singular
the GAP interface to Singular
Version 06.01.09

9 January 2006

Marco Costantini
Willem A. de Graaf

Marco Costantini — Email: costanti@science.unitn.it
— Homepagehttp://www-math.science.unitn.it/ costanti/

Willem A. de Graaf — Email: degraaf@science.unitn.it
— Homepagehttp://www.science.unitn.it/ "degraaf/

mailto://costanti@science.unitn.it
http://www-math.science.unitn.it/~costanti/
mailto://degraaf@science.unitn.it
http://www.science.unitn.it/~degraaf/

singular

Copyright

(© 2003, 2004, 2005, 2006 Marco Costantini and Willem A. de Graaf

Contents

1 singular : the GAP interface to Singular 5
1.1 Introduction. e 5
1.1.1 Packageevolution. 5
1.1.2 Thesystensingular e 6
1.1.3 ThesystenGAP 6

1.2 Installation e 7
1.2.1 Installing the systersingular 7
1.2.2 Installingthe systen®AP 7
1.2.3 Installing the packagsingular 8
124 SINGEXEC . . . v v v i i i e e e 8

1.3 |Interaction withSingularo 9
1.3.1 StartSingular. 9
1.3.2 SingularHelp. e 9
1.3.3 Ringsandorderings. 10
1.3.4 Supported coefficientsfields 10
1.3.5 SetTermOrdering o 10
1.3.6 SingularSetBaseRing. e 11
1.3.7 SingularLibrary. 12
1.3.8 Singularinterface. e 12
1.3.9 SingularType. e e e e e 14

1.4 Interaction withSingular atlow level. 14
1.4.1 SingularCommand. e 14
142 Gapinterface. 14

1.5 Other mathematical functions of the package. 14
1.5.1 GroebnerBasis. 14
1.5.2 SINGULARGBASIS. e 15
1.5.3 HasTrivialGroebnerBasis. 15
1.5.4 GcedUsingSingular. e 16
1.5.5 FactorsUsingSingularNC 16
1.5.6 FactorsUsingSingular. 17
1.5.7 GeneratorsOflnvariantRing. 17

1.6 Algebraic-geometric codesfunctions. 17
1.6.1 AlPoIintsONCUIVe o e e 18
1.6.2 AGCOde e 18

1.7 Troubleshooting and technicalstuff. 19
1.7.1 Supported platforms and underlyi®@fP functions. 19

1.7.2
1.7.3
1.7.4
1.75
1.7.6
1.7.7

singular 4

Testfile e 19
Commonproblems o 19
Errorsonthesingularside 20
Sendingareport. 20
SingularReportinformation oL oL 20
InfoSingular 21

Chapter 1

singular : the GAP interface to Singular

1.1 Introduction

This is the manual of theAP package Singular” that provides an interface from ti@AP computer
algebra system to th&ingular computer algebra system.

This package allows theAP user to access functions singular from within GAP, and to apply
these functions to the AP objects. With this package, the user keeps working @it and, if he
needs a function ddingular that is not present iGAP, he can use this function via the interface; see
the functionsingularInterface (1.3.8.

This package provides also a function that computes Groebner bases of ideals in polynomial
rings of GAP. This function uses th8ingular implementation, which is very fast; see the function
GroebnerBasis (1.5.7).

The interface is expected to work with every versionGaP 4, every (not very old) version of
Singular, and on every platform, on which bo8AP andSingular run; see paragragh7.1for details.

If you have used this package in the preparation of a paper please cite it as described in
http://www.gap-system.org/Contacts/cite.html.

If GAP, Singular, and theGAP packageingular are already installed and working on his computer,
the user of this interface needs to read only the subsection exec (1.2.4, the sectiorl.4, and in
case of problems the subsectibi7.3

1.1.1 Package evolution

The work for the packagsingular has been started by Willem de Graaf, that planned this package as
an interface to the function dingular that calculates the Groebner bases. To this purpose, Willem de
Graaf wrote the code for the conversion of rings and ideals B3R to Singular, and the code for
the conversion of numbers and polynomials in both directions.

Marco Costantini has widened the aim of the package, in order to make it a general interface to
each possible function @ingular: with the functionsingularInterface (1.3.8 itis possible to use
from within GAP any function ofSingular, including user-defined ones and future implementations.
To this purpose, Marco Costantini has generalized the previous code for the conversion of objects in
the new more general context, has written the code for the conversion of the various other types of
objects, and has written the code for the low-level communication bet@aerandSingular.

David Joyner has developed the code for the algebraic-geometric codes functions, and has written
the corresponding sectidn6 of this manual.

Gema M. Diaz has helped with some testing and reports.

5

http://www.gap-system.org/Contacts/cite.html

singular 6

1.1.2 The systemSingular

Singular is “A Computer Algebra System for Polynomial Computations” developed by G.-M. Greuel,
G. Pfister, and H. S@mnemann, at Centre for Computer Algebra, University of Kaiserslautern. The
authors of theGAP packagesingular are not involved in the development of the syst®ingular, and

vice versa.

Singular is not included in this package, and can be obtained for free from
http://www.singular.uni-kl.de. There, one can find also its documentation, installing in-
structions, the source code if wanted, and support if needgidgular is available for several
platforms.

A description ofSingular, copied from its manual (paragraph “2.1 Background”), version 2-0-5,
is the following:

“ Singular is a Computer Algebra system for polynomial computations with emphasis on the
special needs of commutative algebra, algebraic geometry, and singularity theory.

Singular’'s main computational objects are ideals and modules over a large variety of baserings.
The baserings are polynomial rings or localizations thereof over a field (e.qg., finite fields, the rationals,
floats, algebraic extensions, transcendental extensions) or quotient rings with respect to an ideal.

Singular features one of the fastest and most general implementations of various algorithms for
computing Groebner resp. standard bases. The implementation includes Buchberger’s algorithm (if
the ordering is a well ordering) and Mora’s algorithm (if the ordering is a tangent cone ordering) as
special cases. Furthermore, it provides polynomial factorizations, resultant, characteristic set and gcd
computations, syzygy and free-resolution computations, and many more related functionalities.

Based on an easy-to-use interactive shell and a C-like programming lan@iragdar’s internal
functionality is augmented and user-extendible by libraries written irStingular programming lan-
guage. A general and efficient implementation of communication links alfwgilar to make its
functionality available to other programs.

Singular's development started in 1984 with an implementation of Mora’s Tangent Cone algorithm
in Modula-2 on an Atari computer (K.P. Neuendorf, G. Pfister, H&emann; Humboldt-Universit
zu Berlin). The need for a new system arose from the investigation of mathematical problems coming
from singularity theory which none of the existing systems was able to compute.

In the early 1990sSingular's “home-town” moved to Kaiserslautern, a general standard basis
algorithm was implemented in C, argingular was ported to Unix, MS-DOS, Windows NT, and
MacOS.

Continuous extensions (like polynomial factorization, gcd computations, links) and refinements
led in 1997 to the release Sfngular version 1.0 and in 1998 to the release of version 1.2 (much faster
standard and Groebner bases computations based on Hilbert series and on improved implementations
of the algorithms, libraries for primary decomposition, ring normalization, etc.) .

1.1.3 The systemGAP

GAP stands for “Groups, Algorithms, and Programming”, and is developed by several people (“The
GAP Group”).

GAP is not included in this package, and can be obtained for free from
http://www.gap-system.org/. There, one can find also its documentation, installing in-
structions, the source code, and support if needed.GRresystem will run on any machine with an
Unix-like or recent Windows or MacOS operating system and with a reasonable amount of ram and
disk space.

http://www.singular.uni-kl.de
http://www.gap-system.org/

singular 7

A description ofGAP, copied from its web site, is the following:GAP is a system for compu-
tational discrete algebra, with particular emphasis on Computational Group TigPyprovides a
programming language, a library of thousands of functions implementing algebraic algorithms writ-
ten in theGAP language as well as large data libraries of algebraic objects. See the web site the
overview and the description of the mathematical capabilitds? is used in research and teaching
for studying groups and their representations, rings, vector spaces, algebras, combinatorial structures,
and more. The system, including source, is distributed freely. You can study and easily modify or
extend it for your special use.”

1.2 Installation

In order to use this interface one must have @#P version 4 andingular installed.

1.2.1 Installing the systemSingular

Follow theSingular installing instructions.
However, for a Unix system, one needs to download two files:

e Singular-<version>-share.tar.gz, that contains architecture independent data like doc-
umentation and libraries;

e Singular-<version>-<uname>.tar.gz, that contains architecture dependent executables,
like the Singular program (precompiledx:uname- is a description of the processor and oper-
ating system for whiclsingular is compiled.

Singular specific subdirectories will be created in such a way that multiple versions and multiple
architecture dependent files ®ihgular can peaceably coexist under the safier/local/ tree.

Before trying the interface, make sure tistgular is installed and working as stand-alone pro-
gram.

1.2.2 Installing the systemGAP

Follow theGAP installing instructions.
However, the basic steps ofGAP installation are:

e Choose your preferred archive format and download the archives.
e Unpack the archives.
e On Unix: CompileGAP. (Compiled executables for Windows and Mac are in the archives.)

e On Unix: Some packages need further installation for full functionality (which is not available
on Windows or Mac).

e Adjust some links/scripts/icons ..., depending on your system, to make the new versian of
available to the users of your machine.

e Optional: Run a few tests.

e Optional, but appreciated: Give some feedback on your installation.

singular 8

There is also an experimental Linux binary distribution via remote synchronization with a reference in-
stallation, which includes all packages and some optimizations. Furthermore, the Debian GNU/Linux
distribution contains .deb-packages with the core pa@A# and some of th&AP packages.

1.2.3 Installing the packagesingular

The packageaingular is installed and loaded as a norn@P package: see theAP documentation
(Reference: GAP Packages

Starting with version 4.4 oBAP, the packagsingular is distributed together witBAP. Hence, if
GAP is already installed with all the distributed packages, then also the paskagtr is installed.
However, if the packagsingular is not included in youGAP installation, it can be downloaded and
unpacked in thekg/ directory of theGAP installation. If you don’t have write access to thiey/
directory in your mairGAP installation you can use private directories as explained irGike doc-
umentation Reference: GAP Root Directory). The packageingular doesn’t require compilation.

1.2.4 singexec

Q) sing_exec (global variable)
Q sing_exec_options (global variable)
¢ SingularTempDirectory (global variable)

In order to use the interfaceAP has to be told where to finglingular. This can be done in three
ways. First, if theSingular executable file is in the search path, ti@xP will find it. Second, it is pos-
sible to edit (before loading the package) one of the first lines of theifilgular/gap/singular.g
(that comes with this package). Third, it is possible to give the path o$itular executable file
directly during eaclGAP session assigning it to the variableng_exec (after this package has been
loaded, and before startirgingular), as in the example below.

Example

gap> LoadPackage("singular");

The GAP interface to Singular, by Marco Costantini and Willem de Graaf
true

gap> sing_exec:= "/home/wdg/Singular/2-0-3/ix86-Linux/Singular";;

The directory separator is always, even under DOS/Windows or MacOS. The valuestfig_exec
must refer to the text-only version 8fngular (Singular), and not to the Emacs versiors(ingular),
nor to the terminal window versiomr§ingular).
In a similar way, it is possible to supplgingular with some command line options (or files
to read containing user defined functions), assigning them to the varablpexec_options.
This can be done by editing (before loading the package) one of the first lines of the file
singular/gap/singular.g (that comes with this package), or directly during e&@#*P session
(after this package has been loaded, and before staitigglar), as in the example below.

Example
gap> Add(sing_exec_options, "--no-rc");
gap> Add(sing_exec_options, "/full_path/my_file");

The variablesing_exec_options is initialized to ["-t"]; the user can add further options, but
must keep'-t", which is required. The possible options are described isitgular documentation,
paragraph “3.1.6 Command line options”.

singular 9

Singular is not executed in the current directory, but in a user-specified one, or in a temporary
one. It is possible to supply this directory assigning it to the varighleyularTempDirectory.
This can be done by editing (before loading the package) one of the first lines of the file
singular/gap/singular.qg (that comes with this package), or directly during e@#*P session
(after this package has been loaded, and before stasiigylar), as in the example below. If
SingularTempDirectory iS not assignedGAP will create and use a temporary directory, which

will be removed wherGAP quits.

Example
gap> SingularTempDirectory := Directory("/tmp");
dir("/tmp/")

1.3 Interaction with Singular

The user must load the packagiegular with Loadpackage (Reference: LoadPackagg (or with
RequirePackage (Reference: RequirePackaggif using GAP version 4.x, x< 4).

1.3.1 StartSingular

{Q StartSingular() (function)
¢ CloseSingular () (function)

After the packagesingular has been loadedSingular is started automatically when one of
the functions of the interface is called. Alternatively, one can sSargular with the command

StartSingular.
Example

gap> StartSingular();

Seel.7.1for technical details. Explicit use afcartSingular is not necessary. BtartSingular
is called when a previouSingular session is running, than session will be closed, and a new session
will be started.

If at some pointSingular is no longer needed, then it can be closed (in order to save system

resources) with the commandoseSingular.
Example

gap> CloseSingular();

However, whenGAP exits, it is expected to close Singular, and remove any temporary directory,
except in the case of abnorm@AP termination.

1.3.2 SingularHelp

¢ SingularHelp(topic) (function)

Heretopic is a string containing the name o&angular topic. This function provides help on that
topic using theSingular help system: see th&ngular documentation, paragraphs “3.1.3 The online
help system” and “5.1.43 help”. tlopic is the empty string ™, then the title/index page of the manual
is displayed.

This function can be used to display thiagular documentation referenced in this manualyic
must be given without the leading numbers.

singular 10

Example
gap> SingularHelp(""); # a Mozilla window appears
#I // ** Displaying help in browser 'mozilla’.
// ** Use ’system("--browser", <browser>);’ to change browser,
// ** where <browser> can be: "mozilla", "xinfo", "info", "builtin", "dummy", \
"emacs".

The Singular function system can be accessed via the functid@mgularInterface (1.3.8. Some
only-text browsers may be not supported by the interface.

1.3.3 Rings and orderings

All non-trivial algorithms inSingular require the prior definition of a (polynomial) ring, that will be
called the “base-ring”. Any polynomial (respectively vector)Singular is ordered with respect to a
term ordering (or, monomial ordering), that has to be specified together with the declaration of a ring.
See the documentation 8fngular, paragraph “3.3 Rings and orderings”, for further information.

After defining in GAP a ring, a term ordering can be assigned to it using the function
SetTermOrdering (1.3.9, andafter the term ordering is assigned, the interface &irdjular can
be told to use this ring as the base-ring, with the functibingularSetBaseRing (1.3.6.

1.3.4 Supported coefficients fields

Let p be a prime,pol an irreducible polynomial, andrg an appropriate argument for the given
function. The coefficient fields of the base-ring may be of the following form:

e Rationals,

e CyclotomicField(arg),

e AlgebraicExtension(Rationals, pol),

e GaloisField(arg) (both prime and non-prime),
e AlgebraicExtension(GaloisField(p), pol).

For some example see those for the functienTermOrdering (1.3.5.

Let us remember thatyclotomicField andGaloisField can be abbreviated respectivelycto
andcr; these forms are used also wh@AP prints cyclotomic or Galois fields. See tlP doc-
umentation about the functionsyclotomicField (Reference: CyclotomicField, GaloisField
(Reference: GaloisField, AlgebraicExtension (Reference: AlgebraicExtensiol), and the chap-
ters: Reference: Rational Number$, (Reference: Abelian Number Field$, (Reference: Finite
Fields), (Reference: Algebraic extensions of fields

1.3.5 SetTermOrdering

Q) SetTermOrdering(R) (function)
O TermOrdering(R) (attribute)

Let R be a polynomial ring. The value akrmOrdering(R) describes the term ordering of
R, and can be a string, a list, or a monomial orderingsaf. (The term orderings o$ingular are

singular 11

explained in its documentation, paragraphs “3.3.3 Term orderings” and “B.2.1 Introduction to order-
ings”.)

If this value is a string, for instancelp" (lexicographical ordering),dp" (degree reverse lexico-
graphical ordering), orpp" (degree lexicographical ordering), this value will be passegirigular
without being interpreted or parsed by the interface.

If this value is a list, it must be of the form str_1, d.1, str.2, d.2, ...], where each
str_i is aSingular ordering given as a string. Eaghi must be a number, and specifies the number
of variables having that ordering; howeversifr_i is a weighted order, likéwp" (weighted reverse
lexicographical ordering) otwp" (weighted lexicographical ordering), then the correspondirg
must be a list of positive integers that specifies the weight of each variable. The sumiof’sh@f
numbers) or of their lengths (if lists) must be equal to the number of variables of the.ring

This value can also be a monomial ordering @&AP: currently supported are
MonomialLexOrdering, MonomialGrevlexOrdering, andMonomialGrlexOrdering (Reference:
Monomial Orderings).

TermOrdering IS a mutable attribute, see tiBAP documentation obeclareaAttribute (Prg
Tutorial: DeclareAttribute); if it is changed on th&AP side, it is necessary thereafter to send again
the ring toSingular with SingularSetBaseRing (1.3.6.

SetTermOrdering can be used to set the term ordering of a ring. It is not mandatory to assign
a term ordering: if no term ordering is set, then the defaalt" will be used. If it is set, the term
ordering must be sdieforethe ring is sent t&ingular with SingularSetBaseRing (1.3.6, otherwise,
Singular will ignore that term ordering, and will use the previous value if any, or the defagilt.

Example
gap> Rl:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> SetTermOrdering(R1, "lp");
gap> R2:= PolynomialRing(GaloisField(9), ["x","y","z"] : old);;
gap> SetTermOrdering(R2, ["wp", [1,1,2] 1);
gap> R3:= PolynomialRing(CyclotomicField(25), ["x","y","z"] : old);;

gap> SetTermOrdering(R3, MonomialLexOrdering());

gap> x:=Indeterminate (Rationals);;

gap> F:=AlgebraicExtension(Rationals, x"5+4*x+1);;

gap> R4:= PolynomialRing(F, 6);;

gap> SetTermOrdering(R4, ["dp", 1, "wp", I[1,1,2], "lp", 21);

1.3.6 SingularSetBaseRing

{ SingularSetBaseRing(R) (function)
¢ SingularBaseRing (global variable)

HereR is a polynomial ring.SingularSetBaseRing sets the base-ring ifingular equal tor.
This ring will be also kept ilGAP in the variablesingularBaseRing. After this assignment, all the
functions of the interface will work with this ring. However, for some functions (those having rings,
ideals, or modules as arguments) it is not necessary to explicitly set the base ring first, because in
these cases the functions arguments contains information about a ring that will be used as a base-ring.
This will be specified for each function in the corresponding section of this manual. (Unnecessary
use ofsingularSetBaseRing doesn’t harm; forgetting to useingularSetBaseRing produces the
problem described in the paragrapfi.3) The results of the computations may depend on the choice
of the base-ring: see an exampleFattorsUsingSingular (1.5.6, in which the factorization of
x? 4y is calculated.

singular 12

Example
n non n n-n

gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> SingularSetBaseRing(R);

The value of SingularBaseRing when the package is loaded is
PolynomialRing(GF(32003), ["x", "y", "z"] : new), in order to match the de-
fault base-ring oBingular.

1.3.7 SingularLibrary

¢ SingularLibrary(string) (function)

In Singular some functionality is provided by separate libraries that must be explicitly loaded in
order to be used (see tBangular documentation, chapter “D. SINGULAR libraries”), see the example
in SingularInterface (1.3.8.

The argumenttring is a string containing the name ofSingular library. This function makes
sure that this library is loaded in&ingular.

The functions provided by the librartng.1ib could be not yet supported by the interface.

Example
gap> SingularLibrary("general.lib");
1.3.8 Singularinterface
¢ SingularInterface(singcom, arguments, type_output) (function)

The functionsingularInterface provides the general interface that enables to applitg-
lar functions to theGAP objects. Its arguments are the following:

e singcomis aSingular command or function (given as a string).

e arguments is a list of GAP objects,01, 0o, ..., Op, that will be used as arguments ©fngcom
(it may be the empty list).arguments may also be a string: in this case it is assumed that
it contains one or mors&ingular identifiers, or aSingular valid expression, or something else
meaningful forSingular, and it is passed t8ingular without parsing or checking on theAP
side.

e type_output is the data type (given as a string) $ingular of the output. The data types
are the following (see th8ingular documentation, chapter “4. Data types”): "def”, "ideal”,
"int”, "intmat”, "intvec”, "link”, "list”, "map”, "matrix”, "module”, "number”, "poly”, "proc”,
"gring”, "resolution”, "ring”, "string”, "vector”. The empty string ™ can be used if no output is
expected. If in doubt you can use "def” (see 8iegular documentation, paragraph “4.1 def”).

Usually, in the documentation of ea6ingular function is given its output type.

Of course, the objects in the listgument s and thec ype_output must be appropriate for the function
singcom: no check is done by the interface.
The functionsingularInterface does the following:

1. converts each obje@;,0,,...,0Op in argument s into the corresponding objeB, P, ..., P,, of
Singular,

singular 13

2. sends tasingular the command to calculatngcontPy, Py, ..., Py),
3. gets the output (of typeype_output) from Singular,
4. converts it to the corresponding Gap object, and returns it to the user.

The functionsingularInterface is oriented towards the kind-of-objects/data-types, and not
to the functions ofSingular, because in this way it is much more general. The user can use “all’
the existing functions o&ingular and the interface is not bounded to the state of implementation of
Singular: future functions and user-defined functions will be automatically supported.

The conversion of objects from Gap 8ingular and from it back to Gap is done using some
‘ad hoc’ functions. Currently, the conversion of objects fr@aP to Singular is implemented for
the following types: "ideal”, "int”, "intmat”, "intvec”, "list”, "matrix”, "module”, "number”, "poly”,

"ring”, "string”, "vector”. Objects of other types are not supported, or are even not yet implemented
in GAP.

The conversion of objects froSingular to GAP is currently implemented for the following types:
"def”, "ideal”, "int”, "intmat”, "intvec”, "list”, "matrix”, "module”, "number”, "poly”, "proc” (exper-
imental), "string”, "vector”. Objects of other types are returned as strings.

Before passing polynomials (or numbers, vectors, matrices, or lists of theBipdolar, it is
necessary to have sent the base-ringibgular with the functionSingularSetBaseRing (1.3.6, in
order to ensure tha&ingular knows about them. This is not necessary if in the input there is a ring, an
ideal, or a module (before the polynomials), because these objects contain information about the ring
to be used as base-ring. All the input must be relative to at most one ring; furthermore, at most one
object of type "ring” can be in the input.

As Singularinterface is a rather general function, it is not guaranteed that it always works, and
some functions are not supported. For instancgjrigular there is the functiopause that waits until
a keystroke is pressed; but the interface instead waits fositlygilar prompt before sending it any
new keystroke, and so callingiuse would hang the interface. However, the unsupported functions
like pause are only a few, and are not mathematically useful. Singularinterface tries to block calls to
known unsupported functions.

Some Singular functions may return more than one value, see Siggular documenta-
tion, paragraph “6.2.7 Return type of procedures”. In order to use one of these functions via
SingularInterface, the typetype_output must be "list”. The output irGAP will be a list con-
taining the values returned by tisingular function.

In the next example we compute the primary decomposition of an ideal. Note that for that we

need to load th&ingular library primdec.1lib.

Example

PolynomialRing(Rationals, ["x","y","z"] : old);;

:= IndeterminatesOfPolynomialRing (R);;

i[1];; y:= 1(21;; z:= 1i[3];;

(x*y-z) * (x*y*z+y 2*%z+x"2%z2) ; ;

gap> g:= (X*y-z)* (x*y*z " 2+x*y " 2*%z+x"2*y*z);;

gap> I:= Ideal(R, [f,9]);;

gap> SingularLibrary("primdec.lib");

gap> SingularInterface("primdecGTz", [I], "def");

#I Singular output of type "list"

[[<two-sided ideal in PolynomialRing (..., [x, v, z 1), (1 generators)>,

<two-sided ideal in PolynomialRing(..., [x, y, z 1), (1 generators)>],

]
z

gap>
gap>
gap>
gap>

HQ Hh X H- =
I

[<two-sided ideal in PolynomialRing (..., [x, y, z 1), (1 generators)>,
<two-sided ideal in PolynomialRing(..., [%, VY, 1), (1 generators)>],

singular 14

[<two-sided ideal in PolynomialRing (..., [x, vy, z 1), (2 generators)>,
<two-sided ideal in PolynomialRing(..., [%, y, z 1), (2 generators)>],

[<two-sided ideal in PolynomialRing(..., [x, v, z 1), (3 generators)>,
<two-sided ideal in PolynomialRing(..., [x, y, z 1), (2 generators)>]

In the next example are calculated the first syzygy module of an ideal, and the resultant of two poly-
nomials with respect a variable. Note that in this case it is not necessary to set the base-ring with
SingularSetBaseRing (1.3.6), in the first case because the inpuis of type "ideal”, and in the
second case because the base-ring was already s&ngtdar in the former case.

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> 1:= IndeterminatesOfPolynomialRing(R);;
gap> x:= 1[1];; y:= 1[2];; z:= 1[3];;

= Xtytz;;

gap> I:= Ideal(R, [f,9]);;

gap> := SingularInterface("syz", [I], "module");;
gap> GeneratorsOfLeftOperatorAdditiveGroup(M);

[[-x-y-z, 3*x"3+18*x"2+36*x+y+24]]

gap> SingularInterface("resultant", [f, g, z], "poly");
3*x"3+18*x"2+36%x+y+24

R

i

X
gap> f:= 3% (x+2) "3+y;;

gap> g

I

M

1.3.9 SingularType

O SingularType (obj) (function)

to be written

1.4 Interaction with Singular at low level

1.4.1 SingularCommand

¢ SingularCommand (precommand, command) (function)

to be written

1.4.2 Gaplnterface

O GapInterface(func, arg, out) (function)

to be written

1.5 Other mathematical functions of the package

1.5.1 GroebnerBasis

{ GroebnerBasis(I) (operation)

15

singular

Here1 is an ideal of a polynomial ring. This function computes a Groebner bagigtbgt will
be returned as a list of polynomials). For this function ihtt necessary to set the base-ring with
SingularSetBaseRing (1.3.9.

As term ordering Singular will use the value offermordering (1.3.5 of the polynomial ring
containingI. Again, if this value is not set, then the degree reverse lexicographical ordednt) (
will be used.

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> x := R.1;; y :=R.2;; z := R.3;;
gap> r:= [x*y*z -x"2%z, x"2%y¥*z-x*y 2%z-x*y*z°2, x*y-x*z-y*z 1;;
gap> I:= Ideal(R, r);

z 1),

<two-sided ideal in PolynomialRing(..., (3 generators)>
gap> GroebnerBasis(I);

[x*y-x*z-y*z, x"2%z-x*z2"2-y*2"2, x*z"3+y*z"3, -x*z"3+y 2%z 2-y*z"3]

[%y,

1.5.2 SINGULARGBASIS

¢ SINGULARGBASIS (global variable)

This variable is a record containing the componeniebnerBasis. When the variable SIN-
GULARGBASIS is assigned to theAP global variablesBAs1s, then the computations of Groebner
bases viaGAP’s internal function for thatGroebnerBasis (Reference: GroebnerBasiy are done
by Singular.

Singular claims that it “features one of the fastest and most general implementations of various
algorithms for computing Groebner bases”. TP’s internal function claims to be “a iae imple-
mentation of Buchberger’s algorithm (which is mainly intended as a teaching tool): it might not be
sufficient for serious problems.”

(Note in the following example that unlike those calculate®imgular, the Groebner bases calcu-
lated by theGAP internal function are in general not reduced; for reduced bases seahtinction

ReducedGroebnerBasis (Reference: ReducedGroebnerBas)9
Example

gap>

gap> R:= PolynomialRing(Rationals, 3);;

gap> i:= IndeterminatesOfPolynomialRing(R);;

gap> pols:= [1[1]+1[2]+1[3], 1[1]*i[2]+1[1]*1[3]+i[2]*1[3], i[1]1*1i[2]1*i[3]];;
gap> o0:= MonomialLexOrdering();;

GroebnerBasis(pols, o); # This is the internal GAP method.

[xtytz, y 2+y*z+z"2,

z"3]

gap> GBASIS:= SINGULARGBASIS;;
gap> GroebnerBasis(pols, o); # Now this uses Singular via the interface.
[x+y+z, y " 2+y*z+z°2, 273]

1.5.3 HasTrivialGroebnerBasis

() HasTrivialGroebnerBasis(I) (function)

The functionHasTrivialGroebnerBasis returnstrue if the Groebner basis of the idealis
trivial, false otherwise. This function can be used if it is not necessary to know the Groebner basis of
an ideal, but it suffices to know only whether it is trivial or not.

singular 16

Example
gap> x:= Indeterminate(Rationals, "x" : old);;
gap> y:= Indeterminate(Rationals, "y", [x] : old);;
gap> z:= Indeterminate(Rationals, "z", [x, y 1] old);;
gap> R:= PolynomialRing(Rationals, [x, y, z]);;
gap> f:= (x*y-z)* (x*y*z+y 2%z+x"2%z);;
gap> g:= (X*y-z)* (x*y*z " 2+x*y " 2*%z+x"2*y*z) ;;
gap> I:= Ideal(R, [f,9]);;
gap> HasTrivialGroebnerBasis(I);
false

1.5.4 GcdUsingSingular

Q GecdUsingSingular (pol_l, pol_2, ..., poln) (function)
{ GedUsingSingular ([pol_l, pol_2, ..., polon]) (function)

The arguments of this function are (possibly multivariate) polynomials separated by commas,
or it is a list of polynomials. This function returns the greatest common divisor of these poly-
nomials. For this function it isxecessaryfor the polynomials to lie in the base-ring, as set by
SingularSetBaseRing (1.3.6.

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> SingularSetBaseRing(R);

gap> i:= IndeterminatesOfPolynomialRing(R);;

gap> x:= i[1];; y:= 1[2];; z:= 1[3];;

gap> f:= (x*y-z)*(x*y*z+y 2*z+x"2*%z);

X"3FyFRz+xT2*y T 2% z+x*y " 3*z-x"2% 72" 2-x*y* 2" 2~y 2%2" 2

gap> g:= (X*y-z)* (x*y*z " 2+x*y " 2*%z+x"2*y*z);

X"3Xy T 2xz4x"2Xy T 3*z4x"2Ky 2%z 2-x"2Xy* 2" 2-x*y 2%z " 2-x*y*z" 3
gap> GcdUsingSingular(£, g);

-x*y*z+z"2

1.5.5 FactorsUsingSingularNC

Q FactorsUsingSingularNC(f) (function)

Heref is a (possibly multivariate) polynomial. This function returns the factorization ioto
irreducible factors. The first element in the output is a constant coefficient, and the others may be
monic (with respect to the term ordering) polynomials, as returnesidgular. For this function it is
necessaryhatf lies in the base-ring, as set byngularSetBaseRing (1.3.9.

The function does not check that the product of these factors give$or that use
FactorsUsingSingular (1.5.69): Singular version 2-0-3 contains a bug so that thiegular func-
tion factorize may give wrong results (therefoB8ingular version at least 2-0-4 is recommended).
Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> SingularSetBaseRing(R);
gap> 1:= IndeterminatesOfPolynomialRing(R);;
gap> x:= 1[1];; y:= 1[2];; z:= 1[3];;
gap> f:= (x*y-z)*(3*x*y*z+d*y " 2%z+5%x"2%z);
5*x"3*y*z43*x"2xy " 2*z+4xx*y " 3xz-5%x"2%z " 2-3*x*y*z"2-4*y"2%z"2

singular

gap> FactorsUsingSingularNC(f);

[1, -5*x"2-3*x*y-4*y"2, -x*y+z, z]

gap> f:= (x*y-z)* (5/3*x*y*z+4*y"2%z+6*x"2%2);

6*xX"3*y*z4+5/3* X" 2*y 2* g+ A4* ¥y 3*g—0*FR 2%z 2-5/3*x*yrz 2-4*y " 2%z"2
gap> FactorsUsingSingularNC(f);

[1/3, -18*x"2-5*x*y-12*y"2, -x*y+z, z]

17

1.5.6 FactorsUsingSingular

Q FactorsUsingSingular(f) (function)

This does the same asictorsUsingSingularNC (1.5.5, except that on th&AP level it is
checked that the product of these factors giteAgain it isnecessaryhatf lies in the base-ring, as

set bysingularSetBaseRing (1.3.6.
Example

gap> R:= PolynomialRing(Rationals, ["x","y"] : old);;

gap> SingularSetBaseRing(R);

gap> x := R.1;; y := R.2;;

gap> FactorsUsingSingular(x"2 + y°2);

[1, x"2+y"2]

gap> R:= PolynomialRing(GaussianRationals, ["x","y"] : old);;
gap> SingularSetBaseRing(R);

gap> x := R.1;; y := R.2;;

gap> FactorsUsingSingular(x"2 + y"2);

[1, x+E(4)*y, x-E(4)*y]

1.5.7 GeneratorsOflnvariantRing

Q GeneratorsOfInvariantRing(R, G) (function)

Herer is a polynomial ring, and a finite group, which is either a matrix group or a permutation

group. IfG is a matrix group, then its degree must be less than or equal to the number of indeterminates
of R. If G is a permutation group, then its maximal moved point must be less than or equal to the

number of indeterminates a&f This function computes a list of generators of the invariant ring, of

corresponding to its action an This action is taken to be from the left.
For this function it isnot necessary to set the base-ring withhgularSetBaseRing (1.3.6.

Example
gap> m:=[[1,1,1],(0,1,11,10,0,1]1] * One(GF(3));;
gap> G:= Group([m]);;

gap> R:= PolynomialRing(GF(3), 3);
PolynomialRing (..., [%, y, z])

gap> GeneratorsOfInvariantRing(R, G);

[z, x*z+y " 2+y*z, X"3+x"2*z-x*y 2-x*y*z |

1.6 Algebraic-geometric codes functions

This section ofGAP’s singular package and the corresponding code were written by David Joyner,

wdjQusna.edu, (with help from Christoph Lossen and Marco Costantini).

mailto://wdj@usna.edu

singular 18

To start off, several newingular commands must be loaded. The following command loads the

necessangingular and GAP commands, the packagsiagular and GUAVA (if not already loaded),
and (re)startsingular.

Example
gap> ReadPackage ("singular", "contrib/agcode.g");;

1.6.1 AllPointsOnCurve

{ AllPointsOnCurve(f, F) (function)

Let F be a finite and prime field. The functienn1PointsOnCurve(£, F) computes a list of

generators of maximal ideals representing rationlals points on a Xutleéined byf (x,y) = 0.
Example

gap> F:=GF(7);;

gap> R2:= PolynomialRing(F, 2);;

gap> SetTermOrdering(Rz, "lp");; # --— the term ordering must be "lp"

gap> indet:= IndeterminatesOfPolynomialRing(R2);;

gap> x:= indet[1l];; vy:= indet[2];;

gap> f:=x"T7-y"2-%;;

gap> AllPointsOnCurve (f,F);

[[x 11, [x1-z(7)°0 1, [
[x_1+2(7) 1, [x_1+Z(7)"2

x_1+Z(7)"4 1, [x_1+2(7)°5 1, [x_1+Z(7)"°0 1,
1]

1.6.2 AGCode

Q) AGCode(£, G, D) (function)

Let f be a polynomial in X,y over F=GF(p) representing plane cweefined byf(x,y) = 0,
where p is a prime (prime powers are not yet supported by the unde8jripgiar function). Let G, D
be disjoint rational divisors oX, where D is a sum of distinct pointsuypdD) = Py, ...,Py. The AG
code associated to f, G, D is the F defined to be the image of the evaluatioh+&p(P1), ..., f (Pn)).
The functionaGCode computes a list of length three, [G, n, k], where G is a generator matrix of the

AG code C, nis its length, and k is its dimension.
Example

gap> F:=GF (7);;

gap> R2:= PolynomialRing(F, 2);;

gap> SetTermOrdering(R2, "lp");; # —-—- the term ordering must be "lp"

gap> indet:= IndeterminatesOfPolynomialRing(R2);;

gap> x:= indet[1l];; y:= indet[2];;

gap> f:=x"7-y"2-%;;

gap> G:=(2,2,0,0,0,0,0]; D:=[4..8];

[2, 2,0, 0, 0,0, 0]

[4 .. 8]

gap> agc:=AGCode (f,G,D);

([0 2(7)7°3, z(7), 0%2(7),
[0*Z(7), Z(7)"4, Z(7)
[0*z(7), 0*Z(7), Z(7

This generator matrix can be fed into tB®AVA commandGeneratorMatCode (GUAVA: Gener-
atorMatCode) to create a linear code iBAP, which in turn can be fed into theUAVA command
MinimumDistance (GUAVA: MinimumDistance) to compute the minimum distance of the code.

singular 19

Example

gap> ag_mat:=agc[l];;

gap> C := GeneratorMatCode(ag_mat, GF(7));

a linear [5,3,1..3]2 code defined by generator matrix over GF (7)
gap> MinimumDistance (C);

3

1.7 Troubleshooting and technical stuff

1.7.1 Supported platforms and underlying GAP functions

This package has been developed mainly on a Linux platform, @#th version 4.4, andingular

version 2-0-4. A reasonable work has been done to ensure backward compatibility with previous
versions ofGAP 4, but some features may be missing. This package has been tested also with some
other versions of Singular, including 2-0-3, 2-0-5, and 2-0-6, and on other Unix systems. It has been
tested also on Windows, but it is reported to be slower that on Linux.

This package works also with the system Plural (see
http://www.singular.uni-kl.de/plural/) in place of Singular, tested with version 2-1-2,
although the non-commuting polynomials in the senselafal are not yet implemented iBAP. In
order to usePlural, it suffices to seting_exec (1.2.4 pointing to it.

For the low-level communication wittsingular, the interface relies on th&AP function
InputOutputLocalProcess (Reference: InputOutputLocalProcess, and this function is avail-
able only inGAP 4.2 (or newer) on a Unix environment or ®AP 4.4 (or newer) on Windows;
auto-detection is used. In this ca@#P interacts with a unique continuous sessiorsipfjular.

In the case that th&AP function InputOutputLocalProcess iS hot available, then the sin-
gular interface will use th&AP function Process (Reference: Process In this case only a
limited subset of the functionality of the interface are available: for examplertSingular
(1.3.)) andGeneratorsOfInvariantRing (1.5.7) are not available, butroebnerBasis (1.5.]) is;
SingularInterface (1.3.8 supports less data types. In this case, for each function call, a new
session ofSingular is started and quitted.

1.7.2 Testfile
The following performs a test of the package functionality using a testRidgrence: Test Filek
Example
gap> fn := Filename(DirectoriesPackageLibrary("singular", "tst"), "test");;
gap> ReadTest (fn);
true

1.7.3 Common problems

A common error is forgetting to use@ingularSetBaseRing (1.3.69. In the next example,

SingularInterface works only after having useglingularSetBaseRing.
Example

gap> a:=Indeterminate(Rationals);;

gap> F:=AlgebraicExtension(Rationals, a"5+4*a+l);;
gap> R:=PolynomialRing(F, ["x","y"] : old);;

gap> x := R.1;; y := R.2;;

http://www.singular.uni-kl.de/plural/

singular 20

gap> SingularInterface("lead", [x"3*y+x*y+y~2], "poly");

Error, sorry: Singular, or the interface to Singular, or the current
SingularBaseRing, do not support the object x"3*y+x*y+y~ 2.

Did you remember to use ’SingularSetBaseRing’ ?

[...]

brk> quit;

gap> SingularSetBaseRing(R);

gap> SingularInterface("lead", [x"3*y+x*y+y 2], "poly");

x" 3%y

A corresponding problem would happen if the user works directly @itlgular and forgets to define
the base-ring at first.

As explained in theGAP documentationReference: Polynomials and Rational Functionk
given a ringr, GAP does not considex as a subset of a polynomial ring overfor example the zero
of R (0) and the zero of the polynomial ringxQ are different objectsGAP prints these different
objects in the same way, and this fact may be misleading. This is a feat@GiPohdependent from
the packageingular, but it is important to keep it in mind, as most of the objects useflibyular are
polynomials, or their coefficients.

1.7.4 Errors on the Singular side

Errors may occur on th@ingular side, for instance usingingularInterface (1.3.8 if the arguments
supplied are not appropriate for the called function. In general, it is still an open problem to find a
satisfactory way to handle i@AP the errors of this kind.

At the moment, when an error on tBingular side happensSingular may print an error message
on the so-called “standard error”; this message may appear on the screen, but it is not logged by the
GAP function LogTo (Reference: LogTq. The interface printsio output from Singular, and
then the trivial object (of the type specified as the third argumet ofularinterface) may be
returned.

1.7.5 Sending a report

As every software, also this package may contain bugs. If you find a bug, or a missing feature, or
some other problem, or if you have comments and suggestions, or if you need some help, write an
e-mail to both the authors. Please use an e-mail subject that beginsswithuiar package: .

Please include in the report the code that causes the problem, so that we can replicate the problem.

If appropriate, you can sehfoSingular (1.7.7) to 3, to see what happens betweeAP and
Singular (but this may give a lot of output). Note thabgTo (Reference: LogTg does not log
messages written directly on the screersingular.

Every report about this package is welcome, however the probability that your prob-
lem will be fixed quickly increases if you read the text “How to Report Bugs Effectively”,
http://www.chiark.greenend.org.uk/ sgtatham/bugs.html , and send a bug report accord-
ing to this text.

1.7.6 SingularReportinformation

¢ SingularReportInformation() (function)

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

singular 21

The functionsingularReportInformation collects a description of the system, which should
be included in any bug report.

Example
gap> SingularReportInformation();
Pkg_Version := "4.04.15";
Gap_Version := "4.dev";
Gap_Architecture := "i686-pc-linux-gnu-gcc";
Gap_BytesPerVariable := 4;
uname := "Linux 2.4.20 i686";
Singular_Version: := 2004;
Singular_Name: := "/usr/local/Singular/2-0-4/ix86-Linux/Singular";
"Pkg_Version := \"4.04.15\";\nGap_Version := \"4.dev\";\nGap_Architecture := \
\"1686-pc-linux-gnu-gcc\"; \nGap_BytesPerVariable := 4;\nuname := \"Linux 2.4.2\
0 1686\";\nSingular_Version: := 2004;\nSingular_Name: := \"/usr/local/Singular\
/2-0-4/1x86-Linux/Singular\"; \n"

1.7.7 InfoSingular

¢Q InfoSingular (info class)

This is the info classReference: Info Functiong used by the interface. It can be set to levels 0,
1, 2, and 3. At level 0 no information is printed on the screen. At level 1 (default) the interface prints
a message about thgpe_output, when "def” is used irsingularInterface, see the example at
SingularInterface (1.3.8. Atlevel 2, information on the activities of the interface is printed (e.g.,
messages whenSingular session, or a Groebner basis calculation, is started or terminated). At level

3 all strings thaGAP sends t®ingular are printed, as well as all strings tt&ihgular sends back.
Example

gap> SetInfolevel(InfoSingular, 2);

gap> G:= SymmetricGroup(3);;

gap> R:= PolynomialRing(GF(2), 3);;

gap> GeneratorsOfInvariantRing(R, G);

#I running SingularInterface("invariant_ring", ["matrix", "matrix"
1, "list")...

#I done SingularInterface.

[x 1+x_2+x 3, x_1*x_24+x_1*x_3+x_2*x_3, x_1*x_2*x_3]

gap> I:= Ideal(R, last);;

gap> GroebnerBasis(I);

#I running GroebnerBasis...

#I done GroebnerBasis.

[x 1+x_2+4x_3, X _272+4x_2*x_34+x_3"2, x_3"3]

gap> SetInfolevel(InfoSingular, 1);

Index

AGCode, 18
AllPointsOnCurve, 18

CloseSingular, 9

FactorsUsingSingular, 17
FactorsUsingSingularNC, 16

GapInterface, 14
GecdUsingSingular, 16
GeneratorsOfInvariantRing, 17
GroebnerBasis, 14

HasTrivialGroebnerBasis, 15
InfoSingular, 21

SetTermOrdering, 10
sing_exec, 8
sing_exec_options, 8
SingularBaseRing, 11
SingularCommand, 14
SINGULARGBASIS, 15
SingularHelp, 9
SingularInterface, 12
SingularLibrary, 12
SingularReportInformation, 20
SingularSetBaseRing, 11
SingularTempDirectory, 8
SingularType, 14
StartSingular, 9

TermOrdering, 10

22

