
MySQL occam-π API

Ulrik Schou, ulriksj@diku.dk

Espen Suenson, expen@diku.dk

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

June 21, 2006

Contents

1 Introduction 2

2 The occam-π programming language 2

3 Design 2

4 Implementation 3

5 Applications 4

6 Benchmark 5

7 Tests and examples 5

8 Documentation of the API 5

8.1 Accessing the API . 7

8.2 Overview of the protocols . 7

8.3 An example program: simple.occ . 8

8.4 The MySQL.init process . 9

8.4.1 Signature . 9

8.4.2 Usage . 9

8.5 The MySQL.end process . 9

8.5.1 Signature . 9

8.5.2 Usage . 9

8.6 The MySQL process . 9

8.6.1 Signature . 9

8.6.2 Usage . 9

8.7 Communication with the MySQL process . 10

8.7.1 query; MOBILE []BYTE . 10

8.7.2 query.row; MOBILE []BYTE . 11

8.7.3 query.all; MOBILE []BYTE . 11

8.7.4 next.row . 11

8.7.5 remaining.rows . 11

8.7.6 affected.rows . 11

8.7.7 null.values . 12

8.7.8 field.names . 12

8.7.9 field.info; BYTE . 12

8.7.10 reconnect . 14

8.7.11 quit . 14

1

1 Introduction

This paper describes the development of a MySQL API in occam-π (MoA), including documentation of

the API, a benchmark against the MySQL C API, some remarks on developing with the API and a short

notice on some demonstration programs distributed with MoA.

The reason for developing MoA is to contribute to the general acknowledgement and spreading of

the occam-π programming language. The ease of access to databases is central to many applications,

especially web applications which is a field where the parallelism of occam-π is a definite advantage. It is

the hope of the authors that MoA will contribute to making occam an attractive language for developers.

The choice of MySQL as the target database for the API was made because MySQL is currently

the most widespread free database. An alternative was to make an ODBC API, which would have

provided access to more database systems, the cost being a solution less readily applied to MySQL.

As the audience is hoped to be upcoming developers and the open-source community, generality was

sacrificed for accessibility.

2 The occam-π programming language

occam is a highly parallel safe language based on Hoares Communicating Sequential Processes, a calculus

that provides a sound semantic foundation for concurrent execution.

The language was originally developed by the company Inmos in the 80’s for their parallel transputer

chip. It has since been further developed mainly by a group of researchers at the University of Kent.

Notably, the language has been fused with some of the π-calculus for allowing a more dynamic treatment

of processes. This is why the language today is called occam-π.

Central to occam is the notion of processes. Processes can execute concurrently and possess their own

internal data. They can only communicate via. well-defined messages over channels. Thus, there is no

shared memory in occam, and all communication must be done via. channels. This is the main reason

that occam is a very safe and easy language: There are no nasty aliasing effects or surprising concurrent

behaviour due to the inappropriate use of the usual concurrency constructs (semaphores etc).

In addition, the compiler is able to check and disallow a variety of unwanted behaviour such as race

conditions and out-of-bounds array assignment.

In short, occam is an excellent choice of language for every parallel programming task. The only

drawback is that the current compiler onlys supports single-CPU architectures. But even for single-CPU

applications occam is worth a thought due to the increased clarity and safety obtained. In addition,

efforts are being made continually to further develop occam-π.

3 Design

The main design criteria for the interface to MySQL is that it should be safe and easy to use. The main

difficulty in the design lies in the fact that communication with the database is inherently sequential.

2

Safety is provided by encapsulating access to the database in a process. Communication with the

database is then carried out by passing messages to and from the MySQL process. The communication

will follow a request-answer model: For each message passed to the process, there will be at least one

message received. For safety, there will be separate protocols for incoming and outgoing messages.

The reason for providing access via. a process and not simply as ordinary library calls is that we want

to avoid having to expose handles to the database to the application programmer. All state information

should be handled internally in the process. For the same reason, each connection to the database will

be a separate process. That way, we avoid handles to connections.

The standard way of retrieving data from the database is one row at a time. The basic retrieving

method of MoA will work in the same way, but for convenience we will also provide a way of retrieving

all rows of data with a single command.

4 Implementation

To lower the development workload, MoA will communicate with MySQL by way of the existing MySQL

C API. Thus, MoA is basically built on top of an occam C interface (CIF) process calling the MySQL C

API.

As occam is a much safer language than C, as much of the logic as possible should be handled in

occam. However, there are some things that are handled in C which could have been handled in occam.

It would have been possible to just have occam use blocking C calls to the MySQL C API, and thus

avoid having a CIF process running C code altogether. However, that would make it necessary to store

the necessary C data structures as byte arrays in occam, which is not very nice.

Instead, we have a C process where the necessary data structures are stored. The communication

between the occam and C process is quite low level since channels to C processes are limited in type. Five

channels are used to communicate between occam and C. control, argi and args goes from occam to

C and status and data goes from C to occam. control, argi and status carry type INT while args

and data carry type MOBILE []BYTE.

control is used to send commands to the C process to signal which function in the C API should be

called. Subsequently, integer arguments are sent on argi and string arguments on args, the number and

type of arguments being dependent on the command.

If the command can fail, a value is sent back via. the status channel indicating success or failure. If

any values are returned they are sent back sequentially via. the status and data channels depending on

the type.

All error handling is done in occam, so the only functionality residing in the C process is converting

the various C strings and other data types to MOBILE []BYTEs and values that occam understands.

It should be okay to have several MySQL processes running in parallel if the MySQL C client library

is compiled thread-safe. However, the initialisation call to the API is not thread-safe. For this reason, it

is provided in MoA as a process that should terminate before starting any MySQL processes in parallel.

This is the only way to provide this functionality, as there is no way for the MySQL processes to atomically

3

check if they are the first MySQL process to run.

Some of the commands to the MySQL process are very similar, so to avoid code duplication we want

the same piece of code to handle these. For this reason, a wrapper process translates the commands for

the application programmer before they are passed to the main process of the API for processing. To be

really neat, we should translate from the API protocol to an internal protocol, but the translation is so

simple that we just re-use the API protocol.

It would have been nice to provide the various field names as part of the MYSQL.FIELD.INFO record

instead of selecting with a control byte (see section 8.7.9), but the current version of KRoC (1.4.0) doesn’t

seem to support mobile arrays of mobile records.

5 Applications

This section will describe ways of using MoA in design of CSP applications. The first one is a simple

model, shown on figure 1, with only 3 processes. An input, the MoA and an output. An input process

reads commands from an interface and then communicates a command to a MoA process. The results

from MoA are displayed on an output device. The applications as such cannot interact with the MoA

input MySQL(MoA)
request

output
answer

Figure 1: CSP-model for a very simple application.

process i.e. respond intelligent if an error occurs etc. This lead to a another but still simple model. A

database process or process network is responsible for intelligent interaction with MoA an then outputs

some data. The mysqlclient program (see section 7) can be described with this model, as it consists of

an input process, an output process and a MoA process. The input and output processes communicate

with the MoA process and with each other.

data
input

output

MySQL(MoA)

request

answer

Figure 2: A process called data will now control MoA, receive input and send output.

These two models can be a part of a larger CSP network, and of course many MoA processes can run

simultaneously.

4

6 Benchmark

Operations as INSERT, UPDATE etc. is not of interest to benchmark, because the workload is on the server

side. The most used time consuming operation on the client side is to retrieve larger set of rows with the

SELECT statement.

The benchmark can be described as follows:

1. Start timer.

2. Query the server: INSERT INTO t1 (SELECT * FROM s2) – This will increase the number of rows

in t1 by ∆r

3. Query the server: SELECT * FROM t1.

4. Retrieve r rows by iterating through the result.

5. Plot r and timer value. Reset timer.

6. Go to 1.

In this case ∆r = 10000. Both the server and client ran on a Intel Pentium 4 CPU running 3 GHz

with 3GB of memory. The machine was running Linux 2.6.12.

As can be seen form figure 3, the difference in performance seems to be linear. This is confirmed by

figure 4, where the quotient of the performances is drawn. While not perfectly a straight line, the graph

suggests that the overhead of using MoA is not above a factor 1.5 for large data sets, less for small sets.

Building an API on top on another API has a price, but in this case the price is a constant.

7 Tests and examples

The distribution of MoA includes two test programs, test1.occ and test2.occ, that documents the

working of most of the API. When run, the programs should result in deadlocks if all is okay, they will

give a run-time error if not. See the source for comments on how to make the tests run - currently, they

are hard-coded to use a specific server.

The distribution also includes an example program, simple.occ (see section 8.3). It is intended as a

simple example of how to make a connection and receive data. It will crash in case of any error. As this

program is only intended to demonstrate the use of the API, it is hard-coded to use a specific server.

Finally, mysqlclient.occ is a simple CLI client for MySQL, providing basic functionality by allowing

the user to connect to a database and execute SQL queries.

8 Documentation of the API

The MySQL occam-π API, or MoA for short, is built around the C API for MySQL. The API is developed

for version 5.1 of the MySQL server, and is not guaranteed to work with older versions. MoA allows

5

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

se
co

nd
s

x 10000 of rows

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

se
co

nd
s

x 10000 of rows

Figure 3: MoA(upper line) compared to the C API. The x-axis is the number of rows the SQL query

selected (∗10000) and the y-axis is the time in seconds. The peaks where queries took up to 14 seconds

are caused by disk-caching on the server side either by the operating system or the MySQL-server.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

M
oA

/C
 A

P
I

Number of rows x 10000

Quotient

Figure 4: The quotient of the performance of MoA

C API

.

6

applications written in occam-π to communicate with a MySQL server. It consists mainly of a pre-defined

process definition, MySQL, with which you can create processes for communicating with a MySQL server.

This is done by sending and receiving messages in the protocols MYSQL.CONTROL and MYSQL.RESULT. In

addition, there is an initialising and a finalizing process, which will be of interest if you are to have more

than one connection to MySQL open at a time. Note that, at the present, only the core functionality of

the C API is available in MoA.

8.1 Accessing the API

To use MoA put #INCLUDE "mysql.inc" and #USE "mysql.lib" in your file. The directives must come

in this order, or linking will fail. In addition, when compiling, supply KRoC with the flag -lmoa for

linking with MoA, and a flag for linking with MySQL, this will usually be -lmysqlclient.

8.2 Overview of the protocols

MYSQL.CONTROL MYSQL.RESULT

query; MOBILE []BYTE mysql.error; INT; MOBILE []BYTE

query.row; MOBILE []BYTE initialisation.error

query.all; MOBILE []BYTE no.data.error

next.row not.connected.error

remaining.rows connected

affected.rows data.ready; INT

null.values data.row; MOBILE []MOBILE []BYTE

field.names data.null.values; MOBILE []BOOL

field.info; BYTE data.field.names; MOBILE []MOBILE []BYTE

reconnect data.field.info; MOBILE []MYSQL.FIELD.INFO

quit data.affected.rows; INT

end.of.data

quit

7

8.3 An example program: simple.occ

#INCLUDE "mysql.inc"

#USE "mysql.lib"

#INCLUDE "consts.inc"

#USE "course.lib"

PROC main(CHAN BYTE kyb, scr, err)

CHAN MYSQL.CONTROL control:

CHAN MYSQL.RESULT result:

BOOL quit:

PAR

MySQL(control, result, "bach-1", "root", "latte", "test", 0, "")

SEQ --control process

control ! query.all; "SELECT ** FROM t3"

control ! quit

SEQ --output process

quit := FALSE

WHILE NOT quit

result ? CASE

connected

SKIP

INT rows:

data.ready; rows

SKIP

MOBILE []MOBILE []BYTE row:

data.row; row

SEQ j = 0 FOR SIZE row

SEQ

out.string(row[j], 0, scr)

IF

j < ((SIZE row) - 1)

scr ! ’ ’

TRUE

scr ! ’*n’

end.of.data

SKIP

quit

SEQ

scr ! FLUSH

quit := TRUE

:

8

8.4 The MySQL.init process

8.4.1 Signature

PROC MySQL.INIT(RESULT BOOL error)

8.4.2 Usage

This process initialises the underlying C API for MySQL. If you have only one MySQL process in your application

you need not call this function, as it will be called automatically. However, if you plan on having several MySQL

processes running in parallel, this process should be called and allowed to terminate prior to creating any MySQL

process, as the underlying C function call is not reentrant. In this case, you should also make sure that the C

client API is compiled in thread-safe mode (see the MySQL C API documentation for details on this).

Errors Upon termination, error will be set to TRUE if any error occured, FALSE otherwise.

8.5 The MySQL.end process

8.5.1 Signature

PROC MySQL.end()

8.5.2 Usage

This process finalizes the underlying C API, then terminates. It should not be called until every MySQL process

has terminated. It might be omitted.

8.6 The MySQL process

8.6.1 Signature

PROC MySQL(CHAN MYSQL.CONTROL in, CHAN MYSQL.RESULT out, VAL []BYTE host, user, passwd, db, VAL INT

port, VAL []BYTE socket)

8.6.2 Usage

This call will make a process for connecting with a MySQL server.

• The value of host may be either a hostname or an IP address. If host is "" or the string "localhost", a

connection to the local host is assumed. If the OS supports sockets, they are used instead of TCP/IP to

connect to the server.

• The user parameter contains the user’s MySQL login ID. If user is the empty string "", the current user

is assumed. Under Unix, this is the current login name.

• The passwd parameter contains the password for user. If passwd is "", only entries in the user table for

the user that have a blank (empty) password field are checked for a match. This allows the database

administrator to set up the MySQL privilege system in such a way that users get different privileges

depending on whether they have specified a password. Do not attempt to encrypt the password. Password

encryption is handled automatically by the C client API.

9

• db is the database name. If db is not "", the connection sets the default database to this value.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host

parameter determines the type of the connection.

• If socket is not "", the string specifies the socket or named pipe that should be used. Note that the host

parameter determines the type of the connection.

Once the process is created it will try to make a connection to the server. It will then send a message to the

out channel indicating that it is ready to accept commands (see below). Subsequent communication with the

process will be done by issuing commands on the in channel. Every command will cause one or more answers to

be sent on the out channel. The process will not terminate until it receives a quit message, the only exception

to this is noted below under ”Errors”.

Once the process is created, it is not possible to change the connection, user etc. unless it can be done via.

SQL queries.

Answer If the process successfully connects to the server it will send the message connected to the out channel.

Errors

• If the C client API fails to allocate memory for the connection, the process will send the message initialisation.error

to the out channel. Following this, it will send the message quit and then terminate. In all other cases the

process must be explicitly killed with the quit command. This error should rarely occur.

• If the process fails to connect to the MySQL server, it will send a mysql.error; INT; MOBILE []BYTE

message containing the error number and description (for information on how to interpret the error numbers,

see the MySQL documentation). It will remain alive, but every other commmand than reconnect and quit

will result in an error message.

8.7 Communication with the MySQL process

8.7.1 query; MOBILE []BYTE

This message carries a string describing an SQL query to be executed. Currently, support for multiple queries in

one string (separated by semicolons) is not implemented. Remember that ’*’ is the escape character in occam, so

you should write e.g. ”SELECT ** FROM table”.

Answer When the query has executed successfully, the process will send a data.ready; INT message detailing

how many rows were returned from the query. If the query was an UPDATE, DELETE or INSERT statement,

or if it was a SELECT statement that didn’t match any rows, the integer will be 0.

Errors

• mysql.error; INT; MOBILE []BYTE if an SQL error occurred. The error number may be compared with

the values cr.server.gone.error and cr.server.lost to determine if the connection has been lost. If so,

the application might try to reconnect.

• not.connected.error if the process could not initially connect to the server or if a subsequent attempt to

reconnect has failed.

10

8.7.2 query.row; MOBILE []BYTE

This message is similar to query, but when the query has executed the process retrieves the first row of the result

set without being prompted. As such, query.row achieves almost the same effect as query followed by next.row.

Answer data.ready followed by data.row, or by end.of.data if the query did not return any rows.

Errors The same as for query.

8.7.3 query.all; MOBILE []BYTE

This message is similar to query, but when the query has executed the process will retrieve all the rows of the

result set without being prompted. As such, query.all achieves almost the same effect as query followed by

remaining.rows.

Answer data.ready followed by a number of data.row messages and finally an end.of.data message. If the

query didn’t return any data, the answer will just be data.ready followed by end.of.data.

Errors The same as for query.

8.7.4 next.row

Retrieves the next row in the current result set.

Answer A data.row; MOBILE []MOBILE []BYTE message containing the next row. end.of.data if there are

no more rows in the result set.

Errors no.data.error if there is no current result set, that is, if the last query didn’t return any rows, if the

last query caused a mysql.error or if no query has been executed yet.

8.7.5 remaining.rows

Retrieves all remaining rows in the current result set.

Answer A number of data.row; MOBILE []MOBILE []BYTE messages followed by end.of.data. Just end.of.data

if there are no more rows in the result set.

Errors no.data.error if there is no current result set, that is, if the last query didn’t return any rows, if the

last query caused a mysql.error or if no query has been executed yet.

8.7.6 affected.rows

Returns the number of rows affected by the last query.

Answer data.affected.rows; INT. For INSERT, DELETE or UPDATE statements, this number indicates

how many rows were affected by the update. For SELECT statements this number is the same as the one returned

by data.ready.

11

Errors no.data.error if the last query caused a mysql.error or if no query has been executed yet.

8.7.7 null.values

An SQL field can be NULL or an empty string. Since there is no such thing as NULL in occam, both are

represented as a MOBILE []BYTE of size 0. This message provides a way of distinguishing between the two.

Answer A data.null.values; MOBILE []BOOL message. For each field in the last received data.row message,

the corresponding BOOL will be TRUE if the field was NULL.

Errors no.data.error if the last query didn’t return any rows, if the last query caused a mysql.error, if no

query has been executed yet or if no data.row has been received yet.

8.7.8 field.names

Provides the names of the fields of the current result set. This message is just a shorthand for field.info;

field.name.

Answer data.field.names; MOBILE []MOBILE []BYTE containing the names of the fields. If the field was

given an alias with an AS clause, the alias is given as name.

Errors no.data.error if there is no current result set, that is, if the last query didn’t return any rows, if the

last query caused a mysql.error or if no query has been executed yet.

8.7.9 field.info; BYTE

Retrieves information about the fields of the current result set. The BYTE should have one of the predefined values

field.name, field.org.name, field.table, field.org.table, field.db or field.info. If it has any other

value, the effect will be the same is if it was field.name.

Answer Depending on whether the control byte was:

• field.name: A data.field.names; MOBILE []MOBILE []BYTE containing the names of the fields. If the

field was given an alias with an AS clause, the alias is given as name.

• field.org.name: A data.field.names message carrying the names of the fields, but aliases in the names

are ignored.

• field.table: A data.field.names message containing the names of the tables containing the fields. If the

field is calculated, the string will be empty. If the table was given an alias with an AS clause, the alias is

given as name.

• field.org.table: The same as for field.table, but aliases in the table names are ignored.

• field.db: A data.field.names message containing the names of the databases that the fields come from.

If the field is calculated, the name is an empty string.

• field.info: A field.info; MOBILE []MYSQL.FIELD.INFO message containing information about the fields.

The MYSQL.FIELD.INFO record provides the following data:

– INT length: The width of the field, as specified in the table definition.

12

– INT max.length: The maximum width of the field for the result set (the length of the longest field

value for the rows actually in the result set).

– INT decimals: The number of decimals for numeric fields.

– INT charsetnr: The character set number for the field.

– MYSQL.TYPE type: The type of the field:

Type value Type description

tiny TINYINT field

short SMALLINT field

long INTEGER field

int24 MEDIUMINT field

longlong BIGINT field

decimal DECIMAL or NUMERIC field

newdecimal Precision math DECIMAL or NUMERIC

float FLOAT field

double DOUBLE or REAL field

bit BIT field

timestamp TIMESTAMP field

date DATE field

time TIME field

datetime DATETIME field

year YEAR field

string CHAR or BINARY field

var.string VARCHAR or VARBINARY field

blob BLOB or TEXT field (use max.length to determine the maximum length)

set SET field

enum ENUM field

geometry Spatial field

null NULL-type field

To distinguish between binary and non-binary data for string data types, check whether the charsetnr

value is 63 - or alternatively if binary.charset is TRUE. If so, the character set is binary, which indi-

cates binary rather than non-binary data. This is how to distinguish between BINARY and CHAR,

VARBINARY and VARCHAR, and BLOB and TEXT.

– BOOL not.null: Whether the field can’t be NULL

– BOOL pri.key: Whether the field is part of a primary key

– BOOL unique.key: Whether the field is part of a unique key

– BOOL multiple.key: Whether the field is part of a non-unique key

– BOOL unsigned: Whether the field has the UNSIGNED attribute

– BOOL zerofill: Whether the field has the ZEROFILL attribute

– BOOL binary: Whether the field has the BINARY attribute

13

– BOOL auto.increment: Whether the field has the AUTO INCREMENT attribute

– BOOL binary.charset: Whether charsetnr is 63, indicating binary data for string data types.

8.7.10 reconnect

This message will make the process attempt to connect to the SQL server anew. If the connection is already

open, it will be shut down beforehand.

Answer connected if the attempt was successful.

Errors mysql.error; INT; MOBILE []BYTE if an error occurred.

8.7.11 quit

This will cause the MySQL process to terminate.

Answer quit.

Errors None.

14

References

[1] P.H. Welch and D.C. Wood ”The Kent Retargetable occam Compiler” - In: Parallel Processing Developments,

Proceedings of WoTUG 19. March 1996.

[2] MySQL AB ”MySQL 5.1 Reference Manual” - 2006. Available from http://dev.mysql.com/doc/

[3] F.R.M. Barnes ”Interfacing C and occam-pi” - Communicating Process Architectures 2005.

[4] University of Kent KRoC with documentation is available from http://www.cs.kent.ac.uk/projects/ofa/kroc/

[5] SGS-THOMSON Microelectronics Limited ”occam 2.1 reference manual” - 1995. Available from

http://www.wotug.org/occam/

[6] C. A. R. Hoare ”Communicating Sequential Processes” - Prentice Hall International, 1985.

15

