FreeBSD Y&t s= AE

FreeBSD X #4&tH&

FreeBSD (5t #E AP &

by FreeBSD CfF#13]

Published $FreeBSD: doc/zh_TW.Big5/books/fdp-primer/book.sgml,v 1.6 2007/12/01 18:47:53 chinsan Exp $
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 DocEng

R 1 2 HiiFreeBSD X {51 (f5i#4 : FDP, FreeBSD Documentation Project) * fHIEHEER » AEEEE -

AANFEARCRE « WABEIHZE FREENSIEME - LG AR — LA TR - LELTE Wi T
H) o IR ERRE

AR FER - MRS » REEMIEL - FFIFEZMHARFBIMNEE T 5 LIRS -

Redistribution and use in source (SGML DocBook) and ’compiled’ forms (SGML, HTML, PDF, PostScript, RTF and so forth) with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Table of Contents

R viii
Shell FETRAFIRPIOMPLS).......vvoveo oo st s ee e enaneens viii

EH T BIARHEETRE «.cooooeeee et viii
I'Note ~ Tip ~ Important ~ Warning ~ Example FJIEcooooiviiiiiceeeee e viii

T ettt n e n et ix

1 BEam 1
1.1 FreeBSD S A AT 2 oo 1

1.2 FE B T Z T ettt 2

L3 I TE B et 2

2T H 4
2L BT Bl oo 4

DL BIEE oo 4

2.1.2 DTD JZENHLY oottt 5

2. 1.3 BRTUFR(SEYIESNEELS) ...t en s 5

22 BB L oottt 5

D20 EREE oo 5

3 SGML Primer 7
Bl BT e 7

3.2 Elements, tags, and attriDULEScccueiueriiiiiriieiee ettt ettt ettt et st s be et et b e e e 8

32,1 FOT YJOU 10 dO. . . ettt ettt ettt s b et b e bttt e bt et e sbeeate s b e e bt et e ebeeneenaeeneen 10

3.3 The DOCTYPE AECIATAtIONeeeuvieiieiiieieeiieiie e et eieesteeete et esteeseaesebeeseesseesssessseesseesssesnsesnseesseesnsesseenses 12

3.3.1 Formal Public Identifiers (FPIS)c.c.cooiiiiiiiiiiiie ettt et e et eeane e 13

3.3.2 AIEINAtIVES t0 FPIS ..ouiiiiiieiieciieeee ettt ettt ettt e ettt e e e st e sabeesaeessaesnbeeseenneeens 14

3.4 Escaping DacCk t0 SGIMILcc.coviiiiiiiiiiieiieteeneetes ettt sttt ettt et et st b ettt be e saeeaaen 15

B B I oAbt 15

3.5.1 FOT YOU 0 0. .+ teteiiieiiieiieeite ettt ettt ettt set e et e bt e s bt e st e e be e beessbeeabeenbaessaesssesnseensaesaesnseenseanseesns 16

R0 3 11515 T OO OO PR 16

3.60.1 GENETAL ENLILIES ...eevvviiuiieiieeiieiiieitesite sttt ettt et sbt e st e st e e beesabesabe e beesstesasesabeenstenseesaseensaenseesas 17

3.60.2 Parameter @NEILIES. ...ueevieruierieeiiesttertte st et erttesiteete et esbtesateeateesbeesstesateenbeesseesaeesnbeensaenseesaseeseenseesas 17

3.0.3 FOT YOU 0 0. . . teeieiiiiiieiieete ettt ettt ettt e s bt e st e et e bt e sabesabe e b e esstesatesabeensaenseesaseenseeseenas 18

3.7 Using entities t0 INCIUAE fIIESo..eeuiiriiiiiieiieiierieee ettt sttt et sbt e et e b e baesatesaseenbes 19

3.7.1 Using general entities t0 iNCIUA@ fIlES.........cooiiriiiiiiiiiiiieeieee ettt e 19

3.7.2 Using parameter entities to INCIUAE fIlES.........coviiiiiiiiiiiiiiiieieeeeee et 19

373 FOT YOU 10 dO. . oottt ettt ettt e sttt ae e et eanes 20

3.8 IMATKEA SECHIOMS. .. .eeuviieiieeeiiiieesiteeeeteeetteeeteeessaeessseeessseeesssaeassseeassseeanssaesssseeansseesssseessseesassessnsseessseesnsseennsees 22

3.8.1 Marked SECtion KEYWOTAScoeeiiriiiiiiiiieieieeteteee ettt 22

3.8.2 FOT YOU 10 dO. . . oottt ettt e sttt e anen 24

R A) 1 Ted 15 5 10 o SRS 25

4 SGML Markup 26
AL HTML. ..ottt ettt et ete et e e ae et e be e teesbesbeessebeereeabesbsess e beees et e eseenseebeerbebeetsenteereenes 26

4.1.1 Formal Public Identifier (FPI)ccooiiiiiiiie ettt et et 26

4.1.2 SECtiONAL IEIMENLSeeiuieeeieeiieitieetieeteesteesttesteeteesteesteesseeseesseessseesseeseesssesssesnseesssesssensseesseesssessseen 26

4.1.3 BIOCK CIOIMENLS.eeeiieiereeeieeiiesieestieeteesteestteseteeteesseesseessbaesseeseesssaesseesseesssesssesnseesssesssessseeseenssensseen 27

4.1.4 TN-HNE CIEIMENLES ..vveeivieiieeeieeieeiteeete et erteesttestteeteesseesseessbeeseeseessseesseesseesssesssesnseesssenssessseeseenssennsen 32

iii

5 * Stylesheets

6 Structuring documents under doc/

6.1 The tOP LEVEL, AOC/ uviiiiiiiiieitee ettt ettt st b e bttt e bt e et sbe et e b ebt et e ebe et e sbeeneen
6.2 The 1ang.encoding/ QITECLOTIEScccuviieiuiiietieeetieeeteeeeteeeetteeeetteeetaeeeteeeeteeeeaseeessseeessseseesseeesseeensseeenses
6.3 Document SPecific INFOIMALIONcc.ooueriiriiriiiiiieteeete ettt sttt eee e eaees

7 The Documentation Build Process

7.1 The FreeBSD Documentation Build TOOISEL.........c.cccverierieriiieniieiiesieeite st ereesieesre st eseeesitesereenseesaee e
7.2 Understanding Makefiles in the DOCUMENTAtION Icccuervieriierieriieiienieeieereesitesteebeesieeste e enseesaee e

8 1+ Website
8L B BT M oottt ettt ettt e et e e e e

8.2 Build the web pages from SCTatChccoiiiiiiiiiiiii e s

8.3 TE R A B R IR Ll B T oo e e e e s e s s e s s
B BB I B e e e e e e e e e e e e s e e e s e e s e s

9 THRRRT) H LR
10 STH- B2 A%
LO.T SEYLE ZUIAC ..ottt ettt ettt b et h ettt e et e bt s bt et e bt eb e et e e bt et e sbeestenbeebbenbeebeenaenbeeneen

TS LANKS «oovvieeeeeieeee ettt e et e e e e ——— e e e e e t——aeeeea—aateeeaabareeeeanbaaeeeeetrreeeeanarareas

A2 DOCBOOK. ...ttt ettt ettt e e et e e e e e —— e e e e ae——taeeeea——taeeen—bteeeeaaataeeaataraeeeanrrreeeans

4.2.1 FIeEBSD EXEENSIONS. ..ccuutiieitiieiitieeeiiiieetteesteeeeteeestteeestseeeseseeessaeesssaesssssesssseesssesasssesenssasasssesasseesssees
4.2.2 Formal Public Identifier (FPI)cccouiiiiiiiiiiee ettt et eeareee s
4.2.3 DOCUMENT SETUCKTUTE.....uvvieeeveeetieeesireeeiseeesseeeaseeesssseessseeassseesssssesssssesssssesssssesssesssssesesssesssssesesssessssees
4.2.4 BIOCK CLEIMIENLS.vvvieieeiiieeeeeeiiee e ettt e eett et e e eeetr e e e eeteeeeeeetreeeeeeetbaaeeeessteeeeeeeasbaeeeeeensrseeeeennreeens
4.2.5 TN-1INE CLEIMEIILSuvviiieiiiiieeieeiiiee e ettt e e eeet et eeeeetreeeeeeeateeeeeestreeeeeeeabaeeeeesstaeeeeeessaseeeeenssseeeeennreeens
A.2.0 TINAZES ...ttt ettt ettt et sttt a e h e ae e ne e neeneenee
g B 5111 < USROS

5.2.1 The Web site (HTML AOCUIMENLS)ccviiiiiieieeieeeeee et e ettt et e et e et e e eaeeeeaeeeeaeeeeaaeeeeareeeeaeeeenneas
5.2.2 The DOCBOOK AOCUIMENLScoeeeiiiiiiiiiieeiieeeeeeeeeeeeeeeeitttreer e e e e e eeeeeeeeeeeesnsssasrsreeeeeseeeeeeesesansessssrsrennes

6.3.1 The HANADOOKooiiiiiiiiiiiiiiieec ettt et ettt e et e e e e eate e e e e eeataeeseeenstareeeeesreeeeeans

7.2.1 SUDAITECtOrY MAKEMIIESeeruiiiiieiieiie ettt ettt ettt ettt et e st e st e e beesatesasean
7.2.2 Documentation MaAKETILEScuveiiieiiiiiei ettt ettt e et e e e e e e e e eearaee e e eetreeeeeeareeeas

7.3 FreeBSD Documentation Project make inCIUAEScccververiiiniiiniiiiiiiteieec ettt e

T.3.1 dOC.PIOJECTINIK ..ttt ettt ettt ettt sb e st e et e bt e s st e et e et e e s bt e sabesabe e baesabesabeebaesaeesasean
7.3.2 dOC.SUDAITINK ..ottt sttt b e st et e e bt e s bt e sabe et e e baesatesabe e beesatesatean

FO.1.T RZINVED ettt
L0 1.2 BB BT T oottt
L0 1.3 A et
1014 TAG JEBE oot
10.1.5 ZE FIFIBERIL covoeeie st
10.1.6 NONDIEAKING SPACE.eevieeieireeieeritenieesteesteesitesteeteesttesstessseesseesssesssessseesseesssesnsessseessessseesseeneesns

0.2 B 2% oottt ettt ettt et e e ettt et et e et e e et et e et n e e e

11 Using sgml-mode with Emacs

12 fli 24
12.1 The FreeBSD Documentation PrOJECT.........cociiriiriiiiiiiinieiieeitete sttt sttt st
I2.2 SGML ..ttt ettt h ettt bbbt a bt b e sa ettt ene bt eben
0 0 = 1 L SRR
124 DOCBOOK. ...ttt ettt ettt a e st e bt e s bt e s at e e bt e bt e s bt e e bt e bt e bt e et e e bt e beesabeebeenbee e
12.5 The Linux Documentation ProOJECtc..cocueoiiiiiiiiiiiiiiiiieiceec et

A. &l

PN B D 106 37010) QR4 o YoYU
AN B 1016 3 7010) QR = B o o I = >N

A.3 Producing formatted OULPUL........cc.eeiuiiueiieiteitieteet ettt ettt et e e st e b e st et e e bt et e sbeeseenbeeseeneeeeeenee
ABLEFTAGE v eeeesss s

List of Examples

L TB AR EBFIEIEI ..ot ix
3-1. Using an element (Start and €Nd tAZS).......covueruerieriiririiniieieie ettt ettt sttt sttt b et b ettt sbe e b bt enae b eae 9
3-2. Using an element (StArt taZ ONLY)....co.ceouirerrieririeieniietene ettt ettt ettt ettt estesbesbt et s bt estesbeestesbesbeesbesbeensenseene 9
3-3. Elements WIthin €lEIMENTS] SEIM> ovviiieuueiiiiiiiiieeieeeeeeeeeeeeeeeiiaereeteeeeeeeeeesesssssssaasasststeeeeesssesssssssssssassssseseeessssssssmssnsrnns 9
3-4. Using an element With an attiiDULEcocieriieriiieniienieeie ettt steste et et e ste st e esaeesabesabeesseesssesaseenseessnesssenn 10
3-5. Single qUOLES ATOUNA ALTTDULES.ceeuveetieriierieeitertteete et et e ste st ebeesatesateesbeesstesasessbeesssesssesaseeseesssessseenseensnesssenn 10
3-6. .profile, for SN(1) and DASN(1) USEISccciiiurrieeieiireeeeeeitreee e ettt e e eetr e e eeetre e e e eeraareeeeeetareeseertraeseseetaseeeeennreeens 10
3-7. .cshrc, for CSh(1) and tCSN(1) USEISuvveiiieiiriieeeeiireee e eere e e e et eeeettr e e e eeetreeeeeetaeeeeeeetareeseensraeeeeeetaseeeenenreeens 11
3-8. SGML ZENETIC COMUIMENLveruvieuieriieeieeritenieeteesttestesateesseesstesateeseesstesaseenseesstesssessseasssesssesnseenseesssesnseenseesseesssen 15
3-9. Erroneous SGML COMIMENLScc.eeuiririeriinieteniieteteeitetenteet et eaeesteeueeseesaeesnesbesasessesaeessesaeessensesusensesseennenaeennen 16
3-10. DefiNing ZENETAL ENLILIESeeevieriierieeiieriierie ettt te st e st et esttesate e bt esatesute e bt e stesatessbeesbeesatesateeseesseesaseenseesseesasean 17
3-11. DefiNing ParameEter ENEILIES.eevuverterrtieriierierieestteete et et e ste sttt ebeesttesute e beesstesatessbeesstesaeesateeseesseesaseenseenseesssenn 18
3-12. Using general entities t0 INCIUAE fIlES.......covuiriiiiiiiiiiiieeteee ettt sttt st e n 19
3-13. Using parameter entities to iNCIUAE fIlES.........cceiiiiiriiiiiiiiiiicee e 20
3-14. Structure 0f @ MATKEA SECHIOMeevuiiiiiiiieriieeieetteete ettt et e e et e st e st e s bt e bt e sate s beesbeesabesateebeessaesasean 22
3-15. Using @ CDATA marked SECHOM........cc.iiiiiiiieiiiieieie ettt sttt sae e e s eanes 23
3-16. Using INCLUDE and IGNORE in Marked SECHOMSc..ccuevuiriiiiiiieieiieteeesiceee ettt 23
3-17. Using a parameter entity to control a marked SECHOMNc..cecuiiiiiiiiiiiiiiiiiceee e 24
4-1. Normal HTML dOCUMENE SIIUCTULEeeuveetteriteriieeieeriteeiteeteesttesttesatee bt esbeesaae e bt esbeesbeeessesbeesbeesasesseenbeesmsesaneenss 27
B KL >, K23, BLC. tiiiiiiiiiieeeeeeee e e e e e e e e e ettt e e e e e e e e e e e e e e et e e e eeeeeaeeaeeea et e e s aeeeeeeaaettaaaa—————————————ataeeeetrraaaas 27
4-3. Bad ordering Of <hn> @lEMENESeouieiiriiiieieitieiete et ettt ettt ettt et e ste s et et e s bt eseesteeae e eesaeeneesbeeneenseeaeenes 27
G D> ittt h ettt a et ea et eh e et ekt eh e et e ehe et e bt eh e et e eh e e a e e bt e Rt e bt ehe e te bt en e e bt ehe e et eaeentenbeenteteeaeenes 28
45, DL OCKGUOLES tiiiiiiiiiieiiieeeeeeiteeeeeeetteeeeeeetaeeeeeeataareaeeettaseaeaassssseeeassassaesasssaseaesassasaeesanssaseeesasssaseeesassasaeeeanssaneaaans 28
4-0. KUL> A1 COL> ittt ettt ettt et bt et e s bt e et et e eh e e et e ue et e bt ebeem b e eb e eateeb e e et e bt ehe et e bt ee e et e ehe et e eae e b e nbeententeeaeenes 29
4-7. Definition LSS WIth <AL ...iiiiiiitiiiiieeee ettt ettt et e bt s bt et e bt e s et e ebe et e sae et e s beeae et e ebeenee 29
8. DT> titiiiiieiitee e ettt e et e e e e et e e e e —ee e e e e ——eee e e t——eeeaattaaeeeaattaeeeeaarbarteeaathaaeeeaabaaeeeeartareeeaabbaeeeeaarbareeeearrareaeans 30
4-9. SIMPLE USE OF CLADLES cuiiiiiiiiiitieiiete ettt sttt ettt b et sttt e bt s bt et e e bt e st e sbe e st e besbe et e e beeb e et e sbeentesbeemtenbesasensenbeenee 30
4-10. USING TOWSDADN eteuteteeutenterttetenteestenteettestesteestestesttenteeseesteateestesbeabtenteabeeatenbeestebesbeembenbeestebesbeentesbeemtenbesssensenseenes 31
411, USING COLSPAN eteutitieiteieritetenteetesteettestesttestesbesute bt ebeestesbeeste bt sbtenteabeeate bt estenbesbeeabe bt essenbesbeentesbeemtenbeestensenbeenee 31
4-12. Using rowspan and colspan tOZETNETcccoiiiiiiiiiiiiiiiieeeteet ettt st 31
4-13. AN CSTLONIGD tieiiriieiieiieieeeeeee e e e eeeeeeeeeetareeeeeraaeeeeeesaareeeesasbesseesessseseeeeastaseeeeanstaseessataseseesnstaseeseansreseeeans 32
414, <> ANA Lttt ettt ettt e b et h et b e e bbbt et h e e bt et she et e bt bt et e bt et she e b e b ebee b eheeaee 33
o] S Q> ittt bt h et h et h e h e e bbbt e a e bt bt et she et e bt e bt et bt et she e b e be s et e s ebeenee 33
4-16. <big>, <SMALL1>, ANA CEOME >uiiiiiiiiiiieiieiiieeeeeeeieeeeeeerteeeeeeetareeeeeetereeeeestseeeeeeetaseeeeessseseeeeestssesesenrareeeeassreeeeeans 33
4-17. USING <A NI E=" 1 . .1 ittt ettt ettt e et ae et e b e e et et e e bt e et e bt e bt e bt sbe et e bt e bt et e ebe e bt sueesnenbesanennesbeenee 34
4-18. USING <A NAME=" . . . "2 (oiiiiiiiiienieeeete sttt et e ettt et e ettt et e b e e te et e s bt e et e bt e st e bt sbeesbe bt ess et e ebeemtesueemsenbesanensenbeenee 34
4-19. Linking to a named part of another dOCUMENL..........cccuerriiiiiiirierie ittt ettt et e beesbeesaseeaaeenes 34
4-20. Linking to a named part of the Same dOCUMENL.........ccceviiiiiiiiriirie ittt ettt st e e bt sbeesaseeareenbs 34
4-21. Boilerplate <book> With <DOOKINEOD uiiiiiriiiriiiiiierienie et ettt sttt esteeste e bt esbeesateesbeebeesbeesabeenbeesbeesasesnseenses 36
4-22. Boilerplate <article> With ArtiCleinfo> ittt ettt ettt st et e bt e sbee st e e bt e sbeesaseeaseenbes 37
4-23. A SIMPIE CRAPLET ...cuveiuiiiiiieieeieet ettt ettt et e s bt st e e bt e bt e sate e bt e bt e sabeeabeenbeesbeesabeenbeenbeesabesaseenbes 38
4-24. EIMPLY CHAPLETS ...cvvintieiieiiiiieteetieteete ettt ettt ettt et st e b e st e e a e e et et e s e saeene bt eas et e eaeesnesaeennennesanennesneenne 38
4-25. SECHONS 1N CHAPLETSeeeniiiieiiiiieiete ettt ettt ettt ettt e a e et e s sae e s e bt e es et e eaeesnesaeennesaeeanenneeneenne 38
R IR o T= o= SRR 40
277, KDL OCKGUOLE > tiieeuiieeitrieeitieeeitteeeitteestteeaseeesseeassseeasssesasseeassseeassseesnsseesnsseeansssesssesessseesassessnssesanssesenssessnsseesnssennn 40
4o 8. W ATTIATIG S tttieiieiiiieeeeeiite e e e ee ettt e e e eetae e e e eeetaeeeeeeebaeeeeeetaaeeeeeassaeeeeaasbssaeeeassaaeeeaassasaeeeastaaeeeeantaaeeeeaasraseeeeanraeeaeans 41

Vi

4-29. <itemizedlist>, <orderedlist>, ANd <PLOCEAUIES wiiiiiiiiiiirriieeieireeeeeeeireeeeeeeteeeeeeetreeeeeeetareeeeesareeeeeens 41

4-30. <P T OGTAML L ST AT > ceiitrieeeieireeeeeeeieeeeeeeeiaeeeeeeettareeeeeeteeeeeeestbaeeeeeabsseeeeastseseeesasaseeeeeassaseeeeatsssseeenraseeeeanareseeeans 43
4-31. <CO> ANA KCALLOUE LISt > 1iiiiiiiiiiiieiiiieeeitieeeiteestteesreeestbeeestreeasseessseesssseaassseesssseessseaaassesasssesesseeessseesnssesssseens 43
R PR ok Y 1= B =Y o1 =SSP 45
4-33. TablES WHETE frame=""T10ME" .. iisstteercrireeirrreriteeesreeesreeestreeastreeasseessseessseeaassseessssaesssesaasseeesssesassseeasssessnsseesnssenns 45
4-34, <screen>, <prompt >, ANA KUSETLINDUL S wiiiiiiiiiiieiieiiieeeeeeireeeeeeeteeeeeeeettreeeeeetareeeeeetteseeeeessaeeeesassreeeeesreseeeans 46
43, MDA S L S ittt iiitiiieeeeiieee e eecet e et e e e ee et e e e eetae e e e e e a—eeeeeaa——eaeeaa—ateeeeaatbateeeea——ttaeeaabateeeaatbataeeaatareeeeanaraeeaeans 47
=30, QUOLATIONS ... eeeuvveeeereeeereeetieeetreesetteesseeeasseeeasseeassseeasssesassseeassseeansseesssssesssseeassssesssssesssessassessnssesansseeesssessnsseesnsseens 47
4-37. Keys, mouse buttons, and COMDINATIONS......c...eeuirriiirierieeieeriterte ettt esiee sttt estee st et ebeesbeesabe e bt esbeesaneeaseenres 48
4-38. Applications, commands, and OPLIONS.cc.eiuiriiiiirieriinieiee ettt st a e st e s neene e 49
430, CEd L ENAME S ciiiiiitiiieeeeiiteeeeeecte e e e e ettt e e e eeetaaeeeeeebaeeeeeettaeeeeaaassaeeeaastaseeeaabbaaeeeaabasaaeeattaaeeeaanbraeeeeaartareaeearraeeaeans 50
4-40. <filename> tag With PACKAGE TOLEccuiiuiiiiiitieieeetee ettt et et sae e be et eseeaeenes 50
441, KAEVICENAMED utiiieiieiiiieeeeeeiteeeeeeetteeeeeeetteeeeeeetaseaeeaestaeeeeaassaaeeeaasssssasaasssseeesassasseseaassaseeesanssaseeesassaseeseasseseanans 51
R s TRl R Bl 116 5) 1o OSSPSR 52
Qo3 CUSETINAME S ciiiiiitiiiieeeeitieeeeeeeetteeeeeettteeeeeeetaesaeeaastaseaeaastaseaeaasssssaeeaasssssaesansssseeesassasaeeeasssaseeeaasssasaeesnssaseeeeanssaneaeans 53
4-44. <maketarget> ANA SMAKE VAL couiiiiiiiiieeieeeiieeeieeeeteeeeteeeeetteeeeteeeeeaeeeeeseeeeeteeeesseeesseseasseseesseeeassseeessesenseessnseeann 54
R TR I o= o=V OO OO TR PRSP RSO PPTON 54
Jodl. <L EPLACEADLIES citiiiiiiie et e ettt et e et e e et e e et e e e te e eeteeeeteeeet—eeeetaeeeat—aeette e ettt eeitaaeataeeateeeetteeeataeeeatraeearaeeenrraaas 55
QA7 @I TOTTIAMES wuiiiieuiieeitiee ettt e eeteeeeeteeeeteeeeteeeeteeeetteeeeaseeeessaeeatsseessseessseaassseaassseeasseeasssseasseseesssseassseessaesnsseesseeann 55
4-48. id On Chapters aNd ST IOMS ciiiiiiiiiiiiiiieecieeeeteeeeteeeetteeeeteeeeeteeeeteeeeteeeeteeestteeeasseseesseeeassseenssesensseesseeaas 59
20, AN CROT > tttiieetiie ettt et ettt e e et e e et e e et e e e eteeeetteeeetbeeeetaaeeatteeetbeeeatbaeeteeeateeeabaaeatteeearbeeentteeeataaeetreeeataeeeaeaans 59
4-50. USING SXIEE> wuiutiuiintietenieeitete sttt ettt ettt et e s bt stt et e e bt estesbe e st e bt sbt et esbeeat e et e e bt e bt sbe e st e bt eb s e bt ebeentesbeemtenbesbtentenbeenee 59
4-51. USING CLANKD tirtteitinteetentenitertesteeitesteettestesbeeste s bt sut et e ebeestesbeestebeebteabesbeeat e bt ebe e bt sbeembe bt eb s et e ebeentesbeemaenbesbsensenbeenee 60
4-52. KULINKD wtteiiesiieiieeieenieestteeteeteesteessteeste e seessseasseesseesssesssesnseenseanssessseenseenseesaseenseenseesssessseenseesssesnsesnseenseesnsesnsesnses 60
AT, DOCBOOK SIDOOKS 1uiiieuiieiieiiiieieeitesteste et esitesteseteebeesseessseesbeesseesseessseesseenseessseenseenseesssesssesnsaesssenssesnseenseenssesssen 86
A2, DOCBOOK CaTt A CLE> uiiiiiiiiiiiiieiitieeeiieeecit e e et e e et eeeteeestbeeestbeeetseeetseeastsseassseesasaeaassesaassseasssesassesssssesansseesssseannes 87
A-3. BEHDOCBOOK Ay HTML (FEEEAETC) oooovoiei st 88
A-4. BEHIDOoCBoOK AHTML (ZEEIBETL) ooovvooee sttt 88
A-5. BEHADOCBOO0K ZPOSISCIIPLPS) FEER ..ot aenansans 89
A-6. BEHDOCBOOK FPDF FEIU.....oooiioiiei ittt 89

Vii

e

Shell #&/~RfF5%(Prompts)

N REUR H—BREE Broot BUSERATER - FERTE BISCEGI & FERAT 9 (prompt) » ARAREEAGZ AP OR

SRR o
5% R FF 9% (Prompt)
EIERIE o
root #
b BT F O 4w HE RS
TR AAE A A EHEERE T
REESE 215
84 ffif1s —a RF|H T BRRESRE
-4 B . 1ogin f§ ©
%%i@ﬁﬁﬁ@gﬂ%\ You have mail.
MATESE RELEHBMHEEAZL - % su

Password:
FERE LR - F M (manual) Psu(1) ZREJHLIRE o
TEERZRSE (user) ~ #EAH (group) Y44 TEH I HRF{EE. .. HE root A LIMLEHE -
FEEAISR R TNED SBBEA AT ©
TS0 » Al B HpEM Y FMMBRIERAVEE » 5B e Emaot 5
IRIBHEEE SHOME +&=T8IRIEAIZK H $kFTTEIR ©

F'Note ~ Tip ~ Important ~ Warning ~ ExampleJ FJi&EH
UTFXFR ERES ~ Ty ~ TEEREY ~ MEEL - TEFD /g -

Note: F/RFH E LB FIE » HEFHATELENFN - B R i B R EE R -

Tip: &4 T RES AR H sl (LR A E DT U B3 -

Important: ZRZRFHIER IR o —BGH - EME QAR IEIE SRR ZNr B 28 -

viii

BT RLE ERR G -]

&y =
Hexe

Warning: ZORE & 508 - AR EANE BRI RS R © @Rk
BE & LM ROIRTE - flan—Frgn 2 MERE =R o

Example 1. i= 2 2242185
EARBFFRATD » BE O EEENTEL G BRI EBERT AT REE 4R -

T It Z i Sue Blake, Patrick Durusau, Jon Hamilton, Peter Flynn, Christopher Maden 12 48 A # By B2 B 28 #) 3
B o IR 2 E EETRE A il

ix

Chapter 1 3

B 2 BiFreeBSD AT E o 4EFHE TS E10 U $ FreeBSD RN K EH+-B 2 » 1M FreeBSD U5t
(LU T & LIFDP 264t 3 FreeBSD Documentation Project f4E %) HIJEEE e (425 ~ Bt B EAER » R A
HEEERE ST &M -

AXHREEP AR - SUEEEEHE - TFDP RIZEEEWLL) ~ TIMEE IR IFEFDPY ~ T4
AERGER TERGR R -

PG & (E 2O BB LR AFDP 4731 © FDP i A FRE®H NER M Z/0TRE » AGEMA o EE—/HE
{ER 5 %] BiFreeBSD documentation project B 1€z& 18 (http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc) ©

AESEARY S - i

- BRARA R L SCIF 2 FHFDP P AERE Y o

-] LLETEFDP FiAEERISGML JR AU -

- FHIE AN R SRR -

- SRR B CRME R Gy » 5 1R EFE A FreeBSD XXfEA e

1.1 FreeBSD C{4-HI4HBER 5

FDP 481t & FreeBSD 4 FEAE RIS

4% M (manual)

PR A Simanual AN HFDP B RH - F&EFHE B H base system HIE {7 © FATT » FDP A] LA(t8
B B MOR) (BRUE O - FGRELE RS ERE - EEZEIESESRIMT -

HEERa T ARE L P MEREL T RRES - BLEARH HFDP #E5E -

FAQ

FAQ RN B 1E &5 tE Binewsgroup & [2l A 7] BE & 2 HUFreeBSD AHBARIEE AR - (&
e piE TRESR) B0 BE §RAEEIMMERN TEHCRRIFEAZ -

{i# A F i (Handbook)
5 F M = 245 FreeBSD [FI & SR fitiE Bn0s L2 Z &R -
Web site

FreeBSD FZEATHNM 4R 7T HAIWWW B » BGH A Ehttp://www.FreeBSD.org/
(http://www.FreeBSD.org/index.html) DA 32 H ftimirror ¥ o B4 EET £ N E— IR FreeBSD it
75‘ o
32 Y {8 SR 4H B B 4341 R 35 i FreeBSD CVS tree ZRENS o g2 » 18 Le3U BB EE sk I AT A2
BARY T EL SR AT AT LUT B2 CSup, CVSup B{CTM # SCHHY H 2R (checkout) MG HE B S ike: E M
WEEIASE S HiE -
A - 32 NG BB E U B 4B A BiFreeBSD A INAESG © CEIEE FIBRIES HhE L ER G IR
TEFreeBSD 1IEFCVS repository A o THAMAISIHF: » FREVES AR #E i 7E FreeBSD repository [T 5 17t
J& o #82 > FDP & & /14 HHiE L0 A EAS -

Chapter 1 35

1.2 7B T2 Hl...
A BB DAL -

- WA 1¢FreeBSD CVS repository 5 #1 B . &4 _EAFreeBSD SCFES77(LLCVS EiCSup T CVSup 52 CTM)
872 A CVSup K T &Eichecked-out HIEIZS

- 4147 A FreeBSD Ports Z & B % | 5lpkg_add(1) 2 & ~ ZHEHE

1.3 B EFR
EAS ETHEE - LA LRSS > SR T ESE -

1. ﬁﬁj\étextproc/docproj iﬁf%ﬂ/ﬁ\fﬁport(meta-port) °

cd /usr/ports/textproc/docproj
make JADETEX=no install

2. N#FreeBSD doc tree 2| AH% [1 HEig& FCSup B CVSup Hcheckout R » B EE R ZEEAICVS
repository Fl| A FHTATLL
FEREARKE MR IEIRERICVS repository Hiif » FASEE/7E Echeckout Hidoc/share LA
&doc/en_US .1S508859-1/share ﬁﬂﬁf = fiﬂ“ﬁ °

% cvs checkout doc/share
% cvs checkout doc/en_US.IS08859-1/share

RS R E AT DARES - AR AT DUE A &S 2 Bdoc #icheck out HIZR :
% cvs checkout doc

3. ARFE Eftrepository Fcheckout HARIFRMBAU A M B AR EBRICENE - HITRERH S0 E
{35 - AT LA EHA IR ER B HIZML -

BRI S » BB CE » AR EHBITEFreeBSD B Windows 2000 7 [H7 37 VPN JE4R » FREER LR
BN HEERPIVEE |

1. Check outarticles H#E :
% cvs checkout doc/en_US.IS08859-1/articles
2. BEBIGIOCEEREAR - TEEEGF o ST REREEHT CE N Even-w2k FIESKT ©
% cd doc/en_US.IS08859-1/articles
% cp -R committers—-guide vpn-w2k
EREGHNIEAECE T%%FAQ(TEE‘Edoc/en_US. I1508859-1/books/faq) * ﬁB@%?ﬁérepository T EHY
A& (check out) :
% cvs checkout doc/en_US.IS08859-1/books/faq
4. DISRERES KRS . soml A& o
5. Dliint EEEISE - ARERRICHFAETE SRS BEEER » T ERETES - BIE NG @ ITRER SR
FHFE - FUE SRS s R

% make lint

Chapter 1 35

ERE— VIR 4ERS - B RAT DL rorvaTs BEURAE RE FE £ MIAS R AW —TE o B EISCERARE L
%53 html, html-split, txt, ps, pdf, rtf °EE§ZE§E@%§E&§U%§§%%&W§’ 5] é§

% doc/share/mk/doc.docbook .mk 1 © FRELIT : TEHE—184H » HE R E £ LR » B A
7155 (quotes) S AG 15 LS ALK -

AR » B R EE A neml BT » ANERAT -

% make FORMATS=html

EEAEBntnl Kext FEFAEE » IR AT EEEFT M {kmake(1) F52 A BETEAL ¢

% make FORMATS=html
% make FORMATS=txt

HE > WAL ARE—HBLHKTEA
% make FORMATS="html txt"

1% > Llsend-pr(1) AFRIMEELAIEL

Chapter 2 T &

FDP {#] — 3k T B AR B & B FreeBSD LI ~ SHSAFEAEE © [HIt - 5 ZEITFDP TARAVEE - A7EE
BEELTEAT -

B 46 T B#T AT DL A Ports B Packages 28 % %E » IEIEFF L L ER TR -
BT EEE TR TRFABE T RS EHENMERRE T - SE T RN SEREMREE R
F o

BFEHT Htextproc/docproj: 4% [textproc/docproi A] LIEHERE 1 » B AL A Fport(meta-port) » &£
A AEdEE o HAEAS— S A T RASRAEM D « # T iEMport 2% » EZI SiEEETH - LERAENENH
FWTHRT o HERH A HIEE %%E%{ichinese/docproj & i -

TEigpackages & H - KA BEE T B A JadeTeX iEffimacro &€ » —EBIR(H % macro (IG5 > EEHEE L
HETEX o N TEX B2 8 RIIEM: - BRAEIR T B H Postscript SiPDF #%5 » BRIFIAMBEET -

Pir LA B8 1 B e A R]~ R o UM EA B 4 JadeTeX (LAKTEX) T o & 2 (RAGH A -
make JADETEX=yes install

Bl » NIRRT -

make JADETEX=no install

o Hﬂﬂu%gtextproc/docprojfjadetex ﬁZxEE;textproc/dOCprojfnojadetex EMEZ 8 EMEE
EH L2 sapETEX B Elslave ports » H—1F & Hdocproj Z= BIEE N AR A ladeTeX M T © iR « & H i
HHTML 5tASCII %2030 » AR 26dadeTeX » 1+ £ i PostScript ~ PDF #&2 » BT ERTEX A7 ©

21 WET R

2.1.1 gkpE

I8 LN 7E 1 [TFreeeBSD U ATEIRF AT e E A A0 T B2 » T B 7T LLA ZREEHL S A HTML ~ plain
text A B RTF #52 o E%jﬂgagﬁ:ﬁtextproc/docproj %BE%;@%%M&%%T °

Jade (textproc/jade)

DSSSL #ARHIE/EIZT » 7] A AGEIRACAE = #Y U (marked up) 8L % Hof A%t - (82 - HTML
JTEX ©

Tidy (www/tidy)
HTML “pretty printer” * B FIZRIE BB EFIHTML A KIS 5 MEE ~ DR HRAEE -

Links (www/1inks)

TF B AIWWW 2% 2% (browser) 7] LIEHTML &85 & plain text #E 3, ©

Chapter 2 T A

peps (graphics/peps)

SR R R AT AUEPS M TUAY 0 B LN EEEAPNG R A RGE BRI LIERBE

2.1.2 DTD X Entity
FIFAFDP A A ZI:F £ DTD iREntity » FULAER LRI » £ g1t o

HTML DTD (textproc/html)
HTML ZRRWWW HIRECEES » H L ZFreeBSD A H T FHRUE L -

DocBook DTD (textproc/docbook)

DocBook &5 P B EHMT S IFHIIIRGE 5 RS » FreeBSD 20 SC{F#R 2 LiDocBook FrET A °

ISO 8879 entities (textproc/iso8879)

TEISO 8879:1986 Z H17E 19 {Hentity #i5F2DTD Fr K&EMA » €35 TEHER ~ T FUMFFREETSF
FEATIR) DL A IRATAR o

2.1.3 £\ F(Stylesheets)
I8 SRR SRER 2 2R ~ EHE U R BERUR ~ FIE SRR R

Modular DocBook 3 F(textproc/dsssl-docbook-modular)
Modular DocBook 1533 » & i SR DocBook HIIEALAE B U #H A gt » 4% : HTML S(RTF -

22 BT R
A—EBETINLTEAT (B&» ET 2 RTERSEITEELAE » T B vl H A0St 5 B o

2.2.1 ik ps

JadeTeX JteTeX (print/jadetex Mprint/teTeX)

Jade EdteTeX A F A DocBook 1% 2 3 {48 A DVI, Postscript 2PDF &3, o Z8Ei5E 2015 11 - JadeTeX
18 Mmacro * EEA FIRE S LEmMEER

T B SO B 2 AR AUEE (B © R EHTML, plain text, RTF 12 SR pi0EE) » A0S H
JadeTeX EiteTeX o AL —3 & T —Lef i ~ ZZETH » [HAteTeX KAJEZE/P30MB =
i o

Important: 4 E Z £ JadeTeX D KteTeX [15F » A5t JadeTeX 2 1% » EilfgatEteTeX A
T © print/jadetex/pkg-message WAHFEA/MAFERIZER -

Chapter 2 T A

Emacs 5/ XEmacs (editors/emacs Eieditors/xemacs)
12 W& SRR 25 E0 BB R EISGML DTD L U R RIS S o SRR I — L0484 » RE LT FR AT F
R T BT LR T RE 3 A U BE AR ©
AN o iE LUARER 23 AN R Y 5 (R A ST AR ER AT W] LA SRR AR AL AE B 0L o NIRRT LUER
D BB R ARER 2 o AGRIE BB EE R R AR -
EHHEEE M H B ESGML AR » i5 257 Documentation Engineering Team
<doceng@FreeBSD.org> %ﬂﬁ ’ ﬁﬂlﬂ:*ﬂi ’ Eﬁ%’(ﬁ%ﬁ")ﬁﬂ)\ﬁ@ﬁ%ﬁ? °

Chapter 3 SGML Primer

FDP 5% F-#5 & DISGML tHEAFE B » AE G N 4HSGML 28 ~ anfaBizE - BffE 2SGML R fs
DAR A SO vh B A) & JESGMIL #0175 e

REES 4 BRVEEE A E Mark Galassi AY3E % Get Going With DocBook
(http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro/docbook-intro.html) °

3.1 f§/

Way back when, electronic text was simple to deal with. Admittedly, you had to know which character set your
document was written in (ASCII, EBCDIC, or one of a number of others) but that was about it. Text was text, and
what you saw really was what you got. No frills, no formatting, no intelligence.

Inevitably, this was not enough. Once you have text in a machine-usable format, you expect machines to be able to
use it and manipulate it intelligently. You would like to indicate that certain phrases should be emphasized, or added
to a glossary, or be hyperlinks. You might want filenames to be shown ina “typewriter” style font for viewing on
screen, but as “italics” when printed, or any of a myriad of other options for presentation.

It was once hoped that Artificial Intelligence (AI) would make this easy. Your computer would read in the document
and automatically identify key phrases, filenames, text that the reader should type in, examples, and more.
Unfortunately, real life has not happened quite like that, and our computers require some assistance before they can
meaningfully process our text.

More precisely, they need help identifying what is what. You or I can look at

To remove /tmp/foo use rm(1).

% rm /tmp/foo
and easily see which parts are filenames, which are commands to be typed in, which parts are references to manual
pages, and so on. But the computer processing the document cannot. For this we need markup.

“Markup” is commonly used to describe “adding value” or “increasing cost” . The term takes on both these
meanings when applied to text. Markup is additional text included in the document, distinguished from the
document’s content in some way, so that programs that process the document can read the markup and use it when
making decisions about the document. Editors can hide the markup from the user, so the user is not distracted by it.

The extra information stored in the markup adds value to the document. Adding the markup to the document must
typically be done by a person——after all, if computers could recognize the text sufficiently well to add the markup
then there would be no need to add it in the first place. This increases the cost (i.e., the effort required) to create the
document.

The previous example is actually represented in this document like this:
<para>To remove <filename>/tmp/foo</filename> use &man.rm.l;.</para>
<screen>g&prompt.user; <userinput>rm /tmp/foo</userinput></screen>

As you can see, the markup is clearly separate from the content.

Obviously, if you are going to use markup you need to define what your markup means, and how it should be
interpreted. You will need a markup language that you can follow when marking up your documents.

Chapter 3 SGML Primer

Of course, one markup language might not be enough. A markup language for technical documentation has very
different requirements than a markup language that was to be used for cookery recipes. This, in turn, would be very
different from a markup language used to describe poetry. What you really need is a first language that you use to
write these other markup languages. A meta markup language.

This is exactly what the Standard Generalized Markup Language (SGML) is. Many markup languages have been
written in SGML, including the two most used by the FDP, HTML and DocBook.

Each language definition is more properly called a Document Type Definition (DTD). The DTD specifies the name
of the elements that can be used, what order they appear in (and whether some markup can be used inside other
markup) and related information. A DTD is sometimes referred to as an application of SGML.

A DTD is a complete specification of all the elements that are allowed to appear, the order in which they should
appear, which elements are mandatory, which are optional, and so forth. This makes it possible to write an SGML
parser which reads in both the DTD and a document which claims to conform to the DTD. The parser can then
confirm whether or not all the elements required by the DTD are in the document in the right order, and whether
there are any errors in the markup. This is normally referred to as “validating the document” .

Note: This processing simply confirms that the choice of elements, their ordering, and so on, conforms to that
listed in the DTD. It does not check that you have used appropriate markup for the content. If you tried to mark
up all the filenames in your document as function names, the parser would not flag this as an error (assuming, of
course, that your DTD defines elements for filenames and functions, and that they are allowed to appear in the
same place).

It is likely that most of your contributions to the Documentation Project will consist of content marked up in either
HTML or DocBook, rather than alterations to the DTDs. For this reason this book will not touch on how to write a
DTD.

3.2 Elements, tags, and attributes

All the DTDs written in SGML share certain characteristics. This is hardly surprising, as the philosophy behind
SGML will inevitably show through. One of the most obvious manifestations of this philosophy is that of content
and elements.

Your documentation (whether it is a single web page, or a lengthy book) is considered to consist of content. This
content is then divided (and further subdivided) into elements. The purpose of adding markup is to name and identify
the boundaries of these elements for further processing.

For example, consider a typical book. At the very top level, the book is itself an element. This “book” element
obviously contains chapters, which can be considered to be elements in their own right. Each chapter will contain
more elements, such as paragraphs, quotations, and footnotes. Each paragraph might contain further elements,
identifying content that was direct speech, or the name of a character in the story.

You might like to think of this as “chunking” content. At the very top level you have one chunk, the book. Look a
little deeper, and you have more chunks, the individual chapters. These are chunked further into paragraphs,
footnotes, character names, and so on.

Notice how you can make this differentiation between different elements of the content without resorting to any
SGML terms. It really is surprisingly straightforward. You could do this with a highlighter pen and a printout of the
book, using different colors to indicate different chunks of content.

Chapter 3 SGML Primer

Of course, we do not have an electronic highlighter pen, so we need some other way of indicating which element each
piece of content belongs to. In languages written in SGML (HTML, DocBook, et al) this is done by means of tags.

A tag is used to identify where a particular element starts, and where the element ends. The tag is not part of the
element itself. Because each DTD was normally written to mark up specific types of information, each one will
recognize different elements, and will therefore have different names for the tags.

For an element called element-name the start tag will normally look like <element-name>. The corresponding
closing tag for this element is </element-name>.

Example 3-1. Using an element (start and end tags)

HTML has an element for indicating that the content enclosed by the element is a paragraph, called p. This element
has both start and end tags.

<p>This is a paragraph. It starts with the start tag for
the 'p’ element, and it will end with the end tag for the ’'p’
element.</p>

<p>This is another paragraph. But this one is much shorter.</p>

Not all elements require an end tag. Some elements have no content. For example, in HTML you can indicate that
you want a horizontal line to appear in the document. Obviously, this line has no content, so just the start tag is
required for this element.

Example 3-2. Using an element (start tag only)

HTML has an element for indicating a horizontal rule, called hr. This element does not wrap content, so only has a
start tag.

<p>This is a paragraph.</p>
<hr>

<p>This is another paragraph. A horizontal rule separates this
from the previous paragraph.</p>

If it is not obvious by now, elements can contain other elements. In the book example earlier, the book element
contained all the chapter elements, which in turn contained all the paragraph elements, and so on.

Example 3-3. Elements within elements;

<p>This is a simple paragraph where some
of the words have been emphasized.</p>

The DTD will specify the rules detailing which elements can contain other elements, and exactly what they can
contain.

Important: People often confuse the terms tags and elements, and use the terms as if they were
interchangeable. They are not.

An element is a conceptual part of your document. An element has a defined start and end. The tags mark
where the element starts and end.

Chapter 3 SGML Primer

When this document (or anyone else knowledgeable about SGML) refers to “the <p> tag” they mean the
literal text consisting of the three characters <, p, and >. But the phrase “the <p> element” refers to the
whole element.

This distinction is very subtle. But keep it in mind.

Elements can have attributes. An attribute has a name and a value, and is used for adding extra information to the
element. This might be information that indicates how the content should be rendered, or might be something that
uniquely identifies that occurrence of the element, or it might be something else.

An element’s attributes are written inside the start tag for that element, and take the form

attribute-name="attribute-value".

In sufficiently recent versions of HTML, the <p> element has an attribute called a1ign, which suggests an alignment
(justification) for the paragraph to the program displaying the HTML.

The align attribute can take one of four defined values, 1eft, center, right and justify. If the attribute is not
specified then the default is left.

Example 3-4. Using an element with an attribute

<p align="left">The inclusion of the align attribute
on this paragraph was superfluous, since the default is left.</p>

<p align="center">This may appear in the center.</p>

Some attributes will only take specific values, such as 1eft or justify. Others will allow you to enter anything you
want. If you need to include quotes (") within an attribute then use single quotes around the attribute value.

Example 3-5. Single quotes around attributes

<p align='right’>I am on the right!</p>

Sometimes you do not need to use quotes around attribute values at all. However, the rules for doing this are subtle,
and it is far simpler just to always quote your attribute values.

The information on attributes, elements, and tags is stored in SGML catalogs. The various Documentation Project
tools use these catalog files to validate your work. The tools in textproc/docproj include a variety of SGML
catalog files. The FreeBSD Documentation Project includes its own set of catalog files. Your tools need to know
about both sorts of catalog files.

3.2.1 For you to do...

In order to run the examples in this document you will need to install some software on your system and ensure that
an environment variable is set correctly.

1. Download and install textproc/docproj from the FreeBSD ports system. This is a meta-port that should
download and install all of the programs and supporting files that are used by the Documentation Project.

2. Add lines to your shell startup files to set SGML_CATALOG_FILES. (If you are not working on the English
version of the documentation, you will want to substitute the correct directory for your language.)

10

Chapter 3 SGML Primer

Example 3-6. .profile, for sh(1) and bash(1) users

SGML_ROOT=/usr/local/share/sgml

SGML_CATALOG_FILES=${SGML_ROOT}/jade/catalog
SGML_CATALOG_FILES=${SGML_ROOT}/is08879/catalog:S$SSGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/html/catalog:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/docbook/4.1/catalog: $SGML_CATALOG_FILES
SGML_CATALOG_FILES=/usr/doc/share/sgml/catalog:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=/usr/doc/en_US.IS08859-1/share/sgml/catalog:$SGML_CATALOG_FILES

export

SGML_CATALOG_FILES

Example 3-7. . cshrc, for csh(1) and tcsh(1) users

setenv
setenv
setenv
setenv
setenv
setenv
setenv

SGML_ROOT /usr/local/share/sgml

SGML_CATALOG_FILES
SGML_CATALOG_FILES
SGML_CATALOG_FILES
SGML_CATALOG_FILES
SGML_CATALOG_FILES
SGML_CATALOG_FILES

${SGML_ROOT}/jade/catalog
${SGML_ROOT}/1is08879/catalog:$SGML_CATALOG_FILES
${SGML_ROOT}/html/catalog:$SGML_CATALOG_FILES

${SGML_ROOT} /docbook/4.1/catalog: $SGML_CATALOG_FILES
/usr/doc/share/sgml/catalog: $SGML_CATALOG_FILES
/usr/doc/en_US.IS08859-1/share/sgml/catalog:$SGML_CATALOG_FILES

Then either log out, and log back in again, or run those commands from the command line to set the variable

values.

Create example. sgml, and enter the following text:

<!DOCTY

<html>

PE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<head>
<title>An example HTML file</title>

</hea

<body

a>

>

<p>This is a paragraph containing some text.</p>

<p>This paragraph contains some more text.</p>

<p align="right">This paragraph might be right-justified.</p>
</body>

</html>

Try to validate this file using an SGML parser.

Part of textproc/docproj is the nsgmls validating parser. Normally, nsgmls reads in a document marked up
according to an SGML DTD and returns a copy of the document’s Element Structure Information Set (ESIS, but
that is not important right now).

However, when nsgmls is given the —s parameter, nsgmls will suppress its normal output, and just print error
messages. This makes it a useful way to check to see if your document is valid or not.

Use nsgmls to check that your document is valid:

% nsgmls -s example.sgml

11

Chapter 3 SGML Primer

As you will see, nsgmls returns without displaying any output. This means that your document validated
successfully.

3. See what happens when required elements are omitted. Try removing the <title> and </title> tags, and
re-run the validation.

% nsgmls -s example.sgml
nsgmls:example.sgml:5:4:E: character data is not allowed here

nsgmls:example.sgml:6:8:E: end tag for "HEAD" which is not finished

The error output from nsgmls is organized into colon-separated groups, or columns.

Column Meaning

1 The name of the program generating the error. This will
always be nsgmls.

The name of the file that contains the error.
Line number where the error appears.

Column number where the error appears.

wm AW N

A one letter code indicating the nature of the message. I
indicates an informational message, W is for warnings,
and E is for errorsa, and X is for cross-references. As you
can see, these messages are errors.

6 The text of the error message.

Notes: a. It is not always the fifth column either. nsgmls -sv displays nsgmls:I: SP version "1.3" (depending on the ins

Simply omitting the <title> tags has generated 2 different errors.

The first error indicates that content (in this case, characters, rather than the start tag for an element) has
occurred where the SGML parser was expecting something else. In this case, the parser was expecting to see one
of the start tags for elements that are valid inside <head> (such as <title>).

The second error is because <head> elements must contain a <t it le> element. Because it does not nsgmls
considers that the element has not been properly finished. However, the closing tag indicates that the element has
been closed before it has been finished.

4. Putthe title element back in.

3.3 The DOCTYPE declaration

The beginning of each document that you write must specify the name of the DTD that the document conforms to.
This is so that SGML parsers can determine the DTD and ensure that the document does conform to it.

This information is generally expressed on one line, in the DOCTYPE declaration.

A typical declaration for a document written to conform with version 4.0 of the HTML DTD looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN">

That line contains a number of different components.

12

Chapter 3 SGML Primer

<!

Is the indicator that indicates that this is an SGML declaration. This line is declaring the document type.

DOCTYPE

Shows that this is an SGML declaration for the document type.

html

Names the first element that will appear in the document.

PUBLIC "-//W3C//DTD HTML 4.0//EN"

Lists the Formal Public Identifier (FPI) for the DTD that this document conforms to. Your SGML parser will
use this to find the correct DTD when processing this document.

PUBLIC is not a part of the FPI, but indicates to the SGML processor how to find the DTD referenced in the
FPI. Other ways of telling the SGML parser how to find the DTD are shown later.

Returns to the document.

3.3.1 Formal Public Identifiers (FPIs)

Note: You do not need to know this, but it is useful background, and might help you debug problems when your
SGML processor can not locate the DTD you are using.

FPIs must follow a specific syntax. This syntax is as follows:

"Owner//Keyword Description//Language"

Owner
This indicates the owner of the FPI.

If this string starts with “ISO” then this is an ISO owned FPI. For example, the FPI "150
8879:1986//ENTITIES Greek Symbols//EN" lists ISO 8879:1986 as being the owner for the set of
entities for Greek symbols. ISO 8879:1986 is the ISO number for the SGML standard.

Otherwise, this string will either look like -/ /owner or +//owner (notice the only difference is the leading + or
o).
If the string starts with - then the owner information is unregistered, with a + it identifies it as being registered.

ISO 9070:1991 defines how registered names are generated; it might be derived from the number of an ISO
publication, an ISBN code, or an organization code assigned according to ISO 6523. In addition, a registration
authority could be created in order to assign registered names. The ISO council delegated this to the American
National Standards Institute (ANSI).

Because the FreeBSD Project has not been registered the owner string is -/ /FreeBsD. And as you can see, the
W3C are not a registered owner either.

13

Chapter 3 SGML Primer

Keyword
There are several keywords that indicate the type of information in the file. Some of the most common keywords
are DTD, ELEMENT, ENTITIES, and TEXT. DTD is used only for DTD files, ELEMENT is usually used for DTD
fragments that contain only entity or element declarations. TEXT is used for SGML content (text and tags).
Description
Any description you want to supply for the contents of this file. This may include version numbers or any short
text that is meaningful to you and unique for the SGML system.
Language

This is an ISO two-character code that identifies the native language for the file. EN is used for English.

3.3.1.1 catalog files

If you use the syntax above and process this document using an SGML processor, the processor will need to have
some way of turning the FPI into the name of the file on your computer that contains the DTD.

In order to do this it can use a catalog file. A catalog file (typically called catalog) contains lines that map FPIs to
filenames. For example, if the catalog file contained the line:

PUBLIC "-//W3C//DTD HTML 4.0//EN" "4.0/strict.dtd"
The SGML processor would know to look up the DTD from strict.dtd in the 4.0 subdirectory of whichever

directory held the catalog file that contained that line.

Look at the contents of /usr/local/share/sgml/html/catalog. This is the catalog file for the HTML DTDs
that will have been installed as part of the textproc/docpro port.

3.3.1.2 SGML._CATALOG_FILES

In order to locate a catalog file, your SGML processor will need to know where to look. Many of them feature
command line parameters for specifying the path to one or more catalogs.

In addition, you can set SGML_CATALOG_FILES to point to the files. This environment variable should consist of a
colon-separated list of catalog files (including their full path).

Typically, you will want to include the following files:

- /usr/local/share/sgml/docbook/4.1/catalog
- /usr/local/share/sgml/html/catalog

- /usr/local/share/sgml/iso8879/catalog

+ /usr/local/share/sgml/jade/catalog

You should already have done this.

14

Chapter 3 SGML Primer

3.3.2 Alternatives to FPIs

Instead of using an FPI to indicate the DTD that the document conforms to (and therefore, which file on the system
contains the DTD) you can explicitly specify the name of the file.

The syntax for this is slightly different:

<!DOCTYPE html SYSTEM "/path/to/file.dtd">

The sysTEM keyword indicates that the SGML processor should locate the DTD in a system specific fashion. This
typically (but not always) means the DTD will be provided as a filename.

Using FPIs is preferred for reasons of portability. You do not want to have to ship a copy of the DTD around with
your document, and if you used the sYSTEM identifier then everyone would need to keep their DTDs in the same
place.

3.4 Escaping back to SGML

Earlier in this primer I said that SGML is only used when writing a DTD. This is not strictly true. There is certain
SGML syntax that you will want to be able to use within your documents. For example, comments can be included
in your document, and will be ignored by the parser. Comments are entered using SGML syntax. Other uses for
SGML syntax in your document will be shown later too.

Obviously, you need some way of indicating to the SGML processor that the following content is not elements
within the document, but is SGML that the parser should act upon.

These sections are marked by <! ... > in your document. Everything between these delimiters is SGML syntax
as you might find within a DTD.

As you may just have realized, the DOCTYPE declaration is an example of SGML syntax that you need to include in
your document. . .

3.5 s+ f#

Comments are an SGML construction, and are normally only valid inside a DTD. However, as Section 3.4 shows, it
is possible to use SGML syntax within your document.

The delimiter for SGML comments is the string “~-" . The first occurrence of this string opens a comment, and the
second closes it.

Example 3-8. SGML generic comment
<!—— WEEEME ——>
<l-- JEEIH -—>

=]

b

|
i
=

et i -—>

=11

< BEEZATREMRE -
ERHFZ 1K ——>

Ik

|

<\— EEEATiEM - —

15

Chapter 3 SGML Primer

— HELERETA >

Use 2 dashes: There is a problem with producing the Postscript and PDF versions of this document. The above
example probably shows just one hyphen symbol, - after the <! and before the >.

You must use two -, not one. The Postscript and PDF versions have translated the two - in the original to a
longer, more professional em-dash, and broken this example in the process.

The HTML, plain text, and RTF versions of this document are not affected.

If you have used HTML before you may have been shown different rules for comments. In particular, you may think
that the string <!-- opens a comment, and it is only closed by ——>.

This is not the case. A lot of web browsers have broken HTML parsers, and will accept that as valid. However, the
SGML parsers used by the Documentation Project are much stricter, and will reject documents that make that error.

Example 3-9. Erroneous SGML comments

<!-— This is in the comment --
THIS IS OUTSIDE THE COMMENT!

—— back inside the comment -->
The SGML parser will treat this as though it were actually:
<!THIS IS OUTSIDE THE COMMENT>
This is not valid SGML, and may give confusing error messages.
<= This is a very bad idea ——————————————- >

As the example suggests, do not write comments like that.

<= == == ===——>

That is a (slightly) better approach, but it still potentially confusing to people new to SGML.

3.5.1 For you to do...

1. Add some comments to example.sgml, and check that the file still validates using nsgmls.

2. Add some invalid comments to example.sgml, and see the error messages that nsgmls gives when it
encounters an invalid comment.

3.6 Entities

Entities are a mechanism for assigning names to chunks of content. As an SGML parser processes your document,
any entities it finds are replaced by the content of the entity.

16

Chapter 3 SGML Primer

This is a good way to have re-usable, easily changeable chunks of content in your SGML documents. It is also the
only way to include one marked up file inside another using SGML.

There are two types of entities which can be used in two different situations; general entities and parameter entities.

3.6.1 General Entities

You cannot use general entities in an SGML context (although you define them in one). They can only be used in
your document. Contrast this with parameter entities.

Each general entity has a name. When you want to reference a general entity (and therefore include whatever text it
represents in your document), you write &entity-name;. For example, suppose you had an entity called
current .version which expanded to the current version number of your product. You could write:

<para>The current version of our product is
¤t.version; .</para>

When the version number changes you can simply change the definition of the value of the general entity and
reprocess your document.

You can also use general entities to enter characters that you could not otherwise include in an SGML document. For
example, < and & cannot normally appear in an SGML document. When the SGML parser sees the < symbol it
assumes that a tag (either a start tag or an end tag) is about to appear, and when it sees the & symbol it assumes the
next text will be the name of an entity.

Fortunately, you can use the two general entities & 1t; and samp; whenever you need to include one or other of
these.

A general entity can only be defined within an SGML context. Typically, this is done immediately after the
DOCTYPE declaration.

Example 3-10. Defining general entities

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!ENTITY current.version "3.0-RELEASE">
<!ENTITY last.version "2.2.7-RELEASE">

1>

Notice how the DOCTYPE declaration has been extended by adding a square bracket at the end of the first line. The
two entities are then defined over the next two lines, before the square bracket is closed, and then the DOCTYPE
declaration is closed.

The square brackets are necessary to indicate that we are extending the DTD indicated by the DOCTYPE declaration.

3.6.2 Parameter entities

Like general entities, parameter entities are used to assign names to reusable chunks of text. However, where as
general entities can only be used within your document, parameter entities can only be used within an SGML context.

17

Chapter 3 SGML Primer

Parameter entities are defined in a similar way to general entities. However, instead of using sentity-name; to refer

to them, use $entity-name;'. The definition also includes the % between the ENTITY keyword and the name of the
entity.

Example 3-11. Defining parameter entities

<!DOCTYPE html PUBLIC "-//W3C//DID HTIML 4.0//EN" [

<!ENTITY % param.some "some">

<!ENTITY % param.text "text">

<!ENTITY % param.new "%param.some more %param.text">
<!-- %param.new now contains "some more text" -->

1>

This may not seem particularly useful. It will be.

3.6.3 For you to do...

1. Add a general entity to example.sgml.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" [
<!ENTITY version "1.1">

1>
<html>
<head>
<title>An example HTML file</title>
</head>
<!-— You might well have some comments in here as well —-->
<body>
<p>This is a paragraph containing some text.</p>
<p>This paragraph contains some more text.</p>
<p align="right">This paragraph might be right-justified.</p>
<p>The current version of this document is: &version;</p>
</body>
</html>

2. Validate the document using nsgmls.

3. Load example.sgml into your web browser (you may need to copy it to example.html before your browser
recognizes it as an HTML document).

Unless your browser is very advanced, you will not see the entity reference sversion; replaced with the
version number. Most web browsers have very simplistic parsers which do not handle proper SGML?.

4. The solution is to normalize your document using an SGML normalizer. The normalizer reads in valid SGML
and outputs equally valid SGML which has been transformed in some way. One of the ways in which the

18

Chapter 3 SGML Primer

normalizer transforms the SGML is to expand all the entity references in the document, replacing the entities
with the text that they represent.

You can use sgmlnorm to do this.

o

% sgmlnorm example.sgml > example.html

You should find a normalized (i.e., entity references expanded) copy of your document in example.html, ready
to load into your web browser.

5. If you look at the output from sgmlnorm you will see that it does not include a DOCTYPE declaration at the
start. To include this you need to use the —d option:

°

% sgmlnorm -d example.sgml > example.html

3.7 Using entities to include files

Entities (both general and parameter) are particularly useful when used to include one file inside another.

3.7.1 Using general entities to include files

Suppose you have some content for an SGML book organized into files, one file per chapter, called
chapterl.sgml, chapter2.sgml, and so forth, with a book . sgm1 file that will contain these chapters.

In order to use the contents of these files as the values for your entities, you declare them with the SYSTEM keyword.
This directs the SGML parser to use the contents of the named file as the value of the entity.

Example 3-12. Using general entities to include files

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!ENTITY chapter.l SYSTEM "chapterl.sgml">
<!ENTITY chapter.2 SYSTEM "chapter2.sgml">
<!ENTITY chapter.3 SYSTEM "chapter3.sgml">

<!-- And so forth -->

1>

<html>
<!-— Use the entities to load in the chapters —-—>

&chapter.1;

&chapter.2;

&chapter.3;
</html>

Warning: When using general entities to include other files within a document, the files being included
(chapterl.sgml, chapter2.sgml, and so on) must not start with a DOCTYPE declaration. This is a syntax error.

19

Chapter 3 SGML Primer

3.7.2 Using parameter entities to include files

Recall that parameter entities can only be used inside an SGML context. Why then would you want to include a file
within an SGML context?

You can use this to ensure that you can reuse your general entities.

Suppose that you had many chapters in your document, and you reused these chapters in two different books, each
book organizing the chapters in a different fashion.

You could list the entities at the top of each book, but this quickly becomes cumbersome to manage.

Instead, place the general entity definitions inside one file, and use a parameter entity to include that file within your
document.

Example 3-13. Using parameter entities to include files

First, place your entity definitions in a separate file, called chapters.ent. This file contains the following:

<!ENTITY chapter.l SYSTEM "chapterl.sgml">
<!ENTITY chapter.2 SYSTEM "chapter2.sgml">
<!ENTITY chapter.3 SYSTEM "chapter3.sgml">

Now create a parameter entity to refer to the contents of the file. Then use the parameter entity to load the file into the
document, which will then make all the general entities available for use. Then use the general entities as before:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!-- Define a parameter entity to load in the chapter general entities ——>
<!ENTITY % chapters SYSTEM "chapters.ent">

<!-- Now use the parameter entity to load in this file -->
%chapters;
1>

<html>
&chapter.1;
&chapter.2;
&chapter.3;

</html>

3.7.3 For you to do...

3.7.3.1 Use general entities to include files

1. Create three files, paral.sgml, para2.sgml, and para3.sgml.
Put content similar to the following in each file:
<p>This is the first paragraph.</p>

2. Edit example.sgml so that it looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!ENTITY version "1.1">
<!ENTITY paral SYSTEM "paral.sgml">

20

Chapter 3 SGML Primer

<!ENTITY para2 SYSTEM "paraZ.sgml">
<!ENTITY para3 SYSTEM "para3.sgml">
1>

<html>
<head>
<title>An example HTML file</title>
</head>

<body>
<p>The current version of this document is: &version;</p>

¶l;
¶?z;
¶l;
</body>
</html>

3. Produce example.html by normalizing example.sgml.
% sgmlnorm -d example.sgml > example.html

4. Load example.html into your web browser, and confirm that the paran. sgml files have been included in
example.html.

3.7.3.2 Use parameter entities to include files

Note: You must have taken the previous steps first.

1. Edit example.sgml so that it looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % entities SYSTEM "entities.sgml"> %$entities;
1>

<html>
<head>
<title>An example HTML file</title>
</head>

<body>
<p>The current version of this document is: &version;</p>

¶l;
¶z;
¶l;
</body>
</html>

2. Create a new file, entities.sgml, with this content:

<!ENTITY version "1.1">

21

Chapter 3 SGML Primer

<!ENTITY paral SYSTEM "paral.sgml">
<!ENTITY para2 SYSTEM "paraZ.sgml">
<!ENTITY para3 SYSTEM "para3.sgml">

3. Produce example.html by normalizing example.sgml.
% sgmlnorm -d example.sgml > example.html

4. Load example.html into your web browser, and confirm that the paran. sgml files have been included in

example.html.

3.8 Marked sections

SGML provides a mechanism to indicate that particular pieces of the document should be processed in a special way.
These are termed “marked sections” .

Example 3-14. Structure of a marked section

<![KEYWORD |
Contents of marked section
11>
As you would expect, being an SGML construct, a marked section starts with <!.
The first square bracket begins to delimit the marked section.
KEYWORD describes how this marked section should be processed by the parser.
The second square bracket indicates that the content of the marked section starts here.

The marked section is finished by closing the two square brackets, and then returning to the document context from
the SGML context with >.

3.8.1 Marked section keywords

3.8.1.1 cDATA, RCDATA
These keywords denote the marked sections content model, and allow you to change it from the default.
When an SGML parser is processing a document it keeps track of what is called the “content model” .

Briefly, the content model describes what sort of content the parser is expecting to see, and what it will do with it
when it finds it.

The two content models you will probably find most useful are CDATA and RCDATA.

cDATA is for “Character Data” . If the parser is in this content model then it is expecting to see characters, and
characters only. In this model the < and & symbols lose their special status, and will be treated as ordinary characters.

RCDATA is for “Entity references and character data” If the parser is in this content model then it is expecting to
see characters and entities. < loses its special status, but & will still be treated as starting the beginning of a general
entity.

22

Chapter 3 SGML Primer

This is particularly useful if you are including some verbatim text that contains lots of < and & characters. While you
could go through the text ensuring that every < is converted to a &« 1t; and every & is converted to a samp; , it can be
easier to mark the section as only containing CDATA. When the SGML parser encounters this it will ignore the <
and & symbols embedded in the content.

Note: When you use cpaTa or RCDATA in examples of text marked up in SGML, keep in mind that the content of
CDATA is not validated. You have to check the included SGML text using other means. You could, for example,
write the example in another document, validate the example code, and then paste it to your cpaTa content.

Example 3-15. Using a CDATA marked section

<para>Here is an example of how you would include some text
that contained many <literal><</literal>
and <literal>&</literal> symbols. The sample
text is a fragment of HTML. The surrounding text (<para> and
<programlisting>) are from DocBook.</para>

<programlisting>
<![CDATA [
<p>This is a sample that shows you some of the elements within
HTML. Since the angle brackets are used so many times, it is
simpler to say the whole example is a CDATA marked section
than to use the entity names for the left and right angle
brackets throughout.</p>

<1i>This is a listitem
<1i>This is a second listitem</1i>
<1i>This is a third listitem</1li>

<p>This is the end of the example.</p>
11>
</programlisting>

If you look at the source for this document you will see this technique used throughout.

3.8.1.2 INCLUDE and IGNORE

If the keyword is INCLUDE then the contents of the marked section will be processed. If the keyword is IGNORE then
the marked section is ignored and will not be processed. It will not appear in the output.

Example 3-16. Using INCLUDE and IGNORE in marked sections

<![INCLUDE [
This text will be processed and included.
11>

23

Chapter 3 SGML Primer

<![IGNORE [
This text will not be processed or included.
11>

By itself, this is not too useful. If you wanted to remove text from your document you could cut it out, or wrap it in
comments.

It becomes more useful when you realize you can use parameter entities to control this. Remember that parameter
entities can only be used in SGML contexts, and the keyword of a marked section is an SGML context.

For example, suppose that you produced a hard-copy version of some documentation and an electronic version. In
the electronic version you wanted to include some extra content that was not to appear in the hard-copy.

Create a parameter entity, and set its value to INCLUDE. Write your document, using marked sections to delimit
content that should only appear in the electronic version. In these marked sections use the parameter entity in place
of the keyword.

When you want to produce the hard-copy version of the document, change the parameter entity’s value to IGNORE
and reprocess the document.

Example 3-17. Using a parameter entity to control a marked section

<!DOCTYPE html PUBLIC "-//W3C//DTID HTML 4.0//EN" [
<!ENTITY % electronic.copy "INCLUDE">
11>

<![%electronic.copy [
This content should only appear in the electronic
version of the document.

11>

When producing the hard-copy version, change the entity’s definition to:
<!ENTITY % electronic.copy "IGNORE">

On reprocessing the document, the marked sections that use $electronic.copy as their keyword will be ignored.

3.8.2 For you to do...

1. Create a new file, section.sgml, that contains the following:

<!DOCTYPE html PUBLIC "-//W3C//DID HTML 4.0//EN" [
<!ENTITY $ text.output "INCLUDE">
1>

<html>
<head>
<title>An example using marked sections</title>
</head>

24

Chapter 3 SGML Primer

<body>
<p>This paragraph <![CDATA [contains many <
characters (< < < < <) so it is easier
to wrap it in a CDATA marked section]]1></p>

<![IGNORE [

<p>This paragraph will definitely not be included in the
output.</p>

11>

<![%text.output [
<p>This paragraph might appear in the output, or it
might not.</p>

<p>Its appearance is controlled by the %$text.output
parameter entity.</p>
11>
</body>
</html>

2. Normalize this file using sgmlnorm(1) and examine the output. Notice which paragraphs have appeared, which
have disappeared, and what has happened to the content of the CDATA marked section.

3. Change the definition of the text . output entity from INCLUDE to IGNORE. Re-normalize the file, and examine
the output to see what has changed.

3.9 Conclusion

That is the conclusion of this SGML primer. For reasons of space and complexity several things have not been
covered in depth (or at all). However, the previous sections cover enough SGML for you to be able to follow the
organization of the FDP documentation.

Notes

1. Parameter entities use the Percent symbol.

2. This is a shame. Imagine all the problems and hacks (such as Server Side Includes) that could be avoided if they
did.

25

Chapter 4 SGML Markup

This chapter describes the two markup languages you will encounter when you contribute to the FreeBSD
documentation project. Each section describes the markup language, and details the markup that you are likely to
want to use, or that is already in use.

These markup languages contain a large number of elements, and it can be confusing sometimes to know which
element to use for a particular situation. This section goes through the elements you are most likely to need, and
gives examples of how you would use them.

This is not an exhaustive list of elements, since that would just reiterate the documentation for each language. The
aim of this section is to list those elements more likely to be useful to you. If you have a question about how best to
markup a particular piece of content, please post it to the FreeBSD documentation project #1€:# 18
(http://Nists.FreeBSD.org/mailman/listinfo/freebsd-doc).

Inline vs. block: In the remainder of this document, when describing elements, inline means that the element
can occur within a block element, and does not cause a line break. A block element, by comparison, will cause a
line break (and other processing) when it is encountered.

4.1 HTML

HTML, the HyperText Markup Language, is the markup language of choice on the World Wide Web. More
information can be found at <URL:http://www.w3.org/>.

HTML is used to markup pages on the FreeBSD web site. It should not (generally) be used to mark up other
documentation, since DocBook offers a far richer set of elements to choose from. Consequently, you will normally
only encounter HTML pages if you are writing for the web site.

HTML has gone through a number of versions, 1, 2, 3.0, 3.2, and the latest, 4.0 (available in both strict and loose
variants).

The HTML DTDs are available from the ports collection in the textproc/html port. They are automatically
installed as part of the textproc/docpro port.

4.1.1 Formal Public Identifier (FPI)

There are a number of HTML FPIs, depending upon the version (also known as the level) of HTML that you want to
declare your document to be compliant with.

The majority of HTML documents on the FreeBSD web site comply with the loose version of HTML 4.0.

PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

4.1.2 Sectional elements

An HTML document is normally split into two sections. The first section, called the head, contains meta-information
about the document, such as its title, the name of the author, the parent document, and so on. The second section, the
body, contains the content that will be displayed to the user.

26

Chapter 4 SGML Markup

These sections are indicated with <head> and <body> elements respectively. These elements are contained within
the top-level <html> element.

Example 4-1. Normal HTML document structure

<html>
<head>
<title>The document’s title</title>
</head>

<body>

</body>
</html>

4.1.3 Block elements

4.1.3.1 Headings

HTML allows you to denote headings in your document, at up to six different levels.
The largest and most prominent heading is <h1>, then <h2>, continuing down to <h6>.
The element’s content is the text of the heading.

Example 4-2. <h1>, <h2>, etc.

Use:

<hl>First section</hl>

<!-- Document introduction goes here -->

<h2>This is the heading for the first section</h2>
<!—- Content for the first section goes here —-—>
<h3>This is the heading for the first sub-section</h3>
<!-- Content for the first sub-section goes here —-->
<h2>This is the heading for the second section</h2>
<!-- Content for the second section goes here -->

Generally, an HTML page should have one first level heading (<h1>). This can contain many second level headings
(<h2>), which can in turn contain many third level headings. Each <hn> element should have the same element, but
one further up the hierarchy, preceding it. Leaving gaps in the numbering is to be avoided.

27

Chapter 4 SGML Markup

Example 4-3. Bad ordering of <hn> elements

Use:

<hl>First section</hl>
<!-- Document introduction -->
<h3>Sub-section</h3>

<!—— This 1is bad, <h2> has been left out —--—>

4.1.3.2 Paragraphs

HTML supports a single paragraph element, <p>.

Example 4-4. <p>

Use:

<p>This is a paragraph. It can contain just about any
other element.</p>

4.1.3.3 Block quotations

A block quotation is an extended quotation from another document that should not appear within the current
paragraph.

Example 4-5. <blockquote>

Use:

<p>A small excerpt from the US Constitution:</p>

<blockgquote>We the People of the United States, in Order to form
a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common defence, promote the general
Welfare, and secure the Blessings of Liberty to ourselves and our
Posterity, do ordain and establish this Constitution for the
United States of America.</blockquote>

4.1.3.4 Lists

You can present the user with three types of lists, ordered, unordered, and definition.

Typically, each entry in an ordered list will be numbered, while each entry in an unordered list will be preceded by a
bullet point. Definition lists are composed of two sections for each entry. The first section is the term being defined,

and the second section is the definition of the term.

Ordered lists are indicated by the <o1> element, unordered lists by the element, and definition lists by the

<d1> element.

28

Chapter 4 SGML Markup

Ordered and unordered lists contain listitems, indicated by the <11i> element. A listitem can contain textual content,
or it may be further wrapped in one or more <p> elements.

Definition lists contain definition terms (<dt>) and definition descriptions (<dd>). A definition term can only contain
inline elements. A definition description can contain other block elements.

Example 4-6. and

Use:

<p>An unordered list. Listitems will probably be
preceded by bullets.</p>

First item

Second item</1i>

<1i>Third item</1li>

<p>An ordered list, with list items consisting of multiple
paragraphs. Each item (note: not each paragraph) will be

numbered.</p>

<1li><p>This is the first item. It only has one paragraph.</p></1li>

<1i><p>This is the first paragraph of the second item.</p>
<p>This is the second paragraph of the second item.</p></1i>
<1li><p>This is the first and only paragraph of the third
item.</p></1i>

Example 4-7. Definition lists with <d1>

Use:

<dl>
<dt>Term 1</dt>

<dd><p>Paragraph 1 of definition 1.</p>
<p>Paragraph 2 of definition 1.</p></dd>

<dt>Term 2</dt>

<dd><p>Paragraph 1 of definition 2.</p></dd>

<dt>Term 3</dt>

29

Chapter 4 SGML Markup

<dd><p>Paragraph 1 of definition 3.</p></dd>
</dl>

4.1.3.5 Pre-formatted text

You can indicate that text should be shown to the user exactly as it is in the file. Typically, this means that the text is
shown in a fixed font, multiple spaces are not merged into one, and line breaks in the text are significant.

In order to do this, wrap the content in the <pre> element.

Example 4-8. <pre>

You could use <pre> to mark up an email message:

<pre> From: nik@FreeBSD.org
To: freebsd-doc@RFreeBSD.org
Subject: New documentation available

There is a new copy of my primer for contributors to the FreeBSD
Documentation Project available at

&1t;URL:http://people.FreeBSD.org/~nik/primer/index.htmlé>
Comments appreciated.

N</pre>

Keep in mind that < and s still are recognized as special characters in pre-formatted text. This is why the example
shown had to use &1t ; instead of <. For consistency, «gt; was used in place of >, too. Watch out for the special
characters that may appear in text copied from a plain-text source, e.g., an email message or program code.

4.1.3.6 Tables

Note: Most text-mode browsers (such as Lynx) do not render tables particularly effectively. If you are relying on
the tabular display of your content, you should consider using alternative markup to prevent confusion.

Mark up tabular information using the <table> element. A table consists of one or more table rows (<t r>), each
containing one or more cells of table data (<td>). Each cell can contain other block elements, such as paragraphs or
lists. It can also contain another table (this nesting can repeat indefinitely). If the cell only contains one paragraph
then you do not need to include the <p> element.

Example 4-9. Simple use of <table>

Use:

<p>This is a simple 2x2 table.</p>

30

Chapter 4 SGML Markup

<table>
<tr>
<td>Top left cell</td>

<td>Top right cell</td>
</tr>

<tr>
<td>Bottom left cell</td>

<td>Bottom right cell</td>
</tr>
</table>

A cell can span multiple rows and columns. To indicate this, add the rowspan and/or colspan attributes, with
values indicating the number of rows of columns that should be spanned.

Example 4-10. Using rowspan

Use:

<p>One tall thin cell on the left, two short cells next to
it on the right.</p>

<table>

<tr>
<td rowspan="2">Long and thin</td>

</tr>

<tr>
<td>Top cell</td>

<td>Bottom cell</td>
</tr>
</table>

Example 4-11. Using colspan

Use:

<p>One long cell on top, two short cells below it.</p>

<table>

<tr>
<td colspan="2">Top cell</td>

</tr>

<tr>
<td>Bottom left cell</td>

<td>Bottom right cell</td>

</tr>
</table>

31

Example 4-12. Using rowspan and colspan together

Use:

<p>0On a 3x3 grid, the top left block is a 2x2 set of

cells merged

<table>
<tr>

into one. The other cells are normal.</p>

<td colspan="2" rowspan="2">Top left large cell</td>

<td>Top right cell</td>

</tr>

<tr>

<!-- Because the large cell on the left merges into

this row, the first <td> will occur on its

right

<td>Middle
</tr>

<tr>
<td>Bottom

<td>Bottom
<td>Bottom

</tr>
</table>

——>

right cell</td>

left cell</td>

middle cell</td>

right cell</td>

4.1.4 In-line elements

4.1.4.1 Emphasizing information

Chapter 4 SGML Markup

You have two levels of emphasis available in HTML, and . is for a normal level of emphasis
and indicates stronger emphasis.

Typically, is rendered in italic and is rendered in bold. This is not always the case, however, and you
should not rely on it.

Example 4-13. and

Use:

<p>This has been emphasized, while
this has been strongly emphasized.</p>

32

Chapter 4 SGML Markup

4.1.4.2 Bold and italics

Because HTML includes presentational markup, you can also indicate that particular content should be rendered in
bold or italic. The elements are and <i> respectively.

Example 4-14. and <i>

<p>This is in bold, while <i>this</i> is
in italics.</p>

4.1.4.3 Indicating fixed pitch text

If you have content that should be rendered in a fixed pitch (typewriter) typeface, use <tt> (for “teletype”).

Example 4-15. <tt>

Use:

<p>This document was originally written by
Nik Clayton, who can be reached by email as
<tt>nik@FreeBSD.org</tt>.</p>

4.1.4.4 Content size

You can indicate that content should be shown in a larger or smaller font. There are three ways of doing this.

1. Use <big> and <small> around the content you wish to change size. These tags can be nested, so
<big><big>This is much bigger</big></big> is possible.

2. Use with the size attribute set to +1 or —1 respectively. This has the same effect as using <big> or
<small>. However, the use of this approach is deprecated.

3. Use with the size attribute set to a number between 1 and 7. The default font size is 3. This approach
is deprecated.

Example 4-16. <big>, <small>, and

The following fragments all do the same thing.

<p>This text is <small>slightly smaller</small>. But
this text is <big>slightly bigger</big>.</p>

<p>This text is slightly smaller. But
this text is slightly bigger</font.</p>

<p>This text is slightly smaller. But
this text is slightly bigger.</p>

33

Chapter 4 SGML Markup

4.1.5 Links

Note: Links are also in-line elements.

4.1.5.1 Linking to other documents on the WWW

In order to include a link to another document on the WWW you must know the URL of the document you want to
link to.

The link is indicated with <a>, and the href attribute contains the URL of the target document. The content of the
element becomes the link, and is normally indicated to the user in some way (underlining, change of color, different
mouse cursor when over the link, and so on).

Example 4-17. Using

Use:

<p>More information is available at the
FreeBSD web site.</p>

These links will take the user to the top of the chosen document.

4.1.5.2 Linking to other parts of documents

Linking to a point within another document (or within the same document) requires that the document author include
anchors that you can link to.

Anchors are indicated with <a> and the name attribute instead of href.

Example 4-18. Using

Use:

<p>This paragraph can be referenced
in other links with the name <tt>paral</tt>.</p>

To link to a named part of a document, write a normal link to that document, but include the name of the anchor after
a # symbol.

Example 4-19. Linking to a named part of another document

Assume that the paral example resides in a document called foo.html.

<p>More information can be found in the
first paragraph of
<tt>foo.html</tt>.</p>

If you are linking to a named anchor within the same document then you can omit the document’s URL, and just
include the name of the anchor (with the preceding #).

34

Chapter 4 SGML Markup

Example 4-20. Linking to a named part of the same document

Assume that the paral example resides in this document:

<p>More information can be found in the
first paragraph of this
document .</p>

4.2 DocBook

DocBook was originally developed by Hal. Computer Systems and O’Reilly & Associates to be a DTD for writing
technical documentation '. Since 1998 it is maintained by the DocBook Technical Committee
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook). As such, and unlike LinuxDoc and
HTML, DocBook is very heavily oriented towards markup that describes what something is, rather than describing
how it should be presented.

formal VS. informal: Some elements may exist in two forms, formal and informal. Typically, the formal version
of the element will consist of a title followed by the informal version of the element. The informal version will not
have a title.

The DocBook DTD is available from the ports collection in the textproc/docbook port. It is automatically
installed as part of the textproc/docproj port.

4.2.1 FreeBSD extensions

The FreeBSD Documentation Project has extended the DocBook DTD by adding some new elements. These
elements serve to make some of the markup more precise.

Where a FreeBSD specific element is listed below it is clearly marked.

Throughout the rest of this document, the term “DocBook” is used to mean the FreeBSD extended DocBook DTD.

Note: There is nothing about these extensions that is FreeBSD specific, it was just felt that they were useful
enhancements for this particular project. Should anyone from any of the other *nix camps (NetBSD, OpenBSD,
Linux, ...) be interested in collaborating on a standard DocBook extension set, please get in touch with
Documentation Engineering Team <doceng@FreeBSD.org>.

The FreeBSD extensions are not (currently) in the ports collection. They are stored in the FreeBSD CVS tree, as
doc/share/sgml/freebsd.dtd (http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/share/sgml/freebsd.dtd).

4.2.2 Formal Public Identifier (FPI)

In compliance with the DocBook guidelines for writing FPIs for DocBook customizations, the FPI for the FreeBSD
extended DocBook DTD is:

35

Chapter 4 SGML Markup

PUBLIC "-//FreeBSD//DTD DocBook V4.l-Based Extension//EN"

4.2.3 Document structure

DocBook allows you to structure your documentation in several ways. In the FreeBSD Documentation Project we
are using two primary types of DocBook document: the book and the article.

A book is organized into <chapter>s. This is a mandatory requirement. There may be <part>s between the book
and the chapter to provide another layer of organization. The Handbook is arranged in this way.

A chapter may (or may not) contain one or more sections. These are indicated with the <sect 1> element. If a
section contains another section then use the <sect2> element, and so on, up to <sect5>.

Chapters and sections contain the remainder of the content.

An article is simpler than a book, and does not use chapters. Instead, the content of an article is organized into one or
more sections, using the same <sect1> (and <sect2> and so on) elements that are used in books.

Obviously, you should consider the nature of the documentation you are writing in order to decide whether it is best
marked up as a book or an article. Articles are well suited to information that does not need to be broken down into
several chapters, and that is, relatively speaking, quite short, at up to 20-25 pages of content. Books are best suited to
information that can be broken up into several chapters, possibly with appendices and similar content as well.

The FreeBSD tutorials (http://www.FreeBSD.org/docs.html) are all marked up as articles, while this document, the
FreeBSD FAQ (http://www.FreeBSD.org/doc/zh_TW.Big5/books/faq/index.html), and the FreeBSD Handbook
(http://www.FreeBSD.org/doc/zh_TW.Big5/books/handbook/index.html) are all marked up as books.

4.2.3.1 Starting a book

The content of the book is contained within the <book> element. As well as containing structural markup, this
element can contain elements that include additional information about the book. This is either meta-information,
used for reference purposes, or additional content used to produce a title page.

This additional information should be contained within <bookinfo>.

Example 4-21. Boilerplate <book> with <bookinfo>

<book>
<bookinfo>
<title>Your title here</title>

<author>
<firstname>Your first name</firstname>
<surname>Your surname</surname>
<affiliation>
<address><email>Your email address</email></address>
</affiliation>
</author>

<copyright>

<year>1998</year>

<holder role="mailto:your email address">Your name</holder>
</copyright>

36

Chapter 4 SGML Markup

<releaseinfo>S$FreeBSD$</releaseinfo>

<abstract>
<para>Include an abstract of the book’s contents here.</para>
</abstract>
</bookinfo>

</book>

4.2.3.2 Starting an article

The content of the article is contained within the <article> element. As well as containing structural markup, this
element can contain elements that include additional information about the article. This is either meta-information,
used for reference purposes, or additional content used to produce a title page.

This additional information should be contained within <articleinfo>.

Example 4-22. Boilerplate <article> with <articleinfo>

<article>
<articleinfo>
<title>Your title here</title>

<author>
<firstname>Your first name</firstname>
<surname>Your surname</surname>
<affiliation>
<address><email>Your email address</email></address>
</affiliation>
</author>

<copyright>

<year>1998</year>

<holder role="mailto:your email address">Your name</holder>
</copyright>

<releaseinfo>$FreeBSD$</releaseinfo>
<abstract>
<para>Include an abstract of the article’s contents here.</para>

</abstract>
</articleinfo>

</article>

37

Chapter 4 SGML Markup

4.2.3.3 Indicating chapters

Use <chapter> to mark up your chapters. Each chapter has a mandatory <title>. Articles do not contain chapters,
they are reserved for books.

Example 4-23. A simple chapter

<chapter>
<title>The chapter’s title</title>

</chapter>

A chapter cannot be empty; it must contain elements in addition to <title>. If you need to include an empty
chapter then just use an empty paragraph.

Example 4-24. Empty chapters

<chapter>
<title>This is an empty chapter</title>

<para></para>
</chapter>

4.2.3.4 Sections below chapters

In books, chapters may (but do not need to) be broken up into sections, subsections, and so on. In articles, sections
are the main structural element, and each article must contain at least one section. Use the <sectn> element. The n
indicates the section number, which identifies the section level.

The first <sectn> is <sect1>. You can have one or more of these in a chapter. They can contain one or more
<sect2> elements, and so on, down to <sect5>.

Example 4-25. Sections in chapters

<chapter>
<title>A sample chapter</title>

<para>Some text in the chapter.</para>
<sectl>

<title>First section (1l.1)</title>
</sectl>
<sectl>

<title>Second section (1.2)</title>

<sect2>
<title>First sub-section (1.2.1)</title>

38

Chapter 4 SGML Markup

<sect3>
<title>First sub-sub-section (1.2.1.1)</title>

</sect3>
</sect2>

<sect2>
<title>Second sub-section (1.2.2)</title>

</sect2>
</sectl>
</chapter>

Note: This example includes section numbers in the section titles. You should not do this in your documents.
Adding the section numbers is carried out by the stylesheets (of which more later), and you do not need to
manage them yourself.

4.2.3.5 Subdividing using <part>s

You can introduce another layer of organization between <book> and <chapter> with one or more <part>s. This
cannot be done in an <article>.

<part>
<title>Introduction</title>

<chapter>

<title>Overview</title>
</chapter>
<chapter>

<title>What is FreeBSD?</title>
</chapter>
<chapter>

<title>History</title>

</chapter>
</part>

39

Chapter 4 SGML Markup

4.2.4 Block elements

4.2.4.1 Paragraphs
DocBook supports three types of paragraphs: <formalpara>, <para>, and <simpara>.

Most of the time you will only need to use <para>. <formalpara> includes a <title> element, and <simpara>
disallows some elements from within <para>. Stick with <para>.

Example 4-26. <para>

Use:

<para>This is a paragraph. It can contain just about any
other element.</para>

Appearance:

This is a paragraph. It can contain just about any other element.

4.2.4.2 Block quotations

A block quotation is an extended quotation from another document that should not appear within the current
paragraph. You will probably only need it infrequently.

Blockquotes can optionally contain a title and an attribution (or they can be left untitled and unattributed).

Example 4-27. <blockquote>

Use:

<para>A small excerpt from the US Constitution:</para>

<blockquote>
<title>Preamble to the Constitution of the United States</title>

<attribution>Copied from a web site somewhere</attribution>

<para>We the People of the United States, in Order to form a more perfect
Union, establish Justice, insure domestic Tranquility, provide for the
common defence, promote the general Welfare, and secure the Blessings
of Liberty to ourselves and our Posterity, do ordain and establish this
Constitution for the United States of America.</para>
</blockquote>

Appearance:

Preamble to the Constitution of the United States

We the People of the United States, in Order to form a more perfect Union, establish Justice, insure domestic Tranquility,
provide for the common defence, promote the general Welfare, and secure the Blessings of Liberty to ourselves and our
Posterity, do ordain and establish this Constitution for the United States of America.

—Copied from a web site somewhere

40

Chapter 4 SGML Markup

4.2.4.3 Tips, notes, warnings, cautions, important information and sidebars.

You may need to include extra information separate from the main body of the text. Typically this is “meta”
information that the user should be aware of.

Depending on the nature of the information, one of <tip>, <note>, <warning>, <caution>, and <important>
should be used. Alternatively, if the information is related to the main text but is not one of the above, use
<sidebar>.

The circumstances in which to choose one of these elements over another is unclear. The DocBook documentation
suggests:

- A Note is for information that should be heeded by all readers.
- An Important element is a variation on Note.
- A Caution is for information regarding possible data loss or software damage.

- A Warning is for information regarding possible hardware damage or injury to life or limb.

Example 4-28. <warning>

Use:

<warning>
<para>Installing FreeBSD may make you want to delete Windows from your
hard disk.</para>
</warning>

Warning: Installing FreeBSD may make you want to delete Windows from your hard disk.

4.2.4.4 Lists and procedures

You will often need to list pieces of information to the user, or present them with a number of steps that must be
carried out in order to accomplish a particular goal.

In order to do this, use <itemizedlist>, <orderedlist>, or <procedure>>

<itemizedlist> and <orderedlist> are similar to their counterparts in HTML, and <o1>. Each one
consists of one or more <1istitem> elements, and each <1istitem> contains one or more block elements. The
<listitem> elements are analogous to HTML’s <11i> tags. However, unlike HTML, they are required.

<procedure> is slightly different. It consists of <step>s, which may in turn consists of more <step>s or
<substep>s. Each <step> contains block elements.

Example 4-29. <itemizedlist>, <orderedlist>, and <procedure>

Use:

<itemizedlist>
<listitem>
<para>This is the first itemized item.</para>
</listitem>

41

Chapter 4 SGML Markup

<listitem>
<para>This is the second itemized item.</para>
</listitem>
</itemizedlist>

<orderedlist>

<listitem>
<para>This is the first ordered item.</para>

</listitem>

<listitem>
<para>This is the second ordered item.</para>
</listitem>
</orderedlist>

<procedure>
<step>
<para>Do this.</para>
</step>

<step>
<para>Then do this.</para>
</step>

<step>
<para>And now do this.</para>
</step>
</procedure>

Appearance:

- This is the first itemized item.

- This is the second itemized item.

1. This is the first ordered item.

2. This is the second ordered item.

1. Do this.
2. Then do this.
3. And now do this.

42

Chapter 4 SGML Markup

4.2.4.5 Showing file samples

If you want to show a fragment of a file (or perhaps a complete file) to the user, wrap it in the <programlisting>
element.

White space and line breaks within <programlisting> are significant. In particular, this means that the opening
tag should appear on the same line as the first line of the output, and the closing tag should appear on the same line as
the last line of the output, otherwise spurious blank lines may be included.

Example 4-30. <programlisting>

Use:
<para>When you have finished, your program should look like
this:</para>

<programlisting>#include &1lt;stdio.hé>

int
main (void)
{
printf ("hello, world\n");
}</programlisting>

Notice how the angle brackets in the #include line need to be referenced by their entities instead of being included
literally.

Appearance:

When you have finished, your program should look like this:

#include <stdio.h>

int
main (void)
{
printf ("hello, world\n");

4.2.4.6 Callouts

A callout is a mechanism for referring back to an earlier piece of text or specific position within an earlier example
without linking to it within the text.

To do this, mark areas of interest in your example (<programlisting>, <literallayout>, or whatever) with the
<co> element. Each element must have a unique id assigned to it. After the example include a <calloutlist> that
refers back to the example and provides additional commentary.

Example 4-31. <co> and <calloutlist>

<para>When you have finished, your program should look like
this:</para>

<programlisting>#include <stdio.hé> <co id="co-ex—-include">

43

Chapter 4 SGML Markup

int <co id="co-ex-return">
main (void)

{
printf ("hello, world\n"); <co id="co-ex-printf">
}</programlisting>

<calloutlist>
<callout arearefs="co-ex—-include">
<para>Includes the standard IO header file.</para>
</callout>

<callout arearefs="co-ex-return">
<para>Specifies that <function>main()</function> returns an
int.</para>
</callout>

<callout arearefs="co-ex-printf">
<para>The <function>printf ()</function> call that writes
<literal>hello, world</literal> to standard output.</para>
</callout>
</calloutlist>

Appearance:

When you have finished, your program should look like this:
#include <stdio.h> ©

int @

main (void)

{
printf ("hello, world\n"); ©

}
© Includes the standard IO header file.
® Specifies that main () returns an int.

® The printf () call that writes hello, world to standard output.

4.2.4.7 Tables

Unlike HTML, you do not need to use tables for layout purposes, as the stylesheet handles those issues for you.
Instead, just use tables for marking up tabular data.

In general terms (and see the DocBook documentation for more detail) a table (which can be either formal or
informal) consists of a <table> element. This contains at least one <tgroup> element, which specifies (as an
attribute) the number of columns in this table group. Within the tablegroup you can then have one <thead> element,
which contains elements for the table headings (column headings), and one <tbody> which contains the body of the
table.

44

Chapter 4 SGML Markup

Both <tgroup> and <thead> contain <row> elements, which in turn contain <entry> elements. Each <entry>
element specifies one cell in the table.

Example 4-32. <informaltable>

Use:

<informaltable frame="none" pgwide="1">
<tgroup cols="2">
<thead>
<row>
<entry>This is column head 1</entry>
<entry>This is column head 2</entry>
</row>
</thead>

<tbody>
<row>
<entry>Row 1, column 1</entry>
<entry>Row 1, column 2</entry>
</row>

<row>
<entry>Row 2, column 1</entry>
<entry>Row 2, column 2</entry>
</row>
</tbody>
</tgroup>
</informaltable>

Appearance:

This is column head 1 This is column head 2

Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

Always use the pgwide attribute with a value of 1 with the <informaltable> element. A bug in Internet Explorer
can cause the table to render incorrectly if this is omitted.

If you do not want a border around the table the frame attribute can be added to the <informaltable> element
with a value of none (i.e., <informaltable frame="none">).

Example 4-33. Tables where frame="none"

Appearance:

This is column head 1 This is column head 2
Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

45

Chapter 4 SGML Markup

4.2.4.8 Examples for the user to follow

A lot of the time you need to show examples for the user to follow. Typically, these will consist of dialogs with the
computer; the user types in a command, the user gets a response back, they type in another command, and so on.

A number of distinct elements and entities come into play here.

<screen>
Everything the user sees in this example will be on the computer screen, so the next element is <screen>.

Within <screen>, white space is significant.

<prompt>, sprompt .root; and &prompt .user;

Some of the things the user will be seeing on the screen are prompts from the computer (either from the
operating system, command shell, or application). These should be marked up using <prompt>.

As a special case, the two shell prompts for the normal user and the root user have been provided as entities.
Every time you want to indicate the user is at a shell prompt, use one of sprompt . root; and ¢prompt .user;
as necessary. They do not need to be inside <prompt>.

Note: sprompt . root; and sprompt .user; are FreeBSD extensions to DocBook, and are not part of the
original DTD.

<userinput>

When displaying text that the user should type in, wrap it in <userinput> tags. It will probably be displayed
differently to the user.

Example 4-34. <screen>, <prompt>, and <userinput>

Use:

<screen>g&prompt.user; <userinput>ls -1</userinput>
fool

foo2

foo3

&prompt.user; <userinput>ls -1 | grep foo2</userinput>
foo2

&prompt.user; <userinput>su</userinput>
<prompt>Password: </prompt>

&prompt.root; <userinput>cat foo2</userinput>

This is the file called ’'foo2’</screen>

Appearance:
% 1s -1
fool

46

Chapter 4 SGML Markup

foo2
foo3
% ls -1 | grep foo2
foo2

o

% su
Password:

cat foo2

This is the file called ’foo2’

Note: Even though we are displaying the contents of the file foo2, it is not marked up as <programlisting>.
Reserve <programlisting> for showing fragments of files outside the context of user actions.

4.2.5 In-line elements

4.2.5.1 Emphasizing information

When you want to emphasize a particular word or phrase, use <emphasis>. This may be presented as italic, or bold,
or might be spoken differently with a text-to-speech system.

There is no way to change the presentation of the emphasis within your document, no equivalent of HTML’s and
<i>. If the information you are presenting is important then consider presenting it in <important> rather than

<emphasis>.

Example 4-35. <emphasis>

Use:

<para>FreeBSD is without doubt <emphasis>the</emphasis>
premiere Unix like operating system for the Intel architecture.</para>

Appearance:

FreeBSD is without doubt the premiere Unix like operating system for the Intel architecture.

4.2.5.2 Quotations

To quote text from another document or source, or to denote a phrase that is used figuratively, use <quote>. Within a
<quote> tag, you may use most of the markup tags available for normal text.

Example 4-36. Quotations

Use:

<para>However, make sure that the search does not go beyond the
<quote>boundary between local and public administration</quote>,
as RFC 1535 calls it.</para>

47

Chapter 4 SGML Markup

Appearance:

However, make sure that the search does not go beyond the “boundary between local and public administration” |
as RFC 1535 calls it.

4.2.5.3 Keys, mouse buttons, and combinations

To refer to a specific key on the keyboard, use <keycap>. To refer to a mouse button, use <mousebutton>. And to
refer to combinations of key presses or mouse clicks, wrap them all in <keycombo>.

<keycombo> has an attribute called act ion, which may be one of click, double-click, other, press, seq, Or
simul. The last two values denote whether the keys or buttons should be pressed in sequence, or simultaneously.

The stylesheets automatically add any connecting symbols, such as +, between the key names, when wrapped in
<keycombo>.

Example 4-37. Keys, mouse buttons, and combinations

Use:

<para>To switch to the second virtual terminal, press
<keycombo action="simul"><keycap>Alt</keycap>
<keycap>F1l</keycap></keycombo>.</para>

<para>To exit <command>vi</command> without saving your work, type
<keycombo action="seq"><keycap>Esc</keycap><keycap>:</keycap>
<keycap>g</keycap><keycap>!</keycap></keycombo>.</para>

<para>My window manager is configured so that
<keycombo action="simul"><keycap>Alt</keycap>
<mousebutton>right</mousebutton>
</keycombo> mouse button is used to move windows.</para>

Appearance:
To switch to the second virtual terminal, press Alt+F1.
To exit vi without saving your work, type Esc : q !.

My window manager is configured so that Alt+right mouse button is used to move windows.

4.2.5.4 Applications, commands, options, and cites

You will frequently want to refer to both applications and commands when writing for the Handbook. The distinction
between them is simple: an application is the name for a suite (or possibly just 1) of programs that fulfil a particular
task. A command is the name of a program that the user can run.

In addition, you will occasionally need to list one or more of the options that a command might take.

Finally, you will often want to list a command with its manual section number, in the “command(number)” format
so common in Unix manuals.

48

Chapter 4 SGML Markup

Mark up application names with <application>.

When you want to list a command with its manual section number (which should be most of the time) the DocBook
element is <citerefentry>. This will contain a further two elements, <refentrytitle> and <manvolnum>. The
content of <refentrytitle> is the name of the command, and the content of <manvolnum> is the manual page
section.

This can be cumbersome to write, and so a series of general entities have been created to make this easier. Each
enﬁlytakesthefonn &man .manual-page.manual-section;

The file that contains these entities is in doc/share/sgml/man-refs.ent, and can be referred to using this FPI:
PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN"

Therefore, the introduction to your documentation will probably look like this:

<!DOCTYPE book PUBLIC "-//FreeBSD//DTD DocBook V4.l-Based Extension//EN" [

<!ENTITY % man PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN">
$man;

1>

Use <command> when you want to include a command name “in-line” but present it as something the user should
type in.

Use <option> to mark up the options which will be passed to a command.

When referring to the same command multiple times in close proximity it is preferred to use the
&man . command. section; notation to markup the first reference and use <command> to markup subsequent
references. This makes the generated output, especially HTML, appear visually better.

This can be confusing, and sometimes the choice is not always clear. Hopefully this example makes it clearer.

Example 4-38. Applications, commands, and options.

Use:

<para><application>Sendmail</application> is the most
widely used Unix mail application.</para>

<para><application>Sendmail</application> includes the
<citerefentry>
<refentrytitle>sendmail</refentrytitle>
<manvolnum>8</manvolnum>
</citerefentry>, &man.mailqg.8;, and &man.newaliases.8;
programs.</para>

<para>One of the command line parameters to <citerefentry>
<refentrytitle>sendmail</refentrytitle>
<manvolnum>8</manvolnum>
</citerefentry>, <option>-bp</option>, will display the current
status of messages in the mail queue. Check this on the command
line by running <command>sendmail -bp</command>.</para>

49

Chapter 4 SGML Markup

Appearance:
Sendmail is the most widely used Unix mail application.
Sendmail includes the sendmail(8), mailq(8), and newaliases(8) programs.

One of the command line parameters to sendmail(8), -bp, will display the current status of messages in the mail
queue. Check this on the command line by running sendmail -bp.

Note: Notice how the sman. command. section; notation is easier to follow.

4.2.5.5 Files, directories, extensions

Whenever you wish to refer to the name of a file, a directory, or a file extension, use <filename>.

Example 4-39. <filename>

Use:

<para>The SGML source for the Handbook in English can be
found in <filename>/usr/doc/en/handbook/</filename>. The first
file is called <filename>handbook.sgml</filename> in that
directory. You should also see a <filename>Makefile</filename>
and a number of files with a <filename>.ent</filename>
extension.</para>

Appearance:

The SGML source for the Handbook in English can be found in /usr/doc/en/handbook/. The first file is called
handbook. sgml in that directory. You should also see a Makefile and a number of files with a . ent extension.

4.2.5.6 The name of ports
FreeBSD extension: These elements are part of the FreeBSD extension to DocBook, and do not exist in the

original DocBook DTD.

You might need to include the name of a program from the FreeBSD Ports Collection in the documentation. Use the
<filename> tag with the role attribute set to package to identify these. Since ports can be installed in any number
of locations, only include the category and the port name; do not include /usr/ports.

50

Chapter 4 SGML Markup
Example 4-40. <filename> tag with package role

Use:
<para>Install the <filename role="package">net/ethereal</filename> port to view network traffic.</pa
Appearance:

Install the net /ethereal port to view network traffic.

4.2.5.7 Devices

FreeBSD extension: These elements are part of the FreeBSD extension to DocBook, and do not exist in the
original DocBook DTD.

When referring to devices you have two choices. You can either refer to the device as it appears in /dev, or you can
use the name of the device as it appears in the kernel. For this latter course, use <devicename>.

Sometimes you will not have a choice. Some devices, such as networking cards, do not have entries in /dev, or the
entries are markedly different from those entries.

Example 4-41. <devicename>

Use:

<para><devicename>sio</devicename> is used for serial
communication in FreeBSD. <devicename>sio</devicename> manifests
through a number of entries in <filename>/dev</filename>, including
<filename>/dev/ttyd0</filename> and <filename>/dev/cuaa0</filename>.</para>

<para>By contrast, the networking devices, such as
<devicename>edO</devicename> do not appear in <filename>/dev</filename>.</para>

<para>In MS-DOS, the first floppy drive is referred to as
<devicename>a:</devicename>. In FreeBSD it is
<filename>/dev/fd0</filename>.</para>

Appearance:

sio is used for serial communication in FreeBSD. sio manifests through a number of entries in /dev, including
/dev/ttyd0 and /dev/cuaa0.

By contrast, the networking devices, such as ed0 do not appear in /dev.

In MS-DOS, the first floppy drive is referred to as a:. In FreeBSD it is /dev/£d0.

51

Chapter 4 SGML Markup

4.2.5.8 Hosts, domains, IP addresses, and so forth

FreeBSD extension: These elements are part of the FreeBSD extension to DocBook, and do not exist in the
original DocBook DTD.

You can markup identification information for networked computers (hosts) in several ways, depending on the nature
of the information. All of them use <hostid> as the element, with the role attribute selecting the type of the
marked up information.

No role attribute, or role="hostname"
With no role attribute (i.e., <hostid>...</hostid>) the marked up information is the simple hostname, such as
freefall or wcarchive. You can explicitly specify this with role="hostname".

role="domainname"

The text is a domain name, such as FreeBSD.org or ngo.org.uk. There is no hostname component.

role="fqgdn"

The text is a Fully Qualified Domain Name, with both hostname and domain name parts.

role="ipaddr"

The text is an IP address, probably expressed as a dotted quad.

role="ip6addr"

The text is an IPv6 address.

role="netmask"
The text is a network mask, which might be expressed as a dotted quad, a hexadecimal string, or as a / followed
by a number.

role="mac"

The text is an Ethernet MAC address, expressed as a series of 2 digit hexadecimal numbers separated by colons.

Example 4-42. <hostid> and roles

Use:

<para>The local machine can always be referred to by the
name <hostid>localhost</hostid>, which will have the IP address
<hostid role="ipaddr">127.0.0.1</hostid>.</para>

<para>The <hostid role="domainname">FreeBSD.org</hostid> domain
contains a number of different hosts, including
<hostid role="fgdn">freefall.FreeBSD.org</hostid> and
<hostid role="fgdn">bento.FreeBSD.org</hostid>.</para>

<para>When adding an IP alias to an interface (using
<command>ifconfig</command>) <emphasis>always</emphasis> use a

52

Chapter 4 SGML Markup

netmask of <hostid role="netmask">255.255.255.255</hostid>
(which can also be expressed as <hostid
role="netmask">0xffffffff</hostid>.</para>

<para>The MAC address uniquely identifies every network card
in existence. A typical MAC address looks like <hostid
role="mac">08:00:20:87:ef:d0</hostid>.</para>

Appearance:
The local machine can always be referred to by the name localhost, which will have the IP address 127.0.0. 1.

The FreeBsD.org domain contains a number of different hosts, including freefall.FreeBSD.org and
bento.FreeBSD.org.

When adding an IP alias to an interface (using i fconfig) always use a netmask of 255.255.255.255 (which can
also be expressed as OxfffEEEEE.

The MAC address uniquely identifies every network card in existence. A typical MAC address looks like
08:00:20:87:ef:d0.

4.2.5.9 Usernames
FreeBSD extension: These elements are part of the FreeBSD extension to DocBook, and do not exist in the
original DocBook DTD.

When you need to refer to a specific username, such as root or bin, use <username>.

Example 4-43. <username>

Use:

<para>To carry out most system administration functions you
will need to be <username>root</username>.</para>

Appearance:

To carry out most system administration functions you will need to be root.

4.2.5.10 Describing MakefileS

FreeBSD extension: These elements are part of the FreeBSD extension to DocBook, and do not exist in the
original DocBook DTD.

Two elements exist to describe parts of Makefiles, <maketarget> and <makevar>.

53

Chapter 4 SGML Markup

<maketarget> identifies a build target exported by a Makefile that can be given as a parameter to make.
<makevar> identifies a variable that can be set (in the environment, on the make command line, or within the
Makefile) to influence the process.

Example 4-44. <maketarget> and <makevar>

Use:

<para>Two common targets in a <filename>Makefile</filename>
are <maketarget>all</maketarget> and <maketarget>clean</maketarget>.</para>

<para>Typically, invoking <maketarget>all</maketarget> will rebuild the
application, and invoking <maketarget>clean</maketarget> will remove
the temporary files (<filename>.o</filename> for example) created by
the build process.</para>

<para><maketarget>clean</maketarget> may be controlled by a number of
variables, including <makevar>CLOBBER</makevar> and
<makevar>RECURSE</makevar>.</para>

Appearance:
Two common targets in a Makefile are all and clean.

Typically, invoking a11 will rebuild the application, and invoking clean will remove the temporary files (. o for
example) created by the build process.

clean may be controlled by a number of variables, including CLOBBER and RECURSE.

4.2.5.11 Literal text

You will often need to include “literal” text in the Handbook. This is text that is excerpted from another file, or
which should be copied from the Handbook into another file verbatim.

Some of the time, <programlisting> will be sufficient to denote this text. <programlisting> is not always
appropriate, particularly when you want to include a portion of a file “in-line” with the rest of the paragraph.

On these occasions, use <literal>.

Example 4-45. <literal>

Use:

<para>The <literal>maxusers 10</literal> line in the kernel
configuration file determines the size of many system tables, and is
a rough guide to how many simultaneous logins the system will
support.</para>

Appearance:

The maxusers 10 line in the kernel configuration file determines the size of many system tables, and is a rough
guide to how many simultaneous logins the system will support.

54

Chapter 4 SGML Markup

4.2.5.12 Showing items that the user must fill in

There will often be times when you want to show the user what to do, or refer to a file, or command line, or similar,
where the user cannot simply copy the examples that you provide, but must instead include some information
themselves.

<replaceable> is designed for this eventuality. Use it inside other elements to indicate parts of that element’s
content that the user must replace.

Example 4-46. <replaceable>

Use:

<informalexample>
<screen>&prompt.user; <userinput>man <replaceable>command</replaceable></userinput></screen>
</informalexample>

Appearance:

o

% man command

<replaceable> can be used in many different elements, including <1iteral>. This example also shows that
<replaceable> should only be wrapped around the content that the user is meant to provide. The other content
should be left alone.

Use:

<para>The <literal>maxusers <replaceable>n</replaceable></literal>
line in the kernel configuration file determines the size of many system
tables, and is a rough guide to how many simultaneous logins the system will
support.</para>

<para>For a desktop workstation, <literal>32</literal> is a good value
for <replaceable>n</replaceable>.</para>

Appearance:

The maxusers n line in the kernel configuration file determines the size of many system tables, and is a rough guide
to how many simultaneous logins the system will support.

For a desktop workstation, 32 is a good value for n.

4.2.5.13 Quoting system errors

You might want to show errors generated by FreeBSD. Mark these with <errorname>. This indicates the exact error
that appears.

Example 4-47. <errorname>

Use:
<screen><errorname>Panic: cannot mount root</errorname></screen>

Appearance:

55

Chapter 4 SGML Markup

“« »
Panic: cannot mount root

4.2.6 Images

Important: Image support in the documentation is currently extremely experimental. | think the mechanisms
described here are unlikely to change, but that is not guaranteed.

You will also need to install the graphics/ImageMagick port, which is used to convert between the different
image formats. This is a big port, and most of it is not required. However, while we are working on the Makefiles
and other infrastructure it makes things easier. This port is not in the textproc/docproj meta port, you must
install it by hand.

The best example of what follows in practice is the doc/en_Us.1508859-1/articles/vm-design/ document. If
you are unsure of the description that follows, take a look at the files in that directory to see how everything
hangs together. Experiment with creating different formatted versions of the document to see how the image
markup appears in the formatted output.

4.2.6.1 Image formats
We currently support two formats for images. The format you should use will depend on the nature of your image.

For images that are primarily vector based, such as network diagrams, time lines, and similar, use Encapsulated
Postscript, and make sure that your images have the . eps extension.

For bitmaps, such as screen captures, use the Portable Network Graphic format, and make sure that your images have
the .png extension.

These are the only formats in which images should be committed to the CVS repository.

Use the right format for the right image. It is to be expected that your documentation will have a mix of EPS and
PNG images. The Makefiles ensure that the correct format image is chosen depending on the output format that
you use for your documentation. Do not commit the same image to the repository in two different formats.

Important: It is anticipated that the Documentation Project will switch to using the Scalable Vector Graphic
(SVG) format for vector images. However, the current state of SVG capable editing tools makes this impractical.

4.2.6.2 Markup

The markup for an image is relatively simple. First, markup a <mediaobject>. The <mediaobject> can contain
other, more specific objects. We are concerned with two, the <imageobject> and the <textobject>.

You should include one <imageobject>, and two <textobject> elements. The <imageobject> will point to the
name of the image file that will be used (without the extension). The <textobject> elements contain information
that will be presented to the user as well as, or instead of, the image.

There are two circumstances where this can happen.

56

Chapter 4 SGML Markup

- When the reader is viewing the documentation in HTML. In this case, each image will need to have associated
alternate text to show the user, typically whilst the image is loading, or if they hover the mouse pointer over the
image.

- When the reader is viewing the documentation in plain text. In this case, each image should have an ASCII art
equivalent to show the user.

An example will probably make things easier to understand. Suppose you have an image, called £ig1, that you want
to include in the document. This image is of a rectangle with an A inside it. The markup for this would be as follows.

<mediaobject>
<imageobiject>
<imagedata fileref="figl"> @
</imageobject>

<textobject>
<literallayout class="monospaced">+-———————-—-————— + O
| A |
Fomm e +</literallayout>
</textobject>

<textobject>
<phrase>A picture</phrase> ©

</textobject>

</mediaobject>

@ Include an <imagedata> element inside the <imageobject > element. The fileref attribute should contain
the filename of the image to include, without the extension. The stylesheets will work out which extension
should be added to the filename automatically.

@ The first <textobject> should contain a <literallayout> element, where the class attribute is set to
monospaced. This is your opportunity to demonstrate your ASCII art skills. This content will be used if the
document is converted to plain text.

Notice how the first and last lines of the content of the <1iterallayout> element butt up next to the element’s
tags. This ensures no extraneous white space is included.

©® The second <textobject> should contain a single <phrase> element. The contents of this will become the
alt attribute for the image when this document is converted to HTML.

4.2.6.3 Makefile entries

Your images must be listed in the Makefile in the IMAGES variable. This variable should contain the name of all
your source images. For example, if you have created three figures, figl.eps, fig2.png, £1g3.png, then your
Makefile should have lines like this in it.

IMAGES= figl.eps fig2.png fig3.png

or

57

Chapter 4 SGML Markup

IMAGES= figl.eps
IMAGES+= fig2.png
IMAGES+= fig3.png

Again, the Makefile will work out the complete list of images it needs to build your source document, you only
need to list the image files you provided.

4.2.6.4 Images and chapters in subdirectories

You must be careful when you separate your documentation into smaller files (see Section 3.7.1) in different
directories.

Suppose you have a book with three chapters, and the chapters are stored in their own directories, called
chapterl/chapter.sgml, chapter2/chapter.sgml, and chapter3/chapter.sgml. If each chapter has
images associated with it, I suggest you place those images in each chapter’s subdirectory (chapterl/, chapter2/,
and chapter3/).

However, if you do this you must include the directory names in the IMAGES variable in the Makefile, and you
must include the directory name in the <imagedata> element in your document.

For example, if you have chapterl/figl.png, then chapterl/chapter.sgml should contain:

<mediaobject>
<imageobject>
<imagedata fileref="chapterl/figl"> ©
</imageobject>

</mediaobject>

©® The directory name must be included in the fileref attribute.

The Makefile must contain:
IMAGES= chapterl/figl.png

Then everything should just work.

4.2.7 Links

Note: Links are also in-line elements.

58

Chapter 4 SGML Markup

4.2.7.1 Linking to other parts of the same document

Linking within the same document requires you to specify where you are linking from (i.e., the text the user will
click, or otherwise indicate, as the source of the link) and where you are linking to (the link’s destination).

Each element within DocBook has an attribute called id. You can place text in this attribute to uniquely name the
element it is attached to.

This value will be used when you specify the link source.

Normally, you will only be linking to chapters or sections, so you would add the id attribute to these elements.

Example 4-48. id on chapters and sections

<chapter id="chapterl">
<title>Introduction</title>

<para>This is the introduction. It contains a subsection,
which is identified as well.</para>

<sectl id="chapterl-sectl">
<title>Sub-sect 1</title>

<para>This is the subsection.</para>
</sectl>
</chapter>

Obviously, you should use more descriptive values. The values must be unique within the document (i.e., not just the
file, but the document the file might be included in as well). Notice how the id for the subsection is constructed by
appending text to the id of the chapter. This helps to ensure that they are unique.

If you want to allow the user to jump into a specific portion of the document (possibly in the middle of a paragraph
or an example), use <anchor>. This element has no content, but takes an id attribute.

Example 4-49. <anchor>

<para>This paragraph has an embedded
<anchor id="paral">link target in it. It will not show up in
the document.</para>

When you want to provide the user with a link they can activate (probably by clicking) to go to a section of the
document that has an id attribute, you can use either <xref> or <link>.

Both of these elements have a 1inkend attribute. The value of this attribute should be the value that you have used in
a id attribute (it does not matter if that value has not yet occurred in your document; this will work for forward links
as well as backward links).

If you use <xref> then you have no control over the text of the link. It will be generated for you.
Example 4-50. Using <xref>

Assume that this fragment appears somewhere in a document that includes the id example:

<para>More information can be found
in <xref linkend="chapterl">.</para>

59

Chapter 4 SGML Markup

<para>More specific information can be found
in <xref linkend="chapterl-sectl">.</para>

The text of the link will be generated automatically, and will look like (emphasized text indicates the text that will be
the link):

More information can be found in Chapter One.

More specific information can be found in the section called Sub-sect 1.

Notice how the text from the link is derived from the section title or the chapter number.

Note: This means that you cannot use <xref> to link to an id attribute on an <anchor> element. The <anchor>
has no content, so the <xref> cannot generate the text for the link.

If you want to control the text of the link then use <1ink>. This element wraps content, and the content will be used
for the link.

Example 4-51. Using <1link>

Assume that this fragment appears somewhere in a document that includes the id example.
<para>More information can be found in

<link linkend="chapterl">the first chapter</link>.</para>
<para>More specific information can be found in

<link linkend="chapterl-sectl">this</link> section.</para>

This will generate the following (emphasized text indicates the text that will be the link):

More information can be found in the first chapter.

More specific information can be found in this section.

Note: That last one is a bad example. Never use words like “this” or “here” as the source for the link. The
reader will need to hunt around the surrounding context to see where the link is actually taking them.

Note: You can use <1ink> to include a link to an id on an <anchor> element, since the <1ink> content defines
the text that will be used for the link.

4.2.7.2 Linking to documents on the WWW

Linking to external documents is much simpler, as long as you know the URL of the document you want to link to.
Use <ulink>. The url attribute is the URL of the page that the link points to, and the content of the element is the
text that will be displayed for the user to activate.

60

Chapter 4 SGML Markup
Example 4-52. <ulink>

Use:

<para>0f course, you could stop reading this document and
go to the <ulink url="&url.base;/index.html">FreeBSD
home page</ulink> instead.</para>

Appearance:

Of course, you could stop reading this document and go to the FreeBSD home page
(http://www.FreeBSD.org/index.html) instead.

Notes

1. A short history can be found under http://www.oasis-open.org/committees/docbook/intro.shtml
(http://www.oasis-open.org/committees/docbook/intro.shtml).

2. There are other types of list element in DocBook, but we are not concerned with those at the moment.

61

Chapter 5 * Stylesheets

SGML says nothing about how a document should be displayed to the user, or rendered on paper. To do that, various
languages have been developed to describe stylesheets, including DynaText, Panorama, SPICE, JSSS, FOSI, CSS,
and DSSSL.

For DocBook, we are using stylesheets written in DSSSL. For HTML we are using CSS.

5.1 * DSSSL

The Documentation Project uses a slightly customized version of Norm Walsh’s modular DocBook stylesheets.
These can be found in textproc/dsssl-docbook-modular.

The modified stylesheets are not in the ports system. Instead they are part of the Documentation Project source
repository, and can be found in doc/share/sgml/freebsd.dsl. It is well commented, and pending completion of
this section you are encouraged to examine that file to see how some of the available options in the standard
stylesheets have been configured in order to customize the output for the FreeBSD Documentation Project. That file
also contains examples showing how to extend the elements that the stylesheet understands, which is how the
FreeBSD specific elements have been formatted.

5.2 CSS

Cascading Stylesheets (CSS) are a mechanism for attaching style information (font, weight, size, color, and so forth)
to elements in an HTML document without abusing HTML to do so.

5.2.1 The Web site (HTML documents)

The FreeBSD web site does not currently use CSS. Unfortunately, the look and feel is constructed using abuses of
HTML of varying degrees. This should be fixed, and would be a good project for someone looking to contribute to
the documentation project.

5.2.2 The DocBook documents

The FreeBSD DSSSL stylesheets include a reference to a stylesheet, docbook . css, which is expected to appear in
the same directory as the HTML files. The project-wide CSS file is copied from doc/share/misc/docbook.css
when documents are converted to HTML, and is installed automatically.

62

Chapter 6 Structuring documents under doc/

The doc/ tree is organized in a particular fashion, and the documents that are part of the FDP are in turn organized in
a particular fashion. The aim is to make it simple to add new documentation into the tree and:

1. make it easy to automate converting the document to other formats;

2. promote consistency between the different documentation organizations, to make it easier to switch between
working on different documents;

3. make it easy to decide where in the tree new documentation should be placed.

In addition, the documentation tree has to accommodate documentation that could be in many different languages
and in many different encodings. It is important that the structure of the documentation tree does not enforce any
particular defaults or cultural preferences.

6.1 The top level, doc/

There are two types of directory under doc/, each with very specific directory names and meanings.

Directory: share/

Meaning: Contains files that are not specific to the various translations and encodings of the documentation.
Contains subdirectories to further categorize the information. For example, the files that comprise the make(1)
infrastructure are in share/mk, while the additional SGML support files (such as the FreeBSD extended DocBook
DTD) are in share/sgml.

Directory: lang.encoding/

Meaning: One directory exists for each available translation and encoding of the documentation, for example
en_US.I508859-1/ and zh_TW.Big5/. The names are long, but by fully specifying the language and encoding we
prevent any future headaches should a translation team want to provide the documentation in the same language but
in more than one encoding. This also completely isolates us from any problems that might be caused by a switch to
Unicode.

6.2 The 1ang.encoding/ directories

These directories contain the documents themselves. The documentation is split into up to three more categories at
this level, indicated by the different directory names.

Directory: articles
Contents: Documentation marked up as a DocBook <article> (or equivalent). Reasonably short, and broken up
into sections. Normally only available as one HTML file.

Directory: books

Contents: Documentation marked up as a DocBook <book> (or equivalent). Book length, and broken up into
chapters. Normally available as both one large HTML file (for people with fast connections, or who want to print it
easily from a browser) and as a collection of linked, smaller files.

Directory: man
Contents: For translations of the system manual pages. This directory will contain one or more mann directories,
corresponding to the sections that have been translated.

63

Chapter 6 Structuring documents under doc/

Not every 1ang.encoding directory will contain all of these directories. It depends on how much translation has
been accomplished by that translation team.

6.3 Document specific information

This section contains specific notes about particular documents managed by the FDP.

6.3.1 The Handbook
The Handbook is written to comply with the FreeBSD DocBook extended DTD.

The Handbook is organized as a DocBook <book>. It is then divided into <part>s, each of which may contain
several <chapter>s. <chapter>s are further subdivided into sections (<sect1>) and subsections (<sect 2>,
<sect3>) and so on.

6.3.1.1 Physical organization

There are a number of files and directories within the handbook directory.

Note: The Handbook’s organization may change over time, and this document may lag in detailing the
organizational changes. If you have any questions about how the Handbook is organized, please contact the
FreeBSD documentation project #iEzw18 (http:/lists.FreeBSD.org/mailman/listinfo/freebsd-doc).

6.3.1.1.1 Makefile

The Makefile defines some variables that affect how the SGML source is converted to other formats, and lists the
various source files that make up the Handbook. It then includes the standard doc.project .mk file, to bring in the
rest of the code that handles converting documents from one format to another.

6.3.1.1.2 book . sgml

This is the top level document in the Handbook. It contains the Handbook’s DOCTYPE declaration, as well as the
elements that describe the Handbook’s structure.

book . sgml uses parameter entities to load in the files with the . ent extension. These files (described later) then
define general entities that are used throughout the rest of the Handbook.

6.3.1.1.3 directory/chapter. sgml

Each chapter in the Handbook is stored in a file called chapter.sgml in a separate directory from the other
chapters. Each directory is named after the value of the id attribute on the <chapter> element.

For example, if one of the chapter files contains:

<chapter id="kernelconfiguration">

</chapter>

64

Chapter 6 Structuring documents under doc/

then it will be called chapter.sgml in the kernelconfiguration directory. In general, the entire contents of the
chapter will be held in this file.

When the HTML version of the Handbook is produced, this will yield kernelconfiguration.html. This is
because of the id value, and is not related to the name of the directory.

In earlier versions of the Handbook the files were stored in the same directory as book . sgml, and named after the
value of the id attribute on the file’s <chapter> element. Moving them into separate directories prepares for future
plans for the Handbook. Specifically, it will soon be possible to include images in each chapter. It makes more sense
for each image to be stored in a directory with the text for the chapter than to try to keep the text for all the chapters,
and all the images, in one large directory. Namespace collisions would be inevitable, and it is easier to work with
several directories with a few files in them than it is to work with one directory that has many files in it.

A brief look will show that there are many directories with individual chapter.sgml files, including
basics/chapter.sgml, introduction/chapter.sgml, and printing/chapter.sgml.

Important: Chapters and/or directories should not be named in a fashion that reflects their ordering within the
Handbook. This ordering might change as the content within the Handbook is reorganized; this sort of
reorganization should not (generally) include the need to rename files (unless entire chapters are being
promoted or demoted within the hierarchy).

Each chapter. sgml file will not be a complete SGML document. In particular, they will not have their own
DOCTYPE lines at the start of the files.

This is unfortunate as it makes it impossible to treat these as generic SGML files and simply convert them to HTML,
RTF, PS, and other formats in the same way the main Handbook is generated. This would force you to rebuild the
Handbook every time you want to see the effect a change has had on just one chapter.

65

Chapter 7 The Documentation Build Process

This chapter’s main purpose is to clearly explain how the documentation build process is organized, and how to
affect modifications to this process.

After you have finished reading this chapter you should:

- Know what you need to build the FDP documentation, in addition to those mentioned in the SGML tools chapter.

- Be able to read and understand the make instructions that are present in each document’s Makefiles, as well as
an overview of the doc.project .mk includes.

- Be able to customize the build process by using make variables and make targets.

7.1 The FreeBSD Documentation Build Toolset

Here are your tools. Use them every way you can.

- The primary build tool you will need is make, but specifically Berkeley Make.

- Package building is handled by FreeBSD’s pkg_create. If you are not using FreeBSD, you will either have to live
without packages, or compile the source yourself.

- gzip is needed to create compressed versions of the document. bzip2 compression and zip archives are also
supported. tar is supported, but package building demands it.

- install is the default method to install the documentation. There are alternatives, however.

Note: It is unlikely you will have any trouble finding these last two, they are mentioned for completeness only.

7.2 Understanding Makefiles in the Documentation tree

There are three main types of Makefiles in the FreeBSD Documentation Project tree.

- Subdirectory Makefiles simply pass commands to those directories below them.
- Documentation Makefiles describe the document(s) that should be produced from this directory.

- Make includes are the glue that perform the document production, and are usually of the form doc . xxx . mk.

7.2.1 Subdirectory Makefiles

These Makefiles usually take the form of:

SUBDIR =articles
SUBDIR+=books

COMPAT_SYMLINK = en

66

Chapter 7 The Documentation Build Process

DOC_PREFIX?= ${.CURDIR}/..
.include "${DOC_PREFIX}/share/mk/doc.project.mk"

In quick summary, the first four non-empty lines define the make variables, SUBDIR, COMPAT_SYMLINK, and
DOC_PREFIX.

The first SUBDIR statement, as well as the COMPAT_SYMLINK statement, shows how to assign a value to a variable,
overriding any previous value.

The second SUBDIR statement shows how a value is appended to the current value of a variable. The SUBDIR
variable is now articles books.

The DOC_PREFIX assignment shows how a value is assigned to the variable, but only if it is not already defined. This
is useful if DOC_PREFIX is not where this Makefile thinks it is - the user can override this and provide the correct
value.

Now what does it all mean? SUBDIR mentions which subdirectories below this one the build process should pass any
work on to.

COMPAT_SYMLINK is specific to compatibility symlinks (amazingly enough) for languages to their official encoding
(doc/en would point to en_US.IS0-8859-1).

DOC_PREFIX is the path to the root of the FreeBSD Document Project tree. This is not always that easy to find, and
is also easily overridden, to allow for flexibility. . CURDIR is a make builtin variable with the path to the current
directory.

The final line includes the FreeBSD Documentation Project’s project-wide make system file doc.project .mk
which is the glue which converts these variables into build instructions.

7.2.2 Documentation Makefiles

These Makefiles set a bunch of make variables that describe how to build the documentation contained in that
directory.

Here is an example:

MAINTAINER=nik@FreeBSD.org
DOC?= book
FORMATS?= html-split html

INSTALL_COMPRESSED?= gz
INSTALL_ONLY_COMPRESSED?=

SGML content
SRCS= book.sgml

DOC_PREFIX?= ${.CURDIR}/../../..
.include "$ (DOC_PREFIX) /share/mk/docproj.docbook.mk"

The MAINTAINER variable is a very important one. This variable provides the ability to claim ownership over a
document in the FreeBSD Documentation Project, whereby you gain the responsibility for maintaining it.

67

Chapter 7 The Documentation Build Process

DOC is the name (sans the . sgml extension) of the main document created by this directory. SrCS lists all the
individual files that make up the document. This should also include important files in which a change should result
in a rebuild.

FORMATS indicates the default formats that should be built for this document. INSTALL_COMPRESSED is the default
list of compression techniques that should be used in the document build. INSTALL_ONLY_COMPRESS, empty by
default, should be non-empty if only compressed documents are desired in the build.

Note: We covered optional variable assignments in the previous section.

The poCc_PREFIX and include statements should be familiar already.

7.3 FreeBSD Documentation Project make includes

This is best explained by inspection of the code. Here are the system include files:

- doc.project .mk is the main project include file, which includes all the following include files, as necessary.
- doc.subdir.mk handles traversing of the document tree during the build and install processes.
- doc.install.mk provides variables that affect ownership and installation of documents.

- doc.docbook .mk is included if DOCFORMAT is docbook and DOC is set.

7.3.1 doc.project.mk
By inspection:

DOCFORMAT?= docbook
MAINTAINER?= doc@FreeBSD.org

PREFIX?= /usr/local
PRI_LANG?= en_US.IS08859-1

.1f defined (DOC)

.1f ${DOCFORMAT} == "docbook"
.include "doc.docbook.mk"
.endif

.endif

.include "doc.subdir.mk"
.include "doc.install.mk"

7.3.1.1 Variables
DOCFORMAT and MAINTAINER are assigned default values, if these are not set by the document make file.

PREFIX is the prefix under which the documentation building tools are installed. For normal package and port
installation, this is /usr/local.

68

Chapter 7 The Documentation Build Process

PRI_LANG should be set to whatever language and encoding is natural amongst users these documents are being built
for. US English is the default.

Note: PrI_1.2NG in N0 way affects what documents can, or even will, be built. Its main use is creating links to
commonly referenced documents into the FreeBSD documentation install root.

7.3.1.2 Conditionals

The .if defined(DOC) line is an example of a make conditional which, like in other programs, defines behavior
if some condition is true or if it is false. defined is a function which returns whether the variable given is defined or
not.

.if ${DOCFORMAT} == "docbook", next, tests whether the DOCFORMAT variable is "docbook", and in this case,
includes doc . docbook .mk

The two . endi £s close the two above conditionals, marking the end of their application.

7.3.2 doc.subdir.mk

This is too long to explain by inspection, you should be able to work it out with the knowledge gained from the
previous chapters, and a little help given here.

7.3.2.1 Variables

- SUBDIRis a list of subdirectories that the build process should go further down into.

- ROOT_SYMLINKS is the name of directories that should be linked to the document install root from their actual
locations, if the current language is the primary language (specified by PRI_LANG).

- COMPAT_SYMLINK is described in the Subdirectory Makefile section.

7.3.2.2 Targets and macros

Dependencies are described by target: dependencyl dependencyz ... tuples, where to build target, you need
to build the given dependencies first.

After that descriptive tuple, instructions on how to build the target may be given, if the conversion process between
the target and its dependencies are not previously defined, or if this particular conversion is not the same as the
default conversion method.

A special dependency . USE defines the equivalent of a macro.

_SUBDIRUSE: .USE

.for entry in ${SUBDIR}

@S{ECHO} "===> S${DIRPRFX}S${entry}"

@(cd ${.CURDIR}/S{entry} && \

$S{MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} DIRPRFX=${DIRPRFX}S{entry}/)
.endfor

69

Chapter 7 The Documentation Build Process

In the above, _SUBDIRUSE is now a macro which will execute the given commands when it is listed as a dependency.

What sets this macro apart from other targets? Basically, it is executed affer the instructions given in the build
procedure it is listed as a dependency to, and it does not adjust . TARGET, which is the variable which contains the
name of the target currently being built.

clean: _SUBDIRUSE
rm —-f ${CLEANFILES}

In the above, clean will use the _SUBDIRUSE macro after it has executed the instruction rm -f ${CLEANFILES}.
In effect, this causes clean to go further and further down the directory tree, deleting built files as it goes down, not
on the way back up.

7.3.2.2.1 Provided targets

- install and package both go down the directory tree calling the real versions of themselves in the
subdirectories (realinstall and realpackage respectively).

- clean removes files created by the build process (and goes down the directory tree too). cleandir does the
same, and also removes the object directory, if any.

7.3.2.3 More on conditionals

- exists is another condition function which returns true if the given file exists.
- empty returns true if the given variable is empty.

- target returns true if the given target does not already exist.

7.3.2.4 Looping constructs in make (.for)

. for provides a way to repeat a set of instructions for each space-separated element in a variable. It does this by
assigning a variable to contain the current element in the list being examined.

_SUBDIRUSE: .USE

.for entry in ${SUBDIR}

@S${ECHO} "===> S${DIRPRFX}S${entry}"

@(cd ${.CURDIR}/S{entry} && \

S{MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} DIRPRFX=${DIRPRFX}S{entry}/)
.endfor

In the above, if SUBDIR is empty, no action is taken; if it has one or more elements, the instructions between . for
and .endfor would repeat for every element, with entry being replaced with the value of the current element.

70

Chapter 8 i##5Website

8.1 FHaI M
SEOCEF47200MB T B EEARMSGML TERET ~ CVS tree ~ FERERZARZM » LINSRZIFH
HEARESM - EHELEDHEHESGML TEER ~ CVS tree HIEE » B3E L ETEL4I100MB S [IEIH o

Note: iR — MR SCHEBUVERT & B2 ports #&RHThR | B ANTERE T A RA Ryl » BREERLSE
Ulpkg_delete(1) 8 ARMFREIR » #2354 % port © BHIAGL - 3 C4EH2jade-1.1 » [HEHA H BT T Z AN
sjade-1.2 » HRES AT T 517 AKEBREE I -

pkg_delete jade-1.1

& > FERXECVS repository © T2 2 /Dwww, doc, ports 18 —HKCVS tree(E AR E II_ECVSROOT) * ;52
BICVSup /T (http://www.FreeBSD.org/doc/zh_TW.Big5/books/handbook/synching. html#CVSUP) L) RE 2 {r]
Hmirror a CVS tree TP 57 CVS tree ©

KT K cvsup collections £ @ www, doc—all, cvs—base L Mports-base ©
R E I L2 FF Z AU 105MB 5[]
T SEEEMICVS tree - B Esrc, doc, www P Kports - B B4 A940MB o

8.2 Build the web pages from scratch

1. e BN Bk E D EHOMB i) - A TIHAEIRZ A # o

mkdir /var/tmp/webbuild
cd /var/tmp/webbuild

2. {RCVS tree [N checkout FHEIAISGML 1& °

cvs -R co www doc

3. YiElwww/en BEk > R1EFTmake(l) a1l RESFEE -

cd en
make all

8.3 AR H] ik d £ X R H

1. WRARE R MR en S1E B &k o sEUHEERE B 8+ -
cd path/www/en
2. #HfTmake(l) install * WHSDESTDIR FHiE A RAEZHNE R Bt -

make DESTDIR=/usr/local/www install

71

Chapter 8 #1&Website
3. WMRIRZETEAAAMERA B B 204 TESHE » WRBEIT NG MR EFBE S0R IR E - L6k
o RIS A BB EFNEERAE - BEFOHFESEMRE=RAREEIHIESR

find /usr/local/www —ctime 3 -printO0 | xargs -0 rm

8.4 IRIZHE

CVSROOT
BAECVS tree HIGIE » WAL HRAF o

CVSROOT=/home/ncvs; export CVSROOT

ENGLISH_ONLY
WIRFEEEREERE > M HEANAZTH > makefiles 45 R G EREM ZEE 0 « AU SIS EE Aty
FR) 5 B A - filan
make ENGLISH ONLY=YES all install

TR R BB S BencLTsH_onny DUNEREFT A B HE I 6 75 R - RE 8 Bencr1se_ony HI{H
RERE BEIAE

make ENGLISH_ONLY="" all install clean

WEB_ONLY

R A R E B A ERIES » makefiles 5 H & Ewww HEERE L ZHEHTML HH © frA{tdoc BERTHY
A2 E A & 1 Z B (Handbook, FAQ, Tutorials) ff 40 :

make WEB_ONLY=YES all install

NOPORTSCVS

WSRER T 5 EBEL > makefiles B ANE1Eports cvs repository HUHAEZE o BUMCZ &1¢ /usr/ports (8
FEPORTSBASE g EME) NIERMESE -
CVSROOT EFRIFEE o RVABEBF B2 EEEdot files (U1 : ~/.profile) H 5% 5 (A ERIF B -

WEB_ONLY * ENGLISH_ONLY MNOPORTSCVS #fs=makefile B o /R LATE /etc/make.conf > Makefile.inc

FECEIE LB - (RIERLR AR A A7 & 5B (E A dot files AGBUE IR BB —AK -

72

Chapter 9 FIFERHYH HRH&E

REEHEEFreeBSD S AF (B & : FAQ, Handbook, tutorials, manual pages35)) &R E(FAQ) °
AR F2E Ll FreeBSD 15 SCRIFEE T B HOBIEFAQ AT A HY » JRIAHFH & A Frank Griinder

<elwood@mc5sys.in-berlin.de> * i fIBernd Warken <bwarken@mayn.de> FIRNEEME|TE AR ©

The FAQ is maintained by the Documentation Engineering Team <doceng@FreeBSD.org>.

1. FAQ FJ B AY2&?

FE 2ok i N\ 22 Eifreebsd-doc #IEAmIE o T H A B4 FreeBSD U H-BIFR A& TERE S A - FMAEE
{3 FAQ BB W] BE Fyim Lo 2 LB R H 1R AL R B AR R -

2.i18n Fi110n 2 /EEIR ?

i18n ~Einternationalization FfE & » TM110n Bl Zlocalization FIfHES - B EE TEEFEMHANEE -

18n FLAFIER 7 REAI18 T &IEHE " o FE - 1on AIZFEA 17 REA10EHTE - &
&# "n” -

3. B H 453 E 2 HET iR mailing list F5 ?

B > NRIFGEZREREE S 85 BB mailing lists © B EE1 858
(http://www.freebsd.org/docproj/translations.html) & 71| H & Bz 5 T 2 A0z A mailing lists X FHRAAEVY ©
4. TEE L N—HESEFNE 2

HIRE - i NS EEENE - IV EREES R BN ST - TT H I SOOI A IR ~ FEHTHVEE - SEIEEMCH AT LA
TR [F] P HE -

P—ERREEREEE - TS EEED -

5. HERIPLEF AR ?
B L o PRSI SSCER AV T ERIE - SRR S LA ERER A -
P A REEEH o HANSE > 7 LUBFEYET X (Spanish) AIFAQ B A (5 1 I 3 (Hungarian) °

6. FZERE MR LERE SR AIE 2

TREUERTE H O Hes B T FreeBSD CVS repository O r(Z /34 » B LU CTM B CVSup &1 A]
L o Handbook F A" H# ~ F#iFreeBSD" —E [N H 12| An{a] {5 H S LR, -

A » FEAECVS A% o it —2K » AR LB A RIRCA Z A= R R -

[XXX To Do(¥ AKHER » A7) - Bn - F A (tutorial) R/ ME WA LLCVSup BUF LHHEE 5 » IREER
RIRAZ FIRIZEEE © |

73

Chapter 9 BIFENFLT7% 52 [FE

7. BUSTEL HGR A s B IR B — RO ©

AEETEIRIEIEE (http://www.FreeBSD.org/docproj/translations.html) 8%/ T H B B SIS B4 iR » WWRE
K H AW HERIR— AR TR » B A EERIRBR AT - B EE B =GR 77 7] LA
H e

& _EHENEARS| AR EEEE R ENRE - SR A N BRI ERR LB EAHE » HRERL % (5 £ FreeBSD

documentation project ¥ E5w1E (http:/lists. FreeBSD.org/mailman/listinfo/freebsd-doc) M ©

8. AR N BT EARE S - 22 BB ?
WREM - (REEFEE L “FreeBSD #9475 A EIEA " AR ZBE » BOm LA -

HOEUE - ARG H ZEREIRRE - EARAE—EAERITC » it > HEERRRRA A - B4
FRE S B ATHY S LB RS L TR 2 RIS T 7E

2 {5 % FreeBSD documentation project #iE#IE (http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc) [F] KK E.
AIRIE R R - SRR SCIFRT BRI pi & R

HIRHIBI R S48 A& FreeBSD Hmirror(MLER) ARFHIES - ALEBL/CER (MR - SERART /7275 7 L Al
DIVA S H 2 RRBOHBI R BT &R > DU AT LU 1R Hemail TRETE mailing list ARES ©

SRR > WiBAIRERI SO - —FAIGENRRAR I - LR IEEERI SR & A 5 S — — R R FAQ M » 5
AT b 2 SRR SCE

9. DRI — U T - 2 EIW0E ?

EEERINE < HIREEREERAMIEEIRER A - BE) - MEF 8 S ARREAIR E R T E
[ELEREUE S EMMIME EEAR -

R R A MR AR B B RS WARSEAUR IR 4G FreeBSD A1) » ANEIRILERZIE
H OB AR T 45 FreeBSD 21 & o GHETHE T {ERE)

10. FRRZAE RO —EREE - 2 EECHEARTHER ?

BE
F M RERERK - 2 BETR IR B BRERR A £ ?

BT o MR IRAREE AR AR IR B MG IR LR TR TR SRR A T DL
IEERRRE RN

B HI » FreeBSD X HFHSEFE R EEHIdoc/ EERA © TEZ B 8k FAYHIKESE R R M a4 a0 » 1K
HRISO639 XEF(/usr/share/misc/is0639 HiE {EHFreeBSD i 7R E,1999/01/20 5T °

EHIREREFEATREE A RSB TREE « 730 EREZ TR N EER » ARIRTE R R4S =4l

4o

1% » (RIEZE TSR ST ©
SEAFI AR, > BETE R B S (Swedish) IRAVENEE » INEEZ GRS ¢

doc/

74

Chapter 9 BIFENFI 75 52 [T

sv_SE.IS08859-1/
Makefile
books/
faq/
Makefile
book.sgml

sv_SE.1508859-1 sAKME 2R (1ang) . 4ifiE (encoding) WA IRESR - 5BIEE HTEW
ffMakefiles t& » EMZERAREEL o
R1% 55 Ftar(1) Bgzip(1) ZRIE VR AENE SO BEAEAE AR » A FF B ARFEIK -

% cd doc
% tar cf swedish-docs.tar sv_SE.IS08859-1

% gzip -9 swedish-docs.tar

¥ » fswedish-docs.tar.gz WEIMEZM L » FIRRA B CHEZMAIEEASPAERR) - A0 LIaZ

1825 2| Documentation Engineering Team <doceng@FreeBSD.org> o

®A 0 AL Msend-pr(l) UEFGBRIAR ; IREEF HBRECHT - 2F - HEAIELRE - #EFF
O35 - BIERRMMERAT - BlRE A BRI A E TS -

mi% » B8 AN(TEERE R EIAE » 5i2Documentation Engineering Team <doceng@FreeBSD.org> i &)

FRBIIRAERIER S - WHER & A IEF MW o BLoh - IR IR T8

1. RAOHE RIE 5 EH FARCS tag (72 "ID" Z JEK)) ?

2. sv_sE.1508859-1 75 Al LUEFImake all SRi20E ?

3. make install =GR A LM ?
A FRERES > TP ERRBE ST IR » R LB R R vT DUERE(E A -
1R MRS - AN SR R E /R EIEE AU R commit JEE T o

11, A DI FERE AR B B XA R P 2 B A 2 A 2
HFIRENZEEM

BHIAH > B IR EHEFTEHandbook BHFE A ¥R » I 7 BB 1T HR B % & B2 0 I /R Bl3Z A Handbook §83C
ARA

HAVEA ARSI E - R AN EE L B RUR B4 SRR 2 (B2 T8I0 ~ UL S ~ H3CE..) B
AT BE AR SRR » & A8 B FreeBSD MHEAZE M © LA » 1B B AT AR T T FreeBSD HYFT R » RFAML
FORISERII G Rs e S

EINEREBEABRIERL - F(fsend-pr(1) Y B4 F R Handbook DAIYEREET - AR1R B SESTRRAE AT T
77 BB IR ZRIEER Handbook ME o

TR Y

75

Chapter 9 BIFENFLT7% 52 [FE

12. ZEBHEZEE AR N F TR E LR AR ?

S FTA HIFEASCII(Non-ASCID) F7T » #FZ (% FISGML entities 4 BERIEZ

fEAE » RAE PG R & fF9%(&) » AR ZZentity £ R » RIEE E7I8C)
15 Llentity 44 FEETEISO8879 FrilETHY » Mport tree NAITEtextproc/is08879 e
DA — L0 45l

Entity:&ﬁ: é

BB R T ¢

&8 /N “e” o AR ~ E H (acute accent)

Entity#4 #8: É
EEET:E

&8 K “E” o WAL ~ EHE (acute accent)

Entity4% i: ü
EEE T
/N “0” o W HEEEAPHEEE K (umlaut)

TE4E T 1508879 1E flport Z1% » BRI LATE /usr/local/share/sgml/iso8879 #HE|iE LEF RS 5 o

13, {0 TRERFRETE ?
FESETCAET EEARLL “you” AUV » T LA LA E VAR E S AORER -

A IRFTERIRIRE B AT LUR BELEE R - A0S A EE A TE — IR B S LT R A IR IIE © 20 RA 5 1 A
PRIR RS » ARFEERR 2R P PR AR AR

14. BFRRCR A ZNEM £ — S H AR ?

BHERERIEE - BE AR THAAZ
<!1--

The FreeBSD Documentation Project

SFreeBSD: doc/en_US.IS08859-1/books/fdp-primer/translations/chapter.sgml,v 1.5 2000/07/07 18:38
-—>

B AR BERE ANFE o HED ETRER S M _LS$FreeBSDS 8 —1TLA KX The FreeBSD Documentation
Project B4 ° fAIFE : $FreeBSD BHHEAIEIT & HCVS FEZEF IR EE T BB ki) - FTLL » FriERAEE
IR R E A E S sFreeBsns BIIF T) ©

B mh » N/EHET S $FreeBSD$ 35717 ¢ i Hi¥FreeBSD Documentation Project BT A The

FreeBSD #fH#J#%% Documentation Project ©
IAh 5 JRAAZENN B AT AR AR ENRERY » B RS2 DATE SRR R BT — R 75 B A B ORI -
IR » PHBESF SRR (Spanish) HIFE S BHEEERZ & R BOE R

<I-=
The FreeBSD Spanish Documentation Project

76

Chapter 9 BIFENFI 75 52 [T

SFreeBSD: doc/es_ES.IS08859-1/books/fdp-primer/translations/chapter.sgml,v 1.3 1999/06/24 19:12
Original revision: 1.11
-—>

77

Chapter 10 3 {4 Hy1R %S A%

HiAFreeBSD /& R Z VB FrdEiBm » 2 TIRFFEERMEHI— B » JAEhE R8O ek S EH
IJ ’ nﬁ%{iuafﬁ‘gl%—f

{5 i S HEEE
@—f?E%ﬁ@iﬁﬁ@%ﬁ%gﬁ%%lﬂ%ﬁﬁi o JBEIHFFEARANEN E%Eﬁéﬁﬁaﬂ'%—tﬁ‘%éuﬁﬁi T%% :
M “color” s TIE “colour” ° FEILH “rationalize” - TIE “rationalise” ZEZEFHLIFE

Note: 5 SCE R e UHER R AT LI SZ - (MR &R SCEAR IR A R —PHEAAT » T SO ARGy - B2
&~ HH ~ manual SLIHSERILER SE UGS -

NEREE

#HNEl 5 (contraction) © FEESUAG SEREFIF R HIZE o [N @ “Don’t use contractions” 5 A)H A £l il
TFREREERCEETNERE - BERAIL—RFEA) B DERGE - 3 & R -

1EA#(F Fserial comma L\ JZ 1552

SECCBEEE EIEYO R AP BB SR A RIERE - i BEERE—EELIHIRER - o
FiESSEE - “and” o BB EREMIEE

BEGT - BFE THEHEA :

This is a list of one, two and three items.

FEE—MEEEE ZMEEE(“one” ~ “two” ~ “three” IR ? 52 HAMIEIE

B(“one” ~ “two and three”)JE ?

R R 21 7 70 Llserial comma B AR » A BEIEMERIZER

This is a list of one, two, and three items.

SR - RS T BEHEEROR I ECRTESR(~) dEH "and” BIEMD ATRETONEY > LIREEETE
EX

(5 B R
B A B 5 (B A7 (redundant phrase) » JLHEZ “EEIES” ~ "EEERT - “man 1527 EHEE
HHR L EE -
LA 4 (command) 77 T 2851 » PHEL 22 BT RO IR 28 — AR+

M cvsup 1B AEHEIRAS

i evsup ACEHFEIATS ©
PAMEZE (filename) 75 IR (1] » HUEQZ BRI FIVE R S —AIRIHIF

78

Chapter 10 X fFHTEEE JE 15

EET/etc/rc.local 1‘%% ..

E/etc/rc.local 1‘%

U\man(manual)ﬁﬁ%fﬁﬂ ’ ttiﬁ%%ﬁ@/‘zﬁ/jﬂ‘%%:/mj(ﬁﬁHQJSGML <citerefentry> E%) :

#HfIman csh 184 DI BIFEIEAH

F1ERE 2 Besh(1) °

FaREMNEmEZES
B THENEEHHE » LU EEmacs ZHEN T EAZER @ FES 2B REMEMEZA -

N BEROREAERE T A —EFRE— TR AT - THRETELE
HEAEHRR - B& “Jordan K. Hubbard” EAZBARFHIFIRE : AIRREEREH » REERE
n > SRTIE €I R W EBLE) T o

B RS AOAR B AR ER » P 2B William Strunk FTE FElements of Style (http://www.bartleby.com/141/) °

10.1 Style guide
Hi*Handbook & HIZR ZAEE s » & T RFRIEEMSH— B - FFlsr NSRRI -

10.1.1 X/NE
Tag HOEBAERE F/ NS T8 » BHIE F <para> * I <PARA> °

TISGML AR R RKBFREFET » (82 | <IENTITY...> M<!DOCTYPE...>’ P& <lentity...>
&<!doctype. >0

10.1.2 #F B F

4855 F (acronym)iE 5 7E F 1 —IRIR B » L/ERIRES H SEEEPHE > HLan © "Network Time Protocol
(NTP)" - EBMEHT 212 » Bz EE R FRZES F(MIEE AR » BRIEFACEHA R E g REE
BOREZRT JHEBAEAGE—IERER > Ay AR - (AEEEED A UAEGES — KRS
fF N 51) H SE AR o

A o Rl —HER FAERT =R (£ AR » ZE (% H <acronym> 158 » WITE BRI Ero1e BIEAMGET o ANtk
— R E R - I HERBBEZERT LR g BR e % -

10.1.3 %54k
T R RNEHE B BT > AR R —BH G H4EHE (indentation) ZF 2180 4L 5B 1G

79

Chapter 10 X HHTHER I 1%

RIFEWIEER G DAL W2 5 A nAsE - 45 R RO = B 2R e R - 5 28 (A= 13 » AllLltab
HURZ ©) - fEtab BIEAEHAZ A - BAREBITREN EZA © Bfag BIASCE BB —1THES -
S T 2R 2 M 18 = B DA HE -

BE G T - EEATHEIEAEE TEER

+-—— Jd@iE 0 5

\%

<chapter>
<title>...</title>

<sectl>
<title>...</title>

<sect2>
<title>#iHi</title>

<para><emphasis>#ifi</emphasis> HZAEHENE A
AR BHIRIAEHE (indentation) #ERE o AFIBALR © </para>

</sect2>
</sectl>
</chapter>

& I Emacs E{XEmacs FRHER » HEE HBE A sgml-mode B - REWLE 52 H B EERR 177
HUERERUE ©
Vim % 0T DU T 5 30E AR

augroup sgmledit
autocmd FileType sgml set formatoptions=cq2l " FFikfEEIE

autocmd FileType sgml set textwidth=70 " TE 70 4EFERRNE BT
autocmd FileType sgml set shiftwidth=2 v HEAEHE 2 A= H

autocmd FileType sgml set softtabstop=2 " % Tab & HEE AW E S H4AEHE
autocmd FileType sgml set tabstop=8 " s AT HEA tab

autocmd FileType sgml set autoindent " HEh4EHE

augroup END

10.1.4 Tag /A%

10.1.4.1 Tag =17
[Fl—MEHEE AR IR B DL S — AT RS » TS RIAEHEE R AL - i -

<article>
<articleinfo>
<title>NIS</title>
<pubdate>October 1999</pubdate>

<abstract>

80

Chapter 10 X fFHTEEE JE 15

<para>...

...</para>
</abstract>
</articleinfo>

<sectl>
<title>...</title>

<para>...</para>
</sectl>

<sectl>
<title>...</title>

<para>...</para>
</sectl>
</article>
10.1.4.2 BRI 1T

g Rcitenizedlist> WENERFE LASFEEMTFER » WEABHEMERIRRNT « IS
B BT -

A BRe<para> R <term> BERVERIAAF R MIRE - BUAIM LT8R 3 BAEFSIRE /A
—77 MBI SZENE B AT -

B 0 SRR R R A -
i+ % bR A > SRR -

HEHESNREZ LE EERNE - IR EmARRS N RE - REEENEE - UEF
BEE A

T 58 — SRR EAR R I - 7T LB SE — SIS R 08 R E R —17

10.1.5 & HHYH K
fEcommit 1EHU » 28R4 1520 Z5HGARE + t—E B L HERS =L o

At —2 » &2 Handbook HlI5EBIPK A BERE S HAREC T RS A - A B OB FHEZ TR - 2l
A EHTENTES -

HEFEE - BEELEM EMECT » A —REZBE TS E 8 180 467 - ERFEE SEcommmit £
Mo BEE > HEMBRTENTAT - REERcommit 7 © T4 X Hcommit 408% » s5RHRESLIAE R
s&whitespace-only ((EEX = B E.) BIFE RN » At —2K - BIEEERKHL AT LLZBS 2 — Kcommit T ©

10.1.6 Nonbreaking space

ARG — LU DL T HIBNT © & AR BABRRY ~ SR/AE HRER R — AT - BTHR LS REATBIE LA
REITA FrANE o JCH 7 R =8I B & R EHTML R g A BR BE DL T H SN T AR HEETE

81

Chapter 10 X fFHTEEE JE 15

Data capacity ranges from 40 MB to 15
GB. Hardware compression ...

FEfH Fanosp; DUBESRFEA)F 2 fIRVETAT » LUN 7~ &0 40117 f# F nonbreaking spaces :

- HEECTEEA M
57600 bps

- FERER LRGSR A -
FreeBSD 4.7

- multiword 2 [E({F FHIRFEE /N0 » 152 “The FreeBSD Brazilian Portuguese Documentation Project” iE4HFH =

BT Al iRy » BRI @) -

Sun Microsystems

10.2 &A%
LLF A FreeBSD M AFET S 4aHERE ik AR/ NGRR3R o H AR B AIFRE » i 20’ Reilly word list

(http://www.oreilly.com/oreilly/author/stylesheet.html) °

- 22X

- 4 X-STABLE

- CD-ROM

- DoS (Denial of Service)
- Ports Collection
- IPsec

- Internet

- MHz

- Soft Updates

- Unix

- disk label

- email

- file system

- manual page

- mail server

- name server

- null-modem

- web server

82

Chapter 11 Using sgml-mode with Emacs

Recent versions of Emacs or XEmacs (available from the ports collection) contain a very useful package called
PSGML. Automatically invoked when a file with the . sgm1 extension is loaded, or by typing M-x sgml-mode, it is
a major mode for dealing with SGML files, elements and attributes.

An understanding of some of the commands provided by this mode can make working with SGML documents such
as the Handbook much easier.

C-c

C-e

Runs sgml-insert-element. You will be prompted for the name of the element to insert at the current point.
You can use the TAB key to complete the element. Elements that are not valid at the current point will be
disallowed.

The start and end tags for the element will be inserted. If the element contains other, mandatory, elements then
these will be inserted as well.

Runs sgml-change-element—-name. Place the point within an element and run this command. You will be
prompted for the name of the element to change to. Both the start and end tags of the current element will be
changed to the new element.

C-r

Runs sgml-tag-region. Select some text (move to start of text, C-space, move to end of text, C-space) and
then run this command. You will be prompted for the element to use. This element will then be inserted
immediately before and after your marked region.

Runs sgml-untag-element. Place the point within the start or end tag of an element you want to remove, and
run this command. The element’s start and end tags will be removed.

C-qg

Runs sgml-fill-element. Will recursively fill (i.e., reformat) content from the current element in. The filling
will affect content in which whitespace is significant, such as within <programlisting> elements, so run this
command with care.

C-a

Runs sgml-edit-attributes. Opens a second buffer containing a list of all the attributes for the closest
enclosing element, and their current values. Use TAB to navigate between attributes, C—k to remove an existing
value and replace it with a new one, C-c C-c to close this buffer and return to the main document.

C-v

Runs sgml-validate. Prompts you to save the current document (if necessary) and then runs an SGML
validator. The output from the validator is captured into a new buffer, and you can then navigate from one
troublespot to the next, fixing markup errors as you go.

83

Chapter 11 Using sgml-mode with Emacs

C-c /
Runs sgml-insert-end-tag. Inserts the end tag for the current open element.
Doubtless there are other useful functions of this mode, but those are the ones I use most often.

You can also use the following entries in . emacs to set proper spacing, indentation, and column width for working
with the Documentation Project.

(defun local-sgml-mode-hook
(setg fill-column 70
indent-tabs-mode nil
next-line-add-newlines nil
standard-indent 4
sgml-indent-data t)
(auto—-fill-mode t)
(setqg sgml-catalog-files ’ ("/usr/local/share/sgml/catalog")))
(add-hook ’psgml-mode-hook
" (lambda () (local-psgml-mode—-hook)))

84

Chapter 12 fi 1172 &

This document is deliberately not an exhaustive discussion of SGML, the DTDs listed, and the FreeBSD
Documentation Project. For more information about these, you are encouraged to see the following web sites.

12.1 The FreeBSD Documentation Project

- The FreeBSD Documentation Project web pages (http://www.FreeBSD.org/docproj/index.html)
- The FreeBSD Handbook (http://www.FreeBSD.org/doc/zh_TW.Big5/books/handbook/index.html)

12.2 SGML

- The SGML/XML web page (http://www.oasis-open.org/cover/), a comprehensive SGML resource
- Gentle introduction to SGML (http://etext.virginia.edu/bin/tei-tocs ?div=DIV 1 &id=SG)

12.3 HTML

- The World Wide Web Consortium (http://www.w3.org/)
- The HTML 4.0 specification (http://www.w3.org/TR/REC-html140/)

12.4 DocBook

- The DocBook Technical Committee (http://www.oasis-open.org/docbook/), maintainers of the DocBook DTD
- DocBook: The Definitive Guide (http://www.docbook.org/), the online documentation for the DocBook DTD.

- The DocBook Open Repository (http://docbook.sourceforge.net/) contains DSSSL stylesheets and other resources
for people using DocBook.

12.5 The Linux Documentation Project

- The Linux Documentation Project web pages (http://www.linuxdoc.org/)

85

Appendix A. i

AP Stk —LESGML AR F » LUK A AR SUROMIBR SR < B ERh R U FRt B T A BREE - A8
LT DL R N A A o

B L] N R AR — — MR EAR IR AT BRI T i » TEAR IR SCIFRI T E(EXCETIE | - B FE AR
HF7F > B#S%) HEF 2% H LDocBook 1RaLaH & IFHIES - AR LUZHBCSup ~ CVSup A2 A Ndoc
tree #F07 » NSRS BN SO HUSGML AR © B » AT LI L3
Ehttp://www.FreeBSD.org/cgi/cvsweb.cgi/doc/

By TR AL EROEE o 3 L) T ER A AZ#EA DocBook 4.1 DTD 1 3EFreeBSD Z84/MADTD o [H]HF i H7
FHNorm Walsh AR ZUF (stylesheets) * 1M IEFreeBSD X FEHEIH BITHCEAIE R o Z£—M (¥ FiDocBook
HIFF o BT R LIRS » A G &R NE#E -

A.1 DocBook <book>

Example A-1. DocBook <book>

<!DOCTYPE book PUBLIC "-//0OASIS//DTD DocBook V4.1//EN">

<book>
<bookinfo>
<title>ERAFMMFIF</title>

<author>
<firstname>%4 (first name)</firstname>
<surname>f (surname) </surname>
<affiliation>
<address><email>foo@example.com</email></address>
</affiliation>
</author>

<copyright>
<year>2000</year>
<holder>tHERIEF < /holder>
</copyright>

<abstract>
<para>ikii A INE » BUBAEES © </para>
</abstract>
</bookinfo>

<preface>
<title>FE</title>

<para>iZHAAITE * BUHEES ° </para>
</preface>

<chapter>
<title>® ~FE</title>

86

Appendix A. 1]

<para>iE B AHENE —H - </para>

<sectl>
<title>®—Hi</title>

<para>EAHFNHE—H o </para>
</sectl>
</chapter>
</book>

A.2 DocBook <article>

Example A-2. DocBook <article>

<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook V4.1//EN">

<article>
<articleinfo>
<title>VEBEAR</title>

<author>
<firstname>4% (first name)</firstname>
<surname>f (surname) </surname>
<affiliation>
<address><email>foolexample.com</email></address>
</affiliation>
</author>

<copyright>
<year>2000</year>
<holder>HMBMEF </ holder>
</copyright>

<abstract>
<para>iZ LELAAWHE SUETEES ° </para>
</abstract>
</articleinfo>

<sectl>
<title>®—fi</title>

<para>§§){ﬁﬂ’\j¥*ﬁﬁ ° </para>

<sect2>
<title>§§‘*d\ﬁﬁ(sub—section)</title>

<para>#% L EAFE— il (sub-section) </para>

</sect2>
</sectl>

87

Appendix A. 1]

</article>

A.3 Producing formatted output

B BETR - B DR $textproc/docpro’ EHIFT 4K 8RS » M EME Mport 7\ ZEHET
B o AD o B AT R AVEREB R LA /usr /1ocal/ THIFHER » I BT RAVMEBIEITHE » A AR
fupaTn ERBTEBINR HEk » WA LEAEE » FIRIRE R SIERIE T AR AR -

A.3.1 ff flJade

Example A-3. ##iDocBook ZHTML (5)

% jade -V nochunks \ ©
—-c /usr/local/share/sgml/docbook/dsssl/modular/catalog \ &
-c /usr/local/share/sgml/docbook/catalog \
—-c /usr/local/share/sgml/jade/catalog \
-d /usr/local/share/sgml/docbook/dsssl/modular/html/docbook.dsl \©
-t sgml @ file.sgml > file.html ©

© Specifies the nochunks parameter to the stylesheets, forcing all output to be written to STDOUT (using Norm
Walsh’s stylesheets).

® Specifies the catalogs that Jade will need to process. Three catalogs are required. The first is a catalog that
contains information about the DSSSL stylesheets. The second contains information about the DocBook DTD.
The third contains information specific to Jade.

© Specifies the full path to the DSSSL stylesheet that Jade will use when processing the document.

O Instructs Jade to perform a fransformation from one DTD to another. In this case, the input is being transformed
from the DocBook DTD to the HTML DTD.

© Specifies the file that Jade should process, and redirects output to the specified . htm1 file.

Example A-4. i #iDocBook AHTML (FE i)

% jade \
-c /usr/local/share/sgml/docbook/dsssl/modular/catalog \ O
-c /usr/local/share/sgml/docbook/catalog \
-c /usr/local/share/sgml/jade/catalog \
-d /usr/local/share/sgml/docbook/dsssl/modular/html/docbook.dsl \®
-t sgml ©® file.sgml O

© Specifies the catalogs that Jade will need to process. Three catalogs are required. The first is a catalog that
contains information about the DSSSL stylesheets. The second contains information about the DocBook DTD.
The third contains information specific to Jade.

® Specifies the full path to the DSSSL stylesheet that Jade will use when processing the document.

© Instructs Jade to perform a transformation from one DTD to another. In this case, the input is being transformed
from the DocBook DTD to the HTML DTD.

88

Appendix A. 1]
® Specifies the file that Jade should process. The stylesheets determine how the individual HTML files will be
named, and the name of the “root” file (i.e., the one that contains the start of the document.

This example may still only generate one HTML file, depending on the structure of the document you are processing,
and the stylesheet’s rules for splitting output.

Example A-5. i #iDocBook £sPostscript(PS) #& 2

The source SGML file must be converted to a TgX file.

% jade -Vtex-backend \ O
-c /usr/local/share/sgml/docbook/dsssl/modular/catalog \ @
—-c /usr/local/share/sgml/docbook/catalog \
-c /usr/local/share/sgml/jade/catalog \
-d /usr/local/share/sgml/docbook/dsssl/modular/print/docbook.dsl \©
-t tex O file.sgml

© Customizes the stylesheets to use various options specific to producing output for TgX.

® Specifies the catalogs that Jade will need to process. Three catalogs are required. The first is a catalog that
contains information about the DSSSL stylesheets. The second contains information about the DocBook DTD.
The third contains information specific to Jade.

©® Specifies the full path to the DSSSL stylesheet that Jade will use when processing the document.
© Instructs Jade to convert the output to TgX.

The generated . tex file must now be run through tex, specifying the & jadetex macro package.

% tex "&jadetex" file.tex

You have to run tex at least three times. The first run processes the document, and determines areas of the document
which are referenced from other parts of the document, for use in indexing, and so on.

Do not be alarmed if you see warning messages such as LaTeX Warning: Reference ‘136’ on page 5
undefined on input line 728. at this point.

The second run reprocesses the document now that certain pieces of information are known (such as the document’s
page length). This allows index entries and other cross-references to be fixed up.

The third pass performs any final cleanup necessary.
The output from this stage will be file.dvi.

Finally, run dvips to convert the . dvi file to Postscript.

% dvips -o file.ps file.dvi

Example A-6. i #iDocBook £ PDF # %

The first part of this process is identical to that when converting DocBook to Postscript, using the same jade
command line (Example A-5).

When the . tex file has been generated you run pdfTeX. However, use the &pdfjadetex macro package instead.
% pdftex "&pdfjadetex" file.tex

Again, run this command three times.

89

Appendix A. 1]

This will generate rile.pdf, which does not need to be processed any further.

90

