
      j++;
      newEXlow[j]  = fEXlow[i];
      newEYlow[j]  = fEYlow[i];
      newEXhigh[j] = fEXhigh[i];
      newEYhigh[j] = fEYhigh[i];
   }
   delete [] fEXlow;
   delete [] fEYlow;
   delete [] fEXhigh;
   delete [] fEYhigh;
   fEXlow  = newEXlow;
   fEYlow  = newEYlow;
   fEXhigh = newEXhigh;
   fEYhigh = newEYhigh;
   return ipoint;
}

//______________________________________________________________________________

 Int_t TGraphAsymmErrors::RemovePoint(Int_t ipnt)
{
// Delete point number ipnt


   Int_t ipoint = TGraph::RemovePoint(ipnt);
   if (ipoint < 0) return ipoint;

   Double_t *newEXlow  = new Double_t[fNpoints];
   Double_t *newEYlow  = new Double_t[fNpoints];
   Double_t *newEXhigh = new Double_t[fNpoints];
   Double_t *newEYhigh = new Double_t[fNpoints];
   Int_t i, j = -1;
   for (i=0;i<fNpoints+1;i++) {
      if (i == ipoint) continue;
      j++;
      newEXlow[j]  = fEXlow[i];
      newEYlow[j]  = fEYlow[i];
      newEXhigh[j] = fEXhigh[i];
      newEYhigh[j] = fEYhigh[i];
   }
   delete [] fEXlow;
   delete [] fEYlow;
   delete [] fEXhigh;
   delete [] fEYhigh;
   fEXlow  = newEXlow;
   fEYlow  = newEYlow;
   fEXhigh = newEXhigh;
   fEYhigh = newEYhigh;
   return ipoint;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SavePrimitive(ofstream &out, Option_t *option)
{
    // Save primitive as a C++ statement(s) on output stream out


   char quote = '"';
   out<<"   "<<endl;
   if (gROOT->ClassSaved(TGraphAsymmErrors::Class())) {
       out<<"   ";
   } else {
       out<<"   TGraphAsymmErrors *";
   }
   out<<"grae = new TGraphAsymmErrors("<<fNpoints<<");"<<endl;
   out<<"   grae->SetName("<<quote<<GetName()<<quote<<");"<<endl;
   out<<"   grae->SetTitle("<<quote<<GetTitle()<<quote<<");"<<endl;

   SaveFillAttributes(out,"grae",0,1001);
   SaveLineAttributes(out,"grae",1,1,1);
   SaveMarkerAttributes(out,"grae",1,1,1);

   for (Int_t i=0;i<fNpoints;i++) {
      out<<"   grae->SetPoint("<<i<<","<<fX[i]<<","<<fY[i]<<");"<<endl;
      out<<"   grae->SetPointError("<<i<<","<<fEXlow[i]<<","<<fEXhigh[i]<<","<<fEYlow[i]<<","<<fEYhigh[i]<<");"<<endl;
   }
   
   static Int_t frameNumber = 0;
   if (fHistogram) {
      frameNumber++;
      TString hname = fHistogram->GetName();
      hname += frameNumber;
      fHistogram->SetName(hname.Data());
      fHistogram->SavePrimitive(out,"nodraw");
      out<<"   grae->SetHistogram("<<fHistogram->GetName()<<");"<<endl;
      out<<"   "<<endl;
   }

   // save list of functions

   TIter next(fFunctions);
   TObject *obj;
   while ((obj=next())) {
      obj->SavePrimitive(out,"nodraw");
      out<<"   grae->GetListOfFunctions()->Add("<<obj->GetName()<<");"<<endl;
      if (obj->InheritsFrom("TPaveStats")) {
         out<<"   ptstats->SetParent(grae->GetListOfFunctions());"<<endl;
      }
   }

   if (strstr(option,"multigraph")) {
      out<<"   multigraph->Add(grae);"<<endl;
      return;
   }
   out<<"   grae->Draw("
      <<quote<<option<<quote<<");"<<endl;
}


//______________________________________________________________________________

 double TGraphAsymmErrors::SearchLower(double high, int k, int N, double c) const
{
   // Integrates the binomial distribution with

   // parameters k,N, and determines what is the lower edge of the

   // integration region which ends at high, and which contains

   // probability content c. If a lower limit is found, the value is

   // returned. If no solution is found, the -1 is returned.

   // check to see if there is any solution by verifying that the integral down

   // to the minimum lower limit (0) is greater than c

   
   double integral = Beta_ab(0.0, high, k, N);
   if (integral == c) return 0.0;      // lucky -- this is the solution
   if (integral < c) return -1.0;      // no solution exists
   double too_low = 0.0;               // lower edge estimate
   double too_high = high;
   double test;

   // use a bracket-and-bisect search

   // now we loop 20 times, to end with a root guaranteed accurate to better

   // than 0.1%

   for (int loop=0; loop<20; loop++) {
      test = 0.5*(too_high + too_low);
      integral = Beta_ab(test, high, k, N);
      if (integral > c)  too_low = test;
      else too_high = test;
   }
   return test;
}


//______________________________________________________________________________

 double TGraphAsymmErrors::SearchUpper(double low, int k, int N, double c) const
{
   // Integrates the binomial distribution with

   // parameters k,N, and determines what is the upper edge of the

   // integration region which starts at low which contains probability

   // content c. If an upper limit is found, the value is returned. If no

   // solution is found, -1 is returned.   

   // check to see if there is any solution by verifying that the integral up

   // to the maximum upper limit (1) is greater than c

   
   double integral = Beta_ab(low, 1.0, k, N);
   if (integral == c) return 1.0;    // lucky -- this is the solution
   if (integral < c) return -1.0;    // no solution exists
   double too_high = 1.0;            // upper edge estimate
   double too_low = low;
   double test;

   // use a bracket-and-bisect search

   // now we loop 20 times, to end with a root guaranteed accurate to better

   // than 0.1%

   for (int loop=0; loop<20; loop++) {
      test = 0.5*(too_low + too_high);
      integral = Beta_ab(low, test, k, N);
      if (integral > c)  too_high = test;
      else too_low = test;
   }
   return test;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::Set(Int_t n) 
{
// Set number of points in the graph

// Existing coordinates are preserved

// New coordinates and errors above fNpoints are preset to 0.

  if (n < 0) n = 0;
  if (n == fNpoints) return;
                
  TGraph::Set(n);
        
  Double_t *exh=0, *exl=0, *eyh=0, *eyl=0;
  if (n > 0) {
          exh = new Double_t[n];
          exl = new Double_t[n];
          eyh = new Double_t[n];
          eyl = new Double_t[n];
  }
  Int_t i;
  for (i=0; i<fNpoints && i<n;i++) {
     if (fEXlow)  exl[i] = fEXlow[i];
     if (fEXhigh) exh[i] = fEXhigh[i];
     if (fEYlow)  eyl[i] = fEYlow[i];
     if (fEYhigh) eyh[i] = fEYhigh[i];
  }
  for (i=fNpoints; i<n;i++) {
     exh[i] = 0;
     exl[i] = 0;
     eyh[i] = 0;
     eyl[i] = 0;
  }
  delete [] fEXlow;
  delete [] fEXhigh;
  delete [] fEYlow;
  delete [] fEYhigh;
        
  fEXhigh = exh;
  fEXlow  = exl;
  fEYhigh = eyh;
  fEYlow  = eyl;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SetPoint(Int_t i, Double_t x, Double_t y)
{
//*-*-*-*-*-*-*-*-*-*-*Set x and y values for point number i*-*-*-*-*-*-*-*-*

//*-*                  =====================================


   if (i < 0) return;
   if (i >= fNpoints) {
   // re-allocate the object

      Double_t *savex   = new Double_t[i+1];
      Double_t *savey   = new Double_t[i+1];
      Double_t *saveexl = new Double_t[i+1];
      Double_t *saveeyl = new Double_t[i+1];
      Double_t *saveexh = new Double_t[i+1];
      Double_t *saveeyh = new Double_t[i+1];
      if (fNpoints > 0) {
         memcpy(savex,  fX,     fNpoints*sizeof(Double_t));
         memcpy(savey,  fY,     fNpoints*sizeof(Double_t));
         memcpy(saveexl,fEXlow, fNpoints*sizeof(Double_t));
         memcpy(saveeyl,fEYlow, fNpoints*sizeof(Double_t));
         memcpy(saveexh,fEXhigh,fNpoints*sizeof(Double_t));
         memcpy(saveeyh,fEYhigh,fNpoints*sizeof(Double_t));
      }
      if (fX)      delete [] fX;
      if (fY)      delete [] fY;
      if (fEXlow)  delete [] fEXlow;
      if (fEYlow)  delete [] fEYlow;
      if (fEXhigh) delete [] fEXhigh;
      if (fEYhigh) delete [] fEYhigh;
      fX  = savex;
      fY  = savey;
      fEXlow  = saveexl;
      fEYlow  = saveeyl;
      fEXhigh = saveexh;
      fEYhigh = saveeyh;
      fNpoints = i+1;
   }
   fX[i] = x;
   fY[i] = y;
   if (fHistogram) {
      delete fHistogram;
      fHistogram = 0;
   }
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SetPointError(Double_t exl, Double_t exh, Double_t eyl, Double_t eyh)
{
//*-*-*-*-*-*-*Set ex and ey values for point pointed by the mouse*-*-*-*

//*-*          ===================================================


   Int_t px = gPad->GetEventX();
   Int_t py = gPad->GetEventY();

   //localize point to be deleted

   Int_t ipoint = -2;
   Int_t i;
   // start with a small window (in case the mouse is very close to one point)

   for (i=0;i<fNpoints;i++) {
      Int_t dpx = px - gPad->XtoAbsPixel(gPad->XtoPad(fX[i]));
      Int_t dpy = py - gPad->YtoAbsPixel(gPad->YtoPad(fY[i]));
      if (dpx*dpx+dpy*dpy < 25) {ipoint = i; break;}
   }
   if (ipoint == -2) return;

   fEXlow[ipoint]  = exl;
   fEYlow[ipoint]  = eyl;
   fEXhigh[ipoint] = exh;
   fEYhigh[ipoint] = eyh;
   gPad->Modified();
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SetPointError(Int_t i, Double_t exl, Double_t exh, Double_t eyl, Double_t eyh)
{
//*-*-*-*-*-*-*-*-*-*-*Set ex and ey values for point number i*-*-*-*-*-*-*-*

//*-*                  =======================================


   if (i < 0) return;
   if (i >= fNpoints) {
   // re-allocate the object

      TGraphAsymmErrors::SetPoint(i,0,0);
   }
   fEXlow[i]  = exl;
   fEYlow[i]  = eyl;
   fEXhigh[i] = exh;
   fEYhigh[i] = eyh;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SetPointEXlow(Int_t i, Double_t exl)
{
// Set EXlow for point i


   if (i < 0) return;
   if (i >= fNpoints) {
   // re-allocate the object

      TGraphAsymmErrors::SetPoint(i,0,0);
   }
   fEXlow[i]  = exl;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SetPointEXhigh(Int_t i, Double_t exh)
{
// Set EXhigh for point i


   if (i < 0) return;
   if (i >= fNpoints) {
   // re-allocate the object

      TGraphAsymmErrors::SetPoint(i,0,0);
   }
   fEXhigh[i]  = exh;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SetPointEYlow(Int_t i, Double_t eyl)
{
// Set EYlow for point i


   if (i < 0) return;
   if (i >= fNpoints) {
   // re-allocate the object

      TGraphAsymmErrors::SetPoint(i,0,0);
   }
   fEYlow[i]  = eyl;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SetPointEYhigh(Int_t i, Double_t eyh)
{
// Set EYhigh for point i


   if (i < 0) return;
   if (i >= fNpoints) {
   // re-allocate the object

      TGraphAsymmErrors::SetPoint(i,0,0);
   }
   fEYhigh[i]  = eyh;
}

//______________________________________________________________________________

 void TGraphAsymmErrors::Streamer(TBuffer &b)
{
   // Stream an object of class TGraphAsymmErrors.


   if (b.IsReading()) {
      UInt_t R__s, R__c;
      Version_t R__v = b.ReadVersion(&R__s, &R__c);
      if (R__v > 2) {
         TGraphAsymmErrors::Class()->ReadBuffer(b, this, R__v, R__s, R__c);
         return;
      }
      //====process old versions before automatic schema evolution

      TGraph::Streamer(b);
      fEXlow  = new Double_t[fNpoints];
      fEYlow  = new Double_t[fNpoints];
      fEXhigh = new Double_t[fNpoints];
      fEYhigh = new Double_t[fNpoints];
      if (R__v < 2) {
         Float_t *exlow  = new Float_t[fNpoints];
         Float_t *eylow  = new Float_t[fNpoints];
         Float_t *exhigh = new Float_t[fNpoints];
         Float_t *eyhigh = new Float_t[fNpoints];
         b.ReadFastArray(exlow,fNpoints);
         b.ReadFastArray(eylow,fNpoints);
         b.ReadFastArray(exhigh,fNpoints);
         b.ReadFastArray(eyhigh,fNpoints);
         for (Int_t i=0;i<fNpoints;i++) {
            fEXlow[i]  = exlow[i];
            fEYlow[i]  = eylow[i];
            fEXhigh[i] = exhigh[i];
            fEYhigh[i] = eyhigh[i];
         }
         delete [] eylow;
         delete [] exlow;
         delete [] eyhigh;
         delete [] exhigh;
      } else {
         b.ReadFastArray(fEXlow,fNpoints);
         b.ReadFastArray(fEYlow,fNpoints);
         b.ReadFastArray(fEXhigh,fNpoints);
         b.ReadFastArray(fEYhigh,fNpoints);
      }
      b.CheckByteCount(R__s, R__c, TGraphAsymmErrors::IsA());
      //====end of old versions


   } else {
      TGraphAsymmErrors::Class()->WriteBuffer(b,this);
   }
}

//______________________________________________________________________________

 void TGraphAsymmErrors::SwapPoints(Int_t pos1, Int_t pos2) {
    SwapValues(fEXlow,  pos1, pos2);
    SwapValues(fEXhigh, pos1, pos2);
    SwapValues(fEYlow,  pos1, pos2);
    SwapValues(fEYhigh, pos1, pos2);
    TGraph::SwapPoints(pos1, pos2);
}


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.