ResClasses

Computations with Residue Classes and their Set-Theoretic Unions
(Version 2.1.2)

January 12, 2006

Stefan Kohl

Stefan Kohl — Email: kohl@mathematik.uni-stuttgart.de
— Homepagenttp://www.cip.mathematik.uni-stuttgart.de/ "kohlsn
— Address: Institutiir Geometrie und Topologie

Universitt Stuttgart

70550 Stuttgart

Germany


mailto://kohl@mathematik.uni-stuttgart.de
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn

ResClasses 2

Abstract

This package foGAP 4 (at least version 4.4) implements set-theoretic unions of residue classes of tie ring
of the integers, of its semilocalisatiofigy at some finite set of primegsand of the polynomial rings GHJ[X]
for some prime poweq asGAP domains.

It provides basic functionality for computing with these sets, like forming intersections, unions and
differences. Any of this is also supported in the case that one of the operands is a finite set of elements. The
package also implements the mentioned riigs asGAP domains.
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Chapter 1

Preface

Although most functionality provided by this package is mathematically trivial, the author thinks that
having available a nice and easy-to-use implementation of residue classes as sets which permits to
form unions, intersections and differences and which interacts smoothly with finite sets of elements
w.r.t. these operations is often useful. The functionality of this package is used in a group theoretical
context by theRCWA package written by the same author.

The introduction of unions of residue classes with fixed representatives which are implemented in
this package since version 2.0 follows a suggestion by Wolfgang Rump.

| would be grateful for any bug reports, comments or suggestions.

Stefan Kohl



Chapter 2

Semilocalizations of the Integers

In the following the semilocalizatior; of the ring of integers are needed as base rings for unions
of residue classes. Since these rings are not already implemented as domair@&AR tieary, they
had to be implemented in this package.

2.1 Entering semilocalizations of the integers

2.1.1 Z_pi(pi)

Qzpi(pi) (function)
QOZpi(p) (function)
Returns: The ringZ .
The function also accepts a single priménstead of the one-element list = [ p ] as argu-

ment.
Example

gap> R := Z_pi(2);
Z_(2)

gap> S := 7_pi([2,5,7]);
Z_( 2, 5, 7))

gap> T := Z_pi([3,11]);
Z_( 3, 11)

2.1.2 1sZ pi (R)

QO Iszpi( R) (property)
Returns: true if Ris aringZ ) for some set of primerandfalse otherwise.

2.1.3 NoninvertiblePrimes (R)

{ NoninvertiblePrimes( R ) (attribute)
Returns: The set of noninvertible primesi in the semilocalizatior of the integers.
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2.2 Methods for semilocalizations of the integers

There are methods for the operatiams Intersection, IsSubset, StandardAssociate, Ged, Lem,
Factors andIsUnit available for semilocalizations of the integers. For the documentation of these
operations, see th@AP reference manual. The standard associate of an element of & #nes
defined by the product of the non-invertible prime factors of its numerator.

Example

gap> 4/7 in R;

true

gap> 3/2 in R;

false

gap> U := Intersection(R,S,T);
Z_ (2, 3,5, 17, 11)

gap> IsSubset (R,U);

true

gap> StandardAssociate(R,-6/7);
2

gap> Gecd(S,90/3,60/17,120/33);
10

gap> Lem(S,90/3,60/17,120/33);
40

gap> Factors (R, 840);

[ 105, 2, 2, 2]

gap> Factors(R,-2/3);

[ -1/3, 2]

gap> IsUnit(S,3/11);

true




Chapter 3

Unions of Residue Classes

3.1 Entering residue classes and unions thereof

3.1.1 ResidueClass (R, m,r)

{ ResidueClass( R, m, r ) (function)
{ ResidueClass( m, r ) (function)
{) ResidueClass( r, m ) (function)

Returns: In the three-argument form the residue clasmodm of the ringRr, and in the two-
argument form the residue classnodn of the integers.

In the two-argument case, andm must not be negative, andis assumed to lie in the range
[0..m-1]. The latter is used to decide which of the two arguments is the modubrsd which is the
residuer.

Example
gap> A := ResidueClass(2,3);
The residue class 2(3) of Z
gap> B := ResidueClass(Z_pi([2,5]

),2,1);
The residue class 1(2) of Z_( 2, 5 )
gap> R := PolynomialRing(GF(7),1);; x := Indeterminate(GF(7),1);; SetName (x,"x");
gap> C := ResidueClass (R, x+0One(R),3*0ne (R));
The residue class Z(7) ( mod x+Z(7)°0 ) of GF(7) [x]

3.1.2 IsResidueClass (obj)

{ IsResidueClass( obj ) (property)
Returns: true if objis a (single) residue class andl se otherwise.

Rings are regarded as residue class 0 (mod 1).
Example

gap> IsResidueClass(A);

true

gap> IsResidueClass(Z_pi([2,51));
true
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3.1.3 ResidueClassUnion (R, m, )

{ ResidueClassUnion( R, m, r ) (function)
{ ResidueClassUnion( R, m, r, included, excluded ) (function)
Returns: The union of the residue classeg] mod m of the ringR, plus / minus finite sets
included andexcluded of ring elements.
If the argumentdncluded andexcluded are given, they must be sets of elements.of

Example

gap> D := ResidueClassUnion (Integers, 6, [2,4]);

Union of the residue classes 2(6) and 4(6) of 2

gap> F := ResidueClassUnion(Integers,5,[1,2],[3,8],[-4,1]);

(Union of the residue classes 1(5) and 2( ) of Z) U [ 3, 81\ [ -4, 1]

gap> G := ResidueClassUnion (R, x, [One (R),5*0One(R),6*0One(R)], [Zero(R)], [One(R)]);

<union of 3 residue classes (mod x) of GF( Y[x]> U [ 0*Z(7) 1 \ [ Z(7)°0 ]

gap> H := ResidueClassUnion(Z_pi([2,3]),8,[3,5]1);

<union of 2 residue classes (mod 8) of Z_ ( 2, 3)>
3.1.4 AllIResidueClassesModulo (R, m)
{ AllResidueClassesModulo( R, m ) (function)
{ AllResidueClassesModulo( m ) (function)

Returns: A sorted list of all residue classes (mayof the ringr.
If the argumentR is omitted it defaults to the default ring af — cp. the documentation of

DefaultRing in the GAP reference manual.
Example

gap> AllResidueClassesModulo (3);

[ The residue class 0(3) of Z, The residue class 1(3) of Z,
The residue class 2(3) of Z ]

gap> AllResidueClassesModulo(Z_pi(2),4);

[ The residue class 0(4) of Z_( 2 ), The residue class 1(4) of Z_(
The residue class 2(4) of Z_( 2 ), The residue class 3(4) of Z_(

gap> AllResidueClassesModulo (R, x);

[ The residue class 0*Z(7) ( mod x ) of GF(7) [x],
The residue class Z(7)°0 ( mod x ) of GF(7) [x],
The residue class Z(7) ( mod x ) of GF(7) [x],
The residue class zZ(7) "2 ( mod x ) of GF(7) [x],
The residue class -Z(7)°0 ( mod x ) of GF(7) [x],
The residue class Z(7)"4 ( mod x ) of GF(7) [x],
The residue class Z(7)"5 ( mod x ) of GF(7)[x] ]




ResClasses 10

A transversal for the set of residue classes (mpdan be obtained by the following function:

3.1.5 AllResidues (R, m)

{ AllResidues( R, m ) (function)
Returns: A sorted list of all residues modutoin the ringr.

Example

gap> AllResidues (Integers, 6);

[ 0 .. 5]

gap> AllResidues(Z_pi([3,5,7]),700);

[0 .. 174 ]

gap> := Indeterminate (GF (2),1);; SetName (x,"x");;

X

gap> R := PolynomialRing(GF(2),1); e := One(R);; z := Zero(R);;

GF (2) [x]

gap> AllResidues (R, x"4+x"2);

[ 0%Z(2), 2(2)°0, %, x+Z(2)°0, x"2, x"2+Z(2)"0, x"2+x, x"2+x+7Z(2)"0, x"3,
x"3+47(2)70, x"3+x, x"3+x+Z2(2)"0, x"3+x"2, x"3+x"2+7Z(2)"0, x"3+x"2+x,
x"3+x"2+4x+7Z(2) "0 ]

For extracting the components of a residue class union as given as arguments in
ResidueClassUnion (3.1.3, there are operationgodulus, Residues, IncludedElements and
ExcludedElements.

3.2 Methods for unions of residue classes

There are methods ferrint, String andbisplay which are applicable to unions of residue classes.

There is a method farn to test whether some ring element lies in a given union of residue classes.
Example

gap> 20 in A;

true

gap> 1/3 in B;

true

gap> x in G;

false

gap> Perform( [ C, F, H ], function( U ) Print (U,"\n"); end );
ResidueClassUnion( GF(7) [x], x+Z(7)"0, [ z2(7) 1)
ResidueClassUnion( Integers, 5, [ 1, 21, [ 3, 81, [ -4, 1 1)
ResidueClassUnion( Z_( 2, 3 ), 8, [ 3, 51 )

There is a method farsSubset available for unions of residue classes. As described in detail in the
sequel, there are methods for computing set-theoretic unions, intersections and differences of unions
of residue classes:
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3.2.1 Union (U1, U2)

$ Union( U1, U2 ) (method)
{ Union( U, S ) (method)

Returns: The union of two residue class unions andu2 resp. of the residue class uniorand
the finite sets of elements of the ring is defined over.

Example

gap> I := ResidueClassUnion (Integers,6,[1,5]);

Union of the residue classes 1(6) and 5(6) of Z

gap> J := ResidueClassUnion(Integers,5,[1,2,3,4]1);

Union of the residue classes 1(5), 2(5), 3(5) and 4(5) of 7Z

gap> K := Union(I,J);

<union of 26 residue classes (mod 30) of Z>

gap> Residues (K);

(1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24,
25, 26, 27, 28, 29 ]

gap> Union (K, [0]);

<union of 26 residue classes (mod 30) of Z> U [ 0 ]

gap> Union(D,I);

Union of the residue classes 1(3) and 2(3) of Z

3.2.2 Intersection (U1, U2)

O Intersection( Ul, U2 ) (method)
{ Intersection( U, S ) (method)

Returns: The intersection of two residue class uniansandu? resp. of the residue class union
and the finite set of elements of the ring is defined over.

Example

gap> L := Intersection(I,J);
<union of 8 residue classes (mod 30) of Z>
gap> Display (L);

The union of the residue classes r ( mod 30 ) of Z for r =
1 7 11 13 17 19 23 29

gap> cl := List([l..25],1i->ResidueClass(Integers,Primes[i],1));;

gap> cl_int := Intersection(cl);

The residue class 941584379775558526136539054851975983 (

2305567963945518424753102147331756070) of 7Z

gap> List (Primes{[l..25]},p—>Representative(cl_int) mod p);

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25 ]
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3.2.3 Difference (U1, U2)

O Difference( Ul, U2 )
{ Difference( U, S )

12

(method)
(method)

Returns: The difference of two residue class uniarisandu2 resp. of the residue class union

and the finite set of elements of the ring is defined over.

Example

gap> M := Difference(I,J);

Union of the residue classes 5(30) and 25(30) of Z
gap> N := Difference(J,I);

<union of 16 residue classes (mod 30) of 7>

gap> Display (N);

The union of the residue classes r ( mod 30 ) of Z for r =
2 3 4 6 8 912 14 16 18 21 22 24 26 27 28

gap> Difference (Integers, [1,2,3]);

zZ\NT[1, 2, 3]

gap> Difference(Z_pi([2,3,7]1),[1/5,1/551);
z_(2,3, 7))\ [1/55, 1/5]

If the underlying ring has a residue class ring of some cardinglitigen a residue class can be

written as a disjoint union dfresidue classes with equal moduli:

3.2.4 SplittedClass (cl, t)

Q SplittedClass( cl, t )

(operation)

Returns: A partition of the residue classl into t residue classes with equal moduli, provided

that such a partition exists. Otherwiseil.

Example

gap> SplittedClass (ResidueClass(2,3),5);

[ The residue class 2(15) of Z, The residue class 5(15) of %,
The residue class 8(15) of 7, The residue class 11(15) of Z,
The residue class 14(15) of 7 ]

gap> SplittedClass (ResidueClass(Z2_pi([2,31),3,2),2);

[ The residue class 2(6) of Z_( 2, 3 ), The residue class 5(6)

gap> SplittedClass (ResidueClass(Z_pi([2,3]1),3,2),5);

fail

of Z_( 2, 3 ) ]

Sometimes one wants to know a partition of a given union of residue classes into “few” residue
classes. Ensuring to get always a partition of minimal possible length seems to be algorithmically

difficult. The following yields usually “reasonably short” partitions:
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3.2.5 AsUnionOfFewClasses (U)

{ AsUnionOfFewClasses( U )
Returns: A set of disjoint residue classes whose union.is

13

(operation)

As the name of the operation suggests, it is taken care that the number of residue classes in

the returned list is kept “reasonably small”.

IncludedElements andExcludedElements.
Example

It is not necessarily minimal.

No care is taken of

gap> AsUnionOfFewClasses (K);

[ The residue class 1(5) of Z,
The residue class 3(5) of 7,
The residue class 5(30) of Z,

of 7,
of 7,

The residue class 2(5)
The residue class 4(5)
The residue class 25(30)

of 7 ]

One can add / subtract a constant to / from all elements of a union of residue classes, and one can

multiply or divide the elements by a constant:

3.2.6 \+(U,X)
ON+( U, x) (method)
ON+( %, U) (method)

Returns: The set of sums+x, ucU.

Example
gap> Display(L+1);
The union of the residue classes r ( mod 30 ) of Z for r =
0 2 8 12 14 18 20 24

gap> L+30 = L;

true
3.2.7 \-(U,x)
O\N-(U, x) (method)
ON-( %, U) (method)
ON-(U) (method)

Returns: The set of differences— x, u € U resp. the set of differences- u, u € U resp. the set

of the additive inverses of the elementd.af
Example

gap> F-7;
(Union of the residue classes 0(5)
gap> -L = L;

true

gap> -C;

The residue class Z(7) "4

and 4(5) of 2) U

( mod x+Z(7)"0 ) of GF(7) [x]

[ -4, 1

1A
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3.2.8 \*(U, x)
O\*( U, x) (method)
ON* (%, U) (method)

Returns: The set of products-u, uc U.

Example

gap> D*17;

Union of the residue classes 34(102) and 68(102) of Z
gap> 2*Difference (Integers,[1,2,3]);

(The residue class 0(2) of z) \ [ 2, 4, 6 ]

3.2.9 \/(U,x)

ON/ (U, x) (method)
Returns: The set of quotienta/x, u € U.
If the result would be not a subset of the underlying ring, the method gives up.

Example

gap> D/2;
Union of the residue classes 1(3) and 2(3) of Z
gap> M/5;
Union of the residue classes 1(6) and 5(6) of Z

The natural density of a residue clags) of a ringR is defined by 1|R/mR, and the natural
density of a uniorlJ of finitely many residue classes is defined as the sum of the densities of the
elements of a partition df into finitely many residue classes:

3.2.10 Density (U)

O Density( U ) (operation)
Returns: The natural density of as a subset of the underlying ring.
Example
gap> Density(G); G;
3/7
<union of 3 residue classes (mod x) of GF(7)[x]> U [ 0*2(7) 1 \ [ Z(7)"0 ]

gap> ResidueClassUnion(Integers,12,(3,5,9]);
Union of the residue classes 3(6) and 5(12) of Z
gap> List([last,2*last],Density);

[ 1/4, 1/8 ]

For looping over unions of residue classes of the integers, there are methods for the operations
Iterator andNextIterator.
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3.3 The categories and families of unions of residue classes

3.3.1 IsUnionOfResidueClasses (U)

{) IsUnionOfResidueClasses( U ) (filter)
Q) IsUnionOfResidueClassesOfz( U ) (filter)
{ IsUnionOfResidueClassesOfZ_pi( U ) (filter)
Q IsUnionOfResidueClassesOfGFgx( U ) (filter)

Returns: true if U is a union of residue classes, resp. a union of residue classes of the ring of
integers, resp. a union of residue classes of a semilocalization of the ring of integers, resp. a union of
residue classes of a polynomial ring in one variable over a finite fieldf anek otherwise.

3.3.2 ResidueClassUnionsFamily (R)

Q ResidueClassUnionsFamily( R ) (function)
Q ResidueClassUnionsFamily( R, fixedreps ) (function)
Returns: The family of unions of residue classes resp. the family of unions of residue classes
with fixed representatives of the rig depending on whethetrixedreps is present andrue.
The ringR can be accessed asderlyingRing (ResidueClassUnionsFamily (R)). Unions of
residue classes with fixed representatives are described in the next chapter.



Chapter 4

Unions of Residue Classes with Fixed
Representatives

4.1 About unions of residue classes with fixed representatives

In this chapter, a different kind of unions of residue classes is introduced — namely the one of residue
classes which are endowed with a distinguished (“fixed”) representative. These unions of residue
classes behave different than the “ordinary” residue class unions which were described in the previous
chapter:

- In most situations they behave like lists of single residue classes with fixed representatives rather
than like sets of ring elements. There are exceptions from this behaviour, e.g. w.r.t. forming
differences, in order to ensuré-additivity” (— Delta (4.4.2).

- They can be viewed aswultisetsof ring elements — the residue classes in such a union are not
necessarily disjoint, and not even necessarily distinct.

Throughout this chapter, the argumentienotes the ring whose residue classes are considered, and
the arguments, U1 andu2 denote unions of residue classexafith fixed representatives.

Some of the functionality described in this chapter makes only sersis the ring of integers —
in particular this holds for everything concerning the invariant

4.2 Entering unions of residue classes with fixed representatives

4.2.1 ResidueClassWithFixedRepresentative (R, m, r)

{Q ResidueClassWithFixedRepresentative( R, m, r ) (function)
Q ResidueClassWithFixedRepresentative( m, r ) (function)
Returns: The residue class modm of the ringRr, with fixed representative.

If the argumenR is omitted, it defaults tantegers.
Example

gap> cll := ResidueClassWithFixedRepresentative (Integers,3,2);
[2/3]
gap> cl2 := ResidueClassWithFixedRepresentative (Integers,2,1);
[1/2]

16
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In all names of functions described in this chapkeresentative can be abbreviated Rep.
When entering a union of residue classes with fixed representativenyoesidue class in the union
a representative has to be specified:

4.2.2 ResidueClassUnionWithFixedRepresentatives (R, classes)

Q ResidueClassUnionWithFixedRepresentatives( R, classes ) (function)
Q ResidueClassUnionWithFixedRepresentatives( classes ) (function)
Returns: The union of the residue classeBasses|i][2] mod classes[i][1] of the ring R, with
fixed representativesl asses[i][2].
The argumentlasses must be a list of pairs of elements of the riRgthose first elements (the
moduli) have to be non-zero. If the argumens omitted, it defaults tantegers.
Example

gap> U := ResidueClassUnionWithFixedRepresentatives (Integers, [[2,1]1,[7,411);
[1/2] U [4/7]

There is a method for the operatimndulus, which returns the Icm of the moduli of the residue
classes forming such a union, and there is an operatiofises for extracting the list of classes which
is passed as an argumenRixsidueClassUnionWithFixedRepresentatives.

4.2.3 AllResidueClassesWithFixedRepresentativesModulo (R, m)

Q AllResidueClassesWithFixedRepresentativesModulo( R, m ) (function)
{ AllResidueClassesWithFixedRepresentativesModulo( m ) (function)

Returns: A sorted list of all residue classes (maypof the ringRr, with fixed representatives.

If the argument is omitted it defaults to the default ring af — cp. the documentation of
DefaultRing in the GAP reference manual. The representatives are the same as those chosen by
the operatiomod. See als@11ResidueClassesModulo (3.1.4.

Example

gap> AllResidueClassesWithFixedRepresentativesModulo (Z2_pi(2),4);
[ [0/4], [1/41, [2/4], [3/4] ]

gap> AllResidueClassesWithFixedRepsModulo(9);

[ 10/9), [1/91, [2/91, [3/91, [4/91, [5/91, [6/9]1, [7/91, [8/9] ]

4.3 Methods for unions of residue classes with fixed representatives

There are methods f@rint, String andbisplay which are applicable to unions of residue classes
with fixed representatives. Unions of residue classes are multisets, thus elements can be contained
with different multiplicities:

4.3.1 Multiplicity (x, U)

O Multiplicity( x, U ) (method)
Returns: The multiplicity of x in U regarded as a multiset of ring elements.
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Example

gap> List([1,2,11],n->Multiplicity(n,U));
[ 1, 0, 2]

4.3.2 IsOverlappingFree (U)

{ IsOverlappingFree( U ) (property)
Returns: true if the residue classes inare pairwisely disjoint andalse otherwise.
We call a residue class uniarwith fixed representativesverlapping freef and only if it consists
of pairwisely disjoint residue classes.

Example

gap> IsOverlappingFree(cll);
true

gap> IsOverlappingFree(U);
false

4.3.3 AsOrdinaryUnionOfResidueClasses (U)

{Q AsOrdinaryUnionOfResidueClasses( U ) (method)
Returns: The set-theoretic union of the residue classes in
The returned object is an ordinary residue class union without fixed representatives as described
in Chapter3 which behaves like a subset of the underlying ring.
Example

gap> List([cll,cl2,U],AsOrdinaryUnionOfResidueClasses);
[ The residue class 2(3) of Z, The residue class 1(2) of Z,
Union of the residue classes 1(2) and 4(14) of 7 ]

4.3.4 \in(cl, U)

O\in( cl, U ) (method)
Returns: true if the residue classl with a fixed representative is an elementiadindfalse

otherwise.

Example

gap> cll in U;
false
gap> cl2 in U;
true
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4.3.5 AsListOfClasses (U)

{ AsListOfClasses( U ) (method)
Returns: The sorted list of the residue classewin

Example

gap> AsListOfClasses (U);
[ [1/21, [4/7]1 ]

4.3.6 IsSubset (U1, U2)

{ IsSubset ( Ul, U2 ) (method)
Returns: true if U2 is a subset ofil andfalse otherwise.
We say thati2 is a subset ofi1 if the multiplicity of any residue clasig /m| in Ul is greater than
or equal to its multiplicity inu2.
Example

gap> IsSubset (U,cll);
false
gap> IsSubset (U,cl2);
true

4.3.7 Density (U)

Q Density( U ) (operation)
Returns: The natural density aof as a multiset (elements with multiplicikycountk-fold).

Example

gap> Density (U);
9/14

gap> 1/2+1/7;
9/14

4.3.8 Union (U1, U2)

¢Q Union( Ul, U2 ) (method)
Returns: The union oful andu2.
It holdsDelta (Union(U1,U2)) = Delta(Ul) + Delta(U2).(— Delta (4.4.2)

Example

gap> Union(U,cll);
[1/2] U [2/3] U [4/7]




ResClasses 20

4.3.9 Intersection (U1, U2)

{ Intersection( Ul, U2 ) (method)
Returns: The intersection of1 andu2.

The multiplicity of any residue class in the intersection is the minimum of its multiplicities in the
arguments.

Example

gap> Intersection(cll,cl2);

Empty union of residue classes of Z with fixed representatives
gap> Intersection(List([cll,cl2],AsOrdinaryUnionOfResidueClasses));
The residue class 5(6) of Z

gap> Intersection(cl2,U);

[1/2]

4.3.10 Difference (U1, U2)

O Difference( Ul, U2 ) (method)
Returns: The difference ofi1 andu2.
It holdsDelta (Difference (Ul,U2)) = Delta(Ul) - Delta(U2).(— Delta (4.4.2). Thisis

ensured by setting the difference of the empty residue class union with fixed representatives and some
residue clas§ /m| equal to[(m—r)/m).

Example

gap> Difference (U,cll);
(1/2] U [1/3] U [4/7]
gap> Difference (U,cl2);
[4/71]

Throughout the rest of this section,is regarded as a multiset of ring elements. For sake of
simplicity, the term “the multiset of ring elements endowed with the structure of a union of residue
classes with fixed representatives” is abbreviated by “the multiset”.

4.3.11 \ + (U, x)

O\+( U, x) (method)
ON+( %, U) (method)
Returns: The multiset of sums+x, uc U.

Example

gap> cll + 1;
[3/3]

gap> U+23;
[24/2]1 U [27/7]
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4.3.12 \- (U, x)

O\N-( U, x) (method)
ON-( %, U) (method)
ON-(U) (method)

Returns: The multiset of differences — x, u € U resp. the set of differences-u, u € U resp.
the set of the additive inverses of the elementd of

Example

gap> clz - 1;
[0/2]

gap> U - 17;
[-16/2] U [-13/7]

4.3.13 \* (U, x)

O\*( U, x) (method)
ON*(x, U) (method)
Returns: The multiset of products- u, u € U.
Scalar multiplication leavedinvariant (— Delta (4.4.2).
Example

gap> 3*cll;
[6/9]

gap> 7*U;

[7/14] U [28/49]

4.3.14 \/ (U, x)

ON/ (U, x) (method)
Returns: The multiset of quotienta/x, u € U.

Scalar division leavedinvariant (— Delta (4.4.2). If not all elements of all residue classesiin
are divisible byx, the method gives up.

Example

gap> (2*cll+2)/3;
[2/2]
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4.4 The invariant Delta

4.4.1 RepresentativeStabilizingRefinement (U, k)

O RepresentativeStabilizingRefinement ( U, k ) (method)

Returns: The representative stabilizing refinementianto k parts.

The representative stabilizing refinementta residue clasg/m| of Z into k parts is defined by
[r/kmu[(r+m)/kmu...U[(r+ (k—1)m)/km. This definition is extended in a natural way to
unions of residue classes.

The method tries to perform a simplification ofby joining appropriate residue classes if the
argumenk is zero.

In any case the value ok1ta (U) is invar]izant ulnder this operatior{ Delta (4.4.2).
xample

gap> cl := ResidueClassUnionWithFixedReps (Integers, [[2,1]]);
[1/2]
gap> S := RepresentativeStabilizingRefinement (cl,3);
[1/6] U [3/6] U [5/6]
gap> cls := AsListOfClasses(S);
[ [1/6], [3/6], [5/6] ]
gap> cls := List([1l..3],1->RepresentativeStabilizingRefinement (cls[i],i+1));
[ [1/12] U [7/12], [3/18] U [9/18] U [15/18],
[5/24]1 U [11/24] U [17/24] U [23/24] ]
gap> S := Union(cls);
<union of 9 residue classes of Z with fixed representatives>
gap> RepresentativeStabilizingRefinement (S,0);
[1/2]

4.4.2 Delta (U)

O Delta( U ) (attribute)
Returns: The value of the invariard of the residue class unian
For a residue class/m| with fixed representative we s&¢[r/m|) :=r/m—1/2 and extend this
additively to unions of such residue classes. If no representatives are fixed, this definition is still

unique (mod 1). Example

gap> [ Delta(U), (1/2-1/2)+(4/7-1/2) 1;

[ 1/14, 1/14 ]

gap> V := RepresentativeStabilizingRefinement (U, 3);

[1/6] U [3/6] U [5/6] U [4/21] U [11/21] U [18/21]

gap> Delta(V) = (1/6-1/2)+(3/6-1/2)+(5/6-1/2)+(4/21-1/2)+(11/21-1/2)+(18/21-1/2);
true

4.4.3 Rho (U)

QO Rho( U ) (attribute)
Returns: The value of the invariarg of the residue class unian
For a unionJ C Z of finitely many residue classes, we g¢t) ) := e™3V).
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4.5 The categories of unions of residue classes with fixed rep’s

The names of the categories of unions of residue classes with fixed representatives can be derived
from the names of those of the “ordinary” unions of residue classes given in S8ciby appending
WithFixedRepresentatives.



Chapter 5

Installation and auxiliary functions

5.1 Installation

Like any otherGAP packageResClasses must be installed in thekg subdirectory of thesAP dis-
tribution. This is done by extracting the distribution file in this directory. By default, the package
ResClasses is autoloaded, otherwise you can load it VieadPackage ( "resclasses" );. The
ResClasses Package needs at least version 4.456P, is completely written in thé&SAP language

and does neither contain nor require external binaries. For the documentation the pfaakage
[LNOZ2] is needed.

5.2 Building the manual

5.2.1 ResClassesBuildManual

{) ResClassesBuildManual ( ) (function)
Returns: Nothing.
This function builds the manual of theesClasses package in the file format$TgX, DVI,
Postscript, PDF, HTML and ASCII text. This is done using @%PDoc package by Frank iltbeck
and Max Neunbffer.

5.3 The testing routine

5.3.1 ResClassesTest

{ ResClassesTest ( ) (function)
Returns: Nothing.
Performs tests of thResClasses package. This function makes use of an adaptation of the test
file tst/testall.qg of the GAP library to this package.

24
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5.4 Changing the viewing format for residue class unions

5.4.1 ResidueClassUnionViewingFormat (format)

{ ResidueClassUnionViewingFormat ( format ) (function)

Returns: Nothing.

Switches between a longer and more descriptiverfat = "1ong") and a shorter and less bulky
(format = "short™") viewing format for unions of residue classes.

The former is the default and should be used when not many residue classes have to be displayed
or residue classes of different rings are used, but the latter is usually preferable if it is always clear
which the base ring is and if the printed representation of many residue classes should fit on one

screen.
Example

gap> ResidueClassUnionViewingFormat ("short");

gap> ResidueClassUnion(Integers,12,[1,4,5,7,10,11]1);
1(3) U 5(6)

gap> ResidueClassUnionViewingFormat ("long");

gap> ResidueClassUnion (Integers,12,[1,4,5,7,10,11]);
Union of the residue classes 1(3) and 5(6) of Z
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