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Abstract

The title “LAGUNA" stands for “Lie AlGebras and UNits of group Algebras”. This is the new name of the
GAP4 package AG, which is thus replaced hyAGUNA.

LAGUNA extends th&sAP functionality for computations in group rings. Besides computing some general
properties and attributes of group rings and their elememSUNA is able to perform two main kinds of
computations. Namely, it can verify whether a group algebra of a finite group satisfies certain Lie properties;
and it can calculate the structure of the normalized unit group of a group algebra of gfgrivep over the
field of p elements.
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Chapter 1

Introduction

1.1 General aims

LAGUNA — Lie AlGebras and UNits of group Algebras — is the new name of@dhe4 package
LAG. TheLAG package arose as a byproduct of the third author’s PhD thesid[]. Its first version
was ported taGAP4 and was brought into the standazédP4 package format during his visit to St
Andrews in September 1998.

The main objective of AG is to deal with Lie algebras associated with some associative algebras,
and, in particular, Lie algebras of group algebras. Using it is possible to verify some properties
or calculate certain Lie ideals of such Lie algebras very efficiently, due to their special structure. In
the current version ofAGUNA the main part of the Lie algebra functionality is heavily built on the
previousLAG releases.

The GAP4 package AGUNA also extends th&AP functionality for calculations with units of
modular group algebras. In particular, using this package, one can check whether an element of such
a group algebra is invertibleLAGUNA also contains an implementation of an efficient algorithm
to calculate the (normalized) unit group of the group algebra of a fmigeoup over the field op
elements. Thus, the present versiom AGUNA provides a part of the functionality of tHf&#SYPHOS
program, which was developed by Martin Wursthorn to study the modular isomorphism problem; see
[Wur9d.

The corresponding functions € AGUNA use the same algorithmic and theoretical approach as
those inSISYPHOS. The reason why we reimplemented the normalised unit group algorithms in the
LAGUNA package is tha8ISYPHOS has no interface tGAP4, and, even irGAP3, it is cumbersome
to use thesISYPHOS output for further computation with the normalised unit group. For instance,
usingSISYPHOS with its GAP3 interface, it is difficult to embed a finigg-group into the normalized
unit group of its group algebra over the fieldm&lements, but this can easily be done WifGUNA.

1.2 General computations in group rings

TheLAGUNA package provides a set of functions to carry out some basic computations with a group
ring and its elements. Among other thing&GUNA provides elementary functions to compute such
basic notions as support, length, trace and augmentation of an element. For modular group algebras
of finite p-groupsLAGUNA is able to calculate the power-structure of the augmentation ideal, which

is useful for the construction of the normalised unit group; see Sectidnd.3for more details.
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1.3 Computations in the normalized unit group

One of the aims of the AGUNA package is to carry out efficient computations in the normalised
unit group of the group algebfaG of a finite p-group G over the fieldF of p elements. U is

the unit group ofF G then it is easy to see thét is the direct product oF* andV (FG), where

F* is the multiplicative group of, andV (FG) is the group of normalised units. A unit &G of

the formay-g1+0a2-go+ -+ 0k - gk With aj € F andg; € G is said to be normalised if the sum
O1+02+---+0gis equal to 1.

It is well-known that the normalised unit grodphas ordetF|I®I=1, and soV is a finite p-group.
Thus computing/ efficiently means to compute a polycyclic presentationMorFor the theory of
polycyclic presentations refer t&[m94 Chapter 9]. For this computation we use an algorithm that
was also used in theISYPHOS package. For a brief description see Chagtelhe functions that
compute the structure of the normalised unit group are described in Séation

1.4 Computing Lie properties of the group algebra

The functions that are used to compute Lie propertiep-afodular group algebras were already
included in the previous versions bAG. The bracket operatiof, -] on ap-modular group algebra

FGis defined byja,b] = ab—ba It is well-known and very easy to check thH&G, +,[-,-]) is a Lie
algebra. Then we may ask what kind of Lie algebra properties are satisfieGbyrhe results in
[LR8€], [PPS7} and [Ros0(Q give fast, practical algorithms to check whether the Lie algétgas
abelian, nilpotent, soluble, centre-by-metabelian, etc. The functions that implement these algorithms
are described in Sectigh5.

1.5 Installation and system requirements

LAGUNA does not use external binaries and, therefore, works without restrictions on the type of the
operation system. It is designed ©@AP4.4 and no compatibility with previous releasesa#P4 is
guaranteed.

To use theLAGUNA online help it is necessary to install theAP4 package GAP-
Doc by Frank Llilbeck and Max Neuriiffer, which is available from theGAP site or from
http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/

LAGUNA is distributed in standard formatszdo, tar.gz, tar.bz2, -win.zip) and
can be obtained fromhttp://ukrgap.exponenta.ru/laguna.htm. To unpack the archive
laguna-3.3.1.zoo you need the programmzoo, which can be obtained from th@AP homepage
http://www.gap-system.org/ (see section ‘Distribution”). To installAGUNA, copy this archive
into thepkg subdirectory of youGAP4.4 installation. The subdirectofyguna will be created in the
pkg directory after the following command:

unzoo -x laguna-3.3.l1.zoo


http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/
http://ukrgap.exponenta.ru/laguna.htm
http://www.gap-system.org/

Chapter 2

A sample calculation with LAGUNA

Before explaining the theory behind thaAGUNA package we present a sample calculation to show
the reader whatAGUNA is able to compute. We will carry out some calculations in the group algebra
of the dihedral group of order 16 over the field of two elements. First we create this modular group

algebra.

Example

gap> K := GF( 2 );

GF (2)

gap> G := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> KG := GroupRing( K, G );

<algebra-with-one over GF(2), with 4 generators>

The group algebraG has some properties and attributes that are direct consequences of its definition.

These can be checked very quickly.
Example

gap> IsGroupAlgebra( KG );

true

gap> IsPModularGroupAlgebra( KG );

true

gap> IsFModularGroupAlgebra( KG );

true

gap> UnderlyingGroup( KG );

<pc group of size 16 with 4 generators>
gap> LeftActingDomain( KG );

GF (2)

Sinceka is naturally a group algebra, the information providedieytActingDomain can also be

obtained using two other functions as follows.

Example
gap> UnderlyingRing( KG );
GF (2)
gap> UnderlyingField( KG );
GF (2)
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Let us construct a certain element of the group algebra. For example, we take a minimal generating
system of the group and find the corresponding elementxin

Example

gap> MinimalGeneratingSet( G );
[ f1, £2 ]

gap> 1 := List( last, g -> g Embedding( G, KG ) );
[ (Z(2)70)*fl, (Z(2)70)*f2 ]

Now we construct an elemegtas follows.

Example
gap> a :=1[1]; b:=1[2]; # a and b are images of group generators in KG
(z(2)°0)*f1
(Z(2)"0)*f2

gap> e := One( KG ); # for convenience, we denote the identity by e
(Z(2)"0) *<identity> of ...

gap> x := (et+a) * (e +Db);
(Z(2)"0) *<identity> of ...+(Z(2)"0)*f1+(Z(2)"0)*f2+(Z2(2)"0)*f1*f2

We may investigate some of the basic properties of our element.
Example

gap> Support( x );

[ <identity> of ..., f1, f2, f1*f2 ]
gap> CoefficientsBySupport( x );

[ Z(2)°0, Z2(2)°0, Z(2)°0, Z2(2)"0 ]
gap> Length( x );

4

gap> TraceOfMagmaRingElement ( x );
2(2)"0

We can also calculate the augmentatiom ofvhich is defined as the sum of its coefficients.
Example

gap> Augmentation( x );
0%Z(2)

gap> IsUnit( KG, x );
false

Since the augmentation efis zero,x is not invertible, but +x is. This is again very easy to check.
Example

gap> y = e t+ x;
(Z(2)70)*£1+(Z(2)"0) *£2+(Z(2) "0) *f£1*£2
gap> IsUnit( KG, y );

true

LAGUNA can calculate the inverse ofx very quickly.
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Example

gap> y -1;

(Z(2)70) *£1+(Z(2) “0) *£2+ (Z(2) “0) *£3+ (2 (2) "0) *£4+ (2 (2) "0) *£1*£2+(Z (2) "0) *£1*£3+ (
7(2) "0) *£1*f4+ (Z(2) “0) *£2%£4+ (2 (2) “0) *FL*£2%F4+ (2 (2) “0) *£2*£3*£4+ (7 (2) "

0) *fL*f2*£3%£4

gap> y * y'-1;

(Z(2)"0) *<identity> of ...

We may also want to check whetheis symmetric, that is, whether it is invariant under the classical
involution; or whether it is unitary, that is, whether the classical involution inyert§e find thaty is

neither.
Example

gap> Involution( y );
(Z(2)70)*f1+(Z(2) "0) *£1*£2+(Z (2) "0) *£2*£3*f4

gap> y = Involution( y );

false

gap> IsSymmetric( y );

false

gap> y * Involution( vy );

(Z(2)"°0) *<identity> of ...+(Z(2)"0)*f2+(Z(2)"0)*f2*f3*f4
gap> IsUnitary( vy );

false

Now we calculate some important idealskaf. First we obtain the augmentation ideal which is the
set of elements with augmentation zero. In our case the augmentation ideat@hcides with the
radical ofkG, and this is taken into account IAGUNA.

Example

gap> AugmentationIdeal ( KG );

<two-sided ideal in <algebra-with-one of dimension 16 over GF(2)>,
(dimension 15)>

gap> RadicalOfAlgebra( KG ) = AugmentationIdeal ( KG );

true

It is well-known that the augmentation ideal ©f is a nilpotent ideal. Using Jennings’ theory on
dimension subgroups, we can obtain its nilpotency index without immediate calculation of its powers.
This is implemented ihAGUNA.

Example
gap> AugmentationIdealNilpotencyIndex( KG );
9
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On the other hand, we can also calculate the powers of the augmentation ideal.
Example

gap> AugmentationIdealPowerSeries( KG );

[ <algebra of dimension 15 over GF(2)>, <algebra of dimension 13 over GF(2)>,
<algebra of dimension 11 over GF(2)>, <algebra of dimension 9 over GF(2)>,
<algebra of dimension 7 over GF (2)>, <algebra of dimension 5 over GF(2)>,
<algebra of dimension 3 over GF (2)>, <algebra of dimension 1 over GF(2)>,
<algebra over GF(2)> ]

We see that the length of this list is exactly the nilpotency index of the augmentation ideal of

Now let’s work with the unit group okG. First we calculate the normalized unit group, which is
the set of elements with augmentation one. The generators of the unit group are obtained as explained
in Chapter3. This can be computed very quickly, but further computation with this group is very

inefficient.
Example

gap> V := NormalizedUnitGroup( KG );
<group of size 32768 with 15 generators>

In order to make our computation in the normalised unit group efficient, we calculate a power-
commutator presentation for this group.

Example

gap> W := PcNormalizedUnitGroup( KG );
<pc group of size 32768 with 15 generators>;

GAP has many efficient and practical algorithms for groups given by a power-commutator presenta-
tion. In order to use these algorithms to carry out computation in the normalised unit group, we need to
set up isomorphisms between the outputs@fmalizedUnitGroup andPcNormalizedUnitGroup.

The first isomorphism mapsormalizedUnitGroup (KG) onto the polycyclically presented
PcNormalizedUnitGroup (PC). Let's find the images of the elements of the group w.
Example

gap> t := NaturalBijectionToPcNormalizedUnitGroup( KG );

MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size

32768 with 15 generators>, function( x ) ... end )

gap> List( AsList( G ), x -> ( x"Embedding( G, KG ) )"t );

[ <identity> of ..., f2, f1, £3, £7, £1*£f2*£3, £2*£3, f2*f7, £1*£3, f1*f7, £3*f7,
f1*£2*£7, £1*£2*£3*£7, £2*£3*£f7, £1*£3*£f7, fl*f2 ]
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The second isomorphism is the inverse of the first.
Example

gap> f := NaturalBijectionToNormalizedUnitGroup( KG );
[ f1, f2, £3, f4, f5, f6, £7, f£8, £9, fl0, fl1, f12, f13, fl4, f15 ] —>
[ (Z(2)70)*f2, (Z(2)"0)*fl, (Z2(2)"0)*£3, (Z(2)"0)*£f1+(Z(2)"0)*£2+(Z(2)"0)*fl1*f2,

(Z(2)70)*£2+(Z2(2) "0) *£3+4 (2 (2) "0) *£2*£3, (Z(2)"0)*£1+(Z(2)"0)*£3+(Z2(2) "0) *£1*£3,

(Z(2)70)*f4, (Z2(2)70)*f1+(Z(2)"0)*£2+(Z(2) "0) *£3+(Z(2) "0) *£1*£f2+(Z (2) "0) *£1*£3+(
Z(2)"0)*£2*£3+(Z2(2) "0) *£1*£2*£3, (Z(2)"0)*£2+(Z(2)"0)*f4+(Z(2) "0)*f2*£4,

(Z(2)70)*£1+(Z2(2) "0) *f4+(Z (2) "0) *£1*f4, (Z(2)"0)*£3+(Z(2)"0)*f4+(z(2) "0)*£3*f4,

(Z(2)70)*£1+(Z2(2) "0) *£2+(Z2(2) "0) *£4+(Z (2) "0) *£1*£2+(Z (2) "0) *£1*f4+(Z (2) "
0)*£2*£4+(2(2) "0) *£1*£2*f4, (Z2(2)"0)*£f2+(Z(2)"0)*£3+(Z(2)"0) *f4+(2(2) "
0)*f2*£3+(Z(2) "0) *£2*f4+(Z (2) "0) *£3*£4+(Z(2) "0) *f2*£3*f4,

(Z(2)70)*£1+(Z2(2) "0) *£34+(Z(2) "0) *£4+(Z (2) "0) *£1*£3+(Z (2) "0) *£1*£4+(Z (2) "
0)*£3*f4+ (2 (2) "0) *£1*£3*f4, (Z(2)"0)*f1+(Z2(2) "0)*£2+(Z(2) "0) *£3+(Z(2) "0) *£4+(
Z(2)70)*£1*£2+ (2 (2) "0) *£1*£3+(Z (2) "0) *£1*£4+ (2 (2) "0) *£2*£3+(Z (2) "0) *£2*£4+(
Z2(2)70)*£3*£4+(Z(2) "0) *£1*£2*£3+(Z2(2) "0) *£1*£2*£4+(Z (2) "0) *£1*£3*£4+ (2 (2) ~
0)*£2*£3*f4+(Z(2) "0) *f1*f2*£3*f4 ]

For example, we may calculate the conjugacy classes of the gramol then map their representatives
back into the group algebra.

Example
gap> cc := ConjugacyClasses( W );;
gap> Length( cc );
848
gap> Representative( cc[ Length( cc ) 1 );
f1xf2*xf4*£6*£12*£15

gap> last’f;
(Z(2)"0) *<identity> of ...+ (Z2(2)70)*£2+(Z(2)"0)*£4+(Z2(2)"0) *£1*£2+(Z(2) "0) *£1*£3+(
Z2(2)70)*f1*£44+(2(2) "0) *£2*£3+(Z (2) "0) *£2*f4+(Z (2) "0) *£3*£4+ (2 (2) "0) *£1*£2*£3+ (2 (2) "
0)*f1*£f3*f4

Having a power-commutator presentation of the normalised unit group, we may use the full power of

the GAP functionality for such groups. For example, the lower central series can be calculated very
quickly.

Example

gap> LowerCentralSeries( W );
[ <pc group of size 32768 with 15 generators>,
Group ([ £3, £5*£8*f10*f12*f13*£f14*£f15, fe*f8*fl12*f14*f15, £7, £9*fl2, £10*fl4,
f11*£13, £f13*f14, f14*£15 1),
Group ([ £7, £9*f12, f10*f15, f11*f15, f13*fl5, f14*f15 ]),
Group ([ f11*f15, f13*f15, f14*f15 ]), Group([ <identity> of ... 1) ]
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Let's now compute, for instance, a minimal system of generators of the centre of the normalised
unit group. First we carry out the computation in the group which is determined by the power-
commutator presentation, then we map the result into our group algebra.

Example

gap> C := Centre( W );

Group ([ £3*£5*£13*f15, £7, £15, f13*f15, f14*f15, f11*f13*f14*£f15 ])

gap> m := MinimalGeneratingSet( C );

[ £11, £13, f14, £f15, £3*£5%f13*f15 ]

gap> List(m, g -> g"f );

[ (Z(2)70)*£3+(Z(2) "0) *£4+(Z2(2) "0) *£3*£4, (Z(2)"0)*£2+(Z(2)"0) *£3+(Z(2) "0) *£4+(
Z(2)"0)*£2*£3+(Z(2) "0) *£2*£4+(Z (2) "0) *£3*£4+(Z (2) "0) *£2*£3*f4,

(Z(2)70)*£1+(Z(2) "0) *£3+(Z(2) "0) *£4+(Z (2) "0) *£1*£3+(Z (2) "0) *£1*£4+(Z (2) "

0) *£3*£4+(Z (2)AO)*fl*f3*f4 (Z(2)70)*£1+(Z2(2) "0) *£2+(Z(2) "0) *£3+(Z (2) "0) *£4d+(
Z(2)"0)*£1*£2+(Z2(2) "0) *£1*£3+(Z(2) "0) *£1*£4+4(Z (2) "0) *£2*£3+(Z (2) "0) *£2*£4+ (
Z(2)70)*£3*£4+(Z (2) "0) *£1*£2*£3+(Z (2) "0) *£1*£2*£4+(Z (2) "0) *£1*£3*£4+(Z (2) "
0) *£2*£3*£4+(Z2(2) "0) *£1*£2*£3*£4, (Z(2)"0)*£1+(Z(2)"0)*£4+(Z(2)"0)*£1*£2+(Z(2)"
0)*£1*£3+(Z2(2) "0) *£1*£4+(Z (2) "0) *£2*£3+(Z (2) "0) *£2*£4+ (2 (2) "0) *£1*£2*£3+(Z (2) ©
0) *£1*£2*£4+(Z(2) "0) *£1*£3*£4+4(Z(2) "0) *£1*£2*£3*£4 ]

We finish our example by calculating some properties of the Lie algebra associatercwikhis
example needs no further explanation.

Example

gap> L := LieAlgebra( KG );

<Lie algebra of dimension 16 over GF(2)>
gap> D := LieDerivedSubalgebra( L );
<Lie algebra of dimension 9 over GF(2)>
gap> LC := LieCentre( L );

<Lie algebra of dimension 7 over GF(2)>
gap> LieLowerNilpotencyIndex( KG );

5

gap> LieUpperNilpotencyIndex( KG );

5

gap> IsLieAbelian( L );

false

gap> IsLieSolvable( L );

true

gap> IsLieMetabelian( L );

false

gap> IsLieCentreByMetabelian( L );

true




Chapter 3

The basic theory behindLAGUNA

In this chapter we describe the theory that is behind the algorithms udesENA.

3.1 Notation and definitions

Let G be a group andr a field. Then thegroup algebra FGconsists of the set of formal linear
combinations of the form
040, ogeF
2

where all but finitely many of they are zero. The group algebFss is anF-algebra with the obvious
operations. Clearly, difaG = |G|.
Theaugmentation homomorphisgnt FG — F is defined by

It is easy to see thatis indeed a homomorphism onfla The kernel ofy is called theaugmentation
ideal of FG. The augmentation ideal is denot&@~G), or simplyA when there is no danger of con-
fusion. It follows from the isomorphism theorems that di(fk G) = dimFG — 1 = |G| — 1. Another
way to write the augmentation ideal is

A(FG) = {g;agg ] g;ag = 0} .

An invertible element ofG is said to be ainit. Clearly the elements d& and the non-zero
elements of are units. The set of units IRG is a group with respect to the multiplication BfG.
Theunit groupof FG is denotedJ (FG) or simplyU when there is no risk of confusion. A unitis
said to benormalisedf x(u) = 1. The set of normalised units forms a subgroup of the unit group, and
is referred to as thaormalised unit group The normalised unit group &G is denotedV (FG), or
simply V. It is easy to prove thall (FG) = F* x V(FG) whereF* denotes the multiplicative group
of F.

14
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3.2 p-modular group algebras

A group algebr&= G is said to bep-modular if F is the field of characteristip, andG is a finite p-
group. A lot of information about the structure pfmodular group algebras can be found itB[82,
Chapter VIII]. In ap-modular group algebra we have that an elensgsta unit if and only ifx(u) # 0.
Hence the normalised unit groifpconsists of all elements G with augmentation 1. In other words
V is a coset of the augmentation ideal, namélt 1+ A. This also implies thav| = |A| = |F|I®I-2,
and soV is a finite p-group.

One of the aims of the. AGUNA package is to compute a power-commutator presentation
for the normalised unit group in the case wh@énis a finite p-group andF is a field of p el-
ements. Such a presentation is given by generayors.,yg-1 and two types of relations:
Y2 = (i) % (yg_g) %6t for 1< i < |G| — 1, and[yj, il = (¥j) %+ (Y1) %116t for
1<i<j < |G| -1, where the exponents x anda; j are elements of the s¢0,...,p—1}. Hav-
ing such a presentation, it is possible to carry out efficient computations in thegigiteupV; see
[Sim94 Chapter 9].

3.3 Polycyclic generating set forvV

Let G be a finitep-group and- the field of p elements. Our aim is to construct a power-commutator
presentation fo¥ =V (FG). We noted earlier that = 1+ A, whereA is the augmentation ideal. We
use this piece of information and construct a polycyclic generating s&t fi@ing a suitable basis for
A. Before constructing this generating set, we note #sta nilpotent ideal irfFG. In other words
there is some such thatA® £ 0 butA°t1 = 0. Hence we can consider the following series of ideals
in A

A A% ... > AC> ACHL = 0,
It is clear that a quotiend /A +1of this chain has trivial multiplication, that is, such a quotient is a
nil-ring. The chainA’ gives rise to a series of normal subgroup¥in

V:1+A[>1+A2|>"'>1+AC|>1+AC+1:l_

Itis easy to see that the chair-IA' is central, that is(1+A') /(1+ A1) < Z((1+A)/(1+AT).
Now we show how to compute a basis frthat gives a polycyclic generating set for-1'. Let

G:Glezb---DGkDGk+1:1

be theJennings seriesf G. That is,G; ;1 = [Gj, G|Gj» wherej is the smallest non-negative integer
such thatj > i/p. For alli <k select elements 1,...,%; of G; such thaf{x; 1Gj11,...,X,Git+1} IS
a minimal generating set for the elementary abelian gi@yj651. For the Jennings series it may
happen thaG; = Gj,1 for somei. In this case we choose an empty generating set for the quotient
Gi/Gi;1 andlj =0. Thenthe sexyq,... X1y, -, %1, - - -, X, IS Said to be alimension basifor G.
Theweightof a dimension basis elemexy; is .

A non-empty product

U= (Xl,l _ 1)01,1 e (Xl,ll _ 1)0111 - (Xk,l _ 1)%1 ... (Xk,lk _ l)uk‘lk

where 0< a; j < p—1 is said to bestandard Clearly, a standard product is an element of the aug-
mentation ideal. The weight of the standard products

k

_zii(ai71+"'+ai7|i)-
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The total number of standard product$@ — 1.
LEMMA ([HB82, Theorem VIII.2.6]). Foii < c, the setS of standard products of weight at least
i forms a basis foA'. Moreover, the set +S§ = {1+s| s€ S} is a polycyclic generating set for
1+ Al In particular 4 S; is a polycyclic generating set fa.
A basis forA consisting of the standard products is referred to a®ighted basisNote that a
weighted basis is a basis for the augmentation ideal, and not for the whole group algebra.
Letx,...,Xg—1 denote the standard products where we choose the indices so that the weight of
X; is not larger than the weight of , 1 for all i, and set; = 1+ Xx. Then every elementof V can be
uniquely written in the form

V= yi‘l . (y‘GFl)G\G\fl’ aq,.. .,G|G‘,1 c {O, e P 1}

This expression is called tlwanonical formof v. We note that by adding a generatorfofto the set
Y1,---,Y|e-1 We can obtain a polycyclic generating set for the unit group

3.4 Computing the canonical form

We show how to compute the canonical form of a normalised unit with respect to the polycyclic
generating sefs, ..., Y|g|-1. We use the following elementary lemma.

LEMMA. Leti < cand suppose thatc A'. Assume thakg,Xs+1...,X%, are the standard products
with weighti and fors < j <r; sety; = 1+Xx;. Then for allas,...,ar € {0,...,p— 1} we have that

W=0gXs +---+0rX, mod ATl

if an only if _
1+w=(y5)% - (y,)* mod 1+A™L

Suppose thatv is an element of the augmentation idéahnd 1+ w is a normalised unit. Let
X1,...,X%, be the standard products of weight 1, andyigt..,y;, be the corresponding elements in
the polycyclic generating set. Then using the previous lemma, werfind. , a,, such that

W=01Xi 4 +0p%, mod A2

and so
1+w=(y1)% - (y,)% mod 1+A2

Now we have that % w = (y1)%---(yr,)%1(1+w,) for somew, € A%2. Then suppose that
Xsy5 Xs,+1, - - - » Xr, Are the standard products of weight 2. We fing . .., oy, such that

Wo = QUs,Xs, + - +0r%, mod A3
Then the lemma above implies that
1+wWo = (¥5)%2 - (Yr,) %2 mod  1+A%

Thus 1+ ws = (y)%2---(Yr,)%2(1 + w3) for some wz € A3 and so 1+w =
(Y1)t (Y ) %1 (Ys,) %2 -+ (Yr,) %2 (1 + w3).  We repeat this process, and aftesteps we obtain
the canonical form for the element-w.
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3.5 Computing a power commutator presentation forV

Using the procedure in the previous section, it is easy to compute a power commutator presentation
for the normalized unit groul of a p-modular group algebra over the field pelements. First we
compute the polycyclic generating sequegge. .,y|g -1 as in Sectior8.3. Then for eacly; and for
eachy;, yi such that<j we compute the canonical form fgf and[y;,yi] as described in Sectidh4.

Once a power-commutator presentation ¥bis constructed, it is easy to obtain a polycyclic
presentation for the unit group by adding an extra central generayarorresponding to a generator
of the cyclic groug-* and enforcing thag?1 = 1.

3.6 \Verifying Lie properties of FG

If FG is a group algebra then one can consider the Lie bracket operation defifedbby ab— ba

Then it is well-known thaE G with respect to the scalar multiplication, the addition, and the bracket
operation becomes a Lie algebra o¥erThis Lie algebra is also denot&ds. Some Lie properties

of such Lie algebras can be computed very efficiently. In particular, it can be verified whether the Lie
algebraF G is nilpotent, soluble, metabelian, centre-by-metabelian. Fast algorithms that achieve these
goals are described inR86], [PPS73 and [Ros0q.



Chapter 4

LAGUNA functions

4.1 General functions for group algebras
4.1.1 IsGroupAlgebra

Q) IsGroupAlgebra( KG ) (property)

A group ring over a field is called a group algebra. For a group¥ig sGroupAlgebra returns
true, if the underlying ring ofkG is a field; false is returned otherwise. This property will be set
automatically for every group ring created by the functiebupRing.

Example

gap> IsGroupAlgebra( GroupRing( GF( 2 ), DihedralGroup( 16 ) ) );
true

gap> IsGroupAlgebra( GroupRing( Integers, DihedralGroup( 16 ) ) );
false

4.1.2 IsFModularGroupAlgebra

{ IsFModularGroupAlgebra ( KG ) (property)

A group algebr& G over a fieldK is calledmodular, if the characteristic of the field divides the
order of some element i6. For a group algebrac of a finite groupG, TsModularGroupAlgebra
returnstrue, if KG is modular according to this definitiofialse is returned otherwise. This property
will be set automatically for every group algebra, created by the functionpRing.

Example

gap> IsFModularGroupAlgebra( GroupRing( GF( 2 ), SymmetricGroup( 6 ) ) );
true

gap> IsFModularGroupAlgebra( GroupRing( GF( 2 ), CyclicGroup( 3 ) ) );
false

18
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4.1.3 IsPModularGroupAlgebra

¢ IsPModularGroupAlgebra ( KG ) (property)

A group algebr&KG is said to bep-modular, ifK is a field of characteristip andG is a finite
p-group for the same prime. For a group algebras of a finite groupG, IsPModularGroupAlgebra
returnstrue, if XG is p-modular according to this definitiorgalse is returned otherwise. This
property will be set automatically for every group algebra, created by the funatmRring.

Example

gap> IsPModularGroupAlgebra( GroupRing( GF( 2 ), DihedralGroup( 16 ) ) );
true
gap> IsPModularGroupAlgebra( GroupRing( GF( 2 ), SymmetricGroup( 6 ) ) );
false

4.1.4 UnderlyingGroup (of a group ring)

¢ UnderlyingGroup( KG ) (attribute)
Returns: the underlying group of a group ring
This attribute stores the underlying group of a group mag In fact, it refers to the attribute
UnderlyingMagma which returns the same result, and was introduced for group rings for convenience,
and for teaching purposes.

Example

gap> KG := GroupRing( GF ( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>

gap> G := UnderlyingGroup( KG );

<pc group of size 16 with 4 generators>

4.1.5 UnderlyingRing

{ UnderlyingRing ( KG ) (attribute)
Returns: the underlying ring of a group ring
This attribute stores the underlying ring of a group ric@ In fact, it refers to the attribute
LeftActingDomain which returns the same result, and was introduced for group rings for conve-
nience, and for teaching purposes.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> UnderlyingRing( KG );

GF (2)
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4.1.6 UnderlyingField

Q UnderlyingField( KG )
Returns: the underlying field of a group algebra
This attribute stores the underlying field of a group algetwraln fact, it refers to the attribute

LeftActingDomain which returns the same result, and was introduced for group algebras for conve-
nience, and for teaching purposes.

(attribute)

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> UnderlyingField( KG );

GF (2)

4.2 Operations with group algebra elements

4.2.1 Support

¢ Support ( x ) (attribute)
Returns: support of x as a list of elements of the underlying group
Returns the support of a group ring elementhe support of a non-zero element a1-g; +05-
02+ ---+0x- gk of a group ring is the list of elemengs € G for which the coefficienty; is non-zero.
The support of the zero element of a group ring is defined to be the empty list. This method is also
applicable to elements of magma rings.

Example

# First we create an element x to use in in the series of examples.
# We map the minimal generating system of the group G to its group algebra
# and denote their images as a and b

gap> 1 := List( MinimalGeneratingSet( G ), g -> g Embedding( G, KG ) );
[ (Z2(2)70)*f1, (Z(2)70)*f2 ]

gap> a := 1[1]; b := 1[2]; e := One( KG ); # we denote the identity by e

(Z(2)"0)*f1l

(Z(2)"0)*f2

(Z(2)"0)*<identity> of ...

gap> x := (e +a) * (e +Db);

(Z(2)"0) *<identity> of ...+(Z(2)"0)*f1+(Z(2)"0)*f2+(Z2(2)"0)*f1*f2
gap> Support( x );
[ <identity> of ..., f1, f2, f1*f2 ]

4.2.2 CoefficientsBySupport

Q CoefficientsBySupport ( x ) (attribute)
Returns: coefficients of support elements as list of elements of the underlying ring
Returns a list that contains the coefficients corresponding to the elementscof-t ( x ) inthe

same order as the elements appeatupport ( x ). This method is also applicable to elements of
magma rings.
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Example

gap> x;

(Z(2)70)*<identity> of ...+(Z(2)"0)*£1+(Z(2)"0)*£2+(Z(2)"0)*£f1*f2
gap> CoefficientsBySupport( x );

[ 2(2)°0, 2(2)°0, Z(2)°0, Z(2)°0 ]

4.2.3 TraceOfMagmaRingElement

{ TraceOfMagmaRingElement ( x ) (attribute)
Returns: an element of the underlying ring
Returns the trace of a group ring elemenBy definition, the trace of an elemexta;-1+a>-
02+ ---+dg- gk is equal toay, that is, the coefficient of the identity element@ The trace of the
zero element is zero. This method is also applicable to elements of magma rings.

Example

gap> Xx;

(Z(2)70) *<identity> of ...+(Z(2)70)*f1+(Z(2)"0)*f2+(Z(2)"0)*f1*f2
gap> TraceOfMagmaRingElement ( x );

Z2(2)"0

4.2.4 Length

O Length( x ) (attribute)

The length of an element of a group rirgs defined as the number of elements in its support.
This method is also applicable to elements of magma rings.

Example

gap> Xx;

(Z2(2)"0)*<identity> of ...+(Z(2)70)*£1+(Z(2)"0)*£2+(Z(2)"0)*f1*f2
gap> Length( x );

4

4.2.5 Augmentation

Q Augmentation( x ) (attribute)
Returns: the sum of coefficients of a group ring element
The augmentation of a group ring element o1 -g1 + 0292+ --- + Ok - Gk IS the sum of its
coefficientso; +as + - - - +ak. The method is also applicable to elements of magma rings.

Example

gap> X;
(Z(2)70)*<identity> of ...+(Z(2)"0)*£1+(Z(2)"0)*£2+(Z(2)"0)*£f1*f2
gap> Augmentation( x );
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0*Z(2)

4.2.6 PartialAugmentations

Q PartialAugmentations( KG, x ) (operation)
Returns: a list of partial augmentations and a list of conjugacy class representatives
The partial augmentation of an element a1-g1 + 02 g2+ - - - + 0k - g Of the group ringk G,
corresponding to the conjugacy class of an elengefitom the underlying grougs is the sum of
coefficientsn; taken over ally; such that; is conjugated t@. The function returns a list of two lists,

the first one is a list of partial augmentations, and the second is a list of representatives of appropriate

conjugacy classes of elements of the gr&@up

Example

gap> y := x + a*b"2;

(Z(2)"0)*<identity> of ...+(Z(2)"0)*f1+(Z(2)"0)*£2+(Z(2)"0)*f1*£2+(Z(2)"

0)*£1*£3

gap> PartialAugmentations( KG, vy
[ [ Z(2)°0, 0*z(2), Z(2)°0, Z(2)
]

4

)
"0 ], [ <identity> of ..., f1l, f2, f1*f2 ]

4.2.7 Involution

O Involution( x, f )
{ Involution( x )
Returns: an element of a group ring
Let KG be a group ring and leit be a mappings — G, such thatf? is the identity mapping of.
Then the involution oKG induced byf is defined bya; - g1 +02-92+---+0k- gk — 01- f(g1) +az-

f(g2) +---+ak- f(gk). This method returns the image otnder the involution oKG with respect
to £.

(operation)
(operation)

In the second form the function returns the result of the so-called classical involution, which is the

involution induced by the map— x 1.

Example

gap> x;

(Z(2)"0) *<identity> of ...+(Z(2)"0)*f1+(Z(2)"0)*f2+(Z2(2)"0)*f1*f2

gap> Involution( x );

(Z(2)70)*<identity> of ...+(Z(2)"0)*£1+(Z(2)"0)*£1*£2+(Z(2) 0) *f2*£3*f4
# let’s check the action of involution on elements from the group G
gap> 1 := List( MinimalGeneratingSet( G ), g -> g Embedding( G, KG ) );
[ (Z(2)70)*f1l, (Z(2)"0)*f2 ]

gap> List( 1, Involution );

[ (Z2(2)70)*f1, (Z(2)"0)*f2*f3*f4 ]

gap> List( 1, g -> g"-1 );

[ (Z(2)70)*f1, (Z(2)"0)*f2*£3*f4 ]
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4.2.8 IsSymmetric

Q IsSymmetric( x ) (attribute)

An element of a group ring is callesymmetridf it is fixed under the classical involution. This
property is checked here.

Example

gap> IsSymmetric( x );

false

gap> IsSymmetric( x * Involution( x ) );
true

4.2.9 IsUnitary
Q IsUnitary( x ) (attribute)
A unit of a group ring is called unitary if the classical involution inverts it. This property is checked

here.
Example

gap> IsUnitary(x);

false

# let’s check that elements of the group G are unitary

gap> l:=List (MinimalGeneratingSet (G),g -> g Embedding(G,KG));
[ (Z(2)"0)*fl, (Z(2)"0)*f2 ]

gap> List(l,IsUnitary);

[ true, true ]

4.2.10 IsUnit
Q IsUnit( KG, x ) (method)
O IsUnit( x ) (method)

This method improves a standasdP functionality for modular group algebras.

In the first form the method returnsue if x is an invertible element of the modular group algebra
KG andfalse otherwise. This can be done very quickly by checking whether the augmentation of the
elementx is non-zero.

In the second formAGUNA first constructs the groug generated by the support afand, if this
group is a finitep-group, then checks whether the coefficients b&long to a field of characteristic
p. If this is the case, thensunit ( FH, x ) is called; otherwise, standa@ihP method is used.

Example

gap> Xxj

(Z(2)"0) *<identity> of ...+ (Z(2)70)*£1+(Z(2)"0)*£2+(Z2(2)"0)*£1*£f2

gap> IsUnit( KG, x ); # clearly, is not a unit due to augmentation zero
false
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gap> vy := One( KG ) + x; # this should give a unit
(Z(2)70)*£1+(Z(2)"0) *£2+(Z(2) "0) *f£1*x£2

gap> IsUnit( KG, y );

true

4.2.11 InverseOp

Q InverseOp( x ) (method)
Returns: the inverse element of an element of a group ring
This method improves a standasdP functionality for modular group algebras. It calculates the
inverse of a group algebra element. The user can also invoke this function by typing .

Example
gap> y;
(Z(2)"0)*£1+(2(2)"0) *£2+(Z(2) "0) *f1*f2
gap> y -1;

(Z(2)70)*f1+(Z2(2) "0) *£24+(Z (2) "0) *£3+(Z(2) "0) *£4+(Z (2) "0) *£1*£2+ (2 (2) "0) *£1*£3+(
7(2)"0)*£1*£44+ (2 (2) "0) *£2*£44 (2 (2) "0) *£1*£2*£4+ (Z (2) "0) *£2*£3*£44+(Z (2) ©
0)*f1xf2*£3*f4

gap> y * y'-1;

(Z(2)"0)*<identity> of ...

4.2.12 BicyclicUnitOfTypel

Q BicyclicUnitOfTypel( a, g ) (operation)
Q BicyclicUnitOfType2( a, g ) (operation)
Returns: an element of a group ring
letabe an element of orderof a groupG. We puta = 1+a+a?+...+a" 1. Then(a—1) xg*a
anda «gx* (a— 1) are nilpotent of index two for any elemegf the groupG not containing in the
normalizerNg((a)), and the unitslag =1+ (a—1) xg*a andvag = 1+ a xg= (a— 1) are called
bicyclic units. Note thati, g andv, g may coincide for soma andg, but in general this does not hold.
These methods construct bicyclic units of both types whemdg are elements of the underlying
groupG of a group ringK G, already embedded to the group rik using the mappingmbedding (
G, KG ).Note thatitis notactually checked thgis not contained ifNg((a) ), because this is verified
in BicyclicUnitGroup (4.4.13.

Example

gap> G := SmallGroup(32,6);

<pc group of size 32 with 5 generators>

gap> KG := GroupRing( GF(2), G );
<algebra-with-one over GF(2), with 5 generators>
gap> g := MinimalGeneratingSet( G );

[ f1, £f2 ]

gap> g[1l] in Normalizer( G, Subgroup( G, [g[2]] ) );
false

gap> g[2] in Normalizer( G, Subgroup( G, [g[1]] ) );

false
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gap> g := List( g, x -> x"Embedding( G, KG ) );

[ (2(2)70)*f1l, (Z2(2)70)*f2 ]

gap> BicyclicUnitOfTypel(g[l],g[2]) = BicyclicUnitOfType2(gll],qgl2]);
false

25

4.3 Important attributes of group algebras

4.3.1 AugmentationHomomorphism

¢ AugmentationHomomorphism( KG )
Returns: a homomorphism from a group ring to the underlying ring

(attribute)

The mapping which maps an element of a group Ki@gto its augmentation is a homomorphism

from KG onto the ringK; seeAugmentation (4.2.9. This attribute stores this homomorph
group ringkG.

ism for the

Please note that for calculation of the augmentation of an element of a group ring the
user is strongly recommended to ugegmentation (4.2.5 which works much faster than

AugmentationHomomorphism.

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF (2)

Sym( [ 1 .. 3 1)

<algebra-with-one over GF(2), with 2 generators>

gap> e := Embedding( G,FG );

<mapping: SymmetricGroup( [ 1 .. 3 ] ) -> AlgebraWithOne( GF(2), ... ) >
gap> x := (1,2)"e; v = (1,3)"e;

7(2)°0%(1,2)

Z(2)70*(1,3)

gap> a := AugmentationHomomorphism( FG );

[ Z2(2)°0%(1,2,3), 2(2)°0%(1,2) 1 -> [ 2(2)°0, Z(2)°0 ]

gap> x"a; v'a; ( x + vy )"a; # this is slower

Z2(2)°0

Z2(2)°0

0*2(2)

gap> Augmentation(x); Augmentation(y); Augmentation( x + y ); # this is faster
z(2)°0
Zz(2)"0
0*Z(2)

4.3.2 Augmentationldeal

O AugmentationIdeal ( KG )
Returns: an ideal of a group ring

(attribute)

If KGis a group ring, then its augmentation idéak generated by all elements of the fogs 1,

whereg € G \ { 1 }. The augmentation ideal consists of all element& Gfwith augmen

tation O;

seeAugmentation (4.2.5. This method changes a stand&dP functionality for modular group

algebras and returns the augmentation ideal of a modular group algebra
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Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> AugmentationIdeal ( KG );

<two-sided ideal in <algebra-with-one of dimension 16 over GF(2)>, (dimension 15)>

4.3.3 RadicalOfAlgebra

Q RadicalOfAlgebra( KG ) (attribute)
Returns: an ideal of a group algebra
This method improves a standazdP functionality for modular group algebras of finipegroups.
Since in this case the radical of the group algebra coincides with its augmentation ideal, this method
simply checks if the algebrG is a p-modular group algebra, and, if yes, it returns the augmentation
ideal; otherwise, the standa@hP method will be used.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> RadicalOfAlgebra( KG );

<two-sided ideal in <algebra-with-one of dimension 16 over GF(2)>, (dimension 15)>
gap> RadicalOfAlgebra( KG ) = AugmentationIdeal ( KG );

true

4.3.4 WeightedBasis

Q) WeightedBasis ( KG ) (attribute)

Returns: arecord of two components: weighted basis elements and their weights

The argumenkG must be go-modular group algebra.

For a group algebr& G, let A denote the augmentation ideal, and assumedisthe smallest
number such thak® = 0. Then a weighted basis KiG is some basib;, ..., b, for the augmentation
ideal A, for which there are indiceig = 1,...,ic_1 such thaty,, ..., by is a basis forAX. The weight
of an elemenb; of a weighted basis is the unique integesuch thaty belongs tow-th power ofA
but does not belong to ifsv+ 1)-th power.

Note that this function actually constructs a basis forahigmentation ideabf kG and not forkG
itself. Since the augmentation ideal has co-dimensionktjm basis fokG can be easily obtained by
adjoining the identity element of the group.

The method returns a record whose basis entry is the basis and the weights entry is a list of the
corresponding weights the of basis elements. See Sexdar more details.

Example

gap> KG := GroupRing( GF( 2 ), ElementaryAbelianGroup( 4 ) );

<algebra-with-one over GF(2), with 2 generators>

gap> WeightedBasis( KG );

rec(
weightedBasis := [ (Z(2)"0)*<identity> of ...+(Z(2)"0)*f2, (Z(2)"0)*<identity> of\
L+ (Z2(2)70)*f1, (Z(2)70)*<identity> of ...+(Z(2)"0)*£1+(Z(2)"0)*£2+(Z(2)"
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0)*f1*f2 ], weights := [ 1, 1, 2 ] )

4.3.5 AugmentationldealPowerSeries

Q AugmentationldealPowerSeries ( KG ) (attribute)
Returns: a list of ideals of a group algebra
The argumenké is a p-modular group algebra. The method returns a list whose elements are the
terms of the augmentation ideal filtrationaf, that iSAugmentationIdealPowerSeries (A) [i] iS
thei-th power of the augmentation idealof.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> AugmentationIdealPowerSeries( KG );

[ <algebra of dimension 15 over GF(2)>, <algebra of dimension 13 over GF(2)>,
<algebra of dimension 11 over GF(2)>, <algebra of dimension 9 over GF(2)>,
<algebra of dimension 7 over GF(2)>, <algebra of dimension 5 over GF(2)>,
<algebra of dimension 3 over GF(2)>, <algebra of dimension 1 over GF(2)>,
<algebra over GF(2)> ]

gap> Length(last);

9

4.3.6 AugmentationldealNilpotencylndex

Q AugmentationIdealNilpotencyIndex ( KG ) (attribute)

For thep-modular group algebrac the method returns the smallest numhesuch thatA" = 0,
whereA is the augmentation ideal &f. This can be done using Jenning's theory without the explicit
calculations of the powers of the augmentation ideal.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> AugmentationIdealNilpotencyIndex( KG );

9

4.3.7 AugmentationldealOfDerivedSubgroupNilpotencylndex

Q AugmentationldealOfDerivedSubgroupNilpotencyIndex ( KG ) (attribute)

For thep-modular group algebrag this attribute stores the nilpotency index of the augmentation
ideal ofKG' whereG' denotes the derived subgroup®@f

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
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gap> AugmentationIdealOfDerivedSubgroupNilpotencyIndex( KG );
4

gap> D := DerivedSubgroup( G );

Group ([ £3, f4 1)

gap> KD := GroupRing( GF( 2 ), D );

<algebra-with-one over GF(2), with 2 generators>

gap> AugmentationIdealNilpotencyIndex( KD );

4

28

4.3.8 LeftldealBySubgroup

Q LeftIdealBySubgroup( KG, H )

{ RightIdealBySubgroup( KG, H )

{ TwoSidedIdalBySubgroup( KG, H )

Q LeftIdealBySubgroup( KG, H )
Returns: an ideal of a group ring

(operation)
(operation)
(operation)
(operation)

LetXG be a group ring of a grou@ over the ringk, andH be a subgroup d&. Then the sef (H)

of all elements ok of the form
Z Xh(h — 1)
heH

is the left ideal inkG generated by all elemenks— 1 with hin H. The right ideald,(H) is defined
analogously. These operations are used to consrtuct such ideals, taking into account the fact, that the
ideal J(H) is two-sided if and only ifi is normal inG. An attempt of constructing two-sided ideal

for a non-normal subgroupwill lead to an error message.

Example

gap> KG := GroupRing( GF(2), DihedralGroup(1l6) );

<algebra-with-one over GF(2), with 4 generators>

gap> G := DihedralGroup(16);

<pc group of size 16 with 4 generators>

gap> KG := GroupRing( GF(2), G );

<algebra-with-one over GF(2), with 4 generators>

gap> D := DerivedSubgroup( G );

Group ([ £3, f4 1)

gap> LeftIdealBySubgroup( KG, D );

<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 3)>

gap> H := Subgroup( G, [ GeneratorsOfGroup(G) [1] 1);

Group ([ f1 1)
gap> IsNormal( G, H );
false

gap> LeftIdealBySubgroup( KG, H );
<left ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 1)>
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4.4 Computations with the unit group

4.4.1 NormalizedUnitGroup

O NormalizedUnitGroup( KG ) (attribute)

Returns: a group generated by group algebra elements

Determines the normalized unit group ofpamodular group algebrac over the field ofp el-
ements. Returns the normalized unit group as the group generated by certain elenentseaf
Section3.3for more details.

For efficient computations the user is recommended t@usermalizedUnitGroup (4.4.2).

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> V := NormalizedUnitGroup( KG );

<group of size 32768 with 15 generators>

gap> u := GeneratorsOfGroup( V ) [4];
(Z(2)70)*£1+(Z(2) "0) *£2+(Z (2) "0) *£1*£2

4.4.2 PcNormalizedUnitGroup

Q PcNormalizedUnitGroup ( KG ) (attribute)
Returns: a group given by power-commutator presentation
The argumentxG is a p-modular group algebra over the field op elements.
PcNormalizedUnitGroup returns the normalized unit group &6 given by a power-commutator
presentation. The generators in this polycyclic presentation correspond to the weighted basis elements
of XG. For more details, see SectiBrB.

Example

gap> W := PcNormalizedUnitGroup( KG );

<pc group of size 32768 with 15 generators>
gap> w := GeneratorsOfGroup( W ) [4];

f4

4.4.3 NaturalBijectionToPcNormalizedUnitGroup

Q NaturalBijectionToPcNormalizedUnitGroup ( KG ) (attribute)
Returns: a homomorphism of groups
The normalised unit group of pmodular group algebr G over the field ofp elements can be
computed using two methods, namebtmalizedUnitGroup (4.4.1) andPcNormalizedUnitGroup
(4.4.2. These two methods return two different objects, and they can be used for different types of
computations. The elements whrmalizedUnitGroup (KG) are represented in their natural group
algebra representation, and hence they can easily be identified in the group algebra. However,
the more quickly constructebrmalizedUnitGroup (KG) is often not suitable for further fast cal-
culations. Hence one will have to useNormalizedUnitGroup (KG) if one wants to find some
group theoretic properties of the normalized unit group. This method returns the bijection from
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NormalizedUnitGroup (KG) ontoPcNormalizedUnitGroup (KG). This bijection can be used to map

the result of a computation #tNormalizedUnitGroup (KG) into NormalizedUnitGroup (KG).
Example

30

gap> f := NaturalBijectionToPcNormalizedUnitGroup( KG );
MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size

32768 with 15 generators>, function( x ) ... end )

gap> u := GeneratorsOfGroup( V )[4];;

gap> u"f;

f4

gap> GeneratorsOfGroup( V ) [4]"f = GeneratorsOfGroup( W ) [4];
true

4.4.4 NaturalBijectionToNormalizedUnitGroup

{Q NaturalBijectionToNormalizedUnitGroup( KG ) (attribute)

Returns: a homomorphism of groups

For ap-modular group algebrac over the field ofp elements this function returns the inverse of

the mappin@iaturalBijectionToPcNormalizedUnitGroup (4.4.3

Example
gap> t := NaturalBijectionToNormalizedUnitGroup (KG);;
gap> w := GeneratorsOfGroup (W) [4];;
gap> w't;

(Z(2)70)*£1+(Z(2)"0) *£2+(Z(2) "0) *f1x£2
gap> GeneratorsOfGroup( W )[4]°t = GeneratorsOfGroup( V ) [4];
true

4.4.5 Embedding

{ Embedding( H, V ) (operation)
Returns: a homomorphism from an underlying group to a normalized unit group in pc-

presentation

LetH be a subgroup of a groUpandv be the normalized unit group of the group algelifagiven
by the power-commutator presentation (BeBormalizedUnitGroup (4.4.9). ThenEmbedding ( H,
V ) returns the homomorphism fromto v, which is the composition afmbedding( H, KG ) and

NaturalBijectionToPcNormalizedUnitGroup( KG ).

Example

gap> G := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> KG := GroupRing( GF( 2 ), G );

<algebra-with-one over GF(2), with 4 generators>

gap> V:=PcNormalizedUnitGroup( KG );

<pc group of size 32768 with 15 generators>

gap> ucs := UpperCentralSeries( V );

[ <pc group of size 32768 with 15 generators>,
<pc group of size 4096 with 12 generators>,
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Group ([ £3*f5*f13*fl15, f7, f11, f13, f14, f15, fl12, £9*f12, £10 1),
Group ([ £3*£5*f13*f15, f7, £15, f13*fl15, f14*f15, f11*f13*f14*f15 1),
Group ([ 1) ]

gap> f := Embedding( G, V );

[ f1, f2, £3, £4 1 —> [ f2, f1, £3, £7 ]
gap> Gl := Image( £, G );

Group ([ f2, f1, £3, £7 1)

gap> H := Intersection( ucs[2], Gl );
Group ([ £3, £7, £3*f7 1)

# H is the intersection of G and the 3rd centre of V(KG)
gap> T:=Prelmage( £, H );

Group ([ £3, f4, £3*f4 ])

# and T is its preimage in G

gap> IdGroup( T );

[ 4, 1]

4.4.6 Units

O Units( KG ) (attribute)
Returns: the unit group of a group ring
This improves a standai@dAP functionality for modular group algebras of finigegroups over
the field of p elements. It returns the unit group &t as a direct product ofnits (k) and
NormalizedUnitGroup (KG), where the latter is generated by certain elementscpfsee Chapter

3 for more details.
Example

gap> U := Units( KG );

<group of size 32768 with 15 generators>

# now elements of U are already in KG

gap> GeneratorsOfGroup( U ) [5];
(Z(2)70)*£2+4(Z(2) "0) *£3+(Z2(2) "0) *£2*£3

# in the next example the direct product structure is more clear
gap> FH := GroupRing( GF(3), SmallGroup(27,3) );
<algebra-with-one over GF(3), with 3 generators>

gap> T := Units( FH );

<group of size 5083731656658 with 27 generators>

gap> x := GeneratorsOfGroup( T )[1l];

Tuple( [ Z(3), (Z2(3)70)*<identity> of ... ]

gap> x in FH;

false

gap> x[1] * x[2] in FH;

true # this is the way to get the corresponding element of FH

4.4.7 PcUnits

{ PcUnits( KG ) (attribute)
Returns: a group given by power-commutator presentation
Returns the unit group &G as a direct product afnits (K) andPcNormalizedUnitGroup (KG),
where the latter is a group given by a polycyclic presentation. See S&ctior more details.
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Example

32

gap> W := PcUnits( KG );

<pc group of size 32768 with 15 generators>

gap> GeneratorsOfGroup( W ) [5];

£5

# in the next example the direct product structure is more clear
gap> FH := GroupRing( GF(3), SmallGroup(27,3) );
<algebra-with-one over GF(3), with 3 generators>
gap> T := PcUnits (FH);

<group of size 5083731656658 with 27 generators>
gap> x := GeneratorsOfGroup( T )[2];

Tuple( [ Z2(3)70, f1 1)

4.4.8 I1sGroupOfUnitsOfMagmaRing

Q IsGroup0fUnitsOfMagmaRing( U )

(property)

This property will be automatically setue, if U is a group generated by some units of a magma
ring, includingUnits (KG) andNormalizedUnitgroup (KG). Otherwise this property will not be

bound.

Example

gap> IsGroupOfUnitsOfMagmaRing( NormalizedUnitGroup( KG ) );
true

gap> IsGroupOfUnitsOfMagmaRing( Units( KG ) );

true

4.4.9 IsUnitGroupOfGroupRing

Q IsUnitGroupOfGroupRing( U )

(property)

This property will be automatically setrue, if U is the unit group of g-modular group algebra,
obtained either bynits (KG) or by PcUnits (KG) . Otherwise this property will not be bound.

Example

gap> IsUnitGroupOfGroupRing( Units( KG ) );
true

gap> IsUnitGroupOfGroupRing( PcUnits( KG ) );
true

4.4.10 IsNormalizedUnitGroupOfGroupRing

Q IsNormalizedUnitGroupOfGroupRing( U )

(property)
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This property will be automatically setrue, if U is the normalized unit group of p-modular
group algebra, obtained eitherbyrmalizedUnitGroup (KG) or byPcNormalizedUnitGroup (KG).
Otherwise this property will not be bound.

Example

gap> IsNormalizedUnitGroupOfGroupRing( NormalizedUnitGroup( KG ) );
true

gap> IsNormalizedUnitGroupOfGroupRing( PcNormalizedUnitGroup( KG ) );
true

4.4.11 UnderlyingGroupRing

{ UnderlyingGroupRing ( U ) (attribute)
Returns: a group ring
If U is the (normalized) unit group of g-modular group algebr&KG obtained us-
ing one of the functions Units(KG), PcUnits(KG), NormalizedUnitGroup (KG) Of
PcNormalizedUnitGroup (KG), then the attribute@nderlyingGroupRing storesKG.

Example

gap> UnderlyingGroupRing( Units( KG ) );
<algebra-with-one of dimension 16 over GF(2)>

gap> UnderlyingGroupRing( PcUnits( KG ) );
<algebra-with-one of dimension 16 over GF (2)>

gap> UnderlyingGroupRing( NormalizedUnitGroup( KG ) );
<algebra-with-one of dimension 16 over GF(2)>

gap> UnderlyingGroupRing( PcNormalizedUnitGroup( KG ) );
<algebra-with-one of dimension 16 over GF(2)>

4.4.12 UnitarySubgroup

Q UnitarySubgroup( U ) (attribute)
Returns: the subgroup of the unit group
Let U be the normalized unit group of a group ring in either natural {ee@alizedUnitGroup
(4.4.7)) or power-commutator (seecNormalizedUnitGroup (4.4.9) presentation. The attribute
stores the unitary subgroup of generated by all unitary units of (seeIsUnitary (4.2.9). The
method is straightforward, so it is not recommended to run it for large groups.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> U := NormalizedUnitGroup( KG );

<group of size 128 with 7 generators>

gap> HU := UnitarySubgroup( U );

<group with 5 generators>

gap> IdGroup( HU );

[ 64, 261 ]

gap> V := PcNormalizedUnitGroup( KG );
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<pc group of size 128 with 7 generators>

gap> HV := UnitarySubgroup( V );

Group ([ f1, f2, £5, f6, £7 1)

gap> IdGroup( HV );

[ 64, 261 ]

gap> Image (NaturalBijectionToPcNormalizedUnitGroup( KG ), HU )
true

4.4.13 BicyclicUnitGroup

Q BicyclicUnitGroup( U )
Returns: the subgroup of the unit group, generated by bicyclic units

Let U be the normalized unit group of a group ring in either natural {g8e@alizedUnitGroup
(4.4.2) or power-commutator (SeBcNormalizedUnitGroup (4.4.9) presentation. The attribute
stores the subgroup of generated by all bicyclic unitsgy andvgh (seeBicyclicUnitOfTypel
(4.2.12 andBicyclicUnitOfTypel (4.2.19), whereg andh run over the elements of the underlying

group, anch do not belongs to the normalizer @) in G.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> U := NormalizedUnitGroup( KG );

<group of size 128 with 7 generators>

gap> BU := BicyclicUnitGroup( U );

<group with 2 generators>

gap> IdGroup( BU );

[ 4, 2]

gap> V := PcNormalizedUnitGroup( KG );

<pc group of size 128 with 7 generators>

gap> BV := BicyclicUnitGroup( V );

Group ([ £5*f6, f6*f7 1)

gap> IdGroup( BV );

[ 4, 2]

gap> Image( NaturalBijectionToPcNormalizedUnitGroup( KG ), BU )
true

4.4.14 GroupBases

Q GroupBases ( KG )
Returns: a list of lists of group rings elements

The subgrougB of the normalized unit group of the group algelt@ is called agroup basisif
the elements 0B are linearly independent over the filddandKB = KG. If XKG is ap-modular group
algebra, themroupBases returns a list of representatives of the conjugacy classes of the group bases

of the group algebraé in its normalised unit group.

Example

gap> D8 := DihedralGroup( 8 );



LAGUNA 35

<pc group of size 8 with 3 generators>
gap> K := GF(2);

GF (2)

gap> KD8 := GroupRing( GF( 2 ), D8 );
<algebra-with-one over GF(2), with 3 generators>
gap> gb := GroupBases( KD8 )

gap> Length( gb );

rr

32
gap> gb[l];
[ (Z(2)70)*<identity> of ceey (Z(2)70)*£3, (Z(2)70)*£1*£2+(Z(2) "0) *£2*£3+(Z2(2)"
0)*£1*£2*£3, (Z(2)70)*£2+(Z(2)"0)*£1*£2+(Z(2)"0) *f1*£2*£3,
(Z(2)"0)*<identity> of ...+(Z(2)"0)*£2+(Z(2)"0)*£3+(Z(2)"0)*£2*£3+(Z(2) "
0)*£1*£2*£3, (Z(2)~ )*f2+(Z(2) 0)*£1*£3+4(Z(2) "0) *£2*£3,
(Z(2)"0) *<identity> of ...+(Z(2)70)*£2+(Z(2)"0)*£3+(Z(2)"0)*£1*£f2+(Z(2)"0) *f2*£3,
(Z(2)70)*£1+(Z(2)" O)*f2+( (2)°0)*£2*£3 ]

gap> Length( last );
8

4.5 The Lie algebra of a group algebra

4.5.1 LieAlgebraByDomain

{ LieAlgebraByDomain( A ) (method)

This method takes an associative algebra as its argument, and constructs its associated Lie alge-
bra in which the product is the bracket operati¢amb] = ab— ba. It is recommended that the user
never calls this method. The Lie algebra for an associative algebra should normally be created us-
ing LieAlgebra( A ). WhenLieAlgebra is first invoked, it constructs the Lie algebra fousing
LieAlgebraByDomain. After that it stores this Lie algebra and simply returns ititAlgebra is
called again.

Example
gap> M := MatrixAlgebra( GF( 3 ), 3 );
(GF(3)"[ 3, 31)
gap> L :=

LleAlgebra( M );
<Lie algebra over GF (3)>

4.5.2 IsLieAlgebraByAssociativeAlgebra

{Q IsLieAlgebraByAssociativeAlgebra( L ) (Category)

This category signifies that the Lie algehravas constructed as the Lie algebra associated with
an associative algebra (this piece of information cannot be obtained later).

Example

gap> M := MatrixAlgebra( GF( 3 ), 3 );
(GF(3)"[ 3, 31)



LAGUNA 36

gap> L := LieAlgebra( M );

<Lie algebra over GF(3)>

gap> IsLieAlgebraByAssociativeAlgebra( L );
true

4.5.3 UnderlyingAssociativeAlgebra

Q UnderlyingAssociativeAlgebra( L ) (attribute)
Returns: the underlying associative algebra of a Lie algebra
If a Lie algebraL is constructed from an associative algebra, then it remembers this underlying
associative algebra as one of its attributes.
Example

gap> M := MatrixAlgebra( GF( 3 ), 3 );
<algebra-with-one over GF(3), with 2 generators>
gap> L := LieAlgebra( M );

<Lie algebra over GF(3)>

gap> UnderlyingAssociativeAlgebra( L );

(GF(3)"[ 3, 31)
gap> last = NM;
true

4.5.4 NaturalBijectionToLieAlgebra

{ NaturalBijectionToLieAlgebra( A ) (attribute)
Returns: a mapping
The natural linear bijection between the (isomorphic, but not equal) underlying vector spaces of
an associative algebraand its associated Lie algebra is stored as an attribute ddte that this is a
vector space isomorphism between two algebras, but not an algebra isomorphism.
Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF (2)

Sym( [ 1 .. 3 1)

<algebra-with-one over GF(2), with 2 generators>

gap> t := NaturalBijectionToLieAlgebra( FG );

MappingByFunction( <algebra-with-one over GF(2), with

2 generators>, <Lie algebra over GF (

2)>, <Operation "LieObject">, function( y ) ... end )

gap> a := Random( FG );
(Z(2)70)*(1,2,3)+(Z(2)"0)*(1,3,2)+(z(2)"0)*(1,3)

gap> a * a; # product in the associative algebra
(Z(2)70)*()+(Z2(2)70)*(1,2,3)+(z(2) "0) * (1, 3,2)

gap> b := a’t;

LieObject ( (Z(2)70)*(1,2,3)+(Z(2)"0)*(1,3,2)+(Z(2)"0)*(1,3) )

gap> b * Db; # product in the Lie algebra (commutator)
LieObject ( <zero> of ... ) # ... must be zero!
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4.5.5 NaturalBijectionToAssociativeAlgebra

{ NaturalBijectionToAssociativeAlgebra( L ) (attribute)

This is the inverse of the previous linear bijection, stored as an attribute of the Lie atgebra

Example

gap> G := SymmetricGroup(3); FG := GroupRing( GF( 2 ), G );

Sym( [ 1 .. 3 1)

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF(2)>

gap> s := NaturalBijectionToAssociativeAlgebra( L );

MappingByFunction( <Lie algebra over GF(2)>, <algebra-with-one over GF(
2), with 2 generators>, function( y ) ... end, <Operation "LieObject"> )
gap> InverseGeneralMapping( s ) = NaturalBijectionToLieAlgebra( FG );
true

4.5.6 IsLieAlgebraOfGroupRing

Q IsLieAlgebraOfGroupRing( L ) (property)

If a Lie algebrar is constructed from an associative algebra which happens to be in fact a group
ring, it has many nice properties that can be used for fast algorithms, so this information is stored as a
property.

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF (2)

Sym( [ 1 .. 3 1)

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF (2)>

gap> IsLieAlgebraOfGroupRing( L );

true

4.5.7 UnderlyingGroup (of Lie algebra of a group ring)

¢ UnderlyingGroup( L ) (attribute)
Returns: the underlying group
The underlying group of a Lie algebtathat is constructed from a group ring is defined as the
underlying group of this group ring; s@@derlyingGroup (4.1.9.

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
GF (2)

Sym( [ 1 .. 31)

<algebra-with-one over GF(2), with 2 generators>
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gap> L := LieAlgebra( FG );
<Lie algebra over GF (2)>
gap> UnderlyingGroup( L );
Sym( [ 1 .. 3 1)

gap> LeftActingDomain( L );
GF (2)

4.5.8 Embedding

¢ Embedding( U, L ) (operation)
Returns: a mapping, which is a composition of two mappings
Let FG be a group ring, let be a submagma d@b, and letl, be the Lie algebra associated with
FG. ThenEmbedding (U, L ) returns the obvious mapping fromto 1. (as the composition of the
mappingEmbedding ( U, FG ) andNaturalBijectionToLieAlgebra( FG )).

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );

GF (2)

Sym( [ 1 .. 3 1)

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF (2)>

gap> f := Embedding( G, L );

CompositionMapping( MappingByFunction( <algebra-with-one over GF(2), with
2 generators>, <Lie algebra over GF(

2)>, <Operation "LieObject">, function( y ) ... end ), <mapping: SymmetricGrou\
p( [ 1 ..371) -> AlgebraWithOne( GF(2), ... ) >

gap> (1,2)"f + (1,3)"°f;

LieObject ( (Z(2)70)*(1,2)+(Z2(2)°0)*(1,3) )

459 LieCentre

O LieCentre( L ) (method)
Returns: aLie algebra
The centre of the Lie algebra associated with a group ring corresponds to the centre of the under-
lying group ring, and it can be calculated very fast by considering the conjugacy classes of the group.
This method returns the centreofising this idea.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF(2)>

gap> C := LieCentre( L );

<Lie algebra of dimension 28 over GF(2)>

gap> D := LieDerivedSubalgebra( L );

<Lie algebra of dimension 228 over GF(2)>
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gap> ¢ := Dimension( C ); d := Dimension( D ); 1 := Dimension( L );
28

228

256

gap> ¢ +d = 1;

true # This is always the case for Lie algebras of group algebras!

4.5.10 LieDerivedSubalgebra

Q LieDerivedSubalgebra( L ) (method)
Returns: a Lie algebra
If L is the Lie algebra associated with a group ring, then this method returns the Lie derived
subalgebra of.. This can be done very fast using the conjugacy classes of the underlying group.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF (2)>

gap> C := LieCentre( L );

<Lie algebra of dimension 28 over GF(2)>

gap> D := LieDerivedSubalgebra( L );

<Lie algebra of dimension 228 over GF(2)>

gap> 1 := Dimension( L ); c := Dimension( C ); d := Dimension( D );
256

28

228

gap> ¢ + d = 1;

true # This is always the case for Lie algebras of group algebras!

4.5.11 IsLieAbelian

{ IsLieRbelian( L ) (method)

The Lie algebra. of an associative algebrais Lie abelian, if and only ifA is abelian, so this
method refers tasAbelian( A ).

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G);

Sym( [ 1 .. 3 1)

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF(2)>

gap> IsAbelian( G );

false

gap> IsBAbelian( L ); # This command should never be used for Lie algebras!
true # It gives a result, but (probably) not the desired one.
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gap> IsLieBAbelian( L ); # Instead, IsLieAbelian is the correct command.
false

45.12 IsLieSolvable

O IsLieSolvable( L ) (method)

In [PPS73 Passi, Passman, and Sehgal have classified all g®@wgh that the Lie algebra as-
sociated with the group ring is solvable. This method uses their classification, making it considerably
faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF (2)>

gap> IsLieSolvable( L ); # This is very fast.
true
gap> List( LieDerivedSeries( L ), Dimension ); # This is very slow.

[ 256, 228, 189, 71, 0 ]

4.5.13 IsLieNilpotent

Q IsLieNilpotent ( L ) (method)

In [PPS73 Passi, Passman, and Sehgal have classified all gr@upsch that the Lie algebra
associated with the group ring is Lie nilpotent. This method uses their classification, making it con-
siderably faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );

<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF(2)>

gap> IsLieNilpotent( L ); # This is very fast.
true

gap> List( LieLowerCentralSeries( L ), Dimension ); # This is very slow.
[ 256, 228, 222, 210, 191, 167, 138, 107, 76, 54, 29, 15, 6, 0 ]

45.14 IsLieMetabelian

{ IsLieMetabelian( L ) (property)
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In [LR8€] Levin and Rosenberger have classified all groBmich that the Lie algebra associated
with the group ring is Lie metabelian. This method uses their classification, making it considerably

faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );
<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF (2)>

gap> IsLieMetabelian( L );

false

4.5.15 IsLieCentreByMetabelian

Q IsLieCentreByMetabelian( L )

(property)

In [Ros07 the third author of this package classified all gro@such that the Lie algebra asso-
ciated with the group ring is Lie centre-by-metabelian. This method uses the classification, making it
considerably faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 1)

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF (2)>

gap> IsLieMetabelian( L );

false

gap> IsLieCentreByMetabelian( L );

true

45.16 CanonicalBasis

{ CanonicalBasis( L )
Returns: basis of a Lie algebra

(method)

The canonical basis of a group algebr@ is formed by the elements &. In this method. is the
Lie algebra associated with a group algebf@, and the method returns the images of the elements of

GinL.

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 ..31)

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF(2)>

gap> B := CanonicalBasis( L );

CanonicalBasis( <Lie algebra of dimension 6 over GF(2)> )
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gap> Elements( B );
[ LieObject ( Z(2)"0*() ), LieObject( Z(2)°0*(2,3) ),
LieObject ( Z(2)"0*(1,2) ), LieObject( Z(2)"0*(1,2,3) ),
LieObject ( Z(2)"0*(1,3,2) ), LieObject( zZ(2)"0*(1,3) ) ]

4.5.17 IsBasisOfLieAlgebraOfGroupRing

{Q IsBasisOfLieAlgebraOfGroupRing( B ) (property)

A basisB has this property if the preimages of the basis vectors in the group algebra form a group.
It can be verified if a basis has this property. This is important for the speed of the calculation of the
structure constants table; s@eructureConstantsTable (4.5.18.

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );
Sym( [ 1 .. 3 1)

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF (2)>

gap> B := CanonicalBasis( L );

CanonicalBasis( <Lie algebra of dimension 6 over GF (2)> )
gap> IsBasisOfLieAlgebraOfGroupRing( B );

true

45,18 StructureConstantsTable

{ StructureConstantsTable( B ) (method)

A very fast implementation for calculating the structure constants table for the Lie algebra
associated with a group ring with respect to its canonical basising its special structure; see
CanonicalBasis (4.5.16.

Example

gap> G := CyclicGroup( 2 ); FG := GroupRing( GF( 2 ), G );

<pc group of size 2 with 1 generators>

<algebra-with-one over GF(2), with 1 generators>

gap> L := LieAlgebra( FG );

<Lie algebra over GF(2)>

gap> B := CanonicalBasis( L );

CanonicalBasis( <Lie algebra of dimension 2 over GF(2)> )

gap> StructureConstantsTable( B );

ccccoo 1,0y,
0*z2(2) 1]
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4.5.19 LieUpperNilpotencylndex

{Q LieUpperNilpotencyIndex ( KG ) (attribute)

In a modular group algebidG the upper Lie power series defined as followsKG(Y = KG,
KG(™1 is the associative ideal, generated[z™, KG|. The upper Lie nilpotency indetk (G) of
the group algebr& G is defined to be the smallest numimesuch thak G = 0. It can be calculated
very fast using Lie dimension subgroup@a9], that is, using only information about the underlying
group; sed.ieDimensionSubgroups (4.6.4. This is why it is stored as an attribute of the group
algebrakG rather than that of its associated Lie algebra.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> LieUpperNilpotencyIndex( KG );

5

4.5.20 LieLowerNilpotencylndex

Q LieLowerNilpotencyIndex ( KG ) (attribute)

In a modular group algebrdG the lower Lie power seriess defined as followsKG" is the
associative ideal, generated by all (left-normed) Lie-prodpgtsy, ..., xn|, X € KG. The lower Lie
nilpotency indext, (G) of the group algebr&G is defined to be the minimal smallestsuch that
KGI = 0. In [Du97 the Jennings’ conjecture was proved, which means that the nilpotency class of
the normalized unit group of the modular group algdb@is equal tat; (G) — 1.

This allows to express lower Lie nilpotency index via the nilpotency class of the normalized unit
group, and with its polycyclic presentation, providedUs\GUNA, this will be faster than elementary
calculations with Lie commutators. As the previous attribute, this index is also stored as an attribute
of the group algebrag.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>
gap> LieLowerNilpotencyIndex( KG );

5

4.5.21 LieDerivedLength

Q LieDerivedLength( L ) (attribute)

LetL be a Lie algebra. Theie derived seriesf L is defined as followsd® (L) = L andd" (L) =
(3" (L),8™Y(L)]. Lis called Lie solvable if there exists an integesuch thad™ (L) = 0. In this
case the integenis called the_ie derived lengttof L, and it is returned by this function.
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gap> KG := GroupRing( GF ( 2 ), DihedralGroup( 16 ) );
<algebra-with-one over GF(2), with 4 generators>

gap> L := LieAlgebra( KG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> LieDerivedLength( L );

#I LAGUNA package: Computing the Lie derived subalgebra ...
3

4.6 Other commands

4.6.1 SubgroupsOfindexTwo

¢ SubgroupsOfIndexTwo ( G )

(attribute)

Returns a list of subgroups &with index two. Such subgroups are important for the investigation
of the Lie structure of the group algelfas in the case when the underlying fidfdhas characteristic

2.

Example

gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> SubgroupsOfIndexTwo( G );

Group ([ f1*f2, f1xf£2*f3, flxf2*f4, f1*xf2*£3*f4 ]) ]

[ Group([ fl, f1*f£3, fl*fd, fI1*f3*fd ]), Group([ £2, £2*f3, £2*fd4, £2*£3*f4 1),

4.6.2 DihedralDepth

{Q DihedralDepth( U )

(method)

For a finite 2-group, the function returns itdihedral depthwhich is defined to be the maximal

numberd such that’ contains a subgroup isomorphic to the dihedral group of orétek. 2

Example

gap> KD8 := GroupRing( GF(2), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>
gap> UD8 := PcNormalizedUnitGroup( KD8 );

<pc group of size 128 with 7 generators>

gap> DihedralDepth( UD8 );

2
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4.6.3 DimensionBasis

{ DimensionBasis( G ) (method)
Returns: record with two components: ‘dimensionBasis’ (list of group elements) and ‘weights’
(list of weights)
For a finitep-groupg, returns its Jennings basis as it was described in Se8t®n

Example

gap> G := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> DimensionBasis( G );

rec( dimensionBasis := [ f1l, f2, £3, f4 ], weights := [ 1, 1, 2, 4 1)

4.6.4 LieDimensionSubgroups

¢ LieDimensionSubgroups( G ) (attribute)
Returns: list of subgroups
For a finitep-groupg, returns the series of its Lie dimension subgroups. mké Lie dimension
subgrougD r, is the intersection of the group and 1+ KG™, whereKG(™ is thentth term of the
upper Lie power series &G; seel.ieUpperNilpotencyIndex (4.5.19

Example

gap> G := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> LieDimensionSubgroups( G );

[ <pc group of size 16 with 4 generators>, Group([ £3, £4 1), Group([ f4 1),
Group ([ <identity> of ... 1) 1]

4.6.5 LieUpperCodimensionSeries

{Q LieUpperCodimensionSeries( KG ) (attribute)
Q LieUpperCodimensionSeries( G ) (attribute)
Returns: list of subgroups
A notion of upper Lie codimension subgroups was introducedid.[ For a finite p-groupg, C;
is the set of all elementgin G, such that the Lie commutatfg, i, ..., gi] of the lengthi + 1 is equal
to zero for allgy,...,g; from G, andCy = 1. By Du’s theorem (seeJu97), C; coincides with the
intersection ofG and the i-th term of the upper central series Xy < Z; < Z, < ... < Zn =V (KG)
of the normalized unit group (KG). This fact is used inLAGUNA to speed up computation of this
series. Sinc& (KG) is involved in computation, for the first time the argiment should be the group
ring KG, but later you can also apply it to the groajitself.

Example

gap> G := DihedralGroup(l6);

<pc group of size 16 with 4 generators>

gap> KG := GroupRing( GF(2), G );
<algebra-with-one over GF(2), with 4 generators>
gap> LieUpperCodimensionSeries( KG );
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[ Group([ f1, f2, £3, f4 ]), Group([ £3, £f4, £3*f4 ]), Group([ £4 ]),
Group ([ f4 1), Group([ 1) 1

gap> LieUpperCodimensionSeries( G );

[ Group([ f1, f2, £3, f4 ]), Group([ £3, f4, £3*f4 1), Group([ f4 ]),
Group ([ f4 1), Group([ 1) 1

4.6.6 LAGInfo

Q LAGInfo (info class)

LAGInfo is a special Info class for LAGUNA algorithms. It has 5 levels: 0, 1 (default), 2, 3 and
4. To change info level ta, use commandetInfolevel (LAGInfo, k).

Example

gap> SetInfolevel( LAGInfo, 2 );

gap> KD8 := GroupRing( GF( 2 ), DihedralGroup( 8 ) );
<algebra-with-one over GF(2), with 3 generators>

gap> UD8 := PcNormalizedUnitGroup( KD8 );

#I LAGInfo: Computing the pc normalized unit group ...
#I LAGInfo: Calculating weighted basis ...

#I LAGInfo: Calculating dimension basis ...

#I LAGInfo: dimension basis finished !

#I LAGInfo: Weighted basis finished !

#I LAGInfo: Computing the augmentation ideal filtration...
#I LAGInfo: Filtration finished !

#I LAGInfo: finished, converting to PcGroup

<pc group of size 128 with 7 generators>

4.6.7 LAGUNABuildManual

¢ LAGUNABuildManual ( ) (function)

This function is used to build the manual in the following formats: DVI, PDF, PS, HTML and
text for online help. We recommend that the user should have a recent and fairly congete T
distribution. SinceeAGUNA is distributed together with its manual, it is not necessary for the user to
use this function. Normally it is intended to be used by the developers only. This is the only function
of LAGUNA which requires UNIX/Linux environment.

4.6.8 LAGUNABuildManualHTML

¢ LAGUNABuildManualHTML ( ) (function)

This fuction is used to build the manual only in HTML format. This does not depend on the
availability of the EX installation and works under Windows and MacOS as well. SIfggUNA is
distributed together with its manual, it is not necessary for the user to use this function. Normally it is
intended to be used by the developers only.
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