reference-titlechicken-setup reference reference-pglb8 reference-sntSection 7.6

CHICKEN

A practical and portable Scheme system
User’s Manual
Version 1, Build 89

Felix L. Winkelmann

Copyright (©) 2000-2004, Felix L. Winkelmann All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

e Neither the name of the author nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES LOSS OF USE, DATA, OR PROFITS OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

1 Introduction............................... 2
2 Basic mode of operation.................... 3
3 Using the compiler......................... 4
3.1 Command line format 4

3.2 Runtime options 10

3.3 Anexample....... ... 11

3.4 Extending the compiler............. 13

3.5 Distributing compiled C files......................... ... 14

4 Using the interpreter 16
4.1 Command line format 16

4.2 Writing Scheme scripts ... 17

4.3 Toplevel commands 18

4.4 Macros and procedures implemented in the interpreter 19

5 Supported language....................... 22
5.1 Deviations from the standard 22

5.2 Extensions to the standard.............................. 23

5.3 Non standard read syntax................ 25

5.4 Non-standard macros and special forms.................. 26

5.4.1 Making extra libraries and extensions available. .. 26

5.4.2 Binding forms for optional arguments 27

5.4.3 Other binding forms 28

5.4.4 Substitution forms and macros.................. 30

5.4.5 Conditional forms 31

5.4.6 Record structures................ 31

5.4.7 Other forms............ 32

5.5 Declarations i 33

5.6 Parameters.............. ... 36

5.7 Unit library...... ..o 38

5.7.1 Arithmetic.............. 38

5.7.2 File Input/Output 40

B3 Files. . 41

B5.7.4 String ports. ... 41

5.7.5 Feature identifiers 42

576 Keywords...... ... 42

5.7.7 Exceptions......... ... 43

5.7.8 Environment information and system interface ... 45

5.7.9 Executiontime................................ 47

5.7.10 Interrupts and error-handling.................. 47

5.7.11 Garbage collection............................ 48
5.7.12 Other control structures....................... 49
5.7.13 String utilities............... 49
5.7.14 Generating uninterned symbols 49
5.7.15 Standard Input/Output....................... 49
5.7.16 User-defined named characters................. 50
BTAT Vectors . ..o 50
5.7.18 The unspecified value 50
5.719 call/ce.. ..o 51
5.8 Unitevalo 51
5.8.1 Loadingcode..............c i, 51
5.8.2 Read-eval-print loop 52
5.8.3 MacCros . ..o 52
5.8.4 Loading extension libraries 53
5.8.5 Reader extensions 54
5.8.6 Eval..... ... 55
5.9 Unit exXtraso 55
B.9.1 LiStS. oot 55
5.9.2 String-port extensions.......................... 56
5.9.3 Formatted output 57
5.9.4 Hashtables........... 57
5.95 QUEUESo 59
5.9.6 Sortingii 60
5.9.7 Random numbers.................., 60
5.9.8 Input/Output extensions....................... 60
5.9.9 SErings. ... 62
5.9.10 Combinatorscoeiriiineinnennn... 64
5.9.11 Binary searching.............................. 65
510 Unit srfi-1 ... 65
511 Unit Srfi-d ..o 65
512 Unit srfi-13 ... oo 66
5.13 Unit srfi-14o 67
5.14 Unit srfi-25o 67
5.15 Unit match ... 67
5.16 UnNit T€ZeX .. vttt e e e 68
5.17 Unit syntax-case ...t 70
5.18 Unit srfi-18o 72
5.19 Unit format........... 72
5.20 Unit POSIX ..o e ettt e e e 73
5.20.1 Directories ... 73
5.20.2 Pipes. ... 74
5.20.3 Fifos ... 75
5.20.4 File descriptors and low-level I/O.............. 76
5.20.5 Retrieving file attributes 78
5.20.6 Changing file attributes....................... 78
5.20.7 Processesuiiiii 78
5.20.8 Symbolic links............ L 80

5.20.9 Permissions, owners, users and groups.......... 80

ii

5.20.10 Record locking 82
5.20.11 Signal handling.............................. 83
5.20.12 Environment access..................... ... 84
5.20.13 Memory mapped I/O 84
5.20.14 Timeroutines................iviiiiio... 85
5.20.15 Raw exit...........ooiiii 86
5.20.16 ERRNO wvalues.............................. 86
5.20.17 Finding files. 87
5.20.18 Getting the hostname and system information.. 87
5.20.19 Setting a files buffering mode 88
5.20.20 Terminal ports 88
5.20.21 How Scheme procedures relate to UNIX C
functions 88
5.20.22 Windows specific notes....................... 92
521 Unitutils. ... 93
5.21.1 Pathname operations 93
5.21.2 Temporary files.............. 94
5.21.3 Deleting a file without signalling an error. 94
5.21.4 Tterating over input lines and files.............. 94
5.21.5 Executing shell commands with formatstring and
error checking 95
5.21.6 Reading a file’s contents....................... 95
5.21.7 Miscellaneous handy things.................... 95
D.22 UnNib 6CP . v ottt 95
5.23 Unit Srfi-87 ..o 97
5.24 Unit lolevel 98
5.24.1 Foreign pointers........... 98
5.24.2 Tagged pointersiiiiiiin... 101
5.24.3 Extending procedures with data 101
5.24.4 Bytevectors............... i 102
5.24.5 Data in unmanaged memory 104
5.24.6 Locativescooiiiiiiii 105
5.24.7 Accessing toplevel variables 106
5.24.8 Low-level data access 106
5.24.9 Procedure-call- and variable reference hooks ... 108
5.24.10 MagiC ..o 108
5.25 Unit tinyclos. ... 108
5.25.1 Defining forms 109
5.25.2 Baselanguage................ 110
5.25.3 Introspection.................... 110
5.25.4 Intercessory protocol......................... 111
5.25.5 Additional protocol................ 112
5.25.6 Utility procedures 113
5.25.7 Builtinclasses.......... 113

iii

6 Interface to external functions and variables

....................................... 117
6.1 Accessing external objects L 117
6.2 Foreign type specifiers............ ... L. 119
6.3 Entrypoints........ 123
6.4 Callbacks.o 129
6.0 Locations......... ... 131
6.6 Other support procedures....................cco... 132
6.7 The Fasy Foreign Function Interface.................... 132
6.71 #> ... <#Syntax............... 134
6.7.2 General operation 135
6.7.3 Pseudo declarations................ 137
6.7.4 Grammareueeiiineriiinaa.. 141
6.7 Cnotes.o 146
6.76 CH+notes.o, 146
6.7.7 Using the builtin parser....................... 146
6.7.8 Specification grammar 147
6.8 Cinterface i 149
7 <chicken-setup................. . L., 154
7.1 Extension libraries 154
7.2 Installing extensions............... ... i 154
7.3 Creating extensions 154
7.4 Procedures and macros available in setup scripts......... 154
7.5 Examples for extensions 155
7.6 chicken-setup reference 158
7.7 Windows notes.o, 159
8 Additional files.......................... 160
8.1 chicken-highlevel-macros.sClm..........c..oveuunnn... 160
8.2 chicken-more—mMacCrOS.SCIc.ueurnennenennennenns 160
8.3 chicken-ffi-macros.scCm..............c.ouviniinen.... 160
8.4 chicken-entry-points.scm.............. 160
8.5 chicken-default-entry-points.scm.................. 161
8.6 test-infrastructure.scm............................ 161
8.6.1 The Test Package Macro API.................. 161
8.6.2 The Test Case Macro API..................... 162
8.6.3 The Expectation Macro APT 162
8.6.4 Result Object APL............. 166
8.6.5 Test Package Result Object API............... 166
8.6.6 Test Case Result Object APT.................. 166

8.6.7 Expect Result Object API: Single Clause Style
Expectation......... 167

8.6.8 Expect Result Object API: Equivalence Style

Expectation 168

8.6.9 Expect Result Object API: Tolerance Style
Expectation......... 170

v

8.6.10 Various Helper API.......................... 171

8.6.11 Termination API............................ 171
8.6.12 Destructor Object API....................... 172
8.6.13 Todo API......... 173
8.6.14 Gloss APTo 174
8.6.15 Skip API 174
8.6.16 Side Effect APL.............................. 175
8.6.17 Miscellaneous API... 176
8.6.18 Analysis of the Result Tree................... 176
8.6.19 Output Generation APL...................... 176
8.6.20 Example Usages of the Test Suite Infrastructure
... 177
9 Data Representation..................... 180
10 Bugs and limitations.................... 182
11 FAQ oottt 183
11.1 General ... 183
11.2 Customization ..., 189
12 Acknowledgements 190
Bibliography..................... 192

Chapter 1: Introduction 2

1 Introduction

CHICKEN is a compiler that translates Scheme source files into C, which in turn can be
fed to a C-compiler to generate a standalone executable. This principle, which is used by
several existing compilers, achieves high portability because C is implemented on nearly all
available platforms.

This package is distributed under the BSD license and as such is free to use and modify.
An interpreter is also available and can be used as a scripting environment or for testing
programs before compilation.

The method of compilation and the design of the runtime-system follow closely Henry
Baker’s CONS Should Not CONS Its Arguments, Part II: Cheney on the M.T.A. paper and
expose a number of interesting properties: consing (creation of data on the heap) is rela-
tively inexpensive, because a generational garbage collection scheme is used, in which short-
lived data structures are reclaimed extremely quickly. Moreover, call-with-current-
continuation is practically for free and CHICKEN does not suffer under any performance
penalties if first-class continuations are used in complex ways. The generated C code is
fully tail-recursive.

Some of the features supported by CHICKEN:
e SRFIs0,1,2,4,6,7,8,9, 10, 13, 14, 16, 18, 23, 25, 28, 30, 37, 39 and 55.
e syntax-case highlevel macros
e Lightweight threads based on first-class continuations
e Pattern matching with Andrew Wright’s match package
e Record structures
e An object system with multiple inheritance, multimethods and a meta-object protocol
e Extended comment- and string-literal syntaxes

e Libraries for regular expressions, string handling, Common LISP style format, UNIX
system calls and extended data structures

e Create interpreted or compiled shell scripts written in Scheme for UNIX or Windows
e Compiled C files can be easily distributed

e Allows the creation of fully self-contained statically linked executables

e On systems that support it, compiled code can be loaded dynamically

This manual is merely a reference for the CHICKEN system and assumes a working
knowledge of Scheme.

Chapter 2: Basic mode of operation 3

2 Basic mode of operation

The compiler translates Scheme source code into fairly portable C that can be compiled and
linked with most available C compilers. CHICKEN supports the generation of executables
and libraries, linked either statically or dynamically. Compiled Scheme code can be loaded
dynamically, or can be embedded in applications written in other languages. Separate
compilation of modules is fully supported.

The most portable way of creating separately linkable entities is supported by so-called
units. A unit is a single compiled object module that contains a number of toplevel expres-
sions that are executed either when the unit is the main unit or if the unit is used. To use
a unit, the unit has to be declareed as used, like this:

(declare (uses UNITNAME))

The toplevel expressions of used units are executed in the order in which the units
appear in the uses declaration. Units may be used multiple times and uses declarations
may be circular (the unit is initialized at most once). To compile a file as a unit, add a unit
declaration:

(declare (unit UNITNAME))

When compiling different object modules, make sure to have one main unit. This unit
is called initially and initializes all used units before executing its toplevel expressions. The
main-unit has no unit declaration.

Another method of using definitions in separate source files is to include them. This
simply inserts the code in a given file into the current file:

(include "FILENAME")

Macro definitions are only available when processed by include or visit. Macro def-
initions in separate units are not available, since they are defined at compile time, i.e the
time when that other unit was compiled (macros defined using the low-level macro system
can optionally be available at runtime, see define-macro in Section 5.4.4 [Substitution forms
and macros|, page 30).

On platforms that support dynamic loading of compiled code (like Windows and most
ELF based systems like Linux or BSD) code can be compiled into a shared object (.so)
and loaded dynamically into a running application.

Chapter 3: Using the compiler 4

3 Using the compiler

The interface to chicken is intentionally simple. System dependent makefiles, shell-scripts
or batch-files should perform any necessary steps before and after invocation of chicken.
On UNIX-compatible systems, a shell script named chicken-config is supplied that emits
the correct options for the host system’s C compiler. Enter

chicken-config -help

on the command line for a list of available options. A program named csc provides a
much simpler interface to the Scheme- and C-compilers and linker. Enter

csc -help

on the command line for more information.

3.1 Command line format

chicken FILENAME {OPTION}

FILENAME is the complete pathname of the source file that is to be translated into C. A
filename argument of “~” specifies that the source text should be read from standard input.
Note that the filename has to be the first argument to chicken. Possible options are:

-analyze-only
Stop compilation after first analysis pass.

-benchmark-mode
Equivalent to -debug-level O -optimize-level 3 -fixnum-arithmetic
-disable-interrupts -block -lambda-1ift.

-block

Enable block-compilation. When this option is specified, the compiler assumes
that global variables are not modified outside this compilation-unit. Specifi-
cally, toplevel bindings are not seen by eval and unused toplevel bindings are
removed.

—-case-insensitive
Enables the reader to read symbols case insensitive. The default is to read case
sensitive (in violation of R5RS). This option registers the case-insensitive
feature identifier.

-check-syntax
Aborts compilation process after macro-expansion and syntax checks.

—-compress-literals THRESHOLD
Compiles quoted literals that exceed the size THRESHOLD as strings and parse the
strings at run-time. This reduces the size of the code and speeds up compile-
times of the host C compiler, but has a small run-time performance penalty.
The size of a literal is computed by counting recursively the objects in the
literal, so a vector counts as 1 plus the count of the elements, a pair counts as
the counts of the car and the cdr, respectively. All other objects count 1.

Chapter 3: Using the compiler 5

—debug MODES

Enables one or more compiler debugging modes. MODES is a string of characters
that select debugging information about the compiler that will be printed to
standard output.

t
b

o

O N O O hNh W N R X O YU m B O g = O X

show time needed for compilation

show breakdown of time needed for each compiler pass
show performed optimizations

show invocation parameters

show program-size information and other statistics
show node-matching during simplification

show execution of compiler sub-passes

show lambda-lifting information

show GC statistics during compilation

print the line-number database

print every expression before macro-expansion
lists all exported toplevel bindings

display information about experimental features
when printing nodes, use node-tree output
show the real-name mapping table

show expressions after the secondary user pass
show database before lambda-lifting pass

show expressions after lambda-lifting

show output of “easy” FFI parser

show execution of outer partitioning

show execution of middle partitioning

show execution of inner partitioning

show source expressions

show canonicalized expressions

show expressions converted into CPS

show database after each analysis pass

show expressions after each optimization pass
show expressions after each inlining pass

show expressions after complete optimization

show database after final analysis

Chapter 3: Using the compiler 6

9 show expressions after closure conversion

—-debug-level LEVEL
Selects amount of debug-information. LEVEL should be an integer.

e -debug-level O is equivalent to -no-trace.

e -debug-level 1 does nothing.

-disable-c-syntax-checks
Disable basic syntax checking of embedded C code fragments.

-disable-interrupts
Equivalent to the (disable-interrupts) declaration. No interrupt-checks are
generated for compiled programs.

—-disable-stack-overflow-checks
Disables detection of stack overflows. This is equivalent to running the compiled
executable with the -:o runtime option.

—dynamic

This option should be used when compiling files intended to be loaded dynam-
ically into a running Scheme program.

—epilogue FILENAME
Includes the file named FILENAME at the end of the compiled source file. The
include-path is not searched. This option may be given multiple times.

—explicit-use
Disables automatic use of the units library, eval and extras. Use this option
if compiling a library unit instead of an application unit.

-extend FILENAME
Loads a Scheme source file or compiled Scheme program (on systems that sup-
port it) before compilation commences. This feature can be used to extend the
compiler. This option may be given multiple times. The file is also searched in
the current include path and in the extension-repository.

-feature SYMBOL
Registers SYMBOL to be a valid feature identifier for cond-expand.

-ffi
Parse C/C++ code and generate Scheme bindings. This is effectively equivalent
to wrapping the code in #>! ... <#.

—-ffi-custom
Parse C/C++ code and embed it into a (foreign-parse/spec ...) form. This
is effectively equivalent to wrapping the code in #>%, ... <#). Use the -extend

or -require-for-synatx options to provide a definition for the foreign-
parse/spec macro.

-ffi-parse
Parse C/C++ code and embed as if wrapped inside #>7 ... <#.

-ffi-define SYMBOL
Defines a macro that will be accessible in foreign-parse declarations.

Chapter 3: Using the compiler 7

-ffi-include-path PATH
Set include path for “easy” FFI parser.

-fixnum-arithmetic
Equivalent to (fixnum-arithmetic) declaration. Assume all mathematical
operations use small integer arguments.

—-heap-size NUMBER
Sets a fixed heap size of the generated executable to NUMBER bytes. The pa-
rameter may be followed by a M (m) or K (k) suffix which stand for mega- and
kilobytes, respectively. The default heap size is 5 kilobytes. Note that only half
of it is in use at every given time.

-heap-initial-size NUMBER
Sets the size that the heap of the compiled application should have at startup
time.

—-heap-growth PERCENTAGE
Sets the heap-growth rate for the compiled program at compile time (see: -:hg).

-heap-shrinkage PERCENTAGE
Sets the heap-shrinkage rate for the compiled program at compile time (see:

-:hs).

-help
Print a summary of available options and the format of the command line
parameters and exit the compiler.

-syntax

-hygienic

Load “syntax-case” macro package and enable high-level macros in compiled
code. This option registers the hygienic-macros feature identifier.

-hygienic-at-run-time
Makes hygienic (“syntax-case”) macro system available at run-time. Note that
this has a slight overhead, because the hygienic macro definitions have to be
loaded. This will only install the standard R5RS macros, plus SRFI-0 (cond-
expand). To load all further macros, execute:

(require-extension chicken-more-macros)

-include-path PATHNAME
Specifies an additional search path for files included via the include special
form. This option may be given multiple times. If the environment variable
CHICKEN_INCLUDE_PATH is set, it should contain a list of alternative include
pathnames separated by “;”. The environment variable CHICKEN_HOME is also
considered as a search path.

-keyword-style STYLE
Enables alternative keyword syntax, where STYLE may be either prefix (as in
Common Lisp), suffix (as in DSSSL) or none. Any other value is ignored.
The default is suffix. If -strict or -strict-reader is specified, then the
keyword style is set to none.

Chapter 3: Using the compiler 8

—-lambda-1ift
Enable the optimization known as lambda-lifting.

-no-trace
Disable generation of tracing information. If a compiled executable should halt
due to a runtime error, then a list of the name and the line-number (if available)
of the last procedure calls is printed, unless -no-trace is specified. With this
option the generated code is slightly faster.

-no-feature SYMBOL
Unregisters feature identifier SYMBOL.

-no-warnings
Disable generation of compiler warnings.

-nursery NUMBER

-stack-size NUMBER
Sets the size of the first heap-generation of the generated executable to NUMBER
bytes. The parameter may be followed by a M (m) or K (k) suffix. The default
stack-size depends on the target platform.

-optimize-leaf-routines
Enable leaf routine optimization.

-optimize-level LEVEL
Enables certain sets of optimization options. LEVEL should be an integer.

e -optimize-level 0 does nothing.

e -optimize-level 1 is equivalent to —optimize-leaf-routines

e -optimize-level 2 is equivalent to —optimize-leaf-routines

e -optimize-level 3 is equivalent to —optimize-leaf-routines -unsafe

-output-file FILENAME
Specifies the pathname of the generated C file. Default is FILENAME. c.

-postlude EXPRESSIONS
Add EXPRESSIONS after all other toplevel expressions in the compiled file. This
option may be given multiple times. Processing of this option takes place after
processing of —epilogue.

-prelude EXPRESSIONS
Add EXPRESSIONS before all other toplevel expressions in the compiled file.
This option may be given multiple times. Processing of this option takes place
before processing of —-prologue.

-profile
Instruments the source code to count procedure calls and execution times. After
the program terminates (either via an explicit exit or implicitly), profiling
statistics are written to a file named PROFILE. Each line of the generated file
contains a list with the procedure name, the number of calls and the time
spent executing it. Use the chicken-format-profile program to display the
profiling information in a more user-friendly form. Enter chicken-format-
profile with no arguments at the command line to get a list of available
options.

Chapter 3: Using the compiler 9

-prologue FILENAME
Includes the file named FILENAME at the start of the compiled source file. The
include-path is not searched. This option may be given multiple times.
-quiet
Disables output of compile information.
-raw
Disables the generation of any implicit code that uses the Scheme libraries (that

is all runtime system files besides runtime.c and chicken.h).

-require-for-syntax NAME
Loads the extension NAME before the compilation process commences.

-rbrs
Equivalent to ~hygienic -strict -no-usual-integrations.
-run-time-macros
Makes low-level macros (compiled without the -hygienic option) also avail-
able at run-time. By default low-level macros are not available at run-time.

Note that highlevel-macros (syntax-case) defined in compiled code are never
available at run-time.

-split NUMBER
Splits output into multiple C files that can be compiled seperately. The gener-
ated C files will be named filenameO, ..., filename<NUMBER-1> with as many
files as given in NUMBER.

-split-level NUMBER
Specifies how hard the partitioning algorithm should work:
e 0 Exit after first iteration (quickest)
e 1 Exit when cost does not decrease by at least one-half (the default)

e 2 Exit when cost does not change

-strict

Disable non-standard macros. This option registers the strict feature identi-
fier. Implies -strict-letrec and -strict-reader.

-strict-srfi-0
Disable non-standard macros except cond-expand. This option registers the
strict feature identifier. Implies -strict-letrec and -strict-reader.

-strict-reader
Disables non-standard read syntax. Implies ~case-insensitive.

-strict-letrec
Enable fully R5RS compliant letrec. This generates slightly less efficient code
but preserves standard semantics.

-to-stdout
Write compiled code to standard output instead of creating a .c file.

Chapter 3: Using the compiler 10

-unit NAME

—-unsafe

Compile this file as a library unit. Equivalent to
-prelude "(declare (unit NAME))"

Disable runtime safety checks.

-unsafe-libraries

-uses NAME

-no-usual-

-version

-verbose

Marks the generated file for being linked with the unsafe runtime system. This
should be used when generating shared object files that are to be loaded dy-
namically. If the marker is present, any attempt to load code compiled with
this option will signal an error.

Use definitions from the library unit NAME. This is equivalent to
-prelude "(declare (uses NAME))"

integrations

Specifies that standard procedures and certain internal procedures may be re-
defined, and can not be inlined. This is equivalent to declaring (not usual-
integrations).

Prints the version and some copyright information and exit the compiler.

Prints progress information to standard output during compilation.

The environment variable CHICKEN_OPTIONS can be set to a string with default
command-line options for the compiler.

3.2 Runtime options

After successful compilation a C source file is generated and can be compiled with a C
compiler. Executables generated with CHICKEN (and the compiler itself) accept a small
set of runtime options:

-:?

:hNUMBER

Shows a list of the available runtime options and exits the program.

Forces console mode. Currently this is only used in the interpreter (csi) to
force output of the #;N> prompt even if stdin is not a terminal (for example if
running in an emacs buffer under Windows).

Prints some debug-information during startup.

Specifies fixed heap size

Chapter 3: Using the compiler 11

-:hiNUMBER

Specifies the initial heap size

—-:hgPERCENTAGE

- :hmNUMBER

Sets the growth rate of the heap in percent. If the heap is exhausted, then it
will grow by PERCENTAGE. The default is 200.

Specifies a maximal heap size. The default is (2GB - 15).

- :hsPERCENTAGE

- :sNUMBER

- :tNUMBER

Sets the shrink rate of the heap in percent. If no more than a quarter of
PERCENTAGE of the heap is used, then it will shrink to PERCENTAGE. The default
is 50. Note: If you want to make sure that the heap never shrinks, specify a
value of 0. (this can be useful in situations where an optimal heap-size is known
in advance).

Disables detection of stack overflows at run-time

Specifies stack size

Specifies symbol table size

Enables garbage collection of unused symbols. By default unused and unbound
symbols are not garbage collected.

Writes trace output to stdout. This option has no effect with in files compiled
with the -no-trace or -debug-level 0 options.

Raises uncaught exceptions of separately spawned threads in primordial thread.
By default uncaught exceptions in separate threads are not handled, unless the
primordial one explicitly joins them. When warnings are enabled (the default)
and -:x is not given, a warning will be shown, though.

The argument values may be given in bytes, in kilobytes (suffixed with K or k), in
megabytes (suffixed with M or m), or in gigabytes (suffixed with G or g). Runtime options
may be combined, like -:dc, but everything following a NUMBER argument is ignored. So
-:wh64m is OK, but -:h64mw will not enable GC of unused symbols.

3.3 An example

To compile a Scheme program (assuming a UNIX-like environment) perform the following

steps:

e Consider this Scheme source file, named foo.scm

Chapter 3: Using the compiler 12

;53 foo.scm

(define (fac n)
(if (zero? n)
1
(xn (fac (- n 1)))))

(write (fac 10))
(newline)

e Compile the file foo.scm
% chicken foo.scm
e Compile the generated C file foo.c
% gcc foo.c -o foo ‘chicken-config -cflags -libs®
e Start the compiled program
% foo
3628800
If multiple bodies of Scheme code are to be combined into a single executable, then
we have to compile each file and link the resulting object files together with the runtime
system:
e Consider these two Scheme source files, named foo.scm and bar.scm

;53 foo.scm
(declare (uses bar))

(write (fac 10)) (newline)

;33 bar.scm
(declare (unit bar))

(define (fac n)
(if (zero? n)
1
(x n (fac (- n 1)))))

e Compile the files foo.scm and bar.scm

% chicken foo.scm
% chicken bar.scm

e Compile the generated C files foo.c and bar.c

% gcc —c foo.c ‘chicken-config -cflags®
% gcc -c bar.c ‘chicken-config -cflags®

e Link the object files foo.o0 and bar.o

% gcc foo.o bar.o -o foo ‘chicken-config -libs®

Chapter 3: Using the compiler 13

e Start the compiled program

% foo
3628800

The declarations specify which of the compiled files is the main module, and which is
the library module. An executable can only have one main module, since a program has
only a single entry-point. In this case foo.scm is the main module, because it doesn’t have
a unit declaration.

Extensions to the basic CHICKEN runtime libraries are available in a separate utility
library (libsrfi-chicken.[also] and libstuffed-chicken.[also]l on UNIX-like
platforms, libsrfi-chicken.lib and libstuffed-chicken.lib on Windows systems).
Whenever you use one or more of the units format, srfi-1, srfi-4, srfi-13, srfi-14,
srfi-18, srfi-25, srfi-37, posix, utils, lolevel, tinyclos or regex, then you
should add these library to the command line of the C compiler or linker. The compiler
driver csc and the helper script chicken-config will do this automatically.

3.4 Extending the compiler

The compiler supplies a couple of hooks to add user-level passes to the compilation pro-
cess. Before compilation commences any Scheme source files or compiled code specified
using the -extend option are loaded and evaluated. The parameters user-options-pass,
user-read-pass, user-preprocessor-pass, user-pass, user-pass-2 and user-post-
analysis-pass can be set to procedures that are called to perform certain compilation
passes instead of the usual processing (for more information about parameters see: Sec-
tion 5.6 [Parameters|, page 37.

user-options-pass [parameter]
Holds a procedure that will be called with a list of command-line arguments and
should return two values: the source filename and the actual list of options, where
compiler switches have their leading - (hyphen) removed and are converted to sym-
bols. Note that this parameter is invoked before processing of the -extend option,
and so can only be changed in compiled user passes.

user-read-pass [parameter]
Holds a procedure of three arguments. The first argument is a list of strings with
the code passed to the compiler via —-prelude options. The second argument is a list
of source files including any files specified by -prologue and -epilogue. The third
argument is a list of strings specified using -postlude options. The procedure should
return a list of toplevel Scheme expressions.

user-preprocessor-pass [parameter]
Holds a procedure of one argument. This procedure is applied to each toplevel ex-
pression in the source file before macro-expansion. The result is macro-expanded and
compiled in place of the original expression.

Chapter 3: Using the compiler 14

user-pass [parameter]
Holds a procedure of one argument. This procedure is applied to each toplevel ex-
pression after macro-expansion. The result of the procedure is then compiled in place
of the original expression.

user-pass-2 [parameter]
Holds a procedure of three arguments, which is called with the canonicalized node-
graph as its sole argument. The result is ignored, so this pass has to mutate the
node-structure to cause any effect.

user-post-analysis-pass [parameter]
Holds a procedure that will be called after the last performed program analysis. The
procedure (when defined) will be called with three arguments: the program database,
a getter and a setter-procedure which can be used to access and manipulate the
program database, which holds various information about the compiled program.
The getter procedure should be called with two arguments: a symbol representing
the binding for which information should be retrieved, and a symbol that specifies
the database-entry. The current value of the database entry will be returned or #f£, if
no such entry is available. The setter procedure is called with three arguments: the
symbol and key and the new value.

For information about the contents of the program database contact the author.

Loaded code (via the -extend option) has access to the library units extras, srfi-1,
srfi-4, utils, regex and the pattern matching macros. The highlevel macro-system and
multithreading is not available.

Note that the macroexpansion/canonicalization phase of the compiler adds certain forms
to the source program. These extra expressions are not seen by user-preprocessor-pass
but by user-pass.

3.5 Distributing compiled C files

It is relatively easy to create distributions of Scheme projects that have been compiled to
C. The runtime system of CHICKEN consists of only two handcoded C files (runtime.c
and chicken.h), plus the file chicken-config.h, which is generated by the build process.
All other modules of the runtime system and the extension libraries are just compiled
Scheme code. The following example shows a minimal application, which should run without
changes on the most frequent operating systems, like Windows, Linux or FreeBSD:

Let’s take a simple “Hello, world!”:

; hello.scm

(print "Hello, world!")

Compiled to C, we get hello.c. We need the files chicken.h and runtime.c, which
contain the basic runtime system, plus library.c, the compiled form of library.scm,
which contains the core library. Note the use of the ~explicit-use -uses library option
in the invocation of chicken to make sure we only link in the core library - the eval and
extras library units are not used in this example:

Chapter 3: Using the compiler 15

% chicken hello.scm -explicit-use -uses hello.c -optimize-level 2 -debug-level Of
A simple makefile is needed as well:
Makefile for UNIX systems

hello: hello.o runtime.o library.o
$(CC) -o hello hello.o runtime.o library.o -1lm

hello.o: chicken.h
runtime.o: chicken.h
library.o: chicken.h
Now we have all files together, and can create an tarball containing all the files:

% tar cf hello.tar Makefile hello.c runtime.c library.c chicken.h
% gzip hello.tar

This is of naturally rather simplistic. Things like enabling dynamic loading, estimating
the optimal stack-size and selecting supported features of the host system would need more
configuration- and build-time support. All this can be addressed using more elaborate
build-scripts, makefiles or by using autoconf/automake/libtool.

For more information, study the CHICKEN source code and/or get in contact with the
author.

Chapter 4: Using the interpreter 16

4 Using the interpreter

CHICKEN provides an interpreter named csi for evaluating Scheme programs and expres-
sions interactively.

4.1 Command line format

csi {FILENAME|OPTION}

where FILENAME specifies a file with Scheme source-code. If the extension of the source
file is .scm, it may be omitted. The runtime options described in Section 3.1 [Compiler
command line format], page 4 are also available for the interpreter. If the environment
variable CSI_OPTIONS is set to a list of options, then these options are additionally passed
to every direct or indirect invocation of csi. Please note that runtime options (like -: .. .)
can not be passed using this method. The options recognized by the interpreter are:

Ignore everything on the command-line following this marker. Runtime options
(“=:...7) are still recognized.

-case-insensitive
Enables the reader to read symbols case insensitive. The default is to read case
sensitive (in violation of R5RS). This option registers the case-insensitive
feature identifier.

-batch

Quit the interpreter after processing all command line options.

-eval EXPRESSIONS
Evaluate EXPRESSIONS.

—feature SYMBOL
Registers SYMBOL to be a valid feature identifier for cond-expand.

-help
Write a summary of the available command line options to standard output
and exit.

-syntax

-hygienic

Load syntax-case macro package and enable high-level macros in interpreted
code. This option registers the hygienic-macros feature identifier.

-include-path PATHNAME
Specifies an alternative search-path for files included via the include special
form. This option may be given multiple times. If the environment variable
CHICKEN_INCLUDE_PATH is set, it should contain a list of alternative include
pathnames separated by “;”. The environment variable CHICKEN_HOME is also
considered as a search path.

Chapter 4: Using the interpreter 17

-keyword-style STYLE
Enables alternative keyword syntax, where STYLE may be either prefix (as in
Common Lisp) or suffix (as in DSSSL). Any other value is ignored.

-no-feature SYMBOL
Unregisters feature identifier SYMBOL.
-no-init
Do not load initialization-file. If this option is not given and the file ‘**/.csirc’
exists, then it is loaded before the read-eval-print loop commences.
-no-warnings
Disables any warnings that might be issued by the reader or evaluated code.
-quiet
Do not print a startup message.
-rbrs
Equivalent to ~hygienic -strict.
-script PATHNAME
This is equivalent to -batch -quiet -no-init PATHNAME. Arguments follow-
ing PATHNAME are available by using command-line-arguments and are not

processed as interpreter options. Extra options in the environment variable
CSI_OPTIONS are ignored.

-script-meta PATHNAME
This is similar to the -script option, but the file specified by PATHNAME is
opened, the first line is treated as containing additional command line options
and (after processing all the options) the code from the given file is loaded.
-strict
Disable non-standard macros. Implies —strict-letrec and -strict-reader.
-strict-srfi-0
Disable non-standard macros except cond-expand. Implies -strict-letrec
and -strict-reader.

-strict-reader
Disables non-standard read syntax. Implies —~case-insensitive.

-strict-letrec
Enable fully R5RS compliant letrec. This generates slightly less efficient code
but preserves standard semantics.

-version

Write the banner with version information to standard output and exit.

4.2 Writing Scheme scripts

e Since UNIX shells use the #! notation for starting scripts, anything following the char-
acters #! is ignored, with the exception of the special symbols #!optional, #!key,
#!rest and #!eof.

Chapter 4: Using the interpreter 18

The easiest way is to use the -script option like this:

% cat foo

#! /usr/local/bin/csi -script

(print (eval (with-input-from-string
(car (command-line-arguments))
read)))

% chmod +x foo
% foo "(+ 3 4)"
7

The parameter command-line-arguments is set to a list of the parameters that were
passed to the Scheme script. Scripts can be compiled to standalone executables (don’t
forget to declare used library units). Note that the compiler does not parse the extra
arguments passed to a script via the —script-meta option!

To overcome a limitation of UNIX that allows only a single argument to scripts, the
-script-meta options is provided:

% cat foo

#! /usr/local/bin/csi -script-meta

-case-insensitive

(print (with-input-from-string (car (command-line-arguments)) read))

% chmod +x foo
% foo "FooBar"
"foobar"

e Windows and DOS:

CHICKEN supports writing shell scripts in Scheme for these platforms as well, using
a slightly different approach. The first example would look like this on Windows:
C:>type foo.bat
@;csibatch %0 %1 %2 %3 %4 %5 %6 %7 %8 %9
(print (eval (with-input-from-string

(car (command-line-arguments))

read)))

C:>foo "(+ 3 4)"
7

Like UNIX scripts, batch files can be compiled. Windows batch scripts do not accept
more than 8 arguments.

4.3 Toplevel commands

The toplevel loop understands a number of special commands:

?

P

Show summary of available toplevel commands.

Chapter 4: Using the interpreter 19

,1 FILENAME
Load file with given FILENAME (may be a symbol or string).

,1n FILENAME
Load file and print result(s) of each top-level expression.

,p EXP
Pretty-print evaluated expression EXP.
,d EXP
Describe result of evaluated expression EXP.
,du EXP
Dump contents of the result of evaluated expression EXP.
,dur EXP N
Dump N bytes of the result of evaluated expression EXP.
»q
Quit the interpreter.
,T

Show system information.

,s STRING-OR-SYMBOL
Execute shell-command.

,t EXP

Evaluate form and print elapsed time.

,x EXP
Pretty-print macroexpanded expression EXP (the expression is not evaluated).

4.4 Macros and procedures implemented in the interpreter

Additional macros and procedures available in the interpreter are:

advise [syntax]
(advise NAME MODE PROC)

Modifies the behavior of the procedures named NAME, according to MODE:

before
Call the procedure PROC before every invocation of NAME, with the same
arguments.

after
Call the procedure PROC with the result value(s) of NAME.

around

Call the procedure PROC with the arguments passed to NAME. Additionally
the (original) value of NAME is passed as the first argument to PROC.

Chapter 4: Using the interpreter 20

Only the PROC argument is evaluated. Note that multiple pieces of advice on the same
procedure are allowed.

#;1> (define (fac n)
(if (zero? mn) 1 (* n (fac (subl n)))))
#;2> (define count 0)
#;3> (advise fac before (lambda _ (set! count (addl count))))
#;4> (fac 10) ==> 3628800
#;5> count ==> 11
#;6> (advise fac around
(let ((i 0))
(define (indent)
(do ((i i (subl i)))
((zero? 1))
(write-char #\space)))
(lambda (f n)
(indent)
(print "fac: " n)
(set! i (addl i))
(let ((x (f n)))
(set! i (subl i))

(indent)
(print "-> " x)
x))))
#;7> (fac 3)
fac: 3
fac: 2
fac: 1
fac: 0O
-> 1
-> 1
-> 2
-> 6 ==> 6
#;8> count ==> 15

#;9> (set! count 0)
#;10> (unadvise fac)

#;11> (fac 10) ==> 3628800
#;12> count ==> 0
unadvise [syntax]
(unadvise NAME ...)
Removes all pieces of advice from the procedures NAME . . . and restores their original
behavior.
trace [syntax]

(trace NAME ...)
Switches tracing on for the procedures with the given names.
#;1> (fac 10) ==> 3628800

Chapter 4: Using the interpreter 21

#;2> (trace fac)
#;3> (fac 3)

| (fac 3)

| (fac 2)

(fac 1)

(fac 0)

fac > 1
fac > 1

| fac > 2

|fac -> 6 ==> 6
#;4> (untrace fac)
#;5> (fac 3) ==> 6

untrace [syntax]
(untrace NAME ...)

Switches tracing of the given procedures off.

#[INDEX]
#
#INDEX

Returns the result of entry number INDEX in the history list. If the expression for
that entry resulted in multiple values, the first result (or an unspecified value for no
values) is returned. If no INDEX is given (and if a whitespace or closing paranthesis
character follows the #, then the result of the last expression is returned. Note that
this facility is a reader macro and is implicitly quoted.

[read syntax]

Chapter 5: Supported language 22

5 Supported language

5.1 Deviations from the standard

[2] Identifiers are by default case-sensitive.

[4.1.4] Extended DSSSL style lambda lists are supported. DSSSL formal argument lists
are defined by the following grammar:

<formal-argument-list> ==> <required-formal-argument>x*
[(#'optional <optional-formal-argument>*)]
[(#!'rest <rest-formal-argument>)]
[(#'key <key-formal-argument>*)]
<required-formal-argument> ==> <ident>
<optional-formal-argument> ==> <ident>
| (<ident> <initializer>)
<rest-formal-argument> ==> <ident>
<key-formal-argument> ==> <ident>
| (<ident> <initializer>)
<initializer> ==> <expr>

When a procedure is applied to a list of actual arguments, the formal and actual argu-
ments are processed from left to right as follows:

1. Variables in required-formal-arguments are bound to successive actual arguments start-
ing with the first actual argument. It shall be an error if there are fewer actual argu-
ments than required-formal-arguments.

2. Next, variables in optional-formal-arguments are bound to any remaining actual argu-
ments. If there are fewer remaining actual arguments than optional-formal-arguments,
then variables are bound to the result of the evaluation of initializer, if one was spec-
ified, and otherwise to #f. The initializer is evaluated in an environment in which all
previous formal arguments have been bound.

3. If there is a rest-formal-argument, then it is bound to a list of all remaining actual
arguments. The remaining actual arguments are also eligible to be bound to keyword-
formal-arguments. If there is no rest-formal-argument and there are no keyword-formal-
arguments, the it shall be an error if there are any remaining actual arguments.

4. If #1key was specified in the formal-argument-list, there shall be an even number of
remaining actual arguments. These are interpreted as a series of pairs, where the first
member of each pair is a keyword specifying the argument name, and the second is the
corresponding value. It shall be an error if the first member of a pair is not a keyword.
It shall be an error if the argument name is not the same as a variable in a keyword-
formal-argument, unless there is a rest-formal-argument. If the same argument name
occurs more than once in the list of actual arguments, then the first value is used. If
there is no actual argument for a particular keyword-formal-argument, then the variable
is bound to the result of evaluating initializer if one was specified, and otherwise #f.
The initializer is evaluated in an environment in which all previous formal arguments
have been bound.

Chapter 5: Supported language 23

It shall be an error for an <ident> to appear more than once in a formal-argument-list.

Example:
((lambda x x) 3 4 5 6) => (345 6)
((lambda (x y #!'rest z) z)
3456) => (5 6)

((lambda (x y #!optional z #!rest r #'key i (j 1))
(list x y z i: 1 j: 3))
3451i: 61: 7) =>(3451i: 6 j: 1)
[4.1.6] set! for unbound toplevel variables is allowed.
[5.2] define with a single argument is allowed and initializes the toplevel or local binding

to an unspecified value. CHICKEN supports “curried” definitions, where the the variable
name may also be a list specifying a name and a nested lambda list. So

(define ((make-adder x) y) (+ x y))
is equivalent to
(define (make-adder x) (lambda (y) (+ x y)))

[6.2.4] The runtime system uses the numerical string-conversion routines of the under-
lying C library and so does only understand standard (C-library) syntax for floating-point
constants.

[6.2.5] The routines complex?, real? and rational? are identical to the standard pro-
cedure number?. The procedures numerator, denominator and rationalize are not im-
plemented. Also not implemented are all procedures related to complex numbers.

[6.2.6] The procedure string->number does not obey read/write invariance on inexact
numbers.

[6.5] Code evaluated in scheme-report-environment or null-environment still sees
non-standard syntax unless running under the interpreter (csi) invoked with the -strict
option.

[6.6.2] The procedure char-ready? is handling terminal input ports only under DJGPP
correctly. On other platforms it returns always #t. The procedure read does not obey
read/write invariance on inexact numbers.

[6.6.3] The procedures write and display do not obey read/write invariance to inexact
numbers.

5.2 Extensions to the standard

[2.1] Identifiers may contain special characters if delimited with | ... |.

[2.3] The brackets [...] are provided as an alternative syntax for (...). A number
of reader extensions is provided. See Section 5.3 [Non standard read syntax], page 25.

[4] Numerous non-standard macros are provided. See Section 5.4 [Non-standard macros
and special forms|, page 26 for more information.

[4.2.2] It is allowed for initialization values of bindings in a letrec construct to refer to
previous variables in the same set of bindings, so

Chapter 5: Supported language 24

(letrec ([foo 123]
[bar foo])
bar)

is allowed and returns 123. This extension is not available when strict R5RS letrec
semantics have been selected (by using the -strict, -strict-srfi-0 or -strict-letrec
option).

[4.2.3] (begin) is allowed in non-toplevel contexts and evaluates to an unspecified value.

[4.2.5] Delayed expressions may return multiple values.

[5.2.2] CHICKEN extends standard semantics by allowing internal definitions every-
where, and not only at the beginning of a body. A set of internal definitions is equivalent
to a letrec form enclosing all following expressions in the body:

(let ([foo 123])
(bar)
(define foo 456)
(baz foo))

expands into

(let ([foo 123])
(bar)
(letrec ([foo 456])
(baz foo)))

This extension to the standard semantics is not available in combination with the hy-
gienic (syntax-case) macro system. Under the hygienic macro system an error will be
signalled when internal definitions occur at a position that is not at the beginning of a
body.

[6] CHICKEN provides numerous non-standard procedures. See the manual sections on
library units for more information.

[6.3.4] User defined character names are supported. See char-name in Section 5.7.16
[User-defined named characters|, page 50. Characters can be given in hexadecimal notation
using the “#\xXX” syntax where “XX” specifies the character code. Character codes above
255 are supported and can be read (and are written) using the “#\uXXXX” notation.

[6.3.5] CHICKEN supports special characters preceded with a backslash “\” in quoted
string constants. “\n” denotes the newline-character, “\r” carriage return, “\b” backspace,
“\t” TAB and “\xXX” a character with the code XX in hex.

The third argument to substring is optional and defaults to the length of the string.

[6.4] force called with an argument that is not a promise returns that object unchanged.
Captured continuations can be safely invoked inside before- and after-thunks of a dynamic-
wind form and execute in the outer dynamic context of the dynamic-wind form.

[6.5] The second argument to eval is optional and defaults to the value of (interaction-
environment). scheme-report-environment and null-environment accept an optional
2nd parameter: if not #f (which is the default), toplevel bindings to standard procedures
are mutable and new toplevel bindings may be introduced.

[6.6.1] if the procedures current-input-port and current-output-port are called with
an argument (which should be a port), then that argument is selected as the new current

Chapter 5: Supported language 25

input- and output-port, respectively. The procedures open-input-file, open-output-
file, with-input-from-file, with-output-to-file, call-with-input-file and call-
with-output-file accept an optional second (or third) argument which should be one or
more keywords, if supplied. These arguments specify the mode in which the file is opened.
Possible values are the keywords #:text, #:binary or #:append.

5.3 Non standard read syntax

... | # [read syntax]
A multiline “block” comment. May be nested. Implements SRFI-30)

#;EXPRESSION [read syntax]
Treats EXPRESSION as a comment.

#,(CONSTRUCTORNAME DATUM ...) [read syntax]

Allows user-defined extension of external representations. (For more information see
the documentation for SRFI-10)

EXPRESSION [read syntax]
An abbreviation for (syntax EXPRESSION).

#$EXPRESSION [read syntax]
An abbreviation for (location EXPRESSION).

#:SYMBOL [read syntax]

Syntax for keywords. Keywords are symbols that evaluate to themselves, and as such
don’t have to be quoted.

#<<TAG [read syntax]
Specifies a multiline string constant. Anything up to a line equal to TAG will be
returned as a single string:

(define msg #<<END

"Hello, world!", she said.
END

)

is equivalent to
(define msg "\"Hello, world!\", she said.")

#<#TAG [read syntax]
Similar to #<<, but allows substitution of embedded Scheme expressions prefixed with
and optionally enclosed in { ... }. Two consecutive #s are translated to a single #:

(define three 3)

(display #<#EOF

This is a simple string with an embedded ‘##’ character
and substituted expressions: (+ three 99) ==> #(+ three 99)
(three is "#{threel}")

EQF

)

prints

http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-10/srfi-10.html

Chapter 5: Supported language

#>8 ..

#>% ...

This is a simple string with an embedded

‘#’ character

and substituted expressions: (+ three 99) ==> 102

(three is "3")

. <#

Abbreviation for (declare (foreign-declare "

. <#

Abbreviation for (declare (foreign-parse "
. <#
Abbreviation for

(declare
(foreign-declare " ... ")
(foreign-parse " ... "))

<#

An abbreviation for
(foreign-parse " ... ")
<#

An abbreviation for

(foreign-parse/spec " ... ")

#%...

H1...

Reads like a normal symbol.

e "D

"N

26

[read syntax]

[read syntax]

[read syntax]

[read syntax]

[read syntax]

[read syntax]

[read syntax|

Treated as a commment and ignores everything up the end of the current line. The
keywords #!optional, #!rest and #!key are handled separately and returned as
normal symbols. The special (self-evaluating) symbol #!eof is read as the end-of-file

object.

5.4 Non-standard macros and special forms

5.4.1 Making extra libraries and extensions available

require-extension

use

(require-extension ID ...)
(use ID ...)

[syntax]
[syntax]

This form does all necessary steps to make the libraries or extensions given in ID

. available. It loads syntactic extension, if needed and generates code for load-
ing/linking with core library modules or separately installed extensions. use is just
a shorter alias for require-extension. This implementation of require-extension
is compliant to SRFI-55 (see SRFI-55 for more information).

During interpretation/evaluation require-extension performs one of the following:

http://srfi.schemers.org/srfi-16/srfi-16.html

Chapter 5: Supported language 27

If ID names a built in features chicken srfi-23 srfi-30 srfi-39 srfi-8 srfi-
6 srfi-2 srfi-0 srfi-10 srfi-9, then nothing is done.

If ID names one of syntactic extensions chicken-match-macros chicken-
more-macros chicken-default-entry-points chicken-highlevel-macros
test-infrastructure chicken-entry-points chicken-ffi-macros, then
this extension will be loaded.

If ID names one of the core library units shipped with CHICKEN, then a (load-
library >ID) will be performed. If one of those libraries define specific syntax
(match srfi-13), then the required source file defining the syntax will be loaded.

If ID names an installed extension with the syntax or require-at-runtime
attribute, then the equivalent of (require-for-syntax ’ID) is performed.

Otherwise (require-extension ID) is equivalent to (require ’ID).

During compilation one of the following happens instead:

If ID names a built in features chicken srfi-23 srfi-30 srfi-39 srfi-8 srfi-
6 srfi-2 srfi-0 srfi-10 srfi-9, then nothing is done.

If ID names one of syntactic extensions chicken-match-macros chicken-
more-macros chicken-default-entry-points chicken-highlevel-macros
test-infrastructure chicken-entry-points chicken-ffi-macros, then
this extension will be loaded at compile-time, making the syntactic extensions
available in compiled code.

If ID names one of the core library units shipped with CHICKEN, then a
(declare (uses ID)) is generated. If one of those libraries define specific
syntax (match srfi-13), then the required source file defining the syntax will
be loaded at compile-time, making the syntactic extension available in compiled
code.

If ID names an installed extension with the syntax or require-at-runtime
attribute, then the equivalent of (require-for-syntax ’ID) is performed.

Otherwise (require-extension ID) is equivalent to (require ’ID).

To make long matters short - just use require-extension and it will normally figure
everything out for dynamically loadable extensions and core library units.

See also: set-extension-specifier!

5.4.2 Binding forms for optional arguments

:optional [syntax]

(:optional ARGS DEFAULT)

Use this form for procedures that take a single optional argument. If ARGS is the
empty list DEFAULT is evaluated and returned, otherwise the first element of the list
ARGS. It is an error if ARGS contains more than one value.

(define (incr x . i) (+ x (:optiomal i 1)))
(incr 10) ==> 11
(incr 12 5) ==> 17

Chapter 5: Supported language 28

case-lambda [syntax]

(case-lambda (LAMBDA-LIST1 EXP1 ...) ...)

SRFI-16. Expands into a lambda that invokes the body following the first matching
lambda-list.

(define plus
(case-lambda
(O
((x) x)
(xy) (+xy))
(xyz) (+ (+xy)2))
(args (apply + args))))

(plus) ==> 9
(plus 1) ==> 1
(plus 1 2 3) ==> 6
For more information see the documentation for SRFI-16
let-optionals [syntax]
let-optionals*® [syntax]
(let-optionals ARGS ((VAR1 DEFAULT1) ...) BODY ...)
(let-optionals* ARGS ((VAR1 DEFAULT1) ... [RESTVAR]) BODY ...)
Binding constructs for optional procedure arguments. ARGS should be a
rest-parameter taken from a lambda-list. let-optionals binds VARl ... to
available arguments in parallel, or to DEFAULT1 ... if not enough arguments were
provided. let-optionals* binds VAR1 ... sequentially, so every variable sees

the previous ones. If a single variable RESTVAR is given, then it is bound to any
remaining arguments, otherwise it is an error if any excess arguments are provided.

(let-optionals ’(one two) ((a 1) (b 2) (c 3))

(list a b ¢)) ==> (one two 3)
(let-optionals* ’(one two) ((a 1) (b 2) (c a))
(list a b ¢)) ==> (one two one)

5.4.3 Other binding forms

and-let* [syntax]

cut
cute

(and-let* (BINDING ...) EXP1 EXP2 ...)

SRFI-2. Bind sequentially and execute body. BINDING can be a list of a variable and
an expression, a list with a single expression, or a single variable. If the value of an
expression bound to a variable is #f, the and-let* form evaluates to #f (and the
subsequent bindings and the body are not executed). Otherwise the next binding is
performed. If all bindings/expressions evaluate to a true result, the body is executed
normally and the result of the last expression is the result of the and-let* form. See
also the documentation for SRFI-2 .

[syntax]

[syntax]
(cut SLOT ...)

http://srfi.schemers.org/srfi-16/srfi-16.html
http://srfi.schemers.org/srfi-2/srfi-2.html

Chapter 5: Supported language 29

(cute SLOT ...)

ntactic sugar for specializing parameters.
Syntact gar f 1 t

define-values [syntax]
(define-values (NAME ...) EXP)

Defines several variables at once, with the result values of expression EXP.

fluid-let [syntax]
(fluid-let ((VAR1 X1) ...) BODY ...)
Binds the variables VAR1 ... dynamically to the values X1 ... during execution of
BODY
let-values [syntax]
(let-values (((NAME ...) EXP) ...) BODY ...)
Binds multiple variables to the result values of EXP All variables are bound
simultaneously.
let*-values [syntax]
(let*-values (((NAME ...) EXP) ...) BODY ...)
Binds multiple variables to the result values of EXP The variables are bound
sequentially.

(let*x-values (((a b) (values 2 3))
((p) (+ ab)))

letrec-values [syntax]
(letrec-values (((NAME ...) EXP) ...) BODY ...)
Binds the result values of EXP ... to multiple variables at once. All variables are

mutually recursive.

(letrec-values (((odd even)
(values
(lambda (n) (if (zero? n) #f (even (subl n))))
(lambda (n) (if (zero? n) #t (odd (subl n)))))))
(odd 17)) ==> #t

parameterize [syntax]
(parameterize ((PARAMETER1 X1) ...) BODY ...)

Binds the parameters PARAMETER1 ... dynamically to the values X1 ... during exe-
cution of BODY (see also: make-parameter in Section 5.6 [Parameters], page 37).
Note that PARAMETER may be any expression that evaluates to a parameter procedure.

receive [syntax]
(receive (NAME1 ... [. NAMEn]) VALUEEXP BODY ...)
(receive VALUEEXP)
SRFI-8. Syntactic sugar for call-with-values. Binds variables to the result values
of VALUEEXP and evaluates BODY

The syntax

http://srfi.schemers.org/srfi-26/srfi-26.html

Chapter 5: Supported language 30

(receive VALUEEXP)
is equivalent to
(receive _ VALUEEXP _)

set!-values [syntax]
(set!-values (NAME ...) EXP)

Assigns the result values of expression EXP to multiple variables.

5.4.4 Substitution forms and macros

define-constant [syntax]
(define-constant NAME CONST)

Define a variable with a constant value, evaluated at compile-time. Any reference
to such a constant should appear textually after its definition. This construct is
equivalent to define when evaluated or interpreted. Constant definitions should
only appear at toplevel. Note that constants are local to the current compilation unit
and are not available outside of the source file in which they are defined. Names of
constants still exist in the Scheme namespace and can be lexically shadowed. If the
value is mutable, then the compiler is careful to preserve its identity. CONST may be
any constant expression, and may also refer to constants defined via define-constant
previously. This for should only be used at top-level.

define-inline [syntax]
(define-inline (NAME VAR ... [. VAR]) BODY ...)
(define-inline NAME EXP)

Defines an inline procedure. Any occurrence of NAME will be replaced by EXP or
(lambda (VAR ... [. VAR]) BODY ...). This is similar to a macro, but variable-
names and -scope will be correctly handled. Inline substitutions take place after
macro-expansion. EXP should be a lambda-expression. Any reference to NAME should
appear textually after its definition. Note that inline procedures are local to the
current compilation unit and are not available outside of the source file in which they
are defined. Names of inline procedures still exist in the Scheme namespace and can
be lexically shadowed. This construct is equivalent to define when evaluated or
interpreted. Inline definitions should only appear at toplevel.

define-macro [syntax]
(define-macro (NAME VAR ... [. VAR]) EXP1 ...)
(define-macro NAME (lambda (VAR ... [. VAR]) EXP1 ...))

(define-macro NAME1 NAME2)

Define a globally visible macro special form. The macro is available as soon as it
is defined, i.e. it is registered at compile-time. If the file containing this definition
invokes eval and the declaration run-time-macros (or the command line option -
run-time-macros) has been used, then the macro is visible in evaluated expressions
during runtime. The second possible syntax for define-macro is allowed for porta-
bility purposes only. In this case the second argument must be a lambda-expression
or a macro name. Only global macros can be defined using this form. (define-macro

Chapter 5: Supported language 31

NAME1 NAME2) simply copies the macro definition from NAME2 to NAME1, creating an
alias.

This form is also available with the syntax-case macro system.

5.4.5 Conditional forms

switch [syntax]
(switch EXP (KEY EXP1 ...) ... [(else EXPn ...)])

This is similar to case, but a) only a single key is allowed, and b) the key is evaluated.

unless [syntax]
(unless TEST EXP1 EXP2 ...)

Equivalent to:
(if (not TEST) (begin EXP1 EXP2 ...))

when [syntax]
(when TEST EXP1 EXP2 ...)

Equivalent to:
(if TEST (begin EXP1 EXP2 ...))

5.4.6 Record structures

define-record [syntax]
(define-record NAME SLOTNAME ...)

Defines a record type. Call make-NAME to create an instance of the structure (with
one initialization-argument for each slot). (NAME? STRUCT) tests any object for being
an instance of this structure. Slots are accessed via (NAME-SLOTNAME STRUCT) and
updated using (NAME-SLOTNAME-set! STRUCT VALUE).

(define-record point x y)

(define pl (make-point 123 456))

(point? p1) ==> #t
(point-x pl) ==> 123
(point-y-set! pl 99)
(point-y p1) ==> 99
define-record-printer [syntax]

(define-record-printer (NAME RECORDVAR PORTVAR) BODY ...)
(define-record-printer NAME PROCEDURE)

Defines a printing method for record of the type NAME by associating a procedure
with the record type. When a record of this type is written using display, write
or print, then the procedure is called with two arguments: the record to be printed
and an output-port.

(define-record foo x y z)

(define f (make-foo 1 2 3))

(define-record-printer (foo x out)

Chapter 5: Supported language 32

(fprintf out "#,(foo S "5 “S)"
(foo-x x) (foo-y x) (foo-z x)))
(define-reader-ctor ’foo make-foo)
(define s (with-output-to-string
(lambda () (write £))))
s ==> "#,(foo 1 2 3)"
(equal? f (with-input-from-string
s read))) ==> #t

define-record-printer works also with SRFI-9 record types.

define-record-type [syntax]
(define-record-type NAME (CONSTRUCTOR TAG ...) PREDICATE
(FIELD ACCESSOR [MODIFIER]) ...)

SRFI-9 record types. For more information see the documentation for SRFI-9

5.4.7 Other forms

assert [syntax]
(assert EXP [STRING ARG ...])

Signal error if EXP evaluates to false. An optional message STRING and arguments ARG

. may be supplied to give a more informative error-message. If compiled in unsafe
mode (either by specifying the —unsafe compiler option or by declaring (unsafe)),
then this expression expands to an unspecified value.

cond-expand [syntax]
(cond-expand FEATURE-CLAUSE ...)

SRFI-0. Expands by selecting feature clauses. Predefined feature-identifiers are srfi-
0, srfi-2, srfi-6, srfi-8, srfi-9, srfi-10, and chicken. In strict-srfi-0
mode only srfi-0 and chicken are defined. If the source file containing this form is
currently compiled, the feature compiling is defined. For further information, see the
documentation for SRFI-0 This form is allowed to appear in non-toplevel expressions.

critical-section [syntax]
(critical-section BODY ...)

Evaluate BODY ... with timer-interrupts temporarily disabled.

ensure [syntax]
(ensure PREDICATE EXP [ARGUMENTS ...])

Evaluates the expression EXP and applies the one-argument procedure PREDICATE to
the result. If the predicate returns #f an error is signaled, otherwise the result of EXP
is returned. If compiled in unsafe mode (either by specifying the -unsafe compiler
option or by declaring (unsafe)), then this expression expands to an unspecified
value. If specified, the optional ARGUMENTS are used as arguments to the invocation of
the error-signalling code, as in (error ARGUMENTS ...). If no ARGUMENTS are given, a
generic error message is displayed with the offending value and PREDICATE expression.

http://srfi.schemers.org/srfi-9/srfi-9.html
http://srfi.schemers.org/srfi-0/srfi-0.html

Chapter 5: Supported language 33

eval-when [syntax]
(eval-when (SITUATION ...) EXP ...)

Controls evaluation/compilation of subforms. SITUATION should be one of the sym-
bols eval, compile or load. When encountered in the evaluator, and the situation
specifier eval is not given, then this form is not evaluated and an unspecified value
is returned. When encountered while compiling code, and the situation specifier
compile is given, then this form is evaluated at compile-time. When encountered
while compiling code, and the situation specifier load is not given, then this form is
ignored and an expression resulting into an unspecified value is compiled instead.

The following table should make this clearer:

in compiled code In interpreted code
eval ignore evaluate
compile evaluate at compile time ignore
load compile as normal ignore

The situation specifiers compile-time and run-time are also defined and have the
same meaning as compile and load, respectively.

Note: It is currently not possible to use define-syntax or define inside eval-when
forms when hygienic macros are enabled.

include [syntax]
(include STRING)

Include toplevel-expressions from the given source file in the currently com-
piled/interpreted program. If the included file has the extension .scm, then it may
be omitted. The file is searched in the current directory and, if not found, in all
directories specified in the -include-path option.

nth-value [syntax]
(nth-value N EXP)

Returns the Nth value (counting from zero) of the values returned by expression EXP.

time [syntax]
(time EXP1 ...)

Evaluates EXP1 ... and print elapsed time and memory information. The result of
the last expression is returned.

5.5 Declarations

declare [syntax]
(declare DECLSPEC ...)

Process declaration specifiers. Declarations always override any command-line set-
tings. Declarations are valid for the whole compilation-unit (source file), the position
of the declaration in the source file can be arbitrary. Declarations are ignored in the
interpreter but not in code evaluated at compile-time (by eval-when or in syntax
extensions loaded via require-extension or require-for-syntax. DECLSPEC may
be any of the following:

Chapter 5: Supported language 34

always-bound [declaration specifier]
(always-bound SYMBOL ...)

Declares that the given variables are always bound and accesses to those have
not to be checked.

block [declaration specifier]
(block)

Assume global variables are never redefined. This is the same as specifying the
-block option.

block-global [declaration specifier]
hide [declaration specifier]
(block-global SYMBOL ...)
(hide SYMBOL ...)

Declares that the toplevel bindings for SYMBOL ... should not be accessible
from code in other compilation units or by eval. Access to toplevel bindings
declared as block global is also more efficient.

bound-to-procedure [declaration specifier]
(bound-to-procedure SYMBOL ...)

Declares that the given identifiers are always bound to procedure values.

c-options [declaration specifier]
(c-options STRING ...)

Declares additional C/C++ compiler options that are to be passed to the sub-
sequent compilation pass that translates C to machine code. This declaration
will only work if the source file is compiled with the csc compiler driver.

compress-literals [declaration specifier]
(compress-literals [THRESHOLD [INITIALIZER]])

The same as the -compress-literals compiler option. The threshold argu-
ment defaults to 50. If the optional argument INITIALIZER is given, then the
literals will not be created at module startup, but when the procedure with this
name will be called.

export [declaration specifier]
(export SYMBOL ...)

The opposite of hide. All given identifiers will be exported and all toplevel vari-
ables not listed will be hidden and not be accessible outside of this compilation
unit. When the hygienic (syntax-case) macro system is used, the exported
identifier may also have the form (MODULE-NAME SYMBOL ...), which specifies
identifiers to be exported from a module as (undecorated) toplevel variables.

foreign-declare [declaration specifier]
(foreign-declare STRING ...)

Include given strings verbatim into header of generated file.

Chapter 5: Supported language 35

foreign-parse [declaration specifier]
(foreign-parse STRING ...)
Parse given strings and generate foreign-interface bindings. See Section 6.7 [The
Easy Foreign Function Interface|, page 132 for more information.

interrupts-enabled [declaration specifier]
(interrupts-enabled)

Enable timer-interrupts checks in the compiled program (the default).

disable-interrupts [declaration specifier]
not [declaration specifier]
(disable-interrupts)
(not interrupts-enabled)
Disable timer-interrupts checks in the compiled program. Threads can not be
preempted in main- or library-units that contain this declaration.

link-options [declaration specifier]
(1ink-options STRING ...)

Declares additional linker compiler options that are to be passed to the sub-
sequent compilation pass that links the generated code into an executable or
library. This declaration will only work if the source file is compiled with the
csc compiler driver.

no-argc-checks [declaration specifier]
(no-argc-checks)

Disables argument count checking.

no-bound-checks [declaration specifier]
(no-bound-checks)

Disables the bound-checking of toplevel bindings.

no-procedure-checks [declaration specifier]
(no-procedure-checks)

Disables checking of values in operator position for being of procedure type.

post-process [declaration specifier]
(post-process STRING ...)
Arranges for the shell commands STRING ... to be invoked after the current

file has been translated to C. Any occurrences of the substring $@ in the strings
given for this declaration will be replaced by the pathname of the currently
compiled file, without the file-extension. This declaration will only work if the
source file is compiled with the csc compiler driver.

TYPE [declaration specifier]
fixnum-arithmetic [declaration specifier]
([number-type] TYPE)
(fixnum-arithmetic)
Declares that only numbers of the given type are used. TYPE may be fixnum or
generic (which is the default).

Chapter 5: Supported language 36

run-time-macros [declaration specifier]
(run-time-macros)

Equivalent to the compiler option of the same name - low-level macros defined
in the compiled code are also made available at runtime.

standard-bindings [declaration specifier]
([not] standard-bindings SYMBOL ...)

Declares that all given standard procedures (or all if no symbols are specified)
are never globally redefined. If not is specified, then all but the given standard
bindings are assumed to be never redefined.

extended-bindings [declaration specifier]
([not] extended-bindings SYMBOL ...)

Declares that all given non-standard and CHICKEN-specific procedures (or all
if no symbols are specified) are never globally redefined. If not is specified, then
all but the given extended bindings are assumed to be never redefined.

usual-integrations [declaration specifier]
([not] usual-integrations SYMBOL ...)

Declares that all given standard and extended bindings (or all if no symbols
are specified) are never globally redefined. If not is specified, then all but the
given standard and extended bindings are assumed to be never redefined. Note
that this is the default behaviour, unless the -no-usual-integrations option
has been given.

unit [declaration specifier]
(unit SYMBOL)

Specify compilation unit-name (if this is a library)

unsafe [declaration specifier]
not [declaration specifier]
(unsafe)
(not safe)

Do not generate safety-checks. This is the same as specifying the -unsafe
option. Also implies

(declare (no-bound-checks) (no-procedure-checks) (no-argc-checks))

uses [declaration specifier]
(uses SYMBOL ...)

Gives a list of used library-units. Before the toplevel-expressions of the main-
module are executed, all used units evaluate their toplevel-expressions in the
order in which they appear in this declaration. If a library unit A uses another
unit B, then B’s toplevel expressions are evaluated before A’s. Furthermore, the
used symbols are registered as features during compile-time, so cond-expand
knows about them.

Chapter 5: Supported language 37

5.6 Parameters

Certain behavior of the interpreter and compiled programs can be customized via 'param-
eters’, where a parameter is a procedure of zero or one arguments. To retrieve the value of
a parameter call the parameter-procedure with zero arguments. To change the setting of
the parameter, call the parameter-procedure with the new value as argument:

(define foo (make-parameter 123))

(foo) ==> 123
(foo 99)
(foo) ==> 99

Parameters are fully thread-local, each thread of execution owns a local copy of a pa-
rameters’ value.

CHICKEN implements SRFI-39

make-parameter [procedure]
(make-parameter VALUE [GUARD])

Returns a procedure that accepts zero or one argument. Invoking the procedure with
zero arguments returns VALUE. Invoking the procedure with one argument changes
its value to the value of that argument (subsequent invocations with zero parameters
return the new value). GUARD should be a procedure of a single argument. Any new
values of the parameter (even the initial value) are passed to this procedure. The
guard procedure should check the value and/or convert it to an appropriate form.

case-sensitive [parameter]
If true, then read reads symbols and identifiers in case-sensitive mode and uppercase
characters in symbols are printed escaped. Defaults to #t.

dynamic-load-libraries [parameter]
A list of strings containing shared libraries that should be checked for explicitly loaded
library units (this facility is not available on all platforms). See load-library.

command-line-arguments [parameter]
Contains the list of arguments passed to this program, with the name of the program
and any runtime options (all options starting with -:) removed.

exit-handler [parameter]
A procedure of a single optional argument. When exit is called, then this procedure
will be invoked with the exit-code as argument. The default behavior is to terminate
the program.

eval-handler [parameter]
A procedure of one or two arguments. When eval is invoked, it calls the value of
this parameter with the same arguments. The default behavior is to evaluate the
argument expression and to ignore the second parameter.

force-finalizers [parameter]
If true, force and execute all pending finalizers before exiting the program (either
explicitly by exit or implicitly when the last toplevel expression has been executed).
Default is #t.

http://srfi.schemers.org/srfi-39/srfi-39.html

Chapter 5: Supported language 38

implicit-exit-handler [parameter]
A procedure of no arguments. When the last toplevel expression of the program has
executed, then the value of this parameter is called. The default behaviour is to do
nothing, or, if one or more entry-points were defined (see: Section 6.3 [Entry points],
page 124) to enter a loop that waits for callbacks from the host program.

keyword-style [parameter]
Enables alternative keyword syntax, where STYLE may be either #:prefix (as in
Common Lisp) or #:suffix (as in DSSSL). Any other value disables the alternative
syntaxes.

load-verbose [parameter]
A boolean indicating whether loading of source files, compiled code (if available) and
compiled libraries should display a message.

repl-prompt [parameter]
A procedure that should evaluate to a string that will be printed before reading
interactive input from the user in a read-eval-print loop. Defaults to (lambda ()
ll#;N> II).

reset-handler [parameter]
A procedure of zero arguments that is called via reset. The default behavior in
compiled code is to invoke the value of (exit-handler). The default behavior in
the interpreter is to abort the current computation and to restart the read-eval-print
loop.

strict-reader [parameter]
If true, then most non-standard read syntax is disabled. Defaults to #f.

5.7 Unit library

This unit contains basic Scheme definitions. This unit is used by default, unless the program
is compiled with the -explicit-use option.

5.7.1 Arithmetic

add1l [procedure]
subl [procedure]
(add1l N)
(subl N)

Adds/subtracts 1 from N.

bitwise-and [|
bitwise-ior [|
bitwise-xor [procedure]
bitwise-not []
arithmetic-shift []
(bitwise-and N1 ...)

Chapter 5: Supported language 39

(bitwise—-ior N1 ...)
(bitwise-xor N1 ...)
(bitwise-not N)
(arithmetic-shift N1 N2)

Binary integer operations. arithmetic-shift shifts the argument N1 by N2 bits to
the left. If N2 is negative, than N1 is shifted to the right. These operations only accept
exact integers or inexact integers in word range (32 bit signed on 32-bit platforms, or
64 bit signed on 64-bit platforms).

fixnum? [procedure]

(fixnum? X)

Returns #t if X is a fixnum, or #f otherwise.

fx+ [procedure]
fx- [procedure]
fx* [procedure]
fx/ [procedure]
fxmod [procedure]
fxneg [procedure]
fxmin [procedure]
fxmax [procedure]
fx= [procedure]
x> [procedure]
fx< [procedure]
fx>= [procedure]
fx<= [procedure]
fxand [procedure]
fxior [procedure]
fxxor [procedure]
fxnot [procedure]
fxshl [procedure]
fxshr [procedure]

(fx+ N1 N2)

(fx- N1 N2)

(fx* N1 N2)

(fx/ N1 N2)

(fxmod N1 N2)

(fxneg N)

(fxmin N1 N2)
(fxmax N1 N2)
(fx= N1 N2)
(fx> N1 N2)
(fx< N1 N2)
(fx>= N1 N2)
(fx<= N1 N2)
(fxand N1 N2)
(fxior N1 N2)

Chapter 5: Supported language 40

(fxxor N1 N2)

(fxnot N)

(fxshl N1 N2)

(fxshr N1 N2)
Arithmetic fixnum operations. These procedures do not check their arguments, so
non-fixnum parameters will result in incorrect results. fxneg negates its argument.
On division by zero, fx/ and fxmod signal a condition of kind (exn arithmetic).
fxshl and fxshr perform arithmetic shift left and right, respectively.

fp+ [procedure]
fp- [procedure]
fp* [procedure]
fp/ [procedure]
fpneg [procedure]
fpmin [procedure]
fpmax [procedure]
fp= [procedure]
fp> [procedure]
fp< [procedure]
fp>= [procedure]
fp<= [procedure]
(fp+ N1 N2)
(fp- N1 N2)
(fp* N1 N2)
(fp/ N1 N2)
(fpneg N)
(fpmin N1 N2)
(fpmax N1 N2)
(fp= N1 N2)
(fp> N1 N2)
(fp< N1 N2)
(fp>= N1 N2)
(fp<= N1 N2)
Arithmetic floating-point operations. These procedures do not check their arguments,
so non-flonum parameters will result in incorrect results. On division by zero, fp/
signals a condition of kind (exn arithmetic).
signum [procedure]

(signum N)
Returns 1 if N is positive, -1 if N is negative or 0 if N is zero.

5.7.2 File Input/Output

current-error-port [procedure]
(current-error-port [PORT])
Returns default error output port. If PORT is given, then that port is selected as the
new current error output port.

Chapter 5: Supported language 41

end-of-file [procedure]
(end-of-file)

Returns the end-of-file object.

flush-output [procedure]
(flush-output [PORT])

Write buffered output to the given output-port. PORT defaults to the value of
(current-output-port).

port-name [procedure]
(port-name PORT)

Fetch filename from PORT. This returns the filename that was used to open this file.
Returns a special tag string, enclosed into parentheses for non-file ports.

port-position [procedure]
(port-position PORT)

Returns the current position of PORT as two values: row and column number. If
the port does not support such an operation an error is signaled. This procedure is
currently only available for input ports.

set-port-name! [procedure]
(set-port-name! PORT STRING)

Sets the name of PORT to STRING.

5.7.3 Files

delete-file [procedure]
(delete-file STRING)

Deletes the file with the pathname STRING. If the file does not exist, an error is
signaled.

file-exists? [procedure]
(file-exists? STRING)

Returns #t if a file with the given pathname exists, or #f otherwise.

pathname-directory-separator [variable]
Contains the directory-separator character for pathnames on this platform.

pathname-extension-separator [variable]
Contains the extension-separator character for pathnames on this platform.

rename-file [procedure]
(rename-file OLD NEW)

Renames the file or directory with the pathname OLD to NEW. If the operation does
not succeed, an error is signaled.

Chapter 5: Supported language 42

5.7.4 String ports

get-output-string [procedure]
(get-output-string PORT)

Returns accumulated output of a port created with (open-output-string).

open-input-string [procedure]
(open-input-string STRING)

Returns a port for reading from STRING.

open-output-string [procedure]
(open-output-string)

Returns a port for accumulating output in a string.
5.7.5 Feature identifiers

CHICKEN maintains a global list of “features” naming functionality available int the cur-
rent system. Additionally the cond-expand form accesses this feature list to infer what fea-
tures are provided. Predefined features are chicken, and the SRFIs (Scheme Request For
Implementation) provided by the base system: srfi-23, srfi-30, srfi-39. If the eval
unit is used (the default), the features srfi-0, srfi-2, srfi-6, srfi-8, srfi-9 and
srfi-10 are defined. When compiling code (during compile-time) the feature compiling
is registered. When evaluating code in the interpreter (csi), the feature csi is registered.
When evaluating or compiling code using the highlevel (syntax-case) macro system, the
feauture hygienic-macros is defined.

features [procedure]
(features)

Returns a list of all registered features that will be accepted as valid feature-identifiers
by cond-expand.

test-feature? [procedure]
(test-feature? ID ...)
Returns #t if all features with the given feature-identifiers ID ... are registered.
register-feature! [procedure]

(register-feature! FEATURE ...)

Register one or more features that will be accepted as valid feature-identifiers by
cond-expand. FEATURE ... may be a keyword, string or symbol.

unregister-feature! [procedure]
(unregister-feature! FEATURE ...)

Unregisters the specified feature-identifiers. FEATURE ... may be a keyword, string
or symbol.

Chapter 5: Supported language 43

5.7.6 Keywords

Keywords are special symbols prefixed with #: that evaluate to themselves. Procedures
can use keywords to accept optional named parameters in addition to normal required
parameters. Assignment to and bindings of keyword symbols is not allowed. The parameter
keyword-style and the compiler/interpreter option ~keyword-style can be used to allow
an additional keyword syntax, either compatible to Common LISP, or to DSSSL.

get-keyword [procedure]
(get-keyword KEYWORD ARGLIST [THUNK])

Returns the argument from ARGLIST specified under the keyword KEYWORD. If the
keyword is not found, then the zero-argument procedure THUNK is invoked and the
result value is returned. If THUNK is not given, #f is returned.

(define (increase x . args)

(+ x (get-keyword #:amount args (lambda () 1))))
(increase 123) ==> 124
(increase 123 #:amount 10) ==> 133

Note: the KEYWORD may actually be any kind of object.

keyword? [procedure]
(keyword? X)

Returns #t if X is a keyword symbol, or #f otherwise.

keyword->string [procedure]
(keyword->string KEYWORD)

Transforms KEYWORD into a string.

string->keyword [procedure]
(string->keyword STRING)

Returns a keyword with the name STRING.

5.7.7 Exceptions

CHICKEN implements the (currently withdrawn) SRFI-12 exception system. For more
information, see the SRFI-12 document

condition-case [syntax]
(condition-case EXPRESSION CLAUSE ...)

Evaluates EXPRESSION and handles any exceptions that are covered by CLAUSE ...,
where CLAUSE should be of the following form:

CLAUSE = ([VARIABLE] (KIND ...) BODY ...)
If provided, VARIABLE will be bound to the signalled exception object. BODY ... is
executed when the exception is a property- or composite condition with the kinds

given KIND ... (unevaluated). If no clause applies, the exception is re-signalled in
the same dynamic context as the condition-case form.

http://srfi.schemers.org/srfi-12/srfi-12.html

Chapter 5: Supported language 44

(define (check thunk)
(condition-case (thunk)
[(exn file) (print "file error")]
[(exn) (print "other error")]
[var () (print "something else")]))

(check (lambda () (open-input-file ""))) ; —> "file error"
(check (lambda () some-unbound-variable)) ; -> "othererror"
(check (lambda () (signal 99))) ; —> "something else"

(condition-case some-unbound-variable
[(exn file) (print "ignored)]) ; —> signals error

All error-conditions signalled by the system are of kind exn. The following composite
conditions are additionally defined:

(exn arity)
Signalled when a procedure is called with the wrong number of arguments.

(exn type)
Signalled on type-mismatch errors, for example when an argument of the wrong
type is passed to a builtin procedure.

(exn arithmetic)
Signalled on arithmetic errors, like division by zero.

(exn i/o0)

Signalled on input/output errors.

(exn i/o file)
Signalled on file-related errors.

(exn i/o net)
Signalled on network errors.

(exn bounds)
Signalled on errors caused by accessing non-existent elements of a collection.

(exn runtime)
Signalled on low-level runtime-system error-situations.

(exn runtime limit)
Signalled when an internal limit is exceeded (like running out of memory).

(exn match)
Signalled on errors raised by failed matches (see the section on match).

(exn syntax)
Signalled on syntax errors.

Notes:

e All error-exceptions (of the kind exn) are non-continuable.

Chapter 5: Supported language 45

e FError-exceptions of the exn kind have additional arguments and location properties
that contain the arguments passed to the error-handler and the name of the procedure
where the error occurred (if available).

e When the posix unit is available and used, then a user-interrupt (signal/int) signals
an exception of the kind user-interrupt.

e the procedure condition-property-accessor accepts an optional third argument.
If the condition does not have a value for the desired property and if the optional
argument is given and false, no error is signalled and the accessor returns #g.

5.7.8 Environment information and system interface

argv

exit

[procedure]
(argv)
Return a list of all supplied command-line arguments. The first item in the list is
a string containing the name of the executing program. The other items are the
arguments passed to the application. This list is freshly created on every invocation
of (argv). It depends on the host-shell whether arguments are expanded (’globbed’)
or not.

[procedure]
(exit [CODE])

Exit the running process and return exit-code, which defaults to 0 (Invokes exit-
handler).

build-platform [procedure]

(build-platform)

Returns a symbol specifying the toolset which has been used for building the executing
system, which is one of the following:

djgpp

cygwin

msvce

mingw32

gnu

metrowerks

unknown

chicken-version [procedure]

(chicken-version)
Returns a string containing the version number of the CHICKEN runtime system.

errno [procedure]

(errno)

Returns the error code of the last system call.

getenv [procedure]

(getenv STRING)

Returns the value of the environment variable STRING or #f if that variable is not
defined.

Chapter 5: Supported language 46

machine-type [procedure]
(machine-type)

Returns a symbol specifying the processor on which this process is currently running,
which is one of the following;:

alpha
mips

hppa
ultrasparc
sparc

ppc

ia64

x86

x86-64
unknown

software-type [procedure]
(software-type)

Returns a symbol specifying the operating system on which this process is currently
running, which is one of the following:

msdos
windows
unix
macos
unknown

software-version [procedure]
(software-version)

Returns a symbol specifying the operating system version on which this process is
currently running, which is one of the following:

linux
freebsd
netbsd
openbsd
macosx
hpux
solaris
sunos
unknown

c-runtime [procedure]
(c-runtime)

Returns a symbol that designates what kind of C runtime library has been linked with
this version of the Chicken libraries. Possible return values are static, dynamic or
unknown. On systems not compiled with the Microsoft C compiler, c-runtime always
returns unknown.

Chapter 5: Supported language 47

chicken-home [procedure]
(chicken-home)

Returns a string given the installation directory (usually /usr/local/share/chicken
on UNIX-like systems). If the environment variable CHICKEN_HOME is set, then its
value will be returned.

system [procedure]
(system STRING)

Execute shell command. The functionality offered by this procedure depends on the
capabilities of the host shell.

5.7.9 Execution time

cpu-time [procedure]
(cpu-time)
Returns the used CPU time of the current process in milliseconds as two values: the
time spent in user code, and the time spent in system code. On platforms where user
and system time can not be differentiated, system time will be always be 0.

current-milliseconds [procedure]
(current-milliseconds)

Returns the number of milliseconds since process- or machine startup.

current-seconds [procedure]
(current-seconds)

Returns the number of seconds since midnight, Jan. 1, 1970.

5.7.10 Interrupts and error-handling

enable-interrupts [procedure]
disable-interrupts [procedure]
(enable-interrupts)
(disable-interrupts)

Enables/disables processing of timer-interrupts and interrupts caused by signals.

(disable-interrupts)
(disable-interrupts)
(enable-interrupts)
; <interrupts still disabled - call enable-interrupts once more>

enable-warnings [procedure]
(enable-warnings [BOOL])

Enables or disables warnings, depending on wether BOOL is true or false. If called
with no arguments, this procedure returns #t if warnings are currently enabled, or
#f otherwise. Note that this is not a parameter. The current state (wether warnings
are enabled or disabled) is global and not thread-local.

Chapter 5: Supported language 48

error [procedure]
(error [LOCATION] STRING EXP ...)

Prints error message, writes all extra arguments to the value of (current-error-
port) and invokes the current value of (error-handler). This conforms to SRFI-23

If LOCATION is given and a symbol, it specifies the “location” (the name of the
procedure) where the error occurred.

print-backtrace [procedure]
(print-backtrace [PORT])

Prints a backtrace of the procedure call history to PORT, which defaults to (current-
error-port). Backtrace information is only generated in compiled code, with a
-debug-level >= 1.

print-error-message [procedure]
(print-error-message EXN [PORT [STRING]])

Prints an appropriate error message to PORT (which defaults to the value of (current-
error-port) for the object EXN. EXN may be a condition, a string or any other
object. If the optional argument STRING is given, it is printed before the error-
message. STRING defaults to "Error:".

reset [procedure]
(reset)

Reset program (Invokes reset-handler).

5.7.11 Garbage collection

gc [procedure]
(gc [FLAGI)

Invokes a garbage-collection and returns the number of free bytes in the heap. The
flag specifies whether a minor (#f) or major (#t) GC is to be triggered. If no argument
is given, #t is assumed. When the argument is #t, all pending finalizers are executed.

memory-statistics [procedure]
(memory-statistics)

Performs a major garbage collection and returns a three element vector con-
taining the total heap size in bytes, the number of bytes currently used and
the size of the nursery (the first heap generation). Note that the actual heap is
actually twice the size given in the heap size, because CHICKEN uses a copying
semi-space collector.

set-finalizer! [procedure]
(set-finalizer! X PROC)

Registers a procedure of one argument PROC, that will be called as soon as the non-
immediate data object X is about to be garbage-collected (with that object as its
argument). Note that the finalizer will not be called when interrupts are disabled.
This procedure returns X.

http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-23/srfi-23.html

Chapter 5: Supported language 49

set-gc-report! [procedure]
(set-gc-report! FLAG)

Print statistics after every GC, depending on FLAG. A value of #t shows statistics
after every major GC. A true value different from #t shows statistics after every minor
GC. #f switches statistics off.

5.7.12 Other control structures

andmap [procedure]
(andmap PROC LIST1 ...)

Repeatedly calls PROC with arguments taken from LIST1 If any invocation should
return #f£, the result of andmap is #£. If all invocations return a true result, then the
result of andmap is #t.

ormap [procedure]
(ormap PROC LIST1 ...)

Repeatedly calls PROC with arguments taken from LIST1 If any invocation should
return a value different from #f£, then this value is returned as the result of ormap. If
all invocations return #f, then the result of ormap is #f£.

5.7.13 String utilities

reverse-list->string [procedure]
(reverse-list->string LIST)

Returns a string with the characters in LIST in reverse order. This is equivalent to
(list->string (reverse LIST)), but much more efficient.

5.7.14 Generating uninterned symbols

gensym [procedure]
(gensym [STRING-OR-SYMBOL])

Returns a newly created uninterned symbol. If an argument is provided, the new
symbol is prefixed with that argument.
string->uninterned-symbol [procedure]
(string->uninterned-symbol STRING)

Returns a newly created, unique symbol with the name STRING.
5.7.15 Standard Input/Output

port? [procedure]
(port? X)

Returns #t if X is a port object or #f otherwise.

Chapter 5: Supported language 50

print [procedure]
(print EXP1 EXP2 ...)

Outputs the arguments EXP1 EXP2 ... using display and writes a newline character
to the port that is the value of (current-output-port). Returns its first argument.

print* [procedure]
(print* EXP1 ...)

Similar to print, but does not output a terminating newline character and performes
a flush-outout after writing its arguments.

5.7.16 User-defined named characters

char-name [procedure]
(char-name SYMBOL-OR-CHAR [CHAR])

This procedure can be used to inquire about character names or to define new ones.
With a single argument the behavior is as follows: If SYMBOL-OR-CHAR is a symbol,
then char-name returns the character with this name, or #£f if no character is defined
under this name. If SYMBOL-OR-CHAR is a character, then the name of the character
is returned as a symbol, or #f if the character has no associated name.

If the optional argument CHAR is provided, then SYMBOL-OR-CHAR should be a symbol
that will be the new name of the given character. If multiple names designate the
same character, then the write will use the character name that was defined last.

(char-name ’space) ==> #\space
(char-name #\space) ==> space
(char-name ’bell) ==> #f
(char-name (integer->char 7)) ==> #f
(char-name ’bell (integer->char 7))

(char-name ’bell) ==> #\bell
(char->integer (char-name ’bell)) ==>7

5.7.17 Vectors

vector-copy! [procedure]
(vector-copy! VECTOR1 VECTOR2 [COUNT])

Copies contents of VECTOR1 into VECTOR2. If the argument COUNT is given, it specifies
the maximal number of elements to be copied. If not given, the minimum of the
lengths of the argument vectors is copied.

Exceptions: (exn bounds)

vector-resize [procedure]
(vector-resize VECTOR N [INIT])

Creates and returns a new vector with the contents of VECTOR and length N. If N is
greater than the original length of VECTOR, then all additional items are initialized to
INIT. If INIT is not specified, the contents are initialized to some unspecified value.

Chapter 5: Supported language 51

5.7.18 The unspecified value

void [procedure]
(void)
Returns an unspecified value.
5.7.19 call/cc
call/cc [procedure]

5.8

(call/cc PROCEDURE)

An alias for call-with-current-continuation.

Unit eval

This unit has support for evaluation and macro-handling. This unit is used by default,
unless the program is compiled with the —explicit-use option.

5.8.1 Loading code

load

[procedure]
(load FILE [EVALPROC])

Loads and evaluates expressions from the given source file, which may be either a
string or an input port. Each expression read is passed to EVALPROC (which defaults
to eval). On platforms that support it (currently Linux ELF and Solaris), load can
be used to load compiled programs:

% cat x.scm

(define (hello) (print "Hello!"))

% chicken x.scm -quiet -dynamic

% gcc x.c -shared -fPIC ‘chicken-config -cflags -shared -1libs‘ -o x.so
% csi -quiet

#;1> (load "x.so")

; loading x.so ...

#;2> (hello)

Hello!

#;3>

The second argument to load is ignored when loading compiled code. The same
compiled object file can not be loaded more than once. If source code is loaded from
a port, then that port is closed after all expressions have been read.

load-library [procedure]

(load-library UNIT [LIBRARYFILE])

On platforms that support dynamic loading, load-1library loads the compiled library
unit UNIT (which should be a symbol). If the string LIBRARYFILE is given, then the
given shared library will be loaded and the toplevel code of the contained unit will

Chapter 5: Supported language 52

be executed. If no LIBRARYFILE argument is given, then the following libraries are
checked for the required unit:

e a file named “<UNIT>.so”

e the files given in the parameter dynamic-load-libraries

If the unit is not found, an error is signaled. When the library unit can be success-
fully loaded, a feature-identifier named UNIT is registered. If the feature is already
registered before loading, the load-library does nothing.

load-noisily [procedure]
(load-noisily FILE #!key EVALUATOR TIME PRINTER)

As load but the result(s) of each evaluated toplevel-expression is written to standard
output. If EVALUATOR is given and not #£f, then each expression is evaluated by calling
this argument with the read expression as argument. If TIME is given and not false,
then the execution time of each expression is shown (as with the time macro). If
PRINTER is given and not false, then each expression is printed before evaluation by
applying the expression to the value of this argument, which should be a one-argument
procedure.

5.8.2 Read-eval-print loop

repl [procedure]
(repl)

Start a new read-eval-print loop. Sets the reset-handler so that any invocation of
reset restarts the read-eval-print loop. Also changes the current error-handler to
display a message, write any arguments to the value of (current-error-port) and
reset.

5.8.3 Macros

get-line-number [procedure]
(get-line-number EXPR)

If EXPR is a pair with the car being a symbol, and line-number information is available
for this expression, then this procedure returns the associated line number. If line-
number information is not available, then #f is returned. Note that line-number
information for expressions is only available in the compiler.

macro? [procedure]
(macro? SYMBOL)

Returns #t if there exists a macro-definition for SYMBOL.

macroexpand [procedure]
(macroexpand X)

If X is a macro-form, expand the macro (and repeat expansion until expression is a
non-macro form). Returns the resulting expression.

Chapter 5: Supported language 53

macroexpand-1 [procedure]
(macroexpand-1 X)

If X is a macro-form, expand the macro. Returns the resulting expression.

undefine-macro! [procedure]
(undefine-macro! SYMBOL)

Remove the current macro-definition of the macro named SYMBOL.

syntax-error [procedure]
(syntax-error [LOCATION] MESSAGE ARGUMENT ...)

Signals an exception of the kind (exn syntax). Otherwise identical to error.

5.8.4 Loading extension libraries

This functionality is only available on platforms that support dynamic loading of compiled
code. Currently Linux, BSD, Solaris, Windows (with Cygwin) and HP/UX are supported.

repository-path [parameter]
Contains a string naming the path to the extension repository, which defaults
to either the value of the environment variable CHICKEN_REPOSITORY, the value
of the environment variable CHICKEN_HOME or the default library path (usually
/usr/local/lib/chicken on UNIX systems).

extension-info [procedure]
(extension-info ID)

If an extension with the name ID is installed and if it has a setup-information list regis-
tered in the extension repository, then the info-list is returned. Otherwise extension-
info returns #£f.

provide [procedure]
(provide ID ...)

Registers the extension IDs ID ... as loaded. This is mainly intended to provide
aliases for certain extension identifiers.

provided? [procedure]
(provided? ID ...)

Returns #t if the extension with the IDs ID ... are currently loaded, or #f otherwise.
Works also for feature-ids.

require [procedure]
(require ID ...)

If the extension library ID is not already loaded into the system, then require will
lookup the location of the shared extension library and load it. If ID names a library-
unit of the base system, then it is loaded via load-library. If no extension library is
available for the given ID, then an attempt is made to load the file ID.so or ID.scm
(in that order) from one of the following locations:

1. the current directory

Chapter 5: Supported language 54

2. the current include path, which defaults to the pathnames given in CHICKEN_
INCLUDE_PATH and CHICKEN_HOME. In case ID is a list, it is interpreted as a
(relative) pathname.

ID may be a symbol, or a list of symbols. See also: require-for-syntax.

set-extension-specifier! [procedure]
(set-extension-specifier! SYMBOL PROC)

Registers the handler-procedure PROC as a extension-specifier with the name SYMBOL.
This facility allows extending the set of valid extension specifiers to be used with
require-extension. When register-extension is called with an extension spec-
ifier of the form (SPEC ...) and SPEC has been registered with set-extension-
specifier!, then PROC will be called with two arguments: the specifier and the
previously installed handler (or #f if no such handler was defined). The handler
should return a new specifier that will be processed recursively. If the handler returns
a vector, then each element of the vector will be processed recursively. Alternatively
the handler may return a string which specifies a file to be loaded:

(eval-when (compile eval)
(set-extension-specifier!
’my-package
(lambda (spec old)
(make-pathname my-package-directory (->string (cadr spec))))))}

(require-extension (my-package stuff)) ; ——> expands into ’(load "my-package-

Note that the handler has to be registered at compile time, if it is to be visible in
compiled code.

5.8.5 Reader extensions

define-reader-ctor [procedure]
(define-reader-ctor SYMBOL PROC)

Define new read-time constructor for #, read syntax. For further information, see the
documentation for SRFI-10 .

set-read-syntax! [procedure]
(set-read-syntax! CHAR PROC)

When the reader is encounting the non-whitespace character CHAR while reading an
expression from a given port, then the procedure PROC will be called with that port
as its argument. The procedure should return a value that will be returned to the
reader:

; A simple RGB color syntax:

(set-read-syntax! #\%
(lambda (port)
(apply vector
(map (cut string->number <> 16)

http://srfi.schemers.org/srfi-10/srfi-10.html

Chapter 5: Supported language 55

(string-chop (read-string 6 port) 2)))))

(with-input-from-string "(1 2 %f0f0f0 3)" read)
; ==> (1 2 #(240 240 240) 3)

5.8.6 Eval

eval [procedure]
(eval EXP [ENVIRONMENT])

Evaluates EXP and returns the result of the evaluation. The second argument is
optional and defaults to the value of (interaction-environment).

5.9 Unit extras

This unit contains a collection of useful utility definitions. This unit is used by default,
unless the program is compiled with the —explicit-use option.

5.9.1 Lists

alist-ref [procedure]
(alist-ref KEY ALIST [TEST [DEFAULT]])

Looks up KEY in ALIST using TEST as the comparison function (or eqv? if no test was
given) and returns the cdr of the found pair, or DEFAULT (which defaults to #f).

alist-update! [procedure]
(alist-update! KEY VALUE ALIST [TEST])

If the list ALIST contains a pair of the form (KEY . X), then this procedure replaces X
with VALUE and returns ALIST. If ALIST contains no such item, then alist-update!
returns ((KEY . VALUE) . ALIST). The optional argument TEST specifies the com-
parison procedure to search a matching pair in ALIST and defaults to eqv?.

atom? [procedure]
(atom? X)

Returns #t if X is a not list (X is not a pair nor the empty list).

rassoc [procedure]
(rassoc KEY LIST [TEST])

Similar to assoc, but compares KEY with the cdr of each pair in LIST using TEST as
the comparison procedures (which defaults to eqv?.

butlast [procedure]
(butlast LIST)

Returns a fresh list with all elements but the last of LIST.

Chapter 5: Supported language 56

chop [procedure]
(chop LIST N)

Returns a new list of sublists, where each sublist contains N elements of LIST. If LIST

has a length that is not a multiple of N, then the last sublist contains the remaining

elements.
(chop ’(1 23 456) 2) ==> ((12) (34) (56))
(chop ’(a b c d) 3) ==> ((a b c) (d))
compress [procedure]

(compress BLIST LIST)

Returns a new list with elements taken from LIST with corresponding true values in
the list BLIST.

(define nums ’(99 100 110 401 1234))
(compress (map odd? nums) nums) ==> (99 401)

flatten [procedure]
(flatten LIST1 ...)

Returns LIST1 ... concatenated together, with nested lists removed (flattened).

intersperse [procedure]
(intersperse LIST X)

Returns a new list with X placed between each element.

join [procedure]
(join LISTOFLISTS [LIST])

Concatenates the lists in LISTOFLISTS with LIST placed between each sublist. LIST
defaults to the empty list.

(join ’((a b) (c d) (e)) "(xy)) ==>(abxycdzxye)
(join "((p @) O (r (s) ©)) ’(-)) ==> (pq- -1 (8) t)
shuffle [procedure]
(shuffle LIST)
Returns LIST with its elements sorted in a random order.
join could be implemented as follows:

(define (join 1stoflsts #!optional (1st ’()))
(apply append (intersperse lstoflists 1lst)))

tail? [procedure]
(tail? X LIST)
Returns true if X is one of the tails (cdr’s) of LIST.

5.9.2 String-port extensions

call-with-input-string [procedure]
(call-with-input-string STRING PROC)

Calls the procedure PROC with a single argument that is a string-input-port with the
contents of STRING.

Chapter 5: Supported language 57

call-with-output-string [procedure]
(call-with-output-string PROC)

Calls the procedure PROC with a single argument that is a string-output-port. Returns
the accumulated output-string.

with-input-from-string [procedure]
(with-input-from-string STRING THUNK)
Call procedure THUNK with the current input-port temporarily bound to an input-
string-port with the contents of STRING.

with-output-to-string [procedure]
(with-output-to-string THUNK)

Call procedure THUNK with the current output-port temporarily bound to a string-
output-port and return the accumulated output string.

5.9.3 Formatted output

fprintf [procedure]
printf [procedure]
sprintf [procedure]

(fprintf PORT FORMATSTRING ARG ...)
(printf FORMATSTRING ARG)
(sprintf FORMATSTRING ARG ...)

Simple formatted output to a given port (fprintf), the value of (current-output-
port) (printf) or a string (sprintf). The FORMATSTRING can contain any sequence
of characters. The character ‘=’ prefixes special formatting directives:

A write newline character

~S write the next argument

~A display the next argument

“\n skip all whitespace in the format-string until the next non-whitespace
character

"B write the next argument as a binary number

~0 write the next argument as an octal number

“X write the next argument as a hexadecimal number

~C write the next argument as a character

i display <~’

~1 flush all pending output

~? invoke formatted output routine recursively with the next two arguments
as format-string and list of parameters

For more powerful output formatting, see the section about the format unit.

Chapter 5: Supported language 58

5.9.4 Hash tables

clear-hash-table! [procedure]
(clear-hash-table! HASH-TABLE)

Erases all entries in the hash-table HASH-TABLE.

get [procedure]
(get HASH-TABLE KEY PROP)

Returns the value of property PROP of the item KEY in HASH-TABLE . This facility can
be used as a kind of “disembodied” property-list. If no entry named KEY is stored in
the hash-table or if no property PROP for that key exists, #f is returned.

hash-table? [procedure]
(hash-table? X)

Returns #t if the argument is a hash-table.

hash-table->list [procedure]
(hash-table->1ist HASH-TABLE)

Converts HASH-TABLE into an association-list.

hash-table-count [procedure]
(hash-table-count HASH-TABLE)

Returns the number of entries in the given hash-table.

hash-table-size [procedure]
(hash-table-size HASH-TABLE)

Returns the size of the hash-table.

hash-table-for-each [procedure]
(hash-table-for-each PROC HASH-TABLE)

Calls PROC which should expect two arguments. This procedure is called for each
entry in the hash-table with the key and the value as parameters.

hash-table-ref [procedure]
(hash-table-ref HASH-TABLE KEY [DEFAULT])
Returns the entry in the given hash-table under KEY. If no entry is stored in the table,
#f is returned.
hash-table-remove! [procedure]
(hash-table-remove! HASH-TABLE KEY)
Removes an entry in the given hash-table.
hash-table-set! [procedure]
(hash-table-set! HASH-TABLE KEY VALUE)
Adds or changes an entry in the given hash-table.

Chapter 5: Supported language 59

make-hash-table [procedure]
(make-hash-table [PRED [SIZE]])

Creates and returns a hash-table with keys compared via PRED, which defaults to eq?.
If SIZE is provided it specifies the initial size of the hash-table. If the hash-table fills
above a certain size it is automatically resized to accommodate more entries.

put! [procedure]
(put! HASH-TABLE KEY PROP VALUE)

Stores VALUE as property PROP under the item KEY in the given hash-table. Any
previously existing value is overwritten.

5.9.5 Queues

list->queue [procedure]
(1ist->queue LIST)

Returns LIST converted into a queue, where the first element of the list is the same
as the first element of the queue. The resulting queue may share memory with the
list and the list should not be modified after this operation.

make-queue [procedure]
(make-queue)

Returns a newly created queue.

queue? [procedure]
(queue? X)

Returns #t if X is a queue, or #f otherwise.

queue->list [procedure]
(queue->1ist QUEUE)

Returns QUEUE converted into a list, where the first element of the list is the same as
the first element of the queue. The resulting list may share memory with the queue
object and should not be modified.

queue-add! [procedure]
(queue-add! QUEUE X)

Adds X to the rear of QUEUE.
queue-empty? [procedure]
(queue-empty? QUEUE)
Returns #t if QUEUE is empty, or #f otherwise.
queue-first [procedure]
(queue-first QUEUE)
Returns the first element of QUEUE. If QUEUE is empty an error is signaled
queue-last [procedure]
(queue-last QUEUE)
Returns the last element of QUEUE. If QUEUE is empty an error is signaled

Chapter 5: Supported language 60

queue-remove! [procedure]
(queue-remove! QUEUE)

Removes and returns the first element of QUEUE. If QUEUE is empty an error is signaled

5.9.6 Sorting

merge [procedure]
merge! [procedure]
(merge LIST1 LIST2 LESS?)
(merge! LIST1 LIST2 LESS?)

Joins two lists in sorted order. merge! is the destructive version of merge. LESS?
should be a procedure of two arguments, that returns true if the first argument is to
be ordered before the second argument.

sort [procedure]
sort! [procedure]
(sort SEQUENCE LESS?)
(sort! SEQUENCE LESS?)

Sort SEQUENCE, which should be a list or a vector. sort! is the destructive version of
sort.

sorted? [procedure]
(sorted? SEQUENCE LESS?)

Returns true if the list or vector SEQUENCE is already sorted.

5.9.7 Random numbers

random [procedure]
(random N)

Returns an exact random integer from 0 to N-1.

randomize [procedure]
(randomize [X])

Set random-number seed. If X is not supplied, the current time is used. On startup
(when the extras unit is initialized), the random number generator is initialized with
the current time.

5.9.8 Input/Output extensions

make-input-port [procedure]
(make-input-port READ READY? CLOSE [PEEK])

Returns a custom input port. Common operations on this port are handled by the
given parameters, which should be procedures of no arguments. READ is called when
the next character is to be read and should return a character or the value of (end-of-
file). READY? is called when char-ready? is called on this port and should return

Chapter 5: Supported language 61

#t or #f. CLOSE is called when the port is closed. PEEK is called when peek-char is
called on this port and should return a character or the value of (end-of-file). if
the argument PEEK is not given, then READ is used instead and the created port object
handles peeking automatically (by calling READ and buffering the character).

make-output-port [procedure]
(make-output-port WRITE CLOSE [FLUSH])

Returns a custom output port. Common operations on this port are handled by the
given parameters, which should be procedures. WRITE is called when output is sent
to the port and receives a single argument, a string. CLOSE is called when the port is
closed and should be a procedure of no arguments. FLUSH (if provided) is called for
flushing the output port.

pretty-print [procedure]
PP [procedure]
(pretty-print EXP [PORT])
(pp EXP [PORT])

Print expression nicely formatted. PORT defaults to the value of (current-output-
port).

pretty-print-width [parameter]
Specifies the maximal line-width for pretty printing, after which line wrap will occur.

read-file [procedure]
(read-file [FILE-OR-PORT])

Returns a list containing all toplevel expressions read from the file or port FILE-0R-
PORT. If no argument is given, input is read from the port that is the current value
of (current-input-port). After all expressions are read, and if the argument is a
port, then the port will not be closed.

read-line [procedure]
write-line [procedure]
(read-line [PORT [LIMITI])
(write-line STRING [PORT])

Line-input and -output. PORT defaults to the value of (current-input-port) and
(current-output-port), respectively. if the optional argument LIMIT is given and
not #f, then read-line reads at most LIMIT characters per line.

read-lines [procedure]
(read-lines [PORT [MAX]1)

Read MAX or fewer lines from PORT. PORT defaults to the value of (current-input-

port).
read-string [procedure]
write-string [procedure]

(read-string [NUM [PORT]])
(write-string STRING [NUM [PORT]]

Chapter 5: Supported language 62

Read or write NUM characters from/to PORT, which defaults to the value of (current-
input-port) or (current-output-port), respectively. If NUM is #f or not given,
then all data up to the end-of-file is read, or, in the case of write-string the whole
string is written. If no more input is available, read-string returns the empty string.

read-token [procedure]
(read-token PREDICATE [PORT])

Reads characters from PORT (which defaults to the value of (current-input-port))
and calls the procedure PREDICATE with each character until PREDICATE returns false.
Returns a string with the accumulated characters.

with-error-output-to-port [procedure]
(with-error-output-to-port PORT THUNK)

Call procedure THUNK with the current error output-port temporarily bound to PORT.
with-input-from-port [procedure]
(with-input-from-port PORT THUNK)
Call procedure THUNK with the current input-port temporarily bound to PORT.

with-output-to-port [procedure]
(with-output-to-port PORT THUNK)

Call procedure THUNK with the current output-port temporarily bound to PORT.

5.9.9 Strings

conc [procedure]
(conc X ...)

Returns a string with the string-represenation of all arguments concatenated together.
conc could be implemented as

(define (conc . args)
(apply string-append (map ->string args)))
->string [procedure]
(->string X)
Returns a string-representation of X.

string-chop [procedure]
(string-chop STRING LENGTH)

Returns a list of substrings taken by “chopping” STRING every LENGTH characters:
(string-chop "one two three" 4) ==> ("one " "two " "thre" "e")

string-compare3 [procedure]
(string-compare3 STRING1 STRING2)

string-compare3-ci [procedure]
(string-compare3-ci STRING1 STRING2)
Perform a three-way comparison between the STRING1 and STRING2, returning either
-1 if STRING1 is lexicographically less than STRING2, 0 if it is equal, or 1 if it s greater.
string-compare3-ci performs a case-insensitive comparison.

Chapter 5: Supported language 63

string-intersperse [procedure]
(string-intersperse LIST [STRING])

Returns a string that contains all strings in LIST concatenated together. STRING is
placed between each concatenated string and defaults to " ".

(string-intersperse ’("one" "two") "three")
is equivalent to

(apply string-append (intersperse ’("one" "two") "three"))

string-split [procedure]
(string-split STRING [DELIMITER-STRING [KEEPEMPTY]])
Split string into substrings separated by the given delimiters. If no delimiters are
specified, a string comprising the tab, newline and space characters is assumed. If
the parameter KEEPEMPTY is given and not #f, then empty substrings are retained:

(string-split "one two three") ==> ("one" "two" "three")
(string-split "foo:bar::baz:" ":" #t) ==> ("foo" "bar" "" "baz" "")

string-translate [procedure]
(string-translate STRING FROM [TO])

Returns a fresh copy of STRING with characters matching FROM translated to TO. If TO
is omitted, then matching characters are removed. FROM and TO may be a character,
a string or a list. If both FROM and TO are strings, then the character at the same
position in TO as the matching character in FROM is substituted.

string-translate* [procedure]
(string-translate* STRING SMAP)

Substitutes elements of STRING according to SMAP. SMAP should be an association-list
where each element of the list is a pair of the form (MATCH \. REPLACEMENT). Every
occurrence of the string MATCH in STRING will be replaced by the string REPLACEMENT:

(string-translatex
"<h1>this is a \"string\"</hi>"
)((||<ll . ||&1t:") (||>|| . ||>") (“\"" . ||"||)))

== "<hl>this is a "string"</ht>"

substring=" [procedure]

substring-ci="? [procedure]
(substring=7 STRING1 STRING2 [START1 [START2 [LENGTH]I])
(substring-ci=? STRING1 STRING2 [START1 [START2 [LENGTH]]I])

Returns #t if the strings STRING1 and STRING2 are equal, or #f otherwise. The
comparison starts at the positions START1 and START2 (which default to 0), comparing
LENGTH characters (which defaults to the minimum of the remaining length of both

strings).
substring-index [procedure]
substring-index-ci [procedure]

(substring-index WHICH WHERE [START])

Chapter 5: Supported language 64

(substring-index-ci WHICH WHERE [START])

Searches for first index in string WHERE where string WHICH occurs. If the optional
argument START is given, then the search starts at that index. substring-index-ci
is a case-insensitive version of substring-index.

5.9.10 Combinators

constantly [procedure]
(constantly X ...)

Returns a procedure that always returns the values X ... regardless of the number
and value of its arguments.

(constantly X) <=> (lambda args X)

complement [procedure]
(complement PROC)
Returns a procedure that returns the boolean inverse of PROC.
(complement PROC) <=> (lambda (x) (not (PROC x)))

compose [procedure]
(compose PROC1 PROC2 ...)
Returns a procedure that represents the composition of the argument-procedures
PROC1 PROC2
(compose F G) <=> (lambda args
(call-with-values

(lambda () (apply G args))
F))

conjoin [procedure]
(conjoin PRED ...)

Returns a procedure that returns #t if its argument satisfies the predicates PRED

((conjoin o0dd? positive?) 33) ==> #t
((conjoin odd? positive?) -33) ==> #f
disjoin [procedure]

(disjoin PRED ...)
Returns a procedure that returns #t if its argument satisfies any predicate PRED
((disjoin o0dd? positive?) 32) ==> #t
((disjoin odd? positive?) -32) ==> #f
flip [procedure]
(f1ip PROC)
Returns a two-argument procedure that calls PROC with its arguments swapped:
(flip PROC) <=> (lambda (x y) (PROC y x))
identity [procedure]
(identity X)
Returns its sole argument X.

Chapter 5: Supported language 65

project [procedure]
(project N)

Returns a procedure that returns its Nth argument.

list-of [procedure]
(list-of PRED)

Returns a procedure of one argument that returns #t when applied to a list of elements
that all satisfy the predicate procedure PRED, or #f otherwise.

((list-of even?) (1 2 3)) ==> #f
((1ist-of number?) ’(1 2 3)) ==> #t

noop [procedure]
(noop X ...)

Ignores it’s arguments, does nothing and returns an unspecified value.

5.9.11 Binary searching

binary-search [procedure]
(binary-search SEQUENCE PROC)

Performs a binary search in SEQUENCE, which should be a sorted list or vector. PROC is
called to compare items in the sequence, should accept a single argument and return
an exact integer: zero if the searched value is equal to the current item, negative if
the searched value is “less” than the current item, and positive otherwise.

5.10 Unit srfi-1
List library, see the documentation for SRFI-1

5.11 Unit srfi-4

Homogeneous numeric vectors, see the documentation for SRFI-4 In addition to that, the
following procedures are also provided:

u8vector->byte-vector procedure
s8vector->byte-vector procedure
ul6vector->byte-vector procedure

[]
rocedune
sl6vector->byte-vector [procedure]
[]
[]
[]
[]

u32vector->byte-vector procedure
s32vector->byte-vector procedure
f32vector->byte-vector procedure
f64vector->byte-vector procedure

(u8vector->byte-vector USVECTOR)
(s8vector->byte-vector S8VECTOR)
(ulévector->byte-vector U16VECTOR)
(s16vector->byte-vector S16VECTOR)

http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-4/srfi-4.html

Chapter 5: Supported language

(u32vector->byte-vector
(s32vector->byte-vector
(£32vector->byte-vector
(f64vector->byte-vector

U32VECTOR)
S32VECTOR)
F32VECTOR)
F64VECTOR)

66

Each of these procedures return the contents of the given vector as a 'packed’ byte-
vector. The byte order in that vector is platform-dependent (for example little-endian
on an Intel processor). The returned byte-vector shares memory with the contents of

the vector.

byte-vector->u8vector

byte-vector->s8vector

byte-vector->ul6vector
byte-vector->sl16vector
byte-vector->u32vector
byte-vector->s32vector
byte-vector->f32vector
byte-vector->f64vector

(byte-vector->u8vector BYTE-VECTOR)
(byte-vector->s8vector BYTE-VECTOR)

(byte-vector->ul6vector
(byte-vector->si16vector
(byte-vector->u32vector
(byte-vector->s32vector
(byte-vector->f32vector
(byte-vector->f64vector

BYTE-VECTOR)
BYTE-VECTOR)
BYTE-VECTOR)
BYTE-VECTOR)
BYTE-VECTOR)
BYTE-VECTOR)

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

[]
[]
[]
[]
[]
[]
[]
[]

Each of these procedures return a vector where the argument BYTE-VECTOR is taken
as a ‘packed’ representation of the contents of the vector. The argument-byte-vector
shares memory with the contents of the vector.

subu8vector
subul6vector
subu32vector
subs8vector
subsl6vector
subs32vector
subf32vector
subf64vector

(subu8vector USVECTOR FROM TO)

(subul6vector U16VECTOR FROM TO)
(subu32vector U32VECTOR FROM TO)
(subs8vector S8VECTOR FROM TO)

(subsi6vector S16VECTOR FROM TO)
(subs32vector S32VECTOR FROM TO)
(subf32vector F32VECTOR FROM TO)
(subf64vector F64VECTOR FROM TO)

Creates a number vector of the same type as the argument vector with the elements

at the positions FROM up to but not including TO.

[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]

Chapter 5: Supported language 67

5.12 Unit srfi-13

String library, see the documentation for SRFI-13

On systems that support dynamic loading, the srfi-13 unit can be made available in
the interpreter (csi) by entering

(require-extension srfi-13)
5.13 Unit srfi-14

Character set library, see the documentation for SRFI-14

On systems that support dynamic loading, the srfi-14 unit can be made available in
the interpreter (csi) by entering

(require-extension srfi-14)

e This library provides only the Latin-1 character set.
5.14 Unit srfi-25

Multi-dimensional array, see the documentation for SRFI-25

On systems that support dynamic loading, the srfi-25 unit can be made available in
the interpreter (csi) by entering

(require-extension srfi-25)
5.15 Unit match

Andrew Wright’s pattern matching package. Note that to use the macros in normal compiled
code it is not required to declare this unit as used. Only if forms containing these macros
are to be expanded at runtime, this is needed.

match syntax
match-lambda syntax
match-lambda* syntax

[]
[]
[]
match-let [syntax]
[]
[]
[]

match-let* syntax
match-letrec syntax
match-define syntax

(match EXP CLAUSE ...)
(match-lambda CLAUSE ...)
(match-lambda* CLAUSE ...)
(match-let ((PAT EXP) ...) BODY)
(match-let*x ((PAT EXP) ...) BODY)
(match-letrec ((PAT EXP) ...) BODY)
(match-define PAT EXP)

Match expression or procedure arguments with pattern and execute associated ex-
pressions. A Postscript manual is available .

http://srfi.schemers.org/srfi-13/srfi-13.html
http://srfi.schemers.org/srfi-14/srfi-14.html
http://srfi.schemers.org/srfi-25/srfi-25.html
http://www.call-with-current-continuation.org/match.ps

Chapter 5: Supported language 68

match-error-control [procedure]
(match-error-control [MODE])

Selects a mode that specifies how match. .. macro forms are to be expanded. With
no argument this procedure returns the current mode. A single argument specifies the
new mode that decides what should happen if no match-clause applies. The following
modes are supported:

#:error

Signal an error. This is the default.
#:match

Signal an error and output the offending form.
#:fail

Omits pair? tests when the consequence is to fail in car or cdr rather
than to signal an error.

#:unspecified
Non-matching expressions will either fail in car or cdr or return an un-

specified value. This mode applies to files compiled with the unsafe
option or declaration.

When an error is signalled, the raised exception will be of kind (exn match).

Note: the $ pattern handles native record structures and SRFI-9 records transparently.
The structure facility of the match package (define-structure) is not available.

To use the pattern matching macros with the highlevel (syntax-case) macro system
(require-extension match).

5.16 Unit regex

This library unit provides support for regular expressions. The flavor depends on the
particular installation platform:
e On UNIX systems that have PCRE (the Perl Compatible Regular Expression package)
installed, PCRE is used.
e If PCRE is not available, and the C library provides regular expressions, these are used
instead.

e on Windows (or of PCRE and libc regexes are not available), Dorai Sitaram’s portable
pregexp library is used.

grep [procedure]
(grep REGEX LIST)

Returns all items of LIST that match the regular expression REGEX. This procedure
could be defined as follows:
(define (grep regex lst)

(filter (lambda (x) (string-search regex x)) lst))

Chapter 5: Supported language 69

pattern->regexp [procedure]
(pattern->regexp PATTERN)

Converts the file-pattern PATTERN into a regular expression.

(pattern->regexp "foo.*x") ==> "fool..x*"

regexp [procedure]
(regexp STRING [IGNORECASE [IGNORESPACE [UTF8]1])

Returns a precompiled regular expression object for string. The optional arguments
IGNORECASE, IGNORESPACE and UTF8 specify whether the regular expression should
be matched with case- or whitespace-differences ignored, or whether the string should
be treated as containing UTF-8 encoded characters, respectively.

Notes:

e regex doesn’t allow (7:) cloisters (non-capturing groups) Currently this means
if you use utf8 matching, individual "." matching will return extra submatches.

e pregexp doesn’t allow a # comment w/o a trailing newline.

regexp? [procedure]
(regexp? X)

Returns #t if X is a precompiled regular expression, or #f otherwise.

string-match [procedure]
string-match-positions [procedure]
(string-match REGEXP STRING [START])
(string-match-positions REGEXP STRING [START])

Matches the regular expression in REGEXP (a string or a precompiled regular expres-
sion) with STRING and returns either #f if the match failed, or a list of matching
groups, where the first element is the complete match. If the optional argument
START is supplied, it specifies the starting position in STRING. For each matching
group the result-list contains either: #f for a non-matching but optional group; a
list of start- and end-position of the match in STRING (in the case of string-match-
positions); or the matching substring (in the case of string-match). Note that the
exact string is matched. For searching a pattern inside a string, see below.

string-search [procedure]

string-search-positions [procedure]
(string-search REGEXP STRING [START [RANGE]])
(string-search-positions REGEXP STRING [START [RANGE]])

Searches for the first match of the regular expression in REGEXP with STRING. The
search can be limited to RANGE characters.

string-split-fields [procedure]
(string-split-fields REGEXP STRING [MODE [START1])

Splits STRING into a list of fields according to MODE, where MODE can be the keyword
#:infix (REGEXP matches field separator), the keyword #:suffix (REGEXP matches
field terminator) or #t (REGEXP matches field), which is the default.

Chapter 5: Supported language 70

(define s "this is a string 1, 2, 3,")
(string-split-fields "[~]+" s)

=> ("this" "is" "a" "string" "1," "2," "3,")
(string-split-fields " " s #:infix)

=> ("this" "is" "a" "string" "1," "2," "3,")
(string-split-fields "," s #:suffix))

=> ("this is a string 1" " 2" " 3")

string-substitute [procedure]

(string-substitute REGEXP SUBST STRING [INDEX])
Searches substrings in STRING that match REGEXP and substitutes them with the
string SUBST. The substitution can contain references to subexpressions in REGEXP
with the \NUM notation, where NUM refers to the NUMth parenthesized expression. The
optional argument INDEX defaults to 1 and specifies the number of the match to be
substituted. Any non-numeric index specifies that all matches are to be substituted.

(string-substitute "([0-9]+) (eggsl|chicks)"
"2 (1)" "99 eggs or 99 chicks" 2)
==> "99 eggs or chicks (99)"

string-substitute* [procedure]
(string-substitutex STRING SMAP)

Substitutes elements of STRING according to SMAP. SMAP should be an association-list
where each element of the list is a pair of the form (MATCH . REPLACEMENT). Every
occurrence of the regular expression MATCH in STRING will be replaced by the string
REPLACEMENT

(string-substitute* "<h1>Hello, world!</h1>"
P (("<[/A-Za-z0-9]1+>" . ""))))

==> "Hello, world!"

5.17 Unit syntax-case

Hieb’s and Dybvig’s hygienic macro package. Provides syntax-case and syntax-rules. A
postscript manual can be found here: Technical Report #356

Notes:
e The alternative form

(define-syntax (keyword var)
(syntax-case var (...) ...))

is allowed for define-syntax.

http://www.call-with-current-continuation.org/tr356.ps

Chapter 5: Supported language 71

e The module system described in the Chez Scheme Uses Manual is supported (including
separate compilation). When import or import-only is used with an argument that
names a module that is currently not defined, then the current include-path (and
the repository-path as well) is searched for a source-file of the same name (possibly
with the extension .scm), which (if found) will be “visited” (it’s module- and syntax-
definitions are processed) using the procedure visit. There are currently no built-in
modules.

e To use the macro-system in compiled or interpreted code, just give the -hygienic
option to the compiler or interpreter. The syntax-case unit has only to be declared
as used if compiled code invokes macroexpand or eval with high-level macro syntax
forms.

e define-syntax can not be used inside an eval-when form.

Here is a small example that demonstrates separate compilation:
Let’s say we have one file foo.scm that defines a module:

(module foo (pr (bar baz))
(define pr print)
(define baz 99)
(define-syntax bar
(syntax-rules ()
[(_ x) (list baz ’x)])))

and another that uses it (use-foo.scm):

(load "foo.so") ; (require ’foo) would also work

(import foo)
(pr (bar hello))

Compiling the files like this will lead to one dynamically loadable library and a plain
executable:

$ csc -s -hygienic foo.scm
$ csc -hygienic use-foo.scm
$ use-foo

$ (99 hello)

The export declaration can be used to export identifiers exported from modules defined
in a given source file. These exports will then be visible as normal toplevel variables in
external code that loads or links with this file. The rationale behind this is to make it
possible to create libraries and extensions that use modules internally, but still can be used
in client code that doesn’t use modules.

visit [procedure]
(visit FILENAME)

Reads all toplevel expressions from the given file and expands all syntax, extracting
module- and syntax-information to be subsequently used during the current compi-
lation or interpretation of modules.

debug-expand [procedure]
(debug-expand EXP)

Chapter 5: Supported language 72

Macro-expands the expression EXP and shows each expansion step, giving a choice of
expanding the expression completely, advance to the next expansion step or aborting
the expansion. This might be a useful tool for debugging complex macros.

5.18 Unit srfi-18

A simple multithreading package. This threading package follows largely the specification
of SRFI-18. For more information see the documentation for SRFI-18

Notes:

thread-start! accepts a thunk (a zero argument procedure) as argument, which is
equivalent to (thread-start! (make-thread THUNK)).

When an uncaught exception (i.e. an error) is signalled in a thread other than the
primordial thread and warnings are enabled (see: enable-warnings, then a warning
message is written to the port that is the value of (current-error-port).

Blocking I/O will block all threads, except for some socket operations (see the section
about the tcp unit). An exception is the read-eval-print loop on UNIX platforms:
waiting for input will not block other threads, provided the current input port reads
input from a console.

It is generally not a good idea for one thread to call a continuation created by another
thread, if dynamic-wind is involved.

When more than one thread compete for the current time-slice, the thread that was
waiting first will become the next runnable thread.

The dynamic environment of a thread consists of the following state:
e The current input-, output- and error-port
e The current exception handler
e The values of all current parameters (created by make-parameter)

e Any pending dynamic-wind thunks.

The following procedures are provided, in addition to the procedures defined in SRFI-18:

thread-deliver-signal! [procedure]

(thread-deliver-signal! THREAD X)

This will cause THREAD to signal the condition X once it is scheduled for execution.
After signalling the condition, the thread continues with its normal execution.

thread-quantum [procedure]

(thread-quantum THREAD)

Returns the quantum of THREAD, which is an exact integer specifying the approximate
time-slice of the thread.

thread-quantum-set! [procedure]

(thread-quantum-set! THREAD QUANTUM)
Sets the quantum of THREAD to QUANTUM.

http://srfi.schemers.org/srfi-18/srfi-18.html

Chapter 5: Supported language 73

5.19 Unit format

format [procedure]
(format DESTINATION FORMAT-STRING . ARGUMENTS)

An almost complete implementation of Common LISP format description according
to the CL reference book Common LISP from Guy L. Steele, Digital Press. This code
was originally part of SLIB. The author is Dirk Lutzebaeck.

Returns #t, #f or a string; has side effect of printing according to FORMAT-STRING.
If DESTINATION is #t, the output is to the current output port and #t is returned.
If DESTINATION is #f, a formatted string is returned as the result of the call.
If DESTINATION is a string, DESTINATION is regarded as the format string;
FORMAT-STRING is then the first argument and the output is returned as a string. If
DESTINATION is a number, the output is to the value of (current-error-port).
Otherwise DESTINATION must be an output port and #t is returned.

FORMAT-STRING must be a string. In case of a formatting error format returns #f and
prints a message on the value of (current-error-port). Characters are output as if
the string were output by the display function with the exception of those prefixed
by a tilde (). For a detailed description of the FORMAT-STRING syntax please consult
a Common LISP format reference manual. A list of all supported, non-supported and
extended directives can be found in format.txt.

This unit uses definitions from the extras unit.
format implements SRFI-28

5.20 Unit posix

This unit provides services as used on many UNIX-like systems. Note that the following
definitions are not all available on non-UNIX systems like Windows or DOS. See below for
Windows specific notes.

This unit uses the regex, scheduler, extras and utils units.

All errors related to failing file-operations will signal a condition of kind (exn i/o file).

5.20.1 Directories

change-directory [procedure]
(change-directory NAME)

Changes the current working directory to NAME.

current-directory [procedure]
(current-directory)

Returns the name of the current working directory.

create-directory [procedure]
(create-directory NAME)

Creates a directory with the pathname NAME.

http//srfi.schemers.org/srfi-28/srfi-28.html

Chapter 5: Supported language 74

delete-directory [procedure]
(delete-directory NAME)

Deletes the directory with the pathname NAME. The directory has to be empty.

directory [procedure]
(directory PATHNAME)

Returns a list with all files that are contained in the directory with the name
PATHNAME.

directory? [procedure]
(directory? NAME)

Returns #t if there exists a file with the name NAME and if that file is a directory, or
#f otherwise.

glob [procedure]
(glob PATTERN1 ...)

Returns a list of the pathnames of all existing files matching PATTERN1 ..., which
should be strings containing the usual file-patterns (with * matching zero or more
characters and ? matching zero or one character).

set-root-directory! [procedure]
(set-root-directory! STRING)

Sets the root directory for the current process to the path given in STRING (using the
chroot function). If the current process has no root permissions, the operation will
fail.

5.20.2 Pipes

call-with-input-pipe [procedure]
call-with-output-pipe [procedure]
(call-with-input-pipe CMDLINE PROC [MODE])
(call-with-output-pipe CMDLINE PROC [MODE])

Call PROC with a single argument: a input- or output port for a pipe connected to
the subprocess named in CMDLINE. If PROC returns normally, the pipe is closed and
any result values are returned.

close-input-pipe [procedure]
close-output-pipe [procedure]
(close-input-pipe PORT)
(close-output-pipe PORT)

Closes the pipe given in PORT and waits until the connected subprocess finishes.

create-pipe [procedure]
(create-pipe)

The fundamental pipe-creation operator. Calls the C function pipe() and returns 2
values: the file-descriptors of the input- and output-ends of the pipe.

Chapter 5: Supported language 75

open-input-pipe [procedure]
(open-input-pipe CMDLINE [MODE])

Spawns a subprocess with the command-line string CMDLINE and returns a port, from

which the output of the process can be read. If MODE is specified, it should be the
keyword #:text (the default) or #:binary.

open-output-pipe [procedure]
(open-output-pipe CMDLINE [MODE])
Spawns a subprocess with the command-line string CMDLINE and returns a port. Any-
thing written to that port is treated as the input for the process. If MODE is specified,
it should be the keyword #:text (the default) or #:binary.

pipe/buf [limit]
This variable contains the maximal number of bytes that can be written atomically
into a pipe or FIFO.

with-input-from-pipe [procedure]
with-output-to-pipe [procedure]
(with-input-from-pipe CMDLINE THUNK [MODE])
(with-output-to-pipe CMDLINE THUNK [MODE])

Temporarily set the value of current-input-port/current-output-port to a port
for a pipe connected to the subprocess named in CMDLINE and call the procedure
THUNK with no arguments. After THUNK returns normally the pipe is closed and the
standard input-/output port is restored to its previous value and any result values
are returned.
(with-output-to-pipe

"gs —dNOPAUSE -sDEVICE=jpeg —-dBATCH -sOutputFile=signballs.jpg -g600x600 -q -"

(lambda ()

(print #<<EOF

%!I0PSC-1993 %%Creator: HAYAKAWA Takashi<xXXXXXXXO0XX.XXXXXX.XX.XX>
/C/neg/d/mul/R/rlineto/E/exp/H{{cvx defl}repeat}def/T/dup/g/gt/r/roll/J/ifelse 8}
H/A/copy (z&v4QX&93r9AxYQ0ZomQalxS2w! ! 0&vMYa43d6r93rMYvx2dca!D&cjSnjSnjjS3o ! v&6All
X&555AxM1CD7AjYxTTd62rmxCnTdSSTOg&12wECST & ! JOg&D1!&xMO ! JOg ! 1&544dC2Ac96ra ! m&3ANR
F&&vGoGSnCTOg&wDm1lvGoS8wpn6wpS2wTCpS18d7ov7Uk704Qkdw! &Mv1x1870ZES3w! J! J!Q&7185d1
Z&1x1CS9d9nE4 ' k&X&MY71&1! J!x&jdnjdS3o0dS ' N&mmx1C2wEc ! G&150Nx4 'n&20! j&43r ' U&O777d]
J&2AY2A776ddT40S30SnMVCOOVVORRR45E42063rNz&v7UX&UOzF!'F! J! [&44ETCnVn!a&1CDN! Y&OME
Vic&j2AYdjmMdjjd!lo&lr!M){()T 0 4 3 r put T(/)g{T(9)glcvnI{cvi}tIH ($)gl1I}J
cvx}forall/moveto/p/floor/w/div/S/add 29 H[{[{]lsetgray fill}for Y}for showpagell
EQF
)))

5.20.3 Fifos

create-fifo [procedure]
(create-fifo FILENAME [MODE])
Creates a FIFO with the name FILENAME and the permission bits MODE, which defaults
to

Chapter 5: Supported language 76

(+ perm/irwxu perm/irwxg perm/irwxo)

fifo? [procedure]
(fifo? FILENAME)

Returns #t if the file with the name FILENAME names a FIFO.

5.20.4 File descriptors and low-level 1/0

duplicate-fileno [procedure]
(duplicate-fileno OLD [NEW])

If NEW is given, then the file-descriptor NEW is opened to access the file with the file-
descriptor OLD. Otherwise a fresh file-descriptor accessing the same file as OLD is
returned.

file-close [procedure]
(file-close FILENO)

Closes the input/output file with the file-descriptor FILENO.

file-open [procedure]
(file-open FILENAME FLAGS [MODE])

Opens the file specified with the string FILENAME and open-flags FLAGS using the C
function open(). On success a file-descriptor for the opened file is returned. FLAGS
should be a bitmask containing one or more of the open/. . . values ored together using
bitwise-ior (or simply added together). The optional MODE should be a bitmask
composed of one or more permission values like perm/irusr and is only relevant when
a new file is created. The default mode is perm/irwxu | perm/irgrp | perm/iroth.

file-mkstemp [procedure]
(file-mkstemp TEMPLATE-FILENAME)

Create a file based on the given TEMPLATE-FILENAME, in which the six last characters
must be “XXXXXX”. These will be replaced with a string that makes the filename
unique. The file descriptor of the created file and the generated filename is returned.
See the mkstemp (3) manual page for details on how this function works. The template
string given is not modified.

Example usage:

(let-values (((fd temp-path) (file-mkstemp "/tmp/mytemporary.XXXXXX")))
(let ((temp-port (open-output-file* f£d)))
(format temp-port "This file is “A."%" temp-path)
(close-output-port temp-port)))

file-read [procedure]
(file-read FILENO SIZE [BUFFER])

Reads SIZE bytes from the file with the file-descriptor FILENO. If a string or bytevector
is passed in the optional argument BUFFER, then this string will be destructively
modified to contain the read data. This procedure returns a list with two values: the
buffer containing the data and the number of bytes read.

Chapter 5: Supported language 7

file-select [procedure]
(file-select READFDLIST WRITEFDLIST [TIMEQUT])

Waits until any of the file-descriptors given in the lists READFDLIST and WRITEFDLIST
is ready for input or output, respectively. If the optional argument TIMEQUT is given
and not false, then it should specify the number of seconds after which the wait
is to be aborted. This procedure returns two values: the lists of file-descriptors
ready for input and output, respectively. READFDLIST and WRITEFDLIST may also
by file-descriptors instead of lists. In this case the returned values are booleans
indicating whether input/output is ready by #t or #f otherwise. You can also pass
#f as READFDLIST or WRITEFDLIST argument, which is equivalent to ().

file-write [procedure]
(file-write FILENO BUFFER [SIZE])

Writes the contents of the string or bytevector BUFFER into the file with the file-
descriptor FILENO. If the optional argument SIZE is given, then only the specified
number of bytes are written.

fileno/stdin [file descriptor]
fileno/stdout [file descriptor]
fileno/stderr [file descriptor]

These variables contain file-descriptors for the standard I/0 files.

open/rdonly [flag]
open/wronly [flag]
open/rdwr [flag]
open/read [flag]
open/write [flag]
open/creat [flag]
open/append [flag]
open/excl [flag]
open/noctty [flag]
open/nonblock [flag]
open/trunc [flag]
open/sync [flag]
open/fsync [flag]
open/binary [flag]
open/text [flag]
Flags for use with file-open.
open-input-file* [procedure]
open-output-file* [procedure]

(open-input-file* FILENO [OPENMODE])
(open-output-file* FILENO [OPENMODE])

Opens file for the file-descriptor FILENO for input or output and returns a port.
FILENO should be a positive exact integer. OPENMODE specifies an additional mode for
opening the file (currently only the keyword #:append is supported, which opens an
output-file for appending).

Chapter 5: Supported language 78

port->fileno [procedure]
(port->fileno PORT)

If PORT is a file-port, then a file-descriptor is returned for this port. Otherwise an
error is signaled.

5.20.5 Retrieving file attributes

file-access-time [procedure]
file-change-time [procedure]
file-modification-time [procedure]

(file-access-time FILE)

(file-change-time FILE)

(file-modification-time FILE)
Returns time (in seconds) of the last acces, modification or change of FILE. FILE may
be a filename or a file-descriptor. If the file does not exist, an error is signaled.

file-stat [procedure]
(file-stat FILE)

Returns a 9-element vector with the following contents: inode-number, mode (as with
file-permissions), number of hard links, uid of owner (as with file-owner), gid of
owner, size (as with file-size) and access-, change- and modification-time (as with
file-access-time, file-change-time and file-modification-time).

file-position [procedure]
(file-position FILE)
Returns the current file position of FILE, which should be a port or a file-descriptor.

file-size [procedure]
(file-size FILENAME)

Returns the size of the file designated by FILE. FILE may be a filename or a file-
descriptor. If the file does not exist, an error is signaled.

5.20.6 Changing file attributes

file-truncate [procedure]
(file-truncate FILE OFFSET)
Truncates the file FILE to the length OFFSET, which should be an integer. If the
file-size is smaller or equal to OFFSET then nothing is done. FILE should be a filename
or a file-descriptor.

set-file-position! [procedure]
(set-file-position! FILE POSITION [WHENCE])
Sets the current read/write position of FILE to POSITION, which should be an exact
integer. FILE should be a port or a file-descriptor. WHENCE specifies how the position
is to interpreted and should be one of the values seek/set, seek/cur and seek/end.
It defaults to seek/set.

Exceptions: (exn bounds), (exn i/o file)

Chapter 5: Supported language 79

5.20.7 Processes

current-process-id [procedure]
(current-process-id)

Returns the process ID of the current process.

parent-process-id [procedure]
(parent-process-id)

Returns the process ID of the parent of the current process.

process-execute [procedure]
(process-execute PATHNAME [LIST])

Creates a new child process and replaces the running process with it using the UNIX
system call execv(). If the optional argument LIST is given, then it should contain
a list of strings which are passed as arguments to the subprocess.

process-fork [procedure]
(process-fork [THUNK])

Creates a new child process with the UNIX system call fork(). Returns either the
PID of the child process or 0. If THUNK is given, then the child process calls it as a
procedure with no arguments and terminates.

process-run [procedure]
(process-run PATHNAME [LIST])

Creates a new child process using the UNIX system call fork() that executes the
program given by the string PATHNAME using the UNIX system call execv(). The
PID of the new process is returned. If LIST is not specified, then PATHNAME is passed
to a program named by the environment variable SHELL (or /bin/sh, if the variable
is not defined), so usual argument expansion can take place.

process-signal [procedure]
(process-signal PID [SIGNAL])

Sends SIGNAL to the process with the id PID using the UNIX system call kil1().
SIGNAL defaults to the value of the variable signal/term.

process-wait [procedure]
(process-wait [PID [NOHANG]])

Suspends the current process until the child process with the id PID has terminated
using the UNIX system call waitpid (). If PID is not given, then this procedure waits
for any child process. If NOHANG is given and not #f then the current process is not
suspended. This procedure returns three values:

e PID or 0, if NOHANG is true and the child process has not terminated yet;
e #t if the process exited normally or #f otherwise;

e cither the exit status, if the process terminated normally or the signal number that
terminated /stopped the process.

Chapter 5: Supported language 80

process [procedure]
(process COMMANDLINE)

Passes the string COMMANDLINE to the host-system’s shell that is invoked as a sub-
process and returns three values: an input port from which data written by the
sub-process can be read, an output port from which any data written to will be
received as input in the sub-process and the process-id of the started sub-process.
Blocking reads and writes to or from the ports returned by process only block the
current thread, not other threads executing concurrently.

sleep [procedure]
(sleep SECONDS)

Puts the process to sleep for SECONDS. Returns either O if the time has completely
elapsed, or the number of remaining seconds, if a signal occurred.

5.20.8 Symbolic links

create-symbolic-link [procedure]
(create-symbolic-link OLDNAME NEWNAME)

Creates a symbolic link with the filename NEWNAME that points to the file named
OLDNAME.

read-symbolic-link [procedure]
(read-symbolic-1link FILENAME)

Returns the filename to which the symbolic link FILENAME points.

5.20.9 Permissions, owners, users and groups

file-owner [procedure]
(file-owner FILE)

Returns the user-id of FILE. FILE may be a filename or a file-descriptor.

file-permissions [procedure]
(file-permissions FILE)

Returns the permission bits for FILE. You can test this value by performing bitwise
operations on the result and the perm/... values. FILE may be a filename or a
file-descriptor.

file-read-access? [procedure]
file-write-access? [procedure]
file-execute-access? [procedure]

(file-read-access? FILENAME)
(file-write-access? FILENAME)
(file-execute-access? FILENAME)

These procedures return #t if the current user has read, write or execute permissions
on the file named FILENAME.

Chapter 5: Supported language 81

change-file-mode [procedure]
(change-file-mode FILENAME MODE)

Changes the current file mode of the file named FILENAME to MODE using the chmod ()

system call. The perm/... variables contain the various permission bits and can be
combinded with the bitwise-ior procedure.

change-file-owner [procedure]
(change-file-owner FILENAME UID GID)

Changes the owner information of the file named FILENAME to the user- and group-ids
UID and GID (which should be exact integers) using the chown() system call.

current-user-id [procedure]
current-group-id [procedure]
[]
[]

current-effective-user-id procedure
current-effective-group-id procedure
(current-user-id)
(current-group-id)
(current-effective-user-id)
(current-effective-group-id)
Return the user- and group-ids of the current process.
process-group-id [procedure]
(process-group-id PID)
Returns the process group ID of the process specified by PID.
group-information [procedure]

(group-information GROUP)

If GROUP specifies a valid group-name or group-id, then this procedure returns four
values: the group-name, the encrypted group password, the group ID and a list of
the names of all group members. If no group with the given name or ID exists, then
#f is returned.

get-groups [procedure]
(get-groups)
Returns a list with the supplementary group IDs of the current user.

set-groups! [procedure]
(set-groups! GIDLIST)

Sets the supplementrary group IDs of the current user to the IDs given in the list
GIDLIST.

Only the superuser may invoke this procedure.
initialize-groups [procedure]
(initialize-groups USERNAME BASEGID)

Sets the supplementrary group IDs of the current user to the IDs from the user with
name USERNAME (a string), including BASEGID.

Only the superuser may invoke this procedure.

Chapter 5: Supported language

82

perm/irusr [permission bits]
perm/iwusr [permission bits]
perm/ixusr [permission bits]
perm/irgrp [permission bits]
perm/iwgrp [permission bits]
perm/ixgrp [permission bits]
perm/iroth [permission bits]
perm/iwoth [permission bits]
perm/ixoth [permission bits]
perm/irwxu [permission bits]
perm/irwxg [permission bits]
perm/irwxo [permission bits]
perm/isvtx [permission bits]
perm /isuid [permission bits]
perm /isgid [permission bits]

These variables contain permission bits as used in change-file-mode.

set-user-id!

[procedure]

(set-user-id! UID)

Sets the effective user id of the current process to UID, which should be a positive
integer.

set-group-id! [procedure]
(set-group-id! GID)

Sets the effective group id of the current process to GID, which should be a positive
integer.

set-process-group-id! [procedure]
(set-user-id! PID PGID)

Sets the process group ID of the process specifed by PID to PGID.

user-information [procedure]
(user-information USER)

If USER specifes a valid username (as a string) or user ID, then the user database is
consulted and a list of 7 values are returned: the user-name, the encrypted password,
the user ID, the group ID, a user-specific string, the home directory and the default
shell. If no user with this name or ID can be found, then #f is returned.

create-session [procedure]
(create-session)

Creates a new session if the calling process is not a process group leader and returns
the session ID.

5.20.10 Record locking

file-lock [procedure]
(file-lock PORT [START [LEN]])

Chapter 5: Supported language 83

Locks the file associated with PORT for reading or writing (according to whether PORT
is an input- or output-port). START specifies the starting position in the file to be
locked and defaults to 0. LEN specifies the length of the portion to be locked and
defaults to #t, which means the complete file. file-lock returns a “lock”-object.

file-lock /blocking [procedure]
(file-lock/blocking PORT [START [LEN]])

Similar to file-lock, but if a lock is held on the file, the current process blocks
(including all threads) until the lock is released.

file-test-lock [procedure]
(file-test-lock PORT [START [LEN]])

Tests whether the file associated with PORT is locked for reading or writing (according
to whether PORT is an input- or output-port) and returns either #f or the process-id
of the locking process.

file-unlock [procedure]
(file-unlock LOCK)

Unlocks the previously locked portion of a file given in LOCK.

5.20.11 Signal handling

set-alarm! [procedure]
(set-alarm! SECONDS)

Sets an internal timer to raise the signal/alrm after SECONDS are elapsed. You can
use the set-signal-handler! procedure to write a handler for this signal.

set-signal-handler! [procedure]
(set-signal-handler! SIGNUM PROC)

Establishes the procedure of one argument PROC as the handler for the signal with
the code SIGNAL. PROC is called with the signal number as its sole argument. If the
argument PROC is #f then this signal will be ignored.

set-signal-mask! [procedure]
(set-signal-mask! SIGLIST)

Sets the signal mask of the current process to block all signals given in the list SIGLIST.
Signals masked in that way will not be delivered to the current process.

Chapter 5: Supported language

84

signal /term [signal code]
signal /kill [signal code]
signal /int [signal code]
signal /hup [signal code]
signal /fpe [signal code]
signal/ill [signal code]
signal /segv [signal code]
signal/abrt [signal code]
signal /trap [signal code]
signal/quit [signal code]
signal/alrm [signal code]
signal /vtalrm [signal code]
signal /prof [signal code]
signal /io [signal code]
signal /urg [signal code]
signal/chld [signal code]
signal/cont [signal code]
signal /stop [signal code]
signal /tstp [signal code]
signal /pipe [signal code]
signal /xcpu [signal code]
signal /xfsz [signal code]
signal /usrl [signal code]
signal /usr2 [signal code]
signal /winch [signal code]

These variables contain signal codes for use with process-signal or set-signal-

handler!.

5.20.12 Environment access

current-environment [procedure]
(current-environment)

Returns a association list of the environment variables and their current values.

Note: Under Mac OS X, this procedure always returns the empty list.

setenv [procedure]
(setenv VARIABLE VALUE)

Sets the environment variable named VARIABLE to VALUE. Both arguments should be
strings. If the variable is not defined in the environment, a new definition is created.

unsetenv [procedure]
(unsetenv VARIABLE)

Removes the definition of the environment variable VARIABLE from the environment
of the current process. If the variable is not defined, nothing happens.

Chapter 5: Supported language 85

5.20.13 Memory mapped I/0

memory-mapped-file? [pocedure]
(memory-mapped-file? X)

Returns #t, if X is an object representing a memory mapped file, or #f otherwise.

map-file-to-memory [procedure]
(map-file-to-memory ADDRESS LEN PROTECTION FLAG FILENO [OFFSET])

Maps a section of a file to memory using the C function mmap(). ADDRESS should
be a foreign pointer object or #f; LEN specifies the size of the section to be mapped;
PROTECTION should be one or more of the flags prot/read, prot/write, prot/exec
or prot/mone bitwise-iored together; FLAG should be one or more of the flags
map/fixed, map/shared, map/private, map/anonymous or map/file; FILENO
should be the file-descriptor of the mapped file. The optional argument OFFSET
gives the offset of the section of the file to be mapped and defaults to 0. This
procedure returns an object representing the mapped file section. The procedure
move-memory! can be used to access the mapped memory.

memory-mapped-file-pointer [procedure]
(memory-mapped-file-pointer MMAP)

Returns a machine pointer to the start of the memory region to which the file is
mapped.

unmap-file-from-memory [procedure]
(unmap-file-from-memory MMAP [LEN])

Unmaps the section of a file mapped to memory using the C function munmap().
MMAP should be a mapped file as returned by the procedure map-file-to-memory.
The optional argument LEN specifies the length of the section to be unmapped and
defaults to the complete length given when the file was mapped.

5.20.14 Time routines

seconds->local-time [procedure]
(seconds->local-time SECONDS)

Breaks down the time value represented in SECONDS into a 10 element vector of the
form #(seconds minutes hours mday month year wday yday dstflag timezone),
in the following format:

e seconds: the number of seconds after the minute (0 - 59)
e minutes: the number of minutes after the hour (0 - 59)
e hours: the number of hours past midnight (0 - 23)

e mday: the day of the month (1 - 31)

e month: the number of months since january (0 - 11)

e year: the number of years since 1900

e wday: the number of days since Sunday (0 - 6)

e yday: the number of days since January 1 (0 - 365)

Chapter 5: Supported language 86

o dstflag: a flag that is true if Daylight Saving Time is in effect at the time de-
scribed.

e timezone: the difference between UTC and the latest local standard time, in
seconds west of UTC.

seconds->string [procedure]
(seconds->string SECONDS)

Converts the local time represented in SECONDS into a string of the form "Tue May 21
13:46:22 1991\n".

seconds->utc-time [procedure]
(seconds->utc-time SECONDS)

Similar to seconds->local-time, but interpretes SECONDS as UTC time.

time->string [procedure]
(time->string VECTOR)

Converts the broken down time represented in the 10 element vector VECTOR into a
string of the form "Tue May 21 13:46:22 1991\n".

5.20.15 Raw exit

_exit [procedure]
(_exit [CODE])

Exits the current process without flushing any buffered output (using the C function
_exit). Note that the exit-handler is not called when this procedure is invoked.
The optional return-code CODE defaults to O.

Chapter 5: Supported language 87
5.20.16 ERRNO values

errno/perm [error code]
errno/noent [error code]
errno/srch [error code]
errno/intr [error code]
errno/io [error code]
errno/noexec [error code]
errno/badf [error code]
errno/child [error code]
errno/nomem [error code]
errno/acces [error code]
errno/fault [error code]
errno/busy [error code]
errno/notdir [error code]
errno/isdir [error code]
errno/inval [error code]
errno/mfile [error code]
errno/nospc [error code]
errno/spipe [error code]
errno/pipe [error code]
errno/again [error code]
errno/rofs [error code]
errno/wouldblock [error code]

These variables contain error codes as returned by errno.

5.20.17 Finding files

find-files [procedure]

(find-files DIRECTORY PREDICATE [ACTION [IDENTITY [LIMIT]11)

Recursively traverses the contents of DIRECTORY (which should be a string) and in-
vokes the procedure ACTION for all files for which the procedure PREDICATE is true.
PREDICATE may me a procedure of one argument or a regular-expression string.
ACTION should be a procedure of two arguments: the currently encountered file and
the result of the previous invocation of ACTION, or, if this is the first invocation, the
value of IDENTITY. ACTION defaults to cons, IDENTITY defaults to (). LIMIT should
a procedure of one argument that is called for each nested directory and which should
return true, if that directory is to be traversed recursively. LIMIT may also be an
exact integer that gives the maximum recursion depth. A depth of 0 means the files
in the specified directory are traversed but not any nested directories. LIMIT may
also be #f (the default), which is equivalent to (constantly #t).

Note that ACTION is called with the full pathname of each file, including the directory
prefix.

Chapter 5: Supported language 88

5.20.18 Getting the hostname and system information

get-host-name [procedure]
(get-host-name)

Returns the hostname of the machine that this process is running on.

system-information [procedure]
(system-information)

Invokes the UNIX system call uname () and returns 5 values: system-name, node-
name, OS release, OS version and machine.

5.20.19 Setting a files buffering mode

set-buffering-mode! [procedure]
(set-buffering-mode! PORT MODE [BUFSIZE])

Sets the buffering-mode for the file associated with PORT to MODE, which should be
one of the keywords #:full, #:1line or #:none. If BUFSIZE is specified it determines
the size of the buffer to be used (if any).

5.20.20 Terminal ports

terminal-name [procedure]
(terminal-name PORT)

Returns the name of the terminal that is connected to PORT.

terminal-port? [procedure]
(terminal-port? PORT)

Returns #t if PORT is connected to a terminal and #f otherwise.

5.20.21 How Scheme procedures relate to UNIX C functions

change-directory
chdir

change-file-mode
chmod

change-file-owner
chown

create-directory
mkdir

create-fifo
mkfifo

create-pipe
pipe

Chapter 5: Supported language

create—session
setsid

create-symbolic-1link
link
current-directory

curdir

current-effective-groupd-id
getegid

current-effective-user-id
geteuid

current-group-id
getgid
current-parent-id
getppid
current-process-id
getpid
current-user-id

getuid

delete-directory
rmdir

duplicate-fileno
dup/dup?2

_exit _exit

file-close
close

file-access-time
stat

file-change-time
stat
file-modification-time
stat

file-execute-access?
access

file-open

open
file-lock

fentl

file-position

ftell /1seek

89

Chapter 5: Supported language

file-read
read

file-read-access?
access

file-select
select

file-stat
stat

file-test-lock
fentl

file-truncate
truncate/ftruncate

file-unlock
fentl
file-write
write
file-write-access?
access
get-groups
getgroups
get-host-name
gethostname
initialize-groups
initgroups
map-file-to-memory
mmap
open-input-filex*
fdopen
open-output-filex*
fdopen
open-input-pipe
popen
open-output-pipe
popen
port->fileno

fileno

process-execute
execvp

90

Chapter 5: Supported language

process-fork
fork

process-group—-id
getpgid

process-signal
kill

process-wait
waitpid

close-input-pipe
pclose

close-output-pipe
pclose

read-symbolic-1link
readlink

seconds->local-time
localtime

seconds—>string
ctime

seconds->utc-time
gmtime

set-alarm!
alarm

set-buffering-mode!
setvbuf

set-file-position!
fseek /seek

set-groups!
setgroups

set-signal-mask!
sigprocmask

set-group-id!
setgid

set-process-group-id!
setpgid

set-user-id!
setuid

set-root-directory!
chroot

setenv setenv/putenv

91

Chapter 5: Supported language

sleep sleep

system-information
uname

terminal-name
ttyname

terminal-port?
isatty

time->string
asctime

unsetenv putenv

unmap-file-from-memory
munmap

user—-information
getpwnam/getpwuid

5.20.22 Windows specific notes

92

The following definitions are not supported for native Windows builds (compiled with the

Microsoft tools or with MingW):

open/noctty open/nonblock open/fsync
perm/isvtx perm/isuid perm/isgid
file-select

signal/. ..

set-signal-handler! set-signal-mask!

user-information group-information get-groups

errno/wouldblock
change-file-owner

current-user-id current-group-id
set-user-id! set-group-id!
create-session

process-group-id set-process-group-id!
create-symbolic-link read-symbolic-link
file-truncate

file-lock file-lock/blocking file-unlock
create-fifo fifo?

prot/...

map/. ..

map-file-to-memory unmap-file-from-memory
set-alarm!
terminal-port?
process-fork process-signal
parent-process-id
set-root-directory!

terminal-name

current-effective-user-id

open/sync

set-groups! initialize-groups|]

current-effective-groupd-idj

file-test-lock

memory-mapped-file-pointer memory-mapped-file?|

Additionally, the following definitions are only available for Windows:

Chapter 5: Supported language 93

spawn/overlay [spawn mode]
spawn/wait [spawn mode]
spawn/nowait [spawn mode]
spawn/nowaito [spawn mode]
spawn/detach [spawn mode]

These wvariables contains special flags that specify the exact semantics of

process-spawn: spawn/overlay replaces the current process with the new one.
spawn/wait suspends execution of the current process until the spawned process
returns. spawn/nowait does the opposite (spawn/nowaito is identical, according to
the Microsoft documentation) and runs the process asynchronously. spawn/detach
runs the new process in the background, without being attached to a console.

process-spawn [procedure]
(process-spawn MODE FILENAME ARGUMENT ...)
Creates and runs a new process with the given filename and command-line arguments.
MODE specifies how exactly the process should be executed and must be one or more
of the spawn/. .. flags defined above.

5.21 Unit utils

This unit contains some utility procedures for Shell scripting and for some file operations.

This unit uses the extras and regex units.

5.21.1 Pathname operations

absolute-pathname? [procedure]
(absolute-pathname? PATHNAME)

Returns #t if the string PATHNAME names an absolute pathname, and returns #f
otherwise.

decompose-pathname [procedure]
(decompose-pathname PATHNAME)

Returns three values: the directory-, filename- and extension-components of the file
named by the string PATHNAME. For any component that is not contained in PATHNAME,
#f is returned.

make-pathname [procedure]
make-absolute-pathname [procedure]
(make-pathname DIRECTORY FILENAME [EXTENSION])
(make-absolute-pathname DIRECTORY FILENAME [EXTENSION])
Returns a string that names the file with the components DIRECTORY, FILENAME and
(optionally) EXTENSION. DIRECTORY can be #f (meaning no directory component), a
string or a list of strings. FILENAME and EXTENSION should be strings or #f. make-
absolute-pathname returns always an absolute pathname.

pathname-directory [procedure]
(pathname-directory PATHNAME)

Chapter 5: Supported language 94

pathname-file [procedure]
(pathname-file PATHNAME)

pathname-extension [procedure]
(pathname-extension PATHNAME)

Accessors for the components of PATHNAME. If the pathname does not contain the
accessed component, then #f is returned.

pathname-replace-directory [procedure]
(pathname-replace-directory PATHNAME DIRECTORY)

pathname-replace-file [procedure]
(pathname-replace-file PATHNAME FILENAME)

pathname-replace-extension [procedure]
(pathname-replace-extension PATHNAME EXTENSION)

Return a new pathname with the specified component of PATHNAME replaced by a new

value.
pathname-strip-directory [procedure]
(pathname-strip-directory PATHNAME)
pathname-strip-extension [procedure]

(pathname-strip-extension PATHNAME)
Return a new pathname with the specified component of PATHNAME stripped.

5.21.2 Temporary files

create-temporary-file [procedure]
(create-temporary-file [EXTENSION])

Creates an empty temporary file and returns its pathname. If EXTENSION is not given,
then .tmp is used. If the environment variable TMPDIR, TEMP or TMP is set, then the
pathname names a file in that directory.

5.21.3 Deleting a file without signalling an error

delete-file* [procedure]
(delete-file* FILENAME)

If the file FILENAME exists, it is deleted and #t is returned. If the file does not exist,
nothing happens and #f is returned.

5.21.4 Iterating over input lines and files

for-each-line [procedure]
(for-each-line PROCEDURE [PORT])
Calls PROCEDURE for each line read from PORT (which defaults to the value of
(current-input-port). The argument passed to PORCEDURE is a string with the
contents of the line, excluding any line-terminators. When all input has been read
from the port, for-each-line returns some unspecified value.

Chapter 5: Supported language 95

for-each-argv-line [procedure]
(for-each-argv-line PROCEDURE)

Opens each file listed on the command line in order, passing one line at a time into
PROCEDURE. The filename - is interpreted as (current-input-port). If no arguments
are given on the command line it again uses the value of (current-input-port).

This code will act as a simple Unix cat(1) command:

(for-each-argv-line print)

5.21.5 Executing shell commands with formatstring and error
checking

system* [procedure]
(system*x FORMATSTRING ARGUMENT1 ...)

Similar to (system (sprintf FORMATSTRING ARGUMENT1 ...)), but signals an error
if the invoked program should return a nonzero exit status.

5.21.6 Reading a file’s contents

read-all [procedure]
(read-all [FILE-OR-PORT])

If FILE-OR-PORT is a string, then this procedure returns the contents of the file as
a string. If FILE-OR-PORT is a port, all remaining input is read and returned as a
string. The port is not closed. If no argument is provided, input will be read from
the port that is the current value of (current-input-port).

5.21.7 Miscellaneous handy things

shift! [procedure]
(shift! LIST [DEFAULT])

Returns the car of LIST (or DEFAULT if LIST is empty) and replaces the car of LIST
with it’s cadr and the cdr with the cddr. If DEFAULT is not given, and the list is
empty, #f is returned. An example might be clearer, here:

(define 1st ’(1 2 3))
(shift! 1st) ==> 1, 1lst is now (2 3)

unshift! [procedure]
(unshift! X PAIR)

Sets the car of PAIR to X and the cdr to its cddr. Returns PAIR:

(define 1st ’(2))
(unshift! 99 1st) ; 1st is now (99 2)

Chapter 5: Supported language 96

5.22 Unit tcp

This unit provides basic facilities for communicating over TCP sockets. The socket interface
should be mostly compatible to the one found in PLT Scheme.

This unit uses the extras unit.

All errors related to failing network operations will raise a condition of kind (exn i/o
network).

tcp-listen [procedure]
(tcp-listen TCPPORT [BACKLOG [HOST]]1)

Creates and returns a TCP listener object that listens for connections on TCPPORT,
which should be an exact integer. BACKLOG specifies the number of maximally pending
connections (and defaults to 4). If the optional argument HOST is given and not #f,
then only incoming connections for the given host (or IP) are accepted.

tcp-listener? [procedure]
(tcp-listener? X)

Returns #t if X is a TCP listener object, or #f otherwise.

tcp-close [procedure]
(tcp-close LISTENER)

Reclaims any resources associated with LISTENER.

tcp-accept [procedure]
(tcp-accept LISTENER)

Waits until a connection is established on the port on which LISTENER is listening
and returns two values: an input- and output-port that can be used to communicate
with the remote process.

Note: this operation and any I/O on the ports returned will not block other running
threads.

tcp-accept-ready? [procedure]
(tcp-accept-ready? LISTENER)

Returns #t if there are any connections pending on LISTENER, or #f otherwise.

tcp-listener-port [procedure]
(tcp-listener-port LISTENER)

Returns the port number assigned to LISTENER (If you pass O to tcp-listen, then
the system will choose a port-number for you).

tcp-connect [procedure]
(tcp-connect HOSTNAME [TCPPORT])

Establishes a client-side TCP connection to the machine with the name HOSTNAME (a
string) at TCPPORT (an exact integer) and returns two values: an input- and output-
port for communicating with the remote process.

Note: any I/O on the ports returned will not block other running threads.

Chapter 5: Supported language 97

tcp-addresses [procedure]
(tcp-addresses PORT)

Returns two values for the input- or output-port PORT (which should be a port re-
turned by either tcp-accept or tcp-connect): the IP address of the local and the
remote machine that are connected over the socket associated with PORT. The re-
turned addresses are strings in XXX.XXX.XXX.XXX notation.

tcp-abandon-port [procedure]
(tcp-abandon-port PORT)

Marks the socket port PORT as abandoned. This is mainly useful to close down a port
without breaking the connection.

A very simple example follows. Say we have the two files client.scm and server.scm:

; client.scm

(define-values (i o) (tcp-connect "localhost" 4242))
(write-line "Good Bye!" o)

(print (read-line i))

; server.scm

(define 1 (tcp-listen 4242))
(define-values (i o) (tcp-accept 1))
(write-line "Hello!" o)

(print (read-line i))
(close-input-port i)
(close-output-port o)

% csi -script server.scm &
[1] 1409

% csi -script client.scm
Good Bye!

Hello!

5.23 Unit srfi-37

Copyright (c) 2002 Anthony Carrico

A simple and flexible command-line option parsing facility. Options may be either short
one-character options of the form -X[ARGUMENT] or long multicharacter ones of the form
—--XXX[=ARGUMENT]. Short options may be coalesced. An argument of the form -- stops
option processing. For more information take a look at the SRFI-37 documentation .

An example:

#!/usr/local/bin/csi -script
;555 secho - display command-line arguments

(define nl 1)

(define help

http://srfi.schemers.org/srfi-37/srfi-37.html

Chapter 5: Supported language 98

(option
>(#\h "help") #f #f
(lambda _
(print "Usage: secho [OPTION] ARG ...
-h --help show this text
-n --newline N add N newline characters (default: 1)")
(exit))))

(define newlines
(option
>(#\n "newline") #t #f
(lambda (o n x vals)
(set! nl (string->number x))
vals)))

(for-each
(lambda (x) (print* x #\space))
(reverse

(args-fold

(command-line-arguments)

(1ist help newlines)

(lambda (o n x vals)

(error "unrecognized option" n))
cons

ORDEDED

(display (make-string nl #\newline))

5.24 Unit lolevel

This unit provides a number of handy low-level operations. Use at your own risk.

This unit uses the srfi-4 and extras units.

5.24.1 Foreign pointers

address->pointer [procedure]
(address->pointer ADDRESS)

Creates a new foreign pointer object initialized to point to the address given in the
integer ADDRESS.

allocate [procedure]
(allocate BYTES)

Returns a pointer to a freshly allocated region of static memory. This procedure could
be defined as follows:

(define allocate (foreign-lambda c-pointer "malloc" integer))

Chapter 5: Supported language 99

free [procedure]
(free POINTER)

Frees the memory pointed to by POINTER. This procedure could be defined as follows:
(define free (foreign-lambda c-pointer "free" integer))

null-pointer [procedure]
(null-pointer)

Another way to say (address->pointer 0).

null-pointer? [procedure]
(null-pointer? PTR)

Returns #t if PTR contains a NULL pointer, or #f otherwise.

object->pointer [procedure]
(object->pointer X)

Returns a pointer pointing to the Scheme object X, which should be a non-immediate
object. Note that data in the garbage collected heap moves during garbage collection.

pointer? [procedure]
(pointer? X)

Returns #t if X is a foreign pointer object, and #f otherwise.

pointer="7? [procedure]
(pointer=7 PTR1 PTR2)

Returns #t if the pointer-like objects PTR1 and PTR2 point to the same address.
pointer->address [procedure]
(pointer->address PTR)
Returns the address, to which the pointer PTR points.
pointer->object [procedure]
(pointer->object PTR)
Returns the Scheme object pointed to by the pointer PTR.

pointer-offset [procedure]
(pointer-offset PTR N)

Returns a new pointer representing the pointer PTR increased by N.
pointer-u8-ref [procedure]
(pointer-u8-ref PTR)
Returns the unsigned byte at the address designated by PTR.
pointer-s8-ref [procedure]
(pointer-s8-ref PTR)
Returns the signed byte at the address designated by PTR.

pointer-ul6-ref [procedure]
(pointer-ul6-ref PTR)

Returns the unsigned 16-bit integer at the address designated by PTR.

Chapter 5: Supported language

pointer-s16-ref
(pointer-si6-ref PTR)

Returns the signed 16-bit integer at the address designated by PTR.

pointer-u32-ref
(pointer-u32-ref PTR)

Returns the unsigned 32-bit integer at the address designated by PTR.

pointer-s32-ref
(pointer-s32-ref PTR)

Returns the signed 32-bit integer at the address designated by PTR.

pointer-f32-ref
(pointer-£f32-ref PTR)

Returns the 32-bit float at the address designated by PTR.

pointer-f64-ref
(pointer-f64-ref PTR)

Returns the 64-bit double at the address designated by PTR.

pointer-u8-set!
(pointer-u8-set! PTR N)

Stores the unsigned byte N at the address designated by PTR.

pointer-s8-set!
(pointer-s8-set! PTR N)

Stores the signed byte N at the address designated by PTR.

pointer-ul6-set!
(pointer-ul6-set! PTR N)

Stores the unsigned 16-bit integer N at the address designated by PTR.

pointer-s16-set!
(pointer-s16-set! PTR N)

Stores the signed 16-bit integer N at the address designated by PTR.

pointer-u32-set!
(pointer-u32-set! PTR N)

Stores the unsigned 32-bit integer N at the address designated by PTR.

pointer-s32-set!
(pointer-s32-set! PTR N)

Stores the 32-bit integer N at the address designated by PTR.

pointer-f32-set!
(pointer-f32-set! PTR N)

100

[procedure]

[procedure]

[procedure]

[procedure]

[procedure]

[procedure]

[procedure]

[procedure]

[procedure]

[procedure]

[procedure]

[procedure]

Stores the 32-bit floating-point number N at the address designated by PTR.

Chapter 5: Supported language 101

pointer-f64-set! [procedure]
(pointer-f64-set! PTR N)

Stores the 64-bit floating-point number N at the address designated by PTR.

align-to-word [procedure]
(align-to-word PTR-OR-INT)

Accepts either a machine pointer or an integer as argument and returns a new pointer
or integer aligned to the native word size of the host platform.

5.24.2 Tagged pointers

“Tagged” pointers are foreign pointer objects with an extra tag object.

tag-pointer [procedure]
(tag-pointer PTR TAG)

Creates a new tagged pointer object from the foreign pointer PTR with the tag TAG,
which may an arbitrary Scheme object.

tagged-pointer? [procedure]
(tagged-pointer? X TAG)

Returns #t, if X is a tagged pointer object with the tag TAG (using an eq? comparison),
or #f otherwise.

pointer-tag [procedure]
(pointer-tag PTR)

If PTR is a tagged pointer object, its tag is returned. If PTR is a normal, untagged
foreign pointer object #f is returned. Otherwise an error is signalled.

5.24.3 Extending procedures with data

extend-procedure [procedure]
(extend-procedure PROCEDURE X)

Returns a copy of the procedure PROCEDURE which contains an additional data slot
initialized to X. If PROCEDURE is already an extended procedure, then its data slot is
changed to contain X and the same procedure is returned.

extended-procedure? [procedure]
(extended-procedure? PROCEDURE)

Returns #t if PROCEDURE is an extended procedure, or #f otherwise.

procedure-data [procedure]
(procedure-data PROCEDURE)

Returns the data object contained in the extended procedure PROCEDURE.

set-procedure-data! [procedure]
(set-procedure-data! PROCEDURE X)

Changes the data object contained in the extended procedure PROCEDURE to X.

Chapter 5: Supported language 102

(define foo
(letrec ((f (lambda () (procedure-data x)))

(x #£))
(set! x (extend-procedure f 123))
x))
(fo0) ==> 123
(set-procedure-data! foo ’hello)
(foo) ==> hello

5.24.4 Bytevectors

byte-vector [procedure]
(byte-vector FIXNUM ...)

Returns a freshly allocated byte-vector with FIXNUM ... as its initial contents.

byte-vector? [procedure]
(byte-vector? X)

Returns #t if X is a byte-vector object, or #f otherwise.

byte-vector-fill! [procedure]
(byte-vector-fill! BYTE-VECTOR N)

Sets each element of BYTE-VECTOR to N, which should be an exact integer.

byte-vector->list [procedure]
(byte-vector->list BYTE-VECTOR)

Returns a list with elements taken from BYTE-VECTOR.

byte-vector->string [procedure]
(byte-vector->string BYTE-VECTOR)

Returns a string with the contents of BYTE-VECTOR.

byte-vector-length [procedure]
(byte-vector-length BYTE-VECTOR)

Returns the number of elements in BYTE-VECTOR.

byte-vector-ref [procedure]
(byte-vector-ref BYTE-VECTOR INDEX)

Returns the byte at the INDEXth position of BYTE-VECTOR.

byte-vector-set! [procedure]
(byte-vector-set! BYTE-VECTOR INDEX N)

Sets the byte at the INDEXth position of BYTE-VECTOR to the value of the exact integer
n.

executable-byte-vector->procedure [procedure]
(executable-byte-vector->procedure PBYTE-VECTOR)

Returns a procedure that on invocation will execute the code in PBYTE-VECTOR, which
should have been allocated using make-executable-byte-vector. The procedure

Chapter 5: Supported language 103

follows the native C calling convention, and will be called as if declared with the
following prototype:

void <procedure>(int argc, C_word closure, C_word k, C_word argl, ...)

e argc contains the number of arguments argl, ... that are passed plus 2 (in-
cluding closure and k).

e closure is the procedure object itself.
e k is a continuation closure that should be called when the code is about to return.

typedef void (*CONTINUATION) (int argc, C_word closure,
C_word result);
((CONTINUATION)k[1 1)(2, k, result)

(k is a data object with the second word being the actual code pointer)

An example:

(define x (make-executable-byte-vector 17))

(move-memory!

*#u8 (#x8b #x44 #x24 #x0c ; movl 12(%esp), %eax - ‘k’
#x8b #xbc #x24 #x10 ; movl 16(%esp), %ebx - ‘argl’

#x53 ; pushl %ebx - push result
#x50 ; pushl %eax - push k
#x6a #x02 ; pushl $2 - push argument count
#x8b #x40 #x04 ; movl 4(%eax), %eax - fetch code pointer
#xff #xd0) ; call *Yeax

x)

(define y (executable-byte-vector->procedure x))

(y 123) ==> 123

The result of calling executable-byte-vector->procedure with a non-executable
statically allocated byte-vector is undefined.

invoke-executable-byte-vector [procedure]
(invoke-executable-byte-vector PBYTE-VECTOR ARGl ...)

Invokes the machine code stored in the executable byte-vector PBYTE-VECTOR. The
native C calling conventions are used, but the invoked code is passed a single argument
containing a pointer to an array of the Scheme objects ARG1

(define v (make-executable-byte-vector 7))
(move-memory!

Y#u8 (#x8b #x44 #x24 #x04 ; movl 4(%esp), heax
#x8b #x00 ; movl O(%eax), %eax
#xc3) ; ret

V)

(invoke-executable-byte-vector v "hello!") ==> "hello!"

list->byte-vector [procedure]
(list->byte-vector LIST)

Returns a byte-vector with elements taken from LIST, where the elements of LIST
should be exact integers.

Chapter 5: Supported language 104

make-byte-vector [procedure]
(make-byte-vector SIZE [INIT])

Creates a new byte-vector of size SIZE. If INIT is given, then it should be an exact
integer with which every element of the byte-vector is initialized.

make-executable-byte-vector [procedure]
(make-executable-byte-vector SIZE [INIT])

As make-static-byte-vector, but the code is suitable for execution. Note: this
feature is currently only available on x86 platforms.

Exceptions: (exn bounds), (exn runtime)

make-static-byte-vector [procedure]
(make-static-byte-vector SIZE [INIT])

As make-byte-vector, but allocates the byte-vector in storage that is not subject to
garbage collection. To free the allocated memory, one has to call object-release
explicitly.

FExceptions: (exn bounds), (exn runtime)

static-byte-vector->pointer [procedure]
(static-byte-vector->pointer PBYTE-VECTOR)

Returns a pointer object pointing to the data in the statically allocated byte-vector
PBYTE-VECTOR.

string->byte-vector [procedure]
(string->byte-vector STRING)

Returns a byte-vector with the contents of STRING.

5.24.5 Data in unmanaged memory

object-evict [procedure]
(object-evict X [ALLOCATOR])

Copies the object X recursively into the memory pointed to by the foreign pointer
object returned by ALLOCATOR, which should be a procedure of a single argument
(the number of bytes to allocate). The freshly copied object is returned. This facility
allows moving arbitrary objects into static memory, but care should be taken when
mutating evicted data: setting slots in evicted vector-like objects to non-evicted data
is not allowed. It is possible to set characters/bytes in evicted strings or byte-vectors,
though. It is advisable not to evict ports, because they might be mutated by certain
file-operations. object-evict is able to handle circular and shared structures, but
evicted symbols are no longer unique: a fresh copy of the symbol is created, so

(define x ’foo0)
(define y (object-evict ’foo))

y ==> foo
(eq? x y) ==> #f
(define z (object-evict ’(bar bar)))

(eq? (car z) (cadr z)) ==> #t

The ALLOCATOR defaults to allocate.

Chapter 5: Supported language 105

object-evict-to-location [procedure]
(object-evict-to-location X PTR [LIMITI])

As object-evict but moves the object at the address pointed to by the machine
pointer PTR. If the number of copied bytes exceeds the optional LIMIT then an error
is signalled. Two values are returned: the evicted object and a new pointer pointing
to the first free address after the evicted object.

object-evicted? [procedure]
(object-evicted? X)

Returns #t if X is a non-immediate evicted data object, or #f otherwise.

object-size [procedure]
(object-size X)

Returns the number of bytes that would be needed to evict the data object X.

object-release [procedure]
(object-release X [RELEASER])

Frees memory occupied by the evicted object X recursively. RELEASER should be a
procedure of a single argument (a foreign pointer object to the static memory to be
freed) and defaults to the C-library free().

object-unevict [procedure]
(object-unevict X)

Copies the object X and nested objects back into the normal Scheme heap. Symbols
are re-interned into the symbol table. Strings and byte-vectors are not copied.

5.24.6 Locatives

A locative is an object that points to an element of a containing object, much like a “pointer”
in low-level, imperative programming languages like “C”. The element can be accessed and
changed indirectly, by performing access or change operations on the locative. The container
object can be computed by calling the location->object procedure.

Locatives may be passed to foreign procedures that expect pointer arguments. The effect
of creating locatives for evicted data (see object-evict) is undefined.

make-locative [procedure]
(make-locative EXP [INDEX])

Creates a locative that refers to the element of the non-immediate object EXP at po-
sition INDEX. EXP may be a vector, symbol, pair, string, byte-vector, SRFI-4 number-
vector, SRFI-25 array, or record. INDEX should be a fixnum, or a valid index into a
SRFI-25 array. INDEX defaults to 0.

make-weak-locative [procedure]
(make-weak-locative EXP [INDEX])

Creates a “weak” locative. Even though the locative refers to an element of a container
object, the container object will still be reclaimed by garbage collection if no other
references to it exist.

Chapter 5: Supported language 106

locative? [procedure]
(locative? X)

Returns #t if X is a locative, or #f otherwise.

locative-ref [procedure]
(locative-ref LOC)

Returns the element to which the locative LOC refers. If the containing object has
been reclaimed by garbage collection, an error is signalled.

locative-set! [procedure]
(locative-set! LOC X)

Changes the element to which the locative LOC refers to X. If the containing object
has been reclaimed by garbage collection, an error is signalled.

locative->object [procedure]
(Locative->object LOC)

Returns the object that contains the element referred to by LOC or #£ if the container
has been reclaimed by garbage collection.

5.24.7 Accessing toplevel variables

global-bound? [procedure]
(global-bound? SYMBOL)

Returns #t, if the global (“toplevel”) variable with the name SYMBOL is bound to a
value, or #f otherwise.

global-ref [procedure]
(global-ref SYMBOL)

Returns the value of the global variable SYMBOL. If no variable under that name is
bound, an error is signalled.

global-set! [procedure]
(global-set! SYMBOL X)

Sets the global variable named SYMBOL to the value X.

5.24.8 Low-level data access

block-ref [procedure]
(block-ref BLOCK INDEX)

Returns the contents of the INDEXth slot of the object BLOCK. BLOCK may be a vector,
record structure, pair or symbol.

block-set! [procedure]
(block-set! BLOCK INDEX X)

Sets the contents of the INDEXth slot of the object BLOCK to the value of X. BLOCK
may be a vector, record structure, pair or symbol.

Chapter 5: Supported language 107

object-copy [procedure]
(object-copy X)

Copies X recursively and returns the fresh copy. Objects allocated in static memory
are copied back into garbage collected storage.

make-record-instance [procedure]
(make-record-instance SYMBOL ARGl ...)

Returns a new instance of the record type SYMBOL, with its slots initialized to ARG1
.... To illustrate:
(define-record point x y)
expands into something quite similar to:
(begin
(define (make-point x y)
(make-record-instance ’point x y))
(define (point? x)
(and (record-instance? x)
(eq? ’point (block-ref x 0))))
(define (point-x p) (block-ref p 1))
(define (point-x-set! p x) (block-set! p 1 x))
(define (point-y p) (block-ref p 2))
(define (point-y-set! p y) (block-set! p 1 y)))

move-memory! [procedure]
(move-memory! FROM TO [BYTES])

Copies BYTES bytes of memory from FROM to TO. FROM and TO may be strings, primitive
byte-vectors, SRFI-4 byte-vectors (see: Section 5.11 [Unit srfi-4], page 65), memory
mapped files, foreign pointers (as obtained from a call to foreign-lambda, for exam-
ple) or locatives. if BYTES is not given and the size of the source or destination operand
is known then the maximal number of bytes will be copied. Moving memory to the
storage returned by locatives will cause havoc, if the locative refers to containers of
non-immediate data, like vectors or pairs.

number-of-bytes [procedure]
(number-of-bytes BLOCK)

Returns the number of bytes that the object BLOCK contains. BLOCK may be any
non-immediate value.

number-of-slots [procedure]
(number-of-slots BLOCK)

Returns the number of slots that the object BLOCK contains. BLOCK may be a vector,
record structure, pair or symbol.

record-instance? [procedure]
(record-instance? X)

Returns #t if X is an instance of a record type. See also: make-record-instance.

Chapter 5: Supported language 108

record->vector [procedure]
(record->vector BLOCK)

Returns a new vector with the type and the elements of the record BLOCK.

5.24.9 Procedure-call- and variable reference hooks

invalid-procedure-call-handler [procedure]
(invalid-procedure-call-handler PROC)

Sets an internal hook that is invoked when a call to an object other than a procedure
is executed at runtime. The procedure PROC will in that case be called with two
arguments: the object being called and a list of the passed arguments.

;35 Access sequence-elements as in ARC:

(invalid-procedure-call-handler
(lambda (proc args)
(cond [(string? proc) (apply string-ref proc args)]
[(vector? proc) (apply vector-ref proc args)]
[else (error "call of non-procedure" proc)])))

("hello" 4) ==> #\o

This facility does not work in code compiled with the “unsafe” setting.

unbound-variable-value [procedure]
(unbound-variable-value [X])

Defines the value that is returned for unbound variables. Normally an error is sig-
nalled, use this procedure to override the check and return X instead. To set the
default behavior (of signalling an error), call unbound-variable-value with no ar-
guments.

This facility does not work in code compiled with the “unsafe” setting.

5.24.10 Magic

object-become! [procedure]
(object-become! ALIST)

Changes the identity of the value of the car of each pair in ALIST to the value of the
cdr. Both values may not be immediate (i.e. exact integers, characters, booleans or
the empty list).

(define x "i used to be a string")

(define y ’#(and now i am a vector))

(object-become! (list (cons x y)))

X ==> #(and now i am a vector)
y ==> #(and now i am a vector)
(eq? x y) ==> #t

Note: this operation invokes a major garbage collection.

The effect of using object-become! on evicted data (see object-evict) is undefined.

Chapter 5: Supported language 109

5.25 Unit tinyclos

This unit is a port of Gregor Kiczales TinyCLOS with numerous modifications.

This unit uses the extras unit.

5.25.1 Defining forms

define-class [syntax]
(define-class NAME (SUPERCLASS1 ...) (SLOTNAME1 ...) [METACLASS])

Sets the variable NAME to a new class (a new instance of the class <class>).
SUPERCLASS1 ... is a list of superclasses of the newly created class. If no
superclasses are given, then <object> is assumed. SLOTNAMEL ... are the names of
the direct slots of the class. if METACLASS is provided, then the new class-instance is
an instance of METACLASS instead of <class>.

(define-class NAME (SUPER) (SLOT1 SLOT2) META)
is equivalent to

(define NAME
(make META
’name ’NAME
’direct-supers (list SUPER)
’direct-slots (list ’SLOT1 ’SLOT2)))
Note that slots-names are not required to be symbols, so the following is perfectly
valid:
(define hidden-slot (list ’hidden))
(define <myclass>
(make <class>
’direct-supers (list <object>)
’direct-slots (list hidden-slot)))
(define x1 (make <myclass>)
(slot-set! x1 hidden-slot 99)

define-generic [syntax]
(define-generic NAME [CLASS])

Sets the variable NAME to contain a fresh generic function object without associated
methods. If the optional argument CLASS is given, then the generic function will be
an instance of that class.

define-method [syntax]

(define-method (NAME (VARIABLE1 CLASS1) ... PARAMETERS ...) BODY ..

Adds a new method with the code BODY ... to the generic function that was assigned
to the variable name. CLASS1 ... is a list if classes that specialize this particular
method. The method can have additional parameters PARAMETERS, which do not
specialize the method any further. Inside the body of the method the identifier call-
next-method names a procedure of zero arguments that can be invoked to call the
next applicable method with the same arguments. If no generic function is defined

9] |

Chapter 5: Supported language 110

under this name, then a fresh generic function object is created and assigned to
NAME. Note that only define-generic expands into a valid definition, so for internal
lexically scoped definitions or for definitions for module exports (see syntax-case)
use define-generic.

5.25.2 Base language

add-method [procedure]
(add-method GENERIC METHOD)

Adds the method object METHOD to the list of applicable methods for the generic
function GENERIC.

instance? [procedure]
(instance? X)

Returns #t if X is an instance of a non-primitive class.

make [procedure]
(make CLASS INITARG ...)

Creates a new instance of CLASS and passes INITARG ... to the initialize method
of this class.

make-class [procedure]
(make-class SUPERCLASSES SLOTNAMES)

Creates a new class object, where SUPERCLASSES should be the list of direct superclass
objects and SLOTNAMES should be a list of symbols naming the slots of this class.

make-generic [procedure]
(make-generic [NAME])

Creates a new generic function object. If NAME is specified, then it should be a string.

make-method [procedure]
(make-method SPECIALIZERS PROC)

Creates a new method object specialized to the list of classes in SPECTALIZERS.

(define-method (foo (x <bar>)) 123)
<=> (add-method foo
(make-method
(1ist <bar>)
(lambda (call-next-method x) 123)))

slot-ref [procedure]
(slot-ref INSTANCE SLOTNAME)

Returns the value of the slot SLOTNAME of the object INSTANCE.

slot-set! [procedure]
(slot-set! INSTANCE SLOTNAME VALUE)

Sets the value of the slot SLOTNAME of the object INSTANCE to VALUE.

Chapter 5: Supported language 111

5.25.3 Introspection

class-cpl [procedure]
(class-cpl CLASS)

Returns the class-precedence-list of CLASS as a list of classes.

class-direct-slots [procedure]
(class-direct-slots CLASS)

Returns the list of direct slots of CLASS as a list of lists, where each sublist contains
the name of the slot.

class-direct-supers [procedure]
(class-direct-supers CLASS)

Returns the list of direct superclasses of CLASS.

class-of [procedure]
(class-of X)

Returns the class that the object X is an instance of.

class-name [procedure]
(class-name CLASS)

Returns name of CLASS.

class-slots [procedure]
(class-slots CLASS)

Returns the list of all slots of CLASS and its superclasses as a list of lists, where each
sublist contains the name of the slot.

generic-methods [procedure]
(generic-methods GENERIC)

Returns the list of all methods associated with the generic function GENERIC.

method-specializers [procedure]
(method-specializers METHOD)

Returns the list of classes that specialize METHOD.

method-procedure [procedure]
(method-procedure METHOD)

Returns the procedure that contains the body of METHOD.

subclass? [procedure]
(subclass? CLASS1 CLASS2)

Returns #t is CLASS1 is a subclass of CLASS2, or #f otherwise. Note that the following
holds:

(subclass? X X) ==> #t

Chapter 5: Supported language 112

5.25.4 Intercessory protocol

These definitions allow interfacing to the Meta Object Protocol of TinyCLOS. For serious
use, it is recommended to consult the source code (tinyclos.scm).

allocate-instance [generic]
(allocate-instance CLASS)

Allocates storage for an instance of CLASS and returns the instance.
compute-apply-generic [generic]
(compute-apply-generic GENERIC)

Returns a procedure that will be called to apply the generic function methods to the
arguments.

compute-apply-methods [generic]
(compute-apply-methods GENERIC)

Returns a procedure of two arguments, a list of applicable methods and a list of
arguments and applies the methods.

compute-methods [generic]
(compute-methods GENERIC)

Returns a procedure of one argument. The procedure is called with the list of ac-
tual arguments passed to the generic function and should return a list of applicable
methods, sorted by precedence.

compute-cpl [generic]
(compute-cpl CLASS)

Computes and returns the class-precedence-list of CLASS.

compute-getter-and-setter [generic]
(compute-getter-and-setter CLASS SLOT ALLOCATOR)

Returns two values, the procedures that get and set the contents of the slot SLOT.
ALLOCATOR is a procedure of one argument (I currently don’t know what it does).

compute-method-more-specific? [generic]
(compute-method-more-specific? GENERIC)

Returns a procedure of three arguments (two methods and a list of arguments) that
returns #t if the first method is more specific than the second one with respect to the
list of arguments. Otherwise the returned predicate returns #f£.

compute-slots [generic]
(compute-slots CLASS)

Computes and returns the list of slots of CLASS.
initialize [generic]
(initialize INSTANCE INITARGS)

Initializes the object INSTANCE. INITARGS is the list of initialization arguments that
were passed to the make procedure.

Chapter 5: Supported language 113

5.25.5 Additional protocol

describe-object [generic]
(describe-object INSTANCE PORT)

Writes a description of INSTANCE to PORT. Execution of the interpreter command ,d
will invoke this generic function.

print-object [generic]
(print-object INSTANCE PORT)

Writes a textual representation of INSTANCE to PORT. Any output of an instance with
display, write and print will invoke this generic function.

5.25.6 Utility procedures

initialize-slots [procedure]
(initialize-slots INSTANCE INITARGS)

This procedure takes a sequence of alternating slot-names and initialization values in
INITARGS and initializes the corresponding slots in INSTANCE.

(define-class <pos> () (x y))

(define-method (initialize (pos <pos>) initargs)
(call-next-method)
(initialize-slots pos initargs))

(define pl (make <pos> ’x 1 ’y 2))
(define p2 (make <pos> ’x 3 ’y 5))

5.25.7 Builtin classes

The class hierarchy of builtin classes looks like this:
<top>
<object>
<class>
<procedure-class>
<procedure>
<entity-class>
<generic>
<primitive-class>
<c++-object>
<primitive>
<void>
<boolean>
<symbol>
<char>
<vector>

Chapter 5: Supported language 114

<pair>

<number>
<integer>

<exact>

<inexact>

<string>

<port>
<input-port>
<output-port>

<pointer>
<tagged-pointer>
<swig-pointer>

<locative>

<byte-vector>
<u8vector>
<s8vector>
<ul6vector>
<sl6vector>
<u32vector>
<s32vector>
<f32vector>
<f64vector>

<structure>
<array>
<char-set>
<condition>
<environment>
<hash-table>
<lock>
<mmap>
<promise>
<queue>
<tcp-listener>
<time>

<end-of-file>

<primitive> — <top> [class]
The parent class of the classes of all primitive Scheme objects.

Chapter 5: Supported language

<boolean> — <primitive>
<symbol> — <primitive>
<char> — <primitive>
<vector> — <primitive>
<null> — <primitive>
<pair> — <primitive>
<number> — <primitive>
<integer> — <primitive>
<exact> — <integer>
<inexact> — <number>
<string> — <primitive>
<port> — <primitive>

<environment> — <structure>

<end-of-file> — <primitive>
<input-port> — <port>
<output-port> — <port>

<procedure> — <procedure-class>
The classes of primitive Scheme objects.

<byte-vector> — <primitive>
<structure> — <primitive>
<hash-table> — <structure>
<queue> — <structure>

The classes of extended data types provided by the various library units.

<class> — <object>

The parent class of all class objects.

<entity-class> — <class>

The parent class of objects that can be invoked as a procedure and have slots.

<generic> — <entity-class>

The parent class of generic function objects.

<method> — <class>

The parent class of method objects.

<object> — <class>

The parent class of all objects.

<procedure-class> — <class>
The parent class of objects that can be invoked as a procedure.

<condition> — <structure>
Class of condition objects.

115

[class]

[class]

[class]

[class]

[class]

Chapter 5: Supported language

array> — <structure>
<char-set> — <structure>
<time> — <structure>
<u8vector> — <byte-vector>
<s8vector> — <byte-vector>
<ul6vector> — <byte-vector>
<sl6vector> — <byte-vector>
<u32vector> — <byte-vector>
<s32vector> — <byte-vector>
<f32vector> — <byte-vector>
<f64vector> — <byte-vector>
The classes of data objects provided by the various supported SRFIs.

<lock> — <structure>
<mmap> — <structure>
Classes of objects used in the posix library unit.

<pointer> — <primitive>
<tagged-pointer> — <pointer>
<swig-pointer> — <pointer>

A machine pointer (untagged, tagged or pointing to SWIG-wrapped data).

<locative> — <primitive>
A locative.

<promise> — <structure>
The class of objects returned by delay.

<tcp-listener> — <structure>
The class of an object returned by tcp-listen.

<c++-class> — <object>

116

[class]
[class]
[class]

[class|

[class]

[class]

[class]

The class of generated wrappers for C++ classes parsed by the “easy” Foreign Function

interface.

The CHICKEN distribution provides several examples in the file tinyclos-

examples.scm.

Chapter 6: Interface to external functions and variables 117

6 Interface to external functions and variables

6.1 Accessing external objects

foreign-code [syntax]
(foreign-code STRING)

Executes the embedded C/C++ code STRING, which should be a sequence of C state-
ments, which are executed and return an unspecified result.

(foreign-code "doSomeInitStuff();") => #<unspecified>

foreign-value [syntax]
(foreign-value STRING TYPE)

Evaluates the embedded C/C++ expression STRING, returning a value of type given
in the foreign-type specifier TYPE.

(print (foreign-value "my_version_string" c-string))

define-foreign-type [syntax]
(define-foreign-type NAME TYPE [ARGCONVERT [RETCONVERT]])
Defines an alias for TYPE with the name NAME (a symbol). TYPE may be a type-
specifier or a string naming a C type. The namespace of foreign type specifiers is
separate from the normal Scheme namespace. The optional arguments ARGCONVERT
and RETCONVERT should evaluate to procedures that map argument- and result-values
to a value that can be transformed to TYPE:

(define-foreign-type char-vector
nonnull-c-string
(compose list->string vector->list)
(compose list->vector string->list))

(define strlen
(foreign-lambda int "strlen" char-vector))

(strlen ’#(#\a #\b #\c)) ==> 3

(define memset
(foreign-lambda char-vector "memset" char-vector char int))

(memset #(#_ #_ #_) #\X 3) ==> #(#\X #\X #\X)

Foreign type-definitions are only visible in the compilation-unit in which they are
defined, so use include to use the same definitions in multiple files.

define-foreign-variable [syntax]
(define-foreign-variable NAME TYPE [STRING])
Defines a foreign variable of name NAME (a symbol). STRING should be the real name

of a foreign variable or parameterless macro. If STRING is not given, then the vari-
able name NAME will be converted to a string and used instead. All references and

Chapter 6: Interface to external functions and variables 118

assignments (via set!) are modified to correctly convert values between Scheme and
C representation. This foreign variable can only be accessed in the current compila-
tion unit, but the name can be lexically shadowed. Note that STRING can name an
arbitrary C expression. If no assignments are performed, then STRING doesn’t even
have to specify an lvalue.

#>

enum { abc=3, def, ghi };

<#

(define-macro (define-foreign-enum . items)
¢ (begin
,@(map (match-lambda
[(name realname) °(define-foreign-variable ,name int ,realname)]]]
[name ¢ (define-foreign-variable ,name int)])
items)))

(define-foreign-enum abc def ghi)

ghi ==> 5

define-foreign-record [syntax]
(define-foreign-record NAME SLOT ...)

Defines accessor procedures for a C structure definition. NAME should either be a
symbol or a list of the form (TYPENAME FOREIGNNAME). If NAME is a symbol, then a
C declaration will be generated that defines a C struct named struct NAME. If NAME
is a list, then no struct declaration will be generated. A foreign-type specifier named
NAME (or TYPENAME) will be defined as a pointer to the given C structure. A SLOT
definition should be a list of one of the following forms:
(TYPE SLOTNAME)
or
(TYPE SLOTNAME SIZE)
The latter form defines an array of SIZE elements of the type TYPE embedded in
the structure. For every slot, the following accessor procedures will be generated:

TYPENAME-SLOTNAME [procedure]
(TYPENAME-SLOTNAME FOREIGN-RECORD-POINTER [INDEX])
A procedure of one argument (a pointer to a C structure), that returns the
slot value of the slot SLOTNAME. If a SIZE has been given in the slot definition,
then an additional argument INDEX is required that specifies the index of an
array-element.

TYPENAME-SLOTNAME-set! [procedure]
(TYPENAME-SLOTNAME-set! FOREIGN-RECORD-POINTER [INXDEX] VALUE)
A procedure of two arguments (a pointer to a C structure) and a value, that
sets the slot value of the slot SLOTNAME in the structure. If a SIZE has been
given in the slot definition, then an additional argument INDEX is required for
the array index.

Chapter 6: Interface to external functions and variables 119

If a slot type is of the form (const ...), then no setter procedure will be gener-
ated. Slots of the types (struct ...) or (union ...) are accessed as pointers to the
embedded struct (or union) and no setter will be generated.

Note that no constructor or release procedure will be generated.

foreign-callback-lambda [syntax]
(foreign-callback-lambda RETURNTYPE NAME ARGTYPE ...)
This is similar to foreign-lambda, but also allows the called function to call Scheme
functions. See Section 6.4 [Callbacks|, page 130.

foreign-callback-lambda* [syntax]
(foreign-callback-lambda* RETURNTYPE ((ARGTYPE VARIABLE)...) STRING ...)J}
This is similar to foreign-lambda*, but also allows the called function to call Scheme
functions. See Section 6.4 [Callbacks|, page 130.

foreign-lambda [syntax]
(foreign-lambda RETURNTYPE NAME ARGTYPE ...)
Represents a binding to an external routine. This form can be used in the position
of an ordinary lambda expression. NAME specifies the name of the external procedure
and should be a string or a symbol.

foreign-lambda* [syntax]
(foreign-lambda* RETURNTYPE ((ARGTYPE VARIABLE) ...) STRING ...)

Similar to foreign-lambda, but instead of generating code to call an external func-
tion, the body of the C procedure is directly given in STRING .. .:

(define my-strlen
(foreign-lambda* int ((c-string str))
"int n = 0;
while(*(str++)) ++n;
return(n);"))

(my-strlen "one two three") ==> 13

For obscure technical reasons any use of the return statement should enclose the
result value in parentheses. For the same reasons return without an argument is not
allowed.

6.2 Foreign type specifiers

Here is a list of valid foreign type specifiers:

scheme-object
An arbitrary Scheme data object (immediate or non-immediate).
bool

As argument: any value (#£ is false, anything else is true). As result: anything
different from 0 and the NULL-pointer is #t.

Chapter 6: Interface to external functions and variables 120

byte unsigned-byte
A byte.

char unsigned-char
A character.

short unsigned-short
A short integer number.

int unsigned-int
An small integer number in fixnum range (at least 30 bit).

integer unsigned-integer
Either a fixnum or a flonum in the range of a (unsigned) machine “int”.

long unsigned-long
Either a fixnum or a flonum in the range of a (unsigned) machine “long”.

float double
A floating-point number. If an exact integer is passed as an argument, then it
is automatically converted to a float.

number
A floating-point number. Similar to double, but when used as a result type,
then either an exact integer or a floating-point number is returned, depending
on whether the result fits into an exact int or not.

symbol
A symbol, which will be passed to foreign code as a zero-terminated string.
When declared as the result of foreign code, the result is treated like a string
and a symbol with the same name will be interned in the symbol table.

pointer

An untyped pointer to the contents of a non-immediate Scheme object (not
allowed as return type). The value #f is also allowed and is passed as a NULL
pointer.

nonnull-pointer
As pointer, but guaranteed not to be #f.

c-pointer
An untyped operating-system pointer or a locative. The value #f is also allowed
and is passed as a NULL pointer. If uses as the type of a return value, a NULL
pointer will be returned as #f.

nonnull-c-pointer
As c-pointer, but guaranteed not to be #£f/NULL.

[nonnull-] byte-vector
A byte-vector object, passed as a pointer to its contents. Arguments of type
byte-vector may optionally be #f, which is passed as a NULL pointer. This
is not allowed as a return type.

Chapter 6: Interface to external functions and variables 121

[nonnull-] u8vector

[nonnull-] ul6vector

[nonnull-] u32vector

[nonnull-] s8vector

[nonnull-] si6vector

[nonnull-] s32vector

[nonnull-] f32vector

[nonnull-] f64vector
A SRFI-4 number-vector object, passed as a pointer to its contents. Arguments
of type byte-vector may optionally be #£f, which is passed as a NULL pointer.
These are not allowed as return types.

c-string
A C string (zero-terminated). The value #f is also allowed and is passed as
a NULL pointer. If uses as the type of a return value, a NULL pointer will be
returned as #f. Note that the string is copied (with a zero-byte appended)

when passed as an argument to a foreign function. Also a return value of this
type is copied into garbage collected memory.

nonnull-c-string
As c-string, but guaranteed not to be #£f/NULL.

[nonnull-] c-string*
Similar to [nonnull-Jc-string, but if used as a result-type, the pointer re-
turned by the foreign code will be freed (using the C-libraries free()) after
copying.

void
Specifies an undefined return value. Not allowed as argument type.

(const TYPE)
The foreign type TYPE with an additional const specifier.

(enum NAME)
An enumeration type. Handled internally as an integer.

(pointer TYPE)
(c-pointer TYPE)
An operating-system pointer or a locative to an object of TYPE.

(nonnull-pointer TYPE)
(nonnull-c-pointer TYPE)
As (pointer TYPE), but guaranteed not to be #f/NULL.

(ref TYPE)
A C++ reference type. Reference types are handled the same way as pointers
inside Scheme code.

(struct NAME)
A struct of the name NAME, which should be a string. Structs can not be
directly passed as arguments to foreign function, neither can they be result
values. Pointers to structs are allowed, though.

Chapter 6: Interface to external functions and variables 122

(template TYPE ARGTYPE ...)
A C++ template type. For example vector<int> would be specified as
(template "vector" int). Template types can not be directly passed as
arguments or returned as results.

(union NAME)
A union of the name NAME, which should be a string. Unions can not be directly
passed as arguments to foreign function, neither can they be result values.
Pointers to unions are allowed, though.

(instance CNAME SCHEMECLASS)
A pointer to a C++ class instance. CNAME should designate the name of the C++
class, and SCHEMECLASS should be the class that wraps the instance pointer.
Normally SCHEMECLASS should be a subclass of <c++-object>.

(instance-ref CNAME SCHEMECLASS)
A reference to a C++ class instance.

(function RESULTTYPE (ARGUMENTTYPE1 ... [...]) [CALLCONV])
A function pointer. CALLCONV specifies an optional calling convention and
should be a string. The meaning of this string is entirely platform dependent.
The value #f is also allowed and is passed as a NULL pointer.

Foreign types are mapped to C types in the following manner:
bool int

[unsigned-]char
[unsigned] char

[unsigned-]short
[unsigned] short

[unsigned-]int
[unsigned] int

[unsigned-]integer
[unsigned] int

[unsigned-]long
[unsigned] long

float float
double double
number double

[nonnull-]pointer
void *

[nonnull-]c-pointer
void *

[nonnull-]byte-vector
unsigned char *

Chapter 6: Interface to external functions and variables

[nonnull-Ju8vector
unsigned char *

[nonnull-]s8vector
char *

[nonnull-Jul6vector
unsigned short *

[nonnull-]si16vector
short *

[nonnull-Ju32vector
uint32_t *

[nonnull-]s32vector
int32_t *

[nonnull-]f32vector
float *

[nonnull-]f64vector

double *
[nonnull-]c-string

char *
symbol char *
void void

([nonnull-]pointer TYPE)
TYPE *

(enum NAME)
enum NAME

(struct NAME)
struct NAME

(ref TYPE)
TYPE &

(template T1 T2 ...)
T1<T2, ...>

(union NAME)
union NAME

(function RTYPE (ATYPE ...) [CALLCONV])
[CALLCONV] RTYPE (*)(ATYPE, ...)

(instance CNAME SNAME)
CNAME *

(instance-ref CNAME SNAME)
CNAME &

123

Chapter 6: Interface to external functions and variables 124

6.3 Entry points

To simplify embedding compiled Scheme code into arbitrary programs, one can define so
called “entry points”, which provide a uniform interface and parameter conversion facilities.
To use this facility, add

(include "chicken-entry-points")

to the beginning of your code.

define-entry-point [syntax]
(define-entry-point INDEX ((VAR1 TYPE1) ...)
(RTYPEL ...)
EXP1 EXP2 ...)

Defines a new entry-point with index INDEX which should evaluate to an exact inte-
ger. During execution of the body EXP1 EXP2 ... the variables VAR1 ... are bound
to the parameters passed from the host program to the invoked entry point. The
parameters passed are converted according to the foreign type specifiers TYPEL
The expressions should return as many values as foreign type specifiers are given in
RTYPE1 ..., with the exception that if the list of return types is empty, a single value
is expected to be returned from the body (there is no need to add a (values) form
at the end). The results are then transformed into values that can be used in the host
program.

Note: if one or more of the result types RTYPE ... specify the type c-string, then
the parameter types at the same positions in TYPE1 ... have to be c-strings as
well, because the result strings are copied into the same area in memory. You should
also take care that the passed buffer is long enough to hold the result string or
unpredictable things will happen.

If entry points were defined then the program will not terminate after execution of
the last toplevel expression, but instead it will enter a loop that waits for the host to
invoke one of the defined entry points.

define-embedded [syntax]

(define-embedded [QUALIFIER ...] ([CCONV] NAME (TYPE1 VAR1) ...) RTYPE BODY ..

Defines a named entry-point that can be accessed from external code with a normal
C/C++ function call. QUALIFIER may be a string for special function declarations
(like __declspec(dllexport) on Windows, for example) and CCONV may be a string
designating a calling convention (like __cdecl). During the execution of the BODY
the variables VAR1 ... are bound to the arguments passed to the function, which
should be of types compatible to the type specifiers TYPE1 RTYPE specifies the
result type of the entry-point. The return type specifiers [nonnull-]c-string and
[nonnull-]c-string* are handled specially: if the return type is c-string, a heap-
allocated pointer to a zero-terminated string will be returned, which will be valid
until the next invocation of an entry-point into the Scheme code. If the return type
is c-stringx*, a buffer allocated with malloc will be returned, and freeing the string
is the responsibility of the caller.

All entry-point definitions with define-embedded should be put into the same source
file. define-embedded expands into a define-entry-point form and the entry-

9]

Chapter 6: Interface to external functions and variables 125

point index is provided by the macro (starting from 1). If define-embedded is used
in multiple source files then the index is counted from 1 in each of the files, resulting
in multiple entry-points with the same index.

The following C functions and data types are provided:

void CHICKEN parse_command_line (int argc, char *argv[|, [C function]
int *heap, int *stack int *symbols)
Parse the programs command-line contained in argc and argv and return the heap-,
stack- and symbol table limits given by runtime options of the form -: ..., or choose
default limits. The library procedure argv can access the command-line only if this
function has been called by the containing application.

int CHICKEN _initialize (int heap, int stack, int symbols, [C function]
void *toplevel)

Initializes the Scheme execution context and memory. heap holds the number of bytes
that are to be allocated for the secondary heap. stack holds the number of bytes
for the primary heap. symbols contains the size of the symbol table. Passing 0 to
one or more of these parameters will select a default size. toplevel should be a
pointer to the toplevel entry point procedure. You should pass C_toplevel here. In
any subsequent call to CHICKEN_run or CHICKEN_invoke you can simply pass NULL.
Calling this function more than once has no effect. If enough memory is available and
initialization was successful, then 1 is returned, otherwise this function returns 0.

void CHICKEN_run (void **data, int *bytes, int *maxlen, [C function]
void *toplevel)
Starts the Scheme program. data, bytes and maxlen contain invocation parameters
in raw form. Pass NULL here. Call this function once to execute all toplevel expressions
in your compiled Scheme program. If the runtime system was not initialized before,
then CHICKEN _initialize is called with default sizes. toplevel is the toplevel entry-
point procedure.

void CHICKEN _invoke (int index, C_parameter *params, int [C function]
count, void *toplevel)

Invoke the entry point with index index. count should contain the maximum number

of arguments or results (whatever is higher). params is a pointer to parameter data:

typedef union

{
C_word x; /* parameter type scheme-object */
long ij; /* parameter type bool, [unsigned] int/short/long */|Jj
long c; /* parameter type [unsigned] char */
double f; /* parameter type float/double */
void *p; /* any pointer parameter type and C strings */

} C_parameter;

This function calls CHICKEN_run if it was not called at least once before.

Chapter 6: Interface to external functions and variables 126

int CHICKEN_is_running () [C function]
Returns 1, if called inside a dynamic context invoked via CHICKEN_run or CHICKEN_
invoke (i.e. if running inside a call from Scheme to C). If no Scheme stack frame is
currently active, then this function returns 0.

Here is a simple example (assuming a UNIX-like environment):

% cat foo.c
#include <stdio.h>
#include "chicken.h"

int main(void)
{
C_parameter p[3 1;
char str[32] = "hello!"; /* We need some space for the result string! */

memset (p, 0, sizeof(p));

pl 0 1.i = -99;

pl 1 1.p = str;

pl 2 1.f = 3.14;

CHICKEN_invoke(l, p, 3, C_toplevel);

printf ("->\n%d\n%s\n", p[0 1.1, p[1 1.p);
return O;

% cat bar.scm
(include "chicken-entry-points")

(define-entry-point 1
((a integer) (b c-string) (c double))
(int c-string)
(print (list a b c))
(values 123 "good bye!"))

% chicken bar.scm -quiet
% gcc foo.c bar.c -o foo ‘chicken-config -cflags -1libs -embedded®
% foo
(=99 "hello!" 3.14)
->
123
good bye!
Note the use of ~embedded. We have to compile with additional compiler options, because
the host program provides the main function.

Here another example that uses named entry-points defined with define-embedded:

% cat foo.c
extern int foo(int, char *);
extern unsigned int square(double);

Chapter 6: Interface to external functions and variables 127

int main() { foo(square(9), "yo!"); return 0; }

% cat bar.scm
(include "chicken-entry-points")

(define-embedded (foo (int x) (c-string y)) int
(print x ": " y)
x)

(define-embedded (square (double x)) unsigned-int

(x x x))

% chicken bar.scm

compiling ‘bar.scm’

% gcc foo.c bar.c ‘chicken-config -cflags -libs -embedded®
% a.out

81: yo!

CHICKEN also provides “boilerplate” entry points, that simplify invoking Scheme code
embedded in a C or C++ application tremendously. The include file default-entry-
points.scm will define entry-points for common usage patterns, like loading a file, eval-
uating an expression or calling a procedure.

void CHICKEN _eval (C_word exp, C_word *result, int *status) [C macro]
Evaluates the Scheme object passed in exp, writing the result value to result. status
is set to 1 if the operation succeeded, or 0 if an error occurred. Call CHICKEN_get_
error_message to obtain a description of the error.

void CHICKEN _eval_string (char *str, C_word *result, int [C macro]
*status)
Evaluates the Scheme expression passed in the string str, writing the result value to
result.
void CHICKEN _eval_to_string (C_word exp, char *result, int [C macro]

size, int *status)
Evaluates the Scheme expression passed in exp, writing a textual representation of
the result into result. size should specify the maximal size of the result string.

void CHICKEN _eval_string_to_string (char *str, char *result, [C macro]
int size, int *status)
Evaluates the Scheme expression passed in the string str, writing a textual represen-
tation of the result into result. size should specify the maximal size of the result
string.

void CHICKEN _apply (C_word func, C_word args, C_word [C macro]
*result, int *status)
Applies the procedure passed in func to the list of arguments args, writing the result
value to result.

Chapter 6: Interface to external functions and variables 128

void CHICKEN apply_to_string (C_word func, C_word args, char [C macro]
*result, int size, int *status)

Applies the procedure passed in func to the list of arguments args, writing a textual
representation of the result into result.

void CHICKEN _read (char *str, C_word *result, int *status) [C macro]
Reads a Scheme object from the string str, writing the result value to result.

void CHICKEN _load (char *filename, int *status) [C macro]
Loads the Scheme file filename (either in source form or compiled).

void CHICKEN_get_error_message (char *result, int size) [C macro]
Returns a textual description, in case an error occurred while invoking embedded
Scheme code.

void CHICKEN yield (int *status) [C macro]
If threads have been spawned during earlier invocations of embedded Scheme code,
then this function will run the next scheduled thread for one complete time-slice. This
is useful, for example, inside an “idle” handler in a GUI application with background
Scheme threads.

An example:

% cat x.scm
;55 X.scm

(include "chicken-default-entry-points")
(define (bar x) (gc) (x x x))

% cat y.c
/* y.c */

#include "chicken.h"
#include <assert.h>

int main() {
char buffer[256];
int status;
C_word val = C_SCHEME_UNDEFINED;
C_word *datal 1];
datal 0] = &val;

CHICKEN_read (" (bar 99)", &val, &status);
assert(status);

C_gc_protect(data, 1);

printf ("data: %08x\n", val);

Chapter 6: Interface to external functions and variables 129

CHICKEN_eval_string_to_string("(bar)", buffer, 255, &status);
assert(!status);

CHICKEN_get_error_message (buffer, 255);
printf ("ouch: %s\n", buffer);

CHICKEN eval_string_to_string("(bar 23)", buffer, 255, &status);
assert(status);

printf ("-> %s\n", buffer);
printf ("data: %08x\n", val);

CHICKEN eval_to_string(val, buffer, 255, &status);
assert(status);
printf ("-> %s\n", buffer);

return O;

¥

% csc x.scm y.c -embedded

A simpler interface For handling GC-safe references to Scheme data are the so called
“gc-roots”:

void* CHICKEN_new_gc_root () [C function]
Returns a pointer to a “GC root”, which is an object that holds a reference to a
Scheme value that will always be valid, even after a garbage collection. The content
of the gc root is initialized to an unspecified value.

void CHICKEN _delete_gc_root (void *root) [C function]
Deletes the gc root.

C_word CHICKEN_gc_root_ref (void *root) [C macro]
Returns the value stored in the gc root.

void CHICKEN_gc_root_set (void *root, C_word value) [C macro]
Sets the content of the GC root to a new value.

Sometimes it is handy to access global variables from C code:

void* CHICKEN_global_lookup (char *name) [C function]
Returns a GC root that holds the global variable with the name name. If no such
variable exists, NULL is returned.

C_word CHICKEN _global_ref (void *global) [C function]
Returns the value of the global variable referenced by the GC root global.

void CHICKEN_global_set (void *global, C_word value) [C function]
Sets the value of the global variable referenced by the GC root global to value.

Chapter 6: Interface to external functions and variables 130

6.4 Callbacks

To enable an external C function to call back to Scheme, the form foreign-callback-
lambda (or foreign-callback-lambdax) has to be used. This generates special code to
save and restore important state information during execution of C code. There are two
ways of calling Scheme procedures from C: the first is to invoke the runtime function C_
callback with the closure to be called and the number of arguments. The second is to
define an externally visible wrapper function around a Scheme procedure with the define-
external or foreign-callback-wrapper forms.

Note: the names of all functions, variables and macros exported by the CHICKEN
runtime system start with “C_". It is advisable to use a different naming scheme for your
own code to avoid name clashes. Callbacks (either defined by define-external or foreign-
callback-wrapper do not capture the lexical environment.

Non-local exits leaving the scope of the invocation of a callback from Scheme into C will
not remove the C call-frame from the stack (and will result in a memory leak).

define-external [syntax]
(define-external [QUALIFIERS] (NAME (ARGUMENTTYPE1 VARIABLE1l) ...) RETURNTYPE BOD
(define-external NAME TYPE [INIT])

The first form defines an externally callable Scheme procedure. NAME should be a sym-
bol, which, when converted to a string, represents a legal C identifier. ARGUMENTTYPE1

. and RETURNTYPE are foreign type specifiers for the argument variables VAR1 . ..
and the result, respectively. QUALIFIERS is an optional qualifier for the foreign pro-
cedure definition, like __stdcall.

(define-external (foo (c-string x)) int (string-length x))
is equivalent to

(define foo
(foreign-callback-wrapper int "foo"
(c-string) (lambda (x) (string-length x))))

The second form of define-external can be used to define variables that are acces-
sible from foreign code. It declares a global variable named by the symbol NAME that
has the type TYPE. INIT can be an arbitrary expression that is used to initialize the
variable. NAME is accessible from Scheme just like any other foreign variable defined
by define-foreign-variable.

(define-external foo int 42)
((foreign-lambda* int ()
"return(foo) ;")) ==> 42

Note: don’t be tempted to assign strings or bytevectors to external variables. Garbage
collection moves those objects around, so it is very bad idea to assign pointers to heap-
data. If you have to do so, then copy the data object into statically allocated memory
(for example by using object-evict).

foreign-callback-wrapper [syntax]
(foreign-callback-wrapper RETURNTYPE NAME [QUALIFIERS] (ARGUMENTTYPE1l ...) EXP)|}

Chapter 6: Interface to external functions and variables 131

Defines an externally callable wrapper around the procedure EXP. EXP must be a
lambda expression of the form (lambda ...). The wrapper will have the name NAME
and will have a signature as specified in the return- and argument-types given in
RETURNTYPE and ARGUMENTTYPE1 QUALIFIERS is a qualifier string for the function
definition (see define-external).

C_word C_callback (C_word closure, int argc) [C function]
This function can be used to invoke the Scheme procedure closure. argc should
contain the number of arguments that are passed to the procedure on the temporary
stack. Values are put onto the temporary stack with the C_save macro.

6.5 Locations

It is also possible to define variables containing unboxed C data, so called locations. It
should be noted that locations may only contain simple data, that is: everything that fits
into a machine word, and double-precision floating point values.

define-location [syntax]
(define-location NAME TYPE [INIT])

Identical to (define-external NAME TYPE [INIT]), but the variable is not accessible
from outside of the current compilation unit (it is declared static).

let-location [syntax]
(let-location ((NAME TYPE [INIT]) ...) BODY ...)

Defines a lexically bound location.

location [syntax]
(location NAME)
(location X)

This form returns a pointer object that contains the address of the variable NAME. If
the argument to location is not a location defined by define-location, define-
external or let-location, then

(location X)

is essentially equivalent to

(make-locative X)

(See the manual chapter or locatives for more information about locatives.
Note that (Location X) may be abbreviated as #$X.

(define-external foo int)

((foreign-lambda* void (((pointer int) ip)) "*ip = 123;")
(location foo0))

foo

This facility is especially useful in situations, where a C function returns more than
one result value:

Chapter 6: Interface to external functions and variables 132

#>
#include <math.h>
<#

(define modf
(foreign-lambda double "modf" double (pointer double)))

(let-location ([i double])
(let ([f (modf 1.99 (location i))1)
(print "i=" i ", f=" £f)))

location returns a value of type c-pointer, when given the name of a callback-
procedure defined with define-external.

6.6 Other support procedures

argc+argv [procedure]
(argc+argv)
Returns two values: an integer and a foreign-pointer object representing the argc
and argv arguments passed to the current process.

6.7 The Fasy Foreign Function Interface

The compiler contains a builtin parser for a restricted subset of C and C++ that allows the
easy generation of foreign variable declarations, procedure bindings and C++ class wrappers.
The parser is invoked via the declaration-specifier foreign-parse, which extracts binding
information and generates the necessary code. An example:
(declare

(foreign-declare "
#include <math.h>

#define my_pi 3.14
ll)

(foreign-parse "extern double sin(double);"))

(print (sin 3.14))
The parser would generate code that is equivalent to

(declare
(foreign-declare "
#include <math.h>

#define my_pi 3.14
ll)

(define-foreign-variable my_pi float "my_pi")

Chapter 6: Interface to external functions and variables 133

(define sin (foreign-lambda double "sin" double))
Note that the read syntax #>[SPEC] ... <# provides a somewhat simpler way of using
the parser. The example above could alternatively be expressed as
#>!
#define my_pi 3.14

extern double sin(double);
<#

(print (sin 3.14))
Another example, here using C++. Consider the following class:
// file: foo.h

class Foo {
private:
int x_;
public:
Foo(int x);
void setX(int x);
int getXQ;
s
To generate a wrapper class that provides generic functions for the constructor and the
setX and getX methods, we can use the following class definition:

; file: test-foo.scm
(require-extension tinyclos)
#>!

#include "Foo.h"

<#

(define x (make <Foo> 99))

(print (getX x)) ; prints €997
(setX x 42)
(print (getX x)) ; prints ‘4272

(destroy x)

Provided the file foo.o contains the implementation of the class Foo, the given example
could be compiled like this (assuming a UNIX like environment):

% csc test-foo.scm foo.o -c++

Here is another example, a minimal “Hello world” application for QT. We can see the
three different ways of embedding C/C++ code in Scheme:

; compile like this:
; csc hello.scm -c++ -C -IQTDIR/include -L "-LQTDIR/1ib -1qt"

(require-extension tinyclos)

Chapter 6: Interface to external functions and variables 134

; Include into generated code, but don’t parse:
#>

#include <qapplication.h>

#include <qpushbutton.h>

<#

; Parse but don’t embed: we only want wrappers for a few classes:
#>7
class QWidget
{
public:
void resize(int, int);
void show();

};

class (QApplication

{

public:
QApplication(int, char *x);
“QApplication();
void setMainWidget (QWidget *);
void exec();

};

class (QPushButton : public QWidget
{
public:
QPushButton(char *, QWidget *);
~QPushButton();
}
<#

(define a (apply make <QApplication> (receive (argc+argv))))
(define hello (make <QPushButton> "hello world!" #f))
(resize hello 100 30)

(setMainWidget a hello)

(show hello)

(exec a)

(destroy hello)

(destroy a)

6.7.1 #> ... <# Syntax

Occurrences of the special read syntax #>[SPEC ...] ...<# will be handled according to
SPEC:

Chapter 6: Interface to external functions and variables 135

If SPEC is the ? character, the text following up to the next <# will be processed as
a (declare (foreign-parse "...")) declaration (the code will be processed by the FFI
parser described in this section).

If SPEC is the ! character, the text will be embedded as

(declare
(foreign-declare "...")
(foreign-parse "..."))

It will be both included verbatim in the declaration section of the generated C/C++ file
and processed by the FFI parser.

If SPEC is the : character, the text will be so it will be executed at the location where it
appears.

If SPEC is the $ character, the text will be parsed and the generated Scheme code is
returned as a (foreign-parse CODE) form.

If SPEC is the % character, the text will be parsed into an s-expression that specifies the
parsed entities, wrapped in a (foreign-parse/spec ...) form. See below for details of
the specification format.

If SPEC is a list of the form (TAG ...), then each TAG (which should be a symbol) specifies
what should be done with the text:

declare (declare (foreign-declare "..."))
parse (declare (foreign-parse "..."))
execute (foreign-code "...")

code (foreign-parse "...")

spec (foreign-parse/spec "...")

If any other character follows the #>, then the complete text will be included verbatim
in the declaration part of the generated file (as in a foreign-declare declaration).

6.7.2 General operation

The parser will generally perform the following functions

1) Translate macro, enum-definitions and constants into define-foreign-variable or
define-constant forms

2) Translate function prototypes into foreign-lambda forms

3) Translate variable declarations into accessor procedures

4) Handle basic preprocessor operations

5) Translate simple C++ class definitions into TinyCLOS wrapper classes and methods

Basic token-substitution of macros defined via #define is performed. The preproces-
sor commands #ifdef, #ifndef, #else, #endif, #undef and #error are handled. The
preprocessor commands #if and #elif are not supported and will signal an error when
encountered by the parser, because C expressions (even if constant) are not parsed. The
preprocessor command #pragma is allowed but will be ignored.

Chapter 6: Interface to external functions and variables 136

During processing of foreign-parse declarations the macro CHICKEN is defined (similar
to the C compiler option ~-DCHICKEN).

Macro- and type-definitions are available in subsequent foreign-parse forms. C vari-
ables declared generate a procedure with zero or one argument with the same name as the
variable. When called with no arguments, the procedure returns the current value of the
variable. When called with an argument, then the variable is set to the value of that argu-
ment. C and C++ style comments are supported. Variables declared as const will generate
normal Scheme variables, bound to the initial value of the variable.

Function-, member-function and constructor/destructor definitions may be preceded by
the ___callback qualifier, which marks the function as performing a callback into Scheme.
If a wrapped function calls back into Scheme code, and ___callback has not been given
very strange and hard to debug problems will occur. Functions and member functions
prefixed with ___discard and a result type that maps to a Scheme string (c-string), will

have their result type changed to c-string* instead.

Constants (as declared by #define or enum) are not visible outside of the current Com-
pilation units unless the export_constants pseudo declaration has been used.

When given the option -ffi, CHICKEN will compile a C/C++ file in “Scheme” mode,
that is, it wraps the C/C++ source inside #>! ... <# and compiles it while generating
Scheme bindings for exported definitions.

Function-arguments may be preceded by ___in, ___out and ___inout qualifiers to spec-
ify values that are passed by reference to a function, or returned by reference. Only basic
types (numbers and characters) can be passed using this method. During the call a pointer
to a temporary piece of storage will be allocated and passed to the wrapped function. This
piece of storage is subject to garbage collection and will move, should a callback into Scheme
occur that triggers a garbage collection. Multiple __out and ___inout parameters will be
returned as multiple values, preceded by the normal return value of thhe function (if not

void). Here is a simpl example:

#>!

#ifndef CHICKEN
#include <math.h>
#endif

double modf (double x, ___out double *iptr);
<#

(let-values ([(frac int) (modf 33.44)])
)

Structure and union definitions containing actual field declarations generate getter pro-
cedures (and setter procedures when declared ___mutable or the mutable_fields pseudo
declaration has been used) The names of these procedures are computed by concatenating
the struct (or union) name, a hyphen ("-") and the field name, and the string "-set!",
in the case of setters. Structure definitions with fields may not be used in positions where
a type specifier is normally expected. The field accessors operate on struct/union pointers
only. Additionally a zero-argument procedure named make-<structname> will be generated

Chapter 6: Interface to external functions and variables 137

that allocates enough storage to hold an instance of the structure (or union). Prefixing the

definition with ___abstract will omit the creation procedure.
#>1
struct My_struct { int x; ___mutable float y; };

typedef struct My_struct My_struct;

My_struct *make_struct(int x, float y)
{
My_struct *s = (My_struct *)malloc(sizeof (My_struct));
S->X = X;
s>y = ¥
return s;
}
<#

will generate the following definitions:

(make-My_struct) -> PTR
(My_struct-x PTR) -> INT
(My_struct-y PTR) -> FLOAT
(My_struct-y-set! PTR FLOAT)
(make_struct INT FLOAT) -> PTR

Nested structs or unions are not supported (but pointers to nested structs/unions are).

chicken.h and will usually expand into nothing, so they don’t invalidate the processed
source code.

All specially handled tokens preceded with are defined as C macros in the headerfile

C++ namespace declarations of the form namespace NAME { ... } recognized but will be
completely ignored.

Keep in mind that this is not a fully general C/C++ parser. Taking an arbitrary headerfile
and feeding it to CHICKEN will in most cases not work or generate riduculuous amounts
of code. This FFI facility is for carefully written headerfiles, and for declarations directly
embedded into Scheme code.

6.7.3 Pseudo declarations

Using the ___declare(DECL, VALUE) form, pseudo declarations can be embedded into pro-
cessed C/C++ code to provide additional control over the wrapper generation. Pseudo
declarations will be ignored when processed by the system’s C/C++ compiler.

e abstract [values: <string>] Marks the C++ class given in <string> as being abstract,
i.e. no constructor will be defined. Alternatively, a class definition may be prefixed
with ___abstract.

e class_finalizers [values: yes, no|] Automatically generates calls to set-finalizer! so
that any unused references to instances of subsequently defined C++ class wrappers
will be destroyed. This should be used with care: if the embedded C++ object which
is represented by the reclaimed TinyCLOS instance is still in use in foreign code, then
unpredictable things will happen.

Chapter 6: Interface to external functions and variables 138

e mutable_fields [values: yes, no| Specifies that all struct or union fields should generate
setter procedures (the default is to generate only setter procedures for fields declared
___mutable).

e destructor_name [values: <string>| Specifies an alternative name for destructor methods
(the default is destroy.

e export_constants [values: yes (default), no|] Define a global variable for constant-
declarations (as with #define or enum), making the constant available outside the
current compilation unit. Use the values yes/1 for switching constant export on, or
no/0 for switching it off.

e exception_handler [values: <string>] Defines C++ code to be executed when an exception
is triggered inside a C++ class member function. The code should be one or more catch
forms that perform any actions that should be taken in case an exception is thrown by
the wrapped member function:

#>!
___declare(exception_handler, "catch(...) { return 0; }")

class Foo {
public:
Foo *bar(bool f) { if(f) throw 123; else return this; }
};
<#

(define f1 (make <Foo>))
(print (bar f1 #f))
(print (bar f1 #t))

will print <Foo> and #£, respectively.

e full_specialization [values: yes, no] Enables “full specialization” mode. In this mode
all wrappers for functions, member functions and static member functions are created
as fully specialized TinyCLOS methods. This can be used to handle overloaded C++
functions properly. Only a certain set of foreign argument types can be mapped to
TinyCLOS classes, as listed in the following table:

char <char>
bool <bool>
c-string <string>

unsigned-char
<exact>

byte <exact>
unsigned-byte
<exact>

[unsigned-]int
<exact>

[unsigned-]short
<exact>

Chapter 6: Interface to external functions and variables

[unsigned-]long

<integer>

[unsigned-J]integer

float
double

number

<integer>
<inexact>
<inexact>

<number>

(enum _)char

<exact>

(const T)char

(function ..

c-pointer

(as T)
)

<pointer>

<pointer>

(pointer _)

<pointer>

(c-pointer _)

u8vector
s8vector

ul6vector

sl6vector

u32vector

s32vector

f32vector

f64vector

All other foreign types are specialized as <top>.

<pointer>
<u8vector>

<s8vector>

<ul6vector>

<sl6vector>

<u32vector>

<s32vector>

<f32vector>

<f64vector>

139

Full specialization can be enabled globally, or only for sections of code by enclosing it

m

Chapter 6: Interface to external functions and variables 140

___declare(full_specialization, yes)

int foo(int x);
int foo(char *x);

___declare(full_specialization, no)

Alternatively, member function definitions may be prefixed by ___specialize for spe-
cializing only specific members.

e prefix [values: <string>]
Sets a prefix that should be be added to all generated Scheme identifiers. For example

___declare(prefix, "mylib:")
#define SOME_CONST 42

would generate the following code:
(define-constant mylib:SOME_CONST 42)
To switch prefixing off, use the values no or 0. Prefixes are not applied to Class names.
e rename [value: <string>]
Defines to what a certain C/C++ name should be renamed. The value for this declara-
tion should have the form "<c-name>;<scheme-name>", where <c-name> specifies the
C/C++ identifier occurring in the parsed text and <scheme-name> gives the name used
in generated wrapper code.
e scheme [value: <string>|
FEmbeds the Scheme expression <string> in the generated Scheme code.
e substitute [value: <string>]
Declares a name-substitution for all generated Scheme identifiers. The value for this
declaration should be a string containing a regular expression and a replacement string
(seperated by the ; character):

___declare(substitute, ""SDL_;sdl:")

extern void SDL_Quit();
generates
(define sdl:Quit
(foreign-lambda integer "SDL_Quit"))
e transform [values: <string>]

Defines an arbitrary transformation procedure for names that match a given regular
expression. The value should be a string containing a regular expression and a Scheme
expression that evaluates to a procedure of one argument. If the regex matches, the
procedure will be called at compile time with the match-result (as returned by string-
match) and should return a string with the desired transformations applied:

(require-for-syntax ’srfi-13)
q y

#>1
___declare(transform, "([A-Z]+)_(.*);(lambda (x) (string-append (cadr x) \"-\" (string-

Chapter 6: Interface to external functions and variables 141

void FOO_Bar(int x) { return x * 2; }
<#

(print (F00-bar 33))

e type [value: <string>]
Declares a foreign type transformation, similar to define-foreign-type. The value
should be a list of two to four items, separated by the ; character: a C typename,
a Scheme foreign type specifier and optional argument- and result-value conversion
procedures.
;55 foreign type that converts to unicode (assumes 4-byte wchar_t):

; — Note: this is rather kludgy is only meant to demonstrate the ‘type’
5 pseudo-declaration

(require-extension srfi-4)

(define mbstowcs (foreign-lambda int "mbstowcs" nonnull-u32vector c-string int))]]

(define (str->ustr str)
(let* ([len (string-length str)]
[us (make-u32vector (addl len) 0)])
(mbstowcs us str len)

us))

#>!
___declare(type, "unicode;nonnull-u32vector;str->ustr")

static void foo(unicode ws)
{

printf ("\"%1s\"\n", ws);
}
<#

(foo "this is a test!")

6.7.4 Grammar

The parser understand the following grammar:
PROGRAM = PPCOMMAND

| DECLARATION ";"
PPCOMMAND = "#define" ID [TOKEN ...]
| "#ifdef" ID
| "#ifndef" ID
| "#else"
I

"#endif"

Chapter 6: Interface to external functions and variables 142

| "#undef" ID

| "#error" TOKEN ...

| "#include" INCLUDEFILE
| "#pragma" TOKEN ...

DECLARATION = FUNCTION
| VARIABLE
| ENUM
| TYPEDEF
| CLASS
| CONSTANT
| STRUCT
| NAMESPACE
| "___declare" "(" PSEUDODECL "," <tokens> ")"
STRUCT = ("struct" | "union") ID ["{" {["___mutable"] TYPE {"x"} ID {"," {"x"} ID}} "}1N
NAMESPACE = "namespace" ID "{" DECLARATION ... "}"
INCLUDEFILE = "\"" ... "\""
I ngn o onyn
FUNCTION = {"___callback" | "___specialize" | " __discard"} [STORAGE] TYPE ID " (" ARGTYPE "
| {"___callback" | "___specialize" | "___discard"} [STORAGE] TYPE ID "(" "void" ")
ARGTYPE = [IOQUALIFIER] TYPE [ID ["[" ... "]"]]
IOQUALIFIER = "___in" | "___out" | "___inout"

VARIABLE = [STORAGE] ENTITY ["=" INITDATA]

ENTITY = TYPE ID ["[" ... "]"]

STORAGE = "extern" | "static" | "volatile" | "inline"
CONSTANT = "const" TYPE ID "=" INITDATA

PSEUDODECL = "export_constants"
| "prefix"

| "substitute"

| "abstract"

| “type"

| "scheme"

| "rename"

| "transform"

|

|

"full_specialization"
"destructor_name"

Chapter 6: Interface to external functions and variables 143

| "class_finalizers"
| "exception_handler"
| "mutable_fields"

ENUM = uenumn u{u D [u=n NUMBER] u’u . u}u
TYPEDEF = "typedef" TYPE ["x" ...] [ID]
TYPE = ["const"] BASICTYPE [("*" ... | "&" | "<" TYPE "," ... ">" | "(" "s" [ID] ")" "(" TY
BASICTYPE = ["unsigned" | "signed"] "int"
| ["unsigned" | "signed"] "char"
| ["unsigned" | "signed"] "short" ["int"]
| ["unsigned" | "signed"] "long" ["int"]
| ["unsigned" | "signed"] "___byte"
| "float"
| "double"
| "void"
| “bOOl"
| "___bOOl"
| "___scheme_value"
| "___fixnum"
| "___number"
| "___symbol"
| "struct" ID
| "union" ID
| "enum" ID
| ID
CLASS = ["___abstract"] "class" ID [":" [QUALIFIER] ID "," ...] "{" MEMBER ... "}"I

MEMBER = [QUALIFIER ":"] ["virtual"] (MEMBERVARIABLE | CONSTRUCTOR | DESTRUCTOR | MEMBERFUN

MEMBERVARIABLE = TYPE ID ["=" INITDATA]

MEMBERFUNCTION = {"___callback" | "static" | "___specialize" | "___discard"} TYPE ID "(" AR
| {"___callback" | "static" | "___specialize" | "___discard"} TYPE ID "(" "v

CONSTRUCTOR = ["___callback"] ["explicit"] ID "(" ARGTYPE "," ... ")" [BASECONSTRUCTORS] [C

DESTRUCTOR = ["___callback"] "~" ID "(" ["void"] ")" [CODE]

QUALIFIER = ("public" | "private" | "protected")

NUMBER = <a C integer or floating-point number, in decimal, octal or hexadecimal notation>j

INITDATA = <everything up to end of chunk>

Chapter 6: Interface to external functions and variables

BASECONSTRUCTORS = <everything up to end of chunk>

CODE = <everything up to end of chunk>

The following table shows how argument-types are translated:

[unsigned] char
char

[unsigned] short
[unsigned-|short

[unsigned] int
[unsigned-|integer

[unsigned] long
[unsigned-|long

float float
double double
bool int
___bool int

___fixnum
int
_number

number

symbol
symbol

___scheme_value
scheme-object

char * c-string

signed char *
s8vector

[signed] short *
sl6vector

[signed] int *
s32vector

[signed] long *
s32vector

unsigned char *
u8vector

unsigned short *
ul6vector

144

Chapter 6: Interface to external functions and variables

unsigned int *

u32vector

unsigned long *

float *
double *
CLASS *
CLASS &
TYPE *
TYPE

TYPE<T1, ..

u32vector

f32vector

f64vector

(instance CLASS <CLASS>)
(instance-ref CLASS <CLASS>)
(pointer TYPE)

&(ref TYPE)

>
(template TYPE T1 ...)

TYPE1 (%) (TYPE2, ...)

The following table shows how result-types are translated:

void

(function TYPE1L (TYPE2 ...))

void

[unsigned] char

char

[unsigned] short

[unsigned-]short

[unsigned] int

[unsigned-|integer

[unsigned] long

float
double
bool
__bool

___Tfixnum

_number

_symbol

___scheme_

[unsigned-|long
float

double

bool

bool

int
number
symbol

value
scheme-object

145

Chapter 6: Interface to external functions and variables 146

char * c-string
TYPE * (pointer TYPE)
TYPE &(ref TYPE)

TYPE<T1, ...>
(template TYPE T1 ...)

TYPE1 (*) (TYPE2, ...)
(function TYPE1 (TYPE2 ...))

CLASS * (instance CLASS <CLASS>)
CLASS & (instance-ref CLASS <CLASS>)

6.7.5 C notes

Foreign variable definitions for macros are not exported from the current compilation unit,
but definitions for C variables and functions are.

foreign-parse does not embed the text into the generated C file, use foreign-declare
for that (or even better, use the #>! ... <# syntax which does both).

Functions with variable number of arguments are not supported.

6.7.6 C++ notes

Each C++ class defines a TinyCLOS class, which is a subclass of <c++-object>. Instances
of this class contain a single slot named this, which holds a pointer to a heap-allocated
C++ instance. The name of the TinyCLOS class is obtained by putting the C++ classname
between angled brackets (<...>). TinyCLOS classes are not seen by C++ code.

The C++ constructor is invoked by the initialize generic, which accepts as many
arguments as the constructor. If no constructor is defined, a default-constructor will be
provided taking no arguments. To allow creating class instances from pointers created in
foreign code, the initialize generic will optionally accept an arguments list of the form
>this POINTER, where POINTER is a foreign pointer object. This will create a TinyCLOS
instance for the given C++ object.

To release the storage allocated for a C++ instance invoke the destroy generic (the name
can be changed by using the destructor_name pseudo declaration).

Static member functions are wrapped in a Scheme procedure named
<class>: :<member>.

Member variables and non-public member functions are ignored.

Virtual member functions are not seen by C++ code. Overriding a virtual member
function with a TinyCLOS method will not work when the member function is called by
C++.

Operator functions and default arguments are not supported.

Exceptions must be explicitly handled by user code and may not be thrown beyond an
invocation of C++ by Scheme code.

Chapter 6: Interface to external functions and variables 147

6.7.7 Using the builtin parser

There are two macros that can be used (in addition to the #>$... <# reader syntax) to
access the parsed C/C++ code directly. These macros are by default undefined. To perform
custom processing of the parsed Scheme code or FFI specification, define the macros as you
please.

syntax [foreign-parse]
(foreign-parse EXP)

Should be defined to perform custom processing of Scheme code wrapped in a #>$
. <# construct.

syntax [foreign-parse/spec]
(foreign-parse/spec EXP)

Should be defined to perform custom processing of an FFI specification wrapped in
a #>J, ... <# construct.

For example:

(define-macro (foreign-parse/spec x)
“(pp ’,x))

#>Y,
int foo(double n) { return n * 2; }

typedef short *mytype;

class Bar: public Yo, Foo {
public:

Bar(int, char *);

“Bar();

void *myfun(mytype x);
};
<#

will expand into:

(pp ’ (begin

(function (foo "foo") integer double)
(class (<Bar> "Bar") (<c++-object>))
(destructor (<Bar> "Bar") destroy)
(constructor (<Bar> "Bar") integer c-string)
(imethod

(myfun "myfun")

(<Bar> "Bar")

(pointer void)

(<s16vector> sl6vector))))

Chapter 6: Interface to external functions and variables 148

6.7.8 Specification grammar

The following table describes the grammar of specifications parsed by the #>% ... <# con-
struct.

IDs is a symbol, naming a Scheme identifier. IDc is a string naming a C/C++ entity.
VALUE is a Scheme numeric constant. TYPE is a foreign type specifier. Most identifiers are
given in pairs of the form (IDs IDc), where IDs is a version of the C identifier IDc with all
renamings performed (and in the case of class-names enclosed in in <...>).

(begin SPEC ...)
Contains zero or more specification items.

(alias (IDs IDc) TYPE)
Defines an alias of the name IDs for the C/C++ entity IDc (usually a variable)
with the type TYPE.

(constant IDs VALUE)
Defines a named constant.

(type IDs IDs [EXP1 [EXP2]]))
A user defined foreign type (just like define-foreign-type).

(variable (IDs IDc) TYPE)
A variable.

(cvariable (IDs IDc) TYPE)
A constant (immutable) variable.

(function (IDs IDc) TYPEr TYPEa ...)
A function with the result type TYPEr and the argument types TYPEa

(function* (IDs IDc) TYPEr TYPEa ...)
A function that may invoke callbacks.

(method (IDs IDc) TYPEr (CLASS TYPEa) ...)
A generic function method. The corresponding TinyCLOS classes for each
argument type are also provided.

(method* (IDs IDc) TYPEr (CLASS TYPEa) ...)
A generic function method that may invoke callbacks.

(imethod (ID1s ID1c) (ID1s ID1c) TYPEr (CLASS TYPEa) ...)
An instance method. The first identifier-pair names the method and the second
names the class.

(class (IDs IDc) (IDs ...))
A class definition. The list (IDs ...) names the super-classes and defaults to
<c++-object>.

(constructor (IDs IDc) TYPEa ...)
A class constructor with a given list of argument types.

(constructor* (IDs IDc) TYPEa ...)
A class constructor that should generate instances which are automatically
finalized.

Chapter 6: Interface to external functions and variables 149

(destructor (IDs IDc) IDs)
A class destructor. The second identifier specifies how the destructor method
should be named.

(export IDs)
Make the Scheme identifier IDs be globally visible (it is assumed constants and
aliases are not globally visible by default).

(struct-field IDc FIELDIDs TYPE GETTER [SETTER])
A structure field with the name FIELDIDs of the structure named IDc and with
the type TYPE. GETTER and SETTER (when given) specify the names of any
accessor procedures.

(union-field IDc FIELDIDs TYPE GETTER [SETTER])
As above, but for a union field.

(struct-maker IDc CONSIDs (TYPE FIELDIDc) ...)
A structure constructor for the C struct IDc field the name CONSIDs and the
field-initializer arguments and types given in (TYPE FIELDIDc)

(union-maker IDc CONSIDs (TYPE FIELDIDc) ...)
A union-constructor.

6.8 C interface

The following functions and macros are available for C code that invokes Scheme or foreign
procedures that are called by Scheme:

void C_save (C_word x) [C function]
Saves the Scheme data object x on the temporary stack.

C_word C_fix (int integer) [C macro]
C_word C_make_character (int char_code) [C macro]
C_word C_SCHEME_END_OF_LIST [C macro]
C_word C_SCHEME_END_OF_FILE [C macro]
C_word C_SCHEME_FALSE [C macro]
C_word C_SCHEME_TRUE [C macro]

These macros return immediate Scheme data objects.

Chapter 6: Interface to external functions and variables 150

C_word C_string (C_word **ptr, int length, char *string) [C function]
C_word C_string2 (C_word **ptr, char *zero_terminated_string) [C function]
[]
[]

C_word C_intern2 (C_word **ptr, char *zero_terminated_string) C function
C_word C_intern3 (C_word **ptr, char *zero_terminated_string, C function
C_word initial_value)
C_word C_pair (C_word *xptr, C_word car, C_word cdr) [C function]
C_word C_flonum (C_word **ptr, double number) [C function]
C_word C_int_to_num (C_word **ptr, int integer) [C function]
C_word C_mpointer (C_word **ptr, void *pointer) [C function]
C_word C_vector (C_word **ptr, int length, ...) [C function]
C_word C_list (C_word **ptr, int length, ...) [C function]

These functions allocate memory from ptr and initialize a fresh data object. The new
data object is returned. ptr should be the address of an allocation pointer created
with C_alloc.

C_word* C_alloc (int words) [C macro]
Allocates memory from the C stack (C_alloc) and returns a pointer to it. words
should be the number of words needed for all data objects that are to be created in
this function. Note that stack-allocated data objects have to be passed to Scheme
callback functions, or they will not be seen by the garbage collector. This is really
only usable for callback procedure invocations, make sure not to use it in normal code,
because the allocated memory will be re-used after the foreign procedure returns.
When invoking Scheme callback procedures a minor garbage collection is performed,
so data allocated with C_alloc will already have moved to a safe place.

int C_SIZEOF _LIST (int length) C macro
int C_SIZEOF_STRING (int length) C macro
int C_SIZEOF_VECTOR (int length) C macro

[
{
int C_SIZEOF_INTERNED_SYMBOL (int length) [C macro
[
[
[
[

int C_SIZEOF_PAIR
int C_SIZEOF_FLONUM C macro
int C_SIZEOF_POINTER C macro
int C_SIZEOF _LOCATIVE C macro
int C_SIZEOF_TAGGED_POINTER [C macro
These are macros that return the size in words needed for a data object of a given
type.
int C_character_code (C_word character) [C macro]
int C_unfix (C_word fixnum) [C macro]
double C_flonum_magnitude (C_word flonum) [C macro]
char* C_c_string (C_word string) [C function]
int C_num_to_int (C_word fixnum_or_flonum) [C function]
void* C_pointer_address (C_word pointer) [C function]

These macros and functions can be used to convert Scheme data objects back to C
data.

Chapter 6: Interface to external functions and variables 151

int C_header_size (C_word x) [C macro]

int C_header_bits (C_word x) [C macro]
Return the number of elements and the type-bits of the non-immediate Scheme data
object x.

C_word C_block_item (C_word x, int index) [C macro]

This macro can be used to access slots of the non-immediate Scheme data object x.
index specifies the index of the slot to be fetched, starting at 0. Pairs have 2 slots,
one for the car and one for the cdr. Vectors have one slot for each element.

void* C_data_pointer (C_word x) [C macro]
Returns a pointer to the data-section of a non-immediate Scheme object.

C_word C_make_header (C_word bits, C_word size) [C macro]
A macro to build a Scheme object header from its bits and size parts.

C_word C_mutate (C_word *slot, C_word val) [C function]
Assign the Scheme value val to the location specified by slot. If the value points
to data inside the nursery (the first heap-generation), then the garbage collector will
remember to handle the data appropriately. Assigning nursery-pointers directly will
otherwise result in lost data.

C_word C_symbol_value (C_word symbol) [C macro]
Returns the global value of the variable with the name symbol.

void C_gc_protect (C_word *ptrs[], int n) [C function]
Registers n variables at address ptrs to be garbage collection roots. The locations
should not contain pointers to data allocated in the nursery, only immediate values
or pointers to heap-data are valid. Any assignment of potential nursery data into
a root-array should be done via C_mutate(). The variables have to be initialized
to sensible values before the next garbage collection starts (when in doubt, set all
locations in ptrs to C_SCHEME_UNDEFINED) C_gc_protect may not called before the
runtime system has been iniitalized (either by CHICKEN_initialize, CHICKEN_run
or CHICKEN_invoke.

void C_gc_unprotect (int n) [C function]
Removes the last n registered variables from the set of root variables.

void (*C_post_gc_hook)(int mode) [C Variable]
If not NULL, the function pointed to by this variable will be called after each garbage
collection with a flag indicating what kind of collection was performed (either 0 for a
minor collection or 1 for a major collection). Minor collections happen very frequently,
so the hook function should not consume too much time. The hook function may not
invoke Scheme callbacks.

An example:
% cat foo.scm
#>
extern int callout(int, int, int);
<#

Chapter 6: Interface to external functions and variables 152

(define callout (foreign-callback-lambda int "callout" int int int))

(define-external (callin (scheme-object xyz)) int
(print "This is ’callin’: " xyz)
123)

(print (callout 1 2 3))

% cat bar.c
#include <stdio.h>
#include "chicken.h"

extern int callout(int, int, int);
extern int callin(C_word x);

int callout(int x, int y, int z)

{
C_word *ptr = C_alloc(C_SIZEOF_LIST(3));
C_word 1lst;

printf ("This is ’callout’: %d, %d, %»d\n", x, y, 2);

1st = C_list(&ptr, 3, C_fix(x), C_fix(y), C_fix(z));

return callin(lst); /* Note: ‘callin’ will have GC’d the data in ‘ptr’ */
}

% chicken foo.scm -quiet
% gcc foo.c bar.c -o foo ‘chicken-config -cflags -1libs‘
% foo
This is ’callout’: 1, 2, 3
This is ’callin’: (1 2 3)
123
Notes:

e Scheme procedures can call C functions, and C functions can call Scheme procedures,
but for every pending C stack frame, the available size of the first heap generation
(the “nursery”) will be decreased, because the C stack is identical to the nursery. On
systems with a small nursery this might result in thrashing, since the C code between
the invocation of C from Scheme and the actual calling back to Scheme might build
up several stack-frames or allocates large amounts of stack data. To prevent this it is
advisable to increase the default nursery size, either when compiling the file (using the
-nursery option) or when running the executable (using the -:s runtime option).

e Calls to Scheme/C may be nested arbitrarily, and Scheme continuations can be invoked
as usual, but keep in mind that C stack frames will not be recovered, when a Scheme
procedure call from C does not return normally.

e When multiple threads are running concurrently, and control switches from one thread
to another, then the continuation of the current thread is captured and saved. Any

Chapter 6: Interface to external functions and variables 153

pending C stack frame still active from a callback will remain on the stack until the
threads is re-activated again. This means that in a multithreading situation, when C
callbacks are involved, the available nursery space can be smaller than expected. So
doing many nested Scheme->C->Scheme calls can reduce the available memory up to
the point of thrashing. It is advisable to have only a single thread with pending C
stack-frames at any given time.

e Pointers to Scheme data objects should not be stored in local or global variables while
calling back to Scheme. Any Scheme object not passed back to Scheme will be reclaimed
or moved by the garbage collector.

e (Calls from C to Scheme are never tail-recursive.

e Continuations captured via call-with-current-continuation and passed to C code
can be invoked like any other Scheme procedure.

Chapter 7: chicken-setup 154

7 chicken-setup

7.1 Extension libraries

Extension libraries are extensions to the core functionality provided by the basic CHICKEN
system, to be built and installed separately. The mechanism for loading compiled extensions
is based on dynamically loadable code and as such is only available on systems on which
loading compiled code at runtime is supported. Currently this are most UNIX-compatible
platforms that provide the 1ibdl functionality like Linux, Solaris, BSD or Mac OS X.
Windows with Cygwin is supported as well. Windows with the Microsoft tools is partially
supported.

Note: Extension may also be normal applications or shell scripts.

7.2 Installing extensions

To install an extension library, run the chicken-setup program with the extension name
as argument. If the extension consists of a single Scheme file, then it is compiled and
installed in the extension repository. If it is an archive containing addition files, then the
files are extracted and the contained setup script is executed. This setup script is a normal
Scheme source file, which will be interpreted by chicken-setup. The complete language
supported by csi is available, and the library units srfi-1 regex utils posix tcp are
loaded. Additional libraries can of course be loaded at run-time.

The setup script should perform all necessary steps to build the new library (or ap-
plication). After a successful build, the extension can be installed by invoking one of the
procedures install-extension, install-program or install-script. These procedures
will copy a number of given files into the extension repository or in the path where the
CHICKEN executables are located (in the case of executable programs or scripts). Addi-
tionally the list of installed files, and user-defined metadata is stored in the repository.

7.3 Creating extensions

Extensions can be created by creating an archive named EXTENSION.egg containing all
needed files plus a .setup script in the root directory. After chicken-setup has extracted
the files, the setup script will be invoked. There are no additional constraints on the
structure of the archive, but the setup script has to be in the root path of the archive.

7.4 Procedures and macros available in setup scripts

install-extension [procedure]
(install-extension ID FILELIST [INFOLIST])

Installs extension library with the name ID. All files given in the list of strings
FILELIST will be copied to the extension repository. The optional argument INFOLIST
should be an association list that maps symbols to values, this list will be stored

Chapter 7: chicken-setup 155

as ID.setup at the same location as the extension code. Currently the following
properties are used:

syntax [property]
(syntax)
Marks the extension as syntax-only. No code is compiled, the extension is

intended as a file containing macros to be loaded at compile/macro-expansion
time.

require-at-runtime [property]
(require-at-runtime ID ...)
Specifies extensions that should be loaded (via require) at runtime. This
is mostly useful for syntax extensions that need additional support code at
runtime.

version [property]
(version STRING)

Specifies version string.

All other properties are currently ignored. The FILELIST argument may also be a
single string.

install-program [procedure]
(install-program ID FILELIST [INFOLIST])

Similar to install-extension, but installs an executable program in the executable
path (usually /usr/local/bin).

install-script [procedure]
(install-program ID FILELIST [INFOLIST])

Similar to install-program, but additionally changes the file permissions of all files
in FILELIST to executable (for installing shell-scripts).

run [syntax]
(run FORM ...)

Runs the shell command FORM, which is wrapped in an implicit quasiquote.

make [syntax]
(make ((TARGET (DEPENDENT ...) COMMAND ...) ...) ARGUMENTS)

A “make” macro that executes the expressions COMMAND . .., when any of the depen-

dents DEPENDENT ... have changed, to build TARGET. This is the same as the make
extension, which is available separately. For more information, see make.

patch [procedure]
(patch WHICH REGEX SUBST)

Replaces all occurrences of the regular expression REGEX with the string SUBST, in the
file given in WHICH. If WHICH is a string, the file will be patched and overwritten. If
WHICH is a list of the form OLD NEW, then a different file named NEW will be generated.

http://www.call-with-current-continuation.org/eggs/make.html

Chapter 7: chicken-setup 156

7.5 Examples for extensions

The simplest case is a single file that does not export any syntax. For example

;355 hello.scm

(define (hello name)
(print "Hello, " name " !"))

After entering
$ chicken-setup hello

at the shell prompt, the file hello.scm will be compiled into a dynamically loadable
library, with the default compiler options -optimize-level 2 -debug-level O -shared.
If the compilation succeeds, hello.so will be stored in the repository, together with a file
named hello.setup (not to be confused with a setup script - this .setup file just contains
an a-list with metadata).

Use it like any other CHICKEN extension:
$ csi -quiet
#;1> (require-extension hello)
; loading /usr/local/lib/chicken/hello.so ...
#;2> (hello "me")
Hello, me!
#;3>

For more elaborate build operations, when installing applications or scripts, or when
additional metadata should be stored for an extension, a setup script is required and the
script and all additional files should be packaged in a gzipped tar archive.

Here we create a simple application:

;55 hello2.scm

(print "Hello, ")
(for-each (lambda (x) (printf ""A " x)) (command-line-arguments))
(print "!")

We also need a setup script:

;555 hello2.setup

(run (csc hello2.scm)) ; compile ‘hello2’
(install-program ’hello2 "hello2") ; name of the extension and files to be installed]]

To use it, just run chicken-setup in the same directory:
$ chicken-setup hello2

Now the program hello2 will be installed in the same location as the other CHICKEN
tools (like chicken, csi, etc.), which will normally be /usr/local/bin. Note that you
need write-permissions for those locations.

Uninstallation is just as easy:

$ chicken-setup -uninstall hello2

Chapter 7: chicken-setup 157

chicken-setup provides a make tool, so building operations can be of arbitrary com-
plexity. When running chicken-setup with an argument NAME, for which no associated
file NAME. setup, NAME. egg or NAME. scm exists will ask you to download the extension via
HTTP from the default URL http://www.call-with-current-continuation.org/eggs.
You can use the ~host option to specify an alternative source location.

Finally a somewhat more complex example: We want to package a syntax extension
with additional support code that is to be loaded at run-time of any Scheme code that uses
that extension. We create a “glass” lambda, a procedure with free variables that can be
manipulated from outside:

;555 glass.scm

(define-macro (glass-lambda 1llist vars . body)
;; Low—-level macros are fun!
(let ([lvar (gensym)]
[svar (gensym)]
[x (gensym)]
[y (gensym)]
[yn (gensym)])
‘(let ,(map (lambda (v) (list v #f)) vars)
(define (,svar ,x . ,y)
(let* ([,yn (pair? ,y)]
[,y (and ,yn (car ,y))]1)
(case ,x
,0(map (lambda (v)
‘([,vl (if ,yn
(set! ,v ,y)
V)))
vars)
(else (error "variable not found" ,x)))))
(define ,lvar (lambda ,llist ,@body))
(extend-procedure ,lvar ,svar))))

Here some support code that needs to be loaded at runtime:

;335 glass-support.scm
(require-extension lolevel)

(define glass-lambda-accessor procedure-data)
(define (glass-lambda-ref gl v) ((procedure-data gl) v))
(define (glass-lambda-set! gl v x) ((procedure-data gl) v x))

The setup script looks like this:

(run (csc -s -02 -dO glass-support.scm))

(install-extension
’glass
>("glass.scm" "glass-support.so")

Chapter 7: chicken-setup 158

>’ ((syntax) (require-at-runtime glass-support)))

The invocation of install-extension provides the files that are to be copied into the

extension repository, and a metadata list that specifies that the extension glass is a syntax
extension and that, if it is declared to be used by other code (either with the require-
extension or require-for-syntax form), then client code should perform an implicit
(require ’glass-support) at startup.

This can be conveniently packaged as an “egg”:

$ tar cfz glass.egg glass.setup glass.scm glass-support.scm

And now we use it:

$ csi -quiet

#;1> (require-extension glass)

; loading /usr/local/lib/chicken/glass.scm ...

; loading /usr/local/lib/chicken/glass-support.so ...
#;2> (define foo (glass-lambda (x) (y) (+ x y)))

#;3> (glass-lambda-set! foo ’y 99)

#;4> (foo 33)

132

7.6 chicken-setup reference

Available options:

-help Show usage information and exit.
-version Display version and exit.

-repository [PATHNAME] When used without an argument, the path of the extension
repository is displayed on standard output. When given an argument, the repository
pathname (and the repository-path parameter) will be set to PATHNAME for all sub-
sequent operations. The default repository path is the installation library directory
(usually /usr/local/lib/chicken), or (if set) the directory given in the environment
variable CHICKEN_REPOSITORY. PATHNAME should be an absolute pathname.

-program-path [PATHNAME] When used without an argument, the path for executables
is displayed on standard output. When given an argument, the program path for
installing executables and scripts will be set to PATHNAME for all subsequent operations.
PATHNAME should be an absolute pathname.

-host HOSTNAME [: PORT] Specifies alternative host for downloading extensions, option-
ally with a TCP port number (which defaults to 80).

-uninstall EXTENSION Removes all files that were installed for EXTENSION from the
file-system, together with any metadata that has been stored.

-1list List all installed extensions and exit.
-run FILENAME Load and execute given file.

-script FILENAME Executes the given Scheme source file with all remaining arguments
and exit. The “she-bang” shell script header is recognized, so you can write Scheme
scripts that use chicken-setup just as with csi.

-verbose Display additional debug information.

Chapter 7: chicken-setup 159

-keep Keep temporary files and directories.

-csc-option OPTION Passes OPTION as an extra argument to invocations of the
compiler-driver (csc). This works only if csc is invoked as (run (csc ...)).

-dont-ask Do not ask the user before trying to download required extensions.

-no-install Do not install generated binaries and/or support files. Any invocations
of install-program, install-extension or install-script will be be no-ops.

-- Ignore all following arguments.

Note that the options are processed exactly in the order in which they appear in the

command-line.

7.7 Windows notes

chicken-setup works on Windows, when compiled with Visual C++, but depends on the
tar and gunzip tools to extract the contents of an egg. The best way is to download
an egg either manually (or with chicken-setup -fetch) and extract its contents with a
separate program (like winzip). the CHICKEN_REPOSITORY environment variable has to be
set (in addition to CHICKEN_HOME) to a directory where your compiled extensions should be
located.

The . setup scripts will not always work under Windows, and the extensions may require

libraries that are not provided for Windows or work differently. Under these circumstances
it is recommended to perform the required steps to build an extension manually.

Chapter 8: Additional files 160

8 Additional files

In addition to library units the following files are provided. Use them by including the file
in your code with the include special form.

8.1 chicken-highlevel-macros.scm

This file contains highlevel (syntax-case) macro definitions for all non-standard macros
CHICKEN provides. Normally you don’t directly use this file, since it is loaded automati-
cally by the compiler or interpreter, when the -hygienic option is used.

If you intend to make highlevel macros (R5RS and/or syntax-case) available at run-
time (for example, for evaluating code at runtime that contains highlevel macros), declare
the syntax-case unit as used and install the macro system by hand, as in this example:

(require-extension syntax-case)

(install-highlevel-macro-system)

(This is basically what the -hygienic-at-run-time option does, but this procedure
gives you a little more control.)

install-highlevel-macro-system [procedure]
(install-highlevel-macro-system FEATURE ...)

Installs the highlevel (R5RS / syntax-case) macro system in the running program.
FEATURE should be a symbol and selects the amount of non-standard macros being
provided. Possible features are:

e r1brs
The R5RS standard derived syntax, and only those.
e srfi-0
SRFI-0 (cond-expand)
e cxtensions
R5RS standard derived syntax and all non-standard extension provided in
CHICKEN

If no feature is give, rbrs is assumed.
8.2 chicken-more-macros.scnm

This file contains the definitions of all non-standard syntax forms. You normally don’t use
this file directly, unless you have the following situation: you use non-standard macros at
run-time (in evaluated code) in a compiled program and you want non-standard syntax to
be available. In this case, add

(require-extension chicken-more-macros)

to your code. This will load the definitions for non-standard macros available in code
evaluated by the program.

See also the FAQ for a discussion about the different macro systems and their ideosyn-
crasies.

Chapter 8: Additional files 161

8.3 chicken-ffi-macros.scm

This file contains the definitions of macros for interfacing to foreign code, and the definitions
contained in this file are automatically made available in compiled code.

8.4 chicken-entry-points.scm

This file contains the definition of the macros define-entry-point and define-embedded.
See the section “Entry points” earlier in this manual.

8.5 chicken-default-entry-points.scm

This file contains boilerplate entry point definitions. See the section “Entry points”. This
file automatically includes entry-points.scm.

8.6 test-infrastructure.scm

This file provides a macro based unit testing facility based upon expectations concerning
evaluations of expressions. These functions return tagged lists which contain the results of
the test package, test case, or expectations evaluated(there are a few other types of results
dealing with the gloss, todo, and skip macros detailed below). These result lists are wired
together during evaluation to form a large hierarchical tree in memory. This result tree
is then passed to either user defined functions which traverse the tree manipulating it in
any way desired, or passed to a supplied (read: defined already in test-infrastructure.scm)
function which manipulates it in a simple way usually producing human readable or html
generated output. API functions to deal with the result types are supplied and the rep-
resentation of the result is black boxed to the user. It is a violation of encapsulation to
inspect the representation directly, and it may change unpredictably in the future.

8.6.1 The Test Package Macro API

This macro will evaluate in a left to right fashion the clauses inside it. Clauses can only
be certain things, detailed below. All of the clauses are executed, except of course if you
bail out of the test package with the escape procedure mechanism. Test packages may nest
indefinitely.

test-package [macro]
(test-package MESSAGE DESTNAME TERMNAME CLAUSES)
(test-package MESSAGE DESTNAME TERMNAME (BINDINGS) CLAUSES)
(test-package MESSAGE DESTNAME TERMNAME (warn MESSAGE) CLAUSES)
(test-package MESSAGE DESTNAME TERMNAME (warn MESSAGE) (BINDINGS)

e MESSAGE can be any scheme object, though usually it is a string.

e DESTNAME is an unquoted symbol for an automatic destructor object that gets
called when the test package completes for any reason. This symbol is bound to

CLAUSES)]

Chapter 8: Additional files 162

a destructor object and is available to you in the CLAUSES section of the test
package. See below for the description of the destructor object interface.

e TERMNAME is an unquoted symbol for an escape procedure available in the body
of the test package, usually, this escape procedure is passed to (terminate ...)
which calls it for you and performs other tasks. It is not recommended to call
the escape procedure directly.

e (warn MESSAGE) allows you to specify a warning object, usually a string, that
gets associated with the test package. The warn function name is actually a
syntax reserved word in the macro.

e BINDINGS are let-style bindings that you may create and exist in the lexical scope
of the test package.

e CLAUSES are uses of (test-case ...) macros along with (gloss ...), (todo
.), (skip ...), and (terminate ...) macros. While you may use the
(expect—* ...) style macros directly in a test package, doing so is not
recommended. If the expectation fails, the test package macro will continue
evaluating until all clauses are evaluated or the escape procedure mechanism is
activated. This is different than a test-case macro where upon discovery of a
failed expectation, evaluation stops immediately.

8.6.2 The Test Case Macro API

This macro will evaluate in a left to right fashion the clauses inside it stopping at the first
failed expectation. Clauses can only be certain things as detailed below. You may also
stop the execution of expectations if you bail out of the test case with the escape procedure
mechanism. Test cases may NOT nest.

test-case [macro]
(test-case MESSAGE DESTNAME TERMNAME CLAUSES)
(test-case MESSAGE DESTNAME TERMNAME (BINDINGS) CLAUSES)
(test-case MESSAGE DESTNAME TERMNAME (warn MESSAGE) CLAUSES)
(test-case MESSAGE DESTNAME TERMNAME (warn MESSAGE) (BINDINGS) CLAUSES)H

e MESSAGE can be any scheme object, though usually it is a string.

e DESTNAME is an unquoted symbol for an automatic destructor object that gets
called when the test case completes for any reason. This symbol is bound to
a destructor object and is available to you in the CLAUSES section of the test
package. See below for the description of the destructor object interface.

e TERMNAME is an unquoted symbol for an escape procedure available in the body
of the test case, usually, this escape procedure is passed to (terminate ...)
which calls it for you and performs other tasks. It is not recommended to call
the escape procedure directly.

e (warn MESSAGE) allows you to specify a warning object, usually a string, that
gets associated with the test case. The warn function name is actually a syntax
reserved word in the macro.

e BINDINGS are let-style bindings that you may create and exist in the lexical scope
of the test case.

Chapter 8: Additional files 163

e CLAUSES are uses of (expect—* ...) macros along with (gloss ...), (todo
...), (skip ...), and (terminate ...) macros. It is important to note that
upon discovery of a failed expectation, the test case stops its evaluation and
returns with the previous successful, and including the failed, expectations.

8.6.3 The Expectation Macro API

An expectation at its core simply evaluates its arguments and check to see if it matches the
expectation. The positive or negative result is encapsulated, along with other things such
as the unevaluated expressions being checked and some messages supplied with each expec-
tation into a particular type of black box object that one can query with the appropriate
API calls(detailed below).

Expectations all have a descriptive message that can be bound to them, along with an
optional warning syntax detailed below. A design decision was made to supply expectation
macros for the usual types of expectations a user needs because this reduced the abstractness
of an expectation into something more manageable. In a future release however, I will supply
a special expectation macro where you may supply any predicate you wish along with a
“type tag” of the predicate.

expect-zero [macro]
(expect-zero MESSAGE CLAUSE)
(expect-zero MESSAGE (warn MESSAGE) CLAUSE)
e This expectation checks to see if the evaluated expression passed to it is numer-
ically equal to the exact integer zero.

e MESSAGE can be any scheme object, though usually it is a string.

e (warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

e CLAUSE is a single expression which should return a exact or inexact integer.

expect-nonzero [macro]
(expect-nonzero MESSAGE CLAUSE)
(expect-nonzero MESSAGE (warn MESSAGE) CLAUSE)
e This expectation checks to see if the evaluated expression passed to it is numer-
ically not equal to the exact integer zero.

e MESSAGE can be any scheme object, though usually it is a string.

e (warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

e CLAUSE is a single expression which should return an exact or inexact integer.

expect-true [macro]
(expect-true MESSAGE CLAUSE)
(expect-true MESSAGE (warn MESSAGE) CLAUSE)

e This expectation checks to see if the evaluated expression passed to it is the value

44t

Chapter 8: Additional files 164

MESSAGE can be any scheme object, though usually it is a string.

(warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

CLAUSE is a single expression which should return #t.

expect-false [macro]

(expect-false MESSAGE CLAUSE)
(expect-false MESSAGE (warn MESSAGE) CLAUSE)

This expectation checks to see if the evaluated expression passed to it is the value
#1.
MESSAGE can be any scheme object, though usually it is a string.

(warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

CLAUSE is a single expression which should return #t.

expect-eq? [macro]

(expect-eq? MESSAGE EXPECTED CLAUSE)
(expect-eq? MESSAGE (warn MESSAGE) EXPECTED CLAUSE)

This expectation checks to see if (eq? EXPECTED CLAUSE) is true.
MESSAGE can be any scheme object, though usually it is a string.

(warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

EXPECTED is a single expression which is evaluated and represents the value the
CLAUSE must be eq? to in order for this expectation to return a positive result.

CLAUSE is a single expression which, when evaluated must return an object where
an eq? of this result and the EXPECTED expression is #t.

The result object this macro produce shall contain the unevaluated CLAUSE ex-
pression as a field, but not an unevaluated EXPECTED expression.

expect-eqv? [macro]

(expect-eqv? MESSAGE EXPECTED CLAUSE)
(expect-eqv? MESSAGE (warn MESSAGE) EXPECTED CLAUSE)

This expectation checks to see if (equ? EXPECTED CLAUSE) is true.
MESSAGE can be any scheme object, though usually it is a string.

(warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

EXPECTED is a single expression which is evaluated and represents the value the
CLAUSE must be eqv? to in order for this expectation to return a positive result.

CLAUSE is a single expression which, when evaluated must return an object where
an eqv? of this result and the EXPECTED expression is #t.

Chapter 8: Additional files 165

e The result object this macro produce shall contain the unevaluated CLAUSE ex-
pression as a field, but not an unevaluated EXPECTED expression.

expect-equal? [macro]
(expect-equal? MESSAGE EXPECTED CLAUSE)
(expect-equal? MESSAGE (warn MESSAGE) EXPECTED CLAUSE)

e This expectation checks to see if (equal? EXPECTED CLAUSE) is true.
e MESSAGE can be any scheme object, though usually it is a string.

e (warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

e EXPECTED is a single expression which is evaluated and represents the value the
CLAUSE must be equal? to in order for this expectation to return a positive result.

e CLAUSE is a single expression which, when evaluated must return an object where
an equal? of this result and the EXPECTED expression is #t.

e The result object this macro produce shall contain the unevaluated CLAUSE ex-
pression as a field, but not an unevaluated EXPECTED expression.

expect-near? [macro]
(expect-near? MESSAGE EXPECTED TOL CLAUSE)
(expect-near? MESSAGE (warn MESSAGE) EXPECTED TOL CLAUSE)

e This expectation checks to see if (< (abs (- EXPECTED CLAUSE)) TOL))) is true.
e MESSAGE can be any scheme object, though usually it is a string.

e (warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

e EXPECTED is a single expression which is evaluated and represents the value the
CLAUSE must be “near” to in order for this expectation to return a positive result.

e CLAUSE is a single expression which should return an inexact or exact number.

e TOL is a single expression which, when evaluated must return a tolerance
value(usually a small inexact number like .0001).

e The result object this macro produce shall contain the unevaluated CLAUSE ex-
pression as a field, but not the unevaluated EXPECTED or TOL expression.

expect-positive [macro]
(expect-positive MESSAGE CLAUSE)
(expect-positive MESSAGE (warn MESSAGE) CLAUSE)
e This expectation checks to see if the evaluated expression passed to it is a positive
value greater than zero.
e MESSAGE can be any scheme object, though usually it is a string.
e (warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

e CLAUSE is a single expression which should return an inexact or exact number.

Chapter 8: Additional files 166

expect-negative [macro]
(expect-negative MESSAGE CLAUSE)
(expect-negative MESSAGE (warn MESSAGE) CLAUSE)

e This expectation checks to see if the evaluated expression passed to it is a negative
value less than zero.

e MESSAGE can be any scheme object, though usually it is a string.

e (warn MESSAGE) allows you to specify a warning object, usually a string, that gets
associated with the expectation. The warn function name is actually a syntax
reserved word in the macro.

e CLAUSE is a single expression which should return an inexact or exact number.

8.6.4 Result Object API

Expectations, test cases, test packages, and helper macros(gloss, todo, etc) all return an
object that contains the results and other various aspects of the action performed which
ultimately get wired together to form the result tree. This collection of functions forming
the rest of the test infrastructure API allows manipulation of these results in an abstracted
way as to allow changing of the representation in the future.

8.6.5 Test Package Result Object API

If any of these API functions, except test-package-result?, are passed something that isn’t
a test package result object, they will return 'not-a-test-package-result.

test-package-result? [procedure]
(test-package-result? RESULT)

If RESULT is a result object from the invocation of a test package macro, then this
function will return #t. Otherwise, it will return #f.

test-package-result-result-ref [procedure]
(test-package-result-result-ref RESULT)

Returns the boolean result associated with the test package RESULT object.

test-package-result-message-ref [procedure]
(test-package-result-message-ref RESULT)

Returns the message object associated with the test package RESULT object.

test-package-result-exps-ref [procedure]
(test-package-result-exps-ref RESULT)

Returns the list of result objects associated with the test package RESULT object.

test-package-result-warning? [procedure]
(test-package-result-warning? RESULT)

If a warning had been attached to this test package, this function will return #t,
otherwise it will be #f.

Chapter 8: Additional files 167

test-package-result-warning-ref [procedure]
(test-package-result-warning-ref RESULT)

If a warning had been attached to this test package, this function will return the
warning object supplied by the user, otherwise it shall return ().

8.6.6 Test Case Result Object API

If any of these API functions, except test-case-result?, are passed something that isn’t a
test case result object, they will return 'not-a-test-case-result.

test-case-result? [procedure]
(test-case-result? RESULT)

If RESULT is a result object from the invocation of a test case macro, then this function
will return #t. Otherwise, it will return #f.

test-case-result-result-ref [procedure]
(test-case-result-result-ref RESULT)

Returns the boolean result associated with the test case RESULT object.

test-case-result-message-ref [procedure]
(test-case-result-message-ref RESULT)

Returns the message object associated with the test case RESULT object.

test-case-result-expectations-ref [procedure]
(test-case-result-expectations-ref RESULT)

Returns the list of expctation result objects associated with the test case RESULT
object.

test-case-result-warning? [procedure]
(test-case-result-warning? RESULT)

If a warning had been attached to this test case, this function will return #t, otherwise
it will be #f.

test-case-result-warning-ref [procedure]
(test-case-result-warning-ref RESULT)

If a warning had been attached to this test case, this function will return the warning
object supplied by the user, otherwise it shall return ’().

8.6.7 Expect Result Object API: Single Clause Style Expectation

These expectations all take the form of passing a single expression to them to see if they
match some a priori expectation. If any of these API functions, except expect-result?, are
passed something that isn’t a single clause style expectation result object, they will return
'not-an-expect-result.

Chapter 8: Additional files 168

expect-result? [procedure]
(expect-result? RESULT)

If RESULT is a single clause style result object from the invocation of an expectation
macro, then this function will return #t. Otherwise, it will return #f.

expect-result-result-ref [procedure]
(expect-result-result-ref RESULT)

Returns the boolean result associated with the single clause style expectation RESULT
object.

expect-result-specific-ref [procedure]
(expect-result-specific-ref RESULT)

This retrieves the “specific” field of a particular single clause style expectation. For
example, if you had a result object from an invocation of a (expect-zero? "foobar"
(- 1 1)) expectation, then the “specific” field of the expectation result object will be
the string "zero". Here is a table describing what the “specific” fields are for each
kind of single clause style expectation:

Single Clause Style Expectation Associated Specific String

expect-zero "zero"
expect-nonzero "nonzero"
expect-true "true"
expect-false "false"
expect-positive "positive"
expect-negative "negative"
expect-result-message-ref [procedure]

(expect-result-message-ref RESULT)

Returns the message object associated with the single clause style expectation RESULT
object.

expect-result-unevaled-ref [procedure]
(expect-result-unevaled-ref RESULT)

Returns the unevaluated expression supplied to a single clause style expectation
macro.

expect-result-evaled-ref [procedure]
(expect-result-evaled-ref RESULT)

Returns the evaluated expression supplied to a single clause style expectation macro.

expect-result-warning? [procedure]
(expect-result-warning? RESULT)

If a warning had been attached to this expectation, this function will return #t,
otherwise it will be #f.

expect-result-warning-ref [procedure]
(expect-result-warning-ref RESULT)

If a warning had been attached to this expectation, this function will return the
warning object supplied by the user, otherwise it shall return ’().

Chapter 8: Additional files 169

8.6.8 Expect Result Object API: Equivalence Style Expectation

These expectations all take the form of passing a two expressions, the “left hand side” and
the “right hand side” to them to see if they match some a priori equivalence. The left hand
side is that which you expect the right hand side to be equivalent. If any of these API
functions, except expect-equivalence-result?, are passed something that isn’t a single clause
style expectation result object, they will return 'not-an-expect-equivalence-result.

expect-equivalence-result? [procedure]
(expect-equivalence-result? RESULT)
If RESULT is a comparison style result object from the invocation of an expectation
macro, then this function will return #t. Otherwise, it will return #f.

expect-equivalence-result-result-ref [procedure]
(expect-equivalence-result-result-ref RESULT)
Returns the boolean result associated with the comparison style expectation RESULT
object.

expect-equivalence-result-specific-ref [procedure]
(expect-equivalence-result-specific-ref RESULT)

This retrieves the “specific” field of a particular equivalence style expectation. For
example, if you had a result object from an invocation of a (expect-equal? "foobar"
0 (-1 1)) expectation, then the “specific” field of the expectation result object will
be the string "equal". Here is a table describing what the “specific” fields are for
each kind of equivalence style expectation:

Equivalence Style Expectation Associated Specific String

expect-eq "eq"

expect-eqv "eqv"

expect-equal "equal"
expect-equivalence-result-message-ref [procedure]

(expect-equivalence-result-message-ref RESULT)

Returns the message object associated with the equivalence style expectation RESULT
object.

expect-equivalence-result-lhs-evaled-ref [procedure]
(expect-equivalence-result-lhs-evaled-ref RESULT)
Returns the evaluated “left hand side” expression supplied to an equivalence style
expectation.

expect-equivalence-result-rhs-unevaled-ref [procedure]
(expect-equivalence-result-rhs-unevaled-ref RESULT)
Returns the unevaluated “right hand side” expression supplied to an equivalence style
expectation.

expect-equivalence-result-rhs-evaled-ref [procedure]
(expect-equivalence-result-rhs-evaled-ref RESULT)
Returns the evaluated “right hand side” expression supplied to an equivalence style
expectation.

Chapter 8: Additional files 170

expect-equivalence-result-warning? [procedure]
(expect-equivalence-result-warning? RESULT)

If a warning had been attached to this expectation, this function will return #t,
otherwise it will be #f.

expect-equivalence-result-warning-ref [procedure]
(expect-equivalence-result-warning-ref RESULT)

If a warning had been attached to this expectation, this function will return the
warning object supplied by the user, otherwise it shall return ’().

8.6.9 Expect Result Object API: Tolerance Style Expectation

This is a specialized expectation which accepts three expressions and checks to see if the
“right hand side” is within a “tolerance” of the “left hand side”. There is only one expecta-
tion in the tolerance style currently. If any of these API functions, except expect-tolerance-
result?, are passed something that isn’t a tolerance style expectation result object, they will
return ‘not-an-expect-tolerance-result.

expect-tolerance-result? [procedure]
(expect-tolerance-result? RESULT)

If RESULT is a tolerance style result object from the invocation of an expectation
macro, then this function will return #t. Otherwise, it will return #f.

expect-tolerance-result-result-ref [procedure]
(expect-tolerance-result-result-ref RESULT)

Returns the boolean result associated with the tolerance style expectation RESULT
object.

expect-tolerance-result-specific-ref [procedure]
(expect-tolerance-result-specific-ref RESULT)

This retrieves the “specific” field of a particular tolerance style expectation. For ex-
ample, if you had a result object from an invocation of a (expect-near? "foobar"
100 .01 100.001) expectation, then the “specific” field of the expectation result ob-
ject will be the string "near". Here is a table describing what the “specific” fields are
for each kind of tolerance style expectation:

Tolerance Style Expectation Associated Specific String
expect-near "near"

expect-tolerance-result-message-ref [procedure]
(expect-tolerance-result-message-ref RESULT)

Returns the message object associated with a tolerance style expectation RESULT
object.

expect-tolerance-result-lhs-evaled-ref [procedure]
(expect-tolerance-result-lhs-evaled-ref RESULT)

Returns the evaluated “left hand side” expression supplied to a tolerance style expec-
tation.

Chapter 8: Additional files 171

expect-tolerance-result-lhs-tol-evaled-ref [procedure]
(expect-tolerance-result-lhs-tol-evaled-ref RESULT)

Returns the evaluated “tolerance” expression supplied to a tolerance style expectation.

expect-tolerance-result-rhs-unevaled-ref [procedure]
(expect-tolerance-result-rhs-unevaled-ref RESULT)

Returns the unevaluated “right hand side” expression supplied to a tolerance style
expectation.

expect-tolerance-result-rhs-evaled-ref [procedure]
(expect-tolerance-result-rhs-evaled-ref RESULT)

Returns the evaluated “right hand side” expression supplied to a tolerance style ex-
pectation.

expect-tolerance-result-warning? [procedure]
(expect-tolerance-result-warning? RESULT)

If a warning had been attached to this expectation, this function will return #t,
otherwise it will be #f.

expect-tolerance-result-warning-ref [procedure]
(expect-tolerance-result-warning-ref RESULT)

If a warning had been attached to this expectation, this function will return the
warning object supplied by the user, otherwise it shall return ’().

8.6.10 Various Helper API

These upcoming macros and functions allow the author of the test suite to better control
both the execution flow of the test suite and “decoration” of the test suite with important
information like things yet to do, or just plain documentation.

8.6.11 Termination API

When executing in a test package or a test case, one might discover some catastrophic
failure of such proportions that it is utterly impossible to continue executing the test case
or test package. When that happens you can use the termination facility to exit the test
case or test package. Of course, no more expressions will be evaluated in the scope of the
termination. It is recommended that you use this method of terminating the test case or
test package evaluation since it wraps some contextual information up into the termination
result so you can figure out what happened(and where) later when analyzing the result tree.

When using the manipulation API for a terminate result, if you pass a result to one of
these function that is not a terminate result, it will return 'not-a-terminate-result.
terminate [procedure]

(terminate TERMFUNC MESSAGE)

e This is the recommended termination method for a test case or a test package.

Chapter 8: Additional files 172

e TERMFUNC is the name of the termination procedure that you specified in a test
case or test package. You may pass any test package or test case termination
function available to you in the lexical scope in which you call this function. The
termination will take effect in the scope of the created termination function.

e MESSAGE can be any scheme object, though usually it is a string.

terminate-result? [procedure]
(terminate-result? RESULT)

If RESULT is a termination result object from the invocation of a termination function,
then this function will return #t. Otherwise, it will return #f.

terminate-result-result-ref [procedure]
(terminate-result-result-ref RESULT)

Returns the boolean result associated with the termination function RESULT object.
This is currently hard coded to be #f.

terminate-result-scope-ref [procedure]
(terminate-result-scope-ref RESULT)

The “scope” of the termination result is exactly the MESSAGE parameter supplied to
the test case or test package associated with the TERMFUNC.

terminate-result-container-ref [procedure]
(terminate-result-container-ref RESULT)

The “container” of the termination result is going to be either 'test-package or 'test-
case depending upon which the TERMFUNC was associated.

terminate-result-message-ref [procedure]
(terminate-result-message-ref RESULT)

Returns the message object associated with the termination RESULT object.

8.6.12 Destructor Object API

The destructor object allows for you to create helper functions which clean up for you
usually in case of aborting of a test case or package. For example, suppose you are testing
whether or not file writing to a file works correctly in a test case, so, you’d perform an
expectation to open the file, and then queue a function in the destructor to remove the
file, and then perform the expectation of the write. If the write(or subsequent) expectation
fails, then the test case will automatically invoke the helper cleanup function specified in
the destructor object that removes the file.

NOTE: This API is still a little experimental in the sense that eventually he destructor
object should return a typed result that contains the success of the individual destructor
calls. But for now, it is functional for what it does. Also, be VERY CAREFUL that you
specify the arguments to these API calls correctly since due to lambda functions not being
comparable, this API cannot garuantee that a true destructor object name had been passed
to it. So if you call one of the following API calls incorrectly, the behavior will be undefined.

Chapter 8: Additional files 173

destructor-atexit! [procedure]
(destructor-atexit! DESTNAME FUNC ARGS ...)

This will insert a promise to calculate the FUNC with the supplied ARGS ... into a
queue in the DESTNAME destructor object. Multiple invocations of this API call will
continue to queue up (FUNC ARGS ...) promises indefinitely. This function returns a
special ignore type that is ignored by the test infrastructure system.

destructor-activate! [procedure]
(destructor-activate! DESTNAME)

This function will call, in order of queueing, all the promises embedded into this
destructor object, and then delete the queue. This function is ALWAYS called at
the completion of a test package or test case; so be careful that the destructor object
doesn’t contain anything harmful. However, you may call it yourself and if you do, it
will execute all of the queued promises and then clear itself. This function returns
a special ignore type that is ignored by the test infrastructure system.

destructor-clear! [procedure]
(destructor-clear! DESTNAME)

This function completely removes all of the promises associated with the destructor
object DESTNAME. This function returns a special ignore type that is ignored by the
test infrastructure system.

destructor-dump [procedure]
(destructor-dump DESTNAME)

This function, mostly used for debugging purposes, prints out a simple representation
of the queued atexit functions to the current port. This function returns a special
ignore type that is ignored by the test infrastructure system.

8.6.13 Todo API

The purpose of the todo API is to allow the author of a test suite the ability to record
into the result tree for later analysis that something still needs to be done. This way you
can count/manipulate this information at a later date. Todo macro invocations can occur
inside of test cases or test packages.

todo [macro]
(todo MESSAGE)
(todo (warn WARNING) MESSAGE)

e MESSAGE can be any scheme object, though usually it is a string.

e (warn WARNING) allows you to specify a warning object, usually a string, that
gets associated with the todo. The warn function name is actually a syntax
reserved word in the macro.

todo-result? [procedure]
(todo-result? RESULT)

If RESULT is a todo result object from the invocation of a todo macro, then this
function will return #t. Otherwise, it will return #f.

Chapter 8: Additional files 174

todo-result-message-ref [procedure]
(todo-result-message-ref RESULT)

Returns the message object associated with the todo RESULT object.

todo-result-warning? [procedure]
(todo-result-warning? RESULT)

If a warning had been attached to this todo, this function will return #t, otherwise
it will be #f.

todo-result-warning-ref [procedure]
(todo-result-warning-ref RESULT)

If a warning had been attached to this todo, this function will return the warning
object supplied by the user, otherwise it shall return *().

8.6.14 Gloss API

The purpose of the gloss API is to allow the author of a test suite the ability to record
messages into the result tree purely for documentation purposes. Gloss macro invocations
can occur inside of test cases or test packages.

gloss [macro]
(gloss MESSAGE)
(gloss (warn WARNING) MESSAGE)

e MESSAGE can be any scheme object, though usually it is a string.

e (warn WARNING) allows you to specify a warning object, usually a string, that
gets associated with the gloss. The warn function name is actually a syntax
reserved word in the macro.

gloss-result? [procedure]
(gloss-result? RESULT)

If RESULT is a gloss result object from the invocation of the gloss macro, then this
function will return #t. Otherwise, it will return #f.

gloss-result-message-ref [procedure]
(gloss-result-message-ref RESULT)

Returns the message object associated with the gloss RESULT object.

gloss-result-warning? [procedure]
(gloss-result-warning? RESULT)

If a warning had been attached to this gloss, this function will return #t, otherwise
it will be #f.

gloss-result-warning-ref [procedure]
(gloss-result-warning-ref RESULT)

If a warning had been attached to this gloss, this function will return the warning
object supplied by the user, otherwise it shall return °().

Chapter 8: Additional files 175

8.6.15 Skip API

The purpose of the skip API is to allow the author of a test suite to completely skip
evaluation of a set of expresssions. Skip macro invocations can occur inside of test cases or
test packages.

skip [macro]
(skip MESSAGE CLAUSES)
(skip (warn WARNING) MESSAGE CLAUSES)

e MESSAGE can be any scheme object, though usually it is a string.

e (warn WARNING) allows you to specify a warning object, usually a string, that
gets associated with the gloss. The warn function name is actually a syntax
reserved word in the macro.

e CLAUSES can be more than one expression(as in a lambda form) that does NOT
get evaluated at any time.

skip-result? [procedure]
(skip-result? RESULT)

If RESULT is a skip result object from the invocation of the skip macro, then this
function will return #t. Otherwise, it will return #f.

skip-result-message-ref [procedure]
(skip-result-message-ref RESULT)

Returns the message object associated with the skip RESULT object. Hopefully, it was
stated why this set of clauses had been skipped.

skip-result-warning? [procedure]
(skip-result-warning? RESULT)

If a warning had been attached to this skip, this function will return #t, otherwise it
will be #f.

skip-result-warning-ref [procedure]
(skip-result-warning-ref RESULT)

If a warning had been attached to this skip, this function will return the warning
object supplied by the user, otherwise it shall return ’().

8.6.16 Side Effect API

This section of the API just contains a single macro currently since it is considered a little
experimental for now. The side effecting evaluates all of its arguments as in a (begin ...)
form, it returns a result that is completely ignored by the system and unavailable to the
output analysis code.

side-effect [macro]
(side-effect CLAUSES)

This macro expands into a begin form the clauses in order and when it finishes

evaluating them, returns a result that is silently ignored by the testing infrastructure

Chapter 8: Additional files 176

system. Usually this is used in conjunction with (set! ...) or with complicated
situations where a lot of setup work must happen for an expectation to be performed.

8.6.17 Miscellaneous API

This section contains a few functions whose purpose is to simplify certain kinds of manip-
ulations of result objects.

*_-restult? [procedure]
(*-result? RESULTOBJ)

This function will return #t of RESULTOBJ is any kind of an evaluated result object.
Otherwise, it shall return #f.

*-result-ref [procedure]
(¥-result-ref RESULTOBJ)

This function will return the result of any kind of RESULTOBJ passed to it if it is
indeed a true result object. Otherwise, it shall emit an error to the current port, and
return #f.

all-testpackage-results-true? [procedure]
(all-testpackage-results-true? RESULTLIST)

This function takes the result of a call to (test-package-result-result-ref
PACKAGERESULTOBJ) and returns #t if every single contained result in that list had
been true, or #f otherwise.

all-testcase-expectations-true? [procedure]
(all-testcase-expectations-true? RESULTLIST)

This function takes the result of a call to (test-case-result-result-ref
CASERESULTOBJ) and returns #t if every single contained result in that list had been
true, or #f otherwise.

8.6.18 Analysis of the Result Tree

Once a result tree has been evaluated and constructed in memory, what do you do with it?
WEell, you can do anything you want with it if you choose to write the analysis or output
generation functions and pass it the evaluated result tree, and this is, in fact, encouraged.
However, usually you just want to print out the tree in a human readable format so you
can check things before the serious analysis code gets written. So, to save work for the test
suite designer, a tiny API has been written to produce human readable output given a tree
of results rooted in a single test package. Of course the single test package may have many
other test packages and test cases embedded within it.

8.6.19 Output Generation API

printnl [procedure]
(printnl CLAUSES)

This function will print all of the evaluated CLAUSES in order with a newline at the
end of it.

Chapter 8: Additional files 177

printinl [procedure]
(printinl INDENT CLAUSES)

This function will INDENT a number of spaces and then print all of the evaluated
CLAUSES in order with a newline at the end of it.

output-style-human [procedure]
(output-style-human RESULTTREE)
This function will print out a human readable rendering of the RESULTTREE and return
the toplevel package result.

8.6.20 Example Usages of the Test Suite Infrastructure

This section contains some simple examples of how to author test suites.
Here is a simple example:

(let ((result
;5 output-style-human function requires a single test package
;; to encapsulate everything.
(test-package "Arithmetic Operators" pd pe

(test-case "Testing ’+’" d e
(expect-equal "Adding two positive numbers" 2 (+ 1 1))}
(expect-equal "Adding two negative numbers" -2 (+ -1 -1))}
(expect-zero "Adding positive and negative" (+ -1 1)))J]

(test-case "Testing ’-’" d e
(expect-zero "Subtracting two positive numbers" (- 1 1))}
(expect-zero "Subtracting two negative numbers" (- -1 -1))]]
(expect-equal "Subtracting positive and negative" -2 (- -1 1))))))J}
(output-style-human result))

The above example, when evaluated, will produce some human readable output and the
a #t value as the result of the top level package. The result variable contains the tree
of evaluated expectations, test cases, and the package arranged in a hierarchy extremely
similar to the nesting of the above macros. If you desire to manipulate the result tree
yourself, you may use the various APIs to manipulate the various results. Please see the
implementation of (output-style-human ...) (it isn’t large) in the test-infrastructure.scm
file to see an example of this.

The variables: pe, e are the escape functions you may use with the (terminate ...)
function call if you wish to abort the above code somewhere.

The variables: pd, d allow use of a "destructor" object which allows you to run side
effecting functions at the "finishing" point of the evaluation of the test case or test package.
These functions are run no matter if the code succeeded correctly or not, so be careful to
manage the destructor object carefully so you don’t perform unwanted side effects. The
names of the destructor objects you supply are lexically scoped in the bodies of the test
case or test package.

Now, here is some example output that (output-style-human ...) might generate with
the above testing code:

Chapter 8: Additional files 178

Begin Package: Arithmetic Operators
Begin Test Case: Testing ’+’
Begin Expectation: Adding two positive numbers
Expect equal
Expected Value:
2
Unevaluated:
(+11)
Evaluated:
2
Result: #t
End Expectation: Adding two positive numbers

Begin Expectation: Adding two negative numbers
Expect equal
Expected Value:
-2
Unevaluated:
(+ -1 -1)
Evaluated:
-2
Result: #t
End Expectation: Adding two negative numbers

Begin Expectation: Adding positive and negative
Expect zero
Unevaluated:
(+ -1 1)
Evaluated:
0
Result: #t
End Expectation: Adding positive and negative

Result: #t
End Test Case: Testing ’+’

Begin Test Case: Testing ’-’
Begin Expectation: Subtracting two positive numbers
Expect zero
Unevaluated:
-11
Evaluated:
0
Result: #t
End Expectation: Subtracting two positive numbers

Begin Expectation: Subtracting two negative numbers

Chapter 8: Additional files 179

Expect zero
Unevaluated:
(- -1 -1)
Evaluated:
0
Result: #t
End Expectation: Subtracting two negative numbers

Begin Expectation: Subtracting positive and negative
Expect equal
Expected Value:
-2
Unevaluated:
(- -1 1)
Evaluated:
-2
Result: #t
End Expectation: Subtracting positive and negative

Result: #t
End Test Case: Testing ’-’

Result: #t
End Package: Arithmetic Operators

#t

Chapter 9: Data Representation 180

9 Data Representation

There exist two different kinds of data objects in the CHICKEN system: immediate and
non-immediate objects. Immediate objects are represented by a tagged machine word,
which is usually of 32 bits length (64 bits on 64-bit architectures). The immediate objects
come in four different flavors:

e fixnums, that is, small exact integers, distinguished by the lowest order bit in the
machine word set to 1. This gives fixnums a range of 31 bits for the actual numeric
value (63 bit on 64 bit architectures).

e characters, where the lowest four bits of machine words containing characters are equal
to C_CHARACTER_BITS. The ASCII code of the character is encoded in bits 9 to 16,
counting from 1 and starting at the lowest order position.

e booleans, where the lowest four bits of machine words containing booleans are equal
to C_BOOLEAN_BITS. Bit 5 (counting from 0 and starting at the lowest order position)
is one if the boolean designates true, or 0 if it is false.

e other values: the empty list, void and end-of-file. The lowest four bits of machine words
containing these values are equal to C_SPECIAL_BITS. Bits 5 to 8 contain an identifying
number for this type of object. The following constants are defined: C_SCHEME_END_
OF_LIST C_SCHEME_UNDEFINED C_SCHEME_END_OF_FILE

Non-immediate objects are blocks of data represented by a pointer into the heap. The
first word of the data block contains a header, which gives information about the type of
the object. The header has the size of a machine word, usually 32 bits (64 bits on 64 bit
architectures).

e bits 1 to 24 (starting at the lowest order position) contain the length of the data object,
which is either the number of bytes in a string (or byte-vector) or the the number of
elements for a vector or for a structure type.

e bits 25 to 28 contain the type code of the object.

e bits 29 to 32 contain miscellaneous flags used for garbage collection or internal data
type dispatching. These flags are:

C_GC_FORWARDING_BIT
Flag used for forwarding garbage collected object pointers.

C_BYTEBLOCK_BIT
Flag that specifies whether this data object contains raw bytes (a string or
byte-vector) or pointers to other data objects.

C_SPECTIALBLOCK_BIT
Flag that specifies whether this object contains a “special” non-object
pointer value in its first slot. An example for this kind of objects are
closures, which are a vector-type object with the code-pointer as the first
item.

C_8ALIGN_BIT
Flag that specifies whether the data area of this block should be aligned
on an 8-byte boundary (floating-points numbers, for example).

Chapter 9: Data Representation 181

The actual data follows immediately after the header. Note that block-addresses are

always aligned to the native machine-word boundary. Scheme data objects map to blocks
in the following manner:

pairs: vector-like object (type bits C_PAIR_TYPE), where the car and the cdr are con-
tained in the first and second slots, respectively.

vectors: vector object (type bits C_VECTOR_TYPE).

strings: byte-vector object (type bits C_STRING_TYPE).

procedures: special vector object (type bits C_CLOSURE_TYPE). The first slot contains

a pointer to a compiled C function. Any extra slots contain the free variables (since a
flat closure representation is used).

flonum: a byte-vector object (type bits C_FLONUM_BITS). Slots one and two (or a single
slot on 64 bit architectures) contain a 64-bit floating-point number, in the representa-
tion used by the host systems C compiler.

symbol: a vector object (type bits C_SYMBOL_TYPE). Slots one and two contain the
toplevel variable value and the print-name (a string) of the symbol, respectively.

port: a special vector object (type bits C_LPORT_TYPE). The first slot contains a pointer
to a file- stream, if this is a file-pointer, or NULL if not. The other slots contain
housekeeping data used for this port.

structure: a vector object (type bits C_STRUCTURE_TYPE). The first slot contains a
symbol that specifies the kind of structure this record is an instance of. The other slots
contain the actual record items.

pointer: a special vector object (type bits C_LPOINTER_TYPE). The single slot contains
a machine pointer.

tagged pointer: similar to a pointer (type bits C_TAGGED_POINTER_TYPE), but the object
contains an additional slot with a tag (an arbitrary data object) that identifies the type
of the pointer.

Data objects may be allocated outside of the garbage collected heap, as long as their

layout follows the above mentioned scheme. But care has to be taken not to mutate these
objects with heap-data (i.e. non-immediate objects), because this will confuse the garbage
collector.

For more information see the header file chicken.h.

Chapter 10: Bugs and limitations 182

10 Bugs and limitations

e Compiling large files takes too much time.

e There is no support for rationals, complex numbers or extended-precision integers
(bignums).

e The maximal number of arguments that may be passed to a compiled procedure or
macro is 126. A macro-definition that has a single rest-parameter can have any number
of arguments.

e The maximum number of values that can be passed to continuations captured using
call-with-current-continuation is 126.

e Some numeric procedures are missing since CHICKEN does not support the full nu-
meric tower.

e If a known procedure has unused arguments, but is always called without those param-
eters, then the optimizer “repairs” the procedure in certain situations and removes the
parameter from the lambda-list.

e eval-when doesn’t allow toplevel definitions inside its body in combination with hy-
gienic macros.

e port-position currently works only for input ports.

e Leaf routine optimization can theoretically result in code that thrashes, if tight loops
perform excessively many mutations.

e Building CHICKEN on RS/6000 systems under AIX is currently not possible, due to
strange assembler errors during compilation of the compiler sources.

e If eval is invoked with scheme-report-environment or null-environment inside the
interpreter, then non-standard syntax is still visible, unless the interpreter has been
started with the -strict option.

e When the highlevel macro system is used, line number information is not properly
maintained.

e format is not reentrant. This means that recursive invocation of this procedure (either
inside print-object methods or record-printer defined with define-record-printer
will not work.

e User-defined types are currently not supported in the argument and result specifications
for entry-points defined with define-entry-point.

Chapter 11: FAQ 183

11 FAQ

11.1 General

e Why yet another Scheme implementation?

Since Scheme is a relatively simple language, a large number of implementations exist
and each has its specific advantages and disadvantages. Some are fast, some provide a
rich programming environment. Some are free, others are tailored to specific domains,
and so on. The reasons for the existance of CHICKEN are:

CHICKEN is portable because it generates C code that runs on a large number of
platforms.

CHICKEN is extendable, since its code generation scheme and runtime system/garbage
collector fits neatly into a C environment.

CHICKEN is free and can be freely distributed, including its source code.

CHICKEN offers better performance than nearly all interpreter based implementations,
but still provides full Scheme semantics.

As far as I know, CHICKEN is the first implementation of Scheme that uses Henry
Baker’s “Cheney on the M.T.A” concept.

e What is the meaning of the ~hygienic option?

The high-level macro system adds some startup overhead to the system. Using this
options evaluates some standard macro-definitions and will slow down the startup-times
of the compiler and the interpreter. For many situations the simple define-macro style
macro-system is sufficient, and so the use of the extended macro system is optional. If
you prefer that the compiler or interpreter use the syntax-case macro- system by default,
consider setting the environment variables CHICKEN_OPTIONS and/or CSI_OPTIONS to
-hygienic.
e What to do if I find a bug?

Send e-mail to felix@call-with-current-continuation.org with some hints about
the problem, like version/build of the compiler, platform, system configuration, code
that causes the bug, etc.

e Why are values defined with define-foreign-variable or define-constant or
define-inline not seen outside of the containing source file?

Accesses to foreign variables are translated directly into C constructs that access the
variable, so the Scheme name given to that variable does only exist during compile-
time. The same goes for constant- and inline-definitions: The name is only there to
tell the compiler that this reference is to be replaced with the actual value.

e How does cond-expand know which features are registered in used units?

Each unit used via (declare (uses ...)) is registered as a feature and so a sym-
bol with the unit-name can be tested by cond-expand during macro-expansion-time.
Features registered using the register-feature! procedure are only available during
run-time of the compiled file. You can use the eval-when form to register features at
compile time.

Chapter 11: FAQ 184

e How can I cut down the size of an executable?

If you don’t need eval or the stuff in the extras library unit, you can just use the
library unit:

(declare (uses library))
(display "Hello, world!\n")

(Don’t forget to compile with the —explicit-use option) Compiled with Visual C++
this generates an excutable of around 240 kilobytes. It is theoretically possible to
compile something without the library, but a program would have to implement quite
a lot of support code on its own.

e Why does a loop that doesn’t cons still trigger garbage collections?

Under CHICKENSs implementation policy, tail recursion is achieved simply by avoiding
to return from a function call. Since the programs is CPS converted, a continuous
sequence of nested procedure calls is performed. At some stage the stack-space has to
run out and the current procedure and its parameters (including the current continu-
ation) are stored somewhere in the runtime system. Now a minor garbage collection
occurs and rescues all live data from the stack (the first heap generation) and moves
it into the the second heap generation. Than the stack is cleared (using a longjmp)
and execution can continue from the saved state. With this method arbitrary recursion
(in tail- or non-tail position) can happen, provided the application doesn’t run out of
heap-space. (The difference between a tail- and a non-tail call is that the tail-call has
no live data after it invokes its continuation - and so the amount of heap-space needed
stays constant)

e How can I obtain faster executables?

There are a number of declaration specifiers that should be used to speed up compiled
files: declaring (standard-bindings) is mandatory, since this enables most optimiza-
tions. Even if some standard procedures should be redefined, you can list untouched
bindings in the declaration. Declaring (extended-bindings) lets the compiler choose
faster versions of certain internal library functions. This might give another speedup.
You can also use the the usual-integrations declaration, which is identical to declar-
ing standard-bindings and extended-bindings (note that usual-integrations is
set by default). Declaring (block) tells the compiler that global procedures are not
changed outside the current compilation unit, this gives the compiler some more op-
portunities for optimization. If no floating point arithmetic is required, then declaring
(number-type fixnum) can give a big performance improvement, because the com-
piler can now inline most arithmetic operations. Declaring (unsafe) will switch off
most safety checks. If threads are not used, you can declare (disable-interrupts).
You should always use maximum optimizations settings for your C compiler. Good
GCC compiler options on Pentium (and compatible) hardware are: -03 -fomit-frame-
pointer -f-nostrict-aliasing Some programs are very sensitive to the setting of the
nursery (the first heap-generation). You should experiment with different nursery set-
tings (either by compiling with the -nursery option or by using the -:s... runtime
option).

e Why does the linker complain about a missing function _C_..._toplevel?

Chapter 11: FAQ 185

This message indicates that your program uses a library-unit, but that the object-file
or library was not supplied to the linker. If you have the unit foo, which is contained in
foo.o than you have to supply it to the linker like this (assuming a GCC environment):

% chicken program.scm -output-file program.c

% gcc program.c foo.o ‘chicken-config -cflags -1libs‘ -o program
The CHICKEN runtime library (libchicken.so or libchicken.lib) already
contains the units library, eval and syntax-case, plus the internally used
units profiler> and scheduler. The extras library (libstuffed-chicken.so or
libstuffed-chicken.lib) contains the units extras, format, lolevel, tinyclos,
regex, tcp and posix (if available). The SRFI library (libsrfi-chicken.so or
libsrfi-chicken.lib) contains the units srfi-1, srfi-4, srfi-13, srfi-14,
srfi-18, srfi-25 and srfi-37.

e Why does the linker complain about a missing function _C_toplevel?

This means you have compiled a library unit as an application. When a unit-declaration
(as in (declare (unit ...))) is given, then this file has a specially named toplevel
entry procedure (see Q23). Just remove the declaration, or compile this file to an
object-module and link it to your application code.

e Why are constants defined by define-constant not honoured in case constructs?

case expands into a cascaded if expression, where the first item in each arm is treated
as a quoted list. So the case macro can not infer wether a symbol is to be treated as
a constant-name (defined via define-constant) or a literal symbol.

e When I compile a file with —unsafe or unsafe declarations, it crashes during execution.

The compiler option —unsafe or the declaration (declare (unsafe)) disable certain
safety-checks to improve performance, so code that would normally trigger an error will
work unexpectedly or even crash the running application. It is advisable to develop
and debug a program in safe mode (without unsafe declarations) and use this feature
only if the application works properly.

e Which non-standard procedures are treated specially when the extended-bindings or
usual-integrations declaration or compiler option is used?

The following extended bindings are handled specially:

bitwise-and bitwise-ior bitwise-xor bitwise-not addl subl fx+ fx- fxx fx/
fxmod fx= fx> fx>= fixnum? fxneg fxmax fxmin fxand fxior fxxor fxmnot fxshl
fxshr fp+ fp- fp* fp/ atom? fp= fp> fp>= fpneg fpmax fpmin arithmetic-shift

signum flush-output thread-specific thread-specific-set! not-pair?
null-list? print print* u8vector->bytevector s8vector->bytevector
ul6vector->bytevector sl6vector->bytevector u32vector->bytevector

s32vector->bytevector f32vector->bytevector f64vector->bytevector block-
ref byte-vector-length u8vector-length s8vector-length ul6vector-length
sl6vector-length u32vector-length s32vector-length f32vector-length
f64vector-length u8vector-ref s8vector-ref ul6vector-ref sl6vector-ref
u8vector-set! s8vector-set! ul6vector-set! sl6vector-set! u32vector-set!
s32vector-set! block-set! number-of-slots first second third fourth null-
pointer? pointer->object make-record-instance locative-ref locative-set!
locative? locative->object identity cpu-time error call/cc

Chapter 11: FAQ 186

e Why does define-reader-ctor not work in my compiled program?
The following piece of code does not work as expected:

(eval-when (compile)
(define-reader-ctor ’integer->char integer->char))
(print #, (integer->char 33))

The problem is that the compiler reads the complete source-file before doing any pro-
cessing on it, so the sharp-comma form is encountered before the reader-ctor is defined.
A possible solution is to include the file containing the sharp-comma form, like this:

(eval-when (compile)
(define-reader-ctor ’integer->char integer->char))

(include "other-file")

;33 other—-file.scm:
(print #, (integer->char 33))

e Why does my program abort with an "out of memory" error when I compile with
extended debug information?

The compiler instruments the source file with a lot of support code to provide things
like arbitrary restarting/returning from activation frames. This will transform calls in
tail-position into non-tail calls in all situations but the most trivial ones (do loops and
named let). This will result in a much higher memory usage for allocating continuation
frames. Try passing the —:hXXX option when executing the program, with a large value
for XXX.

e Why do I get a warning when I define a global variable named match?

Even when the match unit is not used, the macros from that package are visible in
the compiler. The reason for this is that macros can not be accessed from library
units (only when explicitly evaluated in running code). To speed up macro-expansion
time, the compiler and the interpreter both already provide the compiled match-. ..
macro definitions. Macros shadowed lexically are no problem, but global definitions
of variables named identically to (global) macros are useless - the macro definition
shadows the global variable. This problem can be solved in one of three ways:

- Use a different name
- Undefine the macro, like this:
(eval-when (compile eval) (undefine-macro! ’match))
e How can I enable case sensitive reading/writing in user code?

To enable the read procedure to read symbols and identifiers case sensitive, you can
set the parameter case-sensitivity to #t.

e When I use callback functions (from Scheme to C and back to Scheme again), I get
weird crashes.

There are two reasons why code involving callbacks can crash out of know apparent
reason. The first is that it is important to use foreign-callback-lambda/foreign-
callback-lambdax* for the C code that is to call back into Scheme. If this is not done
than sooner or later the available stack space will be exhausted. The second reason is
that if the C code uses a large amount of stack storage, or if Scheme-to-C-to-Scheme

Chapter 11: FAQ 187

calls are nested deeply, then the available nursery space on the stack will run low.
To avoid this it might be advisable to run the compiled code with a larger nursery
setting, i.e. run the code with -:s... and a larger value than the default (for example
-:8300k), or use the -nursery compiler option. Note that this can decrease runtime
performance on some platforms.

e How can I change match-error-control during compilation?
Use eval-when, like this:

(eval-when (compile)
(match-error-control #:unspecified))

e Why doesn’t CHICKEN support the full numeric tower?
There are a number of reasons for this:

- T haven’t found a decent library for multiprecision arithmetic, yet (the GNU multi-
precision library is distributed under a different license than CHICKEN);

- For most applications of Scheme fixnums (exact word-sized integers) and flonums
(64-bit floating-point numbers) are more than sufficient;

-Interfacing to C is simpler;
-Dispatching of arithmetic operations is more efficient.

e How can I put toplevel definitions inside eval-when in combination with the highlevel
macro system?

eval-when expands into an internal special form, which effectively puts the contained
body into a non-toplevel context with the syntax-case macro system. An ugly but
working solution is to use set! instead of define.

e Toplevel-continuations captured in interpreted code don’t seem to work.
Consider the following piece of code:

(define k (call-with-current-continuation (lambda (k) k)))
(k k)

When compiled, this will loop endlessly. But when interpreted, (k k) will return to the
read-eval-print loop! This happens because the continuation captured will eventually
read the next toplevel expression from the standard-input (or an input-file if loading
from a file). At the moment k was defined, the next expression was (k k). But when
k is invoked, the next expression will be whatever follows after (k k). In other words,
invoking a captured continuation will not rewind the file-position of the input source.
A solution is to wrap the whole code into a (begin ...) expression, so all toplevel
expressions will be loaded together.

e How can I specialize a generic function method to match instances of every class?

Specializing a method on <object> doesn’t work on primitive data objects like num-
bers, strings, etc. so for example

(define-method (foo (x <my-class>)) ...)

(define-method (foo (x <object>)) ...)

(foo 123)

will signal an error, because to applicable method can be found. To specialize a method
for primitive objects, use <top>:

Chapter 11: FAQ 188

(define-method (foo (x <top>)) ...)
e Why does a chicken have both dark and white meats?
Short answer is chickens don’t fly long distance. As a result the muscles in the wings
are designed for short bursts of activity and don’t have as many of the proteins that
facilitate oxygen distribution in those muscles. These proteins are coloured red and
cause the dark colour of the meat. Ducks fly a lot hand have dark meat in their wings.
Chickens do walk a lot so their leg and thighs are dark meat.

(Thanks to Chris Double)

11.2 Platform specific

e How do I generate a DLL under MS Windows (tm) ?
Use csc in combination with the -d11 option:
C:\> csc foo.scm -d11
You can use the define-entry-point facility to interface to the Scheme code.
e How do I generate a GUI application under Windows(tm)?
Invoke csc with the -windows option. Or pass the -DC_WINDOWS_GUI option to the
C compiler and link with the GUI version of the runtime system (that’s 1ibchicken-

gui[-static].lib. The GUI runtime displays error messages in a message box and
does some rudimentary command-line parsing.

e Compiling very large files under Windows with the Microsoft C compiler fails with a
message indicating insufficient heap space.

It seems that the Microsoft C compiler can only handle files up to a certain size, and
it doesn’t utilize virtual memory as well as the GNU C compiler, for example. Try
closing running applications. If that fails, try to break up the Scheme code into several
library units.

e When I run csi inside an emacs buffer under Windows, nothing happens.

Invoke csi with the -:c runtime option. Under Windows the interpreter thinks it is
not running under control of a terminal and doesn’t print the prompt and does not
flush the output stream properly.

11.3 Customization

e How do I run custom startup code before the runtime-system is invoked?

When you invoke the C compiler for your translated Scheme source program, add the
C compiler option -DC_EMBEDDED, or pass —embedded to the csc driver program, so
no entry-point function will be generated (main()). When your are finished with your
startup processing, invoke:

CHICKEN_main(argc, argv, C_toplevel);

where C_toplevel is the entry-point into the compiled Scheme code. You should add
the following declarations at the head of your code:

#include "chicken.h"
extern void C_toplevel(C_word,C_word,C_word) C_noret;

Chapter 11: FAQ 189

e How can I add compiled user passes?

To add a compiled user pass instead of an interpreted one, create a library unit and
recompile the main unit of the compiler (in the file chicken.scm) with an additional
uses declaration. Then link all compiler modules and your (compiled) extension to
create a new version of the compiler, like this (assuming a UNIX like environment and
also assuming all sources are in the current directory):

% cat userpass.scm

;555 userpass.scm — My very own compiler pass

(declare (unit userpass))

;3 Perhaps more user passes/extensions are added:
(let ([old (user-pass)])
(user-pass
(lambda (x)
(let ([x2 (do-something-with x)])
(if old
(old x2)
x2)))))

% chicken userpass.scm -output-file userpass.c -explicit-use -quiet

% chicken chicken.scm -output-file chicken-extended.c -quiet -postlude "(declare (use:

% gcc -c userpass.c ‘chicken-config -cflags® -o userpass.o

% gcc -c chicken-extended.c ‘chicken-config -cflags‘ -o chicken-extended.of}

% gcc chicken-extended.o support.o easyffi.o compiler.o optimizer.o batch-driver.o c-
c-backend.o userpass.o ‘chicken-config -1libs‘ -o chicken-extended

On platforms that support it (Linux ELF, Solaris, Windows + VC++), compiled code
can be loaded via -extend just like source files (see load in the User’s Manual).

11.4 Macros

e Why does (define-macro foo bar) not work?
Consider this code snippet:
(define (double x) (list ’* x x))

(define-macro twice double)
Because the macro twice is defined at compile time (following forms may refer to it),
functions defined at runtime (as double in this case) are not available. The alternative
syntax of define-macro:

(define-macro twice (lambda (x) (list ’* x x)))

does just exist to make porting other Scheme code easier. It is not able to assign
procedures computed at runtime as macro expanders.

e Why doesn’t my fancy macro work in compiled code?

Macro bodies that are defined and used in a compiled source-file are evaluated during
compilation and so have no access to definitions in the compiled file. Note also that

Chapter 11: FAQ 190

during compile-time macros are only available in the same source file in which they are
defined. Files included via include are considered part of the containing file.

e Why are macros not visible outside of the compilation unit in which they are defined?

Macros are defined during compile time, so when a file has been compiled, the defini-
tions are gone. An exception to this rule are macros defined with define-macro, which
are also visible at run-time, i.e. in eval. To use macros defined in other files, use the
include special form.

e What’s all this about two different macro systems and why is everything so compli-
cated?

CHICKEN provides two macro systems: a low-level Lisp-style macro system that is
not hygienic and not referentially transparent, where a macro expander simply returns
source code to be executed or compiled instead of the original form and second, a port
of R. Kent Dybvig’s syntax-case macro system, which provides fully R5RS compatible
hygienic and referentially transparent macros in addition to a powerful framework with
nearly the same control as low-level macros, while still being hygienic. The integration
of the latter macro system with CHICKEN is not perfect - the syntax-case code is
complex and is not perfectly suited for a batch compiler. The low-level macro system
is more lightweight, and may for many people more than sufficient. So the decision has
been made to have both, and accept the necesseray inconsistencies that this causes.

Here is an attempt to explain the different possible situations that may come up and
how to address them:

1) Running the interpreter with low-level macros: this is the default.

2) Running the interpreter with syntax-case macros: add the -hygienic or -syntax
option. If you are writing a shell (“She-bang”) script, consider using -script-meta to
add the -hygienic option to the options with which the script will be executed.

3) Compiling code with low-level macros, the code does not do any evaluation of Scheme
expressions (for example by using eval or load) at run-time, or if it does, it doesn’t
evaluate code with non-standard Scheme syntax: this is the default. If the compiled
program uses the syntax-case macro system, add the ~hygienic or -symtax options
to the compiler invocation.

4) Compiling code with low-level macros, the code evaluates Scheme expressions at run-
time, and needs non-standard syntax (like unless or other macros that are normally
provided in the CHICKEN system): add the following line to your code:

(require-extension chicken-more-macros)

This will load the non-standard macro definitions when the program is executed. If the
compiled program uses the syntax-case macro system, add the ~hygienic or -syntax
options to the compiler invocation.

5) Should you prefer to have the syntax-case macro system available at run-time,
compile your code with the ~hygienic-at-run-time option. This will add all necessary
code to load and install the high-level macro expander at run-time. To have the non-
standard macros available at run-time, you still need

(require-extension chicken-more-macros)

Chapter 12: Acknowledgements 191

12 Acknowledgements

e Jonah Beckford added CHICKEN-support to SWIG and provided support for shared
libraries and dynamic loading under Windows.

e “Category 5” ported CHICKEN to several BSD platforms and suggested a great many
improvements.

e Linh Dang translated the TeX manual into texinfo format and wrote the hen emacs
mode.

e Steve Elkins ported CHICKEN to OpenBSD.

e Tollef Fog Heen and Thomas Weidner helped porting CHICKEN to the AMD-64 plat-
form.

e Tony Garnock-Jones ported CHICKEN to HP-UX and provided countless fixes and
improvements.

e Sven Hartrumpf helped porting CHICKEN to the UltraSparc, suggested many im-
provements and helped fixing numerous bugs.

e Bruce Hoult fixed several bugs and pointed out performance improvements.

e Dale Jordan pointed out several bugs, helped fixing problems on the Cygwin platform
and contributed the calendar.scm example script.

e Peter Keller translated the manual from HTML into LaTeX and contributed the testing
infrastructure code.

e Sergey Khorev ported a large part of the POSIX library to Windows.

e Kirill Lisovsky found a couple of bugs while porting Oleg Kiselyov’'s SSAX XML parser
to CHICKEN.

e Dennis Marti ported CHICKEN to Mac OS X.
e Chris Moline and Bakul Shah helped porting CHICKEN to FreeBSD.
e Davide Puricelli maintains the Debian package.

e Doug Quale contributed the configuration scripts for installation on UNIX-like systems,
suggested numerous improvements and was generally very helpful.

e Benedikt Rosenau found several bugs and spent a lot of time testing the system and
pointing out improvements.

e Michele Simionato discovered several bugs and provided numerous helpful suggestions.
e Dorai Sitaram pointed out several improvements in the TeX manual.
e Mike Thomas ported CHICKEN to the Mingw32 platform.
e John Tobey ported CHICKEN to MIPS.
e Panagiotis Vossos ported CHICKEN to Alpha/Linux.
e Peter Wang produced countless bugfixes and helpful suggestions.
e Jorg Wittenberger found and fixed many bugs in the runtime system.
e CHICKEN contains code from several people:

e Eli Barzilay: some performance tweaks used in TinyCLOS.

e Anthony Carrico: the option parsing facility.

e Mikael Djurfeldt: topological sort used by compiler.

http://www.swig.org

Chapter 12: Acknowledgements 192

e Marc Feeley: pretty-printer.

e Aubrey Jaffer: implementation of dynamic-wind.

e R. Kent Dybvig, Oscar Waddel, Robert Hieb & Carl Bruggeman: syntax-case
macro system.

e Gregor Kiczales: original implementation of TinyCLOS.

e Dirk Lutzebaeck: Common LISP format.

e Richard O’Keefe: sorting routines.

e Jussi Piitulainen: reference implementation for SRFI-25.

e Olin Shivers: implementation of let-optionals[*] and reference implementa-
tions of SRFI-1, SRFI-13 and SRFI-14.

e Dorai Sitaram: the PREGEXP regular expression package and TeX2page, which
was used to generate the HTML documentation.

e Andrew Wilcox: queues.

e Andrew Wright: pattern matcher.

Thanks also to:

William Annis, Marc Baily, Peter Barabas, Peter Bex, Dave Bodenstab, Fabian Bh-
lke, T. Kurt Bond, Terence Brannon, Roy Bryant, Taylor Campbell, Franklin Chen, Gian
Paolo Ciceri, Grzegorz Chrupala, James Crippen, Alejandro Forero Cuervo, Brian Denheyer,
Chris Double, Petter Egesund, Daniel B. Faken, Fizzie, Kimura Fuyuki, Martin Gasbichler,
Joey Gibson, Johannes Groedem, Andreas Gustafsson, Jun-ichiro itojun Hagino, Matthias
Heiler, Karl M. Hegbloom, William P. Heinemann, Dale Jordan, Valentin Kamyshenko, Ron
Kneusel, Matthias Koeppe, Todd R. Kueny Sr, Micky Latowicki, Charles Martin, Alain
Mellan, Perry Metzger, Scott G. Miller, Mikael, Bruce Mitchener, Eric Merrit, Eric E.
Moore, Lars Nilsson, o.t., Eric Raible, Joel Reymont, David Rush, Lars Rustemeier, Oskar
Schirmer, Burton Samograd, Ronald Schroder, Spencer Schumann, Shmul, Jeffrey B. Siegal,
Robert Skeels, Jason Songhurst, Clifford Stein, Christian Tismer, Vladimir Tsichevsky, Neil
van Dyke, Sander Vesik, Shawn Wagner, Ed Watkeys, Matthew Welland, Richard Zidlicky
and Houman Zolfaghari for bug-fixes, tips, suggestions and moral support.

Bibliography 193

Bibliography
Henry Baker: CONS Should Not CONS Its Arguments, Part II: Cheney on the M.T.A.

http://home.pipeline.com/\ hbakerl/CheneyMTA.html

Revised~5 Report on the Algorithmic Language Scheme
http://www.schemers.org/Documents/Standards/R5RS

Index

B 26
/P 26
H<HTAG . . .o 25
> 26
> 26
B 26
B e 26
B 26
#LINDEX] ..ot 21
(*xC_post_gc_hook) (int 151
*

*-restult? 176
*-result-ref 176
=>String. ... 62
toptional ... 27
<

ATTAYD . oottt e e 115
<boolean> 114
<byte-vector>.................. ... 115
CH+=Cclass>o 116
<char-set> 116
<char>. ... 115
KClaSS . oot 115
<condition>, 115
<end-of-file>.................ciiiiiin... 115
<entity-class>................ciiiiinn... 115
<enviromment>i...... 115
KEXACE > . ottt 115
<f32vector> 116
<fBdvector> 116
<gemeric> ...l 115
<hash-table>.............................. 115
<inexact> 115
<input-port>................. ... 115
<integer>l 115
<locative>o 116
KLOCKD . ottt e 116
<method> 115
SHMAP .« & e et ettt e e e e e e e e 116

194
<NUMDET> . ..o 115
<object> 115
<output-port>............, 115
<pair>.... 115
<pointer> i 116
KPOTE> . .o 115
<primitive> 114
<procedure-class>......................... 115
<procedure>iiiiiiiiia. 115
<promise> i 116
KQUEUED . . .ottt 115
<slBvector>............................... 116
<s32vector> 116
<s8vector>, 116
<string> ... 115
<structure> 115
<swig-pointer>........... 116
<symbol> 115
<tagged-pointer>.......................... 116
<tcp-listener>............................ 116
<time>. 116
<ulBvector> ...t 116
<u32vector> ... 116
<uBvector> ... 116
VeCtOr> ... 115
exit. 86
#$EXPRESSION
HEEXPRESSION ... ooitet et 25
' EXPRESSION
#?EXPRESSION 25

#,(CONSTRUCTORNAME DATUM ...)

#, (CONSTRUCTORNAME DATUM ...) 25
#:SYMBOL

#:SYMBOL 25
EXPRESSION

#;EXPRESSIONttt 25

#<<TAG

HKTAG . .o 25

Index

| . | #
#l ..

B 25
syntax
SYRLAX . .ot 147

A

absolute-pathname?......................... 93
add-method 110
addl ... 38
address->pointer................c.oioi.... 98
advise...... ... 19
align-to-word............................. 101
alist-ref 55
alist-update! 55
all-testcase-expectations-true?.......... 176
all-testpackage-results-true?............ 176
allocate.......ooiii 98
allocate-instance......................... 112
always-bound 34
and-let*........ ... 28
ANAMAD . . .ot 49
AYECHATEY © oottt 132
ATV ottt 45
arithmetic-shift........................... 38
ASSETt .ottt 32
atom? 55

B

binary-search................ 65
bitwise-and 38
bitwise-ior il 38
bitwise-not L 38
bitwise-xor 38
BLloCK. .o 34
block-global 34
block-ref 106
block-set! 106
bound-to-procedure......................... 34
build-platform............................. 45
butlast..............o i 55
byte-vectorl 102
byte-vector->f32vector 66
byte-vector->f64vector 66
byte-vector->list......................... 102
byte-vector->si6vector 66
byte-vector->s32vector 66
byte-vector->s8vector 66
byte-vector->string....................... 102
byte-vector->ulévector 66
byte-vector->u32vector 66
byte-vector->u8vector 66
byte-vector-fill!...................... ... 102
byte-vector-length........................ 102
byte-vector-ref 102

195
byte-vector-set!.......... L. 102
byte-vector? L 102
C
c-options 34
Cmruntimet 46
C_alloC. ..o 150
C_block_item............. ... 151
C_c_string i 150
C_callbackoviiiinnn.. 131
C_character_code..............c.cvviuun.... 150
C_data_pointer............................ 151
(O 5 S P 149
C_flonumo, 150
C_flonum_magnitude........................ 150
C_gc_protect 151
C_gc_unprotect 151
C_header_bits............ ..., 151
C_header_sizeouiinuuunnn.. 150
Cint_to_mum............... ..., 150
C_intern2 ... 150
C_intern3 150
C_list. v 150
C_make_character..................couiu... 149
C_make_headercciiiruuuinin.. 151
C_mpointer, 150
C_mutatecoui 151
Conum_to_int0iiiii.. 150
Cpair. ..o 150
C_pointer_address......................... 150
G SaAVE . o vttt 149
C_SCHEME_END_OF _FILE...................... 149
C_SCHEME_END_OF _LIST............couiuu... 149
C_SCHEME_FALSEt 149
C_SCHEME_TRUE0iiiiinennnnn.. 149
C_SIZEOF_FLONUM.........coviiiiniinnnn.. 150
C_SIZEOF_INTERNED_SYMBOL 150
C_SIZEOF_LISTottt 150
C_SIZEOF_LOCATIVE..........oiiiiaennn. 150
C_SIZEOF_PAIR ..ottt 150
C_SIZEOF_POINTER............coiiriinnnnn. 150
C_SIZEOF_STRING........ouiiennnnn. 150
C_SIZEOF_TAGGED_POINTER 150
C_SIZEOF_VECTOR....... ..o, 150
Costring ..ot 149
Costring2 150
C_symbol_value............................ 151
Cunfix. ... 150
C_VeCtOr .ottt 150
call-with-input-pipe....................... 74
call-with-input-string 56
call-with-output-pipe 74
call-with-output-string 57
Call/CC .t 51
case-lambda 28
case-sensitive............... 37

change-directory........................... 73

Index

change-file-mode........................... 81
change-file-owner.......................... 81
char-name 50
chicken-home 47
chicken-version............................ 45
CHICKEN _@apply ...vvivieeiieeeaaennn 127
CHICKEN_apply_to_string 128
CHICKEN_delete_gc_root 129
CHICKEN_evalt 127
CHICKEN_eval_string....................... 127
CHICKEN_eval_string_to_string............ 127
CHICKEN_eval_to_string 127
CHICKEN_gc_root_ref....................... 129
CHICKEN_gc_root_set....................... 129
CHICKEN_get_error_message 128
CHICKEN_global_lookup 129
CHICKEN_global _ref........................ 129
CHICKEN_global_set........................ 129
CHICKEN_initialize........................ 125
CHICKEN_invoke 125
CHICKEN_is_running........................ 125
CHICKEN_load 128
CHICKEN_new_gc_root....................... 129
CHICKEN_parse_command_line............... 125
CHICKEN_read, 128
CHICKEN_TUnottt 125
CHICKEN_yieldoiiui.. 128
chop....... 56
class=cpl ...t 111
class-direct-slots........................ 111
class-direct-supers....................... 111
ClassS—Mamec.oiuiiiiiiiiiaa. 111
class-ofl 111
class=slots ...t 111
clear-hash-table!.......................... 58
close-input-pipe........................... 74
close-output-pipe.................., 74
command-line-arguments 37
complement 64
COMPOSE .« vttt ettt et et et 64
COMPTESS . .\ v eeteeetee e e et 56
compress-literals.......................... 34
compute-apply-generic 112
compute-apply-methods 112
compute—cplo 112
compute-getter-and-setter 112
compute-method-more-specific?............ 112
compute-methods 112
compute-slotsc..oiiiiii... 112
[} o X 62
cond-expandiiiiiiia 32
condition-case................., 43
conjoim.......... 64
constantly, 64
cpu-time.......... ... 47
create-directory.............. 73
create-fifo.......... L 75

create-pipe i, 74

196
create-session..................., 82
create-symbolic-link....................... 80
create-temporary-file 94
critical-section............. 32
current-directory.......................... 73
current-effective-group-id................ 81
current-effective-user-id................. 81
current-environment........................ 84
current-error-port......................... 40
current-group-id.............. 81
current-milliseconds....................... 47
current-process-id......................... 79
current-seconds 47
current-user-id................ 81
CUL .t 28
CULE .ttt 28
D
debug-expand 71
declare.........oiuiiiiiii e 33
decompose-pathname......................... 93
define-class, 109
define-constant 30
define-embedded 124
define-entry-point........................ 124
define-extermal 130
define-foreign-record 118
define-foreign-type....................... 117
define-foreign-variable 117
define-generic............. 109
define-inline 30
define-location........................... 131
define-macro 30
define-method 109
define-reader-ctor......................... 54
define-record................. 31
define-record-printer 31
define-record-type......................... 32
define-values 29
delete-directory..........couuveeunneennn.. 74
delete-file ..o, 41
delete-file* 94
describe-object 113
destructor-activate!...................... 173
destructor-atexit!............. 172
destructor-clear!......................... 173
destructor-dump........................... 173
directory i 74
directory? ...t 74
disable-interrupts 35, 47
disjoin......... 64
duplicate-fileno...............ccouvuennn.. 76
dynamic-load-libraries 37

Index

E

enable-interrupts.......................... 47
enable-warnings............................ 47
end-of-file i, 41
CISUTC . o o vttt e et et e 32
[0« o Tt 45
ETTNO/ACCES .« ot oottt e e 87
errno/again 87
errno/badf 87
ErTNO/DUSY .o 87
errno/child i 87
errno/faultoiii 87
errno/intr 87
errno/inval 87
eTTNO/i0. . o 87
errno/isdir 87
errno/mfile 87
erTNO/NOENntot 87
@TTNO/NOCKEC o et e et et 87
=5 0 o Lo)/ o Yoy =Y A 87
@ITNO/NOSPC « oo ee e e 87
errno/notdir 87
@ITNO/PETIM . oo e e e et 87
errno/pipe 87
errno/rofS ... 87
errno/Spipe i 87
eTTNO/STCh ..ot 87
errno/wouldblock.............oiiiiin... 87
[T e Pt 48
EVAL . 55
eval-handleroiiiiernnnnn.. 37
eval-when i 33
executable-byte-vector->procedure 102
eXAt . 45
exit-handlerciironio... 37
expect—eq? ... 164
expect-equal?.......... 164
expect-equivalence-result-lhs-evaled-ref
....................................... 169

expect-equivalence-result-message-ref ... 169
expect-equivalence-result-result-ref 169
expect-equivalence-result-rhs-evaled-ref
....................................... 169
expect-equivalence-result-rhs-unevaled-ref
....................................... 169
expect-equivalence-result-specific-ref .. 169
expect-equivalence-result-warning-ref ... 170

expect-equivalence-result-warning? 169
expect-equivalence-result?............... 169
expect—equ? ... 164
expect-false 164
expect-near? i 165
expect-negative................, 165
@XPEeCt—NONZEYOviteininenenn... 163
expect-positive............ 165
expect-result-evaled-ref 168
expect-result-message-ref 168

expect-result-result-ref 167

197
expect-result-specific-ref 168
expect-result-unevaled-ref 168
expect-result-warning-ref 168
expect-result-warning? 168
expect-result?............., 167

expect-tolerance-result-lhs-evaled-ref .. 170
expect-tolerance-result-lhs-tol-evaled-ref

....................................... 170
expect-tolerance-result-message-ref 170
expect-tolerance-result-result-ref 170

expect-tolerance-result-rhs-evaled-ref .. 171
expect-tolerance-result-rhs-unevaled-ref

....................................... 171
expect-tolerance-result-specific-ref 170
expect-tolerance-result-warning-ref 171
expect-tolerance-result-warning?......... 171
expect-tolerance-result?................. 170
expect-true 163
@XPEeCE=ZerOot 163
@XPOTL . oo 34
extend-procedure.......................... 101
extended-bindings............... 36
extended-procedure?....................... 101
extension-info............. 53
F
f32vector->byte-vector 65
f64vector->byte-vector 65
features............iiiii i 42
fifor . 76
file-access-time........................... 78
file-change-time........................... 78
file-close i 76
file-execute-access?................ 80
file-exists? 41
file-loCK ..o 82
file-lock/blocking......................... 83
file-mkstemp 76
file-modification-time 78
file-open 76
file-owner 80
file-permissions........................... 80
file-position.............. 78
file-read 76
file-read-access?............ 80
file-select T
file-size 78
file-stat 78
file-test-lock............ 83
file-truncate................ 78
file-unlock 83
file-write i 7T
file-write-access?.........., 80
fileno/stderr 7
fileno/stdin................... 7
fileno/stdout 7
find-files il 87

Index

fixnum-arithmetic.......................... 35
fixnum?. 39
flatten.......... i 56
FLAD oot 64
fluid-let 29
flush-outputt 41
for-each-argv-line......................... 95
for-each-line.............. 94
force-finalizers........................... 37
foreign-callback-lambda 119
foreign-callback-lambda* 119
foreign-callback-wrapper 130
foreign-code il 117
foreign-declare............................ 34
foreign-lambda............................ 119
foreign-lambdax*........................... 119
foreign-parse..............l 35
foreign-valueooiiiii.. 117
format......... 73
Bk 40
i 40
= 40
D/ 40
i 1 40
BP<= 40
= 40
D> 40
p>= 40
fpmax...... ... 40
TPMAN . oot 40
fpneg. ... 40
fprintf 57
free..... ... 99
EX* 39
X+ 39
fx— 39
£/ 39
5 39
fx<= 39
= 39
R 39
B = 39
fxand......... 39
fxior... 39
fxmax..... ... 39
fxmin...... ... 39
fxmod...... 39
fxneg. ... 39
fxXnot 39
fxshl.. ... 39
fxshr. 39
EXXOT ..o 39

198
G
B e 48
generic-methods........................... 111
BENSYM. ..ttt 49
get .. 58
get-groups 81
get-host-mame 88
get-keyword 43
get-line-number 52
get-output-string.......................... 42
getenv. 45
BLOD et 74
global-bound?............................. 106
global-ref 106
global-set! 106
BLlOSS .ottt 174
gloss-result-message-ref 174
gloss-result-warning-ref 174
gloss-result-warning? 174
gloss-result? 174
= ol 68
group-information.......................... 81
H
hash-table->1ist.............oovvunneenn... 58
hash-table-count........................... 58
hash-table-for-each........................ 58
hash-table-ref 58
hash-table-remove! 58
hash-table-set! 58
hash-table-size............................ 58
hash-table? 58
hide..... ... 34
I
identity........... 64
implicit-exit-handler 38
include. ... 33
initialize il 112
initialize-groups.......................... 81
initialize-slots.......................... 113
install-extension......................... 154
install-highlevel-macro-system........... 160
install-program................c.ouuuenn... 155
install-script........ 155
instance? 110
interrupts-enabled......................... 35
Interspersecouiiiiiiiiii 56
invalid-procedure-call-handler........... 108
invoke-executable-byte-vector............ 103

Index

K

keyword->string........... 43
keyword-style 38
keyword?. 43

L

let*-valuesuiiiieninnn. 29
let-locationouiiiiiinnnnnnnn. 131
let-optionals 28
let-optionals*............................. 28
let-valuesoiirn i 29
letrec-valuesouirininienenennan.. 29
link-options 35
list->byte-vector...............cou... 103
list->queueciiiiiiii.. 59
list-of 65
load . ..o 51
load-library 51
load-noisily 52
load-verbose ... 38
location ... 131
locative->object.......................... 106
locative-ref 106
locative-set! 106
locative?o 106

M

machine-type 46
MACTOT . ottt 52
MaCTOeXPaANdttt 52
macroexpand-1.........., 53
make ... 110, 155
make-absolute-pathname 93
make-byte-vector.......................... 104
make-classiiiiiiii 110
make-executable-byte-vector.............. 104
make-generic, 110
make-hash-table...................... 59
make-input-port................. 60
make-locative 105
make-method L. 110
make-output-port............... 61
make-parameter 37
make-pathname 93
make—quUeueoiiiiiiii 59
make-record-instance...................... 107
make-static-byte-vector 104
make-weak-locative........................ 105
map-file-to-memory......................... 85
match...... ... 67
match-define 67
match-error-control........................ 68
match-lambda 67
match-lambda* 67
match-let 67
match-let* 67

199
match-letrec 67
memory-mapped-file-pointer 85
memory-mapped-file?........................ 85
memory-statistics............. 48
1= of == 60
merge! 60
method-procedure.......................... 111
method-specializers....................... 111
move-memory! 107
N
no-argc-checks 35
no-bound-checks 35
no-procedure-checks........................ 35
0o 65
NOb. .o 35, 36
nth-value 33
null-pointer 99
null-pointer? 99
number-of-bytes..................., 107
number-of-slots........................... 107
@)
object->pointer.................... 99
object-become! 108
0bjJeCt=COpPY - .o i i 107
object-evictl 104
object-evict-to-location................. 105
object-evicted?............ 105
object-release............................ 105
object-size............ 105
object-unevict 105
open-input-filex........................... 7
open-input-pipe........... 75
open-input-string............... 42
open-output-file*.......................... 7
open-output-pipe.................. ..., 75
open-output-string............. 42
open/append 7
open/binary ... 7
OpPen/Creatouiiiiiiiiiaa T
open/exCl 7
open/EfSyNC 7
open/mnoctty ... 7
open/nonblock T
open/rdonly 7
OPEN/TAWE .. 7
open/read ... T
OPEI/SYINC .« . ov e teee e et 7
open/text ... 77
OPEN/ETUNC ... 7
open/write i T
OPen/Wronlyiiiiii 7
OFMAPD .+« e ettt e e e et e e e 49

Index

P

parameterize 29
parent-process-id............. 79
patch....... 155
pathname-directory......................... 93
pathname-directory-separator.............. 41
pathname-extension......................... 94
pathname-extension-separator.............. 41
pathname-file.............................. 94
pathname-replace-directory................ 94
pathname-replace-extension................ 94
pathname-replace-file 94
pathname-strip-directory 94
pathname-strip-extension.................. 94
pattern->regexp..........c.couiiiiiiiai... 69
PermM/iTgrpP ..ot 82
perm/iroth 82
Perm/irusr 82
PerM/iTWRE . oot 82
PermM/iTWXO . ..o vt 82
PermM/AiTWRU ... vvtit ittt 82
perm/isgid 82
perm/isuid i 82
Perm/isSvtX ... 82
PETM/AWGTD .ot 82
perm/iwoth ...l 82
PerM/iWUSTottt 82
PETM/AXGYD vttt 82
perm/ixoth 82
Perm/ixXUSTt 82
pipe/buf........o 75
pointer->address............coiiiiiii... 99
pointer->objectiiii 99
pointer-f32-ref 100
pointer-f32-set!........... 100
pointer-f64-ref 100
pointer-f64-set!............ 101
pointer-offset 99
pointer-si6-ref 100
pointer-si6-set!............... 100
pointer-s32-ref 100
pointer-s32-set!........... 100
pointer-s8-ref 99
pointer-s8-set! 100
pointer-tagl 101
pointer-ul6-ref 99
pointer-ul6-set!............ 100
pointer-u3d2-ref 100
pointer-u32-set!..........., 100
pointer-u8-ref 99
pointer-u8-set! 100
pointer=7 99
pointer?.......... 99
POrt=>filenooiiiiiii 78
POTE—MAME . ..o \vtt ettt 41
port-position............., 41
POTE? 49

POST—PIOCESS . ..o viii i 35

200
2 61
pretty-print 61
pretty-print-width...................... ... 61
Print 50
Printk. 50
print-backtrace..................... 48
print-error-message........................ 48
print-object Ll 113
printf. ... 57
printinl 177
printnl...... ... 176
procedure-data................ 101
PLOCESS . ottt ettt 80
process-execute 79
process—fork L. 79
process-group-id................, 81
PTOCESS=TUN ... otttietteeeie e 79
process-signal 79
PTOCESS=SPAWIL . . oo vevvee e ee e e 93
process-wait 79
Project. ... 65
provide.......... ... i 53
provided?l 53
put! . 59
Q
queue—>L1isSt ...ovii 59
queue-add! 59
queue—empty? 59
queue-firstl 59
queue-last il 59
queue-remove!l 60
QUEUET . ot 59
R
Tandom.t 60
randomizel 60
TASSOC . ottt et tie e e e 55
read-all............ ... 95
read-file i, 61
read-line i 61
read-linest 61
read-string 61
read-symbolic-link......................... 80
read-token 62
receive....... i 29
record->vector 108
record-instance?.......................... 107
B =Y = 4 o 69
b= <= o e 69
register-feature! 42
rename-file 41
Tepl 52
repl-prompt 38
repository-path................. 53
require........... ... 53

Index

require-at-runtime........................ 155
require-extension.............. 26
TeSeto 48
reset-handler 38
reverse-list->string....................... 49
TUD . ettt et e e et e e e 155
run-time-macros..................., 36

S

sl6vector->byte-vector 65
s32vector->byte-vector 65
s8vector->byte-vector 65
seconds->local-time........................ 85
seconds->string............. 86
seconds->utc-time.......................... 86
set!-values, 30
set-alarm! il 83
set-buffering-mode!............... 88
set-extension-specifier! 54
set-file-position!........... 78
set-finalizer!, 48
set-gc-report! ... 49
set-group-id!l 82
set-groups! 81
set-port-name! 41
set-procedure-data!....................... 101
set-process—group-id! 82
set-read-syntax!........ 54
set-root-directory!............. 74
set-signal-handler!........................ 83
set-signal-mask!........................... 83
set-user-id!l 82
Setenv.............. i 84
shift!. 95
shuffle............ 56
side-effect 175
signal/abrtl 84
signal/alrm........... ..., 84
signal/chld, 84
signal/cont il 84
signal/fpe il 84
signal/hupooiiiiiiiiiiiii. .. 84
signal/ill ...t 84
signal/int i 84
signal/io i 84
signal/Kill ... 84
signal/pipe ... 84
signal/prof 84
signal/quit il 84
signal/segv i 84
S1gnal/stop ... 84
signal/term............c.ooiiiiiiiiiiiiiai.. 83
Signal/trap ...t 84
Signal/tstp ... 84
signal/urg ... 84
signal/usrll 84

Signal/usr2 ... 84

201
signal/vtalrm.............. 84
signal/winch 84
S1gNAl/XCPU ..t 84
signal/xfSz ... 84
signum............ ... 40
SKID . et 175
skip-result-message-ref 175
skip-result-warning-ref 175
skip-result-warning?...................... 175
skip-result? 175
Sleep .. it 80
slot-ref 110
slot-set! L 110
software-type 46
software-version........................... 46
SOTL .o 60
SOrt! 60
sorted?. 60
spawn/detach i 93
spawn/nowaitl 93
spawn/nowaito 93
Spawn/overlay ... 93
spawn/wait ... 93
sprintf... ... 57
standard-bindings............... 36
static-byte-vector->pointer.............. 104
strict-reader 38
string->byte-vector....................... 104
string->keyword............... 43
string->uninterned-symbol 49
string-chop 62
string-compare3............................ 62
string-compare3-ci......................... 62
string-intersperse......................... 63
string-match 69
string-match-positions 69
string-search.............................. 69
string-search-positions 69
string-split 63
string-split-fields........................ 69
string-substitute............ 70
string-substitutex................. 70
string-translate........................... 63
string-translate*.......................... 63
subl 38
subclass? 111
subf32vector 66
subf64vector 66
subsl6vector 66
subs32vector il 66
subs8vector L 66
substring-ci=7........ 63
substring-index............ 63
substring-index-ci......................... 63
substring=7 63
subulBvector 66
subu32vector 66
subuBvector L 66

Index

switch........ 31
Syntax. ... 155
SYNLAX—@TTOTottt 53
System............ 47
systemk...... 95
system-information......................... 88

T

tag-pointer 101
tagged-pointer?......... 101
tall? . 56
tcp-abandon-port............. 97
tep-accept 96
tcp-accept-ready?............ 96
tcp-addresses 97
tCP—CloSe ...t 96
tcp-connect L. 96
tep-listen 96
tcp-listener-port.............. 96
tcp-listener? 96
terminal-name 88
terminal-port?............ 88
terminate 171
terminate-result-container-ref........... 172
terminate-result-message-ref 172
terminate-result-result-ref.............. 172
terminate-result-scope-ref 172
terminate-result?......................... 172
test-case ... 162
test-case-result-expectations-ref 167
test-case-result-message-ref 167
test-case-result-result-ref.............. 167
test-case-result-warning-ref............. 167
test-case-result-warning?................ 167
test-case-result?............ 167
test-feature?............ 42
test-packagel 161
test-package-result-exps-ref............. 166
test-package-result-message-ref.......... 166
test-package-result-result-ref........... 166
test-package-result-warning-ref.......... 166
test-package-result-warning?............. 166
test-package-result?...................... 166
thread-deliver-signal! 72
thread-quantum............................. 72
thread-quantum-set!........................ 72
time 33
time->stringt 86
todo. ... 173
todo-result-message-ref 173
todo-result-warning-ref 174

202
todo-result? 173
trace. 20
TYPE 35
TYPENAME-SLOTNAME 118
TYPENAME-SLOTNAME-set! 118
U
ulBvector->byte-vector 65
u32vector->byte-vector 65
u8vector->byte-vector 65
unadvise............ ... 20
unbound-variable-value 108
undefine-macro! 53
unit....... 36
UNleSS. ... 31
unmap-file-from-memory 85
unregister-feature!............. 42
unsafe......... 36
UNSETLeNV.ottt 84
unshift!. 95
UNETACE. ..ottt 21
L F= 26
user-information................... 82
user-options-pass.......................... 13
USET=PASS .+t ottt e e 13
USET=PASS™2 .ttt tee et 14
user-post-analysis-pass 14
USEr-PreproCceSSOr—PaASSououn... 13
USEr-read=PassSc.oouiiiiiiiinien... 13
WSES o ot ettt e e e 36
usual-integrations......................... 36
\Va
vector-copy! ... 50
vector-resize 50
VerSion..........coiuiii 155
Visit... ... 71
VOId ... 51
\%\%
Whell 31
with-error-output-to-port 62
with-input-from-pipe....................... 75
with-input-from-port....................... 62
with-input-from-string 57
with-output-to-pipe........................ 75
with-output-to-port........................ 62
with-output-to-string 57
write-line 61
write-string Ll 61

	Introduction
	Basic mode of operation
	Using the compiler
	Command line format
	Runtime options
	An example
	Extending the compiler
	Distributing compiled C files

	Using the interpreter
	Command line format
	Writing Scheme scripts
	Toplevel commands
	Macros and procedures implemented in the interpreter

	Supported language
	Deviations from the standard
	Extensions to the standard
	Non standard read syntax
	Non-standard macros and special forms
	Making extra libraries and extensions available
	Binding forms for optional arguments
	Other binding forms
	Substitution forms and macros
	Conditional forms
	Record structures
	Other forms

	Declarations
	Parameters
	Unit library
	Arithmetic
	File Input/Output
	Files
	String ports
	Feature identifiers
	Keywords
	Exceptions
	Environment information and system interface
	Execution time
	Interrupts and error-handling
	Garbage collection
	Other control structures
	String utilities
	Generating uninterned symbols
	Standard Input/Output
	User-defined named characters
	Vectors
	The unspecified value
	call/cc

	Unit eval
	Loading code
	Read-eval-print loop
	Macros
	Loading extension libraries
	Reader extensions
	Eval

	Unit extras
	Lists
	String-port extensions
	Formatted output
	Hash tables
	Queues
	Sorting
	Random numbers
	Input/Output extensions
	Strings
	Combinators
	Binary searching

	Unit srfi-1
	Unit srfi-4
	Unit srfi-13
	Unit srfi-14
	Unit srfi-25
	Unit match
	Unit regex
	Unit syntax-case
	Unit srfi-18
	Unit format
	Unit posix
	Directories
	Pipes
	Fifos
	File descriptors and low-level I/O
	Retrieving file attributes
	Changing file attributes
	Processes
	Symbolic links
	Permissions, owners, users and groups
	Record locking
	Signal handling
	Environment access
	Memory mapped I/O
	Time routines
	Raw exit
	ERRNO values
	Finding files
	Getting the hostname and system information
	Setting a files buffering mode
	Terminal ports
	How Scheme procedures relate to UNIX C functions
	Windows specific notes

	Unit utils
	Pathname operations
	Temporary files
	Deleting a file without signalling an error
	Iterating over input lines and files
	Executing shell commands with formatstring and error checking
	Reading a file's contents
	Miscellaneous handy things

	Unit tcp
	Unit srfi-37
	Unit lolevel
	Foreign pointers
	Tagged pointers
	Extending procedures with data
	Bytevectors
	Data in unmanaged memory
	Locatives
	Accessing toplevel variables
	Low-level data access
	Procedure-call- and variable reference hooks
	Magic

	Unit tinyclos
	Defining forms
	Base language
	Introspection
	Intercessory protocol
	Additional protocol
	Utility procedures
	Builtin classes

	Interface to external functions and variables
	Accessing external objects
	Foreign type specifiers
	Entry points
	Callbacks
	Locations
	Other support procedures
	The Easy Foreign Function Interface
	#> ... <# Syntax
	General operation
	Pseudo declarations
	Grammar
	C notes
	C++ notes
	Using the builtin parser
	Specification grammar

	C interface

	chicken-setup
	Extension libraries
	Installing extensions
	Creating extensions
	Procedures and macros available in setup scripts
	Examples for extensions
	chicken-setup reference
	Windows notes

	Additional files
	chicken-highlevel-macros.scm
	chicken-more-macros.scm
	chicken-ffi-macros.scm
	chicken-entry-points.scm
	chicken-default-entry-points.scm
	test-infrastructure.scm
	The Test Package Macro API
	The Test Case Macro API
	The Expectation Macro API
	Result Object API
	Test Package Result Object API
	Test Case Result Object API
	Expect Result Object API: Single Clause Style Expectation
	Expect Result Object API: Equivalence Style Expectation
	Expect Result Object API: Tolerance Style Expectation
	Various Helper API
	Termination API
	Destructor Object API
	Todo API
	Gloss API
	Skip API
	Side Effect API
	Miscellaneous API
	Analysis of the Result Tree
	Output Generation API
	Example Usages of the Test Suite Infrastructure

	Data Representation
	Bugs and limitations
	FAQ
	General
	Customization

	Acknowledgements
	Bibliography
	Index

