
twander(1) twander(1)

NAME
twander − File Browser

OVERVIEW
Wander around a filesystem executing commands of your choice on selected files and directories. The gen-
eral idea here is that twander provides GUI facilities for navigating around your filesystem, but you
define the commands you want available via "Command Definitions" (in the Configuration File). In other
words, twander can’t do anything useful until you’ve defined some commands. This document describes
how to install and start twander as well as it’s various startup options.

This document also describes the format and content of a twander Configuration File. You will find an
example configuration file called .twander in the distribution tarball. All the entries in that file are com-
mented out, so you’ll need to uncomment and edit the ones you want to work with.

If you’re new to twander and want to know why this program is better and different than whatever you’re
using at the moment, take a moment to read the section called DESIGN PHILOSOPHY toward the end of
this document first.

Similarly, if this is the first time you’ve worked with twander, there is a section near the end of this docu-
ment entitled INSTALLING twander which describes how the program should be installed.

You can get the latest version of the program and documentation from the twander homepage:

http://www.tundraware.com/Software/twander/

You should check this site periodically for program updates, bug fixes, and enhancements.

Also, you are strongly encouraged to join the twander mailing list where you’ll find help and answers to
questions you have about this program. Details of how to do this can be found toward the end of this docu-
ment in the section entitled, GETTING HELP: THE twander MAILING LIST.

SYNOPSIS
twander [-cdhqrtv] [startdir]

OPTIONS
startdir

Directory in which to begin. (default: directory in which program was started)

If this directory does not exist or cannot be opened, twander will display an error message and
abort.

-c path/name of Configuration File
Specify the location and name of the configuration file. (default is ˜/.twander)

If this file does not exist or cannot be opened, twander will display a warning to that effect but
continue to run. This is reasonable behavior because twander provides a command to reload the
Configuration File without exiting the program (which you would presumably do after fixing the
Configuration File problem).

TundraWare Inc. 1

twander(1) twander(1)

-d debuglevel
Start in debug mode dumping the items specified in the debuglevel. (default: debuglevel=0/debug
off)

twander is able to selectively dump debugging information to stdout. ´debuglevel´ is understood
to be a bitfield in which each bit specifies some kind of debugging information or behavior. ´debu-
glevel´ can be specified in either decimal or hex (using the form 0x#) formats. The bits in the bit-
field are defined as follows:

Bit Hex Value Meaning
--- --------- -------

0 0x001 Dump Internal Options & User-Settable Options
1 0x002 Dump User-Defined Variables
2 0x004 Dump Command Definitions
3 0x008 Dump Key Bindings
4 0x010 Display, Do Not Execute, Commands When Invoked
5 0x020 Dump Directory Stack As It Changes
6 0x040 Dump Command History Stack After Command Executes
7 0x080 Dump Contents Of Program Memories As They Change
8 0x100 Dump Contents Of Filter/Selection Wildcard Lists As They Change (0x100)
9 0x200 Reserved/Unused
10 0x400 Reserved/Unused
11 0x800 Dump Requested Debug Information And Exit Immediately

These bits can be combined to provided very specific debugging information. For example, ´-d
0x80f´ will dump (to stdout) all the Internal Options, User-Settable Options, User-Defined
Options, Command Definitions, and Key Bindings and then terminate the program.

-h Print help information on stdout.

-q Quiet mode - suppresses warnings. (default: warnings on)

-r Turn off automatic refreshing of directory display. (default: refresh on)

Normally twander re-reads and displays the current directory every few seconds to reflect any
changes that might have occurred to that directory’s contents. This option is useful on slow
machines (or slow X connections) and/or when working with very large directories. In this situa-
tion, the frequent updating of the twander display can make the program unacceptably slow and
unresponsive. In this case you can still force an update manually with the REFRESH function
(default assignment is to the Control-l key).

-t Turn off quoting when substituting built-in variables. (default: quoting on)

Anytime twander encounters a reference to one of the built-in variables which do string replace-
ment (DIR, DSELECTION, DSELECTIONS, MEM1-12, PROMPT:, SELECTION, SELEC-
TIONS) in a command, it will replace them with double quoted strings. This is necessary
because any of these can return values which have embedded spaces in them. By quoting them,
they can be passed to a command or script as a single item. The -t option disables this behavior
and replaces the built-in variable with unquoted literals.

TundraWare Inc. 2

twander(1) twander(1)

-v Print detailed version information.

OTHER WAYS TO SET twander OPTIONS
In addition to these command line options, there are two other ways you can set twander program fea-
tures. If you prefer, you can set the command line options via the environment variable, TWANDER. That
way you don’t hav e to type them in each time you start the program. Say you set the environment variable
this way on Unix:

export TWANDER=-qt

From then on, every time you run the program, the -q and -t options would be invoked (No Quoting, No
Warnings) just as if you had typed them in on the command line.

The second way to set these (and MANY more) Program Options is by setting the appropriate entries in
the Configuration File. This is covered later in this document.

twander evaluates options in the following order (from first to last):

• Internally set default value of options

• Options set in the Configuration File

• Options set in the TWANDER environment variable

• Options set on the command line

This means, for example, that the environment variable overrides a corresponding setting in the Configura-
tion File, but the command line overrides the environment variable. Furthermore, there are many Program
Options which can only be set/changed the Configuration File and are not available in either the environ-
ment variable or on the command line.

This also means that options set on the command line are not read until after the Configuration File has
been processed. So, the -q argument on the command line will not inhibit warnings generated during the
reading of the Configuration File. This is best done by adding the statement, WARN=False, at the top of
the Configuration File.

If the Configuration File is reloaded while the program is running (see the READCONF key below), any
options set in the file will have the last word. This allows you to edit the Configuration File and have your
changes reflected in a running instance of twander, but it also means that the environment variable/com-
mand line arguments are ignored after initial program startup.

THE TITLE BAR
twander displays a lot of information about the state of the running program in the main window title bar.
From left to right you will see:

• Program name and version number.

TundraWare Inc. 3

twander(1) twander(1)

• Login name and machine/domain of current user.

• The path of the directory you are currently viewing. If this path length is greater than 60 characters,
twander will show the last 60 characters of the path length, prepended with "..." to show that it is
truncated.

• Any "filter" that is limiting which files you see. If you’ve toggled the filter, you will see the word
"NOT" before the filter string.

• An indication of whether or not "dotfiles" are currently hidden.

• The total number of files in this directory. The ".." entry is not included in this count.

• The total size of all the files in this directory. The size of the ".." directory is not included in this total.

• They key used to sort the display. If a rev erse sort is selected, you will see "-" appended to the end of
the key to indicated this. "Sort By: NAME-" means you are doing a reverse sort by name.

• An indication of whether or not directories and ordinary files are being separated in the display.

• An indication of whether or not automatic refreshing is enabled. Anytime refreshing is actually under-
way, whether automatic, manual, because you are executing a command that forces a refresh, or just
because you changed directories, you will see the ’*’ character appended to this field. Ordinarily, this
happens so quickly you will not see it. However, on really large directories and/or very slow disks like
CDROMs, you’ll see the asterisk stay on for some time. During refresh, the program is locked from
user input. On very long refreshes, it can appear to be "hung". This indicator is there just to let you
know the program is busy refreshing and all is well.

KEYBOARD USE
By design, twander allows you to do almost everything of interest using only the keyboard. Various
twander features are thus associated with particular keystrokes which are described below. It is also very
simple to change the default key assignments with entries in the Configuration File, also described below.

NOTES ON KEYBOARD ARROW/KEYPAD BEHAVIOR AND TEXT DIALOG EDITS
Generally, the arrow and keypad keys should do what you would expect on the system in question. On Win-
dows systems, particularly, there ought to be no odd arrow/keypad behavior.

X-Windows is somewhat more problematic in this area. Just what an arrow key is "supposed" to do
depends on how it’s been mapped in your X server software. Testing twander on various X servers
showed quite a bit of variability in how they handled the arrows and keypad. So ... if you’re running in an
X Windows universe and arrows or keypad do nothing, or do strange things, look into your key maps, don’t
blame twander.

There are several features of twander that will present the user a text entry dialog. These include the
CHANGEDIR and RUNCMD features as well as the {PROMPT:...} Built-In Variable (all described
below).

Any time you are entering text in such a dialog, be aware that the text can be edited several ways - You can
edit it using the arrow/keypad editing assignments which are enabled/normal for your operating system, OR

TundraWare Inc. 4

twander(1) twander(1)

you can use emacs-style commands to edit the text. For instance, Control-a, Control-k will erase the text
currently entered in the dialog.

DEFAULT KEYBOARD AND MOUSE BINDINGS
Here, ordered by category, are the default keyboard and mouse bindings for twander. The general format
is:

Description (Program Function Name)
Default Key Assignment

Default Mouse Assignment (if any)

The "Program Function Name" is the internal variable twander uses to associate a particular feature with
a particular keystroke or mouse action. You can ignore it unless you intend to override the default key
assignments. This use is described below in the section entitled, Key Binding Statements.

It is important to realize that twander key-bindings are case-sensitive. This means that ´Control-b´ and
´Control-B´ are different. This was a conscious design decision because it effectively doubles the number
of Control/Alt key combinations available for the addition of future features.

The default bindings chosen for twander features are all currently lower-case. If your program suddenly
stops responding to keyboard commands, check to make sure you don’t hav e CapsLock turned on.

NOTE: Some twander features are doubled on the mouse. These mouse button assignments are docu-
mented below for the sake of completeness. However, mouse button assignments cannot be changed by
the user, ev en in the Configuration File.

General Program Commands
This family of commands controls the operation of twander itself.

Clear History (CLRHIST)
Control-y

Clears out various program histories including the All Visited Directories list, the Directory Stack,
the Command History, and the last manually-entered values for CHANGEDIR and RUNCMD.
The 12 Program Memories are not cleared - they hav e specially dedicated key bindings for this
purpose.

Decrement Font Size (FONTDECR)
Control-[

Decrease font size.

Increment Font Size (FONTINCR)
Control-]

Increase font size.

These two features allow you to change the display font sizes while twander is running. But,
you may not immediately get the results you expect. twander internally keeps track of separate
font sizes for the main display, the main menu text, and the help menu text. When you use the two

TundraWare Inc. 5

twander(1) twander(1)

font sizing commands above, twander subtracts or adds 1 to each of these three values respec-
tively. On systems like Windows using TrueType fonts, this works as you would expect, because
ev ery font is effectively available in every size. However, in systems like X-Windows or Windows
using fixed-size fonts, you may have to press these keys repeatedly until twander finds a font
matching the requested size.

This can also cause some parts of the display to change but not others. Suppose you are running
on X-Windows and have specified that the main display is to use a 12 point font, and that menus
and help should use 10 point font. Let’s also suppose that the next font available larger than 12
point is 16 point. If you press FONTINCR twice, both the menu text and help text will jump to 12
point, but the main display text will remain unchanged. Why? Because pressing FONTINCR
twice tells twander to set the main display to 14 point (12+1+1) which does not exist, and the
menu and help text to 12 point (10+1+1) which does exist, so that change is visible.

The "User-Settable Options" Help Menu displays the font metrics (name, size, weight) you’ve cur-
rently specified. Pressing FONTDECR/FONTINCR changes the size specification and this will be
reflected in that menu. However, most systems do some form of "best match" font substitution - if
you ask for a font that does not exist, the system will use the "closest matching" font as a substi-
tute. This means the font you see specified in the Help Menu is not necessarily the font you’re
actually using. You’re more likely to run into this when running on a Unix/X-Windows system
(where not all the fonts are available in all sizes/weights like they are on Windows TrueType) as
you change the font size with FONTDECR/FONTINCR.

Reloading the Configuration File (READCONF) will reset the fonts to either their default values
or any font sizes specified in the Configuration File.

Display Command Menu (MOUSECTX)
Right-Mouse-Button

Displays a list of all available commands in a pop-up menu near the mouse pointer. If no com-
mands are defined, this feature does nothing at all. This means commands can be invoked one of
three ways: Directly via the Command Key defined in the Configuration File, via selection in the
Command Menu at the top of the GUI, or via selection from the Command Menu.

Windows users should note that, unlike Windows Explorer, the twander Command Menu does
not change the set of currently selected items. It merely provides a list of available commands.
This allows the command chosen via the Command Menu to operate on a previously selected set
of items.

Display Directory Menu (MOUSEDIR)
Shift-Right-Mouse-Button

Displays a list of all the directories visited so far in a pop-up menu near the mouse. This means
that you can navigate to a previously visited directory in one of two ways: Via a selection in the
Directory Menu at the top of the GUI or via a selection from this pop-up menu.

Display History Menu (MOUSEHIST)
Control-Shift-Right-Mouse-Button

Displays a list of all commands executed so far (including those entered manually) in a pop-up
menu near the mouse pointer. If the Command History is empty, this command does nothing.
This means you can repeat a previously entered command via the History Menu or this mouse
command. (You can also repeat the last manually entered command by pressing RUNCMD - it

TundraWare Inc. 6

twander(1) twander(1)

will preload its text entry area with the last command you entered by hand.)

Display Shortcut Menu (MOUSESC)
Control-Right-Mouse-Button

Displays a list of all user-defined directory shortcuts in a pop-up menu near the mouse. The menu
also has "canned" navigation shortcuts to go up a directory, back a directory, to the home directory,
to the starting directory, and to the root directory. On Windows systems with the Win32All exten-
sions, there is also a shortcut to the Drive List View.

Display Sorting Menu (MOUSESORT)
Alt-Shift-Right-Mouse-Button

(Note that on Windows you must press Alt then Shift then the Right-Mouse-Button for this to
work. Windows appears to care deeply about keystroke order.)

Displays a list of all the sorting options in a pop-up menu near the mouse.

Quit Program (QUITPROG)
Control-q

Exit the program.

Re-Read Configuration File (READCONF)
Control-r

Re-read the Configuration File. This allows you to edit the Configuration File while twander is
running and then read your changes in without having to exit the program. This is handy when
editing or changing Command Definitions.

Program Options are set back to their default each time a Configuration File is about to be read
(initially or on reload) just before the Configuration File is parsed. This means commenting out or
removing a Program Option Statement (see relevant section below) in the Configuration File and
then pressing READCONF causes that option to be reset to its default value. STARTDIR defaults
to either its internal default ($HOME or ./) or to the value given in the Environment Variable/Com-
mand line.

Refresh Display (REFRESH)
Control-l

Re-read the current directory’s contents and display it. This is most useful if you have turned off
automatic directory refreshing with either the -r command line flag or setting the AUTOREFRESH
Program Option to False.

Toggle Autorefreshing (TOGAUTO)
Control-o

Toggle Autorefreshing on- and off. This is handy if you are about to enter a very large directory
and/or a very slow disk (like a CDROM). With very large or slow directory reads, twander can
end up spending all its time doing re-reads of the directory and never giv e you time to do anything
there. If you find this is consistently the case, then you need to increase REFRESHINT. But for

TundraWare Inc. 7

twander(1) twander(1)

the occasional adventure into very large/slow directories, just toggling Autorefresh off is more
convenient.

The state of the Autorefresh feature is displayed on the main window title bar.

Toggle Details (TOGDETAIL)
Control-t

Toggle between detailed and filename-only views of the directory.

Toggle Between Normalized And Actual File Length Display (TOGLENGTH)
Control-0

By default, the program "normalizes" file sizes and expresses them in bytes, Kilobytes,
Megabytes, or Gigabytes rather than showing their actual size. This is done everywhere a file size
is displayed: on individual files, the total files size displayed on the title bar, and the drive sizes in
Win32 Drive List View. This key binding invokes a feature that toggles these size displays
between normalized and actual. See the ACTUALLENGTH configuration option below to set the
default as you prefer it.

Toggle ´win32all´ Features (TOGWIN32ALL)
Control-w

As described later in this document, twander provides enhanced features for Windows users
who also install Mark Hammond’s ´win32all´ extensions for Python on Windows. This key bind-
ing will toggle those advanced features on- and off. This is useful if you happen to be examining a
very large directory. The ´win32all´ features, while handy, can be computationally expensive and
make updates of a directory with many entries somewhat slow. This toggle is provided as a means
to temporarily disable the advanced features when viewing such a directory.

Directory Navigation
This family of commands controls movement between directories. If you attempt to navigate into a direc-
tory that does not exist or which does not have appropriate permissions, twander will display a warning
message and remain in the current directory. This is unlike the case of a non-existent or unreadable direc-
tory specified when the program is first started. In that case, twander reports the error and aborts.

Change Directory (CHANGEDIR)
Control-x

This is a shortcut that allows you to directly move to a new directory/path - i.e., Without having to
navigate to it.

Unless you have set the MAXMENU option to 0, CHANGEDIR keeps track of your last manually
entered directory and presents it as a default when you press CHANGEDIR again. You can then
move to that directory, edit the string to specify another directory, or delete it and enter an entirely
new directory. Directories can be edited with either the arrow and keypad keys defined on your
system or by emacs editing commands like Control-a, Control-k, Control-e, and so forth.

Go To Home Directory (DIRHOME)
Control-h

If the "HOME" environment variable is defined on your system, this will move you to that

TundraWare Inc. 8

twander(1) twander(1)

directory. If the "HOME" environment variable is not defined, this command will move to the
original starting directory.

Go Back One Directory (DIRBACK and MOUSEBACK)
Control-b

Control-DoubleClick-Left-Mouse-Button

twander keeps track of every directory visited and the order in which they are visited. This
command allows you to move back successively until you get to the directory in which you
started. This feature is implemented as a stack - each "backing up" removes the directory name
from the visited list. The "Directory" menu (see MENU OPTIONS below) implements a similar
feature in a different way and keeps track of all directories visited regardless of order.

Go To Root Directory (DIRROOT)
Control-j

Go to the root directory.

Go To Starting Directory (DIRSTART)
Control-s

Go back to the original directory in which twander was started.

Go Up To Parent Directory (DIRUP and MOUSEUP)
Control-u

Control-DoubleClick-Right-Mouse-Button

Move to the parent of the current directory ("..").

Display Drive List View (DRIVELIST)
Control-k

This is a Windows-only feature which displays a list of all available disk drives. Details about
each drive are also displayed if you have details enabled. In order for this feature to work, you
must be running on Windows AND have the ´win32all´ package installed, AND the
USEWIN32ALL Program Option must be True (default condition,) AND you must not have tog-
gled these features off with the TOGWIN32ALL key described above. For more details about
Drive List View, see the section below entitled, ADVANCED WINDOWS FEATURES.

Selection Keys
This family of commands controls the selection of one or more (or no) items in the current directory.

Select All Items (SELALL)
Control-Comma

Select every item in the current directory. The ".." entry at the top of the directory listing is not
included. (We almost never want to include the parent directory when issuing a command on
"everything in this directory". If you do wish to include the "..", do the SELALL command first,
then click on ".." while holding down the Control key.)

TundraWare Inc. 9

twander(1) twander(1)

Invert Current Selection (SELINV)
Control-i

Unselects everything which was selected and selects everything which was not. As with SELALL,
and for the same reason, the ".." entry is never selected on an inversion.

Unselect All Items (SELNONE)
Control-Period

Unselect everything in the current directory.

Select Next Item (SELNEXT)
Control-n

Select next item down in the directory.

Select Previous Item (SELPREV)
Control-p

Select previous item up in the directory.

Select Last Item (SELEND)
Control-e

Select last item in the directory.

Select First Item (SELTOP)
Control-a

Select first item in the directory. This will always be the ".." entry, but it is a quick way to get to
the first part of a very long directory listing which does not all fit on-screen.

Mouse-Based Selections

The mouse can also be used to select one or more items. A single-click of the left mouse button
selects a particular item. Clicking and dragging selects an adjacent group of items. Clicking an
item and then clicking a second item while holding down the "Shift" key also selects an adjacent
group of items. Finally, a group of non-adjacent items can also be selected. The first item is
selected with a single left mouse button click as usual. Each subsequent (non-adjacent) item is
then selected by holding down the "Control" key when clicking on the item.

Scrolling Commands
If a given directory’s contents cannot be displayed on a single screen, twander supports both vertical and
horizontal scrolling via scrollbars. This capability is doubled on the keyboard with:

Scroll Page Down (PGDN)
Control-v

Scroll down one page in the directory listing.

TundraWare Inc. 10

twander(1) twander(1)

Scroll Page Up (PGUP)
Control-c

Scroll up one page in the directory listing.

Scroll Page Right (PGRT)
Control-g

Scroll to the right one page width.

Scroll Page Left (PGLFT)
Control-f

Scroll to the left one page width.

Command Execution Options
This family of commands causes twander to actually attempt to execute some command you’ve chosen:

Run Arbitrary Command (RUNCMD)
Control-z

This is a shortcut that allows you to run any command you’d like without having to define it ahead
of time in the Configuration File. It is more-or-less like having a miniature command line environ-
ment at your disposal.

You may enter a number of different things in the RUNCMD dialog. You may type literal text or
refer to any of the variable types (User-Defined, Environment, or Built-In) supported by twander
just as you do in writing Command Definitions (see below). This makes it easy to enter complex
commands without having to type everything literally. For example, if you would like to copy all
the currently selected files to a new directory, press RUNCMD and enter (on Unix):

cp [SELECTIONS] newdir

twander understands the variable reference syntax here just as it does in a Command Definition.
This also gives you a single way of referring to environment variables, regardless of OS platform.
Recall that in Unix-like shells, an environment variable is in the form "$NAME", but on Windows
it is in the form "%NAME%". Instead if having to keep track of this difference, you can just use a
twander Environment Variable reference. For instance, assuming the EDITOR environment
variable is set, this command works the same on both systems:

[$EDITOR] [SELECTIONS]

Built-in variables are most often used when manually entering commands So, RUNCMD also
understands some "shortcut" references to many of the built-ins. You may use:

[D] for [DIR]
[DN] for [DSELECTION]
[DS] for [DSELECTIONS]
[SN] for [SELECTION]
[SS] for [SELECTIONS]
[1] for [MEM1]
[2] for [MEM2]

TundraWare Inc. 11

twander(1) twander(1)

[3] for [MEM3]
[4] for [MEM4]
[5] for [MEM5]
[6] for [MEM6]
[7] for [MEM7]
[8] for [MEM8]
[9] for [MEM9]
[10] for [MEM10]
[11] for [MEM11]
[12] for [MEM12]

Of course, the full form is also fine as well.

This shortcut feature is only supported in RUNCMD!!! Configuration file entries must use the
full form of all built-in variables. This is a conscious design decision to help enforce some consis-
tency and clarity in the configuration files.

Unless you have set the MAXMENU option to 0, RUNCMD keeps track of your last manually
entered command and presents it as a default when you press RUNCMD again. You can then run
the command again exactly as you last entered it, you can modify it before running the command
again, or you can delete it and enter an entirely new command. Commands can be edited with
either the arrow and keypad keys defined on your system or by emacs editing commands like Con-
trol-a, Control-k, Control-e, and so forth.

Also see the section below entitled, Program Option Statements, to understand the CMDSHELL
option. This option greatly simplifies running command-line programs from RUNCMD so their
output can been seen in a GUI window. This is particularly handy on Unix.

As with command definitions in a configuration file, you can tell twander to force a display
refresh after the command has been initiated. You do this by beginning the command with the ´+´
symbol. So, for example, if you enter,

+mycommand

twander will initiate the command, wait AFTERWAIT seconds (default: 1), and then update the
display. See the discussion below entitled, Forcing Display Updates In Command Definitions
for a more complete explanation.

This feature may be used in combination with CMDSHELL escaping (also described in the Pro-
gram Option Statements section below) and the two characters may appear in any order at the
beginning of the command line you enter.

Run Selected File / Move To Selected Directory (SELKEY and MOUSESEL)
Return (Enter Key)

DoubleClick-Left-Mouse-Button

If the selected item is a Directory, twander will move into that directory when this command is
issued. If the selected item is a file, twander will attempt to execute it. Whether or not the file
is actually executed depends on how the underlying operating system views that file.

In the case of Unix-like operating systems, the execute permission must be set for the user running
twander (or their group) for the file to be executed.

TundraWare Inc. 12

twander(1) twander(1)

On Windows, the file will be executed if the user has permission to do so and that file is either
executable or there is a Windows association defined for that file type. For example, double-click-
ing on a file ending with ".txt" will cause the file to be opened with the ´notepad´ program (unless
the association for ".txt" has been changed).

If twander determines that it is running on neither a Unix-like or Windows system, double-click-
ing on a file does nothing.

Run User-Defined Command
User-Defined (Single Letter) Key

Each command defined in the Configuration File has a Command Key associated with it. Pressing
that key will cause the associated command to be run. If no command is associated with a given
keystroke, nothing will happen when it is pressed.

Directory Shortcuts
twander provides a way to directly navigate into a frequently-used directory using a single keystroke.
You can define up to 12 such "Directory Shortcuts" in the Configuration File. Each of the definitions is
associated with one of the following 12 keys:

Navigate Directly To A Directory (KDIRSC1 ... KDIRSC12)
F1 ... F12

Pressing one of these keys changes to the directory associated with it in the Configuration File.
For more information on this topic, see the discussion of the Configuration File below entitled,
Directory Shortcut Statements.

Program Memories
If you’ve used GUIs before, you’re probably familiar with the idea of a program "Clipboard" - a temporary
holding area which is used when cutting, copying, and pasting files. This is a good idea, but has several
limitations. First, most systems only have a single clipboard. It would be mighty handy to have muliple
Clipboard-like storage areas for keeping track of several different operations at once. Secondly, when you
copy or paste something to a conventional Clipboard, its old contents get overwritten. There is no way to
keep appending items to the Clipboard. Finally, items usually can only be cut or copied to the Clipboard
from the current directory. It would be nice if we could not only keep adding things to the Clipboard, but
be able to do so as we navigate around the filesystem.

twander addresses these concerns by means of 12 separate "Program Memories". As you use twander,
you can add (append) the names of any directories or files in the currently viewed directory by selecting
them and then using the appropriate twander MEMSETx key (see below). To take advantage of this fea-
ture, you write Command Definitions (or manually issue a command via the RUNCMD key) which refer-
ence the contents of a Program Memory using one of the [MEMx] Built-In Variables. (See the section
below on entitled, Program Memory Built-Ins for more details in how to apply Program Memories).

twander provides key combinations for selectively setting and clearing particular Program Memories as
well as a key combination for clearing all Program Memories in a single keystroke:

Clear Selected Program Memory (MEMCLR1 - MEMCLR12)
Control-F1 ... Control-F12

Clear (empty) the selected Program Memory.

TundraWare Inc. 13

twander(1) twander(1)

Clear All Program Memories (MEMCLRALL)
Control-m

Clear (empty) all 12 Program Memories at once.

Set Selected Program Memory (MEMSET1 - MEMSET12)
Alt-F1 ... Alt-F12

Append the the full path names of the currently selected files and directories to the Program
Memory desired.

Sorting Options
twander provides a variety of ways to sort the display. These can be selected with either a keystroke or
from the Sorting Menu (see below). The meaning of the sort depends on whether or not you are in Drive
List View (see ADVANCED WINDOWS FEATURES below). The table below summarizes the keys
associated with sorting and their meaning in the two possible views:

Program
Function Sort Order In Sort Order In

Key Name Normal View Drive List View
--- -------- ------------ ---------------

Shift-F10 SORTBYNONE No Sort No Sort
Shift-F1 SORTBYPERMS Permissions Label/Share String
Shift-F2 SORTBYLINKS Links Drive Type
Shift-F3 SORTBYOWNER Owner Free Space
Shift-F4 SORTBYGROUP Group Total Space
Shift-F5 SORTBYLENGTH Length Drive Letter
Shift-F6 SORTBYTIME Time Ignored
Shift-F7 SORTBYNAME Name Ignored
Shift-F11 SORTREV Reverse Order Reverse Order
Shift-F12 SORTSEP Separate Dirs Ignored

An easy way to remember these is that the function key number for the primary sort keys corresponds to the
column position of the key in a detailed display. For instance, Shift-F1 sorts by column 1, Shift-F2 by col-
umn 2, and so forth.

These sorting options are available whether or not details are currently available. For example, you can
toggle details off, but still sort by one of the now invisible details such as Owner, Length, and so on.

SORTREV reverses the order of the sort.

SORTSEP toggles whether or not directories and files should be grouped separately or displayed in abso-
lute sort order. If enabled, directories will be displayed first, then files. If the sort is reversed via
SORTREV, and SORTSEP is enabled, the directories will appear after the files, sorted by whatever sort key
has been chosen. SORTSEP is not meaningful in Drive List View and is ignored.

You’ll find the currently selected sorting options displayed in the program title bar.

Wildcard Features
Although twander provides a very rich set of keyboard and mouse selection commands, selecting a group
of files out of list of hundreds or thousands in a large directory can be tedious. If the files/directories you

TundraWare Inc. 14

twander(1) twander(1)

want to select have some lexical commonality in their names OR details you can have twander select
them for you using so-called "Regular Expressions".

You can do this in one of two ways. A wildcard "filter" only displays files that match the specified regular
expression. A wildcard "selection" selects (highlights) the matching entries from the currently displayed
list. The general idea is to use filters to limit the number of files you’ll even see in the twander interface
and then optionally choose from among them with a wildcard-based selection.

For example, suppose you initiate a wildcard-based selection (SELWILD) with the text, tar. This would
select every file or directory in the current display where the string "tar" appeared anywhere on the line
for that file/directory. This is very important: Wildcard matching takes place anywhere on the visible line.
So, if you have details turned on, the match can occur anywhere on the permissions, links, group, owner,
and so on. Obviously, if you have details turned off, the match can only occur on the name of the file or
directory since that’s all that is visible.

This is a purposeful design decision because it allows you to make selections on more than just the name.
Say you enter the following in the FILTERWILD dialog:

drwx------

twander would display only the entries that are directories with no permissions enabled for group or
world users.

The matching string above could also filter/select other entries (not having the permissions just described),
if say, this string appeared in their name ... a rather unlikely scenario, but not impossible. If we want to get
real specific about which entries we want selected, we need to enter a "regular expression" in the wildcard
dialog. Regular expressions are a far more powerful pattern-matching tool than simple text strings and will
allow you to do some fairly amazing selections. For example, this regular expression selects all entries
which contain a string beginning with "Ju" followed by any other character, a single space, and ending in
"0":

Ju. 0

So, for instance, this would select files with date details (or names, or anything else on the line...) like "Jun
01", "Jul 03", and "Jul 09".

No matter what you specify, a literal matching string or a regular expression, the ".." entry of the currently
viewed directory is never selected for wildcard processing. This is a "special" entry that is always present
regardless of filtering and never selected with wildcard-based selections.

Notice that these regular expressions are not the same thing as the filename "globbing" wildcards com-
monly used with Unix and Windows shells. If you enter constructs like "*.txt" or "*.tar.gz", you will not
get the results you expect. In fact, these specific examples will cause twander to grumble and present a
warning message.

For an excellent tutorial on Python-compliant regular expressions, see:

http://www.amk.ca/python/howto/regex/

By default, these wildcarding tools will select an entry when your regular expression matches anything on
the displayed line. This allows you to make selections based on any visible column of information. This
"match anywhere on the line" semantic is possible because twander automatically massages the regular
expression you provide to make "any match on the line" true. There may be times when you want to

TundraWare Inc. 15

twander(1) twander(1)

provide very specific regular expression definitions which seek a match at specific locations. In that case,
you can prevent the program from fiddling with your regular expression, by beginning it with the double-
quote (") character. twander understands this to mean that your regular expression is to be treated liter-
ally without modification. (It only throws away this leading escape character.)

Suppose we changed our example above slightly and used this regular expression:

"ˆdrwx------

Now twander would select only the directories without any group and world access because:

• The leading double-quote (") forces literal interpretation of the regular expression - i.e. It turns off
"match anywhere" semantics as just described.

• The carat (ˆ) at the beginning of the actual regular expression "anchors" the match to the start of the
line. For a match to be declared (and for twander to select an item) the regular expression must be
satisfied at the beginning-of-line.

Because regular expressions can get complicated and tedious to type in, any such expression you use is
saved in a history available via the Filter and Select Menus (see below). There is also provision for pre-
defining frequently used wildcards in your Configuration File (see section below on WILDFILTER= and
WILDSELECT= configuration statements) so you don’t hav e to type them in manually each time you start
the program - you can just select them from the relevant menu.

A few points to keep in mind when using wildcard features:

• By default, wildcard matching is case-insensitive on Win32 systems and case-sensitive everywhere
else. This is because Windows systems allow case in filenames and attributes, but it is not significant -
i.e., The case of a filename or attribute is ignored on Windows systems. You can control this explicitly
with the WILDNOCASE configuration option. If you set WILDNOCASE=False, it will force all wild-
card filters and selections to be case-sensistive. Setting it to True makes the wildcarding case-insen-
sitive. This option is available for both Unix and Win32 systems so you can set the behavior you like
anywhere.

• If you escape a wildcard to force twander to treat it exactly as you defined it, the case-sensitivity set
by default or WILDNOCASE is ignored. Escaped wildcards are always treated exactly as you enter
them and they are matched against the filename and/or details exactly as they appear.

• Wildcard-based filters are applied against the entire contents of the current directory to determine
which files match and should be displayed. But, wildcard-based selections are done against the cur-
rently visible files. This is important if you do a filter and then a selection wildcard. The first will
select which files to display. The second will select which ones to highlight from the displayed list.

Display Files Matching A Regular Expression (FILTERWILD)
Control-equal

This will present you with a dialog to enter your regular expression matching criteria described
above. After you enter it, twander will only display the files that match. The filter is reset (to
no filtering) when you manually referesh the directory - with REFRESH (default: Control-l - or
change directories.

TundraWare Inc. 16

twander(1) twander(1)

Toggle Active Filter (TOGFILT)
Control-minus

Pressing this once "inverts" any filter currently active. It means "show me the files that don’t
match the filtering regular expression." Pressing it again returns the filter to its normal meaning.
This is handy when you want to display everything except a group of files. You first filter for the
files you don’t want and then press TOGFILT which will display everything except these files.

Select Files Matching A Regular Expression ´Wildcards´ (SELWILD)
Control-\

This will present you with a dialog to enter your regular expression matching criteria described
above. After you enter it, twander will select (highlight) the files that match.

You can also "invert" your selections by using the SELINV key described previously. This is use-
ful when you want to select everything except a group of files. Select the ones you don’t want
with a selection wildcard andthen press the SELINV key.

Selections remain in effect until you make another manual selection, clear all selections, or run a
command that forces a directory refresh after it runs - i.e., Commands defined with a leading "+".

Display Selection Wildcard Menu (MOUSEFILTERSEL)
Alt-Control-Middle-Mouse-Button

Display Selection Wildcard Menu (MOUSEWILDSEL)
Alt-Control-Right-Mouse-Button

(Note that on Windows you must press Alt then Control then the mouse button for this to work.
Windows appears to care deeply about keystroke order.)

These keys popup a list near the current mouse cursor of any previously used filtering or selection
wildcards respectively. Selecting one of the entries therein pops-up a dialog that allows you to edit
the wildcard before actually doing another wildcard filter or selection. This allows use to modify
previous wildcards for new use.

Hiding Dotfiles
By convention on Unix and many other systems, files or directories whose names begin with a dot (’.’) are
usually used as configuration files (directories). Unless you specifically want to edit a configuration, you
typically do little or nothing with these files. Since there can be quite a few of them on a modern system,
it’s helpful to be able to block them from view.

By default, dotfiles are not hidden, but this can be changed with the HIDEDOTFILES configuration option.

By default, files or directories whose names begin with a period (".") are considered dotfiles. You can
change this dotfile "introducer" string with the DOTFILE configuration option.

Toggle Dotfile Hiding (TOGHIDEDOT)
Control-9

This toggles dotfile hiding, on- and off. The program starts up with dotfiles visible or hidden as
defined by the HIDEDOTFILES program option. Thereafter, TOGHIDEDOT can be used to make
these files and directories visible or not.

TundraWare Inc. 17

twander(1) twander(1)

Unlike Wildcard Filters (which test the entire displayed line), dotfile hiding is triggered only by the name
of the file or directory.

If you change DOTFILE to some other string, be aware that the test to see if a file (or directory) name starts
with this string is case-sensitive. If you set DOTFILE to "De", it will not hide files starting with "de", for
example.

The current state of dotfile hiding is displayed in the window title bar, immediately after the Filter informa-
tion.

Note that even though you cannot see the files with this option enabled, commands you write can still oper-
ate on these files. For example, if you define a command that does something like:

c cleandot rm .*˜

This command will remove any backup (˜) files, whether or not you can see them in the interface.

MENU OPTIONS
Although twander is primarily keyboard-oriented, several menu-based features are also implemented to
make the program more convenient to use. These menus appear at the top of the twander display win-
dow, above the directory listing.

Invoking A Menu
A menu can be invoked in one of several ways. You can click on it, you can press its associated "Accelera-
tor Key" combination, or you can use the "Mouse Shortcut" to cause a copy of the menu to pop-up near the
mouse pointer. The Accelerator Keys are shown in parenthesis next to the menu names below and the
Mouse Shortcuts are similarly shown below in square brackets. All menus have Accelerator Keys defined,
but only some menus have associated Mouse Shortcuts.

Detaching A Menu
The first item in each menu is a dashed line ("----") which indicates that it is a "tearoff" menu. Clicking on
the dashed line will detach the menu from twander allowing it to be placed anywhere on screen. Even
when detatched, these menus remain current and in-sync with twander as it continues to run. You can
also tear off multiple instances of these menus if you’d like copies of them at several locations on the screen
simultaneously.

Managing The Size Of Dynamic Menus
A number of these menus have "dynamic" content - their content changes as the program runs. For exam-
ple, the Directory, History, Filter and Select menus all keep some sort of "history" of what the program has
done. Their content thus grows longer as the program is used.

On Windows systems, if such menus grow too long to physically fit on screen, up- and down- scrolling
arrows automatically appear at the top- and bottom of the menu respectively. This is not a feature of the
Unix Tk implementation, so menus which grow too large are simply truncated to fit the screen on Unix-like
systems.

There are two User-Settable Options options available to help you manage the maximum size of dynamic
menus (see the section below on the Configuration File which explains how such options are actually set.
The MAXMENU option specifies the maximum number entries that will be displayed in any dynamic
menu. (twander internally tracks MAXMENUBUF number of items for each dynamic menu.) This

TundraWare Inc. 18

twander(1) twander(1)

defaults to 32 as is intended to keep the menu size reasonable.

If you set MAXMENU=0, it means you are disabling all dynamic menus. It also means that no interactive
dialog will "remember" your last manual entry. For example, with MAXMENU set to 0, twander will
not keep track of your last manual entries for the CHANGEDIR, FILTERWILD, SELWILD, and
RUNCMD dialogs.

MAXMENUBUF specifies the size of the internal storage buffer for each dynamic menu regardless of how
many entries are actually displayed. i.e. MAXMENUBUF determines how many dynamic events each
menu tracks internally regardless of how many are actually visible in the menu at any moment in time. It
defaults to 250 and probably never needs to be changed. If you set MAXMENUBUF to be less than MAX-
MENU, then this smaller value will determine the maximum size of the displayed menu. Setting MAX-
MENUBUF to 0 is equivalent to setting MAXMENU to 0.

Commands Menu (Alt-c) [Right-Mouse-Button]
Every command defined in the Configuration File is listed in this menu by its Command Name. The asso-
ciation Command Key is also shown in parenthesis. Clicking on an item in this menu is the same as invok-
ing it from the keyboard by its Command Key. This is a convenient way to invoke an infrequently used
command whose Command Key you’ve forgotten. It is also handy to confirm which commands are defined
after you’ve edited and reloaded the Configuration File. The commands are listed in the order in which
they are defined in the configuration file. This allows most frequently used commands to appear at the top
of the menu by defining them first in the Configuration File. If no commands are defined, either because
the Configuration File contains no Command Definitions or because the Configuration File cannot be
opened for some reason, the Commands Menu will be disabled (grayed out).

History Menu (Alt-h) [Shift-Control-Right-Mouse-Button]
twander keeps track of every command you attempt to execute, whether it is an invocation of a Com-
mand Definition found in the Configuration File or a manually entered command via the RUNCMD key.
(default: Control-z) This is done whether or not the command is successfully executed.

This feature provides a quick way to re-execute a command you’ve previously run. When you select a
command to run this way, a dialog box is opened, giving you an opportunity to edit the command before
running it again.

One important point of clarification is in order here. If you run one of the commands defined in your Con-
figuration File, it is stored in the History after all variable substitutions have been made. But, manually
entered commands are stored in the History literally as typed - i.e., Without variable substitution. This
allows you easily reuse a manually entered command in another directory or context. (Presumably, Com-
mand Definitions in the Configuration File are written in such a way so as to be useful across many differ-
ent directories and contexts. Running such a command again is simply a matter of pressing its associated
letter key once more. By storing the resolved version of the command in the History, you can see what the
command actually did.)

The History Menu is emptied and grayed out when you press the CLRHIST key. (default: Control-y)

Directories Menu (Alt-d) [Shift-Right-Mouse-Button]
twander keeps track of every directory visited. The previously described command to move "Back" one
directory allows directory navigation in reverse traversal order - you can back up to where you started.
However, this feature "throws away" directories as it backs up, sort of like an "undo" function.

The "Directories" menu provides a slightly different approach to the same task. It keeps permanent track of

TundraWare Inc. 19

twander(1) twander(1)

ev ery directory visited and displays that list in sorted order. This provides another way to move directly to
a previously visited directory without having to manually navigate to it again, back up to it, or name it
explictly using the Change Directory command.

Unless MAXMENU is set to 0, the Directory Menu shows the last MAXMENU directories visited in
alphabetically sorted order (unless you change MAXMENUBUF to be smaller than MAXMENU). "Vis-
ited", in this case, is stretching things a bit.

The Directory Menu is emptied and grayed out when you press the CLRHIST key. (default: Control-y)

Shortcut Menu (Alt-u) [Control-Right-Mouse-Button]
This menu provides a way to access any of the Directory Shortcuts defined in the configuration file. It also
provides a number of "canned" navigation shortcuts to go up a directory, back a directory, to the home
directory, to the starting directory, and to the root directory. On Windows systems using the Win32All
extensions, there is also a shortcut to the Drive List View.

Filter Menu (Alt-f) [Alt-Control-Middle-Mouse-Button]
(Note that on Windows you must press Alt then Control then the Middle-Mouse-Button for this to work.
Windows appears to care deeply about keystroke order.)

This menu provides a list of all previously used filtering "wildcard" regular expressions. Any regular
expressions defined in the Configuration File (see below) using the "FILTERWILD = " statement will also
appear in this menu. This saves you the tedium of constantly having to enter complex regular expression
syntax every time you wish to do wildcard-based selections.

Selecting something from this menu brings up a dialog box which allows you to edit the selected wildcard
before using it.

Bear in mind that the size of the displayed menu is governed by the MAXMENU and MAXMENUBUF
Configuration File options (see below). i.e., Only the last MAXMENU number of wildcards are actually
displayed on the menu.

The Filter Menu is emptied and grayed out when you press the CLRHIST key. (default: Control-y) This
history is not cleared if the Configuration File is reloaded.

Select Menu (Alt-l) [Alt-Control-Right-Mouse-Button]
(Note that on Windows you must press Alt then Control then the Right-Mouse-Button for this to work.
Windows appears to care deeply about keystroke order.)

This menu provides a list of all previously used selection "wildcard" regular expressions. Any regular
expressions defined in the Configuration File (see below) using the "SELECTWILD = " statement will also
appear in this menu. This saves you the tedium of constantly having to enter complex regular expression
syntax every time you wish to do wildcard-based selections.

Selecting something from this menu brings up a dialog box which allows you to edit the selected wildcard
before using it.

Bear in mind that the size of the displayed menu is governed by the MAXMENU and MAXMENUBUF
Configuration File options (see below). i.e., Only the last MAXMENU number of wildcards are actually
displayed on the menu.

The Select Menu is emptied and grayed out when you press the CLRHIST key. (default: Control-y) This
history is not cleared if the Configuration File is reloaded.

TundraWare Inc. 20

twander(1) twander(1)

Sorting Menu (Alt-s) [Alt-Shift-Right-Mouse-Button]
(Note that on Windows you must press Alt then Shift then the Right-Mouse-Button for this to work. Win-
dows appears to care deeply about keystroke order.)

This menu provides a way to select any of the available sorting options. It is context-sensitive and will
show entries appropriate to what kind of "view" the program is currently displaying. That is, it will show
options which make sense for both "normal" view as well as "Drive List View" (see the ADVANCED
WINDOWS FEATURES section below).

You’ll find the currently selected sorting options displayed in the program title bar.

Help Menu (Alt-l) [No Mouse Shortcut]
This menu provides information about various internal settings of twander including User-Defined Vari-
ables, Command Definitions, Internal Program Variables, User-Settable Options, Keyboard Assignments,
and Directory Shortcuts. It also has an About feature which provides version and copyright information
about the program.

For the most part, this help information should fit on screen easily. Howev er, very long Command Defini-
tions will probably not fit on-screen once User-Defined and Environment Variables have been substituted.
In this case, if you are curious about just how twander is interpreting your Command Definitions, invoke
the program with the relevant debug bit turned on and watch the output on stdout as twander runs.

THE twander CONFIGURATION FILE
Much of twanders flexibility comes from the fact that it is a macro-programmable user interface. The
program itself does little more than provide a way to navigate around a filesystem. It must be configured
(programmed) to actually do something with the files you specify. This is done via a "Configuration File".
This file is also used to set Program Options and change keyboard assignments. Although the program will
run without a Configuration File present, it will warn you that it is doing so with no commands defined.

LOCATION OF CONFIGURATION FILE
By default, the program expects to find configuration information in $HOME/.twander
(%HOME%\.twander on Windows) but you can override this with the -c command line option. (Recom-
mended for Windows systems - see the section below entitled, INSTALLING twander)

Actually, twander can look in a number of places to find its Configuration File. It does this using the fol-
lowing scheme (in priority order):

• If the -c argument was given on the command line, use this argument for a Configuration File.

• If -c was not given on the command line, but the HOME environment variable is set, look for the a
Configuration File as $HOME/.twander.

• If the HOME environment variable is not set and a -c command line argument was not provided, look
for a file called ".twander" in the directory from which twander was inv oked.

CONFIGURATION FILE FORMAT
twander Configuration Files consist of freeform lines of text. Each line is considered independently - no
configuration line may cross into the next line. Whitespace is ignored within a line as are blank lines.

TundraWare Inc. 21

twander(1) twander(1)

There are several possible legal lines in a twander Configuration File:

Comments
Program Option Statements
Key Binding Statements
Directory Shortcut Statements
Wildcard Statements
Variables And Command Definitions
Conditional Processing Statements
The Include Directive

(See the ".twander" file provided with the program distribution for examples of valid configuration state-
ments.)

Everything else is considered invalid. twander will respond with errors or warnings as is appropriate
anytime it encounters a problem in a Configuration File. An error will cause the program to terminate, but
the program continues to run after a warning. For the most part, twander tries to be forgiving and merely
ignores invalid configuration statements (after an appropriate warning). It only declares an error when it
cannot continue. This is true both when the program initially loads as well as during any subsequent Con-
figuration File reloads initiated from the keyboard while running twander.

The following sections describe each of the valid Configuration File entires in more detail.

Comments
A comment is begun with the "#" character which may be placed anywhere on a line. Comments may
appear freely within a Configuration File. twander strictly ignores everything from the "#" to the end of
the line on which it appears without exception. This means that "#" cannot occur anywhere within a User-
Defined Variable Definition, Key Binding Statement, or Command Definition (these are described below).
Comments can be placed on the same line to the right of such statements.

It is conceivable that the "#" character might be needed in the Command String portion of a Command Def-
inition. twander provides a Built-In Variable, [HASH], for exactly this purpose. See the section below
entitled, Variables And Command Definitions, for a more complete description.

Program Option Statements
Many of twanders internal program defaults can be overriden in the Configuration File using Program
Option statements. These statements look just like the User-Defined variables described later in this docu-
ment except twander recognizes the variable name as a Program Option rather than an arbitrary variable.
Program Option Statements thus take the form:

Option Name = Option Value

The Option Name is case-sensitive and must be entered exactly as described below. For instance, twan-
der understands "AUTOREFRESH" as a Program Option, but will treat "AutoRefresh" as a User-Defined
Variable.

The Option Value is checked to make sure it conforms to the proper type for this variable. The Type can be
Boolean, Numeric, or String.

A Boolean Option must be assigned a value of True or False. These logical values can be in any case, so
TRUE, TRue, and tRue all work. Note that when you view these variables in the Help menu entitled, User-
Settable Options, they are displayed as 0 (False) and 1 (True).

A Numeric Option must be a number 0 or greater. Numbers can also be entered in hexadecimal format:

TundraWare Inc. 22

twander(1) twander(1)

0xNNN, where NNN is the numeric expression in hex.

A String Option can be any string of characters. Quotation marks are treated as part of the string! Do
not include any quotation marks unless you really want them to be assigned to the option in question
(almost never the case).

Furthermore, as described above, you cannot use the ´#´ symbol as part of the string assignment because
twander always treats this character as the beginning of a comment no matter where it appears.

For consistency with other Configuration File entries, Program Option Statements may have a blank Right
Hand Side. Such statements are simply ignored. This is convenient when you want to leave a placeholder
in your Configuration File but don’t actually want to activate it at the moment. However, be careful -
depending on what precedes the statement, you’ll get different settings for the option in question. For
example:

This effectively sets BCOLOR to its default value when
the Configuration File is reloaded
BCOLOR =

But this means the value of BCOLOR is set to red

BCOLOR = red
BCOLOR =

In other words, you should think of Program Option Statements with a blank Right Hand Side as comments
- present but ignored.

Other than this basic type-checking, twander does no further validation of the Right Hand Side of a Pro-
gram Option Statement. It is perfectly possible to provide a RHS which passes twanders type validation
but which makes no sense whatsoever to the program. Entries like this cause everything from a mild
twander warning to a spectacular program failure and Python traceback on stdout:

A Nice Way To Clobber twander
BCOLOR = goo

The following sections document each available Program Option using this
general format:

Option-Name [Type] (Default Value)

ACTUALLENGTH [Boolean] (False)

By default, file sizes , total directory size (on the title bar), and drive sizes in Win32 Drive List
view are "normalized". They are expressed in bytes, Kilobytes, Megabytes, or Gigabytes. This
keeps the display from getting cluttered with the longer strings required to display the actual
lengths in bytes. If you want the program to display the actual lengths for these items by default,
set ACTUALLENGTH=True in your configuration file. You can also "toggle" between normal-
ized and actual size display with the TOGLENGTH key (default: Control-0).

ADAPTREFRESH [Boolean] (True)

Whenever a directory is read, the time to do so is tracked. If that time is less than the current value
of REFRESHINT - i.e., The directory read took less than REFRESHINT milliseconds to complete
- nothing special happens. But, if the actual directory read time takes longer than REFRESHINT

TundraWare Inc. 23

twander(1) twander(1)

milliseconds, twander adjusts the value of REFRESHINT upwards. That way, you’re guaran-
teed to have time after the read completes to actually do something.

This dynamic adjustment takes place on every directory read. If you go to a slow directory and
REFRESHINT gets dynamically adjusted to, say, 25 seconds, when you go back to a
faster/smaller directory, REFRESHINT will be reset to its default value. The changing value of
REFRESHINT is not shown in the program options help menu. The value there is the one set by
default or set in the configuration file. Think of this as the "base" value for REFRESHINT.

If ADAPTREFRESH is set to False, then adaptive refresh timing is disabled and a directory
refresh will be attempted every REFRESHINT milliseconds.

AFTERCLEAR [Boolean] (True)

Tells twander to clear any selections in the GUI if a command forces a display refresh after it
completes. (See the AFTERWAIT and Forcing Display Updates In Command Definitions sec-
tions below). This is done because a command that forces a display update is probably changing
the content of the current directory (otherwise, why bother with the update?), and the current
selections may no longer be relevant.

Setting AFTERCLEAR to False, will leave the current selections alone after doing a command
with a forced update.

AFTERWAIT [Numeric] (1)

It is possible to define commands so that a display refresh is forced after a command is invoked
(see the section below entitled, Forcing Display Updates In Command Definitions). The
AFTERWAIT option tells twander how long to wait after the command has been initiated before
actually doing the refresh. The idea here is to give the command some time to complete before
updating the display.

AUTOREFRESH [Boolean] (True)

By default, twander regularly re-reads the current directory to refresh the display with any
changes. If you are running on a very slow machine or slow connection between the X-Windows
server and client, set this option to False. You can manually force an update at any time using the
REFRESH key. (default: Control-l)

BCOLOR [String] (Black)

Selects the main display Background Color.

CMDSHELL [String] ()

This option is primarily intended for people running twander on Unix-like operating systems
like FreeBSD and Linux. As described in the GOTCHAS section below, running a command
line program or script requires some extra effort if you want to see the results presented in a GUI
window. Typically, you need to run these commands in some kind of ´xterm´ context so that the

TundraWare Inc. 24

twander(1) twander(1)

results will be visible, possibly using a shell as well. So, it’s common to see Command Defini-
tions like:

x MyCommand xterm -l -e bash -c ’stuff-for-my-command’

In fact, on Unix, the need for this idiom is so common, it’s best to define some variables for this.
If you look in the example ´.twander´ Configuration File provided in the program distribution,
you’ll see something like (comments removed):

SHELL = bash -c
VSHELL = [XTERM] [SHELL]
XTERM = xterm -fn 9x15 -l -e

Now the Command Definition above becomes:

x MyCommand [VSHELL] ’stuff-for-my-command’

That’s all well and good for Command Definitions, but what happens when you want to manually
enter a command via the RUNCMD key? (default: Control-z) You hav e to manually enter the
gobbledy-gook above, or at least start your command with [VSHELL] (since RUNCMD under-
stands variable references).

The CMDSHELL option is a way to automate this. You can assign it to any literal text. That text
will be automatically prepended to any command you enter manually. In this case you could
do either of the following in the Configuration File:

CMDSHELL = xterm -l -e bash -c

- or -

CMDSHELL = [VSHELL] # Assuming VSHELL is defined previously

Now every time you enter a command, this will be placed in front of your text before command
execution commences.

To disable CMDSHELL operation permanently, just remove the statement above from your Con-
figuration File. If you want to leave it in as a placeholder, but deactivate CMDSHELL, use the fol-
lowing statement:

CMDSHELL =

You also may want to occasionally use RUNCMD to do something without CMDSHELL process-
ing, even though that feature has been defined in the Configuration File. You can disable CMD-
SHELL operation on a per-RUNCMD basis. Just begin your entering your command with the
double-quote (") character. twander understands this to "escape" CMDSHELL processing.

As a general matter, CMDSHELL allows you to prepend anything you like before a manually
entered command - literal text, references to variables, or even the name of a script the system will
use to execute your command. Whatever value you use for CMDSHELL will appear in the Com-
mand Menu history for each manually initiated command which used this feature - i.e., All the
manual commands that did not escape the feature.

TundraWare Inc. 25

twander(1) twander(1)

DEBUGLEVEL [Numeric] (0)

This is another way to set the debugging level you desire (the other way being the -d command
line argument). For example, say you want to always dump the current Command Definitions to
stdout when the program starts - perhaps you want to redirect this output to a file or printer. Just
add this line to your Configuration File:

DEBUGLEVEL = 0x004

DEFAULTSEP [String] (==>)

This is the string that separates the prompting text and the default response in {PROMPT: ...}
and {YESNO: ...} Built-In Variables. You may change this to any string you like, though
doing so is not recommended. Changing DEFAULTSEP will require you to edit any configuration
files that use these Built-Ins with default responses. In no case should the delimiter string include
any of the characters, []{ } since these are used as delimiters in the twander configuration
language.

DOTFILE [String] (.)

It is a convention on Unix (and other systems) that files or directories whose names begin with a
period are program configuration files (directories). twander has the ability to hide these so-
called "dotfiles". (See the section above entitled Hiding Dotfiles for the details.) twander treats
any file or directory whose name begins with the string defined by DOTFILE as a dotfile for this
purpose.

For example, if you set DOTFILE=Xyz, all files or directories whose names begin with "Xyz",
will be hidden when you tell twander to hide dotfiles. Notice that if you change this option
from its default, you may use any string to be the dotfile "introducer", but it is always treated with
case-sensitivity. For instance, in our example, files beginning with "XYZ" would not be hidden.

FCOLOR [String] (green)

Selects the main display Foreground (Text) Color.

FNAME [String] (Courier)

Selects the main display Font Name.

FSZ [Numeric] (12)

Selects the main display Font Size.

FWT [String] (bold)

Selects the main display Font Weight. This can be assigned to: normal, bold, italic, or underlined.
Depending on your system, other values may also be possible.

TundraWare Inc. 26

twander(1) twander(1)

FORCEUNIXPATH [Boolean] (False)

Ordinarily, Built-In Variables and Program Memory References in a command definition are
replaced with strings that list one or more files and/or directories. When this substitution is made
at runtime, these strings contain the path separator character appropriate for the underlying operat-
ing system ("/" for Unix and "\" for Windows).

If you set FORCEUNIXPATH to True, twander will always use the Unix path separator charac-
ter("/") in these substitutions.

This option is primarily useful when writing command definitions with Unix tools under Windows
(such as cygwin) that are fussy about path separator conventions.

This option is only relevant on Windows systems. It is ignored on other operating systems.

HBCOLOR [String] (lightgreen)

Selects the help menu Background Color.

HEIGHT [Numeric] (600)

Initial vertical size of the twander window in pixels.

HFCOLOR [String] (black)

Selects the help menu Foreground (Text) Color.

HFNAME [String] (Courier)

Selects the help menu Font Name.

HFSZ [Numeric] (10)

Selects the help menu Font Size.

HFWT [String] (italic)

This selects the help menu Font Weight.

HIDEDOTFILES [Boolean] (False)

Sets whether the program hides "dotfiles" by default. (See previous section entitled Hiding Dot-
files for the details of this feature.) This value can be toggled with the TOGHIDEDOT (default:
Control-9) key binding.

MAXMENU [Numeric] (32)

Maximum number of entries to display in any dynamic menu. This keeps the menu size

TundraWare Inc. 27

twander(1) twander(1)

reasonable. Internally, twander keeps track of way more than this number of dynamic entiries
(see the MAXMENUBUF option below).

MAXMENUBUF [Numeric] (250)
Maximum number of items twander tracks internally for each dynamic menu. This value need
normally not be changed. It is present only to bound how much memory twander consumes for
this task.

MAXNESTING [Numeric] (32)

Number of times a Command Definition is processed to dereference all variables. For example,
suppose you have this:

FOO = bax
BAM = x[FOO]

x mycmd [BAM] [SELECTION]

When you press the x key, the twander command interpreter has to process the line repeatedly
until all variables are resolved:

[BAM] [SELECTION] -> x[FOO] [SELECTION]
x[FOO] [SELECTION] -> xbax [SELECTION]
xbax [SELECTION] -> xbax selected-item

So, in this case, it took 3 iterations to do this. MAXNESTING merely sets the maximum number
of times this is permitted. We hav e to do this to stop runaway definitions like this:

FOO = x[FOO]

This kind of construct will cause twander to iterate MAXNESTING number of times and then
give up with a warning about exeeding the nesting (dereferencing) limit.

A 32 iteration limit should be plenty for any reasonable Command Definitions. If you set
MAXNESTING to 0, twander will not allow any variable dereferencing, including the Built-In
Variables. This is probably not what you want.

MBARCOL [String] (beige)

Selects the Menu Bar color.

MBCOLOR [String] (beige)

Selects the menu Background Color.

MFCOLOR [String] (black)

Selects the menu Foreground (text) Color.

MFNAME [String] (Courier)

Selects the menu Font Name.

TundraWare Inc. 28

twander(1) twander(1)

MFSZ [Numeric] (12)

Selects the menu Font Size.

MFWT [String] (bold)

Selects the menu Font Weight.

NODETAILS [Boolean] (False)

Prevents details from ever being displayed.

NONAVIGATE [Boolean] (False)

Prevents the user from navigating out of the starting directory. Command Definitions and com-
mands initiated manually via RUNCMD (default: Control-z) can still "see" other directories, the
user just cannot move elsewhere with any of the twander navigation commands.

The NODETAILS and NONAVIGATE commands are not security features. They can easily be
defeated by editing the Configuration File. They exist to make it easy for you to create ´twander’
configurations for technically unsophisticated users.

Say you want to define a few simple commands for your boss to use which won’t challenge his or
her feeble managerial mind ;) By defining these commands and setting both NODETAILS and
NONAVIGATE to TRUE, you really limit what can be done with twander. They can’t wander
off into other directories and get lost, or worse yet, clobber files they don’t understand. There are
no details to confuse them. Your instructions for using the program thus become, "Select the files
you’re interested in and press P to print them, M to mail them to Headquarters.." and so on.

Again, these are NOT security features. Anyone with even very modest technical skills can
thwart these limitations. But, it is suprising just how effective these can be in simplifying life for
technically challenged users.

QUOTECHAR [String] (")

As described below, twander ordinarily quotes most Built-In Variables as it replaces them dur-
ing command processing. This is useful because modern operating systems allow file and direc-
tory names to have spaces in them. Such names must be quoted for most programs to understand
them as a single entity on a command line.

By default, the double-quote char is used for this purpose. You can suppress quote processing by
using the -t command line argument. This does nothing more than set QUOTECHAR to an empty
string. Unfortunately, since the RHS of a Program Option Statement cannot be blank, you cannot
disable quoting with this option. However, you can set the quotation character to be anything else
you like, such as a single-quote. In fact, you can set QUOTECHAR to any string of characters
you like and they will faithfully be used on either side of a Built-In Variable replacement.

REFRESHINT [Numeric] (5000)

Nominal time in milliseconds between automatic directory refreshes (if AUTOREFRESH is True).
This time is really nominal and should not be used with any accurate timing in mind.
REFRESHINT=8000 says that the refresh interval will be nominally 8 seconds (and certainly

TundraWare Inc. 29

twander(1) twander(1)

more than the default of 5 seconds), but it can be off this nominal value by quite a bit.

If you run twander on a slow system (or have a slow link between X-Client and X-Server) you
might want to increase this value substantially. You can get into the situtation where just as one
refresh completes, its time to do the next one, and the twander will seem really sluggish and
unresponsive. By lengthening the time between automatic updates, the amount of unresponsive
behavior is reduced. Of course, this also means that any changes in the currently viewed directory
will also take longer to appear in the twander display.

SORTBYFIELD [String] (Name)

Specifies which field is to be used as the sort key. May be one of the fields below under "Sort
Ke y" (case-insensitive). The equivalent field name for Drive List View (see ADVANCED WIN-
DOWS FEATURES section below) is shown in the second column, however these may not be
used as arguments for SORTBYFIELD. For example, if you plan to start the program in Drive
List View and want to sort by Drive Type, use: SORTBYFIELD=Links.

Equivalent
Sort Key Drive List View Field
-------- ---------------------
No Sort No Sort
Permissions Label/Share String
Links Drive Type
Owner Free Space
Group Total Space
Length Drive Letter
Time Drive Letter
Name Drive Letter

SORTREVERSE [Boolean] (False)

Specifies whether to reverse the sort order or not. If True and SORTSEPARATE is also True, then
the directory list will appear at the end of the display in addition to being reverse ordered.

SORTSEPARATE [Boolean] (True)

Determines whether directories and files should be separated or mingled in absolute sort order in
the display. By default, they are separated with directories sorted according to SORTBYFIELD
order but appearing before any files in the display.

This option is ignored in Drive List View.

STARTDIR [String] (Directory In Which Program Started)

This allows you to force a starting directory of your choice no matter where the program actually
is launched. This is useful for day-to-day operation - perhaps you always want to start in your
home directory. STARTDIR is also handy in tandem with the NODETAILS and NONAVIGATE
options to force a user to the only directory which they should be using.

STARTX [Numeric] (0)

Initial horizontal offset of the twander window in pixels.

TundraWare Inc. 30

twander(1) twander(1)

STARTY [Numeric] (0)

Initial vertical offset of the twander window in pixels.

SYMDIR [Boolean] (True)

This option causes symbolic links that point to directories to be treated as directories for purposes
of sorting. This is relevant when "separated" sorting is selected - i.e., When the directories are
sorted separately from files. If SYMDIR is set to False, then symbolic links will be sorted as files,
regardless of what the link points to.

USETHREADS [Boolean] (False)

twander defaults to using normal "heavy weight" processes for running commands on Unix.
Many Unix implementations also support a "threaded" process model. Setting USETHREADS to
True on such systems will cause twander to use threads, rather than processes to launch user-
defined commands. There are some known issues with thread-based operations (hence the reason
this option defaults to False). These are discussed in the GOTCHAS section below.

This option applies only to Unix-like operating systems. Windows commands are always run as a
thread - this is the only process model Windows supports..

USEWIN32ALL [Boolean] (True)

Windows only. If ´win32all´ is installed, determines whether its features should be used (see sec-
tion below entitled, ADVANCED WINDOWS FEATURES for details).

Normally, this option should be left alone. However, if you have ´win32all´ installed on your sys-
tem for some other reason, but don’t want it used by twander, set this option to False.

The main reason to do this would be on a slow machine with very large directories. The advanced
features of ´win32all´ come at a computational price. This is especially noticeable when it is com-
puting the attributes, ownership, and size in a directory with hundreds (or more) of entries. Typi-
cally, you would just use the TOGWIN32ALL key (default: Control-w) to temporarily disable
these features before entering such a directory. Howev er, if your starting directory is in this cate-
gory, setting USEWIN32ALL=False might not be a bad idea.

WARN [Boolean] (True)

Determines whether interactive warnings should be displayed as twander encounters them
(while parsing a Configuration File or just in normal execution).

Setting this option to False is the same thing as using the -q command line option with one impor-
tant difference: The Configuration File is parsed before the command line is parsed. Even if you
have -q on the command line (or in the TWANDER environment variable), if there is an error in
your Configuration File, you will see warning messages at program startup time. Putting
WARN=False at the top of your Configuration File will suppress this.

It is not recommended that you operate normally with the -q flag or with WARN=False. twan-
der is pretty forgiving in most cases and when it does warn you about something, there is a good
reason for it - you probably want to know what the problem is.

TundraWare Inc. 31

twander(1) twander(1)

WIDTH [Numeric] (800)

Initial horizontal size of the twander window in pixels.

WILDNOCASE [Boolean] (True On Win32 / False Elsewhere)

Set’s whether or not case is significant in wildcard filtering and selection. If True, case is ignored,
if False, case is significant in these wildcard operations.

A few general notes about Program Options are worth mentioning here:

• You can set the same option multiple times in a single Configuration File - twander pays no atten-
tion. However, only the last (the one nearest the end of the file) instance of that Program Option State-
ment actually takes effect. This is handy if you want to temporarily change something without modi-
fying your existing configuration. Just add your temporary change at the end of the file. When you’re
done with it, just remove it. No need to edit and re-edit your preferred configuration...

• The font colors, weights, and sizes available for your use will vary somewhat by system. For instance,
Windows TrueType fonts are effectively available in every size and weight. On the other hand, most
Unix-like systems have a more limited palette of fonts and colors with which to work. Most systems
should support obvious color names like, red, white, blue, yellow, beige, and so on. Many also support
colors like lightgreen, lightblue, etc. At a minimum, you should be able to use normal, bold, italic,
and underline for font weights.

Most systems attempt some kind of "best fit" font matching. If you specify a font size/weight/name
that does not exist, the system will try to find what it thinks is the closest match. This is usually ugly,
so try to specify font information for things that actually exist on your system.

If your setting in the Configuration File seems not to work, take a look at the command window in
which you started twander (or start it from one manually, if you’re using a GUI shortcut to start it).
Attempts to use unavailable colors and weights will cause Python/Tkinter to dump traceback informa-
tion on stdout.

• Although you can use proportionally spaced fonts with twander, the result is pretty ugly. twander
assumes a fixed width font when it calculates display formatting. Variable-width fonts will cause your
display to be ragged and hard to read.

• If you set MAXMENU or MAXMENUBUF to 0, it disables both dynamic menu content and of the
last manual entry in the dialogs associated with CHANGEDIR (default: Control-x), FILTERWILD
(default: Control-=), SELWILD (default: Control-\), and RUNCMD (default: Control-z).

• Changing MAXMENU and then reloading the Configuration File only changes the number of items
visible on the various dynamic menus. twander actually keeps track of more than this internally
(governed by the MAXMENUBUF option).

Say MAXMENU is set to 4, but you’ve actually visited 20 different directories and issued 30 com-
mands. You’ll only see 4 of each on the associated menus. But, if you edit MAXMENU to now be 32
and reload the Configuration File, you will see all 20 directories and 30 commands on their respective
menus.

TundraWare Inc. 32

twander(1) twander(1)

• At first glance, the ability to set QUOTECHAR to any arbitary string may seem silly, but it actually
has a purpose. As good as the twander macro capability is, it is still a fairly simple language.
Really complex tasks will need to be handed off to some other scripting language (like Python!). It
may be useful to delimit Built-In Variables (which indicate your selections via the twander inter-
face) in such a way that your script knows where they came from. So, say you set
QUOTECHAR=+++ and you have a Command Definition like this:

x mycmd MyPythonScript [DSELECTIONS] other stuff

When MyPythonScript runs, it can immediately tell which arguments came from twander (the ones
that are in the form +++dir+++ or +++file+++) and which arguments are just other stuff.

You probably won’t need this often, but its nice to have.

• STARTX and STARTY are relative to the (0,0) origin that Tk uses for window placement. In High-
School algebra most of us got used to seeing (0,0) in the lower-left corner of a graph. Tk has a rather
different view of this and STARTX and STARTY are relative to the upper-left corner of the screen.

Key Binding Statements
No program that runs in many operating environments can satisfy everyone’s (anyone’s!) idea of what the
"correct" key bindings should be. An emacs user, vi user, BSD user, and Windows user are going to differ
considerably on what keys should be bound to what feature. twander ships from the factory with a set of
default key bindings, but it also provides a mechanism for changing these bindings via entries in the Con-
figuration File.

This feature is available only for Keyboard Assignments. Mouse Button Assignments may not be
changed by the user. An attempt to do so in the Configuration File will cause twander to display a warn-
ing and ignore the offending line.

It is not difficult to override the default keyboard bindings by adding entries in the Configuration File.
Doing so requires some familiarity with how Tkinter names keystrokes. Good resources for learning this
exist abundantly on the Internet, among them:

http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.nmt.edu/tcc/help/pubs/lang.html
http://www.cs.mcgill.ca/˜hv/classes/MS/TkinterPres/

(As an aside - Tkinter is nothing more than a Python interface to the Tcl/Tk windowing system. The "real"
naming conventions for keystokes can be found in the many sources of Tk documentation, both in print and
on the Internet.)

Ke yboard binding assignments look just like variable definitions in the Configuration File. (The twander
Configuration File parser automatically distinguishes between Key Binding Statements and Variable Defini-
tions or other legitimate statements. This means you can never use one of the program function names as
one of your own variable names.) Key Binding Statements thus take the form:

Program Function Name = Tkinter Keystroke Name

Changing the default bindings is therefore nothing more than a matter of assigning the appropriate Program
Function Name (found in parenthesis next to the description in the default descriptions above) to the
desired keystroke.

Examples of all the default key bindings are shown as comments in the ".twander" example Configuration
File supplied in the program distribution. The easiest way to rebind a particular function is to copy the

TundraWare Inc. 33

twander(1) twander(1)

relevant line, uncomment the copy, and change the right side of the assignment to the new key you’d like to
use.

It is important to observe sev eral rules when rebinding keys:

• It is best if keyboard navigation commands are all Control or Function keys. If you assign a naviga-
tion or selection function to a single keystroke, it may conflict with a user-defined command. If you
assign it to a keypad/special key it may conflict with that key’s normal GUI behavior.

• The Tkinter keynames should placed on the right side of the "=" symbol without any quotation
marks.

Incorrect
QUITPROG = ’<F3>’

Correct
QUITPROG = <F3>

• The Program Function Name variables (the left side of the assignment) may not be used as names for
your own user-defined variables elsewhere in the Configuration File. In fact, twander will never
ev en recognize such an attempt. For example, suppose you try to do this:

QUITPROG = something-or-other

Because you want to be able to reference [QUITPROG] in a subsequent Command Definition.
twander will actually interpret this as just another key binding command, in this case binding the
program function QUITPROG to "something-or-other" - probably not what you intended. Moreover,
if you have a Command String somewhere with [QUITPROG] in it, twander will declare and error
and abort because it has no User-Defined variable of that name in its symbol table.

• When you’re done making changes to the Configuration File, be sure to either restart the program or
reload the Configuration File to assign the new bindings.

• Be aware that twander does no sanity testing on the assignments you change. If you assign a partic-
ular twander function to an illegal or silly key string, the program will probably blow-up spectacu-
larly. At the very least, that program feature will probably be unusable, even if twander manages to
run.

Directory Shortcut Statements
twander provides a mechanism for directly navigating into one of 12 frequently used directories. 12
keys, KDIRSC1 ... KDIRSC12 (default: F1 ... F12) have been set aside for this purpose. Directory Shortcut
Statements are entries in the Configuration File which associate one of these keys with a particular direc-
tory path. These statements are in the form:

DIRSCxx = path

where, xx is a number from 1-12

So, for example, if you want to enter "C:\Documents And Settings" when you press the F5 key, you would
add this to your Configuration File:

DIRSC5 = c:\Documents And Settings

TundraWare Inc. 34

twander(1) twander(1)

There are several subtleties to Directory Shortcuts you should understand:

• You can end the path with slash or not - twander will understand the entry either way.

• If there is no path on the righthand side of a Directory Shortcut Statement, this is the same as having
no definition at all for that key:

This "undefines" shortcut #5
DIRSC5 =

• twander does absolutely no checking of what you enter to the right of the equals sign. If you enter
something silly for the shortcut path, you will probably get a warning that the directory cannot be
opened when you try to run that shortcut.

• Keep the Program Function Names (KDIRSC1 ... KDIRSC12) which are used for Key Binding, dis-
tinct in your thinking from the Directory Shortcut Names (DIRSC1 ... DIRSC12) which are used for
defining the shortcuts.

• If you enter a Directory Shortcut Name that is invalid or out of range - examples include, DIRSC01
and DIRSC13 - twander treats them like a User-Defined Variable as described below.

Wildcard Statements
As discussed above, twander provides powerful regular expression-based "wildcard" filtering and selec-
tion capabilities via the FILTERWILD (default: Control-=) and SELWILD (default: Control-\) commands.
These regular expressions can be complex and tedious to enter by hand each time you need them. You can
pre-define frequently needed wildcard strings in your Configuration File using the following statements:

WILDFILTER = regular-expression-string
WILDSELECT = regular-expression-string

The regular expression will then be pre-loaded into either the Filter or Select Menus respectively when
twander starts. This makes it easy to use or modify complex wildcards over and over. You may place as
many of these as you like in your Configuration File. (Though the menus will be limited to displaying
MAXMENU number of items - see the section above on Program Option Statements.)

Variables And Command Definitions
Most programs "ship from the factory" with a pre-defined set of features or commands. twander comes
with no built-in commands! Instead, it comes with a mechanism which allows you to specify your own
Command Definitions. By means of a simple and very powerful macro lanuage, you "program" twan-
der and equip it with commands of your own choosing. For example, you might define commands to
copy, delete, edit, and move the files or directories you choose. Perhaps you have a specialized shell script
for doing backups. It’s a simple matter to write a twander Command Definition that will pass the names
of the files and directories you’ve selected to that backup script. You might combine this with twander’s
Program Memory feature to keep a running list of the files and directories you want to backup and then
finally issue the backup command when you’re ready. Best of all, commands you define this way are
always a single keystroke. This means that once you’ve programmed twander to suit your needs, actually
using it is very fast and convenient.

Command Definitions are built out of literal text and may also have any combination of several variable
types: User-Defined Variables, Environment Variables, Execution Variables, and Built-In Variables.

TundraWare Inc. 35

twander(1) twander(1)

User-Defined Variables are variables you define in the configuration file. They can hold any string of text
you desire.

Environment Variables are set in the shell you use to invoke twander. This makes it easy to write a
generic command definition that acts based on something set uniquely for each user in that user’s environ-
ment. You can only read, not change, Environment Variables in twander.

Execution Variables are set by running a program - pretty much any program will do. (Unix users will be
familiar with this if they’ve ever used shell "backtick" quoting.) This makes it easy to construct a twan-
der command that is defined in whole or in part by some external program.

Built-In Variables are a set of variables defined by twander itself. There are two general kinds of Built-
Ins. The first kind are used to let your command know (at runtime) which file or files you have currently
selected in the twander interface. The other kind of Built-Ins are used to prompt you during command
execution. There are also a few other Built-Ins described below.

Just When Does A Variable Get Evaluated?
Before getting into the mechanics of variables and command definitions, it’s important to emphasize one
point: Variables get "evaluated" (read) when a command is actually run. Older versions of twander
evaluated variables at the time a configuration file was read. However, as we’ll see below, by waiting until
the command is actually run to evaluate its variable references, we can do some nifty things.

User-Defined Variables And Environment Variables
User-Defined Variables are defined using the syntax:

Variable Name = Replacement String

Environment Variables are referenced using the syntax:

[$VARIABLE]

Say we have a configuration line like this,

EDITOR = emacs blah blah blah blah

Later on, when defining a command, instead of typing in "emacs blah blah blah blah", you can just refer to
the variable [EDITOR] - the brackets indicate you are referring to a previously defined variable.

Similarly, suppose you have an environment variable called "EDITOR" which indicates your preferred edit-
ing program. Our definition could thus become:

EDITOR = [$EDITOR] blah blah blah blah

Why bother with this? Because it makes maintaining complex Configuration Files easier. If you look in
the example ".twander" Configuration File provided in the program distribution, you will see this is mighty
handy when setting up complex "xterm" sessions, for example.

Here are several other subtleties regarding User-Defined Variables:

• twander variable definitions are nothing more than a string substitution mechanism. Suppose you
have a variable definition that refers to another variable:

NewVar = somestring [OldVar]

TundraWare Inc. 36

twander(1) twander(1)

It is important to realize that this only means: "If you encounter the string ´[NewVar]´ in a subsequent
Command Definition, replace it with the string ´somestring [OldVar]´."

In other words, no evaluation of the right side of the expression takes place when a variable is defined.
Evaluation of a variable only takes place when the variable is referenced (in the Command String por-
tion of a Command Definition) at the time the command is run. The Command Definition parser will
continue to dereference variable names until they are all resolved or it has reached the maximum nest-
ing level (see next bullet).

• User-Defined Variables may be nested up to 32 levels deep (this default can be changed via the
MAXNESTING Program Option). You can have constructs like:

Var1 = Foo
Var2 = Bar
FB = [Var1][Var2]

Later on (when defining some command) when twander runs into the variable reference [FB], it will
keep substituting variables until all [...] references have been resolved or it hits the nesting limit (The
default is 32, but you can change it with the MAXNESTING option). This limit has to be imposed to
catch silly things like this:

Var = a[Var]

This recursive definition is a no-no and will be cause twander to generate an error while parsing the
Configuration File and then terminate.

Your variable definitions can also nest other kinds of variables (Environment and Built-Ins). So, con-
structs like this are perfectly OK:

Var1 = [$PAGER]
Var2 = command-arguments
V = [Var1] [Var2] [DSELECTION]

• In the example above, notice that since the right-hand side of User-Defined Variables is literally
replaced, we have to make sure there is space between the various variable references. If we used
[Var1][Var2][DSELECTION] we would get one long string back instead of a command with argu-
ments and a list of selected items.

• Variable references are only significant on the right hand side of an assignment statement:

Var1 = Foo
My[Var1] = bar

This does not create a variable called "MyFoo". It creates a variable called "My[Var1]" and sets its
value to "bar". This is both confusing and useless because you can never dereference this variable,
because ...

• Variable references cannot be nested. Using our example above, suppose we later want to get the
value ("bar") of variable "My[Var1]". That variable reference would look like this: [My[Var1]] and
this is not permitted. A variable reference may only contain a text string, not references to other vari-
ables.

TundraWare Inc. 37

twander(1) twander(1)

• Variables must be defined before they are referenced (in a Command Definition). You can, however,
include not-yet defined variable name in another User-Variable Definition so long as all these variable
are defined by the time they appear in a Command String. The following is OK because all variables
are defined by the time they are actually needed:

Var1 = foo
Var2 = [Var3] # This is just a string substitution, not a reference
Var3 = bar
MyVar = [Var1][Var2]

Now comes the Command Definition
If we put this before the Variable Definitions above,
it would be an error.

x mycommand [MyVar]

• Variable Names are case-sensitive - [EDITOR], [Editor], and [editor] all refer to different variables.

• The "#" character cannot be used in either the variable name or the replacement string since doing so
begins a comment.

• The "=" is what separates the Variable Name from the replacement string. Therefore, the "=" cannot
ev er be part of a Variable Name. A Variable Name cannot begin with "$" (see next bullet). Other than
these minor restrictions, both Variable Names and Replacement Characters can be any string of char-
acters of any length. Good judgment would suggest that Variable Names should be somewhat self-
descriptive and of reasonable length - i.e., Much shorter than the replacement string!

• A Variable Name must never begin with "$". This is because a Command Definition containing a
string in the form [$something] is understood by twander to be a reference to an Environment
Variable, named "something". If you do this:

$MYVAR = some-string

You will never be able to subsequently reference it because, [$MYVAR] tells twander to look in the
current environment, not its own symbol table to resolve the reference. However, note that "$" symbol
may appear anywhere else but the first character of a variable name. So, for example, MY$VAR is
fine.

• Unlike previous versions of twander, Variable Names may be redefined. This makes it more con-
venient to exploit the ability for twander to process the contents of a Configuration File condition-
ally (see the Conditional Processing Statements section below).

For example, you can set a variable to some default value, and then override it if a condition is satis-
fied:

Assume we’re running on a Unix-like system

MyEditor = [$EDITOR]

Override this if we’re on Windows

.if [.OS] == nt

TundraWare Inc. 38

twander(1) twander(1)

MyEditor = write
.endif

Execution Variables
Execution Variables are a special case of User-Defined Variables. However, instead of setting a variable to
some string of text, you tell twander to run a program and set it’s results to the variable:

TODAY = [`date`]

Now, suppose you define a command with [TODAY] in it somewhere. When you later run that command,
[TODAY] will be replaced by the output of the "date" command. In other words, Execution Variables
allow you to run any external program you like, and have that program’s output substituted into the defini-
tion of a command. Several further points are worth noting here.

• Notice that Execution Variables are delimited by backticks, not single-quotes.

• If you have something like [`program`] in a Command Definition, it will be replaced with any text
that "program" produces as it runs. That text will have any trailing newline stripped.

• Suppose you want to populate an Execution Variable with a program that returns multiple lines of text.
You’ll need to strip all the newlines out of the output in that case. To do this, you can use a second
form of an Execution Variable: [`-program`]. The leading minus sign tells twander to strip all
newlines when doing the replacement. For example, let’s define a command that lists all the files in
the current directory:

a mycommand echo "[`-ls`]" # We need the double-quotes
to make echo work right

Command Definitions
The heart of the twander configuration process is creating of one or more Command Definitions. These
definitions are the way user-defined commands are added to a given instance of twander. A Command
Definition consists of three fields separated by whitespace:

Command-Key Command-Name Command-String

The Command Key is any single character which can be typed on the keyboard. This is the key that will
be used to invoke the command from the keyboard. Command Ke ys are case-sensitive. If "m" is used as a
Command Key, "M" will not invoke that command. Command Keys must be unique within a given Config-
uration File. If twander finds multiple Command Definitions assigned to the same Command Key, it will
associate the last definition it finds with that Command Key. A Command Key can never be "#" which is
always understood to be the beginning of a comment.

The Command Name is a string of any length containing any characters. This is the name of the com-
mand which is used to invoke the command from the Command Menu. Command Names are case-sensi-
tive ("command" and "Command" are different names), but they are not required to be unique within a
given Configuration File. That is, two different Command Definitions may have identical Command
Names associated with them, though this is not ordinarily recommended.

The Command String is any arbitrary string which is what twander actually tries to execute when the
command is invoked.

TundraWare Inc. 39

twander(1) twander(1)

A Simple Command Definition
In its simplest form, a Command Definition looks like this:

A simple Command Definition
m MyMore more somefile

This command can be invoked pressing the "m" key on the keyboard or selecting the "MyMore" entry from
the Command Menu - either directly from the menu or from the Command Menu Pop-Up. No matter how
it is invoked, twander will then execute the command, "more somefile".

The problem is that this command as written actually will not give you the result you’d like (...well, on X-
Windows - is does work on Windows as written). (For more details on why, see the GOTCHAS section
below.) It turns out that starting a non-GUI program like ´more´ in a new window needs some extra work.
What we want to do is run ´more´ inside a copy of ´xterm´. Now our command looks like this:

Our command setup to run as a GUI window
m MyMore xterm -l -e more somefile

Forcing Display Updates In Command Definitions
You are likely to define commands that change the contents of the currently-viewed directory somehow.
For instance, commands that rename, create, or delete files in the current directory all have this effect.
When such a command is run, it means that the twander display is "out of sync" with the actual disk con-
tents until the next refresh cycle - automatic if AUTORFRESH is enabled, manual otherwise.

Placing ´+´ symbol to the beginning of the Command String tells twander that, when the command is
run, a display refresh should be forced afterwards. Not immediately afterwards, but AFTERWAIT seconds
(default: 1) later. Why? To giv e the command in question a chance to complete before updating the dis-
play. For instance,

r removelogs +rm -f *log

This means that when the ´r´ key is pressed, the command, "rm -f *.log" is run, and then, AFTERWAIT
seconds later, twander will force a display update. This happens regardless of the current AUTORE-
FRESH settings.

This feature is handy, but has some practical limitations. If this feature updates the display before a com-
mand actually completes (i.e., the command you’ve launched takes longer than AFTERWAIT seconds to
complete), the final state of the directory will not be displayed. The idea here is to use this feature for
"quicky" updates between more conventional display refreshes, whether via AUTOREFRESH or manually.

By default, anytime you run a command that uses this feature, any selections in the GUI are cleared. This
is because a forced update presumably is required because the command changes something in the current
directory. In that case, the current selections may no longer be relevant. If you wish to disable this behav-
ior, set the AFTERCLEAR program option to False.

User-Defined Variables In A Command String
The last example works quite nicely. But, we’re probably going to end up using the string "xterm -l -e"
over and over again for any shell commands we’d like to see run in a new window. Why not create a User-
Defined Variable for this string so we can simplify its use throughout the whole Configuration File? Now,
our command looks like this:

Our command enhanced with a User-Defined Variable.

TundraWare Inc. 40

twander(1) twander(1)

Remember that the variable has to be defined *before*
it is referenced.

XTERM = xterm -l -e # This defines the variable
m MyMore [XTERM] more somefile # And the command then uses it

Environment Variables In A Command String
This is all very nice, but we’d really like a command to be generic and be easily used by a variety of users.
Not everyone likes the "more" program as a pager. In fact, on Unix-like systems there is an environment
variable ($PAGER) set by each user which names the paging program that user prefers. We can refer to
environment variables just like any other variable as explained previously. Now our command looks like
this:

Our command using both a User-Defined Variable and
an Environment Variable to make it more general

XTERM = xterm -l -e
m MyMore [XTERM] [$PAGER] somefile

Execution Variables In A Command String
We can further extend the power of Command Definitions by using an Execution Variable to define part of
the command. Suppose we want a command that will let us examine all the text files in the current direc-
tory:

Our command using User-Defined, Environment, and
Execution Variables

XTERM = xterm -l -e
m MyMore [XTERM] [$PAGER] [`-ls *.txt`]

Built-In Variables In A Command String
It would also be really nice if the command applied to more than just a single file called "somefile". The
whole point of twander is to allow you to use the GUI to select one or more directories and/or files and
have your Command Definitions make use of those selections. twander uses a set of Built-In Variables
to communicate the current directory and user selections to the any commands you’ve defined. Built-In
Variables are referenced just like User-Defined Variables and Environment Variables and may be inserted
any appropriate place in the Command String. In our example, we probably want the command to pickup
whatever item the user has selected via the GUI and examine that item with our paging program. Now our
command becomes:

Our command in its most generic form using
User-Defined, Environment, and Built-In Variables

XTERM = xterm -l -e
m MyMore [XTERM] [$PAGER] [DSELECTION]

The "DSELECTION" built-in is what communicates the currently selected item from the GUI to your com-
mand when the command actually gets run.

TundraWare Inc. 41

twander(1) twander(1)

Selection-Related Built-Ins
twander has a rich set of Built-In Variables for use in your Command Definitions. The first group of
these is used to convey your current directory and items which you’ve selected to a Command Definition:

• [DIR]

[DIR] is replaced with the current directory twander is viewing.

• [DSELECTION]

[DSELECTION] is replaced with the full path name of the item currently selected in the GUI. If more
than one item is selected, [DSELECTION] refers to the last item in the group (the bottom-most, not
the most recent item you selected).

• [DSELECTIONS]

[DSELECTIONS] is replaced with the full path name of all items currently selected in the GUI.

• [SELECTION]

[SELECTION] is replaced with the name of the currently selected item in the GUI. The path to that
file is not included. As with [DSELECTION], if more than one item is selected in the GUI, the name
of the last item in the group is returned for this variable.

• [SELECTIONS]

[SELECTIONS] is replaced with the names of all items currently selected in the GUI. The path to
those names is not included.

Prompting And Special-Purpose Built-Ins
There are also several special-purpose Built-In Variables which are used for creating more powerful Com-
mand Definitions.

Note: The PROMPT and YESNO Built-Ins use {} as delimiters, not [].

• [HASH]

Because twander always recognizes the "#" as the beginning of a comment, there is no direct way to
include this character in a Command String. It is conceivable that some commands (such as ´sed´)
need to make use of this character. The [HASH] built-in is provided for this purpose. Anywhere it
appears in the Command String, it will be replaced with the "#" at command execution time. Unlike
all the other Built-In Variables, [HASH] is never quoted when it is replaced in a Command String
(regardless of whether the -t command argument is used or how the QUOTECHAR Program Option is
defined).

• {PROMPT:Prompt-String==>default}

{PROMPT:...} allows you to insert an interactive prompt for the user anywhere you’d like in a Com-
mand String. The user is prompted with the "Prompt String" and this variable is replaced with their
response. If they respond with nothing, it is interpreted as an abort, and the command execution is

TundraWare Inc. 42

twander(1) twander(1)

terminated. This makes commands extremely powerful. For instance, say you want to create a group
copy command:

Copy a group of items to a location set by
the user at runtime
UnixCopy = cp -R
Win32Copy = copy

Unix Version
c UnixCP [UnixCopy] [DSELECTIONS] {PROMPT:Enter Destination}

Win32 Version
C Win32CP [Win32Copy] [DSELECTIONS] {PROMPT:Enter Destination}

You can also provide a default response to the question. The prompt is separated from the default by
the ´==>´ string. This default separator string can be changed to anything you like with the
DEFAULTSEP option.

This feature is useful when you want to provide the user the most-likely response to the prompt:

c UnixCP [UnixCopy] [DSELECTIONS] {PROMPT:Enter Destination==>/my/home/dir}

When the prompt is presented to the user, the default value is pre-loaded into the response field. The
user can either accept or edit that string.

• {YESNO:Question-String==>Yes|No}

{YESNO:...} allows you to prompt the user with a dialog containing a Yes/No question and buttons
for their response. If the user presses "Yes", command interpretation/execution continues. If the user
presses "No", the command is aborted. This is handy when you want to make sure the user really
wants to run the command before continuing. For instance, suppose you define a recursive file/direc-
tory deletion command. Before running it, it’s good to prompt the user to confirm their intentions:

D BigDelete {YESNO:Are You Absolutely Sure About This?} rm -rf [SELECTIONS]

You can also provide a default response to the question. It must be either "Yes" or "No" (case-insensi-
tive). Anything else will produce an error. The prompt is separated from the default by the ´==>´
string. This default separator string can be changed to anything you like with the DEFAULTSEP
option.

This feature is handy because you can pre-select the most likely response to the dialog:

D BigDelete {YESNO:Are You Absolutely Sure About This?==>No} rm -rf [SELECTIONS]

Using Variable References Within Prompting Built-Ins
You may have guessed that there is something special about the Prompting Built-In Variables. After all,
they use a different delimiter pair than all other variables in the twander configuration language. That’s
because you can include references to other variables within a Prompting Built-In like this:

PromptYN = Are You Sure You Want To Do This?
DefaultYN = No

TundraWare Inc. 43

twander(1) twander(1)

a mycommand {YESNO:[PromptYN]==>[DefaultYN]} SomeDangerousCommand

A more sophisticated use of this would be when creating a "rename" command. You often want to rename
a file by changing only a few of its characters, not the whole file name. Instead of forcing the user to type
the whole name in over again, why not just do this:

Prompt = New File Name?
r rename mv [SELECTION] {PROMPT:[Prompt]==>[SELECTION]}

Now when the user runs the command, the default string will be the name of the file to be renamed. They
can move around inside the dialog box created by {PROMPT: ...} at runtime to edit the existing file
name to taste.

You can also use Execution Variables inside a prompting Built-In:

d setdate SomeDateCommand {PROMPT:Set Date To: ===>[`date`]}

Program Memory Built-Ins
As described previously, twander implements an advanced notion of a Clipboard called "Program Memo-
ries". There is a corresponding group of Built-In Variables which allows the contents of these memories to
be used in a Command Definition:

• [MEM1] ... [MEM12]

Return the file/directory names currently stored in the indicated memory. For example, to move all the
files/directories currently named in the first Program Memory to the current directory we could define
a move command like this:

m move mv [MEM1] ./

Notes On Built-In Variable Use
• Built-In Variables which return a directory name do NOT append a path separator character ("/" or "\")

to the end of the name even though it is visible in the GUI. This provides maximum flexibility when
defining commands. It is up to the command author to insert the appropriate path separator character
where needed. (NOTE: Earlier releases of twander did include the trailing path separator and you
may have to edit older Configuration Files accordingly. This change was necessary because certain
commands like Unix ´cp´ will not work if given a source directory with the path separator included.)

For example, another way to express the full path of the currently selected item is:

Unix Path Separator
UPSEP = /

#Win32 Path Separator
WPSEP = \

[DIR][UPSEP][SELECTION]

- or -

[DIR][WPSEP][SELECTION]

TundraWare Inc. 44

twander(1) twander(1)

Be aware that, because of twander quoting rules, such constructs will result in strings like:

"/mydir"/"myfile"

- or -

"C:\mydir"\"myfile"

This should not generally be a problem with the various Unix shells, and may work for some Windows
commands. However, some Windows programs (noted in ´notepad´) reject this kind of filename when
passed on the command line. The workaround (and a generally easier way to do this sort of thing), is
to use the [DSELECTION] built-in which returns the full path name of an item as a single quoted
string.

• All User-Defined, Environment, and Execution Variables are processed each time a command is run.
This is especially important for Execution Variables. The variable will be "executed" each time the
Command Definition in which it is referenced is run.

• Similarly, Built-In Variables are resolved on each command invocation, i.e - at command runtime.
The Built-Ins will always reflect the current set of files selected in the user interface.

• The results of all built-ins (except HASH) are put inside double-quotes when they are replaced in the
Command String. This default is recommended so that any built-in substitutions of, say, filenames
with spaces in them, will be properly recognized by your commands. You can suppress the addition of
double-quotes by using the -t command line option when starting twander.

• Any of the variable types may appear multiple times in the same Command String. For example, sup-
pose you want to define a generic Unix copy command:

g gencopy cp -R {PROMPT:Enter Source} {PROMPT:Enter Destination}

When the user presses "g" (or clicks on "gencopy" on the Command Menu), they will be presented
with two prompts, one after the other, and then the command will run.

Conditional Processing Statements
Most of twanders power lies in its ability to be customized to each different user and operating system
via its Configuration File. To make this a bit easier to manage, the twander configuration language rec-
ognizes so-called "Conditional Processing Statements". These statements give you the ability to write a
single Configuration File which automatically tailors itself to run twander properly wherever you are run-
ning.

The general idea is to define a "Condition Block" which begins by doing a logical test. If that test evaluates
to True, all statements in the block are included in the current configuration. If the test evaluates to False,
all statements to the end of the block are ignored.

A Conditional Block always begins with a "Condition Test Statement" and ends with the ".endif" statement.
Conditional Processing Statements may be nested without limit. twander keeps track of which ’.endif’
matches which Condition Test Statement. Like all Configuration File entries, whitespace is ignored when
processing Conditional Statements and you are free to indent (or not) as you see fit.

TundraWare Inc. 45

twander(1) twander(1)

Condition Test Statements are one of three types:

#####
Existential: True if FOO or $FOO are defined
#####

.if [FOO]
...

.endif

.if [$FOO]
...

.endif

#####
Equality: True if FOO or $FOO are literally
the same as the test-string
#####

.if [FOO] == test-string
...

.endif

.if [$FOO] == test-string
...

.endif

#####
Inequality: True if FOO or $FOO are literally
not the same as the test-string
#####

.if [FOO] != test-string
...

.endif

.if [$FOO] != test-string
...

.endif

To make it easy to create conditional blocks based on the type of system you’re running, twander auto-
matically pre-defines two variables which provide information about your system: .OS (typically: nt, posix)
and .PLATFORM (typically: freebsd4, linux-i386, win32). You should run twander and examine the
"User-Defined Variables" section of the Help Menu to see how these variables are set on your system.

These predefined variables show up as "User Defined Variables" in the various twander Help and Debug
outputs, but they begin with a period to remind you of their intended role. They will thus also sort first in
the User-Defined Variables section of the Help Menu.

Several things about Conditional Processing Statements are worth noting:

• Whitespace is mandatory after the ".if" statement - .if[FOO] is syntactically incorrect. However, you
need no whitespace on either side of a "==" or "!=" test.

TundraWare Inc. 46

twander(1) twander(1)

• All these tests involve either a User-Defined Variable or an Environment Variable, never a Program
Option or Built In Variable.

• A Condition Test Statement always involves a variable reference ("[FOO]", never just "FOO")
because we want the contents, not the name, of the variable for the test.

• The Right Hand Side of an (in)equality test is just a string comparsion - no variable expansion is done:

.if [FOO] == string[BAR]

This will not work as you might expect because the contents of variable FOO are literally compared to
the string, "string[BAR]". Note too that this comparison is case-sensitive.

• The ".endif" statement must appear on the line by itself. Nothing other than whitespace may precede
it, and nothing (other than whitespace or a comment) may follow it.

See the example ".twander" file provided in the distribution for some extended examples of using condi-
tionals in your Configuration File. Also see the GOTCHAS section below for further discussion.

The Include Directive
You may include other files in your Configuration File with the following directive:

.include path-to-file

You may place as many of these statements in your Configuration File as you wish. The only syntactic
requirement is that there must be whitespace between the directive and the file path. twander makes no
attempt to validate that path, and you will see an warning message if the file you specify cannot be opened.

The most common reason to do this is to maintain a "standard" configuration in a separate file which is con-
trolled by the system administrator. This is especially handy on larger systems with multiple users. The
system administrator provides a read-only copy of the standard configuration in a place anyone can read it.
Everyone is free to use (but not modify) that standard configuration. You are then free to add to, or even
override the standard configuration content with statements of your own following the ".include". Suppose
you have the following "standard" configuration file available on your system:

Contents of /usr/local/etc/.twander.global

SHELL = bash -c
XTERM = xterm -fn 9x15 -l
VSHELL = [XTERM] -e [SHELL]

DIRSC1 = /usr/local
DIRSC2 = /usr/sbin

t terminal [XTERM]

Now, you can create your own personal Configuration File which takes advantage of this standard file, but
augments it with additional configuration information of your choosing:

Contents of $HOME/.twander

TundraWare Inc. 47

twander(1) twander(1)

.include /usr/local/etc/.twander.global

DIRSC2 = /etc

l ls [VSHELL] ’ls -al | [$PAGER]’

Keep in mind that twander reads the contents of its Configuration File in order. In this case, it means
that all of "/usr/local/etc/.twander.global" is read and then the rest of "$HOME/.twander" is read. If some-
thing is defined more than once, the last definition is what is used. In this case, DIRSC2 is overriden in the
local Configuration File and is ultimately assigned to "/etc". Similarly, you can override previous defini-
tions for User-Defined Variables and even Command Definitions.

The program checks to see if you attempt to do a "circular" include. For example, say file "A"
.includes file "B" and file "B" then .includes file "A". This wold create a neverending "circle" of
included files. If twander detects this, it will display an error describing the problem and skip the offend-
ing line.

ADVANCED WINDOWS FEATURES
As shipped from the factory, twander runs pretty much identically on various Unix variants (FreeBSD,
Linux) and Windows. However, twander is written to take advantage of Mark Hammond’s ´win32all´
Python extensions if they are present on the system. These extensions add many Windows-specific features
to Python and allow twander to provide quite a bit more Windows-centric information about files, direc-
tories, and drives. You do not have to install ´win32all´ for twander to operate properly on your Win-
dows system. Installing this package just means you’ll get even more twander features on Windows than
you would otherwise. If you’ve installed ´win32all´, you can toggle these features on- and off with the
TOGWIN32ALL key described above.

Getting ´win32all´
You can get the ´win32all´ extensions one of two ways. If you’ve installed the Active State version of
Python for Windows, (http://www.activestate.com/Products/ActivePython/) ´win32all´ is already installed
on your system. If you installed the standard Python release for Windows (http://www.python.org/down-
load/download_windows.html), you must add ´win32all´ to your installation. You’ll find the extensions
and painless installation instructions at: http://starship.python.net/crew/mhammond/

New Features Supported With ´win32all´
One important note is in order here: The features enabled by ´win32all´ are only available on "true" Win-
dows systems like Windows 2000 and Windows XP. Earlier versions of Windows like Win98 and WinME
emulate portions of the Win32 API and do not implement the advanced security features found in the NTFS
file system. Therefore, as noted below, some of these features will not work on any of the older 16-bit Win-
dows operating systems. twander handles this gracefully without blowing-up so you can safely have
´win32all´ installed on one of these older systems to take advantage of the features that do work.

Once you have these extensions installed, twander will automatically enable three new features otherwise
unavailable.

• When viewing file/directory detail information, the owner and group names will be the actual names
reported by the operating system rather than the filler values normally seen in those fields
(´win32owner´ and ´win32group´). (Does not work on older Windows systems like Win98.)

TundraWare Inc. 48

twander(1) twander(1)

• Instead of showing Unix-style file permissions (which don’t mean much under Windows), systems
with ´win32all´ installed will show the so-called "file attributes" maintained by the operating system.
Each detailed entry in the display will have one or more of the following attributes displayed in what is
normally the Unix permissions field:

d - Directory
A - Archive
C - Compressed
H - Hidden
N - Normal
R - Read-Only
S - System

• A top-level "Drive List View" is enabled if ´win32all´ is installed. This shows you a list of all cur-
rently available drives reachable by the system, and information about those drives. For locally
attached drives, the drive label is shown. For network-attached drives, the share string is shown. The
drive type (CD/DVD, Fixed, Ramdisk, Remote, Removable) is shown as are the free, and total space
statistics. As is the case with other twander displays, these details can be toggled on- and off via the
TOGDETAIL key.

You can enter the Drive List View in a number of ways:

1) Select the ".." from the root directory of any drive.
2) Enter the string "\\" from the CHANGDIR dialog.
3) Press the DRIVELIST key. (default: Control-k)
4) Start twander using "\\" as the starting directory

argument, either on the command line or using the
Configuration File STARTDIR option.

The "Drive List View" is available on all Windows variants, however the free/total space values will be
incorrect on older systems like Win98.

Notes On Drive List View
The Drive List View is a little different than the usual file/directory view. Program behavior (semantics) is
thus also slightly different than usual in several ways:

• While in Drive List View, the various Built-In Variables which return the current selections will return
the name or names of the selected drive(s) (without a trailing slash) just as you would expect them
to in a normal file/directory view. This allows you to write commands which take drive names (letters)
as an argument. The [DIR] Built-In returns an empty string in this view.

• Normally, as you navigate around a file system, twander sets its own program context to the current
directory. This is why you can write Command Definitions using only the file/directory name cur-
rently selected - twander knows the current directory. When you are in Drive List View, the notion
of "current directory" has no real meaning. So, twander treats the directory from which you entered
Drive List View as the "current directory" while in that view.

• By default, twander automatically rereads the current view about every 3 seconds. This is fine for a
file/directory view but would be annoyingly slow in the Drive List View since it takes a moment or
two to get the status of any floppy disk drives attached to the system. Instead of forcing the user to lis-
ten to (and wait for) the floppy drive status to be determined every 3 seconds, twander only reads
the drive information once when it enters Drive List View. This means if a drive is connected or a

TundraWare Inc. 49

twander(1) twander(1)

floppy is inserted into the system while in Drive List View, this fact will not be automatically noted.
You can force a manual update of the Drive List View by pressing the REFRESH key. (default: Con-
trol-l)

• The TOGWIN32ALL key (default: Control-w) is disabled in Drive List View. Drive List View is only
available in ´win32all´ mode and toggling that mode off makes no sense here.

• The SELALL (default: Control-comma) and SELINV (default: Control-i) features work slightly differ-
ently in Drive List View than they do otherwise. Ordinarily, these features never select the first item of
a file/directory display because it is always the ".." entry pointing to the directory parent. In Drive
List View, the first entry is an entry of interest - usually, but not always, Drive A: - so these two keys
do select it as is appropriate.

Disabling ´win32all´ Features
You can toggle these features on-and off using the TOGWIN32ALL key. (default: Control-w) You can
also permanently disable them by setting the USEWIN32ALL option to False in the Configuration File.
This allows you to leave ´win32all´ installed on your system if you need it for other reasons but don’t want
these features enabled in twander

GOTCHAS
There are several tricky corners of twander which need further explanation:

Program Starts Very Slowly
twander attempts to determine the name of the host on which it is running at program startup. This is
used in the title bar display. It first looks to see if the environment variable HOSTNAME is set, and uses
that value if it is. If this variable is not set, twander does a socket call to see if it can determine the host-
name that way.

Either of these methods works fine, but the socket call can be very slow if the network is misconfigured or
malfunctioning. If twander is starting very slowly, try setting HOSTNAME explicitly in your environ-
ment - this will prevent the socket call from ever taking place. A simple way to do this with ´ksh´ or ´bash´
is:

export HOSTNAME=`hostname`

(Note the backticks used to execute the ´hostname´ program and assign its results to HOSTNAME.)

Be aware that ´bash´ claims to automatically set this variable when it starts. However, it does not appear to
export it properly on some systems (noted on FreeBSD 4.7 with ´bash´ 2.05b). In this case, you have to do
this manually as just described even when using ´bash´

On Windows, environment variables are set via the System Properties menu.

Program Loads Slowly
twander is a fairly large Python program and can take a few seconds to load and initialize, especially on
older, slower systems. You can speed this up a bit by creating an optimized byte-code version of the pro-
gram as follows (make sure you have appropriate administrative permission to do this):

1) Go to the directory where the twander.py file is located.
2) Type the following command: python -O

TundraWare Inc. 50

twander(1) twander(1)

3) Once Python is loaded type: import twander
4) Exit twander.
5) Exit Python by pressing Control-d on Unix or

Control-z on Windows.
6) You will now see a new file in this directory: twander.pyo

This file should be significantly smaller than twander.py.
7) Now you can run the program by entering: python twander.pyo

on Unix/Windows or pythonw twander.pyo on Windows.
8) You have to repeat this procedure each time you install

a new version of twander.py

Cannot Enter Certain Directories On Windows
Windows allows file/directory names to contain non-ASCII characters. Python, as shipped, defaults to
ASCII only and grumbles mightily when it is asked to deal with a string containing characters with ordinal
values greater than 127 (i.e., 8-Bit "extended" ASCII). The solution to this problem is to enable Python to
handle non-ASCII strings. This is done by editing a file called "site.py". This file is normally found in:

C:\Program Files\PythonXX\Lib

Where "XX" is the actual version of Python you’re running.

Open this file with an editor and look for the following text:

encoding = "ascii" # Default value set by _PyUnicode_Init()

if 0:
Enable to support locale aware default string encodings.
import locale

Change the if 0: statement to if 1: and the problem will disappear.

Getting Command Results Displayed In A New Window
When you invoke a command via twander (whether via a command definition in the Configuration File
or the keyboard shortcut), you generally want it to run in a new window. This turns out to be tricky on
Unix-like systems. If the program you are running is GUI-aware, this should not be a problem. However,
if you are using twander to run a command line program or script, you have to take extra care in the for-
mulation of the Command String. In the case of Unix-like systems you have to inv oke the command so that
it runs in some GUI context. Say you want to use a pager like ´less´ to view files. You would expect that
this entry might do it:

V view less [DSELECTIONS]

Sadly, this will not work, at least not the way you expect. If you started twander from a terminal session
and use the command above, it will work, but the results will appear in the invoking terminal window, not
in a new window as you might expect. If you started twander from a GUI or disconnected it from the ini-
tiating terminal with a ´nohup´ ... & invocation, you will get no output. This is not a twander problem, it
is innate to how command line programs run under Unix shell control.

To achieve the desired results, you have to create a new GUI window in which your command can run and
display results. The easiest way to do this is to run your command in a new ´xterm´ window like this:

V view xterm -l -e less [DSELECTIONS]

TundraWare Inc. 51

twander(1) twander(1)

Some program further require you to provide a shell so they can execute correctly. For instance, running
´ls´ in a command definition requires something like this:

L lshome xterm -l -e bash -c ’ls / | [$PAGER]’

In fact, this idiom is so common, you will see variables defined in the example ".twander" file to simplify
such definitions (comments removed):

SHELL = bash -c
VSHELL = [XTERM] [SHELL]
XTERM = xterm -fn 9x15 -l -e

Now you can write the command above like this:

L lshome [VSHELL] ’ls / | [$PAGER]’

This causes your command line program to execute in an ´xterm´ context and under a shell interpreter.

This is not as much an issue on Windows systems where the first form of the command above works fine.
Windows appears to have no problem invoking a new window whether the command is GUI-aware or not.

However, which terminal window is used for output can be confusing. If you start twander from a termi-
nal session, all terminal output will be sent to the terminal session you used to invoke the program. The
way to work around this is to start twander from a Windows shortcut, using ´pythonw.exe´ rather than
´python.exe´. Now each time you run a command that needs a terminal session for output, Windows will
automatically create that session for you.

Using Shell Wildcards In Command Definitions
The {PROMPT:...} Built-In Variable is provided to make it possible to write general-purpose commands
which interact with the user. For example, you might want to define a directory listing command for Win-
dows like this:

L DirList dir {PROMPT:Directory Of What?} | more

When the user presses the "L", they are presented with a dialog box into which they enter their directory
name or wildcard pattern such as "*.bat" and everything works as expected.

On Unix-like systems, however, this does not work as expected. Suppose we define the command for these
systems to be:

L DirList [VSHELL] ’ls -l {PROMPT:Directory Of What?} | [$PAGER]’

This works fine so long as the user does not enter a wildcard pattern in response to the prompt. Why?
Recall that twander quotes all Built-In Variable substitutions by default. If the user enters this at the
prompt:

/kern*

The command twander tries to execute is:

VSHELL Stuff ... ’ls -l "/kern*" | ... pager stuff

TundraWare Inc. 52

twander(1) twander(1)

The argument to ´ls´ is double-quoted. The Unix shells understands this kind of quoting to mean no
expansion of wildcard characters is to be done, which is the exact opposite of what we want.

You might think that the easy way to solve this problem is to turn off argument quoting with the -t com-
mand line flag. However, this is not really practical. Quoting is on or off globally in the program. Turning
it off means no Built-In Variable substitutions will be quoted. That’s fine so long as no directory/file you
select via the user interface has a space in the name. However, you are almost certain to run into such files
sooner or later. (Recall that the only way to deal a directory/filename with spaces in it as a single argument
is to quote that name.)

So, we need a way to leave quoting on but also properly deal with wildcard string entries from the user.
Fortunately, because of the richness of Unix shells, there is a simple way to do this: we’ll use a "shell vari-
able" to hold the user’s response and the shell’s ability to handle multiple commands on one line separated
by semi-colons:

Note that the line below is split for printing purposes
In an actual configuration file, this needs to all be on one line

L DirList [VSHELL] ’UsrResp={PROMPT:Directory Of What?} ;
ls -l $UsrResp | [$PAGER]’

Why does this work? Because the shell interprets (and drops) the double-quotes, when the results of the
{PROMPT:...} are assigned to UsrResp . The later reference to "$UsrResp" returns just the string the user
entered without the quotes and the command works as expected.

Interestingly, this problem does not occur when entering text via the RUNCMD dialog. (default: Control-z)
Here the text you enter is not part of a Built-In Variable substitution, so it is not quoted. (The exception, of
course, would be if you entered a {PROMPT:...} reference in the RUNCMD dialog. In this case, the same
problem we’ve just described could occur.)

Modal Operation Of New Windows
Notice our example commands above do not end with "&". These should not be needed on either Unix-like
or Windows operating systems. When a command is executed, twander starts a process which runs con-
currently with twander itself. This means you should be able to continue using twander while the new
command executes.

If you enable the use of threads by setting USETHREADS to True, you may see twander locked out
while the new command runs - so-called "modal" operation. If this happens, it means your system does not
completely or correctly implement threading and you must use conventional "heavy weight" processes (the
default) rather than threads.

Windows Don’t Disappear On Command Completion
It appears that some X Windows implementations (noted on XFree86 / FreeBSD) do not correctly destroy
an ´xterm´ window after a command initiated with -e terminates. This is not a twander problem - it is an
artifact of thread behavior on such systems and only happens if you set USETHREADS=True. The work-
around is to use the default USETHREADS=False setting.

Program Behavior Incorrect When A Window Is Resized
Certain Unix programs such as ´less´ appear to not work correctly when the window in which they are run-
ning is resized. The program seems to not be properly informed that the window size has changed. This
seems to be an interaction caused by running such programs as threads rather than processes. Once again,
the workaround here is to not change the USETHREADS=False default setting.

TundraWare Inc. 53

twander(1) twander(1)

Really Slow Response Times When Changing To A New Directory
You may occasionally see really slow response times when you change to a new directory. This occurs
when you enter a huge directory with thousands of file or subdirectory entries. twander has to to com-
pute the detail information for each of these entries and this can take a lot of time. On a fast machine with
modern hard drives and controllers, twander is able to process several thousand entries in just a second or
two. However, a number of factors can significantly slow down this process:

• The Autorefresh interval is set too low. Processing the directory takes so long that as soon as one
refresh finishes, the next starts right away. The program will appear to hang. There are two possibili-
ties here. Either disable autorefreshing (via the -r command line option or the AUTOREFRESH Con-
figuration File option), or set the REFRESHINT value to some high number so that twander has
plenty of time to process a directory before the next refresh occurs.

• Slow disk drives. You can really watch twander grind if you change to a large directory on a
CDROM, for instance. There is no good solution here. These drives are inherently slower than hard
drives, and you just have to wait. Make sure you lengthen your refresh interval as described in the pre-
vious bullet.

• By far the worst culprit here, though, is when running Windows with ´win32all´ options enabled. It
takes a lot more work to get win32all-style information about each directory entry, than the default
Unix-style information. Simply turning off ´win32all´ features alone can speed up directory process-
ing by a factor as high as 4X.

When you combine these factors, it is possible to get really long processing times. One test situation we
observed was reading a directory with over 4000 entries on a Windows CDROM. With ´win32all´ process-
ing enabled this took over a minute. By disabling these features, the time came down to under 30 seconds.

• For all these reasons, twander implements an "adaptive refresh" scheme by default. Whenever a
directory is read, the time to do so is tracked. If that time is less than the current value of
REFRESHINT - i.e., The directory read took less than REFRESHINT milliseconds to complete -
nothing special happens. But, if the actual directory read time takes longer than REFRESHINT mil-
liseconds, twander adjusts the value of REFRESHINT upwards. That way, you’re guaranteed to
have time after the read completes to actually do something.

This dynamic adjustment takes place on every directory read. If you go to a slow directory and
REFRESHINT gets dynamically adjusted to, say, 25 seconds, when you go back to a faster/smaller direc-
tory, REFRESHINT will be reset to its default value. The changing value of REFRESHINT is not shown
in the program options help menu. The value there is the one set by default or set in the configuration file.
Think of this as the "base" value for REFRESHINT.

If you don’t like this adaptive refresh interval business, set the ADAPTREFRESH program option to False.
In that case, REFRESHINT will be strictly observed.

Your Configuration File Does Not Produce The Desired Results
It’s easy to fall into the trap of treating the twander configuration capabilities as a real "programming lan-
guage". It is not, it is a fairly simple macro language that does very little more than string substitutions.
Keep the following rules in mind as you edit your configuration:

TundraWare Inc. 54

twander(1) twander(1)

• Except for conditional tests, Environment Variables and User-Defined Variables are never resolved
until they appear in a Command Definition.

• The Right Hand Side of Option Statements, Key Binding Statements, Directory Shortcut Statements,
Wildcard Statements, and Condition Test Statements are treated literally - No variable substitution is
ev er done there.

• A Condition Test Statement always involves a variable reference, never just a variable name.

• For a Condition Test Statement to be true, the referenced variable must be defined and any equality
test must be satisfied.

• When testing for the existence of a User-Defined or Environment Variable, twander does not care
what value the variable contains. It is perfectly permissible to have either type of variable set to an
empty string. The fact that the variable exists at all is what makes the following construct true:

CondVar =
.if [CondVar]
....

.endif

• You have to be careful when overriding variable or command definitions. User-Defined Variables ref-
erenced in a Command Definition are de-referenced at the time the Command Definition is encoun-
tered in the Configuration File. This means that if you change a User-Defined Variable after it has
already been used in a Command Definition, only future references to that variable will reflect the
change:

FOO = bar

x cmd1 command [FOO]

FOO = baz

y cmd2 command [FOO]

In this example, the first command will be defined as "command bar", but the second will be defined
as "command baz".

Watch for this, especially, when using the ".include" directive and then overriding a variable defined
in that file.

Common mistakes include:

#####
Trying to embed a variable where it will never be resolved
#####

DIRSC03 = [$SystemDrive]\Program Files
MYCOLOR = blue
FCOLOR = [MYCOLOR]

#####

TundraWare Inc. 55

twander(1) twander(1)

Expecting a conditional variable to be resolved before the test
Suppose $EDITOR is set to "/usr/local/bin/emacs" ...
#
The following will be False because [EDT] equals
the string "[$EDITOR]". It is not replaced
with "/usr/local/bin/emacs" until [EDT] appears
in a Command Definition
#####

EDT = [$EDITOR]

.if [EDT] == /usr/local/bin/emacs
...

.endif

Note, however, that *this* would work because
Environment Variables are permitted in conditionals ...

.if [$EDITOR] == /usr/local/bin/emacs
...

.endif

#####
A badly formed condition is ignored (after a warning)
which means *all the lines following will be processed*
(until a valid condition statement which is False is
encountered).
#####

PROCESS = no
SUBPART = no

We meant not to process the following but all the
lines up to the next .if statement *are* processed
because the bad syntax on the next line means it’s ignored

.if PROCESS != no
... # Processed!

.if [SUBPART] == yes # *Now* we’ll stop
...

.endif

.endif

OTHER
File/Directory name sorting is done without-case sensitivity on Windows systems because the underlying
operating system does not observe case.

Because this program has not been tested on anything other than Unix-like and Windows systems, com-
mand execution by double-click or pressing Enter is inhibited on all other operating systems by default.

TundraWare Inc. 56

twander(1) twander(1)

You must have Python 2.2 or later installed as well as Tkinter support installed for that release. In the case
of Windows, Tkinter is bundled with the standard Windows Python distribution. In the case of Unix-like
systems, you may have to first install Python and then the appropriate release of Tkinter. This is the case,
for example, with FreeBSD.

You must install the ´win32all´ extensions if you want to use the advanced Windows features.

You’ll find the latest version, and occasionally, Release Candidates of the next version of twander at:

http://www.tundraware.com/Software/twander

You should check this site regularly for updates and bug-fixes. The ´WHATSNEW.txt´ file describes
changes since the last public release of the program.

BUGS AND MISFEATURES
As of this release, a number of problems relating to twander use have been noted:

• The Configuration File parser does no validation to check the sanity of its various entries for Program
Options, Key Bindings, Directory Shortcuts, Variable Definitions, and Command Definitions. It is
entirely possible to edit something into this file that makes no sense at all and causes twander to
misbehave.

• There appears to be a Tkinter/Tk bug on Unix which sometimes inhibits the correct title display when
you tear-off a menu. This is a cosmetic defect and may disappear in future releases of Tkinter/Tk/X-
Windows.

• Some ´win32all´ features do not work correctly or at all on older Windows OSs. For example, the
free/total space available in the Drive List View has been noted to display incorrect values on Win98.
Similarly, the owner and group names are displayed as "Unavailable" on pre-NTFS file systems.
These are OS limitations which twander handles gracefully.

• If you are using ´bash´ as your Unix shell, be aware that, although it sets HOSTNAME automatically,
this environment variable appears to not be exported consistently on all systems.

• If you are running Windows and have file or directory names with non-ASCII characters in them, you
must configure Python to properly deal with such characters. This is described above in the section
entitled, GOTCHAS.

• This program has not been tested on MacOS. It has been reported that Python on MacOS X returns
´posix´ as its OS name. If true, twander should work as written, though we’ve not verified this.
Please let us know how/if it works there and any issues you discover.

INSTALLING twander
Installation of twander is fairly simple and takes only a few moments. The most important thing before
installing the program is to make sure you have Python 2.2 (or later) with Tkinter support installed on your
system.

One other note: However you install the program, it is probably easiest to get started by editing the example
".twander" file to taste. Be aware that this file is shipped with everything commented out. You hav e to

TundraWare Inc. 57

twander(1) twander(1)

uncomment/edit the section relevant to your operating system: Unix-like or Windows.

Installing Using The FreeBSD Port
If you’ve installed twander using the FreeBSD port, all you have to do is copy the example Configuration
File, ".twander" found in /usr/local/share/doc/twander to your home directory and edit it to taste. (You’ll
also find documentation for twander in various formats in this directory as well.)

Make sure that /usr/local/bin is in your path. To start the program, just type "twander.py" from the shell
prompt.

Installing Manually On A Unix-like System
Copy the "twander.py" file to a directory somewhere on your path. (/usr/local/bin is a good candidate).
Make sure this file has permissions 755 and owner/group appropriate for your system (root/wheel,
root/root, or bin/bin). Copy the ".twander" file to your home directory and edit to taste.

To run the program, just type "twander.py" from a shell prompt.

Red Hat Linux Users Please Note: RH Linux (and possibly other Linux systems) installs two versions of
Python. Version 1.52 is called ´python´, and Version 2.2 is called ´python2´. twander requires the latter
and will not run on the former. As shipped, twander invokes Python with the Unix shell "#!" mechanism
using the name ´python´ - which in this case is the wrong version. You can work around this problem one
of several ways:

• Rename ´python´ to ´python1´ and then rename ´python2´ to ´python´. (Not Recommended - could
break other programs.)

• Write an alias or shell script which explicity starts twander with the correct version of Python:

#!/bin/sh
python2 twander.py $*

• Change the first line of the twander code to refer to ´python2´ instead of ´python´.

Red Hat users who have upgraded from earlier Linux versions should also note that you may have files in
your home directories owned by owners and groups which are no longer defined in the system! twander
shows the owner and group fields for such files as numbers rather than names. As best as we can deter-
mine, this is caused when an RH installation is updated from an older version.

Installing Manually On A Windows System
Copy the "twander.py" file to a directory somewhere on your path, or create a new directory to hold this
file and add that directory path to the PATH environment variable.

IMPORTANT NOTE TO WINDOWS USERS: Windows has the old MS-DOS legacy of assuming that a
"." begins a file "extension". Although you can create and read files in the form ".something", it is not rec-
ommended because many Windows programs get confused when they see this. It is also difficult to remove
files named this way with the standard Windows programs and utilities. This is especially the case for older
Windows operating systems like Win98. For this reason, it is recommended that you rename the ".twander"
default Configuration File provided in the program distribution to something else like "twander.conf" and
use the twander -c command line option to point to this Configuration File.

On Windows, where to put the Configuration File raises an interesting question. Microsoft operating

TundraWare Inc. 58

twander(1) twander(1)

systems normally do not set the "HOME" environment variable, because they hav e no notion of a "home"
directory - Well, they do, but it is called "USERPROFILE" not "HOME". So, you can either create a new
user-specific environment variable called HOME yourself (which points to your desired home directory) or
you can invoke twander with the -c argument to explictly declare where it can find its Configuration File.

You can run the program several ways on Windows systems:

• Create a Windows shortcut which points to the "twander.py" file using the "pythonw" command to
invoke it. Normally, starting a Python program from the Windows GUI creates a parent window
which persists as long as the program runs. Using "pythonw" instead of "python" to run your program
suppresses the creation of this blank parent window. For example, you might have something like this
in the "Target:" field of your shortcut:

"C:\Program Files\Python22\pythonw.exe" C:\twander.py \

This runs the program starting at the root directory of the current drive (assuming "twander.py" is
located in C:\.

• Start a command line window and issue a command like the one above directly from the command
line.

• Use Windows Explorer (or better still, an already running instance of twander!) to navigate to the
directory where "twander.py" is located. Double-click on the file. If Python is properly installed,
there should be an association for ".py" file types and twander should start automatically.

GETTING HELP: THE twander MAILING LIST
TundraWare Inc. maintains an email list for twander users to get help and exchange ideas. To subscribe,
send mail to:

majordomo@tundraware.com

In the body (not the subject line) of the email, enter the following text, substituting your own email address
as indicated:

subscribe twander-users your-email-address

DESIGN PHILOSOPHY
Graphical User Interfaces (GUIs) are a blessing and a curse. On the one hand, they make it easy to learn
and use a computer system. On the other, they are a real inconvenience to experienced users who are touch
typists. Taking hands off the keyboard to use the mouse can really slow down a good typist.

Nowhere is this more apparent than in filesystem browsers. In one corner we have the GUI variants like
´Konqueror´ and ´Microsoft Windows Explorer´. These are very easy to use but you pretty much need the
mouse in your hand to do anything useful. In the other corner are the text-based file browsers like ´List´,
´Norton Commander´, and ´Midnight Commander´. These are really efficient to use, but have limited func-
tionality and generally do not operate very well on groups of things.

Both of these approaches also suffer from the well-known interface problem of "What You See Is All You
Get" - Each program has a predefined set of commands and the user cannot easily extend these with their
own, new commands.

TundraWare Inc. 59

twander(1) twander(1)

twander is another approach to the filesystem navigation problem which embraces the best of both the
GUI-based approach and the text-based approach. It also provides a rich mechanism whereby each user
can easily define their own command set and thereby customize the program as they see fit. This is done
with a number of key features:

1) The Navigation of the filesystem is graphical - you can use the mouse to select files, directories,
or to change directories. However, each major filesystem navigational feature is also doubled on
the keyboard (using Control keys) so you can move around and select things without ever touching
the mouse.

2) twander also supports a number of navigation shortcuts. It provides single control-key access
to changing directories, moving to the previous directory, moving up one directory level, moving
to any previously visited directory, (de)selecting any or all files/directories in the current view, and
escaping to the operating system to run a command. Some (but not all) of these features are also
doubled via GUI/mouse operations.

3) There are no built-in file or directory commands. All commands which manipulate the files or
directories selected during navigation are user-defined. This Command Definition is done in an
external Configuration File using a simple but powerful command macro language. This means
that that the command set of the program can easily be changed or expanded without having to
release a new version of twander ev ery time. Better still, every different user can have their own
command set defined in a way that suits their style of working. Best of all, commands can be
invoked either graphically (with a mouse click) or via a single keypress to minimize moving your
hands off the keyboard.

4) Because twander is written in Python using Tkinter, the same program runs essentially identi-
cally on many Unix-like and Windows systems. The only thing that may need to be changed
across these various platforms are the Command Definitions in the configuration file. You only
need to learn one interface (and the commands you’ve defined) across all the different systems you
use.

The consequence of all this is that twander is an extremely powerful and highly customizable filesystem
navigator. Once learned, both navigation and command execution are lightning-fast (or at least, as fast as
your machine can go ;) while minimizing dependency on the mouse.

COPYRIGHT AND LICENSING
twander is Copyright(c) 2002-2005 TundraWare Inc. For terms of use, see the twander-license.txt file in
the program distribution. If you install twander on a FreeBSD system using the ’ports’ mechanism, you
will also find this file in /usr/local/share/doc/twander.

AUTHOR
Tim Daneliuk
twander@tundraware.com

DOCUMENT REVISION INFORMATION
$Id: twander.1,v 1.124 2005/02/17 20:53:01 tundra Exp $

TundraWare Inc. 60

