JAGS Version 2.0.0 installation manual

Martyn Plummer Bill Northcott

April 30, 2010

JAGS is distributed in binary format for Microsoft Windows, Mac OS X, and most Linux
distributions. The following instructions are for those who wish to build JAGS from source.

The manual is divided into three sections with instructions for Linux/Unix, Mac OS X, and
Windows.

1 Linux and UNIX

JAGS follows the usual GNU convention of

./configure
make
make install

which is described in more detail in the file INSTALL in the top-level source directory. On
some UNIX platforms, you may be required to use GNU make (gmake) instead of the native
make command. On systems with multiple processors, you may use the option -j to speed
up compilation, e.g. for a quad-core PC you may use:

make -j4

1.1 Configure options

At configure time you also have the option of defining options such as:

e The names of the C, C++4, and Fortran compilers. Although JAGS contains no Fortran
code, you are required to define a Fortran compiler so that JAGS modules can be linked
against libraries written in Fortran (such as BLAS and LAPACK)

e Optimization flags for the C and C+4 compilers. JAGS is optimized by default if the
GNU compiler (gcc) is used. Otherwise you must explicitly supply optimization flags.

e Installation directories. JAGS conforms to the GNU standards for where files are in-
stalled. You can control the installation directories in more detail using the flags that
are listed when you type ./configure --help.

1.1.1 Configuration for a 64-bit build

By default, JAGS will install all libraries into /usr/local/1lib. If you are building a 64-
bit version of JAGS, this may not be appropriate for your system. On Fedora and other
RPM-based distributions, for example, 64-bit libraries should be installed in 1ib64, and on
Solaris, 64-bit libraries are in a subdirectory of 1ib (e.g. 1ib/amd64 if you are using a x86-64
processor), whereas on Debian, and other Linux distributions that conform to the FHS, the
correct installation directory is lib.

To ensure that JAGS libraries are installed in the correct directory, you should supply the
--1ibidr argument to the configure script, e.g.:

./configure --libdir=/usr/local/lib64

It is important to get the installation directory right when using the rjags interface
between R and JAGS, otherwise the rjags package will not be able to find the JAGS library.

1.1.2 Configuration for a private installation

If you do not have administrative privileges, you may wish to install JAGS in your home
directory. This can be done with the following configuration options

export JAGS_HOME=$HOME/jags #or wherever you want it
./configure --bindir=$JAGS_HOME/bin --1libdir=$JAGS_HOME/1lib \
--libexecdir=$JAGS_HOME/bin --includedir=$JAGS_HOME/include

You then need to modify your PATH environment variable to include $JAGS_HOME/bin. You
may also need to set LD_LIBRARY_PATH to include $JAGS_HOME/1ib (On Linux this is not
necessary as the location of libjags and libjrmath is hard-coded into the JAGS binary).

1.2 BLAS and LAPACK
BLAS (Basic Linear Algebra System) and LAPACK (Linear Algebra Pack) are two libraries

of routines for linear algebra. They are used by the multivariate functions and distributions
in the bugs module. Most unix-like operating system vendors supply shared libraries that
provide the BLAS and LAPACK functions, although the libraries may not literally be called
“blas” and “lapack”. During configuration, a default list of these libraries will be checked. If
configure cannot find a suitable library, it will stop with an error message.

You may use alternative BLAS and LAPACK libraries using the configure options -—with-blas
and --with-lapack

./configure --with-blas="-lmyblas" --with-lapack="-1lmylapack"

If the BLAS and LAPACK libraries are in a directory that is not on the default linker
path, you must set the LDFLAGS environment variable to point to this directory at configure
time:

LDFLAGS="-L/path/to/my/libs" ./configure ...

If your BLAS and LAPACK libraries depend on other libraries that are not on the linker
path, you must supply these dependency libraries as additional arguments to —-with-blas
and --with-lapack

At runtime, if you have linked JAGS against BLAS or LAPACK in a non-standard location,
you must supply this location with the environment variable LD_LIBRARY_PATH, e.g.

LD_LIBRARY_PATH="/path/to/my/libs:${LD_LIBRARY_PATH}"

Alternatively, you may hard-code the paths to the blas and lapack libraries at compile time.
This is compiler and platform-specific, but is typically achieved with

LDFLAGS="-L/path/to/my/libs -R/path/to/my/libs

1.3 GNU/Linux

GNU/Linux is the development platform for JAGS, and a variety of different build options
have been explored, including the use of third-party compilers and linear algebra libraries.

1.3.1 Fortran compiler

The GNU FORTRAN compiler changed between gcc 3.x and gece 4.x from g77 to gfortran.
Code produced by the two compilers is binary incompatible. If your BLAS and LAPACK
libraries are linked against 1ibgfortran, then they were built with gfortran and you must
also use this to compile JAGS.

Most recent GNU/Linux distributions have moved completely to gcc 4.x. However, some
older systems may have both compilers installed. Unfortunately, if g77 is on your path then
the configure script will find it first, and will attempt to use it to build JAGS. This results in
a failure to recognize the installed BLAS and LAPACK libraries. In this event, set the F77
variable at configure time.

F77=gfortran ./configure

1.3.2 BLAS and LAPACK

The BLAS and LAPACK libraries from Netlib (http://www.netlib.org) should be pro-
vided as part of your Linux distribution. If your Linux distribution splits packages into “user”
and “developer” versions, then you must install the developer package (e.g. blas-devel and
lapack-devel).

Suse Linux Enterprise Server (SLES) does not include BLAS and LAPACK in the
main distribution. They are included in the SLES SDK, on a set of CD/DVD images which
can be downloaded from the Novell web site. See http://developer.novell.com/wiki/
index.php/SLES_SDK for more information.

It is quite common for the Netlib implementations of BLAS and LAPACK to break when
they are compiled with the latest GNU compilers. Linux distributions that use “bleeding
edge” development tools — such as Fedora — may ship with a broken version of BLAS and
LAPACK. Normally, this problem is quickly identified and fixed. However, you need to
take care to use the online updates of the BLAS and LAPACK packages from your Linux
Distributor, and not rely on the version that came on the installation disk.

1.3.3 ATLAS

On Fedora Linux, pre-compiled atlas libraries are available via the atlas and atlas-devel
RPMs. These RPMs install the atlas libraries in the non-standard directory /usr/lib/atlas
(or /usr/1ib64/atlas for 64-bit builds) to avoid conflicts with the standard blas and lapack
RPMs. To use the atlas libraries, you must supply their location using the LDFLAGS variable
(see section 1.2)

./configure LDFLAGS="-L/usr/lib/atlas"

Runtime linking to the correct libraries is ensured by the automatic addition of /usr/1lib/atlas
to the linker path (see the file /etc/1d.so.conf), so you do not need to set the environment
variable LD_LIBRARY_PATH at run time.

1.3.4 AMD Core Math Library

The AMD Core Math Library (acml) provides optimized BLAS and LAPACK routines for
AMD processors. To link JAGS with acml, you must supply the acml library, and its depen-

dencies, as arguments to ——with-blas. It is not necessary to set the -~—with-lapack argument
as acml provides both sets of functions. See also section 1.2 for run-time instructions.
For example, to link to the 64-bit acml using gcc 4.0+:

LDFLAGS="-L/opt/acml4.3.0/gfortran64/1ib" \
./configure --with-blas="-lacml -lacml_mv -lgfortran"

The library acmv_mv library is a vectorized math library that exists only for the 64-bit version
and is omitted when linking against 32-bit acml.

On multi-core systems, you may wish to use the threaded acml library. To do this, link
to acml_mp and add the compiler flag —~fopenmp:

LDFLAGS="-L/opt/acml4.3.0/gfortran64_mp/lib" \
CXXFLAGS="-02 -g -fopenmp" ./configure --with-blas="-lacml_mp -lacml_mv -lgfortran"

The number of threads used by multi-threaded acml may be controlled with the environment
variable OMP_NUM_THREADS.

For older Linux systems, the last version that supports gcc 3.4 is acml 3.6.0. When using
gee 3.4, link against 1ibg2c.

LDFLAGS="-L/opt/acml3.6.0/gnu64/1ib" \
./configure --with-blas="-lacml -lacml_mv -1g2c"

1.3.5 Intel Math Kernel Library

The Intel Math Kernel library (MKL) provides optimized BLAS and LAPACK routines for
Intel processors. The instructions below are for MKL version 10.0 and above which use
a “pure layered” model for linking. The layered model gives the user fine-grained control
over four different library layers: interface, threading, computation, and run-time library
support. Some examples of linking to MKL using this layered model are given below. These
examples are for GCC compilers on x86_64. The choice of interface layer is important on
x86_64 since the Intel Fortran compiler returns complex values differently from the GNU
Fortran compiler. You must therefore use the interface layer that matches your compiler
(mkl_intel* or mkl_gfx).

I have not been able to link JAGS with MKL using GNU compilers, except which building a
static version. To build a static version of JAGS, use the configure option --disable-shared.
The JAGS library and modules will be linked into the main executable.

JAGS can be linked to a sequential version of MKL by

MKL_HOME=/opt/intel/mk1l/10.0.3.020/
MKL_LIB_PATH=${MKL_HOME}/1lib/em64t/
./configure --disable-shared \
--with-blas="-L${MKL_LIB_PATH} -1mkl_gf 1p64 -1mkl_sequential -lmkl_core"

Threaded MKL may be used with:

./configure --disable-shared\
--with-blas="-L${MKL_LIB_PATH} -1lmkl_gf_ 1p64 -1lmkl_gnu_thread -1lmkl_core -liomp5 -lpthr

The default number of threads will be chosen by the OpenMP software, but can be controlled
by setting OMP_NUM_THREADS or MKL_NUM_THREADS.

1.3.6 Using Intel Compilers

JAGS has been successfully built with the Intel C, C++ and Fortran compilers. The additional
configure options required to use the Intel compilers are:

source /opt/intel/Compiler/11.1/bin/ifortvars.sh
source /opt/intel/Compiler/11.1/bin/iccvars.sh
CC=icc CXX=icpc F77=ifort ./configure

1.4 OpenSolaris

JAGS has been successfully built and tested on the Intel x86 platform under OpenSolaris
2008.05 using the Sun Studio Express 5/08 compilers.

./configure CC=cc CXX=CC F77=£f95 \
CFLAGS="-x03 -xarch=sse2" \
FFLAGS="-x03 -xarch=sse2" \
CXXFLAGS="-x03 -xarch=sse2"

The Sun Studio compiler is not optimized by default. Use the option -x03 for optimization
(NB This is the letter “O” not the number “0”) In order to use the optimization flag -x03
you must specify the architecture with the -xarch flag. The options above are for an Intel
processor with SSE2 instructions. This must be adapted to your own platform.

To compile a 64-bit version of JAGS, add the option -m64 to all the compiler flags.

Solaris provides two versions of the C++ standard library: 1ibCstd, which is the default,
and libstlport4, which conforms more closely to the C++ standard. JAGS may be linked
to the stlport4 library by adding the options -library=stlport4 -1Crun to CXXFLAGS.

The configure script automatically detects the Sun Performance library, which implements
the BLAS/LAPACK functions. Automatic detection may not work on older versions of Sun
Studio, which used a different syntax for specifying this library. In this case, you may need
to use the configure option

--with-blas="-xlic_lib=sunperf -lsunmath"

1.4.1 Using acml

AMD provides a version of their Core Math Library (acml) for Solaris. To use this library
instead of the Sun Performance library add the following configure options (changing paths
as appropriate):

--with-blas="-lacml -lacml_mv -1lfsu" \
LDFLAGS="-L/opt/acml4.1.0/sun64/1ib \
-R/opt/acml4.1.0/sun64/1ib:/opt/SunStudioExpress/1lib"

The acml library is only available in 64-bit mode, so the option -m64 must also be added to
all the compiler flags.

As with using acml on Linux (section 1.3.4), the configure option --with-blas must
include not only the acml library, but also its dependencies. The LDFLAGS option -R hard-
codes the paths to these libraries into the JAGS modules that require them.

1.5 IRIX

JAGS has not been tested on TRIX for some time. Version 1.0.0 was successfully built using
the MIPSpro 7.4 compiler on IRIX 6.5. The following configure options were used:

./configure CC=cc CXX=CC F77=£f77 \
CFLAGS="-02 -g2 -0PT:IEEE_NaN_inf=0N" \
CXXFLAGS="-02 -g2 -0PT:IEEE_NaN_inf=0N"

and JAGS was built with gmake (GNU make).
BLAS and LAPACK functions on IRIX are provided by the Scientific Computing Software
library (scs). The presence of this library is detected automatically by the configure script.
When using the MIPSpro compiler, optimization flags must be given explicitly at configure
time. If this is not done, then JAGS will not be optimized at all and will run slowly.

2 Mac OS X

If trying to build software on Mac OS X you really need to use Leopard (10.5.x) or Snow
Leopard (10.6.x). Unless otherwise stated these instruction assume Snow Leopard (10.6.x).
The open source support has improved greatly in recent releases. You also need the latest
version of Apple’s Xcode development tools. The current version is Xcode 3.2.x (Leopard
uses 3.1.x). Early versions have serious bugs which affect R and JAGS. Xcode is available as a
free download from http://developer.apple.com. You need to set up a free login to ADC.
The Apple developer tools do not include a Fortran compiler. Without Fortran, you will not
be able to build JAGS.

For instructions for building on Tiger or for older versions of R see previous versions of
this manual.

The GNU gfortran Fortran compiler is included in the R binary distribution available on
CRAN. Install the R binary and select all the optional components in the ‘Customize’ step
of the installer. These instructions assume R-2.7.x.

The default C/C++ compiler for Snow Leopard is gee-4.2.x. Xcode 3.2 also includes gee-
4.2 and llvm-gcc4d.2. The code has been successfully built with these optional compilers but
will only run on Leopard. llvim is being actively developed by Apple and may produce better
code.

MacOS X 10.2 and onwards include optimised versions of the BLAS and LAPACK li-
braries. So no extra libraries are is needed for Snow Leopard. Optimisation continues an-
dApple are working on using GPUs for this sort of math. Make sure your OS is up to date.

To ensure the JAGS configure script can find the Fortran compiler for a bash shell

export F77=/usr/local/bin/gfortran

On 64 bit hardware, which means most recent Macs, there may be a problem with the
Fortran compiler. Apple’s compilers default to 64 bit builds on 64 bit hardware but the
Fortran binaries available default to 32 bit builds. This means you need to add compile and
link options.

For instance on 64 bit Intel Macs type

export CFLAGS=’-arch x86_64’
export CXXFLAGS=’-arch x86_64’
export FFLAGS=’-arch x86_64"
export LDFLAGS=’-arch x86_64’

Some Fortran compilers (not the ones from CRAN) do not understand the -arch option.
For these you will need something like:

export CFLAGS=’-arch x86_64’
export CXXFLAGS=’-arch x86_64’
export FFLAGS=’-m64’

export LDFLAGS=’-arch x86_64’

To build JAGS unpack the source code and cd into the source directory. Type the following:

./configure
make

(if you have multiple CPUs try make -j 4 or make -j 8. It may need to be issued more than
once)

sudo make install

You need to ensure /usr/local/bin is in your PATH in order for ‘jags’ to work from a
shell prompt.

This will build the default architecture for you Mac: ppc on a G4 or G5 and i386 or
x86_64 on an Intel Mac. If you want to build multiple architecture fat binaries, you will
need to ensure that libtool in the JAGS sources is version 1.5.24 or later. Then you can use
configure commands like

CXXFLAGS="-arch i386 -arch x86_64" ./configure

Make will then build fat binaries. See the R Mac developers page http://r.research.
att.com/ for instructions to build fat R packages.

A final note on MacOS X builds: do NOT use -03. It is not optimal and may find compiler
bugs. Apple recommends -0s.

3 Windows

These instructions use MinGW, The Minimalist GNU system for Windows. You need some
familiarity with Unix in order to follow the build instructions but, once built, JAGS can be
installed on any PC running windows, where it can be run from the Windows command
prompt.

3.1 Preparing the build environment

You need to install the following packages
e MinGW
e MSYS
e NSIS

MinGW (Minimalist GNU for Windows) is a build environment for Windows. There is an
official release from http://www.mingw.org. However, we used the MinGW distribution that
comes as part of the R tools for windows (http://www.murdoch-sutherland.com/Rtools),
since the compilers in this distribution match the compilers used to build the binary distri-
bution of R for windows, as well as the R packages distributed via CRAN (http://cran.
r-project.org).

We used version 2.11 of Rtools. You only need to install the “MingGW components and
tools”, not the other components of Rtools. The installer will also ask if you wish to modify
the Windows PATH. You do not need this.

MSYS (the Minimal SYStem) is part of the MinGW project. It provides a bash shell for
you to build Unix software. These instructions were tested with MSYS 1.0.10, the last version
of MSYS to be bundled with a Windows installer. The installer can be downloaded from
http://sourceforge.net/projects/mingw/files. At the end of the installation process,
it will launch a post-install script that will allow you to use MSYS in conjunction with
MinGW.

MSYS creates a home directory for you in c:\msys\<version>\home\<username>, where
<version> is the version of MSYS and <username> is your user name under Windows. You
will need to copy and paste the source files for LAPACK and JAGS into this directory.

The Nullsoft Scriptable Install System (http:\\nsis.sourceforge.net) allows you to
create a self-extracting executable that installs JAGS on the target PC. These instructions
were tested with NSIS 2.33.

3.1.1 Building LAPACK

Download the LAPACK source file from http://www.netlib.org/lapack. We used version
3.2.1, which is packaged as lapack.tgz. Unpack the file in your home directory.

tar xfvz lapack.tgz
cd lapack-3.2.1

Copy the file INSTALL/make.inc.gfortran to make.inc in the top level source directory.
Then edit make. inc, replacing the line

PLAT = _LINUX
with something more sensible, like
PLAT = _MinGW

Edit the file Makefile so that it builds the BLAS library. The line that starts 1ib: should
read

lib: blaslib lapacklib tmglib

Type
make

The compilation process is slow. Eventually, it will create two static libraries blas_MinGW.a
and lapack_MingGW.a. These are insufficient for building JAGS: you need to create dynamic
link library (DLL) for each one.

First create a definition file 1ibblas.def that exports all the symbols from the BLAS
library

dlltool -z libblas.def --export-all-symbols blas_MinGW.a

Then link this with the static library to create a DLL (1ibblas.d1l) and an import library
(1ibblas.dll.a)

gcc -shared -o libblas.dll -Wl,--out-implib=libblas.dll.a \
libblas.def blas_MinGW.a -lgfortran

(If using gee 3.4, the library should be linked with -1g2c instead of ~1gfortran)
Repeat the same steps for the LAPACK library, creating an import library (1iblapack.dll.a)
and DLL (1liblapack.dll)

dlltool -z liblapack.def --export-all-symbols lapack_MinGW.a
gcc -shared -o liblapack.dll -Wl,--out-implib=liblapack.dll.a \
liblapack.def lapack_MinGW.a -L./ -lblas -lgfortran

3.2 Compiling JAGS
Unpack the JAGS source

tar xfvz JAGS-2.0.0.tar.gz
cd JAGS-2.0.0

and configure JAGS
./configure LDFLAGS="-L/path/to/import/libs/"

where /path/to/import/1libs is a directory that contains the import libraries (1ibblas.dll.a
and liblapack.dll.a). This must be an absolute path name, and not relative to the JAGS
build directory.

Normally you will want to distribute the blas and lapack libraries with JAGS. In this
case, put the DLLs and import libraries in the sub-directory win32/include. They will be
detected and included with the distribution.

Make sure that the file makensis.exe, provided by NSIS, is in your PATH. For a typical
installation of NSIS:

10

PATH=$PATH:/c/Program\ files/NSIS
Then type
make win32-installer

The self extracting archive will be in the subdirectory win.

Note that you must go straight from the configure step to make win32-installer without
the usual step of typing make on its own. The win32-installer target resets the installation
prefix, and this will cause an error if the source is already compiled.

3.3 Building on 64-bit windows

The build instructions for 64-bit windows are similar to the instructions for 32-bit windows.
Instead of the MinGW tools that come with R, we use a 64-bit compiler from the MinGW-
w64 project (http://www.sourceforge.net/projects/mingw-w64). The distribution used
to build JAGS-2.0.0 was mingw-w64-1.0-bin_i686-mingw_20100322.zip, which is also the
compiler used to build the 64-bit Windows binary distribution of R-2.11.0. This is actually a
cross-compiler. It will run under MSYS —which is still 32-bit — but will produce 64-bit code.

Most binary distributions of MinGW-w64 use dynamic linking to runtime libraries. This is
inconvenient, as it means that the required runtime libraries must be distributed with JAGS.
Failure to do so will either result in an installation that is either completely non-functional or
will crash. To force the compiler to use static linking, delete any import libraries (files ending
in .d11.a). In the case of the mingw-w64-1.0-bin_i686-mingw_20100322.zip distribution,
we had to remove libssp.dll.a. Note that there is currently no way to avoid dynamic
linking to the gce runtime library (see below).

In order to build the BLAS and LAPACK libraries, you need to append the prefix
x86_64-w64-mingw32- to all the tools. This means you need to edit the entries FORTRAN,
LOADER, ARCH, and RANLIB in the Makefile, as well as modifying the name of d11tool
and gcc when building the DLLs for BLAS and LAPACK.!

To build JAGS you do not need to edit any makefiles. Just add the configure option

--host=x86_64-w64-mingw32
to use the cross-compiler. You may also wish to add the linker flag
LDFLAGS=-W1,--enable-auto-import

in order to suppress some warnings from the linker, although these seem to be harmless.

The JAGS binary built in this way will be dynamically linked to the C runtime library
libgcc_s_sjlj-1.d11, which is part of the MinGW-w64 distribution. You will find it in the
bin directory. You should put a copy of this DLL in the win/runtime directory so that it is
included in the installer.

Finally, in order to build the NSIS installer, you should use the make target win64-installer
instead of win32-installer.

! Although we are using a cross-compiler, you cannot cross-build 64-bit BLAS and LAPACK on a 32-bit
Windows system. This is because the build process includes compilation of test programs which must be run.

11

