A Davis-Putnam Program
and Its Application to Finite First-Order Model Search:

Quasigroup Existence Problems”*

William McCune

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439-4844, U.S.A.
e-mail: mccune@mecs.anl.gov
phone: 708-252-3065

September 1994

Abstract

This document describes the implementation and use of a Davis-Putnam procedure for
the propositional satisfiability problem. It also describes code that takes statements in first-
order logic with equality and a domain size n then searches for models of size n. The
first-order model-searching code transforms the statements into set of propositional clauses
such that the first-order statements have a model of size n if and only if the propositional
clauses are satisfiable. The propositional set is then given to the Davis-Putnam code; any
propositional models that are found can be translated to models of the first-order statements.
The first-order model-searching program accepts statements only in a flattened relational
clause form without function symbols. Additional code was written to take input statements
in the language of OTTER 3.0 and produce the flattened relational form. The program was
successfully applied to several open questions on the existence of orthogonal quasigroups.

1 The Davis-Putnam Procedure

The Davis-Putnam procedure is widely regarded as the best method for deciding the satisfiability
of a set of propositional clauses. I'll assume that the reader is familiar with it. I list here some
features of our implementation.

1. There are no checks for pure literals. Experience has shown that such checks are usually
more expensive than they are worth.

2. Deletion of subsumed clauses is optional. Again, experience has shown that it is too
expensive.

*This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

3. The variable selected for splitting is the always first literal of the first, shortest positive
clause.

1.1 Implementation

The data structures for clauses and for propositional variables and the algorithms are similar to
the ones Mark Stickel uses in LDPP [8].

Variables are integers > 1. Associated with the set of variables is an array, indexed by the
variables, of variable structures. Each variable structure contains the following fields.

e value. The current value (true, false, or unassigned) of the variable.

e enqueued_value. A field to speed the bottleneck operation of unit propagation (see be-
low).

e pos_occ. A list of pointers to clauses that contain the variable in a positive literal.

e neg_occ. A list of pointers to clauses that contain the variable in a negative literal.
Each clause contains the following fields.

e pos. A list of variables representing positive literals.
e neg. A list of variables representing negative literals.
e active_pos. The number of positive literals that have not been resolved away.
e active_neg. The number of negative literals that have not been resolved away.

e subsumer. A field set to the responsible variable if the clause has been inactivated by
subsumption.

Assignment. When a variable is assigned a value, say true, by splitting or during unit prop-
agation, unit resolution is performed by traversing the neg_occ list of the variable: for each
clause that has not been subsumed, the active_neg field is simply decremented by 1. If
active_pos+active_neg becomes 0, the empty clause has been found and backtracking occurs.
If active_pos+active_neg becomes 1, the new unit clause is queued for unit propagation. In
addition, if subsumption is enabled, (back) subsumption is performed by traversing the pos_occ
list of the variable: for each clause that is not already subsumed, the subsumer field is set to
the variable. Variables must be unassigned during backtracking, and the process is essentially
the reverse of assignment.

Unit Propagation. A split causes an assignment. The unit propagation queue is then pro-
cessed (causing further assignments and possibly more units to be queued) until empty or the
empty clause is found. Each split typically causes many assignments, so unit propagation must
be done efficiently. To avoid duplicates in the queue, and to detect the empty clause during
the enqueue operation rather than during assignment, we set the field enqueued_value of the
variable when the corresponding literal is enqueued. That way we can quickly tell whether a
literal or its complement is already in the queue.

Unit Preprocessing. If the set of input clauses contains any units, unit propagation is ap-
plied. During assignment, back subumption is always applied, because assignments made during
this phase are never undone.

Selecting Variables for Splitting. The variable selected for splitting is the first literal in
the first, shortest nonsubsumed positive clause. After the unit preprocessing, pointers to all of
the non-Horn clauses (i.e., clauses with two or more positive literals) are collected into a list.
In order to select a variable for splitting, the list is simply traversed. Subsumed clauses must
be ignored; if subsumption is enabled, the subsumer field is checked; otherwise the clause is
scanned for a literal with value true. (If all clauses in the list are subsumed, a model has been
found.)

1.2 Pigeonhole Problems

The pigeonhole problems are a set of artificial propositional problems that are used to test the
efficiency of propositional theorem provers. See the sample input files that come with ANL-DP
for examples. Table 1 lists the performance of ANL-DP on several instances of the pigeonhole
problems. The jobs were run on a SPARC 2.

Table 1: ANL-DP on the Pigeonhole Problems
Branches Seconds

7 pigeons, 6 holes 719 .15
8 pigeons, 7 holes 5039 1.14
9 pigeons, 8 holes 40319 9.16

10 pigeons, 9 holes 362879 88.43
11 pigeons, 10 holes 3628799 916.62

1.3 Using ANL-DP

Propositional input to ANL-DP is a sequence of clauses. (See Sec. 2.2 for input to the first-order
model-searching program.) Literals are nonzero integers (negative integers represent negative
literals), and each clause is terminated with 0. (Hence, the entire input is just a sequence of
integers.) The input is taken from stdin (the standard input).

ANL-DP accepts the following command-line options.

-s. Perform subsumption. (Subsumption is always performed during unit preprocessing.)
-p- Print models as they are found.

-m n. Stop when the n-th model is found.

-t n. Stop after n seconds.

-k n. Allocate at most n kbytes for storage of clauses.

-x n. Quasigroup experiment n. See Section 2.5.

-B file. Backup assignments to a file.

-b n. Backup assignments every n seconds.

-R file. Restore assignments from a file. The file typically contains just the last line of a backup
file. Other input, in particular the clauses, must be given exactly as in the original search.

-n n. This option is used for first-order model searches. The parameter n specifies the domain
size, and its presence tells the program to read first-order flattened relational input clauses
instead of propositional clauses.

2 The First-Order Model-Searching Program

The first practical program for searching for small models of first-order statements was FINDER
[6]. Another model-searching program is MGTP [7], which uses a somewhat different approach.
The third class of programs, including LDPP [8], SATO [8], and the one described here, are
based on Davis-Putnam procedures. None of these programs is clearly better than the others,
and each has answered open questions about quasigroups (see Sec. 2.5).

The Davis-Putnam approach is quite elegant, because the computational engine—the Davis-
Putnam code—is in no way tailored to first-order model searching. First-order clauses and a
domain size n are input; then ground instances (over the domain) of the first-order clauses are
generated and given to the Davis-Putnam code. Any propositional models that are found can
be easily translated to first-order models (e.g., an n X n table for a binary function).

The steps, which are summarized in Figure 1, are as follows.

1)

2 3
FO formula —— FO clauses L»— FO flat clauses u»— Prop. clauses

(4)

\

5
FO models - (5) Prop. models

Figure 1: Searching for First-Order Models

(1) Take an arbitrary first-order formula (possibly involving equality), and produce a set of
clauses. OTTER’s clausification code is sufficient for this.

(2) Take a set of first-order clauses, and produce a set of flattened, relational clauses that
contain no constants or function symbols—all arguments of the literals are variables. The
steps are as follows:

a. For each m-ary function symbol (including constants), an n + l-ary predice symbol
is introduced. For the examples, function symbols are lower-case letters, and new
predicate symbols are the corresponding upper-case letters.

b. To flatten the clauses, the following kind of equality transformation is applied to
nonvariable terms (excepting arguments of positive equalities): P[t] is rewritten to
t # z | P[z].

c. A clause containing a positive equality o = 3, where both arguments are nonvariable,
is made into two clauses: L |« =3 becomes L |a#z |f=zand L |f#z|a ==z.

d. Each functional literal, say f(z,y) = z, is rewritten into its relational form, say
F(z,y,z). (The resulting clauses may contain ordinary equality literals as well.)

For example, the equality f(g(z),z) = e produces the two clauses

—G(x,y) | _'E(Z) | F(y,a:,z)
—G(z,y) | E(z) | ~F(y,z,2)

(3) Take a set of flattened relational clauses and a domain size, and generate a set of propo-
sitional clauses. For each relational clause, the set of instances over the domain is con-
structed. (With domain size n, a clause with m variables produces n™ instances.) Each
atom is encoded into a unique integer that becomes the propositional variable. Also, we
must assert that the (n + 1)-ary predicates introduced above represent total functions, so
for each, we assert two sets of propositional clauses. For example, for ternary relation F,
we must say that the last argument is a function of the others,

-F(z,y,21) | "F(z,y, 22), for z1 < 2o (well-defined)

and that the function is total and its value always lies in the domain (elements of the
domain are named 0,1,---,n — 1):

F(z,y,0) | F(z,y,1)| --- | F(z,y,n — 1) (closed and total).

If the flattened relational clauses contain any equality literals, the n? units for the equality
relation are asserted. Nothing special needs to be done for ordinary predicate symbols.

(4) The Davis-Putnam procedure searches for models of the propositional clauses.

5) For each propositional model, we generate the corresponding first-order model. The clauses
g g
given in (3) above ensure that from the propositional model, we can build a function for
each function symbol (including constants).

2.1 Additional Constraints

For various reasons, the most important being to reduce the number of isomorphic models
that are found, the user can specify part of the model by supplying ground clauses over the
domain. For example, if a noncommutative group is being sought, with constants a and b as
noncommuting elements, the user can assign 0 to the identity, 1 to a, and 2 to b. In this case,
nothing is lost by making them distinct.

Symbols can be given the following properties.

quasigroup. This can be applied to ternary relations that represent binary functions. The
multiplication table of a quasigroup has one of each element in each row and each column.

bijection. This can be applied to binary relations that represent unary functions.
equality. This can be applied to binary relations. It is just equality of domain elements.

order. This can be applied to binary relations. This is just the less-than relation on the
domain elements.

holey. This can be applied to ternary relations that represent binary functions. See Sec. 2.5.2.

hole. This can be applied to binary relations. See Sec. 2.5.2.

2.2 Using the Program to Search for First-Order Models

The first-order searcher is part of ANL-DP, and it is invoked as described in Sec. 1.3. The
command-line option “-n n” specifies the domain size and indicates that the input will be given
as first-order flat clauses. Here is an example input specifying a noncommutative group.

function F 3 quasigroup
function E 1 ———--
function G 2 bijection
function A 1 ————-
function B 1 ———--
end_of_symbols

-E vO F v0 vl vl .

-E vO -G vl v2 F v2 vl vO .

E vO -G v1 v2 -F v2 v1 vO .

-F v0 vl v2 -F v3 v2 v4 -F v3 v0 v5 F vb vl v4 .
-F vO v1 v2 F v3 v2 v4 -F v3 v0 v5 -F vb vl v4 .
-F vO v1 v2 -B vO -A vl -F vl vO v2 .
end_of_clauses

o = m
N = O

end_of_assignments

Symbol Declarations. In the first section of the input, each symbol is declared with four
strings: type (function or relation), symbol, arity (n+1 for functions), and properties
(equality, order, quasigroup, bijection, or ————-).

Clauses. Flat relational clauses appear in the second section. Variables can be any strings.
Whitespace is required before the periods that terminates clauses.

Assignments. Ground units (without periods) can appear in the third section.

2.3 Using OTTER to Generate the Flat Clauses

OTTER 3.0.2 [5] and later versions can take ordinary formulas or clauses and produce the flat
relational clauses for input to ANL-DP. Here is an OTTER input file for a noncommutative group
that will produce something like the file in Sec. 2.2.

set (dp_transform) .

list(usable).

f(e,x) = x.

f(g(x),x) = e.

f(f(x,y),z) = £(x,f(y,2)).
f(a,b) != f(b,a).

end_of_list.

list(passive).
properties(f(_,_), quasigroup).
properties(g(_), bijection).
assign(e, 0).

assign(a, 1).

assign(b, 2).

end_of_list.

The command set (dp_transform) tells OTTER to generate input for an ANL-DP search and
then exit.

The output of OTTER contains extraneous text, so it must be passed though a filter before
ANL-DP can receive it. See the example files and scripts in the distribution directories.

2.4 The Order Relation

The ordered semigroup example in the FINDER 3.0 manual [6, Sec. 4.1.5] motivated me to have
ANL-DP recognize the less-than relation on domain elements. The input (in OTTER form) for
the ordered semigroup problems is as follows.

set (dp_transform).
list(usable).

f(f(x,y),z) = £(x,f(y,2)).
-(f(x,y) < f(x,2)) | y < z.
-(f(y,x) < f(z,x)) | y < z.
end_of_list.

(OTTER recognizes < as the order relation and gives it the property “order” in its output.)
Table 2 compares the results of FINDER and ANL-DP, both run on SPARC 2 computers, on
the ordered semigroup problems. FINDER’s search algorithm was developed with this type of
problem in mind; ANL-DP simply adds the n? unit clauses for the less-than relation. I believe
this distinction explains most of the disparity of the times.

Table 2: Ordered Semigroup Problems — FINDER vs. ANL-DP
Order Models FINDER ANL-DP

3 44 0.1 0.1
4 386 0.6 2.6
5 3852 9.2 58.0

2.5 Application to Quasigroup Problems

In the multiplication table of an order-n quasigroup, each row and each column are a permutation
of the n elements. For these problems, we are interested only in idempotent (i.e., zz = z) models.
Additional constraints are given for the seven problems listed in Table 3. (Notes: (1) For QG1
and QG2, the disjunction to the right of the implication is ordinarily a conjunction; the forms

are equivalent for quasigroups, and models are found more easily with disjunction. (2) The
second and third equalities for QG5 and the second equality for QG7 are dependent.) See [2]
and [7] for details on the quasigroup problems.

Table 3: The Quasigroup Problems
Name Constraints
QGl zy=u ANzw=u ANvy=x ANvw=z—>c=2z V y=w
QG2 zy=u Azw=u Avz=y ANvz=w—o>zrx=2V y=w
QG3 (zy)(yz) ==

QG4 (zy)(yr) =y

QG5 ((zy)z)z =y A z((yz)z) =y A (2(yz))z =Y
QG6 (zy)y = z(zy)

QG7 ((zy)z)y =z A ((zy)y)(zy) =z

We also used the following cycle constraint on the last column to eliminate some isomorphic
models [7]:

=f(z,n,z), for z <z — 1.

The constraint requires that cycles in the last column be made up of contiguous elements. This
constraint is specified to ANL-DP with the command-line option “-x1"; the quasigroup operation
must be £ (lower-case) for this to work.

Table 4 gives summaries of the performance of ANL-DP (C, list structure), SATO-2 (C, trie
structure), and LDPP’ (Lisp, list structure) on some cases of the quasigroup problems. The
SATO and LDPP figures are taken from [8]. All runs were made on a SPARC 2 or similar
computer. All programs used the cycle constraint and similar selection functions for splitting.
I believe that differences in the number of branches are due mostly to the order of clauses and
literals. Search time is given in seconds.

Table 4: Quasigroup Problems — Comparison

ANL-DP SATO-2 LDPP’
Problem Models | Branches Search | Branches Search | Branches Search
QG1.7 8 388 2.05 376 1 389 26
.8 16 100731 852.81 102610 379 101129 3463
QG2.7 14 361 2.23 340 1 205 8
.8 2 77158 810.75 80245 341 33835 1358
QG3.8 18 1017 2.82 1072 3 573 5
.9 - 39461 155.12 48545 157 24763 208
QGA4.8 - 891 2.40 925 2 602 4
.9 178 52939 209.76 52826 168 27479 228
QG5.9 - 14 .22 19 2 15 4
.10 - 37 .52 62 .5 38 RY
11 5 112 2.16 111 2 125 5
12 - 369 6.61 369 7 369 15
.13 - 9588 242.54 10764 224 12686 639
QG6.9 4 17 .25 24 2 18 4
.10 58 .54 150 7 59 .8
A1 - 537 5.36 519 6 539 11
12 - 7306 95.41 5728 92 7288 177
QGT7.9 4 7 .19 7 2 8 3
.10 - 39 .38 54 4 40 .7
11 - 291 2.98 254 3 294 6
12 - 1578 17.87 1281 22 1592 38
13 64 33946 493.67 27988 592 34726 1050

Table 5 lists some additional statistics for ANL-DP on the quasigroup problems. “Generated”
and “Searched” are the number of propositional clauses generated and the number remaining
after subsumption and the initial unit propagation. “Create” is the time (in seconds) used to
construct the propositional clauses.

2.5.1 Cyeclically Generated Quasigroups

The command-line option -x2 constrains models of quasigroup f to have the property f(z +
1,y +1) = f(z,y) + 1, where addition is (mod n); that is, all the diagonals count up (mod
domain-size).

The command-line option -x%, where 11 < ¢ < 19, constrains models of quasigroup f in the
following way. Consider the square of size © = 7 — 10 in the lower right corner and the remaining
square of size m = n — x in the upper left corner. The diagonals of the upper left square count
up (mod m), except for diagonals that consist of the same element in m, ---,n—1. Also, the first
m elements of the last 2 rows and columns count up (mod m). For example (see [2, Example
8.1] with the input (note that the only upper left corner is idempotent)

set (dp_transform) .

list(usable).
% (3,1,2)-COLS

Table 5: Quasigroup Problems — ANL-DP Full Statistics

Problem Models Branches Generated Searched Memory Create Search
QG1.7 8 388 120954 8952 886 K 4.79 2.05
8 16 100731 267805 28877 2061 K 10.85 852.81
QG2.7 14 361 120954 9830 886 K 4.72 2.23
.8 2 77158 267805 30902 2061 K 10.88 810.75
QG3.8 18 1017 9757 3830 303 K 0.26 2.82
9 - 39461 15670 6966 601 K 0.39 155.12
QG4.8 - 891 9757 3830 303 K 0.25 2.40
9 178 52939 15670 6966 601 K 0.37 209.76
QGH.9 - 14 28792 9694 894 K 0.85 0.22
.10 - 37 43946 17274 1193 K 1.39 0.52

a1 5 112 64428 28488 1786 K 2.05 2.16

12 - 369 91363 44302 2674 K 2.93 6.61

A3 - 9588 125984 65790 3562 K 4.02 242.54
QG6.9 4 17 22231 7653 601 K 0.66 0.25
.10 - 58 33946 13579 900 K 1.02 0.54

A1 - 537 49787 22332 1493 K 1.54 5.36
A2 - 7306 70627 34662 2088 K 2.24 95.41
QG7.9 4 7 22231 5838 601 K 0.61 0.19
.10 - 39 33946 11038 900 K 1.04 0.38

11 - 291 49787 18944 1493 K 1.48 2.98
12 - 1578 70627 30309 2088 K 2.14 17.87
13 64 33946 97423 45967 2683 K 3.14 493.67

fx,pt=u | f(z,w)!=u | £(v,x)!=y | £(v,z)!=w

end_of_list.

list(passive).

properties(f(_,_), quasigroup).

assign(£(0,0),0).
end_of_list.

and the options

[

‘“n 10 -x13 -p”, we get

Model #1 at 333.47 seconds (SPARC 10):

f ()
010
118
2| 4
319
417
516
613

I
711
81 2
9165

10

x=z | y=w.

The -xi option can also be used when searching for quasigroups with holes.

2.5.2 Quasigroups with Holes

We simply list an example. The input (compare with above input)

set (dp_transform) .

list (usable).

same_hole(x,x) | £(x,x) = x.

% (3,1,2)-COLS

fx,Pt=u | f(z,w!=u | £(v,x)!=y | £(v,z2)!=w | x=2z | y=w.
end_of_list.

list(passive).

properties(f(_,_), quasigroup_holey).
properties(same_hole(_,_), hole).

% The program makes same_hole symmetric and transitive.
assign(same_hole(7,8), T). assign(same_hole(8,9), T).
end_of_list.

4

with the command-line options “-n10 -x13 -p” produces the following:

11

Model #1 at 50.07 seconds (SPARC 2):

f | 0123456789
010675893124
114107689235
219521708346
318963271450
412890437561
517389154602
61 5748926013
713456012 ---
81 6012345---
911234560 ---

2.5.3 Open Quasigroup Questions Answered
Orthogonal Mendelsohn Triple Systems (OMTS). Corollary 5.2 of [3] states

The necessary condition for the existence of a pair of OMTS(v), that is, v =0 or 1
(mod 3), is also sufficient except for v=3,6 and possibly excepting v € {9,10,12,18}.

See [3] for definitions. The input

set (dp_transform) .

list(usable).
f(x,x) = x.
h(x,x) = x.

f(x,f(y,x))=y.

h(x,h(y,x))=y.

f(x,y)!=u | f(z,w)!'=u | hix,y)!=v | hiz,w)!=v | x=z | y=w.
end_of_list.

list(passive).

properties(f(_,_), quasigroup).

properties(h(_,_), quasigroup).

end_of_list.

with the options “-n9 -x1 -p” produces the following quasigroups, which correspond to a pair

of orthogonal Mendelsohn triple systems of order 9.

Model #1 at 54.58 seconds (SPARC 2):

0O ~NOOd WNRO
=D NN OO W oo
ON WO NP O~
W o= o000 NNO
D OO NEFE, WoooN
O, NO D0 Ww-N
WK Ul ~NON P
~NO OO N OTW
N N0 WO U = bOo
O OUld WNNO -
O ~NOU P WNR-O
DOONNWDd = OO
WoOHONO U -, N
Od WwWooRRr NNOO®
NN O, O Wo 0
= 0100 O d O NNDW
N O TN W
P oOOwWwoI NN O N
O Nk B NOOWOH O
O WONOEF U N

—_
[N)

An analogous search for OMTS(10) ran for several days without finding a model.

QG3(2%). A quasigroup of type h™ has order h*n and n holes of size h. Frank Bennett posed
[1] the question of the existence of QG3(2%). (Mark Stickel had already answered positively the
question of the existence of QG3(2%) [1].) The ANL-DP input

relation = 2 equality
relation same_hole 2 hole
function f 3 quasigroup_holey
end_of_symbols

f vO vO vO same_hole vO vO .

-f vO v1 v2 -f vl vO v3 f v3 v2 vl .
-f vO v1 v2 -f v0 v2 vi1 = v0 vl .
-f vO v1 v2 -f v2 vl vO = v0 vl .

end_of_clauses

same_hole 0 7
same_hole 1 8
same_hole 2 9
same_hole 3 10
same_hole 4 11
same_hole 5 12
same_hole 6 13

same_hole 14 15
end_of_assignments

[4

with the options “-n16 -p” produces the following holey quasigroup.

Model #1 at 76086.21 seconds (1468 DX2/66):

£ | 01 2 3 4 5 6 7 8 910 11 12 13 14 15
0 | 2 312 1 4 5 -1011 141513 8 6 9
11 - 6 515 01412 - 411 7 10 2 9 13
2] 1115 - 010141213 7 - 5 6 3 4 1 8
3] 213 1 - 9 7 4151112 - 014 5 8 6
4] 510 7 1 - 6 9 814 315 - 2 0 13 12
5113 41114 0 - 8 615 7 910 - 1 2 3
6] 4 015 91411 - 312 5 2 8 -10 1
7] - 6 813 2 915 - 514 412 111 3 10
8114 - 4 6 3 210 9 - 013 515 7 12 11
9115 3 -11 6 8 7 113 -1214 010 4 5

10| 6 514 - 71511 2 9 - 13 812 0 4
11] 81210 2 - 1 314 613 7 - 915 5 0
12110 9 0 813 - 111 415 6 3 -14 7 2
13| 9141215 5 3 -10 2 8 0 1 -1 7
14 1 713 41210 0 5 3 6 8 211 9 - -
151211 5 7 813 2 4 010 1 9 6 3 - -

(In case the reader is wondering why the holes are irregular in the lower right corner, the reason
is that preliminary runs on QG3(2%) ran faster with a similar hole configuration than with a
regular configuration.)

13

QG7(17,5). Frank Bennett posed [1] the question of whether the the quasigroup identity
(QGT7a) z(yx) = (yz)y implies either (xy)z = z(yz) or zy(yz) = y. He suggested looking at
models of order 17 with a hole of size 5, if they exist, as possible counterexamples. The identity
(QG7b) ((zy)z)y = z, which is conjugate-equivalent [2] to (QGT7a), is much easier to work with,
so we put ANL-DP to work with the input

relation same_hole 2 hole
function f 3 quasigroup_holey
end_of_symbols

f vO vO vO same_hole vO vO .
-f vO v1 v2 -f v2 vO v3 f v3 vl vO .
end_of_clauses

same_hole 12 13
same_hole 13 14
same_hole 14 15
same_hole 15 16
end_of_assignments

[

and the options “-n17 -x1 -p”, which produced the following

Model #1 at 172914.77 seconds (SPARC 2):

£ | 01 2 3 4 5 6 7 8 910 11 12 13 14 15 16
0l 0 2 116131112 8 51514 7 4 6 9 10 3
1116 1 3 21013 91215 4 614 5 7 811 0
2 | 16 2 015 9141012 7 51311 8 4 6 1
3] 1 016 3 8151114 61213 410 9 5 7 2
4] 8131015 4 6 516 214 012 9 311 1 7
5113 9151116 5 7 614 312 1 8 210 0 4
6| 1112 914 716 6 413 0 15 310 1 8 5
71121014 8 5 416 7 113 315 211 0 9 6
8|15 6 51214 1 213 810 916 0 4 7 3 11
9| 71512 4 01413 316 91110 1 5 6 2 8

10| 51413 612 3 015111610 8 7 1 2 4 9
11114 4 713 21215 1 9 81611 6 0 3 5 10
121011 4 5 3 2 8 9 7 6 1 0 - - - - -
3] 9 8 6 71110 3 2 0 1 4 5 - - - - -
14| 4 5 8 9 1 01011 3 2 7 6 - - - - -
15| 6 71110 9 8 1 0 4 5 2 3 - - - - -
6] 2 3 0 1 6 7 4 51011 8 9 - - - - -

The conjugate-equivalent quasigroup corresponding to (QG7a) was then generated and found
to falsify the two identities in question, giving a counterexample to the problem.

References

[1] F. E. Bennett. Correspondence by electronic mail, 1994.

[2] F. E. Bennett and L. Zhu. Conjugate-orthogonal Latin squares and related structures. In
J. H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory: A Collection of
Surveys, pages 41-96. John Wiley & Sons, 1992.

14

[3] F. E. Bennett and L. Zhu. Self-orthogonal Mendelsohn triple systems. Preprint, 1994.

[4] M. Fujita, J. Slaney, and F. E. Bennett. Automatic generation of some results in finite
algebra. In International Joint Conference on Artificial Intelligence, 1993.

[6] W. McCune. OTTER 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, Argonne
National Laboratory, Argonne, Ill., 1994.

[6] J. Slaney. FINDER version 3.0 notes and guide. Tech. report, Centre for Information Science
Research, Australian National University, 1993.

[7] J.Slaney, M. Fujita, and M. Stickel. Automated reasoning and exhaustive search: Quasigroup
existence problems. Computers and Mathematics with Applications, 1994. To appear.

[8] H. Zhang and M. Stickel. Implementing the Davis-Putnam algorithm by tries. Preprint,
1994.

15

