

+CONTENTS

@comment PKG_FORMAT_REVISION:1.1
@name phppdflib-2.5
@comment ORIGIN:print/phppdflib
@cwd /usr/local
@pkgdep perl-5.6.1_15
@comment DEPORIGIN:lang/perl5
@pkgdep mysql-client-4.0.16
@comment DEPORIGIN:databases/mysql40-client
@pkgdep expat-1.95.6_1
@comment DEPORIGIN:textproc/expat2
@pkgdep apache-1.3.29_1
@comment DEPORIGIN:www/apache13
@pkgdep mod_php4-4.3.4_2,1
@comment DEPORIGIN:www/mod_php4
www/data/phppdflib/COPYING
@comment MD5:8ca43cbc842c2336e835926c2166c28b
www/data/phppdflib/chart.class.php
@comment MD5:ae4ae71ac3a5cd5a28d93e82cee07e59
www/data/phppdflib/doc/TARGET.html
@comment MD5:48ad31f2fc4467f1627c09c3e186b529
www/data/phppdflib/doc/banner.html
@comment MD5:dc5e695a6e2151dc813973b44d86ae52
www/data/phppdflib/doc/basics.html
@comment MD5:851eb67a078bf4484613902c4d527fb8
www/data/phppdflib/doc/bugs.html
@comment MD5:10677610e4a1613a053865b9eba36292
www/data/phppdflib/doc/changelog.html
@comment MD5:593909738bca616cb425fc02f4b3f4eb
www/data/phppdflib/doc/contrib.html
@comment MD5:6bd1ed4eda1a4ce2c43dd654cd8c1a5c
www/data/phppdflib/doc/data.errors.html
@comment MD5:a13d6db3caed6de09ab3b652291d070e
www/data/phppdflib/doc/data.parameters.html
@comment MD5:456133f1567c2b2aaba1e7e49358911b
www/data/phppdflib/doc/extensions.html
@comment MD5:ef24a412085c94f74343e5f5f906a7aa
www/data/phppdflib/doc/function.band_add_box.html
@comment MD5:f9610266694dd3870bc120ea7526a197
www/data/phppdflib/doc/function.band_add_field.html
@comment MD5:ad530373c71287c7d0c90c555a6a3b39
www/data/phppdflib/doc/function.band_add_label.html
@comment MD5:a1f3e6c8d841b1bd3c0f8cc0cc53f2dd
www/data/phppdflib/doc/function.band_height.html
@comment MD5:746c907f314fb288ae70a0f1dfb4e91e
www/data/phppdflib/doc/function.band_line.html
@comment MD5:bdb03996ea706a9569acc1e770e038af
www/data/phppdflib/doc/function.band_new.html
@comment MD5:228b96fe713d7cc835098adf3feec441
www/data/phppdflib/doc/function.band_place.html
@comment MD5:fd2649d2e79e246784ea6c8b428c3784
www/data/phppdflib/doc/function.chart.add_series.html
@comment MD5:ba7e837ac5241b5ebd70dfaa3191015e
www/data/phppdflib/doc/function.chart.clearchart.html
@comment MD5:49dab631d0a2189dd6a50875d8ba9ba2
www/data/phppdflib/doc/function.chart.place_chart.html
@comment MD5:6619f3eff8a63d4e7e524d17a30f6e86
www/data/phppdflib/doc/function.chart.setcolor.html
@comment MD5:dc5a089e567400da74e95260aa52b61a
www/data/phppdflib/doc/function.draw_circle.html
@comment MD5:76fcbb29d7b9eba3e0f62193fcbf0da1
www/data/phppdflib/doc/function.draw_line.html
@comment MD5:259d183c7f04f3d9bd9ca58fc2c68504
www/data/phppdflib/doc/function.draw_one_paragraph.html
@comment MD5:b7b8f0ce4dee48398296755d3fe8cd2f
www/data/phppdflib/doc/function.draw_paragraph.html
@comment MD5:f583091e49ba96ac6f6e31cde7f95e93
www/data/phppdflib/doc/function.draw_rectangle.html
@comment MD5:bed87d9f7a5bc8e9628dfca1f10283c7
www/data/phppdflib/doc/function.draw_text.html
@comment MD5:fa7590de2f1ae62eb88e901ab02e9291
www/data/phppdflib/doc/function.enable.html
@comment MD5:66310f2058c14b43ce066d19b59c885e
www/data/phppdflib/doc/function.enable_chart.html
@comment MD5:d0af2f4d44d28838c2e222c22326bc3d
www/data/phppdflib/doc/function.error_array.html
@comment MD5:b86a79d7f26c401a7e03b640f937745a
www/data/phppdflib/doc/function.generate.html
@comment MD5:7185b9b203cc6b4b37c2803638ddeaf6
www/data/phppdflib/doc/function.get_color.html
@comment MD5:39ce72ec91d85ec72ea00a1f0c32088c
www/data/phppdflib/doc/function.get_image_size.html
@comment MD5:d70b44e30f9d42323570510f1518a1e5
www/data/phppdflib/doc/function.image_place.html
@comment MD5:9872deb35c1a79e36a24190d028977fe
www/data/phppdflib/doc/function.image_raw_embed.html
@comment MD5:e1c580043971e0b497e71ddc9459742a
www/data/phppdflib/doc/function.jfif_embed.html
@comment MD5:0f017f42b6bc677d8a2b24157b7b3eec
www/data/phppdflib/doc/function.move_page_before.html
@comment MD5:a6f8bc7d78ac3616bf6de632120e3f82
www/data/phppdflib/doc/function.new_page.html
@comment MD5:0ecd024a411157578f5644361a7b7b5f
www/data/phppdflib/doc/function.png_embed.html
@comment MD5:ed94f3c203a5c4aae7f07fdd13591063
www/data/phppdflib/doc/function.pop_error.html
@comment MD5:045dc488d4412738c6bc9d6e0c08bd4b
www/data/phppdflib/doc/function.set_compress.html
@comment MD5:2ce9cb8f1a14fd0a6d651c5a0e902ebf
www/data/phppdflib/doc/function.set_default.html
@comment MD5:251d24d8288ebdd52b94feedc17b86c9
www/data/phppdflib/doc/function.strlen.html
@comment MD5:043ba7350f1b29e15bef0b4e1b189356
www/data/phppdflib/doc/function.swap_pages.html
@comment MD5:6cde6a3036fc8e08fd57b0f8f3e28a18
www/data/phppdflib/doc/function.template.circle.html
@comment MD5:16f85974b534d5c5793ee096142cf7e3
www/data/phppdflib/doc/function.template.create.html
@comment MD5:6a03a5540e43a7d7d5be25c001e74647
www/data/phppdflib/doc/function.template.field.html
@comment MD5:fbec0ea54d013bde25bb606cb0a29b8a
www/data/phppdflib/doc/function.template.ifield.html
@comment MD5:f819c5edba5d3a5fa6d695d4710d287e
www/data/phppdflib/doc/function.template.image.html
@comment MD5:6f05ac855fc1780d07af1eb29b046289
www/data/phppdflib/doc/function.template.line.html
@comment MD5:3d8a6ea83b29579a95c791b184fec331
www/data/phppdflib/doc/function.template.paragraph.html
@comment MD5:ee5fd4cbf190f9bf947e18bf19a40a50
www/data/phppdflib/doc/function.template.pfield.html
@comment MD5:1296d14d73dc98f79c02ee74df7debc9
www/data/phppdflib/doc/function.template.place.html
@comment MD5:f1f28069b7b53fe4462ac4cd8ed20477
www/data/phppdflib/doc/function.template.rectangle.html
@comment MD5:65c6cf0beec3dde286d6699c58a1253d
www/data/phppdflib/doc/function.template.size.html
@comment MD5:d5dd3c7cd15cc9fd879942a2d49a65c0
www/data/phppdflib/doc/function.template.text.html
@comment MD5:ca9350e1ea62b0a09ddea9961adcfb32
www/data/phppdflib/doc/function.word_wrap.html
@comment MD5:09873ba8c33c591b82b696abe104cb7e
www/data/phppdflib/doc/function.wrap_line.html
@comment MD5:09101fe67ae8c6ab5e1221fec03fa32b
www/data/phppdflib/doc/function.wrap_text.html
@comment MD5:308032df9dc8fe0ad35bbcc448606a58
www/data/phppdflib/doc/index.html
@comment MD5:52512bf1081f4c52b266d09418aa5b3d
www/data/phppdflib/doc/internals.html
@comment MD5:d32117aa91ca373389635e96bede3dcf
www/data/phppdflib/doc/operation.html
@comment MD5:d2b820f34fdb13aeaa52d08839086003
www/data/phppdflib/doc/powerby.jpg
@comment MD5:927d3934a7a9b7f509ae68e44efba267
www/data/phppdflib/doc/powerby.png
@comment MD5:5b2f2f97ac15433a7bacecbe1308ae60
www/data/phppdflib/doc/ptlogo.jpg
@comment MD5:bbc2dd8d62b29eec487a982a5bb5efb8
www/data/phppdflib/doc/roadmap.html
@comment MD5:ec0a8aed3da38e9345dd355ddaeb1421
www/data/phppdflib/examples/charts.php
@comment MD5:3d7d7a612fab57e6f3af01cc14ddae52
www/data/phppdflib/examples/example-wrap.php
@comment MD5:fe74679fca6179f360c4a4a2a069b1a9
www/data/phppdflib/examples/example.php
@comment MD5:ac3ba9586a2a46c0f13f1d8ef8ffacea
www/data/phppdflib/examples/extension.class.php
@comment MD5:42aacfd9c21318f33997179ba0c3da9d
www/data/phppdflib/examples/showoff.php
@comment MD5:116bf60d7e729cbed0cfd057f94c6d90
www/data/phppdflib/examples/template.php
@comment MD5:ea07f9ff7567798373f1912494ea9bec
www/data/phppdflib/phppdflib.class.php
@comment MD5:9b7375cfca6361d0b161a45674f3a38c
www/data/phppdflib/strlen.inc.php
@comment MD5:7624e53635e581c4728fc69c4158a2f4
www/data/phppdflib/template.class.php
@comment MD5:d7cbdaf5e3ba9514d8235607411c0239
@dirrm www/data/phppdflib/examples
@dirrm www/data/phppdflib/doc
@dirrm www/data/phppdflib
@unexec if [-f %D/info/dir]; then if sed -e '1,/Menu:/d' %D/info/dir | grep -q '^[*] '; then true; else rm %D/info/dir; fi; fi
@cwd .
@ignore
+COMMENT
@ignore
+DESC
@ignore
+MTREE_DIRS
@mtree +MTREE_DIRS

+COMMENT

An easy to use API for creating PDF files dynamically

+DESC

phppdflib is a class written in php that presents an easy to use API
for creating PDF files dynamically.

WWW: http://www.potentialtech.com/ppl.php

+MTREE_DIRS

$FreeBSD: src/etc/mtree/BSD.local.dist,v 1.104 2003/11/29 18:22:01 ru Exp $
#
Please see the file src/etc/mtree/README before making changes to this file.
#

/set type=dir uname=root gname=wheel mode=0755
.
 bin
 ..
 etc
 pam.d
 ..
 rc.d
 ..
 ..
 include
 ..
 info
 ..
 lib
 ..
 libdata
 ..
 libexec
 ..
 man
/set uname=man
 cat1
 ..
 cat2
 ..
 cat3
 ..
 cat4
 ..
 cat5
 ..
 cat6
 ..
 cat7
 ..
 cat8
 ..
 cat9
 ..
 catl
 ..
 catn
 ..
 de.ISO8859-1 uname=root
 cat1
 ..
 cat2
 ..
 cat3
 ..
 cat4
 ..
 cat5
 ..
 cat6
 ..
 cat7
 ..
 cat8
 ..
 cat9
 ..
 catl
 ..
 catn
 ..
/set uname=root
 man1
 ..
 man2
 ..
 man3
 ..
 man4
 ..
 man5
 ..
 man6
 ..
 man7
 ..
 man8
 ..
 man9
 ..
 manl
 ..
 mann
 ..
 ..
 en.ISO8859-1
/set uname=man
 cat1
 ..
 cat1aout
 ..
 cat2
 ..
 cat3
 ..
 cat4
 alpha
 ..
 i386
 ..
 ..
 cat5
 ..
 cat6
 ..
 cat7
 ..
 cat8
 alpha
 ..
 i386
 ..
 ..
 cat9
 i386
 ..
 ..
 catn
 ..
 ..
 ja uname=root
 cat1
 ..
 cat2
 ..
 cat3
 ..
 cat4
 ..
 cat5
 ..
 cat6
 ..
 cat7
 ..
 cat8
 ..
 cat9
 ..
 catl
 ..
 catn
 ..
/set uname=root
 man1
 ..
 man2
 ..
 man3
 ..
 man4
 ..
 man5
 ..
 man6
 ..
 man7
 ..
 man8
 ..
 man9
 ..
 manl
 ..
 mann
 ..
 ..
 man1
 ..
 man2
 ..
 man3
 ..
 man4
 ..
 man5
 ..
 man6
 ..
 man7
 ..
 man8
 ..
 man9
 ..
 manl
 ..
 mann
 ..
 ru.KOI8-R
/set uname=man
 cat1
 ..
 cat2
 ..
 cat3
 ..
 cat4
 ..
 cat5
 ..
 cat6
 ..
 cat7
 ..
 cat8
 ..
 cat9
 ..
 catl
 ..
 catn
 ..
/set uname=root
 man1
 ..
 man2
 ..
 man3
 ..
 man4
 ..
 man5
 ..
 man6
 ..
 man7
 ..
 man8
 ..
 man9
 ..
 manl
 ..
 mann
 ..
 ..
 ..
 sbin
 ..
 share
 aclocal
 ..
 dict
 ..
 doc
 ja
 ..
 ..
 emacs
 site-lisp
 ..
 ..
 examples
 ..
 java
 classes
 ..
 ..
 misc
 ..
 nls
 C
 ..
 af_ZA.ISO8859-1
 ..
 af_ZA.ISO8859-15
 ..
 am_ET.UTF-8
 ..
 bg_BG.CP1251
 ..
 ca_ES.ISO8859-1
 ..
 ca_ES.ISO8859-15
 ..
 cs_CZ.ISO8859-2
 ..
 da_DK.ISO8859-1
 ..
 da_DK.ISO8859-15
 ..
 de_AT.ISO8859-1
 ..
 de_AT.ISO8859-15
 ..
 de_CH.ISO8859-1
 ..
 de_CH.ISO8859-15
 ..
 de_DE.ISO8859-1
 ..
 de_DE.ISO8859-15
 ..
 el_GR.ISO8859-7
 ..
 en_AU.ISO8859-1
 ..
 en_AU.ISO8859-15
 ..
 en_AU.US-ASCII
 ..
 en_CA.ISO8859-1
 ..
 en_CA.ISO8859-15
 ..
 en_CA.US-ASCII
 ..
 en_GB.ISO8859-1
 ..
 en_GB.ISO8859-15
 ..
 en_GB.US-ASCII
 ..
 en_NZ.ISO8859-1
 ..
 en_NZ.ISO8859-15
 ..
 en_NZ.US-ASCII
 ..
 en_US.ISO8859-1
 ..
 en_US.ISO8859-15
 ..
 es_ES.ISO8859-1
 ..
 es_ES.ISO8859-15
 ..
 et_EE.ISO8859-15
 ..
 fi_FI.ISO8859-1
 ..
 fi_FI.ISO8859-15
 ..
 fr_BE.ISO8859-1
 ..
 fr_BE.ISO8859-15
 ..
 fr_CA.ISO8859-1
 ..
 fr_CA.ISO8859-15
 ..
 fr_CH.ISO8859-1
 ..
 fr_CH.ISO8859-15
 ..
 fr_FR.ISO8859-1
 ..
 fr_FR.ISO8859-15
 ..
 hi_IN.ISCII-DEV
 ..
 hr_HR.ISO8859-2
 ..
 hu_HU.ISO8859-2
 ..
 hy_AM.ARMSCII-8
 ..
 is_IS.ISO8859-1
 ..
 is_IS.ISO8859-15
 ..
 it_CH.ISO8859-1
 ..
 it_CH.ISO8859-15
 ..
 it_IT.ISO8859-1
 ..
 it_IT.ISO8859-15
 ..
 ja_JP.SJIS
 ..
 ja_JP.eucJP
 ..
 ko_KR.CP949
 ..
 ko_KR.eucKR
 ..
 la_LN.ISO8859-1
 ..
 la_LN.ISO8859-15
 ..
 la_LN.ISO8859-2
 ..
 la_LN.ISO8859-4
 ..
 la_LN.US-ASCII
 ..
 lt_LT.ISO8859-13
 ..
 lt_LT.ISO8859-4
 ..
 nl_BE.ISO8859-1
 ..
 nl_BE.ISO8859-15
 ..
 nl_NL.ISO8859-1
 ..
 nl_NL.ISO8859-15
 ..
 no_NO.ISO8859-1
 ..
 no_NO.ISO8859-15
 ..
 pl_PL.ISO8859-2
 ..
 pt_BR.ISO8859-1
 ..
 pt_PT.ISO8859-1
 ..
 pt_PT.ISO8859-15
 ..
 ro_RO.ISO8859-2
 ..
 ru_RU.CP1251
 ..
 ru_RU.CP866
 ..
 ru_RU.ISO8859-5
 ..
 ru_RU.KOI8-R
 ..
 sk_SK.ISO8859-2
 ..
 sl_SI.ISO8859-2
 ..
 sr_YU.ISO8859-2
 ..
 sr_YU.ISO8859-5
 ..
 sv_SE.ISO8859-1
 ..
 sv_SE.ISO8859-15
 ..
 tr_TR.ISO8859-9
 ..
 uk_UA.ISO8859-5
 ..
 uk_UA.KOI8-U
 ..
 zh_CN.GB18030
 ..
 zh_CN.GB2312
 ..
 zh_CN.GBK
 ..
 zh_CN.eucCN
 ..
 zh_TW.Big5
 ..
 ..
 sgml
 ..
 skel
 ..
 xml
 ..
 ..
..

www/data/phppdflib/COPYING

		 GNU GENERAL PUBLIC LICENSE
		 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 675 Mass Ave, Cambridge, MA 02139, USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.
�
		 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)
�
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
�
 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
�
 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		 END OF TERMS AND CONDITIONS
�
	Appendix: How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) 19yy <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) 19yy name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

www/data/phppdflib/chart.class.php

<?php
/*
 php pdf chart generation library
 Copyright (C) Potential Technologies 2002 - 2003
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: chart.class.php,v 2.2 2003/07/05 21:33:07 wmoran Exp $
*/

class chart
{

 var $colors; // global colors
 var $series; // Array of series
 var $pdf; // reference to the parent class

 function chart()
 {
 $this->clearchart();
 }

 function clearchart()
 {
 // Default colors
 unset($this->colors);
 // This oughta make things more readible
 $white['red'] = $white['green'] = $white['blue'] = 1;
 $black['red'] = $black['green'] = $black['blue'] = 0;
 $this->colors['background'] = $white;
 $this->colors['border'] = $black;
 $this->colors['hlabel'] = $black;
 $this->colors['vlabel'] = $black;
 $this->colors['vgrade'] = $black;
 $this->colors['hgrade'] = $black;
 unset($this->series);
 }

 /* Set up default colors to use globally on the chart
 */
 function setcolor($name, $red, $green, $blue)
 {
 $this->colors[$name]['red'] = $red;
 $this->colors[$name]['green'] = $green;
 $this->colors[$name]['blue'] = $blue;
 }

 function add_series($name, $points, $color = 'black', $width = 1, $style = 'default')
 {
 $t['points'] = $points;
 $t['color'] = $color;
 $t['width'] = $width;
 $t['style'] = $style;
 $this->series[$name] = $t;
 }

 function place_chart($page, $left, $bottom, $width, $height, $type = 'line')
 {
 switch (strtolower($type)) {
 case 'pie' :
 case '3dpie' :
 case 'bar' :
 case '3dbar' :
 case '3dline' :
 case 'line' :
 default :
 $this->_place_line_chart($page, $left, $bottom, $width, $height);
 }
 }

 function _place_line_chart($page, $left, $bottom, $width, $height)
 {
 // First a filled rectangle to set background color
 $this->_fill_background($page, $left, $bottom, $width, $height);
 // caclulate a scale
 $low = $high = $numx = 0;
 foreach($this->series as $data) {
 foreach($data['points'] as $value) {
 if ($value < $low) $low = $value;
 if ($value > $high) $high = $value;
 }
 if (count($data['points']) > $numx) $numx = count($data);
 }
 if (($high - $low) <= 0) return false;
 $xscale = $width / $numx;
 $yscale = $height / ($high - $low);
 foreach($this->series as $data) {
 $a['strokecolor'] = $this->pdf->get_color($data['color']);
 $a['width'] = $data['width'];
 $c = 0;
 unset($x);
 unset($y);
 foreach ($data['points'] as $value) {
 $x[$c] = ($c * $xscale) + $left;
 //echo $x[$c] . " ";
 $y[$c] = (($value - $low) * $yscale) + $bottom;
 //echo $y[$c] . "
\n";
 $c++;
 }
 $this->pdf->draw_line($x, $y, $page, $a);
 }
 }

 function _fill_background($page, $left, $bottom, $width, $height)
 {
 $a['fillcolor'] = $this->colors['background'];
 $a['mode'] = 'fill';
 $this->pdf->draw_rectangle($bottom + $height,
 $left,
 $bottom,
 $left + $width,
 $page,
 $a);
 }
}

?>

www/data/phppdflib/doc/TARGET.html

Target

This document briefly describes the current organization of
the development process.

Versioning

The version numbering is designed on a simple sequential
model. No special numbering will be used to indicate the
status of each version, this will be announced elsewhere.
The current status of version 1 is obsolete.
The current status of version 2 is stable.
Once the library has seen sufficient testing,
we will make a release candidate.
After sufficient testing in the user community
with this version, the version will be announced as a
stable version (or a subsequent version, if bugfixes are
required, possibly resulting in multiple release candidates
before an acceptable stable version is achieved). Any
bugfixes that are required after the release
version is announced will be incremented in minor number
and announced as bugfixes to the release.

Extensions

Because of enhanced extensibility in version 2, we are
not planning to fork the code when 2 becomes stable. Instead
we plan to add enhancements to version 2 via the extension
mechanism. The code will be forked only when further enhancements
will require changes to the codebase that would threaten
the library's stability.

Current development effort is directed toward an "effects"
extension and a "packer" extension.

Target

The functionality target for the 2.x release of phppdflib
follows.

General Functionality

The goal of phppdflib is to create a php class that allows
a programmer to easily integrate PDF formatted output into
php scripts.

The library is designed with a "no limitations" theory.
All limitations to the capibility of the library are vested
in the php programming language or the limits of the PDF
format. Furthermore, version 2 will not do bounds checking to
ensure limits are maintained. Thus version 2 is
capable of creating PDF files that exceed the implementation
limits of the PDF format and are thus invalid. For the moment,
staying within the limits of the PDF standard are the responsibility
of the calling application.

Methods

The following methods are planned to go into version 2.x.
This is our primary method for determining when we have reached
release status for the library.
Italic text indicates improvments over version 1.

			draw_text() will support the following:
 			The 14 standard PDF fonts

			Fill, stroke, or both painting modes

			All point sizes

			Rotate font to any angle

			A function will exist to return the width of strings drawn
 in a particular font at a particular point size

			draw_rectangle(), draw_line(), draw_circle() supporting:
 			Colors

			Line weights

			Fill, stroke, or both painting modes

			new_page() supporting symbolic codes for common page sizes
 as well as an absolute representation to allow any page
 size to be created

			zlib compression

			jfif_embed()

			png_embed()

			Function to return the size of an embedded image in PDF units

			image_place()

			A system of default values for specifying page sizes, text
parameters and any other parameters that may be reused (to avoid
the need for parameters arrays each time an object is painted)

			An error reporting system that allows a client script to
accurately detect and sanely react to errors

			A set of template functions that allow a user to generate
layout templates, and then paint information to the page, formatted
by those templates
 			template->create()

			template->place()

			template->size()

			template->text()

			template->field()

			template->paragraph()

			template->rectangle()

			template->line()

			template->circle()

			template->image()

Note that the Template interface obsoletes both the band interface
and the column interface. These methods have been removed from the library.

www/data/phppdflib/doc/banner.html

Banners

I recently created a spiffy banner that users of the library can
display on their page.

We'd appreciate it if everyone who uses the library places our
banner on their site, along with a link to the phppdflib home
page (http://www.potentialtech.com/ppl.php).

www/data/phppdflib/doc/basics.html

Getting Started with phppdflib

			Introduction

			Getting Started

			About PDF files

			How it works

			Headers and mime-types

			What to do when it doesn't work

Introduction

phppdflib is a class written in php for dynamically generating PDF
files from a web server.

In order to use the library, you will need a working installation of
php version 4.0.6 or later. There are no other requirements that we
are aware of. The library does not need any special compile options
to php, and should work with any web server that php does.

In order to really use the library, you're going to need a
good knowledge of php and how a web server works. The library has
been written specifically so that you shouldn't need an extensive
knowledge of the PDF format, but some basic knowledge is required.

Getting Started

If this is the first time you've used phppdflib, you'll do well
by first installing the library and then trying out the files in
the examples directory. If these scripts all produce valid PDF files,
then you know the installation of the required components is sound.
If not, check your webserver configuration and be sure that PHP is
working. Check the install documentation for your software and seek
out mailing lists and chat rooms that offer to help.

Once you know everything is working, take a look at the scripts
in the examples directory. example.php and
template.php are the best to start with, since they
contain a lot of comments that explain what the code is doing. They
also cover almost every method available in the library. Make copies
of these scripts and edit them to see what your changes do.

Once you feel that you understand how these scripts work, have
a try at it yourself. Write a few scripts that create simple pages.
Use the examples as templates and refer often to this documentation.
Everything you need to know should be documented here.

Once you feel comfortable creating your own scripts, review the
rest of the example files. There are some advanced tricks in them,
but they are not as well documented. Also, the charting interface
is still experimental.

About PDF files

The following are some things that you should understand about
PDF files in order to effectively create them. This information is
important whether you are using phppdflib or any other method to
generate PDF files.

PDF files are designed around the print industry's needs. This
may explain much of why things are done the way they are.
The PDF format was also designed for digital publishing, so much
about the way computers work was taken into account when developing
it.

Scale and resolution

Any PDF file's resolution is infinity units per inch. This is
limited by practical constraints (computers can only calculate so
accurately, and a PDF file where every number was specified to
an infinite number of decimal places would be, well infinately
large) but the important thing to understand is that the precision
to which you enter values does not determine the dots/inch. Your
PDF viewer will automatically calculate the maximum resolution
available for the output media. So when you display it on the
screen, it may be 72dpi, but when you print it may be 600dpi.

Some people are confused by the scale at which PDF files
operate. PDF files define their own units - we'll call them "PDF
units" for simplicity. 1 inch equals 72 pdf units. This means
that (for most of the world) 2.835 pdf units = 1 mm. To reiterate,
this in no way defines the resolution of the PDF file.

Layout

PDF and HTML couldn't be more different. I've been searching,
so if anyone has found a program to convert HTML into PDF, please
point me at it.

The PDF format is really unlike anything you've used before
(most likely). It isn't even like most word processor formats.
When you place text in a PDF file, you place it - there
is no automatic wrapping, or "flowing around an image" or anything
like that. If you want the text to wrap at a certain point, or
flow around another object on the page, you have to tell it to.
phppdflib tries to insulate you from some of this with functions
that do some of the work for you, and we have more planned.
Part of the reason I bring this up is because many people expect
phppdflib to be a html -> PDF converter, and it's not. Look at
how poorly most browsers print HTML pages. If Microsoft and
Netscape (and the Mozilla team) don't have the resources to make
it work, why would you think that we do?

Don't take this to mean that I don't think it's possible,
it's just extremely complicated

The PDF file is centered around the idea of a "page". Don't
confuse this with HTML pages or pages of a word processor document.
Moving objects from one page to another in a PDF file is non-trivial.
Doing so does not cause the other objects on the page to reorient
themselves to make room. The PDF doesn't care if your text doesn't
fit on the page, it'll will just draw it off the page into a
"limbo" where it can't be seen by a viewer. (notice how our
paragraph drawing functions still don't fully insulate you from
this problem.)

The order in which you draw things is even important. Remember how
PDF is designed around the printing industry. If you place a lot of
text on a page, and then color the page green, you end up with nothing
but a green page. Much like an offset printer would, the green "paint"
covers the text, thus hiding it.

How it works

If you're not familiar with object-oriented programming in php and
the use of classes, please study that
section
in the php manual before going any further. It will save your sanity.

It will also help to refer to the files in the examples directory
while reading this.

phppdflib is implemented as a php class. Once you have created
an object from that class, you use methods of the class to add objects
to the PDF and control how those objects will look. The basic process
is: Configure settings for an object, then place the object on a page.
There is no method to alter the characteristics of an object once it's
been placed on a page, nor do we plan to create any.

While there are some functions in version 1 that automatically
create pages for you (and more planned for version 2), the burdon
of creating new pages when required is mostly on your shoulders.
The order in which you create pages controls the order in which
they will appear in the resultant document, although there are
functions to alter page order after the fact. There is no requirement
as to what order objects are placed on a page.

Once all the objects are created, the resultant PDF file is requrested
from the class by way of the ->generate() method. What you do with this
resultant file is totally up to you, but (in light of the fact that
most people will want to send it to a browser) you should probably
read the section on headers below to get what you're expecting.
(even if you already familiar with headers, mime-types and http,
there may be some informatin in this next section you'll like)

Headers and Mime-Types

If you're not familiar with the HTTP spec, and how it works,
the authoritative reference is
here.

If you're going to do any programming in php, you should
have a good working knowledge of that document. In case you're just
playing around, or you need a little introduction, I'll summarize
the parts that are important to understanding this section.

When your browser talks to a web server, a lot more goes on than
just the web page you see as a result. Your browser tells the
web server what make, model, and year it is, as well as a lot
more information. The web server responds similarly, with make,
model, and year, as well as some additional information about
the document that it will be sending. This additional information
takes the form of http headers and they're important because
the browser uses the information (that you never see) in the
headers to determine what to do with the rest of the information
the web server sends it.

If you're confused or alarmed by what I just said, I
suggest you install a copy of
Ethereal
and take a look at just how much chatter is really going on behind
your back.

The first important header is the one labeled
Content-Type. This is automatically set to "text/html"
by PHP,
which tells the browser that it can display the information as
a web page. But for the browser to know that it should fire up
your pdf viewer, it has to be set to "application/pdf". See the
files in the example directory for how this is done.

Unfortunately, Internet Explorer can get confused
when the Content-Type is set to "application/pdf" but the file
does not have a .pdf extension. In fact, there are a large number
of oddities relating to Microsoft browsers.

Please see the php documentation on the
header()
function for some additional information on Internet Explorer
problems.

You can control what the browser does with your PDF by using the
Content-Disposition header to change
the filename. There are two distinct methods, and each causes the
browser to react differently. Using something like
"Content-Disposition: attachment; filename=somename.pdf" causes
the browser to assume that it should ask you what you want to do
with the file. If you decide to open it, the browser should be
able to figure out from the supplied filename that it needs to
fire up your PDF viewer.

Using "Content-Disposition: inline; filename=somename.pdf" causes the
browser to try to display the file. If a proper plug-in for viewing
PDF files has been installed, it should automatically start.
Most browsers seem to default to this behaviour if you don't supply
a Content-Disposition header. Using
"Content-Disposition: filename=somename.pdf" seems to have the
same effect as specifying "inline". Please note that the use of the
Content-Disposition header in http is not strictly to
spec, but most browsers seem to make use of it.

Another header that is very important is the "Content-Length"
header. Although this header is not required by the HTTP
spec, it appears to be required by Internet Explorer. IE tends
to lock up while trying to launch the Acrobat plugin if this header
is not specified. PHP doesn't figure it out for you, so you need to
add it yourself. The following procedure should do the trick:

$temp = $pdf->generate();
header('Content-Length: ' . strlen($temp)); // strlen() is binary safe
echo $temp;

We have heard reports that using a "Cache-Control: private"
header also works around IE bugs that show up under certain
configurations of IE. While I have not witnessed this header
doing anything to fix any problems, others have reported that
it helps, and I can't say that it breaks anything. The "private"
setting tells the browser that it's allowed to cache the file,
while telling proxy servers that they may not cache it.

I recommend you always use a Content-Disposition,
Content-Type, and Content-Length header.
Not doing so will result in some visitors being unable to view the
PDF that you are generating at least some of the time. By properly
using these three headers, dynamic PDF files seem to display properly
on all platforms. If you still have problems, add a
Cache-Control header and let me know if it helps.
See the files in the examples directory for, well, examples.

A telltale sign that you've got this wrong is when the browser
tries to display the PDF as if it were HTML. This pretty much looks
like garbeled junk (unless you're familiar with the inner workings
of PDF). Unfortunately, however, it could also be a problem with
your browser. Try displaying a PDF file from another location to
determine where the problem lie. Our experiments have also caused
lockups if the Content-Length header is missing or
wrong.

What to do when it doesn't work

If you do much more with phppdflib than install it and try out
the example files, you're most likely going to hit a point where
something you're trying to do doesn't work. Because of the nature
of the whole thing, this can be a royal pain to fix. Here are some
tricks:

General suggestions

With all versions of phppdflib, you should be checking the return
value of all method calls for a false. This indicates
a detectable error occurred in that method. If you're using version
2, use the error methods to determine the nature of the error. All
your method calls should be wrapped in an if statement
that checks for a valid return value, if they aren't, this is the
first step in debugging.

Please not that the example scripts are not good examples of this
rule ... I'm working on it. Patches are welcome.

If you get foreach errors originating from within
the library, you probably fed the method in question a single value
when it expected an array. If you're using version 2 and this happens,
please file a bug report as these types of mistakes should be caught
by the error reporting system.

If your pdf viewer launches but can't display the file:

It's likely that ->generate() is causing errors and mixing the error
message with the PDF output. This corrupts the PDF file. Comment out the
header() lines in your code and view the result in your
browser. If you're getting errors, hunt them down as outlined above.
Once the first line to appear in the browser is "PDF%" followed by
gibberish, you're golden. Uncomment the header() lines
and view the results of your efforts.

If your browser/viewer freezes or returns bizarre errors

We've seen IE/Acrobat plugin respond that it could not find the
file after it had downloaded it. This seems pretty ridiculous to me,
but it happens.

We've also seen IE freeze up or display nothing but a blank PDF
(even when other viewers displayed properly). In this case, saving
the PDF to a file and launching your viewer independently of the
browser yields the display you would expect.

In every case we've seen this is a problem with headers. Please
read the headers section of this document for solutions.

If images don't display correctly (or at all)

phpdflib does not alter the display of your images at all. If the
quality of your images is poor, you need to examine the procces that
was used on the image before it was embedded into the PDF.

If your viewer can't display your images, first make sure you have
the most recent version of the viewer program. Many viewers are known
to have bugs in JFIF/JPEG display. To our knowledge, the most recent
versions of the viewer software fixes these problems in each case.

If a recent viewer program still bonks on your images, try recreating
them with different options. We've seen that saving a JPEG/JFIF from
Gimp with the "Optimize" box checked creates images that don't display
in many viewers. This is not a bug in Gimp, it's just that JPEG/JFIF
images have so many options available that it's tough for viewers to
properly handle them all.

If you just can't figure it out

Read
this document and file a bug report based on the
instructions in it.

www/data/phppdflib/doc/bugs.html

Reporting bugs

Bug reporting is a hot topic. Please, PLEASE report bugs so I
can fix them! Please read this entire document
before submitting a bug report

I've gotten a number of bug reports regarding phppdflib. Some
of them have been invaluable to improving the library. An unfortunately
high number of bug reports have been a waste of my time. Here's how
to make sure that your bug report fits into the former category.

			Make sure you're using the latest stable version of the library
 before reporting a bug. If your working with the development version,
 make sure your using the most recent development version. I can
 only fix each bug one time.

			Before contacting me, do everything in your power to ensure that
 the bug is in phppdflib and not somewhere else. Check the version
 of php that you're using. Update to the latest version of your
 viewer software. Try a different viewer. Reread the documentation
 to make sure you're using the library in the manner it was intended.
 There is more advice to heed here.

			If you're trying out a development version, please check the docs
 to see if what you're trying to do is supposed to work yet. The
 development versions are often released when I know very well that
 everything doesn't work right. That doesn't mean that I don't want
 to get bug reports, but it does get annoying when people constantly
 tell me things I already know. It's quite possible that the
 docs were written before the code, so don't be surprised if many
 features claim to do things that they don't. This is a difficult
 thing to do, and I understand that, just do the best you can.
 At least make an effort.

			When you submit the bug report, be sure to include at least
 the following information:
 			Version of phppdflib you're using.

			Version of PHP you're using.

			Make, model and version of the webserver you're
 using.

			Make, model and version of the operating system
 that php/webserver is running on.

			Make, model and version of PDF viewer you're using
 (include the OS that you're running it on).

			Make, model and version of the browser that you're using
 (again, include the OS).

			An exact copy of the error message.

			If a PDF is created, but won't display, I need a copy
 of what was created.

			A copy of the script that is causing the error (if
 one of the supplied example scripts is failing, it's
 enough to tell me which one)

 If you do not provide this information, you will get an email from
 me asking for it. I still want to fix the bug, I simply can't
 do it without the information above.

			After you've submitted your bug, and I send a reply to you asking
 you for more information or to try something, reply to me.
 I understand that not everyone has time or is able to reinstall
 their viewer software, but at least send me an email to tell
 me that you won't be able to do what I've asked, so I don't
 wonder if you're dead.

			Bug reports and tutoring sessions are not the same thing. I would
 honestly love to teach everyone how to write php scripts, if you
 are willing to pay my hourly rate, I will spend as much time with
 you as you need. Otherwise, please don't email me with basic
 questions about php if you aren't willing to read the extensive
 and well-written documentation on php's web site as well as what
 I've written here.

			If you can't or aren't willing to do 1 through 5, don't submit
 a bug report. It's not that I don't care about the bug you
 found, it's just that I can't do anything about it unless you
 do 1 through 5.

Let me tell you a little about me. I'm crazy WRT bugs. I hate
them. I lie awake at night wondering why my code isn't perfect.

If you send me an incomplete bug report and refuse to answer
my followups, I will go crazy. I'll email you every day until I
get a response (don't think I'll forget, I'll write a cron job
to do it for me). I'll crack into government databases to find
out everything about you and show up at your front door or place
of employment with a clipboard in my hand. I'll camp out in your
back yard (I have a Coleman stove, don't think I'm not serious!)
I'll crack into your computer and gather the information myself,
and while I'm at it,
I'll email your significant other all your porn. I'll call you
at odd hours of the night (what time is it in Europe right now
anyway?) I'll show up at social gatherings and
embarrass you by asking for the information while you're trying
to impress others with funny stories. I'm not stable. The only
thing that keeps me in check is when bugs get fixed.

If that last paragraph didn't frighten you, then you probably
have a good bug report to submit. Please send it to
wmoran@potentialtech.com.
I'll usually reply within a few days.

www/data/phppdflib/doc/changelog.html

History of changes

2.5

2003-08-29

			Added png_embed()

			Altered sprintf() statements to work around a bug in php 4.3.2.
 This does not appear to degrade functionality with other versions
 of php.

2.4

2003-07-05

			The status of the 2.x series has been upgraded to stable.

			Fixed bug in ->template->place() where the string '0' would not
 be placed.

			Improved ->enable() to allow generalized extensions to be written
 without hacking phppdflib.class.php. Added documentation on
 extension writing.

2.3

2003-06-05

			Updated documentation on headers and troubleshooting.

			Added hex triplet support to ->get_color().

			Pages now remember the margins they were created with and objects
 painted to a page use the page's margins, not the current default.

			->strlen() now uses default values if not specified.

			->strlen() now deals with tabs gracefully.

			Template example script now has more interesting examples.

			Overall documenatation audit and update.

			->pop_error() now returns false if there are no messages on the stack

			->template->place() now returns false if any errors are encountered
 during template placement, including overflow of pfields.

2.2

2003-05-07

			Fixed logic error in right/center alignment for paragraphs
 (merged from 1.17).

			Fixed text encoding problem so non-US characters will display
 (merged from 1.17).

			Correct scale/rotation error in example.php when calling image_place()
 (Calling syntax has changed to be consistent with other functions)

			Added examples of place_circle() in example.php

			changed enable_chart() to enable('chart')

			Added template exension, documentation, and example file.

1.17

2003-02-09

			Fixed logic error in right/center alignment for paragraphs.

			Fixed text encoding problem so non-US characters will display.

			Fixed bug where creating a PDF with no images or fonts created a corrupt
 resource dictionary (merged from 2.1).

			More isset()s to remove "undefined index" warnings.

			Fixed broken example-columns.php.

2.1

2003-02-03

			Noteworthy documentation additions (basics and bug-reporting
 sections).

			Updated example files so they work correctly with API
 changes.

			Lots of work done to get the defaults system actually
 working as one would expect it to.

			Fixed bug where a PDF with no images and no fonts would
 generate a corrupt resource dictionary

			Bug in compression logic resolved.

			There are now seperate parameters for text drawing mode
 ('tmode') and shape drawing mode ('smode'). Setting 'mode'
 sets both parameters.

			Many, many changes to remove Notices when php runs with
 error reporting set to E_ALL (don't know if I've got them all yet).

			Initial version of the charting interface added, this is very
 experimental at this time. I'm open to feedback!

			A new, spiffier method for specifying colors has been implemented.
 The ->get_color() method was created as a result.

			Moved examples to examples directory and modified as needed.

			Glyph widths moved to strlen.inc.php to reduce footprint when
 strlen() is not used (conditionally included).

			Unused parameter removed from ->_streamify() and ->_makedictionary().

2.0

			Added draw_circle()

			Default system added, all functions should fall back to user-defined defaults if
a parameter was not specified. The set_default() function was added.

			Added basic error reporting: added error_array() and pop_error().

			Removed image_raw_place().

			Level 9 compression is now the default.

			Removed set_compress(), compression is now set by generate().

			Removed all band and column functions.

			General code cleanup and reorg: some functions were de-functionalized and added inline to the
generate process.

1.16

			Further improved strlen performance (less than 1%).

1.15

			Replace depreciated &$ function calls.

			Added isset() checks to remove warnings.

			When compression is enabled, all streams are compressed, even if another filter (such as /DCTEncode) had previously been applied - previously, only unfilter streams were compressed. This reduces file sizes in files with embedded JFIF (jpeg) images.

			word_wrap() function fixed.

			Added 'align' to parameters for paragraph placement.

			Changed text encoding to PDFDocEncoding because it makes for reliable results from strlen() function.

			Added \x0a after %%EOF: Ghostscript expects this, other viewers might as well. Technically it's within spec either way.

www/data/phppdflib/doc/contrib.html

Contributers

Since we started work on this library, many have contributed
to its success. If we missed your name on this list, please don't
be shy: remind us. Things get pretty hectic sometimes and it's
easy to forget to add someone's name to this list. Send me an
email to remind me that you helped and I'll add your name here.
I firmly believe in giving credit where it is due!

Bill Moran

Primary developers

			Bill Moran:
Lead programmer, visionary, and insomniac

			Paul Moran:
Programmer, and slavedriver (when needed)

Additional contributers

Listed Alphabetically:

			David Aselford: Helpful data and patches for overcoming xref problems

			Alex Hood: Encouragement and helpful debugging during the library's early days

			Gerhard Killesreiter: Invaluable bug data on xref table problems, and for reminding me that only in the U.S. do people use "letter" and "legal" page sizes

			Marcos Mezo: Helpful reporting of cross-platform difficulties

			Ian Thurlbeck: Patchs to solve problems with E_ALL error reporting

www/data/phppdflib/doc/data.errors.html

Name

Errors -- error handling in phppdflib

Description

Error numbers below 3000 are "notices", over 3001-6000
fall into the "warning" category, over 6000 indicate
failure.

The complete list of Error numbers and their meanings:

			Number			Meaning

			3001			Single token too long for allowed space

			6001			Object must be of type 'page'

			6002			X & Y variables must have equal number of elements

			6003			Font was not found

			6004			Could not deciper page size description

			6005			You're trying to swap a page with itself

			6006			Object must be of type 'fontembed'

			6007			Feature not implemented yet

			6008			Data stream not recognized as JFIF

			6009			Object must be of type 'image'

			6010			Pagenode has no children

			6011			Data stream not recognized as PNG

			6012			Unparsable color identifier

			6013			Text overflowed available area

			6014			16 bit PNG unsupported

			6015			PNG with alpha not supported

			6016			unknown compression type

			6017			unknown PNG filter method

			6018			PNG interlacing not supported

Examples

See Also

History

This error handling mechanism was developed for version 2.

Bugs

www/data/phppdflib/doc/data.parameters.html

Name

Parameter array -- data for PDF objects

Description

The parameters array is used by many PDF objects to define
many facets of their placement and appearance. The values that
are applicable differ for each type of PDF object. See the
documentation for a particular PDF object to find out what
parameters are applicable. Inapplicable parameters are ignored.
Undefined parameters are set to reasonable defaults.

Any one of the parameters shown here can also be set using
the set_default()
function, and it will become the default value for all subsequent
operations.

The complete list of parameters:

			Parameter			Meaning			Possible Values			Default			Applies to

			font			font			Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique, Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique, Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic, Symbol, ZapfDingbats			Helvetica			all text objects

			height			font height			Positive, nonzero values			12			all text objects

			align			Font alignment			right, center, left			left			paragraph text objects

			width			stroking width			Positive, nonzero values			1			rectangle, line, circle

			mode
smode
tmode			The method of painting the object
mode can be used to set both the text and shape mode in one step			fill, stroke, fill+stroke			fill for text, stroke for shapes			all closed objects

			rotation			Angle to paint the object			all real numbers			0			text objects

			color
fillcolor
strokecolor			Components of the painting color
If the stroking or fill color is not specified, this value for color is used for both			an array of red, green, and blue values from 0-1			black			all objects

			pagesize			Size of new pages			positive numbers and symbolic names (see new_page())			letter			this parameter is only applicable to new_page(), however functions that automatically create
new pages as need will use this value as set by set_default()

			margin
margin-top
margin-bottom
margin-left
margin-right			Margins used to adjust placement of object on page

 margin sets all four margins in a single step.			positive numbers			72			The value of these parameters is used to adapt the placement of objects to simulate page margins.

Notes

color, fillcolor, and strokecolor must be specified as an array of red, blue, and
green values. For example:

$param['fillcolor']['red'] = 1;
$param['fillcolor']['blue'] = 0.5;
$param['fillcolor']['green'] = 0;

See the get_color() command for an easier way to do this.

Examples

Sets some parameters for placing text:

$p["height"] = 12;
$p["font"] = "Times-Roman";
$pdf->draw_text(10, 10, "Hello World", $page, $p);

See Also

History

The color system was changed in 2.1

Bugs

www/data/phppdflib/doc/extensions.html

Name

Introduction to extensions

Description

Extensions are part of the phppdflib that are probably not used by
everyone. They are thus implemented in an "on demand" way that prevents
them from tying up memory when not used.

The technical explanation is: They are stored in a seperate class
file that included only when enabled.

From the user's standpoint, the extension is enabled by a
$pdf->enable('extensionname') call, and its methods are
accessed with calls like $pdf->extensionname->methodname()
or $pdf->x['extensionname']->methodname().

Writing extensions

Writing extensions is relatively straightforward. The basic steps
are:

			Copy the examples/extension.class.php extension template
 to the name you want your extension to have. Put it in the same
 directory as phppdflib.class.php.

			Edit the class name to match the filename.

			Add the functionality you need to the class.

There are very few requirements phppdflib makes of an extension,
they are:

			The extension must a class.

			The class name must match the filename.

			Extension names are in lowercase.

			The extension must contain a class variable named $pdf.
 This variable will be a reference back to the main phppdflib object,
 and can (and should) be used by the extension to access the methods
 of phppdflib.

			Extensions fall under the terms of GPL, and must be published under
 the GPL license.

The following recommendations apply to extensions, but are not
requirements:

			To maintain compatibility going forward, extensions should only
 access the public methods of phppdflib. They should not access
 class variables or private methods.

			Methods in your extension intended to be private should be
 prefixed with an underscore.

Examples

See Also

The documentation for the particular extension you are using

History

The first extension was charting, which was added in 2.1

Bugs

Sure to be some.

www/data/phppdflib/doc/function.band_add_box.html

Name

band_add_box -- Add a rectangle to a band definition

Synopsis

int band_new (int band, float bottom, float left, float top, float right[, array parameters])

Description

This function adds a rectangle to a band
identified by the band ID band.

The dimensions of the rectangle are devined by
the bottom, left, top, right values.

The optional parameters
array can be used to override the default values for a
rectangle object.

Examples

$band = $pdf->band_new();
$pdf->band_height($band, 15);
$pdf->band_add_box($band, 0, 0, 15, 100);
$pdf->band_add_field($band, 3, 3, "num", 9);
for ($i = 0; $i < 10; $i++) {
 $v['num'] = $i;
 $pdf->band_line($band, $v);
}

See Also

band_height(),
band_add_field(),
band_add_label(),
band_place(),
band_line(),
band_new()

History

This function was removed from the library in version 2.
Use the new template functions instead.

Bugs

www/data/phppdflib/doc/function.band_add_field.html

Name

band_add_field -- Add a variable text string to a band definition

Synopsis

int band_add_field (int band, float left, float bottom, string name, float height[, string default[, string font]])

Description

This function adds variable text label to the band
identified by the band ID band.

When the band is placed, the value in the parameter
that matches the name will be painted to
the page. If no value is supplied for a parameter that
matches the field, the value specified in default
will be used, or the empty string if no default is
specified.

Note that left and bottom
are relative to the lower, left corner of the band,
not of the page

Examples

The following example will demonstrate how any
number, divided by zero equals zero.

$band = $pdf->band_new();
$pdf->band_height($band, 15);
$pdf->band_add_field($band, 3, 3, "num", 9);
$pdf->band_add_label($band, 10, 3, "/0 = 0", 9);
for ($i = 0; $i < 10; $i++) {
 $v['num'] = $i;
 $pdf->band_line($band, $v);
}

See Also

band_height(),
band_add_label(),
band_add_box(),
band_place(),
band_line(),
band_new()

History

This function was removed from the library in version 2.
Use the new template functions instead.

Bugs

The passing of the font and height parameters is inconsistent
with the rest of the library and needs corrected.

www/data/phppdflib/doc/function.band_add_label.html

Name

band_add_label -- Add a fixed text string to a band definition

Synopsis

int band_add_label (int band, float left, float bottom, string text, float height[, string font])

Description

This function adds text label to the band
identified by the band ID band.

Note that left and bottom
are relative to the lower, left corner of the band,
not of the page

Examples

The following example will demonstrate how any
number, divided by zero equals zero:

$band = $pdf->band_new();
$pdf->band_height($band, 15);
$pdf->band_add_field($band, 3, 3, "num", 9);
$pdf->band_add_label($band, 10, 3, "/0 = 0", 9);
for ($i = 0; $i < 10; $i++) {
 $v['num'] = $i;
 $pdf->band_line($band, $v);
}

See Also

band_height(),
band_add_field(),
band_add_box(),
band_place(),
band_line(),
band_new()

History

This function was removed from the library in version 2.
Use the new template functions instead.

Bugs

The passing of the font and height parameters is inconsistent
with the rest of the library and needs corrected.

www/data/phppdflib/doc/function.band_height.html

Name

band_height -- Define the height of a band

Synopsis

int band_new (int band, float height)

Description

This function defines the height (in PDF units) of a band
identified by the band ID band.

This height value is used by
band_line()
to determine how far to move the paint pointer after painting
the band. The value has no effect on bands placed using the
band_place()
command.

The function returns an true on success, false if an invalid
value was specified.

Examples

$band = $pdf->band_new();
$pdf->band_height($band, 15);
$pdf->band_add_box($band, 0, 0, 15, 100);
$pdf->band_add_field($band, 3, 3, "num", 9);
for ($i = 0; $i < 10; $i++) {
 $v['num'] = $i;
 $pdf->band_line($band, $v);
}

See Also

band_add_box(),
band_add_field(),
band_add_label(),
band_place(),
band_line(),
band_new()

History

This function was removed from the library in version 2.
Use the new template functions instead.

Bugs

Lines are wrapped at word boundries. If a single word is longer than
the alloted space, it is silently replaced with blank line.

The behaviour of a text string with a newline is undefined.

www/data/phppdflib/doc/function.band_line.html

Name

band_line -- Automatically place a band on a page

Synopsis

int band_line (int band, array data)

Description

This function paints the band specified by band.
immediately below the last band placed.

When the band is placed, values in the data
array are substituted for any fields with matching names.

The first time this function is called, a new page (of
size "letter") is created
and the band is placed 1/2" from the top of the page.
With each subseqent band placement the band is placed
immediately below the previous band. New pages are created
as needed.

1/2" margins are maintained durning all placements.

The function returns the page ID that the band was placed
on.

Examples

The following example will demonstrate how any
number, divided by zero equals zero.

$band = $pdf->band_new();
$pdf->band_height($band, 15);
$pdf->band_add_field($band, 3, 3, "num", 9);
$pdf->band_add_label($band, 10, 3, "/0 = 0", 9);
for ($i = 0; $i < 10; $i++) {
 $v['num'] = $i;
 $pdf->band_line($band, $v);
}

See Also

band_height(),
band_add_label(),
band_add_box(),
band_place(),
band_add_field(),
band_new()

History

This function was removed from the library in version 2.
Use the new template functions instead.

Bugs

This function is too automatic, and its usefulness
is limited by this. There should be some mechanism to manually
adjust the starting position of the first band, and configure
margins and page sizes.

www/data/phppdflib/doc/function.band_new.html

Name

band_new -- Begin the definition of a band

Synopsis

int band_new ()

Description

This function creates a new band that can be defined by
band_height(),
band_add_box(),
band_add_field(), and
band_add_label();
and painted to the page with
band_place(), and
band_line().

The function returns an ID for the band.

Examples

$band = $pdf->band_new();
$pdf->band_height($band, 15);
$pdf->band_add_box($band, 0, 0, 15, 100);
$pdf->band_add_field($band, 3, 3, "num", 9);
for ($i = 0; $i < 10; $i++) {
 $v['num'] = $i;
 $pdf->band_line($band, $v);
}

See Also

band_add_box(),
band_add_field(),
band_add_label(),
band_place(),
band_line(),
band_height()

History

This function was removed from the library in version 2.
Use the new template functions instead.

Bugs

www/data/phppdflib/doc/function.band_place.html

Name

band_place -- Manually place a band on a page

Synopsis

int band_place (int band, array data, int page, float left, float bottom)

Description

This function paints the band specified by band.
to the page specified by page at the location
specified by left and bottom.

When the band is placed, values in the data
array are substituted for any fields with matching names.

Examples

The following example places a band near the center
of a letter-sized page

$page = $pdf->new_page("letter");
$band = $pdf->band_new();
$pdf->band_height($band, 15);
$pdf->band_add_field($band, 3, 3, "num", 9);
$pdf->band_add_label($band, 10, 3, "/0 = 0", 9);
$v['num'] = 5;
$pdf->band_place($band, $v, $page, 300, 400);

See Also

band_height(),
band_add_label(),
band_add_box(),
band_line(),
band_add_field(),
band_new()

History

This function was removed from the library in version 2.
Use the new template functions instead.

Bugs

www/data/phppdflib/doc/function.chart.add_series.html

Name

add_series -- Add a series of values to the chart.

Synopsis

bool chart->add_series (string name, array points[, string color[, float width[, string type]]])

Description

This method adds a series of points to the chart that will be connected by a line.

Each seperate call to chart->add_series() will result in another line being drawn on the chart.

name is the name of the series, and will be used to represent it in the legend.
Each series must have a unique name, even if no legend is drawn.

points is an array of points to be drawn on the chart.

color is a color for the series to be drawn in. It must be a symbolic reference
to a color as describe for get_color().

width is the width of the line in PDF units

type is the type of line to draw, only 'line' type is supported at this time.

Examples

// set the background to dark green
$pdf->chart->setcolor('background', 0, .5, 0);
// Add a series
$p[] = 5;
$p[] = 10;
$p[] = 7;
$p[] = 3.2;
$pdf->chart->add_series('series 1', $p);
$pdf->chart->place_chart($page, 10, 10, 300, 200, 'line');

See Also

			enable_chart()

			chart->clearchart()

			chart->setcolor()

			chart->place_chart()

History

This function was added in version 2.1.

Bugs

A lot of functionality described in this document simply doesn't exist yet.

www/data/phppdflib/doc/function.chart.clearchart.html

Name

clearchart -- Reset all values in the chart system.

Synopsis

bool chart->clearchart ()

Description

This method clears all series and values from the chart
system in preparation for a new chart. If you place multiple
charts in a single PDF, you should call this method after each
call to chart->place_chart()

Examples

$pdf->chart->place_chart($page, 10, 10, 300, 200, 'line');
$pdf->chart->clearchart();

See Also

			enable_chart()

			chart->setcolor()

			chart->add_series()

			chart->place_chart()

History

This function was added in version 2.1

Bugs

www/data/phppdflib/doc/function.chart.place_chart.html

Name

place_chart -- Paint a chart to a page.

Synopsis

bool chart->place_chart (int page, float left, float bottom, float width, float height[, string type])

Description

This method places a chart on a page specified by page at the location specified by
left and bottom of the size specified by width and
height.

type is a symbolic name representing the type of chart to draw.
Valid types are pie, 3dpie, bar, 3dbar, line, and 3dline. The default is line.

Examples

// set the background to dark green
$pdf->chart->setcolor('background', 0, .5, 0);
// Add a series
$p[] = 5;
$p[] = 10;
$p[] = 7;
$p[] = 3.2;
$pdf->chart->add_series('series 1', $p);
$pdf->chart->place_chart($page, 10, 10, 300, 200, 'line');

See Also

			enable_chart()

			chart->clearchart()

			chart->setcolor()

			chart->add_series()

History

This function was added in version 2.1.

Bugs

Only line charts are supported at this time.

www/data/phppdflib/doc/function.chart.setcolor.html

Name

setcolor -- Configure colors for chart.

Synopsis

bool chart->setcolor (string setting, float red, float green, float blue)

Description

This method sets color values for the overall chart. The red, green, and blue
values are bewteen 0 and 1, with 0 representing none of that color, and 1 representing
full intensity.

Available defaults at this time are: background, border, hlabel, vlabel,
hgrade, vgrade

Examples

// set the background to dark green
$pdf->chart->setcolor('background', 0, .5, 0);
$pdf->chart->place_chart($page, 10, 10, 300, 200, 'line');

See Also

			enable_chart()

			chart->clearchart()

			chart->add_series()

			chart->place_chart()

History

This function was added in version 2.1.

Bugs

Only 'background' is used at this time.
This function does little sanity checking, it's possible to set invalid
defaults with no error reported.

www/data/phppdflib/doc/function.draw_circle.html

Name

draw_circle -- Paint a circle to a page

Synopsis

int draw_circle (float cenx, float ceny, float radius, int page [,array parameters])

Description

This function paints a circle to the page specified by page.

Actually, it paints a pair of cubic bezier curves that approximate a
circle, the PDF format does not support a true "circle" object

The parameters array provides control over the painting operation.
Default values are
used if not specified.

Examples

Paints a circle with default parameters:

$pdf->draw_circle(100, 100, 50, $page);

Place a red, thick-lined circle:

$param["width"] = 3; // PDF units
$param["strokecolor"] = $pdf->get_color('red');
$pdf->draw_rectangle(100, 100, 50, $page, $param);

See Also

History

The command was added in version 2 of the library.

Bugs

The object created is not a true circle, although it seems to be very close.
If any math wiz out there knows how to draw an accurate circle using the cubic
bezier curves available to PDF files, I'd be joyful for the equation.
See the _make_circle() function in the source code for the current approximation.

www/data/phppdflib/doc/function.draw_line.html

Name

draw_line -- Paint a series of lines to a page

Synopsis

int draw_line (float xarray, float yarray, int page [,array parameters])

Description

This function paints a series of lines to the page specified by page.

The parameters array provides control over the painting operation
as describe in the parameters documentation.

The path of the line is specified by xarray and yarray, which are arrays of
pairs of (x, y) coordinates.

Examples

Paints a single line segment with default parameters:

$x[0] = $y[0] = 5;
$x[1] = $y[1] = 30;
$pdf->draw_line($x, $y, $page);

Place a red, thick-lined triangle:

$x[0] = $x[2] = $y[1] = $y[0] = $x[3] = $y[3] = 5;
$x[1] = $y[2] = 30;
$param["width"] = 3; // PDF units
$param["strokecolor"] = $pdf->get_color('red');
$pdf->draw_rectangle($x, $y, $page, $param);

See Also

History

The draw_line function was added in version 1.13.

Bugs

None known

www/data/phppdflib/doc/function.draw_one_paragraph.html

Name

draw_one_paragraph -- Paint a paragraph of text to a page

Synopsis

mixed draw_one_paragraph (int top, int left, int bottom, int right, string text, int pageid[, array parameters])

Description

This function paints a string of text on a page specified by
pageid bounded by the rectangle specified by
top, left, bottom, and
right. The optional array parameters can
be used to override the default text settings when placing the text.

See the documentation on the draw_text()
function for details on default settings and the use of the
parameters array.

Text is wrapped as needed to keep it within the boundries of the defined
box.

If the text string is too large to place in the alloted space,
the text that could not be placed is returned. If the entire space is
not filled, the value of bottom that would have been
exactly filled is returned.

This function does not take into account newlines, and newlines should
not be included in text. If you need to place multiple paragraphs
seperated by newlines, either use
draw_paragraph() or split the text into individual paragraphs before
using the function (as in the below example).

Examples

Assuming that $content is a large amount of text, the following
lines will turn it into a PDF file, using as many pages as needed:

$pdf = new pdffile;
$p = explode("\n", $content);
$top =720;
$page = $pdf->new_page("letter");
foreach ($p as $one) {
 while (is_string($one)) {
 $one = $pdf->draw_one_paragraph($top, 72, 72, 540, $one, $page);
 if (is_string($one)) {
 $page = $pdf->new_page("letter");
 $top = 720;
 } else {
 $top = $one;
 }
 }
}

See Also

History

This function first appeared in version 1.14.

Bugs

Lines are wrapped at word boundries. If a single word is longer than
the alloted space, it is placed on a line by itself.

The behaviour of a text string with a newline is undefined.

www/data/phppdflib/doc/function.draw_paragraph.html

Name

draw_paragraph -- Paint a paragraph of text to a page

Synopsis

mixed draw_paragraph (int top, int left, int bottom, int right, string text, int pageid[, array parameters])

Description

This function paints a string of text on a page specified by
pageid bounded by the rectangle specified by
top, left, bottom, and
right. The optional array parameters can
be used to override the default text settings when placing the text.

See the documentation on the draw_text()
function for details on default settings and the use of the
parameters array.

Text is wrapped as needed to keep it within the boundries of the defined
box. Newlines are preserved, so multiple paragraphs can be placed with
a single command.

If the text string is too large to place in the alloted space,
the text that could not be placed is returned. If the entire space is
not filled, the value of bottom that would have been
exactly filled is returned.

Examples

Assuming that $content is a large amount of text, the following
lines will turn it into a PDF file, using as many pages as needed:

$pdf = new pdffile;
While (is_string($content)) {
 $page = $pdf->new_page("letter");
 $content = $pdf->draw_paragraph(720, 72, 72, 540, $content, $page);
}
echo $pdf->generate();

See Also

History

This function first appeared in version 1.14.

Bugs

Lines are wrapped at word boundries. If a single word is longer than
the alloted space, it is placed on a line by itself.

This function (and the example shown above) are very ineffecient for
converting very large files into PDF format. Use the alternate method
described in draw_one_paragraph()
instead.

www/data/phppdflib/doc/function.draw_rectangle.html

Name

draw_rectangle -- Paint a rectangle to a page

Synopsis

int draw_rectangle (float top, float left, float bottom, float right, int page [,array parameters])

Description

This function paints a rectangle to the page specified by page.

The parameters array provides control over the painting operation.
See the parameters documentation for details.

Examples

Paints a rectangle with default parameters:

$pdf->draw_rectangle(100, 50, 50, 100, $page);

Place a red, thick-lined rectangle:

$param["width"] = 3; // PDF units
$param["strokecolor"] = $pdf->get_color('red');
$pdf->draw_rectangle(100, 50, 50, 100, $page, $param);

See Also

History

Bugs

None known

www/data/phppdflib/doc/function.draw_text.html

Name

draw_text -- Paint a text string to a page

Synopsis

int draw_text (int left, int bottom, string text, int pageid [,array parameters])

Description

This function paints a string of text on a page specified by
pageid at the location specified by left and
bottom. The optional array parameters can
be used to override the default text settings when placing the text.

Possible values for "font" are:

			Courier

			Courier-Bold

			Courier-Oblique

			Courier-BoldOblique

			Helvetica

			Helvetica-Bold

			Helvetica-Oblique

			Helvetica-BoldOblique

			Times-Roman

			Times-Bold

			Times-Italic

			Times-BoldItalic

			Symbol

			ZapfDingbats

Font names are case-sensitive.

Examples

This is a complete script for creating a single paged PDF file:

$pdf = new pdffile;
$page = $pdf->new_page("letter");
$pdf->draw_text(50, 50, "This is a single page", $page);
echo $pdf->generate();

Place text 1 inch from the lower left corner of the page at size
16 point.

$param["height"] = 16;
$pdf->draw_text(72, 72, "This is 16 point text", $page, $param);

Place red, Courier text:

$param["color"] = $pdf->get_color('red');
$param["font"] = "Courier";
$pdf->draw_text(144, 144, "This is red, Courier text", $page, $param);

See Also

History

Early versions of the library had a draw_stext() function, but this
has been replaced by draw_text().

Bugs

None known

www/data/phppdflib/doc/function.enable.html

Name

enable -- Install phppdflib extension for use

Synopsis

bool enable (string extension_name)

Description

This method makes the extension methods named by extension_name
available for use.

All extensions are enabled as a subobject of the main phppdflib object.
Thus, enabling an extension called 'foo' will make its methods available as
$pdf->x['foo']->methodname().

Extensions that ship with phppdflib also have aliases directly off the
phppdflib object (the example above would be $pdf->foo->methodname).
Either method of access is acceptable, as the two variables are references to the
same object.

Examples

$pdf->enable('chart');
$pdf->x['chart']->new_chart();
$pdf->enable('template');
$pdf->template->new();

See Also

The documentation for the extension you are enabling.

History

This function was added in version 2.1, and was called enable_chart().

The more flexible enable('extension_name') replaced that syntax in 2.2.

The universal $pdf->x['extensionname'] syntax was added in 2.4.

Bugs

None known.

www/data/phppdflib/doc/function.enable_chart.html

Name

enable_chart -- Install chart methods for use

Synopsis

bool enable_chart ()

Description

This method make the chart methods available for use.
An implicit call to clearchart() is made
when this function is called.

Examples

See Also

			chart->clearchart()

			chart->setcolor()

			chart->add_series()

			chart->place_chart()

History

This function was added in version 2.1

Bugs

www/data/phppdflib/doc/function.error_array.html

Name

error_array -- Return all library messages and clear the message stack

Synopsis

array error_array ()

Description

This method returns all the library messages on the message stack in reverse
cronological order (newest to oldest). The result is stored in an array of
strings, with each element containing both the error number and message.

All methods return a result that equates to true apon success, and
false on error. If an error is indicated, this command can be used to get the
details of the error.

It's possible for errors to "chain", such that the problem that caused the
error actually resulted in additional errors added to the message stack by calling
functions within the library. This makes for accurate debugging information since
the error is traced all the way back to its original cause.

Examples

See Also

Error codes and their meanings

pop_error()
History

This command was added in version 2 of the library.

Bugs

Currently only one non-failure condition results in a message added to the message
stack (#3001) but there is no way to determine if this condition has occurred, short
of checking the message stack via this or the pop_error() function.

www/data/phppdflib/doc/function.generate.html

Name

generate -- Create a PDF document

Synopsis

string generate ([int compression])

Description

This function takes all the objects that have been created in the
library and, using all current settings, returns the document in the
PDF format. The single (optional) parameter indicates the level of
compression used. It defaults to 9 if omitted

Examples

Echos the PDF file to the client:

echo $pdf->generate();

Stores the PDF in a variable uncompressed for later use:

$doc = $pdf->generate(0);

See Also

History

Version 2 of the library added the compression parameter.

Bugs

Multiple calls to generate are not supported.
It is recommended that if script execution is to continue after the
call to generate, that the library object be unset to
reduce memory usage.

www/data/phppdflib/doc/function.get_color.html

Name

get_color -- Return a RGB array from a symbolic color name.

Synopsis

array get_color (string name)

Description

This method returns an array in proper RGB form (suitable for storing in
an array parameter such as 'fillcolor' or 'strokecolor') from a symbolic name.

The symbolic name can be either a name (in the form 'black' or 'blue') or a
set of hex triplets (such as #ffdd00).

Examples

// Set the default stroke color to blue
$pdf->set_default('strokecolor', $pdf->get_color('blue'));

See Also

Parameter array
History

This function was added in version 2.1. Hex triplet support was added in 2.3.

Bugs

The only symbolic names that work right now are black, white, red, blue, and green.

www/data/phppdflib/doc/function.get_image_size.html

Name

get_image_size -- retrieve the height and width of an embedded image

Synopsis

array get_image_size (int imageid)

Description

This function can be used to retrieve the height and width (in
pixels) of an embedded image. Any type of image that can be embedded
via jfif_embed() or image_raw_embed() can be queried. imageid
must be the ID of the embedded image.

The value returned is an array in which the width and
height elements contain the respective pixel dimension.

Examples

Assuming that image.jpg is a valid JFIF file, the
following code will extract the file data, embed it into the PDF
file, and echo the height and width.

$page = $pdf->new_page("letter");
$fh = fopen("image.jpg", "r");
$filedata = fread($fh, filesize("image.jpg"));
fclose($fh);
$image = $pdf->jfif_embed($filedata);
$size = $pdf->get_image_size($image);
echo "Height " . $size['height'];
echo "Width " . $size['width'];

See Also

History

This function was added in version 1.14.

Bugs

www/data/phppdflib/doc/function.image_place.html

Name

image_place -- paint an image to a page

Synopsis

int image_place (int imageid, float bottom, float left, int parent[, array parameters])

Description

This function paints an image to a page. The image must have
been embedded in the PDF file with jfif_embed(), png_embed(), or
image_raw_embed().

imageid is the library ID returned by the embedding method.
bottom and left specify the location of the image on the page.
parent defines the library ID of a page to place the image.
Important elements of the parameters array are the scale factor
and the rotation, which determine the manner of placment.
X and Y scale factors can be specified seperately by making the
scale element of the parameters array an array in
itself containing 'x' and 'y' elements.

Examples

Assuming that image.jpg is a valid JFIF file, the
following code will extract the file data, embed it into the PDF
file, and paint it to a page.

$page = $pdf->new_page("letter");
$fh = fopen("image.jpg", "r");
$filedata = fread($fh, filesize("image.jpg"));
fclose($fh);
$image = $pdf->jfif_embed($filedata);
$placement = $pdf->image_place($image, 10, 10, $page);

See Also

History

Bugs

Most errors reported with the image system are usually not the
fault of phppdflib. Please be sure that you have the latest version
of the PDF viewer program you are using, as well as an image that is
valid to begin with.

www/data/phppdflib/doc/function.image_raw_embed.html

Name

image_raw_embed -- embed an image into the PDF

Synopsis

int image_raw_embed (string data, string colorspace, int bitspercolor, int height, int widht[, string filter[, array additional]])

Description

This function is used to insert an image into the PDF
file.

data should contain the raw,
binary imagedata.

colorspace is a string value used to tell the
PDF viewer how to decode the binary data. Possible values are
'/DeviceGray', '/DeviceRGB', '/DeviceCYMK', '/CalGray', '/CalRGB',
'/Lab', '/ICCBased', '/DeviceN', '/Seperation', and '/Indexed'.
See the PDF specification for details.

bitspercolor tells the PDF viewer how many bits
each color component uses. The most common value is 8, although
all integers are legal. The PDF viewer application will use this
value and the colorspace value to calculate how many
bits are used to define each pixel. For example, if the colorspace
is /DeviceCYMK and the bitspercolor is 4, then 16 bits define each
pixel (4 colors * 4 bits per color).

height and width must describe the
height and width of the image in pixels.

The optional parameter filter is a string used to
determine what filter to use to decode the binary data. If omitted,
no filter is used. Note that if compression is enabled, then the
'/FlateDecode' filter is applied during the ->generate()
process; thus it is not recommended to use /FlateDecode during this
part of the process. Common values (for images) are '/LZWDecode',
'/RunLenghtDecode', '/DCTDecode', and '/CCITTFaxDecode'. See the
PDF spec for all possible values.

additional is an array of additional entries for
the image dictionary. Common use of this could be to set the
/DecodeParms value.

The function returns a library ID that must be used
to paint the embedded image, or false on error.

Examples

The following creates a single-pixel image and embeds it

$data = "\xff\x00\x00";
$image = $pdf->image_raw_embed($data, '/DeviceRGB', 8, 1, 1);
$placement = $pdf->image_place($image, 10, 10, $page);

See Also

History

This function has been in the library longer than jfif_embed() but
was missing documentation until version 2.5.

The additional parameter was added in 2.5

Bugs

This method doesn't have near the sanity checking it could/should
have. It's perfectly possible to specify a number of bogus values
and this method would return successfully while creating a totally
invalid embedded image.

Some PDF viewers have problems displaying images in
certain formats. Before reporting bugs concerning images, ensure that
you are using the latest version of your PDF viewer program. Also
be sure that the image is valid in the format that you are using.

www/data/phppdflib/doc/function.jfif_embed.html

Name

jfif_embed -- embed a jfif (jpeg) image into the PDF

Synopsis

int jfif_embed (string data)

Description

This function is used to insert an external JFIF file into the PDF
file. (JFIF files are commonly called jpeg files, this is not entirely
accurate, however)

The single parameter data should contain the raw,
binary JFIF data. The function returns a library ID that must be used
to paint the embedded image, or false on error.

Examples

Assuming that image.jpg is a valid JFIF file, the
following code will extract the file data, embed it into the PDF
file, and paint it to a page.

$page = $pdf->new_page("letter");
$fh = fopen("image.jpg", "r");
$filedata = fread($fh, filesize("image.jpg"));
fclose($fh);
$image = $pdf->jfif_embed($filedata);
$placement = $pdf->image_place($image, 10, 10, $page);

See Also

This function is really only a convenience wrapper around
->image_raw_embed()
that extracts the necessary data for embedding the image from the jfif
stream itself.

History

Bugs

Some PDF viewers have problems displaying images in
certain formats. Before reporting bugs concerning images, ensure that
you are using the latest version of your PDF viewer program. Also
be sure that the image is not created with unusual jfif options (try
creating it with all special optimizations turned off).

www/data/phppdflib/doc/function.move_page_before.html

Name

move_page_before -- move a page to a new location in the page order

Synopsis

bool move_page_before (int movepage, int markerpage)

Description

This function is used to alter the order in which pages will appear in
the resultant PDF file. This function in no way changes which objects are
painted to the pages

movepage is moved in the page order to appear immediately
prior to markerpage. The remaining pages in the page order
are adjusted so that no gaps result.

The function returns true apon success, false
if the move could not be accomplished

Examples

Create five pages and then move page 4 in front of page 2.

$page1 = $pdf->new_page("letter");
$page2 = $pdf->new_page("letter");
$page3 = $pdf->new_page("letter");
$page4 = $pdf->new_page("letter");
$page5 = $pdf->new_page("letter");
$pdf->move_page_before($page4, $page2);

See Also

History

The ability to reorder pages was added in version 1.13 but did not
work properly until version 1.14.

Bugs

None known

www/data/phppdflib/doc/function.new_page.html

Name

new_page -- create a new page

Synopsis

int new_page ([string size])

Description

This function creates a new page of the size specified by size
(or the default page size if no size is specified)
and returns a page id that must be used to paint to the page.

size can be one of the following keywords:
letter, legal, executive, tabloid, a3, a4, or a5.
Or size can be specified by dimensions in the format
widthxheight[in|cm]

Pages will appear in the PDF file in the sequence they are created
but can be reordered with
move_page_before() and
swap_pages().

Examples

This is a valid script for creating a single paged PDF file:

$pdf = new pdffile;
$page = $pdf->new_page("letter");
$pdf->draw_text(50, 50, "This is a single page", $page);
echo $pdf->generate();

The following creates a page 5 inches by 3 inches:

$page = $pdf->new_page("5x3in");

The following creates a page using metric sizes:

$page = $pdf->new_page("15x10cm");

See Also

History

The size parameter became optional with version 2.

Bugs

None known

www/data/phppdflib/doc/function.png_embed.html

Name

png_embed -- embed a png image into the PDF

Synopsis

int png_embed (binary string data)

Description

This function is used to insert an external PNG file into the PDF
file.

The single parameter data should contain the raw,
binary PNG data. The function returns a library ID that must be used
to paint the embedded image, or false on error.

Examples

Assuming that image.png is a valid PNG file, the
following code will extract the file data, embed it into the PDF
file, and paint it to a page.

$page = $pdf->new_page("letter");
$fh = fopen("image.png", "r");
$filedata = fread($fh, filesize("image.png"));
fclose($fh);
$image = $pdf->png_embed($filedata);
$placement = $pdf->image_place($image, 10, 10, $page);

See Also

This function is really only a convenience wrapper around
->image_raw_embed()
that extracts the necessary data for embedding the image from the png
stream itself.

History

This function was added in 2.5

Many thanks to Oliver Plathey. This code is heavily derived
from his fpdf library (with permission).

Bugs

The png format has many options available. Only some of these
are supported by phppdflib. In particular, images with Indexed
or 16 bit color, or with alpha channel are not supported.

www/data/phppdflib/doc/function.pop_error.html

Name

pop_error -- Return the last library message and remove it from the message stack

Synopsis

int pop_error (int &error_num, string &error_message)

Description

This method returns the most recent library message and number (via the error_num
and error_message variables) and removes it from the library message stack.

All methods return a result that equates to true apon success, and
false on error. If an error is indicated, this command can be used to get the
details of the error.

The error number and message are stored in the provided variables which are
passed by reference. The error number is also returned or false if
there are no more messages on the message stack.

Examples

See Also

Error codes and their meanings

error_array()
History

This command was added in version 2 of the library.

Bugs

Currently only one non-failure condition results in a message added to the message
stack (#3001) but there is no way to determine if this condition has occurred, short
of checking the message stack via this or the error_array() function.

www/data/phppdflib/doc/function.set_compress.html

Name

set_compress -- Define compression settings

Synopsis

void set_compress (int level)

Description

This function sets the compression level used to compress PDF streams.

A value of 0 or false will disable compression (the default).
Values between 1 and 9 will be passed to gzcompress() when
streams are compressed to control the aggressiveness with which compression
is accomplished.
See the documentation on gzcompress() for more information.

Note that compression can not be set selectively.
generate is the only function that actually uses this
setting, so the last value set before generate is called will
be used at generation time.

Examples

Turns compression off:

$pdf->set_compress(0);

Sets compression to maximum:

$pdf->set_compress(9);

See Also

History

This method has been removed from the library in version 2.
Please pass compression settings to
generate()

Bugs

None known

www/data/phppdflib/doc/function.set_default.html

Name

set_default -- Set a default value for all future operations

Synopsis

bool set_default (string name, mixed value)

Description

Use this function to set default values that all subsequent functions
will use. Parameters set in this manner become the new default values
and are used whenever a parameter is not specified in the parameters
array of a function.

There are two exceptions to this behaviour:

			The 'pagesize' value, which
is not used via a parameters array, but simply specified as the only
parameter to the method new_page(). Specifying the page size via this command allows
the parameter to be omitted from calls to new_page() as well as setting
the page size for any functions that create new pages automatically.

			Margins are only applied to pages, and the margins that are applied to
painting operations are the margin that was assigned to the page being
painted to, not the current default values for margins.

Examples

Set the default page size to a5

$pdf->set_default('pagesize', 'a5');

Set the default font to Courier

$pdf->set_default('font', 'Courier');

See Also

History

This command was added in version 2 of the library.

Bugs

Very little sanity checking is done at this time, so it's easy to set a
number of invalid defaults without any warning.

www/data/phppdflib/doc/function.strlen.html

Name

strlen -- determine the width of a string

Synopsis

float strlen (string string[, array params[, int tabwidth]])

Description

This function returns the width (in PDF units) that the
specified string will be when painted to the page.

The only parameters that affect the calculation are
height and font. Other parameters will be ignored, so
the same parameter array used to calculate the width can
be used to place the string. If unspecified, default values
are used.

The optional parameter tabwidth is used to determine how
to calculate the width of tab characters (ascii 0x09). It specifies the
number of spaces wide that a tab should be. The default is 4.

Examples

See Also

History

The strlen function was added in version 1.13.

Bugs

The processing of fixed-width (Courier) fonts is approximately
twice as fast as variable-width fonts (Helvetica, Times).

www/data/phppdflib/doc/function.swap_pages.html

Name

swap_pages -- swap the order of two pages

Synopsis

bool swap_pages (int page1, int page2)

Description

This function is used to alter the order in which pages will appear in
the resultant PDF file. This function in no way changes which objects are
painted to the pages

Examples

Create three pages and then change the order of pages 2 and 3.

$page1 = $pdf->new_page("letter");
$page2 = $pdf->new_page("letter");
$page3 = $pdf->new_page("letter");
$pdf->swap_pages($page2, $page3);

See Also

History

The ability to reorder pages was added in version 1.13 but did not work
properly. It was corrected in version 1.14.

Bugs

None known

www/data/phppdflib/doc/function.template.circle.html

Name

template->circle -- Add a circle to a template

Synopsis

int template->circle (int template, float centerx, float centery, float radius[, array parameters])

Description

This method is used to add a circle to a template.

template must be a valid template ID.
centerx and centery
specify the location of the circle's center.
radius specifies the radius of the circle.
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

See Also

History

This function was added in version 2.2.

Bugs

www/data/phppdflib/doc/function.template.create.html

Name

template->create -- Begin the definition of a template

Synopsis

int template->create ()

Description

This function creates a new template that can be defined by
the various template commands as well as painted to the page.

The function returns an ID for the template that must be used
to add objects to it, and to paint it.

Examples

$pdf->enable('template');
$tid = $pdf->template->create();
$pdf->template->rectangle($tid, 0, 0, 15, 100);
$pdf->template->field($tid, 3, 3, "num");
for ($i = 0; $i < 10; $i++) {
 $v['num'] = $i;
 $pdf->template->place($tid, $v, 0, $i * 15, $page);
}

See Also

History

Added in 2.2

Bugs

www/data/phppdflib/doc/function.template.field.html

Name

template->field -- Add a variable text string to a template

Synopsis

bool template->text (int template, float left, float bottom, string name[, string default[, array parameters]])

Description

This method is used to add a text string to a template.
The text string can be specified at the time the template is painted to the page,
so it is effectively a "variable".

template must be a valid template ID.
bottom and left specify the location of the text string
within the template.
name is the name of the "variable".
When the template is placed, this name is used to determine what value will be
used for the string.
default is a default value to place if none is defined at the time
of template placement.
If unspecified, the empty string is used.
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

$pdf->enable('template');
$tid = $pdf->template->create();
$pdf->template->rectangle($tid, 0, 0, 15, 100);
$pdf->template->field($tid, 3, 3, "num");
for ($i = 0; $i < 10; $i++) {
 $v['num'] = $i;
 $pdf->template->place($tid, $v, 0, $i * 15, $page);
}

See Also

History

This function was added in version 2.2.

Bugs

www/data/phppdflib/doc/function.template.ifield.html

Name

template->ifield -- Add a variable image to a template

Synopsis

int template->image (int template, float left, float bottom, float width, float height, string name[, int default[, array parameters]])

Description

This method is used to reserve space for an embedded image on a template.
The image to occupy the space is specified at placement time (or by the default value).

template must be a valid template ID.
bottom and left
define the location of the image on the template.
width and height specify the
resultant size the image will be when placed.
The image is scaled to fit this area.
Note that if the proportions of the image do not match
the proportions of the defined space, the image will appear stretched.
name is the name of the variable that is used to provide the image ID
at the time of placement.
default is a default value to use if none is specified at placement time.
If no image is specified at placement time and the default is not specified,
the image is not placed.
The default value and the value passed at placement time must be the image ID of
an embedded image (i.e. such as from jfif_embed()).
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

See Also

History

This function was added in version 2.2.

Bugs

Not much error checking yet. If you supply an invalid image ID, it will probably
just bomb.

www/data/phppdflib/doc/function.template.image.html

Name

template->image -- Add an image to a template

Synopsis

int template->image (int template, float left, float bottom, float width, float height, int image[, array parameters])

Description

This method is used to add an embedded image to a template.

template must be a valid template ID.
bottom and left
define the location of the image on the template.
width and height specify the
resultant size the image will be when placed.
The image is scaled to fit this area.
Note that if the proportions of the image do not match
the proportions of the defined space, the image will appear stretched.
image is the image ID of an image embedded (i.e. such as from jfif_embed()).
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

See Also

History

This function was added in version 2.2.

Bugs

www/data/phppdflib/doc/function.template.line.html

Name

template->line -- Add a line to a template

Synopsis

int template->line (int template, array xpoints, array ypoints[, array parameters])

Description

This method is used to add a line or string of lines to a template.

template must be a valid template ID.
xpoints and ypoints
are arrays of the x and y positions that define the line.
There must be an equal number of x and y points.
The array indices that are used are unimportant except that
the corresponsing x and y indices will define a single point
on the line.
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

See Also

History

This function was added in version 2.2.

Bugs

www/data/phppdflib/doc/function.template.paragraph.html

Name

template->paragraph -- Add a paragraph of fixed text to a template

Synopsis

int template->paragraph (int template, float bottom, float left, float top, float right, string text[, array parameters])

Description

This method is used to add a paragraph of fixed text to a template.

template must be a valid template ID.
bottom, left, top, and right
define a bounding box for the paragraph.
Text is wrapped at word boundries.
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

See Also

History

This function was added in version 2.2.

Bugs

At this time, if the text overflows the bounding area,
it is lost and the calling process is not alerted to this in any way.

www/data/phppdflib/doc/function.template.pfield.html

Name

template->pfield -- Add a paragraph of variable text to a template

Synopsis

int template->pfield (int template, float bottom, float left, float top, float right, string name[, string default[, array parameters]])

Description

This method is used to add a paragraph of variable text to a template.

template must be a valid template ID.
bottom, left, top, and right
define a bounding box for the paragraph.
Text is wrapped at word boundries.
The actual text string is defined at the time of placement in the variable array.
If not provided, the value in default is used.
If default is omitted, the empty string is used.
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

See Also

History

This function was added in version 2.2.

Bugs

www/data/phppdflib/doc/function.template.place.html

Name

template->place -- Paint a template to a page

Synopsis

bool template->place (int template, int page, float left, float bottom[, array fields])

Description

This method is used to paint an instanance of a predefined template
to a page.

template must be a valid template ID.
page must be a valid page ID.
left and bottom specify where the lower left corner of the
template will be located.
fields is an array specifying values to be place in fields created by
template->field(). If omitted, default values are used for all fields.

true is returned if template placement occurred without errors. If
false is returned, use one of the error methods to check the message
stack. Unlike other paragraph placement methods, false is returned if
text overflows an ifield.

Examples

See Also

History

This function was added in version 2.2.

Bugs

www/data/phppdflib/doc/function.template.rectangle.html

Name

template->rectangle -- Add a rectangle to a template

Synopsis

bool template->rectangle (int template, float bottom, float left, float top, float right[, array parameters])

Description

This method is used to add a rectangle to a template.

template must be a valid template ID.
bottom, left, top, and right
specify the dimensions of the rectangle.
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

See Also

History

This function was added in version 2.2.

Bugs

www/data/phppdflib/doc/function.template.size.html

Name

template->size -- Specify the height and width of a template

Synopsis

bool template->size (int template, float width, float height)

Description

Use this method to define the size of a template for methods that
need the information.

Examples

See Also

History

This function was added in version 2.2.

Bugs

Methods that utilize these values don't exist yet.

www/data/phppdflib/doc/function.template.text.html

Name

template->text -- Add a fixed text string to a template

Synopsis

bool template->text (int template, float left, float bottom[, array parameters])

Description

This method is used to add a fixed text string to a template.

template must be a valid template ID.
bottom, and left specify the location of the text string
within the template.
parameters is an array as described in the parameters documentation.
If omitted, default values are used.

Examples

See Also

History

This function was added in version 2.2.

Bugs

www/data/phppdflib/doc/function.word_wrap.html

Name

word_wrap -- Break a text string into an array of lines

Synopsis

array word_wrap (string string, float width[, array param])

Description

This function takes a text string and breaks it into an array of
strings based on the width parameter. The resultant array is broken
on word boundries and paragraph bounderies (newlines). The resultant
array can be used to paint the string, line-by-line on the page.

When a single word is too long to fit on a line, the word is placed
on a line by itself, and the remainer of the
string is processed as normal.

The param array is used to determine font and font size.
If omitted, default values are used.

Examples

Breaks the string $data into an array of strings, none of which
will be greater than 200 PDF units wide.

$strings = $pdf->word_wrap($data, 200);

See Also

History

The word_wrap() function was added in version 1.14

Bugs

Single words too long for a line are placed on a line by themselves.

www/data/phppdflib/doc/function.wrap_line.html

Name

wrap_line -- Break off single line of text from a text string

Synopsis

string word_wrap (string string, float width[, array param])

Description

This function takes a text string and breaks off enough words to
fit within with width specified.

When a single word is too long to fit on a line, that word is
returned by itself.

string is modified to contain the remainder of
the string (minus the value returned).

The param array is used to determine font and font size.
If omitted, default values are used.

Examples

Breaks the string $data into an array of strings, none of which
will be greater than 200 PDF units wide.

while (strlen($data) > 0) {
 $strings[] = $pdf->wrap_line($data, 200);
}

See Also

History

The wrap_line() function was added in version 1.14

Bugs

Single words too long for a line are placed on a line by themselves.
Error code 3001 is pushed onto the error stack, but false is not
returned when this occurs. Methods that rely on this method for string
handling (such as ->draw_paragraph()) will behave in the same manner.

www/data/phppdflib/doc/function.wrap_text.html

Name

wrap_text -- Break a text string into an array of lines

Synopsis

array wrap_text (string string, float width[, array param])

Description

This function takes a text string and breaks it into an array of
strings based on the width parameter. The resultant array is broken
on word boundries and paragraph bounderies (newlines). The resultant
array can be used to paint the string, line-by-line on the page.

When a single word is too long to fit on a line, a blank line is
returned where that word would have existed, and the remainer of the
string is processed as normal.

The param array is used to determine font and font size.
If omitted, 12pt Helvetica is assumed.

Examples

Breaks the string $data into an array of strings, none of which
will be greater than 200 PDF units wide when placed as 12 point
Helvetica.

$strings = $pdf->wrap_text($data, 200);

See Also

History

The wrap_text() function was added in version 1.14

Bugs

www/data/phppdflib/doc/index.html

Table of Contents

Welcome to the HTML documentation for phppdflib.
These documents are a work in progress, please feel
free to contribute or make suggestions. If, in any way,
the documentation contradicts the source code, the
source code will have precedence.

Overview

			Getting Started

			What to do if you have problems

Data Structures

			Parameter array

			Error codes

Functions

Page creation and control

			new_page()

			swap_pages()

			move_page_before()

Text

			draw_text()

			strlen()

			word_wrap()

			wrap_line()

			draw_paragraph()

			draw_one_paragraph()

Graphics

			draw_rectangle()

			draw_line()

			draw_circle()

			jfif_embed()

			png_embed()

			image_raw_embed()

			get_image_size()

			image_place()

Control

			get_color()

			set_default()

			pop_error()

			error_array()

			generate()

Extensions

			Introduction

			enable()

Charting

			chart->clearchart()

			chart->setcolor()

			chart->add_series()

			chart->place_chart()

Template

			template->create()

			template->size()

			template->place()

			template->rectangle()

			template->circle()

			template->line()

			template->text()

			template->field()

			template->paragraph()

			template->pfield()

			template->image()

			template->ifield()

Obsolete functions

As the library developes, some things don't seem like as
good an idea as they initially did. These functions have been removed
from version 2 of the library:

			band_new()

			band_height()

			band_add_box()

			band_add_label()

			band_add_field()

			band_place()

			band_line()

			set_compress()

Other

			Goal for Release version 2

			Proposed roadmap for future releases

			Version History

			Theory of Operation

			Private data structures and methods

			Cast and Crew

			Banners (blatent promotional attempts)

www/data/phppdflib/doc/internals.html

Internal data structures and methods

phppdflib uses several data structures and methods that are
hidden from the average programmer who is using the library.
That does not mean that these structures and methods are of
no use to the average implementer, it's mainly that accessing
them violates the design goal of "simplicity" and abstracting
the PDF format from the implementer.

In the interest of documentation completeness, as well as
the possibility that these structures and methods were made
private by some error of the developers, they are documented
briefly here. If you find something that you feel should be
made a public method and more fully documented, don't hesitate
to email your case to me.

Data Structures

->objects

The most interesting data structure is the ->objects array.
This is where all PDF objects are stored prior to
->generate() being called.

While the library methods that access this (most all of them)
use it in an "append-only/read-only" fashon, it is possible to
modify the attributes of pre-existing library objects by directly
altering its contents.

The array is arranged such that the first index is the ID of
the object, and the next is the parameter of that object to access.
The array may have additional indicies for certain parameters
(color, for example, which is an array of red, green, and blue
values). Thus $pdf->objects[4]['type'] will return
the type of object #4 ('rectangle', for example) and
$pdf->objects[4]['width'] will return the line width
with which that rectange will be drawn.

Prior to calling ->generate() it is possible to
alter the ->objects array to change how objects occur. Doing so
without understing ->objects is liable to create a corrupt PDF
or cause ->generate() to fail. See the source.

Private Methods

->_resolve_mode (array parameters, string type)

Returns a mode number suitable for inserting directly into
the final PDF stream from the applicable part of the array
parameters. type indicates the type
of element that will be using this mode (i.e. text or shape)

->_adjust_margin (float &x, float &y, int page)

Adjusts the cordinates for the margins on the specified page

->_resolve_param (array parameters[, bool textmode])

Takes a parameters array and returns a complete parameters array
with default values substituted where needed. textmode
controls how the painting modes are interpreted.

->_push_error (int errornumber, string errormessage)

Pushes an error onto the message stack.

->_push_std_error (int errornumber)

Pushes an error onto the message stack as defined by
errornumber. Use to debloat the code by having common
error message stored centrally.

->_resolve_colors (array colors, array parameters)

Oddly, I'm not sure what this does. Could be code bloat.

->_use_font (int fontid)

Check to see if a requested font is already in the
list, if not add it. Either way, return the libid
of the font.

->_int_val (string binaryvalue)

Convert a big-endian byte stream into an integer.

->_make_raw_image (int libraryID)

Returns the binary data to embed into the PDF for the given
image.

->_place_raw_image (int libraryID)

Returns the binary data to embed into the PDF for the given
image placement.

->_rotate (float angle)

Returns proper PDF code to specify a rotation angle.

->_get_operator (int libraryID)

Returns the proper character to tell PDF to perform an
operation on a shape (i.e. stroke, fill, whatever)

->_make_line (int libraryID)

Returns code appropriate for the PDF to create a line from
the library object.

->_make_rect (int libraryID)

Returns code appropriate for the PDF to create a rectangle
from the library object.

->_make_circle (int libraryID)

Returns code appropriate for the PDF to create a circle
from the library object.

->_make_text (int libraryID)

Returns code appropriate for the PDF to create a text object
from the library object.

->_colorset (int libraryID)

Returns a string to set the apropriate stroke and fill colors
for an object.

->_becomes_object (int libraryID)

Returns true if the library object converts to a PDF object.
(this is almost definately code bloat that needs cleaned up)

->_get_kids (int libraryID)

Creates a PDF array of child objects of the given object.

->_order_pages (int pagenodeID)

Builds an array of pages for the given pagenode in the correct
order.

->_addnewoid ()

simple helper function to return the current oid
and increment it by one.

->_addtoxreftable (int offset, int gennum)

Add an object to the xref table data structure with the given
offset and generation number.

->_makedictionary (array entries)

Returns a properly formatted pdf dictionary
containing entries specified by the array $entries.

->_makearray (array entries)

Returns a properly formatted pdf array.

->_stringify (string string)

Returns a properly formatted string, with any
special characters escaped.

->_streamify (string data[, array entries])

Creates a properly formatted PDF "stream" object.
If specified, the items in entries are
added to the dictionary part of the stream.

->_makepagenode (array kids[, array options])

Returns a properly formatted page node.

_makepage (int parent, array contents, int libraryID)

Creates a PDF page. The calling syntax is a bit bloated,
it could probably work with just the libraryID.

www/data/phppdflib/doc/operation.html

Overview

Overview of the library

phppdflib is a php class library for the purpose of creating dynamic documents
in the PDF format developed by Adobe.

Theory of Operation

With the design goals in mind, the decision was made to produce a two-stage engine.

The first stage is the collection of data for objects that will go into the resultant file.
Most of the class methods are involved with this stage.
Each step of this stage is generally invoved in validating the data, then storing the
necessary information in a structured array for later use.

The second stage is the processing of the data objects to convert them into the PDF format.
This stage is initiated by the generate() method but calls many other methods
to do the work.
Other than generate(), these methods are intended only for internal use within
the library.
generate() first preprocesses the objects in an attempt to combine as many as
possible into mstream objects.
This process reduces the number of array objects that are converted to PDF objects, thus
reducing the size and complexity of the resultant PDF.
The generate() function then creates some static PDF objects, specifically
the document catalog, root pagenode, and the resource dictionary.
While the location of these objects is static, the content of the root pagenode and resource
dictionary is dynamic.
generate() then processes the objects in the structured library and converts
them into properly formatted PDF objects, building the data stream as it goes.
During this process, data is recorded on the size of each object necessary for the generation
of the PDF xref table.
At the end of the process, the xref table is generated and appended to the data stream.
A document trailer and end of file marker are then appended to the data stream and the
stream is returned to the calling process.

Thoughts

The two step process has advantages as well as disadvantages.

Since the addition of objects and conversion into the PDF format is done seperately,
the user may create the PDF file in any order, except that parent objects must be created
prior to their children.
For example, a user may create all the pages in the PDF, then paint to them; or he may
create each page and paint it as a seperate step; or any combination of the two.
A user my even paint to pages out of order, for example, after all other data has been
written, the script may then add a footnote to each page denoting the total number of
pages.
It is the job of the generation process to be sure the document hierarchy is reorganized
such that it is valid PDF.

The obvious disadvantage is that memory usage is increased. During the later stages
of generation, the entire PDF is stored in memory twice (once as the structured array,
and again as the PDF stream itself). Additionally, the library provides no method for
freeing the memory after generation is complete. It is my thought that it is unlikely
that scripts will continue to do processing after generation is complete, but if it is
the case, the library instance should be unset() to free the (possibly
significant) memory allocated.

Significant focus is placed on making the resultant PDF file as small as possible,
even at the expense of addition processing or memory usage during generation.
The rational is that most servers using the library will have significant CPU and
memory resources, while many end users receiving the PDF files will have limited
bandwidth. The only feature of this mentality which is tunable (outside of recoding
the library) is the use of compression, which (because it implements a compression
algorithm internally supported by php) does not seem to use significant amounts of
memory or processor compared to the rest of the process.

The Packer Engine

I'm writing this prior to the code being written, to solidify my ideas.
It's possible that the resultant system will be different than conceived here - I'll
try to keep this updated.

The concept of the packer engine started with perl's Tk library, and the packer
included.
phppdflib's packer will run somewhat differently, since the main restraining factor
is available page space and phppdflib can create new pages at will - two things the
perl packer doesn't factor in to its reasoning.

The basic idea I have is that each page will store (in it's library array) an
array of rectangles that indicate the unused space on the page. Initially, a page
will consist of a single rectangle (bounded by the page margins - note that pages
will have to remember the margins they were created with?) All painting functions
will remove the space they use from this pool, thus keeping track of how much space
is still available to use on the page. Special functions will allow a client script
to paint an object "in the next available space", and the packer should create new
pages as needed to place objects.

Inside the machine, the painting of an object will take the rectangle that it's
placed in and break it into sub-rectangles that identify remaining space. To illistrate,
a page initially consists of a single "field" (that's the term I'm going to coin, we'll
see if it sticks):

+----------+
| |
| |
| |
| |
| |
| |
+----------+

When we place (for example) an image on the page, it allocates some space (a) and the
remaining space is broken into new rectangles (b & c)

+----+-----+
| | a |
| | |
| b +-----+
	c
+----+-----+

The allotment of remaining space is not arbitrary, it will attempt to keep the largest
vertical area possible (b) since that's how text normally flows. A special function will
exist to "fill in" text in the remaining space - the idea being that a user can place
all her/his images in the document, and then automagically have the packer flow the
text around the images.
There are several unresolved issues I have:

			The example above is very simple, it's easy to imagine situations that require more
advanced packer logic to succeed.

			What do I do if the client script allocates space from b & c simultaneously? It
doesn't seem that difficult to process, until one starts considering the potential for
insanely recursive logic. Up front, I need to plan for arbitrary complexity of the
"field" fragments on a page. This will probably become a performance problem!

			There's probably some threshold at which a field is too small to be useful.
Unfortunately, that threshold is probably different for each different type of object.
Text, for example, has a more aggresive horizontal threshold than vertical, while images
may not have any practical threshold that should be set.

			Some sort of function to tile images throughout the remaining space might be useful

Serious development of the packer will probably start after the template functions have
started to solidify some. Watch this space.

www/data/phppdflib/doc/powerby.jpg

www/data/phppdflib/doc/powerby.png

www/data/phppdflib/doc/ptlogo.jpg

www/data/phppdflib/doc/roadmap.html

Version 3 roadmap

Some things we're considering for version 3 (once the goals for
version 2 are met):

			A class-wide layout engine that
	 will track the available space on the page, and create new pages as
	 needed.
	

			A mechanism for creating headers/footers and other elements
	 that are consistent on all pages.
	

			A mechanism to create PDF tables of contents.
	

			Embedding of external font files.
	

			Links within the document
	

			Links to external documents
	

			Fill-in forms
	

			An extension that adds effects (specifically: gradient fill.
	 others are possible ... ideas?)

			PDF encryption

			Different linetypes (dashed, dotted, etc)

If you have ideas for features you'd like to see in the library,
please let us know so we can add them to the wish list. We'll be
using this wish list to create the target document for version 3,
once version 2 is in release status.

www/data/phppdflib/examples/charts.php

<?php
/*
 php pdf generation library
 Copyright (C) Potential Technologies 2002
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: charts.php,v 1.3 2003/06/06 01:03:38 wmoran Exp $
*/

/* This example illustrates the charting subclass
 * These features are still experimental
 */

require('../phppdflib.class.php');

// Starts a new pdffile object
$pdf = new pdffile;
$pdf->set_default('margin', 0);

$firstpage = $pdf->new_page("letter");

$pdf->enable('chart');
$pdf->chart->setcolor('background', 1, 0.5, 0.33);

for ($series = 1; $series < 4; $series++) {
 unset($points);
 switch ($series) {
 case 1 : $color = 'black'; break;
 case 2 : $color = 'blue'; break;
 case 3 : $color = 'green'; break;
 }
 for ($i = 0; $i < 5; $i++){
 $points[$i] = rand(-10, 10);
 }
 $pdf->chart->add_series($series, $points, $color);
}
$pdf->chart->place_chart($firstpage, 50, 50, 500, 500);

/* These headers do a good job of convincing most
 * browsers that they should launch their pdf viewer
 * program
 */
//header("Content-Disposition: inline; filename=charts.pdf");
header("Content-Type: application/pdf");
//header('Cache-Control: private');
$temp = $pdf->generate(0);
header('Content-Length: ' . strlen($temp));

/* You can now do whatever you want with the PDF file,
 * which is returned from a call to ->generate()
 * This example simply sends it to the browser, but
 * there's nothing to stop you from saving it to disk,
 * emailing it somewhere or doing whatever else you want
 * with it.
 */
echo $temp;
?>

www/data/phppdflib/examples/example-wrap.php

<?php
/*
 php pdf generation library
 Copyright (C) Potential Technologies 2002
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: example-wrap.php,v 1.2 2003/06/06 01:03:38 wmoran Exp $
*/
set_time_limit(600);
require("../phppdflib.class.php");

// Starts a new pdffile object
$pdf = new pdffile;

$pdf->set_default('margin', 0);
$pdf->set_default('font', 'Courier');
$pdf->set_default('height', 10);

$fname = "../phppdflib.class.php";
$fh = fopen($fname, "r");
$data = fread($fh, filesize($fname));
fclose($fh);

$start = gettimeofday();

$p = explode("\n", $data);
$top =720;
$page = $firstpage = $pdf->new_page("letter");
foreach ($p as $one) {
 while (is_string($one)) {
 $one = $pdf->draw_one_paragraph($top, 72, 72, 540, $one, $page);
 if (is_string($one)) {
 $page = $pdf->new_page("letter");
 $top = 720;
 } else {
 $top = $one;
 }
 }
}

$end = gettimeofday();

$elapsed = $end['sec'] - $start['sec'] +
 (($end['usec'] - $start['usec']) / 1000000);

$pdf->draw_text(72, 730, "Time taken : $elapsed", $firstpage);

header("Content-Disposition: attachment; filename=example-wrap.pdf");
header("Content-Type: application/pdf");

echo $pdf->generate(9);
?>

www/data/phppdflib/examples/example.php

<?php
/*
 php pdf generation library
 Copyright (C) Potential Technologies 2002
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: example.php,v 1.4 2003/07/05 21:11:43 wmoran Exp $
*/

/* This is a demo file to demonstrate the usage
 * of phppdflib
 */

/* Simply copy the phppdflib.class.php file to an
 * accessible location on your web server, and include()
 * it in any scripts that you want to generate pdf
 * files from
 */
require('../phppdflib.class.php');

// Starts a new pdffile object
$pdf = new pdffile;

/* Use the defaults system to turn off page
 * margins
 */
$pdf->set_default('margin', 0);

/* You can create as many pages as you want.
 * The parameter is the size of the page:
 * The following keywords are recognized:
 * "letter", "legal", "executive", "tabloid",
 * "a3", "a4", "a5"
 * or the actual size in the format:
 * "[width]x[height][in|cm]"
 * See examples at the end of this file.
 */
$firstpage = $pdf->new_page("letter");

/* Using the ->draw_text() method:
 * We're going to set up the text parameters,
 * first the height
 */
$param["height"] = 12;
/* Now we set the color to red
 */
$param["fillcolor"] = $pdf->get_color('#ff3333');
/* Set the font. Possible values are:
 Courier
 Courier-Bold
 Courier-Oblique
 Courier-BoldOblique
 Helvetica
 Helvetica-Bold
 Helvetica-Oblique
 Helvetica-BoldOblique
 Times-Roman
 Times-Bold
 Times-Italic
 Times-BoldItalic
 Symbol
 ZapfDingbats
 * These names must be exact, and are case-
 * sensitive. Default is Helvetica
 */
$param["font"] = "Times-Italic";
// Rotate the text 60 degrees
$param["rotation"] = 60;
/* Now we'll place our text string on the page */
$pdf->draw_text(10, 200, "This is red, italic text", $firstpage, $param);
// Alter some parameters and place more text
$param["font"] = "Courier-Bold";
$param["mode"] = "fill+stroke";
$param["height"] = 32;
$param["rotation"] = 0;
$pdf->draw_text(10, 100, "This is red, Courier-Bold text", $firstpage, $param);
/* By omitting the final parameter, we get the same
 * text placed with default text settings
 */
$pdf->draw_text(10, 150, "This is not red text", $firstpage);

/* simply draws a rectange on the page.
 * Specify the top,left,bottom,right locations
 * (in that order) and the ID of the page to place
 * it on
 */
$pdf->draw_rectangle(30, 10, 10, 30, $firstpage);
/* Lets draw a rectangle with some fancy parameters
 * First we'll set the color
 */
$param["red"] = 0;
$param["green"] = 1;
$param["blue"] = 0;
/* Now we'll set the line width, this is in pdf units
 * (1/72 of an inch)
 */
$param["width"] = 5;
/* Place a rectangle with these parameters */
$pdf->draw_rectangle(250, 200, 200, 250, $firstpage, $param);

/* Add a preexisting image to the page
 *
 * Manually creating a bitmap image like this isn't terribly
 * difficult, but somewhat tedious if there's any complexity
 * to the image at all.
 *
 * $data is being loaded up with a small, simple RGB image
 * that we'll use to demonstrate embedding and placement
 */
$data = "\xff\x00\x00\x00\xff\x00\x00\x00\xff";

/* ->image_raw_embed() it not intended to be the end-all
 * user interface, but this is how you use it to embed
 * something manually:
 * The first parameter is the image data itself
 * The second is the colorspace.
 * The third is the number of bits per pixel
 * The fourth is the height of the image
 * The fifth is the width of the image
 * The sixth parameter is the encoding, which has possibilities
 * such as /DCTEncode (the .jpeg compression method) If left
 * off, no encoding is used.
 * This method returns an ID code for the embedded image,
 * which is used to place the image
 */
$image = $pdf->image_raw_embed($data, "/DeviceRGB", 8, 1, 3);

/* This example shows how to use the ->jfif_embed()
 * funtion, which can be used to embed JFIF images
 * (commonly know as JPEGs)
 * ->jfif_embed() needs only the data itself, as it
 * is capable of extracting other required data (such
 * as height and width) from the data.
 * This example is commented out because we don't ship
 * an example JPEG image with the library. Just change
 * $fn to the [path]filename of a jpeg image and use
 * the method to embed it, you can then use
 * ->image_place() to place it on a page.
 * Obviously, you can get the JFIF(JPEG) data from anywhere,
 * such as a database query, or an HTTP POST operation.
 * The library doesn't care, just as long as it's valid
 * JFIF formatted data.
 * If you try to embed an image and your PDF viewer complains
 * of corruption, try changing the parameters under which
 * the original image was created. Adobe's PDF viewer
 * (for example) does not understand all JFIF images.
 * Saving from Gimp with "Optimize" turned on (for
 * example) will create a JPEG that Adobe Acrobat
 * can't display.
$fn = "example.jpg";
$fh = fopen($fn, "r");
$data = fread($fh, filesize($fn));
fclose($fh);
$image = $pdf->jfif_embed($data);
*/

/* Once the image is embedded in the PDF, it can be
 * placed as many or few times as you like. This is a
 * very nice feature of PDFs, as it allows you to place
 * the same image at (for example) different scalings, thus
 * saving space in the file.
 * The first parameter is an ID for an image
 * The second is the bottom edge of the image (in PDF units)
 * The third is the left edge (in PDF units)
 * The fourth is the page ID to place the image on
 * The fifth is a parameters array that can specify rotation
 * and scaling
 * Here are several example of image placement
 */
$pdf->image_place($image, 200, 300, $firstpage);
$pdf->image_place($image, 300, 300, $firstpage, array('scale' => 10, 'rotation' => 30));
$pdf->image_place($image, 400, 300, $firstpage, array('scale' => 25, 'rotation' => 60));

/* A quick example for creating additional pages
 * and placing objects on them.
 */
$secondpage = $pdf->new_page("legal");
$pdf->draw_rectangle(998, 10, 10, 602, $secondpage);
$pdf->draw_text(300, 450, "Page #2", $secondpage);
$pdf->draw_text(300, 400, "backslashes (\) cause no problems", $secondpage);

/* Circle command is new to 2.1
 */
$pdf->draw_circle(150, 200, 50, $secondpage, array('mode' => 'stroke',
												 'strokecolor' => $pdf->get_color('blue'),
 'width' => 5));
$pdf->draw_circle(300, 200, 35, $secondpage, array('mode' => 'fill'));
$pdf->draw_circle(450, 200, 50, $secondpage, array('mode' => 'fill+stroke',
 'fillcolor' => $pdf->get_color('red')));

/* Uses the absolute page size notation to create
 * a notecard sized page
 */
$thirdpage = $pdf->new_page("5x3in");
$pdf->draw_rectangle(198, 18, 18, 342, $thirdpage);
$pdf->draw_text(150, 100, "Page #3", $thirdpage);

/* Uses the absolute page size notation to create
 * a 50x30 centimeter page
 */
$fourthpage = $pdf->new_page("50x30cm");
$pdf->draw_text(150, 100 ,"Page #4" ,$fourthpage);

/* These headers do a good job of convincing most
 * browsers that they should launch their pdf viewer
 * program
 */
header("Content-Disposition: filename=example.pdf");
header("Content-Type: application/pdf");
$temp = $pdf->generate();
header('Content-Length: ' . strlen($temp));

/* You can now do whatever you want with the PDF file,
 * which is returned from a call to ->generate()
 * This example simply sends it to the browser, but
 * there's nothing to stop you from saving it to disk,
 * emailing it somewhere or doing whatever else you want
 * with it (such as email it somewhere or store it in
 * a database field)
 */
echo $temp;

?>

www/data/phppdflib/examples/extension.class.php

<?php
/*
 php pdf generation library - template extension
 Copyright (C) Potential Technologies 2002 - 2003
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: extension.class.php,v 1.1 2003/07/05 21:12:20 wmoran Exp $
*/

class example
{
 var $pdf; // reference to the parent class

	function example()
 {
 	// Initialize the extension
 }

}
?>

www/data/phppdflib/examples/showoff.php

<?php
/*
 php pdf generation library
 Copyright (C) Potential Technologies 2002
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: showoff.php,v 1.3 2003/08/29 20:02:05 wmoran Exp $
*/

/* The intent of this file is to show off just what
 * can be done with phppdflib
 */

require('../phppdflib.class.php');
$pdf = new pdffile;

$pdf->set_default('margin', 0);

$data = "";
for ($i = 100; $i != 255; $i++) {
 $data .= chr($i) . "\xff" . chr($i);
}
$image = $pdf->image_raw_embed($data, "/DeviceRGB", 8, 1, 154);
$firstpage = $pdf->new_page("letter");
$p['scale']["x"] = 612 / 154;
$p['scale']["y"] = 792;
$pdf->image_place($image, 0, 0, $firstpage, $p);
$p['scale']["x"] = 300/154;
$p['scale']["y"] = 150;
$p['rotation'] = 270;
$pdf->image_place($image, 690, 400, $firstpage, $p);
$p['fillcolor'] = $pdf->get_color('white');
$p['mode'] = 'fill';
$pdf->draw_rectangle(792, 0, 792 - 75, 612, $firstpage, $p);

$param["height"] = 32;
$param["font"] = "Times-Bold";
$param["mode"] = "fill+stroke";
$param['fillcolor']["red"] = 0;
$param['fillcolor']["blue"] = 0;
$param['fillcolor']["green"] = .5;
$param['strokecolor']["red"] = 0;
$param['strokecolor']["blue"] = 0;
$param['strokecolor']["green"] = 0;
$pdf->draw_text(70, 680, "Dynamically generated PDF files", $firstpage, $param);

$text = <<< EOT
Dynamically generated PDF files can enhance your website by making it more interesting and useful to your target audience. Any time you want to deliver a print-ready document across the Internet, the PDF format is the correct delivery medium. Whether it be downloadable or emailed, a document in PDF format is virtually guaranteed to display and print properly on any computer.
HTML can't promise this, and neither can proprietary formats, such as Word or Wordperfect documents.
EOT;

$pdf->draw_paragraph(660, 50, 300, 380, $text, $firstpage);

$pdf->draw_rectangle(650, 450, 600, 500, $firstpage, array('mode' => 'stroke'));

$x[0] = 53;
$x[1] = 503;
$x[2] = 303;
$y[0] = 447;
$y[1] = 567;
$y[2] = 347;
unset($p);
$p['mode'] = 'fill';
$p['fillcolor']['red'] = $p['fillcolor']['green'] = $p['fillcolor']['blue'] = .4;
$pdf->draw_line($x, $y, $firstpage, $p);
$x[0] = 50;
$x[1] = 500;
$x[2] = 300;
$y[0] = 450;
$y[1] = 570;
$y[2] = 350;
unset($p);
$p['mode'] = 'fill+stroke';
$p['fillcolor'] = $pdf->get_color('white');
$pdf->draw_line($x, $y, $firstpage, $p);

$fh = fopen("../doc/ptlogo.jpg", "r");
$data = fread($fh, filesize('../doc/ptlogo.jpg'));
fclose($fh);
$image = $pdf->jfif_embed($data);
$size = $pdf->get_image_size($image);
$pdf->image_place($image, 792 - $size['height'], 0, $firstpage);

$fh = fopen("../doc/powerby.png", "r");
$data = fread($fh, filesize('../doc/powerby.png'));
fclose($fh);
$image = $pdf->png_embed($data);
if (!$image) {
 echo $pdf->pop_error($n, $s);
 echo "<p>$s</p>";
 exit;
}
$pdf->image_place($image, 735, 380, $firstpage);

header("Content-Disposition: attachment; filename=showoff.pdf");
header("Content-Type: application/pdf");
echo $pdf->generate();
?>

www/data/phppdflib/examples/template.php

<?php
/*
 php pdf generation library
 Copyright (C) Potential Technologies 2002
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: template.php,v 1.2 2003/06/06 01:03:38 wmoran Exp $
*/

/* This example illustrates the template subclass
 * These features are still experimental
 */

require('../phppdflib.class.php');

// Starts a new pdffile object
$pdf = new pdffile;

$page = $pdf->new_page("letter");

$pdf->enable('template');

$t1 = $pdf->template->create();
/* Set the overall size of this template.
 * This will be important once auto-placement
 * is working
 */
$pdf->template->size($t1, 500, 80);
/* Put a rectangle at the lower left of the template
 */
$pdf->template->rectangle($t1, 0, 0, 20, 20);
// These next two will look like a lolipop
// A circle on the template
$pdf->template->circle($t1, 200, 5, 12, array('mode' => 'fill'));
// Add a line
$pdf->template->line($t1,
					 array(0 => 200, 1 => 250),
 array(0 => 5, 1 => 25));
/* Put a fixed text string to the right of the rectangle
 */
$pdf->template->text($t1, 25, 0, 'This never changes');
/* Put a variable text "field" named "var" above the rectangle
 */
$pdf->template->field($t1, 0, 25, 'var');
// Fixed paragraph string
$pdf->template->paragraph($t1, 0, 340, 70, 400, 'This is text that will wrap so it fits the space');
// Variable paragraph
$pdf->template->pfield($t1, 0, 410, 70, 470, 'para');

/* To demonstrate the graphic capabilities of templates
 * we're going to do some interesting stuff ...
 * First we'll make three images, each 1 pixel square
 * of a solid color (1 red, 1 blue, 1 green) and embed
 * them in the pdf file
 * If you're wondering, this is a silly way to do this.
 * It would be easier and smarter to use filled rectangles,
 * but this is not intended as a "best practice" example,
 * but only to illustrate capibilities.
 */
$d = "\xff\x00\x00";
$im[0] = $pdf->image_raw_embed($d, '/DeviceRGB', 8, 1, 1);
$d = "\x00\xff\x00";
$im[1] = $pdf->image_raw_embed($d, '/DeviceRGB', 8, 1, 1);
$d = "\x00\x00\xff";
$im[2] = $pdf->image_raw_embed($d, '/DeviceRGB', 8, 1, 1);

// Now we'll attach a red rectangle to the template
$pdf->template->image($t1, 280, 5, 20, 20, $im[0]);

/* Now we'll place an "image field" (i.e. a "variable" image)
 * next to the previous image. When the band is placed, an
 * image will be dynamically selected to insert into the
 * space we create here
 */
$pdf->template->ifield($t1, 310, 5, 20, 20, 'image');

/* Now got through a loop and manually place 7 of these
 * templates on this page
 */
$running = '';
for ($i = 0; $i < 8; $i++) {
	$running .= pow(4, $i) . ' ';
	$pdf->template->place($t1,
 					 $page,
 0,
 $i * 80,
 array('var' => "number $i",
 'image' => $im[$i % 3],
 'para' => $running));
}

header("Content-Disposition: filename=template.pdf");
header("Content-Type: application/pdf");
echo $pdf->generate(0);

?>

www/data/phppdflib/phppdflib.class.php

<?php
/*
 php pdf generation library
 Copyright (C) Potential Technologies 2002 - 2003
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: phppdflib.class.php,v 2.6 2003/08/29 21:15:21 wmoran Exp $
*/

class pdffile
{
 /* $objects is an array that stores the objects
 * that will become the pdf when ->generate()
 * is called.
 * The layout of ->objects does not directly
 * mimic the pdf format, although it is similar.
 * nextoid always holds the next available oid (oid is short for object id)
 */
 var $objects, $nextoid;

 /* xreftable is an array containing data to
 * create the xref section (PDF calls it a referance table)
 */
 var $xreftable, $nextobj;

 /* These arrays allow quick translation between
 * pdflib OIDs and the final PDF OIDs (OID stands for object ids)
 */
 var $libtopdf, $pdftolib;

 // Errors
 var $ermsg = array(), $erno = array();

 var $builddata; // Various data required during the pdf build
 var $nextpage; // Tracks the next page number
 var $widths, $needsset; // Store the font width arrays here
 var $default; // Default values for objects
 var $x, $chart, $template;	// extension class is instantiated here if requested
 /* Constructor function: is automatically called when the
 * object is created. Used to set up the environment
 */
 function pdffile()
 {
 /* Per spec, obj 0 should always have a generation
 * number of 65535 and is always free
 */
 $this->xreftable[0]["gennum"] = 65535;
 $this->xreftable[0]["offset"] = 0;
 $this->xreftable[0]["free"] = "f";

 // Object #1 will always be the Document Catalog
 $this->xreftable[1]["gennum"] = 0;
 $this->xreftable[1]["free"] = "n";

 // Object #2 will always be the root pagenode
 $this->xreftable[2]["gennum"] = 0;
 $this->xreftable[2]["free"] = "n";
 $this->pdftolib[2] = 1;
 $this->libtopdf[1] = 2;

 // Object #3 is always the resource library
 $this->xreftable[3]["gennum"] = 0;
 $this->xreftable[3]["free"] = "n";

 /* nextoid starts at 2 because all
 * drawing functions return either the
 * object ID or FALSE on error, so we can't
 * return an OID of 0, because it equates
 * to false and error checking would think
 * the procedure failed
 */
 $this->nextoid = 2;
 $this->nextobj = 3;

 // Pages start at 0
 $this->nextpage = 0;

 // Font width tables are not set unless they are needed
 $this->needsset = true;

 // Set all the default values
 $t['pagesize'] = 'letter';
 $t['font'] = 'Helvetica';
 $t['height'] = 12;
 $t['align'] = 'left';
 $t['width'] = 1;
 $t['rotation'] = 0;
 $t['scale'] = 1;
 $t['strokecolor'] = $this->get_color('black');
 $t['fillcolor'] = $this->get_color('black');
 $t['margin-left'] = $t['margin-right'] = $t['margin-top'] = $t['margin-bottom'] =72;
 $t['tmode'] = 0; // Text: fill
 $t['smode'] = 1; // Shapes: stroke
 $this->default = $t;
 }

/**
 * These functions are the public ones, they are the *
 * way that the user will actually enter the data *
 * that will become the pdf *
 **/

 function set_default($setting, $value)
 {
 switch ($setting) {
 case 'margin' :
 $this->default['margin-left'] = $value;
 $this->default['margin-right'] = $value;
 $this->default['margin-top'] = $value;
 $this->default['margin-bottom'] = $value;
 break;

 case 'mode' :
 $this->default['tmode'] = $this->default['smode'] = $value;
 break;

 default :
 $this->default[$setting] = $value;
 }
 return true;
 }

 function draw_rectangle($top, $left, $bottom, $right, $parent, $attrib = array())
 {
 if ($this->objects[$parent]["type"] != "page") {
 $this->_push_std_error(6001);
 return false;
 }
 $o = $this->_addnewoid();
 $attrib = $this->_resolve_param($attrib, false);
 $this->_resolve_colors($n, $attrib);
 $this->objects[$o] = $n;
 $this->objects[$o]["width"] = $attrib["width"];
 $this->objects[$o]["type"] = "rectangle";
 $this->_adjust_margin($left, $top, $parent);
 $this->_adjust_margin($right, $bottom, $parent);
 $this->objects[$o]["top"] = $top;
 $this->objects[$o]["left"] = $left;
 $this->objects[$o]["bottom"] = $bottom;
 $this->objects[$o]["right"] = $right;
 $this->objects[$o]["parent"] = $parent;
 $this->objects[$o]["mode"] = $this->_resolve_mode($attrib, 'smode');
 return $o;
 }

 function draw_circle($x, $y, $r, $parent, $attrib = array())
 {
 if ($this->objects[$parent]["type"] != "page") {
 $this->_push_std_error(6001);
 return false;
 }
 $o = $this->_addnewoid();
 $attrib = $this->_resolve_param($attrib, false);
 $this->_resolve_colors($n, $attrib);
 $n['width'] = $attrib['width'];
 $this->_adjust_margin($x, $y, $parent);
 $n['x'] = $x;
 $n['y'] = $y;
 $n['radius'] = $r;
 $n['type'] = 'circle';
 $n['parent'] = $parent;
 $n['mode'] = $this->_resolve_mode($attrib, 'smode');
 $this->objects[$o] = $n;
 return $o;
 }

 function draw_line($x, $y, $parent, $attrib = array())
 {
 if ($this->objects[$parent]["type"] != "page") {
 $this->_push_std_error(6001);
 return false;
 }
 if (count($x) != count($y)) {
 $this->_push_error(6002, "X & Y variables must have equal number of elements");
 return false;
 }
 $o = $this->_addnewoid();
 $attrib = $this->_resolve_param($attrib, false);
 $this->_resolve_colors($n, $attrib);
 $this->objects[$o] = $n;
 @$this->objects[$o]["width"] = $attrib["width"];
 $this->objects[$o]['mode'] = $this->_resolve_mode($attrib, 'smode');
 $this->objects[$o]["type"] = "line";
 foreach ($x as $key => $value) {
 if (isset($x[$key]) && isset($y[$key])) {
 $this->_adjust_margin($x[$key], $y[$key], $parent);
 }
 }
 $this->objects[$o]["x"] = $x;
 $this->objects[$o]["y"] = $y;
 $this->objects[$o]["parent"] = $parent;
 return $o;
 }

 // draw text
 function draw_text($left, $bottom, $text, $parent, $attrib = array())
 {
 if ($this->objects[$parent]["type"] != "page") {
 $this->_push_std_error(6001);
 return false;
 }
 $attrib = $this->_resolve_param($attrib);
 // Validate the font
 if (!($n["font"] = $this->_use_font($attrib))) {
 // Couldn't find/add the font
 $this->_push_error(6003, "Font was not found");
 return false;
 }
 if (isset($attrib["rotation"])) {
 $n["rotation"] = $attrib["rotation"];
 }
 $n['mode'] = $this->_resolve_mode($attrib, 'tmode');
 if (isset($attrib["height"]) && $attrib["height"] > 0) {
 $n["height"] = $attrib["height"];
 }
 $this->_resolve_colors($n, $attrib);
 $n["type"] = "texts";
 $this->_adjust_margin($left, $bottom, $parent);
 $n["left"] = $left;
 $n["bottom"] = $bottom;
 $n["text"] = $text;
 $n["parent"] = $parent;

 $o = $this->_addnewoid();
 $this->objects[$o] = $n;
 return $o;
 }

 function new_page($size = null)
 {
 if (is_null($size)) {
 $size = $this->default['pagesize'];
 }
 switch ($size) {
 case "letter" :
 $o = $this->_addnewoid();
 $this->objects[$o]["height"] = 792;
 $this->objects[$o]["width"] = 612;
 break;

 case "legal" :
 $o = $this->_addnewoid();
 $this->objects[$o]["height"] = 1008;
 $this->objects[$o]["width"] = 612;
 break;

 case "executive" :
 $o = $this->_addnewoid();
 $this->objects[$o]["height"] = 720;
 $this->objects[$o]["width"] = 540;
 break;

 case "tabloid" :
 $o = $this->_addnewoid();
 $this->objects[$o]["height"] = 1224;
 $this->objects[$o]["width"] = 792;
 break;

 case "a3" :
 $o = $this->_addnewoid();
 $this->objects[$o]["height"] = 1188;
 $this->objects[$o]["width"] = 842;
 break;

 case "a4" :
 $o = $this->_addnewoid();
 $this->objects[$o]["height"] = 842;
 $this->objects[$o]["width"] = 595;
 break;

 case "a5" :
 $o = $this->_addnewoid();
 $this->objects[$o]["height"] = 598;
 $this->objects[$o]["width"] = 418;
 break;

 default :
 if (preg_match("/in/",$size)) {
 $o = $this->_addnewoid();
 $size = substr($size, 0, strlen($size) - 2);
 $dims = split("x",$size);
 $this->objects[$o]["height"] = ($dims[1] * 72);
 $this->objects[$o]["width"] = ($dims[0] * 72);
 } else {
 if (preg_match("/cm/",$size)) {
 $o = $this->_addnewoid();
 $size = substr($size, 0, strlen($size) - 2);
 $dims = split("x",$size);
 $this->objects[$o]["height"] = ($dims[1] * 28.346);
 $this->objects[$o]["width"] = ($dims[0] * 28.346);
 } else {
 $this->_push_error(6004, "Could not deciper page size description: $size");
 return false;
 }

 }
 }
 $this->objects[$o]['type'] = 'page';
 $this->objects[$o]['parent'] = 1;
 $this->objects[$o]['number'] = $this->nextpage;
 $this->nextpage ++;
 foreach (array('margin-left', 'margin-right', 'margin-top', 'margin-bottom') as $margin) {
	 $this->objects[$o][$margin] = $this->default[$margin];
 }
 return $o;
 }

 function swap_pages($p1, $p2)
 {
 if ($this->objects[$p1]["type"] != "page" ||
 $this->objects[$p2]["type"] != "page") {
 $this->_push_std_error(6001);
 return false;
 }
 $temp = $this->objects[$p1]["number"];
 $this->objects[$p1]["number"] = $this->objects[$p2]["number"];
 $this->objects[$p2]["number"] = $temp;
 return true;
 }

 function move_page_before($page, $infrontof)
 {
 if ($this->objects[$page]["type"] != "page" ||
 $this->objects[$infrontof]["type"] != "page") {
 $this->_push_std_error(6001);
 return false;
 }
 if ($page == $infrontof) {
 $this->_push_error(6005, "You're trying to swap a page with itself");
 return false;
 }
 $target = $this->objects[$infrontof]["number"];
 $leaving = $this->objects[$page]["number"];
 foreach ($this->objects as $id => $o) {
 if ($o["type"] == "page") {
 if ($target < $leaving) {
 if ($o["number"] >= $target && $o["number"] < $leaving) {
 $this->objects[$id]["number"]++;
 }
 } else {
 if ($o["number"] < $target && $o["number"] > $leaving) {
 $this->objects[$id]["number"]--;
 }
 }
 }
 }
 if ($target < $leaving) {
 $this->objects[$page]["number"] = $target;
 } else {
 $this->objects[$page]["number"] = $target - 1;
 }
 return true;
 }

 function new_font($identifier)
 {
 $n["type"] = "font";

 switch ($identifier) {
 /* The "standard" Type 1 fonts
 * These are "guaranteed" to be available
 * to the viewer application and don't
 * need embedded
 */
 case "Courier":
 case "Courier-Bold":
 case "Courier-Oblique":
 case "Courier-BoldOblique":
 case "Helvetica":
 case "Helvetica-Bold":
 case "Helvetica-Oblique":
 case "Helvetica-BoldOblique":
 case "Times-Roman":
 case "Times-Bold":
 case "Times-Italic":
 case "Times-BoldItalic":
 case "Symbol":
 case "ZapfDingbats":
 $o = $this->_addnewoid();
 $this->builddata["fonts"][$o] = $identifier;
 $n["subtype"] = "Type1";
 $n["basefont"] = $identifier;
 break;

 default:
 if ($this->objects[$identifier]["type"] != "fontembed") {
 $this->_push_error(6006, "Object must be of type 'fontembed'");
 return false;
 } else {
 // Not ready yet
 $this->_push_error(6007, "Feature not implemented yet");
 return false;
 }
 }
 $this->objects[$o] = $n;
 return $o;
 }

 function generate($clevel = 9)
 {
 // Validate the compression level
 if (!$clevel) {
 $this->builddata["compress"] = false;
 } else {
 if ($clevel < 10) {
 $this->builddata["compress"] = $clevel;
 } else {
 $this->builddata["compress"] = 9;
 }
 }
 /* Preprocess objects to see if they can
 * be combined into a single stream
 * We scan through each page, and create
 * a multistream object out of all viable
 * child objects
 */
 $temparray = $this->objects;
 foreach ($this->objects as $oid => $def) {
 if ($def["type"] == "page") {
 unset($temp);
 $temp['data'] = "";
 reset($temparray);
 while (list ($liboid, $obj) = each($temparray)) {
 if (isset($obj["parent"]) && $obj["parent"] == $oid) {
 switch ($obj["type"]) {
 case "texts" :
 $temp["data"] .= $this->_make_text($liboid);
 $this->objects[$liboid]["type"] = "null";
 $this->objects[$liboid]["parent"] = -1;
 break;

 case "rectangle" :
 $temp["data"] .= $this->_make_rect($liboid);
 $this->objects[$liboid]["type"] = "null";
 $this->objects[$liboid]["parent"] = -1;
 break;

 case "iplace" :
 $temp["data"] .= $this->_place_raw_image($liboid);
 $this->objects[$liboid]["type"] = "null";
 $this->objects[$liboid]["parent"] = -1;
 break;

 case "line" :
 $temp["data"] .= $this->_make_line($liboid);
 $this->objects[$liboid]["type"] = "null";
 $this->objects[$liboid]["parent"] = -1;
 break;

 case "circle" :
 $temp["data"] .= $this->_make_circle($liboid);
 $this->objects[$liboid]["type"] = "null";
 $this->objects[$liboid]["parent"] = -1;
 break;
 }
 }
 }
 if (strlen($temp["data"]) > 0) {
 // this line takes the next available oid
 $o = $this->_addnewoid();
 $temp["type"] = "mstream";
 $temp["parent"] = $oid;
 $this->objects[$o] = $temp;
 }
 }
 }
 unset($temparray);

 // Generate a list of PDF object IDs to
 // use and map them to phppdflib IDs
 foreach ($this->objects as $oid => $properties) {
 if ($this->_becomes_object($properties["type"])) {
 $o = $this->_addtoxreftable(0,0);
 $this->libtopdf[$oid] = $o;
 $this->pdftolib[$o] = $oid;
 }
 }

 /* First characters represent the version
 * of the PDF spec to conform to.
 * The PDF spec recommends that the next
 * four bytes be a comment containing four
 * non-ASCII characters, to convince
 * (for example) ftp programs that this is
 * a binary file
 */
 $os = "%PDF-1.3%\xe2\xe3\xcf\xd3\x0a";

 // Create the Document Catalog
 $carray["Type"] = "/Catalog";
 $carray["Pages"] = "2 0 R";
 $temp = $this->_makedictionary($carray);
 $temp = "1 0 obj" . $temp . "endobj\x0a";
 $this->xreftable[1]["offset"] = strlen($os);
 $os .= $temp;

 // Create the root page node
 unset($carray);
 $kids = $this->_order_pages(2);
 $this->xreftable[2]["offset"] = strlen($os);
 $os .= "2 0 " . $this->_makepagenode($kids, "") . "\x0a";

 /* Create a resource dictionary for the entire
 * PDF file. This may not be the most efficient
 * way to store it, but it makes the code simple.
 * At some point, we should analyze performance
 * and see if it's worth splitting the resource
 * dictionary up
 */
 unset($temp);
 unset($carray);
 if (isset($this->builddata["fonts"]) && count($this->builddata["fonts"]) > 0) {
 foreach ($this->builddata["fonts"] as $id => $base) {
 $ta["F$id"] = $this->libtopdf[$id] . " 0 R";
 }
 $temp["Font"] = $this->_makedictionary($ta);
 }
 reset($this->objects);
 while (list($id, $obj) = each($this->objects)) {
 if ($obj["type"] == "image") {
 $xol["Img$id"] = $this->libtopdf[$id] . " 0 R";
 }
 }
 if (isset($xol) && count($xol) > 0) {
 $temp["XObject"] = $this->_makedictionary($xol);
 }
 $this->xreftable[3]["offset"] = strlen($os);
 $os .= "3 0 obj";
 if (isset($temp)) {
 $os .= $this->_makedictionary($temp);
 } else {
 $os .= '<<>>';
 }
 $os .= " endobj\x0a";

 // Go through and add the rest of the objects
 foreach ($this->pdftolib as $pdfoid => $liboid) {
 if ($pdfoid < 4) {
 continue;
 }
 // Set the location of the start
 $this->xreftable[$pdfoid]["offset"] = strlen($os);
 switch ($this->objects[$liboid]["type"]) {
 case "page":
 $kids = $this->_get_kids($pdfoid);
 $os .= $pdfoid . " 0 ";
 $os .= $this->_makepage($this->objects[$liboid]["parent"],
 $kids, $liboid);
 break;

 case "rectangle":
 $os .= $pdfoid . " 0 obj";
 $os .= $this->_streamify($this->_make_rect($liboid));
 $os .= " endobj";
 break;

 case "line":
 $os .= $pdfoid . " 0 obj";
 $os .= $this->_streamify($this->_make_line($liboid));
 $os .= " endobj";
 break;

 case "circle":
 $os .= $pdfoid . " 0 obj";
 $os .= $this->_streamify($this->_make_circle($liboid));
 $os .= " endobj";
 break;

 case "texts":
 $os .= $pdfoid . " 0 obj";
 $temp = $this->_make_text($liboid);
 $os .= $this->_streamify($temp) . " endobj";
 break;

 case "mstream":
 $os .= $pdfoid . " 0 obj" .
 $this->_streamify(trim($this->objects[$liboid]["data"])) .
 " endobj";
 break;

 case "image":
 $os .= $pdfoid . " 0 obj";
 $os .= $this->_make_raw_image($liboid);
 $os .= " endobj";
 break;

 case "iplace":
 $os .= $pdfoid . " 0 obj";
 $os .= $this->_streamify($this->_place_raw_image($liboid));
 $os .= " endobj";
 break;

 case "font" :
 $os .= $pdfoid . " 0 obj";
 unset ($temp);
 $temp["Type"] = "/Font";
 $temp["Subtype"] = "/" . $this->objects[$liboid]["subtype"];
 $temp["BaseFont"] = "/" . $this->objects[$liboid]["basefont"];
 $temp["Encoding"] = "/WinAnsiEncoding";
 $temp["Name"] = "/F$liboid";
 $os .= $this->_makedictionary($temp);
 $os .= " endobj";
 break;
 }
 $os .= "\x0a";
 }

 // Create an Info entry
 $info = $this->_addtoxreftable(0,0);
 $this->xreftable[$info]["offset"] = strlen($os);
 unset($temp);
 $temp["Producer"] =
 $this->_stringify("phppdflib http://www.potentialtech.com/ppl.php");
 $os .= $info . " 0 obj" . $this->_makedictionary($temp) . " endobj\x0a";

 // Create the xref table
 $this->builddata["startxref"] = strlen($os);
 $os .= "xref\x0a0 " . (string)($this->nextobj + 1) . "\x0a";
 for ($i = 0; $i <= $this->nextobj; $i ++) {
 $os .= sprintf("%010u %05u %s \x0a", $this->xreftable[$i]["offset"],
 $this->xreftable[$i]["gennum"],
 $this->xreftable[$i]["free"]);
 }

 // Create document trailer
 $os .= "trailer\x0a";
 unset($temp);
 $temp["Size"] = $this->nextobj + 1;
 $temp["Root"] = "1 0 R";
 $temp["Info"] = $info . " 0 R";
 $os .= $this->_makedictionary($temp);
 $os .= "\x0astartxref\x0a";
 $os .= $this->builddata["startxref"] . "\x0a";

 // Required end of file marker
 $os .= "%%EOF\x0a";

 return $os;
 }

 function png_embed($data)
 {
 // Sanity, make sure this is a png
 if (substr($data, 0, 8) != "\x89PNG\x0d\x0a\x1a\x0a") {
 $this->_push_error(6011, 'brand not valid');
 return false;
 }
 $data = substr($data, 12);
 if (substr($data, 0, 4) != 'IHDR') {
 	$this->_push_error(6011, 'IHDR chunk missing');
 return false;
 }
 $data = substr($data, 4);
 $width = $this->_int_val(substr($data, 0, 4));
 $height = $this->_int_val(substr($data, 4, 4));
 $data = substr($data, 8);
 $bpc = ord(substr($data, 0, 1));
 $ct = ord(substr($data, 1, 1));
 if ($bpc > 8) {
 $this->_push_error(6014, '16 bit PNG unsupported');
 return false;
 }
 switch ($ct) {
 case 0 : $cspace = '/DeviceGray'; break;
 case 2 : $cspace = '/DeviceRGB'; break;
 case 3 : $cspace = '/Indexed'; break;
 default:
 $this->_push_error(6015, 'PNG with alpha not supported');
 return false;
 }
 if (ord(substr($data, 2, 1)) != 0) {
 $this->_push_error(6016, 'Unknown compression type');
 return false;
 }
 if (ord(substr($data, 3, 1)) != 0) {
 $this->_push_error(6017, 'Unknown PNG filter method');
 return false;
 }
 if (ord(substr($data, 4, 1)) != 0) {
 $this->_push_error(6018, 'PNG interlacing not supported');
 return false;
 }
 $params['Predictor'] = '15';
 $params['Colors'] = $ct == 2 ? 3 : 1;
 $params['BitsPerComponent'] = $bpc;
 $params['Columns'] = $width;
 $additional['DecodeParms'] = $this->_makedictionary($params);
 $data = substr($data, 9);
 $pal = '';
 $trns = '';
 $rawdata = '';
 do {
 $n = $this->_int_val(substr($data, 0, 4));
 $type = substr($data, 4, 4);
 $data = substr($data, 8);
 switch ($type) {
 case 'PLTE' :
 $pal = substr($data, 0, $n);
 $data = substr($data, $n + 4);
 break;

 case 'tRNS' :
 $t = substr($data, 0, $n);
 if ($ct == 0)
 $trns = array(ord(substr($t, 1, 1)));
 elseif ($ct == 2)
 $trns = array(ord(substr($t, 1, 1)),
 ord(substr($t, 3, 1)),
 ord(substr($t, 5, 1)));
 else {
 $pos = strpos($t, chr(0));
 if (is_int($pos))
 $trns = array($pos);
 }
 $data = substr($data, $n + 4);
 break;

 case 'IDAT' :
 $rawdata .= substr($data, 0, $n);
 $data = substr($data, $n + 4);
 break;

 case 'IEND' :
 break 2;

 default :
 $data = substr($data, $n + 4);
 }
 } while ($n);
 if ($cspace == '/Indexed') {
 $this->_push_error(6011, 'Indexed without palette');
 return false;
 }
 return $this->image_raw_embed($rawdata,
 $cspace,
 $bpc,
 $height,
 $width,
 '/FlateDecode',
 $additional);
 }

 function jfif_embed($data)
 {
 /* Sanity check: Check magic numbers to see if
 * this is really a JFIF stream
 */
 if (substr($data, 0, 4) != "\xff\xd8\xff\xe0" ||
 substr($data, 6, 4) != "JFIF") {
 // This is not in JFIF format
 $this->_push_std_error(6008);
 return false;
 }

 /* Now we'll scan through all the markers in the
 * JFIF and extract whatever data we need from them
 * We're not being terribly anal about validating
 * the structure of the JFIF, so a corrupt stream
 * could have very unpredictable results
 */
 // Default values
 $pos = 0;
 $size = strlen($data);

 while ($pos < $size) {
 $marker = substr($data, $pos + 1, 1);
 // Just skip these markers
 if ($marker == "\xd8" || $marker == "\xd9" || $marker == "\x01") {
 $pos += 2;
 continue;
 }
 if ($marker == "\xff") {
 $pos ++;
 continue;
 }

 switch ($marker) {
 // Start of frame
 // Baseline
 case "\xc0":
 // Extended sequential
 case "\xc1":
 // Differential sequential
 case "\xc5":
 // Progressive
 case "\xc2":
 // differential progressive
 case "\xc6":
 // Lossless
 case "\xc3":
 // differential lossless
 case "\xc7":
 // Arithmetic encoded
 case "\xc9":
 case "\xca":
 case "\xcb":
 case "\xcd":
 case "\xce":
 case "\xcf":
 $precision = $this->_int_val(substr($data, $pos + 4, 1));
 $height = $this->_int_val(substr($data, $pos + 5, 2));
 $width = $this->_int_val(substr($data, $pos + 7, 2));
 $numcomp = $this->_int_val(substr($data, $pos + 9, 1));
 if ($numcomp != 3 && $numcomp != 1) {
 // Abort if we aren't encoded as B&W or YCbCr
 $this->_push_std_error(6008);
 return false;
 }
 $pos += 2 + $this->_int_val(substr($data, $pos + 2, 2));
 break 2;
 }

 /* All marker identifications continue the
 * loop, thus if we got here, we need to skip
 * this marker as we don't understand it.
 */
 $pos += 2 + $this->_int_val(substr($data, $pos + 2, 2));
 }
 $cspace = $numcomp == 1 ? "/DeviceGray" : "/DeviceRGB";
 return $this->image_raw_embed($data,
 $cspace,
 $precision,
 $height,
 $width,
 "/DCTDecode");
 }

 function image_raw_embed($data,
 $cspace,
 $bpc,
 $height,
 $width,
 $filter = "",
 $addtl = array())
 {
 $o = $this->_addnewoid();
 $t['additional'] = $addtl;
 $t['data'] = $data;
 $t['colorspace'] = $cspace;
 $t['bpc'] = $bpc;
 $t['type'] = "image";
 $t['height'] = $height;
 $t['width'] = $width;
 $t['filter'] = $filter;
 $this->objects[$o] = $t;
 return $o;
 }

 function get_image_size($id)
 {
 if ($this->objects[$id]['type'] != 'image') {
 $this->_push_std_error(6009);
 return false;
 }
 $r['width'] = $this->objects[$id]['width'];
 $r['height'] = $this->objects[$id]['height'];
 return $r;
 }

 function image_place($oid, $bottom, $left, $parent, $param = array())
 {
 if ($this->objects[$oid]["type"] != "image") {
 $this->_push_std_error(6009);
 return false;
 }
 if ($this->objects[$parent]["type"] != "page") {
 $this->_push_std_error(6001);
 return false;
 }

 $o = $this->_addnewoid();
 $param = $this->_resolve_param($param, false);
 $t["type"] = "iplace";
 $this->_adjust_margin($left, $bottom, $parent);
 $t["bottom"] = $bottom;
 $t["left"] = $left;
 $t["parent"] = $parent;
 // find out what the image size should be
 $width = $this->objects[$oid]["width"];
 $height = $this->objects[$oid]["height"];
 $scale = $param['scale'];
 if (is_array($scale)) {
 $t["xscale"] = $scale["x"] * $width;
 $t["yscale"] = $scale["y"] * $height;
 } else {
 $t["xscale"] = $scale * $width;
 $t["yscale"] = $scale * $height;
 }
 $t["rotation"] = $param['rotation'];
 $t["image"] = $oid;
 $this->objects[$o] = $t;
 return $o;
 }

 function strlen($string , $params = false, $tabwidth = 4)
 {
 if ($this->needsset) {
 require_once(dirname(__FILE__) . '/strlen.inc.php');
 }
 if (empty($params["font"])) {
 $font = $this->default['font'];
 } else {
 $font = $params["font"];
 switch ($font) {
 case "Times-Roman" :
 $font = "Times";
 break;
 case "Helvetica-Oblique" :
 $font = "Helvetica";
 break;
 case "Helvetica-BoldOblique" :
 $font = "Helvetica-Bold";
 break;
 case "ZapfDingbats" :
 $font = "Dingbats";
 break;
 }
 }
 if ($params["height"] == 0) {
 $size = $this->default['height'];
 } else {
 $size = $params["height"];
 }
 $tab = '';
 for ($i = 0; $i < $tabwidth; $i++) {
 	$tab .= ' ';
 }
 $string = str_replace(chr(9), $tab, $string);
 if (substr($font, 0, 7) == "Courier") {
 // Courier is a fixed-width font
 $width = strlen($string) * 600;
 } else {
 $width = 0;
 $len = strlen($string);
 for ($i = 0; $i < $len; $i++) {
 $width += $this->widths[$font][ord($string{$i})];
 }
 }
 // We now have the string width in font units
 return $width * $size / 1000;
 }

 function wrap_line(&$text, $width, $param = array())
 {
 $maxchars = (int)(1.1 * $width / $this->strlen("i", $param));
 $words = explode(" ", substr($text, 0, $maxchars));
 if ($this->strlen($words[0]) >= $width) {
 $this->_push_error(3001, "Single token too long for allowed space");
 $final = $words[0];
 } else {
 $space = $this->strlen(" ", $param);
 $len = 0;
 $word = 0;
 $final = "";
 while ($len < $width) {
 if ($word >= count($words)) {
 break;
 }
 $temp = $this->strlen($words[$word], $param);
 if (($len + $temp) <= $width) {
 $final .= $words[$word] . " ";
 $word ++;
 }
 $len += $space + $temp;
 }
 }
 $text = substr($text, strlen($final));
 return $final;
 }

 function word_wrap($words, $width, $param = array())
 {
 // break $words into an array separated by manual paragraph break character
 $paragraph = explode("\n", $words);
 // find the width of 1 space in this font
 $swidth = $this->strlen(" " , $param);
 // uses each element of $paragraph array and splits it at spaces
 for ($lc = 0; $lc < count($paragraph); $lc++){
 while (strlen($paragraph[$lc]) > 0) {
 $returnarray[] = $this->wrap_line($paragraph[$lc], $width, $param);
 }
 }
 return $returnarray;
 }

 function draw_one_paragraph($top, $left, $bottom, $right, $text, $page, $param = array())
 {
 $param = $this->_resolve_param($param);
 $height = 1.1 * $param['height'];
 $width = $right - $left;
 while ($top > $bottom) {
 if (strlen($text) < 1) {
 break;
 }
 $top -= $height;
 if ($top >= $bottom) {
 $line = $this->wrap_line($text, $width, $param);
 switch ($param['align']) {
 case 'right' :
 $line = trim($line);
 $l = $right - $this->strlen($line, $param);
 break;

 case 'center' :
 $line = trim($line);
 $l = $left + (($width - $this->strlen($line, $param)) / 2);
 break;

 default :
 $l = $left;
 }
 $this->draw_text($l, $top, $line, $page, $param);
 } else {
 $top += $height;
 break;
 }
 }
 if (strlen($text) > 0) {
 return $text;
 } else {
 return $top;
 }
 }

 function draw_paragraph($top, $left, $bottom, $right, $text, $page, $param = array())
 {
 $paras = split("\n", $text);
 for ($i = 0; $i < count($paras); $i++) {
 $over = $this->draw_one_paragraph($top,
 $left,
 $bottom,
 $right,
 $paras[$i],
 $page,
 $param);
 if (is_string($over)) {
 break;
 }
 $top = $over;
 }
 $rv = $over;
 if ($i < count($paras)) {
 for ($x = $i + 1; $x < count($paras); $x++) {
 $rv .= "\n" . $paras[$x];
 }
 }
 return $rv;
 }

 function error_array()
 {
 $rv = array();
 while (count($this->ermsg) > 0) {
 $this->pop_error($num, $msg);
 $rv[] = "Error $num: $msg";
 }
 return $rv;
 }

 function pop_error(&$num, &$msg)
 {
 $num = array_pop($this->erno);
 $msg = array_pop($this->ermsg);
 if (is_null($num)) {
 	return false;
 } else {
	 return $num;
 }
 }

 function enable($name)
 {
 	$name = strtolower($name);
 @include_once(dirname(__FILE__) . "/${name}.class.php");
 $this->x[$name] = new $name;
 $this->x[$name]->pdf = &$this;
 switch ($name) {
 case 'chart' :
 case 'template' :
	 $this->$name = &$this->x[$name];
 break;
 }
 }

 function get_color($desc)
 {

 $r = array();
 switch (strtolower($desc)) {
 case 'black' :
 $r['red'] = $r['blue'] = $r['green'] = 0;
 break;

 case 'white' :
 $r['red'] = $r['blue'] = $r['green'] = 1;
 break;

 case 'red' :
 $r['red'] = 1;
 $r['blue'] = $r['green'] = 0;
 break;

 case 'blue' :
 $r['blue'] = 1;
 $r['red'] = $r['green'] = 0;
 break;

 case 'green' :
 $r['green'] = 1;
 $r['blue'] = $r['red'] = 0;
 break;

 default :
 	if (substr($desc, 0, 1) == '#') {
 	// Parse out a hex triplet
 $v = substr($desc, 1, 2);
 $r['red'] = eval("return ord(\"\\x$v\");") / 255;
 $v = substr($desc, 3, 2);
 $r['green'] = eval("return ord(\"\\x$v\");") / 255;
 $v = substr($desc, 5, 2);
 $r['blue'] = eval("return ord(\"\\x$v\");") / 255;
 } else {
 	// Error condition?
 $this->_push_error(6012, "Unparsable color identifier: $desc");
 $r = false;
 }
 }
 return $r;
 }

/**
 * These functions are internally used by the library *
 * and shouldn't really be called by a user of *
 * phppdflib *
 **/

 function _resolve_mode($attrib, $mode)
 {
 $rmode = $attrib[$mode];
 if ($rmode != 0) {
 $r = $rmode;
 } else {
 switch ($rmode) {
 case "fill":
 $r = 0;
 break;

 case "stroke":
 $r = 1;
 break;

 case "fill+stroke":
 $r = 2;
 break;
 }
 }
 return $r;
 }

 function _adjust_margin(&$x, &$y, $page)
 {
 $x += $this->objects[$page]['margin-left'];
 $y += $this->objects[$page]['margin-bottom'];
 }

 function _resolve_param($param, $text = true)
 {
 $rv = $this->default;
 if (is_array($param)) {
 if (isset($param['mode'])) {
 $param['tmode'] = $param['smode'] = $param['mode'];
 }
 foreach ($param as $key => $value) {
 $rv[$key] = $value;
 }
 }
 return $rv;
 }

 function _push_error($num, $msg)
 {
 array_push($this->erno, $num);
 array_push($this->ermsg, $msg);
 }

 function _push_std_error($num)
 {
 switch ($num) {
 case 6001 : $m = "Object must be of type 'page'"; break;
 case 6008 : $m = "Data stream not recognized as JFIF"; break;
 case 6009 : $m = "Object must be of type 'image'"; break;
 case 6011 : $m = "Data stream not recognized as PNG"; break;
 default : $m = "_push_std_error() called with invalid error number: $num"; break;
 }
 $this->_push_error($num, $m);
 }

 function _resolve_colors(&$n, $attrib)
 {
 $temp = array('red','green','blue');
 foreach ($temp as $colcomp) {
 if (isset($attrib['fillcolor'][$colcomp])) {
 $n['fillcolor'][$colcomp] = $attrib['fillcolor'][$colcomp];
 }
 if (isset($attrib['strokecolor'][$colcomp])) {
 $n['strokecolor'][$colcomp] = $attrib['strokecolor'][$colcomp];
 }
 }
 }

 /* Check to see if a requested font is already in the
 * list, if not add it. Either way, return the libid
 * of the font
 */
 function _use_font($id)
 {
 if (!isset($id['font'])) {
 $id['font'] = $this->default['font'];
 }
 if (isset($this->builddata["fonts"]) && count($this->builddata["fonts"]) > 0) {
 foreach ($this->builddata["fonts"] as $libid => $name) {
 if ($name == $id['font']) {
 return $libid;
 }
 }
 }
 /* The font isn't in the table, so we add it
 * and return it's ID
 */
 return $this->new_font($id['font']);
 }

 /* Convert a big-endian byte stream into an integer */
 function _int_val($string)
 {
 $r = 0;
 for ($i = 0; $i < strlen($string); $i ++) {
 $r += ord($string{$i}) * pow(256, strlen($string) - $i -1);
 }
 return $r;
 }

 function _make_raw_image($liboid)
 {
 if (is_array($this->objects[$liboid]['additional']))
 $s = $this->objects[$liboid]['additional'];
 $s["Type"] = "/XObject";
 $s["Subtype"] = "/Image";
 $s["Width"] = $this->objects[$liboid]["width"];
 $s["Height"] = $this->objects[$liboid]["height"];
 $s["ColorSpace"] = $this->objects[$liboid]["colorspace"];
 $s["BitsPerComponent"] = $this->objects[$liboid]["bpc"];
 if (strlen($this->objects[$liboid]["filter"]) > 0) {
 $s["Filter"] = $this->objects[$liboid]["filter"];
 }
 return $this->_streamify($this->objects[$liboid]["data"], $s);
 }

 function _place_raw_image($liboid)
 {
 $xscale = $this->objects[$liboid]["xscale"];
 $yscale = $this->objects[$liboid]["yscale"];
 $angle = $this->objects[$liboid]["rotation"];
 $temp = "q 1 0 0 1 " .
 $this->objects[$liboid]["left"] . " " .
 $this->objects[$liboid]["bottom"] . " cm ";
 if ($angle != 0) {
 $temp .= $this->_rotate($angle) . " cm ";
 }
 if ($xscale != 1 || $yscale != 1) {
 $temp .= "$xscale 0 0 $yscale 0 0 cm ";
 }
 $temp .= "/Img" . $this->objects[$liboid]["image"] .
 " Do Q\x0a";
 return $temp;
 }

 function _rotate($angle)
 {
 $a = deg2rad($angle);
 $cos = cos($a);
 $sin = sin($a);
 $r = sprintf("%1\$1.6f %2\$1.6f %3\$1.6f %1\$1.6f 0 0", $cos, $sin, -$sin);
 return $r;
 }

 function _get_operator($liboid)
 {
 switch ($this->objects[$liboid]['mode']) {
 case 0 : return "f"; break;
 case 1 : return "S"; break;
 case 2 : return "b"; break;
 }
 }

 function _make_line($liboid)
 {
 $gstate = "";
 if ($colortest = $this->_colorset($liboid)) {
 $gstate .= $colortest . " ";
 }
 if (isset($this->objects[$liboid]["width"]) && $this->objects[$liboid]["width"] != 1) {
 $gstate .= $this->objects[$liboid]["width"] . " w ";
 }
 $firstpoint = true;
 $temp = "";
 foreach ($this->objects[$liboid]["x"] as $pointid => $x) {
 $y = $this->objects[$liboid]["y"][$pointid];
 $temp .= $x . " " . $y . " ";
 if ($firstpoint) {
 $temp .= "m ";
 $firstpoint = false;
 } else {
 $temp .= "l ";
 }
 }
 $temp .= $this->_get_operator($liboid);
 if (strlen($gstate) > 0) {
 $temp = "q " . $gstate . $temp . " Q";
 }
 return $temp . "\x0a";
 }

 function _make_rect($liboid)
 {
 $gstate = "";
 if ($colortest = $this->_colorset($liboid)) {
 $gstate .= $colortest . " ";
 }
 if (isset($this->objects[$liboid]["width"]) && $this->objects[$liboid]["width"] != 1) {
 $gstate .= $this->objects[$liboid]["width"] . " w ";
 }
 $temp = $this->objects[$liboid]["left"] . " ";
 $temp .= $this->objects[$liboid]["bottom"];
 $temp .= " " . ($this->objects[$liboid]["right"]
 - $this->objects[$liboid]["left"]);
 $temp .= " " . ($this->objects[$liboid]["top"]
 - $this->objects[$liboid]["bottom"]);
 $temp .= ' re ';
 $temp .= $this->_get_operator($liboid);
 if (strlen($gstate) > 0) {
 $temp = "q " . $gstate . $temp . " Q";
 }
 return $temp . "\x0a";
 }

 function _make_circle($liboid)
 {
 $gstate = "";
 if ($colortest = $this->_colorset($liboid)) {
 $gstate .= $colortest . " ";
 }
 if (isset($this->objects[$liboid]["width"]) && $this->objects[$liboid]["width"] != 1) {
 $gstate .= $this->objects[$liboid]["width"] . " w ";
 }
 $r = $this->objects[$liboid]['radius'];
 $x = $this->objects[$liboid]['x'];
 $y = $this->objects[$liboid]['y'];
 $ql = $x - $r;
 $pt = $y + $r * 1.33333;
 $qr = $x + $r;
 $pb = $y - $r * 1.33333;
 $temp = "$ql $y m ";
 $temp .= "$ql $pt $qr $pt $qr $y c ";
 $temp .= "$qr $pb $ql $pb $ql $y c ";
 $temp .= $this->_get_operator($liboid);
 if (strlen($gstate) > 0) {
 $temp = "q " . $gstate . $temp . " Q";
 }
 return $temp . "\x0a";
 }

 function _make_text($liboid)
 {
 $statechange = ""; $locateinbt = true;
 $statechange = $this->_colorset($liboid);
 if (isset($this->objects[$liboid]["rotation"]) && $this->objects[$liboid]["rotation"] != 0) {
 $statechange .= "1 0 0 1 " .
 $this->objects[$liboid]["left"] . " " .
 $this->objects[$liboid]["bottom"] . " cm " .
 $this->_rotate($this->objects[$liboid]["rotation"]) .
 " cm ";
 $locateinbt = false;
 }
 $temp = "BT ";
 if ($this->objects[$liboid]["mode"] != 0) {
 $temp .= $this->objects[$liboid]["mode"] .
 " Tr ";
 // Adjust stroke width
 $statechange .= $this->objects[$liboid]["height"] / 35 . " w ";
 }
 $temp .= "/F" . $this->objects[$liboid]["font"] . " ";
 $temp .= $this->objects[$liboid]["height"];
 $temp .= " Tf ";
 if ($locateinbt) {
 $temp .= $this->objects[$liboid]["left"] . " " .
 $this->objects[$liboid]["bottom"];
 } else {
 $temp .= "0 0";
 }
 $temp .= " Td ";
 $temp .= $this->_stringify($this->objects[$liboid]["text"]);
 $temp .= " Tj ";
 $temp .= "ET";
 if (strlen($statechange) > 0) {
 $temp = "q " . $statechange . $temp . " Q";
 }
 return $temp . "\x0a";
 }

 function _colorset($libid)
 {
 $red = isset($this->objects[$libid]['fillcolor']["red"]) ? (float)$this->objects[$libid]['fillcolor']["red"] : 0;
 $green = isset($this->objects[$libid]['fillcolor']["green"]) ? (float)$this->objects[$libid]['fillcolor']["green"] : 0;
 $blue = isset($this->objects[$libid]['fillcolor']["blue"]) ? (float)$this->objects[$libid]['fillcolor']["blue"] : 0;
 if (($red > 0) || ($green > 0) || ($blue > 0)) {
 $r = $red . " " . $green . " " . $blue;
 $r .= " rg ";
 } else {
 $r = "";
 }
 $red = isset($this->objects[$libid]['strokecolor']["red"]) ? (float)$this->objects[$libid]['strokecolor']["red"] : 0;
 $green = isset($this->objects[$libid]['strokecolor']["green"]) ? (float)$this->objects[$libid]['strokecolor']["green"] : 0;
 $blue = isset($this->objects[$libid]['strokecolor']["blue"]) ? (float)$this->objects[$libid]['strokecolor']["blue"] : 0;
 if (($red > 0) || ($green > 0) || ($blue > 0)) {
 $r .= $red . " " . $green . " " . $blue;
 $r .= " RG ";
 }
 return $r;
 }

 /* Used to determine what pdflib objects need converted
 * to actual PDF objects.
 */
 function _becomes_object($object)
 {
 if ($object == "null") {
 return false;
 }
 return true;
 }

 /* builds an array of child objects */
 function _get_kids($pdfid)
 {
 $libid = $this->pdftolib[$pdfid];
 foreach($this->objects as $obid => $object) {
 if (isset($object["parent"]) && $object["parent"] == $libid) {
 $kids[] = $this->libtopdf[$obid] . " 0 R";
 }
 }
 return $kids;
 }

 /* builds an array of pages, in order */
 function _order_pages($pdfid)
 {
 $libid = $this->pdftolib[$pdfid];
 foreach($this->objects as $obid => $object) {
 if (isset($object["parent"]) && $object["parent"] == $libid) {
 $kids[$object["number"]] = $this->libtopdf[$obid] . " 0 R";
 }
 }
 ksort($kids);
 return $kids;
 }

 /* simple helper function to return the current oid
 * and increment it by one
 */
 function _addnewoid()
 {
 $o = $this->nextoid;
 $this->nextoid++;
 return $o;
 }

 /* The xreftable will contain a list of all the
 * objects in the pdf file and the number of bytes
 * from the beginning of the file that the object
 * occurs. Each time we add an object, we call this
 * to record it's location, then call ->_genxreftable()
 * to generate the table from array
 */
 function _addtoxreftable($offset, $gennum)
 {
 $this->nextobj ++;
 $this->xreftable[$this->nextobj]["offset"] = $offset;
 $this->xreftable[$this->nextobj]["gennum"] = $gennum;
 $this->xreftable[$this->nextobj]["free"] = "n";
 return $this->nextobj;
 }

 /* Returns a properly formatted pdf dictionary
 * containing entries specified by
 * the array $entries
 */
 function _makedictionary($entries)
 {
 $rs = "<<\x0a";
 if (isset($entries) && count($entries) > 0) {
 foreach ($entries as $key => $value) {
 $rs .= "/" . $key . " " . $value . "\x0a";
 }
 }
 $rs .= ">>";
 return $rs;
 }

 /* returns a properly formatted pdf array */
 function _makearray($entries)
 {
 $rs = "[";
 if (is_array($entries)) {
 foreach ($entries as $entry) {
 $rs .= $entry . " ";
 }
 } else {
 $rs .= $entries;
 }
 $rs = rtrim($rs) . "]";
 return $rs;
 }

 /* Returns a properly formatted string, with any
 * special characters escaped
 */
 function _stringify($string)
 {
 // Escape potentially problematic characters
 $string = preg_replace("-\\\\-","\\\\\\\\",$string);
 $bad = array ("-\(-", "-\)-");
 $good = array ("\\(", "\\)");
 $string = preg_replace($bad,$good,$string);
 return "(" . rtrim($string) . ")";
 }

 function _streamify($data, $sarray = array())
 {
 /* zlib compression is a compile time option
 * for php, thus we need to make sure it's
 * available before using it.
 */
 $go = true;
 if (function_exists('gzcompress') && $this->builddata['compress']) {
 if (!isset($sarray['Filter']) || strlen($sarray['Filter']) == 0) {
 $sarray['Filter'] = '/FlateDecode';
 } else {
 if ($sarray['Filter'] != '/FlateDecode')
 $sarray['Filter'] = '[/FlateDecode ' . $sarray['Filter'] . ']';
 else
 $go = false;
 }
 if ($go) $data = gzcompress($data, $this->builddata['compress']);
 }
 $sarray['Length'] = strlen($data);
 $os = $this->_makedictionary($sarray);
 $os .= "stream\x0a" . $data . "\x0aendstream";
 return $os;
 }

 /* Returns a properly formatted page node
 * page nodes with 0 kids are not created
 */
 function _makepagenode($kids, $addtlopts = false)
 {
 $parray["Type"] = "/Pages";
 if (isset($kids) AND count($kids) > 0) {
 // Array of child objects
 $parray["Kids"] = $this->_makearray($kids);
 // Number of pages
 $parray["Count"] = count($kids);
 } else {
 // No kids is an error condition
 $this->_push_error(600, "Pagenode has no children");
 return false;
 }
 if (is_array($addtlopts)) {
 foreach ($addtlopts as $key => $value) {
 $parray[$key] = $value;
 }
 }

 /* The resource dictionary is always object 3
 */
 $parray["Resources"] = "3 0 R";

 $os = $this->_makedictionary($parray);
 $os = "obj" . $os . "endobj";
 return $os;
 }

 function _makepage($parent, $contents, $liboid)
 {
 $parray["Type"] = "/Page";
 $parray["Parent"] = $this->libtopdf[$parent] . " 0 R";
 $parray["Contents"] = $this->_makearray($contents);
 $parray["MediaBox"] = "[0 0 "
 . $this->objects[$liboid]["width"] . " "
 . $this->objects[$liboid]["height"] . "]";
 $os = $this->_makedictionary($parray);
 $os = "obj" . $os . "endobj";
 return $os;
 }

}
?>

www/data/phppdflib/strlen.inc.php

<?php
/*
 php pdf generation library
 Copyright (C) Potential Technologies 2002 - 2003
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: strlen.inc.php,v 2.1 2003/02/03 14:59:11 wmoran Exp $
*/

$this->needsset = false;
$this->widths['Symbol']= array (32 => 250, 33 => 333, 34 => 713, 35 => 500, 36 => 549,
 37 => 833, 38 => 778, 39 => 439, 40 => 333, 41 => 333,
 42 => 500, 43 => 549, 44 => 250, 45 => 549, 46 => 250,
 47 => 278, 48 => 500, 49 => 500, 50 => 500, 51 => 500,
 52 => 500, 53 => 500, 54 => 500, 55 => 500, 56 => 500,
 57 => 500, 58 => 278, 59 => 278, 60 => 549, 61 => 549,
 62 => 549, 63 => 444, 64 => 549, 65 => 722, 66 => 667,
 67 => 722, 68 => 612, 69 => 611, 70 => 763, 71 => 603,
 72 => 722, 73 => 333, 74 => 631, 75 => 722, 76 => 686,
 77 => 889, 78 => 722, 79 => 722, 80 => 768, 81 => 741,
 82 => 556, 83 => 592, 84 => 611, 85 => 690, 86 => 439,
 87 => 768, 88 => 645, 89 => 795, 90 => 611, 91 => 333,
 92 => 863, 93 => 333, 94 => 658, 95 => 500, 96 => 500,
 97 => 631, 98 => 549, 99 => 549, 100 => 494, 101 => 439,
 102 => 521, 103 => 411, 104 => 603, 105 => 329, 106 => 603,
 107 => 549, 108 => 549, 109 => 576, 110 => 521, 111 => 549,
 112 => 549, 113 => 521, 114 => 549, 115 => 603, 116 => 439,
 117 => 576, 118 => 713, 119 => 686, 120 => 493, 121 => 686,
 122 => 494, 123 => 480, 124 => 200, 125 => 480, 126 => 549,
 161 => 620, 162 => 247, 163 => 549, 164 => 167, 165 => 713,
 166 => 500, 167 => 753, 168 => 753, 169 => 753, 170 => 753,
 171 => 1042, 172 => 987, 173 => 603, 174 => 987, 175 => 603,
 176 => 400, 177 => 549, 178 => 411, 179 => 549, 180 => 549,
 181 => 713, 182 => 494, 183 => 460, 184 => 549, 185 => 549,
 186 => 549, 187 => 549, 188 => 1000, 189 => 603, 190 => 1000,
 191 => 658, 192 => 823, 193 => 686, 194 => 795, 195 => 987,
 196 => 768, 197 => 768, 198 => 823, 199 => 768, 200 => 768,
 201 => 713, 202 => 713, 203 => 713, 204 => 713, 205 => 713,
 206 => 713, 207 => 713, 208 => 768, 209 => 713, 210 => 790,
 211 => 790, 212 => 890, 213 => 823, 214 => 549, 215 => 250,
 216 => 713, 217 => 603, 218 => 603, 219 => 1042, 220 => 987,
 221 => 603, 222 => 987, 223 => 603, 224 => 494, 225 => 329,
 226 => 790, 227 => 790, 228 => 786, 229 => 713, 230 => 384,
 231 => 384, 232 => 384, 233 => 384, 234 => 384, 235 => 384,
 236 => 494, 237 => 494, 238 => 494, 239 => 494, 241 => 329,
 242 => 274, 243 => 686, 244 => 686, 245 => 686, 246 => 384,
 247 => 384, 248 => 384, 249 => 384, 250 => 384, 251 => 384,
 252 => 494, 253 => 494, 254 => 494);
$this->widths['Dingbats'] = array (32 => 278, 33 => 974, 34 => 961, 35 => 974, 36 => 980,
 37 => 719, 38 => 789, 39 => 790, 40 => 791, 41 => 690,
 42 => 960, 43 => 939, 44 => 549, 45 => 855, 46 => 911,
 47 => 933, 48 => 911, 49 => 945, 50 => 974, 51 => 755,
 52 => 846, 53 => 762, 54 => 761, 55 => 571, 56 => 677,
 57 => 763, 58 => 760, 59 => 759, 60 => 754, 61 => 494,
 62 => 552, 63 => 537, 64 => 577, 65 => 692, 66 => 786,
 67 => 788, 68 => 788, 69 => 790, 70 => 793, 71 => 794,
 72 => 816, 73 => 823, 74 => 789, 75 => 841, 76 => 823,
 77 => 833, 78 => 816, 79 => 831, 80 => 923, 81 => 744,
 82 => 723, 83 => 749, 84 => 790, 85 => 792, 86 => 695,
 87 => 776, 88 => 768, 89 => 792, 90 => 759, 91 => 707,
 92 => 708, 93 => 682, 94 => 701, 95 => 826, 96 => 815,
 97 => 789, 98 => 789, 99 => 707, 100 => 687, 101 => 696,
 102 => 689, 103 => 786, 104 => 787, 105 => 713, 106 => 791,
 107 => 785, 108 => 791, 109 => 873, 110 => 761, 111 => 762,
 112 => 762, 113 => 759, 114 => 759, 115 => 892, 116 => 892,
 117 => 788, 118 => 784, 119 => 438, 120 => 138, 121 => 277,
 122 => 415, 123 => 392, 124 => 392, 125 => 668, 126 => 668,
 161 => 732, 162 => 544, 163 => 544, 164 => 910, 165 => 667,
 166 => 760, 167 => 760, 168 => 776, 169 => 595, 170 => 694,
 171 => 626, 172 => 788, 173 => 788, 174 => 788, 175 => 788,
 176 => 788, 177 => 788, 178 => 788, 179 => 788, 180 => 788,
 181 => 788, 182 => 788, 183 => 788, 184 => 788, 185 => 788,
 186 => 788, 187 => 788, 188 => 788, 189 => 788, 190 => 788,
 191 => 788, 192 => 788, 193 => 788, 194 => 788, 195 => 788,
 196 => 788, 197 => 788, 198 => 788, 199 => 788, 200 => 788,
 201 => 788, 202 => 788, 203 => 788, 204 => 788, 205 => 788,
 206 => 788, 207 => 788, 208 => 788, 209 => 788, 210 => 788,
 211 => 788, 212 => 894, 213 => 838, 214 => 1016, 215 => 458,
 216 => 748, 217 => 924, 218 => 748, 219 => 918, 220 => 927,
 221 => 928, 222 => 928, 223 => 834, 224 => 873, 225 => 828,
 226 => 924, 227 => 924, 228 => 917, 229 => 930, 230 => 931,
 231 => 463, 232 => 883, 233 => 836, 234 => 836, 235 => 867,
 236 => 867, 237 => 696, 238 => 696, 239 => 874, 241 => 874,
 242 => 760, 243 => 946, 244 => 771, 245 => 865, 246 => 771,
 247 => 888, 248 => 967, 249 => 888, 250 => 831, 251 => 873,
 252 => 927, 253 => 970, 254 => 918);
$this->widths['Helvetica-Bold'] = array (32 => 278, 33 => 333, 34 => 474, 35 => 556,
 36 => 556, 37 => 889, 38 => 722, 39 => 278,
 40 => 333, 41 => 333, 42 => 389, 43 => 584,
 44 => 278, 45 => 333, 46 => 278, 47 => 278,
 48 => 556, 49 => 556, 50 => 556, 51 => 556,
 52 => 556, 53 => 556, 54 => 556, 55 => 556,
 56 => 556, 57 => 556, 58 => 333, 59 => 333,
 60 => 584, 61 => 584, 62 => 584, 63 => 611,
 64 => 975, 65 => 722, 66 => 722, 67 => 722,
 68 => 722, 69 => 667, 70 => 611, 71 => 778,
 72 => 722, 73 => 278, 74 => 556, 75 => 722,
 76 => 611, 77 => 833, 78 => 722, 79 => 778,
 80 => 667, 81 => 778, 82 => 722, 83 => 667,
 84 => 611, 85 => 722, 86 => 667, 87 => 944,
 88 => 667, 89 => 667, 90 => 611, 91 => 333,
 92 => 278, 93 => 333, 94 => 584, 95 => 556,
 96 => 278, 97 => 556, 98 => 611, 99 => 556,
 100 => 611, 101 => 556, 102 => 333, 103 => 611,
 104 => 611, 105 => 278, 106 => 278, 107 => 556,
 108 => 278, 109 => 889, 110 => 611, 111 => 611,
 112 => 611, 113 => 611, 114 => 389, 115 => 556,
 116 => 333, 117 => 611, 118 => 556, 119 => 778,
 120 => 556, 121 => 556, 122 => 500, 123 => 389,
 124 => 280, 125 => 389, 126 => 584, 161 => 333,
 162 => 556, 163 => 556, 164 => 167, 165 => 556,
 166 => 556, 167 => 556, 168 => 556, 169 => 238,
 170 => 500, 171 => 556, 172 => 333, 173 => 333,
 174 => 611, 175 => 611, 177 => 556, 178 => 556,
 179 => 556, 180 => 278, 182 => 556, 183 => 350,
 184 => 278, 185 => 500, 186 => 500, 187 => 556,
 188 => 1000, 189 => 1000, 191 => 611, 193 => 333,
 194 => 333, 195 => 333, 196 => 333, 197 => 333,
 198 => 333, 199 => 333, 200 => 333, 202 => 333,
 203 => 333, 205 => 333, 206 => 333, 207 => 333,
 208 => 1000, 225 => 1000, 227 => 370, 232 => 611,
 233 => 778, 234 => 1000, 235 => 365, 241 => 889,
 245 => 278, 248 => 278, 249 => 611, 250 => 944,
 251 => 611);
$this->widths['Helvetica'] = array (32 => 278, 33 => 278, 34 => 355, 35 => 556, 36 => 556,
 37 => 889, 38 => 667, 39 => 222, 40 => 333, 41 => 333,
 42 => 389, 43 => 584, 44 => 278, 45 => 333, 46 => 278,
 47 => 278, 48 => 556, 49 => 556, 50 => 556, 51 => 556,
 52 => 556, 53 => 556, 54 => 556, 55 => 556, 56 => 556,
 57 => 556, 58 => 278, 59 => 278, 60 => 584, 61 => 584,
 62 => 584, 63 => 556, 64 => 1015, 65 => 667, 66 => 667,
 67 => 722, 68 => 722, 69 => 667, 70 => 611, 71 => 778,
 72 => 722, 73 => 278, 74 => 500, 75 => 667, 76 => 556,
 77 => 833, 78 => 722, 79 => 778, 80 => 667, 81 => 778,
 82 => 722, 83 => 667, 84 => 611, 85 => 722, 86 => 667,
 87 => 944, 88 => 667, 89 => 667, 90 => 611, 91 => 278,
 92 => 278, 93 => 278, 94 => 469, 95 => 556, 96 => 222,
 97 => 556, 98 => 556, 99 => 500, 100 => 556, 101 => 556,
 102 => 278, 103 => 556, 104 => 556, 105 => 222, 106 => 222,
 107 => 500, 108 => 222, 109 => 833, 110 => 556, 111 => 556,
 112 => 556, 113 => 556, 114 => 333, 115 => 500, 116 => 278,
 117 => 556, 118 => 500, 119 => 722, 120 => 500, 121 => 500,
 122 => 500, 123 => 334, 124 => 260, 125 => 334, 126 => 584,
 161 => 333, 162 => 556, 163 => 556, 164 => 167, 165 => 556,
 166 => 556, 167 => 556, 168 => 556, 169 => 191, 170 => 333,
 171 => 556, 172 => 333, 173 => 333, 174 => 500, 175 => 500,
 177 => 556, 178 => 556, 179 => 556, 180 => 278, 182 => 537,
 183 => 350, 184 => 222, 185 => 333, 186 => 333, 187 => 556,
 188 => 1000, 189 => 1000, 191 => 611, 193 => 333, 194 => 333,
 195 => 333, 196 => 333, 197 => 333, 198 => 333, 199 => 333,
 200 => 333, 202 => 333, 203 => 333, 205 => 333, 206 => 333,
 207 => 333, 208 => 1000, 225 => 1000, 227 => 370, 232 => 556,
 233 => 778, 234 => 1000, 235 => 365, 241 => 889, 245 => 278,
 248 => 222, 249 => 611, 250 => 944, 251 => 611);
$this->widths['Times'] = array (32 => 250, 33 => 333, 34 => 408, 35 => 500, 36 => 500,
 37 => 833, 38 => 778, 39 => 333, 40 => 333, 41 => 333,
 42 => 500, 43 => 564, 44 => 250, 45 => 333, 46 => 250,
 47 => 278, 48 => 500, 49 => 500, 50 => 500, 51 => 500,
 52 => 500, 53 => 500, 54 => 500, 55 => 500, 56 => 500,
 57 => 500, 58 => 278, 59 => 278, 60 => 564, 61 => 564,
 62 => 564, 63 => 444, 64 => 921, 65 => 722, 66 => 667,
 67 => 667, 68 => 722, 69 => 611, 70 => 556, 71 => 722,
 72 => 722, 73 => 333, 74 => 389, 75 => 722, 76 => 611,
 77 => 889, 78 => 722, 79 => 722, 80 => 556, 81 => 722,
 82 => 667, 83 => 556, 84 => 611, 85 => 722, 86 => 722,
 87 => 944, 88 => 722, 89 => 722, 90 => 611, 91 => 333,
 92 => 278, 93 => 333, 94 => 469, 95 => 500, 96 => 333,
 97 => 444, 98 => 500, 99 => 444, 100 => 500, 101 => 444,
 102 => 333, 103 => 500, 104 => 500, 105 => 278, 106 => 278,
 107 => 500, 108 => 278, 109 => 778, 110 => 500, 111 => 500,
 112 => 500, 113 => 500, 114 => 333, 115 => 389, 116 => 278,
 117 => 500, 118 => 500, 119 => 722, 120 => 500, 121 => 500,
 122 => 444, 123 => 480, 124 => 200, 125 => 480, 126 => 541,
 161 => 333, 162 => 500, 163 => 500, 164 => 167, 165 => 500,
 166 => 500, 167 => 500, 168 => 500, 169 => 180, 170 => 444,
 171 => 500, 172 => 333, 173 => 333, 174 => 556, 175 => 556,
 177 => 500, 178 => 500, 179 => 500, 180 => 250, 182 => 453,
 183 => 350, 184 => 333, 185 => 444, 186 => 444, 187 => 500,
 188 => 1000, 189 => 1000, 191 => 444, 193 => 333, 194 => 333,
 195 => 333, 196 => 333, 197 => 333, 198 => 333, 199 => 333,
 200 => 333, 202 => 333, 203 => 333, 205 => 333, 206 => 333,
 207 => 333, 208 => 1000, 225 => 889, 227 => 276, 232 => 611,
 233 => 722, 234 => 889, 235 => 310, 241 => 667, 245 => 278,
 248 => 278, 249 => 500, 250 => 722, 251 => 500);
$this->widths['Times-Bold'] = array (32 => 250, 33 => 333, 34 => 555, 35 => 500, 36 => 500,
 37 => 1000, 38 => 833, 39 => 333, 40 => 333, 41 => 333,
 42 => 500, 43 => 570, 44 => 250, 45 => 333, 46 => 250,
 47 => 278, 48 => 500, 49 => 500, 50 => 500, 51 => 500,
 52 => 500, 53 => 500, 54 => 500, 55 => 500, 56 => 500,
 57 => 500, 58 => 333, 59 => 333, 60 => 570, 61 => 570,
 62 => 570, 63 => 500, 64 => 930, 65 => 722, 66 => 667,
 67 => 722, 68 => 722, 69 => 667, 70 => 611, 71 => 778,
 72 => 778, 73 => 389, 74 => 500, 75 => 778, 76 => 667,
 77 => 944, 78 => 722, 79 => 778, 80 => 611, 81 => 778,
 82 => 722, 83 => 556, 84 => 667, 85 => 722, 86 => 722,
 87 => 1000, 88 => 722, 89 => 722, 90 => 667, 91 => 333,
 92 => 278, 93 => 333, 94 => 581, 95 => 500, 96 => 333,
 97 => 500, 98 => 556, 99 => 444, 100 => 556, 101 => 444,
 102 => 333, 103 => 500, 104 => 556, 105 => 278, 106 => 333,
 107 => 556, 108 => 278, 109 => 833, 110 => 556, 111 => 500,
 112 => 556, 113 => 556, 114 => 444, 115 => 389, 116 => 333,
 117 => 556, 118 => 500, 119 => 722, 120 => 500, 121 => 500,
 122 => 444, 123 => 394, 124 => 220, 125 => 394, 126 => 520,
 161 => 333, 162 => 500, 163 => 500, 164 => 167, 165 => 500,
 166 => 500, 167 => 500, 168 => 500, 169 => 278, 170 => 500,
 171 => 500, 172 => 333, 173 => 333, 174 => 556, 175 => 556,
 177 => 500, 178 => 500, 179 => 500, 180 => 250, 182 => 540,
 183 => 350, 184 => 333, 185 => 500, 186 => 500, 187 => 500,
 188 => 1000, 189 => 1000, 191 => 500, 193 => 333, 194 => 333,
 195 => 333, 196 => 333, 197 => 333, 198 => 333, 199 => 333,
 200 => 333, 202 => 333, 203 => 333, 205 => 333, 206 => 333,
 207 => 333, 208 => 1000, 225 => 1000, 227 => 300, 232 => 667,
 233 => 778, 234 => 1000, 235 => 330, 241 => 722, 245 => 278,
 248 => 278, 249 => 500, 250 => 722, 251 => 556);
$this->widths['Times-Italic'] = array (32 => 250, 33 => 333, 34 => 420, 35 => 500, 36 => 500,
 37 => 833, 38 => 778, 39 => 333, 40 => 333, 41 => 333,
 42 => 500, 43 => 675, 44 => 250, 45 => 333, 46 => 250,
 47 => 278, 48 => 500, 49 => 500, 50 => 500, 51 => 500,
 52 => 500, 53 => 500, 54 => 500, 55 => 500, 56 => 500,
 57 => 500, 58 => 333, 59 => 333, 60 => 675, 61 => 675,
 62 => 675, 63 => 500, 64 => 920, 65 => 611, 66 => 611,
 67 => 667, 68 => 722, 69 => 611, 70 => 611, 71 => 722,
 72 => 722, 73 => 333, 74 => 444, 75 => 667, 76 => 556,
 77 => 833, 78 => 667, 79 => 722, 80 => 611, 81 => 722,
 82 => 611, 83 => 500, 84 => 556, 85 => 722, 86 => 611,
 87 => 833, 88 => 611, 89 => 556, 90 => 556, 91 => 389,
 92 => 278, 93 => 389, 94 => 422, 95 => 500, 96 => 333,
 97 => 500, 98 => 500, 99 => 444, 100 => 500, 101 => 444,
 102 => 278, 103 => 500, 104 => 500, 105 => 278, 106 => 278,
 107 => 444, 108 => 278, 109 => 722, 110 => 500, 111 => 500,
 112 => 500, 113 => 500, 114 => 389, 115 => 389, 116 => 278,
 117 => 500, 118 => 444, 119 => 667, 120 => 444, 121 => 444,
 122 => 389, 123 => 400, 124 => 275, 125 => 400, 126 => 541,
 161 => 389, 162 => 500, 163 => 500, 164 => 167, 165 => 500,
 166 => 500, 167 => 500, 168 => 500, 169 => 214, 170 => 556,
 171 => 500, 172 => 333, 173 => 333, 174 => 500, 175 => 500,
 177 => 500, 178 => 500, 179 => 500, 180 => 250, 182 => 523,
 183 => 350, 184 => 333, 185 => 556, 186 => 556, 187 => 500,
 188 => 889, 189 => 1000, 191 => 500, 193 => 333, 194 => 333,
 195 => 333, 196 => 333, 197 => 333, 198 => 333, 199 => 333,
 200 => 333, 202 => 333, 203 => 333, 205 => 333, 206 => 333,
 207 => 333, 208 => 889, 225 => 889, 227 => 276, 232 => 556,
 233 => 722, 234 => 944, 235 => 310, 241 => 667, 245 => 278,
 248 => 278, 249 => 500, 250 => 667, 251 => 500);
$this->widths['Times-BoldItalic'] = array (32 => 250, 33 => 389, 34 => 555, 35 => 500, 36 => 500,
 37 => 833, 38 => 778, 39 => 333, 40 => 333, 41 => 333,
 42 => 500, 43 => 570, 44 => 250, 45 => 333, 46 => 250,
 47 => 278, 48 => 500, 49 => 500, 50 => 500, 51 => 500,
 52 => 500, 53 => 500, 54 => 500, 55 => 500, 56 => 500,
 57 => 500, 58 => 333, 59 => 333, 60 => 570, 61 => 570,
 62 => 570, 63 => 500, 64 => 832, 65 => 667, 66 => 667,
 67 => 667, 68 => 722, 69 => 667, 70 => 667, 71 => 722,
 72 => 778, 73 => 389, 74 => 500, 75 => 667, 76 => 611,
 77 => 889, 78 => 722, 79 => 722, 80 => 611, 81 => 722,
 82 => 667, 83 => 556, 84 => 611, 85 => 722, 86 => 667,
 87 => 889, 88 => 667, 89 => 611, 90 => 611, 91 => 333,
 92 => 278, 93 => 333, 94 => 570, 95 => 500, 96 => 333,
 97 => 500, 98 => 500, 99 => 444, 100 => 500, 101 => 444,
 102 => 333, 103 => 500, 104 => 556, 105 => 278, 106 => 278,
 107 => 500, 108 => 278, 109 => 778, 110 => 556, 111 => 500,
 112 => 500, 113 => 500, 114 => 389, 115 => 389, 116 => 278,
 117 => 556, 118 => 444, 119 => 667, 120 => 500, 121 => 444,
 122 => 389, 123 => 348, 124 => 220, 125 => 348, 126 => 570,
 161 => 389, 162 => 500, 163 => 500, 164 => 167, 165 => 500,
 166 => 500, 167 => 500, 168 => 500, 169 => 278, 170 => 500,
 171 => 500, 172 => 333, 173 => 333, 174 => 556, 175 => 556,
 177 => 500, 178 => 500, 179 => 500, 180 => 250, 182 => 500,
 183 => 350, 184 => 333, 185 => 500, 186 => 500, 187 => 500,
 188 => 1000, 189 => 1000, 191 => 500, 193 => 333, 194 => 333,
 195 => 333, 196 => 333, 197 => 333, 198 => 333, 199 => 333,
 200 => 333, 202 => 333, 203 => 333, 205 => 333, 206 => 333,
 207 => 333, 208 => 1000, 225 => 944, 227 => 266, 232 => 611,
 233 => 722, 234 => 944, 235 => 300, 241 => 722, 245 => 278,
 248 => 278, 249 => 500, 250 => 722, 251 => 500);

?>

www/data/phppdflib/template.class.php

<?php
/*
 php pdf generation library - template extension
 Copyright (C) Potential Technologies 2002 - 2003
 http://www.potentialtech.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 $Id: template.class.php,v 2.3 2003/07/05 21:33:07 wmoran Exp $
*/

class template
{

	var $nexttid, $templ;
 var $pdf; // reference to the parent class

 function template()
 {
 	$this->tid = 0;
 }

 function create()
 {
 $temp = $this->nexttid;
 // Stores the next object ID within this template
 $this->templ[$temp]['next'] = 0;
 $this->nexttid ++;
 return $temp;
 }

 function size($tid, $width, $height)
 {
 $this->templ[$tid]["height"] = $height;
 $this->templ[$tid]["width"] = $width;
 return true;
 }

 function rectangle($tid, $bottom, $left, $top, $right, $attrib = array())
 {
 $temp = $this->pdf->_resolve_param($attrib);
 $temp["type"] = "rectangle";
 $temp["top"] = $top;
 $temp["left"] = $left;
 $temp["bottom"] = $bottom;
 $temp["right"] = $right;
 return $this->_add_object($temp, $tid);
 }

 function circle($tid, $cenx, $ceny, $radius, $attrib = array())
 {
		$temp = $this->pdf->_resolve_param($attrib);
 $temp["type"] = "circle";
 $temp["x"] = $cenx;
 $temp["y"] = $ceny;
 $temp["radius"] = $radius;
 return $this->_add_object($temp, $tid);
 }

 function line($tid, $x, $y, $attrib = array())
 {
		$temp = $this->pdf->_resolve_param($attrib);
 $temp["type"] = "line";
 $temp["x"] = $x;
 $temp["y"] = $y;
 return $this->_add_object($temp, $tid);
 }

 function image($tid, $left, $bottom, $width, $height, $image, $attrib = array())
 {
 	$this->ifield($tid, $left, $bottom, $width, $height, false, $image, $attrib);
 }

 function ifield($tid, $left, $bottom, $width, $height, $name, $default = false, $attrib = array())
 {
		$temp = $this->pdf->_resolve_param($attrib);
 $temp['type'] = "ifield";
 $temp['left'] = $left;
 $temp['bottom'] = $bottom;
 $temp['name'] = $name;
 $temp['default'] = $default;
 $temp['width'] = $width;
 $temp['height'] = $height;
 return $this->_add_object($temp, $tid);
 }

 function text($tid, $left, $bottom, $text, $attrib = array())
 {
 	return $this->field($tid, $left, $bottom, false, $text, $attrib);
 }

 function field($tid, $left, $bottom, $name, $default = '', $attrib = array())
 {
 	$temp = $this->pdf->_resolve_param($attrib);
 $temp["type"] = "field";
 $temp["left"] = $left;
 $temp["bottom"] = $bottom;
 $temp["name"] = $name;
 $temp["default"] = $default;
 return $this->_add_object($temp, $tid);
 }

 function paragraph($tid, $bottom, $left, $top, $right, $text, $attrib = array())
 {
		return $this->pfield($tid, $bottom, $left, $top, $right, false, $text, $attrib);
 }

 function pfield($tid, $bottom, $left, $top, $right, $name, $default = '', $attrib = array())
 {
 	$temp = $this->pdf->_resolve_param($attrib);
 $temp['type'] = 'pfield';
 $temp['left'] = $left;
 $temp['bottom'] = $bottom;
 $temp['top'] = $top;
 $temp['right'] = $right;
 $temp['name'] = $name;
 $temp['default'] = $default;
 return $this->_add_object($temp, $tid);
 }

 function place($tid, $page, $left, $bottom, $data = array())
 {
 	$ok = true;
 foreach($this->templ[$tid]["objects"] as $o) {
 switch ($o['type']) {
 case 'rectangle' :
 $ok = $ok && $this->pdf->draw_rectangle($bottom + $o["top"],
 $left + $o["left"],
 $bottom + $o["bottom"],
 $left + $o["right"],
 $page,
 $o);
 break;

 case 'circle' :
 	$ok = $ok && $this->pdf->draw_circle($left + $o['x'],
 						 $bottom + $o['y'],
 $o['radius'],
 $page,
 $o);
 break;

 case 'line' :
 	foreach ($o['x'] as $key => $value) {
 	$o['x'][$key] += $left;
 $o['y'][$key] += $bottom;
 }
 $ok = $ok && $this->pdf->draw_line($o['x'],
 					 $o['y'],
 $page,
 $o);
 break;

 case 'field' :
 $temp = ($o['name'] === false) || !isset($data[$o['name']]) || !strlen($data[$o['name']]) ? $o['default'] : $data[$o['name']];
 $ok = $ok && $this->pdf->draw_text($left + $o['left'],
 $bottom + $o['bottom'],
 $temp,
 $page,
 $o);
 break;

 case 'pfield' :
 $temp = ($o['name'] === false) || !isset($data[$o['name']]) || !strlen($data[$o['name']]) ? $o['default'] : $data[$o['name']];
 $t = $this->pdf->draw_paragraph($bottom + $o['top'],
 $left + $o['left'],
 $bottom + $o['bottom'],
 $left + $o['right'],
 $temp,
 $page,
 $o);
 if (is_string($t)) {
 	$ok = false;
 $this->pdf->_push_error(6013, "Text overflowed available area: $t");
 }
 	break;

 case 'ifield' :
 	$temp = ($o['name'] === false) || empty($data[$o['name']]) ? $o['default'] : $data[$o['name']];
 if ($temp === false) {
 	break;
 }
 $id = $this->pdf->get_image_size($temp);
 unset($o['scale']);
 $o['scale']['x'] = $o['width'] / $id['width'];
 $o['scale']['y'] = $o['height'] / $id['height'];
 $ok = $ok && $this->pdf->image_place($temp,
 						 $o['bottom'] + $bottom,
 $o['left'] + $left,
 $page,
 $o);
 break;
 }
 }
 return $ok;
 }

	/* Private methods
 */

 function _add_object($objarray, $tid)
 {
 	$oid = $this->templ[$tid]["next"];
 $this->templ[$tid]["next"] ++;
 $this->templ[$tid]["objects"][$oid] = $objarray;
 return $oid;
 }

}
?>

