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Chapter 1

Introduction

1.1 Introduction to the quava package

This is the manual of the GAP package quav a that provides implementations of
some routines designed for the construction and analysis of in the theory of error-
correcting codes. This version of quava requires GAP 4.4.5 or later.

The functions can be divided into three subcategories:

e Construction of codes: quava can construct unrestricted, linear and cyclic
codes. Information about the code, such as operations applicable to the code,
is stored in a record-like data structure called a GAP object.

e Manipulations of codes: Manipulation transforms one code into another, or
constructs a new code from two codes. The new code can profit from the data
in the record of the old code(s), so in these cases calculation time decreases.

e Computations of information about codes: quava can calculate important
parameters of codes quickly. The results are stored in the codes’ object com-
ponents.

Except for the automorphism group and isomorphism testing functions, which
make use of J.S. Leon’s programs (see [LL.eo91] and the documentation in the ’src’
subdirectory of the ’guava’ directory for some details), quava is written in the
GAP language, and runs on any system supporting GAP4.3 and above. Several
algorithms that need the speed were integrated in the GAP kernel.

Good general references for error-correcting codes and the technical terms in
this manual are MacWilliams and Sloane [MS83] Huffman and Pless [HP03].

12
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1.2 Installing quava

To install quava (as a GAP 4 Package) unpack the archive file in a directory in
the ‘pkg’ hierarchy of your version of GAP 4.

After unpacking quava the GAP-only part of quava is installed. The
parts of guava depending on J. Leon’s backtrack programs package (for com-
puting automorphism groups) are only available in a UNIX environment, where
you should proceed as follows: Go to the newly created ‘guava’ directory and call
‘./configure /gappath’ where /gappath is the path to the GAP home direc-
tory. So for example, if you install the package in the main ‘pkg’ directory call

./configure ../..

This will fetch the architecture type for which GAP has been compiled last and
create a ‘Makefile’. Now call

make

to compile the binary and to install it in the appropriate place. (For a windows
machine with CYGWIN installed - see http://www.cygwin.com/ - instructions
for compiling Leon’s binaries are likely to be similar to those above. On a 64-bit
SUSE linux computer, instead of the configure command above - which will only
compile the 32-bit binary - type

./configure ../.. --enable-libsuffix=64
make

to compile Leon’s program as a 64 bit native binary. This may also work for other
64-bit linux distributions as well.)

This completes the installation of quava for a single architecture. If you
use this installation of quava on different hardware platforms you will have to
compile the binary for each platform separately.

1.3 Loading quava

After starting up GAP, the quava package needs to be loaded. Load quava by
typing at the GAP prompt:

Example
gap> LoadPackage( "guava", "2.1" );

If quava isn’t already in memory, it is loaded and the author information is dis-
played. If you are a frequent user of qua v a, you might consider putting this line
in your ‘.gaprc’ file.


http://www.cygwin.com/

Chapter 2

Coding theory functions in GAP

This chapter will recall from the GAP4.4.5 manual some of the GAP coding theory
and finite field functions useful for coding theory. Some of these functions are
partially written in C for speed. The main functions are

e AClosestVectorCombinationsMatFFEVecFFE,

e AClosestVectorCombinationsMatFFEVecFFECoords,

e CosetLeadersMatFFE,

e DistancesDistributionMatFFEVecFFE,

e DistancesDistributionVecFFEsVecFFE,

e DistanceVecFFE and WeightVecFFE,

e ConwayPolynomial and IsCheapConwayPolynomial,

e IsPrimitivePolynomial, and RandomPrimitivePolynomial

However, the GAP command PrimitivePolynomial returns an integer primitive
polynomial not the finite field kind.
2.1 Distance functions

2.1.1 AClosestVectorCombinationsMatFFEVecFFE

& AClosestVectorCombinationsMatFFEVecFFE ( mat, F, vec, r, st )

(function)

14
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This command runs through the F-linear combinations of the vectors in the
rows of the matrix mat that can be written as linear combinations of exactly r
rows (that is without using zero as a coefficient) and returns a vector from these
that is closest to the vector vec. The length of the rows of mat and the length
of vec must be equal, and all elements must lie in F. The rows of mat must be

linearly independent. If it finds a vector of distance at most st, which must be a

nonnegative integer, then it stops immediately and returns this vector.

Example
gap> F:=GF(3);;

gap> x:= Indeterminate( F );; pol:= x"2+1;
x_172+472(3)°0

gap> C := GeneratorPolCode(pol,8,F);

gap> v:=Codeword("12101111");
[12101111]

gap> v:=VectorCodeword(v);

gap> G:=GeneratorMat (C);

gap> AClosestVectorCombinationsMatFFEVecFFE (G, F,v,1,1);

a cyclic [8,6,1..2]1..2 code defined by generator polynomial over G

[ 2(3)70, 2(3), 2(3)70, 0*2(3), 2(3)70, 2(3)7°0, 2(3)70, Z(3)70 ]

[ [ Z2(3)°0, 0%Z2(3), 2(3)7°0, 0*Z(3), 0*Z(3), 0*Z(3), 0*z(3), 0*Z
[ 0%Z(3), Z(3)70, 0*Z(3), z(3)°0, 0%*Z(3), 0*z(3), 0*Z(3), 0*Z
[ 0%Z(3), 0*Z(3), Z(3)°0, 0*Z(3), Z(3)"0, 0*Z(3), 0*Z(3), 0*Z
[ 0%Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0*Z(3), Z(3)°0, 0*Z(3), 0*Z
[ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0*Z(3), Z(3)"°0, 0*Z
[ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)°0, 0*Z(3), Z(3)

[ 0*2(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0*Z(3), Z(3)70 ]

2.1.2 AClosestVectorComb..MatFFEVecFFECoords
<& AClosestVectorComb..MatFFEVecFFECoords ( mat, F, vec, r,

(function)

AClosestVectorCombinationsMatFFEVecFFECoords
a two element list containing (a) the same closest vector

st )

returns

as

in

AClosestVectorCombinationsMatFFEVecFFE, and (b) a vector v with ex-

actly r non-zero entries, such that v xmat is the closest vector.

Example

gap> F:=GF(3);;

gap> x:= Indeterminate( F );; pol:= x"2+1;
x_172+72(3)°0

gap> C := GeneratorPolCode (pol,8,F);

a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GE|(3)
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gap> v:=Codeword("12101111"); v:=VectorCodeword(v);;

[12101111]

gap> G:=GeneratorMat (C);;

gap> AClosestVectorCombinationsMatFFEVecFFECoords (G,F,v,1,1);

[ [ 0%2(3), 0*Z(3), 0*Z(3), 0*z(3), 0*Z(3), Z(3)"0, 0*Z(3), Z(3)"0 ]|,
[ 0%Z(3), 0*z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)°0 1 ]

2.1.3 DistancesDistributionMatFFE VecFFE

& DistancesDistributionMatFFEVecFFE ( vecs, vec ) (function)

DistancesDistributionMatFFEVecFFE returns the distances distribution of
the vector vec to the vectors in the list vecs. All vectors must have the same length,
and all elements must lie in a common field. The distances distribution is a list d
of length Length(vec) + 1, such that the value d[i] is the number of vectors in vecs
that have distance i + 1 to vec.

Example

gap> v:=[ Z(3)"0, Z( ), Z2(3)°0, 0*Z(3), Z2(3)°0, Z(3)"0, Z2(3)°0, Z(3)
gap> vecs:=[ [ Z(3)" 0*2(3), Z2(3)°0, 0*Z(3), 0*Z(3), 0*Z(3), 0*zZ2(3)
> [ 0%Z2(3), z<3>Ao 0*2(3) Z(3)°0, 0*%Z(3), 0*Z(3), 0*Z(3), 0%z (3)
> [ 0*Z(3), 0*2(3), Z2(3)°0, 0*z(3), Z(3)"0, 0*z(3), 0*Z(3), 0*Z(3)
> [ 0*Z(3), 0*z(3), 0*Z(3), Z(3)"0, 0*Z(3), Z(3)°0, 0*Z(3), 0*Z(3)
> [ 0*Z(3), 0*Z2(3), 0*Z(3), 0*Z2(3), Z(3)°0, 0*z2(3), Z(3)"0, 0*Z(3)
> [ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)°0, 0*Z(3), Z(3)"°0
gap> DistancesDistributionMatFFEVecFFE (vecs,GF (3),V);
[ 0, 4, 6, 60, 109, 216, 192, 112, 30 ]

2.1.4 DistancesDistributionVecFFEsVecFFE

& DistancesDistributionVecFFEsVecFFE ( vecs, vec ) (function)

DistancesDistributionVecFFEsVecFFE returns the distances distribution
of the vector vec to the vectors in the list vecs. All vectors must have the same
length, and all elements must lie in a common field. The distances distribution is a
list d of length Length(vec) + 1, such that the value d[i] is the number of vectors in
vecs that have distance i + 1 to vec.

Example
gap> v:=[ Z(3)"0, Z(3) Z(3)70, 0*Z(3), Z(3)°0, 2(3)°0, Z(3)°0, Z(3)["0 1;;
gap> vecs:=[ [ Z(3)"0, 0*z(3), Z(3)°0, 0*z(3), 0*Z(3), 0*z(3), 0*Z(3), 0*Z
> [ 0%*Z(3), Z(3)°0, 0*Z(3), Z(3)"0, 0*z(3), 0*Z(3), 0*Z(3), 0*Z(3)| I,
> [ 0%*Z(3), 0%*Z(3), Z(3)°0, 0*Z(3), Z(3)°0, 0*Z(3), 0*Z(3), 0*Z(3)| I,
> [ 0%*Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0*Z2(3), Z(3)°0, 0*Z(3), 0*Z(3)| I,
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> [ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0*Z(3), Z(3)"0, 0*Z(3)| 1,

> [ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)70, 0*Z(3), Zz(3)"0 1 1;;
gap> DistancesDistributionVecFFEsVecFFE (vecs,V);

(o, 0,0 0,0, 4, 0,1, 11

2.1.5 WeightVecFFE

<& WeightVecFFE ( vec ) (function)

WeightVecFFE returns the weight of the finite field vector vec, i.e. the number
of nonzero entries.

Example
gap> v:=[ Z(3)°0, 2(3), Z(3)°0, 0*Z(3), 2(3)7°0, Z(3)70, Z(3)"0, Z2(3)|"0 1;;
gap> WeightVecFFE (v);
7

2.1.6 DistanceVecFFE

& DistanceVecFFE ( vecl, vec2 ) (function)

The Hamming metric on GF (q)" is the function

dist((Viy.es V), (Wi, eooywy)) = [{i € [1..n] | vi # wi}].

This is also called the (Hamming) distance between v = (vi,...,v,) and w =
(W1,...,w,). DistanceVecFFE returns the distance between the two vectors vecl
and vec2, which must have the same length and whose elements must lie in a
common field. The distance is the number of places where vecl and vec? differ.

Example
gap> vl:=[ 2(3)70, Z2(3), Z(3)70, 0*z(3), 2(3)°0, 2(3)70, Z(3)70, 2(3)70 I;;
gap> v2:=[ Z(3), Z(3)/\01 2(3)»\0, 0*Z(3), 2(3)A0/ Z2(3)°0, 2(3)°0, Z2(3)°0 1;;
gap> DistanceVecFFE (vl,v2);
2
2.2 Other functions
We basically repeat, with minor variation, the mate-

rial in the GAP manual or from Frank Luebeck’s website
http://www.math.rwth-aachen.de:8001/ Frank.Luebeck/data/ConwayPol
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on Conway polynomials. The PRIME FIELDS: If p > 2 is a prime then GF(p)
denotes the field Z/ pZ, with addition and multiplication performed mod p.

The PRIME POWER FIELDS: Suppose g = p” is a prime power, r > 1, and put
F = GF(p). Let F [x] denote the ring of all polynomials over F and let f(x) denote a
monic irreducible polynomial in F [x] of degree r. The quotient E = F[x|/(f(x)) =
Fx]/f(x)F[x] is a field with g elements. If f(x) and E are related in this way,
we say that f(x) is the DEFINING POLYNOMIAL of E. Any defining polynomial
factors completely into distinct linear factors over the field it defines.

For any finite field F, the multiplicative group of non-zero elements F* is a
cyclic group. An o € F is called a PRIMITIVE ELEMENT if it is a generator of F*.
A defining polynomial f(x) of F is said to be PRIMITIVE if it has a root in F which
is a primitive element.

2.2.1 ConwayPolynomial

< ConwayPolynomial( p, n ) (function)

A standard notation for the elements of GF(p) is given via the repre-
sentatives 0,...,p — 1 of the cosets modulo p. We order these elements by
0 (1 (2 (.. ( p—1. Weintroduce an ordering of the polynomials of
degree r over GF(p). Let g(x) = g,x" + ...+ go and h(x) = h,x" + ...+ hy (by con-
vention, g; = h; =0 for i ) r). Then we define g ( A if and only if there is an
index k with g; = h; fori ) kand (—1)"*g, ( (—1)"*h.

The CONWAY POLYNOMIAL f,, .(x) for GF (p") is the smallest polynomial of
degree r with respect to this ordering such that:

e f,r(x) is monic,

* fp +(x) is primitive, that is, any zero is a generator of the (cyclic) multiplica-
tive group of GF (p"),

e for each proper divisor m of r we have that f,,(xP~1/(""=1) =0
(mod fp ,(x)); that is, the (p" —1)/(p™ — 1)-th power of a zero of f, ,(x)
is a zero of f}, (x).

ConwayPolynomial (p,n) returns the polynomial f), ,(x) defined above.

IsCheapConwayPolynomial (p, n) returns true if ConwayPolynomial ( p, n
) will give a result in reasonable time. This is either the case when this polynomial
is pre-computed, or if n, p are not too big.
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2.2.2 RandomPrimitivePolynomial

<& RandomPrimitivePolynomial ( F, n ) (function)

For a finite field F and a positive integer n this function returns a primitive
polynomial of degree n over F, that is a zero of this polynomial has maximal mul-
tiplicative order |F|" — 1.

IsPrimitivePolynomial (f) can be used to check if a univariate polynomial
f is primitive or not.



Chapter 3

Codewords

Let GF (g) denote a finite field with g (a prime power) elements. A code is a subset
C of some finite-dimensional vector space V over GF(q). The length of C is the
dimension of V. Usually, V = GF(g)" and the length is the number of coordinate
entries. When C is itself a vector space over GF(g) then it is called a linear code

and the dimension of C is its dimension as a vector space over GF (g).

In quava, a ‘codeword’ is a GAP record, with one of its components being
an element in V. Likewise, a ‘code’ is a GAP record, with one of its components

being a subset (or subspace with given basis, if C is linear) of V.
Example

gap> C:=RandomLinearCode (20,10,GF (4));

a [20,10,?] randomly generated code over GF (4)

gap> c:=Random(C) ;
[1a00011a200alllallaab6o0]

gap> NamesOfComponents (C) ;

[ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup",

"Representative", "ZeroImmutable" ]

gap> NamesOfComponents (c);

[ "VectorCodeword", "WordLength", "treatAsPoly" ]

gap> c!.VectorCodeword;

[ immutable compressed vector length 20 over GF (4) ]

gap> Display(last);

[ Z2(27°2), 2(27°2), Z(2°2), Z(2)"0
z(2)°0, 72(2°2)"2, 0*z(2), O
Z(2)°0, 0*Z(2) 1

gap> C!.Dimension;

10

"GeneratorMat", "name", "Basis", "NiceFreeLeftModule", "Dimensig

, Z2(27°2), 2(27°2)°2, 0*%Z2(2), 7(272)
*72(2), 7Z(2°2), 0*Z(2), 0*Z(2), 0*Z(2)

"Wo

Mathematically, a ‘codeword’ is an element of a code C, but in quava the

20

rdLength",

n"’
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Codeword and VectorCodeword commands have implementations which do not
check if the codeword belongs to C (i.e., are independent of the code itself). They
exist primarily to make it easier for the user to construct a the associated GAP
record. Using these commands, one can enter into a GAP both a codeword ¢ (be-
longing to C) and a received word r (not belonging to C) using the same command.
The user can input codewords in different formats (as strings, vectors, and polyno-
mials), and output information is formatted in a readable way.

A codeword c in a linear code C arises in practice by an initial encoding of a
"block’ message m, adding enough redundancy to recover m after c is transmitted
via a ‘noisy’ communication medium. In qua v a, for linear codes, the map m —
c is computed using the command c:=m*C and recovering m from c is obtained
by the command InformationWord (c,C). These commands are explained more
below.

Many operations are available on codewords themselves, although codewords
also work together with codes (see chapter 4 on Codes).

The first section describes how codewords are constructed (see Codeword
(3.1.1) and IsCodeword (3.1.3)). Sections 3.2 and 3.3 describe the arithmetic
operations applicable to codewords. Section 3.4 describe functions that con-
vert codewords back to vectors or polynomials (see VectorCodeword (3.4.1) and
PolyCodeword (3.4.2)). Section 3.5 describe functions that change the way a code-
word is displayed (see TreatAsVector (3.5.1) and TreatAsPoly (3.5.2)). Finally,
Section 3.6 describes a function to generate a null word (see NullWord (3.6.1)) and
some functions for extracting properties of codewords (see DistanceCodeword
(3.6.2), Support (3.6.3) and WeightCodeword (3.6.4)).

3.1 Construction of Codewords

3.1.1 Codeword

<& Codeword( obj[, nl[,]1I[F] ) (function)

Codeword returns a codeword or a list of codewords constructed from obj. The
object obj can be a vector, a string, a polynomial or a codeword. It may also be a
list of those (even a mixed list).

If a number n is specified, all constructed codewords have length n. This is
the only way to make sure that all elements of obj are converted to codewords of
the same length. Elements of obj that are longer than n are reduced in length by
cutting of the last positions. Elements of ob 7 that are shorter than n are lengthened
by adding zeros at the end. If no n is specified, each constructed codeword is
handled individually.
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If a Galois field F is specified, all codewords are constructed over this field.
This is the only way to make sure that all elements of obj are converted to the
same field F (otherwise they are converted one by one). Note that all elements of
obj must have elements over F or over ‘Integers’. Converting from one Galois
field to another is not allowed. If no F is specified, vectors or strings with integer
elements will be converted to the smallest Galois field possible.

Note that a significant speed increase is achieved if F is specified, even when
all elements of ob 7 already have elements over F.

Every vector in ob j can be a finite field vector over F or a vector over ‘Integers’.
In the last case, it is converted to F or, if omitted, to the smallest Galois field
possible.

Every string in obj must be a string of numbers, without spaces, commas or
any other characters. These numbers must be from 0 to 9. The string is converted to
a codeword over F or, if F is omitted, over the smallest Galois field possible. Note
that since all numbers in the string are interpreted as one-digit numbers, Galois
fields of size larger than 10 are not properly represented when using strings. In
fact, no finite field of size larger than 11 arises in this fashion at all.

Every polynomial in obj is converted to a codeword of length n or, if omitted,
of a length dictated by the degree of the polynomial. If F is specified, a polynomial
in obj must be over F.

Every element of obj that is already a codeword is changed to a codeword of
length n. If no n was specified, the codeword doesn’t change. If F is specified, the

codeword must have base field F.
Example

gap> ¢ := Codeword([0,1,1,1,0]);

[01110]

gap> VectorCodeword (

[ 0*Z(2), Z(2)°0, Z(2

gap> c2 := Codeword ([

[01110]

gap> VectorCodeword( c2 );

[ 0*Z(3), Z(3)70, Z(3)"0, Z(3)

gap> Codeword([c, c2, "0110"]);

[fro11101, 1011101, 1011
1 2 [

c )i
)70, Z(2)°0, 0*Z(2) ]
0,1,1,1,0], GF(3));

"0, 0*Z(3) ]

011
gap> p := UnivariatePolynomial (GF(2), [Z(2)"0, 0*Z(2), Z(2)"0]);
Z(2)"0+x_1"2
gap> Codeword(p);
x"2 + 1

This command can also be called using the syntax Codeword (ob7j, C). In this
format, the elements of obj are converted to elements of the same ambient vector
space as the elements of a code C. The command Codeword (c,C) is the same as
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calling Codeword (c, n, F), where n is the word length of C and the F is the ground
field of C.

Example
gap> C := WholeSpaceCode (7,GF (5));

a cyclic [7,7,1]10 whole space code over GF (5)

gap> Codeword(["0220110", [1,1,1]]1, C);
[[02201107], 1110000171

gap> Codeword(["0220110", [1,1,111, 7, GF(5));

[ 022011071, [1110000°17]1]

gap> C:=RandomLinearCode(10,5,GF(3));

a linear [10,5,1..3]3..5 random linear code over GF (3)
gap> Codeword("1000000000",C);

[1000000000]

gap> Codeword("1000000000",10,GF (3));
[1000000000]]

3.1.2 CodewordNr

<& CodewordNr ( C, list ) (function)

CodewordNr returns a list of codewords of C. 1ist may be a list of integers
or a single integer. For each integer of 1ist, the corresponding codeword of C
is returned. The correspondence of a number i with a codeword is determined as
follows: if a list of elements of C is available, the i’ element is taken. Otherwise, it
is calculated by multiplication of the i information vector by the generator matrix
or generator polynomial, where the information vectors are ordered lexicograph-
ically. In particular, the returned codeword(s) could be a vector or a polynomial.
So CodewordNr (C, 1) is equal to AsSSortedList (C) [1], described in the next
chapter. The latter function first calculates the set of all the elements of C and
then returns the #/ element of that set, whereas the former only calculates the i
codeword.
Example

gap> B := BinaryGolayCode () ;

a cyclic [23,12,7]3 binary Golay code over GF(2)

gap> ¢ := CodewordNr (B, 4);

X722 + %720 + x"17 + x"14 + x713 + x"12 + x"11 + x710
gap> R := ReedSolomonCode (2,2);

a cyclic [2,1,2]1 Reed-Solomon code over GF(3)

gap> AsSSortedList (R);
[f1oo0ol, 117, I
gap> CodewordNr (R, [1,
(o001, 12211
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3.1.3 IsCodeword
<& IsCodeword( obj ) (function)
IsCodeword returns ‘true’ if ob7j, which can be an object of arbitrary type, is

of the codeword type and ‘false’ otherwise. The function will signal an error if ob j
is an unbound variable.

Example
gap> IsCodeword(l);
false
gap> IsCodeword(ReedMullerCode(2,3));
false
gap> IsCodeword("11111");
false
gap> IsCodeword(Codeword ("11111"));
true

3.2 Comparisons of Codewords

321 =

O=(cl, c2) (function)

The equality operator c1 = c2 evaluates to ‘true’ if the codewords c1 and c2
are equal, and to ‘false’ otherwise. Note that codewords are equal if and only if
their base vectors are equal. Whether they are represented as a vector or polynomial
has nothing to do with the comparison.

Comparing codewords with objects of other types is not recommended, al-
though it is possible. If c2 is the codeword, the other object c1 is first converted
to a codeword, after which comparison is possible. This way, a codeword can be
compared with a vector, polynomial, or string. If c1 is the codeword, then prob-
lems may arise if c2 is a polynomial. In that case, the comparison always yields a
‘false’, because the polynomial comparison is called.

The equality operator is also denoted EQ, and EQ (c1, c2) is the same as c1 =
c2. There is also an inequality operator, < >, or not EQ.

Example
gap> P := UnivariatePolynomial (GF(2), Z(2)*[1,0,0,1]);
7Z(2)"0+x_1"3
gap> ¢ := Codeword(P, GF(2));
x"3 + 1

gap> P = ¢c; # codeword operation
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true

gap> c2 := Codeword("1001", GF(2));
[1001]

gap> ¢ = c2;

true

gap> C:=HammingCode (3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> cl:=Random(C);

[1001100]
gap> c2:=Random(C);
[0100101]
gap> EQ(cl,c2);
false

gap> not EQ(cl,c2);
true

3.3 Arithmetic Operations for Codewords

331 +

S+ (cl, c2) (function)

The following operations are always available for codewords. The operands
must have a common base field, and must have the same length. No implicit con-
versions are performed.

The operator + evaluates to the sum of the codewords c1 and c2.

Example
gap> C:=RandomLinearCode(10,5,GF(3));
a linear [10,5,1..3]3..5 random linear code over GF (3)
gap> c:=Random (C) ;

[1 0222210201

gap> Codeword (c+"2000000000");

[0022221020]

gap> Codeword(c+"1000000000");

The last command returns a GAP ERROR since the ‘codeword’ which quava
associates to 1000000000 belongs to GF (2) and not GF(3).

332 -

S -(cl, c2) (function)
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Similar to addition: the operator - evaluates to the difference of the codewords
cl and c2.

333 +

S+( v, C) (function)

The operator v+C evaluates to the coset code of code C after adding a ‘code-
word’ v to all codewords in C. Note that if ¢ € C then mathematically c+C = C
but guava only sees them equal as sets. See CosetCode (6.1.16).

Note that the command C+v returns the same output as the command v+C.
Example
gap> C:=RandomLinearCode (10,5);

a [10,5,?] randomly generated code over GF(2)
gap> c:=Random (C) ;

[0O0000O0000O0O0]

gap> c+C;

[ add. coset of a [10,5,?] randomly generated code over GF(2) ]
gap> c+C=C;

true

gap> IsLinearCode (c+C);

false

gap> v:=Codeword("100000000");
[10000000O0O0]]

gap> v+C;

[ add. coset of a [10,5,?] randomly generated code over GF(2) ]
gap> C=v+C;

false

gap> C := GeneratorMatCode( [ [1, 0,0,01, [0, 1,0,0] 1, GF(2) );

a linear [4,2,1]1 code defined by generator matrix over GF (2)

gap> Elements (C);

[froo0o0o0oj], 0ro0o0j], 11200071, [1100T7]

gap> v:=Codeword("0011");

[0011]

gap> C+v;

[ add. coset of a linear [4,2,4]1 code defined by generator matrix g
gap> Elements (C+v);

rrooz1131, 1011131, 11011131, 1111171

In general, the operations just described can also be performed on codewords
expressed as vectors, strings or polynomials, although this is not recommended.
The vector, string or polynomial is first converted to a codeword, after which
the normal operation is performed. For this to go right, make sure that at

ver GF(2)
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least one of the operands is a codeword. Further more, it will not work when
the right operand is a polynomial. In that case, the polynomial operations
(FiniteFieldPolynomialOps) are called, instead of the codeword operations
(CodewordOps).

Some other code-oriented operations with codewords are described in 4.2.

3.4 Functions that Convert Codewords to Vectors or Poly-
nomials

3.4.1 VectorCodeword

& VectorCodeword( obj ) (function)

Here ob7j can be a code word or a list of code words. This function returns the
corresponding vectors over a finite field.

Example
gap> a := Codeword("011011");;

gap> VectorCodeword(a) ;

[ 0%Z(2), Z2(2)°0, Z(2)"0, 0*Z(2), Z2(2)°0, Z(2)°0 ]

3.4.2 PolyCodeword

<& PolyCodeword( obj ) (function)

PolyCodeword returns a polynomial or a list of polynomials over a Galois field,
converted from obj. The object obj can be a codeword, or a list of codewords.

Example
gap> a := Codeword("011011");;

gap> PolyCodeword (a);

x_1+x 1724x_174+4x_1"5

3.5 Functions that Change the Display Form of a Code-
word

3.5.1 TreatAsVector

<& TreatAsVector ( obj ) (function)
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TreatAsVector adapts the codewords in obj to make sure they are printed as
vectors. obj may be a codeword or a list of codewords. Elements of obj that are
not codewords are ignored. After this function is called, the codewords will be
treated as vectors. The vector representation is obtained by using the coefficient
list of the polynomial.

Note that this only changes the way a codeword is printed. TreatAsVector
returns nothing, it is called only for its side effect. The function VectorCodeword
converts codewords to vectors (see VectorCodeword (3.4.1)).

Example

gap> B := BinaryGolayCode();

a cyclic [23,12,7]3 binary Golay code over GF (2)

gap> ¢ := CodewordNr (B, 4);

x"22 + x°20 + x717 + x714 + x"13 + x712 + x"11 + x710
gap> TreatAsVector(c);

gap> ¢;
[00O0OOO0OO0CO0O0O0O01111100100101]

3.5.2 TreatAsPoly

< TreatAsPoly( ob7j ) (function)

TreatAsPoly adapts the codewords in obj to make sure they are printed as
polynomials. obj may be a codeword or a list of codewords. Elements of obj
that are not codewords are ignored. After this function is called, the codewords
will be treated as polynomials. The finite field vector that defines the codeword is
used as a coefficient list of the polynomial representation, where the first element
of the vector is the coefficient of degree zero, the second element is the coefficient
of degree one, etc, until the last element, which is the coefficient of highest degree.

Note that this only changes the way a codeword is printed. TreatAsPoly re-
turns nothing, it is called only for its side effect. The function PolyCodeword
converts codewords to polynomials (see PolyCodeword (3.4.2)).

Example
gap> a := Codeword("00001",GF(2));
[000O01]
gap> TreatAsPoly(a); a;
x4
gap> b := NullWord(6,GF(4));
[000O0O0O0 ]

gap> TreatAsPoly(b); b;
0
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3.6 Other Codeword Functions
3.6.1 NullWord

<& NullWord( n, F ) (function)

Other uses: NullWord( n ) (default F = GF(2)) and NullWord( C ).
NullWord returns a codeword of length n over the field F of only zeros. The integer
n must be greater then zero. If only a code C is specified, NullWord will return a
null word with both the word length and the Galois field of C.

Example

gap> NullWord(8);

[00000000O0]]

gap> Codeword("0000") = NullWord(4);

true

gap> NullWord(5,GF(16));

[ 00000

gap> NullWord (ExtendedTernaryGolayCode());
[000000000O00O0O0]]

3.6.2 DistanceCodeword

& DistanceCodeword( cl, c2 ) (function)

DistanceCodeword returns the Hamming distance from c1 to c2. Both vari-
ables must be codewords with equal word length over the same Galois field. The
Hamming distance between two words is the number of places in which they dif-
fer. As a result, DistanceCodeword always returns an integer between zero and
the word length of the codewords.

Example
gap> a := Codeword([0, 1, 2, 0, 1, 2]);; b := NullWord(6, GF(3));;
gap> DistanceCodeword(a, b);

4

gap> DistanceCodeword (b, a);

4

gap> DistanceCodeword(a, a);

0

3.6.3 Support

& Support ( ¢ ) (function)



guava 30

Support returns a set of integers indicating the positions of the non-zero entries
in a codeword c.

Example
gap> a := Codeword("012320023002");; Support(a);
[ 2, 3, 4,5, 8, 9, 12 ]

gap> Support (NullWord(7));

]

The support of a list with codewords can be calculated by taking the union of the

individual supports. The weight of the support is the length of the set.
Example
gap> L := Codeword(["000000", "101010", "222000"], GF(3));;
gap> S := Union(List (L, i -> Support(i)));

[1, 2, 3, 51

gap> Length(S);

4

3.6.4 WeightCodeword

<& WeightCodeword( ¢ ) (function)

WeightCodeword returns the weight of a codeword ¢, the number of non-zero
entries in c. As a result, WeightCodeword always returns an integer between zero
and the word length of the codeword.

Example
gap> WeightCodeword (Codeword ("22222"));

5

gap> WeightCodeword (NullWord(3));

0

gap> C := HammingCode (3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> Minimum (List (AsSSortedList (C) {[2..Size(C)]}, WeightCodeword ) )|;
3




Chapter 4

Codes

A code is a set of codewords (recall a codeword in quava is simply a sequence
of elements of a finite field GF(q), where g is a prime power). We call these the
elements of the code. Depending on the type of code, a codeword can be interpreted
as a vector or as a polynomial. This is explained in more detail in Chapter 3.

In quava, codes can be a set specified by its elements (this will be called an
unrestricted code), by a generator matrix listing a set of basis elements (for a linear
code) or by a generator polynomial (for a cyclic code).

Any code can be defined by its elements. If you like, you can give the code a

name.
Example
gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );

a (4,3,1..4)2..4 example code over GF(2)

An (n,M,d) code is a code with word length n, size M and minimum distance d.

If the minimum distance has not yet been calculated, the lower bound and upper
bound are printed (except in the case where the code is a random linear codes,
where these are not printed for efficiency reasons). So

a (4,3,1..4)2..4 code over GF(2)

means a binary unrestricted code of length 4, with 3 elements and the minimum
distance is greater than or equal to 1 and less than or equal to 4 and the covering
radius is greater than or equal to 2 and less than or equal to 4.

Example
gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF (2)

gap> MinimumDistance (C);

2

31
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gap> C;
a (4,3,2)2..4 example code over GF(2)

If the set of elements is a linear subspace of GF(g)", the code is called linear. If
a code is linear, it can be defined by its generator matrix or parity check matrix.
By definition, the rows of the generator matrix is a basis for the code (as a vector
space over GF (q)). By definition, the rows of the parity check matrix is a basis for
the dual space of the code,

C*={veGF(q)"|v-c=0, forall c € C}.

Example
gap> G := GeneratorMatCode([[1,0,1],10,1,2]], "demo code", GF(3) );
a linear [3,2,1..2]1 demo code over GF (3)

So a linear [n,k,d]r code is a code with word length n, dimension k, minimum
distance d and covering radius r.

If the code is linear and all cyclic shifts of its codewords (regarded as n-tuples)
are again codewords, the code is called cyclic. All elements of a cyclic code are
multiples of the monic polynomial modulo a polynomial x" — 1, where n is the
word length of the code. Such a polynomial is called a generator polynomial The
generator polynomial must divide x” — 1 and its quotient is called a check polyno-
mial. Multiplying a codeword in a cyclic code by the check polynomial yields zero
(modulo the polynomial x” —1). In quav a, a cyclic code can be defined by either

its generator polynomial or check polynomial.

Example
gap> G := GeneratorPolCode (Indeterminate (GF(2))+z(2)"0, 7, GF(2) );
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)

It is possible that quava does not know that an unrestricted code is in fact linear.
This situation occurs for example when a code is generated from a list of elements
with the function Element sCode (see ElementsCode (5.1.1)). By calling the func-
tion IsLinearCode (see IsLinearCode (4.3.4)), quava tests if the code can be
represented by a generator matrix. If so, the code record and the operations are

converted accordingly.

Example
gap> L := 2(2)*[ [0,0,0], [1,0,0], [0,1,11, [1,1,1] 1;;
gap> C := ElementsCode( L, GF(2) );

a (3,4,1..3)1 user defined unrestricted code over GF(2)
# so far, GUAVA does not know what kind of code this is
gap> IsLinearCode( C );

true # it is linear
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gap> C;
a linear [3,2,1]1 user defined unrestricted code over GF(2)

Of course the same holds for unrestricted codes that in fact are cyclic, or codes,
defined by a generator matrix, that actually are cyclic.

Codes are printed simply by giving a small description of their parameters, the
word length, size or dimension and perhaps the minimum distance, followed by
a short description and the base field of the code. The function Display gives a
more detailed description, showing the construction history of the code.

guava doesn’t place much emphasis on the actual encoding and decoding
processes; some algorithms have been included though. Encoding works simply by
multiplying an information vector with a code, decoding is done by the functions
Decode or Decodeword. For more information about encoding and decoding, see
sections 4.2 and 4.10.1.

Example
gap> R := ReedMullerCode( 1, 3 );

a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> w := [ 1, 0, 1, 1 ] * R;

[10011001]

gap> Decode( R, w );

[1011]
gap> Decode( R, w + "10000000" ); # One error at the first position
[1011] # Corrected by Guava

Sections 4.1 and 4.2 describe the operations that are available for codes. Section 4.3
describe the functions that tests whether an object is a code and what kind of code
it is (see IsCode, IsLinearCode (4.3.4) and IsCyclicCode) and various other
boolean functions for codes. Section 4.4 describe functions about equivalence and
isomorphism of codes (see IsEquivalent (4.4.1), CodeIsomorphism (4.4.2) and
AutomorphismGroup (4.4.3)). Section 4.5 describes functions that work on do-
mains (see Chapter "Domains and their Elements” in the GAP Reference Man-
ual). Section 4.6 describes functions for printing and displaying codes. Section
4.7 describes functions that return the matrices and polynomials that define a code
(see GeneratorMat (4.7.1), CheckMat (4.7.2), GeneratorPol (4.7.3), CheckPol
(4.7.4), RootsOfCode (4.7.5)). Section 4.8 describes functions that return the
basic parameters of codes (see WordLength (4.8.1), Redundancy (4.8.2) and
MinimumDistance (4.8.3)). Section 4.9 describes functions that return distance
and weight distributions (see WeightDistribution (4.9.1), InnerDistribution
(4.9.2), OuterDistribution (4.9.4) and DistancesDistribution (4.9.3)).
Section 4.10 describes functions that are related to decoding (see Decode
(4.10.1), Decodeword (4.10.2), Syndrome (4.10.7), SyndromeTable (4.10.8) and
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StandardArray (4.10.9)). In Chapters 5 and 6 which follow, we describe func-
tions that generate and manipulate codes.

4.1 Comparisons of Codes

411 =

O=(C1, C2) (function)

The equality operator C1 = C2 evaluates to ‘true’ if the codes C1 and C2 are
equal, and to ‘false’ otherwise.

The equality operator is also denoted EQ, and Eq (C1,C2) is the same as C1 =
C2. There is also an inequality operator, < >, or not EQ.

Note that codes are equal if and only if their set of elements are equal. Codes
can also be compared with objects of other types. Of course they are never equal.

Example
gap> M := [ [0, O], [1, O], [O, 11, [1, 11 I;;
gap> Cl := ElementsCode( M, GF(2) );
a (2,4,1..2)0 user defined unrestricted code over GF(2)
gap> M = Cl;
false
gap> C2 := GeneratorMatCode( [ [1, 01, [0, 1] 1, GF(2) );
a linear [2,2,1]0 code defined by generator matrix over GF(2)
gap> Cl = C2;
true
gap> ReedMullerCode( 1, 3 ) = HadamardCode( 8 );
true
gap> WholeSpaceCode( 5, GF(4) ) = WholeSpaceCode( 5, GF(2) );
false

Another way of comparing codes is IsEquivalent, which checks if two
codes are equivalent (see IsEquivalent (4.4.1)). By the way, this called
CodeIsomorphism. For the current version of guava, unless one of the codes
is unrestricted, this calls Leon’s C program (which only works for binary linear
codes and only on a unix/linux computer).

4.2 Operations for Codes

421 +

S+ (Cl, C2) (function)
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The operator ‘+° evaluates to the direct sum of the codes C1 and C2. See
DirectSumCode (6.2.1).

Example
gap> Cl:=RandomLinearCode(10,5);

a [10,5,?] randomly generated code over GF(2)

gap> C2:=RandomLinearCode (9,4);

a [9,4,?] randomly generated code over GF(2)

gap> C1+C2;

a linear [10,9,1]0..10 unknown linear code over GF(2)

422 *

S x(Cl, C2) (function)

The operator “*’ evaluates to the direct product of the codes C1 and C2. See
DirectProductCode (6.2.3).

Example
gap> Cl := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,01 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> C2 := GeneratorMatCode( [ [0,0,1, 1], [0,0,0, 1] 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF (2)
gap> C1l*C2;
a linear [16,4,1]4..12 direct product code
423 *
SCx(m, C) (function)

The operator m*C evaluates to the element of C belonging to information word
(’message’) m. Here m may be a vector, polynomial, string or codeword or a list
of those. This is the way to do encoding in guava. C must be linear, because in
guava, encoding by multiplication is only defined for linear codes. If C is a cyclic
code, this multiplication is the same as multiplying an information polynomial m by
the generator polynomial of C. If C is a linear code, it is equal to the multiplication
of an information vector m by a generator matrix of C.

To invert this, use the function InformationWord (see InformationWord
(4.2.4), which simply calls the function Decode).

Example
gap> C := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> m:=Codeword("11");
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[11]
gap> m*C;
[1100]

4.2.4 InformationWord

& InformationWord( c, C ) (function)

Here C is a linear code and ¢ is a codeword in it. The command
InformationWord returns the message word (or ’information digits’) m satisfying
c=m*C. This command simply calls Decode, provided ¢ in C is true. Otherwise,
it returns an error.

To invert this, use the encoding function * (see * (4.2.3)).

Example

gap> C:=HammingCode (3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c:=Random (C) ;

[0001111]

gap> InformationWord(C,c);

[0111]

gap> c:=Codeword("1111100");

[1 1111001

gap> InformationWord(C,c);

"ERROR: codeword must belong to code"

gap> C:=NordstromRobinsonCode () ;

a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> c:=Random (C);
[0001000100101101]

gap> InformationWord(C,c);

"ERROR: code must be linear"

4.3 Boolean Functions for Codes
4.3.1 in

Sin( ¢, C) (function)

The command ¢ in C evaluates to ‘true’ if C contains the codeword or list of
codewords specified by c. Of course, c and C must have the same word lengths and
base fields.
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Example
gap> C:= HammingCode( 2 );; eC:= AsSSortedList( C );
(00071, 1111171

gap> eC[2] in C;

true

gap> [ 0 ] in C;

false

4.3.2 IsSubset

& IsSubset ( C1, C2 ) (function)

The command IsSubset (C1,C2) returns ‘true’ if C2 is a subcode of C1, i.e. if
C1 contains all the elements of C2.

Example
gap> IsSubset ( HammingCode (3), RepetitionCode( 7 ) );
true

gap> IsSubset ( RepetitionCode( 7 ), HammingCode( 3 ) );
false
gap> IsSubset ( WholeSpaceCode( 7 ), HammingCode( 3 ) );
true

4.3.3 IsCode

<& IsCode( obj ) (function)

IsCode returns ‘true’ if obj, which can be an object of arbitrary type, is a code
and ‘false’ otherwise. Will cause an error if obj is an unbound variable.

Example
gap> IsCode( 1 );
false
gap> IsCode( ReedMullerCode( 2,3 ) );
true
4.3.4 IsLinearCode
<& IsLinearCode( obj ) (function)

IsLinearCode checks if object obj (not necessarily a code) is a linear code.
If a code has already been marked as linear or cyclic, the function automatically
returns ‘true’. Otherwise, the function checks if a basis G of the elements of obj
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exists that generates the elements of obj. If so, G is recorded as a generator matrix

of ob7j and the function returns ‘true’. If not, the function returns ‘false’.
Example
gap> C := ElementsCode( [ [0,0,0],[1,1,1] 1, GF(2) );

a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> IsLinearCode( C );

true

gap> IsLinearCode( ElementsCode( [ [1,1,1] 1, GF(2) ) );
false

gap> IsLinearCode( 1 );

false

4.3.5 IsCyclicCode

<& IsCyclicCode( obj ) (function)

IsCyclicCode checks if the object obj is a cyclic code. If a code has already
been marked as cyclic, the function automatically returns ‘true’. Otherwise, the
function checks if a polynomial g exists that generates the elements of obj. If so,
g is recorded as a generator polynomial of obj and the function returns ‘true’. If
not, the function returns ‘false’.

Example
gap> C := ElementsCode( [ [0,0,0], [1,1,1] 1, GF(2) );
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> # GUAVA does not know the code is cyclic

gap> IsCyclicCode( C ); # this command tells GUAVA to find out
true

gap> IsCyclicCode ( HammingCode( 4, GF(2) ) );

false

gap> IsCyclicCode( 1 );

false

4.3.6 IsPerfectCode

O IsPerfectCode( C ) (function)

IsPerfectCode (C) returns ‘true’ if C is a perfect code. If C C GF(g)" then, by
definition, this means that for some positive integer ¢, the space GF ()" is covered
by non-overlapping spheres of (Hamming) radius ¢ centered at the codewords in
C. For a code with odd minimum distance d = 2¢ + 1, this is the case when every
word of the vector space of C is at distance at most ¢ from exactly one element of
C. Codes with even minimum distance are never perfect.
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In fact, a code that is not trivially perfect” (the binary repetition codes of odd
length, the codes consisting of one word, and the codes consisting of the whole
vector space), and does not have the parameters of a Hamming or Golay code,
cannot be perfect (see section 1.12 in [HP03]).

Example
gap> H := HammingCode (2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> IsPerfectCode( H );
true
gap> IsPerfectCode( ElementsCode([[1,1,0],[0,0,111,GF(2)) );
true
gap> IsPerfectCode( ReedSolomonCode( 6, 3 ) );
false
gap> IsPerfectCode( BinaryGolayCode () );
true

4.3.7 IsMDSCode

<& IsMDSCode( C ) (function)

IsMDSCode (C) returns true if C is a maximum distance separable (MDS) code.
A linear [n,k,d]-code of length n, dimension k and minimum distance d is an
MDS code if k =n—d + 1, in other words if C meets the Singleton bound (see
UpperBoundSingleton (7.1.1)). An unrestricted (n,M,d) code is called MDS if
k=n—d+ 1, with k equal to the largest integer less than or equal to the logarithm
of M with base g, the size of the base field of C.

Well-known MDS codes include the repetition codes, the whole space codes,
the even weight codes (these are the only binary MDS codes) and the Reed-
Solomon codes.

Example
gap> Cl := ReedSolomonCode( 6, 3 );
a cyclic [6,4,3]2 Reed-Solomon code over GF(7)
gap> IsMDSCode( Cl );

true # 6-3+1 = 4

gap> IsMDSCode ( QRCode( 23, GF(2) ) );

false

4.3.8 IsSelfDualCode

& IsSelfDualCode( C ) (function)
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IsSelfDualCode (C) returns ‘true’ if C is self-dual, i.e. when C is equal to
its dual code (see also DualCode (6.1.13)). A code is self-dual if it contains all
vectors that its elements are orthogonal to. If a code is self-dual, it automatically is
self-orthogonal (see IsSelfOrthogonalCode (4.3.9)).

If C is a non-linear code, it cannot be self-dual (the dual code is always linear),
so ‘false’ is returned. A linear code can only be self-dual when its dimension k is
equal to the redundancy r.

Example
gap> IsSelfDualCode( ExtendedBinaryGolayCode () );
true

gap> C := ReedMullerCode( 1, 3 );

a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> DualCode( C ) = C;

true

4.3.9 IsSelfOrthogonalCode

<& IsSelfOrthogonalCode( C ) (function)

IsSelfOrthogonalCode (C) returns ‘true’ if C is self-orthogonal. A code is
self-orthogonal if every element of C is orthogonal to all elements of C, including
itself. (In the linear case, this simply means that the generator matrix of C multi-
plied with its transpose yields a null matrix.)

Example
gap> R := ReedMullerCode (1,4);

a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> IsSelfOrthogonalCode (R);

true

gap> IsSelfDualCode (R);

false

4.3.10 IsSelfComplementaryCode
& IsSelfComplementaryCode( C ) (function)
IsSelfComplementaryCode returns ‘true’ if
veC=1—veC,

where 1 is the all-one word of length n.
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Example
gap> IsSelfComplementaryCode( HammingCode( 3, GF(2) ) );
true
gap> IsSelfComplementaryCode ( EvenWeightSubcode (
> HammingCode ( 3, GF(2) ) ) );
false
4.3.11 IsAffineCode
O IsAffineCode( C ) (function)

IsAffineCode returns ‘true’ if C is an affine code. A code is called affine if it
is an affine space. In other words, a code is affine if it is a coset of a linear code.

Example
gap> IsAffineCode( HammingCode( 3, GF(2) ) );
true
gap> IsAffineCode( CosetCode( HammingCode( 3, GF(2) ),
>[11, 0, 0, 0, 0, O, O 1) );
true
gap> IsAffineCode( NordstromRobinsonCode () );
false
4.3.12 IsAlmostAffineCode
<O IsAlmostAffineCode( C ) (function)

IsAlmostAffineCode returns ‘true’ if C is an almost affine code. A code is
called almost affine if the size of any punctured code of C is ¢" for some r, where ¢
is the size of the alphabet of the code. Every affine code is also almost affine, and
every code over GF(2) and GF (3) that is almost affine is also affine.

Example
gap> code := ElementsCode( [ [0,0,0], [O,1,11, [0,2,2], [0,3,3],
> (1,0,11, [1,1,01, [1,2,31, I[1,3,2],
> (2,0,21, (2,1,31, [(2,2,0], [2,3,1],
> (3,0,31, [3,1,21, [3,2,1], [3,3,0] 1,
> GF(4) )i;
gap> IsAlmostAffineCode( code );
true
gap> IsAlmostAffineCode( NordstromRobinsonCode () );
false
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4.4 Equivalence and Isomorphism of Codes

4.4.1 IsEquivalent

<& IsEquivalent ( C1, C2 ) (function)

We say that C1 is permutation equivalent to C2 if C1 can be obtained from C2
by carrying out column permutations. IsEquivalent returns true if C1 and C2 are
equivalent codes. At this time, IsEquivalent only handles binary codes. (The ex-
ternal unix/linux program DESAUTO from J. S. Leon is called by IsEquivalent.)
Of course, if C1 and C2 are equal, they are also equivalent.

Note that the algorithm is very slow for non-linear codes.

More generally, we say that C1 is equivalent to C2 if C1 can be obtained from
C2 by carrying out column permutations and a permutation of the alphabet.

Example
gap> x:= Indeterminate( GF(2) );; pol:= x"3+x+1;

Z(2)"0+x_14x_1"3

gap> H := GeneratorPolCode( pol, 7, GF(2));

a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> H = HammingCode (3, GF(2));

false

gap> IsEquivalent (H, HammingCode (3, GF(2)));

true # H is equivalent to a Hamming code
gap> CodeIsomorphism(H, HammingCode (3, GF(2)));

(3,4) (5,6,7)

4.4.2 Codelsomorphism

<& CodeIsomorphism( Cl1, C2 ) (function)

If the two codes Cl1 and C2 are permutation equivalent codes (see
IsEquivalent (4.4.1)), CodeIsomorphism returns the permutation that trans-
forms C1 into C2. If the codes are not equivalent, it returns ‘false’.

At this time, IsEquivalent only computes isomorphisms between binary
codes on a linux/unix computer (since it calls Leon’s C program DESAUTO).
Example
gap> x:= Indeterminate( GF(2) );; pol:= x"3+x+1;

Z(2) "0+x_1+x_1"3

gap> H := GeneratorPolCode( pol, 7, GF(2));

a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> CodeIsomorphism(H, HammingCode (3, GF(2)));

(3,4) (5,6,7)
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gap> PermutedCode (H, (3,4) (5,6,7)) = HammingCode (3, GF(2));
true

4.4.3 AutomorphismGroup

< AutomorphismGroup( C ) (function)

AutomorphismGroup returns the automorphism group of a linear code C. For
a binary code, the automorphism group is the largest permutation group of de-
gree n such that each permutation applied to the columns of C again yields C.
guava calls the external program DESAUTO written by J. S. Leon, if it exists,
to compute the automorphism group. If Leon’s program is not compiled on the
system (and in the default directory) then it calls instead the much slower program
PermutationAutomorphismGroup.

See Leon [Leo82] for a more precise description of the method, and the
guava/src/leon/doc subdirectory for for details about Leon’s C programs.

The function PermutedCode permutes the columns of a code (see
PermutedCode (6.1.4)).

Example
gap> R := RepetitionCode(7,GF(2));

a cyclic [7,1,7]3 repetition code over GF (2)
gap> AutomorphismGroup (R);

Sym( [ 1 .. 771)

# every permutation keeps R identical
gap> C := CordaroWagnerCode (7);
a linear [7,2,4]3 Cordaro-Wagner code over GF (2)
gap> AsSSortedList (C);
[roooo0oo0o00j}, 17001111173, 111000117, 11111
gap> AutomorphismGroup (C);
Group ([ (3,4), (4,5, (1,6)(2,7), (1,2), (6,7) 1)
gap> C2 := PermutedCode(C, (1,6)(2,7));
a linear [7,2,4]3 permuted code
gap> AsSSortedList (C2);
([rooooo0o0o0j, 170011111731, 111000117, 11111
gap> C2 = C;
true

4.4.4 PermutationAutomorphismGroup

<& PermutationAutomorphismGroup( C ) (function)

100

100

]

]

]

]
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PermutationAutomorphismGroup returns the permutation automorphism
group of a linear code C. This is the largest permutation group of degree n such
that each permutation applied to the columns of C again yields C. It is written in
GAP, so is much slower than AutomorphismGroup.

When C is binary PermutationAutomorphismGroup does not call
AutomorphismGroup, even though they agree mathematically in that case.
This way PermutationAutomorphismGroup can be called on any platform which
runs GAP.

The older name for this command, PermutationGroup, will become obsolete
in the next version of GAP.

Example
gap> R := RepetitionCode(3,GF(3));

a cyclic [3,1,3]2 repetition code over GF(3)
gap> G:=PermutationAutomorphismGroup (R);

Group([ O, (1,3), (1,2,3), (2,3), (1,3,2), (1,2) 1)
gap> G=SymmetricGroup(3);
true

4.5 Domain Functions for Codes

These are some GAP functions that work on ‘Domains’ in general. Their specific
effect on ‘Codes’ is explained here.

4.5.1 IsFinite

O IsFinite( C ) (function)

IsFinite is an implementation of the GAP domain function IsFinite. It
returns true for a code C.

Example
gap> IsFinite( RepetitionCode( 1000, GF(11) ) );
true
4.5.2 Size
& Size( C) (function)

Size returns the size of C, the number of elements of the code. If the code is
linear, the size of the code is equal to g, where ¢ is the size of the base field of C
and k is the dimension.
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Example
gap> Size( RepetitionCode( 1000, GF(11l) ) );
11
gap> Size( NordstromRobinsonCode() );
256
4.5.3 LeftActingDomain
<& LeftActingDomain( C ) (function)

LeftActingDomain returns the base field of a code C. Each element of C con-
sists of elements of this base field. If the base field is F', and the word length of the
code is n, then the codewords are elements of F”". If C is a cyclic code, its elements
are interpreted as polynomials with coefficients over F.

Example
gap> Cl := ElementsCode([[0,0,0], [1,0,1], [0,1,011, GF(4));
a (3,3,1..3)2..3 user defined unrestricted code over GF (4)
gap> LeftActingDomain( C1 );

GF(272)

gap> LeftActingDomain( HammingCode( 3, GF(9) ) );

GF (372)

4.5.4 Dimension

<& Dimension( C ) (function)

Dimension returns the parameter k of C, the dimension of the code, or the
number of information symbols in each codeword. The dimension is not defined
for non-linear codes; Dimension then returns an error.

Example
gap> Dimension( NullCode( 5, GEF(5) ) );

0

gap> C := BCHCode( 15, 4, GF(4) );

a cyclic [15,9,5]3..4 BCH code, delta=5, b=1 over GF(4)

gap> Dimension( C );

9

gap> Size( C ) = Size( LeftActingDomain( C ) ) "~ Dimension( C );
true
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4.5.5 AsSSortedList

& AsSSortedList ( C ) (function)

AsSSortedList (as strictly sorted list) returns an immutable, duplicate free
list of the elements of C. For a finite field GF (q) generated by powers of Z(g), the
ordering on

GF(q) ={0,Z(¢)",Z(q),Z(9)*,.-. Z(q)"*}

is that determined by the exponents i. These elements are of the type codeword

(see Codeword (3.1.1)). Note that for large codes, generating the elements may be

very time- and memory-consuming. For generating a specific element or a subset

of the elements, use CodewordNr (see CodewordNr (3.1.2)).

Example

gap> C := ConferenceCode( 5 );

a (5,12,2)1..4 conference code over GF(2)

gap> AsSSortedList( C )

[T 000001, I
[1 00111, I
(111001, I

gap> CodewordNr( C, [ 1,

[[000007], [ 001

01
10

[T

00
10
11

N RO
e e e

4.6 Printing and Displaying Codes
4.6.1 Print

O Print( C ) (function)
Print prints information about C. This is the same as typing the identifier C at

the GAP-prompt.
If the argument is an unrestricted code, information in the form

a (n,M,d)r ... code over GF(q)

is printed, where n is the word length, M the number of elements of the code, d the
minimum distance and r the covering radius.
If the argument is a linear code, information in the form

a linear [n,k,d]r ... code over GF(q)

is printed, where n is the word length, k the dimension of the code, d the minimum
distance and r the covering radius.
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Except for codes produced by RandomLinearCode, if d is not yet known, it is
displayed in the form

lowerbound. .upperbound

and if r is not yet known, it is displayed in the same way. For certain ranges of n,
the values of lowerbound and upperbound are obtained from tables.
The function Display gives more information. See Display (4.6.3).

Example
gap> Cl := ExtendedCode( HammingCode( 3, GF(2) ) );
a linear [8,4,4]2 extended code
gap> Print( "This is ", NordstromRobinsonCode(), ". \n");
This is a (16,256,6)4 Nordstrom-Robinson code over GF(2).

4.6.2 String

<& String( C ) (function)

String returns information about C in a string. This function is used by Print.

Example
gap> x:= Indeterminate( GF(3) );; pol:= x"2+1;
x_172+42(3)°0
gap> Factors(pol);
[ x_172+42(3)°0 ]

gap> H := GeneratorPolCode( pol, 8, GF(3));
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GEF(3)
gap> String(H);
"a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)"

4.6.3 Display
O Display( C ) (function)
Display prints the method of construction of code C. With this history, in most

cases an equal or equivalent code can be reconstructed. If C is an unmanipulated
code, the result is equal to output of the function Print (see Print (4.6.1)).

Example
gap> Display( RepetitionCode( 6, GF(3) ) );
a cyclic [6,1,6]4 repetition code over GF(3)
gap> Cl := ExtendedCode( HammingCode(2) );;
gap> C2 := PuncturedCode( ReedMullerCode( 2, 3 ) );;
gap> Display( LengthenedCode( UUVCode( Cl, C2 ) ) );
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a linear [12,8,2]2..4 code, lengthened with 1 column(s) of
a linear [11,8,1]1..2 U U+V construction code of
U: a linear [4,1,4]2 extended code of
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
V: a linear [7,7,1]0 punctured code of
a cyclic [8,7,2]1 Reed-Muller (2,3) code over GF(2)

4.7 Generating (Check) Matrices and Polynomials

4.7.1 GeneratorMat

& GeneratorMat ( C ) (function)

GeneratorMat returns a generator matrix of C. The code consists of all linear
combinations of the rows of this matrix.

If until now no generator matrix of C was determined, it is computed from
either the parity check matrix, the generator polynomial, the check polynomial or
the elements (if possible), whichever is available.

If C is a non-linear code, the function returns an error.

Example
gap> GeneratorMat ( HammingCode( 3, GF(2)
[ [ an immutable GF2 vector of length 11,
[ an immutable GF2 vector of length 7],

]

]

) )i

[ an immutable GF2 vector of length 7],
[ an immutable GF2 vector of length 7
gap> Display(last);
111.
1. .11.
B A
11.1. .1
gap> GeneratorMat ( RepetitionCode( 5, GF
)
)

]

25) ) )i
01]
)

r

(
[ [ 2(570, 2(5)°0, 2(5)70, Z2(5)°0, Z(5)"
gap> GeneratorMat ( NullCode( 14, GF (4)

[ ]

4.7.2 CheckMat

& CheckMat ( C ) (function)

CheckMat returns a parity check matrix of C. The code consists of all words
orthogonal to each of the rows of this matrix. The transpose of the matrix is a
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right inverse of the generator matrix. The parity check matrix is computed from
either the generator matrix, the generator polynomial, the check polynomial or the

elements of C (if possible), whichever is available.

If C is a non-linear code, the function returns an error.

Example
gap> CheckMat ( HammingCode (3, GF(2) ) );
[ [ 0%z(2), 0*z(2), 0*Z(2), Z(2)"0, Z(2)"0, Z(2)"0, Z(2)"0 1,
[ 0*Z(2), Z(2)"0, Z(2)°0, 0*Z(2), 0*z(2), Z(2)"0, Z(2)°0 1,
[ Z2(2)70, 0*z(2), Z(2)°0, 0*Z(2), Z(2)"0, 0*Z(2), Z(2)"0 1]
gap> Display(last);
L1111
.1 1. .11

1.1 .1.

1
gap> CheckMat ( RepetitionCode( 5, GF(25) ) );
[ [2(570, z(5)"2, 0*Z(5), 0*Z(5), 0*Z(5) 1,
[ 0%Z(5), Z(5)"0, Z(5)"2, 0*z(5), 0*Z(5) 1,
[ 0%Z(5), 0*Z(5), Z(5)"0, Z(5)"2, 0*Z(5) 1,
[ 0%Z(5), 0*z(5), 0*Z(5), Z(5)"0, z(5)"2 1 ]
gap> CheckMat ( WholeSpaceCode( 12, GF(4) ) );

[ ]

4.7.3 GeneratorPol

O GeneratorPol ( C )

GeneratorPol returns the generator polynomial of C.

(function)

The code consists of all

multiples of the generator polynomial modulo x” — 1, where n is the word length of
C. The generator polynomial is determined from either the check polynomial, the
generator or check matrix or the elements of C (if possible), whichever is available.

If C is not a cyclic code, the function returns ‘false’.

Example

gap> GeneratorPol (GeneratorMatCode ([[1, 1, 0],
Z(2)"0+x_1

gap> GeneratorPol ( WholeSpaceCode( 4, GF(2) ) );
7Z(2)"°0

gap> GeneratorPol ( NullCode( 7, GF(3) ) );
-7Z(3)"0+x_1"7

(0, 1, 111, GF(2)));

4.7.4 CheckPol

& CheckPol( C )

(function)
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CheckPol returns the check polynomial of C. The code consists of all polyno-
mials f with
f+h=0 (mod x"—1),

where 4 is the check polynomial, and 7 is the word length of C. The check poly-
nomial is computed from the generator polynomial, the generator or parity check
matrix or the elements of C (if possible), whichever is available.

If C if not a cyclic code, the function returns an error.
Example
gap> CheckPol (GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)"0+x_1+x_1"2
gap> CheckPol (WholeSpaceCode (4, GF(2)));

Z(2)"0+x_174
gap> CheckPol (NullCode (7,GF (3)));
Z(3)°0

4.7.5 RootsOfCode

& ROOtSOfCOde( C ) (function)

RootsOfCode returns a list of all zeros of the generator polynomial of a cyclic
code C. These are finite field elements in the splitting field of the generator polyno-
mial, GF (¢™), m is the multiplicative order of the size of the base field of the code,
modulo the word length.

The reverse process, constructing a code from a set of roots, can be carried out
by the function RootsCode (see RootsCode (5.5.3)).

Example
gap> Cl := ReedSolomonCode( 16, 5 );
a cyclic [16,12,5]3..4 Reed-Solomon code over GF(17)
gap> RootsOfCode( Cl );

[ Z2(17), Z2(17)"2, 2(17)"3, Z(17)"4 ]

gap> C2 := RootsCode( 16, last );

a cyclic [16,12,5]3..4 code defined by roots over GF(17)
gap> Cl = C2;

true

4.8 Parameters of Codes

4.8.1 WordLength

C>WordLength( C) (function)
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WordLength returns the parameter n of C, the word length of the elements.
Elements of cyclic codes are polynomials of maximum degree n — 1, as calculations
are carried out modulo x" — 1.

Example
gap> WordLength ( NordstromRobinsonCode () );
16
gap> WordLength( PuncturedCode( WholeSpaceCode(7) ) );
6
gap> WordLength ( UUVCode ( WholeSpaceCode (7), RepetitionCode(7) ) );
14

4.8.2 Redundancy

< Redundancy ( C ) (function)

Redundancy returns the redundancy r of C, which is equal to the number of
check symbols in each element. If C is not a linear code the redundancy is not
defined and Redundancy returns an error.

If a linear code C has dimension & and word length n, it has redundancy r =
n—k.

Example

gap> C := TernaryGolayCode () ;

a cyclic [11,6,5]2 ternary Golay code over GF (3)
gap> Redundancy (C) ;

5

gap> Redundancy( DualCode(C) );

6

4.8.3 MinimumDistance

<O MinimumDistance( C ) (function)

MinimumDistance returns the minimum distance of C, the largest integer d
with the property that every element of C has at least a Hamming distance d (see
DistanceCodeword (3.6.2)) to any other element of C. For linear codes, the mini-
mum distance is equal to the minimum weight. This means that d is also the small-
est positive value with w|d 4 1] # 0, where w = (w[1],w[2],...,w[n]) is the weight
distribution of C (see WeightDistribution (4.9.1)). For unrestricted codes, d is
the smallest positive value with w|d + 1] # 0, where w is the inner distribution of C
(see InnerDistribution (4.9.2)).
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For codes with only one element, the minimum distance is defined to be equal
to the word length.

For linear codes C, the algorithm used is the following: After replacing C by a
permutation equivalent C’, one may assume the generator matrix has the following
form G = (I |A), for some k x (n — k) matrix A. If A = 0 then return d(C) = 1.
Next, find the minimum distance of the code spanned by the rows of A. Call this
distance d(A). Note that d(A) is equal to the the Hamming distance d(v,0) where v
is some proper linear combination of i distinct rows of A. Return d(C) = d(A) +1i,
where i is as in the previous step.

This command may also be called using the syntax MinimumDistance (C, w).
In this form, MinimumDistance returns the minimum distance of a codeword w to
the code C, also called the distance from w to C. This is the smallest value d for
which there is an element c of the code C which is at distance d from w. So d is also
the minimum value for which D[d + 1] # 0, where D is the distance distribution of
wto C (see DistancesDistribution (4.9.3)).

Note that w must be an element of the same vector space as the elements of C. w
does not necessarily belong to the code (if it does, the minimum distance is zero).

Example
gap> C := MOLSCode (7);; MinimumDistance (C);
3
gap> WeightDistribution(C);
[ 1, 0, 0, 24, 24 ]
gap> MinimumDistance( WholeSpaceCode( 5, GF(3) ) );
1
gap> MinimumDistance( NullCode( 4, GF(2) ) );
4
gap> C := ConferenceCode(9);; MinimumDistance (C);
4

gap> InnerDistribution(C);
[ 1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]
gap> C := MOLSCode(7);; w := CodewordNr( C, 17 );

[ 3362]

gap> MinimumDistance( C, w );

0

gap> C := RemovedElementsCode( C, w );; MinimumDistance( C, w );
3 # so w no longer belongs to C

See also the quava commands relating to bounds on the minimum distance in
section 7.1.
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4.8.4 MinimumDistanceLlLeon

<& MinimumDistanceLeon( C ) (function)

MinimumDistanceLeon returns the “probable” minimum distance dj.,, of a
linear binary code C, using an implementation of Leon’s probabilistic polynomial
time algorithm. Briefly: Let C be a linear code of dimension k over GF(g) as
above. The algorithm has input parameters s and p, where s is an integer between
2 and n — k, and p is an integer between 2 and k.

Find a generator matrix G of C.
Randomly permute the columns of G.

Perform Gaussian elimination on the permuted matrix to obtain a new matrix
of the following form:
G = (It|Z|B)

with Z a k x s matrix. If (Z, B) is the zero matrix then return 1 for the mini-
mum distance. If Z = 0 but not B then either choose another permutation of
the rows of C or return ‘method fails’.

Search Z for at most p rows that lead to codewords of weight less than p.

For these codewords, compute the weight of the whole word in C. Return
this weight.

(See for example J. S. Leon, [Leo88] for more details.) Sometimes (as is the case in
guava) this probabilistic algorithm is repeated several times and the most com-
monly occurring value is taken.

Example

a

6

6

gap> C:=RandomLinearCode (50,22,GF (2));
gap> MinimumDistanceLeon (C); time;

211
gap> MinimumDistance (C); time;

1204

[50,22,7?] randomly generated code over GF (2)

4.8.5 DecreaseMinimumDistanceUpperBound

<& DecreaseMinimumDistanceUpperBound( C, t, m ) (function)
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DecreaseMinimumDistanceUpperBound is an implementation of the algo-
rithm for the minimum distance of a linear binary code C by Leon [Leo88]. This
algorithm tries to find codewords with small minimum weights. The parameter t
is at least 1 and less than the dimension of C. The best results are obtained if it is
close to the dimension of the code. The parameter m gives the number of runs that
the algorithm will perform.

The result returned is a record with two fields; the first, mindist,
gives the lowest weight found, and word gives the corresponding code-
word. (This was implemented before MinimumDistanceLeon but inde-
pendently. The older manual had given the command incorrectly, so the
command was only found after reading all the *gi files in the quava
library. Though both MinimumDistance and MinimumDistanceLeon
often run much faster than DecreaseMinimumDistanceUpperBound,
DecreaseMinimumDistanceUpperBound appears to be more accurate than
MinimumDistanceLeon.)

Example
gap> C:=RandomLinearCode(5,2,GF (2));
a [5,2,?] randomly generated code over GF(2)

gap> DecreaseMinimumDistanceUpperBound(C,1,4);

rec( mindist := 3, word := [ 0*Z(2), Z(2)°0, Z(2)°0, 0*Z2(2), Z(2)°0
gap> MinimumDistance (C);
3

gap> C:=RandomLinearCode(8,4,GF(2));
a [8,4,?] randomly generated code over GF(2)
gap> DecreaseMinimumDistanceUpperBound(C, 3,4);

rec( mindist := 2,
word := [ Z(2)°0, 0%Z(2), 0*Z(2), 0%*Z(2), 0*Z(2), 0%Z(2), 0*Z(2),
gap> MinimumDistance (C);
2
4.8.6 MinimumDistanceRandom
<& MinimumDistanceRandom( C, num, s ) (function)

MinimumDistanceRandom returns an upper bound for the minimum distance
drandom Of a linear binary code C, using a probabilistic polynomial time algorithm.
Briefly: Let C be a linear code of dimension k over GF (g) as above. The algorithm
has input parameters num and s, where s is an integer between 2 and n — 1, and
num is an integer greater than or equal to 1.

e Find a generator matrix G of C.
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e Randomly permute the columns of G, written G,..

G=(A,B)
with A a k x s matrix. If A is the zero matrix then return ‘method fails’.

e Search A for at most 5 rows that lead to codewords, in the code C4 with
generator matrix A, of minimum weight.

e For these codewords, use the associated linear combination to compute the
weight of the whole word in C. Return this weight and codeword.

This probabilistic algorithm is repeated num times (with different random permu-
tations of the rows of G each time) and the weight and codeword of the lowest
occurring weight is taken.

Example

gap> C:=RandomLinearCode (60,20,GF (2));

a [60,20,?] randomly generated code over GF(2)

gap> #mindist (C);time;

gap> #mindistleon(C,10,30);time; #doesn’t work well

gap> a:=MinimumDistanceRandom(C,10,30);time; # done 10 times -with flastest time!!

This is a probabilistic algorithm which may return the wrong answer.

[12, [0OOO0OO00010100000001210010001000000O100

10000000001 000100001000010°17 1]

130

gap> al[2] in C;

true

gap> b:=DecreaseMinimumDistanceUpperBound(C,10,1); time; #only done |once!

rec( mindist := 12, word := [ 0*Z(2), 0*Z(2), 0*Z(2), 0*z(2), 0*z(2), 0*Z(2),
7Z(2)"0, 0*z(2), z(2)°0, 0*Z(2), 0*z(2), 0*Z(2), 0*Z(2), 0*zZ(2)|, 0*Z(2),
0*z(2), Z(2)°0, Z(2)"0, 0*z(2), 0*Z(2), Z2(2)"0, 0*Z(2), 0*Z(2), 0*zZ(2),

Z(2)°0, 0*Z(2), 0*Z(2), 0*z(2), 0*z(2), 0*Z(2), 0*Z(2), Z(2)"Q, 0*z(2),

0%Z(2), z(2)"°0, 0*z(2), 0*Z(2), 0*Z(2), 0*z(2), 0*z(2), 0*Z(2)|, 0*z(2),
0%z (2), 0*z(2), Z(2)°0, 0*Z(2), 0*Z(2), 0*zZ(2), Z(2)"0, 0*Z(2), 0*z(2),
0*z(2), 0*Z(2), Z2(2)"0, 0*z(2), 0*Z(2), 0*z(2), 0*Z(2), Z(2)"0, 0*z(2) 1)

649

gap> Codeword(b!.word) in C;

true

gap> MinimumDistance (C);time;

12

196

gap> c:=MinimumDistanceLeon (C);time;
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12

66

gap> C:=RandomLinearCode (30,10,GF (3));

a [30,10,?] randomly generated code over GF(3)
gap> a:=MinimumDistanceRandom(C,10,10);time;

This is a probabilistic algorithm which may return the wrong answer.
[13, 00010000001 0221102201021000102
229
gap> al2] in C;
true
gap> MinimumDistance (C);time;

9

45

gap> c:=MinimumDistanceLeon (C);

Code must be binary. Quitting.

0

gap> a:=MinimumDistanceRandom(C,1,29);time;

This is a probabilistic algorithm which may return the wrong answex.
[10, [O001020201000000101001000002220
53

4.8.7 CoveringRadius

& CoveringRadius( C ) (function)

CoveringRadius returns the covering radius of a linear code C. This is the
smallest number r with the property that each element v of the ambient vector
space of C has at most a distance r to the code C. So for each vector v there must be
an element ¢ of C with d(v,c) < r. The smallest covering radius of any [n, k] binary
linear code is denoted #(n,k). A binary linear code with reasonable small covering
radius is called a covering code.

If C is a perfect code (see IsPerfectCode (4.3.6)), the covering radius is equal
to ¢, the number of errors the code can correct, where d = 2t + 1, with d the mini-
mum distance of C (see MinimumDistance (4.8.3)).

If there exists a function called SpecialCoveringRadius in the ‘operations’
field of the code, then this function will be called to compute the covering radius
of the code. At the moment, no code-specific functions are implemented.

If the length of BoundsCoveringRadius (see BoundsCoveringRadius
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(7.2.1)), is 1, then the value in
C.boundsCoveringRadius
is returned. Otherwise, the function

C.operations.CoveringRadius

57

is executed, unless the redundancy of C is too large. In the last case, a warning is

issued.

The algorithm used to compute the covering radius is the following. First,
CosetLeadersMatFFE is used to compute the list of coset leaders (which returns a
codeword in each coset of GF(q)"/C of minimum weight). Then WeightVecFFE
is used to compute the weight of each of these coset leaders. The program returns

the maximum of these weights.

Example

gap> H := RandomLinearCode (10, 5, GF(2));

a [10,5,?] randomly generated code over GF(2)

gap> CoveringRadius (H);

3

gap> H := HammingCode (4, GF(2));; IsPerfectCode(H);
true

gap> CoveringRadius (H) ;

1 # Hamming codes have minimum distance 3
gap> CoveringRadius (ReedSolomonCode (7,4));

3

gap> CoveringRadius ( BCHCode( 17, 3, GF(2) ) );

3

gap> CoveringRadius ( HammingCode( 5, GF(2) ) );

1

gap> C := ReedMullerCode( 1, 9 );;

gap> CoveringRadius( C );

CoveringRadius: warning, the covering radius of
this code cannot be computed straightforward.

Try to use IncreaseCoveringRadiusLowerBound( code ).
(see the manual for more details).

The covering radius of code lies in the interval:

[ 240 .. 248 ]

See also the qguava commands relating to bounds on the minimum distance in

section 7.2.
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4.8.8 SetCoveringRadius

<& SetCoveringRadius( C, intlist ) (function)

SetCoveringRadius enables the user to set the covering radius herself, instead
of letting quava compute it. If intlist is an integer, quav o will simply put
it in the ‘boundsCoveringRadius’ field. If it is a list of integers, however, it will
intersect this list with the ‘boundsCoveringRadius’ field, thus taking the best of
both lists. If this would leave an empty list, the field is set to int1ist. Because
some other computations use the covering radius of the code, it is important that
the entered value is not wrong, otherwise new results may be invalid.

Example

gap>

gap>
gap>

gap> C := BCHCode( 17, 3,

[ 3 ..

[ 12

GF (2)

BoundsCoveringRadius( C );

4]

SetCoveringRadius( C, [

BoundsCoveringRadius( C
. 311

r

2
)

)i

. 3]

)i

4.9 Distributions

4.9.1 WeightDistribution

<& WeightDistribution( C ) (function)

WeightDistribution returns the weight distribution of C, as a vector. The
i"" element of this vector contains the number of elements of C with weight i —
1. For linear codes, the weight distribution is equal to the inner distribution (see
InnerDistribution (4.9.2)). If w is the weight distribution of a linear code C, it
must have the zero codeword, so w([1] = 1 (one word of weight 0).

Some codes, such as the Hamming codes, have precomputed weight dis-
tributions. For others, the program WeightDistribution calls the GAP pro-
gram DistancesDistributionMatFFEVecFFE, which is written in C. See also
CodeWeightEnumerator.

Example
gap> WeightDistribution( ConferenceCode(9) );

(1 0, 0o, 0, 0, 18, 0, 0, 0, 1]

gap> WeightDistribution( RepetitionCode( 7, GF(4) ) );
[, o0, 0, 0, 0, 0, 0, 31

gap> WeightDistribution( WholeSpaceCode( 5, GF(2) ) );
[ 1, 5, 10, 10, 5, 1]
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4.9.2 InnerDistribution

O InnerDistribution( C ) (function)

InnerDistribution returns the inner distribution of C. The i’ element of the
vector contains the average number of elements of C at distance i — 1 to an element
of C. For linear codes, the inner distribution is equal to the weight distribution (see
WeightDistribution (4.9.1)).

Suppose w is the inner distribution of C. Then w[1] = 1, because each element
of C has exactly one element at distance zero (the element itself). The minimum
distance of C is the smallest value d > 0 with w[d + 1] # 0, because a distance
between zero and d never occurs. See MinimumDistance (4.8.3).

Example
gap> InnerDistribution( ConferenceCode(9) );

[1, o, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]

gap> InnerDistribution( RepetitionCode( 7, GF(4) ) );
(i, o0, o, 0, 0, 0, 0, 31

4.9.3 DistancesDistribution

& DistancesDistribution( C, w ) (function)

DistancesDistribution returns the distribution of the distances of all el-
ements of C to a codeword w in the same vector space. The i element of the
distance distribution is the number of codewords of C that have distance i — 1 to
w. The smallest value d with wid + 1] # 0, is defined as the distance to C (see
MinimumDistance (4.8.3)).

Example

gap> H := HadamardCode (20);

a (20,40,10)6..8 Hadamard code of order 20 over GF(2)

gap> ¢ := Codeword("10110101101010010101", H);
[101101011010100101011]

gap> DistancesDistribution(H, c);

(o oo0,o0,¢011,ao077 0 12, 0 12, 0, 7, 0, 1, 0, 0, 0, 0, O ]
gap> MinimumDistance (H, c);

5 # distance to H

4.9.4 OuterDistribution

& QuterDistribution( C ) (function)
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The function OuterDistribution returns a list of length ¢”, where ¢ is the
size of the base field of C and n is the word length. The elements of the list
consist of pairs, the first coordinate being an element of GF(g)" (this is a code-
word type) and the second coordinate being a distribution of distances to the
code (a list of integers). This table is very large, and for n > 20 it will not fit
in the memory of most computers. The function DistancesDistribution (see

DistancesDistribution (4.9.3)) can be used to calculate one entry of the list.
Example

gap> C := RepetitionCode( 3, GF(2) );
a cyclic [3,1,3]1 repetition code over GF(2)
gap> OD := OuterDistribution(C);
rrroo0oo01l1, (2,600,111, 0011121, [1, 00,1711,
rrooz11, 10,1, 1, 011, 111101, 00, 1,1,0711,
rrr00131, 10,1, 11, 011, 110111, 100,1,1,011,
rro1o031, 10,1, 1,011, 111011, 100,1,1, 0111
gap> WeightDistribution(C) = OD[1][2];
true
gap> DistancesDistribution( C, Codeword("110") ) = OD[4][2];
true
4.10 Decoding Functions
4.10.1 Decode
O Decode( C, r ) (function)

Decode decodes r (a 'received word’) with respect to code C and returns the
‘message word’ (i.e., the information digits associated to the codeword ¢ € C clos-
est to r). Here r can be a quava codeword or a list of codewords. First, possible
errors in r are corrected, then the codeword is decoded to an information code-
word m (and not an element of C). If the code record has a field ‘specialDecoder’,
this special algorithm is used to decode the vector. Hamming codes, BCH codes,
cyclic codes, and generalized Reed-Solomon have such a special algorithm. (The
algorithm used for BCH codes is the Sugiyama algorithm described, for example,
in section 5.4.3 of [HPO3]. A special decoder has also being written for the gen-
eralized Reed-Solomon code using the interpolation algorithm. For cyclic codes,
the error-trapping algorithm is used.) If C is linear and no special decoder field has
been set then syndrome decoding is used. Otherwise (when C is non-linear), the
nearest neighbor decoding algorithm is used (which is very slow).

A special decoder can be created by defining a function

C!.SpecialDecoder := function(C, r) ... end;
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The function uses the arguments C (the code record itself) and r (a vector of the
codeword type) to decode r to an information vector. A normal decoder would
take a codeword r of the same word length and field as C, and would return an
information vector of length &, the dimension of C. The user is not restricted to
these normal demands though, and can for instance define a decoder for non-linear
codes.

Encoding is done by multiplying the information vector with the code (see
4.2).

Example

gap> C := HammingCode (3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)

gap> c := "1010"*C; # encoding
[1011010]]

gap> Decode (C, ¢); # decoding
[1010]

gap> Decode (C, Codeword("0010101"));

[1101] # one error corrected
gap> C!.SpecialDecoder := function(C, c)

> return NullWord(Dimension(C));

> end;

function ( C, ¢ ) ... end

gap> Decode (C, ¢);

[ 00O0O0] # new decoder always returns null word

4.10.2 Decodeword

<>Decodeword( C, r) (function)

Decodeword decodes r (a ‘received word’) with respect to code C and returns
the codeword ¢ € C closest to r. Here r can be a quava codeword or a list of
codewords. If the code record has a field ‘specialDecoder’, this special algorithm is
used to decode the vector. Hamming codes, generalized Reed-Solomon codes, and
BCH codes have such a special algorithm. (The algorithm used for BCH codes is
the Sugiyama algorithm described, for example, in section 5.4.3 of [HP03]. The al-
gorithm used for generalized Reed-Solomon codes is the “interpolation algorithm”
described for example in chapter 5 of [JHO4].) If C is linear and no special de-
coder field has been set then syndrome decoding is used. Otherwise, when C is
non-linear, the nearest neighbor algorithm has been implemented (which should
only be used for small-sized codes).

Example

gap> C := HammingCode (3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
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gap> ¢ := "1010"*C; # encoding
[1011010]

gap> Decodeword(C, c); # decoding
[1 0110101

gap>

gap> R:=PolynomialRing(GF (11), ["t"]);

GF (11) [t]

gap> P:=List([1,3,4,5,7],1->Z(11)"1);

[ Z2(11), 2(11)°3, Z(11)"4, z(11)"5, Z(11)"7 ]

gap> C:=GeneralizedReedSolomonCode (P, 3,R);

a linear [5,3,1..3]12 generalized Reed-Solomon code over GF(11)
gap> MinimumDistance (C);

3

gap> c:=Random (C) ;

[09621]

gap> v:=Codeword("09620");

[ 09620]

gap> GeneralizedReedSolomonDecoderGao (C,v);

[09621]

gap> Decodeword(C,v); # calls the special interpolation decoder

[09621]

gap> G:=GeneratorMat (C);

[ [ z(11)"0, 0*z(11), 0*z(11), Z(11)"8, Z(11)"9 1,
[ 0*z(11), Z(11)"0, 0*z(11), Z(11)"0, Z(11)"8 1,
[ 0*z(11), 0*z(11), Z(11)"0, Z(11)"3, Z(11)"8 1 1

gap> Cl:=GeneratorMatCode (G,GF (11));

a linear [5,3,1..3]12 code defined by generator matrix over GF (11)
gap> Decodeword(C,v); # calls syndrome decoding

[09621]

4.10.3 GeneralizedReedSolomonDecoderGao

< GeneralizedReedSolomonDecoderGao( C, r ) (function)

GeneralizedReedSolomonDecoderGao decodes r (a ’received word’)
to a codeword ¢ € C in a generalized Reed-Solomon code C (see
GeneralizedReedSolomonCode (5.6.2)), closest to r. Here r must be a quava
codeword. If the code record does not have name ‘generalized Reed-Solomon
code’ then an error is returned. Otherwise, the Gao decoder [Gao03] is used to
compute c.

For long codes, this method is faster in practice than the interpolation method
used in Decodeword.
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gap> R:=PolynomialRing (GF (11), ["t"]);

GF (11) [t]

gap> P:=List([1,3,4,5,7],1->2(11)"1);

[ Z2(11), 2(11)"3, Z(11)"4, z(11)"5, Z(11)"7 ]
gap> C:=GeneralizedReedSolomonCode (P, 3,R);

a linear [5,3,1..3]2 generalized Reed-Solomon code over GF (11)
gap> MinimumDistance (C);

3

gap> c:=Random (C) ;

[09621]

gap> v:=Codeword("09620");

[09620]

gap> GeneralizedReedSolomonDecoderGao (C,Vv);
[09621]

4.10.4 GeneralizedReedSolomonListDecoder

< GeneralizedReedSolomonListDecoder( C, r, tau ) (function)

GeneralizedReedSolomonListDecoder implements Sudans list-decoding
algorithm (see section 12.1 of [JHO4]) for “low rate” Reed-Solomon codes. It
returns the list of all codewords in C which are a distance of at most tau from
r (a ’received word’). C must be a generalized Reed-Solomon code C (see

GeneralizedReedSolomonCode (5.6.2)) and r must be a quava codeword.

Example
gap> F:=GF (16);
GF (274)
gap>
gap> a:=PrimitiveRoot (F);; b:=a"7;; b 4+b"3+1;
0*Z (2)

gap> Pts:=List ([0..14],1i->b"1i);

2(2°4)"11, 7Z(2°4)°3, 7Z(2°2)"2, 7(2"4
gap> x:=X(F);;
gap> Rl:=PolynomialRing(F, [x]);;
gap> vars:=IndeterminatesOfPolynomialRing (R1);;
gap> y:=X(F,vars);;
gap> R2:=PolynomialRing(F, [x,v]);;
gap> C:=GeneralizedReedSolomonCode (Pts,3,R1);

gap> MinimumDistance (C); ## 6 error correcting
13

[ 2(2)7°0, Z(2°4)"7, Z(2°4)"14, 7Z(2°4)"6, 2(2°4)"13, 2(2°2), Z(2°4)"12,
“4)"2, 7(2°4)°9, Z(2°4), Z(2°4)"

a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF (1/6)

oo

7(2°4) "4,
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gap> z:=Zero(F);;

gap> r:=[z,2,2,2,2,2,2,2,0°6,072,b75,b"14,b,b"7,b"111;;

gap> r:=Codeword(r);

[00000O000a"12 a"l4 a"5 a"8 a"7 a"4 a"2 ]

gap> cs:=GeneralizedReedSolomonListDecoder (C,r,2); time;

[ [T 0a"9 a"3 a"l3 a"6 a”10 a"11 a a”12 a"14 a"5 a"8 a"7 a"4 a"2 ],
[000000000000O0O0OO0T]1]

250

gap> cl:=cs[l]; cl in C;

[ 0 a"9 a"3 a”13 a"6 a”10 a"11l a a"12 a"14 a"5 a"8 a"7 a"4 a"2 ]

true

gap> c2:=cs[2]; c2 in C;

[0O0OO0O0000000O0O0OGOO]]

true

gap> WeightCodeword(cl-r);

7

gap> WeightCodeword(c2-r);

7

4.10.5 NearestNeighborGRSDecodewords

< NearestNeighborGRSDecodewords( C, v, dist ) (function)

NearestNeighborGRSDecodewords finds all generalized Reed-Solomon
codewords within distance dist from v and the associated polynomial, using
“brute force”. Input: v is a received vector (a quava codeword), C is a GRS
code, dist ¢ 0 is the distance from v to search in C. Output: a list of pairs [c, f(x)],
where wt(c —v) < dist — 1 and ¢ = (f(x1),..., f(xn))-

Example
gap> F:=GF (16);
GF (274)
gap> a:=PrimitiveRoot (F);; b:=a"7; b 4+b"3+1;
Z(274)"7
0*Z(2)

gap> Pts:=List ([0..14],1i->b"1);

[ Z2(2)°0, 2(274)"7, 7Z(274)"14, z(274)"6, 7Z(274)"13, 2(2°2), 7Z
Z2(2°4)"4, 7(2°4)"11, 2(274)"3, 7(272)"2, 2(274)"2, 7(2"4)"9, Z
Z2(274)"°8 ]

gap> x:=X(F);;

gap> Rl:=PolynomialRing(F, [x]);;

gap> vars:=IndeterminatesOfPolynomialRing(R1);;

gap> y:=X(F,vars);;

gap> R2:=PolynomialRing(F, [x,y]);;
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gap> C:=GeneralizedReedSolomonCode (Pts, 3,R1);
a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF (16)
gap> MinimumDistance(C); # 6 error correcting
13
gap> z:=Zero(F);
0*Z(2)
gap> r:=[2z,2,2,2,2,2,2,2,0°6,072,b75,b"14,b,b"7,b"11]1;; # 7 errors
gap> r:=Codeword(r);
[00000000a"12 a"l4 a"5 a"8 a"7a"4 a"2 ]
gap> cs:=NearestNeighborGRSDecodewords (C,r,7);
[T [O0O000000000OO0OOO0OOT1, 0%2(2) 1,
[ [ 0a"9 a"3 a”13 a6 a”10 a"11 a a"12 a"14 a5 a"8 a"7 a"4 a"2 |, x_1+72(2)°0 ]

4.10.6 NearestNeighborDecodewords

<& NearestNeighborDecodewords ( C, v, dist ) (function)

NearestNeighborDecodewords finds all codewords in a linear code C within
distance dist from v, using “brute force”. Input: v is a received vector (a quava
codeword), C is a linear code, dist ¢, 0 is the distance from v to search in C. Output:
a list of ¢ € C, where wt(c —v) < dist — 1

Example
gap> F:=GF (16);
GF (274)
gap> a:=PrimitiveRoot (F);; b:=a"7; b 4+b"3+1;
7Z(274)"17
0*Z(2)

gap> Pts:=List ([0..14],1i->b"i);

[ Z2(2)7°0, 2(274)"7, 7Z(274)"14, z2(274)"6, Z(274)"13, 2(2°2), Z
2(2°4)°4, 7(2°4)"11, 2(274)"°3, 7(27°2)"2, 2(274)"2, 7Z(2"4)"9, 2
Z2(2°4)°8 ]

gap> x:=X(F);;

gap> Rl:=PolynomialRing(F, [x]);;

gap> vars:=IndeterminatesOfPolynomialRing(R1);;

gap> y:=X(F,vars);;

gap> R2:=PolynomialRing(F, [x,v]);;

gap> C:=GeneralizedReedSolomonCode (Pts, 3,R1);

a linear [15,3,1..13]10..12 generalized Reed-Solomon code over GF (16)

gap> MinimumDistance (C);

13

gap> z:=Zero(F);

0*Z(2)

gap> r:=[z,2,2,2,2,2,2,2,0°6,072,b"5,b"14,b,b"7,b"111;;
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gap> r:=Codeword(r);
[00000O000a"12 a"14 a"5 a"8 a7 a4 a"2 ]
gap> cs:=NearestNeighborDecodewords(C,r,7);
[T 0O0O000C00000O0OO0OO0OO0GOT,
[ 0a"9 a"3 a"13 a"6 a”10 a"11l a a"12 a"14 a"5 a8 a"7 a"4 a"2 ] ]

4.10.7 Syndrome

<& Syndrome ( C, v ) (function)

Syndrome returns the syndrome of word v with respect to a linear code C. v is
a codeword in the ambient vector space of C. If v is an element of C, the syndrome
is a zero vector. The syndrome can be used for looking up an error vector in the
syndrome table (see SyndromeTable (4.10.8)) that is needed to correct an error in
V.

A syndrome is not defined for non-linear codes. Syndrome then returns an
error.
Example

gap> C := HammingCode (4);

a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> v := CodewordNr( C, 7 );
[110000000000110]

gap> Syndrome( C, v );

[ 00O00O0]

gap> Syndrome( C, Codeword( "000000001100111"™ ) );

[1111]

gap> Syndrome( C, Codeword( "000000000000001™ ) );

[1111] # the same syndrome: both codewords are in the same

# coset of C

4.10.8 SyndromeTable

<& SyndromeTable( C ) (function)

SyndromeTable returns a syndrome table of a linear code C, consisting of two
columns. The first column consists of the error vectors that correspond to the
syndrome vectors in the second column. These vectors both are of the codeword
type. After calculating the syndrome of a word v with Syndrome (see Syndrome
(4.10.7)), the error vector needed to correct v can be found in the syndrome table.
Subtracting this vector from v yields an element of C. To make the search for
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the syndrome as fast as possible, the syndrome table is sorted according to the
syndrome vectors.

Example

gap> H := HammingCode (2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap> SyndromeTable (H) ;

rrroool, roo0ogyr1, rrro001, 101711,
rrorol, 1011, 0100211, 1117111

gap> ¢ := Codeword("101");

[101]

gap> ¢ in H;

false # ¢ 1s not an element of H

gap> Syndrome (H, c);

[ 10 ] # according to the syndrome table,

# the error vector [ 0 1 0 ] belongs to this syndromg
gap> ¢ - Codeword("010") in H;
true # so the corrected codeword is

#1101 ]1-[01071=10[1111,

# this is an element of H

4.10.9 StandardArray

<& StandardArray( C ) (function)

StandardArray returns the standard array of a code C. This is a matrix with
elements of the codeword type. It has ¢" rows and ¢* columns, where ¢ is the size
of the base field of C, r = n — k is the redundancy of C, and k is the dimension of
C. The first row contains all the elements of C. Each other row contains words
that do not belong to the code, with in the first column their syndrome vector (see
Syndrome (4.10.7)).

A non-linear code does not have a standard array. StandardArray then returns
an error.

Note that calculating a standard array can be very time- and memory- consum-
ing.

Example
gap> StandardArray (RepetitionCode (3));
rrroeool, 1111, 010013, 11071,
(roro01, 10111, (110071, TO0O1T171T1]
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4.10.10 PermutationDecode

& PermutationDecode( C, v ) (function)

PermutationDecode performs permutation decoding when possible and re-
turns original vector and prints ’fail” when not possible.

This uses AutomorphismGroup in the binary case, and (the slower)
PermutationAutomorphismGroup otherwise, to compute the permutation auto-
morphism group P of C. The algorithm runs through the elements p of P checking
if the weight of H(p-v) is less than (d — 1)/2. If it is then the vector p - v is used
to decode v: assuming C is in standard form then ¢ = p~!Em is the decoded word,
where m is the information digits part of p-v. If no such p exists then “fail” is
returned. See, for example, section 10.2 of Huffman and Pless [HP03] for more
details.

Example
gap> CO:=HammingCode (3,GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> GO0:=GeneratorMat (CO);;
gap> G := List (G0, ShallowCopy);;
gap> PutStandardForm(G);

()
gap> Display(G);

1 ... .11

.1 .01 01

.1 .11 .

... 1111
gap> HO:=CheckMat (CO);;
gap> Display (HO);

... 1111

.11 . .11

1.1.1.1
gap> c0:=Random (CO0) ;

[0001111]
gap> v01l:=cO0[1]1+Z(2)"2;;
gap> vl:=List (c0, ShallowCopy);;
gap> v1[1]:=v01;;
gap> vl:=Codeword(vl);

[1001111]
gap> cl:=PermutationDecode (C0O,vl);
[0001111]
gap> cl=c0;
true
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4.10.11 PermutationDecodeNC

& PermutationDecodeNC( C, v, P ) (function)

Same as PermutationDecode except that one may enter the permutation au-
tomorphism group P in as an argument, saving time. Here P is a subgroup of the
symmetric group on n letters, where # is the word length of C.



Chapter 5

Generating Codes

In this chapter we describe functions for generating codes.

Section 5.1 describes functions for generating unrestricted codes.

Section 5.2 describes functions for generating linear codes.

Section 5.3 describes functions for constructing certain covering codes, such
as the Gabidulin codes.

Section 5.4 describes functions for constructing the Golay codes.

Section 5.5 describes functions for generating cyclic codes.

Section 5.6 describes functions for generating codes as the image of an evalua-
tion map applied to a space of functions. For example, generalized Reed-Solomon
codes and toric codes are described there.

5.1 Generating Unrestricted Codes

In this section we start with functions that creating code from user defined ma-
trices or special matrices (see ElementsCode (5.1.1), HadamardCode (5.1.2),
ConferenceCode (5.1.3) and MOLSCode (5.1.4)). These codes are unrestricted
codes; they may later be discovered to be linear or cyclic.

The next functions generate random codes (see RandomCode (5.1.5)) and the
Nordstrom-Robinson code (see NordstromRobinsonCode (5.1.6)), respectively.

Finally, we describe two functions for generating Greedy codes. These are
codes that contructed by gathering codewords from a space (see GreedyCode
(5.1.7) and LexiCode (5.1.8)).

70
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5.1.1 ElementsCode

& ElementsCode( L[, name,] F ) (function)

ElementsCode creates an unrestricted code of the list of elements L, in the field
F. L must be a list of vectors, strings, polynomials or codewords. name can contain
a short description of the code.

If L contains a codeword more than once, it is removed from the list and a GAP
set is returned.

Example
gap> M := z(3)°0 * [ [1, O, 1, 11, [2, 2, O, O], [0, 1, 2, 2] 1;;
gap> C := ElementsCode( M, "example code", GF(3) );
a (4,3,1..4)2 example code over GF(3)
gap> MinimumDistance( C );
4
gap> AsSSortedList( C );
[ro1221, 110111, 12200171
5.1.2 HadamardCode
<& HadamardCode ( H[, t] ) (function)

The four forms this command can take are HadamardCode (H,t),
HadamardCode (H), HadamardCode (n, t), and HadamardCode (n).

In the case when the arguments H and t are both given, HadamardCode returns
a Hadamard code of the #* kind from the Hadamard matrix H In case only H is
given, t = 3 is used.

By definition, a Hadamard matrix is a square matrix H with H - H r—_pn.1,
where 7 is the size of H. The entries of H are either 1 or -1.

The matrix H is first transformed into a binary matrix A, by replacing the 1’s
by 0’s and the —1’s by 15s).

The Hadamard matrix of the first kind (t = 1) is created by using the rows
of A, as elements, after deleting the first column. This is a (n — 1,n,n/2) code.
We use this code for creating the Hadamard code of the second kind (t = 2), by
adding all the complements of the already existing codewords. This results in a
(n—1,2n,n/2 — 1) code. The third kind (t = 3) is created by using the rows of A,
(without cutting a column) and their complements as elements. This way, we have
an (n,2n,n/2)-code. The returned code is generally an unrestricted code, but for
n = 2", the code is linear.
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The command HadamardCode (n, t) returns a Hadamard code with parameter
n of the " kind. For the command HadamardCode (n), ¢ = 3 is used.

When called in these forms, HadamardCode first creates a Hadamard matrix
(see HadamardMat (7.3.4)), of size n and then follows the same procedure as de-
scribed above. Therefore the same restrictions with respect to n as for Hadamard
matrices hold.

Example
gap> H4 := [[1,1,1,1],1%,-1,1,-17,1,1,-1,-17,12,-1,-1,111;;
gap> HadamardCode( H4, 1 );

a (3,4,2)1 Hadamard code of order 4 over GF(2)

gap> HadamardCode( H4, 2 );

a (3,8,1)0 Hadamard code of order 4 over GF(2)

gap> HadamardCode( H4 );

a (4,8,2)]1 Hadamard code of order 4 over GF(2)

gap> H4 := [[1,1,1,1],11,-1,1,-11,(1,1,-2,-11,(1,-1,-1,111;;
gap> C := HadamardCode( 4 );

a (4,8,2)1 Hadamard code of order 4 over GF(2)

gap> C = HadamardCode( H4 );

true

5.1.3 ConferenceCode

O ConferenceCode( H ) (function)

ConferenceCode returns a code of length n — 1 constructed from a symmetric
‘conference matrix’ H. A conference matrix H is a symmetric matrix of order n,
which satisfies H-H' = ((n—1)-1, wittn =2 (mod 4). The rows of (H +1+
J), 3(—H+1+1J), plus the zero and all-ones vectors form the elements of a binary
non-linear (n—1,2n,(n—2)/2) code.

guava constructs a symmetric conference matrix of order n+1 (n = 1
(mod 4)) and uses the rows of that matrix, plus the zero and all-ones vectors, to
construct a binary non-linear (n,2(n+1),(n—1)/2)-code.

Example
gap> Ho := [[O,l,l,l,l,l],[1,0,1,—1,—1,1] [ Illorlr l]r
> [11_]-!1!0/1!_1]/[17_11_171101111[]-/1!_1 7110}111

gap> Cl := ConferenceCode( H6 );

a (5,12,2)1..4 conference code over GF(2)
gap> IsLinearCode( Cl );

false

gap> C2 := ConferenceCode( 5 );

a (5,12,2)1..4 conference code over GF(2)
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gap> AsSSortedList( C2 );

(roooooj],r00xr1213]1, 17010111, 1011011, 101
(ro00113), {r01011]1, 1101101, 1110011, 111
[111007], [1T111117]]

5.1.4 MOLSCode
<& MOLSCode( [n,] g ) (function)

MOLSCode returns an (n,g*,n — 1) code over GF (g). The code is created from
n — 2 *Mutually Orthogonal Latin Squares’ (MOLS) of size g x g. The default for
nis4. guava can construct a MOLS code for n —2 < g. Here g must be a prime
power, g > 2. If there are no n — 2 MOLS, an error is signalled.

Since each of the n —2 MOLS is a g X g matrix, we can create a code of size
g* by listing in each code element the entries that are in the same position in each
of the MOLS. We precede each of these lists with the two coordinates that specify
this position, making the word length become .

The MOLS codes are MDS codes (see IsMDSCode (4.3.7)).

Example

gap> Cl := MOLSCode( 6, 5 );

a (6,25,5)3..4 code generated by 4 MOLS of order 5 over GF (5)
gap> mols := List( [l .. WordLength(Cl) - 2 ], function( nr )
> local 1s, el;

> ls := NullMat ( Size(LeftActingDomain(Cl)), Size(LeftActingDd
> for el in VectorCodeword( AsSSortedList( Cl ) ) do

> 1s[IntFFE(el[1])+1] [IntFFE(el[2])+1] := ell[nr + 2];

> od;

> return ls;

> end );;

gap> AreMOLS( mols );

true

gap> C2 := MOLSCode( 11 );
a (4,121,3)2 code generated by 2 MOLS of order 11 over GF(11)

5.1.5 RandomCode

<& RandomCode( n, M, F ) (function)

RandomCode returns a random unrestricted code of size M with word length n
over F. M must be less than or equal to the number of elements in the space GF (¢)".

The function RandomLinearCode returns a random linear code (see
RandomLinearCode (5.2.10)).

main (Cl))

)i
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Example
gap> Cl := RandomCode( 6, 10, GF(8) );

a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> MinimumDistance (Cl);

3

gap> C2 := RandomCode( 6, 10, GF(8) );

a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> Cl = C2;

false

5.1.6 NordstromRobinsonCode

& NordstromRobinsonCode ( ) (function)

NordstromRobinsonCode returns a Nordstrom-Robinson code, the best code
with word length n = 16 and minimum distance d = 6 over GF(2). This is a non-
linear (16,256,6) code.

Example
gap> C := NordstromRobinsonCode () ;

a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> OptimalityCode( C );

0

5.1.7 GreedyCode

< GreedyCode( L, d, F ) (function)

GreedyCode returns a Greedy code with design distance d over the finite field
F. The code is constructed using the greedy algorithm on the list of vectors L. (The
greedy algorithm checks each vector in L and adds it to the code if its distance to
the current code is greater than or equal to d. It is obvious that the resulting code
has a minimum distance of at least d.

Greedy codes are often linear codes.

The function LexiCode creates a greedy code from a basis instead of an enu-
merated list (see LexiCode (5.1.8)).

Example
gap> Cl := GreedyCode( Tuples( AsSSortedList( GF(2) ), 5 ), 3, GF(2)| );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)

gap> C2 := GreedyCode( Permuted( Tuples( AsSSortedList( GF(2) ), 5 ),
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> (1,4) ), 3, GF(2) );

a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> Cl = C2;

false

5.1.8 LexiCode

& LexiCode( n, d, F ) (function)

In this format, Lexicode returns a lexicode with word length n, design distance
d over F. The code is constructed using the greedy algorithm on the lexicographi-
cally ordered list of all vectors of length n over F. Every time a vector is found that
has a distance to the current code of at least d, it is added to the code. This results,
obviously, in a code with minimum distance greater than or equal to d.

Another syntax which one can use is LexiCode ( B, d, F ). When called in
this format, LexiCode uses the basis B instead of the standard basis. B is a matrix
of vectors over F. The code is constructed using the greedy algorithm on the list of
vectors spanned by B, ordered lexicographically with respect to B.

Note that binary lexicodes are always linear.

Example
gap> C := LexiCode( 4, 3, GF(5) );

a (4,17,3..4)2..4 lexicode over GF(5)
gap> IsLinearCode(C);

false

gap> B := [ [3(2)°0, 0%2(2), 0*3(2)], [2(2)"0, 2(2)°0, 0%2(2)] 1;;
gap> C := LexiCode( B, 2, GF(2) );

a linear [3,1,2]1..2 lexicode over GF(2)

gap> IsLinearCode(C);

true

The function GreedyCode creates a greedy code that is not restricted to a lexico-
graphical order (see GreedyCode (5.1.7)).

5.2 Generating Linear Codes

In this section we describe functions for constructing linear codes. A linear code
always has a generator or check matrix.

The first two functions generate linear codes from the generator matrix
(GeneratorMatCode (5.2.1)) or check matrix (CheckMatCode (5.2.2)). All linear
codes can be constructed with these functions.
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The next functions we describe generate some well-known codes, like
Hamming codes (HammingCode (5.2.3)), Reed-Muller codes (ReedMullerCode
(5.2.4)) and the extended Golay codes (ExtendedBinaryGolayCode (5.4.2) and
ExtendedTernaryGolayCode (5.4.4)).

A large and powerful family of codes are alternant codes. They are ob-
tained by a small modification of the parity check matrix of a BCH code
(see AlternantCode (5.2.5), GoppaCode (5.2.6), GeneralizedSrivastavaCode
(5.2.7) and SrivastavaCode (5.2.8)).

Finally, we describe a function for generating random linear codes (see
RandomLinearCode (5.2.10)).

5.2.1 GeneratorMatCode

& GeneratorMatCode ( G[, name,] F ) (function)

GeneratorMatCode returns a linear code with generator matrix G. G must be
a matrix over finite field F. name can contain a short description of the code. The
generator matrix is the basis of the elements of the code. The resulting code has
word length n, dimension k if G is a k x n-matrix. If GF(g) is the field of the code,
the size of the code will be g*.

If the generator matrix does not have full row rank, the linearly dependent rows
are removed. This is done by the GAP function BaseMat and results in an equal
code. The generator matrix can be retrieved with the function GeneratorMat (see
GeneratorMat (4.7.1)).

Example
gap> G := z(3)°0 * [[1,0,1,2,0],(0,1,2,1,11,10,0,1,2,111;;
gap> Cl := GeneratorMatCode( G, GF(3) );

a linear [5,3,1..2]1..2 code defined by generator matrix over GF (3)
gap> C2 := GeneratorMatCode( IdentityMat( 5, GF(2) ), GF(2) );

a linear [5,5,1]0 code defined by generator matrix over GF (2)

gap> GeneratorMatCode( List( AsSSortedList ( NordstromRobinsonCode ()
> x —> VectorCodeword( x ) ), GF( 2 ) );

a linear [16,11,1..4]2 code defined by generator matrix over GF (2)
# This is the smallest linear code that contains the N-R code

5.2.2 CheckMatCode

& CheckMatCode ( H[, name,] F ) (function)

CheckMatCode returns a linear code with check matrix H. H must be a matrix
over Galois field F. [name. can contain a short description of the code. The parity
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check matrix is the transposed of the nullmatrix of the generator matrix of the code.
Therefore, ¢- H' = 0 where c is an element of the code. If H is a r X n-matrix, the
code has word length n, redundancy r and dimension n — r.

If the check matrix does not have full row rank, the linearly dependent rows are
removed. This is done by the GAP function BaseMat. and results in an equal code.
The check matrix can be retrieved with the function CheckMat (see CheckMat
4.7.2)).

Example
gap> H := 2(3)°0 * [[1,0,1,2,0],1(0,1,2,1,1],10,0,1,2,111;;

gap> Cl := CheckMatCode( H, GF(3) );

a linear [5,2,1..2]12..3 code defined by check matrix over GF (3)
gap> CheckMat (C1);

[ [2(3)70, 0%2(3), Z(3)7°0, Z(3), 0*Z(3) 1,

[ 0*Z(3), Z(3)"0, Z(3), Z(3)"0, Z(3)°0 1,

[ 0*%2(3), 0*2(3), Z(3)70, 2Z(3), 2(3)°0 1 ]
gap> C2 := CheckMatCode( IdentityMat( 5, GF(2) ), GF(2) );
a cyclic [5,0,5]5 code defined by check matrix over GF(2)

5.2.3 HammingCode

<& HammingCode ( r, F ) (function)

HammingCode returns a Hamming code with redundancy r over F. A Hamming
code is a single-error-correcting code. The parity check matrix of a Hamming code
has all nonzero vectors of length r in its columns, except for a multiplication factor.
The decoding algorithm of the Hamming code (see Decode (4.10.1)) makes use of
this property.

If ¢ is the size of its field F, the returned Hamming code is a linear [(¢" —
1)/(g—=1),(¢"=1)/(g—1) —r,3] code.
Example
gap> Cl := HammingCode( 4, GF(2) );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := HammingCode( 3, GF(9) );

[91,88,3]1 Hamming (3,9) code over GF (9)

a linear

5.2.4 ReedMullerCode

& ReedMullerCode( r, k ) (function)
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ReedMullerCode returns a binary 'Reed-Muller code’ R (r, k) with dimen-
sion k and order r. This is a code with length 2¥ and minimum distance 2" (see
for example, section 1.10 in [HP03]). By definition, the /" order binary Reed-
Muller code of length n = 2™, for 0 < r < m, is the set of all vectors f, where f is
a Boolean function which is a polynomial of degree at most r.

Example

gap> ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

See GeneralizedReedMullerCode (5.6.3) for a more general construction.

5.2.5 AlternantCode

O AlternantCode( r, Y[, alpha,] F ) (function)

AlternantCode returns an ’alternant code’, with parameters r, Y and alpha
(optional). F denotes the (finite) base field. Here, r is the design redundancy of the
code. Y and alpha are both vectors of length n from which the parity check matrix
is constructed. The check matrix has the form H = ([a/y;]), where 0 < j <r—1,
1 <i<n, and where [...] is as in VerticalConversionFieldMat (7.3.9)). If
no alpha is specified, the vector [1,a,a?,..,a"" '] is used, where a is a primitive
element of a Galois field F.

Example
gap> Y := [ 1, 1, 1, 1, 1, 1, 1];; a := PrimitiveUnityRoot( 2, 7 );;
gap> alpha := List( [0..6], 1 -> a"i );;

gap> C := AlternantCode( 2, Y, alpha, GF(8) );

a linear [7,3,3..4]13..4 alternant code over GF (8)

5.2.6 GoppaCode

< GoppaCode( G, L ) (function)

GoppaCode returns a Goppa code C from Goppa polynomial g, having coef-
ficients in a Galois Field GF(g). L must be a list of elements in GF(g), that are
not roots of g. The word length of the code is equal to the length of L. The par-
ity check matrix has the form H = ([a] /G(a:)])o< j<deg(g)1, a;cL» Where a; € L and
[...] is as in VerticalConversionFieldMat (7.3.9), so H has entries in GF(q),
g = p™. Ttis known that d(C) > deg(g) + 1, with a better bound in the binary case
provided g has no multiple roots. See Huffman and Pless [HP03] section 13.2.2,
and MacWilliams and Sloane [MS83] section 12.3, for more details.
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One can also call GoppaCode using the syntax GoppaCode (g, n) . When called
with parameter n, quav a constructs a list L of length n, such that no element of L
is a root of g.

This is a special case of an alternant code.

Example
gap> x:=Indeterminate (GF(8),"x");
X
gap> L:=Elements (GF (8));
[ 0%Z(2), Z(2)°0, Z(2°3), 2(2°3)7°2, 2(2°3)"3, 2(2°3)"4, 7(2°3)"5, Z(
gap> g:=x"2+x+1;
X" 2+x+7Z(2) "0
gap> C:=GoppaCode (g, L) ;
a linear [8,2,5]3 Goppa code over GF (2)
gap> xx := Indeterminate( GF(2), "xx" );;
gap> gg := xx"2 + xx + 1;; L := AsSSortedList( GF(8) );;
gap> Cl := GoppaCode( gg, L );
a linear [8,2,5]3 Goppa code over GF (2)
gap> y := Indeterminate( GF(2), "y" );;
gap> h :=y"2 +y + 1;;
gap> C2 := GoppaCode( h, 8 );
a linear [8,2,5]3 Goppa code over GF (2)
gap> Cl1=C2;
true
gap> C=Cl;
true
5.2.7 GeneralizedSrivastavaCode
& GeneralizedSrivastavaCode( a, w, z[, t,] F ) (function)

GeneralizedSrivastavaCode returns a generalized Srivastava code with pa-
rameters a, w, z, t. a ={ai,...,a,} and w = {wy,...,w,} are lists of n+ s distinct
elements of F = GF(q™), z is a list of length n of nonzero elements of GF(¢™).
The parameter t determines the designed distance: d > st + 1. The check matrix

of this code is the form Z
0

@y

1 <k <t,where [...] is as in VerticalConversionFieldMat (7.3.9). We use this
definition of H to define the code. The default for t is 1. The original Srivastava
codes (see SrivastavaCode (5.2.8)) are a special case t =1, z; = af', for some p.

H=(
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Example
gap> a := Filtered( AsSSortedList( GF(2°6) ), e => e in GF(273) );;
gap> w := [ Z2(276) 1;; z := List( [1..8], e —> 1 );;

gap> C := GeneralizedSrivastavaCode( a, w, z, 1, GF(64) );

a linear [8,2,2..5]3..4 generalized Srivastava code over GF (2)

5.2.8 SrivastavaCode

& SrivastavaCode( a, w[, mu,] F ) (function)

SrivastavaCode returns a Srivastava code with parameters a, w (and optionally
mu). a ={ai,...,an} and w = {wy, ..., w,} are lists of n+ s distinct elements of F =
GF(q™). The default for mu is 1. The Srivastava code is a generalized Srivastava
code, in which z; = a/" for some mu and r = 1.

J. N. Srivastava introduced this code in 1967, though his work was not pub-
lished. See Helgert [Hel72] for more details on the properties of this code. Related
reference: G. Roelofsen, ON GOPPA AND GENERALIZED SRIVASTAVA CODES
PhD thesis, Dept. Math. and Comp. Sci., Eindhoven Univ. of Technology, the
Netherlands, 1982.

Example
gap> a := AsSSortedList( GF(11l) ){[2..81};;
gap> w := AsSSortedList( GF(11) ){[9..10]};;
gap> C := SrivastavaCode( a, w, 2, GF(11) );
a linear [7,5,3]2 Srivastava code over GF(11)
gap> IsMDSCode( C );

true # Always true if F is a prime field

5.2.9 CordaroWagnerCode

<& CordaroWagnerCode ( n ) (function)

CordaroWagnerCode returns a binary Cordaro-Wagner code. This is a code
of length n and dimension 2 having the best possible minimum distance d. This
code is just a little bit less trivial than RepetitionCode (see RepetitionCode
(5.5.11)).

Example

gap> C := CordaroWagnerCode( 11 );

a linear [11,2,7]5 Cordaro-Wagner code over GF (2)

gap> AsSSortedList (C);

[T O0OO0OO0COO0CO0OOO0COOOQ0TI, [O
(111100021111, I[1

00011111117,
11111100007 ]
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5.2.10 RandomLinearCode

<& RandomLinearCode( n, k, F ) (function)

RandomLinearCode returns a random linear code with word length n, dimen-
sion k over field F. The method used is to first construct a k x n matrix of the
block form (7,A), where I is a k x k identity matrix and A is a k X (n — k) matrix
constructed using Random (F) repeatedly. Then the columns are permuted using a
randomly selected element of SymmetricGroup (n).

To create a random unrestricted code, use RandomCode (see RandomCode
(5.1.5)).

Example
gap> C := RandomLinearCode( 15, 4, GF(3) ); time;
a [15,4,?] randomly generated code over GF(3)

144

gap> Display(C); time;

a linear [15,4,1..7]6..10 random linear code over GF(3)
114

gap> C := RandomLinearCode( 35, 20, GF(3) ); time;

a [35,20,?] randomly generated code over GF(3)

13

gap> Display(C); time;

a linear [35,20,1..9]6..15 random linear code over GF(3)
5402

The method quava chooses to output the result of a RandomLinearCode com-
mand is different than other codes. For example, the bounds on the minimum
distance is not displayed. Howeer, you can use the Display command to print this
information. This new display method was added in version 1.9 to speed up the
command (if n is about 80 and k about 40, for example, the time it took to look up
and/or calculate the bounds on the minimum distance was too long).

5.2.11 OptimalityCode

O OptimalityCode( C ) (function)

In general this command is no longer accurate, since the ta-
bles have not been updated since 1998. See the web site
http://www.win.tue.nl/ aeb/voorlincod.html for more recent data.

OptimalityCode returns the difference between the smallest known upper
bound and the actual size of the code. Note that the value of the function
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UpperBound is not always equal to the actual upper bound A(n,d) thus the result
may not be equal to 0 even if the code is optimal!
OptimalityLinearCode is similar but applies only to linear codes.

5.2.12 BestKnownLinearCode

& BestKnownLinearCode( n, k, F ) (function)

In general this command is no longer accurate, since the ta-
bles have not been updated since 1998. See the web site
http://www.win.tue.nl/ aeb/voorlincod.html for more recent data.

BestKnownLinearCode returns the best known (as of 1998) linear code of
length n, dimension k over field F. The function uses the tables described in section
BoundsMinimumDistance (7.1.13) to construct this code.

This command can also be called using the syntax BestKnownLinearCode (
rec ), where rec must be a record containing the fields ‘lowerBound’, ‘upper-
Bound’ and ‘construction’. It uses the information in this field to construct a code.
This form is meant to be used together with the function BoundsMinimumDistance
(see BoundsMinimumDistance (7.1.13)), if the bounds are already calculated.

Example
gap> Cl := BestKnownLinearCode( 23, 12, GF(2) );
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> Cl = BinaryGolayCode () ;
true
gap> Display( BestKnownLinearCode( 8, 4, GF(4) ) );
a linear [8,4,4]2..3 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of

a cyclic [4,1,4]13 repetition code over GF (4)
V: a cyclic [4,1,4]13 repetition code over GF(4)
gap> C := BestKnownLinearCode (131,47);
a linear [131,47,28..32]123..68 shortened code

gap> bounds := BoundsMinimumDistance( 20, 17, GF(4) );
rec(n := 20, k :=17, q := 4,
references := rec( HM := [ "%T this reference is unknown, for morg
"$T contact A.E. Brouwer (aeb@cwi.nl)" ] ),
construction := [ [Operation "ShortenedCode"],
[ [ [Operation "HammingCode"], [ 3, 41 1, [ 11 1 1, lowerBou
lowerBoundExplanation := [ "Lb(20,17)=3, by shortening of:",

"Lb(21,18)=3, reference: HM" ], upperBound := 3,
upperBoundExplanation :=
[ "Ub(20,17)=3, otherwise construction B would contradict:",
"Ub(3,1)=3, repetition code" ] )
gap> C := BestKnownLinearCode( bounds );
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a linear [20,17,3]2 shortened code
gap> C = BestKnownLinearCode( 20, 17, GF(4) );
true

5.3 Gabidulin Codes

These five binary, linear codes are derived from an article by Gabidulin, Davydov
and Tombak [GDT91]. All these codes are defined by check matrices. Exact defini-
tions can be found in the article. The Gabidulin code, the enlarged Gabidulin code,
the Davydov code, the Tombak code, and the enlarged Tombak code, correspond
with theorem 1, 2, 3, 4, and 5, respectively in the article.

Like the Hamming codes, these codes have fixed minimum distance and cov-
ering radius, but can be arbitrarily long.

5.3.1 GabidulinCode

& GabidulinCode( m, wl, w2 ) (function)

GabidulinCode yields a code of length 5. 2"~2 — 1, redundancy 2m — 1,
minimum distance 3 and covering radius 2. wl and w2 should be elements of
GF(2"2).

5.3.2 EnlargedGabidulinCode

< EnlargedGabidulinCode ( m, wl, w2, e ) (function)

EnlargedGabidulinCode yields a code of length 7. 2"~2 —2, redundancy 2m,
minimum distance 3 and covering radius 2. w1 and w2 are elements of GF (2"~2).
e is an element of GF (2™).

5.3.3 DavydovCode
<& DavydovCode( r, v, ei, ej ) (function)
DavydovCode yields a code of length 2V +2"7V — 3, redundancy r, minimum

distance 4 and covering radius 2. v is an integer between 2 and r — 2. ei and e]j
are elements of GF(2") and GF (2"7"), respectively.
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5.3.4 TombakCode

& TombakCode ( m, e, beta, gamma, wl, w2 ) (function)

TombakCode yields a code of length 152”73 — 3, redundancy 2m, minimum
distance 4 and covering radius 2. e is an element of GF(2™). beta and gamma are
elements of GF (2"~ !). w1 and w2 are elements of GF (2"~3).

5.3.5 EnlargedTombakCode

<& EnlargedTombakCode ( m, e, beta, gamma, wl, w2, u ) (function)

EnlargedTombakCode yields a code of length 23 -2"~* — 3, redundancy 2m —
1, minimum distance 4 and covering radius 2. The parameters m, e, beta, gamma,
w1 and w2 are defined as in TombakCode. u is an element of GF (2"~ 1).

Example
gap> GabidulinCode( 4, Z(4)°0, Z(4)"1 );

a linear [19,12,3]2 Gabidulin code (m=4) over GF (2)

gap> EnlargedGabidulinCode( 4, Z(4)"0, z(4)"1, Z(16)"11 );

a linear [26,18,3]2 enlarged Gabidulin code (m=4) over GF(2)

gap> DavydovCode( 6, 3, Z(8)"1, Z(8)"5 );

a linear [13,7,4]2 Davydov code (r=6, v=3) over GF(2)

gap> TombakCode( 5, Z(32)°6, Z(16)"°14, Z(16)"10, Z(4)"0, Z(4)"1 );
a linear [57,47,4]2 Tombak code (m=5) over GF(2)

gap> EnlargedTombakCode( 6, Z(32)76, Z(16)"14, Z(1l6)"10,

> 7(4)°0, 7Z(4)70, Z(32)723 );

a linear [89,78,4]2 enlarged Tombak code (m=6) over GF(2)

5.4 Golay Codes

“ The Golay code is probably the most important of all codes for both practical
and theoretical reasons. ” ([MS83], pg. 64). Though born in Switzerland, M. J. E.
Golay (1902-1989) worked for the US Army Labs for most of his career. For more
information on his life, see his obit in the June 1990 IEEE Information Society
Newsletter.

5.4.1 BinaryGolayCode

< BinaryGolayCode ( ) (function)
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BinaryGolayCode returns a binary Golay code. This is a perfect [23,12,7]
code. It is also cyclic, and has generator polynomial g(x) = 1 + x* +x* +
¥ +x0 + x4 x!'1. Extending it results in an extended Golay code (see
ExtendedBinaryGolayCode (5.4.2)). There’s also the ternary Golay code (see

TernaryGolayCode (5.4.3)).
Example

gap> C:=BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF (2)

true

gap> IsPerfectCode (C);
true

gap> IsCyclicCode (C);
true

gap> ExtendedBinaryGolayCode () = ExtendedCode (BinaryGolayCode());

5.4.2 ExtendedBinaryGolayCode

<& ExtendedBinaryGolayCode ( )

(function)

ExtendedBinaryGolayCode returns an extended binary Golay code. This is
a [24,12,8] code. Puncturing in the last position results in a perfect binary Golay

code (see BinaryGolayCode (5.4.1)). The code is self-dual.
Example

gap> C := ExtendedBinaryGolayCode ();

a linear [24,12,8]4 extended binary Golay code over GF(2)
gap> IsSelfDualCode (C);

true

gap> P := PuncturedCode (C);

a linear [23,12,7]3 punctured code

gap> P = BinaryGolayCode ();

true

gap> IsCyclicCode(C);

false

5.4.3 TernaryGolayCode

<& TernaryGolayCode ( )

(function)

TernaryGolayCode returns a ternary Golay code. This is a perfect [11,6,5]
code. It is also cyclic, and has generator polynomial g(x) = 2+ x> 4+ 2x> +x* +x°.
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Extending it results in an extended Golay code (see ExtendedTernaryGolayCode
(5.4.4)). There’s also the binary Golay code (see BinaryGolayCode (5.4.1)).

Example

gap> C:=TernaryGolayCode () ;

a cyclic [11,6,5]2 ternary Golay code over GF (3)

gap> ExtendedTernaryGolayCode () = ExtendedCode (TernaryGolayCode());
true

gap> IsCyclicCode (C);

true

5.4.4 ExtendedTernaryGolayCode

< ExtendedTernaryGolayCode ( ) (function)

ExtendedTernaryGolayCode returns an extended ternary Golay code. This is
a [12,6,6] code. Puncturing this code results in a perfect ternary Golay code (see
TernaryGolayCode (5.4.3)). The code is self-dual.
Example
gap> C := ExtendedTernaryGolayCode () ;
a linear [12,6,6]3 extended ternary Golay code over GF(3)
gap> IsSelfDualCode (C);
true
gap> P := PuncturedCode (C);
a linear [11,6,5]2 punctured code
gap> P = TernaryGolayCode();
true
gap> IsCyclicCode(C);
false

5.5 Generating Cyclic Codes

The elements of a cyclic code C are all multiples of a (’generator’) polynomial
g(x), where calculations are carried out modulo x" — 1. Therefore, as polynomials
in x, the elements always have degree less than n. A cyclic code is an ideal in the
ring F[x]/(x" — 1) of polynomials modulo x" — 1. The unique monic polynomial of
least degree that generates C is called the generator polynomial of C. It is a divisor
of the polynomial x" — 1.

The check polynomial is the polynomial 4(x) with g(x)h(x) =x" — 1. Therefore
it is also a divisor of x* — 1. The check polynomial has the property that

c(x)h(x) =0 (modx"—1),
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for every codeword ¢(x) € C.

The first two functions described below generate cyclic codes from a given
generator or check polynomial. All cyclic codes can be constructed using these
functions.

Two of the Golay codes already described are cyclic (see BinaryGolayCode
(5.4.1) and TernaryGolayCode (5.4.3)). For example, the quava record for a
binary Golay code contains the generator polynomial:

Example

gap> C := BinaryGolayCode();

a cyclic [23,12,7]3 binary Golay code over GF(2)

gap> NamesOfComponents (C) ;

[ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "Word
"GeneratorMat", "GeneratorPol", "Dimension", "Redundancy", "Size",
"lowerBoundMinimumDistance", "upperBoundMinimumDistance", "WeightD
"boundsCoveringRadius", "MinimumWeightOfGenerators",
"UpperBoundOptimalMinimumDistance" ]

gap> C!.GeneratorPol;

x 17114+x_1710+x_1"6+x_1"5+4x_1"44+x_ 172472 (2)"0

Then functions that generate cyclic codes from a prescribed set of roots of the gen-
erator polynomial are described, including the BCH codes (see Root sCode (5.5.3),
BCHCode (5.5.4), ReedSolomonCode (5.5.5) and QRCode (5.5.6)).

Finally we describe the trivial codes (see WholeSpaceCode (5.5.9), NullCode
(5.5.10), RepetitionCode (5.5.11)), and the command CyclicCodes which lists
all cyclic codes (CyclicCodes (5.5.12)).

5.5.1 GeneratorPolCode

<& GeneratorPolCode( g, n[, name,] F ) (function)

GeneratorPolCode creates a cyclic code with a generator polynomial g, word
length n, over F. name can contain a short description of the code.

If g is not a divisor of x" — 1, it cannot be a generator polynomial. In that case, a
code is created with generator polynomial gcd(g,x" — 1), i.e. the greatest common
divisor of g and x* — 1. This is a valid generator polynomial that generates the ideal
(g). See Generating Cyclic Codes (5.5).
Example
gap> x:= Indeterminate( GF(2) );; P:= x"2+1;

Z(2)"0+x"2

gap> Cl := GeneratorPolCode(P, 7, GF(2));

a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( Cl );

Length",
"name" ,
istribution",
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Z(2) " 0+x

gap> C2 := GeneratorPolCode( x+1, 7, GF(2));

a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( C2 );

Z(2)"0+x

5.5.2 CheckPolCode

<& CheckPolCode( h, n[, name,] F ) (function)

CheckPolCode creates a cyclic code with a check polynomial h, word length
n, over F. name can contain a short description of the code (as a string).

If h is not a divisor of x" — 1, it cannot be a check polynomial. In that case,
a code is created with check polynomial gcd(h,x" — 1), i.e. the greatest common
divisor of h and x" — 1. This is a valid check polynomial that yields the same
elements as the ideal (). See 5.5.
Example
gap> x:= Indeterminate( GF(3) );; P:= x"2+2;
-Z(3)"0+x_1"2
gap> H := CheckPolCode (P, 7, GF(3));
a cyclic [7,1,7]14 code defined by check polynomial over GF (3)
gap> CheckPol (H);

-72(3)70+x_1
gap> Gcd (P, X(GF(3))"7-1);
-7 (3) "0+x_1

5.5.3 RootsCode

& RootsCode ( n, list ) (function)

This is the generalization of the BCH, Reed-Solomon and quadratic residue
codes (see BCHCode (5.5.4), ReedSolomonCode (5.5.5) and QRCode (5.5.6)). The
user can give a length of the code n and a prescribed set of zeros. The argument
list must be a valid list of primitive 7" roots of unity in a splitting field GF (¢").
The resulting code will be over the field GF (q). The function will return the largest
possible cyclic code for which the list 1ist is a subset of the roots of the code.
From this list, quava calculates the entire set of roots.

This command can also be called with the syntax RootsCode ( n, list, g
). In this second form, the second argument is a list of integers, ranging from 0 to
n— 1. The resulting code will be over a field GF (g). quav a calculates a primitive
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n'* root of unity, @, in the extension field of GF(g). It uses the set of the powers of
o in the list as a prescribed set of zeros.
Example
gap> a := PrimitiveUnityRoot( 3, 14 );

Z(376)"52

gap> Cl := RootsCode( 14, [ a"0, a, a"3 1 );

a cyclic [14,7,3..6]3..7 code defined by roots over GF(3)
gap> MinimumDistance( Cl );

4

gap> b := PrimitiveUnityRoot( 2, 15 );

Z(2°4)

gap> C2 := RootsCode( 15, [ b, b™2, b"3, b"4 1 );

a cyclic [15,7,5]3..5 code defined by roots over GF(2)
gap> C2 = BCHCode( 15, 5, GF(2) );

true

C3 := RootsCode( 4, [ 1, 21, 5);

RootsOfCode( C3 );

C3 = ReedSolomonCode( 4, 3 );

5.5.4 BCHCode

<& BCHCode ( n[, b,] delta, F ) (function)

The function BCHCode returns a ’Bose-Chaudhuri-Hockenghem code’ (or BCH
code for short). This is the largest possible cyclic code of length n over field F,
whose generator polynomial has zeros

ab’abJrl’ ”.7ab+delta727
where a is a primitive 7/ root of unity in the splitting field GF (¢™), b is an integer
0 <b <n—delta+ 1 and m is the multiplicative order of ¢ modulo n. (The integers
{b,...,b+delta— 2} typically lie in the range {1,...,n — 1}.) Default value for b
is 1, though the algorithm allows b = 0. The length n of the code and the size g of
the field must be relatively prime. The generator polynomial is equal to the least
common multiple of the minimal polynomials of

ab’abJrl ) ab+delta72.

200
The set of zeroes of the generator polynomial is equal to the union of the sets

{a" | x € G},
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where Cy is the k™ cyclotomic coset of ¢ modulo n and b < k < b+ delta —2 (see
CyclotomicCosets (7.5.12)).

Special cases are b = 1 (resulting codes are called "narrow-sense’ BCH codes),
and n = g™ — 1 (known as ’primitive’ BCH codes). quav a calculates the largest
value of d for which the BCH code with designed distance d coincides with the
BCH code with designed distance delta. This distance d is called the Bose dis-
tance of the code. The true minimum distance of the code is greater than or equal
to the Bose distance.

Printed are the designed distance (to be precise, the Bose distance) d, and the
starting power b.

The Sugiyama decoding algorithm has been implemented for this code (see
Decode (4.10.1)).

Example
gap> Cl := BCHCode( 15, 3, 5, GF(2) );

a cyclic [15,5,7]5 BCH code, delta=7, b=l over GF(2)
gap> DesignedDistance( Cl1 );

7

gap> C2 := BCHCode( 23, 2, GF(2) );

a cyclic [23,12,5..7]3 BCH code, delta=5, b=1 over GF(2)
gap> DesignedDistance( C2 );

5

gap> MinimumDistance (C2);

7

See Root sCode (5.5.3) for a more general construction.

5.5.5 ReedSolomonCode

& ReedSolomonCode( n, d ) (function)

ReedSolomonCode returns a "Reed-Solomon code’ of length n, designed dis-
tance d. This code is a primitive narrow-sense BCH code over the field GF(gq),
where ¢ = n+ 1. The dimension of an RS code is n —d + 1. According to the Sin-
gleton bound (see UpperBoundSingleton (7.1.1)) the dimension cannot be greater
than this, so the true minimum distance of an RS code is equal to d and the code is
maximum distance separable (see IsMDSCode (4.3.7)).

Example
gap> Cl := ReedSolomonCode( 3, 2 );
a cyclic [3,2,2]1 Reed-Solomon code over GF (4)
gap> IsCyclicCode (C1l);

true
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gap> C2 := ReedSolomonCode( 4, 3 );
a cyclic [4,2,3]2 Reed-Solomon code over GF(5)
gap> RootsOfCode( C2 );

[ Z2(5), Z2(5)"2 ]
gap> IsMDSCode (C2);
true

See GeneralizedReedSolomonCode (5.6.2) for a more general construction.

5.5.6 QRCode

& QRCode( n, F ) (function)

QRCode returns a quadratic residue code. If F is a field GF(g), then ¢ must be
a quadratic residue modulo n. That is, an x exists with x> = ¢ (mod n). Both n
and g must be primes. Its generator polynomial is the product of the polynomials
x—a'. ais a primitive /" root of unity, and i is an integer in the set of quadratic
residues modulo n.

Example
gap> Cl := QRCode( 7, GF(2) );
a cyclic [7,4,3]1 quadratic residue code over GF(2)

gap> IsEquivalent ( Cl, HammingCode( 3, GF(2) ) );
true

gap> IsCyclicCode (C1l);

true

gap> IsCyclicCode (HammingCode( 3, GF(2) ));

false

gap> C2 := QRCode( 11, GF(3) );

a cyclic [11,6,4..5]2 quadratic residue code over GF(3)

gap> C2 = TernaryGolayCode();

true

gap> Q1 := QRCode( 7, GF(2));

a cyclic [7,4,3]1 quadratic residue code over GF(2)

gap> Pl:=AutomorphismGroup (Ql); IdGroup (P1l);

Group ([ (1,2)(5,7), (2,3)(4,7), (2,4)(5,6), (3,5 (6,7), (3,7)(5,6) ]
[ 168, 42 ]

5.5.7 QQRCode

<& QORCode ( p ) (function)
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QQRCode returns a quasi-quadratic residue code, as defined by Proposition 2.2
in Bazzi-Mittel [BMIT]. The parameter p must be a prime. Its generator matrix
has the block form G = (Q,N). Here Q is a px circulant matrix whose top row is
(0,x1,...,x,—1), where x; = 1 if and only if i is a quadratic residue mod p, and N is
a px circulant matrix whose top row is (0,y1,...,yp—1), Where x; +y; = 1 for all i.
(In fact, this matrix can be recovered as the component DoublyCirculant of the
code.)

Example

gap> Cl := QQRCode( 7);

a linear [14,7,1..4]13..5 code defined by generator matrix over GF(2)

gap> Gl:=GeneratorMat (Cl);;

gap> Display(Gl);
.11 .1 .
1.111.

.1 .11
.111 .1
1 11. .1
1.1111.1 11
.1 ..o 111,
111 .1
e e e e 1..111
gap> Display (Cl!.DoublyCirculant);
.11 .1 ... .1 .11
11 .1.. .. .1 .011.
1.1 .. .1.1. 1
1.0 o111,
1. ..11. .1 e
.11 .111 .. .1.
11.1.1...1.1
gap> MinimumDistance (C1l);
4
gap> C2 := QQRCode( 29); MinimumDistance (C2);
a linear [58,28,1..14]18..29 code defined by generator matrix over G|
12
gap> Aut2:=AutomorphismGroup(C2); IdGroup (Aut2);
[ permutation group of size 812 with 4 generators ]
[ 812, 7]

1
11
1

5.5.8 FireCode

O FireCode ( g, b) (function)

FireCode constructs a (binary) Fire code. g is a primitive polynomial of degree
m, and a factor of x” — 1. b an integer 0 < b < m not divisible by r, that determines
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the burst length of a single error burst that can be corrected. The argument g can
be a polynomial with base ring GF(2), or a list of coefficients in GF(2). The
generator polynomial of the code is defined as the product of g and x**~! 4 1.

Here is the general definition of ’Fire code’, named after P. Fire, who intro-
duced these codes in 1959 in order to correct burst errors. First, a definition. If
F = GF(q) and f € F|[x| then we say f has order e if f(x)|(x* —1). A Fire code
is a cyclic code over F with generator polynomial g(x) = (x*~' — 1)p(x), where
p(x) does not divide x*~! — 1 and satisfies deg(p(x)) > t. The length of such a
code is the order of g(x). Non-binary Fire codes have not been implemented.

Example
gap> x:= Indeterminate( GF(2) );; G:= x"3+x"2+1;

Z(2)"0+x"2+x"3

gap> Factors( G );

[ Z(2)"0+x"24+x"3 ]

gap> C := FireCode( G, 3 );

a cyclic [35,27,1..4]12..6 3 burst error correcting fire code over G
gap> MinimumDistance( C );

4 # Still it can correct bursts of length 3

5.5.9 WholeSpaceCode

& WholeSpaceCode( n, F ) (function)

WholeSpaceCode returns the cyclic whole space code of length n over F. This
code consists of all polynomials of degree less than n and coefficients in F.

Example
gap> C := WholeSpaceCode( 5, GF(3) );
a cyclic [5,5,1]0 whole space code over GF(3)

5.5.10 NullCode

O NullCode( n, F ) (function)

NullCode returns the zero-dimensional nullcode with length n over F. This
code has only one word: the all zero word. It is cyclic though!
Example
gap> C := NullCode( 5, GF(3) );
a cyclic [5,0,5]5 nullcode over GF(3)
gap> AsSSortedList( C );
[ [ 000007 ]
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5.5.11 RepetitionCode

& RepetitionCode( n, F ) (function)

RepetitionCode returns the cyclic repetition code of length n over F. The
code has as many elements as F, because each codeword consists of a repetition of
one of these elements.

Example
gap> C := RepetitionCode( 3, GF(5) );
a cyclic [3,1,3]2 repetition code over GF (5)

gap> AsSSortedList( C );

(10001, [ Y111, 12221, 144471, [33311
gap> IsPerfectCode( C );

false

gap> IsMDSCode( C );

true

5.5.12 CyclicCodes

<& CyclicCodes( n, F ) (function)

CyclicCodes returns a list of all cyclic codes of length n over F. It constructs
all possible generator polynomials from the factors of x* — 1. Each combination of
these factors yields a generator polynomial after multiplication.

Example
gap> CyclicCodes(3,GF(3));

[ a cyclic [3,3,1]0 enumerated code over GF(3),
a cyclic [3,2,1..2]1 enumerated code over GF(3),
a cyclic [3,1,3]2 enumerated code over GF(3),

a cyclic [3,0,3]13 enumerated code over GF(3) ]

5.5.13 NrCyclicCodes

& NrCyclicCodes( n, F ) (function)

The function NrCyclicCodes calculates the number of cyclic codes of length
n over field F.

Example
gap> NrCyclicCodes( 23, GF(2) );

8

gap> codelist := CyclicCodes( 23, GF(2) );

[ a cyclic [23,23,1]0 enumerated code over GF(2),
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a cyclic [23,22,1..2]1 enumerated code over GF(2),

a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,0,23]23 enumerated code over GF(2),

a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF (2),

a cyclic [23,1,23]11 enumerated code over GF(2),

a cyclic [23,12,1..7]3 enumerated code over GF(2) ]
gap> BinaryGolayCode() in codelist;
true
gap> RepetitionCode( 23, GF(2) ) in codelist;
true
gap> CordaroWagnerCode( 23 ) in codelist;
false # This code is not cyclic

95

5.6 Evaluation Codes

5.6.1 EvaluationCode

<& EvaluationCode( P, L, R )

(function)

Input: F is a finite field, L is a list of rational functions in R = F[xy,...,x,], P is

a list of n points in " at which all of the functions in L are defined.
Output: The ’evaluation code’ C, which is the image of the evalation map

Evalp : span(L) — F",

givenby f — (f(p1),...,f(pn)), where P={py,...,p,} and f € L. The generator

matrix of Cis G = (ﬁ(Pj))ﬁGLVP./EP'

This command returns a “record” object C with several extra components (type
NamesOfComponents (C) to see them all): C!.EvaluationMat (not the same as
the generator matrix in general), C!.points (namely P), C!.basis (namely L),

and C!.ring (namely R).

Example

gap> F:=GF (11);

GF (11)

gap> R := PolynomialRing(F, ["x","y"]);
PolynomialRing (..., [ x, y ]

gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1l];; y:=indets[2];;

gap> L:=[x"2*%y,x*y,x"5,x"4,x"3,x"2,%,x"0];;

gap> Pts:=[ [ Z(11)"9, Z(11) 1, [ Z(11)"8, Z(11) z(11)°17,

1,1
[ Z(11)"6, 0*z(11) 1, [ Z(11)"5, 0*z(11) 1, [ Z(11)"4, 0*z(11) 1,

0*Z (1
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[ Z2(11)"3, z(11) 1, [ Z(11)"2, O*z(11) 1, [ Z(11), O*z(11) 1,
[ Z(11)°0, O*z(11) 1, [ 0*Z(11), z(11) 1 1;;

gap> C:=EvaluationCode (Pts,L,R);

a linear [11,8,1..3]2..3 evaluation code over GF(11)

gap> MinimumDistance (C);

3

5.6.2 GeneralizedReedSolomonCode

& GeneralizedReedSolomonCode( P, k, R ) (function)

Input: R=F[x], where F is a finite field, k is a positive integer, P is a list of n
points in F.
Output: The C which is the image of the evaluation map

Evalp : Flx], — F",

given by f+—— (f(p1),....,f(pn)), where P = {pi,...,p,} C F and f ranges over
the space F[x]; of all polynomials of degree less than .

This command returns a “record” object C with several extra components (type
NamesOfComponents (C) to see them all): C!.points (namely P), C!.degree
(namely k), and C!.ring (namely R).

This code can be decoded wusing Decodeword, which applies
the special decoder method (the interpolation method), or using
GeneralizedReedSolomonDecoderGao which applies an algorithm of S.
Gao (see GeneralizedReedSolomonDecoderGao (4.10.3)). This code has a
special decoder record which implements the interpolation algorithm described in
section 5.2 of Justesen and Hoholdt [JHO4]. See Decode (4.10.1) and Decodeword
(4.10.2) for more details.

The  weighted version has  implemented with the  option
GeneralizedReedSolomonCode (P, k,R,wts), where wts = [vq,...,v,| is a
sequence of n non-zero elements from the base field F of R. See also the
generalized Reed-Solomon code GRSy (P,V) described in [MS83], p.303.

The list-decoding algorithm of Sudan-Guraswami (described in section 12.1
of [JHO4]) has been implemented for generalized Reed-Solomon codes. See
GeneralizedReedSolomonListDecoder (4.10.4).

Example
gap> R:=PolynomialRing (GF (11), ["t"]);
GF (11) [t]

gap> P:=List ([1,3,4,5,7],1->2(11) "1);
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[ Z(11), Z(11)°3, Z(11)°4, Z(11)"°5, Z(11)"7 1

gap> C:=GeneralizedReedSolomonCode (P, 3,R);

a linear [5,3,1..3]2 generalized Reed-Solomon code over GF (11)
gap> MinimumDistance (C);

3

gap> V:=[Z(11)"0,Z(11)"0,2(11)"0,2(11)"°0,Z(11)1;

[ Z(11)°0, Z(11)°0, Z(11)°0, Z(11)°0, Z(1l1l) 1]

gap> C:=GeneralizedReedSolomonCode (P, 3,R,V);

a linear [5,3,1..3]2 weighted generalized Reed-Solomon code over G|
gap> MinimumDistance (C);
3

See EvaluationCode (5.6.1) for a more general construction.

5.6.3 GeneralizedReedMullerCode

& GeneralizedReedMullerCode( Pts, r, F ) (function)

GeneralizedReedMullerCode returns a 'Reed-Muller code’ C with length
|Pts| and order r. One considers (a) a basis of monomials for the vector space
over F = GF(q) of all polynomials in F[xj,...,xs] of degree at most r, and (b)
a set Pts of points in F¢. The generator matrix of the associated Reed-Muller
code C is G = (f(p)) fe,peprs- This code C is constructed using the command
GeneralizedReedMullerCode (Pts, r, F). When Pts is the set of all qd points in
F? then the command GeneralizedReedMuller (d, r,F) yields the code. When
Pts is the set of all (¢ — 1) points with no coordinate equal to O then this is can be
constructed using the ToricCode command (as a special case).

This command returns a “record” object C with several extra components
(type NamesOfComponents (C) to see them all): C!.points (namely Pts) and
C!.degree (namely r).

Example

gap> Pts:=ToricPoints(2,GF(5));

[ [2(5)70, 2(5)7°0 1, [ 2(570, z(5) 1, [ 2(5)70, Z2(5)°2 1, [ Z2(5)7Q
[ 2(5), 2(5)°0 1, [ 2(5), 2(5) 1, [ 2(5), Z2(5)"2 1, [ Z2(5), Z2(5"3
[ 2(5)7°2, 2(5)7°0 1, [ Z(5)7°2, 2(5) 1, [ 2(5)7°2, Z2(5)"2 1, [ Z2(5)"2
[ 2(5)7°3, z(5)°0 1, [ 2(5)73, z(5) 1, [ Z2(5)73, Z2(5)°2 1, [ Z(5)"73

gap> C:=GeneralizedReedMullerCode (Pts,2,GF (5));

a linear [16,6,1..11]6..10 generalized Reed-Muller code over GF (5)

See EvaluationCode (5.6.1) for a more general construction.

(11)

Z2(5)°3 1,
1,
» 2(5)7°3 1,
» 2(5)73 ]
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5.6.4 ToricPoints
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& ToricPoints( n, F ) (function)
ToricPoints (n,F) returns the points in (F*)".
Example
gap> ToricPoints(2,GEF (5));
[ [ 2(5)7°0, 2(5)°0 71, [ 2(570, z(5) 1, [ Z(5)°0, Z(5)"2 1],
[ 2(5)70, 2(5)°3 1, [ Z2(5), z(5)°0 1, [ 2(5), 2(5) 1, [ Z(5), Z(5)
[ 2(5), 2(5)°3 1, [ z(5)"2, z(5)°0 ], [ 2(5)"2, z(5) 1, [ Z2(5) "2,
[ 2(5)7°2, 2(5)°3 1, [ Z2(5)7°3, Z2(5)°0 1, [ Z2(5)"3, Z(5) 1,
[ Z(5)°3, Z(5)°2 1, [ Z2(5)°3, Z2(5)°3 ] ]
5.6.5 ToricCode
& ToricCode( L, F ) (function)

This function returns the toric codes as in D. Joyner [Joy04] (see also J. P.

Hansen [Han99]). This is a truncated (generalized) Reed-Muller code. Here L is a

list of integral vectors and F is the finite field. The size of F must be different from

2.

This command returns a record object C with an extra component (type

NamesOfComponents (C) to see them all): C!.exponents (namely L).

Example
gap> C:=ToricCode([[1,0],[3,411,GF(3));

a linear [4,1,4]2 toric code over GF (3)
gap> Display(GeneratorMat (C));
1122
gap> Elements (C);
[frooo0oo0], (112217, [221117]]

See EvaluationCode (5.6.1) for a more general construction.

5.7 Algebraic geometric codes

Certain quova functions related to algebraic geometric codes are described in

this section.
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5.7.1 AffineCurve

& AffineCurve ( poly, ring ) (function)

This function simply defines the data structure of an affine plane curve. In
guava, an affine curve is a record crv having two components: a polynomial
poly, accessed in quava by crv.polynomial, and a polynomial ring over a
field F' in two variables ring, accessed in quava by crv.ring, containing poly.
You use this function to define a curve in quava.

For example, for the ring, one could take Q[x,y], and for the polynomial one
could take f(x,y) = x*>+y* — 1. For the affine line, simply taking Q[x,y] for the
ring and f(x,y) =y for the polynomial.

(Not sure if F' neeeds to be a field in fact ...)

To compute its degree, simply use the DegreeMultivariatePolynomial

(7.6.2) command.
Example

gap>

gap> F:=GF(11);;

gap> R2:=PolynomialRing(F,2);

PolynomialRing (..., [ x_1, x_2 1)

gap> vars:=IndeterminatesOfPolynomialRing(R2);;

gap> x:=vars[l];; y:=vars[2];;

gap> poly:=y;; crvPl:=AffineCurve (poly,R2);

rec( ring := PolynomialRing (..., [ x_1, % 2 ]), polynomial := x_2 )
gap> degree_crv:=DegreeMultivariatePolynomial (poly,R2);

1

gap> poly:=y"2-x*(x"2-1);; ell_crv:=AffineCurve (poly,R2);
rec( ring := PolynomialRing (..., [ x_1, x_2 ]), polynomial
gap> degree_crv:=DegreeMultivariatePolynomial (poly,R2);

3

gap> poly:=x"2+y~2-1;; circle:=AffineCurve (poly,R2);

rec( ring := PolynomialRing (..., [ x_1, %2 ]), polynomial := x_1"2+
gap> degree_crv:=DegreeMultivariatePolynomial (poly,R2);

2

gap> q:=3;;

gap> F:=GF (q"2);;

gap> R:=PolynomialRing(F,2);;

gap> vars:=IndeterminatesOfPolynomialRing (R);

-x_1"3

[ %1, %2 ]
gap> x:=vars[l];
x_1

gap> y:=vars[2];
X_2

gap> crv:=AffineCurve (y g+y-x" (q+l),R);

+x_272+x_1 )

x_2°2-7(11)"0 )
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rec( ring :=
gap>

PolynomialRing(...,

[ x_1, x.2 1), polynomial :=

100

-x_1744+x_2"3+x_2 )

In GAP, a point on a curve defined by f(x,y) = 0 is simply a list [a, b] of elements

of F satisfying this polynomial equation.

5.7.2 AffinePointsOnCurve

& AffinePointsOnCurve( £, R, E )

(function)

AffinePointsOnCurve (f,R,E) returns the points (x,y) € E? satisying

f(x,y) =0, where f is an element of R = F[x,y].

Example

gap> F:=GF (11);;

gap> R := PolynomialRing (F, ["x","y"]);
PolynomialRing (..., [ %, vy ]

gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1l];; y:=indets[2];;

gap> P:=AffinePointsOnCurve (y 2-x"11+x,R,F)

[ [ 2(11)"9, 0*z(11) 1, [ z(11)"8, O*zZ(11) 1, [ Z(11)"7, 0*z(11l) 1,
[ Z2(11)"6, 0*z(11) 1, [ 2(11)"5, O0*z(11) 1, [ Z(11)"4, 0*Z(11) ],
[ Z(11)"°3, 0*z(11) 1, [ Zz(11)°2, O0*Z(11) ], [ Z(11), O0*z(11) 1],
[ 2(11)°0, 0*zZ(11) 1, [ 0*Z(11), 0*Z(11) ] ]
5.7.3 GenusCurve
< GenusCurve ( crv ) (function)

If crv represents f(x,y) =0, where f is a polynomial of degree d, then this
function simply returns (d — 1)(d —2)/2. At the present, the function does not

check if the curve is singular (in which case the result may be false).

Example
gap> q:=4j;
gap> F:=GF (q"2);;
gap> a:=xX(F);;
gap> Rl:=PolynomialRing(F, [a]);;
gap> varl:=IndeterminatesOfPolynomialRing(R1);;
gap> b:=X(F);;
gap> R2:=PolynomialRing(F, [a,b]);;
gap> varz:=IndeterminatesOfPolynomialRing(R2);;
gap> crv:=AffineCurve (b"gtb-a” (gt+l),R2);;
gap> crv:=AffineCurve (b"gt+b-a” (gt+l),R2);
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rec( ring := PolynomialRing (..., [ x_1, x_1 ]), polynomial := x_1"5#4x_1"4+x_1 )
gap> GenusCurve (crv);
36

5.7.4 GOrbitPoint

<& GOrbitPoint ( G, P ) (function)

P must be a point in projective space P"(F), G must be a finite subgroup of
GL(n+ 1,F), This function returns all (representatives of projective) points in the
orbit G- P.

The example below computes the orbit of the automorphism group on the Klein
quartic over the field GF (43) on the “point at infinity”.

Example

gap> R:= PolynomialRing( GF(43), 3 );;

gap> vars:= IndeterminatesOfPolynomialRing(R);;

gap> x:= vars[l];; y:= vars[2];; z:= vars[3];;

gap> zz:=7Z(43)"6;

Z(43)°6

gap> zzz:=7(43);

7 (43)

gap> rhol:=zz"0*[[zz"4,0,0],[0,2z2z°2,01,1[0,0,zz]];

[ [ Z(43)724, 0*Z(43), 0*Z(43) 1,

[ 0%Z(43), Z(43)°12, 0*Z(43) 1

[ 0*Z(43), 0*Z(43), Z(43)"6

gap> rho2:=zz"0*[[0,1,0], [0,

[ [ 0%Z2(43), z(43)70 O*Z(4

[ 0%Z(43), 0*Z(43), (43)"0
3) )

[

]
+11,11,0,011;
1,

I

]
0
)
]
]
/zzz"7,( zz"2-22"5 )/ zzz"7, ( zz"4-zz"3 )/ zzz"7],
/
/

[ 2(43)7°0, 0*zZ(43), 0*Z(43 ]

gap> rho3:=(-1)*[[(zz-22"6 )

> [( zz"2-22"5 )/ zzz 7 ( zz"4-22z"3 )/ zzz"7, ( zz-zz"§q )/ zzz"7],
> [( zz 4 zz°3 )/ zzz"1, ( zz-zz"6 )/ zzz"7, ( zz"2-z2z"9 )/ zzz"71];
[ [ 2(43)79, Z(43) Z2(43)°12 1,

[ Z(43)728, 7(43)" Z(43)°9 1,

[ Z2(43)712, Z(43)" Z2(43)728 ] ]

gap> G:=Group([rhol rho2,rho31);; #PSL(2,7)

gap> Size(G);

168

gap> P:=[1,0,0]*%zzz"0;

[ Z(43)70, 0*Z(43), 0*Z(43) 1

gap> 0:=GOrbitPoint (G,P);

[ [ Z2(43)70, 0*Z(43), 0*Z(43) 1, [ 0*Z(43), Z(43)°0, 0*z(43) 1,
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[ 0%Z(43), 0*z(43), Z(43)°0 1, [ Z2(43)°0, 7Z(43)°39, z(43)"16 ],

[ Z(43)°0, Z(43)733, 7Z(43)°28 1, [ Z(43)°0, Z(43)°27, Z(43)"°40 ],
[ Z(43)°0, Z(43)°21, 7Z(43)°10 1, [ Z(43)°0, Z(43)"15, Z(43)"22 ],
[ Z(43)7°0, Z(43)7°9, Z(43)°34 1, [ Z(43)°0, Z(43)°3, Z(43)°4 1,

[ Z(43)°3, 7Z(43)722, 7Z(43)°6 1, [ Z(43)"3, Z(43)"16, Z(43)"18 1,

[ Z(43)°3, Z(43)710, Z(43)730 1, [ Z(43)°3, Z(43)74, Z(43)°0 1,

[ Z(43)73, Z(43)740, Z(43)°12 1, [ Z(43)"3, 7Z(43)°34, z(43)"24 ],
[ Z(43)7°3, Z(43)7°28, 7Z(43)°36 1, [ Z(43)"4, 7Z(43)°30, zZ(43)"°27 1,
[ Z(43)74, Z(43)7°24, 7Z(43)°39 1, [ Z(43)"°4, 7Z(43)°18, Z(43)°9 1,
[ Z(43)74, Z(43)712, Z(43)721 1, [ Z(43)"4, Z(43)76, Z(43)"33 1,
[ Z(43)74, Z(43)°0, Z(43)°3 1, [ Z(43)"4, Z(43)736, Z(43)715 1 ]
gap> Length(0);

24

Informally, a divisor on a curve is a formal integer linear combination of points on
the curve, D = m P| + ... + m P, where the m; are integers (the “multiplicity” of
P; in D) and P; are (F-rational) points on the affine plane curve. In other words, a
divisor is an element of the free abelian group generated by the F-rational affine
points on the curve. The support of a divisor D is simply the set of points which
occurs in the sum defining D with non-zero “multiplicity”. The data structure for a
divisor on an affine plane curve is a record having the following components:

o the coefficients (the integer weights of the points in the support),
e the support,
e the curve, itself a record which has components: polynomial and polynomial

ring.

5.7.5 DivisorOnAffineCurve

& DivisorOnAffineCurve ( cdiv, sdiv, crv ) (function)

This is the command you use to define a divisor in guava. Of course, crv is
the curve on which the divisor lives, cdiv is the list of coefficients (or “multiplici-
ties”), sdiv is the list of points on crv in the support.

Example

gap> q:=5;

5

gap> F:=GF (q);

GF (5)

gap> R:=PolynomialRing(F,2);;
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gap> vars:=IndeterminatesOfPolynomialRing (R);

[ %1, %2 ]

gap> x:=vars[l];

x_1

gap> y:=vars[2];

X_2

gap> crv:=AffineCurve (y"3-x"3-x-1,R);

rec( ring := PolynomialRing(..., [ x_1, x 2 1),
polynomial := -x_1"3+x_2"3-x_1-7(5)"0 )

gap> Pts:=PointsOnAffineCurve(crv,F);;

gap> supp:=[Pts[1l],Pts[2]];

[ [ 0%¥2(5), 2(5)°0 1, [ 2(5)70, z(5) ] 1

gap> D:=DivisorOnAffineCurve([1l,-1],supp,crv);

rec( coeffs := [ 1, -1 1,
support := [ [ 0%*Z(5), Z2(5)°0 ], [ Z(5)°0, Z(5) 1 1,
curve := rec( ring := PolynomialRing(..., [ x_1, %2 1),
polynomial := -x_1"3+x_2"3-x_1-7Z(5)"0 ) )
5.7.6 DivisorAddition
& DivisorAddition ( D1, D2 ) (function)

If Dy =mPi+...+mi P, and Dy = n1 Py + ... +ni Py are divisors then D+ D, =
(m1 “+ny )P] + ...+ (mk —i—nk)Pk.

5.7.7 DivisorDegree

< DivisorDegree ( D ) (function)

If D=m P+ ... +mPy is a divisor then the degree is m| + ... + my.

5.7.8 DivisorNegate

<& DivisorNegate ( D ) (function)

Self-explanatory.

5.7.9 DivisorlsZero

& DivisorIsZero ( D ) (function)
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Self-explanatory.

5.7.10 DivisorsEqual

<& DivisorsEqual ( D1, D2 ) (function)

Self-explanatory.

5.7.11 DivisorGCD

<& DivisorGCD ( D1, D2 ) (function)

If m=pi.. pik and n = p{l... p{" are two integers then their greatest com-

mon divisor is GCD(m,n) = p’lnm(e“f D pkmin(ek’f ©) A similar definition works for

two divisors on a curve. If Dy = e\ P; + ... + e P, and Don = fiP) + ... + fi Pk
are two divisors on a curve then their greatest common divisor is GCD(m,n) =
min(ey, f1)Py + ... + min(e, fr) Pr. This function computes this quantity.

5.7.12 DivisorLCM

<& DivisorLCM ( D1, D2 ) (function)

If m=p{.. p,e{" and n = p{l... p{k are two integers then their least common

multiple is LCM (m,n) = p'lmx(el’f])...pfax(e"’f"). A similar definition works for

two divisors on a curve. If Dy = e;Pi + ... + etP, and Dy = f1Py + ... + fiP:
are two divisors on a curve then their least common multiple is LCM (m,n) =
max(ey, f1)P) + ... + max(e, fi)Px. This function computes this quantity.

Example

gap> F:=GF (11);

GF (11)

gap> Rl:=PolynomialRing(F, ["a"]);;

gap> varl:=IndeterminatesOfPolynomialRing(R1l);; a:=varl[l];;
gap> b:=X(F,"b",varl);

b

gap> var2:=Concatenation(varl, [b]);

[ a, bl

gap> R2:=PolynomialRing (F,var2);

PolynomialRing (..., [ a, b ]

gap> crvPl:=AffineCurve(b,R2);

rec( ring := PolynomialRing(..., [ a, b 1), polynomial := b )
gap> divl:=DivisorOnAffineCurve([1,2,3,4],[Z2(11)"2,2(11)"°3,Z2(11)"7,2
rec( coeffs := [ 1, 2, 3, 41,

(11)1,crvPl);



gap>
10

gap>
rec (

gap>

gap>
rec (

gap>
20

gap>
true
gap>
true
gap>
gap>
rec (

gap>
rec (

gap>
true

gap>
rec (

gap>

rec (

gap>

gap>

gap>
true
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support := [ Z(11)"2, Z(11)"°3, z(11)"7, z(11) 1,

curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial :

DivisorDegree (divl);

div2:=DivisorOnAffineCurve([1,2,3,4],[2(11),Z(11)"2,2(11)"3,Z (1
coeffs := [ 1, 2, 3, 41,
support := [ Z(11), Z(11)"2, Z(11)"3, Z(11)"4 1,

curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial :

DivisorDegree (div2);

div3:=DivisorAddition (divl,div2);

coeffs := [ 5, 3, 5, 4, 3 1,
support := [ Z(11l), z(11)"2, Z(11)"3, Z(11)"~4, Z(11)"7 1,
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial :

DivisorDegree (div3);
DivisorIsEffective (divl);

DivisorIsEffective (div2);

ndivl:=DivisorNegate (divl);

coeffs := [ -1, -2, -3, -4 ],

support := [ Z(11)"2, Z(11)"3, Z(11)"7, Z(11) 1,

curve := rec( ring := PolynomialRing(..., [ a, b 1), polynomial :
zdiv:=DivisorAddition (divl, ndivl);

coeffs := [ 0, 0, 0, 0 1,

support := [ Z(11), Z(11)"2, Z(11)"3, z(11)"7 1,

curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial :

DivisorIszZero (zdiv);

div_gcd:=DivisorGCD (divl,div2);

coeffs := [ 1, 1, 2, 0, 01,

support := [ Z(11l), z(11)"2, Z(11)"3, zZ(11)"~4, Z(11)"7 1,

curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial :
div_lcm:=DivisorLCM(divl,div2);

coeffs := [ 4, 2, 3, 4, 31,

support := [ Z(11), z(11)"2, Z(11)"3, z(11)"~4, Z(11)"7 1,

curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial :

DivisorDegree (div_gcd) ;
DivisorDegree (div_lcm);

DivisorEqual (div3,DivisorAddition (div_gcd,div_lcm));
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|

Let G denote a finite subgroup of PGL(2,F) and let D denote a divisor on the
projective line P!'(F). If G leaves D unchanged (it may permute the points in the
support of D but must preserve their sum in D) then the Riemann-Roch space L(D)
is a G-module. The commands in this section help explore the G-module structure
of L(D) in the case then the ground field F is finite.

5.7.13 RiemannRochSpaceBasisFunctionP1

< RiemannRochSpaceBasisFunctionPl ( P, k, R2 ) (function)

Input: R2 is a polynomial ring in two variables, say F[x,y]; P is an element of
the base field, say F; k is an integer. Output: 1/(x — P)*

5.7.14 DivisorOfRationalFunctionP1
& DivisorOfRationalFunctionPl ( £, R ) (function)
Here R = F[x,y| is a polynomial ring in the variables x,y and f is a rational

function of x. Simply returns the principal divisor on P! associated to f.
Example

gap> F:=GF(11);

GF (11)

gap> Rl:=PolynomialRing(F, ["a"]);;

gap> varl:=IndeterminatesOfPolynomialRing(R1);; a:=varl[1l];;
gap> b:=X(F,"b",varl);

b

gap> varz:=Concatenation (varl, [b]);

[ a, b

gap> R2:=PolynomialRing (F,var2);
PolynomialRing (..., [ a, b 1)

gap> pt:=2(11);

Z(11)

gap> f:=RiemannRochSpaceBasisFunctionPl (pt,2,R2);
(Z(11)"0)/(a"2+z(11) " 7*a+7Z (11) "2)

gap> Df:=DivisorOfRationalFunctionPl (f,R2);

rec( coeffs := [ -2 ], support := [ Z(11) ],

curve := rec( ring := PolynomialRing(..., [ a, b 1), polynomial :

)
gap> Df.support;
[ Z2(11) ]
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gap> F:=GF (11);;
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);;
gap> a:=vars|[l];;
gap> b:=vars[2];;
gap> f:=(a"4+Z(11)"6*a"3-a"2+2(11) "7*a+z(11)"0)/(a"4+7Z (11)*a"2+7 (11)
gap> divf:=DivisorOfRationalFunctionPl (f,R);
rec( coeffs := [ 3, 11, support := [ Z(11), Z(11)"7 1,
curve := rec( ring := PolynomialRing(..., [ a, b 1), polynomial :=5
gap> denf:=DenominatorOfRationalFunction(f); RootsOfUPol (denf);
a"4+7(11)*a"2+z (11) "7*a+Z (11)
[ ]
gap> numf:=NumeratorOfRationalFunction (f); RootsOfUPol (numf);
a"4+7Z (11) "6*a"3-a"2+7Z (11) "7*a+Z (11) "0
[ Z2(11)"7, z(11), Z(11), Zz(11) 1

5.7.15 RiemannRochSpaceBasisP1

< RiemannRochSpaceBasisPl ( D ) (function)

This returns the basis of the Riemann-Roch space L(D) associated to the divisor
D on the projective line P!,
Example

gap> F:=GF(11);

GF (11)

gap> Rl:=PolynomialRing(F, ["a"]);;

gap> varl:=IndeterminatesOfPolynomialRing(R1);; a:=varl[1l];;
gap> b:=X(F,"b",varl);

b

gap> varz:=Concatenation (varl, [b]);

[ a, b]

gap> R2:=PolynomialRing (F,var2);

PolynomialRing (..., [ a, b 1)

gap> crvPl:=AffineCurve (b,R2);

rec( ring := PolynomialRing(..., [ a, b 1), polynomial := b )
gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z2(11)"2,2(11)"3,Z(11)"7,Z (11
rec( coeffs := [ 1, 2, 3, 41,

support := [ Z(11)"2, Z(11)"3, Z(11)"7, Z(11) 1,

curve := rec( ring := PolynomialRing(..., [ a, b 1), polynomial :
gap> B =RiemannRochSpaceBasisPl (D) ;
[ Z2(11)°0, (Z2(11)°0)/(a+Z(11)"7), (Z2(11)70)/(a+Z(1 ) 8),
(Z ( ) 0)/(a"2+z(11) "9*a+Z (11)"6), (Z(11)"0)/(a+Z(11)"2),
(Z(11)70)/(a"2+Z(11) "3*a+Z(11) "4), (2(11)70)/(a 3+a 2+7(11) "2*a+z (1]

“T*a+Z(11));;

a) )

)1,crvPl);
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(Z(11)70)/ (a+z2(11)"6), (2(11)°0)/(a"2+Z(11) " 7*a+z(11)"2),
(Z(11)" )/(aA3+Z(11)A4*aA2+a+Z(11)A8),
(Z(11)70)/(a"4+Z2(11)"8*a"3+z (11) *a"2+a+Z (11) "4) ]
gap> DivisorOfRationalFunctionPl(B[1],R2).support;
[ ]
gap> DivisorOfRationalFunctionPl (B[2],R2) .support;
[ Z2(11)"2 ]
gap> DivisorOfRationalFunctionPl(B[3],R2).support;
[ 2(11)7°3 ]
gap> DivisorOfRationalFunctionPl(B[4],R2) .support;
[ Z2(11)°3 1]
gap> DivisorOfRationalFunctionPl (B[5],R2) .support;
[ 2(11)7°7 ]
gap> DivisorOfRationalFunctionPl(B[6],R2) .support;
[ Z2(11)"7 ]
gap> DivisorOfRationalFunctionPl (B[7],R2) .support;
[ Z2(11)"7 ]
gap> DivisorOfRationalFunctionPl(B[8],R2) .support;
[ Z2(11) ]
gap> DivisorOfRationalFunctionPl(B[9],R2) .support;
[ Z2(11) ]
gap> DivisorOfRationalFunctionPl (B[10],R2) .support;
[ Z2(11) ]
gap> DivisorOfRationalFunctionPl(B[11],R2) .support;
[ Z(11) ]

5.7.16 MoebiusTransformation

& MoebiusTransformation ( A, R ) (function)

The arguments are a 2 X 2 matrix A with entries in a field F' and a polynomial
ring Rof one variable, say F|[x]. This function returns the linear fractional trans-
formatio associated to A. These transformations can be composed with each other
using GAP’s Value command.

5.7.17 ActionMoebiusTransformationOnFunction

& ActionMoebiusTransformationOnFunction ( A, £, R2 ) (function)

The arguments are a 2 x 2 matrix A with entries in a field F', a rational function
f of one variable, say in F(x), and a polynomial ring R2, say F'[x,y|. This function
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simply returns the composition of the function £ with the Mobius transformation
of A.
5.7.18 ActionMoebiusTransformationOnDivisorP1

& ActionMoebiusTransformationOnDivisorPl ( A, D ) (function)

A Mobius transformation may be regarded as an automorphism of the
projective line P!.  This function simply returns the image of the di-
visor D under the Mobius transformation defined by 2, provided that
IsActionMoebiusTransformationOnDivisorDefinedP1 (A, D) returns true.

5.7.19 IsActionMoebiusTransformationOnDivisorDefinedP1

& IsActionMoebiusTransformationOnDivisorDefinedPl ( A, D ) (func-

tion)

Returns true of none of the points in the support of the divisor D is the pole of
the Mobius transformation.

Example
gap> F:=GF (11);
GF (11)
gap> Rl:=PolynomialRing(F, ["a"]);;
gap> varl:=IndeterminatesOfPolynomialRing(R1);; a:=varl[l];;
gap> b:=X(F,"b",varl);
b
gap> var2:=Concatenation(varl, [b]);
[a, bl
gap> R2:=PolynomialRing (F,var2);
PolynomialRing (..., [ a, b ]
gap> crvPl:=AffineCurve (b,R2);
rec( ring := PolynomialRing(..., [ a, b 1), polynomial := b )
gap> D:=DivisorOnAffineCurve([l,2,3,4],[2(11)"2,2(11)"3,Z(11)"7,Z (11
rec( coeffs := [ 1, 2, 3, 41,

support := [ Z(11)"2, Z(11)"3, z(11)"7, Z(11) 1,

curve := rec( ring := PolynomialRing(..., [ a, b 1), polynomial :
gap> A:=Z(11)°0*[[1,2],[1,4]1]1;
[ [ 2(11)°0, Z2(11) 1, [ Z(11)"0, Z2(11)"2 ] ]
gap> ActionMoebiusTransformationOnDivisorDefinedPl (A,D);
false
gap> A:=Z(11)"0*[[1,2],[3,4]];
[ [ Z2(11)°0, z(11) 1, [ Z(11)"8, z(11)"2 ] ]
gap> ActionMoebiusTransformationOnDivisorDefinedPl (A,D);
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true
gap> ActionMoebiusTransformationOnDivisorPl (A,D);
rec( coeffs := [ 1, 2, 3, 41,
support := [ Z(1l1)"5, Z(11l)"6, Z(11)"8, Z(11)"7 1],
curve := rec( ring := PolynomialRing(..., [ a, b 1), polynomial :

gap> f:=MoebiusTransformation(A,R1l);

(a+Z (11)) /(2 (11) "8*a+Z (11) "2)

gap> ActionMoebiusTransformationOnFunction (A, f,R1);
-7 (11) "0+z2(11) "3*a"-1

5.7.20 DivisorAutomorphismGroupP1

<& DivisorAutomorphismGroupPl ( D ) (function)

Input: A divisor D on P!(F), where F is a finite field. Output: A subgroup

Aut(D) C Aut(P') preserving D.

Very slow.
Example

gap> F:=GF (11);
GF(11)
gap> Rl:=PolynomialRing(F, ["a"]);;
gap> varl:=IndeterminatesOfPolynomialRing(R1l);; a:=varl[l];;
gap> b:=X(F,"b",varl);
b
gap> var2:=Concatenation(varl, [b]);
[ a, bl
gap> R2:=PolynomialRing (F,var2);
PolynomialRing (..., [ a, b ]
gap> crvPl:=AffineCurve(b,R2);
rec( ring := PolynomialRing(..., [ a, b 1), polynomial := b )
gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z2(11)"2,2(11)"3,Z(11)"7,Z (11
rec( coeffs := [ 1, 2, 3, 41,
support := [ Z(11)"2, Z(11)"3, Z(1l1)"7, Z(11) 1,

curve := rec( ring := PolynomialRing(..., [ a, b 1), polynomial :

gap> agp:=DivisorAutomorphismGroupPl (D);; time;
7305

gap> IdGroup (agp);

[ 10, 2]
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5.7.21 MatrixRepresentationOnRiemannRochSpaceP1

& MatrixRepresentationOnRiemannRochSpacePl ( g, D ) (function)

Input: An element g in G, a subgroup of Aut(D) C Aut(P!), and a divisor D
on P!(F), where F is a finite field. Output: a d x d matrix, where d = dimL(D),
representing the action of g on L(D).

Note: g sends L(D) to r-L(D), where r is a polynomial of degree 1 depending
on g and D.

Also very slow.

The GAP command BrauerCharacterValue can be used to “lift” the eigen-
values of this matrix to the complex numbers.

Example

gap> F:=GF (11);

GF (11)

gap> Rl:=PolynomialRing(F, ["a"]);;
gap> varl:=IndeterminatesOfPolynomialRing(R1);; a:=varl[l];;
gap> b:=X(F,"b",varl);

b

gap> var2:=Concatenation(varl, [b]);

[a, bl

gap> R2:=PolynomialRing (F,var2);

PolynomialRing (..., [ a, b ]

gap> crvPl:=AffineCurve (b,R2);

rec( ring := PolynomialRing(..., [ a, b ]), polynomial :

b )

gap>
rec (

gap>
7198
gap>
[ 20,

D:=DivisorOnAffineCurve ([1,1,1,4], [
coeffs := [ 1, 1, 1, 41,

support := [ Z(11)"2, Z(11)"3,
curve := rec( ring :
agp:=DivisorAutomorphismGroupPl (D) ;

Z (11

IdGroup (agp) ;
5 ]

PolynomialRing(...,

Z(11)°2,7(11)"3,2(11) "7,z (11

)" 7, Z(11) 1,
[ a, b]), polynomiall :

; time;

gap> g:=Random (agp) ;
[ [ z(11)"4, z(11)"9 1, [ z(11)"0, Z(11)"9 ] ]
gap> rho:=MatrixRepresentationOnRiemannRochSpacePl (g,D)
[ [ Z2(11)"0, O0*z(11), 0*Z(11), O*zZ(11), 0*Z(11),
[ z(11)" 0*z(11), 0*z(11l), z(11), 0*Z(11),
[ Z(11 , 0*Z(11), z(11)"5, 0*Z(11),
[ Z2(11)" zZ(11)"9, 0*z(11), 0*zZ(11), 0*Z(11), 0*z(11),
[ Z(11)"2, 0*z(11), 0*Z(11), O*z(11l), Z(11l)"5,
[ Z2(11)" 0*Z(11), 0*Z(11), 0*z(11), Z(11)"8, Z(
[ Z(11)"6, O*zZ(11), 0*Z(11), O*zZ(1l1l), Z(11)"7,
[ z(11)"8, 0*z(11), 0*z(11), 0*Z(11l), z(11l)"3,

0%z (11),
0%z (11),

>~

7

11)°0,

>~

0O — D — N — O —
>~

Z(11) "3,

’

0%7(11),
0%7(11),
0%7(11),
0%7(11),

Z(11) "0,

0%z (11), 0
0*7 (1]
0%z (11), 0
0%7(11), 0%*7
0%z (11), 0
0%z (11), 0%*7
Z(11)°5, 0
Z(11)"9, z(1
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gap> Display(rho);
1 .
1 . . 2
7 .10
5 6 .
4 10
5 31 .
9 7 110
3 8 8 6 1

5.7.22 GoppaCodeClassical

<& GoppaCodeClassical ( div, pts ) (function)

Input: A divisor div on the projective line P! (F) over a finite field F and a list
pts of points {Py,...,P,} C F disjoint from the support of div.
Output: The classical (evaluation) Goppa code associated to this data. This is the
code

C={(f(P1),, f(Pn)) | f € L(D)F}.

Example

gap> F:=GF (11);;

gap> R2:=PolynomialRing(F,2);;

gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> a:=vars[l];;b:=vars[2];;

gap> cdiv:=[ 1, 2, -1, -2 1;

1, 2, -1, -2 1]

gap> sdiv:=[ z(11)"2, Z(11)"3, zZ(11)"6, Z(11)"9 1;
[ Z2(11)"2, Z(11)"3, Z(11)76, Z(11)"9 ]

gap> crv:=rec(polynomial:=b, ring:=R2);

rec( polynomial := x_2, ring := PolynomialRing(..., [ x_1, % 2 ]) )

gap> div:=DivisorOnAffineCurve (cdiv, sdiv,crv);

rec( coeffs := [ 1, 2, -1, -2 ], support := [ Z(11)"2, Z(11)"3, Z (11
curve := rec( polynomial := x_2, ring := PolynomialRing(..., [ x_J

gap> pts:=Difference (Elements(GF(11)),div.support);

[ 0*z(11), Z(11)"0, Z(11), Z(11)"4, Z(11)"5, Z(11)"7, Z(11)"8 ]

gap> C:=GoppaCodeClassical (div,pts);

a linear [7,2,1..6]4..5 code defined by generator matrix over GF(11)
gap> MinimumDistance (C);

6




guava 113

5.7.23 EvaluationBivariateCode

<& EvaluationBivariateCode( pts, L, crv ) (function)

Input: pts is a set of affine points on crv, L is a list of rational functions on
crv.
Output: The evaluation code associated to the points in pts and functions in L,
but specifically for affine plane curves and this function checks if points are “bad”
(if so removes them from the list pts automatically). A point is “bad” if either it
does not lie on the set of non-singular F'-rational points (places of degree 1) on the
curve.

Very similar to EvaluationCode (see EvaluationCode (5.6.1) for a more
general construction).

5.7.24 EvaluationBivariateCodeNC

< EvaluationBivariateCodeNC( pts, L, crv ) (function)

As in EvaluationBivariateCode but does not check if the points are “bad”.
Input: pts is a set of affine points on crv, L is a list of rational functions on
Crv.
Output: The evaluation code associated to the points in pts and functions in L.

Example

gap> q:=4;;

gap> F:=GF (q"2);;

gap> R:=PolynomialRing(F,2);;

gap> vars:=IndeterminatesOfPolynomialRing(R);;

gap> x:=vars|[l];;

gap> y:=vars[2];;

gap> crv:=AffineCurve (y gt+ty-x" (q+l),R);

rec( ring := PolynomialRing (..., [ x_1, %2 ]), polynomial :
gap> L:=[ x°0, x, x"2*y"-1 1;

[ Z2(2)70, x_1, x 1°2/x_2 ]

gap> Pts:=AffinePointsOnCurve (crv.polynomial,crv.ring,F);;
gap> Cl:=EvaluationBivariateCode (Pts,L,crv); time;

x_1"54

Automatically removed the following ’bad’ points (either a pole or
on the curve):
[ [ 0%z(2), 0*Z(2) 1 ]

a linear [63,3,1..60]51..59 evaluation code over GF(16)
52

X _2"44+x_2 )

not
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gap> P:=Difference (Pts, [[ 0*Z(274)"0, 0*Z(2)°0 11);;
gap> C2:=EvaluationBivariateCodeNC(P,L,crv); time;

a linear [63,3,1..60]51..59 evaluation code over GF(16)
48

gap> C3:=EvaluationCode(P,L,R); time;

a linear [63,3,1..56]51..59 evaluation code over GF(16)
58

gap> MinimumDistance (Cl);

56

gap> MinimumDistance (C2);

56

gap> MinimumDistance (C3);

56

gap>

5.7.25 OnePointAGCode

& OnePointAGCode( £, P, m, R ) (function)

Input: £ is a polynomial in R=F[x,y], where F is a finite field, m is a positive
integer (the multiplicity of the ‘point at infinity’ e on the curve f(x,y) =0), P is a
list of n points on the curve over F.

Output: The C which is the image of the evaluation map

Evalp: L(m-o0) — F",

given by f — (f(p1),...,f(pn)), Where p; € P. Here L(m-oo) denotes the
Riemann-Roch space of the divisor m - o on the curve. This has a basis consisting
of monomials x'y/, where (i, j) range over a polygon depending on m and f(x,y).
For more details on the Riemann-Roch space of the divisor m - o see Proposition
II1.10.5 in Stichtenoth [Sti93].

This command returns a “record” object C with several extra compo-
nents (type NamesOfComponents (C) to see them all): C!.points (namely P),
C!.multiplicity (namely m), C!.curve (namely f) and C!.ring (namely R).

Example

gap> F:=GF (11);

GF (11)

gap> R := PolynomialRing(F, ["x","y"]);
PolynomialRing (..., [ %, y 1]

gap> indets := IndeterminatesOfPolynomialRing (R);
[ x, v ]

gap> x:=indets[1l]; y:=indets[2];
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X

y

gap> P:=AffinePointsOnCurve(y 2-x"11+x,R,F);;

gap> C:=OnePointAGCode (y"2-x"11+x,P,15,R);

a linear [11,8,1..0]2..3 one-point AG code over GF(11)
gap> MinimumDistance (C);

4

gap> Pts:=List([1,2,4,6,7,8,9,10,11]1,1i->P[1i]);;

gap> C:=OnePointAGCode (y"2-x"11+x,PT,10,R);

a linear [9,6,1..4]2..3 one-point AG code over GF(1l1l)
gap> MinimumDistance (C);

4

115

See EvaluationCode (5.6.1) for a more general construction.



Chapter 6

Manipulating Codes

In this chapter we describe several functions quava uses to manipulate codes.
Some of the best codes are obtained by starting with for example a BCH code, and
manipulating it.

In some cases, it is faster to perform calculations with a manipulated code than
to use the original code. For example, if the dimension of the code is larger than
half the word length, it is generally faster to compute the weight distribution by first
calculating the weight distribution of the dual code than by directly calculating the
weight distribution of the original code. The size of the dual code is smaller in
these cases.

Because quava keeps all information in a code record, in some cases the
information can be preserved after manipulations. Therefore, computations do not
always have to start from scratch.

In Section 6.1, we describe functions that take a code with certain parameters,
modify it in some way and return a different code (see ExtendedCode (6.1.1),
PuncturedCode (6.1.2), EvenWeightSubcode (6.1.3), PermutedCode (6.1.4),
ExpurgatedCode (6.1.5), AugmentedCode (6.1.6), RemovedElementsCode
(6.1.7), AddedElementsCode (6.1.8), ShortenedCode (6.1.9), LengthenedCode
(6.1.10), ResidueCode (6.1.11), ConstructionBCode (6.1.12), DualCode
(6.1.13), ConversionFieldCode (6.1.14), ConstantWeightSubcode (6.1.17),
StandardFormCode (6.1.18) and CosetCode (6.1.16)). In Section 6.2, we describe
functions that generate a new code out of two codes (see DirectSumCode (6.2.1),
UUVCode (6.2.2), DirectProductCode (6.2.3), IntersectionCode (6.2.4) and
UnionCode (6.2.5)).

116
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6.1 Functions that Generate a New Code from a Given
Code

6.1.1 ExtendedCode

& ExtendedCode ( C[, 1] ) (function)

ExtendedCode extends the code C i times and returns the result. i is equal to 1
by default. Extending is done by adding a parity check bit after the last coordinate.
The coordinates of all codewords now add up to zero. In the binary case, each
codeword has even weight.

The word length increases by i. The size of the code remains the same. In the
binary case, the minimum distance increases by one if it was odd. In other cases,
that is not always true.

A cyclic code in general is no longer cyclic after extending.

Example
gap> Cl := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> C2 := ExtendedCode( Cl );

a linear [8,4,4]2 extended code

gap> IsEquivalent ( C2, ReedMullerCode( 1, 3 ) );
true

gap> List( AsSSortedList( C2 ), WeightCodeword );
[0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8]
gap> C3 := EvenWeightSubcode( Cl );

a linear [7,3,4]12..3 even weight subcode

To undo extending, call PuncturedCode (see PuncturedCode (6.1.2)). The func-
tion EvenWeightSubcode (see EvenWeightSubcode (6.1.3)) also returns a related
code with only even weights, but without changing its word length.

6.1.2 PuncturedCode

<& PuncturedCode( C ) (function)

PuncturedCode punctures C in the last column, and returns the result. Punc-
turing is done simply by cutting off the last column from each codeword. This
means the word length decreases by one. The minimum distance in general also
decrease by one.

This command can also be called with the syntax PuncturedCode( C, L ).
In this case, PuncturedCode punctures C in the columns specified by L, a list of
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integers. All columns specified by L are omitted from each codeword. If / is the
length of L (so the number of removed columns), the word length decreases by /.
The minimum distance can also decrease by [ or less.

Puncturing a cyclic code in general results in a non-cyclic code. If the code is
punctured in all the columns where a word of minimal weight is unequal to zero,

the dimension of the resulting code decreases.
Example
gap> Cl := BCHCode( 15, 5, GF(2) );

a cyclic [15,7,5]3..5 BCH code, delta=5, b=l over GF(2)

gap> C2 := PuncturedCode( Cl );

a linear [14,7,4]3..5 punctured code
gap> ExtendedCode( C2 ) = Cl;

false

gap> PuncturedCode( C1, [1,2,3,4,5,6,7] );

a linear [8,7,1]1 punctured code

gap> PuncturedCode ( WholeSpaceCode( 4, GF(5) ) );
a linear [3,3,1]0 punctured code # The dimension decreased from 4 g

ExtendedCode extends the code again (see ExtendedCode (6.1.1)), although in
general this does not result in the old code.

6.1.3 EvenWeightSubcode

<& EvenWeightSubcode ( C ) (function)

EvenWeightSubcode returns the even weight subcode of C, consisting of all
codewords of C with even weight. If C is a linear code and contains words of odd
weight, the resulting code has a dimension of one less. The minimum distance
always increases with one if it was odd. If C is a binary cyclic code, and g(x) is
its generator polynomial, the even weight subcode either has generator polynomial
g(x) (if g(x) is divisible by x — 1) or g(x) - (x — 1) (if no factor x — 1 was present in
g(x)). So the even weight subcode is again cyclic.

Of course, if all codewords of C are already of even weight, the returned code

is equal to C.

Example

gap> Cl := EvenWeightSubcode( BCHCode( 8, 4, GF(3) ) );

an (8,33,4..8)3..8 even weight subcode

gap> List( AsSSortedList( Cl ), WeightCodeword );

[0, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4, 6, 4, 4, 8, 6, 4, 6,
4, 6, 4, 6, 8, 4, 6, 8]

gap> EvenWeightSubcode ( ReedMullerCode( 1, 3 ) );

a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

o]
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ExtendedCode also returns a related code of only even weights, but without reduc-
ing its dimension (see ExtendedCode (6.1.1)).

6.1.4 PermutedCode

& PermutedCode( C, L ) (function)

PermutedCode returns C after column permutations. L (in GAP disjoint cy-
cle notation) is the permutation to be executed on the columns of C. If C is
cyclic, the result in general is no longer cyclic. If a permutation results in the
same code as C, this permutation belongs to the automorphism group of C (see
AutomorphismGroup (4.4.3)). In any case, the returned code is equivalent to C
(see IsEquivalent (4.4.1)).

Example
gap> Cl := PuncturedCode( ReedMullerCode( 1, 4 ) );
a linear [15,5,7]5 punctured code

[

gap> C2 := BCHCode( 15, 7, GF(2) );

a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C2 = C1;

false

gap> p := CodelIsomorphism( Cl, C2 );
(2, 4,14, 9,13, 7,11,10, 6, 8,12, 5)
gap> C3 := PermutedCode( Cl, p );

a linear [15,5,7]5 permuted code
gap> C2 = C3;

true

6.1.5 ExpurgatedCode

<& ExpurgatedCode( C, L ) (function)

ExpurgatedCode expurgates the code C; by throwing away codewords in list
L. C must be a linear code. L must be a list of codeword input. The generator
matrix of the new code no longer is a basis for the codewords specified by L. Since
the returned code is still linear, it is very likely that, besides the words of L, more
codewords of C are no longer in the new code.

Example
gap> Cl := HammingCode( 4 );; WeightDistribution( Cl );

[1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap> L := Filtered( AsSSortedList (Cl), i -> WeightCodeword(i) = 3 );|;
gap> C2 := ExpurgatedCode( Cl, L );

a linear [15,4,3..4]5..11 code, expurgated with 7 word(s)
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gap> WeightDistribution( C2 );
[, o0, o, 0, 14, 0, 0, 0, 1, 0, 0, 0, 0, O, 0, 0]

This function does not work on non-linear codes. For removing words from a non-
linear code, use RemovedElement sCode (see RemovedElement sCode (6.1.7)). For
expurgating a code of all words of odd weight, use ‘EvenWeightSubcode’ (see
EvenWeightSubcode (6.1.3)).

6.1.6 AugmentedCode

<& AugmentedCode( C, L ) (function)

AugmentedCode returns C after augmenting. C must be a linear code, L must be
a list of codeword inputs. The generator matrix of the new code is a basis for the
codewords specified by L as well as the words that were already in code C. Note
that the new code in general will consist of more words than only the codewords
of C and the words L. The returned code is also a linear code.

This command can also be called with the syntax AugmentedCode (C). When
called without a list of codewords, AugmentedCode returns C after adding the all-
ones vector to the generator matrix. C must be a linear code. If the all-ones vector
was already in the code, nothing happens and a copy of the argument is returned.
If C is a binary code which does not contain the all-ones vector, the complement of
all codewords is added.

Example
gap> C31 := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

gap> C32 := AugmentedCode (C31,["00000011","00000101","00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)

gap> C32 = ReedMullerCode( 2, 3 );

true

gap> Cl := CordaroWagnerCode (6);

a linear [6,2,4]2..3 Cordaro-Wagner code over GF(2)

gap> Codeword( [0,0,1,1,1,1] ) in C1;

true

gap> C2 := AugmentedCode( Cl );

a linear [6,3,1..2]2..3 code, augmented with 1 word(s)

gap> Codeword( [1,1,0,0,0,0] ) in C2;

true

The function AddedElementsCode adds elements to the codewords instead of
adding them to the basis (see AddedElementsCode (6.1.8)).
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6.1.7 RemovedElementsCode

<& RemovedElementsCode( C, L ) (function)

RemovedElementsCode returns code C after removing a list of codewords L
from its elements. L must be a list of codeword input. The result is an unrestricted

code.
Example

gap> Cl := HammingCode( 4 );; WeightDistribution( C1 );

(1 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]

gap> L := Filtered( AsSSortedList (Cl), i -> WeightCodeword(i) = 3 );|;

gap> C2 := RemovedElementsCode( Cl, L );

a (15,2013,3..15)2..15 code with 35 word(s) removed

gap> WeightDistribution( C2 );

(1 o0, 0, 0, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]

gap> MinimumDistance( C2 );

3 # C2 is not linear, so the minimum weight does not have to
# be equal to the minimum distance

Adding elements to a code is done by the function AddedElementsCode (see
AddedElementsCode (6.1.8)). To remove codewords from the base of a linear
code, use ExpurgatedCode (see ExpurgatedCode (6.1.5)).

6.1.8 AddedElementsCode

& AddedElementsCode( C, L ) (function)

AddedElementsCode returns code C after adding a list of codewords L to its
elements. L must be a list of codeword input. The result is an unrestricted code.
Example
gap> Cl := NullCode( 6, GF(2) );

a cyclic [6,0,6]6 nullcode over GF(2)
gap> C2 := AddedElementsCode( C1, [ "111111" ] );

a (6,2,1..6)3 code with 1 word(s) added

gap> IsCyclicCode( C2 );

true

gap> C3 := AddedElementsCode( C2, [ "101010", "010101"™ ] );
a (6,4,1..6)2 code with 2 word(s) added

gap> IsCyclicCode( C3 );

true

To remove elements from a code, use RemovedElementsCode (see
RemovedElementsCode (6.1.7)). To add elements to the base of a linear
code, use AugmentedCode (see AugmentedCode (6.1.6)).
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6.1.9 ShortenedCode

<& ShortenedCode( C[, L] ) (function)

ShortenedCode ( C ) returns the code C shortened by taking a cross section.
If C is a linear code, this is done by removing all codewords that start with a non-
zero entry, after which the first column is cut off. If C was a [n,k,d] code, the
shortened code generally is a [n — 1,k — 1,d] code. It is possible that the dimension
remains the same; it is also possible that the minimum distance increases.

If C is a non-linear code, ShortenedCode first checks which finite field element
occurs most often in the first column of the codewords. The codewords not starting
with this element are removed from the code, after which the first column is cut
off. The resulting shortened code has at least the same minimum distance as C.

This command can also be called using the syntax ShortenedCode (C,L).
When called in this format, ShortenedCode repeats the shortening process on each
of the columns specified by L. L therefore is a list of integers. The column numbers
in L are the numbers as they are before the shortening process. If L has [ entries,
the returned code has a word length of [ positions shorter than C.

Example
gap> Cl := HammingCode( 4 );

a linear [15,11,3]1 Hamming (4,2) code over GF(2)

gap> C2 := ShortenedCode( Cl );

a linear [14,10,3]2 shortened code

gap> C3 := ElementsCode( ["1000", "1101", "0011" ], GF(2) );
a (4,3,1..4)2 user defined unrestricted code over GF(2)

gap> MinimumDistance( C3 );

2

gap> C4 := ShortenedCode( C3 );

a (3,2,2..3)1..2 shortened code

gap> AsSSortedList( C4 );

[[T000], [20117]

gap> C5 := HammingCode( 5, GF(2) );

a linear [31,26,3]1 Hamming (5,2) code over GF (2)

gap> C6 := ShortenedCode( C5, [ 1, 2, 3] );

a linear [28,23,3]2 shortened code

gap> OptimalityLinearCode( C6 );

0

The function LengthenedCode lengthens the code again (only for linear codes),
see LengthenedCode (6.1.10). In general, this is not exactly the inverse function.
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6.1.10 LengthenedCode

<& LengthenedCode ( C[, 1] ) (function)

LengthenedCode ( C ) returns the code C lengthened. C must be a linear code.
First, the all-ones vector is added to the generator matrix (see AugmentedCode
(6.1.6)). If the all-ones vector was already a codeword, nothing happens to the
code. Then, the code is extended i times (see ExtendedCode (6.1.1)). 1 is equal to
1 by default. If C was an [n, k] code, the new code generally is a [n+ i,k + 1] code.

Example
gap> Cl := CordaroWagnerCode( 5 );
a linear [5,2,3]2 Cordaro-Wagner code over GF (2)

[
gap> C2 := LengthenedCode( Cl );
a linear [6,3,2]2..3 code, lengthened with 1 column(s)

ShortenedCode’ shortens the code, see ShortenedCode (6.1.9). In general, this
is not exactly the inverse function.

6.1.11 ResidueCode

& ResidueCode( C[, c] ) (function)

The function ResidueCode takes a codeword c of C (if ¢ is omitted, a codeword
of minimal weight is used). It removes this word and all its linear combinations
from the code and then punctures the code in the coordinates where c is unequal to
zero. The resulting code is an [n —w,k— 1,d — |[w* (¢ —1)/q]] code. C must be a
linear code and ¢ must be non-zero. If ¢ is not in then no change is made to C.

Example
gap> Cl := BCHCode( 15, 7 );

a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)

gap> C2 := ResidueCode( Cl );

a linear [8,4,4]2 residue code

gap> ¢ := Codeword( [ 0,0,0,1,0,0,1,1,0,2,0,1,1,1,1 1, C1);;
gap> C3 := ResidueCode( Cl, c );

a linear [7,4,3]1 residue code

6.1.12 ConstructionBCode

<& ConstructionBCode( C ) (function)
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The function ConstructionBCode takes a binary linear code C and calculates
the minimum distance of the dual of C (see DualCode (6.1.13)). It then removes
the columns of the parity check matrix of C where a codeword of the dual code
of minimal weight has coordinates unequal to zero. The resulting matrix is a par-
ity check matrix for an [n — dd,k — dd + 1,> d] code, where dd is the minimum
distance of the dual of C.

Example
gap> Cl := ReedMullerCode( 2, 5 );

a linear [32,16,8]6 Reed-Muller (2,5) code over GF(2)
gap> C2 := ConstructionBCode( Cl );

a linear [24,9,8]5..10 Construction B (8 coordinates)
gap> BoundsMinimumDistance( 24, 9, GF(2) );

rec(n :=24, k :=9, q := 2, references := rec( ),
construction := [ [ Operation "UUVCode" ],
[ [ [ Operation "UUVCode" ], [ [ [ Operation "DualCode" ],
[ [ [ Operation "RepetitionCode" 1, [ 6, 2 ]
[ [ Operation "CordaroWagnerCode" 1, [ 61 1 1 1,
[ [ Operation "CordaroWagnerCode" 1, [ 12 ] 1 ] 1, lowerBg
lowerBoundExplanation := [ "Lb(24,9)=8, u utv construction of Cl 4

"Lb(12,7)=4, u u+t+v construction of Cl and C2:",
"Lb(6,5)=2, dual of the repetition code",
"Lb(6,2)=4, Cordaro-Wagner code", "Lb(12,2)=8, Cordaro-Wagner
upperBound := 8,
upperBoundExplanation := [ "Ub(24,9)=8, otherwise construction B w
contradict:", "Ub(18,4)=8, Griesmer bou
# so C2 is optimal

6.1.13 DualCode

& DualCode( C ) (function)

DualCode returns the dual code of C. The dual code consists of all codewords
that are orthogonal to the codewords of C. If C is a linear code with generator matrix
G, the dual code has parity check matrix G (or if C has parity check matrix H, the
dual code has generator matrix H). So if C is a linear [n, k| code, the dual code of C
is a linear [n,n — k] code. If C is a cyclic code with generator polynomial g(x), the
dual code has the reciprocal polynomial of g(x) as check polynomial.

The dual code is always a linear code, even if C is non-linear.

If a code C is equal to its dual code, it is called self-dual.

Example
gap> R := ReedMullerCode( 1, 3 );

a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)

ndll
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gap> RD := DualCode( R );

a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> R = RD;

true

gap> N := WholeSpaceCode( 7, GF(4) );

a cyclic [7,7,1]10 whole space code over GF (4)

gap> DualCode( N ) = NullCode( 7, GF(4) );

true

6.1.14 ConversionFieldCode

& ConversionFieldCode( C ) (function)

ConversionFieldCode returns the code obtained from C after converting its
field. If the field of C is GF (¢™), the returned code has field GF(g). Each symbol
of every codeword is replaced by a concatenation of m symbols from GF(g). If C
is an (n,M,d;) code, the returned code is a (n-m,M,d,) code, where d» > d;.

See also HorizontalConversionFieldMat (7.3.10).

Example
gap> R := RepetitionCode( 4, GF(4) );

a cyclic [4,1,4]3 repetition code over GF (4)

gap> R2 := Conver51onF1eldCode( R );

a linear [8 413..4 code, converted to basefield GF(2)
gap> Size( ) = Slze( R2 );

true

gap> GeneratorMat( R );

[ [ 2(2)°0, Z2(2)°0, Z2(2)70, Z2(2)°0 1 ]

gap> GeneratorMat ( R2 );

[ [ 2(2)°0, 0%Z(2), Z(2)°0, 0*Z(2), Z(2)"0, 0*Z(2), Z(2)"0, 0*Z(2
[ 0%Z(2), Z2(2)"0, 0*Z(2), "

) ]
Zz(2)°0, 0*z(2), Z2(2)°0, 0*Z(2), Z(2)°0 ]

6.1.15 TraceCode

& TraceCode( C ) (function)

Input: C is a linear code defined over an extension E of F (F is the “base field”)

Output: The linear code generated by Trg /¢ (c), for all ¢ € C.

TraceCode returns the image of the code C under the trace map. If the field of
C is GF(q™), the returned code has field GF(q).

Very slow. It does not seem to be easy to related the parameters of the trace
code to the original except in the “Galois closed” case.
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Example
gap> C:=RandomLinearCode(10,4,GF(4)); MinimumDistance(C);

a [10,4,?] randomly generated code over GF (4)

5

gap> trC:=TraceCode (C,GF (2)); MinimumDistance (trC);

a linear [10,7,1]1..3 user defined unrestricted code over GF(2)
1

6.1.16 CosetCode

& CosetCode( C, w ) (function)

CosetCode returns the coset of a code C with respect to word w. w must be of
the codeword type. Then, w is added to each codeword of C, yielding the elements
of the new code. If C is linear and w is an element of C, the new code is equal to C,
otherwise the new code is an unrestricted code.

Generating a coset is also possible by simply adding the word w to C. See 4.2.
Example
gap> H := HammingCode (3, GF(2));

a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> ¢ := Codeword("1011011");; c in H;

false

gap> C := CosetCode(H, c);

a (7,16,3)1 coset code

gap> List (AsSSortedList (C), el-> Syndrome (H, el));
rr11113, (1113}, (1113}, 1111731, 1111171, 11111],
(11133, (111], 11113, (1r11], 111171, [1111],
(11131, (1111, 111173, [1111]]
# All elements of the coset have the same syndrome in H
6.1.17 ConstantWeightSubcode
<& ConstantWeightSubcode( C, w ) (function)

ConstantWeightSubcode returns the subcode of C that only has codewords of
weight w. The resulting code is a non-linear code, because it does not contain the
all-zero vector.

This command also can be called with the  syntax
ConstantWeightSubcode (C) In this format, ConstantWeightSubcode re-
turns the subcode of C consisting of all minimum weight codewords of C.
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ConstantWeightSubcode first checks if Leon’s binary wtdist exists on your
computer (in the default directory). If it does, then this program is called. Other-
wise, the constant weight subcode is computed using a GAP program which checks
each codeword in C to see if it is of the desired weight.

Example
gap> N := NordstromRobinsonCode();; WeightDistribution (N);

(1, o, o, o, 0, 0, 112, 0, 30, 0, 112, 0, 0O, O, O, O, 1 ]

gap> C := ConstantWeightSubcode (N, 8);

a (16,30,6..16)5..8 code with codewords of weight 8

gap> WeightDistribution(C);

r o o, o0, o, 0, 0, 0, 0, 30, 0, 0, 0, O, O, O, 0, O]

gap> eg := ExtendedTernaryGolayCode ();; WeightDistribution (eq);
[1, 0, 0, 0, 0, 0, 264, 0, O, 440, 0, 0, 24 ]

gap> C := ConstantWeightSubcode (eqg);

a (12,264,6..12)3..6 code with codewords of weight 6

gap> WeightDistribution(C);

(o o o, 0, 0, 0, 264, 0, 0, 0, 0, 0, 0]

6.1.18 StandardFormCode

& StandardFormCode ( C ) (function)

StandardFormCode returns C after putting it in standard form. If C is a non-
linear code, this means the elements are organized using lexicographical order.
This means they form a legal GAP ‘Set’.

If C is a linear code, the generator matrix and parity check matrix are put in
standard form. The generator matrix then has an identity matrix in its left part,
the parity check matrix has an identity matrix in its right part. Although quava
always puts both matrices in a standard form using BaseMat, this never alters the
code. StandardFormCode even applies column permutations if unavoidable, and
thereby changes the code. The column permutations are recorded in the construc-
tion history of the new code (see Display (4.6.3)). C and the new code are of
course equivalent.

If C is a cyclic code, its generator matrix cannot be put in the usual upper trian-
gular form, because then it would be inconsistent with the generator polynomial.
The reason is that generating the elements from the generator matrix would result
in a different order than generating the elements from the generator polynomial.
This is an unwanted effect, and therefore StandardFormCode just returns a copy

of C for cyclic codes.

Example

gap> G := GeneratorMatCode( z(2) * [ [O,1,1,0], [0,1,0,1], [0,0,1,1]
"random form code", GF(2) );

1,
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a linear [4,2,1..2]1..2 random form code over GF (2)

gap> Codeword( GeneratorMat( G ) );
[10101171, 10011171
gap> Codeword( GeneratorMat ( StandardFormCode( G ) ) );

[[10017], [01O0117]

6.1.19 PiecewiseConstantCode

O PiecewiseConstantCode ( part, wts[, F] ) (function)

PiecewiseConstantCode returns a code with length n = Y n;, where

part=[nj,...,ng|. wts is a list of constraints w = (wy,...,w), each of length
k, where 0 < w; < n;. The default field is GF(2).

A constraint is a list of integers, and a word ¢ = (cy, ..., cx) (according to part,
i.e., each ¢; is a subword of length ;) is in the resulting code if and only if, for some
constraint w € wts, ||¢;|| = w; for all 1 <i <k, where ||...|| denotes the Hamming
weight.

An example might make things clearer:

Example
gap> PiecewiseConstantCode( [ 2, 3 ],

rcro, 01, 00,31, 01101, [2, 211,GF(2) );

the C code programs are compiled, so using Leon’s binary....
the C code programs are compiled, so using Leon’s binary....
the C code programs are compiled, so using Leon’s binary....
the C code programs are compiled, so using Leon’s binary....
a (5,7,1..5)1..5 piecewise constant code over GF(2)
gap> AsSSortedList (last);
[[ 0000011, [OO01

(1101171, [111
gap>

1o 0

1 1, 1100007,
11,1

1 01000
0 11110171

The first constraint is satisfied by codeword 1, the second by codeword 2, the third
by codewords 3 and 4, and the fourth by codewords 5, 6 and 7.
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6.2 Functions that Generate a New Code from Two Given
Codes

6.2.1 DirectSumCode

& DirectSumCode( C1, C2 ) (function)

DirectSumCode returns the direct sum of codes C1 and C2. The direct sum
code consists of every codeword of C1 concatenated by every codeword of C2.
Therefore, if Ci was a (n;,M;,d;) code, the result is a (n; +ny, My * Mo, min(d;,d>))
code.

If both C1 and C2 are linear codes, the result is also a linear code. If one of
them is non-linear, the direct sum is non-linear too. In general, a direct sum code
is not cyclic.

Performing a direct sum can also be done by adding two codes (see Section
4.2). Another often used method is the ‘u, u+v’-construction, described in UUVCode
(6.2.2).

Example
gap> Cl := ElementsCode( [ [1,0], [4,5] 1, GF(7) );;

gap> C2 := ElementsCode( [ [0,0,0], [3,3,3]1 1, GE(7) );;

gap> D := DirectSumCode (Cl, C2);;

gap> AsSSortedList (D) ;

[f100007], [20333], [450001, [45333171]1]
gap> D = Cl + C2; # addition = direct sum

true

6.2.2 UUVCode

& UUVCode ( C1, C2 ) (function)

UUVCode returns the so-called (u||u+v) construction applied to C1 and C2. The
resulting code consists of every codeword u of C1 concatenated by the sum of « and
every codeword v of C2. If C1 and C2 have different word lengths, sufficient zeros
are added to the shorter code to make this sum possible. If Ci is a (n;, M;,d;) code,
the result is an (n) +max(ny,ny), My - My, min(2-d,,d,)) code.

If both C1 and C2 are linear codes, the result is also a linear code. If one of
them is non-linear, the UUV sum is non-linear too. In general, a UUV sum code is
not cyclic.

The function DirectSumCode returns another sum of codes (see
DirectSumCode (6.2.1)).
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Example
gap> Cl := EvenWeightSubcode (WholeSpaceCode (4, GF(2)));
a cyclic [4,3,2]1 even weight subcode
gap> C2 := RepetitionCode (4, GF(2));
a cyclic [4,1,4]2 repetition code over GF(2)

gap> R := UUVCode (C1, C2);

a linear [8,4,4]2 U U+V construction code
gap> R = ReedMullerCode (1, 3);

true

6.2.3 DirectProductCode

& DirectProductCode( C1, C2 ) (function)

DirectProductCode returns the direct product of codes C1 and C2. Both must
be linear codes. Suppose Ci has generator matrix G;. The direct product of C1 and
C2 then has the Kronecker product of G| and G, as the generator matrix (see the
GAP command KroneckerProduct).

If Ci is a [n;,k;,d;] code, the direct product then is an [n; - np,k; - kp,d, - ds]
code.

Example
gap> L1 : LeXLCode(IO, 4, GF(2));
a linear 412..4 lexicode over GF(2)

[10
gap> L2 := ex1Code(8, 3, GF(2));
a linear [8,4,3]2..3 lexicode over GF(2)
gap> D := DirectProductCode (L1, L2);
a linear [80,20,12]20..45 direct product code

6.2.4 IntersectionCode

& IntersectionCode( Cl1, C2 ) (function)

IntersectionCode returns the intersection of codes C1 and C2. This code
consists of all codewords that are both in C1 and C2. If both codes are linear, the
result is also linear. If both are cyclic, the result is also cyclic.

Example
gap> C := CyclicCodes (7, GF(2));
[ a cyclic [7,7,1]10 enumerated code over GF(2),

a cyclic [7,6,1..2]1 enumerated code over GF(2),

a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
a cyclic [7,0,7]7 enumerated code over GF(2),

a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
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a cyclic [7,4,1..3]1 enumerated code over GF(2),
a cyclic [7,1,7]3 enumerated code over GF(2),
a cyclic [7,4,1..3]1 enumerated code over GF(2) ]
gap> IntersectionCode (C[6], C[8]) = C[7];
true

The hull of a linear code is the intersection of the code with its dual code. In other
words, the hull of C is IntersectionCode (C, DualCode (C)).

6.2.5 UnionCode

<& UnionCode( C1, C2 ) (function)

UnionCode returns the union of codes C1 and C2. This code consists of the
union of all codewords of C1 and C2 and all linear combinations. Therefore this
function works only for linear codes. The function AddedElementsCode can be
used for non-linear codes, or if the resulting code should not include linear combi-
nations. See AddedElementsCode (6.1.8). If both arguments are cyclic, the result
is also cyclic.

Example
gap> G := GeneratorMatCode([[1,0,1],[0,1,1]11*Z2(2)"°0, GF(2));

a linear [3,2,1..2]1 code defined by generator matrix over GF (2)
gap> H := GeneratorMatCode([[1,1,1]11*Z(2)"0, GF(2));

a linear [3,1,3]1 code defined by generator matrix over GF (2)
gap> U := UnionCode (G, H);

a linear [3,3,1]0 union code

gap> ¢ := Codeword("010");; c in G;

false

gap> ¢ in H;

false

gap> ¢ in U;

true

6.2.6 ExtendedDirectSumCode

& ExtendedDirectSumCode( L, B, m ) (function)

The extended direct sum construction is described in section V of Graham and
Sloane [GS85]. The resulting code consists of m copies of L, extended by repeating
the codewords of B m times.

Suppose L is an [n,k.]r;, code, and B is an [n, kg|rp code (non-linear codes are
also permitted). The length of B must be equal to the length of L. The length of the
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new code is n = mny, the dimension (in the case of linear codes) is k < mk;, + kg,
and the covering radius is r < |m¥(L,B) |, with

1
W(L,B) = max — Yy d(L,v+u).
( ) uEanL 2k VEZB ( )

However, this computation will not be executed, because it may be too time con-
suming for large codes.

If L C B, and L and B are linear codes, the last copy of L is omitted. In this case
the dimension is k = mky + (kg — k).
Example
gap> ¢ := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> d := WholeSpaceCode( 7, GF(2) );
a cyclic [7,7,1]10 whole space code over GF(2)

gap> e := ExtendedDirectSumCode( c, d, 3 );
a linear [21,15,1..3]2 3-fold extended direct sum code

6.2.7 AmalgamatedDirectSumCode

<& AmalgamatedDirectSumCode ( cl, c2[, check] ) (function)

AmalgamatedDirectSumCode returns the amalgamated direct sum of the
codes cl and c2. The amalgamated direct sum code consists of all codewords
of the form (u||0||v) if (u#]0) € ¢; and (0||v) € ¢, and all codewords of the
form (u||1||v) if (u]|1) € c; and (1|/v) € c2. The result is a code with length
n=n;+ny—1andsize M < M;-M,/2.

If both codes are linear, they will first be standardized, with information sym-
bols in the last and first coordinates of the first and second code, respectively.

If c1 is a normal code (see IsNormalCode (7.4.5)) with the last coordinate
acceptable (see IsCoordinateAcceptable (7.4.3)), and c2 is a normal code with
the first coordinate acceptable, then the covering radius of the new code is r <
r1 + r2. However, checking whether a code is normal or not is a lot of work, and
almost all codes seem to be normal. Therefore, an option check can be supplied.
If check is true, then the codes will be checked for normality. If check is false or
omitted, then the codes will not be checked. In this case it is assumed that they are
normal. Acceptability of the last and first coordinate of the first and second code,
respectively, is in the last case also assumed to be done by the user.

Example
gap> ¢ := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF (2)
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gap> d := ReedMullerCode( 1, 4 );

a linear [16,5,8]6 Reed-Muller (1,4) code over GF (2)
gap> e := DirectSumCode( c, d );

a linear [23,9,3]7 direct sum code

gap> f := AmalgamatedDirectSumCode( c, d );;

gap> MinimumDistance( f );;

gap> CoveringRadius( f );;

gap> f;

a linear [22,8,3]7 amalgamated direct sum code

6.2.8 BlockwiseDirectSumCode

& BlockwiseDirectSumCode ( C1, L1, C2, L2 ) (function)

BlockwiseDirectSumCode returns a subcode of the direct sum of C1 and C2.
The fields of C1 and C2 must be same. The lists L1 and L2 are two equally long
with elements from the ambient vector spaces of C1 and C2, respectively, or L1 and
L2 are two equally long lists containing codes. The union of the codes in L1 and
L2 must be C1 and C2, respectively.

In the first case, the blockwise direct sum code is defined as

bds= | (Ci+(L1);) ® (C2+ (L2)y),

1<i</

where / is the length of L1 and L2, and & is the direct sum.
In the second case, it is defined as

bds = U ((L1)i ® (L2)i)-

1<i<s

The length of the new code is n = nj +ny.

Example
gap> Cl := HammingCode( 3, GF(2) );;
gap> C2 := EvenWeightSubcode ( WholeSpaceCode( 6, GF(2) ) );;

gap> BlockwiseDirectSumCode( C1, [[ 0,0,0,0,0,0,0 ], 1,0,1,0,1,0,0
>c2, [ 0,0,0,0,0,0 1,1 1,0,1,0,1,0 11 );

a (13,1024,1..13)1..2 blockwise direct sum code




Chapter 7

Bounds on codes, special matrices
and miscellaneous functions

In this chapter we describe functions that determine bounds on the size and mini-
mum distance of codes (Section 7.1), functions that determine bounds on the size
and covering radius of codes (Section 7.2), functions that work with special matri-
ces guava needs for several codes (see Section 7.3), and constructing codes or
performing calculations with codes (see Section 7.5).

7.1 Distance bounds on codes

This section describes the functions that calculate estimates for upper bounds on
the size and minimum distance of codes. Several algorithms are known to com-
pute a largest number of words a code can have with given length and minimum
distance. It is important however to understand that in some cases the true upper
bound is unknown. A code which has a size equalto the calculated upper bound
may not have been found. However, codes that have a larger size do not exist.

A second way to obtain bounds is a table. In quava, an extensive table is
implemented for linear codes over GF(2), GF(3) and GF(4). It contains bounds
on the minimum distance for given word length and dimension. For binary codes,
it contains entries for word length less than or equal to 257. For codes over GF(3)
and GF(4), it contains entries for word length less than or equal to 130. These
tables have not been maintained since 1998. For the latest information, please see
A. E. Brouwer’s tables [Bro05] on the internet.

Firstly, we describe functions that compute specific upper bounds on the
code size (see UpperBoundSingleton (7.1.1), UpperBoundHamming (7.1.2),
UpperBoundJohnson (7.1.3), UpperBoundPlotkin (7.1.4), UpperBoundElias

134
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(7.1.5) and UpperBoundGriesmer (7.1.6)).

Next we describe a function that computes quava’s best upper bound on the
code size (see UpperBound (7.1.8)).

Then we describe two functions that compute a lower and upper bound on
the minimum distance of a code (see LowerBoundMinimumDistance (7.1.9) and
UpperBoundMinimumDistance (7.1.12)).

Finally, we describe a function that returns a lower and upper bound on the
minimum distance with given parameters and a description of how the bounds
were obtained (see BoundsMinimumDistance (7.1.13)).

7.1.1 UpperBoundSingleton

<& UpperBoundSingleton( n, d, q ) (function)

UpperBoundSingleton returns the Singleton bound for a code of length n,
minimum distance d over a field of size g. This bound is based on the shortening
of codes. By shortening an (n,M,d) code d — 1 times, an (n —d +1,M,1) code
results, with M < ¢"~9*! (see ShortenedCode (6.1.9)). Thus

M S ql’l—d-‘r] )

Codes that meet this bound are called maximum distance separable (see
IsMDSCode (4.3.7)).

Example
gap> UpperBoundSingleton (4, 3, 5);
25
gap> C := ReedSolomonCode (4,3);; Size(C);
25
gap> IsMDSCode (C);
true
7.1.2 UpperBoundHamming
<& UpperBoundHamming ( n, d, q ) (function)

The Hamming bound (also known as the sphere packing bound) returns an
upper bound on the size of a code of length n, minimum distance d, over a field
of size g. The Hamming bound is obtained by dividing the contents of the entire
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space GF(q)" by the contents of a ball with radius |(d —1)/2]. As all these balls
are disjoint, they can never contain more than the whole vector space.
n

q
M <
~ V(nye)’

where M is the maxmimum number of codewords and V(n,e) is equal to the
contents of a ball of radius e (see SphereContent (7.5.5)). This bound is use-
ful for small values of d. Codes for which equality holds are called perfect (see
IsPerfectCode (4.3.6)).

Example
gap> UpperBoundHamming( 15, 3, 2 );
2048

gap> C := HammingCode( 4, GF(2) );

a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size( C );

2048

7.1.3 UpperBoundJohnson

<& UpperBoundJohnson( n, d ) (function)

The Johnson bound is an improved version of the Hamming bound (see
UpperBoundHamming (7.1.2)). In addition to the Hamming bound, it takes into
account the elements of the space outside the balls of radius e around the elements
of the code. The Johnson bound only works for binary codes.

Example
gap> UpperBoundJohnson( 13, 5 );

77

gap> UpperBoundHamming( 13, 5, 2);
89 # in this case the Johnson bound is better

7.1.4 UpperBoundPlotkin

<& UpperBoundPlotkin( n, d, q ) (function)

The function UpperBoundPlotkin calculates the sum of the distances of all
ordered pairs of different codewords. It is based on the fact that the minimum
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distance is at most equal to the average distance. It is a good bound if the weights
of the codewords do not differ much. It results in:

M= =g

where M is the maximum number of codewords. In this case, d must be larger than
(1 —1/g)n, but by shortening the code, the case d ( (1 —1/g)n is covered.

Example
gap> UpperBoundPlotkin( 15, 7, 2 );
32

gap> C := BCHCode( 15, 7, GF(2) );

a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> Size(C);

32

gap> WeightDistribution(C);

(1, o, o, o, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 1]

7.1.5 UpperBoundElias

<& UpperBoundElias( n, d, q ) (function)

The Elias bound is an improvement of the Plotkin bound (see
UpperBoundPlotkin (7.1.4)) for large codes. Subcodes are used to decrease the
size of the code, in this case the subcode of all codewords within a certain ball.
This bound is useful for large codes with relatively small minimum distances.

Example
gap> UpperBoundPlotkin( 16, 3, 2 );
12288
gap> UpperBoundElias( 16, 3, 2 );
10280
gap> UpperBoundElias( 20, 10, 3 );
16255
7.1.6 UpperBoundGriesmer
<& UpperBoundGriesmer( n, d, q ) (function)

The Griesmer bound is valid only for linear codes. It is obtained by counting
the number of equal symbols in each row of the generator matrix of the code. By
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omitting the coordinates in which all rows have a zero, a smaller code results. The
Griesmer bound is obtained by repeating this proces until a trivial code is left in
the end.

Example
gap> UpperBoundGriesmer( 13, 5, 2 );
64
gap> UpperBoundGriesmer( 18, 9, 2 );
8 # the maximum number of words for a linear code is 8
gap> Size( PuncturedCode( HadamardCode( 20, 1 ) ) );
20 # this non-linear code has 20 elements
7.1.7 IsGriesmerCode
O IsGriesmerCode( C ) (function)

IsGriesmerCode returns ‘true’ if a linear code C is a Griesmer code, and ‘false’
otherwise. A code is called Griesmer if its length satisfies

k—1
n=glkd] = Y121,
i=0 4

Example
gap> IsGriesmerCode ( HammingCode( 3, GF(2) ) );
true
gap> IsGriesmerCode( BCHCode( 17, 2, GF(2) ) );
false
7.1.8 UpperBound
<& UpperBound( n, d, g ) (function)

UpperBound returns the best known upper bound A(n,d) for the size of a code
of length n, minimum distance d over a field of size q. The function UpperBound
first checks for trivial cases (like d = 1 or n = d), and if the value is in the
built-in table. Then it calculates the minimum value of the upper bound using
the methods of Singleton (see UpperBoundSingleton (7.1.1)), Hamming (see
UpperBoundHamming (7.1.2)), Johnson (see UpperBoundJohnson (7.1.3)), Plotkin
(see UpperBoundPlotkin (7.1.4)) and Elias (see UpperBoundElias (7.1.5)). If
the code is binary, A(n,2-¢—1) = A(n+1,2-¢), so the UpperBound takes the
minimum of the values obtained from all methods for the parameters (n,2-¢— 1)
and (n+1,2-¢).
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Example
gap> UpperBound( 10, 3, 2 );
85
gap> UpperBound( 25, 9, 8 );
1211778792827540

7.1.9 LowerBoundMinimumDistance

& LowerBoundMinimumDistance( C ) (function)

In this form, LowerBoundMinimumDistance returns a lower bound for the
minimum distance of code C.

This command  can also be called using  the syn-
tax LowerBoundMinimumDistance( n, k, F ). In this form,
LowerBoundMinimumDistance returns a lower bound for the minimum dis-
tance of the best known linear code of length n, dimension k over field F. It uses

the mechanism explained in section 7.1.13.
Example

gap> C := BCHCode( 45, 7 );
a cyclic [45,23,7..9]6..16 BCH code, delta=7, b=1 over GF(2)
gap> LowerBoundMinimumDistance( C );

7 # designed distance is lower bound for minimum distance
gap> LowerBoundMinimumDistance( 45, 23, GF(2) );
10

7.1.10 LowerBoundGilbertVarshamov

<& LowerBoundGilbertVarshamov( n, d, gq ) (function)

This is the lower bound due (independently) to Gilbert and Varshamov. It says
that for each n and d, there exists a linear code having length » and minimum
distance d at least of size ¢"~' /SphereContent(n—1,d —2,GF(q)).

Example
gap> LowerBoundGilbertVarshamov(3,2,2);
4
gap> LowerBoundGilbertVarshamov (3, 3,2);
1
gap> LowerBoundMinimumDistance(3,3,2);
1
gap> LowerBoundMinimumDistance(3,2,2);
2
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7.1.11 LowerBoundSpherePacking

<& LowerBoundSpherePacking( n, d, q ) (function)

This is the lower bound due (independently) to Gilbert and Varshamov. It
says that for each n and r, there exists an unrestricted code at least of size
q" /SphereContent (n,d, GF (q)) minimum distance d.

Example
gap> LowerBoundSpherePacking(3,2,2);
2
gap> LowerBoundSpherePacking(3,3,2);
1

7.1.12 UpperBoundMinimumDistance

<& UpperBoundMinimumDistance( C ) (function)

In this form, UpperBoundMinimumDistance returns an upper bound for the
minimum distance of code C. For unrestricted codes, it just returns the word
length. For linear codes, it takes the minimum of the possibly known value from
the method of construction, the weight of the generators, and the value from the
table (see 7.1.13).

This command  can also be called using the syn-
tax UpperBoundMinimumDistance( n, k, F ). In this form,
UpperBoundMinimumDistance returns an upper bound for the minimum
distance of the best known linear code of length n, dimension k over field F. It
uses the mechanism explained in section 7.1.13.

Example

gap> C := BCHCode( 45, 7 );;

gap> UpperBoundMinimumDistance( C );

9

gap> UpperBoundMinimumDistance( 45, 23, GF(2) );
11

7.1.13 BoundsMinimumDistance

<& BoundsMinimumDistance( n, k, F ) (function)

The function BoundsMinimumDistance calculates a lower and upper bound
for the minimum distance of an optimal linear code with word length n, dimension



141

guava

k over field F. The function returns a record with the two bounds and an explanation
for each bound. The function Display can be used to show the explanations.

The values for the lower and upper bound are obtained from a table. quava
has tables containing lower and upper bounds for ¢ = 2(n < 257),3,4(n < 130).
(Current as of 1998 - now out of date.) These tables were derived from the table
of Brouwer. (See [BroO5], http://www.win.tue.nl/ aeb/voorlincod.html
for the most recent data.) For codes over other fields and for larger word lengths,
trivial bounds are used.

The resulting record can be used in the function BestKnownLinearCode (see
BestKnownLinearCode (5.2.12)) to construct a code with minimum distance equal
to the lower bound.

Example
BoundsMinimumDistance( 7, 3 );; DisplayBoundsInfo( bd
[7,3,d] code over GF(2) has d=4

gap> bounds :
an optimal linear

Lb(7,3)=4, by shortening of:

Lb(8,4)=4, u utv construction of Cl and C2:
Lb(4,3)=2, dual of the repetition code
Lb(4,1)=4, repetition code

Ub(7,3)=4, Griesmer bound

# The lower bound is equal to the upper bound, so a code with
# these parameters is optimal.

gap> C := BestKnownLinearCode( bounds );; Display( C );
a linear [7,3,4]2..3 shortened code of

a linear [8,4,4]2 U U+V construction code of

U: a cyclic [4,3,2]1 dual code of

a cyclic
a cyclic

4,1,4]12 repetition code over GF (2)
4,1,4]12 repetition code over GF(2)

[
V: [

7.2 Covering radius bounds on codes

7.2.1 BoundsCoveringRadius

< BoundsCoveringRadius( C ) (function)
BoundsCoveringRadius returns a list of integers. The first entry of this list is
the maximum of some lower bounds for the covering radius of C, the last entry the
minimum of some upper bounds of C.
If the covering radius
length 1 is  returned.

of
use

a list
makes

of C is  known,
BoundsCoveringRadius


http://www.win.tue.nl/~aeb/voorlincod.html
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of the functions GeneralLowerBoundCoveringRadius and
GeneralUpperBoundCoveringRadius.
Example
gap> BoundsCoveringRadius ( BCHCode( 17, 3, GF(2) ) );
[ 3 .. 4]
gap> BoundsCoveringRadius ( HammingCode ( 5, GF(2) ) );
[ 1]

7.2.2 IncreaseCoveringRadiusLowerBound

<& IncreaseCoveringRadiusLowerBound( C[, stopdist][,][startword]

) (function)

IncreaseCoveringRadiusLowerBound tries to increase the lower bound of
the covering radius of C. It does this by means of a probabilistic algorithm. This
algorithm takes a random word in GF (q)" (or startword if it is specified), and, by
changing random coordinates, tries to get as far from C as possible. If changing a
coordinate finds a word that has a larger distance to the code than the previous one,
the change is made permanent, and the algorithm starts all over again. If changing
a coordinate does not find a coset leader that is further away from the code, then
the change is made permanent with a chance of 1 in 100, if it gets the word closer
to the code, or with a chance of 1 in 10, if the word stays at the same distance.
Otherwise, the algorithm starts again with the same word as before.

If the algorithm did not allow changes that decrease the distance to the code, it
might get stuck in a sub-optimal situation (the coset leader corresponding to such
a situation - i.e. no coordinate of this coset leader can be changed in such a way
that we get at a larger distance from the code - is called an orphan).

If the algorithm finds a word that has distance stopdist to the code, it ends
and returns that word, which can be used for further investigations.

The variable InfoCoveringRadius can be set to Print to print the maximum
distance reached so far every 1000 runs. The algorithm can be interrupted with
CTRL-C, allowing the user to look at the word that is currently being examined
(called ‘current’), or to change the chances that the new word is made permanent
(these are called ‘staychance’ and ‘downchance’). If one of these variables is i,
then it corresponds with a i in 100 chance.

At the moment, the algorithm is only useful for codes with small dimension,
where small means that the elements of the code fit in the memory. It works with
larger codes, however, but when you use it for codes with large dimension, you
should be very patient. If running the algorithm quits GAP (due to memory prob-
lems), you can change the global variable CRMemSize to a lower value. This might
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cause the algorithm to run slower, but without quitting GAP. The only way to find

out the best value of CRMemSize is by experimenting.

Example
gap> C:=RandomLinearCode (10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> IncreaseCoveringRadiusLowerBound(C,10);

Number of runs: 1000 best distance so far: 3
Number of runs: 2000 best distance so far: 3
Number of changes: 100

Number of runs: 3000 best distance so far: 3
Number of runs: 4000 best distance so far: 3
Number of runs: 5000 best distance so far: 3
Number of runs: 6000 best distance so far: 3
Number of runs: 7000 Dbest distance so far: 3
Number of changes: 200

Number of runs: 8000 best distance so far: 3

Number of runs: 9000 best distance so far: 3
Number of runs: 10000 best distance so far: 3
Number of changes: 300

Number of runs: 11000 Dbest distance so far: 3
Number of runs: 12000 best distance so far: 3
Number of runs: 13000 best distance so far: 3
Number of changes: 400

Number of runs: 14000 best distance so far: 3
user interrupt at...

#

# used ctrl-c to break out of execution

#

. called from

function( arguments ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’'quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> current;
[ Z(2)°0, Z(2)°0, Z(2)°0, Z(2)"0, 0*z(2), Z(2)"0,
brk>
gap> CoveringRadius (C);
3

IncreaseCoveringRadiusLowerBound( code, -1, current )

called from
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7.2.3 ExhaustiveSearchCoveringRadius

<& ExhaustiveSearchCoveringRadius( C ) (function)

ExhaustiveSearchCoveringRadius does an exhaustive search to find the
covering radius of C. Every time a coset leader of a coset with weight w is found,
the function tries to find a coset leader of a coset with weight w+ 1. It does this
by enumerating all words of weight w+ 1, and checking whether a word is a coset
leader. The start weight is the current known lower bound on the covering radius.
Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> ExhaustiveSearchCoveringRadius (C);

Trying 3 ...

[3..5]

gap> CoveringRadius (C);
3

7.2.4 GeneralLowerBoundCoveringRadius

& GeneralLowerBoundCoveringRadius( C ) (function)

GeneralLowerBoundCoveringRadius returns a lower bound on the cov-
ering radius of C. It uses as many functions which names start with
LowerBoundCoveringRadius as possible to find the best known lower bound (at
least that quava knows of) together with tables for the covering radius of binary
linear codes with length not greater than 64.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> GeneralLowerBoundCoveringRadius (C);

2

gap> CoveringRadius (C);

3

7.2.5 GeneralUpperBoundCoveringRadius

<& GeneralUpperBoundCoveringRadius( C ) (function)
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GeneralUpperBoundCoveringRadius returns an upper bound on the cov-
ering radius of C. It uses as many functions which names start with
UpperBoundCoveringRadius as possible to find the best known upper bound (at
least that quava knows of).

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> GeneralUpperBoundCoveringRadius (C);

4

gap> CoveringRadius (C);

3

7.2.6 LowerBoundCoveringRadiusSphereCovering

O LowerBoundCoveringRadiusSphereCovering( n, M[, F,] false )

(function)

This command can also be called using the  syntax
LowerBoundCoveringRadiusSphereCovering( n, r, [F,] true ). If
the last argument of LowerBoundCoveringRadiusSphereCovering is false,
then it returns a lower bound for the covering radius of a code of size M and length
n. Otherwise, it returns a lower bound for the size of a code of length n and
covering radius r.

F is the field over which the code is defined. If F is omitted, it is assumed that
the code is over GF(2). The bound is computed according to the sphere covering
bound:

M-Vy(n,r) >q"

where V,(n,r) is the size of a sphere of radius r in GF (g)".
Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusSphereCovering (10,32,GF (2), false);
2

gap> LowerBoundCoveringRadiusSphereCovering(10,3,GF (2),true);

6
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7.2.7 LowerBoundCoveringRadiusVanWeel

<& LowerBoundCoveringRadiusVanWeel ( n, M[, F,] false ) (function)

This command can also be called using the  syntax
LowerBoundCoveringRadiusVanWeel ( n, r, [F,] true ). If the Ilast
argument of LowerBoundCoveringRadiusVanWeel is false, then it returns a
lower bound for the covering radius of a code of size M and length n. Otherwise, it
returns a lower bound for the size of a code of length n and covering radius r.

F is the field over which the code is defined. If F is omitted, it is assumed that
the code is over GF(2).

The Van Wee bound is an improvement of the sphere covering bound:

o ine—of ([132]451)) oo

Example
gap> C:=RandomLinearCode(10,5,GF (2));
a [10,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusVanWeel (10,32,GF (2), false);
2

gap> LowerBoundCoveringRadiusVanWeel (10, 3,GF (2),true);

6

7.2.8 LowerBoundCoveringRadiusVanWee2

<& LowerBoundCoveringRadiusVanWee2 ( n, M, false ) (function)

This command can also be called using the  syntax
LowerBoundCoveringRadiusVanWee2 ( n, r [,true] ). If the last argu-
ment of LowerBoundCoveringRadiusVanWee?2 is false, then it returns a lower
bound for the covering radius of a code of size M and length n. Otherwise, it
returns a lower bound for the size of a code of length n and covering radius r.

This bound only works for binary codes. It is based on the following inequality:

((Vz(n,2) — %(r+2)(r— 1)) Va(n,r) +8V2(n,r—2))
(Va(n,2) =L (r+2)(r—1)+e¢)

M- > ",
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e r+2 n—r+1 / r+2 n—r+1
S\ 2 2 2 2 ‘

Example

gap> C:=RandomLinearCode(10,5,GF(2));

a [10,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusVanWee2 (10,32, false);

2

gap> LowerBoundCoveringRadiusVanWee2 (10,3, true);

7

where

7.2.9 LowerBoundCoveringRadiusCountingExcess

<& LowerBoundCoveringRadiusCountingExcess( n, M, false ) (function)
This command can also be called with
LowerBoundCoveringRadiusCountingExcess( n, r [,true] ). If the

last argument of LowerBoundCoveringRadiusCountingExcess is false, then
it returns a lower bound for the covering radius of a code of size M and length n.
Otherwise, it returns a lower bound for the size of a code of length n and covering
radius r.

This bound only works for binary codes. It is based on the following inequality:

M- (pVa(n,r) +€Va(n,r—1)) > (p+¢)2",
where

n+1
r+1

e:(r+l){ —‘—(l’l+1)

and

n—3+2,  ifr=2
n—r—1, ifr>3.

Example
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
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32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusCountingExcess (10,32, false);
0

gap> LowerBoundCoveringRadiusCountingExcess (10, 3,true);

7

7.2.10 LowerBoundCoveringRadiusEmbedded1

<& LowerBoundCoveringRadiusEmbeddedl ( n, M, false ) (function)
This command can also be called with
LowerBoundCoveringRadiusEmbeddedl ( n, r [,true] ). If the last ar-

gument of LowerBoundCoveringRadiusEmbeddedl is ’false’, then it returns a

lower bound for the covering radius of a code of size M and length n. Otherwise, it

returns a lower bound for the size of a code of length n and covering radius r.
This bound only works for binary codes. It is based on the following inequality:

M. <V2(n,r) - <2rr>> > 2" — A(n,2r+1) (2:>

where A(n,d) denotes the maximal cardinality of a (binary) code of length n and

minimum distance d. The function UpperBound is used to compute this value.
Sometimes LowerBoundCoveringRadiusEmbeddedl is better than

LowerBoundCoveringRadiusEmbedded?, sometimes it is the other way around.

Example

gap> C:=RandomLinearCode (10,5,GF(2));

a [10,5,?] randomly generated code over GF(2)

gap> Size(C);

32

gap> CoveringRadius (C);

3

gap> LowerBoundCoveringRadiusEmbeddedl (10,32, false);

2

gap> LowerBoundCoveringRadiusEmbeddedl (10,3, true);

7




guava 149

7.2.11 LowerBoundCoveringRadiusEmbedded2

<& LowerBoundCoveringRadiusEmbedded2 ( n, M, false ) (function)
This command can also be called with
LowerBoundCoveringRadiusEmbedded2 ( n, r [,true] ). If the last ar-

gument of LowerBoundCoveringRadiusEmbedded?2 is ’false’, then it returns a

lower bound for the covering radius of a code of size M and length n. Otherwise, it

returns a lower bound for the size of a code of length n and covering radius r.
This bound only works for binary codes. It is based on the following inequality:

M- <V2(n,r) - % <2:)> > 2" —2A(n,2r + 1) (2:)

where A(n,d) denotes the maximal cardinality of a (binary) code of length n and

minimum distance d. The function UpperBound is used to compute this value.
Sometimes LowerBoundCoveringRadiusEmbeddedl is  better than

LowerBoundCoveringRadiusEmbedded?, sometimes it is the other way around.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius (C);
6
gap> LowerBoundCoveringRadiusEmbedded2 (10,32, false);
2
gap> LowerBoundCoveringRadiusEmbedded2 (10, 3, true);
7

7.2.12 LowerBoundCoveringRadiusInduction

<& LowerBoundCoveringRadiusInduction( n, r ) (function)

LowerBoundCoveringRadiusInduction returns a lower bound for the size of
a code with length n and covering radius r.

If n=2r+2 and r > 1, the returned value is 4.

If n =2r+3 and r > 1, the returned value is 7.

If n =2r+4 and r > 4, the returned value is 8.

Otherwise, 0 is returned.
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Example
gap> C:=RandomLinearCode(15,5,GF (2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> LowerBoundCoveringRadiusInduction(15,6);
7

7.2.13 UpperBoundCoveringRadiusRedundancy

<& UpperBoundCoveringRadiusRedundancy ( C ) (function)

UpperBoundCoveringRadiusRedundancy returns the redundancy of C as an
upper bound for the covering radius of C. C must be a linear code.
Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);
5

gap> UpperBoundCoveringRadiusRedundancy (C) ;
10

7.2.14 UpperBoundCoveringRadiusDelsarte

<& UpperBoundCoveringRadiusDelsarte( C ) (function)

UpperBoundCoveringRadiusDelsarte returns an upper bound for the cover-
ing radius of C. This upper bound is equal to the external distance of C, this is the
minimum distance of the dual code, if C is a linear code.

This is described in Theorem 11.3.3 of [HP03].

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> UpperBoundCoveringRadiusDelsarte(C);
13
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7.2.15 UpperBoundCoveringRadiusStrength

<& UpperBoundCoveringRadiusStrength( C ) (function)

UpperBoundCoveringRadiusStrength returns an upper bound for the cover-
ing radius of C.

First the code is punctured at the zero coordinates (i.e. the coordinates where all
codewords have a zero). If the remaining code has strength 1 (i.e. each coordinate
contains each element of the field an equal number of times), then it returns Uil S

(n—m) (where q is the size of the field and m is the length of punctured code),
otherwise it returns #. This bound works for all codes.

Example
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> UpperBoundCoveringRadiusStrength (C);

7

7.2.16 UpperBoundCoveringRadiusGriesmerLike

<& UpperBoundCoveringRadiusGriesmerLike ( C ) (function)

This function returns an upper bound for the covering radius of C, which must
be linear, in a Griesmer-like fashion. It returns

1]

1
i—1 149

Example
gap> C:=RandomLinearCode(15,5,GF (2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius (C);

5

gap> UpperBoundCoveringRadiusGriesmerLike (C);
9

7.2.17 UpperBoundCoveringRadiusCyclicCode

<& UpperBoundCoveringRadiusCyclicCode( C ) (function)
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This function returns an upper bound for the covering radius of C, which must
be a cyclic code. It returns
i1 [HE]

where g(x) is the generator polynomial of C.
Example
gap> C:=CyclicCodes (15,GF(2))[3];

a cyclic [15,12,1..2]1..3 enumerated code over GF(2)
gap> CoveringRadius (C);

3

gap> UpperBoundCoveringRadiusCyclicCode (C);

3

7.3 Special matrices in quava

This section explains functions that work with special matrices gua v a needs for
several codes.

Firstly, we describe some matrix generating functions (see KrawtchoukMat
(7.3.1), GrayMat (7.3.2), SylvesterMat (7.3.3), HadamardMat (7.3.4) and MOLS
(7.3.11)).

Next we describe two functions regarding a standard form of matrices (see
PutStandardForm (7.3.6) and IsInStandardForm (7.3.7)).

Then we describe functions that return a matrix after a manipula-
tion (see PermutedCols (7.3.8), VerticalConversionFieldMat (7.3.9) and
HorizontalConversionFieldMat (7.3.10)).

Finally, we describe functions that do some tests on matrices (see
IsLatinSquare (7.3.12) and AreMOLS (7.3.13)).

7.3.1 KrawtchoukMat

<& KrawtchoukMat ( n, g ) (function)

KrawtchoukMat returns the n+ 1 by n+ 1 matrix K = (k;;) defined by k;; =
Ki(j) fori,j=0,...,n. K;(j) is the Krawtchouk number (see Krawtchouk (7.5.6)).
n must be a positive integer and g a prime power. The Krawtchouk matrix is used
in the MacWilliams identities, defining the relation between the weight distribu-
tion of a code of length n over a field of size g, and its dual code. Each call to
KrawtchoukMat returns a new matrix, so it is safe to modify the result.
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Example

gap> PrintArray( KrawtchoukMat( 3, 2 ) );
troL 1, 1, 1 I
3 31
[ 3, -1, -1, 31,
1, -1, 1, -11]
C := HammingCode( 3 );; a := WeightDistribution( C );
0, 0, 7, 7, 0, 0, 11
gap> n := WordLength( C );; q := Size( LeftActingDomain( C ) );;
gap> k := Dimension( C );;
gap> g ( -k ) * KrawtchoukMat( n, q ) * a;
[1, 0, 0, 0, 7, 0, 0, O ]
gap> WeightDistribution( DualCode( C ) );
(1, 0, 0, 0, 7, 0, 0, 0]

7.3.2 GrayMat

<& GrayMat( n, F ) (function)

GrayMat returns a list of all different vectors (see GAP’s Vectors command)
of length n over the field F, using Gray ordering. n must be a positive integer. This
order has the property that subsequent vectors differ in exactly one coordinate. The
first vector is always the null vector. Each call to GrayMat returns a new matrix, so
it is safe to modify the result.

Example

gap> GrayMat (3);

[ [ 0*z(2), 0*Z(2), 0*Z(2) 1, [ 0*z(2), 0*Z(2), Z(2)"0 ],
[ 0*Z(2), z(2)°0, Z2(2)"0 1, [ 0*Z(2), z(2)"0, 0*z(2) 1,
[ 2(2)70, z(2)°0, 0*z(2) 1, [ Z2(2)°0, z(2)"0, Z(2)"0 1,
[ 2(2)°0, 0*z(2), Z(2)°0 1, [ Z2(2)"0, 0*Z(2), 0*Z(2) ] ]

gap> G := GrayMat( 4, GF(4) );; Length(G);

256 # the length of a GrayMat is always g'n

gap> G[101] - G[100];
[ 0%2(2), 0*2(2), 2(2)°0, 0*Z(2) ]

7.3.3 SylvesterMat

< SylvesterMat ( n ) (function)

SylvesterMat returns the n X n Sylvester matrix of order n. This is a special
case of the Hadamard matrices (see HadamardMat (7.3.4)). For this construction,
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n must be a power of 2. Each call to SylvesterMat returns a new matrix, so it is
safe to modify the result.

Example
gap> PrintArray (SylvesterMat (2));
tro 1, 11,
(1, -111

gap> PrintArray( SylvesterMat (4) );
[ 1, 1, 1, 11,
[ 1, -1, 1, -11,
[ 1, 1, -1, -11,
[ 1, -1, -1, 17 ]

7.3.4 HadamardMat

& HadamardMat ( n ) (function)

HadamardMat returns a Hadamard matrix of order n. This is an n X n matrix
with the property that the matrix multiplied by its transpose returns n times the
identity matrix. This is only possible for n = 1,n = 2 or in cases where n is a mul-
tiple of 4. If the matrix does not exist or is not known (as of 1998), HadamardMat
returns an error. A large number of construction methods is known to create these
matrices for different orders. HadamardMat makes use of two construction meth-
ods (among which the Sylvester construction — see SylvesterMat (7.3.3)). These
methods cover most of the possible Hadamard matrices, although some special al-
gorithms have not been implemented yet. The following orders less than 100 do not
yet have an implementation for a Hadamard matrix in quava: 28,36,52,76,92.

Example
gap> C := HadamardMat (8);; PrintArray(C);
[ 1, 1, 1, 1, 1, 1, 1, 1
[ 1, -1, 1, -1, 1, -1, 1, -1
[ 1, 1, -1, -1, 1, 1, -1, -1
[ 1, -1, -1, 1, 1
[ 1, 1, 1, i, -1, -1, -1, -1
[ 1, -1, 1, -1, -1, 1, -1, 1
[ 1, i, -1, -1, -1, -1, 1, 1
[ 1, -1, -1, 1, -1, 1, 1, -1
gap> C * TransposedMat (C) = 8 * IdentityMat( 8, 8 );
true
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7.3.5 VandermondeMat

& VandermondeMat ( X, a )

155

(function)

The function VandermondeMat returns the (a+ 1) x n matrix of powers x!

where X is a list of elements of a field, X = {xi,...,x,}, and a is a non-negative
integer.

Example
gap> M:=VandermondeMat ([Z(5),Z(5)"2,Z(5)"0,Z(5)"31,2);
[ [2(5)7°0, z(5), Z2(5)°2 1, [ 2(5) 70, Z2(5)°2, 2(5)°0 1,
[ 2(5)7°0, Z(5)70, 2(5)°0 1, [ Z2(5)70, z2(5)"3, Z2(5)"2 ] 1]
gap> Display (M) ;
1214
141
111
1 314
7.3.6 PutStandardForm
& PutStandardForm( M[, idleft] ) (function)

We say that a k X n matrix is in standard form if it is equal to the block matrix
(I | A), for some k x (n— k) matrix A and where I is the k x k identity matrix.
It follows from a basis result in linear algebra that, after a possible permutation
of the columns, using elementary row operations, every matrix can be reduced to
standard form. PutStandardForm puts a matrix M in standard form, and returns
the permutation needed to do so. idleft is a boolean that sets the position of the
identity matrix in M. (The default for idleft is ‘true’.) If idleft is set to ‘true’,
the identity matrix is put on the left side of M. Otherwise, it is put at the right side.
(This option is useful when putting a check matrix of a code into standard form.)
The function BaseMat also returns a similar standard form, but does not apply
column permutations. The rows of the matrix still span the same vector space after
BaseMat, but after calling Put StandardForm, this is not necessarily true.

Example

gap> M := Z(2)*[[1,0,0,1],[0,0,1,111;; PrintArray(M);
[ z2(2), 0*z2(2), 0*z(2), z(2) 1,

[ 0%2(2), 0*Z2(2), Z(2), z2(2) 1]
gap> PutStandardForm (M) ; # identity at the left si
(2,3)
gap> PrintArray(M);
[ z2(2), 0*z2(2), 0*z(2), Z(2) 1,
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[ 0*Z2(2), Z2(2), 0*72(2), Z2(2) 1]
gap> PutStandardForm (M, false); # identity at the right ¢
(1,4,3)
gap> PrintArray(M);

[ [ 0*z2(2), Z2(2), z2(2), 0*72(2) 1,

[ 0*%Z(2), Z(2), 0*2(2), Z2(2) 11

7.3.7 IsInStandardForm

& IsInStandardForm( M[, idleft] ) (function)

IsInStandardForm determines if M is in standard form. idleft is a boolean
that indicates the position of the identity matrix in 4, as in Put StandardForm (see
PutStandardForm (7.3.6)). IsInStandardForm checks if the identity matrix is
at the left side of M, otherwise if it is at the right side. The elements of M may be
elements of any field.

Example
gap> IsInStandardForm(IdentityMat (7, GF(2)));
true
gap> IsInStandardForm([[1, 1, O], [1, O, 1]], false);
true
gap> IsInStandardForm([[1l, 3, 2, 711);
true
gap> IsInStandardForm(HadamardMat (4));
false
7.3.8 PermutedCols
& PermutedCols( M, P ) (function)

PermutedCols returns a matrix M with a permutation P applied to its columns.

Example
gap> M := [[1,2,3,41,11,2,3,4]1];; PrintArray(M);
ro 1 2 3 417,

[ 1, 2, 3, 4711
gap> PrintArray (PermutedCols (M, (1,2,3)));
rr 3 1, 2, 417,

[ 3, 1, 2, 41711

ide
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7.3.9 VerticalConversionFieldMat

& VerticalConversionFieldMat ( M, F ) (function)

VerticalConversionFieldMat returns the matrix M with its elements con-
verted from a field F = GF(¢"), g prime, to a field GF(q). Each element is re-
placed by its representation over the latter field, placed vertically in the matrix,
using the GF (p)-vector space isomorphism

[...] :GF(q) — GF(p)",
with g = p™.

If M is a k by n matrix, the result is a k- m X n matrix, since each element of
GF(q™) can be represented in GF (g) using m elements.

Example

gap> M := Z2(9)*[[1,2],12,1]11;; PrintArray(M);
[ 72(3°2), (“) 51,

[ 2(3°2)°5, Z2(372) 11
gap> DefaultField( Flat (M) );
GF (372)
gap> VCFM := VerticalConversionFieldMat ( M, GF(9) );; PrintArray (VCEM);
[ [ 0%z(3), 0*z2(3) 1,

[ Z(3)70, Z(3) 1,

[ 0*z(3), 0*2(3) 1,

[ Z(3), Z(3)70 1]
gap> DefaultField( Flat (VCFM) );
GF (3)

A similar function is HorizontalConversionFieldMat (see
HorizontalConversionFieldMat (7.3.10)).

7.3.10 HorizontalConversionFieldMat

& HorizontalConversionFieldMat ( M, F ) (function)

HorizontalConversionFieldMat returns the matrix M with its elements con-
verted from a field F = GF(¢"), g prime, to a field GF(q). Each element is re-
placed by its representation over the latter field, placed horizontally in the matrix.

If Mis a k X n matrix, the result is a k X m X n-m matrix. The new word length
of the resulting code is equal to n-m, because each element of GF(¢™) can be
represented in GF(q) using m elements. The new dimension is equal to k X m
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because the new matrix should be a basis for the same number of vectors as the old
one.

ConversionFieldCode uses horizontal conversion to convert a code (see
ConversionFieldCode (6.1.14)).

Example
gap> M := Z(9)*[[1, 1 [2,11];; PrintArray(M);
[0 Z2(3°2), 17(372)°5 1,
[ Z(372)75, ( 2) 11
gap> DefaultField( Flat (M) );
GF (372)

gap> HCFM := HorizontalConversionFieldMat (M, GF(9));; PrintArray (HCE]
[ [ 0*z(3), Z(3)70, 0*Z(3), z(3) 1,
[ 2(3)°0, Z(3)70, Z2(3),
)

’

) ]
[ 0*2(3), Z(3), 0*z(3), Z(3)7°0 1,
[ Z(3), Z(3), Z(3)°0, 2(3)70 1]
gap> DefaultField( Flat (HCFM) );
GF (3)
A similar function is VerticalConversionFieldMat (see

VerticalConversionFieldMat (7.3.9)).

7.311 MOLS

O MOLS( g, n] ) (function)

MOLS returns a list of n Mutually Orthogonal Latin Squares (MOLS). A Latin
square of order q is a g X ¢ matrix whose entries are from a set F, of g distinct sym-
bols (quava uses the integers from 0 to g) such that each row and each column
of the matrix contains each symbol exactly once.

A set of Latin squares is a set of MOLS if and only if for each pair of Latin
squares in this set, every ordered pair of elements that are in the same position in
these matrices occurs exactly once.

n must be less than g. If n is omitted, two MOLS are returned. If g is not a
prime power, at most 2 MOLS can be created. For all values of g with g > 2 and
q # 6, alist of MOLS can be constructed. However, quav a does not yet construct
MOLS forg =2 (mod 4). If it is not possible to construct n MOLS, the function
returns ‘false’.

MOLS are used to create g-ary codes (see MOLSCode (5.1.4)).

Example
gap> M := MOLS( 4, 3 );;PrintArray( M[1] );
rr o 1, 2, 31,
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[ 1, 0, 3, 21,

[ 2, 3, 0, 11,

[ 3, 2, 1, 01 ]
gap> PrintArray( M[2] );
(1o, 2 3 11,

[ 1, 3, 2, 01,

[ 2, 0, 1, 31,

[ 3, 1, 0, 211
gap> PrintArray( M[3] );
rr o 3 1, 21,

[ 1, 2, 0, 31,

[ 2, 1, 3, 01,

[ 3, 0, 2, 11711
gap> MOLS( 12, 3 );
false

7.3.12 IsLatinSquare

& IsLatinSquare( M ) (function)

IsLatinSquare determines if a matrix M is a Latin square. For a Latin square

of size n X n, each row and each column contains all the integers 1,...,n exactly
once.
Example
gap> IsLatinSquare([[1,2],12,111);
true
gap> IsLatinSquare([[1,2,3]1,12,3,11,11,3,211);
false

7.3.13 AreMOLS

& AreMOLS( L) (function)

AreMOLS determines if L is a list of mutually orthogonal Latin squares (MOLS).
For each pair of Latin squares in this list, the function checks if each ordered pair
of elements that are in the same position in these matrices occurs exactly once. The
function MOLS creates MOLS (see MOLS (7.3.11)).

Example

gap> M := MOLS (4,2);
rcro, 1, 2,31, 101,03 21,02, 3,0,
(ro0,2 3 11, 1,3, 2,0 2
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gap> AreMOLS (M) ;
true

7.4 Some functions related to the norm of a code

In this section, some functions that can be used to compute the norm of a code and
to decide upon its normality are discussed. Typically, these are applied to binary
linear codes. The definitions of this section were introduced in Graham and Sloane
[GS85].

7.4.1 CoordinateNorm

< CoordinateNorm( C, coord ) (function)
CoordinateNorm returns the norm of C with respect to coordinate coord. If
C, = {c € C| ccoora = a}, then the norm of C with respect to coord is defined as
q

max d(x,C,),
vEGF(q)”az::l ( )

with the convention that d(x,C,) = n if C, is empty.

Example
gap> CoordinateNorm( HammingCode( 3, GF(2) ), 3 );
3
7.4.2 CodeNorm
& CodeNorm( C ) (function)

CodeNorm returns the norm of C. The norm of a code is defined as the mini-
mum of the norms for the respective coordinates of the code. In effect, for each
coordinate CoordinateNormis called, and the minimum of the calculated numbers
is returned.

Example
gap> CodeNorm( HammingCode( 3, GF(2) ) );
3
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7.4.3 IsCoordinateAcceptable

<& IsCoordinateAcceptable( C, coord ) (function)
IsCoordinateAcceptable returns ‘true’ if coordinate coord of C is accept-

able. A coordinate is called acceptable if the norm of the code with respect to that
coordinate is not more than two times the covering radius of the code plus one.

Example
gap> IsCoordinateAcceptable( HammingCode( 3, GF(2) ), 3 );
true
7.4.4 GeneralizedCodeNorm
&  GeneralizedCodeNorm( C, subcodel, subscode2, ..., subcodek )

(function)

GeneralizedCodeNorm returns the k-norm of C with respect to k subcodes.
Example
gap> c := RepetitionCode( 7, GF(2) );;

gap> ham := HammingCode( 3, GF(2) );;

gap> d := EvenWeightSubcode( ham );;

gap> e := ConstantWeightSubcode( ham, 3 );;
gap> GeneralizedCodeNorm( ham, c, d, e );

4

7.4.5 IsNormalCode

& IsNormalCode( C ) (function)

IsNormalCode returns ‘true’ if C is normal. A code is called normal if the
norm of the code is not more than two times the covering radius of the code plus
one. Almost all codes are normal, however some (non-linear) abnormal codes have
been found.

Often, it is difficult to find out whether a code is normal, because it involves
computing the covering radius. However, IsNormalCode uses much information
from the literature (in particular, [GS85]) about normality for certain code param-

eters.

Example
gap> IsNormalCode ( HammingCode( 3, GF(2) ) );
true
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7.5 Miscellaneous functions

In this section we describe several vector space functions guava uses for con-
structing codes or performing calculations with codes.

In this section, some new miscellaneous functions are described, including
weight enumerators, the MacWilliams-transform and affinity and almost affinity
of codes.

7.5.1 CodeWeightEnumerator

<& CodeWeightEnumerator( C ) (function)

CodeWeightEnumerator returns a polynomial of the following form:
n .
f(x) = ZAixl7
i=0

where A; is the number of codewords in C with weight .

Example
gap> CodeWeightEnumerator( ElementsCode( [ [ 0,0,0 ], [ 0,0,1 ],
>[0,1,11, [ 1,1,2 11, GF(2) ) );
x"3 +x°2+x+1
gap> CodeWeightEnumerator ( HammingCode( 3, GF(2) ) );
x™T7 + T*x"4 + 7*x"3 + 1

7.5.2 CodeDistanceEnumerator

& CodeDistanceEnumerator( C, w ) (function)

CodeDistanceEnumerator returns a polynomial of the following form:
n .
fx)=Y Bix',
i=0

where B; is the number of codewords with distance i to w.

If w is a codeword, then CodeDistanceEnumerator returns the same polyno-
mial as CodeWeightEnumerator.
Example
gap> CodeDistanceEnumerator( HammingCode( 3, GF(2) ), [0,0,0,0,0,0,1] );
X"6 + 3*x"5 + 4*x74 + 4*x"3 + 3*x"2 + x
gap> CodeDistanceEnumerator ( HammingCode( 3, GF(2) ),[1,1,1,1,1,1,1]
x"7 + T*x"4 + 7*x*3 + 1 # “[1,1,1,1,1,1,1]" $\in$ ‘HammingCode( 3, GF (2
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7.5.3 CodeMacWilliamsTransform
O CodeMacWilliamsTransform( C ) (function)
CodeMacWilliamsTransform returns a polynomial of the following form:

flx)= ZC,-xi,
i=0

where C; is the number of codewords with weight i in the dual code of C.

Example
gap> CodeMacWilliamsTransform( HammingCode( 3, GF(2) ) );
T*x"4 + 1
7.5.4 CodeDensity
<& CodeDensity( C ) (function)

CodeDensity returns the density of C. The density of a code is defined as

M -V,(n,t)
qn

9

where M is the size of the code, V,(n,t) is the size of a sphere of radius 7 in GF (¢")
(which may be computed using SphereContent), ¢ is the covering radius of the
code and # is the length of the code.

Example
gap> CodeDensity( HammingCode( 3, GEF(2) ) );
1
gap> CodeDensity( ReedMullerCode( 1, 4 ) );
14893/2048
7.5.5 SphereContent
<& SphereContent ( n, t, F ) (function)

SphereContent returns the content of a ball of radius t around an arbitrary
element of the vectorspace F". This is the cardinality of the set of all elements of
F" that are at distance (see DistanceCodeword (3.6.2) less than or equal to t from
an element of F".
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In the context of codes, the function is used to determine if a code is perfect.
A code is perfect if spheres of radius ¢ around all codewords partition the whole
ambient vector space, where ¢ is the number of errors the code can correct.

Example
gap> SphereContent ( 15, 0, GF(2) );
1 # Only one word with distance 0, which is the word itself
gap> SphereContent ( 11, 3, GF(4) );

4984

gap> C := HammingCode (5);

a linear [31,26,3]1 Hamming (5,2) code over GF(2)

#the minimum distance is 3, so the code can correct one error
gap> ( SphereContent( 31, 1, GF(2) ) * Size(C) ) =2 = 31;
true

7.5.6 Krawtchouk

& Krawtchouk ( k, i, n, g ) (function)

Krawtchouk returns the Krawtchouk number Kj(i). g must be a prime power,
n must be a positive integer, k must be a non-negative integer less then or equal
to n and i can be any integer. (See KrawtchoukMat (7.3.1)). This number is the
value at x = i of the polynomial

n

K (x) = Z,O(—l)j(q — 1) b(x, j)b(n—x,k— j),

where b(v,u) = u!/(v!(v—u)!) is the binomial coefficient if u,v are integers. For
more properties of these polynomials, see [MS83].

Example

gap> Krawtchouk( 2, 0, 3, 2);
3

7.5.7 PrimitiveUnityRoot

O PrimitiveUnityRoot ( F, n ) (function)

PrimitiveUnityRoot returns a primitive n-th root of unity in an extension
field of F. This is a finite field element a with the property a” = 1 in F, and n is the
smallest integer such that this equality holds.
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Example
gap> PrimitiveUnityRoot ( GF(2), 15 );
Z(274)
gap> last”15;

Z(2)"°0
gap> PrimitiveUnityRoot ( GF(8), 21 );
7Z(276)"3

7.5.8 PrimitivePolynomialsNr

O PrimitivePolynomialsNr( n, F ) (function)

PrimitivePolynomialsNr returns the number of irreducible polynomials
over F = GF(q) of degree n with (maximum) period ¢" — 1. (According to a
theorem of S. Golomb, this is ¢(p" — 1) /n.)

See also the GAP function RandomPrimitivePolynomial,
RandomPrimitivePolynomial (2.2.2).

Example
gap> PrimitivePolynomialsNr(3,4);
12

7.5.9 IrreduciblePolynomialsNr

& IrreduciblePolynomialsNr( n, F ) (function)

PrimitivePolynomialsNr returns the number of irreducible polynomials
over F = GF(q) of degree n.

Example
gap> IrreduciblePolynomialsNr(3,4);
20

7.5.10 MatrixRepresentationOfElement

O MatrixRepresentationOfElement ( a, F ) (function)

Here F is either a finite extension of the “base field” GF (p) or of the rationals
Q, and a € F. The command MatrixRepresentationOfElement returns a matrix
representation of a over the base field.
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If the element a is defined over the base field then it returns the corresponding

1 x 1 matrix.
Example

gap> a:=Random (GF (4));
0*Z(2)
gap> M:=MatrixRepresentationOfElement (a,GF (4));; Display (M);

gap> a:=Random (GF (4));

7(2°2)

gap> M:=MatrixRepresentationOfElement (a,GF (4));; Display (M);
.1
11

gap>

7.5.11 ReciprocalPolynomial

<& ReciprocalPolynomial ( P ) (function)

ReciprocalPolynomial returns the reciprocal of polynomial P. This is a
polynomial with coefficients of P in the reverse order. Soif P=ap+a1 X +... +
a,X", the reciprocal polynomial is P’ = a, +a, 1X + ... +aoX".

This command can also be called using the syntax ReciprocalPolynomial (
P , n ). In this form, the number of coefficients of P is assumed to be less than
or equal to n+ 1 (with zero coefficients added in the highest degrees, if necessary).

Therefore, the reciprocal polynomial also has degree n+ 1.
Example
gap> P := UnivariatePolynomial ( GF(3), Z(3)°0 * [1,0,1,2] );
Z2(3)"0+x_1"2-x_1"3

gap> RecP := ReciprocalPolynomial( P );
-72(3)"0+x_14x_1"3

gap> ReciprocalPolynomial ( RecP ) = P;
true

gap> P := UnivariatePolynomial ( GF(3), Z(3)°0 * [1,0,1,2] );
Z(3)"0+x_1"2-x_1"3

gap> ReciprocalPolynomial ( P, 6 );

-x_173+x_174+x_1"6

7.5.12 CyclotomicCosets

< CyclotomicCosets( g, n ) (function)
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CyclotomicCosets returns the cyclotomic cosets of ¢ (mod n). g and n must
be relatively prime. Each of the elements of the returned list is a list of integers that
belong to one cyclotomic coset. A g-cyclotomic coset of s (mod n) is a set of the
form {s,sq,sq*, ...,sq¢"~'}, where r is the smallest positive integer such that sq" — s
is0 (mod n). In other words, each coset contains all multiplications of the coset
representative by ¢ (mod n). The coset representative is the smallest integer that
isn’t in the previous cosets.

Example
gap> CyclotomicCosets( 2, 15 );
rroe1, 101, 2,481, (3 6 12, 91, [ 5 101,
[ 7, 14, 13, 11 ] ]

gap> CyclotomicCosets( 7, 6 );

rroln, 011,021, 031, 041, 1511
7.5.13 WeightHistogram
<& WeightHistogram( C[, h] ) (function)

The function WeightHistogram plots a histogram of weights in code C. The
maximum length of a column is h. Default value for h is 1/3 of the size of the
screen. The number that appears at the top of the histogram is the maximum value
of the list of weights.

Example
gap> H := HammingCode (2, GF(5));

a linear [6,4,3]1 Hamming (2,5) code over GF(5)
gap> WeightDistribution (H);

[ 1, 0, 0, 80, 120, 264, 160 ]

gap> WeightHistogram(H);

264-—————mmmmmm
*
*
*
*
* *
* * *
* * * *
* * * *
.

01 2 3 4 5 6
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7.5.14 MultiplicityInList

O MultiplicityInList( L, a ) (function)

This is a very simple list command which returns how many times a occurs
in L. It returns O if a is not in L. (The GAP command Collected does not quite
handle this “extreme” case.)

Example
gap> L:=[1,2,3,4,3,2,1,5,4,3,2,11;;
gap> MultiplicityInList(L,1);

3

gap> MultiplicityInList (L, 6);

0

7.5.15 MostCommonInList

O MostCommonInList( L ) (function)

Input: alist L

Output: an a in L which occurs at least as much as any other in L
Example
gap> L:=[1,2,3,4,3,2,1,5,4,3,2,1];;
gap> MostCommonInList (L);

1

7.5.16 RotateList

O Rotatelist( L) (function)

Input: a list L

Output: a list L which is the cyclic rotation of L (to the right)
Example

gap> L:=[1,2,3,4];;
gap> Rotatelist (L);
[2,3,4,1]

7.5.17 CirculantMatrix

& CirculantMatrix( k, L) (function)

Input: integer k, a list L of length n
Output: kxn matrix whose rows are cyclic rotations of the list L
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Example
gap> k:=3; L:=[1,2,3,41;;

gap> M:=CirculantMatrix(k,L);;

gap> Display (M) ;

7.6 Miscellaneous polynomial functions

In this section we describe several multivariate polynomial GAP functions quava
uses for constructing codes or performing calculations with codes.

7.6.1 MatrixTransformationOnMultivariatePolynomial
& MatrixTransformationOnMultivariatePolynomial ( A, f, R ) (func-

tion)

A is an n X n matrix with entries in a field F, R is a polynomial ring of n vari-
ables, say F[xi,...,x,], and £ is a polynomial in R. Returns the composition f o A.

7.6.2 DegreeMultivariatePolynomial

<& DegreeMultivariatePolynomial( £, R ) (function)

This command takes two arguments, f, a multivariate polynomial, and R a
polynomial ring over a field F containing £, say R = F[x}, X2, ...,X,]. The output is
simply the maximum degrees of all the monomials occurring in f.

This command can be used to compute the degree of an affine plane curve.
Example

gap> F:=GF(11);;

gap> R2:=PolynomialRing(F,2);
PolynomialRing (..., [ x_1, x_2 1)

gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[l];; y:=vars[2];;

gap> poly:=y 2-x*(x"2-1);;

gap> DegreeMultivariatePolynomial (poly,R2);

3

7.6.3 DegreesMultivariatePolynomial

<& DegreesMultivariatePolynomial ( f, R ) (function)
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Returns a list of information about the multivariate polynomial f. Nice for
other programs but mostly unreadable by GAP users.

Example

gap> F:=GF(11);;

gap> R2:=PolynomialRing(F,2);

PolynomialRing (..., [ x_1, x_2 ])

gap> vars:=IndeterminatesOfPolynomialRing(R2);;

gap> x:=vars[l];; y:=varsl[2];;

gap> poly:=y 2-x*(x"2-1);;

gap> DegreesMultivariatePolynomial (poly,R2);

[0 =1, x1, 11, [ =1, x2, 011, [ [ 272, x1, 01, [ x_272
[ [ x17°3, .1, 31, [ 2173, x2, 01 1]

gap>

7.6.4 CoefficientMultivariatePolynomial

O CoefficientMultivariatePolynomial ( £, var, power, R ) (function)

The command CoefficientMultivariatePolynomial takes four argu-
ments: a multivariant polynomial £, a variable name var, an integer power, and a
polynomial ring R containing £. For example, if £ is a multivariate polynomial in
R = F[x1,x2,...,x,] then var must be one of the x;. The output is the coefficient of

power .
X; n f.
(Not sure if F needs to be a field in fact ...)
Related to the GAP command PolynomialCoefficientsPolynomial.

Example

gap> F:=GF (11);;

gap> R2:=PolynomialRing(F,2);

PolynomialRing (..., [ x_1, x_2 1)

gap> vars:=IndeterminatesOfPolynomialRing (R2);;

gap> x:=vars[l];; y:=vars[2];;

gap> poly:=y 2-x*(x"2-1);;

gap> PolynomialCoefficientsOfPolynomial (poly, x);

[ x 272, Z(11)°0, 0*Z(11), -Z(11)70 ]

gap> PolynomialCoefficientsOfPolynomial (poly,vVy);

[ -x_173+x_1, 0*Z(11), Z(11)"0 ]

gap> CoefficientMultivariatePolynomial (poly,y,0,R2);
-x_173+x_1

gap> CoefficientMultivariatePolynomial (poly,vy,1,R2);
0*Z(11)

gap> CoefficientMultivariatePolynomial (poly,y,2,R2);
Z(11)°0
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gap> CoefficientMultivariatePolynomial (poly,x,0,R2);
X _2"2

gap> CoefficientMultivariatePolynomial (poly,x,1,R2);
Z(11)"70

gap> CoefficientMultivariatePolynomial (poly,x,2,R2);
0*Z (11)

gap> CoefficientMultivariatePolynomial (poly,x,3,R2);
-7Z(11) "0

7.6.5 SolveLinearSystem

<& SolvelLinearSystem( L, vars ) (function)

Input: L is a list of linear forms in the variables vars.

Output: the solution of the system, if its unique.

The procedure is straightforward: Find the associated matrix A, find the ”con-
stant vector” b, and solve A * v = b. No error checking is performed.

Related to the GAP command SolutionMat ( A, b ).
Example

gap> F:=GF (11);;

gap> R2:=PolynomialRing(F,2);
PolynomialRing (..., [ x_1, % 2 1)

gap> vars:=IndeterminatesOfPolynomialRing (R2);;
gap> x:=vars[l];; y:=varsl[2];;

gap> f:=3*y-3*x+l;; g:=-5*y+2*x-7;;

gap> soln:=SolvelLinearSystem([f,qgl, [X,V]);
[ Z2(11)7°3, Z2(11)"2 ]

gap> Value(f, [x,y],soln); # checking okay
0*Z(11)

gap> Value (g, [x,y],col); # checking okay
0*Z(11)

7.6.6 CoefficientToPolynomial

O CoefficientToPolynomial ( coeffs, R ) (function)
The function CoefficientToPolynomial returns the degree d — 1 polynomial

co+c1x+ ... +cg1x471, where coeffs is a list of elements of a field, coeffs =
{co,...,c4—1}, and R is a univariate polynomial ring.
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gap> F:=GF(11);

GF (11)

gap> Rl:=PolynomialRing(F, ["a"]);;

gap> varl:=IndeterminatesOfPolynomialRing(R1l);; a:=varl[l];;
gap> coeffs:=Z(11)"0*[1,2,3,4];

[ Z2(11)"0, z(11), Z(11)°8, Z(11)"2 ]

gap> CoefficientToPolynomial (coeffs,R1l);
Z(11)"2*a"3+2(11)"8*a"2+Z (11) *a+z (11) "0

7.6.7 DegreesMonomialTerm

< DegreesMonomialTerm( m, R )

(function)

The function DegreesMonomialTerm returns the list of degrees to which each
variable in the multivariate polynomial ring R occurs in the monomial m, where

coeffs is a list of elements of a field.
Example

gap> F:=GF (11);

GF (11)

gap> Rl:=PolynomialRing(F, ["a"]);;
gap> varl:=IndeterminatesOfPolynomialRing(R1);; a:=varl[1l];;
gap> b:=X(F,"b",varl);

b

gap> var2:=Concatenation(varl, [b]);
[ a b ]

gap> R2:=PolynomialRing(F,var2);
PolynomialRing (..., [ a, b ]

gap> c:=X(F,"c",var2);

c

gap> var3:=Concatenation(varz2, [c]);
[ a, b, c]

gap> R3:=PolynomialRing (F,var3);
PolynomialRing (..., [ a, b, ¢ ])
gap> m:=b"3*c"7;

b*3*c"7

gap> DegreesMonomialTerm(m,R3);
[0, 3, 71

7.6.8 DivisorsMultivariatePolynomial

& DivisorsMultivariatePolynomial ( f, R )

(function)
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The function DivisorsMultivariatePolynomial returns the list of polyno-
mial divisors of f in the multivariate polynomial ring R with coefficients in a field.
This program uses a simple but slow algorithm (see Joachim von zur Gathen,
Jiirgen Gerhard, [vzGGO3], exercise 16.10) which first converts the multivariate
polynomial f to an associated univariate polynomial f*, then Factors f*, and fi-
nally converts these univariate factors back into the multivariate polynomial factors
of f. Since Factors is non-deterministic, DivisorsMultivariatePolynomial is

non-deterministic as well.

Example
gap> R2:=PolynomialRing (GF (3), ["x1","x2"]);
PolynomialRing (..., [ x1, x2 1)
gap> vars:=IndeterminatesOfPolynomialRing(R2);
[ x1, x2 ]
gap> x2:=vars[2];
X2
gap> xl:=vars[1l];
x1

gap> f:=x1"3+x2"3;;
gap> DivisorsMultivariatePolynomial (£,R2);
[ x1+x2, x1+x2, x1+x2 ]
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7.7 Index

The Numbers written in italic refer to the pages, where a macros usage is descriped,
while those in typewrite refer to line numbers in the files, mentioned before,
where the definition is, while slanted shows the places it is used. Normal letters
refer to pages, wether it be descriptions or usage.

A(n,d), 112 ActionMoebiusTransformationOnFunction
GF(p), 15 , 88
GF(q), 15 AddedElementsCode, 98
t(n,k), 46 affine code, 34
* 29 AffineCurve, 80
+, 21, 29 AffinePointsOnCurve, 81
-, 21 AlternantCode, 63
=, 20, 28 AmalgamatedDirectSumCode, 107
< >, 20, 28 AreMOLS, 129
AsSSortedList, 38
acceptable coordinate, 130  AugmentedCode, 97
AClosestVectorComb. .MatFFEVecFFECoordsit omorphismGroup, 35
13
AClosestVectorCombinationsMatFFEVecFBEHCode, 72
12 BestKnownLinearCode, 66
ActionMoebiusTransformationOnDivisorBinaryGolayCode, 68

R 88 BlockwiseDirectSumCode, 107
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Bose distance,

bound, Gilbert-Varshamov lower,
bound, sphere packing lower,
bounds, Elias,

bounds, Griesmer,
bounds, Hamming,
bounds, Johnson,

bounds, Plotkin,

bounds, Singleton,

bounds, sphere packing bound,
BoundsCoveringRadius,
BoundsMinimumDistance,

check polynomial, 217,
CheckMat,

CheckMatCode,

CheckPol,

CheckPolCode,
CirculantMatrix,

code,

code, (n,M,d),
code, [n,k,d]r,

code, AG,

code, alternant,
code, Bose-Chaudhuri-Hockenghem,
code, conference,
code, Cordaro-Wagner,
code, cyclic,

code, Davydov,
code, element test,
code, elements of,
code, evaluation,
code, Fire,

code, Gabidulin,
code, Golay (binary),
code, Golay (ternary),
code, Goppa (classical),
code, greedy,

code, Hadamard,
code, Hamming,
code, linear,

code, maximum distance separable,
code, Nordstrom-Robinson,
code, perfect,

code,

Reed-Muller,

73
113
113
111
111
110
110
111
109
110
115
114

70
40
62
41
71
137
26
26
27
80
63
72
58
65
27
67
30
26
77
75
67
68
69
63
60
58
62
26
33
60
32
63

176
code, Reed-Solomon, 73
code, self-dual, 33
code, self-orthogonal, 33
code, Srivastava, 64
code, subcode, 31
code, Tombak, 67
code, toric, 79
code, unrestricted, 26
CodeDensity, 132
CodeDistanceEnumerator, 132
CodeIsomorphism, 35
CodeMacWilliamsTransform, 132
CodeNorm, 130
codes, addition, 29
codes, decoding, 30
codes, direct sum, 29
codes, encoding, 29
codes, product, 29
CodeWeightEnumerator, 131
Codeword, 18
CodewordNr, 19
codewords, addition, 21
codewords, cosets, 21
codewords, subtraction, 21
CoefficientMultivariatePolynomial,

138

CoefficientToPolynomial, 139
conference matrix, 59
ConferenceCode, 58
ConstantWeightSubcode, 102
ConstructionBCode, 100
ConversionFieldCode, 101
ConwayPolynomial, 15
CoordinateNorm, 130
CordaroWagnerCode, 65
coset, 21
CosetCode, 102
covering code, 46
CoveringRadius, 46
CyclicCodes, 76
CyclotomicCosets, 135
DavydovCode, 67
Decode, 49
Decodeword, 50
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DecreaseMinimumDistanceUpperBound,

44
defining polynomial, 15
degree, 83
DegreeMultivariatePolynomial, 137
DegreesMonomialTerm, 139
DegreesMultivariatePolynomial, 138
density of a code, 132
Dimension, 37
DirectProductCode, 105
DirectSumCode, 104
Display, 39
distance, 48
DistanceCodeword, 24
DistancesDistribution, 49
DistancesDistributionMatFFEVecFFE,

13
DistancesDistributionVecFFEsVecFFE,

14
DistanceVecFFE, 14
divisor, 82
DivisorAddition , 83
DivisorAutomorphismGroupPl , 89
DivisorDegree , 83
DivisorGCD , 84
DivisorIsZero , 84
DivisorLCM , 84
DivisorNegate , 84
DivisorOfRationalFunctionPl , 86
DivisorOnAffineCurve, 83
DivisorsEqual , 84
DivisorsMultivariatePolynomial, 140
DualCode, 100
ElementsCode, 57
encoder map, 29
EnlargedGabidulinCode, 67
EnlargedTombakCode, 68
equivalent codes, 35
EvaluationBivariateCode, 91
EvaluationBivariateCodeNC, 91
EvaluationCode, 77
EvenWeightSubcode, 95
ExhaustiveSearchCoveringRadius, 116

ExpurgatedCode, 96

177
ExtendedBinaryGolayCode, 69
ExtendedCode, 94
ExtendedDirectSumCode, 106
ExtendedTernaryGolayCode, 69
external distance, 122
FireCode, 75
GabidulinCode, 67
Gary code, 124
GeneralizedCodeNorm, 130
GeneralizedReedMullerCode, 78
GeneralizedReedSolomonCode, 77
GeneralizedReedSolomonDecoderGao,
51
GeneralizedReedSolomonListDecoder,
52
GeneralizedSrivastavaCode, 64
GeneralLowerBoundCoveringRadius,
117
GeneralUpperBoundCoveringRadius,
117
generator polynomial, 217, 70
GeneratorMat, 40
GeneratorMatCode, 61
GeneratorPol, 41
GeneratorPolCode, 71
GenusCurve, 81
GoppaCode, 63
GoppaCodeClassical, 91
GOrbitPoint , 81
GrayMat, 124
greatest common divisor, 84
GreedyCode, 60
Griesmer code, 112
Hadamard matrix, 58, 125
HadamardCode, 58
HadamardMat, 125
Hamming metric, 14
HammingCode, 62
HorizontalConversionFieldMat, 128
hull, 105
in, 30
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IncreaseCoveringRadiusLowerBound,

178

LowerBoundCoveringRadiusEmbedded2,

115 120
information bits, 30 LowerBoundCoveringRadiusInduction,
InformationWord, 30 121
InnerDistribution, 48 LowerBoundCoveringRadiusSphereCovering,
IntersectionCode, 105 118
IrreduciblePolynomialsNr, 134 LowerBoundCoveringRadiusVanWeel,
IsActionMoebiusTransformationOnDivisorDefidd8p1

R 88 LowerBoundCoveringRadiusVanWee?2,
IsAffineCode, 34 119
IsAlmostAffineCode, 34 LowerBoundGilbertVarshamov, 113
IsCheapConwayPolynomial, 15 LowerBoundMinimumDistance, 113
IsCode, 31 LowerBoundSpherePacking, 113
IsCodeword, 20
IsCoordinateAcceptable, 130 MacWilliams transform, 132
IsCyclicCode, 31 MatrixRepresentationOfElement, 134
IsEquivalent, 35 MatrixRepresentationOnRiemannRochSpacePl
IsFinite, 37 > 90
IsGriesmerCode, 112 MatrixTransformationOnMultivariatePolynomial
IsInStandardForm, 126 > 137
IsLatinSquare, 129 maximum distance  separable, 110
IsLinearCode, 31 MDS, 33
IsMDSCode, 32  minimum distance, 26
IsNormalCode, 131 MinimumDistance, 42
IsPerfectCode, 32 MinimumDistanceLeon, 43
IsPrimitivePolynomial, 16 MinimumDistanceRandom, 45
IsSelfComplementaryCode, 33 MoebiusTransformation , 88
IsSelfDualCode, 33 MOLS, 128
IsSelfOrthogonalCode, 33 MOLSCode, 59
IsSubset, 31 MostCommonInList, 136

MultiplicityInList, 136
Krawtchouk, 133 mutually orthogonal Latin squares, 128
KrawtchoukMat, 124
NearestNeighborDecodewords, 53

Latin square, 128 NearestNeighborGRSDecodewords, 53
least common multiple, 84 NordstromRobinsonCode, 60
LeftActingDomain, 37 norm of a code, 130
length, 26 normal code, 131
LengthenedCode, 99 ot = 20, 28
LexiCode, 61 NrCyclicCodes, 76
linear code, 17 NullCode, 75
LowerBoundCoveringRadiusCountingExcessl 1Word, 24

119
LowerBoundCoveringRadiusEmbeddedl, OnePointAGCode, 92

120 OptimalityCode, 66
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order of polynomial, 75
OuterDistribution, 49
Parity check, 94
parity check matrix, 26
perfect, 110
perfect code, 132
permutation  equivalent  codes, 35
PermutationAutomorphismGroup, 36
PermutationAutomorphismGroup, 36
PermutationDecode, 55
PermutationDecodeNC, 56
PermutedCode, 96
PermutedCols, 127
PiecewiseConstantCode, 103
point, 80
PolyCodeword, 22
primitive element, 15
PrimitivePolynomialsNr, 134
PrimitiveUnityRoot, 133
Print, 38
PuncturedCode, 95
PutStandardForm, 126
QQRCode, 74
QORCode, 73
RandomCode, 60
RandomLinearCode, 65
RandomPrimitivePolynomial, 15
reciprocal polynomial, 134
ReciprocalPolynomial, 135
Redundancy, 42
ReedMullerCode, 63
ReedSolomonCode, 73
RemovedElementsCode, 97
RepetitionCode, 76
ResidueCode, 100
RiemannRochSpaceBasisFunctionPl

, 86
RiemannRochSpaceBasisPl , 87
RootsCode, 71
RootsOfCode, 41
Rotatelist, 136
self complementary code, 33

179
self-dual, 101
self-orthogonal, 33
SetCoveringRadius, 47
ShortenedCode, 98
Size, 37
size, 26
SolveLinearSystem, 139
SphereContent, 133
SrivastavaCode, 65
standard form, 126
StandardArray, 55
StandardFormCode, 103
strength, 122
String, 39
Support, 24
support, 82
SylvesterMat, 124
Syndrome, 54
syndrome table, 55
SyndromeTable, 54
TernaryGolayCode, 69
TombakCode, 68
ToricCode, 79
ToricPoints, 79
TraceCode, 101
TreatAsPoly, 23
TreatAsVector, 23
UnionCode, 106
UpperBound, 112
UpperBoundCoveringRadiusCyclicCode,
123
UpperBoundCoveringRadiusDelsarte,
122
UpperBoundCoveringRadiusGriesmerLike,
122
UpperBoundCoveringRadiusRedundancy,
121
UpperBoundCoveringRadiusStrength,
122
UpperBoundElias, 111
UpperBoundGriesmer, 112
UpperBoundHamming, 110
UpperBoundJohnson, 110
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UpperBoundMinimumDistance,
UpperBoundPlotkin,
UpperBoundSingleton,
UUVCode,

VandermondeMat,
VectorCodeword,
VerticalConversionFieldMat,

114
111
110
104

125
22
127

weight enumerator polynomial,
WeightCodeword,
WeightDistribution,
WeightHistogram,
WeightVecFFE,

WholeSpaceCode,

WordLength,

180

131
25
48

135
14
75
42



