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1. Installation and Getting Started.

1.1. Installation.

The nab package is available via anonymous ftp at ftp.scripps.edu in
/pub/macke/nab-4.0.tar.gz (or later versions) as a compressed tar file. The first step in set-
ting up the nab package is to unzip the tar file using gunzip:

gunzip nab-4.0.tar.gz

Next, the resultant file should be placed in a directory that will contain all the nab support files and
directories. The path to this directory will be defined as the environment variable $NABHOME. The
environment variables $NABHOME and $ARCH should be defined at this time, where $ARCH is the
architecture type of the machine. You can make up your own architecture name (we just use it to man-
age installations for different machines). If you are interested in compiling NAB only on a single
(type of) machine, you can leave $ARCH undefined.

mkdir nab

setenv NABHOME insert_your_path_here/nab

setenv ARCH your_architecture

mv nab-4.0.tar nab

cd nab

At this point, to untar the files with the command,

tar -xvf nab-4.0.tar

Now, in the top-level ($NABHOME) directory, you should edit "config.h" to specify any variables par-
ticular to your site. There are sample files {config.h.windows, config.h.linux, config.h.generic, con-
fig.h.sgi64_bit} that should get you started. For example, for most machines, the following will work:

cp config.h.generic config.h

(Instructions for what the options mean are in the config.h files) Then,

make

will construct the compiler. If the make fails, it is likely that some of the entries in "config.h" are not
correct.

This can be followed by

make test

which will run tests and will report successes or failures.
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Now, add the path to the binary executable of nab to your own path; for C-shell users:

set path = ( $NABHOME/bin/$ARCH $path )

rehash

Now, you should be able to compile nab programs. You may wish to define the environment variables
$NABHOME and $ARCH and add the path to the binary executable of nab explicitly in your .cshrc
file to avoid having to redefine these variables at each new login. There is an nab.1 file in Unix man
page format that can be placed in an appropriate location, if you like. It is very short, and just gives
the command-line options for the nab compiler, outlined in the next section.

1.2. Compiling nab Programs.

Compiling nab programs is very similar to compiling other high-level language programs, such as C
and FORTRAN. The command line syntax is

nab [-O] [-c] [-v] [-avs] [-noassert] [-nodebug] [-o file]
[-Dstring] file(s)

where

-O optimizes the object code

-c suppresses the linking stage with ld and produces a .o file

-v verbosely reports on the compile process

-avs creates an AVS module

-noassert causes the compiler to ignore assert statements

-nodebug causes the compiler to ignore debug statements

-o file names the output file

-Dstring defines string to the C preprocessor

Linking FORTRAN and C object code with nab is accomplished simply by including the source files
on the command line with the nab file. For instance, if a nab program bar.nab uses a C function
defined in the file foo.c, compiling and linking optimized nab code would be accomplished by

nab -O bar.nab foo.c

The result is an executable a.out file.
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1.3. Tested platforms

We hav e carried out the compilation and test programs on the following machines; for most of
them we have also used NAB for several years.

(1) DEC AXP machines, under Digital Unix, with DEC compilers.

(2) SGI machines, with R4400 (32-bit) and R8000/R10000 (64-bit) architectures, using vendor-
supplied compilers.

(3) Sun Sparc, under SunOS 4.1.3, using /usr/ucb/cc, the "old" (K&R) compiler that Sun used to
supply with the OS. NAB was actually originally developed in this environment, but we are
increasingly moving away from continuing to test in this environment; future versions of nab
will probably require and ANSI C compiler.

(4) Sun Sparc, under Solaris 2.5, using SunPRO compilers.

(5) Sun Sparc, under Solaris 2.5, using gcc 2.7.2, flex, and bison.

(6) HP 735 PA-RISC, under HP-UX 10, using vendor-supplied compilers.

(7) HP 735 PA-RISC, under HP-UX 10, using gcc 2.7.2 and flex.

(8) RedHat Linux on Intel Pentium, using gcc 2.7.2, flex, and bison.

(9) Windows 95 on Intel Pentium, using version "b20.1" of the Cygwin32 development kit. Pre-
sumably, this would also work on Windows NT.

1.4. Contacting the developers

Please send suggestions and questions to case@scripps.edu or macke@scripps.edu.
We would appreciate receiving a message if you use the program, so that we can send bug fixes and
announcements of new versions.
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2. General introduction and overview.

Nucleic acid builder (nab) is a high-level language that facilitates manipulations of macro-
molecules and their fragments. nab uses a C-like syntax for variables, expressions and control struc-
tures (if, for, while) and has extensions for operating on molecules (new types and a large number
of builtins for providing the necessary operations). We expect nab to be useful in model building and
coordinate manipulation of proteins and nucleic acids, ranging in size from fairly small systems to the
largest systems for which an atomic level of description makes good computational sense. As a pro-
gramming language, it is not a solution or program in itself, but rather provides an environment that
eases many of the bookkeeping tasks involved in writing programs that manipulate three-dimensional
structural models.

The current implementation is version 4.0, and incorporates the following main features:

(1) Objects such as points, atoms, residues, strands and molecules can be referenced and manipu-
lated as named objects. The internal manipulations involved in operations like merging several
strands into a single molecule are carried out automatically; in most cases the programmer
need not be concerned about the internal data structures involved.

(2) Rigid body transformations of molecules or parts of molecules can be specified with a fairly
high-level set of routines. This functionality includes rotations and translations about particu-
lar axis systems, least-squares atomic superposition, and manipulations of coordinate frames
that can be attached to particular atomic fragments.

(3) Additional coordinate manipulation is achieved by a tight interface to distance geometry meth-
ods. This allows allows relationships that can be defined in terms of internal distance con-
straints to be realized in three-dimensional structural models. nab includes subroutines to
manipulate distance bounds in a convenient fashion, in order to carry out tasks such as work-
ing with fragments within a molecule or establishing bounds based on model structures.

(4) Force field calculations (e.g. molecular dynamics and minimization) can be carried out with an
implementation of the AMBER force field. This works in both three and four dimensions, but
periodic simulations are not (yet) supported. You will need to have access to the LEaP module
of AMBER to make full use of this facility.

(5) nab also implements a form of regular expressions that we call “atom regular expressions”,
which provide a uniform and convenient method for working on parts of molecules.

(6) Many of the general programming features of the awk language have been incorporated in
nab. These include regular expression pattern matching, “hashed” arrays (i.e. arrays with
strings as indices), the splitting of strings into fields, and simplified string manipulations.

(7) There are built-in procedures for linking nab routines to other routines written in C or Fortran,
including access to most library routines normally available in system math libraries.

(8) Support is also present for compiling nab code into an AVS (Application Visualization Sys-
tem) module rather than to a stand-alone program. In combination with the AVS Geometry
Viewer (or other AVS modules) this allows one to fairly easily build interactive programs that
manipulate and display complex molecular transformations. We currently support AVS ver-
sion 5; extensions to Data Explorer (openDX) are under development.

Our hope is that nab will serve to formalize the step-by-step process that is used to build com-
plex model structures, and will facilitate the management and use of higher level symbolic constraints.
Writing a program to create a structure forces more of the model’s assumptions to be explicit in the
program itself. And an nab description can serve as a way to show a model’s salient features, much
like helical parameters are used to characterize duplexes.
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The first three chapters of this document form a “users’ manual” that both introduces the lan-
guage through a series of sample programs, and illustrates the programming interfaces provided. The
examples are chosen not only to show the syntax of the language, but also to illustrate potential
approaches to the construction of some unusual nucleic acids, including DNA double- and triple-
helices, RNA pseudoknots, four-arm junctions, and DNA-protein interactions. A separate “language
reference manual” (in Chapter 4) gives a more formal and careful description of the requirements of
the language itself.

The basic literature reference for the code is: T. Macke and D.A. Case. Modeling unusual
nucleic acid structures. In Molecular Modeling of Nucleic Acids, N.B. Leontes and J. SantaLucia, Jr.,
eds. (Washington, DC: American Chemical Society, 1998), pp. 379-393. Users are requested to
include this citation in papers that make use of NAB.

2.1. Background

Using a computer language to model polynucleotides follows logically from the fundamental
nature of nucleic acids, which can be described as “conflicted” or “contradictory” molecules. Each
repeating unit contains seven rotatable bonds (creating a very flexible backbone), but also contains a
rigid, planar base which can participate in a limited number of regular interactions, such as base pair-
ing and stacking. The result of these opposing tendencies is a family of molecules that have the poten-
tial to adopt a virtually unlimited number of conformations, yet have very strong preferences for regu-
lar helical structures and for certain types of loops.

The controlled flexibility of nucleic acids makes them difficult to model. On one hand, the lim-
ited range of regular interactions for the bases permits the use of simplified and more abstract geomet-
ric representations. The most common of these is the replacement of each base by a plane, reducing
the representation of a molecule to the set of transformations that relate the planes to each other. On
the other hand, the flexible backbone makes it likely that there are entire families of nucleic acid struc-
tures that satisfy the constraints of any particular modeling problem. Families of structures must be
created and compared to the model’s constraints. From this we can see that modeling nucleic acids
involves not just chemical knowledge but also three processes−abstraction, iteration and testing−that
are the basis of programming.

Molecular computation languages are not a new idea. Here we briefly describe some past
approaches to nucleic acid modeling, to provide a context for nab.

2.1.1. Conformation build-up procedures

MC-SYM [1-3] is a high level molecular description language used to describe single stranded

1. F. Major, M. Turcotte, D. Gautheret, G. Lapalme, E. Fillon, and R. Cedergren, “The Combina-
tion of Symbolic and Numerical Computation for Three-Dimensional Modeling of RNA,”
Science 253, (5025)1255-1260 (1991).

2. D. Gautheret, F. Major, and R. Cedergren, “Modeling the three-dimensional structure of RNA
using discrete nucleotide conformational sets,” J. Mol. Biol. 229, 1049-1064 (1993).

3. W. Saenger, M. Turcotte, G. Lapalme, and F. Major, “Exploring the conformations of nucleic
acids,” J. Funct. Program. 5, 443-460 (1995). Springer-Verlag,
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RNA molecules in terms of functional constraints. It then uses those constraints to generate structures
that are consistent with that description. MC-SYM structures are created from a small library of con-
formers for each of the four nucleotides, along with transformation matrices for each base. Building
up conformers from these starting blocks can quickly generate a very large tree of structures. The key
to MC-SYM’s success is its ability to prune this tree, and the user has considerable flexibility in
designing this pruning process.

In a related approach, Erie et al. [4] used a Monte-Carlo build-up procedure based on sets of low
energy dinucleotide conformers to construct longer low energy single stranded sequences that would
be suitable for incorporation into larger structures. Sets of low energy dinucleotide conformers were
created by selecting one value from each of the sterically allowed ranges for the six backbone torsion
angles and χ. Instead of an exhaustive build- up search over a small set of conformers, this method
samples a much larger region of conformational space by randomly combining members of a larger set
of initial conformers. Unlike strict build-up procedures, any member of the initial set is allowed to fol-
low any other member, even if their corresponding torsion angles do not exactly match, a concession
to the extreme flexibility of the nucleic acid backbone. A key feature determined the probabilities of
the initial conformers so that the probability of each created structure accurately reflected its energy.

Tung and Carter [5,6] have used a reduced coordinate system in the NAMOT (nucleic acid model-
ing tool) program to rotation matrices that build up nucleic acids from simplified descriptions. Special
procedures allow base-pairs to be preserved during deformations. This procedure allows simple algo-
rithmic descriptions to be constructed for non-regular structures like intercalation sites, hairpins, pseu-
doknots and bent helices.

2.1.2. Base-first strategies

An alternative approach that works well for some problems is the "base-first" strategy, which
lays out the bases in desired locations, and attempts to find conformations of the sugar-phosphate
backbone to connect them. Rigid-body transformations often provide a good way to place the bases.
One solution to the backbone problem would be to determine the relationship between the helicoidal
parameters of the bases and the associated backbone/sugar torsions. Work along these lines suggests
that the relationship is complicated and non-linear [7]. However, considerable simplification can be
achieved if instead of using the complete relationship between all the helicoidal parameters and the
entire backbone, the problem is limited to describing the relationship between the helicoidal parame-
ters and the backbone/sugar torsion angles of single nucleotides and then using this information to
drive a constraint minimizer that tries to connect adjacent nucleotides. This is the approach used in

4. D.A. Erie, K.J. Breslauer, and W.K. Olson, “A Monte Carlo Method for Generating Structures of
Short Single-Stranded DNA Sequenes,” Biopolymers 33, (1)75-105 (1993).

5. C.-S. Tung and E.S. Carter, II, “Nucleic acid modeling tool (NAMOT): an interactive graphic
tool for modeling nucleic acid structures,” CABIOS 10, 427-433 (1994).

6. E.S. Carter, II and C.-S. Tung, “NAMOT2--a redesigned nucleic acid modeling tool: construc-
tion of non-canonical DNA structures,” CABIOS 12, 25-30 (1996).

7. V. B. Zhurkin, Yu. P. Lysov, and V. I. Ivanov, “Different Families of Double Stranded Conforma-
tions of DNA as Rev ealed by Computer Calculations,” Biopolymers 17, 277-312 (1978).
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JUMNA [8], which decomposes the problem of building a model nucleic acid structure into the con-
straint satisfaction problem of connecting adjacent flexible nucleotides. The sequence is decomposed
into 3’-nucleotide monophosphates. Each nucleotide has as independent variables its six helicoidal
parameters, its glycosidic torsion angle, three sugar angles, two sugar torsions and two backbone tor-
sions. JUMNA seeks to adjust these independent variables to satisfy the constraints involving sugar
ring and backbone closure.

Even constructing the base locations can be a non-trivial modeling task, especially for non-
standard structures. Recognizing that coordinate frames should be chosen to provide a simple descrip-
tion of the transformations to be used, Gabarro-Arpa et al. [9] devised “Object Command Language”
(OCL), a small computer language that is used to associate parts of molecules called objects, with
arbitrary coordinate frames defined by sets of their atoms or numerical points. OCL can “link”
objects, allowing other objects’ positions and orientations to be described in the frame of some refer-
ence object. Information describing these frames and links is written out and used by the program
MORCAD [10] which does the actual object transformations.

OCL contains several elements of a molecular modeling language. Users can create and operate
on sets of atoms called objects. Objects are built by naming their component atoms and to simplify
creation of larger objects, expressions, IF statements, an interated FOR loop and limited I/O are pro-
vided. Another nice feature is the equivalence between a literal 3-D point and the position represented
by an atom’s name. OCL includes numerous built-in functions on 3-vectors like the dot and cross
products as well as specialized molecular modeling functions like creating a vector that is normal to an
object. However, OCL is limited because these language elements can only be assembled into func-
tions that define coordinate frames for molecules that will be operated on by MORCAD. Functions
producing values of other data types and stand-alone OCL programs are not possible.

2.2. Methods for structure creation

As a structure-generating tool, nab provides three methods for building models. They are rigid-
body transformations, metric matrix distance geometry, and molecular mechanics. The first two meth-
ods are good initial methods, but almost always create structures with some distortion that must be
removed. On the other hand, molecular mechanics is a poor initial method but very good at refinement.
Thus the three methods work well together.

Rigid-body transformations. Rigid-body transformations create model structures by applying
coordinate transformations to members of a set of standard residues to move them to new positions
and orientations where they are incorporated into the growing model structure. The method is espe-
cially suited to helical nucleic acid molecules with their highly regular structures. It is less satisfactory
for more irregular structures where internal rearrangement is required to remove bad covalent or non-
bonded geometry, or where it may not be obvious how to place the bases.

8. R. Lavery, K. Zakrzewska, and H. Skelnar, “JUMNA (junction minimisation of nucleic acids),”
Comp. Phys. Commun. 91, 135-158 (1995).

9. J. Gabarro-Arpa, J.A.H. Cognet, and M. Le Bret, “Object Command Language: a formalism to
build molecule models and to analyze structural parameters in macromolecules, with applica-
tions to nucleic acids,” J. Mol. Graph. 10, 166-173 (1992).

10. M. Le Bret, J. Gabarro-Arpa, J. C. Gilbert, and C. Lemarechal, “MORCAD an object-oriented
molecular modeling package,” J. Chim. Phys. 88, 2489-2496 (1991).
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nab uses the matrix type to hold a 4×4 transformation matrix. Transformations are applied to
residues and molecules to move them into new orientations or positions. nab does not require that
transformations applied to parts of residues or molecules be chemically valid. It simply transforms the
coordinates of the selected atoms leaving it to the user to correct (or ignore) any chemically incorrect
geometry caused by the transformation.

Every nab molecule includes a frame, or “handle” that can be used to position two molecules in a
generalization of superimposition. Traditionally, when a molecule is superimposed on a reference
molecule, the user first forms a correspondance between a set of atoms in the first molecule and
another set of atoms in the reference molecule. The superimposition algorithm then determines the
transformation that will minimize the rmsd between corresponding atoms. Because superimposition is
based on actual atom positions, it requires that the two molecules have a common substructure, and it
can only place one molecule on top of another and not at an arbitrary point in space.

The nab frame is a way around these limitations. A frame is composed of three orthonormal
vectors originally aligned along the axes of a right handed coordinate frame centered on the origin.
nab provides two builtin functions setframe() and setframep() that are used to reposition this
frame based on vectors defined by atom expressions or arbitrary 3-D points, respectively. To position
two molecules via their frames, the user moves the frames so that when they are superimposed via the
nab builtin alignframe(), the two molecules have the desired orientation. This is a generalization
of the methods described above for OCL.

Distance geometry. nab’s second initial structure-creation method is metric matrix distance
geometry [11,12], which can be a very powerful method of creating initial structures. It has two main
strengths. First, since it uses internal coordinates, the initial position of atoms about which nothing is
known may be left unspecified. This has the effect that distance geometry models use only the infor-
mation the modeler considers valid. No assumptions are required concerning the positions of unspeci-
fied atoms. The second advantage is that much structural information is in the form of distances.
These include constraints from NMR or fluorescence energy transfer experiments, implied propin-
quities from chemical probing and footprinting, and tertiary interactions inferred from sequence analy-
sis. Distance geometry provides a way to formally incorporate this information, or other assumptions,
into the model-building process.

Distance geometry converts a molecule represented as a set of interatomic distances into a 3-D
structure. nab has several builtin functions that are used together to provide metric matrix distance
geometry. A bounds object contains the molecule’s interatomic distance bounds matrix and a list of
its chiral centers and their volumes. The function newbounds() creates a bounds object contain-
ing a distance bounds matrix containing initial upper and lower bounds for every pair of atoms, and a
list of the molecule’s chiral centers and their volumes. Distance bounds for pairs of atoms involving
only a single residue are derived from that residue’s coordinates. The 1,2 and 1,3 distance bounds are
set to the actual distance between the atoms. The 1,4 distance lower bound is set to the larger of the
sum of the two atoms Van der Waals radii or their syn (torsion angle = 0°) distance, and the upper
bound is set to their anti (torsion angle = 180°) distance. newbounds() also initializes the list of the

11. G.M. Crippen and T.F. Hav el, Distance Geometry and Molecular Conformation, Research Stud-
ies Press, Taunton, England, 1988.

12. D.C. Spellmeyer, A.K. Wong, M.J. Bower, and J.M. Blaney, “Conformational analysis using
distance geometry methods,” J. Mol. Graph. Model. 15, 18-36 (1997).
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molecule’s chiral centers. Each chiral center is an ordered list of four atoms and the volume of the
tetrahedron those four atoms enclose. Each entry in a nab residue library contains a list of the chiral
centers composed entirely of atoms in that residue.

Once a bounds object has been initialized, the modeler can use functions to tighten, loosen or
set other distance bounds and chiralities that correspond to expermental measurements or parts of the
model’s hypothesis. The functions andbounds() and orbounds() allow logical manipulation of
bounds. setbounds_from_db()Fr Allows distance information from a model
structure or a database to be incorporated into a part of the cur-
rent molecule’s bounds object, facilitating transfer of information between partially-built
structures.

These primitive functions can be incorporated into higher-level routines. For example the func-
tions stack() and watsoncrick() set the bounds between the two specifed bases to what they
would be if they were stacked in a strand or base-paired in a standard Watson/Crick duplex, with
ranges of allowed distances derived from an analysis of structures in the Nucleic Acid Database.

After all experimental and model constraints have been entered into the bounds object, the
function tsmooth() applies “triangle smoothing” to pull in the large upper bounds, since the maxi-
mum distance between two atoms can not exceed the sum of the upper bounds of the shortest path
between them. Random pairwise metrization [13] can also be used to help ensure consistency of the
bounds and to improve the sampling of conformational space. The function embed() finally takes
the smoothed bounds and converts them into a 3-D object. The newly embedded coordinates are sub-
ject to conjugate gradient refinement against the distance and chirality information contained in
bounds. The call to embed() is usually placed in a loop to explore the diversity of the structures
the bounds represent.

Molecular mechanics. The final structure creation method that nab offers is molecular mechan-
ics. This includes both energy minimization and molecular dynamics − simulated annealing. Since
this method requires a good estimate of the initial position of every atom in structure, it is not suitable
for creating initial structures. However, giv en a reasonable initial structure, it can be used to remove
bad initial geometry and to explore the conformational space around the initial structure. This makes
is a good method for refining structures created either by rigid body transformations or distance geom-
etry. nab has its own 3-D/4-D molecular mechanics package that implements several AMBER force
fields and reads AMBER parameter and topology files. Solvation effects can also be modelled with
generalized Born continuum models.

Our hope is that nab will serve to formalize the step-by-step process that is used to build com-
plex model structures. It will facilitate the management and use of higher level symbolic constraints.
Writing a program to create a structure forces one to make explicit more of the model’s assumptions in
the program itself. And an nab description can serve as a way to exhibit a model’s salient features,
much like helical parameters are used to characterize duplexes. So far, nab has been used to construct

13. M.E. Hodsdon, J.W. Ponder, and D.P. Cistola, “The NMR solution structure of intestinal fatty
acid-binding protein complexed with palmitate: Application of a novel distance geometry algo-
rithm,” J. Mol. Biol. 264, 585-602 (1996).

14. T. Macke, S.-M. Chen, and W.J. Chazin, in Structure and Function, Volume 1: Nucleic Acids,
R.H. Sarma and M.H. Sarma, Ed. (Adenine Press, Albany, 1992). pp. 213-227.
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models for synthetic Holliday junctions [14], calcyclin dimers [15], HMG-protein/DNA complexes
[16], active sites of Rieske iron-sulfur proteins [17], and supercoiled DNA [18]. The Examples chap-
ter below provides a number of other sample applications.

2.3. First Examples.

This section introduces nab via three simple examples. All nab programs in this user manual
are set in Courier, a typewriter style font. The line numbers at the beginning of each line are not parts
of the programs but have been added to make it easier to refer to specific program sections.

2.3.1. B-form DNA duplex.

One of the goals of nab was that simple models should require simple programs. Here is an nab
program that creates a model of a B-form DNA duplex and saves it as a PDB file.

1 // Program 1 - Average B-form DNA duplex

2 molecule m;

3
4 m = bdna( "gcgttaacgc" );

5 putpdb( "gcg10.pdb", m );

Line 2 is a declaration used to tell the nab compiler that the name m is a molecule variable,
something nab programs use to hold structures. Line 4 creates the actual model using the predefined
function bdna(). This function’s argument is a literal string which represents the sequence of the
duplex that is to be created. Here’s how bdna() converts this string into a molecule. Each letter
stands for one of the four standard bases: a for adenine, c for cytosine, g for guanine and t for
thymine. In a standard DNA duplex every adenine is paired with thymine and every cytosine with
guanine in an antiparallel double helix. Thus only one strand of the double helix has to be specified.
As bdna() reads the string from left to right, it creates one strand from 5’ to 3’ (5’-gcgttaacgc
-3’), automatically creating the other antiparallel strand using Watson/Crick pairing. It uses a uniform
helical step of 3.38A° rise and 36.0° twist. Naturally, nab has other ways to create helical molecules
with arbitrary helical parameters and even mismatched base pairs, but if you need some “average”

15. B.C.M. Potts, J. Smith, M. Akke, T.J. Macke, K. Okazaki, H. Hidaka, D.A. Case, and W.J.

Chazin, “The structure of calcyclin reveals a novel homodimeric fold S100 Ca2+-binding pro-
teins,” Nature Struct. Biol. 2, 790-796 (1995).

16. J.J. Love, X. Li, D.A. Case, K. Giese, R. Grosschedl, and P.E. Wright, “DNA recognition and
bending by the architectural transcription factor LEF-1: NMR structure of the HMG domain
complexed with DNA,” Nature 376, 791-795 (1995).

17. R.J. Gurbiel, P.E. Doan, G.T. Gassner, T.J. Macke, D.A. Case, T. Ohnishi, J.A. Fee, D.P. Ballou,
and B.M. Hoffman, “Active site structure of Rieske-type proteins: Electron nuclear double reso-
nance studies of isotopically labeled phthalate dioxygenase from Pseudomonas cepacia and
Rieske protein from Rhodobacter capsulatus and molecular modeling studies of a Rieske center,”
Biochemistry 35, 7834-7845 (1996).

18. T.J. Macke, NAB, a Language for Molecular Manipulation, Ph.D. thesis, The Scripps Research
Institute 1996.
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DNA, you should be able to get it without having to specify every detail. The last line uses the nab
builtin putpdb() to write the newly created duplex to the file gcg10.pdb.

Program 1 is about the smallest nab program that does any real work. Even so, it contains sev-
eral elements common to almost all nab programs. The two consecutive forward slashes in line 1
introduce a comment which tells the nab compiler to ignore all characters between them and the end
of the line. This particular comment begins in column 1, but that is not required as comments may
begin in any column. Line 3 is blank. It serves no purpose other than to visually separate the declara-
tion part from the action part. nab input is free format. Runs of white space characters—spaces, tabs,
blank lines and page breaks—act like a single space which is required only to separate reserved words
like molecule from identifiers like m. Thus white space can be used to increase readabilty.

2.3.2. Superimpose two molecules.

Here is another simple nab program. It reads two DNA molecules and superimposes them
using a rotation matrix made from a correspondence between their C1’ atoms.

1 // Program 2 - Superimpose two DNA duplexes

2 molecule m, mr;

3 float r;

4
5 m = getpdb( "test.pdb" );

6 mr = getpdb( "gcg10.pdb" );

7 superimpose( m, "::C1’", mr, "::C1’" );

8 putpdb( "test.sup.pdb", m );

9 rmsd( m, "::C1’", mr, "::C1’", r );

10 printf( "rmsd = %8.3f\n", r );

This program uses three variables—two molecules, m and mr and one float, r. An nab declara-
tion can include any number of variables of the same type, but variables of different types must be in
separate declarations. The builtin function getpdb() reads two molecules in PDB format from the
files test.pdb and gcg10.pdb into the variables m and mr. The superimposition is done with the
builtin function superimpose(). The arguments to superimpose() are two molecules and two
“atom expressions”. nab uses atom expressions as a compact way of specifying sets of atoms. Atom
expressions and atom names are discussed in more detail below but for now an atom expression is a
pattern that selects one or more of the atoms in a molecule. In this example, they select all atoms with
names C1’.

superimpose() uses the two atom expressions to associate the corresponding C1’ carbons in
the two molecules. It uses these correspondences to create a rotation matrix that when applied to m will
minimize the root mean square deviation between the pairs. It applies this matrix to m, “moving” it on
to mr. The transformed molecule m is written out to the file test.sup.pdb in PDB format using the
builtin function putpdb(). Finally the builtin function rmsd() is used to compute the actual root
mean square deviation between corresponding atoms in the two superimposed molecules. It returns the
result in r, which is written out using the C-like I/O function printf(). rmsd() also uses two
atom expressions to select the corresponding pairs. In this example, they are the same pairs that were
used in the superimposition, but any set of pairs would have been acceptable. An example of how this
might be used would be to use different subsets of corresponding atoms to compute trial superimposi-
tions and then use rmsd() over all atoms of both molecules to determine which subset did the best
job.
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2.3.3. Place residues in a standard orientation.

This is the last of the introductory examples. It places nucleic acid monomers in an orientation
that is useful for building Watson/Crick base pairs. It uses several atom expressions to create a frame
or handle attached to an nab molecule that permits easy movement along important “molecular direc-
tions”. In a standard Watson/Crick base pair the C4 and N1 atoms of the purine base and the H3, N3
and C6 atoms of the pyrimdine base are colinear. Such a line is obviously an important molecular
direction and would make a good coordinate axis. Program 3 aligns these monomers so that this
hydrogen bond is along the Y-axis.

1 // Program 3 - orient nucleic acid monomers

2 molecule m;

3
4 m = getpdb( "ADE.pdb" );

5 setframe( 2, m, // also for GUA

6 "::C4",

7 "::C5", "::N3",

8 "::C4", "::N1" );

9 alignframe( m, NULL );

10 putpdb( "ADE.std.pdb", m );

11
12 m = getpdb( "THY.pdb" );

13 setframe( 2, m, // also for CYT & URA

14 "::C6",

15 "::C5", "::N1",

16 "::C6", "::N3" );

17 alignframe( m, NULL );

18 putpdb( "THY.std.pdb", m );

This program uses only one variable, the molecule m. Execution begins on line 4 where the
builtin getpdb() is used to read in the coordinates of an adenine (created elsewhere) from the file
ADE.pdb. The nab builtin setframe() creates a coordinate frame for this molecule using vectors
defined by some of its atoms as shown in Figure 1. The first atom expression (line 6) sets the origin of
this coordinate frame to be the coordinates of the C4 atom. The two atom expressions on line 7 set the
X direction from the coordinates of the C5 to the coordinates of the N3. The last two atom expressions
set the Y direction from the C4 to the N1. The Z-axis is created by the cross product X×Y. Frames are
thus like sets of local coordinates that can be attached to molecules and used to facilitate defining
transformations; a more complete discussion is given in the section Frames below.

nab requires that the coordinate axes of all frames be orthogonal, and while the X and Y axes as
specified here are close, they are not quite exact. setframe() uses its first parameter to specify
which of the original two axes is to be used as a formal axis. If this parameter is 1, then the specified X
axis becomes the formal X axis and Y is recreated from Z×X; if the value is 2, then the specified Y
axis becomes the formal Y axis and X is recreated from Y×Z. In this example the specified Y axis is
used and X is recreated. The builtin alignframe() transforms the molecule so that the X, Y and Z
axes of the newly created coordinate frame point along the standard X, Y and Z directions and that the
origin is at (0,0,0). The transformed molecule is writen to the file ADE.std.pdb. A similar proce-
dure is performed on a thymine residue with the result that the hydrogen bond between the H3 of
thymine and the N1 of adenine in a Watson Crick pair is now along the Y axis of these two residues.
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Figure 1. ADE and THY after execution of Program 3.

2.4. Molecules, Residues and Atoms.

We now turn to a discussion of ways of describing and manipulating molecules. In addition to
the general-purpose variable types like float, int and string, nab has three types for working
with molecules: molecule, residue and atom. Like their chemical counterparts, nab molecules
are composed of residues which are in turn composed of atoms. The residues in an nab molecule are
organized into one or more named, ordered lists called strands. Residues in a strand are usually
bonded so that the “exiting” atom of residue i is connected to the “entering” atom of residue i + 1. The
residues in a strand need not be bonded; however, only residues in the same strand can be bonded.

Each of the three molecular types has a complex internal structure, only some of which is
directly accessable at the nab level. Simple elements of these types, like the number of atoms in a
molecule or the X coordinate of an atom are accessed via attributes—a suffix attached to a molecule,
residue or atom variable. Attributes behave almost like int, float and string variables; the only
exception being that some attributes are read only with values that can t be changed. More complex
operations on these types such as adding a residue to a molecule or merging two strands into one are
handled with builtin functions. A complete list of nab builtin functions and molecule attributes can be
found in the nab Language Reference.

2.5. Creating Molecules.

The following functions are used to create molecules. Only an overview is giv en here; more
details are in chapter 3.

molecule newmolecule();

int addstrand( molecule m, string str );

residue getresidue( string rname, string rlib );

residue transformres( matrix mat, residue res, string aex );

int addresidue( molecule m, string str, residue res );
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int connectres( molecule m, string str,

int rn1, string atm1, int rn2, string atm2 );

int mergestr( molecule m1, string str1, string end1,

molecule m2, string str2, string end2 );

The general strategy for creating molecules with nab is to create a new (empty) molecule then
build it one residue at a time. Each residue is fetched from a residue library, transformed to properly
position it and added to a growing strand. A template showing this strategy is shown below. mat, m
and res are respectively a matrix, molecule and residue variable declared elsewhere. Words
in italics indicate general instances of things that would be filled in according to actual application.

1 ...

2 m = newmolecule();

3 addstrand( m, str-1 );

4 ...

5 for( ... ){

6 ...

7 res = getresidue( res-name, res-lib );

8 res = transformres( mat, res, NULL );

9 addresidue( m, str-name, res );

10 ...

11 }

12 ...

In line 2, the function newmolecule() creates a molecule and stores it in m. The new
molecule is empty—no strands, residues or atoms. Next addstrand() is used to add a strand
named str-1. Strand names may be up to 255 characters in length and can include any characters
except white space. Each strand in a molecule must have a unique name. There is no limit on the num-
ber of strands a molecule may have.

The actual structure would be created in the loop on lines 5-11. Each time around the loop, the
function getresidue() is used to extract the next residue with the name res-name from some
residue library res-lib and stores it in the residue variable res. Next the function transform-
res() applies a transformation matrix, held in the matrix variable mat to the residue in res,
which places it in the orientation and position it will have in the new molecule. Finally, the function
addresidue() appends the transformed residue to the end of the chain of residues in the strand str-
name of the new molecule.

Residues in each strand are numbered from 1 to N, where N is the number of residues in that
strand. The residue order is the order in which they were inserted with addresidue(). While nab
does not require it, nucleic acid chains are usually numbered from 5’ to 3’ and proteins chains from
the N-terminus to the C-terminus. The residues in nucleic acid strands and protein chains are usually
bonded with the outgoing end of residue i bonded to the incoming end of residue i+1. However, as this
is not always the case, nab requires the user to explicitly make all interresidue bonds with the builtin
connectres().

connectres() makes bonds between two atoms in different residues of the same strand of a
molecule. Only residues in the same strand can be bonded. connectres() takes six arguments.
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They are a molecule, the name of the strand containing the residues to be bonded, and two pairs each
of a residue number and the name of an atom in that residue. As an example, this call to connec-
tres(),

connectres( m, "sense", i, "O3’", i+1, "P" );

connects an atom named "O3’" in residue i to an atom named "P" in residue i+1, creating the
phosphate bond that joins two nucleic acid monomers.

The function mergestr() is used to either move or copy the residues in one strand into
another strand. Details are provided in chapter 3.

2.6. Residues and Residue Libraries.

nab programs build molecules from residues that are parts of residue libraries. Residue libraries
contain coordinates and bonding information for each of their entries. They may also contain addi-
tional information such as the type of the residues, (dna, rna, amino acid or unknown), the level of
atomic detail (all atoms including hydrogens, united atom with only hydrogen bonding hydrogens or
unknown), lists of chiral centers including those for enforcing planarity, atomic charges and radii. nab
is distributed with four residue libraries—A- and B-DNA, RNA and an amino acid library that pro-
duces fully extended peptides. In addition to nab residue libraries (denoted by a .rlb suffix), nab
can also read residues from the LEaP object file format (OFF) files such as all_amino94.lib
(denoted by a A complete description of an nab residue library can be found in the nab Language
Reference.

nab provides several functions for working with residues. All return a valid residue on success
and NULL on failure. The function getres() is written in nab and it source is shown below.
transformres() which applies a coordinate transformation to a residue and is discussed under the
section Matrices and Transformations.

residue getresidue( string resname, string reslib );

residue getres( string resname, string reslib );

residue transformres( matrix mat, residue res, string aexp );

getresidue() extracts the residue with name resname from the residue library reslib.
reslib is the name of a file that either contains the residue information or contains names of other
files that contain it. reslib is assumed to be in the directory $NABHOME/reslib unless it begins
with a slash (/)

A common task of many nab programs is the translation of a string of characters into a structure
where each letter in the string represents a residue. Generally, some mapping of one or two character
names into actual residue names is required. nab supplies the function getres() that maps the sin-
gle character names a, c, g, t and u and their 5’ and 3’ terminal analogues into the residues ADE,
CYT, GUA, THY and URA. Here is its source:

1 // getres() - map 1-2 letter names into 3 letter names
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2 residue getres( string rname, string rlib )

3 {

4 residue res;

5
6 if( r == "a" || r == "A" ){

7 res = getresidue( "ADE", rlib );

8 }else if( r == "a3" || r == "A3" ){

9 res = getresidue( "ADE3", rlib );

10 }else if( r == "a5" || r == "A5" ){

11 res = getresidue( "ADE5", rlib );

12 }else if( r == "c" || r == "C" ){

13 res = getresidue( "CYT", rlib );

14 }else if( r == "c3" || r == "C3" ){

15 res = getresidue( "CYT3", rlib );

16 }else if( r == "c5" || r == "C5" ){

17 res = getresidue( "CYT5", rlib );

18 }else if( r == "g" || r == "G" ){

19 res = getresidue( "GUA", rlib );

20 }else if( r == "g3" || r == "G3" ){

21 res = getresidue( "GUA3", rlib );

22 }else if( r == "g5" || r == "G5" ){

23 res = getresidue( "GUA5", rlib );

24 }else if( r == "t" || r == "T" ){

25 res = getresidue( "THY", rlib );

26 }else if( r == "t3" || r == "T3" ){

27 res = getresidue( "THY3", rlib );

28 }else if( r == "t5" || r == "T5" ){

29 res = getresidue( "THY5", rlib );

30 }else if( r == "u" || r == "U" ){

31 res = getresidue( "URA", rlib );

32 }else if( r == "u3" || r == "U3" ){

33 res = getresidue( "URA3", rlib );

34 }else if( r == "u5" || r == "U5" ){

35 res = getresidue( "URA5", rlib );

36 }else{

37 fprintf( stderr, "undefined residue %s0, r );

38 exit( 1 );

39 }

40 return( res );

41 };

getres() is the first of several nab functions that are discussed in this User Manual. The fol-
lowing explanation will cover not just getres() but will serve as an introduction to user defined
nab functions in general.

An nab function is a named group of declarations and statements that is executed as a unit by
using the function’s name in an expression. nab functions can have special variables called parame-
ters that allow the same function to operate on different data. A function definition begins with a
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header that describes the function, followed by the function body which is a list of statements and dec-
larations enclosed in braces ({}) and ends with a semicolon. The header to getres() is on line 2
and the body is on lines 3 to 40. Line 40 ends with the final semicolon.

Every nab function header begins with the reserved word that specifies its type, followed by the
function’s name followed by its parameters (if any) enclosed in parentheses. The parentheses are
always required, even if the function does not have parameters. nab functions may return a single
value of any of the 10 nab types. nab functions can not return arrays. In symbolic terms every nab
function header uses this template:

type name( parameters? )

The parameters (if present) to an nab function are a comma separated list of type variable pairs:

type1 variable1, type2 variable2, ...

An nab function may have any number of parameters, including none. Parameters may of any of the
10 nab types, but unlike function values, parameters can be arrays, including “hashed” arrays. The
function getres() has two parameters, the two string variables resname and reslib.

Parameters to nab functions are “called by reference” which means that they contain the actual
data—not copies of it—that the function was called with. When an nab function parameter is
assigned, the actual data in the calling function is changed. The only exception is when an expression
is passed as a parameter to an nab function. In this case, the nab compiler evaluates the expression
into a temporary (and invisible to the nab programmer) variable and then operates on its contents.

Immediately following the function header is the function body. It is a list of declarations fol-
lowed by a list of statements enclosed in braces. The list of declarations, the list of statements or both
may be empty. getres() has several statements, and a single declaration, the variable res. This
variable is a “local variables”. Local variables are defined only when the function is active. If a local
variable has the same name as variable defined outside of a it the local variable hides the global one.
Local variables can not be parameters.

The statement part of getres() begins on line 6. It consists of several if statements organized
into a decision tree. The action of this tree is to translate one of the strings A, C5, G3, T, etc., or their
lower case equivalents into the corresponding three letter standard nucleic acid residue name and then
extract that residue from reslib using the low lev el residue library function getresidue(). The
value returned by getresidue() is stored in the local variable res, except when the input string is
not one of those listed above. In that case, getres() writes a message to stderr indicating that it
can not translate the input string and sets res to the value NULL. nab uses NULL to represent non-
existant values of the types string, file, atom, residue, molecule and bounds. A value of
NULL generally means that a variable is unitialized or that an error ocurred in creating it.

A function returns a value by executing a return statement, which is the reserved word
return followed by an expression. The return statement evaluates the expression, sets the func-
tion value to it and returns control to the point just after the call. The expression is optional but if pre-
sent the type of the expression must be the same as the type of the function or both must be numeric
(int, float). If the expression is missing, the function still returns, but its value is undefined.
getres() includes one return statements on line 40. A function also returns with an undefined
value when it “runs off the bottom”, i.e. executes the last statement before the closing brace and that
statement is not a return.



9/13/99 General overview 21

2.7. Atom Names and Atom Expressions.

Every atom in an nab molecule has a name. This name is composed of the strand name, the
residue number and the atom name. As both PDB and off formats require that all atoms in a residue
have distinct names, the combination of strand name, residue number and atom name is unique for
each atom in a single molecule. Atoms in different molecules, however, may have the same name.

Many nab builtins require the user to specify exactly which atoms are to be covered by the oper-
ation. nab does this with special strings called “atom expressions”. An atom expression is a pattern
that matches one or more atom names in the specified molecule or residue. An atom expression con-
sists of three parts—a strand part, a residue part and an atom part. The parts are separated by colons
(:). Not all three parts are required. An atom expression with no colons consists of only a strand part;
it selects all atoms in the selected strands. An atom expression with one colon consists of a strand part
and a residue part; it selects all atoms in the selected residues in the selected strands. An “empty” part
selects all strands, residues or atoms depending on which parts are empty.

nab patterns specify the entire string to be matched. For example, the atom pattern C matches
only atoms named C , and not those named CA, HC, etc. To match any name that begins with C, use
C*, to match any name ending with C, use *C and to match a C in any position use *C*. An atom
expression is first parsed into its parts. The strand part is evaluated selecting one or more strands in a
molecule. Next the residue part is evaluated. Only residues in selected strands can be selected. Finally
the atom part is evaluated and only atoms in selected residues are selected. Here are some typical
atom expressions and the atoms they match.

:ADE: Select all atoms in any residue named ADE. All three parts are pre-
sent but both the strand and atom parts are “empty”. The atom ex-
pression :ADE selects the same set of atoms.

::C,CA,N select all atoms with names C, CA or N in all residues in all strands—
typically the peptide backbone.

A:1-10,13,URA:C1’ Select atoms named C1’ (the glycosyl-carbons) in residues 1 to 10
and 13 and in any residues named URA in the strand named A.

::C*[ˆ’] Select all non-sugar carbons. The [ˆ’] is an example of a negated
character class. It matches any character in the last position except ’.

::P,O?P,C[3-5]?,O[35]? The nucleic acid backbone. This P selects phosphorous atoms. The
O?P matches phosphate oxygens that have various second letters
O1P, O2P or OAP or OBP. The C[3-5]? matches the backbone car-
bons, C3’, C4’, C5’ or C3*, C4*, C5*. And the O[35]? match-
es the backbone oxygens O3’, O5’ or O3*, O5*.

:: or : Select all atoms in the molcule.

An important property of nab atom expressions is that the order in which the strands, residues,
and atoms are listed is unimportant. i.e., the atom expression "2,1:5,2,3:N1,C1’" is the exact
same atom expression as "1,2:3,2,5:C1’,N1". All atom expressions are reordered, internal to
nab, in increasing atom number. So, in the above example, the selected atoms will be selected in the
following sequence:

1:2:N1

1:2:C1’

1:3:N1
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1:3:C1’

1:5:N1

1:5:C1’

2:2:N1

2:2:C1’

2:3:N1

2:3:C1’

2:5:N1

2:5:C1’

The order in which atoms are selected internal to a specific residue are the order in which they appear
in a nab PDB file. As seen in the above example, N1 appears before C1’ in all nab nucleic acid
residues and PDB files.

2.8. Looping over atoms in molecules.

Another thing that many nab programs have to do is visit every atom of a molecule. nab pro-
vides a special form of its for-loop for accomplishing this task. These loops have this form:

for( a in m )

stmt;

a and m represent an atom and a molecule variable. The action of the loop is to set a to each atom
in m in this order. The first atom is the first atom of the first residue of the first strand. This is fol-
lowed by the rest of the atoms of this residue, followed by the atoms of the second residue, etc until all
the atoms in the first strand have been visited. The process is then repeated on the second and subse-
quent strands in m until a has been set to every atom in m. The order of the strands in a molecule is
the order in which they were created with addstrand(), the order of the residues in a strand is the
order in which they were added with addresidue() and the order of the atoms in a residue is the
order in which they are listed in the resdiue library entry that the residue is based on.

The following program uses two nested “for-in” loops to compute all the proton-proton dis-
tances in a molecule. Distances less than cutoff are written to stdout. The program uses the sec-
ond argument on the command to hold the cutoff value. The program also uses the =˜ operator to
compare a character string , in this case an atom name to pattern, speicified as a regular expression.

1 // Program 4 - compute H-H distances <= cutoff

2 molecule m;

3 atom ai, aj;

4 float d, cutoff;

5
6 cutoff = atof( argv[ 2 ] );

7 m = getpdb( "gcg10.pdb" );

8
9 for( ai in m ){
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10 if( ai.atomname !˜ "H" )continue;

11 for( aj in m ){

12 if( aj.tatomnum <= ai.tatomnum )continue;

13 if( aj.atomname !˜ "H" )continue;

14 if(( d=distp(ai.pos,aj.pos))<=cutoff){

15 printf(

16 "%3d %-4s %-4s %3d %-4s %-4s %8.3f\n",

17 ai.tresnum, ai.resname, ai.atomname,

18 aj.tresnum, aj.resname, aj.atomname,

19 d );

20 }

21 }

22 }

The molecule is read into m using getpdb(). Two atom variables ai and aj are used to hold
the pairs of atoms. The outer loop in lines 9-22 sets ai to each atom in m in the order discussed above.
Since this program is only interested in proton-proton distances, if ai is not proton, all calculations
involving that atom can be skipped. The if in line 10 tests to see if ai is a proton. If does so by test-
ing to see if ai’s name, available via the atomname attribute doesn’t match the regular expression
"H". If it doesn’t match, the the program executes the continue statement also on line 10, which
has the effect of advancing the outer loop to its next atom.

From the section on attributes, ai.atomname behaves like a character string. It can be com-
pared against other character strings or tested to see if it matches a pattern or regular expression. The
two operators, =˜ and !˜ stand for match and doesn’t-match They also inform the nab compiler that
the string on their right hand sides is to be treated like a regular expression. In this case, the regular
expression "H" matches any name that contains the letter H, or any proton which is just what is
required.

If ai is a proton, then the inner loop from 11-21 is executed. This sets aj to each atom in the
same order as the loop in 9. Since distance is reflexive (dist

i,j = distj,i), and the distance between an

atom and itself is 0, the inner loop uses the if on line 12 to skip the calculation on aj unless it fol-
lows ai in the molecule’s atom order. Next the if on line 13 checks to see if aj is a proton, skipping
to the next atom if it is not. Finally, the if on line 14 computes the distance between the two protons
ai and aj and if it is <= cutoff writes the information out using the C-like I/O function
printf().

2.9. Points, Transformations and Frames.

nab provides three kinds of geometric objects. They are the types point and matrix and the
“frame” component of a molecule.

2.9.1. Points and Vectors.

The nab type point is an object that holds three float values. These values can represent
the X, Y and Z coordinates of a point or the components of 3-vector. The individual elements of a
point variable are accessed via attributes or suffixes added to the variable name. The three point
attributes are "x", "y" and "z". Many nab builtin functions use, return or create point values.
Details of operations on points are given in chapter 3.
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2.9.2. Matrices and Transformations.

nab uses the matrix type to hold a 4×4 transformation matrix. Transformations are applied to
residues and molecules to move them into new orientations and/or positions. Unlike a general coordi-
nate transformation, nab transformations can not alter the scale (size) of an object. However, transfor-
mations can be applied to a subset of the atoms of a residue or molecule changing its shape. For exam-
ple, nab would use a transformation to rotate a group of atoms about a bond. nab does not require
that transformations applied to parts of residues or molecules be chemically valid. It simply transforms
the coordinates of the selected atoms leaving it to the user to correct (or ignore) any chemically incor-
rect geometry caused by the transformation. nab uses the following builtin functions to create and use
transformations.

matrix newtransform( float dx, float dy, float dz,

float rx, float ry, float rz );

matrix rot4( molecule m, string tail, string head, float angle );

matrix rot4p( point tail, point head, float angle );

matrix trans4( molecule m, string tail, string head, float distance );

matrix trans4p( point tail, point head, float distance );

residue transformres( matrix mat, residue r, string aex );

int transformmol( matrix mat, molecule m, string aex );

nab provides three ways to create a new transformation matrix. The function newtrans-
form() creates a transformation matrix from 3 translations and 3 rotations. It is intended to position
objects with respect to the standard X, Y, and Z axes located at (0,0,0). Here is how it works. Imagine
two coordinate systems, X, Y, Z and X’, Y’, Z’ that are initially superimposed. newtransform()
first rotates the the primed coordinate system about Z by rz degrees, then about Y by ry degrees, then
about X by rx degrees. Finally the reoriented primed coordinate system is translated to the point
(dx,dy,dz) in the unprimed system. The functions rot4() and rot4p() create a transformation
matrix that effects a clockwise rotation by an angle (in degrees) about an axis defined by two points.
The points can be specifed implicitly by atom expressions applied to a molecule in rot4() or explic-
itly as points in
rot4p(). If an atom expression in rot4() selects more that one atom, the average coordinate of

all selected atoms is used as the point’s value. (Note that a positive rotation angle here is defined to be
clockwise, which is in accord with the IUPAC rules for defining torsional angles in molecules, but is
opposite to the convention found in many other branches of mathematics.) Similary, rhe functions
trans4() and trans4p() create a transformation that effects a translation by a distance along the
axis defined by two points. A positive translation is from tail to head.

transformres() applies a transformation to those atoms of res that match the atom expres-
sion aex. It returns a copy of the input residue with the changed coordinates. The input residue is
unchanged. It returns NULL if the new residue could not be created. transformmol() applies a
transformation to those atoms of mol that match aex . Unlike transformres(), transform-
mol() changes the coordindates of the input molecule. It returns a 0 on success and 1 on failure. In
both functions, the special atom expression NULL selects all atoms in the input residue or molecule.
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2.9.3. Frames.

Every nab molecule includes a frame, a handle that allows arbitrary and precise movement of
the molecule. This frame is set with the nab builtins setframe() and setframep(). It is ini-
tially set to the standard X, Y and Z directions centered at (0,0,0). setframe() creates a coordinate
frame from atom expressions that specify the the origin, the X direction and the Y direction. If any
atom expression selects more that one atom, the average of the selected atoms’ coordinates is used. Z
is created from X×Y. Since the initial X and Y directions are unlikely to be orthogonal, the use
parameter specifies which of the input X and Y directions is to become the formal X or Y direction. If
use is 1, X is chosen and Y is recreated from Z×X. If use is 2, then Y is chosen and X is recreated
from Y×Z. setframep() is identical except that the five points defining the frame are explicitly
provided.

int setframe( int use, molecule mol, string origin,

string xtail, string xhead,

string ytail, string yhead );

int setframep( int use, molecule mol, point origin,

point xtail, point xhead,

point ytail, point yhead );

int alignframe( molecule mol, molecule mref );

alignframe() is similar to superimpose(), but works on the molecules’ frames rather
than selected sets of their atoms. It transforms mol to superimpose its frame on the frame of mref. If
mref is NULL, alignframe() superimposes the frame of mol on the standard X, Y and Z coordi-
nate system centered at (0,0,0).

Here’s how frames and transformations work together to permit precise motion between two
molecules. Corresponding frames are defined for two molecules. These frames are based on “molecu-
lar directions”. alignframe() is first used to align the frame of one molecule along with the stan-
dard X, Y and Z directions. The molecule is then moved and reoriented via transformations. Because
its initial frame was along these molecular directions, the transformations are likely to be along or
about the axes. Finally alignframe() is used to realign the transformed molecule on the frame of
the fixed molecule.

One use of this method would be the rough placement of a drug into a groove on a DNA
molecule to create a starting structure for restrained molecular dynamics. setframe() is used to
define a frame for the DNA along the appropriate groove, with its origin at the center of the binding
site. A similar frame is defined for the drug. alignframe() first aligns the drug on the standard
coordinate system whose axes are now important directions between the DNA and the drug. The drug
is transformed and alignframe() realigns the transformed drug on the DNA’ s frame.

2.10. Creating Watson Crick duplexes.

Watson/Crick duplexes are fundamental components of almost all nucleic acid structures and
nab provides several functions for use in creating them. They are

residue getres( string resname, string reslib );

molecule bdna( string seq );
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string wc_complement( string seq, string reslib, string natype );

molecule wc_basepair( residue sres, residue ares );

molecule wc_helix( string seq, string rlib, string natype,

string aseq, string arlib, string anatype, float xoff,

float incl, float twist, float rise, string opts );

All of these functions are written in nab allowing the user to modify or extend them as needed with-
out having to modify the nab compiler. getres() which maps one letter residue names into actual
residue names was discussed in the section Residues and Residue Libraries.

2.10.1. bdna().

The function bdna() which was used in the first example converts a string into a Watson/Crick
DNA duplex using average DNA helical parameters.

1 // bdna() - create average B-form duplex

2 molecule bdna( string seq )

3 {

4 molecule m;

5 string cseq;

7 cseq = wc_complement( seq, "dna.amber94.rlb", "dna" );

8 m = wc_helix( seq, "dna.amber94.rlb", "dna",

9 cseq, "dna.amber94.rlb", "dna",

10 2.25, -4.96, 36.0, 3.38, "s5a5s3a3" );

11 return( m );

12 };

bdna() calls wc_helix() to create the molecule. However, wc_helix() requires both strands of
the duplex so bdna() calls wc_complement() to create a string that represents the Watson/Crick
complement of the sequence contained in its parameter seq. The string "s5a5s3a3" replaces both the
sense and anti 5’ terminal phospates with hydrogens and adds hydrogens to both the sense and anti 3’
terminal O3’ oxygens. The finished molecule in m is returned as the function’s value. If any errors had
occured in creating m, it would have the value NULL, indicating that bdna() failed.

2.10.2. wc_complement().

The function wc_complement() takes three strings. The first is a sequence using the standard
one letter code, the second is the name of an nab residue library, and the third is the nucleic acid type
(RNA or DNA). It returns a string that contains the Watson/Crick complement of the input sequence in
the same one letter code. The input string and the returned complement string have opposite direc-
tions. If the left end of the input string is the 5’ base then the left end of the returned string will be the
3’ base. The actual direction of the two strings depends on their use.

1 // wc_complement() - create a string that is the W/C

2 // complement of the string seq

3 string wc_complement( string seq, string rlib, string rlt )

4 {
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5 string acbase, base, wcbase, wcseq;

6 int i, len;

8
9 if( rlt == "dna" )

10 acbase = "t";

11 else if( rlt == "rna" )

12 acbase = "u";

13 else{

14 fprintf( stderr,

15 "wc_complement: rlib is not dna/rna, no W/C comp.",

16 rlib );

17 return( NULL );

18 }

20 len = length( seq );

21 wcseq = NULL;

22 for( i = 1; i <= len; i = i + 1 ){

23 base = substr( seq, i, 1 );

24 if( base == "a" || base == "A" )

25 wcbase = acbase;

26 else if( base == "c" || base == "C" )

27 wcbase = "g";

28 else if( base == "g" || base == "G" )

29 wcbase = "c";

30 else if( base == "t" || base == "T" )

31 wcbase = "a";

32 else if( base == "u" || base == "U" )

33 wcbase = "a";

34 else{

35 fprintf( stderr,

36 "wc_complement: unknown base %sn",

37 base );

38 return( NULL );

39 }

40 wcseq = wcseq + wcbase;

41 }

42 return( wcseq );

43 }

wc_complement() begins its work in line 9, where the nucleic acid type, as indicated by rlt
as DNA or RNA is used to determine the correct complement for an a. If the residue library is not
nucleic acid, the complementary sequence can not be created and wc_complement() returns the
value NULL indicating failure. The complementary sequence is created in the for loop that begins in
line 22 and extends to line 41. The nab builtin substr() is used to extract single characters from
the input sequence beginning with with position 1 and working from left to right until entire input
sequence has been converted. The if-tree from lines 24 to 39 is used to set the character complemen-
tary to the current character, using the previously determined acbase if the input character is an a or
A. Any character other than the expected a, c, g, t, u (or A, C, G, T, U) is an error causing
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wc_complement() to print an error message and return NULL, indicating that it failed. Line 40
shows how nab uses the infix + to concatentate character strings. When the entire string has been
complemented, the for loop terminates and the complementary sequence now in wcseq is returned
as the function value. Note that if the input sequence is empty, wc_complement() returns NULL,
indicating failure.

2.10.3. wc_helix() Overview.

wc_helix() generates a uniform helical duplex from a sequence, its complement, two residue
libraries and four helical parameters: x-offset, inclination, twist and rise. By using two residue
libraries, wc_helix() can generate RNA/DNA heteroduplexes. wc_helix() returns an nab
molecule containing two strands. The string seq becomes the "sense" strand and the string aseq
becomes the "anti" strand. seq and aseq are required to be complementary although this is not
checked. wc_helix() creates the molecule one base pair at a time. seq is read from left to right,
aseq is read from right to left and corresponding letters are extracted and converted to residues by
getres(). These residues are in turn combined into an idealized Watson/Crick base pair by
wc_basepair(). An AT created by wc_basepair() is shown in Figure 2.

A Watson/Crick duplex can be modeled as a set of planes stacked in a helix. The numbers that
describe the relationships between the planes and between the planes and the helical axis are called
helical parameters. Planes can be defined for each base or base pair. Six numbers (three displacements
and three angles) can be defined for every pair of planes; however, helical parameters for nucleic acid
bases are restricted to the six numbers describing the the relationship between the two bases in a base
pair and the six numbers describing the relationship between adjacent base pairs. A complete descrip-
tion of helical parameters can be found in Dickerson [19]

wc_helix() uses only four of the 12 helical parameters. It builds its helices from idealized
Watson/Crick pairs. These pairs are planar so the three intra base angles are 0. In addition the displace-
ments are displacements from the idealized Watson/Crick geometry and are also 0. The A and the T in
Figure 2 are in plane of the page. wc_helix() uses four of the six parameters that relate a base pair
to the helical axis. The helices created by wc_helix() have a single axis (the Z axis, not shown)
which is at the intersection of the X and Y axes of Figure 2. Now imagine keeping the axes fixed in the
plane of the paper and moving the base pair. X-offset is the displacement along the X axis between the
Y axis and the line marked Y’. A positive X-offset is toward the arrow on the X-axis. Inclination is the
rotation of the base pair about the X axis. A rotation that moves the A above the plane of page and the
T below is positive. Twist involves a rotation of the base pair about the Z-axis. A counterclockwise
twist is positive. Finally, rise is a displacement along the Z-axis. A positive rise is out of the page
toward the reader.

2.10.4. wc_basepair().

The function wc_basepair() takes two residues and assembles them into a two stranded nab
molecule containing one base pair. Residue sres is placed in the "sense" strand and residue ares
is placed in the "anti" strand. The work begins in line 14 where newmolecule() is used to cre-
ate an empty molecule stored in m. Two strands, sense and anti are added using addstrand().
In addition, two more molecules are created, m_sense for the sense residue and m_anti for the anti

19. R. E. Dickerson, “Definitions and Nomenclature of Nucleic Acid Structure Parameters,” J.
Biomol. Struct. Dyn. 6, (4)627-634 (1989).
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Figure 2. ADE:THY from wc_basepair().

residue. The if-trees in lines 26-61 and 63-83 are used to select residue dependent atoms that will be
used to move the base pairs into a convenient orientation for helix generation. The purine:C4 and
pyrimidine:C6 distance which is residue dependent is also set. In line 62, addresidue() adds
sres to the strand sense of m_sense. In line 84, addresidue() adds ares to the strand
anti of m_anti. Lines 86 and 87 align the molecules containing the sense residue and anti residue
so that sres and ares are on top of each other. Line 88 creates a transformation matrix that rotates
m_anti ( containing ares ) 180° about the X-axis. After applying this transformation, the two bases
are still occupying the same space but ares is now antiparallel to sres. Line 90 creates a transfor-
mation matrix that displaces m_anti and ares along the Y-axis by sep A° . The properly positioned
molecules containing sres and ares are merged into a single molecule, m, completing the
base pair. Lines 95-96 move this base pair to a more convenient
orientation for helix generation. Initially the base as shown in
Figure 2 is in the plane of page with origin on the C4 of the A. The calls to
setframe() and alignframe() move the base pair so that the origin is at the intersection of the
lines marked X and Y’.

1 // wc_basepair() - create Watson/Crick base pair

2 #define AT_SEP 8.29

3 #define CG_SEP 8.27

4 molecule wc_basepair( residue sres, residue ares )

5 {

6 residue r;

7 molecule m;

8 float sep;

9 string srname, arname;

10 string xtail, xhead;

11 string ytail, yhead;
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12 matrix mat;

13
14 m = newmolecule();

15 m_sense = newmolecule();

16 m_anti = newmolecule();

17 addstrand( m, "sense" );

18 addstrand( m, "anti" );

19 addstrand( m_sense, "sense" );

20 addstrand( m_anti, "anti" );

21
22 srname = getresname( sres );

23 arname = getresname( ares );

24 ytail = "sense::C1’";

25 yhead = "anti::C1’";

26 if( ( srname == "ADE" ) || ( srname == "DA" ) ||

27 ( srname == "RA" ) || ( srname =˜ "[DR]A[35]" ) ){

28 sep = AT_SEP;

29 xtail = "sense::C5";

30 xhead = "sense::N3";

31 setframe( 2, m_sense,

32 "::C4", "::C5", "::N3", "::C4", "::N1" );

33 }else if( ( srname == "CYT" ) || ( srname =˜ "[DR]C[35]*" ) ){

34 sep = CG_SEP;

35 xtail = "sense::C6";

36 xhead = "sense::N1";

37 setframe( 2, m_sense,

38 "::C6", "::C5", "::N1", "::C6", "::N3" );

39 }else if( ( srname == "GUA" ) || ( srname =˜ "[DR]G[35]*" ) ){

40 sep = CG_SEP;

41 xtail = "sense::C5";

42 xhead = "sense::N3";

43 setframe( 2, m_sense,

44 "::C4", "::C5", "::N3", "::C4", "::N1" );

45 }else if( ( srname == "THY" ) || ( srname =˜ "DT[35]*" ) ){

46 sep = AT_SEP;

47 xtail = "sense::C6";

48 xhead = "sense::N1";

49 setframe( 2, m_sense,

50 "::C6", "::C5", "::N1", "::C6", "::N3" );

51 }else if( ( srname == "URA" ) || ( srname =˜ "RU[35]*" ) ){

52 sep = AT_SEP;

53 xtail = "sense::C6";

54 xhead = "sense::N1";

55 setframe( 2, m_sense,

56 "::C6", "::C5", "::N1", "::C6", "::N3" );

57 }else{

58 fprintf( stderr,
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59 "wc_basepair : unknown sres %s0,srname );

60 exit( 1 );

61 }

62 addresidue( m_sense, "sense", sres );

63 if( ( arname == "ADE" ) || ( arname == "DA" ) ||

64 ( arname == "RA" ) || ( arname =˜ "[DR]A[35]" ) ){

65 setframe( 2, m_anti,

66 "::C4", "::C5", "::N3", "::C4", "::N1" );

67 }else if( ( arname == "CYT" ) || ( arname =˜ "[DR]C[35]*" ) ){

68 setframe( 2, m_anti,

69 "::C6", "::C5", "::N1", "::C6", "::N3" );

70 }else if( ( arname == "GUA" ) || ( arname =˜ "[DR]G[35]*" ) ){

71 setframe( 2, m_anti,

72 "::C4", "::C5", "::N3", "::C4", "::N1" );

73 }else if( ( arname == "THY" ) || ( arname =˜ "DT[35]*" ) ){

74 setframe( 2, m_anti,

75 "::C6", "::C5", "::N1", "::C6", "::N3" );

76 }else if( ( arname == "URA" ) || ( arname =˜ "RU[35]*" ) ){

77 setframe( 2, m_anti,

78 "::C6", "::C5", "::N1", "::C6", "::N3" );

79 }else{

80 fprintf( stderr,

81 "wc_basepair : unknown ares %s0,arname );

82 exit( 1 );

83 }

84 addresidue( m_anti, "anti", ares );

85
86 alignframe( m_sense, NULL );

87 alignframe( m_anti, NULL );

88 mat = newtransform( 0., 0., 0., 180., 0., 0. );

89 transformmol( mat, m_anti, NULL );

90 mat = newtransform( 0., sep, 0., 0., 0., 0. );

91 transformmol( mat, m_anti, NULL );

92 mergestr( m, "sense", "last", m_sense, "sense", "first" );

93 mergestr( m, "anti", "last", m_anti, "anti", "first" );

94
95 setframe( 2, m, "::C1’", xtail, xhead, ytail, yhead );

96 alignframe( m, NULL );

97 return( m );

98 };

2.10.5. wc_helix() Implementation.

The function wc_helix() assembles base pairs from wc_basepair() into a helical duplex.
It is a fairly complicated function that uses several transformations and shows how mergestr() is
used to combine smaller molecules into a larger one. In addition to creating complete duplexes,
wc_helix() can also create molecules that contain only one strand of a duplex. Using the special
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value NULL for either seq or aseq creates a duplex that omits the residues for the NULL sequence.
The molecule still contains two strands, sense and anti, but the strand corresponding to the NULL
sequence has zero residues. wc_helix() first determines which strands are required, then creates
the first base pair, then creates the subsequent base pairs and assembles them into a helix and finally
packages the requested strands into the returned molecule.

Lines 19-34 test the input sequences to see which strands are required. The variables has_s
and has_a are flags where a value of 1 indicates that seq and/or aseq was requested. If an input
sequence is NULL, wc_complement() is used to create it and the appropriate flag is set to 0. The
nab builtin setreslibkind() is used to set the nucleic acid type so that the proper residue ( DNA
or RNA ) is extracted from the residue library. The first base pair is created in lines 38-87. The two
letters corresponding the 5’ base of seq and the 3’ base of aseq are extracted using the nab builtin
substr(), converted to residues using getres() and assembled into a base pair by
wc_basepair(). This base pair is oriented as in Figure 2 with the origin at the intersection of the
lines X and Y’. Two transformations are created, xomat for the x-offset and inmat for the inclina-
tion and applied to this pair. Base pairs 2 to slen-1 are created in the for loop in lines 95-118.
substr() is used to extract the appropriate letters from seq and aseq which are converted into
another base pair by getres() and wc_basepair(). Four transformations are applied to these
base pairs − two to set the x-offset and the inclination and two more to set the twist and the rise. Next
m2, the molecule containing the newly created properly positioned base pair must be bonded to the
previously created molecule in m1. Since nab only permits bonds between residues in the same
strand, mergestr() must be used to combine the corresponding strands in the two molecules before
connectres() can create the bonds.

Because the two strands in a Watson/Crick duplex are antiparallel, adding a base pair to one end
requires that one residue be added after the last residue of one strand and that the other residue added
before the first residue of the other strand. In wc_helix() the sense strand is extended after its last
residue and the anti strand is extended before its first residue. The call to mergestr() in lines
108-109 extends the sense strand of m1 with the the residue of the sense strand of m2. The
residue of m2 is added after the "last" residue of of the sense strand of m1. The final argument
"first" indicates that the residue of m2 are copied in their original order m1:sense:last is fol-
lowed by m2:sense:first. After the strands have been merged, connectres() makes a bond
between the O3’ of the next to last residue (i-1) and the P of the last residue (i). The next call to
mergestr() works similarly for the residues in the anti strands. The residue in the anti strand
of m2 are copied into the the anti strand of m1 before the first residue of the anti strand of m1
m2:anti:last precedes m1:anti:first . After merging connectres() creates a bond between
the O3’ of the new first residue and the P of the second residue. Lines 184-194 create the returned
molecule m3. If the flag has_s is 1, mergestr() copies the entire sense strand of m1 into the
empty sense strand of m3. If the flag has_a is 1, the anti strand is also copied.

1 // wc_helix() - create Watson/Crick duplex

2 string wc_complement();

3 molecule wc_basepair();

4 molecule wc_helix(

5 string seq, string sreslib, string snatype,

6 string aseq, string areslib, string anatype,

7 float xoff, float incl, float twist, float rise,
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8 string opts )

9 {

10 molecule m1, m2, m3;

11 matrix xomat, inmat, mat;

12 string arname, srname;

13 string sreslib_use, areslib_use;

14 residue sres, ares;

15 int has_s, has_a;

16 int i, slen;

17 float ttwist, trise;

18
19 has_s = 1; has_a = 1;

20 if( sreslib == "" ) sreslib_use = "dna.amber94.rlb";

21 else sreslib_use = sreslib;

22 if( areslib == "" ) areslib_use = "dna.amber94.rlb";

23 else areslib_use = areslib;

24
25 if( seq == NULL && aseq == NULL ){

26 fprintf( stderr, "wc_helix: no sequence0 );

27 return( NULL );

28 }else if( seq == NULL ){

29 seq = wc_complement( aseq, areslib_use, snatype );

30 has_s = 0;

31 }else if( aseq == NULL ){

32 aseq = wc_complement( seq, sreslib_use, anatype );

33 has_a = 0;

34 }

35
36 slen = length( seq );

37
38 srname = substr( seq, 1, 1 );

39 setreslibkind( sreslib, snatype );

40 if ( substr( sreslib_use, length(sreslib_use)-2,

41 length(sreslib_use ) ) == "rlb" ){

42 if( opts =˜ "s5" )

43 sres = getres( srname, substr( sreslib_use, 1,

44 length(sreslib_use)-3 ) + "5.rlb");

45 else if( opts =˜ "s3" && slen == 1 )

46 sres = getres( srname, substr( sreslib_use, 1,

47 length(sreslib_use)-3 ) + "3.rlb");

48 else sres = getres( srname, sreslib_use );

49 }else if ( substr( sreslib_use, length(sreslib_use)-2,

50 length(sreslib_use ) ) == "lib" ){

51 if( opts =˜ "s5" )

52 sres = getres( srname + "5", sreslib_use );

53 else if( opts =˜ "s3" && slen == 1 )

54 sres = getres( srname + "3", sreslib_use );
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55 else sres = getres( srname, sreslib_use );

56 }else{

57 fprintf(stderr,

58 "wc_helix : unknown sense residue library : %s0,

59 sreslib_use );

60 exit( 1 );

61 }

62
63 arname = substr( aseq, 1, 1 );

64 setreslibkind( areslib, anatype );

65 if ( substr( areslib_use, length(areslib_use)-2,

66 length(areslib_use ) ) == "rlb" ){

67 if( opts =˜ "a3" )

68 ares = getres( arname, substr( areslib_use, 1,

69 length(areslib_use)-3 ) + "3.rlb");

70 else if( opts =˜ "a5" && slen == 1 )

71 ares = getres( arname, substr( areslib_use, 1,

72 length(areslib_use)-3 ) + "5.rlb");

73 else ares = getres( arname, areslib_use );

74 }else if ( substr( areslib_use, length(areslib_use)-2,

75 length(areslib_use ) ) == "lib" ){

76 if( opts =˜ "a3" )

77 ares = getres( arname + "3", areslib_use );

78 else if( opts =˜ "a5" && slen == 1 )

79 ares = getres( arname + "5", areslib_use );

80 else ares = getres( arname, areslib_use );

81 }else{

82 fprintf(stderr,

83 "wc_helix : unknown anti residue library : %s0,

84 areslib_use );

85 exit( 1 );

86 }

87 m1 = wc_basepair( sres, ares );

88
89 xomat = newtransform(xoff, 0., 0., 0., 0., 0. );

90 transformmol( xomat, m1, NULL );

91 inmat = newtransform( 0., 0., 0., incl, 0., 0.);

92 transformmol( inmat, m1, NULL );

93
94 trise = rise; ttwist = twist;

95 for( i = 2; i <= slen-1; i = i + 1 ){

96 srname = substr( seq, i, 1 );

97 setreslibkind( sreslib, snatype );

98 sres = getres( srname, sreslib_use );

99 arname = substr( aseq, i, 1 );

100 setreslibkind( areslib, anatype );

101 ares = getres( arname, areslib_use );
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102 m2 = wc_basepair( sres, ares );

103 transformmol( xomat, m2, NULL );

104 transformmol( inmat, m2, NULL );

105 mat = newtransform( 0., 0., trise,

106 0., 0., ttwist );

107 transformmol( mat, m2, NULL );

108 mergestr( m1, "sense", "last",

109 m2, "sense", "first" );

110 connectres( m1, "sense",

111 i-1, "O3’", i, "P" );

112 mergestr( m1, "anti", "first",

113 m2, "anti", "last" );

114 connectres( m1, "anti",

115 1, "O3’", 2, "P" );

116 trise = trise + rise;

117 ttwist = ttwist + twist;

118 }

119
120 i = slen; // add in final residue pair

121 if( i > 1 ){

122
123 srname = substr( seq, i, 1 );

124 setreslibkind( sreslib, snatype );

125 if ( substr( sreslib_use, length(sreslib_use)-2,

126 length(sreslib_use ) ) == "rlb" ){

127 if( opts =˜ "s3" )

128 sres = getres( srname, substr( sreslib_use, 1,

129 length(sreslib_use)-3 ) + "3.rlb");

130 else

131 sres = getres( srname, sreslib_use );

132 }else if ( substr( sreslib_use, length(sreslib_use)-2,

133 length(sreslib_use ) ) == "lib" ){

134 if( opts =˜ "s3" )

135 sres = getres( srname + "3", sreslib_use );

136 else

137 sres = getres( srname, sreslib_use );

138 }else{

139 fprintf(stderr,

140 "wc_helix : unknown sense residue library : %s0,

141 sreslib_use );

142 exit( 1 );

143 }

144 arname = substr( aseq, i, 1 );

145 setreslibkind( areslib, anatype );

146 if ( substr( areslib_use, length(areslib_use)-2,

147 length(areslib_use ) ) == "rlb" ){

148 if( opts =˜ "a5" )
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149 ares = getres( arname, substr( areslib_use, 1,

150 length(areslib_use)-3 ) + "5.rlb");

151 else

152 ares = getres( arname, areslib_use );

153 }else if ( substr( areslib_use, length(areslib_use)-2,

154 length(areslib_use ) ) == "lib" ){

155 if( opts =˜ "a5" )

156 ares = getres( arname + "5", areslib_use );

157 else

158 ares = getres( arname, areslib_use );

159 }else{

160 fprintf(stderr,

161 "wc_helix : unknown anti residue library : %s0,

162 areslib_use );

163 exit( 1 );

164 }

165
166 m2 = wc_basepair( sres, ares );

167 transformmol( xomat, m2, NULL );

168 transformmol( inmat, m2, NULL );

169 mat = newtransform( 0., 0., trise,

170 0., 0., ttwist );

171 transformmol( mat, m2, NULL );

172 mergestr( m1, "sense", "last",

173 m2, "sense", "first" );

174 connectres( m1, "sense",

175 i-1, "O3’", i, "P" );

176 mergestr( m1, "anti", "first",

177 m2, "anti", "last" );

178 connectres( m1, "anti",

179 1, "O3’", 2, "P" );

180 trise = trise + rise;

181 ttwist = ttwist + twist;

182 }

183
184 m3 = newmolecule();

185 addstrand( m3, "sense" );

186 addstrand( m3, "anti" );

187 if( has_s )

188 mergestr( m3, "sense", "last",

189 m1, "sense", "first" );

190 if( has_a )

191 mergestr( m3, "anti", "last",

192 m1, "anti", "first" );

193
194 return( m3 );

195 };
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2.11. Structure Quality and Energetics.

Up to this point, all the structures in the examples have been built using only transformations.
These transformations properly place the purine and pyrimidine rings. However, since they are rigid
body transformations, they will create distorted sugar/backbone geometry if any internal
sugar/backbone rearrangements are required to accomodate the base geometry. The amount of this dis-
tortion depends on both the input residues and transformations applied and can vary from trivial to so
severe that the created structures are useless. nab offers two methods for fixing bad sugar/backbone
geometry. They are molecular mechanics and distance geometry. nab provides distance geometry rou-
tines and has its own molecular mechanics package. The latter requires the LEaP program, which is
part of the AMBER suite of programs developed at the University of California, San Francisco and at
The Scripps Research Institute. Information about how to obtain this program is available on the Inter-
net at http://www.amber.ucsf.edu/amber/amber.html. Details on the routines involved
are given in the Language Reference chapter, and some examples are given below.

2.11.1. Creating a Parallel DNA Triplex.

Parallel DNA triplexes are thought to be intermediates in homologous DNA recombination.
These triplexes, investigated by Zhurkin et al. [20] are called R-form DNA, and are believed to exist in
two distinct conformations. In the presence of recombination proteins (eg. RecA), they adopt an
extended conformation that is underwound with respect to standard helices (a twist of 20°) and very
large base stacking distances (a rise of 5.1A° ). However, in the absence of recombination proteins, R-
form DNA exists in a “collapsed” form that resembles conventional triplexes but with two very impor-
tant differences—the two parallel strands have the same sequence and the triplex can be made from
any Watson/Crick duplex irregardless of its base composition. The remainder of this section discusses
how this triplex could be modeled and two nab programs that implement that strategy.

If the degrees of freedom of a triplex are specified by the helicoidal parameters requried to place
the bases, then a triplex of N bases has 6(N - 1) degrees of freedom, an impossibly large number for
any but trivial N. Fortunately, the nature of homologous recombination allows some simplifying
assumptions. Since the recombination must work on any duplex, the overall shape of the triplex must
be sequence independent. This implies that each helical step uses the same set of transformational
parameters which reduces the size of the problem to six degrees of freedom once the individual base
triads have been created.

The individual triads are created by assuming that they are planar, that the third base is hydrogen
bonded on the major groove side of the base pair as it appears in a standard Watson/Crick duplex, that
the original Watson Crick base pair pair is essentially undisturbed by the insertion of the third base and
finally that the third base belongs at the point that maximizes its hydrogen bonding with respect to the
original Watson/Crick base pair. After the optimized triads have been created, they are assembled into
dimers. The dimers assume that the helical axis passes through the center of the circle defined by the
positions of the three C1’ atoms. Several instances of a two parameter family (rise, twist) of dimers
are created for each of the 16 pairs of triads and minimized.

20. V. B. Zhurkin, G Raghunathan, N. B. Ulynaov, R. D. Camerini-Otero, and R. L. Jernigan, “A
Parallel DNA Triplex as a Model for the Intermediate in Homologous Recombination,” Journal
of Molecular Biology 239, 181-200 (1994).



9/13/99 General overview 38

2.11.2. Creating Base Triads.

Here is an nab program that computes the vacuum energy of XY:X base triads as a function of
the position and orientation of the X (non-Watson/Crick) base. A minimum energy AU:A found by the
program along with the potential energy surface keyed to the position of the second A is shown in Fig-
ure 3. The program creates a single Watson/Crick DNA base pair and then computes the energy of a
third DNA base at each position of a user defined rectangular grid. Since hydrogen bonding is both
distance and orientation dependent the program allows the user to specify a range of orientations to try
at each grid point. The orientation giving the lowest energy at each grid point and its associated energy
are written to a file. The position and orientation giving the lowest overall energy is saved and is used
to recreate the best triad after the search is completed.

1 // Program 5 - Investigate energies of base triads

2 molecule m;

3 residue tr;

4 string sb, ab, tb;

5 matrix rmat, tmat;

6
7 file ef;

8 string mfnm, efnm;

9 point txyz[ 35 ];

10 float x, lx, hx, xi, mx;

11 float y, ly, hy, yi, my;

12 float rz, lrz, hrz, rzi, urz, mrz, brz;

13
14 int prm;

15 point xyz[ 100 ], force[ 100 ];

16 float me, be, energy;

17
18 scanf( "%s %s %s", sb, ab, tb );

19 scanf( "%lf %lf %lf", lx, hx, xi );

20 scanf( "%lf %lf %lf", ly, hy, yi );

21 scanf( "%lf %lf %lf", lrz, hrz, rzi );

22
23 mfnm = sprintf( "%s%s%s.triad.min.pdb", sb, ab, tb );

24 efnm = sprintf( "%s%s%s.energy.dat", sb, ab, tb );

25
26 m = wc_helix(sb, "dna.amber94.rlb", "dna", ab,

27 "dna.amber94.rlb", "dna", 2.25, 0.0, 0.0, 0.0 );

28
29 addstrand( m, "third" );

30 tr = getres( tb, "dna.amber94.rlb" );

31 addresidue( m, "third", tr );

32 setxyz_from_mol( m, "third::", txyz );

33
34 leap( m, "", "" ); readparm( m, "prmtop" );
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35 mme_init( m, NULL, "::ZZZ", xyz, NULL );

36
37 ef = fopen( efnm, "w" );

38
39 mrz = urz = lrz - 1;

40 for( x = lx; x <= hx; x = x + xi ){

41 for( y = ly; y <= hy; y = y + yi ){

42 brz = urz;

43 for( rz = lrz; rz <= hrz; rz = rz + rzi ){

44 setmol_from_xyz( m, "third::", txyz );

45 rmat=newtransform( 0., 0., 0., 0., 0., rz );

46 transformmol( rmat, m, "third::" );

47 tmat=newtransform( x, y, 0., 0., 0., 0. );

48 transformmol( tmat, m, "third::" );

49
50 setxyz_from_mol( m, NULL, xyz );

51 energy = mme( xyz, force, 1 );

52
53 if( brz == urz ){

54 brz = rz; be = energy;

55 }else if( energy < be ){

56 brz = rz; be = energy;

57 }

58 if( mrz == urz ){

59 me = energy;

60 mx = x; my = y; mrz = rz;

61 }else if( energy < me ){

62 me = energy;

63 mx = x; my = y; mrz = rz;

64 }

65 }

66 fprintf( ef, "%10.3f %10.3f %10.3f %10.3fn",

67 x, y, brz, be );

68 }

69 }

70 fclose( ef );

71
72 setmol_from_xyz( m, "third::", txyz );

73 rmat = newtransform( 0.0, 0.0, 0.0, 0.0, 0.0, mrz );

74 transformmol( rmat, m, "third::" );

75 tmat = newtransform( mx, my, 0.0, 0.0, 0.0, 0.0 );

76 transformmol( tmat, m, "third::" );

77 putpdb( mfnm, m );

Program 5 begins by reading in a description of the desired triad and data defining the location
and granularity of the search area. It does this with the calls to the nab builtin scanf() on lines
18-21. scanf() uses its first argument as a “format” string which directs the conversion of text
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versions of int, float and string values into their internal formats. The first call to scanf()
reads the three letters that specify the bases, the next two calls read the X and Y location, extent and
granularity of the the search rectangle and the last call reads in the first, last and increment values that
will be used specify the orientation of the third base at each point on the search grid.

Lines 23 and 24 respectively, create the names of the files that will hold the best structure found
and the values of the potential energy surface. The file names are created using the builtin
sprintf(). Like scanf() this function also uses its first argument as a format string, used here to
construct a string from the data values that follow it in the parameter list. The action of these calls is
to replace the each format descriptor (%s) with the values of the corresponding string variable in the
parameter list. The file names created for the AU:A shown in Figure 3 were AUA.triad.min.pdb
and AUA.energy.dat. Format expressions and formatted I/O including the I/O like sprintf()
are discussed in the sections Format Expressions and Ordinary I/O Functions of the nab Lan-
guage Reference.

The triad is created in two major steps in lines 26-32. First a Watson/Crick base pair is created
with wc_helix(). The base pair has an X-offset of 2.25A° and an inclination of 0.0 meaning it lies in
the XY plane. Twist and rise although they are not used in creating a single base pair are also set to
0.0. The X-offset which is that of standard B-DNA was chosen to faciliate extension of triplexes made
from the triads created here with standard duplex DNA. Absent this consideration any X-offset includ-
ing 0.0 would have been satisfactory. A  third strand ("third") is added to m, the string tb is con-
verted into a DNA residue and this residue is added to the new strand. Finally in the coordinates of the
third strand are saved in the point array txyz. Referring to Figure 3, the third base is located
directly on top of the Watson/Crick pair. A purine would have its C4 atom at the origin and its C4-N1
vector along the Y axis; a pyrimidine its C6 at the origin and its C6-N3 vector along the Y axis. Obvi-
ously this is not a real structure; however, as will be seen in the next section, this initial placement
greatly simplifies the transformations required to explore the search area.

2.11.3. Finding the lowest energy triad.

The energy calculation begins in line 34 and extends to line 69. Elements of the general molecu-
lar mechanics code skeleton discussed in the Language Reference chapter are seen at lines 34-35 and
lines 50-51. Initialization takes place in lines 34 and 35 with the call to leap() to prepare the prm-
top that contains the information needed to compute molecular mechanics energies. This is followed
by the call to readparm which reads back in the newly created prmtop file, and creates an internal
data structure. The force field routine is initialized in line 35, asking that all atoms be allowed to
move. The actual energy calculation is done in lines 50 and 51. setxyz_from_mol() copies the
current conformation of mol into the point array xyz and then mme() evaluates the energy of this
conformation. Note that the energy evaluation is in a loop, in this case nested inside the three loops
that control the conformational search.

The search area shown in Figure 3 is on the left side of the Watson/Crick base pair. This corre-
sponds to inserting the third base into the major groove of the duplex. Now as the third base is initially
positioned at the origin with its hydrogen bonding edge pointing towards the top of the page, it must
be both moved to the left or in the -X direction and rotated approximately -90° so that its hydrogen
bonding sites can interact with those on the left side of the Watson/Crick pair.

The search is executed by the three nested for loops in lines 40, 41 and 43. They control the
third base’s X and Y position and its orientation in the XY plane. Tw o transformations are used to
place the base. The first step of the placement process is in line 44 where the nab builtin set-
mol_from_xyz() is used to restore the original (untransformed) coordinates of the base. The call to
newtransform() in line 45 creates a transformation matrix that will point the third base so that its
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hydrogen bonding sites are aimed in the positive X direction. A second transformation matrix created
on line 47 is used to move the properly oriented third base to a point on the search area. The call to
setxyz_from_mol() extracts the coordinates of this conformation into xyz and mme() computes
and returns its energy.

The remainder of the loop determines if this is either the best overall energy or the best energy
for this grid point. Lines 53-57 compute the best energy at this point and lines 58-64 compute the best
overall energy. The complexity arises from the fact that the energy returned by mme() can be any
float value. Thus it is not possible to to pick a value that is guaranteed to be higher than any value
returned during the search. The solution is to use the value from the first iteration of the loop as the
value to test against. The two variables mrz and brz are used to indicate the very first iteration and
the first iteration of the rz loop. The gray rectangle of Figure 3 shows the vacuum energy of the best
AU:A triad found when the origin of the X’ Y’ axes are at that point on the rectangle. Darker grays
are lower energies. Figure shows the best AU:A found.

2.11.4. Assembling the Triads into Dimers.

Once the minimized base triads have been created, they must be assembled into triplexes. Since
these triplexes are believed to be intermediates in homologous recombination, their structure should be
nearly sequence independent. This means that they can be assembled by applying the same set of heli-
cal parameters to each optimized triad. However, sev eral things still need to be determined. These are
the location of the helical axis and just what helical parameters are to be applied. This code assumes
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Figure 3. Minimum energy AUA triad and Potential Energy Surface.
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that the three backbone strands are roughly on the surface of a cylinder whose axis is the global helical
axis. In particular the helical axis is the center of the circle defined by the three C1’ atoms in each
triad. While the four circles defined by the four minimized triads are not exactly the same, their radii
are within XA° of each other with the XY:X triad having the largest offset of YA° . The code makes two
additional assumptions. The sugar rings are all in the C2’-endo conformation and the triads are not
inclined with respect to the helical axis. The program that creates and evaluates the dimers is shown
below. A detailed explanation of the program follows the listing.

1 // Program 6 - Assemble triads into dimers

2 molecule gettriad( string mname )

3 {

4 molecule m;

5 point p1, p2, p3, pc;

6 matrix mat;

7
8 if( mname == "a" ){

9 m = getpdb( "ata.triad.min.pdb" );

10 setpoint( m, "A:ADE:C1’", p1 );

11 setpoint( m, "B:THY:C1’", p2 );

12 setpoint( m, "C:ADE:C1’", p3 );

13 }else if( mname == "c" ){

14 m = getpdb( "cgc.triad.min.pdb" );

15 setpoint( m, "A:CYT:C1’", p1 );

16 setpoint( m, "B:GUA:C1’", p2 );

17 setpoint( m, "C:CYT:C1’", p3 );

18 }else if( mname == "g" ){

19 m = getpdb( "gcg.triad.min.pdb" );

20 setpoint( m, "A:GUA:C1’", p1 );

21 setpoint( m, "B:CYT:C1’", p2 );

22 setpoint( m, "C:GUA:C1’", p3 );

23 }else if( mname == "t" ){

24 m = getpdb( "tat.triad.min.pdb" );

25 setpoint( m, "A:THY:C1’", p1 );

26 setpoint( m, "B:ADE:C1’", p2 );

27 setpoint( m, "C:THY:C1’", p3 );

28 }

29 circle( p1, p2, p3, pc );

30 mat = newtransform( -pc.x, -pc.y, -pc.z, 0.0, 0.0, 0.0 );

31 transformmol( mat, m, NULL );

32 setreskind( m, NULL, "DNA" );

33 return( m );

34 };

35
36 int mk_dimer( string ti, string tj )

37 {

38 molecule mi, mj;
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39 matrix mat;

40 int sid;

41 float ri, tw;

42 string ifname, sfname, mfname;

43 file idx;

44
45 int natoms;

46 float dgrad, fret;

47 float box[ 3 ];

48 float xyz[ 1000 ];

49 float fxyz[ 1000 ];

50 float energy;

51
52 sid = 0;

53 mi = gettriad( ti );

54 mj = gettriad( tj );

55 mergestr( mi, "A", "3’", mj, "A", "5’" );

56 mergestr( mi, "B", "5’", mj, "B", "3’" );

57 mergestr( mi, "C", "3’", mj, "C", "5’" );

58 connectres( mi, "A", 1, "O3’", 2, "P" );

59 connectres( mi, "B", 1, "O3’", 2, "P" );

60 connectres( mi, "C", 1, "O3’", 2, "P" );

61
62 leap( mi, "", "" );

63 readparm( mi, "prmtop" );

64
65 ifname = sprintf( "%s%s3.idx", ti, tj );

66 idx = fopen( ifname, "w" );

67 for( ri = 3.2; ri <= 4.4; ri = ri + .2 ){

68 for( tw = 25; tw <= 45; tw = tw + 5 ){

69 sid = sid + 1;

70 fprintf( idx, "%3d %5.1f %5.1f", sid, ri, tw );

71
72 mi = gettriad( ti );

73 mj = gettriad( tj );

74
75 mat = newtransform( 0.0, 0.0, ri, 0.0, 0.0, tw );

76 transformmol( mat, mj, NULL );

77
78 mergestr( mi, "A", "3’", mj, "A", "5’" );

79 mergestr( mi, "B", "5’", mj, "B", "3’" );

80 mergestr( mi, "C", "3’", mj, "C", "5’" );

81 connectres( mi, "A", 1, "O3’", 2, "P" );

82 connectres( mi, "B", 1, "O3’", 2, "P" );

83 connectres( mi, "C", 1, "O3’", 2, "P" );

84
85 sfname = sprintf( "%s%s3.%03d.pdb", ti, tj, sid );
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86 putpdb( sfname, mi ); // starting coords

87
88 natoms = getmolyz( mi, NULL, xyz );

89 mme_init( m, NULL, "::ZZZ", xyz, NULL );

90
91 dgrad = 0.1;

92 conjgrad( xyz, 3*natoms, fret, mme, dgrad, 10, 100 );

93 energy = mme( xyz, fxyz, 1 );

94
95 setmol_from_xyz( mi, NULL, xyz );

96 mfname = sprintf( "%s%s3.%03d.min.pdb", ti, tj, sid );

97 putpdb( mfname, mi ); // minimized coords

98 }

99 }

100 fclose( idx );

101 };

102
103 int i, j;

104 string ti, tj;

105 for( i = 1; i <= 4; i = i + 1 ){

106 for( j = 1; j <= 4; j = j + 1 ){

107 ti = substr( "acgt", i, 1 );

108 tj = substr( "acgt", j, 1 );

109 mk_dimer( ti, tj );

110 }

111 }

Program 6 assembles, minimizes and writes the final energies of a family of dimers for each of
the 16 pairs of optimized triads. The program is long but straightforward. It is organized into two sub-
routines followed by a main program. The first subroutine gettriad() is defined in lines 2-34, the
second subroutinue mk_dimer() in lines 36-101 and the main program in lines 103-111. The overall
organization is that the main program controls the sequence of the dimers beginning with AA and con-
tinuing with AC, AG, ... and on up to TT. Each time it selects the sequence of the dimer, it calls
mk_dimer() to explore the family of structures defined by variation in the rise and twist.
mk_dimer() in turn calls gettriad() to fetch and orient the specified base triples.

The function gettriad() (lines 2-34) takes a string with one of the four values "a", "c",
"g" or "t". The if-tree in lines 8-28 uses this string to select the coordinates of the corresponding
optimized triad. The if-tree sets the value of the three points p1, p2 and p3 that will be used to
define the circle whose center will intersect the global helical axis. Once these points are defined, the
nab builtin circle() (line 29) returns the center of the circle they define in pc. The builtin cir-
cle() returns a 1 if the three points do not define a circle and a 0 if they do. In this case it is known
that the positions of the three C1’ atoms are well behaved, so the return value is ignored. The selected
triad is properly centered in lines 30-31. Each residue of the triad is set to be of type "DNA" via the
call to setreskind() in line 32 so that its atomic charges and forcefield potentials can be set cor-
rectly to perform the minimization. The new molecule is returned as the function’s value in line 33.

The dimers are created by the function mk_dimers() that is defined in lines 36-101. The pro-
cess uses two stages. The molecule is first prepared for molecular mechanics in lines 53-63 and then
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dimers are created and minimized in the two nested loops in lines 67-99. The results of the minimiza-
tions are stored in a file whose name is derived from the name of the triads in the dimer. For example,
the results for an AA would be in the file "aa3.idx". There is one file for each of the 16 dimers.
The file name is created in line 65 and opened for writing in line 66. It is closed just before the func-
tion returns in line 100. Each line of the file contains a number that identifies the dimer’s parameters
followed by its rise, twist and final (minimized) energy.

In order to perform molecular on a molecule the nab program must create a “parameter” struc-
ture for it. This structure contains the topology of the molecule and parameters for the various terms of
forcefield—things like bond lengths and angles, torsions, chirality and planarity. This is done in lines
53-63. The particular dimer is created. The function gettriad() is called twice to return the two
properly centered triads in the molecules mi and mj. Next the three strands of mj are merged into the
three strands of mi to create a triplex of length 2. The "A" and "B" strands form the Watson/Crick
pairs of the triplex and the "C" strand contains the strand that is parallel to the "A" strand. The three’
calls to connectres() create an O3’-P bond between the newly added residue and the existing
residues in each of the three strands. After all this is done, the call to leap() in line 64 builds the
parameter structure, returning 1 on failure and 0 on success.

This section of code seems simple enough except for one thing—the two triads in the dimer are
obviously directly on top of each other. Howev er, this is not a problem because leap() ignores the
molecule’s coordinates. Instead it uses the molecule’s residue names to get each residue’s internal
coordinates and other information from a library which it uses to up the parameter and topology struc-
ture required by the minimization routines.

The dimers are built and minimized in the two nested loops in lines 69-104. The outer loop
varies the rise from 3.2A° to 4.4A° by 0.2A° and the inner loop varies the twist from 25° to 45° in steps
of 5° creating 35 different starting dimers. The variable sid is a number that identifies each
(rise,twist) pair. It is inserted into the file names of the starting coordinates (lines 85-86) and mini-
mized coordinates (lines 96-97) to make it easy to identify them.

Each dimer is created in lines 72-83. The two specififed triads are returned by the calls to get-
triad() as the molecule’s mi and mj. Next the triad in mj is transformed to give it the current rise
and twist with respect to the triad in mi. The transformed triad in mj is merged into mi and bonded to
mi. These starting coordinates are written to a file whose name contains both the dimer sequence and
sid. For example, the first dimer for AA would be "aa3.01.pdb", the 01 indicating that this dimer
used a rise of 3.2A° and a twist of 25°.

The minimization is performed in lines 88-95. The call to setxyz_from_mol() extracts the
current atom positions of mi into the array xyz. The coordinates are passed to mme_init() which
initializes the molecular mechanics system. The actual minimization is done with the call to conj-
grad() which performs 100 cycles of conjugate gradient minimization, printing the results every 10
cycles. The final energy is written to the file idx and the molecule’s original coordinates are updated
with the minimized coordinates by the call to setmol_from_xyz(). Once all dimers have been
made for this sequence the loops terminate. The last thing done by mk_dimer() before it returns to
the main program is to close the file containing the energy results for this family of dimer.

The very simple main program follows mk_dimer(). It consists of two nested loops that pro-
duce the pairs of strings ("a","a"), ("a","c"),...,("t","t") calling mk_dimer() for each pair.
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3. NAB Language Reference.

3.1. Introduction.

nab is a computer language used to create, modify and describe models of macromolecules,
especially those of unusual nucleic acids. The following sections provide a complete description of the
nab language. The discussion begins with its lexical elements, continues with sections on expressions,
statements and user defined functions and concludes with an explanation of each of nab’s builtin func-
tions. Two appendices contain a more detailed and formal description of the lexical and syntactic ele-
ments of the language including the actual lex and yacc input used to create the compiler. Two other
appendices describe nab’s internal data structures and the C code generated to support some of nab’s
higher level operations.

3.2. Language Elements.

An nab program is composed of several basic lexical elements: identifiers, reserved words, liter-
als, operators and special characters. These are discussed in the following sections.

3.2.1. Identifiers.

An identifier is a sequence of letters, digits and underscores beginning with a letter. Upper and
lower case letters are distinct. Identifiers are limited to 255 characters in length. The underscore (_) is
a letter. Identifiers beginning with underscore must be used carefully as they may conflict with operat-
ing system names and nab created temporaries. Here are some nab identifiers.

mol i3 twist TWIST Watson_Crick_Base_Pair

3.2.2. Reserved Words.

Certain identifiers are reserved words, special symbols used by nab to denote control flow and
program structure. Here are the nab reserved words:

allocate assert atom bounds break

continue deallocate debug delete dynamic

else file for float hashed

if in int matrix molecule

point residue return string while

3.2.3. Literals.

Literals are self defining terms used to introduce constant values into expressions. nab provides
three types of literals: integers, floats and character strings. Integer literals are sequences of one or
more decimal digits. Float literals are sequences of decimal digits that include a decimal point and/or
are followed by an exponent. An exponent is the letter e or E followed by an optional + or - followed
by one to three decimal digits. The exponent is interpreted as “times 10 to the power of exp” where
exp is the number following the e or E. All numeric literals are base 10. Here are some integer and
float literals:

1 3.14159 5 .234 3.0e7 1E-7
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String literals are sequences of characters enclosed in double quotes ("). A double quote is
placed into a string literal by preceding it with a backslash (\). A backslash is inserted into a string by
preceding it with a backslash. Strings of zero length are permitted.

"" "a string" "string with a \"" "string with a \\"

Non-printing characters are inserted into strings via escape sequences: one to three characters follow-
ing a backslash. Here are the nab string escapes and their meanings:

\a Bell (a for audible alarm).
\b Back space.
\f Form feed (New page).
\n New line.
\r Carriage return.
\t Horizontal tab.
\v Vertical tab.
\" Literal double quote.
\\ Literal backslash.
\ooo character with value ooo where ooo is 1 to 3 octal digits (0-7).
\xhh character with value hh where hh is 1 or 2 hex digits (0-9,a-f,A-F).

Here are some strings with escapes:

"Molecule\tResidue\tAtom\n" Tw o tabs and a newline.
"\252Real quotes\272" Octal values, \252, the left dou-

ble quote “ and \272 the right
double quote ”.

3.2.4. Operators.

nab uses several additional 1 or 2 character symbols as operators. Operators combine literals
and identifiers into expressions.
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Operator Meaning Precedence Associates

( ) Expression grouping 9
[ ] Array indexing 9
. Select attribute 8
Unary - Negation 8 Right to left
! Not 8
ˆ Cross product 7 Left to right
@ Dot product 6
* Multiplication 6 Left to right
/ Division 6 Left to right
% Modulus 6 Left to right
+ Addition, concatenation 5 Left to right
Binary - Subtraction 5 Left to right
< Less than 4
<= Less than or equal to 4
== Equal 4
!= Not equal 4
>= Greater than or equal to 4
> Greater than 4
=˜ Match 4
!˜ Doesn’t match 4
in 4Member of hashed ar-

ray, or atom in a
molecule

&& And 3
|| Or 2
= Assignment 1 Right to left

3.2.5. Special Characters.

nab uses braces ({}) to group statements into compound statements and statements and declara-
tions into function bodies. The semicolon (;) is used to terminate statements. The comma (,) sepa-
rates items in parameter lists and declarations. The sharp (#) used in column 1 designates a preproces-
sor directive, which invokes the standard C preprocessor to provide constants, macros and file inclu-
sion. A # in any other column, except in a comment or a literal string is an error. Two consecutive for-
ward slashes (//) indicate that the rest of the line is a comment which is ignored. All other characters
except white space (spaces, tabs, newlines and formfeeds) are illegal except in literal strings and com-
ments.

3.3. Higher-level constructs.

3.3.1. Variables.

A variable is a name given to a part of memory that is used to hold data. Every nab variable has
type which determines how the computer interprets the variable’s contents. nab provides 10 data
types. They are the numeric types int and float which are translated into the underlying C com-
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piler’s int and double respectively.* The string type is used to hold null (zero byte) terminated
(C) character strings. The file type is used to access files (equivalent to C’s FILE *). There are
three types—atom, residue and molecule for creating and working with molecules. The point
type holds three float values which can represent the X, Y and Z coordinates of a point or the com-
ponents of a 3-vector. The matrix type holds 16 float values in a 4×4 matrix and the bounds
type is used to hold distance bounds and other information for use in distance geometry calculations.

nab string variables are mapped into C char * variables which are allocated as needed and
freed when possible. However, all of this is invisible at the nab level where strings are atomic
objects. The atom, residue, molecule and bounds types become pointers to the appropriate C
structs. point and matrix are implemented as float [3] and float [4][4] respectively.
Again the nab compiler automatically generates all the C code required to makes these types appear
as atomic objects.

Every nab variable must be declared. All declarations for functions or variables in the main
block must precede the first executable statement of that block. Also all declarations in a user defined
nab function must precede the first executable statement of that function. An nab variable declaration
begins with the reserved word that specifies the variable’s type followed by a comma separated list of
identifiers which become variables of that type. Each declaration ends with a semicolon.

int i, j, j;

matrix mat;

point origin;

Six nab types—string, file, atom, residue, molecule and bounds use the predefined
identifier NULL to indicate a non-existent object of these types. nab builtin functions returning objects
of these types return NULL to indicate that the object could not be created. nab considers a NULL
value to be false. The empty nab string "" is not equal to NULL.

3.3.2. Attributes.

Four nab types—atom, residue, molecule and point—have attributes which are ele-
ments of their internal structure directly accessible at the nab level. Attributes are accessed via the
select operator (.) which takes a variable as its left hand operand and an attribute name (an identifier)
as its right. The general form is

var.attr

Most attributes behave exactly like ordinary variables of the same type. However, some attributes are
read only. They are not permitted to appear as the left hand side of an assignment. When a read only
attribute is passed to an nab function, it is copied into temporary variable which in turn is passed to
the function. Read only attributes are not permitted to appear as destination variables in scanf()

*This translation of float to double is new at version 3.0. Previous versions of the code used (single-precision) float variables
in both C and NAB programs. Carrying out manipulations in double-precision generally helps numerical stability, especially for distance ge-
ometry and molecular mechanics calculations. The earlier behavior can be re-obtained by changing the defreal.h header file.
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parameter lists. Attribute names are kept separate from variable and function names and since
attributes can only appear to the right of select there is no conflict between variable and attribute
names. For example, if x is a point, then

x // the point variable x

x.x // x coordinate of x

.x // Error!

Here is the complete list of nab attributes.

Atom attributes Type Write? Meaning

atomname string Yes Ordinarily taken from columns 13-16 of an input pdb
file, or from a residue library. Spaces are removed.

atomnum int No The number of the atom starting at 1 for each strand
in the molecule.

tatomnum int No The total number of the atom starting at 1. Unlike
atomnum, tatomnum does not restart at 1 for each
strand.

fullname string No The fully qualified atom name, having the form
strandnum:resnum:atomname.

resid string Yes The resid of the residue containing this atom; see the
Residue attributes table.

resname string Yes The name of the residue containing this atom.
resnum int No The number of the residue containing the atom.

resnum starts at 1 for each strand.
tresnum int No The total number of the residue containing this atom

starting at 1. Unlike resnum, tresnum does not
restart at 1 for each strand.

strandname string Yes The name of the strand containing this atom.
strandnum int No The number of the strand containing this atom.

pos point Yes point variable giving the atom’s position.
x float Yes The atom’s X coordinate.
y float Yes The atom’s Y coordinate.
z float Yes The atom’s Z coordinate.
charge float Yes
radius float Yes
int1 int Yes User settable int value.
float1 float Yes User settable float value.
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Residue attributes Type Write? Meaning

resid string Yes A 6-character string, ordinarily taken from columns
22-27 of a PDB file. It can be re-set to something
else, but should always be either empty or exactly 6
characters long, since this string is used (if it is not
empty) by putpdb.

resname string Yes Three-character identifier.
resnum int No The number of the residue starting at 1. resnum

starts at 1 for each strand.
tresnum int No The total number of the residue starting at 1. Unlike

resnum tresnum does not restart for each strand.
for each strand.

strandname string Yes The name of the strand containing this residue.
strandnum int No The number of the strand containing this residue.

Molecule attributes Type Write? Meaning

natoms int No The total number of atoms in the molecule.
nresidues int No The total number of residues in the molecule.
nstrands int No The total number of strands in the molecule.

3.3.3. Arrays.

nab supports two kinds of arrays—ordinary arrays where the selector is a comma separated list
of integer expressions and associative or “hashed” arrays where the selector is a character string. The
set of character strings that is associated with data in a hashed array is called its keys. Array elements
may be of any nab type. All the dimensions of an ordinary array are indexed from 1 to Nd, where Nd

is the size of the dth dimension. Non parameter array declarations are similar to scalar declarations
except the variable name is followed by either a comma separated list of integer constants surrounded
by square brackets ([]) for ordinary arrays or the reserved word hashed in square brackets for asso-
ciative arrays. Associative arrays have no predefined size.

float energy[ 20 ], surface[ 13,13 ];

int attr[ dynamic, dynamic ];

molecule structs[ hashed ];

The syntax for multi-dimensional arrays like that for Fortran, not C. The nab2c compiler lin-
earizes all index references, and the underlying C code sees only single-dimension arrays. Arrays are
stored in "column-order", so that the most-rapidly varying index is the first index, as in Fortran. Multi-
dimensional int or float arrays created in nab can generally be passed to Fortran routines expect-
ing the analogous construct.
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Dynamic arrays are not allocated space upon program startup, but are created and freed by the
allocate and deallocate statements:

allocate attr[ i, j ];

....

deallocate attr;

Here i and j must be integer expressions that may be evaluated at run-time. It is an error (generally
fatal) to refer to the contents of such an array before it has been allocated or after it has been deallo-
cated.

3.3.4. Expressions.

Expressions use operators to combine variables, constants and function values into new values.
nab uses standard algebraic notation (a+b*c, etc) for expressions. Operators with higher precedence
are evaluated first. Parentheses are used to alter the evaluation order. The complete list of nab opera-
tors with precedence levels and associativity is listed under Operators.

nab permits mixed mode arithmetic in that int and float data may be freely combined in
expressions as long as the operation(s) are defined. The only exceptions are that the modulus operator
(%) does not accept float operands, and that subscripts to ordinary arrays must be integer valued. In
all other cases except parameter passing and assignment, when an int and float are combined by
an operator, the int is converted to float then the operation is executed. In the case of parameter
passing, nab requires (but does not check) that actual parameters passed to functions have the same
type as the corresponding formal parameters. As for assignment (=) the right hand side is converted to
the type of the left hand side (as long as both are numeric) and then assigned. nab treats assignment
like any other binary operator which permits multiple assignments (a=b=c) as well as “embedded”
assignments like:

if( mol = newmolecule() ) ...

nab relational operators are strictly binary. Any two objects can be compared provided that both
are numeric, both are string or both are the same type. Comparisons for objects other than int,
float and string are limited to tests for equality. Comparisons between file, atom, residue,
molecule and bounds objects test for “pointer” equality, meaning that if the pointers are the same,
the objects are same and thus equal, but if the pointers are different, no inference about the actual
objects can be made. The most common comparison on objects of these types is against NULL to see
if the object was correctly created. Note that as nab considers NULL to be false the following expres-
sions are equivalent.

if( var == NULL )... is the same as if( !var )...

if( var != NULL )... is the same as if( var )...
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The Boolean operators && and || evaluate only enough of an expression to determine its truth
value. nab considers the value 0 to be false and any non-zero value to be true. nab supports direct
assignment and concatenation of string values. The infix + is used for string concatenation.

nab provides several infix vector operations for point values. They can be assigned and
point valued functions are permitted. Tw o point values can be added or subtracted. A point can
be multiplied or divided by a float or an int. The unary minus can be applied to a point which
has the same effect as multiplying it by −1. Finally, the at sign (@) is used to form the dot product of
two points and the circumflex (ˆ) is used to form their cross product.

3.3.5. Regular expressions.

The =˜ and !˜ operators (match and not match) have strings on the left-hand-sides and regular
expression strings on their right-hand-sides. These regular expressions are interpreted according to
standard conventions drawn from the UNIX libraries. These are not documented here, but they should
be, and we will try to work on that for the next version of this document.

3.3.6. Atom Expressions.

An atom expression is a character string that contains one or more patterns that match a set of
atom names in a molecule. Atom expressions contain three substrings separated by colons (:). They
represent the strand, residue and atom parts of the atom expression. Each subexpression consists of a
comma (,) separated list of patterns, or for the residue part, patterns and/or number ranges. Several
atom expressions may be placed the in a single character string by separating them with the vertical
bar (|).

Patterns in atom expressions are similar to Unix shell expressions. Each pattern is a sequence of
1 or more single character patterns and/or stars (*). The star matches zero or more occurrences of any
single character. Each part of an atom expression is composed of a comma separated list of limited
regular expressions, or in the case of the residue part, limited regular expressions and/or ranges. A
range is a number or a pair of numbers separated by a dash. A regular expression is a sequence of
ordinary characters and “metacharacters”. Ordinary characters represent themselves, while the
metacharacters are operators used to construct more complicated patterns from the ordinary characters.
All characters except ?, *, [, ], -, ,(comma), : and | are ordinary characters. Regular expressions
and the strings they match follow these rules.
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aexpr matches

x An ordinary character matches itself.
? A question mark matches any single character.
* A star matches any run of zero of more characters. The pattern *

matches anything.
[xyz] A character class. It matches a single occurrence of any character be-

tween the [ and the ].
[ˆxyz] A “negated” character class. It matches a single occurrence of any char-

acter not between the [ˆ and the ]. Character ranges, f - l , are per-
mitted in both types of character class. This is a shorthand for all char-
acters beginning with f up to and including l. Useful ranges are 0-9
for all the digits and a-zA-Z for all the letters.

- The dash is used to delimit ranges in characters classes and to separate
numbers in residue ranges.

$ The dollar sign is used in a residue range to represent the “last” residue
without having to know its number.

, The comma separates regular expressions and/or ranges in an atom ex-
pression part.

: The colon separates the parts of an atom expression.
| The vertical bar separates atom expressions in the same character

string.
\ The backslash is used as an escape. Any character including metachar-

acters following a backslash matches itself.

Atom expressions match the entire name. The pattern C, matches only C, not CA, HC, etc. To
match any name that begins with C use C*; to match any name that ends with C, use *C; to match any
name containing a C, use *C*. A table of examples was given in chapter 1.

3.3.7. Format Expressions.

A format expression is a special character string that is used to direct the conversion between the
computer’s internal data representations and their character equivalents. nab uses the underlying C
compiler’s printf()/scanf() system to provide formatted I/O. This section provides a short
introduction to this system. For the complete description, consult any standard C reference. Note that
since nab supports fewer types than its underlying C compiler, formatted I/O options pertaining to the
data subtypes (h,l,L) are not applicable to nab format expressions.

An input format string is a mixture of ordinary characters, spaces and format descriptors. An
output format string is mixture of ordinary characters including spaces and format descriptors. Each
format descriptor begins with a percent sign (%) followed by several optional characters describing the
format and ends with single character that specifies the type of the data to be converted. Here are the
most common format descriptors. The ... represent optional characters described below.
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% ... c convert a character
% ... d convert an integer
% ... lf convert a float
% ... s convert a string
%% convert a literal %

Input and output format descriptors and format expressions resemble each other and in many
cases the same format expression can be used for both input and output. However, the two types of for-
mat descriptors have different options and their actions are sufficiently distinct to consider in some
detail. Generally, C based formatted output is more useful than C based formatted input.

When an input format expression is executed, it is scanned at most once from left to right. If the
current format expression character is an ordinary character (anything but space or %), it must match
the current character in the input stream. If they match then both the current character of the format
expression and current character of the stream are advanced one character to the right. If they don’t
match, the scan ends. If the current format expression character is a space or a run of spaces and if the
current input stream is one or more “white space” characters (space, tab, newline), then both the for-
mat and input stream are advanced to the next non-white space character. If the input format is one or
more spaces but the current character of the input stream is non-blank, then only the format expression
is advanced to the next non-blank character. If the current format character is a percent sign, the format
descriptor is used to convert the next “field” in the input stream. A field is a sequence of non-blank
characters surrounded by white space or the beginning or end of the stream. This means that a format
descriptor will skip white space including newlines to find non blank characters to convert, even if it is
the first element of the format expression. This implicit scanning is what limits the ability of C based
formatted input to read fixed format data that contains any spaces.

Note that lf is used to input a NAB float variable, rather than the f argument that would be used
in C. This is because float in NAB is converted to double in the output C code (see defreal.h if you
want to change this behavior.) Ideally, the NAB compiler should parse the format string, and make the
appropriate substitutions, but this is not (yet) done: NAB translates the format string directly into the C
code, so that the NAB code must also generally use lf as a format descriptor for floating point values.

nab input format descriptors have two options, a field width, and an assignment suppression
indicator. The field width is an integer which specifies how much of current field and not the input
stream is to be converted. Conversion begins with the first character of the field and stops when the
correct number of characters have been converted or white space is encountered. A star (*) option
indicates that the field is to be converted, but the result of the conversion is not stored. This can be
used to skip unwanted items in a data stream. The order of the two options does not matter.

The execution of an output format expression is somewhat different. It is scanned once from left
to right. If the current character is not a percent sign, it placed on the output stream. Thus spaces have
no special significance in formatted output. When the scan encounters a percent sign it replaces the
entire format descriptor with the properly formatted value of the corresponding output expression.

Each output format descriptor has four optional attributes—width, alignment, padding and preci-
sion. The width is the minimum number of characters the data is to occupy for output. Padding con-
trols how the field will be filled if the number of characters required for the data is less than the field
width. Alignment specifies whether the data is to start in the first character of the field (left aligned) or
end in the last (right aligned). Finally precision, which applies only to string and float conversions
controls how much of the string is be converted or how many digits should follow the decimal point.
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Output field attributes are specified by optional characters between the initial percent sign and
the final data type character. Alignment is first, with left alignment specified by a minus sign (-). Any
other character after the percent sign indicates right alignment. Padding is specified next. Padding
depends on both the alignment and the type of the data being converted. Character conversions (%c)
are always filled with spaces, irregardless of their alignment. Left aligned conversions are also always
filled with spaces. However, right aligned string and numeric conversions can use a 0 to indicate that
left fill should be zeroes instead of spaces. In addition numeric conversions can also specify an
optional + to indicate that non-negative numbers should be preceded by a plus sign. The default action
for numeric conversions is that negative numbers are preceded by a minus, and other numbers have no
sign. If both 0 and + are specified, their order does not matter.

Output field width and precision are last and are specified by one or two integers or stars (*) sep-
arated by a period (.). The first number (or star) is the field width, the second is its precision. If the
precision is not specified, a default precision is chosen based on the conversion type. For floats (%f), it
is six decimal places and for strings it is the entire string. Precision is not applicable to character or
integer conversions and is ignored if specified. Precision may be specified without the field width by
use of single integer (or star) preceded by a period. Again, the action is conversion type dependent.
For strings (%s), the action is to print the first N characters of the string or the entire string, whichever
is shorter. For floats (%f), it will print N decimal places but will extend the field to whatever size if
required to print the whole number part of the float. The use of the star (*) as an output width or pre-
cision indicates that the width or precision is specified as the next argument in the conversion list
which allows for runtime widths and precisions.

Output Format Options

Alignment.
- left justified.
default right justified.

Padding.
0 %d, %f, %s only, left fill with zeros, right fill with spaces.
+ %d, %f only, precede non-negative numbers with a +.
default left and right fill with spaces.

Width & Precision.
W minimum field width of W. W is either an integer or a * where the star

indicates that the width is the next argument in the parameter list.
W.P minimum field width of W, with a precision of P. W,P are integers or

stars, where stars indicate that they are to be set from the appropriate
arguments in the parameter list. Precision is ignored for %c and %d.

.P %s, print the first P characters of the string or the entire string whichev-
er is shorter. %f, print P decimal places in a field wide enough to hold
the integer and fractional parts of the number. %c and %d, use whatev-
er width is required. Again P is either an integer or a star where the star
indicates that it is to be taken from the next expression in the parameter
list.

default %c, %d, %s, use whatever width is required to exactly hold the data.
%f, use a precision of 6 and whatever width is required to hold the data.
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3.4. Statements.

nab statements describe the action the nab program is to perform. The expression statement
evaluates expressions. The if statement provides a two way branch. The while and for statements
provide loops. The break statement is used to “short circuit” or exit these loops. The continue
statement advances a for loop to its next iteration. The return statement assigns a function’s value
and returns control to the caller. Finally a list of statements can be enclosed in braces ({}) to create a
compound statement.

3.4.1. Expression Statement.

An expression statement is an expression followed by a semicolon. It evaluates the expression.
Many expression statements include an assignment operator and its evaluation will update the values
of those variables on the left hand side of the assignment operator. These kinds of expression state-
ments are usually called “assignment statements” in other languages. Other expression statements con-
sist of a single function call with its result ignored. These statements take the place of “call state-
ments” in other languages. Note that an expression statement can contain any expression, even ones
that have no lasting effect.

mref = getpdb( "5p21.pdb" ); // "assignment" stmt

m = getpdb( "6q21.pdb" );

superimpose( m,"::CA",mref,"::CA" ); // "call" stmt

0; // expression stmt.

3.4.2. Delete Statement.

nab provides the delete statement to remove elements of hashed arrays. The syntax is

delete h_array[ str ];

where h_array is a hashed array and str is a string valued expression. If the specified element is
in h_array it is removed; if not, the statement has no effect.

3.4.3. If Statement.

The if statement is used to choose between two options based on the value of the if expres-
sion. There are two kinds of if statements—the simple if and the if-else. The simple if con-
tains an expression and a statement. If the expression is true (any non-zero value), the statement is
executed. If the expression is false (0), the statement is skipped.

if( expr )

true_stmt;
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The if-else statement places two statements under control of the if. One is executed if the
expression is true, the other if it is false.

if( expr )

true_stmt;
else

false_stmt;

The single statement in a simple if or the two statements in an if-else can be any nab state-
ment(s) including other if statements. This can introduce ambiguity as to which if is associated with
an else:

if( expr_1 )

if( expr_2 )

stmt_1;
else

stmt_2;

Which if has the else, the if on the first line or the if on the second? The rule is that an else is
associated with the nearest unpaired if. In this example, the else is associated with the if on the
second line. To associate the else with the if on line 1 would require hiding the inner if inside
braces:

if( expr_1 )

{

if( expr_2 )

stmt_1;
}

else

stmt_2;

The braces convert the inner if into a compound statement removing the ambiguity.

3.4.4. While Statement.

The while statement is used to execute the statement under its control as long as the the while
expression is true (non-zero). A compound statement is required to place more than one statement
under the while statement’s control.

while( expr )

stmt;
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while( expr )

{

stmt_1;
stmt_2;
...

stmt_N;
}

3.4.5. For Statement.

The for statement is a loop statement that allows the user to include initialization and an incre-
ment as well as a loop condition in the loop header. The single statement under the control of the for
statement is executed as long as the condition is true (non-zero). A compound statement is required to
place more than one statement under control of a for. The general form of the for statement is

for( expr_1; expr_2; expr_3 )

stmt;

which behaves like

expr_1;
while( expr_2 )

{

stmt;
expr_3;

}

expr_3 is generally an expression that computes the next value of the loop index. Any or all of expr_1,
expr_2 or expr_3 can be omitted. An omitted expr_2 is considered to be true, thus giving rise to an
“infinite” loop. Here are some for loops.

for( i = 1; i <= 10; i = i + 1 )

printf( "%3d\n", i ); // print 1 to 10

for( ; ; ) // "infinite" loop

{

getcmd( cmd ); // Exit better be in

docmd( cmd ); // getcmd() or docmd().

}

nab also includes a special kind of for statement that is used to range over all the entries of a hashed
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array or all the atoms of a molecule. The forms are

// hashed version

for( str in h_array )

stmt;

// molecule version

for( a in mol )

stmt;

In the first code fragment, str is string and h_array is a hashed array. This loop sets str to each key or
string associated with data in h_array. Keys are returned in increasing lexical order. In the second
code fragment a is an atom and mol is a molecule. This loop sets a to each atom in mol. The first
atom is the first atom in the first residue of the first strand. Once all the atoms in this residue have
been visited, it moves to the first atom of the next residue in the first strand. Once all atoms in all
residues in the first strand have been visited, the process is repeated on the second and subsequent
strands in mol until all atoms have been visited. The order of the strands of molecule is the order in
which they were created using addstrand(). Residues in each strand are numbered from 1 to N.
The order of the atoms in a residue is the order in which the atoms were listed in the reslib entry or
pdbfile that that residue derives from.

3.4.6. Break Statement.

Execution of a break statement exits the immediately enclosing for or while loop. By plac-
ing the break under control of an if conditional exits can be created. break statements are only
permitted inside while or for loops.

for( expr_1; expr_2; expr_3 )

{

...

if( expr )

break; // "break" out of loop

...

}

3.4.7. Continue Statement.

Execution of a continue statement causes the immediately enclosing for loop to skip to its
next value. If the next value causes the loop control expression to be false, the loop is exited. con-
tinue statements are permitted only inside while and for loops.

for( expr_1; expr_2; expr_3 )

{

...
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if( expr )

continue; // "continue" with next value

...

}

3.4.8. Return Statement.

The return statement has two uses. It terminates execution of the current function returning
control to the point immediately following the call and when followed by an optional expression,
returns the value of the expression as the value of the function. A function’s execution also ends when
it “runs off the bottom”. When a function executes the last statement of its definition, it returns even if
that statement is not a return. The value of the function in such cases is undefined.

return expr; // return the value expr
return; // return, function value undefined.

3.4.9. Compound Statement.

A compound statement is a list of statements enclosed in braces. Compound statements are
required when a loop or an if has to control more than one statement. They are also required to asso-
ciate an else with an if other than the nearest unpaired one. Compound statements may include
other compound statements. Unlike C, nab compound statements are not blocks and may not include
declarations.

3.5. Functions.

A function is a named group of declarations and statements that is executed as a unit by using the
function’s name in an expression. Functions may include special variables called parameters that
enable the same function to work on different data. All nab functions return a value which can be
ignored in the calling expression. Expression statements consisting of a single function call where the
return value is ignored resemble procedure call statements in other languages.

All parameters to user defined nab functions are passed by reference. This means that each nab
parameter operates on the actual data that was passed to the function during the call. Changes made to
parameters during the execution of the function will persist after the function returns. The only excep-
tion to this is if an expression is passed in as a parameter to a user defined nab function. It this case,
nab evaluates the expression, stores its value in a compiler created temporary variable and uses that
temporary variable as the actual parameter. For example if a user were to pass in the constant 1 to an
nab function which in turned used it and then assigned it the value 6, the 6 would be stored in the
temporary location and the external 1 would be unchanged.

3.5.1. Function Definitions.

An nab function definition begins with a header that describes the function value type, the func-
tion name and the parameters if any. If a function does not have parameters, an empty parameter list is
still required. Following the header is a list of declarations and statements enclosed in braces. The
function’s declarations must precede all of its statements. A function can include zero or more
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declarations and/or zero or more statements. The empty function—no declarations and no statements
is legal.

The function header begins with the reserved word specifying the type of the function. All nab
functions must be typed. An nab function can return a single value of any nab type. nab functions
can not return nab arrays. Following the type is an identifier which is the name of the function. Each
parameter declaration begins with the parameter type followed by its name. Parameter declarations
are enclosed in parentheses and separated by commas. If a function has no parameters, there is nothing
between the parentheses. Here is the general form of a function definition:

ftype fname( ptype1 parm1, ... )

{

decls

stmts
};

3.5.2. Function Declarations.

nab requires that every function be declared or made known to the compiler before it is used.
Unfortunately this is not possible if functions used in one source file are defined in other source files or
if two functions are mutually recursive. To solve these problem, nab permits functions to be declared
as well as defined. A function declaration resembles the header of a function definition. However, in
place of the function body, the declaration ends with a semicolon or a semicolon preceded by either
the word c or the word fortran indicating the external function is written in C or FORTRAN instead
of nab.

ftype fname( ptype1 parm1, ... ) flang;

3.6. Points and Vectors.

The nab type point is an object that holds three float values. These values can represent
the X, Y and Z coordinates of a point or the components of 3-vector. The individual elements of a
point variable are accessed via attributes or suffixes added to the variable name. The three point
attributes are "x", "y" and "z". Many nab builtin functions use, return or create point values.
When used in this context, the three attributes represent the point’s X, Y and Z coordinates. nab
allows users to combine point values with numbers in expressions using conventional algebraic or infix
notation. nab does not support operations between numbers and points where the number must be
converted into a vector to perform the operation. For example, if p is a point then the expression p
+ 1. is an error, as nab does not know how to expand the scalar 1. into a 3-vector. The following
table contains nab point and vector operations. p, q are point variables; s a numeric expression.
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Operator Example Precedence Explanation.

Unary - -p 8 Vector negation, same as -1 * p.
ˆ p ˆ q 7 Compute the cross or vector product of p, q.
@ p @ q 6 Compute the scalar or dot product of p, q.
* s * p 6 Multiply p by s, same as p * s.
/ p / s 6 Divide p by s, s / p not allowed.
+ p + q 5 Vector addition
Binary - p - q 5 Vector subtraction
== p == q 4 Test if p and q equal.
!= p != q 4 Test if p and q are different.
= p = q 1 Set the value of p to q.

3.7. String Functions.

nab provides the following awk-like string functions. Unlike awk, the nab functions do not
have optional parameters or builtin variables that control the actions or receive results from these func-
tions. nab strings are indexed from 1 to N where N is the number of characters in the string.

int length( string s );

int index( string s, string t );

int match( string s, string r, int rlength );

string substr( string s, int pos, int len );

int split( string s, string fields[], string fsep );

int sub( string r, string s, string t );

int gsub( string r, string s, string t );

length() returns the length of the string s. Both "" and NULL have length 0. index()
returns the position of the left most occurrence of t in s. If t is not in s, index() returns 0. match
returns the position of the longest leftmost substring of s that matches the regular expression r. The
length of this substring is returned in rlength. If no substring of s matches r, match() returns 0
and rlength is set to 0. substr() extracts the substring of length len from s beginning at posi-
tion pos. If len is greater than the rest of the string beginning at pos, return the substring from pos
to N where N is the length of the string. If pos is < 1 or > N, return "".

split() partitions s into fields separated by fsep. These field strings are returned in the array
fields. The number of fields is returned as the function value. The array fields must be allocated
before split() is called and must be large enough to hold all the field strings. The action of
split() depends on the value of fsep. If fsep is a string containing one or more blanks, the fields
of s are considered to be separated by runs of white space. Also, leading and trailing white space in s
do not indicate an empty initial or final field. However, if fsep contains any value but blank, then
fields are considered to be delimited by single characters from fsep and initial and/or trailing fsep
characters do represent initial and/or trailing fields with values of "". NULL and the empty string ""
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have 0 fields. If both s and fsep are composed of only white space then s also has 0 fields. If fsep
is not white space and s consists of nothing but characters from fsep, s will have N + 1 fields of ""
where N is the number of characters of s.

sub() replaces the leftmost longest substring of t that matches the regular expression r.
gsub() replaces all non overlapping substrings of t that match the regular expression r with the
string s.

3.8. Math Functions.

nab provides the following builtin mathematical functions. Since nab is intended for chemical
structure calculations which always measure angles in degrees, the argument to the trig functions—
cos(), sin() and tan()— and the return value of the inverse trig functions—acos(), asin(),
atan() and atan2()—are in degrees instead of radians as they are in other languages.
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nab Builtin Mathematical Functions

Inverse Trig Functions.

float acos( float x ); Return cos−1( x ) in degrees.

float asin( float x ); Return sin−1( x ) in degrees.

float atan( float x ); Return tan−1( x ) in degrees.
float atan2( float y, float x ); Return tan−1( y / x ) in degrees. By keeping x and y

separate, 90° can be returned without encountering a
zero divide. Also, atan2 will return an angle in the

full range [-180o, 180o].

Trig Functions.

float cos( float x ); Return cos( x ), where x is in degrees.
float sin( float x ); Return sin( x ), where x is in degrees.
float tan( float x ); Return tan( x ), where x is in degrees.

Conversion Functions.

float atof( string str ); Interpret the next run of non blank characters in str
as a float and return its value. Return 0 on error.

int atoi( string str ); Interpret the next run of non blank characters in str
as an int and return its value. Return 0 on error.

Other Functions.

float ceil( float x ); Return x.
float cosh( float x ); Return the hyberbolic cosine of x.

float exp( float x ); Return ex.
float fabs( float x ); Return | x |.
float floor( float x ); Return x.
float fmod( float x, float y ); Return r, the remainder of x with respect to y. | r | < |

y |; the signs of r and y are the same.
float log( float x ); Return the natural logarithm of x.
float log10( float x ); Return the base 10 logarithm of x.

float pow( float x, float y ); Return xy , x > 0.
float sinh( float x ); Return the hyperbolic sine of x.
float sqrt( float x ); Return positive square root of x, x >= 0.
float tanh( float x ); Return the hyperbolic tangent of x.

3.9. System Functions.

int exit( int i );

int system( string cmd );

The function exit() terminates the calling nab program with return status i. system() invokes a
subshell to execute cmd. The subshell is always /bin/sh. The return value of system() is the
return value of the subshell and not the command it executed.
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3.10. I/O Functions.

nab uses the C I/O model. Instead of special I/O statements, nab I/O is done via calls to special
builtin functions. These function calls have the same syntax as ordinary function calls but some of
them have different semantics, in that they accept both a variable number of parameters and the param-
eters can be various types. nab uses the underlying C compiler’s printf()/scanf() system to
perform I/O on int, float and string objects. I/O on point is via their float x, y and z
attributes. molecule I/O is covered in the next section, while bounds can be written using dump-
bounds(). Transformation matrices can be written using dumpmatrix(), but there is currently no
builtin for reading them. The value of an nab file object may be written by treating as an integer.
Input to file variables is not defined.

3.10.1. Ordinary I/O Functions. nab provides these functions for stream or FILE * I/O of
int, float and string objects.

int fclose( file f );

file fopen( string fname, string mode );

int unlink( string fname );

int printf( string fmt, ... );

int fprintf( file f, string fmt, ... );

string sprintf( string fmt, ... );

int scanf( string fmt, ... );

int fscanf( file f, string fmt, ... );

int sscanf( string str, string fmt, ... );

string getline( file f );

fclose() closes (disconnects) the file represented by f. It returns 0 on success and −1 on fail-
ure. All open nab files are automatically closed when the program terminates. However, since the
number of open files is limited, it is a good idea to close open files when they are no longer needed.
The system call unlink removes (deletes) the file.

fopen() attempts to open (prepare for use) the file named fname with mode mode. It returns
a valid nab file on success and NULL on failure. Here are the most common values for mode and
their meanings. For other values, consult any standard C reference.
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fopen() mode values.

"r" Open for reading. The file fname must exist and be readable
by the user.

"w" Open for writing. If the file exists and is writable by the user,
truncate it to zero length. If the file does not exist, and if the
directory in which it will exist is writable by the user, then cre-
ate it.

"a" Open for appending. The file must exist and be writable by the
user.

The three functions printf(), fprintf() and sprintf() are for formatted (ASCII) out-
put to stdout, the file f and a string. Strictly speaking, sprintf() does not perform output,
but is discussed here because it acts as if “writes” to a string. Each of these functions uses the format
string fmt to direct the conversion of the expressions that follow it in the parameter list. Format
strings and expressions are discussed Format Expressions. The first format descriptor of fmt is used
to convert the first expression after fmt, the second descriptor, the next expression etc. If there are
more expressions than format descriptors, the extra expressions are not converted. If there are fewer
expressions than format descriptors, the program will likely die when the function tries to covert non-
existent data.

The three functions scanf(), fscanf() and sscanf() are for formatted (ASCII) input
from stdin, the file f and the string str. Again, sscanf() does not perform input but the function
behaves like it is “reading” from str. The action of these functions is similar to their output counter-
parts in that the format expression in fmt is used to direct the conversion of characters in the input and
store the results in the variables specified by the parameters following fmt. Format descriptors in fmt
correspond to variables following fmt, with the first descriptor corresponding to the first variable, etc.
If there are fewer descriptors than variables, then extra variables are not assigned; if there are more
descriptors than variables, the program will most likely die due to a reference to a non-existent
address.

There are two very important differences between nab formatted I/O and C formatted I/O. In C,
formatted input is assigned through pointers to the variables (&var). In nab formatted I/O, the com-
piler automatically supplies the addresses of the variables to be assigned The second difference is
when a string object receives data during an nab formatted I/O. nab strings are allocated when
needed. However, in the case of any kind of scanf() to a string or the implied (and hidden) writ-
ing to a string with sprintf(), the number of characters to be written to the string is unknown until
the string has been written. nab automatically allocates strings of length 256 to hold such data with
the idea that 256 is usually big enough. However, there will be cases where it is not big enough and
this will cause the program to die or behave strangely as it will overwrite other data.

The getline() function returns a string that has the next line from file f. The end-of-line
character has been stripped off.

3.11. Molecule Creation Functions.

The nab molecule type has a complex and dynamic internal structure organized in a three level
hierarchy. A molecule contains zero or more named strands. Strand names are strings of any charac-
ters except white space and can not exceed 255 characters in length. Each strand in a molecule must
have a unique name. Strands in different molecules may have the same name. A strand contains zero
or more residues. Residues in each strand are numbered from 1. There is no upper limit on the number
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of residues a strand may contain. Residues have names, which need not be unique. However, the com-
bination of strand-name:res-num is unique for every residue in a molecule. Finally residues contain
one or more atoms. Each atom name in a residue should be distinct, although this is neither required
nor checked by nab. nab uses the following functions to create and modify molecules.

molecule newmolecule();

molecule copymolecule( molecule mol );

molecule freemolecule( molecule mol );

int addstrand( molecule mol, string sname );

int addresidue( molecule mol, string sname, residue res );

int connectres( molecule mol, string sname,

int res1, string aname1, int res2, string aname2 );

int mergestr( molecule mol1, string str1, string end1,

molecule mol2, string str2, string end2 );

newmolecule() creates an “empty” molecule—one with no strands, residues or atoms. It
returns NULL if it can not create it. copymolecule() makes a copy of an existing molecule and
returns a NULL on failure. freemolecule() is used to deallocate memory set aside for a molecule.
In most programs, this function is usually not necessary, but should be used when a large number of
molecules are being copied. Once a molecule has been created, addstrand() is used to add one or
more named strands. Strands can be added at any to a molecule. There is no limit on the number of
strands in a molecule. Strands can be added to molecules created by getpdb() or other functions as
long as the strand names are unique. addstrand() returns 0 on success and 1 on failure. Finally
addresidue() is used to add residues to a strand. The first residue is numbered 1 and subsequent
residues are numbered 2, 3, etc. addresidue() also returns 0 on success and 1 on failure.

nab requires that users explicitly make all inter-residue bonds. connectres() makes a bond
between two atoms of different residues of the strand with name sname. It returns 0 on success and 1
on failure. Atoms in different strands can not be bonded. The bonding between atoms in a residue is
set by the residue library entry and can not be changed at runtime at the nab level.

The last function mergestr() is used to merge two strands of the same molecule or copy a
strand of the second molecule into a strand of the first. The residues of a strand are ordered from 1 to
N, where N is the number of residues in that strand. nab imposes no chemical ordering on the residues
in a strand. However, since the strands are generally ordered, there are four ways to combine the two
strands. mergestr() uses the two values "first" and "last" to stand for residues 1 and N. The
four combinations and their meanings are shown in the next table. In the table, str1 has N residues
and str2 has M residues.
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end1 end2 Action

first first The residues of str2 are reversed and then inserted before those of
str1: M ,  ..., 2, 1 : 1 , 2 ,  ..., N

first last The residues of str2 are inserted before those of str1: 1 , 2, ..., M : 1
, 2 , ..., N

last first The residues of str2 are inserted after those of str1: 1 , 2 , ..., N : 1 ,
2 , ..., M

last last The residues of str2 are reversed and then inserted after those of
str1: 1 , 2 , ..., N : M , ..., 2 , 1

3.12. Creating Bioplymers

molecule linkprot( string strandname, string seq, string reslib );

molecule link_na( string strandname, string seq, string reslib,

string natype, string opts );

int getseq_from_pdb( string filename, int numstrand,

string seq[], string strandname[], string type[] );

int getxyz_from_pdb( string filename, molecule m, string naexp,

int add_protons );

molecule getpdb_rlb( string pdbfile, string reslib[], string strandname[],

string seq[], string type[] );

Although many nab functions don’t care what kind of molecule they operate on, specific support
for proteins is currently somewhat limited. linkprot() takes a strand identifier and a sequence,
and returns a molecule with this sequence. The molecule has an extended structure, so that the φ , ψ
and ω angles are all 180o. The reslib input determines which residue library is used; if it is an empty
string, the AMBER 94 all-atom library is used, with charged end groups at the N and C termini. All
nab residue libraries are denoted by the suffix .rlb and LEaP residue libraries are denoted by the
suffix .lib. If reslib is set to "nneut", "cneut" or "neut", then neutral groups will be used at the N-
terminus, the C-terminus, or both, respectively.

The seq string should give the amino acids using the one-letter code with upper-case letters.
Some non-standard names are: "H" for histidine with the proton on the δ position; "h" for histidine
with the proton at the ε position; "3" for protonated histidine; "n" for an acetyl blocking group; "c" for
an HNMe blocking group, "a" for an NH2 group, and "w" for a water molecule. If the sequence con-

tains one or more "|" characters, the molecule will consist of separate polypeptide strands broken at
these positions.

The link_na() routine works much the same way for DNA and RNA, using an input residue
library to build a single-strand with correct local geometry but arbitrary torsion angles connecting one
residue to the next. natype is used to specify either DNA or RNA. If the opts string contains a "5",
the 5’ residue will be "capped" (a hydrogen will be attached to the O5’ atom); if this string contains a
"3" the O3’ atom will be capped.

The getseq_from_pdb() routine can be used to extract an appropriate single letter sequence
from an input pdb file. For each strand in the input file (separated by TER cards) the variable type



9/13/99 NAB Language Reference 70

returns "protein", "dna" or "rna" depending on how it interpreted the sequence; the strandname
returned is the value of the chain-id in the input pdb file. The function return is the number of residues
that it could not identify; these are placed in seq as "?", and this return value should be zero for a suc-
cessful invocation.

The getxyz_from_pdb() routine will read the pdb file given in filename, extract the
coordinates, and put them into the corresponding positions in molecule m. Atom order within residues
in the pdb file does not need to match that in the molecule. getxyz_from_pdb() also returns
naexp, an atom expression string identifying atoms found in the pdb file but not in the molecule. If
add_protons is not 0, then missing protons are built in plausible (but probably not optimal) posi-
tions.

One typical use of these routines would be as follows: (1) use getseq_from_pdb() to
extract the sequence from a pdb file you got from somewhere; (2) use linkprot() or link_na()
(or both) to create an nab version of the molecule; (3) use getxyz_from_pdb() to the molecular
pdb coordinates into your molecule and to build in missing hydrogens if necessary. These steps are
encapsulated in the relatively high-level getpdb_rlb() routine. Creating a molecule by get-
pdb_rlb() guarantees that the atoms and their order in each residue will be the same as in the
residue library used. Each atom will therefore have a charge, and the resulting molecule should be
ready to send to the leap() routine, if desired. On the other hand, getpdb_rlb() will fail for
molecules that contain residues not in the standard residue libraries, whereas getpdb() is designed
to work on "almost anything." The second argument to getpdb_rlb is an array of three strings, giv-
ing the resiudue libraries to be used for proteins, DNA and RNA, respectively. The strandname,
seq and type arrays are populated on return, with one entry for each strand (or "chain" or
"molecule") found in the pdb file. Strands must be separated by TER cards in the input pdb file.

3.13. Reduced Representation DNA Modeling Functions.

nab provides several functions for creating the reduced representation models of DNA described
by R. Tan and S. Harvey [21]. This model uses only 3 pseudo-atoms to represent a base pair. The
pseudo atom named CE represents the helix axis, the atom named SI represents the position of the
sugar-phosphate backbone on the sense strand and the atom named MA points into the major groove.
The plane described by these three atoms ( and a corresponding virtual atom that represents the anti
sugar-phosphate backbone ) represents quite nicely an all atom watson-crick base pair plane.

molecule dna3( int nbases, float roll, float tilt, float twist,

float rise );

molecule dna3_to_allatom( molecule m_dna3, string seq, string aseq,

string reslib, string natype );

molecule allatom_to_dna3( molecule m_allatom, string sense,

string anti );

21. R. Tan and S. Harvey, “Molecular Mechanics Model of Supercoiled DNA,” J. Mol.
Biol. 205, 573-591 (1989).
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The function dna3() creates a reduced representation DNA structure. dna3() takes as
parameters the number of bases nbases, and four helical parameters roll, tilt, twist, and
rise.

dna3_to_allatom() makes an all-atom dna model from a dna3 molecule as input. The
molecule m_dna3 is a dna3 molecule, and the strings seq and aseq are the sense and anti sequences
of the all-atom helix to be constructed. Obviously, the number of bases in the all-atom model should
be the same as in the dna3 model. If the string aseq is left blank ( "" ), the sequence generated is the
wc_complement() of the sense sequence. reslib names the residue library from which the all-
atom model is to be constructed. If left blank, this will default to dna.amber94.rlb. The
last parameter is either "dna" or "rna" and defaults to dna if left blank.

The allatom_to_dna3() function creates a dna3 model from a double stranded all-atom
helix. The function takes as parameters the input all-atom molecule m_allatom, the name of the
sense strand in the all-atom molecule, sense and the name of the anti strand, anti.

3.14. Molecule I/O Functions.

nab provides several functions for reading and writing molecule and residue objects.

residue getresidue( string rname, string rlib );

molecule getpdb( string fname [, string options ] );

molecule getcif( string fname, string blockId );

int putpdb( string fname, molecule mol [, string options ] );

int putcif( string fname, molecule mol );

int putbnd( string fname, molecule mol );

int putdist( string fname, molecule mol );

The function getresidue() returns a copy of the residue with name rname from the residue
library named rlib. If it can not do so it returns the value NULL.

The function getpdb() converts the contents of the PDB file with name fname into an nab
molecule. getpdb() creates bonds between any two atoms in the same residue using this rule:

bond(atomi , atom j) if dist(atomi , atom j) <







1. 20 Angstroms if either atom is a hydrogen

2. 20 Angstroms if either atom is a sulphur

1. 85 Angstroms otherwise

Atoms in different residues are never bonded by getpdb(). getpdb() creates a new strand each
time the chain id changes or if the chain id remains the same and a TER card is encountered. The
strand name is the chain id if it is not blank and "N", where N is the number of that strand in the
molecule beginning with 1. For example, a PDB file containing chain with no chain ID, followed by
chain A, followed by another blank chain would have three strands with names "1", "A" and "3".
getpdb() returns a molecule on success and NULL on failure.



9/13/99 NAB Language Reference 72

The optional final argument to getpdb can be used for options. Currently, only a single option
is recognized: if -pqr is found in the options string, the routine will read in atomic charges and radii
immediately following the xyz coordinates (using eight columns for each). Since these columns
would ordinarily be used for occupancy and B-factors, the latter are set to 1.0 and 0.0, respectively.
Alternatively, if -pqr does not appear in the options string, occupancies and B-factors are read from
the input pdb file, radii are set to default values (see the code for details), and charges are set to zero.

The (experimental!) function getcif is like getpdb, but reads an mmCIF (macro-molecular
crystallographic information file) formatted file, and extracts "atom-site" information from data block
blockID. You will need to compile and install the cifparse library in order to use this.

The next group of builtins write various parts of the molecule mol to the file fname. All return
0 on success and 1 on failure. If fname exists and is writable, it is overwritten without warning.
putpdb() writes the molecule mol into the PDB file fname. If the "resid" of a residue has been set
(either by using getpdb to create the molecule, or by an explicit operation in an nab routine) then
columns 22-27 of the output pdb file will use it; otherwise, nab will assign a chain-id and residue
number and use those. In this latter case, a molecule with a single strand will have a blank chain-id; if
there is more than one strand, each strand is written as a separate chain with chain id "A" assigned to
the first strand in mol, "B" to the second, etc.

There are several options available for putpdb:

Options flags for putpdb

keyword meaning
-pqr Put charges and radii into the columns following the xyz coordinates.
-nobocc Do not put occupancy and b-factor into the columns following the xyz coordi-

nates. than occupancies and charges. This is implied if -pqr is present, but may
also be used to save space in the output file, or for compatibility with programs
that do not work well if such data is present.

-brook Convert atom and residue names to the conventions used in Brookhaven PDB
files. This often gives greater compatibility with other software that may expect
these conventions to hold, but the conversion may not be what is desired in many
cases. Also, put the first character of the atom name in column 78, a preliminary
effort at identifying it as in the most recent PDB format. If the -brook flag is not
present, no conversion of atom and residue names is made, and no id is in col-
umn 78.

-nocid Do not put the chain-id (see the description of getpdb, above) in the output (i.e.
if this flag is present, the chain-id column will be blank).

-tr Do not start numbering residues over again when a new chain is encountered,
i.e. the residue numbers are consecutive across chains, as required by some
force-field programs like Amber.

putbnd() writes the bonds of mol into fname. Each bond is a pair of integers on a line. The
integers refer to atom records in the corresponding PDB-style file. putdist() writes the interatomic
distances between all atoms of mol ai, aj where i < j, in this seven column format.

rnum1 rname1 aname1 rnum2 rname2 aname2 distance
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3.15. Other Molecular Functions.

int superimpose( molecule mol, string aex1,

molecule r_mol, string aex2 );

int rmsd( molecule mol, string aex1,

molecule r_mol, string aex2, float r );

float angle( molecule mol, string aex1, string aex2, string aex3 );

float anglep( point pt1, point pt2, point pt3 );

float torsion( molecule mol, string aex1, string aex2,

string aex3, string aex4 );

float torsionp( point pt1, point pt2, point pt3, point pt4 );

float dist( molecule mol, string aex1, string aex2 );

float distp( point pt1, point pt2 );

int countmolatoms( molecule mol, string aex );

int sugarpuckeranal( molecule mol, int strandnum,

int startres, int endres );

int helixanal( molecule mol );

int plane( molecule mol, string aex, float A, float B, float C );

float molsurf( molecule mol, string aex, float probe_rad );

superimpose() transforms molecule mol so that the root mean square deviation between corre-
sponding atoms in mol and r_mol is minimized. The corresponding atoms are those selected by the
atom expressions aex1 applied to mol and aex2 applied to r_mol. The atom expressions must
select the same number of atoms in each molecule. No checking is done to insure that the atoms
selected by the two atom expressions actually correspond. superimpose() returns 0 on success
and 1 on failure. rmsd() computes the root mean square deviation between the pairs of correspoind-
ing atoms selected by applying aex1 to mol and aex2 to r_mol and returns the value in r. The two
atom expressions must select the same number of atoms. Again, it is the user’s responsibilty to insure
the two atom expressions select corresponding atoms. rmsd() returns 0 on success and 1 on failure.

angle() and anglep() compute the angle in degrees between three points. angle() uses
atoms expressions to determine the average coordinates of the sets. anglep() takes as an argument
three explicit points. Similarly, torsion() and torsionp() compute a torsion angle in degrees
defined by four points. torsion() uses atom expressions to specify the points. These atom expres-
sion match sets of atoms in mol. The points are defined by the average coordinates of the sets. tor-
sionp() uses four explicit points. Both functions return 0 if the torsion angle is not defined.

dist() and distp() compute the distance in Angstroms between two explicit atoms.
dist() uses atom expressions to determine which atoms to include in the calculation. An atom
expression which selects more than one atom results in the distance being calculated from the average
coordinate of the selected atoms. distp() returns the distance between two explicit points. The
function countmolatoms() returns the number of atoms selected by aex in mol.

sugarpuckeranal() is a function that reports the various torsion angles in a nucleic acid
structure. helixanal() is an interactive helix analysis function based on the methods described by
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Babcock et al. [22] plane() takes an atom expression aex and calculates the least-squares plane
and returns the answer in the form z = Ax + By + C. It returns the number of atoms used to calculate
the plane.

The molsurf() routine is an NAB adaptation of Paul Beroza’s program of the same name. It
takes coordinates and radii of atoms matching the atom expression aex in the input molecule, and
returns the molcular surface area (the area of the solvent-excluded surface), in square Angstroms. To
compute the solvent-accessible area, add the probe radius to each atom’s radius (using a for( a in
m ) loop), and call molsurf with a zero value for probe_rad.

3.16. Debugging Functions.

nab provides the following builtin functions that allow the user to write the contents of various
nab objects to an ASCII file. The file must be opened for writing before any of these functions are
called.

int dumpmatrix( file, matrix mat );

int dumpbounds( file f, bounds b, int binary );

float dumpboundsviolations( file f, bounds b, int cutoff );

int dumpmolecule( file f, molecule mol,

int dres, int datom, int dbond );

int dumpresidue( file f, resdiue res, int datom, int dbond );

int dumpatom( file f, residue res, int anum, int dbond );

int assert( condition );

int debug( expression(s) );

dumpmatrix() writes the 16 float values of mat to the file f. The matrix is written as four rows
of four numbers. dumpbounds() writes the distance bounds information contained in b to the file f
using this eight column format:

atom-number1 atom-number2 lower upper

If binary is set to a non-zero value, equivalent information is writen in binary format, which can
save disk-space, and is much faster to read back in on subsequent runs.

dumpboundsviolations() writes all the bounds violations in the bounds object that are
more than cutoff, and returns the bounds violation energy. dumpmolecule() writes the contents of

22. M.S. Babcock, E.P.D. Pednault, and W.K. Olson, “Nucleic Acid Structure Analysis,” J. Mol.
Biol. 237, 125-156 (1994).
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mol to the file f. If dres is 1, then detailed residue information will also be written. If datom or
dbond is 1, then detailed atom and/or bond information will be written. dumpresidue() writes
the contents of residue res to the file f. Again if datom or dbond is 1, detailed information about
that residue’s atoms and bonds will be written. Finally dumpatom() writes the contents of the atom
anum of residue res to the file f. If dbond is 1, bonding information about that atom is also written.

The assert() statement will evaluate the condition expression, and terminate (with an error
message) if the expression is not true. Unlike the corresponding "C" language construct (which is a
macro), code is generated at compile time to indicate both the file and line number where the assertion
failed, and to parse the condition expression and print the values of subexpressions inside it. Hence,
for a code fragment like:

i=20; MAX=17;

assert( i < MAX );

the error message will provide the assertion that failed, its location in the code, and the current values
of "i" and "MAX". If the -noassert flag is set at compile time, assert statements in the code are
ignored.

The debug() statment will evaluate and print a comma-separated expression list along with the
source file(s) and line number(s). Continuing the above example, the statment

debug( i, MAX );

would print the values of "i" and "MAX" to stdout, and continue execution. If the -nodebug flag is set
at compile time, debug statements in the code are ignored.

3.17. Time and date routines

NAB incorporates a few interfaces to time and date routines:

string date();

string timeofday();

string ftime( string fmt );

float second();

The date() routine returns a string in the format "03/08/1999", and the timeofday() routine
returns the current time as "13:45:00". If you need access to more sophisticated time and date func-
tions, the ftime() routine is just a wrapper for the standard C routine strftime, where the format
string is used to determine what is output; see standard C doumentation for how this works.

The second() routine returns the number of seconds of CPU utilization since the beginning of
the process. It is really just a wrapper for the C function clock()/CLOCKS_PER_SEC, and so the
meaning and precision of the output will depend upon the implementation of the underlying C com-
piler and libraries. Generally speaking, you should be able to time a certain section of code in the fol-
lowing manner:

t1 = second();

t2 = second();

elapsed = t2 - t1;
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3.18. nab and AVS.

The nab compiler can generate code to convert some nab functions into AVS modules. The
function type is limited to int, float, string and molecule. The function value will be placed
on an AVS output port. The function’s name must have the form AVS_ident, where ident becomes the
name of the created module. All parameters to the function are either mapped onto AVS widgets or
other input and output ports. Details of the mapping are specified using special comments or pragmas
with this form:

//AVSinfo parm-class parm-name parm-options

A detailed description of nab’s AVS capabilities is provided in the Chapter “nab and AVS”.
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4. Rigid-Body Transformations

This chapter describes NAB functions to create and manipulate molecules through a variety of
rigid-body transformations. This capability, when combined with distance geometry (described in the
next chapter) offers a powerful approach to many problems in initial structure generation.

4.1. Transformation Matrix Functions.

nab uses 4×4 matrices to hold coordinate transformations. nab provides these functions to cre-
ate transformation matrices.

matrix newtransform( float dx, float dy, float dz,

float rx, float ry, float rz );

matrix rot4( molecule mol, string aex1, string aex2, float ang );

matrix rot4p( point p1, point p2, float angle );

newtransform() creates a 4×4 matrix that will rotate an object by rz degrees about the Z axis, ry
degrees about the Y axis, rx degrees about the X axis and then translate the rotated object by dx, dy,
dz along the X, Y and Z axes. All rotations and transformations are with respect the standard X, Y and
Z axes centered at (0,0,0). rot4() and rot4p() create transformation matrices that rotate an object
about an arbitrary axis. The rotation amount is in degrees. rot4() uses two atom expressions to
define an axis that goes from aex1 to aex2. If an atom expression matches more that one atom in
mol, the average of the coordinates of the matched atoms are used. If an atom expression matches no
atoms in mol, the zero matrix is returned. rot4p() uses explicit points instead of atom expressions
to specify the axis. If p1 and p2 are the same, the zero matrix is returned.

4.2. Frame Functions.

Every nab molecule has a “frame” which is three orthonormal vectors and their origin. The
frame acts like a handle attached to the molecule allowing control over its movement. Two frames
attached to different molecules allow for precise positioning of one molecule with respect to the other.
These functions are used in frame creation and manipulation. All return 0 on success and 1 on failure.

int setframe( int use, molecule mol, string org,

string xtail, string xhead,

string ytail, string yhead );

int setframep( int use, molecule mol, point org,

point xtail, point xhead,

point ytail, point yhead );

int alignframe( molecule mol, molecule r_mol );

setframe() and setframep() create coordinate frames for molecule mol from an origin and
two independent vectors. In setframe(), the origin and two vectors are specified by atom expres-
sions. These atom expressions match sets of atoms in mol. The average coordinates of the selected
sets are used to define the origin (org), an X-axis (xtail to xhead) and a Y-axis (ytail to
yhead). The Z-axis is created as X×Y. Since it is unlikely that the original X and Y axes are
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orthogonal, the parameter use specifies which of them is to be a real axis. If use == 1, then the
specified X-axis is the real X-axis and Y is recreated from Z×X. If use == 2, then the specified
Y-axis is the real Y-axis and X is recreated from Y×Z. setframep() works exactly the same way
except the vectors and origin are specified as explicit points.

alignframe() transforms mol to superimpose its frame on the frame of r_mol. If r_mol
is NULL, alignframe() transforms mol to superimpose its frame on the standard X,Y,Z directions
centered at (0,0,0).

4.3. Functions for working with Atomic Coordinates. nab provides several functions for
getting and setting user defined sets of molecular coordinates.

int setpoint( molecule mol, string aex, point pt );

int setxyz_from_mol( molecule mol, string aex, point pts[] );

int setxyzw_from_mol( molecule mol, string aex, float xyzw[] );

int setmol_from_xyz( molecule mol, string aex, point pts[] );

int setmol_from_xyzw( molecule mol, string aex, float xyzw[] );

int transformmol( matrix mat, molecule mol, string aex );

residue transformres( matrix mat, residue res, string aex );

setpoint() sets pt to the average value of the coordinates of all atoms selected by the atom
expression aex. If no atoms were selected it returns 1, otherwise it returns a 0.
setxyz_from_mol() copies the coordinates of all atoms selected by the atom expression aex to
the point array pt. It returns the number of atoms selected. setmol_from_xyz() replaces the
coordinates of the selected atoms from the values in pt. It returns the number of replaced coordinates.
The routines setxyzw_from_mol and setmol_from_xyzw work in the same way, except that they
use four-dimensional coordinates rather than three-dimensional sets.

transformmol() applies the transformation matrix mat to those atoms of mol that were
selected by the atom expression aex. It returns the number of atoms selected. transformres()
applies the transformation matrix mat to those atoms of res that were selected by the atom expres-
sion aex and returns a transformed copy of the input residue. It returns NULL if the operation failed.

4.4. Symmetry Functions.

Here we describe a set of NAB routines that provide an interface for rigid-body transformations
based on crystallographic, point-group, or other symmetries. These are primarily higher-level ways to
creating and manipulating sets of transformation matrices corresponding to common types of symme-
try operations.

4.4.1. Matrix Creation Functions.

int MAT_cube( point pts[3], matrix mats[24] )

int MAT_ico( point pts[3], matrix mats[60] )

int MAT_octa( point pts[3], matrix mats[24] )

int MAT_tetra( point pts[3], matrix mats[12] )

int MAT_dihedral( point pts[3], int nfold, matrix mats[1] )

int MAT_cyclic( point pts[2], float ang, int cnt,

matrix mats[1] )
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int MAT_helix( point pts[2], float ang, float dst,

int cnt, matrix mats[1] )

int MAT_orient( point pts[4], float angs[3], matrix mats[1] )

int MAT_rotate( point pts[2], float ang, matrix mats[1] )

int MAT_translate( point pts[2], float dst, matrix mats[1] )

These two groups of functions produce arrays of matrices that can be applied to objects to gener-
ate point group symmetries (first group) or useful transformations (second group). The operations are
defined with respect to a center and a set of axes specified by the points in the array pts[]. Every
function requires a center and one axis which are pts[1] and the vector pts[1]→pts[2]. The
other two points (if required) define two additional directions: pts[1]→pts[3] and
pts[1]→pts[4]. How these directions are used depends on the function.

The point groups generated by the functions MAT_cube(), MAT_ico(), MAT_octa() and
MAT_tetra() have three internal 2-fold axes. While these 2-fold are orthogonal, the 2 directions
specified by the three points in pts[] need only be independent (not parallel). The 2-fold axes are
constructed in this fashion. Axis-1 is along the direction pts[1]→pts[2]. Axis-3 is along the
vector pts[1]→pts[2] × pts[1]→pts[3] and axis-2 is recreated along the vector axis-3 ×
axis-1. Each of these four functions creates a fixed number of matrices.

Diehedral symmetry is generated by an N-fold rotation about an axis followed by a 2-fold rota-
tion about a second axis orthogonal to the first axis. MAT_dihedral() produces matrices that gen-
erate this symmetry. The N-fold axis is pts[0]→pts[1] and the second axis is created by the
same orthogonalization process described above. Unlike the previous point group functions the num-
ber of matrices created by MAT_dihedral() is not fixed but is equal to 2 × nfold.

MAT_cyclic() creates cnt matrices that produce uniform rotations about the axis
pts[1]→pts[2]. The rotations are in multiples of the angle ang beginning with 0°, and increas-
ing by ang until cnt matrices have been created. cnt is required to be > 0, but ang can be 0, in
which case MAT_cyclic returns cnt copies of the identity matrix.

MAT_helix() creates cnt matrices that produce a uniform helical twist about the axis
pts[1]→pts[2]. The rotations are in multiples of ang and the translations in multiples of dst.
cnt must be > 0, but either ang or dst or both may be zero. If ang is not 0, but dst is,
MAT_helix() produces a uniform plane rotation and is equivalent to MAT_cyclic(). An ang of
0 and a non-zero dst produces matrices that generate a uniform translation along the axis. If both
ang and dst are 0, the MAT_helix() creates cnt copies of the identity matrix.

The three functions MAT_orient(), MAT_rotate() and MAT_translate() are not
really symmetry operations but are auxilliary operations that are useful for positioning the objects
which are to be operated on by the true symmetry operators. Tw o of these functions MAT_rotate()
and MAT_translate() produce a single matrix that either rotates or translates an object along the axis
pts[1]→pts[2]. A zero ang or dst is acceptable in which case the function creates an identity
matrix. Except for a different user interface these two functions are equivalent to the nab builtins
rot4p() and tran4p().

MAT_orient() creates a matrix that rotates a object about the three axes pts[1]→pts[2],
pts[1]→pts[3] and pts[1]→pts[4]. The rotations are specified by the values of the array
angs[], with ang[1] the rotation about axis-1 etc. The rotations are applied in the order axis-3,
axis-2, axis-1. The axes remained fixed throughout the operation and zero angle values are acceptable.
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If all three angles are zero, MAT_orient() creates an identity matrix.

4.4.2. Matrix I/O Functions.

int MAT_fprint( file f, int nmats, matrix mats[1] )

int MAT_sprint( string str, int nmats, matrix mats[1] )

int MAT_fscan( file f, int smats, matrix mats[1] )

int MAT_sscan( string str, int smats, matrix mats[1] )

string MAT_getsyminfo()

This group of functions is used to read and write nab matrix variables. The two functions
MAT_fprint() and MAT_sprint() write the the matrix to the file f or the string str. The num-
ber of matrices is specified by the parameter nmats and the matrices are passed in the array mats[].

The two functions MAT_fscan() and MAT_sscan() read matrices from the file f or the
string str into the array mats[]. The parameter smats is the size of the matrix array and if the
source file or string contains more than smats only the first smats will be returned. These two func-
tions return the number of matrices read unless there the number of matrices is greater than smat or
the last matrix was incomplete in which case they return -1.

In order to understand the last function in this group — MAT_getsyminfo() it is necessary to
discuss both the internal structure the nab matrix type and one of its most important uses. The nab
matrix type is used to hold transformation matrices. Although these are atomic objects at the nab
level, they are actually 4 × 4 matrices where the first three elements of the fourth row are the X Y and
Z components of the translation part of the transformation. The matrix print functions write each
matrix as four lines of four numbers separated by a single space. Similarly the matrix read functions
expect each matrix to be represented as four lines of four white space (any number of tabs and spaces)
separated numbers. The print functions use %13.6e for each number in order to produce output with
aligned columns, but the scan functions only require that each matrix be contained in four lines of four
numbers each.

Most nab programs use matrix variables as intermediates in creating structures. The struc-
tures are then saved and the matrices disappear when the program exits. Recently nab was used to
create a set of routines called a “symmetry server”. This is a set of nab programs that work together
to create matrix streams that are used to assemble composite objects. In order to make it most general,
the symmetry server produces only matrices leaving it to the user to apply them. Since these programs
will be used to create hierarchies of symmetries or transformations we decided that the external repre-
sentation (files or strings) of matrices would consist of two kinds of information — required lines of
row values and optional lines beginning with the character # some of which are used to contain infor-
mation that describes how these matrices were created.

MAT_getsyminfo() is used to extract this symmetry information from either a matrix file or
a string that holds the contents of a matrix file. Each time the user calls MAT_fscan() or
MAT_sscan(), any symmetry information present in the source file or string is saved in private
buffer. The previous contents of this buffer are overwritten and lost. MAT_getsyminfo() returns
the contents of this buffer. If the buffer is empty, indicating no symmetry information was present in
either the source file or string, MAT_getsyminfo() returns NULL.
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4.5. Symmetry server programs

This section describes a set of nab programs that are used together to create composite objects
described by a hierarchical nest of transformations. There are four programs for creating and operat-
ing on transformation matrices: matgen, matmerge, matmul and matextract, a program,
transform, for transforming PDB or point files, and two programs, tss_init and tss_next for
searching spaces defined by transformation hierarchies. In addition to these programs, all of this func-
tionality is available directly at the nab level via the MAT_ and tss_ builtins described above.

4.5.1. matgen

The program matgen creates matrices that correspond to a symmetry or transformation opera-
tion. It has one required argument, the name of a file containing a description of this operation. The
created matrices are written to stdout. A single matgen may be used by itself or two or more
matgen programs may be connected in a pipeline producing nested symmetries.

matgen -create sydef-1 | matgen symdef-2 | ... | matgen symdef-N

Because a matgen can be in the middle of a pipeline, it automatically looks for an stream of matrices
on stdin. This means the first matgen in a pipeline will wait for an EOF (generally Ctl-D) from the
terminal unless connected to an empty file or equivalent. In order to avoid the nuisance of having to
create an empty matrix stream the first matgen in a pipeline should use the -create flag which tells
matgen to ignore stdin.

If input matrices are read, each input matrix left multiplies the first generated matrix, then the
second etc. The table below shows the effect of a matgen performing a 2-fold rotation on an input
stream of three matrices.

Input: IM1, IM2, IM3
Operation: 2-fold rotation: R1, R2
Output: IM1 × R1, IM2 × R1, IM3 × R1, IM1 × R2, IM2 × R2, IM3 × R2

4.5.2. Symmetry Definition Files.

Transformations are specified in text files containing several lines of keyword/value pairs. These
lines define the operation, its associated axes and other parameters such as angles, a distance or count.
Most keywords have a default value, although the operation, center and axes are always required.
Ke yword lines may be in any order. Blank lines and most lines starting with a sharp (#) are ignored.
Lines beginning with #S{, #S+ and #S} are structure comments that describe how the matrices were
created. These lines are required to search the space defined by the transformation hierarchy and their
meaning and use is convered in the section on “Searching Transformation Spaces”. A complete list of
keywords, their accepatable values and defaults is shown below.
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Keyword Possible Values Default Value
symmetry Nonecube, cyclic, dihedral, dodeca, he-

lix, ico, octa, tetra.
transform Noneorient, rotate, translate.
name Any string of nonblank characters. mPid

noid true, false. false

axestype absolute, relative. relative

center NoneAny three numbers separated by tabs or spaces.
Noneaxis, axis11

axis2 None
axis3 None

Any number. 0angle, angle11

angle2 0
angle3 0
dist 0
count Any integer. 1

1. axis and axis1 are synonyms as are angle and angle1.

The symmetry and transform keywords specify the operation. One or the other but not both must
be specified.

The name keyword names a particular symmetry operation. The default name is m immediately
followed by the process ID, eg m2286. name is used by the transformation space seaarch routines
tss_init and tss_next and is described later in the section “Searching Transformation Spaces”.

The noid keyword with value true suppresses generation of the identity matrix in symmetry
operations. For example, the keywords below

symmetry cyclic

noid false

center 0 0 0

axis 0 0 1

count 3

produce three matrices which perform rotations of 0°, 120° and 240° about the Z-axis. If noid is
true, only the two non-identity matrices are created. This option is useful in building objects with
two or three orthogonal 2-fold axes and is discussed further in the example “Icosahedron from Rota-
tions”. The default value of noid is false.

The axestype, center and axis* keywords defined the symmetry axes. The center and
axis* keywords each require a point value which is three numbers separated by tabs or spaces.
Numbers may integer or real and in fixed or exponential format. Internally all numbers are converted
to nab type float which is actually double precision. No space is permitted between the minus sign
of a negative number and the digits.
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The interpretation of these points depends on the value of the keyword axestype. If it is
absolute then the axes are defined as the vectors center→axis1, center→axis2 and cen-
ter→axis3. If it relative, then the axes are vectors whose directions are O→axis1,
O→axis2 and O→axis3 with their origins at center. If the value of center is 0,0,0, then
absolute and relative are equivalent. The defualt value axestype is relative; center and
the axis* do not have defaults.

The angle keywords specify the rotation about the axes. angle1 is associated with axis1
etc. Note that angle and angle1 are synonyms. The angle is in degrees, with positive being in the
counterclockwise direction as you sight from the axis point to the center point. Either an integer
or real value is acceptable. No space is permitted between the minus sign of a negative number and its
digits. All angle* keywords have a default value of 0.

The dist keyword specifies the translation along an axis. The positive direction is from cen-
ter to axis. Either integer or real value is acceptable. No space is permitted between the minus
sign of a negative number and its digits. The default value of dist is 0.

The count keyword is used in three related ways. For the cyclic value of the symmetry it
specifies ount matrices, each representing a rotation of 360/count°. It also specifies the same rota-
tions about the non 2-fold axis of dihedral symmetry. For helix symmetry, it indicates that
count matrices should be created, each with a rotation of angle°. In all cases the default value is 1.

This table shows which keywords are used and/or required for each type of operation.

symmetry name noid axestype center axes angles dist count

cube mPid false relative Required 1,2 - - -

cyclic mPid false relative Required 1 -  - D=1

dihedral mPid false relative Required 1,2 - - D=1

dodeca mPid false relative Required 1,2 - - -

helix mPid false relative Required 1 1,D=0 D=0 D=1

ico mPid false relative Required 1,2 - - -

octa mPid false relative Required 1,2 - - -

tetra mPid false relative Required 1,2 - - -

transform name noid axestype center axes angles dist count

orient mPid - relative Required All All,D=0 - -

rotate mPid - relative Required 1 1,D=0 - -

translate mPid - relative Required 1 -  D=0 -

4.5.3. matmerge

The matmerge program combines 2-4 files of matrices into a single stream of matrices written
to stdout. Input matrices are in files whose names are given on as arguments on the matmerge
command line. For example, the command line below

matmerge A.mat B.mat C.mat

copies the matrices from A.mat to stdout, followed by those of B.mat and finally those of
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C.mat. Thus matmerge is similar to the Unix cat command. The difference is that while they are
called matrix files, they can contain special comments that describe how the matrices they contain
were created. When matrix files are merged, these comments must be collected and grouped so that
they are kept together in any further matrix processing. All of this is described in the section “Search-
ing Transformation Spaces”.

4.5.4. matmul

The matmul program takes two files of matrices, and creates a new stream of matrices formed
by the pair wise product of the matrices in the input streams. The new matrices are written to std-
out. If the number of matrices in the two input files differ, the last matrix of the shorter file is repli-
cated and applied to all remaining matrices of the longer file. For example, if the file 3.mat has three
matrices and the file 5.mat has five, then this command

matmul 3.mat 5.mat

would result in the third matrix of 3.mat mulitplying the third, forth and fifth matrices of 5.mat.

4.5.5. matextract

The matextract is used to extract matrices from the matrix stream presented on stdin and
writes them to stdout. Matrices are numbered from 1 to N, where N is the number of matrices in
the input stream. The matrices are selected by giving their numbers as the arguments to the matex-
tract command. Each argument is comma or space separated list of one or more ranges, where a
range is either a number or two numbers separated by a dash (-). A range beginning with - starts with
the first matrix and a range ending with - ends with the last matrix. The range - selects all matrices.
Here are some examples.

Command Action
matextract 2 Extract matrix number 2.
matextract 2,5 Extract matrices number 2 and 5.
matextract 2 5 Extract matrices number 2 and 5.
matextract 2-5 Extract matrices number 2 up to and including 5.
matextract -5 Extract matrices 1 to 5.
matextract 2- Extract all matrices beginning with number 2.
matextract - Extract all matrices.
matextract 2-4,7 13 15,19- Extract matrices 2 to 4, 7, 13, 15 and all matrices

numbered 19 or higher.

4.5.6. transform

The transform program applies matrices to an object creating a composite object. The matri-
ces are read from stdin and the new object is written to stdout. transform takes one argument,
the name of the file holding the object to be transformed. transform is limited to two types of
objects, a molecule in PDB format, or a set of points in a text file, three space/tab separated num-
bers/line. The name of object file is preceded by a flag specifying its type.
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Command Action
transform -pdb X.pdb Transform a PDB format file.
transform -point X.pts Transform a set of points.
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5. Distance Geometry.

The second main element in NAB for the generation of initial structures is distance geometry.
Good descriptions of the theory and application of this approach can be found in the following places:

5.1. Creating and manipulating bounds, embeding structures A variety of metric-matrix
distance geometry routines are included as builtins in nab.

bounds newbounds( molecule mol, string opts );

int andbounds( bounds b, molecule mol,

string aex1, string aex2, float lb, float ub );

int orbounds( bounds b, molecule mol,

string aex1, string aex2, float lb, float ub );

int setbounds( bounds b, molecule mol,

string aex1, string aex2, float lb, float ub );

int showbounds( bounds b, molecule mol,

string aex1, string aex2 );

int useboundsfrom( bounds b, molecule mol1, string aex1,

molecule mol2, string aex2, float deviation );

int setboundsfromdb( bounds b, molecule mol,

string aex1, string aex2, string dbase, float mul );

int setchivol( bounds b, molecule mol, string aex1,

string aex2, string aex3, string aex4, float vol );

int setchiplane( bounds b, molecule mol, string aex );

float getchivol( molecule mol, string aex1, string aex2,

string aex3, string aex4 );

float getchivolp( point p1, point p2, point p3, point p4 );

int tsmooth( bounds b, float delta );

int geodesics( bounds b );

int dg_options( bounds b, string opts );

int embed( bounds b, float xyz[] );

The call to newbounds() is necessary to establish a bounds matrix for further work. This rou-
tine sets lower bounds to van der Waals limits, along with bounds derived from the input geometry for
atoms bonded to each other, and for atoms bonded to a common atoms (i.e. so-called 1-2 and 1-3 inter-
actions.) Upper and lower bounds for 1-4 interactions are set to the maximum and minimum possibili-
ties (the max ( syn , "Van der Waals limits" ) and anti distances). newbounds() has a string as
its last parameter. This string is used to pass in options that control the details of how those routines
execute. The string can be NULL, "" or contain one or more options surrounded by white space. The
formats of an option are
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-name=value
-name to select the default value if it exists.

The options to newbounds() are listed below.

Option type Default Action

newbounds()

-rbm string None The value of the option is the name of a file contain-
ing the bounds matrix for this molecule. This file
would ordinarliy be made by the dumpbounds com-
mand.

-binary If this flag is present, bounds read in with the -rbm
will expect a binary file created by the dumpbounds
command.

-nocov If this flag is present, no covalent (bonding) informa-
tion will be used in constructing the bounds matrix.

-nchi int 4 The option containing the keyword nchi allocates n
extra chiral atoms for each residue of this molecule.
This allows for additional chirality information to be
provided by the user. The default is 4 extra chiral
atoms per residue.

The next five routines use atom expressions aex1 and aex2 to select two sets of atoms. Each
of these four routines returns the number of bounds set or changed. For each pair of atoms (a1 in
aex1 and a2 in aex2) andbounds() sets the lower bound to max ( current_lb, lb ) and the upper
bound to the min ( current_ub, ub ). If ub < current_lb or if lb > current_ub, the bounds for that pair
are unchanged. The routine orbounds() works in a similar fashion, except that it uses the less
restrictive of the two sets of bounds, rather than the more restrictive one. The setbounds() call
updates the bounds, overwriting whatever was there. showbounds() prints all the bounds between
the atoms selected in the first atom expression and those selected in the second atom expression. The
useboundsfrom() routine sets the the bounds between all the selected atoms in mol1 according to
the geometry of a reference molecule, mol2. The bounds are set between every pair of atoms selected
in the first atom expression, aex1 to the distance between the corresponding pair of atoms selected by
aex2 in the reference molecule. In addition, a slack term, deviation, is used to allow some variance
from the reference geometry by decreasing the lower bound and increasing the upper bound between
ev ery pair of atoms selected. The amount of increase or decrease depends on the distance between the
two atoms. Thus, a deviation of 0.25 will result in the lower bound set between two atoms to be 75%
of the actual distance separating the corresponding two atoms selected in the reference molecule. Sim-
ilarly, the upper bound between two atoms will be set to 125% of the actual distance separating the
corresponding two atoms selected in the reference molecule. For instance, the call

useboundsfrom(b, mol1, "1:2:C1’,N1", mref, "3:4:C1’,N1", 0.10 );

sets the lower bound between the C1’ and N1 atoms in strand 1, residue 2 of molecule mol1 to 90% of
the distance between the corresponding pair of atoms in strand 3, residue 4 of the reference molecule,
mref. Similarly, the upper bound between the C1’ and N1 atoms selected in mol1 is set to 110% of the
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distance between the corresponding pair of atoms in mref. A deviation of 0.0 sets the upper and lower
bounds between every pair of atoms selected to be the actual distance between the corresponding refer-
ence atoms. If aex1 selects the same atoms as aex2, the bounds between those atoms selected will be
constrained to the current geometry. Thus the call,

useboundsfrom(b, mol1, "1:1:", mol1, "1:1", 0.0 );

essentially constrains the current geometry of all the atoms in strand 1, residue 1, by setting the upper
and lower bounds to the actual distances separating each atom pair. useboundsfrom() only
checks the number of atoms selected by aex1 and compares it to the number of atoms selected by
aex2. If the number of atoms selected by both atom expressions are not equal, an error message is out-
put. Note, however, that there is no checking on the atom types selected by either atom expression.
Hence, it is important to understand the method in which nab atom expressions are evaluated. For
more information, refer to Section 2.6, “Atom Names and Atom Expressions”.

5.2. Distance geometry templates.

The useboundsfrom() function can be used with structures supplied by the user, or by
canonical structures supplied with the nab distribution called "templates". These templates include
stacking schemes for all standard residues in a A-DNA, B-DNA, C-DNA, D-DNA, T-DNA, Z-DNA,
A-RNA, or A’-RNA stack. Also included are the 28 possible basepairing schemes as described in
Saenger[23 ]. The templates are in PDB format and are located in $NAB-
HOME/dgdb/template/basepairs/ and $NABHOME/dgdb/template/stacking/.

A typical use of these templates would be to set the bounds between two residues to some per-
centage of the idealized distance described by the template. In this case, the template would be the
reference molecule ( the second molecule passed to the function ). A typical call might be:

useboundsfrom(b, m, "1:2,3:??,H?[ˆ’T]", getpdb( PATH +
"gc.bdna.pdb" ), "::??,H?[ˆ’T]", 0.1 );

where PATH is $NABHOME/dgdb/template/stacking/. This call sets the bounds of all
the base atoms in residues 2 ( GUA ) and 3 ( CYT ) of strand 1 to be within 10% of the distances
found in the template.

The basepair templates are named so that the first field of the template name is the one-character
initials of the two individual residues and the next field is the Roman numeral corresponding to same
bonding scheme described by Sanger, p. 120. Note: since no specific sugar or backbone conformation
is assumed in the templates, the non-base atoms should not be referenced. The base atoms of the tem-
plates are show in figures 5 and 6.

The stacking templates are named in the same manner as the basepair templates. The first two
letters of the template name are the one-character initials of the two residues involved in the stacking
scheme ( 5’ residue, then 3’ residue ) and the second field is the actual helical pattern ( note: a-rna
represents the helical parameters of a’rna ). The following stacking shemes are included in the nab
distribution:

23. W. Saenger, M. Turcotte, G. Lapalme, and F. Major, “Exploring the conformations of nucleic
acids,” J. Funct. Program. 5, 443-460 (1995). Springer-Verlag,
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Figure 5. Basepair templates for use with useboundsfrom() (aa-gg).
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Figure 6. Basepair templates for use with useboundsfrom() (gg-uu).
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aa.a-rna.pdb ca.adna.pdb ga.adna.pdb ta.bdna.pdb

aa.adna.pdb ca.arna.pdb ga.arna.pdb ta.cdna.pdb

aa.arna.pdb ca.bdna.pdb ga.bdna.pdb ta.ddna.pdb

aa.bdna.pdb ca.cdna.pdb ga.cdna.pdb ta.tdna.pdb

aa.cdna.pdb ca.ddna.pdb ga.ddna.pdb tc.adna.pdb

aa.ddna.pdb ca.tdna.pdb ga.tdna.pdb tc.bdna.pdb

aa.tdna.pdb cc.a-rna.pdb gc.a-rna.pdb tc.cdna.pdb

ac.a-rna.pdb cc.adna.pdb gc.adna.pdb tc.ddna.pdb

ac.adna.pdb cc.arna.pdb gc.arna.pdb tc.tdna.pdb

ac.arna.pdb cc.bdna.pdb gc.bdna.pdb tg.adna.pdb

ac.bdna.pdb cc.cdna.pdb gc.cdna.pdb tg.bdna.pdb

ac.cdna.pdb cc.ddna.pdb gc.ddna.pdb tg.cdna.pdb

ac.ddna.pdb cc.tdna.pdb gc.tdna.pdb tg.ddna.pdb

ac.tdna.pdb cg.a-rna.pdb gc.zdna.pdb tg.tdna.pdb

ag.a-rna.pdb cg.adna.pdb gg.a-rna.pdb tt.adna.pdb

ag.adna.pdb cg.arna.pdb gg.adna.pdb tt.bdna.pdb

ag.arna.pdb cg.bdna.pdb gg.arna.pdb tt.cdna.pdb

ag.bdna.pdb cg.cdna.pdb gg.bdna.pdb tt.ddna.pdb

ag.cdna.pdb cg.ddna.pdb gg.cdna.pdb tt.tdna.pdb

ag.ddna.pdb cg.tdna.pdb gg.ddna.pdb ua.a-rna.pdb

ag.tdna.pdb cg.zdna.pdb gg.tdna.pdb ua.arna.pdb

at.adna.pdb ct.adna.pdb gt.adna.pdb uc.a-rna.pdb

at.bdna.pdb ct.bdna.pdb gt.bdna.pdb uc.arna.pdb

at.cdna.pdb ct.cdna.pdb gt.cdna.pdb ug.a-rna.pdb

at.ddna.pdb ct.ddna.pdb gt.ddna.pdb ug.arna.pdb

at.tdna.pdb ct.tdna.pdb gt.tdna.pdb uu.a-rna.pdb

au.a-rna.pdb cu.a-rna.pdb gu.a-rna.pdb uu.arna.pdb

au.arna.pdb cu.arna.pdb gu.arna.pdb

ca.a-rna.pdb ga.a-rna.pdb ta.adna.pdb

5.3. Bounds databases.

In addition to canonical templates, it is also possible to specify bounds information from a
database of known molecular structures. This provides the option to use data obtained from actual
structures, rather than from an idealized, canonical conformation.

The function setboundsfromdb() sets the bounds of all pairs of atoms between the two
residues selected by aex1 and aex2 to a statistically averaged distance calculated from known struc-
tures plus or minus a multiple of the standard deviation. The statistical information is kept in database
files. Currently, there are three types of database files - Those containing bounds information between
Watson-Crick basepairs, those containing bounds information between helically stacked residues, and
those containing intra-residue bounds information for residues in any conformation. The standard
deviation is multiplied by the parameter mul and subtracted from the average distance to determine the
lower bound and similarly added to the average distance to determine the upper bound of all base-base
atom distances. Base-backbone bounds, that is, bounds between pairs of atoms in which one atom is a
base atom and the other atom is a backbone atom, are set to be looser than base-base atoms. Specifi-
cally, the lower bound between a base-backbone atom pair is set to the smallest measured distance of
all the structures considered in creating the database. Similarly, the upper bound between a base-
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backbone atom pair is set to the largest measured distance of all the structures considered. Base-base,
and base-sugar bounds are set in a similar manner. This was done to avoid imposing false constraints
on the atomic bounds, since Watson-Crick basepairing and stacking does not preclude any specific
backbone and sugar conformation. setboundsfromdb() first searches the current directory for
dbase before checking the default database location, $NABHOME/dgdb

Each entry in the database file has six fields: The atoms whose bounds are to be set, the number
of separate structures sampled in constructing these statistics, the average distance between the two
atoms, the standard deviation, the minimum measured distance, and the maximum measured distance.
For example, the database bdna.basepair.db has the following sample entries:

A:C2-T:C1’ 424 6.167 0.198 5.687 6.673

A:C2-T:C2 424 3.986 0.175 3.554 4.505

A:C2-T:C2’ 424 7.255 0.304 5.967 7.944

A:C2-T:C3’ 424 8.349 0.216 7.456 8.897

A:C2-T:C4 424 4.680 0.182 4.122 5.138

A:C2-T:C4’ 424 8.222 0.248 7.493 8.800

A:C2-T:C5 424 5.924 0.168 5.414 6.413

A:C2-T:C5’ 424 9.385 0.306 8.273 10.104

A:C2-T:C6 424 6.161 0.163 5.689 6.679

A:C2-T:C7 424 7.205 0.184 6.547 7.658

The first column identifies the atoms from the adenosine C2 atom to various thymidine atoms in a
Watson-Crick basepair. The second column indicates that 424 structures were sampled in determining
the next four columns: the average distance, the standard deviation, and the minimum and maximum
distances.

The databases were constructing using the coordinates from all the known nucleid acid structures
from the Nucleic Acid Database (NDB - http://www.ndbserver.ebi.ac.uk:5700/NDB/.
If one wishes to remake the databases, the coordinates of all the NDB structures should be downloaded
and kept in the $NABHOME/coords directory. The databases are made by issuing the command
$NABHOME/dgdb/make_databases dblist where dblist is a list of nucleic acid types (i.e., bdna,
arna, etc. ). If one wants to add new structures to the structure repository at $NABHOME/coords, it
is necessary to make sure that the first two letters of the pdb file identify the nucleic acid type. i.e., all
bdna pdb files must begin with bd.

The nab functions used to create the databases are located in $NABHOME/dgdb/functions.
The stacking databases were constructed as follows: If two residues stacked 5’ to 3’ in a helix have
fewer than ten inter-residue atom distances closer than 2.0A° or larger than 9.0A° , and if the normals
between the base planes are less than 20.0°, the residues were considered stacked. The base plane is
calculated as the normal to the N1-C4 and midpoint of the C2-N3 and N1-C4 vectors. The first atom
expression given to setboundsfromdb() specifies the 5’ residue and the second atom expression
specifies the 3’ residue. The source for this function is getstackdist.nab.

Similarly, the basepair databases were constructed by measuring the heavy atom distances of cor-
responding residues in a helix to check for hydrogen bonding. Specifically, if an A-U basepair has an
N1-N3 distance of between 2.3A° and 3.2A° and a N6-O4 distance of between 2.3A° and 3.3A° , then the
A-U basepair is considered a Waton-Crick basepair and is used in the database. A C-G basepair is
considered Watson-Crick paired if the N3-N1 distance is between 2.3A° and 3.3A° , the N4-O6 distance
is between 2.3A° and 3.2A° , and the O2-N2 distance is between 2.3A° and 3.2A° .



9/13/99 Distance Geometry 93

The nucleotide databases contain all the distance information between atoms in the same residue.
No residues in the coordinates directory are excluded from this database. The intent was to allow the
residues of this database to assume all possible conformations and ensure that a nucleotide residue
would not be biased to a particular conformation.

For the basepair and stacking databases, setting the parameter mul to 1.0 results in lower bounds
being set from the average database distance minus one standard deviation, and upper bounds as the
av erage database distance plus one standard deviation, between base-base atoms. Base-backbone and
base-sugar upper and lower bounds are set to the maximum and minimum measured database values,
respectively. Note, however, that a stacking multiple of 0.0 may not correspond to consistent bounds.
A stacking multiple of 0.0 will probably have conflicting bounds information as the bounds informa-
tion is derived from many different structures.

The three different database types provided with the nab distribution are named
nucleic_acid_type.database_type.db. The following databases are included in the distribution:

adna.basepair.db

adna.stack.db

adna.nucleotide.db

arna.basepair.db

arna.stack.db

arna.nucleotide.db

bdna.basepair.db

bdna.stack.db

bdna.nucleotide.db

trna.nucleotide.db

trna.stack.db

zdna.basepair.db

zdna.stack.db

zdna.nucleotide.db

The routine setchivol() uses four atom expressions to select exactly four different atoms
and sets the volume of the chiral (ordered) tetrahedron they describe to vol. Setting vol to 0 forces
the four atoms to be planar. setchivol() returns 0 on success and 1 on failure. setchivol()
does not affect any distance bounds in b and may precede or follow triangle smoothing.

Similar to setchivol(), setchiplane() enforces planarity across four or more atoms by
setting the chiral volume to 0 for every quartet of atoms selected by aex. setchiplane() returns
the number of quartets constrained. Note: If the number of chiral contraints set is larger than the
default number of chiral objects allocated in the call to newbounds(), a chiral table overflow will
result. Thus, it may be necessary to allocate space for additional chiral objects by specifying a larger
number for the option nchi in the call to newbounds().

getchivol() takes as an argument four atom expressions and returns the chiral volume of the
tetrahedron described by those atoms. If more than one atom is selected for a particular point, the
atomic coordinate is calculated from the average of the atoms selected. Similarly, getchivolp()
takes as an argument four parameters of type point and returns the chiral volume of the tetrahedron
described by those points.

After bounds and chirality have been set in this way, the general approach would be to call
tsmooth() to carry out triangle inequality smoothing, followed by embed() to create a three-
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dimensional object. This might then be refined against the distance bounds by a conjugate-gradient
minimization routine. The tsmooth() routine takes two arguments: a bounds object, and a toler-
ance parameter delta, which is the amount by which an upper bound may exceed a lower bound with-
out triggering a triangle error. For most circumstances, delta would be chosen as a small number, like
0.0005, to allow for modest round-off. In some circumstances, however, delta could be larger, to allow
some significant inconsistencies in the bounds (in the hopes that the problems would be fixed in subse-
quent refinement steps.) If the tsmooth() routine detects a violation, it will (arbitrarily) adjust the
upper bound to equal the lower bound. Ideally, one should fix the bounds inconsistencies before pro-
ceeding, but in some cases this fix will allow the refinments to proceed even when the underlying
cause of the inconsistency is not corrected.

For larger systems, the tsmooth() routine becomes quite time-consuming as it scales O(Nˆ3).
In this case, a more efficient triangle smoothing routine, geodesics() is used. geodesics()
smoothes the bounds matrix via the triangle inequality using a sparse matrix version of a shortest path
algorithm.

The embed routine takes a bounds object as input, and returns a four-dimensional array of coor-
dinates; (values of the 4-th coordinate may be nearly zero, depending on the value of k4d, see below.)
Options for how the embed is done are passed in throught the dg_options routine, whose option string
has name=value pairs, separated by commas or whitespace. Allowed options are listed in the follow-
ing table.

Options parameters for dg_options

keyword default meaning
ddm none Dump distance matrix to this file.
rdm none Instead of creating a distance matrix, read it from this

file.
dmm none Dump the metric matrix to this file.
rmm none Instead of creating a metric matrix, read it from this

file.

gdist 0 If set to non-zero value, use a Gaussian distribution
for selecting distances; this will have a mean at the
center of the allowed range, and a standard deviation
equal to 1/4 of the range. If gdist=0, select distances
from a uniform distribution in the allowed range.

randpair 0. Use random pair-wise metrization for this percentage
of the distances, i.e., randpair=10. would metrize
10% of the distance pairs.

eamax 10 Maximum number of embed attempts before bailing
out.

seed -1 Initial seed for the random number generator.
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Options parameters for dg_options (cont.)

keyword default meaning
rembed 0 If set to a non-zero value, use the "random embed-

ding" scheme of de Groot et al., Proteins 29, 240-251
(1997), rather than metric matrix embedding.

rbox 20.0 Size, in Angstroms, of each side of the cubic into
which the coordinates are randomly created in the
random-embed procedure.

riter 1000 Maximum number of cycles for random-embed pro-
cedure. Each cycle selects 1000 pairs for adjustment.

kchi 1.0 Force constant for enforcement of chirality con-
straints.

k4d 1.0 Force constant for squeezing out the fourth dimen-
sional coordinate. If this is non-zero, a penalty func-
tion will be added to the bounds-violation energy,
which is equal to 0.5 * k4d * w * w, where w is the
value of the fourth dimensional coordinate.

sqviol 0 If set to non-zero value, use parabolas for the viola-
tion energy when upper or lower bounds are violated;
otherwise use functions based on those in the dgeom
program. See the code in embed.c for details.

lbpen 3.5 Weighting factor for lower-bounds violations, relative
to upper-bounds violations. The default penalizes
lower bounds 3.5 times as much as the equivalent
upper-bounds violations, which is frequently appro-
priate distance geometry calculations on molecules.

ntpr 10 Frequency at which the bounds matrix violations will
be printed in subsequent refinements.

pencut -1.0 If pencut >= 0.0, individual distance and chirality vi-
olations greater than pencut will be printed out (along
with the total energy) every ntpr steps.

Typical calling sequences. The following segment shows some ways in which these routines can
be put together to do some simple embeds:

1 molecule m;

2 bounds b;

3 float fret, xyz[ 10000 ];

4 int ier;

5
6 m = getpdb( argv[2] );

7 b = newbounds( m, "" );

8 tsmooth( b, 0.0005 );

9
10 dg_options( b, "gdist=1, ntpr=50, k4d=2.0, randpair=10." );

11 embed( b, xyz );
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12 ier = conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 200 );

13 printf( "conjgrad returns %d0, ier );

14
15 setmol_from_xyzw( m, NULL, xyz );

16 putpdb( "new.pdb", m );

In lines 6-8, the molecule is created by reading in a pdb file, then bounds are created and
smoothed for it. The embed options (established in line 10) include 10% random pairwise metrization,
use of Gaussian distance selection, squeezing out the 4-th dimension with a force constant of 2.0, and
printing every 50 steps. The coordinates developed in the embed step (line 11) are passed to a conju-
gate gradient minimizer (see the description below), which will minimize for 200 steps, using the
bounds-violation routine db_viol as the target function. Finally, in lines 15-16, the setmol_from_xyzw
routine is used to put the coordinates from the xyz array back into the molecule, and a new pdb file is
written.

More complex and representative examples of distance geometry are given in the Examples
chapter below.
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6. Molecular mechanics and molecular dynamics.

The initial models created by rigid-body transformations or distance geometry are often in need
of further refinement, and molecular mechanics and dynamics can often be useful here. nab has facil-
ities to allow molecular mechanics and molecular dynamics calculations to be carried out. At present,
this uses the AMBER program LEaP to set up the parameters and topology; the force field calculations
and manipulations like minimization and dynamics are done by routines in the nab suite. LEaP is not
included with nab but must obtained separately from “the AMBER guys”; information is available at
http://www.ucsf.edu/amber/amber.html.

6.1. Basic molecular mechanics routines

int leap( molecule mol, string commands_1, string commands_2 );

int readparm( molecule m, string parmfile );

int mme_init( molecule mol, string aexp, string aexp2,

point xyz_ref[], file f );

int mm_options( string opts );

float mme( point xyz[], point grad[], int iter );

int conjgrad( float x[], int n, float f[], float func(),

float rmsgrad, float dfpred, int maxiter );

int md( int n, int maxstep, point xyz[], point minv[], point f[],

float v[], float func );

leap() converts an nab molecule into into an AMBER prmtop file. This file is created in the
nab’s current working directory when leap() is called. The commands_1 string is passed to
LEaP, and would typically point to a leaprc file that contained parameter and force field libraries to
load. If commands_1 is empty, the all-atom AMBER 94 force field will be used. This string is inter-
preted by LEaP at the beginning of the run. The commands_2 string is interpreted after the molecule
has been read in to a unit called "X". Typically, commands_2 would modify the molecule, say by
adding or removing bonds, etc. leap() creates a "parameter-topology" file called prmtop, which
typically is read by the readparm routine.

readparm reads an AMBER parameter-topology file, created by leap or with other AMBER
programs, and sets up a data structure which we call a "parmstruct". This is part of the molecule, but
is not directly accessible (yet) to nab programs. This routine was written by Bill Ross at the Univer-
sity of California, San Franscisco, and is redistributed with permission.

setxyz_from_mol() copies the atomic coordinates of mol to the array xyz. set-
mol_from_xyz() replaces the atomic coodinates of mol with the contents of xyz. Both return the
number of atoms copied with a 0 indicating an error occurred.

The mme_init function must be called before calls to mme. It sets up parameters for future
force field evaluations, and takes as input an nab molecule. The string aexp is an atom expression
that which atoms are to be allowed to move in minimization or dynamics: atoms that do not match
aexp will have their positions in the gradient vector set to zero. A NULL atom expression will allow
all atoms to move. The second string, aexp2 identifies atoms whose positions are to be restrained to
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the positions in the array xyz_ref. The strength of this restraint will be given by the wcons vari-
able set in mm_options. A NULL value for aexp2 will cause all atoms to be constrained. The last
parameter to mme_init is a file pointer for the output trajectory file. This should be NULL if no out-
put file is desired.

mm_options is used to set parameters. The opts string contains keyword/value pairs of the
form keyword=value separated by white space or commas. Allowed values are shown in the fol-
lowing table.

Options parameters for mm_options

keyword default meaning
ntpr 10 frequency of printing of the energy and its compo-

nents
nsnb 25 frequency at which the non-bonded list is updated
cut 8.0 non-bonded cutoff, in Angstroms
scnb 2.0 Scaling factor for 1-4 nonbonded interactions; default

corresponds to the all-atom Amber force fields
scee 1.2 Scaling factor for 1-4 electrostatic interactions. de-

fault corresponds to the 1994 and later Amber force
fields.

wcons 0.0 Restraint weight for keeping atoms close to their po-
sitions in xyz_ref (see mme_init).

dim 3 Number of spatial dimensions; supported values are 3
and 4.

k4d 1.0 Force constant for squeezing out the fourth dimen-
sional coordinate, if dim=4. If this is non-zero, a
penalty function will be added to the bounds-
violation energy, which is equal to 0.5 * k4d * w * w,
where w is the value of the fourth dimensional coor-
dinate.



9/13/99 Molecular mechanics and molecular dynamics 99

Options parameters for mm_options (continued)

keyword default meaning

dt 0.001 time step, ps.
t 0.0 initial time, ps.
tautp 0.2 temperature coupling parameter, in ps.
temp0 300. target temperature, K
vlimit 20. maximum absolute value of any component of the ve-

locity vector
ntpr_md 10 printing freqeuncy for dynamics information
zerov 0 if non-zero, then the initial velocities will be set to

zero; otherwise, the values passed into the md routine
will be used.

genmass 10. The general mass to use for MD if indivudal masses
are not read from a prmtop file; value in amu.

diel R Code for the dielectric model. "C" gives a dielectric
constant of 1; "R" makes the dielectric constant equal
to distance in Angstroms; "RL" uses the sigmoidal
function of Ramstein & Lavery, PNAS 85, 7231
(1988); "RL94" is the same thing, but speeded up as-
suming one is using the Cornell et al force field;
"R94" is a distance-dependent dielectric, again with
speedups that assume the Cornell et al. force field.

gb 0 If set to 1, use the pairwise generalized Born model
for solvation. For now, see the code in sff.c for
details. Set diel to "C" if you use this option.

gb_debug 0 If set to 1, print out detailed information about the
generalized Born calculations. Only useful for small
molecules, since it generates voluminous output.

epsext 78.5 Exterior dielectric for generalized Born; interior di-
electric is always 1.

kappa 0.0 Inverse of the Debye-Huckel length, if gb is turned

on, in Å-1.

The mme function takes a coordinate set and returns the energy in the function value and the gra-
dient of the energy in grad. The input parameter iter is used to control printing and non-bonded
updates.

The conjgrad() function will carry out conjugate gradient minimization of the function
func that depends upon n parameters, whose initial values are in the x array. The function func
must be of the form func( x[], g[], iter ), where x contains the input values, and the func-
tion value is returned through the function call, and its gradient with respect to x through the g array.
The iteration number is passed through iter, which func can use for whatever purpose it wants; a
typical use would just be to determine when to print results. The input parameter dfpred is the
expected drop in the function value on the first iteration; generally only a rough estimate is needed.
The minimization will proceed until maxiter steps have been performed, or until the root-mean-
square of the components of the gradient is less than rmsgrad. The value of the function at the end
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of the minimization is returned in the variable f. conjgrad can return a variety of exit codes:

Return codes for conjgrad routine

>0 minimization converged; gives number of final iteration
-1 bad line search; probably an error in the relation of the

funtion to its gradient (perhaps from round-off if you
push too hard on the minimization).

-2 search direction was uphill
-3 exceeded the maximum number of iterations
-4 could not further reduce function value

Finally, the md function will run maxstep steps of molecular dyanmics, using func as the
force field (this would typcially be set to a function like mme.) The number of dynamical variables is
given as input parameter n: this would be 3 times the number of atoms for ordinary cases, but might be
different for other force fields or functions. The arrays x[], f[] and v[] hold the coordinates, gra-
dient of the potential, and velocities, respectively, and are updated as the simulation progress. The
input array minv[] must reserve space to hold the inverse of the masses of the particles.

6.2. Typical calling sequences.

The following segment shows some ways in which these routines can be put together to do some
molecular mechanics and dynamics:

1 // carry out molecular mechanics minimization and some simple dynamics

2 molecule m;

3 int ier;

4 float m_xyz[ dynamic ], f_xyz[ dynamic ], v[ dynamic ], minv[ dynamic ] ;

5 float dgrad, fret, dummy;

6
7 m = bdna( "gcgc" );

8 allocate m_xyz[ 3*m.natoms ]; allocate f_xyz[ 3*m.natoms ];

9 allocate v[ 3*m.natoms ]; allocate minv[ 3*m.natoms ];

10
11 leap( m, "", "" );

12 readparm( m, "prmtop" );

13 setxyz_from_mol( m, NULL, m_xyz );

14
15 mm_options( "cut=25.0, ntpr=10, nsnb=999" );

16 mme_init( m, NULL, "::ZZZ", dummy, NULL );

17 fret = mme( m_xyz, f_xyz, 1 );

18 printf( "Initial energy is %f0, fret );

19
20 dgrad = 0.1;

21 ier = conjgrad( m_xyz, 3*m.natoms, fret, mme, dgrad, 10.0, 100 );

22 setmol_from_xyz( m, NULL, m_xyz );

23 putpdb( "gcgc.min.pdb", m );

24
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25 mm_options( "tautp=0.4, temp0=100.0, ntpr_md=10, tempi=50." );

26 md( 3*natom, 1000, m_xyz, minv, f_xyz, v, mme );

27 setmol_from_xyz( m, NULL, m_xyz );

28 putpdb( "gcgc.md.pdb", m );

Line 7 creates an nab molecule; any nab creation method could be used here. Then the parame-
ter topology file is created in line 11, and read back in at line 12. (The reason for separating these is
that future runs of the program for the same molecule could omit line 9, and simply read in a pre-
existing parameter-topology file.) Lines 15-17 initialize the force field routine, and call it once to get
the initial energy. The atom expression "::ZZZ" will match no atoms, so that there will be no restraints
on the atoms; hence the fourth argument to mme_init can just be a place-holder, since there are no
reference positions for this example. Minimization takes place at line 21, which will call mme repeat-
edly, and which also arranges for its own printout of results. Finally, in lines 25-28, a short
(1000-step) molecular dynamics run is made. Note the the initialization routine mme_init must be
called before calling the evaluation routines mme or md.

Elaboration of the the above scheme is generally straightforward. For example, a simulated
annealing run in which the target temperature is slowly reduced to zero could be written as successive
calls to mm_options (setting the temp0 parameter) and md (to run a certain number of steps with
the new target temperature.) Note also that routines other than mme could be sent to conjgrad and
md: any routine that takes the same three arguments and returns function value as a float could be used.
In particular, the routines db_viol (to get violations of distance bounds from a bounds matrix) or
mme4 (to compute molecular mechanics energies in four spatial dimensions) could be used here. Or,
you can write your own nab routine to do this as well.
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7. Sample NAB applications.

This chapter provides a variety of examples that use the basic NAB functionality described in
earlier chapters to solve interesting molecular manipulation problems. Our hope is that the ideas and
approaches illustrated here will facilitate construction of similar programs to solve other problems.

7.1. Duplex Creation Functions.

nab provides four functions for creating Watson/Crick duplexes. A short description of each
them is given in this section. All four of these functions are written in nab and the details of their
implementation is covered in the section Creating Watson/Crick Duplexes of the User Manaul.

molecule bdna( string seq );

string wc_complement( string seq, string rlib, string rlt );

molecule wc_helix( string seq, string rlib, string natype,

string cseq, string crlib, string cnatype,

float xoffset, float incl, float twist, float rise,

string options );

molecule dg_helix( string seq, string rlib, string natype,

string cseq, string crlib, string cnatype,

float xoffset, float incl, float twist, float rise,

string options );

molecule wc_basepair( residue res, residue cres );

bdna() converts the character string seq containing one or more A, C, G or Ts (or their lower
case equivalents) into a uniform ideal Watson/Crick B-form DNA duplex. Each basepair has an X-
offset of 2.25A° , an inclination of -4.96° and a helical step of 3.38A° rise and 36.0° twist. The first char-
acter of seq is the 5’ base of the strand "sense" of the molecule returned by bdna(). The other
strand is called "anti". The phosphates of the two 5’ bases have been replaced by hydrogens and
and hydrogens have been added to the two O3’ atoms of the three prime bases. bdna() returns
NULL if it can not create the molecule.

wc_complement() returns a string that is the Watson/Crick complement of its argument
seq. Each C, G, T (U) in seq is replaced by G, C and A. The replacements for A depends if rlt is
DNA or RNA. If it is DNA, A is replaced by T. If it is RNA A is replaced by U. wc_complement()
considers lower case and upper case letters to be the same and always returns upper case letters.
wc_complement() returns NULL on error. Note that the while the orientations of the argument
string and the returned string are opposite, their absolute orientations are undefined until they are used
to create a molecule.

wc_helix() creates a uniform duplex from its arguments. The two strands of the returned
molecule are called "sense" and "anti". The two sequences, seq and cseq must specify Wat-
son/Crick base pairs. The nulcleic acid type ( DNA or RNA ) of the sense strand is specified by
natype and of the complementary strand cseq by cnatype. Two residue libraries—rlib and
crlib— permit creation of DNA:RNA heteroduplexes. If either seq or cseq (but not both) is NULL
only the specified strand of what would have been a uniform duplex is created. The options string
contains some combination of the strings "s5", "s3", "a5" and "a3"; these indicate which (if any) of the
ends of the helices should be "capped" with hydrogens attached to the O5’ atom (in place of a phos-
phate) if "s5" or "a5" is specified, and a proton added to the O3’ position if "s3" or "a3" is specified. A
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blank string indicates no capping, which would be appropriate if this section of helix were to be
inserted into a larger molecule. The string "s5a5s3a3" would cap the 5’ and 3’ ends of both the
"sense" and "anti" strands, leading to a chemically complete molecule. wc_helix() returns NULL
on error.

dg_helix() is the functional equivalent of wc_helix() but with the backbone geometry
minimized via a distance constraint error function. dg_helix() takes the same arguments as
wc_helix().

wc_basepair() assembles two nucleic acid residues (assumed to be in a standard orientation)
into a two stranded molecule containing one Watson/Crick base pair. The two strands of the new
molecule are "sense" and "anti". It returns NULL on error.
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7.2. nab and Distance Geometry.

Distance geometry is a method which converts a molecule represented as a set of interatomic dis-
tances and related information into a 3-D structure. nab has several builtin functions that are used
together to provide metric matrix distance geometry. nab also provides the bounds type for holding
a molecule’s distance geometry information. A bounds object contains the molecule’s interatomic
distance bounds matrix and a list of its chiral centers and their volumes. nab uses chiral centers with a
volume of 0 to enforce planarity.

Distance geometry has several advantages. It is unique in its power to create structures from very
incomplete descriptions. It easily incorporates “low resolution structural data” such as that derived
from chemical probing since these kinds of experiments generally return only distance bounds. And it
also provides an elegant method by which structures may be described functionally.

The nab distance geometry package is described more fully in the section NAB Language Ref-
erence. Generally, the function newbounds() creates and returns a bounds object corresponding
to the molecule mol. This object contains two things—a distance bounds matrix containing initial
upper and lower bounds for every pair of atoms in mol and a initial list of the molecules chiral centers
and their volumes. Once a bounds object has been initialized, the modeller uses functions from the
middle of the distance geometry function list to tighten, loosen or set other distance bounds and chiral-
ities that correspond to expermental measurements or parts of the model’s hypothesis. The four func-
tions andbounds(), orbounds(), setbounds and useboundsfrom() work in similar fash-
ion. Each uses two atom expressions to select pairs of atoms from mol. In andbounds(), the cur-
rent distance bounds of each pair are compared against lb and ub and are replaced by lb, ub if they
represent tighter bounds. orbounds() replaces the current bounds of each selected pair, if lb, ub
represent looser bounds. setbounds() sets the bounds of all selected pairs to lb, ub. use-
boundsfrom() sets the bounds between each atom selected in the first expression to a percentage of
the distance between the atoms selected in the second atom expression. If the two atom expressions
select the same atoms from the same molecule, the bounds between all the atoms selected will be con-
strained to the current geometry. setchivol() takes four atom expressions that must select exactly
four atoms and sets the volume of the tetrahedron enclosed by those atoms to vol. Setting vol to 0
forces those atoms to be planar. getchivol() returns the chiral volume of the tetrahedron
described by the four points.

After all experimental and model constraints have been entered into the bounds object, the
function tsmooth() applies a process called “triangle smoothing” to them. This tests each triple of
distance bounds to see if they can form a triangle. If they can not form a triangle then the distance
bounds do not even represent a Euclidean object let alone a 3-D one. If this occurs, tsmooth()
quits and returns a 1 indicating failure. If all triples can form triangles, tsmooth() returns a 0. Tri-
angle smoothing pulls in the large upper bounds. After all, the maximum distance between two atoms
can not exceed the sum of the upper bounds of the shortest path between them. Triangle smoothing can
also increase lower bounds, but this process is much less effective as it requires one or more large
lower bounds to begin with.

The function embed() takes the smoothed bounds and converts them into a 3-D object. This
process is called “embedding”. It does this by choosing a random distance for each pair of atoms
within the bounds of that pair. Sometimes the bounds simply do not represent a 3-D object and
embed() fails, returning the value 1. This is rare and usually indicates the that the distance bounds
matrix part of the bounds object contains errors. If the distance set does embed, conjgrad() can
subject newly embedded coordinates to conjugate gradient refinement against the distance and chiral-
ity information contained in bounds. The refined coordinates can replace the current coordinates of
the molecule in mol. embed() returns a 0 on success and conjgrad() returns an exit code
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explained further in the Language Reference section of this manual. The call to embed() is usually
placed in a loop with each new structure saved after each call to see the diversity of the structures the
bounds represent.

In addition to the explicit bounds manipulation functions, nab provides an implicit way of set-
ting bounds between interacting residues. The function setboundsfromdb() is for use in creating
distance and chirality bounds for nucleic acids. setboundsfromdb() takes as an argument two
atom expressions selecting two residues, the name of a database containing bounds information, and a
number which dictates the tightness of the bounds. For instance, if the database bdna.stack.db is spec-
ified, setboundsfromdb() sets the bounds between the two residues to what they would be if they
were stacked in strand in a typical Watson-Crick B-form duplex. Similarly, if the database
arna.basepair.db is specified, setboundsfromdb() sets the bounds between the two residues to
what they would be if the two residues form a typical Watson-Crick basepair in an A-form helix.

7.2.1. Refine Backbone Geometry.

As mentioned previously, wc_helix() performs rigid body transformations on residues and
does not correct for poor backbone geometry. Using distance geometry, sev eral techniques are avail-
able to correct the backbone geometry. In program 7, an 8-basepair dna sequence is created using
wc_helix(). A new bounds object is created on line 14, which automatically sets all the 1-2, 1-3,
and 1-4 distance bounds information according the geometry of the model. Since this molecule was
created using wc_helix(), the O3’-P distance between adjacent stacked residues is often not the
optimal 1.595 A° , and hence, the 1-2, 1-3, and 1-4, distance bounds set by newbounds() are incor-
rect. We want to preserve the position of the nucleotide bases, however, since this is the helix whose
backbone we wish to minimize. Hence the call to useboundsfrom() on line 17 which sets the
bounds from every atom in each nucleotide base to the actual distance to every other atom in every
other nucleotide base. In general, the likelihood of a distance geometry refinement to satisfy a given
bounds criteria is proportional to the number of ( consistent ) bounds set supporting that criteria. In
other words, the more bounds that are set supporting a given conformation, the greater the chance that
conformation will resolve after the refinement. An example of this concept is the use of use-
boundsfrom() in line 17, which works to preserve our rigid helix conformation of all the
nucleotide base atoms.

We can correct the backbone geometry by overwriting the erroneous bounds with more appropri-
ate bounds. In lines 19-29, all the 1-2, 1-3, and 1-4 bounds involving the O3’-P connection between
strand 1 residues are set to that which would be appropriate for an idealized phosphate linkage. Simi-
larly, in lines 31-41, all the 1-2, 1-3, and 1-4 bounds involving the O3’-P connection among strand 2
residues are set to an idealized conformation. This technique is effective since all the 1-2, 1-3, and 1-4
distance bounds created by newbounds() include those of the idealized nucleotides in the nucleic
acid libraries dna.amber94.rlb, rna.amber94.rlb, etc. contained in reslib. Hence, by
setting these bounds and refining against the distance energy function, we are spreading the ’error’
across the backbone, where the ’error’ is the departure from the idealized sugar conformation and ide-
alized phospate linkage.

On line 43, we smooth the bounds matrix, and on line 44 we give a substantial penalty for deviat-
ing from a 3-D refinement by setting k4d=4.0. Notice that there is no need to embed the molecule in
this program, as the actual coordinates are sufficient for any refinement.

1 // Program 7 - refine backbone geometry using distance function
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2 molecule m;

3 bounds b;

4 string seq, cseq;

5 int i;

6 float xyz[ dynamic ], fret;

7
8 seq = "acgtacgt";

9 cseq = wc_complement( "acgtacgt", "dna.amber94.rlb", "dna" );

10
11 m = wc_helix( seq, "dna.amber94.rlb", "dna", cseq, "dna.amber94.rlb",

12 "dna", 2.25, -4.96, 36.0, 4.38, "" );

13
14 b = newbounds(m, "");

15 allocate xyz[ 4*m.natoms ];

16
17 useboundsfrom(b, m, "::??,H?[ˆT’]", m, "::??,H?[ˆT’]", 0.0 );

18 for ( i = 1; i < m.nresidues/2 ; i = i + 1 ){

19 setbounds(b,m, sprintf("1:%d:O3’",i),

20 sprintf("1:%d:P",i+1), 1.595,1.595);

21 setbounds(b,m, sprintf("1:%d:O3’",i),

22 sprintf("1:%d:O5’",i+1), 2.469,2.469);

23 setbounds(b,m, sprintf("1:%d:C3’",i),

24 sprintf("1:%d:P",i+1), 2.609,2.609);

25 setbounds(b,m, sprintf("1:%d:O3’",i),

26 sprintf("1:%d:O1P",i+1), 2.513,2.513);

27 setbounds(b,m, sprintf("1:%d:O3’",i),

28 sprintf("1:%d:O2P",i+1), 2.515,2.515);

29 setbounds(b,m, sprintf("1:%d:C4’",i),

30 sprintf("1:%d:P",i+1), 3.550,4.107);

31 setbounds(b,m, sprintf("1:%d:C2’",i),

32 sprintf("1:%d:P",i+1), 3.550,4.071);

33 setbounds(b,m, sprintf("1:%d:C3’",i),

34 sprintf("1:%d:O1P",i+1), 3.050,3.935);

35 setbounds(b,m, sprintf("1:%d:C3’",i),

36 sprintf("1:%d:O2P",i+1), 3.050,4.004);

37 setbounds(b,m, sprintf("1:%d:C3’",i),

38 sprintf("1:%d:O5’",i+1), 3.050,3.859);

39 setbounds(b,m, sprintf("1:%d:O3’",i),

40 sprintf("1:%d:C5’",i+1), 3.050,3.943);

41
42 setbounds(b,m, sprintf("2:%d:P",i+1),

43 sprintf("2:%d:O3’",i), 1.595,1.595);

44 setbounds(b,m, sprintf("2:%d:O5’",i+1),

45 sprintf("2:%d:O3’",i), 2.469,2.469);

46 setbounds(b,m, sprintf("2:%d:P",i+1),

47 sprintf("2:%d:C3’",i), 2.609,2.609);

48 setbounds(b,m, sprintf("2:%d:O1P",i+1),
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49 sprintf("2:%d:O3’",i), 2.513,2.513);

50 setbounds(b,m, sprintf("2:%d:O2P",i+1),

51 sprintf("2:%d:O3’",i), 2.515,2.515);

52 setbounds(b,m, sprintf("2:%d:P",i+1),

53 sprintf("2:%d:C4’",i), 3.550,4.107);

54 setbounds(b,m, sprintf("2:%d:P",i+1),

55 sprintf("2:%d:C2’",i), 3.550,4.071);

56 setbounds(b,m, sprintf("2:%d:O1P",i+1),

57 sprintf("2:%d:C3’",i), 3.050,3.935);

58 setbounds(b,m, sprintf("2:%d:O2P",i+1),

59 sprintf("2:%d:C3’",i), 3.050,4.004);

60 setbounds(b,m, sprintf("2:%d:O5’",i+1),

61 sprintf("2:%d:C3’",i), 3.050,3.859);

62 setbounds(b,m, sprintf("2:%d:C5’",i+1),

63 sprintf("2:%d:O3’",i), 3.050,3.943);

64 }

65 tsmooth( b, 0.0005 );

66 dg_options(b, "seed=33333, gdist=0, ntpr=100, k4d=4.0" );

67 setxyzw_from_mol( m, NULL, xyz );

68 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 500 );

69 setmol_from_xyzw( m, NULL, xyz );

70 putpdb( "acgtacgt.pdb", m );

The approach of Program 7 is effective but has a disadvantage in that it does not scale linearly
with the number of atoms in the molecule. In particular, tsmooth() and conjgrad() require
extensive CPU cycles for large numbers of residues. For this reason, the function dg_helix() was
created. dg_helix() takes uses the same method of Program 7, but employs a 3-basepair helix
template which traverses the new helix as it is being constructed. In this way, the helix is built in a
piecewise manner and the maximum number of residues considered in each refinement is less than or
equal to six. This is the preferred method of helix construction for large, idealized canonical duplexes.

7.2.2. RNA Pseudoknots.

In addition to the standard helix generating functions, nab provides extensive support for gener-
ating initial structures from low structural information. As an example, we will describe the construc-
tion of a model of an RNA pseudoknot based on a small number of secondary and teriary structure
descriptions. Shen and Tinoco (J. Mol. Biol. 247, 963-978, 1995) used the molecular mechanics pro-
gram X-PLOR to determine the three dimensional structure of a 34 nucleotide RNA sequence that
folds into a pseudoknot. This pseudoknot promotes −1 frame shifting in Mouse Mammary Tumor
Virus. A pseudoknot is a single stranded nucleic acid molecule that contains two improperly nested
hairpin loops as shown in Figure 4. NMR distance and angle constraints were converted into a three
dimensional structure using a two stage restrained molecular dynamics protocol. Here we show how a
three-dimensional model can be constructed using just a few key features derived from the NMR
investigation.

Program 8 uses distance geometry followed by minimization and simulated annealing to create a
model of a pseudoknot. Distance geometry code begins in line 20 with the call to newbounds() and
ends on line 53 with the call to embed(). The structure created with distance geometry is further
refined with molecular dynamics in lines 58-74. Note that very little structural information is given -
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5’- -3’

5’- -3’

Figure 4. Single stranded RNA (top) folded into a pseudoknot (bottom). The black and dark gray base
pairs can be stacked.

only connectivity and general base-base interactions. The stacking and base-pair interactions here are
derived from NMR evidence, but in other cases might arise from other sorts of experiments, or as a
model hypothesis to be tested.

The 20-base RNA sequence is defined on line 9. The molecule itself is created with the
link_na() function call which creates an extended conformation of the RNA sequence and caps the
5’ and 3’ ends. Lines 15-18 define arrays that will be used in the simulated annealing of the structure.
The bounds object is created in line 20 which automatically sets the 1-2, 1-3, and 1-4 distance bounds
in the molecule. The loop in lines 22-25 sets the bounds of each atom in each residue base to the
actual distance to every other atom in the same base. This has the effect of enforcing the planarity of
the base by treating the base somewhat like a rigid body. In lines 27-45, bounds are set according to
information stored in a database. The setboundsfromdb() call sets the bounds from all the atoms
in the two specified residues to a 1.0 multiple of the standard deviation of the bounds distances in the
specified database. Specifically, line 27 sets the bounds between the base atoms of the first and second
residues of strand 1 to be within one standard deviation of a typical aRNA stacked pair. Similarly, line
39 sets the bounds between residues 1 and 13 to be that of typical Watson-Crick basepairs. For a
description of the setboundsfromdb() function, see Chapter 1.

Line 47 smooths the bounds matrix, by attempting to adjust any sets of bounds that violate the
triangle equality. Lines 49-50 initialize some distance geometry variables by setting the random num-
ber generator seed, declaring the type of distance distribution, how often to print the energy refinement
process, declaring the penalty for using a 4th dimension in refinement, and which atoms to use to form
the initial metric matrix. The coordinates are calculated and embedded into a 3D coordinate array, xyz
by the embed() function call on line 51.

The coordinates xyz are subject to a series of conjugate gradient refinements and simulated
annealing in lines 53-63. Line 65 replaces the old molecular coordinates with the new refined ones,
and lastly, on line 66, the molecule is saved as "pseudoknot.pdb".

1 // Program 8 - create a pseudoknot using distance geometry

2 molecule m;

3 float xyz[ dynamic ],minv[ dynamic ],f[ dynamic ],v[ dynamic ];

4 bounds b;
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5 int i, seqlen;

6 float fret;

7 string seq, opt;

8
9 seq = "gcggaaacgccgcguaagcg";

10
11 seqlen = length(seq);

12
13 m = link_na("1", seq, "rna.amber94.rlb", "rna", "35");

14
15 allocate xyz[ 4*m.natoms ];

16 allocate minv[ 4*m.natoms ];

17 allocate f[ 4*m.natoms ];

18 allocate v[ 4*m.natoms ];

19
20 b = newbounds(m, "");

21
22 for ( i = 1; i <= seqlen; i = i + 1) {

23 useboundsfrom(b, m, sprintf("1:%d:??,H?[ˆ’T]", i), m,

24 sprintf("1:%d:??,H?[ˆ’T]", i), 0.0 );

25 }

26
27 setboundsfromdb(b, m, "1:1:", "1:2:", "arna.stack.db", 1.0);

28 setboundsfromdb(b, m, "1:2:", "1:3:", "arna.stack.db", 1.0);

29 setboundsfromdb(b, m, "1:3:", "1:18:", "arna.stack.db", 1.0);

30 setboundsfromdb(b, m, "1:18:", "1:19:", "arna.stack.db", 1.0);

31 setboundsfromdb(b, m, "1:19:", "1:20:", "arna.stack.db", 1.0);

32
33 setboundsfromdb(b, m, "1:8:", "1:9:", "arna.stack.db", 1.0);

34 setboundsfromdb(b, m, "1:9:", "1:10:", "arna.stack.db", 1.0);

35 setboundsfromdb(b, m, "1:10:", "1:11:", "arna.stack.db", 1.0);

36 setboundsfromdb(b, m, "1:11:", "1:12:", "arna.stack.db", 1.0);

37 setboundsfromdb(b, m, "1:12:", "1:13:", "arna.stack.db", 1.0);

38
39 setboundsfromdb(b, m, "1:1:", "1:13:", "arna.basepair.db", 1.0);

40 setboundsfromdb(b, m, "1:2:", "1:12:", "arna.basepair.db", 1.0);

41 setboundsfromdb(b, m, "1:3:", "1:11:", "arna.basepair.db", 1.0);

42
43 setboundsfromdb(b, m, "1:8:", "1:20:", "arna.basepair.db", 1.0);

44 setboundsfromdb(b, m, "1:9:", "1:19:", "arna.basepair.db", 1.0);

45 setboundsfromdb(b, m, "1:10:", "1:18:", "arna.basepair.db", 1.0);

46
47 tsmooth(b, 0.0005);

48
49 opt = "seed=571, gdist=0, ntpr=50, k4d=2.0, randpair=5.";

50 dg_options( b, opt );

51 embed(b, xyz );
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52
53 for ( i = 3000; i > 2800; i = i - 100 ){

54 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 500 );

55
56 dg_options( b, "ntpr=1000, k4d=0.2" );

57 mm_options( "ntpr_md=50, zerov=1, temp0=" +sprintf("%d.",i));

58 md( 4*m.natoms, 1000, xyz, minv, f, v, db_viol );

59
60 dg_options( b, "ntpr=1000, k4d=4.0" );

61 mm_options( "zerov=0, temp0=0., tautp=0.3" );

62 md( 4*m.natoms, 8000, xyz, minv, f, v, db_viol );

63 }

64
65 setmol_from_xyzw( m, NULL, xyz );

66 putpdb( "pseudoknot.pdb", m );

The resulting structure of Program 8 is shown in Figure 5. This structure had an final total
energy of 9.41 units. The helical region, shown as polytubes, shows stacking and wc-pairing interac-
tions and a well-defined right-handed helical twist. Of course, good modeling of a "real" pseudoknot
would require putting in more constraints, but this example should illustrate how to get started on
problems like this.
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Figure 5. 20-base example RNA pseudoknot



9/13/99 Sample NAB applications 112

7.3. Building Larger Structures.

While the DNA duplex is locally rather stiff, many DNA molecules are sufficiently long that they
can be bent into a wide variety of both open and closed curves. Some examples would be simple
closed circles, supercoiled closed circles that have relaxed into circles with twists and the nucleosome
core fragment where the duplex itself is wound into a short helix. This section shows how nab can be
used to “wrap” DNA around a curve. Three examples are provided: the first produces closed circles
with or without supercoiling, the second creates a simple model of the nucleosome core fragment and
the third shows how to wind a duplex around a more arbitrary open curve specified as a set of points.
The examples are fairly general but do require that the curves be relatively smooth so that the deforma-
tion from a linear duplex at each step is small.

Before discussing the examples and the general approach they use, it will be helpful to define
some terminology. The helical axis of a base pair is the helical axis defined by an ideal B-DNA duplex
that contains that base pair. The base pair plane is the mean plane of both bases. The origin of a base
pair is at the intersection the base pair’s helical axis and its mean plane. Finally the rise is the distance
between the origins of adjacent base pairs.

The overall strategy for wrapping DNA around a curve is to create the curve, find the points on
the curve that contain the base pair origins, place the base pairs at these points, oriented so that their
helical axes are tangent to the curve and finally rotate the base pairs so that they hav e the correct heli-
cal twist. In all the examples below, the points are chosen so that the rise is constant. This is by no
means an absolute requirement, but it does simplify the calculations needed to locate base pairs, and is
generally true for the gently bending curves these examples are designed for. In examples 1 and 2, the
curve is simple, either a circle or a helix, so the points that locate the base pairs are computed directly.
In addition, the bases are rotated about their original helical axes so that they hav e the correct helical
orientation before being placed on the curve.

However, this method is inadequate for the more complicated curves that can be handled by
example 3. Here each base is placed on the curve so that its helical axis is aligned correctly, but its
helical orientation with respect to the previous base is arbitrary. It is then rotated about its helical axis
so that it has the correct twist with respect to the previous base.

7.4. Closed Circular DNA.

This section describes how to use nab to make closed circular duplex DNA with a uniform rise
of 3.38A° . Since the distance between adjacent base pairs is fixed, the radius of the circle that forms the
axis of the duplex depends only on the number of base pairs and is given by this rule:

rad = rise/(2 sin(180/nbp))

where nbp is the number of base pairs. To see why this is so, consider the triangle below formed by the
center of the circle and the centers of two adjacent base pairs. The two long sides are radii of the circle
and the third side is the rise. Since the the base pairs are uniformly distributed about the circle the
angle between the two radii is 360/nbp. Now consider the right triangle in the top half of the original
triangle. The angle at the center is 180/nbp, the opposite side is rise/2 and rad follows from the defini-
tion of sin.
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In addition to the radius, the helical twist which is a function of the amount of supercoiling must
also be computed. In a closed circular DNA molecule, the last base of the duplex must be oriented in
such a way that a single helical step will superimpose it on the first base. In circles based on ideal B-
DNA, with 10 bases/turn, this requires that the number of base pairs in the duplex be a multiple of 10.
Supercoiling adds or subtracts one or more whole turns. The amount of supercoiling is specified by the
∆linking number which is the number of extra turns to add or substract. If the original circle had
nbp/10 turns, the supercoiled circle will have npb/10 + ∆lk turns. As each turn represents 360° of twist
and there are nbp base pairs, the twist between base pairs is:

(nbp/10 + ∆lk) × 360/nbp

At this point, we are ready to create models of circular DNA. Bases are added to model in three
stages. Each base pair is created using the nab builtin wc_helix(). It is originally in the XY plane
with its center at the origin. This makes it convenient to create the DNA circle in the XZ plane. After
the base pair has been created, it is rotated around its own helical axis to give it the proper twist, trans-
lated along the global X axis to the point where its center intersects the circle and finally rotated about
the Y axis to move it to its final location. Since the first base pair would be both twisted about Z and
rotated about Y 0°, those steps are skipped for base one. A detailed description follows the code.

1 // Program 9 - Create closed circular DNA.

2 #define RISE 3.38

3
4 int b, nbp, dlk;

5 float rad, twist, ttw;

6 molecule m, m1;

7 matrix matdx, mattw, matry;

8 string sbase, abase;

9 int getbase();

10
11 if( argc != 3 ){

12 fprintf( stderr, "usage: %s nbp dlk\n", argv[ 1 ] );

13 exit( 1 );

14 }

15
16 nbp = atoi( argv[ 2 ] );

17 if( !nbp || nbp % 10 ){

18 fprintf( stderr,

19 "%s: Num. of base pairs must be multiple of 10\n",

20 argv[ 1 ] );
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21 exit( 1 );

22 }

23
24 dlk = atoi( argv[ 3 ] );

25
26 twist = ( nbp / 10 + dlk ) * 360.0 / nbp;

27 rad = 0.5 * RISE / sin( 180.0 / nbp );

28
29 matdx = newtransform( rad, 0.0, 0.0, 0.0, 0.0, 0.0 );

30
31 m = newmolecule();

32 addstrand( m, "A" );

33 addstrand( m, "B" );

34 ttw = 0.0;

35 for( b = 1; b <= nbp; b = b + 1 ){

36
37 getbase( b, sbase, abase );

38
39 m1 = wc_helix(

40 sbase, "dna.amber94.rlb", "dna", abase, "dna.amber94.rlb",

41 "dna", 2.25, -4.96, 0.0, 0.0 );

42
43 if( b > 1 ){

44 mattw = newtransform( 0.,0.,0.,0.,0.,ttw );

45 transformmol( mattw, m1, NULL );

46 }

47
48 transformmol( matdx, m1, NULL );

49
50 if( b > 1 ){

51 matry = newtransform(

52 0.,0.,0.,0.,-360.*(b-1)/nbp,0. );

53 transformmol( matry, m1, NULL );

54 }

55
56 mergestr( m, "A", "last", m1, "sense", "first" );

57 mergestr( m, "B", "first", m1, "anti", "last" );

58 if( b > 1 ){

59 connectres( m, "A", b - 1, "O3’", b, "P" );

60 connectres( m, "B", 1, "O3’", 2, "P" );

61 }

62
63 ttw = ttw + twist;

64 if( ttw >= 360.0 )

65 ttw = ttw - 360.0;

66 }

67
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68 connectres( m, "A", nbp, "O3’", 1, "P" );

69 connectres( m, "B", nbp, "O3’", 1, "P" );

70
71 putpdb( "circ.pdb", m );

72 putbnd( "circ.bnd", m );

The code requires two integer arguments which specify the number of base pairs and the
∆linking number or the amount of supercoiling. Lines 11-24 process the arguments making sure that
they conform to the model’s assumptions. In lines 11-14, the code checks that there are exactly three
arguments (the nab program’s name is argument one), and exits with a error message if the number of
arguments is different. Next lines 16-22 set the number of base pairs (nbp) and test to make certain it
is a nonzero multiple of 10, again exiting with an error message if it is not. Finally the ∆linking num-
ber (dlk) is set in line 24. The helical twist and circle radius are computed in lines 26 and 27 in accor-
dance with the formulas developed above. Line 29 creates a transformation matrix, matdx, that is
used to move each base from the global origin along the X-axis to the point where its center intersects
the circle.

The circular DNA is built in the molecule variable m, which is initialized and given two strands,
"A" and "B" in lines 30-32. The variable ttw in line 34 holds the total twist applied to each base pair
The molecule is created in the loop from lines 35-66. The base pair number (b) is converted to the
appropriate strings specifying the two nucleotides in this pair. This is done by the function get-
base(). This source of this function must be provided by the user who is creating the circles as only
he or she will know the actual DNA sequence of the circle. Once the two bases are specified they are
passed to the nab builtin wc_helix() which returns a single base pair in the XY plane with its cen-
ter at the origin. The helical axis of this base pair is on the Z-axis with the 5’-3’ direction oriented in
the positive Z-direction.

One or three transformations is required to position this base in its correct place in the circle. It
must be rotated about the Z-axis (its helical axis) so that it is one additional unit of twist beyond the
previous base. This twist is done in lines 43-46. Since the first base needs 0° twist, this step is skipped
for it. In line 48, the base pair is moved in the positive direction along the X-axis to place the base
pair’s origin on the circle. Finally, the base pair is rotated about the Y-axis in lines 50-54 to bring it to
its proper position on the circle. Again, since this rotation is 0° for base 1, this step is also skipped for
the first base.

In lines 56-57, the newly positioned base pair in m1 is added to the growing molecule in m. Note
that since the two strands of DNA are antiparallel, the "sense" strand of m1 is added after the last
base of the "A" strand of m and the "anti" strand of m1 is added before the first base of the "B"
strand of m. For all but the first base, the newly added residues are bonded to the residues they follow
(or precede). This is done by the two calls to connectres() in lines 59-60. Again, due to the
antiparallel nature of DNA, the new residue in the "A" strand is residue b, but is residue 1 in the "B"
strand. In line 63-65, the total twist (ttw) is updated and adjusted to keep in in the range [0,360).
After all base pairs have been added the loop exits.

After the loop exit, since this is a closed circular molecule the first and last bases of each strand
must be bonded and this is done with the two calls to connectres() in lines 67-68. The last step is
to save the molecule’s coordinates and connectivity in lines 71-72. The nab builtin putpdb() writes
the coordinate information in PDB format to the file "circ.pdb" and the nab builtin putbnd()
saves the bonding as pairs of integers, one pair/line in the file "circ.bnd", where each integer in a
pair refers to an ATOM record in the previously written PDB file.
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7.5. Nucleosome Model

While the DNA duplex is locally rather stiff, many DNA molecules are sufficiently long that they
can be bent into a wide variety of both open and closed curves. Some examples would be simple
closed circles, supercoiled closed circles that have relaxed into circles with twists, and the nucleosome
core fragment, where the duplex itself is wound into a short helix.

The overall strategy for wrapping DNA around a curve is to create the curve, find the points on
the curve that contain the base pair origins, place the base pairs at these points, oriented so that their
helical axes are tangent to the curve, and finally rotate the base pairs so that they hav e the correct heli-
cal twist. In the example below, the simplifying assumption is made that the rise is constant at 3.38
A° Å.

The nucleosome core fragment [24] is composed of duplex DNA wound in a left handed helix
around a cental protein core. A typical core fragment has about 145 base pairs of duplex DNA forming
about 1.75 superhelical turns. Measurements of the overall dimensions of the core fragment indicate
that there is very little space between adjacent wraps of the duplex. A side view of a schematic of core
particle is shown below.

θ ≈ 5°

60 A

110 A

Computing the points at which to place the base pairs on a helix requires us to spiral an inelastic
wire (representing the helical axis of the bent duplex) around a cylinder (representing the protein
core). The system is described by four numbers of which only three are independent. They are the
number of base pairs n, the number of turns its makes around the protein core t, the “winding” angle θ
(which controls how quickly the the helix advances along the axis of the core) and the helix radius r.
Both the the number of base pairs and the number of turns around the core can be measured. The
leaves two choices for the third parameter. Since the relationship of the winding angle to the overall
particle geometry seems more clear than that of the radius, this code lets the user specify the number
of turns, the number of base pairs and the winding angle, then computes the helical radius and the dis-
placement along the helix axis for each base pair:

(_&dy)d = 3. 38 sin(θ ); φ = 360t/(n − 1)

(_&rad)r =
3. 38(n − 1) cos(θ )

2π t

where d and φ are the displacement along and rotation about the protein core axis for each base pair.

These relationships are easily derived. Let the nucleosome core particle be oriented so that its
helical axis is along the global Y-axis and the lower cap of the protein core is in the XZ plane.

24. B. Lewin, in Genes IV, (Cell Press, Cambridge, Mass., 1990). pp. 409-425.
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Consider the circle that is the projection of the helical axis of the DNA duplex onto the XZ plane. As
the duplex spirals along the core particle it will go around the circle t times, for a total rotation of
360t°. The duplex contains n − 1 steps, resulting 360t/(n − 1)° of rotation between successive base
pairs.

1 // Pro gram 10. Create simple nucleosome model.
2 #define PI 3.141593
3 #define RISE 3.38
4 #define TWIST 36.0
5 int b, nbp; int getbase();
6 float nt, theta, phi, rad, dy, ttw, len, plen, side;
7 molecule m, m1;
8 matrix matdx, matrx, maty, matry, mattw;
9 string sbase, abase;

10
11 nt = atof( argv[ 2 ] ); // number of turns
12 nbp = atoi( argv[ 3 ] ); // number of base pairs
13 theta = atof( argv[ 4 ] ); // winding angle
14
15 dy = RISE * sin( theta );
16 phi = 360.0 * nt / ( nbp-1 );
17 rad = (( nbp-1 )*RISE*cos( theta ))/( 2*PI*nt );
18
19 matdx = newtransform( rad, 0.0, 0.0, 0.0, 0.0, 0.0 );
20 matrx = newtransform( 0.0, 0.0, 0.0, -theta, 0.0, 0.0 );
21
22 m = newmolecule();
23 addstrand( m, "A" ); addstrand( m, "B" );
24 ttw = 0.0;
25 for( b = 1; b <= nbp; b = b + 1 ){
26 getbase( b, sbase, abase );
27 m1 = wc_helix( sbase, "", "dna", abase, "", "dna",
28 2.25, -4.96, 0.0, 0.0 );
29 mattw = newtransform( 0., 0., 0., 0., 0., ttw );
30 transformmol( mattw, m1, NULL );
31 transformmol( matrx, m1, NULL );
32 transformmol( matdx, m1, NULL );
33 maty = newtransform( 0.,dy*(b-1),0., 0.,-phi*(b-1),0.);
34 transformmol( maty, m1, NULL );
35
36 mergestr( m, "A", "last", m1, "sense", "first" );
37 mergestr( m, "B", "first", m1, "anti", "last" );
38 if( b > 1 ){
39 connectres( m, "A", b - 1, "O3’", b, "P" );
40 connectres( m, "B", 1, "O3’", 2, "P" );
41 }
42 ttw += TWIST; if( ttw >= 360.0 ) ttw -= 360.0;
43 }
44 putpdb( "nuc.pdb", m );
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Finding the radius of the superhelix is a little tricky. In general a single turn of the helix will not
contain an integral number of base pairs. For example, using typical numbers of 1.75 turns and 145
base pairs requires ≈ 82. 9 base pairs to make one turn. An approximate solution can be found by con-
sidering the ideal superhelix that the DNA duplex is wrapped around. Let L be the arc length of this
helix. Then L cos(θ ) is the arc length of its projection into the XZ plane. Since this projection is an
overwound circle, L is also equal to 2π rt, where t is the number of turns and r is the unknown radius.
Now L is not known but is approximately 3. 38(n − 1). Substituting and solving for r gives Eq.
(_&rad).

The resulting nab code is shown in Program 2. This code requires three arguments—the num-
ber of turns, the number of base pairs and the winding angle. In lines 15-17, the helical rise (dy),
twist (phi) and radius (rad) are computed according to the formulas developed above.

Tw o constant transformation matrices, matdx and matrx are created in lines 19-20. matdx is
used to move the newly created base pair along the X-axis to the circle that is the helix’s projection
onto the XZ plane. matrx is used to rotate the new base pair about the X-axis so it will be tangent to
the local helix of spirally wound duplex. The model of the nucleosome will be built in the molecule m
which is created and given two strands "A" and "B" in line 23. The variable ttw will hold the total
local helical twist for each base pair.

The molecule is created in the loop in lines 25-43. The user specified function getbase()
takes the number of the current base pair (b) and returns two strings that specify the actual nucleotides
to use at this position. These two strings are converted into a single base pair using the nab builtin
wc_helix(). The new base pair is in the XY plane with its origin at the global origin and its helical
axis along Z oriented so that the 5’-3’ direction is positive.

Each base pair must be rotated about its Z-axis so that when it is added to the global helix it has
the correct amount of helical twist with respect to the previous base. This rotation is performed in lines
29-30. Once the base pair has the correct helical twist it must rotated about the X-axis so that its local
origin will be tangent to the global helical axes (line 31).

The properly-oriented base is next moved into place on the global helix in two stages in lines
32-34. It is first moved along the X-axis (line 32) so it intersects the circle in the XZ plane that is pro-
jection of the duplex’s helical axis. Then it is simultaneously rotated about and displaced along the
global Y-axis to move it to final place in the nucleosome. Since both these movements are with respect
to the same axis, they can be combined into a single transformation.

The newly positioned base pair in m1 is added to the growing molecule in m using two calls to
the nab buitin mergestr(). Note that since the two strands of a DNA duplex are antiparallel, the
base of the "sense" strand of molecule m1 is added after the last base of the "A" strand of
molecule m and the base of the "anti" strand of molecule m1 is before the first base of the "B"
strand of molecule m. For all base pairs except the first one, the new base pair must be bonded to its
predecessor. Finally, the total twist (ttw) is updated and adjusted to remain in the interval [0,360) in
line 42. After all base pairs have been created, the loop exits, and the molecule is written out. The
coordinates are saved in PDB format using the nab builtin putpdb().

7.6. “Wrapping” DNA Around a Path.

This last code develops two nab programs that are used together to wrap B-DNA around a more
general open curve specified as a cubic spline through a set of points. The first program takes the ini-
tial set of points defining the curve and interpolates them to produce a new set of points with one point
at the location of each base pair. The new set of points always includes the first point of the original set
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but may or may include that last point. These new points are read by the second program which actu-
ally bends the DNA.

The overall strategy used in this example is slightly different from the one used in both the circu-
lar DNA and nucleosome codes. In those codes it was possible to directly compute both the orientation
and position of each base pair. This is not possible in this case. Here only the location of the base
pair’s origin can be computed directly. When the base pair is placed at that point its helical axis will be
tangent to the curve and point in the right direction, but its rotation about this axis will be arbitrary. It
will have to rotated about its new helical axis to give the proper amount of helical twist to stack it
properly on the previous base. Now if the helical twist of a base pair is determined with respect to the
previous base pair, either the first base pair is left in arbitrary orientation, or some other way must be
devised to define the helical of it. Since this orientation will depend both on the curve and its ultimate
use, this code leaves this task to the user with the result that the helical orientation of the first base pair
is undefined.

7.6.1. Interpolating the Curve.

This section describes the code that finds the base pair origins along the curve. This program
takes an ordered set of points

p1, p2, . . . , pn

and interpolates it to produce a new set of points

np1, np2, . . . , npm

such that the distance between each npi and npi+1 is constant, in this case equal to 3.38 which is the
rise of an ideal B-DNA duplex. The interpolation begins by setting np1 to p1 and continues through
the pi until a new point npm has been found that is within the constant distance to pn without having
gone beyond it.

The interpolation is done via spline() [25] and splint(), two routines that perform a
cubic spline interpolation on a tabulated function

yi = f (xi)

In order for spline()/splint() to work on this problem, two things must be done. These func-
tions work on a table of (xi , yi) pairs, of which we have only the yi . Howev er, since the only
requirment imposed on the xi is that they be monotonically increasing we can simply use the sequence
1 , 2 , ... , n for the xi , producing the producing the table (i, yi). The second difficulty is that
spline()/splint() interpolate along a one dimensional curve but we need an interpolation along
a three dimensional curve. This is solved by creating three different splines one for each of the three
dimensions.

spline()/splint() perform the interpolation in two steps. The function spline() is
called first with the original table and computes the value of the second derivative at each point. In
order to do this, the values of the second derivative at two points must be specified. In this code these
points are the first and last points of the table, and the values chosen are 0 (signified by the unlikely
value of 1e30 in the calls to spline()). After the second derivatives hav e been computed, the

25. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, in Numerical Recipes in C,
(Cambridge, New York, 1992). pp. 113-117.
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interpolated values are computed using one or more calls to splint().

What is unusual about this interpolation is that the points at which the interpolation is to be per-
formed are unknown. Instead, these points are chosen so that the distance between each point and its
successor is the constant value RISE, set here to 3.38 which is the rise of an ideal B-DNA duplex.
Thus, we have to search for the points and most of the code is devoted to doing this search. The details
follow the listing.

1 // Program 11 - Build DNA along a curve

2 #define RISE 3.38

3
4 #define EPS 1e-3

5 #define APPROX(a,b) (fabs((a)-(b))<=EPS)

6 #define MAXI 20

7
8 #define MAXPTS 150

9 int npts;

10 float a[ MAXPTS ];

11 float x[ MAXPTS ], y[ MAXPTS ], z[ MAXPTS ];

12 float x2[ MAXPTS ], y2[ MAXPTS ], z2[ MAXPTS ];

13 float tmp[ MAXPTS ];

14
15 string line;

16
17 int i, li, ni;

18 float dx, dy, dz;

19 float la, lx, ly, lz, na, nx, ny, nz;

20 float d, tfrac, frac;

21
22 int spline();

23 int splint();

24
25 for( npts = 0; line = getline( stdin ); ){

26 npts = npts + 1;

27 a[ npts ] = npts;

28 sscanf( line, "%lf %lf %lf",

29 x[ npts ], y[ npts ], z[ npts ] );

30 }

31
32 spline( a, x, npts, 1e30, 1e30, x2, tmp );

33 spline( a, y, npts, 1e30, 1e30, y2, tmp );

34 spline( a, z, npts, 1e30, 1e30, z2, tmp );

35
36 li = 1; la = 1.0; lx = x[1]; ly = y[1]; lz = z[1];

37 printf( "%8.3f %8.3f %8.3f\n", lx, ly, lz );

38
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39 while( li < npts ){

40 ni = li + 1;

41 na = a[ ni ];

42 nx = x[ ni ]; ny = y[ ni ]; nz = z[ ni ];

43 dx = nx - lx; dy = ny - ly; dz = nz - lz;

44 d = sqrt( dx*dx + dy*dy + dz*dz );

45 if( d > RISE ){

46 tfrac = frac = .5;

47 for( i = 1; i <= MAXI; i = i + 1 ){

48 na = la + tfrac * ( a[ni] - la );

49 splint( a, x, x2, npts, na, nx );

50 splint( a, y, y2, npts, na, ny );

51 splint( a, z, z2, npts, na, nz );

52 dx = nx - lx; dy = ny - ly; dz = nz - lz;

53 d = sqrt( dx*dx + dy*dy + dz*dz );

54 frac = 0.5 * frac;

55 if( APPROX( d, RISE ) )

56 break;

57 else if( d > RISE )

58 tfrac = tfrac - frac;

59 else if( d < RISE )

60 tfrac = tfrac + frac;

61 }

62 printf( "%8.3f %8.3f %8.3f\n", nx, ny, nz );

63 }else if( d < RISE ){

64 li = ni;

65 continue;

66 }else if( d == RISE ){

67 printf( "%8.3f %8.3f %8.3f\n", nx, ny, nz );

68 li = ni;

69 }

70 la = na;

71 lx = nx; ly = ny; lz = nz;

72 }

Execution begins in line 25 where the points are read from stdin one point or three num-
bers/line and stored in the three arrays x, y and z. The independent variable for each spline, stored in
the array a is created at this time holding the numbers 1 to npts. The second derivatives for the three
splines, one each for interpolation along the X, Y and Z directions are computed in lines 32-34. Each
call to spline() has two arguments set to 1e30 which indicates that the second derivative values
should be 0 at the first and last points of the table. The first point of the interpolated set is set to the
first point of the original set and written to stdout in lines 36-37.

The search that finds the new points is lines 39-72. To see how it works consider the figure
below. The dots marked p1, p2, . . . . , pn correspond to the orginal points that define the spline. The cir-
cles marked np1, np2, np3 represent the new points at which base pairs will be placed. The curve is a
function of the parameter a, which as it ranges from 1 to npts sweeps out the curve from (x1, y1, z1) to
(xnpts, ynpts, znpts). Since the original points will in general not be the correct distance apart we have to
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find new points by interpolating between the original points.

The search works by first finding a point of the original table that is at least RISE distance from
the last point found. If the last point of the original table is not far enough from the last point found,
the search loop exits and the program ends. However, if the search does find a point in the original
table that is at least RISE distance from the last point found, it starts an interpolation loop in lines
47-61 to zero on the best value of a that will produce a new point that is the correct distance from the
previous point. After this point is found, the new point becomes the last point and the loop is repeated
until the original table is exhausted.

The main search loop uses li to hold the index of the point in the original table that is closest to,
but does not pass, the last point found. The loop begins its search for the next point by assuming it will
be before the next point in the original table (lines 40-42). It computes the distance between this point
(nx,ny,nz) and the last point (lx,ly,lz) in lines 43-44 and then takes one of three actions depending
it the distance is greater than RISE (lines 46-62), less than RISE (lines 64-65) or equal to RISE (lines
67-68).

If this distance is greater than RISE, then the desired point is between the last point found which
is the point generated by la and the point corresponding to a[ni]. Lines 46-61 perform a bisection
of the interval (la,a[ni]], a process that splits this interval in half, determines which half contains
the desired point, then splits that half and continues in this fashion until the either the distance between
the last and new points is close enough as determined by the macro APPROX() or MAXI subdivisions
have been at made, in which case the new point is taken to be the point computed after the last subdivi-
sion. After the bisection the new point is written to stdout (line 62) and execution skips to line
70-71 where the new values na and (nx,ny,nz) become the last values la and (lx,ly,lz) and then
back to the top of the loop to continue the interpolation. The macro APPROX() defined in line 4, tests
to see if the absolute value of the difference between the current distance and RISE is less than EPS,
defined in line 3 as 10−3. This more complicated test is used instead of simply testing for equality
because floating point arithmetic is inexact, which means that while it will get close to the target dis-
tance, it may never actually reach it.

If the distance between the last and candidate points is less than RISE, the desired point lies
beyond the point at a[ni]. In this case the action is lines 64-65 is performed which advances the can-
didate point to li+2 then goes back to the top of the loop (line 38) and tests to see that this index is
still in the table and if so, repeats the entire process using the point corresponding to a[li+2]. If the
points are close together, this step may be taken more than once to look for the next candidate at
a[li+2], a[li+3], etc. Eventually, it will find a point that is RISE beyond the last point at which
case it interpolates or it runs out points, indicating that the next point lies beyond the last point in the
table. If this happens, the last point found, becomes the last point of the new set and the process ends.

The last case is if the distance between the last point found and the point at a[ni] is exactly
equal to RISE. If it is, the point at a[ni] becomes the new point and li is updated to ni. (lines
67-68). Then lines 70-71 are executed to update la and (lx,ly,lz) and then back to the top of the
loop to continue the process.
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7.6.2. Driver Code.

This section describes the main routine or driver of the second program which is the actual DNA
bender. This routine reads in the points, then calls putdna() (described in the next section) to place
base pairs at each point. The points are either read from stdin or from the file whose name is the
second command line argument. The source of the points is determined in lines 8-18, being stdin if
the command line contained a single arguments or in the second argument if it was present. If the argu-
ment count was greater than two, the program prints an error message and exits. The points are read in
the loop in lines 20-26. Any line with a # in column 1 is a comment and is ignored. All other lines are
assumed to contain three numbers which are extracted from the string, line and stored in the point
array pts by the nab builtin sscanf() (lines 23-24). The number of points is kept in npts. Once
all points have been read, the loop exits and the point file is closed if it is not stdin. Finally, the
points are passed to the function putdna() which will place a base pair at each point and save the
coordinates and connectivity of the resulting molecule in the pair of files dna.path.pdb and
dna.path.bnd.

1 // Program 12 - DNA bender main program

2 string line;

3 file pf;

4 int npts;

5 point pts[ 5000 ];

6 int putdna();

7
8 if( argc == 1 )

9 pf = stdin;

10 else if( argc > 2 ){

11 fprintf( stderr, "usage: %s [ path-file ]\n",

12 argv[ 1 ], argv[ 2 ] );

13 exit( 1 );

14 }else if( !( pf = fopen( argv[ 2 ], "r" ) ) ){

15 fprintf( stderr, "%s: can’t open %s\n",

16 argv[ 1 ], argv[ 2 ] );

17 exit( 1 );

18 }

19
20 for( npts = 0; line = getline( pf ); ){
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21 if( substr( line, 1, 1 ) != "#" ){

22 npts = npts + 1;

23 sscanf( line, "%lf %lf %lf",

24 pts[ npts ].x, pts[ npts ].y, pts[ npts ].z );

25 }

26 }

27
28 if( pf != stdin )

29 fclose( pf );

30
31 putdna( "dna.path", pts, npts );

7.6.3. Wrap DNA.

Every nab molecule contains a frame, a moveable handle that can be used to position the
molecule. A frame consists of three othogonal unit vectors and an origin that can be placed in an arbi-
trary position and orientation with respect to its associated molecule. When the molecule is created its
frame is initialized to the unit vectors along the global X, Y and Z axes with the origin at (0,0,0).

nab provides three operations on frames. They can be defined by atom expressions or absolute
points (setframe() and setframep()), one frame can be aligned or superimposed on another
(alignframe()) and a frame can be placed at a point on an axis (axis2frame()). A frame is
defined by specifying its origin, two points that define its X direction and two points that define its Y
direction. The Z direction is X×Y. Since it is convenient to not require the original X and Y be orthog-
onal, both frame creation builtins allow the user to specify which of the original X or Y directions is to
be the true X or Y direction. If X is chosen then Y is recreated from Z×X; if Y is chosen then X is
recreated from Y×Z.

When the frame of one molecule is aligned on the frame of another, the frame of the first
molecule is transformed to superimpose it on the frame of the second. At the same time the coordi-
nates of the first molecule are also transformed to maintain their original position and orientation with
respect to their own frame. In this way frames provide a way to precisely position one molecule with
respect to another. The frame of a molecule can also be positioned on an axis defined by two points.
This is done by placing the frame’s origin at the first point of the axis and aligning the frame’s Z-axis
to point from the first point of the axis to the second. After this is done, the orientation of the frame’s
X and Y vectors about this axis is undefined.

Frames have two other properties that need to be discussed. Although the builtin align-
frame() is normally used to position two molecules by superimposing their frames, if the second
molecule (represented by the second argument to alignframe()) has the special value NULL, the
first molecule is positioned so that its frame is superimposed on the global X, Y and Z axes with its
origin at (0,0,0). The second property is that when nab applies a transformation to a molecule (or just
a subset of its atoms), only the atomic coordinates are transformed. The frame’s origin and its orthorg-
onal unit vectors remain untouched. While this may at first glance seem odd, it makes possible the fol-
lowing three stage process of setting the molecule’s frame, aligning that frame on the global frame,
then transforming the molecule with respect to the global axes and origin which provides a convenient
way to position and orient a molecule’s frame at arbitrary points in space. With all this in mind, here is
the source to putdna() which bends a B-DNA duplex about an open space curve.
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1 // Program 13 - place base pairs on a curve.

2 point s_ax[ 4 ];

3 int getbase();

4
5 int putdna( string mname, point pts[ 1 ], int npts )

6 {

7 int p;

8 float tw;

9 residue r;

10 molecule m, m_path, m_ax, m_bp;

11 point p1, p2, p3, p4;

12 string sbase, abase;

13 string aex;

14 matrix mat;

15
16 m_ax = newmolecule();

17 addstrand( m_ax, "A" );

18 r = getresidue( "AXS", "axes.rlb" );

19 addresidue( m_ax, "A", r );

20 setxyz_from_mol( m_ax, NULL, s_ax );

21
22 m_path = newmolecule();

23 addstrand( m_path, "A" );

24
25 m = newmolecule();

26 addstrand( m, "A" );

27 addstrand( m, "B" );

28
29 for( p = 1; p < npts; p = p + 1 ){

30 setmol_from_xyz( m_ax, NULL, s_ax );

31 setframe( 1, m_ax,

32 "::ORG", "::ORG", "::SXT", "::ORG", "::CYT" );

33 axis2frame( m_path, pts[ p ], pts[ p + 1 ] );

34 alignframe( m_ax, m_path );

35 mergestr( m_path, "A", "last", m_ax, "A", "first" );

36 if( p > 1 ){

37 setpoint( m_path, sprintf( "A:%d:CYT",p-1 ), p1 );

38 setpoint( m_path, sprintf( "A:%d:ORG",p-1 ), p2 );

39 setpoint( m_path, sprintf( "A:%d:ORG",p ), p3 );

40 setpoint( m_path, sprintf( "A:%d:CYT",p ), p4 );

41 tw = 36.0 - torsionp( p1, p2, p3, p4 );

42 mat = rot4p( p2, p3, tw );

43 aex = sprintf( ":%d:", p );

44 transformmol( mat, m_path, aex );

45 setpoint( m_path, sprintf( "A:%d:ORG",p ), p1 );

46 setpoint( m_path, sprintf( "A:%d:SXT",p ), p2 );

47 setpoint( m_path, sprintf( "A:%d:CYT",p ), p3 );
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48 setframep( 1, m_path, p1, p1, p2, p1, p3 );

49 }

50
51 getbase( p, sbase, abase );

52 m_bp = wc_helix( sbase, "dna.amber94.rlb", "dna",

53 abase, "dna.amber94.rlb", "dna",

54 2.25, -5.0, 0.0, 0.0 );

55 alignframe( m_bp, m_path );

56 mergestr( m, "A", "last", m_bp, "sense", "first" );

57 mergestr( m, "B", "first", m_bp, "anti", "last" );

58 if( p > 1 ){

59 connectres( m, "A", p - 1, "O3’", p, "P" );

60 connectres( m, "B", 2, "P", 1, "O3’" );

61 }

62 }

63
64 putpdb( mname + ".pdb", m );

65 putbnd( mname + ".bnd", m );

66 };

putdna() takes three arguments—name, a string that will be used to name the PDB and bond
files that hold the bent duplex, pts an array of points containing the origin of each base pair and
npts the number of points in the array. putdna() uses four molecules. m_ax holds a small artificial
molecule containing four atoms that is a proxy for the some of the frame’s used placing the base pairs.
The molecule m_path will eventually hold one copy of m_ax for each point in the input array. The
molecule m_bp holds each base pair after it is created by wc_helix() and m will eventually hold
the bent dna. Once again the function getbase() (to be defined by the user) provides the mapping
between the current point (p) and the nucleotides required in the base pair at that point.

Execution of putdna() begins in line 16 with the creation of m_ax. This molecule is given
one strand "A", into which is added one copy of the special residue AXS from the standard nab
residue library "axes.rlb" (lines 17-19). This residue contains four atoms named ORG, SXT, CYT
and NZT. These atoms are placed so that ORG is at (0,0,0) and SXT, CYT and NZT are 1 A° along the
X, Y and Z axes respectively. Thus the residue AXS has the exact geometry as the molecules initial
frame—three unit vectors along the standard axes centered on the origin. The iniital coordinates of
m_ax are saved in the point array s_ax. The molecules m_path and m are created in lines 22-23
and 25-27 respectively.

The actual DNA bending occurs in the loop in lines 29-62. Each base pair is added in a two stage
process that uses m_ax to properly orient the frame of m_path, so that when the frame of new the
base pair in m_bp is aligned on the frame of m_path, the new base pair will be correctly positioned
on the curve.

Setting up the frame is done is lines 30-49. The process begins by restoring the original coordi-
nates of m_ax (line 30), so that the the atom ORG is at (0,0,0) and SXT, CYT and NZT are each 1A°
along the global X, Y and Z axes. These atoms are then used to redefine the frame of m_ax (line
32-33) so that it is equal to the three standard unit vectors at the global origin. Next the frame of
m_path is aligned so that its origin is at pts[p] and its Z-axis points from pts[p] to pts[p+1]
(line 34). The call to alignframe() in line 34 transforms m_ax to align its frame on the frame of
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m_path, which has the effect of moving m_ax so that the atom ORG is at pts[p] and the ORG—
NZT vector points towards pts[p+1]. A copy of the newly positioned m_ax is merged into m_path
in line 35. The result of this process is that each time around the loop, m_path gets a new residue that
resembles a coordinate frame located at the point the new base pair is to be added.

When nab sets a frame from an axis, the orienation of its X and Y vectors is arbitary. While this
is does not matter for the first base pair for which any orientation is acceptable, it does matter for the
second and subsequent base pairs which must be rotated about their Z axis so that they hav e the proper
helical twist with respect to the previous base pair. This rotation is done by the code in lines 37-48. It
does this by considering the torsion angle formed by the fours atoms—CYT and ORG of the previous
AXS residue and ORG and CYT of the current AXS residue. The coordinates of these points are deter-
mined in lines 37-40. Since this torsion angle is a marker for the helical twist between pairs of the bent
duplex, it must be 36.0°. The amount of rotation required to give it the correct twist is computed in
line 41. A transformation matrix that will rotate the new AXS residue about the ORG—ORG axis by this
amount is created in line 42, the atom expression that names the AXS residue is created in line 43 and
the residue rotated in line 44. Once the new residue is given the correct twist the frame m_path is
moved to the new residue in lines 45-48.

The base pair is added in lines 51-60. The user defined function getbase() converts the point
nubmer (p) into the names of the nucleotides needed for this base pair which is created by the nab
builtin wc_helix(). It is then placed on the curve in the correct orientaton using by aligning its
frame on the frame of m_path that we hvae just created (line 55). The new pair is merged into m and
bonded with the previous base pair if it exits. After the loop exits, the bend DNA duplex coordinates
are save as PDB and it connectivity as a bnd file in the calls to putdpb() and putbnd() in lines
64-65, whereupon putdna() returns to the caller.

7.7. Building peptides

The next example was created by Paul Beroza to construct peptides with given backbone torsion
angles. The idea is to call linkprot to create a peptide in an extended conformation, then to set
frames and do rotations to construct the proper torsions. This can be used as just a stand-alone pro-
gram to perform this task, or as a source for ideas for constructing similar functionality in other nab
programs.

// Program 14 -- build a peptide sequence

// "peptide" is an nab program that will generate a pdb file given a structure

// type and a sequence. It was created by Paul Beroza.

// The command line syntax for peptide is:

// % peptide structure sequence pdbout [ -lib libfile ]

// where "structure" defines the type of structure to be created and "sequence"

// is a string o of 1 letter amino acid codes. For example:

// % peptide ALPHA AAAAA aaaa.pdb
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// will create and alanine pentapeptide in an alpha helical structure.

// The structure definitions are stored in a library file that can be specified

// on the command line (the "-lib libfile" option), or by default is in

// $NABHOME/reslib/conf.lib.

// I’ve included a sample library "conf.lib" This file looks like:

// --------------------

// ALPHA 1 alpha helix

// phi -57.0 psi -47.0 omega 180.0

// ABETA 1 anti-parallel beta sheet

// phi -139.0 psi 135.0 omega -178.0

// .

// .

// .etc.

// --------------------

// The file contains sets of definitions, one for each structure type. The

// definitions above are separated by a blank line, but that is not necessary.

// Each time peptide finds a line that begins with an alphanumeric character,

// it initializes a new structure type with the first string in the line as its

// identifying string. The <structure> on the command line must match one of

// the structure types in the "conf.lib" file.

// The next field on the structure type line is the number of residues in the

// structure. The following lines must contain the phi psi and omega values

// for each of the residues in the structure type. The angles may be in any

// order, but the string defining the angle must precede its floating point

// value.

// If the number of residues = 1, it is a special structure for which the phi

// psi and omega values are the same for all residues in the structure. For

// these structure types, the <sequence> may be of any length. For other

// structure types, the number of residues in <sequence> must agree with the

// number of residues in the corresponding structure type in the "conf.lib"

// file. The resulting pdb file is written to standard out.

// Please let me know of any bugs or suggestions.

// Enjoy,

// Paul Beroza <pberoza@info.combichem.com>

#define MAXRES 500

#define USAGE "Usage: %s structure_type sequence pdbout <-lib XXX>0, argv[1]
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int fix_angles( molecule m1, int i, int nr, float omega, float psi, float phi)

{

//atom expressions to rotate about angles:

string omega_string, psi_string, phi_string;

//atom expressions for backbone atoms:

string npos, cpos, capos, nm1pos, cm1pos, cam1pos;

point n_xyz, ca_xyz, c_xyz; //coords for res i bb

point cm1_xyz; //coords for res i - 1 bb

point u, v, zax, p_head, p_tail;

point va, vb, vc;

float a0, rot_angle, phi0, psi0, omega0;

atom a;

int ii;

matrix mat;

if (i > nr) nr = i;

omega_string = sprintf(":%d-%d:", i, nr);

psi_string = sprintf(":%d:O|:%d-%d:", i - 1, i, nr);

phi_string = sprintf(":%d:C*,O*,?[A-Z]*|:%d-%d:*", i, i + 1, nr);

npos = sprintf(":%d:N", i);

cpos = sprintf(":%d:C", i);

capos = sprintf(":%d:CA", i);

cm1pos = sprintf(":%d:C", i - 1);

cam1pos = sprintf(":%d:CA", i - 1);

nm1pos = sprintf(":%d:N", i - 1);

//create z - axis for rotation to get

// C(i - 1) - N(i) - CA(i) bond angle = 121.9;

setpoint(m1, npos, n_xyz);

setpoint(m1, capos, ca_xyz);

setpoint(m1, cpos, c_xyz);

setpoint(m1, cm1pos, cm1_xyz);

u = ca_xyz - n_xyz;

v = cm1_xyz - n_xyz;

zax = u ˆ v;

a0 = angle(m1, cm1pos, npos, capos);

rot_angle = 121.9 - a0;

p_tail = n_xyz;

p_head = n_xyz + zax;

mat = rot4p(p_head, p_tail, rot_angle);
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transformmol(mat, m1, omega_string);

psi0 = torsion(m1, nm1pos, cam1pos, cm1pos, npos);

rot_angle = psi - psi0;

mat = rot4(m1, cam1pos, cm1pos, rot_angle);

transformmol(mat, m1, psi_string);

omega0 = torsion(m1, cam1pos, cm1pos, npos, capos);

rot_angle = omega - omega0;

mat = rot4(m1, cm1pos, npos, rot_angle);

transformmol(mat, m1, omega_string);

phi0 = torsion(m1, cm1pos, npos, capos, cpos);

rot_angle = phi - phi0;

mat = rot4(m1, npos, capos, rot_angle);

transformmol(mat, m1, phi_string);

return 0;

};

#define MAXTEMPLATES 50

int match_template(file f, float phi[1], float psi[1], float omega[1],

string struct_type, int nres)

{

string line;

int ir, template_nres, ntemp, found;

string ttype, template_name[MAXTEMPLATES];

string s1, s2, s3;

float f1, f2, f3;

string ftmp;

found = 0;

ntemp = 0;

while (line = getline(f)) {

sscanf(line, "%s %d", ttype, template_nres);

if (ttype == "")

continue;

if (template_nres < 1) {

fprintf(stderr, "template has no residues0);

exit(0);

}

++ntemp;

template_name[ntemp] = ttype;

if (ttype != struct_type) {

for (ir = 1; ir <= template_nres; ir++)

line = getline(f);

continue;
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}

found = 1;

if (template_nres != 1 && template_nres != nres) {

fprintf(stderr, "template has %d atoms and sequence has %d0,

template_nres, nres);

exit(0);

}

for (ir = 1; ir <= template_nres; ir++) {

line = getline(f);

sscanf(line, "%s %lf %s %lf %s %lf", s1, f1, s2, f2, s3, f3);

if (s1 == "phi") phi[ir] = f1;

else if (s1 == "psi") psi[ir] = f1;

else if (s1 == "omega") omega[ir] = f1;

if (s2 == "phi") phi[ir] = f2;

else if (s2 == "psi") psi[ir] = f2;

else if (s2 == "omega") omega[ir] = f2;

if (s3 == "phi") phi[ir] = f3;

else if (s3 == "psi") psi[ir] = f3;

else if (s3 == "omega") omega[ir] = f3;

}

//template_nres == 1 is a special case for which all

// residues in the sequence adopt the 1 triplet of phi / psi / omega values

if (template_nres == 1) {

for (ir = 2; ir <= nres; ir++) {

phi[ir] = phi[1];

psi[ir] = psi[1];

omega[ir] = omega[1];

}

}

break;

}

if (!found) {

fprintf(stderr, "template not found0);

fprintf(stderr, "must be one of:");

for (ir = 1; ir <= ntemp; ++ir)

fprintf(stderr, " %s", template_name[ir]);

fprintf(stderr, "0);

exit(0);

}

return 0;

};

//main routine: process the input, then call the above routines
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int ir, nr;

string seq, struct_type;

molecule m1;

float omega[MAXRES], psi[MAXRES], phi[MAXRES];

point ax, center;

atom a;

file conformation_file;

string outfile;

int ac;

if (argc != 4 && argc != 6) {

fprintf(stderr, USAGE);

exit(1);

}

if (argc > 4) {

if (argv[5] != "-lib") {

fprintf(stderr, USAGE);

exit(1);

}

conformation_file = fopen(argv[6], "r");

if (conformation_file == NULL) {

fprintf(stderr, "conformation file not found %s0, argv[6]);

exit(1);

}

} else {

conformation_file = fopen(getenv("NABHOME") + "/reslib/conf.lib", "r");

if (conformation_file == NULL) {

fprintf(stderr, "conformation file not found %s0,

getenv("NABHOME") + "/reslib/conf.lib" );

exit(1);

}

}

struct_type = sprintf("%s", argv[2]);

seq = sprintf("%s", argv[3]);

nr = length(seq);

outfile = argv[4];

if (nr > MAXRES) {

fprintf(stderr, "MAXRES exceeded0);

exit(0);

}

//get the needed phi, psi and omega values from a template:

match_template(conformation_file, phi, psi, omega, struct_type, nr);

//generate a structure in the extended conformation:

m1 = linkprot("new", seq, "");
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//adjust the phi, psi, and omega angles:

for (ir = 2; ir <= nr; ++ir){

fix_angles(m1, ir, nr, omega[ir], psi[ir - 1], phi[ir]);

}

putpdb(outfile, m1);
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8. NAB and AVS.

8.1. Introduction.

nab encourages users to build models of structure families defined by one or more parameters.
Unfortunately, while a family’s parameters may be obvious, their interaction and limits are often diffi-
cult to fully grasp. The usual approach to this situation is to create sufficient instances of the family to
sample the parameter space and to view the results with a molecular graphics system. nab offers an
alternative. In conjunction with the AVS graphics environment, nab can convert a standalone nab
program into an AVS module. Parameters to the former program will automatically be connected to
AVS widgets and/or ports allowing real time interactive viewing of their effects and interactions.

This capability was originally intended as a quick way to visualize the interactions of a model’s
parameters; however, nab’s AVS capabilities have been extended to permit it to perform a variety of
data flow molecular calculations. Subject to some limitations, nab can generate AVS modules that can
read and/or write int, float, string and molecule values to and/or from a network. Parameters
may be mapped onto widgets or directly onto ports.

8.2. AVS.

AVS is a program that allows users to create “visualization networks”. It does this by providing
an environment called the “Network Editor” which is used to connect elements of a library of standard
visualization and data manipulation tools called modules. A module is incorporated into a network by
dragging its icon from the appropriate module library menu into the Network Editor’s work space.
Each module has one or more “ports” represented as small colored bars on either the top and/or bot-
tom edge(s) of its rectangular icon. Colored bars on the top of a module’s icon are input ports which
can accept data from other modules in the network. Colored bars on the bottom of the icon are output
ports which are used to send data created or modified by this module to other modules in the network.
A port’s colors represent the type of its data. A port is connected by moving the mouse onto it and
pressing the middle button. The Network Editor will draw thin lines between the port and all other
ports to which it can be connected. To select a connection, the user continues to hold down the middle
button and moves the mouse onto the desired connection. Once the connection is established, the Net-
work Editor replaces the thin line by a thick line and the mouse button is released. The general rule
involving connections is that any input port may be connected to any output port as long as their colors
match.

AVS divides modules into four classes depending on their role in a network. Modules in differ-
ent classes are placed into separate Module Library Menus in the Network Editor’s “Resource Area”.
Modules that introduce data into a network are called “Data Input” modules. Modules that accept data,
operate on it and send it on are called “Filters” if the output data has the same general type as the input
data or “Mappers” if they are different. Modules that terminate a data path are called “Data Output”
modules. This classification is both artificial and somewhat arbitrary. It is artificial in that the Flow
Executive which runs the modules does not distinguish between module classes. And it can be arbi-
trary because sometimes a module can be used in more than one role in a network. However, since
most modules do fit this classification, having a separate Module Library Menu for each class simpli-
fies finding the right module for the task at hand.

AVS offers a very high level 3-D graphics application programming interface (API) through its
geometry type. It provides a standard module called the “Geometry Viewer” which accepts connec-
tions from other modules in the network that have geometry outputs. It renders the structures that are
sent over these connections. The Geometry Viewer is a complete 3-D viewing system. Its most
important capabilities include the ability to select and position objects, to control their surface
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properties and rendering levels (sticks, flat shading, etc), and to set the number, color and location of
lights.

AVS supports several types of connections of which nab uses only a few. These are the simple
types that contain a single int, float or string value and the field type which is used to represent
mathematical fields—functions that have a value at every point in some space. These values can be
scalars or vectors. The vector length is arbitrary but all vectors in a particular field must have the same
length. Also all the values of a field including components of the vectors must have the same simple
type, for example float. The dimensionality of the space can be 1-, 2- or 3-D and the mapping of the
field values to points in space can be implicit or explicit. Thus the AVS field type serves as a general-
ized array. nab also uses the geometry type as most nab generated modules create or modify
molecules which are eventually converted into AVS geometry and displayed. However, this use is indi-
rect as nab represents molecules as fields and uses other modules, notably mv102 which is discussed
in the Appendices to convert these fields into geometry that can be viewed.

AVS provides a large set of standard modules, but they can not provide for every possible appli-
cation. They do offer a chemistry type, but it was designed for quantum chemistry and is not suitable
for macromolecules. However, it is relatively easy for users to design and implement their own “cus-
tom” modules. AVS provides a “Module Generator” for producing a new module’s skeleton. This
skeleton includes code that creates both ports for the module’s data and widgets for its parameters. The
stylized nature of the code required to create modules made it easy to give nab this capability.

8.3. nab Extensions for Defining Modules.

The conversion of an nab function into an AVS module is straightforward, but it does require
that additional information about the function be made available to the the nab compiler. The com-
piler needs to know which function is to be converted into a module and which of its parameters are to
be mapped onto ports and which onto widgets. There are two possible ways to present this information
to the compiler. One would be to extend the grammar with additional productions that would only be
used for module creation. This approach was rejected as the number of new productions would be con-
siderable. In addition, AVS is licensed separately from nab and a site without an AVS distribution
would be unable to properly create modules.

The method used by nab to convert a function into a module uses three things. The function’s
name must have the form AVS_ident, where ident is an identifier—a letter followed by zero or more
letters, digits and underscores. A special comment line describing each of that function’s parameters is
required. And in order to activate any AVS module creation, the nab source must be compiled with
the -avs option. The comments that contain the compiler directives that are used to convert a function
into a module have the following forms. Items in italics stand for general instances of things that
depend on the function being converted.

//AVSinfo port pname direction Map parameter onto a port.
//AVSinfo parm pname options Map parameter onto a widget.
//AVSinfo send pname properties Molecule properties to send.
//AVSinfo free pname Free space allocated to pname.

direction is one or both of the words in or out. A value of in maps the parameter onto an input
port and reads its value from it. A value of out maps the parameter onto an output port and writes its
value to it. A port may be both in and out in which case, the value is read from the input port and
written back to the output port. The two strings in out and out in are equivalent. nab variables
that correspond to widgets or input only ports are read only and can not appear on the left hand side of
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an assignment statement.

The value of options depends on the type of the parameter. For int and float parameters,
options, if present, is a triple of numbers specifying the parameter’s default, minimum and maximum
values. If options is not given, the default, minimum and maximum values are set to 0, -10000 and
10000. For a string parameter, options, if present consists of the string’s default value. If the
default value includes white space, it must be enclosed in double quotes ("). If options is absent, the
default value is NULL.

The send directive applies only to molecule parameters mapped onto output ports or the
return value of a molecule function. It tells the nab compiler which of the molecule’s atomic prop-
erties are to be sent along with its coordinates. properties is one or more of the following words in any
order: charge, radius, float1 or float2. The word all can be used to send all of a
molecule’s properties. If pname has the special value return-value, this send applies to the
function’s return value.

The free directive tells the nab compiler to free the nab variable pname after the module
executes. This directive applies only to string and molecule variables. Storage allocated to mod-
ule variables without a free directive is lost after each module execution. Again if pname has the
value return-value the function’s return value will be freed after module execution. Users should
always include free directives for those string and molecule variables that can be freed after
execution since the amount of storage lost over a large number of module executions can be enough to
cause the program to run out of memory and abort. nab can not automatically generate free directives
because it can not always tell if two variables point to the same data. The most common example of
this would be in a module that reads a molecule from the network and modifies it, then returns the
modified molecule. In this case the input molecule parameter and the function return value point to the
same data. If the module wrapper automatically freed all data after use, it would successfully free the
returned molecule the first time, and then fail when it tried to free it again.

8.4. How nab Creates Modules.

nab converts a function into a module by generating a “wrapper”—additional code invisible at
the nab level—that sets up and calls the original function. The wrapper does the following things. It
registers the function and its description with the AVS Network Editor. This allows the Network Editor
to create the function’s module icon and to determine the types of data it can send and receive. The
wrapper sets up the module’s ports and widgets. It copies data from the input ports and widgets into
the function’s parameters. If the function executes successfully, it copies any output parameters and the
function’s return value to the output ports. The wrapper also performs any required conversions
between nab data types and their AVS equivalents.

8.4.1. Molecule Fields.

The choice of an AVS representation for nab molecules was limited to those AVS types that sup-
port objects with internal structure. These are the field, UCD (for “Unstructured Cell Data”), geometry
and chemistry types. The chemistry type was designed for quantum calculations and is not suitable for
macromolecules. Both the geometry and UCD types are powerful enough to represent molecules, but
the implementation would be somewhat opaque. This left the field type. The AVS limitation that all the
data in a field have the same fundamental type meant that an nab molecule required at least three
fields as it contains a mixture of int, float and string data organized into a three level hierarchy
of strands, residues and atoms.
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The current implementation which is not entirely satisfactory uses three fields. A byte field con-
taining one entry of 16 bytes/atom carries names and some hierarchy information. Each entry is
organized as follows. The atom’s name starts at byte 0, takes 1 to 4 bytes and is terminated with a zero
byte. The name of the residue that contains this atom begins at byte 5, takes 1 to 4 bytes and is termi-
nated with a zero byte. Finally the number of the residue that contains this atom represented as a char-
acter string (%d) starts at byte 10, takes 1 to 5 places and is terminated by a zero byte. Residues are
numbered consecutively from 0 beginning with the first residue of the first strand in the nab molecule.
The residues of the second and subsequent strands follow in the order that the strands were created
with addstrand(). A float field with one entry/atom carries the atom’s coordinates and a user
selected subset of its properties. The third field is an integer field that carries the molecule’s bonding
information, one entry/bond, where the two elements of an entry refer to atoms in the byte and float
fields. The implementation which was motivated by the available macromolecular viewer mv102
reduces nab’s three level molecular hierarchy of strands, residues and atoms to a two lev el hierarchy
of residues and atoms. The table below shows how the various fields are declared.

Component AVS Field Type
Names 1-D 1-space 1-vector uniform byte
Bonds 1-D 1-space 2-vector uniform integer
Atoms 1-D 1-space uniform integer

8.4.2. Implementation Details.

To understand how nab converts a function into a module requires a short description of the
basic AVS module and how it works. A module is a standalone program that is executed under control
of the AVS Network Editor’s “Flow Executive”. Every module must contain two subroutines, called
the “description procedure” and the “compute procedure”. The description procedure is a function that
makes calls to the AVS runtime library to describe the module’s ports and parameters and identifies its
compute procedure. When a module is loaded into a “Module Library”, the Flow Executive runs its
description procedure. This registers the module with the Flow Executive which builds the new mod-
ule’s icon, and enters its port and parameter requirements into the Flow Executive’s internal data base.

A module’s compute procedure is what actually does the module’s work. When the module is
inserted into a network and it becomes active because new data has been presented to its input ports or
its parameter widgets have been changed, the Flow Executive runs the compute procedure. This proce-
dure in turns calls whatever user code is required to perform the module’s task. In the case of an nab
generated module, it calls the nab function. AVS expects a module’s compute procedure to return a 0
if it fails and a non-zero value if it succeeds. When the compute procedure fails, AVS aborts execution
of the network without sending the module’s data downstream.

8.4.3. Limitations of nab created AVS modules.

The nab module generator is still in the early phase of its development, and it contains several
implementation restrictions, some of which will be removed as the development continues. These limi-
tations are: 1) the loss of information when an nab molecule is converted into its AVS representation;
2) the limitation of parameters to scalars; 3) the inability to send and receive upstream geometry data;
4) the blocking of the entire AVS system if the module attempts to read from stdin, and 5) the
requirement that a function return value of 0 indicates the module failed aborting network execution.

Restrictions 1-3 will be removed in Version 1.2 of nab. The information that is lost in the trans-
lation from an nab molecule the current AVS representation will be placed in a fixed length block that
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precedes the molecule’s names in its byte field. The mapping of array parameters onto fields is
straightforward except in the case string and molecule data, where AVS’s field requirement of
uniform vector length results in wasted space. Accepting upstream geometry data requires defining a
mapping onto standard nab constructs and extending the wrapper to perform this translation.

Restrictions 4 and 5 are harder to remove. Since an AVS module operates as a child process of
the Flow Executive, the module inherits its three standard file descriptors. These are generally attached
to the tty that AVS was started in and successfully reading from stdin is very difficult. Writing to
either stdout or stderr is possible as long as neither has been redirected. The last restriction, that
of using a 0 to indicate module failure can not be removed without modifying the semantics of an nab
function to allow it to return two values, the actual function value and and an indicator that this value is
valid, which is impossible since functions by definition return a single value.

8.5. Examples of nab Created Modules.

nab classifies a module by what it does with molecule data. Modules that only create
molecule data are Data Input, modules that read and write molecule data are Filters, and modules
that only use molecule data are Data Output. nab does not create Mapper modules. Any nab
module that does not involve molecule data is a Data Input module.

8.5.1. Data Input Modules.

nab has been used to create numerous Data Input modules involving both nucleic acids and pro-
teins. Two of them are discussed in some detail below. The first is a DNA Duplex Generator that was
the very first nab generated module. The second is a DNA Bender that shows the power of this
approach.

8.5.1.1. DNA Duplex Generator.

This module creates models of uniform DNA duplexes of Watson/Crick base pairs. The inputs
are the sequence of one strand and four numbers that define the duplex’s X-offset, inclination, twist
and rise. Duplex creation requires two steps. The nab builtin function wc_complement() creates a
string that represents the complement of the input sequence. Then the input string, the newly created
complement string and the four helical parameters are sent to the nab builtin wc_helix() which
converts them into the desired duplex which in turn is returned as the value of the function
AVS_dna() and displayed by the AVS Geometry Viewer.

The function includes seven //AVSinfo directives and is called AVS_dna(). The name of the
module it generates is dna. Each of the four float parameters will be mapped onto an AVS dial widget
and the directives limit the ranges of the dials from -10,000- 10,000 to something more appropri-
ate. The parameter seq has no default. The two free directives (lines 8-9) cause the nab to free the
space that holds the input sequence and returned molecule after module execution.

1 // AVS_dna() - AVS Watson/Crick duplex generator

2
3 //AVSinfo parm seq

4 //AVSinfo parm xoff 2.25 -5 10

5 //AVSinfo parm incl -4.96 -20 30

6 //AVSinfo parm twist 36.0 20 45
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7 //AVSinfo parm rise 3.38 2 4.5

8 //AVSinfo free seq

9 //AVSinfo free return-value

10 molecule AVS_dna( string seq,

11 float xoff, float incl, float twist, float rise )

12 {

13 string cseq;

14 molecule m;

15
16 cseq = wc_complement( seq, "dna.amber94.rlb", "dna" );

17
18 m = wc_helix( seq, "dna.amber94.rlb", "dna",

19 cseq, "dna.amber94.rlb", "dna",

20 xoff, incl, twist, rise );

21 return( m );

22 };

8.5.1.2. DNA Bender.

There are many times when it is necessary to deform a piece of duplex DNA. It might need to be
“unwound” in order to insert an intercalator between two base pairs or it might need to be “bent” to
see to align the grooves on one side of the duplex with “ridges” on another molecule. The traditional
way of doing this is to select and interactively change the relevant torsion angles. Unfortunately, due
the complexity of the DNA backbone, several torsion angles may need to be changed in a concerted
fashion to achieve the desired base positions. And to make things even worse, these torsion angle
movements will not move the complementary strand which is only hydrogen bonded to the strand
being bent. It would be much simpler if the user could insert a “hinge” between adjacent base pairs of
the original duplex and then move one side of the duplex (both strands) without moving the other side.
The nab module discussed in this section does just that.

The DNA bender module is a fairly long nab program. However it not very complex. The first
half of the code—the function AVS_dnabender()—creates a strandard B-form duplex with the
desired sequence, uses its base parameter to move the “hinge” or bending site, and then uses the
other six parameters to change the position and/or orientation of the selected half of the duplex. The
second half of the DNA bender—the function putaxes()—is used to create a coordinate frame that
is placed at the bending site so the user can predict the effect of translation or rotation. This coordinate
frame is the one defined by the Watson/Crick pair at the bending site and remains associated with that
base pair as it is transformed.

The first time the DNA bender executes, it creates the molecule with the specified sequence. Sub-
sequent executions either change the hinge point or translate or rotate a portion of the duplex about a
one of the axes at the bending site. Each time the module executes a transformation, it changes the
coordinates of the DNA. Thus the effects of the sequence of transformations accumulate in the
molecule’s coordinates. This requires that the molecule continue to exist when the module is inactive
and that the module’s first execution be distinguished from the others. Both requirements are met by
using a global variable to hold the molecule (line 3). nab global variables exist throughout program
execution, or in the case of an nab generated AVS module, for the entire time the module is connected
in a network. Since all nab global variables are initialized to 0, a 0 or NULL value of m can be used to
indicate the module’s first execution.



9/13/99 NAB and AVS 140

The if statement in lines 30-54 detects the module’s first execution. It creates the molecule by
using wc_complement() to create the string representing the the complementary strand followed
by a call to wc_helix() to create a standard B-form DNA duplex. The number of residues in the
duplex is sav ed to nres. Lines 36-38 translate the new duplex so its center of mass is at the origin.

The module uses a second molecule of four atoms to represent a coordinate frame. One atom is
at the origin and the other three are 10A° along the individual axes. These atoms are read from a PDB
file into m_axes. Since they are both distant and in separate residues, the three calls to connec-
tres() in lines 44-46 are used to bond the atom at the origin to the other three. When this molecule
is drawn as lines, it will look like a  coordinate frame. Since the coordinates of this molecule will be
transformed each time the DNA is bent, their original coordinates are saved in the point array
s_axes (line 47). Finally, a third strand “"axes” is added to the duplex and the contents of m_axes is
added to it (lines 49-51) and the new molecule is sent out to network.

The second time and subsequent times the module is called, this if statement is skipped and
lines 56-93 are executed instead. The if-tree in lines 58-67 computes the atom expression that will be
use to select which residues of the duplex are to be transformed. A base value of 0 transforms the
entire duplex with respect to the global coordinate system. Other base values transform the subdu-
plex that extends from the selected base to the 3’ end of the strand that contains that base. Thus base
values from 1 to N /2 bend one half of the duplex and base values from N /2 + 1 to N bend the other
half. As example, consider a molecule of 20 bases (or 10 base pairs). If base is set to 6, then sub
duplex consisting of bases 6-10:11-15 will be transformed. Now if base is changed to 15 the comple-
ment of 6, the sub duplex 1-6:15-20 will be transformed.

The actual transformations are applied in lines 68-90. Lines 68-82 apply the rotations and 83-90
apply the translations. Rotations are done in the order of Z then Y then X. Each rotation is done
around the the two atoms of the the third strand "axes" that both define the selected axis and repre-
sent it in the display. After each transformation the input parameter specifying that transformation’s
value is reset to 0.0 using the AVS library call AVSmodify_float_parameter(). nab has the
builtin function rot4() to provide rotations about an arbitrary axis, but does have an analogous func-
tion for translating along an arbitrary axis. The user written C function d2rd() converts the desired
translations along the axes at the bending site into equivalent displacements along standard axes. These
displacements are converted into a transformation matrix in line 85 and then applied to the selected
sub duplex. putaxes() is called to update the position and orientation of the "axes" strand and the
newly bent molecule is sent to the network by the return statement in line 93.

The nab function putaxes() (lines 96-154) transforms the coordinates of the "axes" strand
of m so they represent either the global coordinate frame or the coordinate frame defined by the Wat-
son/Crick base pair from base to its mate. The function must deal with three cases defined by the
value of base. If base is 0, then the global frame has been selected. This is handled in line 104 by
the nab builtin setmol_from_xyz() which replaces the current coordinates of m’s "axes"
strand with their original values which were saved in s_axes.

The other two cases are for base values between 1 and N /2 and between N /2 + 1 to N . These
are handled by the code in lines 105-128 and lines 129-153 respectively. These two sections do the
same thing except that the first group of lines creates a frame that goes from the "sense" base to the
"anti" base and the the second group creates a frame that goes from the "anti" base to the
"sense" base.

A Watson/Crick base pair is normally associated with the following coordinate frame. The Y
axis is along the direction from the C1’ atom of a base to the C1’ atom of its mate, the X axis is the
perpendicular bisector of this vector that is in the mean base pair plane and the Z axes is X×Y. The
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origin is located at the intersection of the base pair plane and the helical axis formed by a uniform
duplex created from this base pair geometry.

The Y axis is directly accessible to nab, but it needs to create a stand in for the X axis from two
atoms of the selected base. However, the the names of the required atoms depend on the type of
selected base, which is not directly available at the nab level. The solution is another small user writ-
ten C function, getname_res_r() which returns the residue name of the selected base. If the name
begins with an A or a G, it is a  purine and the X axis can be approximated by the vector from the C5 to
the N3 atoms, otherwise it is a pyrimidine and the X axis goes from the C5 to the N1 atoms. Once the
four atoms have been selected the nab builtin setframe() to build the desired coordinate frame.

Next the "axes" strand of m is transformed so that it agrees with this frame. This is done in
lines 121-128 (or 145-152). First, the coordinates of m_axes are restored to their original values.
Then the frame of m_axes is reset to be the global coordinate frame. The transformation in line 124
(148) translates these coordinates so that when the frame of m_axes is aligned with the frame created
from the selected base pair in line 119 (143), the two atoms of m_axis representing the Z axis will be
aligned along the helical axis made by an ideal B-form duplex formed by the selected base pair.
m_axes is transformed by aligning its frame on the frame of the selected base pair and its new coordi-
nates are replace the coordinates of the "axes" strand of m thus completing the operation.

1 // AVS_dnabender() - use helical parameters to deform DNA.

2
3 molecule m, m_axes;

4 int nres;

5 point s_axes[ 4 ];

6 matrix a_mat;

7
8 string getname_res_r() c;

9 int putaxes();

10 int AVSmodify_float_parameter() c;

11 int d2rd();

12
13 //AVSinfo parm base 0 0 1000

14 //AVSinfo parm dx 0 -3 3

15 //AVSinfo parm dy 0 -3 3

16 //AVSinfo parm dz 0 -3 3

17 //AVSinfo parm rx 0 -20 20

18 //AVSinfo parm ry 0 -20 20

19 //AVSinfo parm rz 0 -20 20

20 molecule AVS_dnabender( string seq, int base,

21 float dx, float dy, float dz,

22 float rx, float ry, float rz )

23 {

24 string cseq, arg;

25 string aex;

26 matrix mat;

27 point com;
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28 float rdx, rdy, rdz;

29
30 if( !m ){

31 cseq = wc_complement( seq, "dna.amber94.rlb", "dna" );

32 m = wc_helix( seq, "dna.amber94.rlb", "dna",

33 cseq, "dna.amber94.rlb", "dna",

34 2.25, -4.96, 36.0, 3.38 );

35 nres = 2 * length( seq );

36 setpoint( m, NULL, com );

37 mat = newtransform( -com.x,-com.y,-com.z,0.,0.,0. );

38 transformmol( mat, m, NULL );

39
40 a_mat = newtransform( -2.25,0.,0.,0.,0.,0. );

41
42 m_axes = getpdb(

43 "/home/macke/nab5/nreslib.0/XYZ.big.axes" );

44 connectres( m_axes, "1", 1, "ORG", 2, "SXT" );

45 connectres( m_axes, "1", 1, "ORG", 3, "CYT" );

46 connectres( m_axes, "1", 1, "ORG", 4, "NZT" );

47 setxyz_from_mol( m_axes, NULL, s_axes );

48
49 addstrand( m, "axes" );

50 mergestr( m, "axes", "last",

51 m_axes, "1", "first" );

52
53 return( m );

54 }

55
56 if( base > nres )

57 base = nres;

58 if( base == 0 ){

59 aex = NULL;

60 }else if( base <= nres/2 ){

61 aex = sprintf( "sense:%d-%d:|anti:%d-%d:",

62 base, nres / 2, 1, nres / 2 - base + 1 );

63 }else{

64 aex = sprintf( "sense:%d-%d:|anti:%d-%d:",

65 1, nres - base + 1,

66 base - nres / 2, nres / 2 );

67 }

68 if( rz != 0.0 ){

69 mat = rot4( m, "axes::O*", "axes::*Z*", rz );

70 transformmol( mat, m, aex );

71 AVSmodify_float_parameter( "rz",1,0.,0.,0. );

72 }

73 if( ry != 0.0 ){

74 mat = rot4( m, "axes::O*", "axes::*Y*", ry );
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75 transformmol( mat, m, aex );

76 AVSmodify_float_parameter( "ry",1,0.,0.,0. );

77 }

78 if( rx != 0.0 ){

79 mat = rot4( m, "axes::O*", "axes::*X*", rx );

80 transformmol( mat, m, aex );

81 AVSmodify_float_parameter( "rx",1,0.,0.,0. );

82 }

83 if( dx != 0.0 || dy != 0.0 || dz != 0.0 ){

84 d2rd( m,dx,dy,dz,rdx,rdy,rdz );

85 mat = newtransform( rdx,rdy,rdz,0.,0.,0. );

86 transformmol( mat, m, aex );

87 AVSmodify_float_parameter( "dx",1,0.,0.,0. );

88 AVSmodify_float_parameter( "dy",1,0.,0.,0. );

89 AVSmodify_float_parameter( "dz",1,0.,0.,0. );

90 }

91 putaxes( m, base );

92
93 return( m );

94 };

95
96 int putaxes( molecule m, int base )

97 {

98 int sb, ab;

99 string rname;

100 string xt, xh, yt, yh;

101 point apts[ 4 ];

102
103 if( base == 0 )

104 setmol_from_xyz( m, "axes::", s_axes );

105 else if( base <= nres/2 ){

106 rname = getname_res_r( m, base );

107 sb = base;

108 ab = nres / 2 - base + 1;

109 if( rname =˜ "ˆ[AG]" ){

110 xt = sprintf( "sense:%d:C5", sb );

111 xh = sprintf( "sense:%d:N3", sb );

112 }else{

113 xt = sprintf( "sense:%d:C5", sb );

114 xh = sprintf( "sense:%d:N1", sb );

115 }

116 yt = sprintf( "sense:%d:C1’", sb );

117 yh = sprintf( "anti:%d:C1’", ab );

118
119 setframe( 2, m, yt + "|" + yh, xt, xh, yt, yh );

120
121 setmol_from_xyz( m_axes, NULL, s_axes );
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122 setframe( 2, m_axes,

123 "::ORG", "::ORG", "::SXT", "::ORG", "::CYT" );

124 transformmol( a_mat, m_axes, NULL );

125
126 alignframe( m_axes, m );

127 setxyz_from_mol( m_axes, NULL, apts );

128 setmol_from_xyz( m, "axes::", apts );

129 }else{

130 rname = getname_res_r( m, base );

131 sb = nres - base + 1;

132 ab = base - nres / 2;

133 if( rname =˜ "ˆ[AG]" ){

134 xt = sprintf( "anti:%d:C5", ab );

135 xh = sprintf( "anti:%d:N3", ab );

136 }else{

137 xt = sprintf( "anti:%d:C5", ab );

138 xh = sprintf( "anti:%d:N1", ab );

139 }

140 yt = sprintf( "anti:%d:C1’", ab );

141 yt = sprintf( "sense:%d:C1’", sb );

142
143 setframe( 2, m, yt + "|" + yh, xt, xh, yt, yh );

144
145 setmol_from_xyz( m_axes, NULL, s_axes );

146 setframe( 2, m_axes,

147 "::ORG", "::ORG", "::SXT", "::ORG", "::CYT" );

148 transformmol( a_mat, m_axes, NULL );

149
150 alignframe( m_axes, m );

151 setxyz_from_mol( m_axes, NULL, apts );

152 setmol_from_xyz( m, "axes::", apts );

153 }

154 };

8.5.2. Filter Modules.

This section covers nab generated filters, modules that receive a molecule from the network,
process it and then send it back to the network. The computations that nab generated filters can per-
form are limited by what can be received and sent in the three fields that nab uses to create a
“molecule port”. A network molecule can have up to four extra float values per atom, accessed in
nab as the atom attributes charge, radius, float1 and float2, that can contain the data for
and the results of a filter’s computation. Any other data required for or generated by the filter must
either must be packed into these atom attributes or not passed along the network. Nevertheless, there
are many molecular computations that either operate at a per atom level or can be cast into that form.
The two examples discussed next use the atom attribute float1 to hold the result of their “per atom”
calculations. This value will be used by the molecular display module mv102 to color the atoms, pro-
viding a visual display of the computations.
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8.5.2.1. Helical Interaction.

This example computes the hydrogen bonding patterns of a short helical peptide in a molecular
dynamics trajectory. The peptide, (AAQAA)3, is created in an all α-helical conformation. As the simu-
lation proceeds parts of the helix shift between 3,10 and α. At the very end of the trajectory, the C-
terminal end shifts between α and π. This code considers that a carbonyl oxygen is hydrogen bonded
to an amino hydrogen if the O•••H distance is between 1.5A° and 3.0 A° and the CO•••H angle between
120° and 180°. The code assigns a value to each atom depending on the type of hydrogen bond it
forms. The carbonyl atoms and the amino hydrogen atoms involved in 3,10, α and π helices are given
the values 3, 4 and 5, which is the distance in residues between the donor and acceptor groups. An
amino hydrogen atom that is shared between two carbonyl oxygens is given the average value of the
two carbonyls. Atoms not involved in hydrogen bonding are assigned the “undefined” value -1.

The code uses two “user” atom attributes—int1 and float1. int1 will contain the number
of hydrogen bonds an atom forms and float1 will contain the "sum" of the donor:acceptor residue
distances for each of these hydrogen bonds. After all hydrogen bonds have been detected, this sum will
be divided by the number of hydrogen bonds to give values of 3, 4 and 5 for 3,10, α and π helices and
3.5 and 4.5 for donors that are shared between 3,10 and α helices and α and π helices. The attributes
are initialized in the for-in loop in lines 16-18 and the average computed in the for-in loop in
lines 48-53. Atoms not participating in hydrogen bonding (ie int1 still 0) are given the value -1.0
which is the default value that the mv102 viewing module uses for an “undefined” property value.

The peptide has 17 residues—the 15 amino acids (AAQAA)3 plus two end caps. The heart of the
code is the two nested loops in lines 21-46. The outer loop ranges over the potential acceptor residues
2-13 and the inner loop over each acceptor’s potential donors which are the residues 3 to 5 down-
stream from it. Since acceptor residues after residue 11 can not all three donors, the inner loop has
exit-if (lines 23-24) that is taken if the donor residue number would be greater than 16.

If both donor and acceptor residues exist then they are checked for hydrogen bonding. The O•••H
distance is computed in lines 26-29 and if it is outside of the range [1.5A° ,3.0A° ], the inner loop in lines
22-45 is advanced to the next donor candidate using the continue statement in line 29. If the O•••H
distance is acceptable, the CO•••H angle is computed in lines 33-36 and if it is between 120° and 180°
the atom attributes are updated. These two tests make use of nab’s point or vector operations. The
O•••H and CO vectors are created using point differences in lines 28 and 34. Their lengths are deter-
mined using the infix dot product operator (@) in lines 29 and 35. Finally the angle between the CO
and O•••H vectors is computed using another infix dot product in line 36.

The function findatom() is a user written C function that is used in place of the nab builtin
setpoint(). Normally nab users select sets of atoms including those containing a single atom via
atom expressions—strings that contains the desired atoms’ strand, residue and atom names. To do so
here would require creating atom expressions for the carbonyl carbon and oxygen and the amino
hydrogen through nab’s string operations. For example, the atom expression that selects the carbonyl
oxygen of residue 6 is ":6:O". Unfortunately while atom expressions are convenient they are not fast
as they must be tested against all the atoms of molecule to see which ones they match. Since speed is
important in this application, the C function findatom() was written to quickly select a single atom
from a specified residue resulting in an execution speed up of about 30! For this reason it is likely that
some mechanism like findatom() but using some form of infix notation will be added to nab to
quickly select single atoms from a molecule.
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1 // AVS_helix() - compute hbonds in a peptide helix

2
3 atom findatom() c;

4 //AVSinfo port m in

5 //AVSinfo free m

6 //AVSinfo free return-value

7 //AVSinfo send return-value float1

8 molecule AVS_helix( molecule m )

9 {

10 atom a;

11 int ra, rd, r;

12 atom c, o, h;

13 point oc, oh;

14 float ds, dy, dz, d_oh, d_oc, a_coh;

15
16 for( a in m ){

17 a.float1 = 0;

18 a.int1 = 0;

19 }

20
21 for( ra = 2; ra <= 13; ra = ra + 1 ){

22 for( r = 3; r <= 5; r = r + 1 ){

23 if( ( rd = ra + r ) > 16 )

24 break;

25
26 o = findatom( m, "1", ra, "O" );

27 h = findatom( m, "1", rd, "H" );

28 oh = h.pos - o.pos;

29 d_oh = sqrt( oh @ oh );

30 if( d_oh < 1.50 || d_oh > 3.00 )

31 continue;

32
33 c = findatom( m, "1", ra, "C" );

34 oc = c.pos - o.pos;

35 d_oc = sqrt( oc @ oc );

36 a_coh = acos( ( oh @ oc ) / ( d_oh * d_oc ) );

37 if( a_coh >= 120 && a_coh < 180.0 ){

38 c.float1 = c.float1 + r;

39 c.int1 = c.int1 + 1;

40 o.float1 = o.float1 + r;

41 o.int1 = o.int1 + 1;

42 h.float1 = h.float1 + r;

43 h.int1 = h.int1 + 1;

44 }

45 }
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46 }

47
48 for( a in m ){

49 if( a.int1 )

50 a.float1 = a.float1 / a.int1;

51 else

52 a.float1 = -1.0;

53 }

54
55 return( m );

56 };

8.5.2.2. Protein Folding on a Lattice.

This filter analyses the conformations adopted by a protein during a folding simulation. It com-
putes the distance for each atom between its position in the current conformation and its position in the
final or folded conformation. This distance is saved in the atom attribute float1. The send direc-
tive in line 10 insures that these values are sent down the network along with the returned molecule
where it will be used by mv102 to color the atom depending on how far away it is from its final posi-
tion.

The final conformation is read from the PDB file whose name is provided by fsname parame-
ter. The positions of the atoms in this file are saved in the local private and persistent (declared as
static in the C code) array p_fs (line 4). The if-tree in lines 17-26 insures that the final confor-
mation file is read only once. Once the final structure file has been read, the molecule variable
m_fs will no longer have the value NULL and the if will skip lines 18-25. The distances are are com-
puted in the for-in loop in lines 29-33. The distances are always computed, even if the final structure
has not yet been read in. In such cases, the distance will be the distance of the current atom’s position
from the origin, as nab initializes all global variables to 0.

1 // AVS_dist() - Compute atomic dist. between cur. & final conf.
2
3 molecule m_fs;
4 point p_fs[ 100 ];
5 int natoms;
6 //AVSinfo port m in
7 //AVSinfo parm fsname ""
8 //AVSinfo free m
9 //AVSinfo free return-value

10 //AVSinfo send return-value float1
11 molecule AVS_dist( molecule m, string fsname )
12 {
13 atom a;
14 int anum;
15 point vec;
16
17 if( !m_fs ){
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18 if( fsname && fsname != "" ){
19 m_fs = getpdb( fsname );
20 natoms = 0;
21 for( a in m_fs ){
22 natoms = natoms + 1;
23 p_fs[ natoms ] = a.pos;
24 }
25 }
26 }
27
28 anum = 0;
29 for( a in m ){
30 anum = anum + 1;
31 vec = a.pos - p_fs[ anum ];
32 a.float1 = sqrt( vec @ vec );
33 }
34
35 return( m );
36 };

8.6. Data Output Example.

Data Output modules are the least used category of both nab created modules and user written
modules in general. AVS is a visualization system, and nearly all networks end in either the Geometry
Viewer or some other graphic output module. Nevertheless, there is at least one use for an nab gener-
ated Data Output module which is to save a “network molecule” as a PDB file. The module that does
this is discussed next.

8.6.1. Write molecule.

AVS_writepdb() reads a molecule from its network in ports and saves it as a PDB file. The
name of the PDB file is fname. The file will only be written when the integer parameter write is 1.
This is necessary because each module in a network is activated each time new data is presented to it.
Without the write switch, AVS_writepdb() would be constantly writing and rewriting the file
fname.

1 // AVS_writepdb() - save a network molecule as a PDB file

2
3 //AVSinfo parm fname

4 //AVSinfo parm write 0 0 1

5 //AVSinfo port mol in

6 //AVSinfo free mol

7 int AVS_writepdb( string fname, int write, molecule mol )

8 {

9
10 if( write ){

11 if( fname && fname != "" )
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12 return( putpdb( fname, mol ) );

13 }else

14 return( 0 );

15 };
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