Distributing Python Modules
Release 2.6.4

Guido van Rossum

Fred L. Drake, Jr., editor

October 30, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

An Introduction to Distutils 3
1.1 Concepts& Terminology o i i e e e e e 3
1.2 ASimple Example. L e e 3
1.3 General Pythonterminology e e 4
1.4 Distutils-specificterminology. e 5
Writing the Setup Script 7
2.1 Listingwhole packages. 8
2.2 Listingindividualmodules 8
2.3 Describing extension modules. 8
2.4 Relationships between Distributions and Packages. 11
2.5 Installing SCripts. e e e e e 12
2.6 InstallingPackage Data e 12
2.7 Installing Additional Files. e 13
2.8 Additional meta-data L e 13
2.9 Debuggingthe setupscript. e 15
Writing the Setup Configuration File 17
Creating a Source Distribution 19
4.1 Specifyingthefilestodistribute 19
4.2 Manifest-related options 21
Creating Built Distributions 23
5.1 Creating dumb built distributions. 24
5.2 CreatingRPMpackages. 24
5.3 CreatingWindows Installers. e 25
5.4 Cross-compilingon Windows e e 26
5.5 VistaUser Access Control (UAC) s e e e e 27
Registering with the Package Index 29
6.1 The.pypircfile. e e 29
Uploading Packages to the Package Index 31
Examples 33
8.1 Pure Python distribution (boy module) 33
8.2 Pure Python distribution (by package) 34
8.3 Singleextensionmodule. e 35
Extending Distutils 37
9.1 Integratingnew commands. L e e e 37
9.2 Adding new distributiontypes e 38

10 Command Reference 39

10.1 Installing modules: thiastall command family. 39
10.2 Creating a source distribution: tedistcommando 39
11 API Reference 41
11.1 distutils.core — Core Distutils functionality 41
11.2 distutils.ccompiler — CCompilerbaseclass 44
11.3 distutils.unixccompiler —UnixCCompiler 49
11.4 distutils.msvccompiler — MicrosoftCompiler. 49
11.5 distutils.bcppcompiler — Borland Compiler. 49
11.6 distutils.cygwincompiler — CygwinCompiler o 49
11.7 distutils.emxccompiler — OS/2EMX Compiler. oo 50
11.8 distutils.mwerkscompiler — Metrowerks CodeWarrior support. 50
11.9 distutils.archive_util — Archiving utilities L oL 50
11.10distutils.dep_util —Dependencychecking, 50
11.11 distutils.dir_util — Directory tree operations., 51
11.12distutils.file_util — Singlefileoperations. L. 51
11.13distutils.util — Miscellaneous other utility functions. 52
11.14distutils.dist — The Distributionclass., 54
11.15distutils.extension — The Extensionclass. 54
11.16distutils.debug — Distutilsdebugmode 54
11.17distutils.errors — Distutilsexceptions 54
11.18distutils.fancy_getopt — Wrapper around the standard getopt module 54
11.19distutils.filelist — TheFileListclass. o 55
11.20distutils.log — Simple PEP 282-stylelogging. 55
11.21distutils.spawn — Spawn asub-pProCeSS. . . . v v v v i e e e e e 55
11.22distutils.sysconfig — System configuration information 55
11.23distutils.text_file — TheTextFileclass. 56
11.24distutils.version — Versionnumberclasses. oL 58
11.25distutils.cmd — Abstract base class for Distutilscommands 58
11.26distutils.command — Individual Distutilscommands. 58
11.27 distutils.command.bdist — Buildabinaryinstaller 58
11.28distutils.command.bdist_packager — Abstract base class for packagers 58
11.29distutils.command.bdist_dumb — Build a“dumb”installer. 58
11.30distutils.command.bdist_msi — Build a Microsoft Installer binary package. 58
11.31distutils.command.bdist_rpm — Build a binary distribution as a Redhat RPM and SR
11.32distutils.command.bdist_wininst — Build a Windows installer 60
11.33distutils.command.sdist — Build a source distribution. 60
11.34distutils.command.build — Build all flesofapackage. 60
11.35distutils.command.build_clib — Build any C libraries in a package. 60
11.36distutils.command.build_ext — Build any extensionsinapackage 60
11.37distutils.command.build_py — Build the .py/.pyc filesof apackage 60
11.38distutils.command.build_scripts — Build the scripts of a package. 60
11.39distutils.command.clean — Cleanapackage buildarea 60
11.40distutils.command.config — Perform package configuration 60
11.41distutils.command.install —Installapackage. 60
11.42distutils.command.install_data — Install data files from a package 60
11.43distutils.command.install_headers — Install C/C++ header files from a package 60
11.44distutils.command.install_lib — Install library files from a package. 60
11.45distutils.command.install_scripts — Install script files from a package 60
11.46distutils.command.register — Register a module with the Python Package Index. 60
11.47 Creating anew Distutiiscommand 61
A Glossary 63
B About these documents 69
B.1 Contributors to the Python Documentation. 69

C History and License 71

D Copyright
Module Index

Index

83

85

87

Distributing Python Modules, Release 2.6.4

Authors Greg Ward, Anthony Baxter
Email distutils-sig@python.org
Release2.6

Date October 30, 2009

This document describes the Python Distribution Utilities (“Distutils”) from the module developer’s point of view,
describing how to use the Distutils to make Python modules and extensions easily available to a wider audience
with very little overhead for build/release/install mechanics.

CONTENTS

mailto:distutils-sig@python.org

Distributing Python Modules, Release 2.6.4

2 CONTENTS

CHAPTER

ONE

AN INTRODUCTION TO DISTUTILS

This document covers using the Distutils to distribute your Python modules, concentrating on the role of devel-
oper/distributor: if you're looking for information on installing Python modules, you should refer tmsitaling
Python Modulegin Installing Python Moduléschapter.

1.1 Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for users/administrators installing third-party
modules. As a developer, your responsibilities (apart from writing solid, well-documented and well-tested code,
of course!) are:

 Wwrite a setup scriptsetup.py by convention)

« (optional) write a setup configuration file

 create a source distribution

« (optional) create one or more built (binary) distributions
Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it's not always feasible to expect them to
create a multitude of built distributions. It is hoped that a class of intermediaries, palt&dgerswill arise to

address this need. Packagers will take source distributions released by module developers, build them on one or
more platforms, and release the resulting built distributions. Thus, users on the most popular platforms will be
able to install most popular Python module distributions in the most natural way for their platform, without having

to run a single setup script or compile a line of code.

1.2 A Simple Example

The setup script is usually quite simple, although since it's written in Python, there are no arbitrary limits to what
you can do with it, though you should be careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run multiple times in the course of building
and installing your module distribution.

If all you want to do is distribute a module calléab , contained in a fildoo.py , then your setup script can be
as simple as this:

from distutils.core import setup
setup(name =’ foo ',

version =1.0",

py_modules =[’ foo '],

)

Some observations:

Distributing Python Modules, Release 2.6.4

« most information that you supply to the Distutils is supplied as keyword arguments setin®) func-
tion

* those keyword arguments fall into two categories: package metadata (name, version number) and informa-
tion about what'’s in the package (a list of pure Python modules, in this case)

« modules are specified by module name, not filename (the same will hold true for packages and extensions)

« it's recommended that you supply a little more metadata, in particular your name, email address and a URL
for the project (see section'riting the Setup Scridor an example)

To create a source distribution for this module, you would create a setup setigh.py , containing the above
code, and run:

python setup.py sdist

which will create an archive file (e.g., tarball on Unix, ZIP file on Windows) containing your setup script
setup.py , and your moduldoo.py . The archive file will be nametbo-1.0.tar.gz (or.zip), and
will unpack into a directorfoo-1.0

If an end-user wishes to install yofgo module, all she has to do is downlofmb-1.0.tar.gz (or.zip),
unpack it, and—from théo-1.0 directory—run

python setup.py install

which will ultimately copyfoo.py to the appropriate directory for third-party modules in their Python installa-
tion.

This simple example demonstrates some fundamental concepts of the Distutils. First, both developers and in-
stallers have the same basic user interface, i.e. the setup script. The difference is which BistutiEndshey

use: thesdist command is almost exclusively for module developers, wini#gtall is more often for installers
(although most developers will want to install their own code occasionally).

If you want to make things really easy for your users, you can create one or more built distributions for them.
For instance, if you are running on a Windows machine, and want to make things easy for other Windows users,
you can create an executable installer (the most appropriate type of built distribution for this platform) with the
bdist_wininst command. For example:

python setup.py bdist_wininst
will create an executable installépo-1.0.win32.exe , in the current directory.

Other useful built distribution formats are RPM, implemented by lidest rpm command, Solaripkgtool
(bdist_pkgtool), and HP-UXswinstall (bdist_sdux). For example, the following command will create an RPM
file calledfoo-1.0.noarch.rpm

python setup.py bdist_rpm

(Thebdist_rpm command uses thpm executable, therefore this has to be run on an RPM-based system such as
Red Hat Linux, SUSE Linux, or Mandrake Linux.)

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

1.3 General Python terminology

If you're reading this document, you probably have a good idea of what modules, extensions, and so forth are.
Nevertheless, just to be sure that everyone is operating from a common starting point, we offer the following
glossary of common Python terms:

module the basic unit of code reusability in Python: a block of code imported by some other code. Three types
of modules concern us here: pure Python modules, extension modules, and packages.

pure Python module a module written in Python and contained in a singlg file (and possibly associated
.pyc and/or.pyo files). Sometimes referred to as a “pure module.”

4 Chapter 1. An Introduction to Distutils

Distributing Python Modules, Release 2.6.4

extension module a module written in the low-level language of the Python implementation: C/C++ for Python,
Java for Jython. Typically contained in a single dynamically loadable pre-compiled file, e.g. a shared object
(.s0) file for Python extensions on Unix, a DLL (given thgyd extension) for Python extensions on
Windows, or a Java class file for Jython extensions. (Note that currently, the Distutils only handles C/C++
extensions for Python.)

package a module that contains other modules; typically contained in a directory in the filesystem and distin-
guished from other directories by the presence of a fil@it__.py

root package the root of the hierarchy of packages. (This isn't really a package, since it doesn’t have an
__init__.py file. But we have to call it something.) The vast majority of the standard library is in
the root package, as are many small, standalone third-party modules that don’t belong to a larger module
collection. Unlike regular packages, modules in the root package can be found in many directories: in fact,
every directory listed isys.path contributes modules to the root package.

1.4 Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python modules using the Distutils:

module distribution a collection of Python modules distributed together as a single downloadable resource and
meant to be installedn masseExamples of some well-known module distributions are Numeric Python,
PyXML, PIL (the Python Imaging Library), or mxBase. (This would be callgzhekage except that term
is already taken in the Python context: a single module distribution may contain zero, one, or many Python
packages.)

pure module distribution a module distribution that contains only pure Python modules and packages. Some-
times referred to as a “pure distribution.”

non-pure module distribution a module distribution that contains at least one extension module. Sometimes
referred to as a “non-pure distribution.”

distribution root the top-level directory of your source tree (or source distribution); the directory where
setup.py exists. Generallgetup.py will be run from this directory.

1.4. Distutils-specific terminology 5

Distributing Python Modules, Release 2.6.4

6 Chapter 1. An Introduction to Distutils

CHAPTER

TWO

WRITING THE SETUP SCRIPT

The setup script is the centre of all activity in building, distributing, and installing modules using the Distultils.
The main purpose of the setup script is to describe your module distribution to the Distutils, so that the various
commands that operate on your modules do the right thing. As we saw in sécionple Examplabove, the

setup script consists mainly of a call¢etup() , and most information supplied to the Distutils by the module
developer is supplied as keyword argumentseatup()

Here’s a slightly more involved example, which we’ll follow for the next couple of sections: the Distutils’ own
setup script. (Keep in mind that although the Distutils are included with Python 1.6 and later, they also have an
independent existence so that Python 1.5.2 users can use them to install other module distributions. The Distutils’
own setup script, shown here, is used to install the package into Python 1.5.2.)

#!/usr/bin/env python
from distutils.core import setup

setup(hame =’ Distutils ",
version ="1.0",
description =’ Python Distribution Utilities "
author =" Greg Ward’
author_email =" gward@python.net ',
url =" http://www.python.org/sigs/distutils-sig/ ,

packages =[’ distutils , ' distutils.command "1,

)

There are only two differences between this and the trivial one-file distribution presented in ge@iorple
Example more metadata, and the specification of pure Python modules by package, rather than by module. This
is important since the Distutils consist of a couple of dozen modules split into (so far) two packages; an explicit
list of every module would be tedious to generate and difficult to maintain. For more information on the additional
meta-data, see sectiéwditional meta-data

Note that any pathnames (files or directories) supplied in the setup script should be written using the Unix con-
vention, i.e. slash-separated. The Distutils will take care of converting this platform-neutral representation into
whatever is appropriate on your current platform before actually using the pathname. This makes your setup script
portable across operating systems, which of course is one of the major goals of the Distutils. In this spirit, all
pathnames in this document are slash-separated.

This, of course, only applies to pathnames given to Distutils functions. If you, for example, use standard Python
functions such aglob.glob() or os.listdir() to specify files, you should be careful to write portable
code instead of hardcoding path separators:

glob . glob(os . path .join(' mydir ', *subdir ", ' *html "))
os. listdir(os . path . join(" mydir *, ’subdir "))

Distributing Python Modules, Release 2.6.4

2.1 Listing whole packages

Thepackages option tells the Distutils to process (build, distribute, install, etc.) all pure Python modules found
in each package mentioned in thackages list. In order to do this, of course, there has to be a correspon-
dence between package names and directories in the filesystem. The default correspondence is the most obvious

one, i.e. packagdistutils is found in the directongistutils relative to the distribution root. Thus,
when you sayackages = [fo0’] in your setup script, you are promising that the Distutils will find a file
foo/__init__.py (which might be spelled differently on your system, but you get the idea) relative to the

directory where your setup script lives. If you break this promise, the Distutils will issue a warning but still process
the broken package anyways.

If you use a different convention to lay out your source directory, that's no problem: you just have to supply the
package dir option to tell the Distutils about your convention. For example, say you keep all Python source
underlib , so that modules in the “root package” (i.e., not in any package at all) dile inmodules in théoo
package are ifib/ffoo , and so forth. Then you would put

package dir = {"": 'lb '}

in your setup script. The keys to this dictionary are package names, and an empty package name stands for the root
package. The values are directory names relative to your distribution root. In this case, when yacksaes
= [foo’] , You are promising that the fild/foo/__init__.py exists.

Another possible convention is to put tfe package right idib , thefoo.bar package ifib/bar , etc.
This would be written in the setup script as

package dir = {"foo’': 'lib '}

A package: dir entry in thepackage dir dictionary implicitly applies to all packages belguack-
age so thefoo.bar case is automatically handled here. In this example, hapaukages = [foo’,
'foo.bar’] tells the Distutils to look folib/__init__.py andlib/bar/__init__.py . (Keep in
mind that althouglpackage _dir applies recursively, you must explicitly list all packagegpackages : the
Distutils will notrecursively scan your source tree looking for any directory with anit__.py file.)

2.2 Listing individual modules

For a small module distribution, you might prefer to list all modules rather than listing packages—especially the
case of a single module that goes in the “root package” (i.e., no package at all). This simplest case was shown in
sectionA Simple Exampleéhere is a slightly more involved example:

py_modules = [’ modl , ' pkg.mod2 ']

This describes two modules, one of them in the “root” package, the other pkth@ackage. Again, the default
package/directory layout implies that these two modules can be founddd.py andpkg/mod2.py , and that
pkg/__init__.py exists as well. And again, you can override the package/directory correspondence using
thepackage dir option.

2.3 Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing pure Python modules, describing
them to the Distutils is a bit more complicated. Unlike pure modules, it's not enough just to list modules or
packages and expect the Distutils to go out and find the right files; you have to specify the extension name, source
file(s), and any compile/link requirements (include directories, libraries to link with, etc.).

All of this is done through another keyword argumensédup() , theext modules option.ext_modules

is just a list ofExtension instances, each of which describes a single extension module. Suppose your distri-
bution includes a single extension, callies and implemented bjoo.c . If no additional instructions to the
compiler/linker are needed, describing this extension is quite simple:

Extension(’'foo ', ['foo.c '])

8 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.6.4

TheExtension class can be imported frodistutils.core along withsetup() . Thus, the setup script
for a module distribution that contains only this one extension and nothing else might be:

from distutils.core import setup, Extension
setup(name =’ foo ',

version ="1.0",

ext_modules =[Extension('foo ', ['foo.c '],

)

The Extension class (actually, the underlying extension-building machinery implemented blguilee ext
command) supports a great deal of flexibility in describing Python extensions, which is explained in the following
sections.

2.3.1 Extension names and packages

The first argument to thExtension constructor is always the name of the extension, including any package
names. For example,

Extension(foo’, [’src/fool.c ', ’'src/foo2.c]

describes an extension that lives in the root package, while

Extension(' pkg.foo ', [' src/fool.c , ' src/foo2.c '])

describes the same extension in kg package. The source files and resulting object code are identical in both
cases; the only difference is where in the filesystem (and therefore where in Python’s namespace hierarchy) the
resulting extension lives.

If you have a number of extensions all in the same package (or all under the same base package), use the
ext_package keyword argumenttsetup() . Forexample,

setup(...,
ext_package = pkg’,
ext_modules =[Extension('foo ', ['foo.c ']),
Extension(' subpkg.bar ', [' bar.c '])],
)

will compile foo.c to the extensiopkg.foo , andbar.c to pkg.subpkg.bar

2.3.2 Extension source files

The second argument to tiiextension constructor is a list of source files. Since the Distutils currently only
support C, C++, and Objective-C extensions, these are normally C/C++/Objective-C source files. (Be sure to use
appropriate extensions to distinguish C++source files: and.cpp seem to be recognized by both Unix and
Windows compilers.)

However, you can also include SWIG interface | files in the list; thebuild_ext command knows how to deal
with SWIG extensions: it will run SWIG on the interface file and compile the resulting C/C++ file into your
extension.

** SWIG support is rough around the edges and largely untested!
This warning notwithstanding, options to SWIG can be currently passed like this:

setup(...,
ext_modules =[Extension(

’

_foo ", ["foo.i '],
swig_opts =[’-modern ", ’-l./include "N
py_modules =[’ foo '],

)

Or on the commandline like this:

> python setup.py build_ext --swig-opts="-modern -I../include

2.3. Describing extension modules 9

Distributing Python Modules, Release 2.6.4

On some platforms, you can include non-source files that are processed by the compiler and included in your
extension. Currently, this just means Windows message i@)(files and resource definitionr¢) files for
Visual C++. These will be compiled to binary resouraeg) files and linked into the executable.

2.3.3 Preprocessor options

Three optional arguments Extension will help if you need to specify include directories to search or prepro-
cessor macros to define/undefimeclude_dirs , define_macros , andundef_macros

For example, if your extension requires header files initiskide directory under your distribution root, use
theinclude_dirs option:

Extension(foo’, ['foo.c '], include_dirs =[" include '1])

You can specify absolute directories there; if you know that your extension will only be built on Unix systems
with X11R6 installed tdusr , you can get away with

’

Extension(foo ', [' foo.c '], include_dirs =[" Jusr/include/X11 D

You should avoid this sort of non-portable usage if you plan to distribute your code: it's probably better to write
C code like

#include <X11/Xlib.h>

If you need to include header files from some other Python extension, you can take advantage of
the fact that header files are installed in a consistent way by the Disinslsll_header command.

For example, the Numerical Python header files are installed (on a standard Unix installation) to

lusr/local/include/python1.5/Numerical . (The exact location will differ according to your plat-

form and Python installation.) Since the Python include directdnsriocal/include/pythonl1.5 in

this case—is always included in the search path when building Python extensions, the best approach is to write C
code like

#include <Numerical/arrayobject.h>

If you must put theNumerical include directory right into your header search path, though, you can find that
directory using the Distutilgistutils.sysconfig module:

from distutils.sysconfig import get_python_inc
incdir = o0s. path . join(get_python_inc(plat_specific =1), ' Numerical ')
setup(...,

Extension(..., include_dirs =[incdir]),

)

Even though this is quite portable—it will work on any Python installation, regardless of platform—it’s probably
easier to just write your C code in the sensible way.

You can define and undefine pre-processor macros witlléfiae_macros andundef _macros options.
define_macros takes a list ofname, value) tuples, whergname is the name of the macro to define (a
string) andvalue s its value: either a string ddone. (Defining a macrd-OOto None is the equivalent of a
bare#define FOO in your C source: with most compilers, this sEf90to the stringl.) undef_macros is
just a list of macros to undefine.

For example:

Extension(...,
define_macros =[(' NDEBUG, '1"),
(" HAVE_STRFTIME, None)],
undef_macros =[' HAVE_FOO, ' HAVE_BARY])

is the equivalent of having this at the top of every C source file:

#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR

10 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.6.4

2.3.4 Library options

You can also specify the libraries to link against when building your extension, and the directories to search for
those libraries. Thibraries option is a list of libraries to link againdtbrary _dirs is a list of directories

to search for libraries at link-time, amdntime_library_dirs is a list of directories to search for shared
(dynamically loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard library search path on target systems

Extension(...,
libraries =[" gdbm’ , ’readline ')

If you need to link with libraries in a non-standard location, you'll have to include the location in
library_dirs

Extension(...,
library_dirs =[" Jusr/X11R6/lib "1
libraries =[" X11'", "Xt'])

(Again, this sort of non-portable construct should be avoided if you intend to distribute your code.)

** Should mention clib libraries here or somewhere et3e!

2.3.5 Other options

There are still some other options which can be used to handle special cases.

Theextra_objects option is a list of object files to be passed to the linker. These files must not have exten-
sions, as the default extension for the compiler is used.

extra_compile_args andextra_link_args can be used to specify additional command line options for
the respective compiler and linker command lines.

export_symbols is only useful on Windows. It can contain a list of symbols (functions or variables) to
be exported. This option is not needed when building compiled extensions: Distutils will automatically add
initmodule to the list of exported symbols.

2.4 Relationships between Distributions and Packages

A distribution may relate to packages in three specific ways:
1. It can require packages or modules.
2. It can provide packages or modules.
3. It can obsolete packages or modules.
These relationships can be specified using keyword argumentsddsthéls.core.setup() function.

Dependencies on other Python modules and packages can be specified by supplyeqgitbekeyword argu-
ment tosetup() . The value must be a list of strings. Each string specifies a package that is required, and
optionally what versions are sufficient.

To specify that any version of a module or package is required, the string should consist entirely of the module or
package name. Examples includeymodule’ and’xml.parsers.expat’

If specific versions are required, a sequence of qualifiers can be supplied in parentheses. Each qualifier may consist
of a comparison operator and a version number. The accepted comparison operators are:

< > ==

<= >= 1=

2.4. Relationships between Distributions and Packages 11

Distributing Python Modules, Release 2.6.4

These can be combined by using multiple qualifiers separated by commas (and optional whitespace). In this case,
all of the qualifiers must be matched; a logical AND is used to combine the evaluations.

Let’s look at a bunch of examples:

Requires Expression Explanation
==1.0 Only version1.0 is compatible
>1.0, 1=1.5.1, <2.0 Any version afterl.0 and before2.0 is compatible, excert.5.1

Now that we can specify dependencies, we also need to be able to specify what we provide that other distributions
can require. This is done using thevideskeyword argument tsetup() . The value for this keyword is a list

of strings, each of which names a Python module or package, and optionally identifies the version. If the version
is not specified, it is assumed to match that of the distribution.

Some examples:

Provides Expression | Explanation
mypkg Providemypkg, using the distribution version
mypkg (1.1) Providemypkg version 1.1, regardless of the distribution version

A package can declare that it obsoletes other packages usinhsbketekeyword argument. The value for this

is similar to that of theequireskeyword: a list of strings giving module or package specifiers. Each specifier
consists of a module or package name optionally followed by one or more version qualifiers. Version qualifiers
are given in parentheses after the module or package name.

The versions identified by the qualifiers are those that are obsoleted by the distribution being described. If no
qualifiers are given, all versions of the named module or package are understood to be obsoleted.

2.5 Installing Scripts

So far we have been dealing with pure and non-pure Python modules, which are usually not run by themselves but
imported by scripts.

Scripts are files containing Python source code, intended to be started from the command line. Scripts don’t
require Distutils to do anything very complicated. The only clever feature is that if the first line of the script starts
with #! and contains the word “python”, the Distutils will adjust the first line to refer to the current interpreter
location. By default, it is replaced with the current interpreter location.-Téeecutable (or-e) option will

allow the interpreter path to be explicitly overridden.

Thescripts option simply is a list of files to be handled in this way. From the PyXML setup script:

setup(...,
scripts =[’ scripts/xmlproc_parse ", ' scripts/xmlproc_val "]

)

2.6 Installing Package Data

Often, additional files need to be installed into a package. These files are often data that’s closely related to the
package’s implementation, or text files containing documentation that might be of interest to programmers using
the package. These files are calfEtkage data

Package data can be added to packages usimpttiege _data keyword argument to theetup() function.

The value must be a mapping from package name to a list of relative path names that should be copied into
the package. The paths are interpreted as relative to the directory containing the package (information from the
package_dir mapping is used if appropriate); that is, the files are expected to be part of the package in the
source directories. They may contain glob patterns as well.

The path names may contain directory portions; any necessary directories will be created in the installation.

For example, if a package should contain a subdirectory with several data files, the files can be arranged like this
in the source tree:

12 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.6.4

setup.py
src/
mypkg/
__init__.py
module.py
data/
tables.dat
spoons.dat
forks.dat

The corresponding call teetup() might be:

setup(...,
packages =[' mypkg’],
package_dir ={’ mypkg' : ' src/mypkg '},
package data ={’' mypkg’' : [' data/*.dat 1]},
)

New in version 2.4.

2.7 Installing Additional Files

Thedata_files option can be used to specify additional files needed by the module distribution: configuration
files, message catalogs, data files, anything which doesn't fit in the previous categories.

data_files specifies a sequence diectory, files) pairs in the following way:

setup(...,
data_files =[(' bitmaps ', [' bm/bl.gif ', *bm/b2.gif '1J),
(' config ', [' cfg/data.cfg "D,
(’ /etc/init.d ", [7 init-script DI
)

Note that you can specify the directory names where the data files will be installed, but you cannot rename the
data files themselves.

Each @irectory, files) pair in the sequence specifies the installation directory and the files to install there. If
directoryis a relative path, it is interpreted relative to the installation prefix (Pythsyssprefix for pure-
Python packagesys.exec_prefix for packages that contain extension modules). Each file narilesis
interpreted relative to theetup.py script at the top of the package source distribution. No directory information
from filesis used to determine the final location of the installed file; only the name of the file is used.

You can specify thelata_files options as a simple sequence of files without specifying a target directory, but
this is not recommended, and timstall command will print a warning in this case. To install data files directly in
the target directory, an empty string should be given as the directory.

2.8 Additional meta-data

The setup script may include additional meta-data beyond the name and version. This information includes:

2.7. Installing Additional Files 13

Distributing Python Modules, Release 2.6.4

Meta-Data Description Value Notes
name name of the package short string Q)
version version of this release short string [)]
author package author’s name short string 3)
author_email email address of the package author email addresg (3)
maintainer package maintainer's name short string 3)

maintainer_email
url

description
long_description
download_url

email address of the package maintainer
home page for the package

short, summary description of the package
longer description of the package

location where the package may be downloag

email addresg (3)

URL Q)
short string
long string

ledRL (4)

classifiers a list of classifiers list of strings | (4)

platforms a list of platforms list of strings

license license for the package short string (6)
Notes:

1. These fields are required.

. Itis recommended that versions take the farmjor.minor[.patch[.sub]]

2
3. Either the author or the maintainer must be identified.
4

. These fields should not be used if your package is to be compatible with Python versions prior to 2.2.3 or

2.3. The list is available from theyP| website

1. Thelicense
tion from the “License” Trove classifiers. See t@tassifier field. Notice that there's écence
distribution option which is deprecated but still acts as an aliabdense

‘short string’ A single line of text, not more than 200 characters.
‘long string’ Multiple lines of plain text in reStructuredText format (S&é&://docutils.sf.ne)l
‘list of strings’ See below.

None of the string values may be Unicode.

field is a text indicating the license covering the package where the license is not a selec-

Encoding the version information is an art in itself. Python packages generally adhere to the versiomfarmat
jor.minor[.patch][sub]. The major number is O for initial, experimental releases of software. It is incremented for
releases that represent major milestones in a package. The minor number is incremented when important new fea-
tures are added to the package. The patch number increments when bug-fix releases are made. Additional trailing
version information is sometimes used to indicate sub-releases. These are “al,a2,...,aN” (for alpha releases, where
functionality and API may change), “b1,b2,...,bN” (for beta releases, which only fix bugs) and “pr1,pr2,...,prN”

(for final pre-release release testing). Some examples:
0.1.0 the first, experimental release of a package

1.0.1a2 the second alpha release of the first patch version of 1.0

classifiers are specified in a python list:
setup(...,
classifiers =
" Development Status :: 4 - Beta .
" Environment :: Console ",

’

Environment :: Web Environment ,
" Intended Audience :: End Users/Desktop "
Intended Audience :: Developers .

Intended Audience :: System Administrators ",
License :: OSI Approved :: Python Software Foundation License ,
Operating System :: MacOS : MacOS X ",

" Operating System ::

Microsoft :: Windows "
Operating System ::

POSIX ",
Programming Language :: '

Python ,
" Topic :: Communications :: Email ",

14 Chapter 2. Writing the Setup Script

http://pypi.python.org/pypi
http://docutils.sf.net/

Distributing Python Modules, Release 2.6.4

" Topic :: Office/Business ,
" Topic :: Software Development :: Bug Tracking ,
]1

)

If you wish to include classifiers in yowgetup.py file and also wish to remain backwards-compatible with
Python releases prior to 2.2.3, then you can include the following code fragment isgtogcpy before the
setup() call.

patch distutils if it can't cope with the "classifiers" or
"download_url" keywords
from sys import version
if wversion < '223 ':

from distutils.dist import DistributionMetadata
DistributionMetadata . classifiers = None
DistributionMetadata . download_url = None

2.9 Debugging the setup script

Sometimes things go wrong, and the setup script doesn’t do what the developer wants.

Distutils catches any exceptions when running the setup script, and print a simple error message before the script
is terminated. The motivation for this behaviour is to not confuse administrators who don’'t know much about
Python and are trying to install a package. If they get a big long traceback from deep inside the guts of Distutils,
they may think the package or the Python installation is broken because they don't read all the way down to the
bottom and see that it's a permission problem.

On the other hand, this doesn't help the developer to find the cause of the failure. For this purpose, the DISTU-
TILS_DEBUG environment variable can be set to anything except an empty string, and distutils will now print
detailed information what it is doing, and prints the full traceback in case an exception occurs.

2.9. Debugging the setup script 15

Distributing Python Modules, Release 2.6.4

16 Chapter 2. Writing the Setup Script

CHAPTER

THREE

WRITING THE SETUP
CONFIGURATION FILE

Often, it's not possible to write down everything needed to build a distribatipriori: you may need to get some
information from the user, or from the user’'s system, in order to proceed. As long as that information is fairly
simple—a list of directories to search for C header files or libraries, for example—then providing a configuration
file, setup.cfg , for users to edit is a cheap and easy way to solicit it. Configuration files also let you provide
default values for any command option, which the installer can then override either on the command-line or by
editing the config file.

The setup configuration file is a useful middle-ground between the setup script —which, ideally, would be opaque
to installers'—and the command-line to the setup script, which is outside of your control and entirely up to the in-
staller. Infactsetup.cfg (and any other Distutils configuration files present on the target system) are processed
after the contents of the setup script, but before the command-line. This has several useful consequences:

« installers can override some of what you pusetup.py by editingsetup.cfg

* you can provide non-standard defaults for options that are not easily Settip.py

« installers can override anything setup.cfg using the command-line options setup.py
The basic syntax of the configuration file is simple:

[command]
option =value

wherecommands one of the Distutils commands (e.puild_py, install), andoptionis one of the options that
command supports. Any number of options can be supplied for each command, and any number of command
sections can be included in the file. Blank lines are ignored, as are comments, which run#foncharacter

until the end of the line. Long option values can be split across multiple lines simply by indenting the continuation
lines.

You can find out the list of options supported by a particular command with the univédreld option, e.g.

> python setup.py --help build_ext
[...]

Options for ’build_ext’ command:

--build-lib (-b) directory for compiled extension modules
--build-temp (-t) directory for temporary files (build by-products)
--inplace (-i) ignore build-lib and put compiled extensions into the

source directory alongside your pure Python modules
--include-dirs (-I) list of directories to search for header files

--define (-D) C preprocessor macros to define
--undef (-U) C preprocessor macros to undefine
--swig-opts list of SWIG command line options

[..]

1 This ideal probably won't be achieved until auto-configuration is fully supported by the Distutils.

17

Distributing Python Modules, Release 2.6.4

Note that an option spellegfoo-bar on the command-line is spellédo_bar in configuration files.

For example, say you want your extensions to be built “in-place”—that is, you have an extpkgiert , and

you want the compiled extension filext.so on Unix, say) to be put in the same source directory as your pure
Python modulepkg.modl andpkg.mod2 . You can always use theinplace option on the command-line

to ensure this:

python setup.py build_ext --inplace

But this requires that you always specify thoeild_ext command explicitly, and remember to provide
--inplace . An easier way is to “set and forget” this option, by encoding is@&tup.cfg , the configura-
tion file for this distribution:

[build_ext]
inplace =1

This will affect all builds of this module distribution, whether or not you explicitly spetifyid_ext. If you
includesetup.cfg in your source distribution, it will also affect end-user builds—which is probably a bad idea
for this option, since always building extensions in-place would break installation of the module distribution. In
certain peculiar cases, though, modules are built right in their installation directory, so this is conceivably a useful
ability. (Distributing extensions that expect to be built in their installation directory is almost always a bad idea,
though.)

Another example: certain commands take a lot of options that don’'t change from run to run; for example,
bdist_rpm needs to know everything required to generate a “spec” file for creating an RPM distribution. Some of
this information comes from the setup script, and some is automatically generated by the Distutils (such as the list
of files installed). But some of it has to be supplied as optiorsdist_rpm, which would be very tedious to do

on the command-line for every run. Hence, here is a snippet from the Distutilssetup.cfg

[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc_files = CHANGES.txt
README.txt
USAGE.txt
doc/
examples/

Note that thedoc_files option is simply a whitespace-separated string split across multiple lines for readability.
See Also:

Syntax of config filegin Installing Python Module$ in “Installing Python Modules” More information on
the configuration files is available in the manual for system administrators.

18 Chapter 3. Writing the Setup Configuration File

CHAPTER

FOUR

CREATING A SOURCE DISTRIBUTION

As shown in sectior Simple Exampleyou use thesdistcommand to create a source distribution. In the simplest
case,

python setup.py sdist

(assuming you haven't specified asgist options in the setup script or config fileylist creates the archive of the
default format for the current platform. The default format is a gzip’ed tar figeg.§z) on Unix, and ZIP file
on Windows.

You can specify as many formats as you like using-tfmmats option, for example:
python setup.py sdist --formats=gztar,zip

to create a gzipped tarball and a zip file. The available formats are:

Format | Description Notes
zip zip file (.zip) 0),(3)
gztar gzip'ed tar file (tar.gz) 2),(d
bztar bzip2'ed tar file (tar.bz2) | (4)

ztar compressed tar filetar.Zz) | (4)
tar tar file (tar) (4)
Notes:

1. default on Windows
2. default on Unix

3. requires either externaip utility or zipfile module (part of the standard Python library since Python
1.6)

4. requires external utilitiegar and possibly one dfzip, bzip2, or compress

4.1 Specifying the files to distribute

If you don’t supply an explicit list of files (or instructions on how to generate one)sdlit command puts a
minimal default set into the source distribution:

« all Python source files implied by thgy_modules andpackages options
« all C source files mentioned in tlext_modules or libraries options (

** getting C library sources currently broken—nget _source_files() method in
build_clib.py I)

* scripts identified by thecripts option

« anything that looks like a test scriptest/test*.py (currently, the Distutils don’t do anything with

test scripts except include them in source distributions, but in the future there will be a standard for testing
Python module distributions)

19

Distributing Python Modules, Release 2.6.4

« README.txt (or README setup.py (or whatever you called your setup script), aredup.cfg

Sometimes this is enough, but usually you will want to specify additional files to distribute. The typical way to
do this is to write ananifest templatecalledMANIFEST.in by default. The manifest template is just a list of
instructions for how to generate your manifest fNANIFEST, which is the exact list of files to include in your
source distribution. Thedistcommand processes this template and generates a manifest based on its instructions
and what it finds in the filesystem.

If you prefer to roll your own manifest file, the format is simple: one filename per line, regular files (or symlinks to
them) only. If you do supply your owklANIFEST, you must specify everything: the default set of files described
above does not apply in this case.

The manifest template has one command per line, where each command specifies a set of files to include or
exclude from the source distribution. For an example, again we turn to the Distutils’ own manifest template:

include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build

The meanings should be fairly clear: include all files in the distribution root matchimg , all files
anywhere under thexamples directory matching*.txt or *.py , and exclude all directories matching
examples/sample?/build . All of this is doneafter the standard include set, so you can exclude files

from the standard set with explicit instructions in the manifest template. (Or, you can usedtdefaults

option to disable the standard set entirely.) There are several other commands available in the manifest template
mini-language; see sectid@reating a source distribution: the sdist command

The order of commands in the manifest template matters: initially, we have the list of default files as described
above, and each command in the template adds to or removes from that list of files. Once we have fully processed
the manifest template, we remove files that should not be included in the source distribution:

« all files in the Distutils “build” tree (defaubbuild/)
« all files in directories nameRCS CVS .svn , .hg , .git ,.bzr or_darcs

Now we have our complete list of files, which is written to the manifest for future reference, and then used to build
the source distribution archive(s).

You can disable the default set of included files with theo-defaults option, and you can disable the
standard exclude set withno-prune

Following the Distutils’ own manifest template, let’s trace howsdestcommand builds the list of files to include
in the Distutils source distribution:

1. include all Python source files in thiistutils anddistutils/command subdirectories (because
packages corresponding to those two directories were mentioned patth@ges option in the setup
script—see sectiokvriting the Setup Script

2. includeREADME.txt , setup.py , andsetup.cfg (standard files)
3. includetest/test*.py (standard files)

4. include*.txt in the distribution root (this will finAREADME.txt a second time, but such redundancies
are weeded out later)

5. include anything matchinfjtxt or*.py in the sub-tree undexxamples ,

6. exclude all files in the sub-trees starting at directories matawagnples/sample?/build —this may
exclude files included by the previous two steps, so it's important thadrthiee command in the manifest
template comes after thhecursive-include command

7. exclude the entirbuild tree, and an)RCS CVS .svn ,.hg ,.git ,.bzr and_darcs directories

Just like in the setup script, file and directory names in the manifest template should always be slash-separated; the
Distutils will take care of converting them to the standard representation on your platform. That way, the manifest
template is portable across operating systems.

20 Chapter 4. Creating a Source Distribution

Distributing Python Modules, Release 2.6.4

4.2 Manifest-related options

The normal course of operations for thdistcommand is as follows:
« if the manifest file MANIFESTdoesn't exist, reaJANIFEST.in and create the manifest
« if neitherMANIFESTnor MANIFEST.in exist, create a manifest with just the default file set

« if either MANIFEST.in or the setup scriptsetup.py) are more recent thaMANIFEST, recreate
MANIFESTby readingMANIFEST.in

« use the list of files now iIMANIFEST (either just generated or read in) to create the source distribution
archive(s)

There are a couple of options that modify this behaviour. First, usetbedefaults and--no-prune to
disable the standard “include” and “exclude” sets.

Second, you might want to force the manifest to be regenerated—for example, if you have added or removed files
or directories that match an existing pattern in the manifest template, you should regenerate the manifest:

python setup.py sdist --force-manifest
Or, you might just want to (re)generate the manifest, but not create a source distribution:
python setup.py sdist --manifest-only

--manifest-only implies --force-manifest . -0 is a shortcut for-manifest-only , and-f for
--force-manifest

4.2. Manifest-related options 21

Distributing Python Modules, Release 2.6.4

22 Chapter 4. Creating a Source Distribution

CHAPTER

FIVE

CREATING BUILT DISTRIBUTIONS

A “built distribution” is what you're probably used to thinking of either as a “binary package” or an “installer”
(depending on your background). It's not necessarily binary, though, because it might contain only Python source
code and/or byte-code; and we don't call it a package, because that word is already spoken for in Python. (And
“installer” is a term specific to the world of mainstream desktop systems.)

A built distribution is how you make life as easy as possible for installers of your module distribution: for users of
RPM-based Linux systems, it's a binary RPM; for Windows users, it's an executable installer; for Debian-based
Linux users, it's a Debian package; and so forth. Obviously, no one person will be able to create built distributions
for every platform under the sun, so the Distutils are designed to enable module developers to concentrate on
their specialty—writing code and creating source distributions—while an intermediary speciegpeakeders

springs up to turn source distributions into built distributions for as many platforms as there are packagers.

Of course, the module developer could be his own packager; or the packager could be a volunteer “out there”
somewhere who has access to a platform which the original developer does not; or it could be software periodically
grabbing new source distributions and turning them into built distributions for as many platforms as the software
has access to. Regardless of who they are, a packager uses the setup scriptbaiat tenmand family to
generate built distributions.

As a simple example, if | run the following command in the Distutils source tree:
python setup.py bdist

then the Distutils builds my module distribution (the Distutils itself in this case), does a “fake” installation (also
in thebuild directory), and creates the default type of built distribution for my platform. The default format for
built distributions is a “dumb” tar file on Unix, and a simple executable installer on Windows. (That tar file is
considered “dumb” because it has to be unpacked in a specific location to work.)

Thus, the above command on a Unix system crelatssitils-1.0.plat.tar.gz ; unpacking this tarball

from the right place installs the Distutils just as though you had downloaded the source distribution and run
python setup.py install . (The “right place” is either the root of the filesystem or Pythqorsfix

directory, depending on the options given to buist dumb command; the default is to make dumb distributions
relative toprefix)

Obviously, for pure Python distributions, this isn't any simpler than just runrpgithon setup.py

install —but for non-pure distributions, which include extensions that would need to be compiled, it can mean
the difference between someone being able to use your extensions or not. And creating “smart” built distributions,
such as an RPM package or an executable installer for Windows, is far more convenient for users even if your
distribution doesn't include any extensions.

The bdist command has aformats option, similar to thesdist command, which you can use to select the
types of built distribution to generate: for example,

python setup.py bdist --format=zip

would, when run on a Unix system, creddéstutils-1.0.plat.zip —again, this archive would be un-
packed from the root directory to install the Distutils.

The available formats for built distributions are:

23

Distributing Python Modules, Release 2.6.4

Format Description Notes
gztar gzipped tar file gar.gz) 1),(3)
ztar compressed tar filetar.Z) 3)
tar tar file (tar) 3)
zZip zip file (.zip) (4)
rpm RPM (5)
pkgtool Solarispkgtool
sdux HP-UX swinstall
rpm RPM (5)
wininst self-extracting ZIP file for Windows (2),(4)

Notes:
1. default on Unix
2. default on Windows
** to-do! **
3. requires external utilitiegar and possibly one ajzip, bzip2, or compress

4. requires either externaip utility or zipfile module (part of the standard Python library since Python
1.6)

5. requires externajppm utility, version 3.0.4 or better (ugpm --version to find out which version you
have)

You don't have to use thbdist command with the-formats option; you can also use the command that
directly implements the format you're interested in. Some of tHedist “sub-commands” actually generate
several similar formats; for instance, thdist_dumb command generates all the “dumb” archive formads (,
ztar , gztar , andzip), andbdist_rpm generates both binary and source RPMs. Bist sub-commands,
and the formats generated by each, are:

Command Formats
bdist_dumb | tar, ztar, gztar, zip
bdist_rpm rpm, srpm
bdist_wininst | wininst

The following sections give details on the individumist_* commands.

5.1 Creating dumb built distributions

** Need to document absolute vs. prefix-relative packages here, but first | have to implertient it!

5.2 Creating RPM packages

The RPM format is used by many popular Linux distributions, including Red Hat, SUSE, and Mandrake. If one
of these (or any of the other RPM-based Linux distributions) is your usual environment, creating RPM packages
for other users of that same distribution is trivial. Depending on the complexity of your module distribution and
differences between Linux distributions, you may also be able to create RPMs that work on different RPM-based
distributions.

The usual way to create an RPM of your module distribution is to ruidi&t_rpm command:
python setup.py bdist_rpm

or thebdist command with the-format option:

python setup.py bdist --formats=rpm

The former allows you to specify RPM-specific options; the latter allows you to easily specify multiple formats in
one run. If you need to do both, you can explicitly specify multipiisst * commands and their options:

24 Chapter 5. Creating Built Distributions

Distributing Python Modules, Release 2.6.4

python setup.py bdist_ rpm --packager="John Doe <jdoe@example.org>" \
bdist_wininst --target version="2.0"

Creating RPM packages is driven by.spec file, much as using the Distutils is driven by the setup script.

To make your life easier, thedist_rpm command normally creates.gpec file based on the information you
supply in the setup script, on the command line, and in any Distutils configuration files. Various options and
sections in thespec file are derived from options in the setup script as follows:

RPM .spec file option or
section

Distutils setup script option

Name

Summary (in preamble)
Version

Vendor

Copyright
Url
%description (section)

name
description

version

author andauthor_email
maintainer_email

license

url

long_description

, or — & maintainer and

Additionally, there are many options ispec files that don’t have corresponding options in the setup script.
Most of these are handled through options tolitlest_ rpm command as follows:

default value

RPM .spec file option or section | bdist_rpm option
Release release

Group group

Vendor vendor

Packager packager
Provides provides
Requires requires
Conflicts conflicts
Obsoletes obsoletes
Distribution distribution_name
BuildRequires build_requires
Icon icon

Ol
“Development/Libraries”
(see above)

(none)

(none)

(none)

(none)

(none)

(none)

(none)

(none)

Obviously, supplying even a few of these options on the command-line would be tedious and error-prone, so it's
usually best to put them in the setup configuration §i&tup.cfg
File. If you distribute or package many Python module distributions, you might want to put options that apply to
all of them in your personal Distutils configuration fite/ (pydistutils.cfg).

—see sectiofVriting the Setup Configuration

There are three steps to building a binary RPM package, all of which are handled automatically by the Distutils:

1. create aspec file, which describes the package (analogous to the Distutils setup script; in fact, much of

the information in the setup script winds up in tspec file)
2. create the source RPM

3. create the “binary” RPM (which may or may not contain binary code, depending on whether your module
distribution contains Python extensions)

Normally, RPM bundles the last two steps together; when you use the Distutils, all three steps are typically bundled
together.

If you wish, you can separate these three steps. You can usesfiez-only option to makebdist_rpm
just create thespec file and exit; in this case, thapec file will be written to the “distribution directory”—
normallydist/ , but customizable with thedist-dir option. (Normally, thespec file winds up deep in
the “build tree,” in a temporary directory createdIgist_rpm.)

5.3 Creating Windows Installers

Executable installers are the natural format for binary distributions on Windows. They display a nice graphical
user interface, display some information about the module distribution to be installed taken from the metadata in

5.3. Creating Windows Installers 25

Distributing Python Modules, Release 2.6.4

the setup script, let the user select a few options, and start or cancel the installation.

Since the metadata is taken from the setup script, creating Windows installers is usually as easy as running:
python setup.py bdist_wininst

or thebdist command with the-formats option:

python setup.py bdist --formats=wininst

If you have a pure module distribution (only containing pure Python modules and packages), the resulting installer
will be version independent and have a name fd@ 1.0.win32.exe . These installers can even be created
on Unix platforms or Mac OS X.

If you have a non-pure distribution, the extensions can only be created on a Windows platform, and will be Python
version dependent. The installer filename will reflect this and now has thddorh 0.win32-py2.0.exe
You have to create a separate installer for every Python version you want to support.

The installer will try to compile pure modules inbytecodeafter installation on the target system in normal and
optimizing mode. If you don’t want this to happen for some reason, you can rumuliste wininst command with
the--no-target-compile and/or the--no-target-optimize option.

By default the installer will display the cool “Python Powered” logo when it is run, but you can also supply your
own bitmap which must be a Windowlsmp file with the--bitmap option.

The installer will also display a large title on the desktop background window when it is run, which is constructed
from the name of your distribution and the version number. This can be changed to another text by using the
--title option.

The installer file will be written to the “distribution directory” — normaldlist/ , but customizable with the
--dist-dir option.

5.4 Cross-compiling on Windows

Starting with Python 2.6, distutils is capable of cross-compiling between Windows platforms. In practice, this
means that with the correct tools installed, you can use a 32bit version of Windows to create 64bit extensions and
vice-versa.

To build for an alternate platform, specify theglat-name option to the build command. Valid values are
currently ‘win32’, ‘win-amd64’ and ‘win-ia64’. For example, on a 32bit version of Windows, you could execute:

python setup.py build --plat-name=win-amd64

to build a 64bit version of your extension. The Windows Installers also support this option, so the command:
python setup.py build --plat-name=win-amd64 bdist_wininst

would create a 64bit installation executable on your 32bit version of Windows.

To cross-compile, you must download the Python source code and cross-compile Python itself for the platform
you are targetting - it is not possible from a binary installtion of Python (as the .lib etc file for other platforms are
not included.) In practice, this means the user of a 32 bit operating system will need to use Visual Studio 2008 to
open thePCBuild/PCbuild.sIn solution in the Python source tree and build the “x64” configuration of the
‘pythoncore’ project before cross-compiling extensions is possible.

Note that by default, Visual Studio 2008 does not install 64bit compilers or tools. You may need to reexecute the
Visual Studio setup process and select these tools (using Control Panel->[Add/Remove] Programs is a convenient
way to check or modify your existing install.)

5.4.1 The Postinstallation script

Starting with Python 2.3, a postinstallation script can be specified whichitistall-script option. The
basename of the script must be specified, and the script filename must also be listed in the scripts argument to the
setup function.

26 Chapter 5. Creating Built Distributions

Distributing Python Modules, Release 2.6.4

This script will be run at installation time on the target system after all the files have been copieargvitt
set to-install , and again at uninstallation time before the files are removedaxiitf1] set to-remove .

The installation script runs embedded in the windows installer, every owpsis(dout , sys.stderr) is
redirected into a buffer and will be displayed in the GUI after the script has finished.

Some functions especially useful in this context are available as additional built-in functions in the installation
script.

directory_created (path)

file_created (path
These functions should be called when a directory or file is created by the postinstall script at installation
time. It will registerpathwith the uninstaller, so that it will be removed when the distribution is uninstalled.
To be safe, directories are only removed if they are empty.

get_special_folder_path (csidl_string
This function can be used to retrieve special folder locations on Windows like the Start Menu or the Desktop.
It returns the full path to the foldecsidl_stringmust be one of the following strings:

" CSIDL_APPDATA

" CSIDL_COMMON_STARTMENU
" CSIDL_STARTMENU

" CSIDL_COMMON_DESKTOPDIRECTORY
" CSIDL_DESKTOPDIRECTORY

" CSIDL_COMMON_STARTUP
" CSIDL_STARTUP

" CSIDL_COMMON_PROGRAMS
" CSIDL_PROGRAMS

" CSIDL_FONTS

If the folder cannot be retrieve@SError is raised.

Which folders are available depends on the exact Windows version, and probably also the configuration.
For details refer to Microsoft’s documentation of tBelGetSpecialFolderPath() function.

create_shortcut (target, description, filename, [arguments, [workdir, [iconpath, [iconindex]]]]
This function creates a shortctiargetis the path to the program to be started by the shorttegcriptionis
the description of the shortcutlenameis the title of the shortcut that the user will seegumentspecifies
the command line arguments, if anyorkdir is the working directory for the progranconpathis the file
containing the icon for the shortcut, armbnindexis the index of the icon in the fileonpath Again, for
details consult the Microsoft documentation for t&&ellLink interface.

5.5 Vista User Access Control (UAC)

Starting with Python 2.6, bdist_wininst supports-aser-access-control option. The default is ‘none’
(meaning no UAC handling is done), and other valid values are ‘auto’ (meaning prompt for UAC elevation if
Python was installed for all users) and ‘force’ (meaning always prompt for elevation).

5.5. Vista User Access Control (UAC) 27

Distributing Python Modules, Release 2.6.4

28 Chapter 5. Creating Built Distributions

CHAPTER

SIX

REGISTERING WITH THE PACKAGE
INDEX

The Python Package Index (PyPl) holds meta-data describing distributions packaged with distutils. The distutils
commandegister is used to submit your distribution’s meta-data to the index. It is invoked as follows:

python setup.py register
Distutils will respond with the following prompt:

running register

We need to know who you are, so please choose either:

1. use your existing login,

2. register as a new user,

3. have the server generate a new password for you (and email it to you), or
4. quit

Your selection [default 1]:

Note: if your username and password are saved locally, you will not see this menu.

If you have not registered with PyPl, then you will need to do so now. You should choose option 2, and enter your
details as required. Soon after submitting your details, you will receive an email which will be used to confirm
your registration.

Once you are registered, you may choose option 1 from the menu. You will be prompted for your PyPI username
and password, anegister will then submit your meta-data to the index.

You may submit any number of versions of your distribution to the index. If you alter the meta-data for a particular
version, you may submit it again and the index will be updated.

PyPI holds a record for each (name, version) combination submitted. The first user to submit information for a
given name is designated the Owner of that name. They may submit changes throtegistes command or

through the web interface. They may also designate other users as Owners or Maintainers. Maintainers may edit
the package information, but not designate other Owners or Maintainers.

By default PyPI will list all versions of a given package. To hide certain versions, the Hidden property should be
set to yes. This must be edited through the web interface.

6.1 The .pypirc file

The format of thepypirc file is as follows:

[distutils]
index-servers =
pypi

[Pypi]
repository: <repository-url>

29

Distributing Python Modules, Release 2.6.4

username:

password:

<username>
<password>

repositorycan be omitted and defaults ltp://www.python.org/pypi

If you want to define another server a new section can be created:

[distutils]

index-servers =

pypi
other

[pypi]

repository:
username:

password:

[other]

repository:
username:
password:

<repository-url>
<username>
<password>

http://example.com/pypi
<username>
<password>

The command can then be called with the -r option:

python setup.py register -r http://example.com/pypi

Or even with the section name:

python setup.py register -r other

30

Chapter 6. Registering with the Package Index

CHAPTER

SEVEN

UPLOADING PACKAGES TO THE
PACKAGE INDEX

New in version 2.5. The Python Package Index (PyPI) not only stores the package info, but also the package data
if the author of the package wishes to. The distutils commapidad pushes the distribution files to PyPI.

The command is invoked immediately after building one or more distribution files. For example, the command
python setup.py sdist bdist wininst upload

will cause the source distribution and the Windows installer to be uploaded to PyPl. Note that these will be
uploaded even if they are built using an earlier invocatiosatfip.py , but that only distributions named on the
command line for the invocation including topload command are uploaded.

The upload command uses the username, password, and repository URL froftHBBIE/.pypirc file (see
sectionThe .pypirc filefor more on this file).

You can specify another PyPI server with theepository=*url* option:
python setup.py sdist bdist_wininst upload -r http://example.com/pypi
See sectiofhe .pypirc filefor more on defining several servers.

You can use the-sign option to tellupload to sign each uploaded file using GPG (GNU Privacy Guard). The
gpg program must be available for execution on the sysiBANH. You can also specify which key to use for
signing using the-identity=*name* option.

Otherupload options include--repository= or --repository= whereurl is the url of the server and
sectionthe name of the section BHOME/.pypirc , and--show-response (which displays the full response
text from the PyPI server for help in debugging upload problems).

31

Distributing Python Modules, Release 2.6.4

32 Chapter 7. Uploading Packages to the Package Index

CHAPTER

EIGHT

EXAMPLES

This chapter provides a number of basic examples to help get started with distutils. Additional information about
using distutils can be found in the Distutils Cookbook.

See Also:

Distutils Cookbook Collection of recipes showing how to achieve more control over distutils.

8.1 Pure Python distribution (by module)

If you're just distributing a couple of modules, especially if they don't live in a particular package, you can specify
them individually using th@y_modules option in the setup script.

In the simplest case, you'll have two files to worry about: a setup script and the single module you're distributing,
foo.py in this example:

<root>/

setup.py
foo.py

(In all diagrams in this sectiorsroot> will refer to the distribution root directory.) A minimal setup script to
describe this situation would be:

from distutils.core import setup
setup(name =’ foo ',

version ="1.0",

py_modules =[’ foo '],

)

Note that the name of the distribution is specified independently witimainee option, and there’s no rule that

says it has to be the same as the name of the sole module in the distribution (although that's probably a good
convention to follow). However, the distribution name is used to generate filenames, so you should stick to letters,
digits, underscores, and hyphens.

Sincepy_modules is a list, you can of course specify multiple modules, eg. if you're distributing modiotes
andbar , your setup might look like this:

<root>/
setup.py
foo.py
bar.py
and the setup script might be
from distutils.core import setup
setup(name =’ foobar ',
version =" 1.0",
py_modules =[’ foo ', ’bar’],
)

33

http://wiki.python.org/moin/Distutils/Cookbook

Distributing Python Modules, Release 2.6.4

You can put module source files into another directory, but if you have enough modules to do that, it's probably
easier to specify modules by package rather than listing them individually.

8.2 Pure Python distribution (by package)

If you have more than a couple of modules to distribute, especially if they are in multiple packages, it's probably
easier to specify whole packages rather than individual modules. This works even if your modules are not in a
package; you can just tell the Distutils to process modules from the root package, and that works the same as any
other package (except that you don’t have to have anit__.py file).

The setup script from the last example could also be written as

from distutils.core import setup
setup(name =’ foobar ',

version =10,

packages =[],

)

(The empty string stands for the root package.)
If those two files are moved into a subdirectory, but remain in the root package, e.qg.:

<root>/
setup.py
src/ foo.py
bar.py

then you would still specify the root package, but you have to tell the Distutils where source files in the root
package live:

from distutils.core import setup

setup(name =’ foobar ',
version =1.0",

package dir ={'': ’src '},
packages =[],
)

More typically, though, you will want to distribute multiple modules in the same package (or in sub-packages).
For example, if thdoo andbar modules belong in packadeobar , one way to layout your source tree is

<root>/
setup.py
foobar/
__init__.py
foo.py
bar.py

This is in fact the default layout expected by the Distutils, and the one that requires the least work to describe in
your setup script:

from distutils.core import setup
setup(name =’ foobar

version ="1.0",

packages =[’ foobar '],

)

If you want to put modules in directories not named for their package, then you need to pselkhge_dir
option again. For example, if tte¥c directory holds modules in tHfeobar package:

<root>/

setup.py
src/

__init__.py

34 Chapter 8. Examples

Distributing Python Modules, Release 2.6.4

foo.py
bar.py

an appropriate setup script would be

from distutils.core import setup

setup(name =’ foobar ',
version ="1.0",
package dir ={’ foobar
packages =[’ foobar '],

)

Or, you might put modules from your main package right in the distribution root:

"src Y,

<root>/
setup.py
__init__.py
foo.py
bar.py

in which case your setup script would be

from distutils.core import setup

setup(name =’ foobar ',
version ="1.0",

package dir ={’ foobar ': '},
packages =[’ foobar],
)

(The empty string also stands for the current directory.)

If you have sub-packages, they must be explicitly listedaskages , but any entries ipackage_dir auto-
matically extend to sub-packages. (In other words, the Distutils doescan your source tree, trying to figure
out which directories correspond to Python packages by looking fonit__.py files.) Thus, if the default
layout grows a sub-package:

<root>/
setup.py
foobar/
__init__.py
foo.py
bar.py
subfoo/
__init__.py
blah.py
then the corresponding setup script would be
from distutils.core import setup
setup(name =’ foobar ',
version ="1.0",
packages =[’ foobar ', '’ foobar.subfoo '],
)

(Again, the empty string ipackage_dir stands for the current directory.)

8.3 Single extension module

Extension modules are specified using ¢ix¢ modules option. package dir has no effect on where ex-
tension source files are found; it only affects the source for pure Python modules. The simplest case, a single
extension module in a single C source file, is:

8.3. Single extension module 35

Distributing Python Modules, Release 2.6.4

<root>/

setup.py
foo.c

If the foo extension belongs in the root package, the setup script for this could be

from distutils.core import setup
from distutils.extension import Extension
setup(hame =’ foobar ',
version ="1.0",
ext_modules =[Extension(’'foo ', ['foo.c '],
)

If the extension actually belongs in a package, feapkg , then

With exactly the same source tree layout, this extension can be putfodpkg package simply by changing
the name of the extension:

from distutils.core import setup

from distutils.extension import Extension

setup(name =’ foobar ',
version ="1.0",
ext_modules =[Extension(' foopkg.foo ', [’'foo.c '],
)

36 Chapter 8. Examples

CHAPTER

NINE

EXTENDING DISTUTILS

Distutils can be extended in various ways. Most extensions take the form of new commands or replacements
for existing commands. New commands may be written to support new types of platform-specific packaging, for
example, while replacements for existing commands may be made to modify details of how the command operates
on a package.

Most extensions of the distutils are made with@tup.py scripts that want to modify existing commands; many
simply add a few file extensions that should be copied into packages in additjpn tfiles as a convenience.

Most distutils command implementations are subclasses aEtilemandclass fromdistutils.cmd . New
commands may directly inherit fro@ommand while replacements often derive froBommandindirectly, di-
rectly subclassing the command they are replacing. Commands are required to deri@®fronand

9.1 Integrating new commands

There are different ways to integrate new command implementations into distutils. The most difficult is to lobby
for the inclusion of the new features in distutils itself, and wait for (and require) a version of Python that provides
that support. This is really hard for many reasons.

The most common, and possibly the most reasonable for most needs, is to include the new implementations with
yoursetup.py script, and cause thgstutils.core.setup() function use them:

from distutils.command.build_py import build_py as _build_py
from distutils.core import setup

class build_py(_build_py):
""Specialized Python source builder.

implement whatever needs to be different...

setup(cmdclass={build_py": build_py},
)

This approach is most valuable if the new implementations must be used to use a particular package, as everyone
interested in the package will need to have the new command implementation.

Beginning with Python 2.4, a third option is available, intended to allow new commands to be added which can
support existingetup.py scripts without requiring modifications to the Python installation. This is expected to
allow third-party extensions to provide support for additional packaging systems, but the commands can be used
for anything distutils commands can be used for. A new configuration ogiizngnand_packages (command-

line option--command-packages), can be used to specify additional packages to be searched for modules
implementing commands. Like all distutils options, this can be specified on the command line or in a configuration
file. This option can only be set in thiglobal] section of a configuration file, or before any commands on the
command line. If set in a configuration file, it can be overridden from the command line; setting it to an empty
string on the command line causes the default to be used. This should never be set in a configuration file provided
with a package.

37

Distributing Python Modules, Release 2.6.4

This new option can be used to add any number of packages to the list of packages searched for com-
mand implementations; multiple package names should be separated by commas. When not specified, the
search is only performed in theistutils.command package. Whersetup.py is run with the op-

tion --command-packages distcmds,buildcmds , however, the packages$istutils.command .

distcmds , and buildcmds will be searched in that order. New commands are expected to be im-
plemented in modules of the same name as the command by classes sharing the same name. Given the
example command line option above, the commadnttist openpkg could be implemented by the class
distcmds.bdist_openpkg.bdist_openpkg or buildecmds.bdist_openpkg.bdist_openpkg

9.2 Adding new distribution types

Commands that create distributions (files in thi&t/ directory) need to ad¢command, filename) pairs

to self.distribution.dist_files so thatupload can upload it to PyPI. Thienamein the pair contains

no path information, only the name of the file itself. In dry-run mode, pairs should still be added to represent what
would have been created.

38 Chapter 9. Extending Distutils

CHAPTER

TEN

COMMAND REFERENCE

10.1 Installing modules: the install command family

The install command ensures that the build commands have been run and then runs the subcorstatris,
install_data andinstall_scripts.

10.1.1 install_data

This command installs all data files provided with the distribution.

10.1.2 install_scripts

This command installs all (Python) scripts in the distribution.

10.2 Creating a source distribution: the sdist command

** fragment moved down from above: needs cont&kt!

The manifest template commands are:

Command Description

include patl pat2 ... include all files matching any of the listed patterns

exclude patl pat2 ... exclude all files matching any of the listed patterns

recursive-include dir patl include all files undedir matching any of the listed patterns

pat2 ...

recursive-exclude dir patl exclude all files undedir matching any of the listed patterns

pat2 ...

global-include patl pat?2 ... include all files anywhere in the source tree matching — & any of the
listed patterns

global-exclude patl pat2 ... exclude all files anywhere in the source tree matching — & any of the
listed patterns

prune dir exclude all files undedir

graft dir include all files undedir

The patterns here are Unix-style “glob” patterris:matches any sequence of regular flename characers,
matches any single regular filename character,[entje] matches any of the charactersrange(e.g.,a-z ,
a-zA-Z ,a-f0-9_.). The definition of “regular filename character” is platform-specific: on Unix it is anything
except slash; on Windows anything except backslash or colon.

** Windows support not there y&t

39

Distributing Python Modules, Release 2.6.4

40

Chapter 10. Command Reference

CHAPTER

ELEVEN

APl REFERENCE

11.1 distutils.core — Core Distutils functionality

Thedistutils.core module is the only module that needs to be installed to use the Distutils. It provides the
setup() (which is called from the setup script). Indirectly providesdistutils.dist.Distribution
anddistutils.cmd.Command class.
setup (argumenty
The basic do-everything function that does most everything you could ever ask for from a Distutils method.
See XXXXX

The setup function takes a large number of arguments. These are laid out in the following table.

41

Distributing Python Modules, Release 2.6.4

argu- value type
ment

name

name The name of the package a string

version The version number of the package Seedistutils.version
descrip- | Asingle line describing the package | a string

tion

long_descrifgtmmger description of the package a string
author The name of the package author a string
au- The email address of the package authoa string
thor_emalil

main- The name of the current maintainer, if | a string
tainer different from the author

main- The email address of the current
tainer_emailmaintainer, if different from the author

url A URL for the package (homepage) a URL
down- A URL to download the package a URL
load_url

packages | A list of Python packages that distutils | a list of strings
will manipulate
py_modulesA list of Python modules that distutils | a list of strings
will manipulate
scripts A list of standalone script files to be a list of strings
built and installed
ext_modulesA list of Python extensions to be built | A list of instances of

distutils.core.Extension

classifiers | A list of categories for the package The list of available categorizations is at
http://pypi.python.org/pypi?:action=list_classifiers
distclass | theDistribution class to use A subclass of
distutils.core.Distribution
script_nameThe name of the setup.py script - a string

defaults tosys.argv|[0]
script_argg Arguments to supply to the setup script a list of strings

options default options for the setup script a string

license The license for the package a string

keywords | Descriptive meta-data, s&&P 314

platforms

cmdclass | A mapping of command names to a dictionary
Commandsubclasses

data_files | A list of data files to install alist

pack- A mapping of package to directory a dictionary

age_dir names

run_setup (script_name, [script_args=None, stop_after="rui’]

Run a setup script in a somewhat controlled environment, and return the
distutils.dist.Distribution instance that drives things. This is useful if you need to
find out the distribution meta-data (passed as keyword argsgooipt to setup()), or the contents of the
config files or command-line.

script_names a file that will be run withexecfile() sys.argv[0] will be replaced withscript for
the duration of the callscript_argsis a list of strings; if suppliedsys.argv[1:] will be replaced by
script_argsfor the duration of the call.

stop_aftertellssetup() when to stop processing; possible values:

42

Chapter 11. API Reference

http://pypi.python.org/pypi?:action=list_classifiers
http://www.python.org/dev/peps/pep-0314

Distributing Python Modules, Release 2.6.4

1

value description

init Stop after theDistribution instance has been created and populated with the keyword
arguments taetup()

config Stop after config files have been parsed (and their data stored ndtigoution instance)

comman- | Stop after the command-lineys.argv[1:] or script_arg$ have been parsed (and the dats

dline stored in theDistribution instance.)

run Stop after all commands have been run (the samesasip() had been called in the usual
way). This is the default value.

In addition, thedistutils.core module exposed a number of classes that live elsewhere.
« Extension from distutils.extension

 Commandrom distutils.cmd

« Distribution
A short descriptio

classExtension

from distutils.dist

n of each of these follows, but see the relevant module for the full reference.

0

The Extension class describes a single C or C++extension module in a setup script. It accepts the following
keyword arguments in its constructor

argu- value type

ment

name

name the full name of the extension, including any packages —ad¢a filename | string
or pathname, but Python dotted name

sources | list of source filenames, relative to the distribution root (where the setup| string
script lives), in Unix form (slash- separated) for portability. Source files may
be C, C++, SWIG (.i), platform-specific resource files, or whatever else is
recognized by théuild_ext command as source for a Python extension.

in- list of directories to search for C/C++ header files (in Unix form for string

clude_dirg portability)

de- list of macros to define; each macro is defined using a 2-tinaime, (string, string)

fine_macrpvalue) , wherevalueis either the string to define it to dtone to define it | tuple or (hame,
without a particular value (equivalent #flefine FOO in source or None)
-DFOOon Unix C compiler command line)

un- list of macros to undefine explicitly string

def_macros

li- list of directories to search for C/C++ libraries at link time string

brary_dirs

libraries | list of library names (not filenames or paths) to link against string

run- list of directories to search for C/C++ libraries at run time (for shared string

time_libraryexiiensions, this is when the extension is loaded)

ex- list of extra files to link with (eg. object files not implied by ‘sources’, statjcstring

tra_objects library that must be explicitly specified, binary resource files, etc.)

ex- any extra platform- and compiler-specific information to use when compilistring

tra_compiletrerg®urce files in ‘sources’. For platforms and compilers where a command
line makes sense, this is typically a list of command-line arguments, but for
other platforms it could be anything.

ex- any extra platform- and compiler-specific information to use when linking string

tra_link_argsbject files together to create the extension (or to create a new static Python
interpreter). Similar interpretation as for ‘extra_compile_args’.

ex- list of symbols to be exported from a shared extension. Not used on all | string

port_symbopdatforms, and not generally necessary for Python extensions, which
typically export exactly one symbahit + extension_name.

depends | list of files that the extension depends on string

language | extension language (i.&’ ,’c++’ ,’objc’). Will be detected from the | string

source extensions if not provided.

11.1. distutils.co

re — Core Distutils functionality 43

Distributing Python Modules, Release 2.6.4

classDistribution 0
A Distribution describes how to build, install and package up a Python software package.

See thesetup() function for a list of keyword arguments accepted by the Distribution constructor.
setup() creates a Distribution instance.

classCommand)
A Commancclass (or rather, an instance of one of its subclasses) implement a single distutils command.

11.2 distutils.ccompiler — CCompiler base class

This module provides the abstract base class fotiempiler classes. ACCompiler instance can be used
for all the compile and link steps needed to build a single project. Methods are provided to set options for the
compiler — macro definitions, include directories, link path, libraries and the like.

This module provides the following functions.

gen_lib_options (compiler, library_dirs, runtime_library_dirs, librarigs
Generate linker options for searching library directories and linking with specific librditwaries and
library_dirs are, respectively, lists of library names (not filenames!) and search directories. Returns a list of
command-line options suitable for use with some compiler (depending on the two format strings passed in).

gen_preprocess_options (macros, include_dils
Generate C pre-processor optiord (-U, -1) as used by at least two types of compilers: the typical Unix
compiler and Visual C++macross the usual thing, a list of 1- or 2-tuples, whémame,) means undefine
(-U) macroname and(name, value) means define-D) macronameto value include_dirsis just a
list of directory names to be added to the header file search gath Returns a list of command-line
options suitable for either Unix compilers or Visual C++.

get_default_compiler (osname, platforin
Determine the default compiler to use for the given platform.

osnameshould be one of the standard Python OS names (i.e. the ones returoeeséme) andplatform
the common value returned Bys.platform for the platform in question.

The default values ames.name andsys.platform in case the parameters are not given.

new_compiler (plat=None, compiler=None, verbose=0, dry_run=0, force=0
Factory function to generate an instance of some CCompiler subclass for the supplied platform/compiler
combination. plat defaults toos.name (eg. ’'posix’ , 'nt’), andcompiler defaults to the default
compiler for that platform. Currently onlposix’ and’'nt’ are supported, and the default compilers
are “traditional Unix interface”ynixCCompiler class) and Visual C++\SVCCompiler class). Note
that it's perfectly possible to ask for a Unix compiler object under Windows, and a Microsoft compiler
object under Unix—if you supply a value feaompiler, plat is ignored.

show_compilers ()
Print list of available compilers (used by théelp-compiler options tobuild, build_ext, build_clib).

classCCompiler ([verbose=0, dry_run=0, force=0)]
The abstract base clas&ompiler defines the interface that must be implemented by real compiler
classes. The class also has some utility methods used by several compiler classes.

The basic idea behind a compiler abstraction class is that each instance can be used for all the compile/link
steps in building a single project. Thus, attributes common to all of those compile and link steps — include
directories, macros to define, libraries to link against, etc. — are attributes of the compiler instance. To allow
for variability in how individual files are treated, most of those attributes may be varied on a per-compilation
or per-link basis.

The constructor for each subclass creates an instance of the Compiler object. Flagrbase(show ver-
bose output)dry run(don't actually execute the steps) dlodce (rebuild everything, regardless of depen-
dencies). All of these flags default@(off). Note that you probably don’t want to instanti&@@€ompiler

or one of its subclasses directly - use thistutils. CCompiler.new_compiler() factory func-
tion instead.

44 Chapter 11. API Reference

Distributing Python Modules, Release 2.6.4

The following methods allow you to manually alter compiler options for the instance of the Compiler class.

add_include_dir (dir)
Add dir to the list of directories that will be searched for header files. The compiler is in-
structed to search directories in the order in which they are supplied by successive calls to
add_include_dir()

set_include_dirs (dirs)
Set the list of directories that will be searcheddios (a list of strings). Overrides any preceding
calls toadd_include_dir() ; subsequent calls tadd_include_dir() add to the list passed
to set_include_dirs() . This does not affect any list of standard include directories that the

compiler may search by default.

add_library (libname
Add libnameto the list of libraries that will be included in all links driven by this compiler object.
Note thatlibnameshould *not* be the name of a file containing a library, but the name of the library
itself: the actual filename will be inferred by the linker, the compiler, or the compiler class (depending
on the platform).

The linker will be instructed to link against libraries in the order they were supplied to
add_library() and/orset_libraries() . It is perfectly valid to duplicate library names;
the linker will be instructed to link against libraries as many times as they are mentioned.

set_libraries (libname$
Set the list of libraries to be included in all links driven by this compiler objedibitames(a list of
strings). This does not affect any standard system libraries that the linker may include by default.

add_library_dir (dir)
Add dir to the list of directories that will be searched for libraries specifieddd library()

andset_libraries() . The linker will be instructed to search for libraries in the order they are
supplied toadd_library_dir() and/orset_library_dirs()
set_library_dirs (dirs)

Set the list of library search directories dirs (a list of strings). This does not affect any standard
library search path that the linker may search by default.

add_runtime_library_dir (dir)
Add dir to the list of directories that will be searched for shared libraries at runtime.

set_runtime_library_dirs (dirs)
Set the list of directories to search for shared libraries at runtinagr$da list of strings). This does
not affect any standard search path that the runtime linker may search by default.

define_macro (name, [value=Noné)]
Define a preprocessor macro for all compilations driven by this compiler object. The optional param-
etervalueshould be a string; if it is not supplied, then the macro will be defined without an explicit
value and the exact outcome depends on the compiler used (XXX true? does ANSI say anything about
this?)

undefine_macro (namé
Undefine a preprocessor macro for all compilations driven by this compiler object. If the same macro
is defined bydefine_macro() and undefined byndefine_macro() the last call takes prece-
dence (including multiple redefinitions or undefinitions). If the macro is redefined/undefined on a
per-compilation basis (ie. in the call tmmpile()), then that takes precedence.

add_link_object (objec)
Add objectto the list of object files (or analogues, such as explicitly named library files or the output
of “resource compilers”) to be included in every link driven by this compiler object.

set_link_objects (objecty
Set the list of object files (or analogues) to be included in every lindbjects This does not affect
any standard object files that the linker may include by default (such as system libraries).

11.2. distutils.ccompiler — CCompiler base class 45

Distributing Python Modules, Release 2.6.4

The following methods implement methods for autodetection of compiler options, providing some func-
tionality similar to GNUautoconf.

detect_language (source$
Detect the language of a given file, or list of files. Uses the instance attrilautggage_map (a
dictionary), andanguage_order (a list) to do the job.

find_library_file (dirs, lib, [debug=0)
Search the specified list of directories for a static or shared librarjilfilend return the full path to
that file. If debugis true, look for a debugging version (if that makes sense on the current platform).
ReturnNone if lib wasn'’t found in any of the specified directories.

has_function (funcname, [includes=None, include_dirs=None, libraries=None, library_dirs=Npne]
Return a boolean indicating whethiemcnameis supported on the current platform. The optional
arguments can be used to augment the compilation environment by providing additional include files
and paths and libraries and paths.

library dir_option (dir)
Return the compiler option to aditir to the list of directories searched for libraries.

library_option (lib)
Return the compiler option to adiif to the list of libraries linked into the shared library or executable.

runtime_library_dir_option (dir)
Return the compiler option to aditir to the list of directories searched for runtime libraries.

set_executables (**args)
Define the executables (and options for them) that will be run to perform the various stages of compi-
lation. The exact set of executables that may be specified here depends on the compiler class (via the
‘executables’ class attribute), but most will have:

attribute description
compiler | the C/C++ compiler
linker_so | linker used to create shared objects and libraries
linker_exe | linker used to create binary executables
archiver static library creator

On platforms with a command-line (Unix, DOS/Windows), each of these is a string that will be split
into executable name and (optional) list of arguments. (Splitting the string is done similarly to how
Unix shells operate: words are delimited by spaces, but quotes and backslashes can override this. See
distutils.util.split_quoted() J)

The following methods invoke stages in the build process.

compile (sources, [output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, ex-
tra_postargs=None, depends=Nohe]
Compile one or more source files. Generates object files (e.g. transfoemBlato a.o file.)

sourcesmust be a list of filenames, most likely C/C++ files, but in reality anything that can be han-
dled by a particular compiler and compiler class (85VCCompiler can handle resource files in
source$. Return a list of object filenames, one per source filenanseimces Depending on the im-
plementation, not all source files will necessarily be compiled, but all corresponding object filenames
will be returned.

If output_diris given, object files will be put under it, while retaining their original path component.
That is,foo/bar.c normally compiles tdoo/bar.o (for a Unix implementation); ibutput_dir
is build, then it would compile tduild/foo/bar.o

macros if given, must be a list of macro definitions. A macro definition is eithefname,

value) 2-tuple or a(hame,) 1-tuple. The former defines a macro; if the valueNisne, the
macro is defined without an explicit value. The 1-tuple case undefines a macro. Later defini-
tions/redefinitions/undefinitions take precedence.

include_dirs if given, must be a list of strings, the directories to add to the default include file search
path for this compilation only.

46

Chapter 11. API Reference

Distributing Python Modules, Release 2.6.4

debugis a boolean; if true, the compiler will be instructed to output debug symbols in (or alongside)
the object file(s).

extra_preargsandextra_postargsre implementation-dependent. On platforms that have the notion

of a command-line (e.g. Unix, DOS/Windows), they are most likely lists of strings: extra command-
line arguments to prepend/append to the compiler command line. On other platforms, consult the
implementation class documentation. In any event, they are intended as an escape hatch for those
occasions when the abstract compiler framework doesn’t cut the mustard.

dependsif given, is a list of filenames that all targets depend on. If a source file is older than any file
in depends, then the source file will be recompiled. This supports dependency tracking, but only at a
coarse granularity.

RaisesCompileError on failure.

create_static_lib (objects, output_libname, [output_dir=None, debug=0, target_lang=Npne]
Link a bunch of stuff together to create a static library file. The “bunch of stuff” consists of the list
of object files supplied a®bjects the extra object files supplied tadd_link_object()
and/or set link_objects() , the libraries supplied to add library() and/or
set_libraries() , and the libraries supplied é&ibraries (if any).

output_libnameshould be a library name, not a filename; the filename will be inferred from the library
name.output_diris the directory where the library file will be put. XXX defaults to what?

debugis a boolean; if true, debugging information will be included in the library (note that on most
platforms, it is the compile step where this matters: diebugflag is included here just for consis-
tency).

target_langis the target language for which the given objects are being compiled. This allows specific
linkage time treatment of certain languages.

Raised.ibError on failure.

link (target _desc, objects, output filename, [output_dir=None, libraries=None, library_dirs=None, run-
time_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None,
build_temp=None, target_lang=Nonk]
Link a bunch of stuff together to create an executable or shared library file.

The “bunch of stuff” consists of the list of object files suppliecbagects output_filenameshould be
a filename. Ifoutput_diris suppliedputput_filenamés relative to it (i.e.output_filenamean provide
directory components if needed).

librariesis a list of libraries to link against. These are library names, not filenames, since they’re trans-
lated into filenames in a platform-specific way (égo becomedibfoo.a on Unix andfoo.lib

on DOS/Windows). However, they can include a directory component, which means the linker will
look in that specific directory rather than searching all the normal locations.

library_dirs, if supplied, should be a list of directories to search for libraries that were specified as
bare library names (ie. no directory component). These are on top of the system default and those
supplied toadd_library_dir() and/orset_library_dirs() . runtime_library_dirsis a list

of directories that will be embedded into the shared library and used to search for other shared libraries
that *it* depends on at run-time. (This may only be relevant on Unix.)

export_symbolss a list of symbols that the shared library will export. (This appears to be relevant
only on Windows.)

debugis as forcompile() andcreate_static_lib() , With the slight distinction that it actu-
ally matters on most platforms (as opposedieate static_lib() , which includes alebug
flag mostly for form’s sake).

extra_prearg@ndextra_postargsre as focompile() (except of course that they supply command-
line arguments for the particular linker being used).

target_langis the target language for which the given objects are being compiled. This allows specific
linkage time treatment of certain languages.

Raised.inkError on failure.

11.2. distutils.ccompiler — CCompiler base class 47

Distributing Python Modules, Release 2.6.4

link_executable (objects, output_progname, [output_dir=None, libraries=None, library _dirs=None, run-
time_library_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, tar-
get_lang=None)
Link an executable output_prognamés the name of the file executable, whabjectsare a list of
object filenames to link in. Other arguments are as fotitit€) method.

link_shared_lib (objects, output_libname, [output_dir=None, libraries=None, library_dirs=None, run-
time_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, ex-

tra_postargs=None, build_temp=None, target_lang=Nqgne]
Link a shared libraryoutput_libnames the name of the output library, whitéjectsis a list of object

filenames to link in. Other arguments are as forlthie() method.

link_shared_object (objects, output_filename, [output _dir=None, libraries=None, library dirs=None,
runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None,
extra_postargs=None, build_temp=None, target_lang=Ndne]
Link a shared objectoutput_filenameés the name of the shared object that will be created, while
objectsis a list of object filenames to link in. Other arguments are as folith€ =~ method.

preprocess (source, [output file=None, macros=None, include_dirs=None, extra_preargs=None, ex-

tra_postargs=Nong)]
Preprocess a single C/C++ source file, namedaarce Output will be written to file namedut-

put_filg or stdoutif output_filenot suppliedmacrosis a list of macro definitions as faompile()
which will augment the macros set wittefine_macro() and undefine_macro() . in-
clude_dirsis a list of directory names that will be added to the default list, in the same way as
add_include_dir()

RaisesPreprocessError on failure.

The following utility methods are defined by th&Compiler class, for use by the various concrete sub-
classes.

executable_filename (basename, [strip_dir=0, output_dir=")
Returns the filename of the executable for the givagsenameTypically for non-Windows platforms
this is the same as the basename, while Windows will gexa added.

library_filename (libname, [lib_type='static’, strip_dir=0, output_dir=")
Returns the filename for the given library name on the current platform. On Unix a librarifwitype
of 'static’ will typically be of the formliblibname.a , While alib_typeof 'dynamic’ will

be of the formliblibname.so

object_filenames (source_filenames, [strip_dir=0, output_dir=)]
Returns the name of the object files for the given source fieswrce filenameshould be a list of
filenames.

shared_object_filename (basename, [strip_dir=0, output_dir=")
Returns the name of a shared object file for the given file naasename

execute (func, args, [msg=None, level=]]
Invokes distutils.util.execute() This method invokes a Python functidanc with the
given argumentargs, after logging and taking into account tley_runflag. XXX see also.

spawn (cmad
Invokesdistutils.util.spawn() . This invokes an external process to run the given command.
XXX see also.

mkpath (name, [mode=511)]
Invokesdistutils.dir_util.mkpath() . This creates a directory and any missing ancestor
directories. XXX see also.

move_file (src, ds}
Invokesdistutils.file_util.move_file() . Renamesrcto dst XXX see also.

announce (msg, [level=1)
Write a message usirdjstutils.log.debug() . XXX see also.

48

Chapter 11. API Reference

Distributing Python Modules, Release 2.6.4

warn (msg
Write a warning messagasgto standard error.

debug_print (msg
If the debugflag is set on thisCCompiler instance, prinimsgto standard output, otherwise do
nothing.

11.3 distutils.unixccompiler — Unix C Compiler

This module provides thenixCCompiler class, a subclass @Compiler that handles the typical Unix-style
command-line C compiler:

* macros defined withtDname[=value]

* macros undefined withname

« include search directories specified wittlir

* libraries specified withllib

« library search directories specified wihdir

« compile handled bygc (or similar) executable withc option: compilesc to.o
« link static library handled byar command (possibly withanlib)

* link shared library handled bgc -shared

11.4 distutils.msvccompiler — Microsoft Compiler

This module providesMSVCCompiler , an implementation of the abstra€Compiler class for Microsoft

Visual Studio. Typically, extension modules need to be compiled with the same compiler that was used to compile
Python. For Python 2.3 and earlier, the compiler was Visual Studio 6. For Python 2.4 and 2.5, the compiler is
Visual Studio .NET 2003. The AMD64 and Itanium binaries are created using the Platform SDK.

MSVCCompiler will normally choose the right compiler, linker etc. on its own. To override this choice, the
environment variable®DISTUTILS USE_SDkKind MSSdkmust be both setMSSdkindicates that the current
environment has been setup by the SD8&ENv.Cmd script, or that the environment variables had been reg-
istered when the SDK was installdd|STUTILS USE_SDl&dicates that the distutils user has made an explicit
choice to override the compiler selection lsVCCompiler .

11.5 distutils.bcppcompiler — Borland Compiler

This module provideBorlandCCompiler , an subclass of the abstr&€ompiler class for the Borland C++
compiler.

11.6 distutils.cygwincompiler — Cygwin Compiler

This module provides th€ygwinCCompiler class, a subclass afmixCCompiler that handles the Cygwin
port of the GNU C compiler to Windows. It also contains the Mingw32CCompiler class which handles the
mingw32 port of GCC (same as cygwin in no-cygwin mode).

11.3. distutils.unixccompiler — Unix C Compiler 49

Distributing Python Modules, Release 2.6.4

11.7 distutils.emxccompiler — 0S/2 EMX Compiler

This module provides the EMXCCompiler class, a subclaggrokCCompiler that handles the EMX port of
the GNU C compiler to OS/2.

11.8 distutils.mwerkscompiler — Metrowerks CodeWarrior
support

ContainsMWerksCompiler , an implementation of the abstra€Compiler class for MetroWerks CodeWar-
rior on the pre-Mac OS X Macintosh. Needs work to support CW on Windows or Mac OS X.

11.9 distutils.archive_util — Archiving utilities

This module provides a few functions for creating archive files, such as tarballs or zipfiles.

make_archive (base_name, format, [root_dir=None, base_dir=None, verbose=0, dry_run=0]
Create an archive file (egip ortar). base_namés the name of the file to create, minus any format-
specific extensiorfprmatis the archive format: one afp ,tar , ztar , orgztar .root diris a directory
that will be the root directory of the archive; ie. we typicalliadir into root_dir before creating the
archive.base_diris the directory where we start archiving from; Base_dirwill be the common prefix of
all files and directories in the archiveoot_dir andbase_dirboth default to the current directory. Returns
the name of the archive file.

make_tarball (base_name, base_dir, [compress='gzip’, verbose=0, dry_ruip=0]
‘Create an (optional compressed) archive as a tar file from all files in and bader dir compressnust be

'gzip’ (the default),compress’ ,’bzip2’ , or None. Bothtar and the compression utility named
by compressnust be on the default program search path, so this is probably Unix-specific. The output tar
file will be namedbase_dir.tar , possibly plus the appropriate compression extensigm (.bz2 or

.Z). Return the output filename.

make_zipfile (base_name, base_dir, [verbose=0, dry_run¥0]
Create a zip file from all files in and undease_dir The output zip file will be namebase_dir+ .zip
Uses either theipfile Python module (if available) or the InfoZtEp utility (if installed and found on
the default search path). If neither tool is available, rai3issutilsExecError . Returns the name of
the output zip file.

11.10 distutils.dep_util — Dependency checking

This module provides functions for performing simple, timestamp-based dependency of files and groups of files;
also, functions based entirely on such timestamp dependency analysis.

newer (source, target
Return true ifsourceexists and is more recently modified th@nget or if sourceexists andargetdoesn't.
Return false if both exist ant@argetis the same age or newer theource RaiseDistutilsFileError
if sourcedoes not exist.

newer_pairwise (sources, targeds
Walk two filename lists in parallel, testing if each source is newer than its corresponding target. Return a
pair of lists Gourcestargety where source is newer than target, according to the semantiesiafr()

newer_group (sources, target, [missing="error)]
Return true iftargetis out-of-date with respect to any file listedsourcesdn other words, iftarget exists
and is newer than every file gourcesreturn false; otherwise return trumissingcontrols what we do when
a source file is missing; the defauleifor’) is to blow up with anrOSError from insideos.stat() ;
if it is ’ignore’ , we silently drop any missing source files; if it’ifeewer’ , any missing source files

50 Chapter 11. API Reference

Distributing Python Modules, Release 2.6.4

make us assume thirgetis out-of-date (this is handy in “dry-run” mode: it'll make you pretend to carry
out commands that wouldn’t work because inputs are missing, but that doesn’t matter because you're not
actually going to run the commands).

11.11 distutils.dir_util — Directory tree operations

This module provides functions for operating on directories and trees of directories.

mkpath (name, [mode=0777, verbose=0, dry_run30]
Create a directory and any missing ancestor directories. If the directory already existsnémnéis
the empty string, which means the current directory, which of course exists), then do nothing. Raise
DistutilsFileError if unable to create some directory along the way (eg. some sub-path exists,
but is a file rather than a directory). Verboseis true, print a one-line summary of each mkdir to stdout.
Return the list of directories actually created.

create_tree (base_dir, files, [mode=0777, verbose=0, dry_run¥0]
Create all the empty directories undmse_dirneeded to pufilesthere. base_diris just the a name of a
directory which doesn't necessarily exist yigsis a list of flenames to be interpreted relativebtse _dir
base_dir+ the directory portion of every file ifileswill be created if it doesn’t already exisnhode verbose
anddry_runflags are as fomkpath()

copy_tree (src, dst, [preserve_mode=1, preserve_times=1, preserve_symlinks=0, update=0, verbose=0,

dry_run=0])
Copy an entire directory tresrc to a new locatiordst Both src anddstmust be directory names. s$fcis
not a directory, rais®istutilsFileError . If dstdoes not exist, it is created withkpath() . The

end result of the copy is that every filesrcis copied tadst and directories undesrc are recursively copied

to dst Return the list of files that were copied or might have been copied, using their output name. The
return value is unaffected hypdateor dry_rur it is simply the list of all files undesrc, with the names
changed to be undeist

preserve_modand preserve_timesare the same as faopy_file() in distutils.file_util ;

note that they only apply to regular files, not to directoriespréserve_symlinkis true, symlinks will be
copied as symlinks (on platforms that support them!); otherwise (the default), the destination of the symlink
will be copied.updateandverboseare the same as faopy_file()

remove_tree (directory, [verbose=0, dry_run=0Q]
Recursively removeirectoryand all files and directories underneath it. Any errors are ignored (apart from
being reported tgys.stdout if verbosds true).

** Some of this could be replaced with the shutil modute?

11.12 distutils.file_util — Single file operations

This module contains some utility functions for operating on individual files.

copy_file (src, dst, [preserve_mode=1, preserve_times=1, update=0, link=None, verbose=0, dry_jun=0]
Copy filesrcto dst If dstis a directory, thersrcis copied there with the same name; otherwise, it must
be a filename. (If the file exists, it will be ruthlessly clobbered.priéserve_modes true (the default),
the file’s mode (type and permission bits, or whatever is analogous on the current platform) is copied. If
preserve_timess true (the default), the last-modified and last-access times are copied as wpllatgis
true,srcwill only be copied ifdstdoes not exist, or iflstdoes exist but is older thasic.

link allows you to make hard links (usirg.link()) or symbolic links (usings.symlink()) instead

of copying: set it tohard’” or’sym’ ; if it is None (the default), files are copied. Don't siatk on
systems that don't support itopy_file() doesn’t check if hard or symbolic linking is available. It uses
_copy_file_contents() to copy file contents.

Return a tuplddest_name, copied) : dest_namés the actual name of the output file, acapiedis
true if the file was copied (or would have been copiedryf_runtrue).

11.11. distutils.dir_util — Directory tree operations 51

Distributing Python Modules, Release 2.6.4

move_file ('src, dst, [verbose, dry_rui]
Move file srcto dst If dstis a directory, the file will be moved into it with the same name; othervgisas
just renamed talst Returns the new full name of the file.

Warning: Handles cross-device moves on Unix usiagy file() . What about other systems?

write_file (filename, contenjs
Create a file callefilenameand writecontentqa sequence of strings without line terminators) to it.

11.13 distutils.util — Miscellaneous other utility functions

This module contains other assorted bits and pieces that don't fit into any other utility module.

get_platform ()
Return a string that identifies the current platform. This is used mainly to distinguish platform-specific
build directories and platform-specific built distributions. Typically includes the OS name and version and
the architecture (as supplied by ‘os.uname()’), although the exact information included depends on the OS;
eg. for IRIX the architecture isn’t particularly important (IRIX only runs on SGI hardware), but for Linux
the kernel version isn't particularly important.

Examples of returned values:
elinux-i586
elinux-alpha
esolaris-2.6-sun4u
*irix-5.3
*irix64-6.2
For non-POSIX platforms, currently just retursys.platform

For Mac OS X systems the OS version reflects the minimal version on which binaries will run (that is, the
value of MACOSX_DEPLOYMENT_TARGIHfing the build of Python), not the OS version of the current
system.

For universal binary builds on Mac OS X the architecture value reflects the univeral binary status instead of
the architecture of the current processor. For 32-bit universal binaries the archite€atire fer 64-bit uni-

versal binaries the architecturef&64 , and for 4-way universal binaries the architecturens/ersal

Starting from Python 2.7 and Python 3.2 the architectat® is used for a 3-way universal build (ppc,

i386, x86_64) andntel is used for a univeral build with the i386 and x86_64 architectures

Examples of returned values on Mac OS X:
emacosx-10.3-ppc
*macosx-10.3-fat
*macosx-10.5-universal
*macosx-10.6-intel

convert_path (pathnamg
Return ‘pathname’ as a hame that will work on the native filesystem, i.e. split it on /" and put it back
together again using the current directory separator. Needed because filenames in the setup script are always
supplied in Unix style, and have to be converted to the local convention before we can actually use them
in the filesystem. Rais@galueError on non-Unix-ish systems ffathnameeither starts or ends with a

slash.

change_root (. new_root, pathname
Return pathname with new_root prepended. If pathname is relative, this is equivalent to
os.path.join(new_root,pathname) Otherwise, it requires makingathnamerelative and then

joining the two, which is tricky on DOS/Windows.

52 Chapter 11. API Reference

Distributing Python Modules, Release 2.6.4

check_environ ()
Ensure that ‘os.environ’ has all the environment variables we guarantee that users can use in config files,
command-line options, etc. Currently this includes:

*HOME - user’'s home directory (Unix only)
*PLAT - description of the current platform, including hardware and OSdséeplatform())

subst_vars (s, local_var$
Perform shell/Perl-style variable substitution®rEvery occurrence d followed by a name is considered
a variable, and variable is substituted by the value found indbed_varsdictionary, or inos.environ
if it's not in local_vars os.environis first checked/augmented to guarantee that it contains certain val-
ues: seeheck environ() . RaiseValueError for any variables not found in eithéocal varsor
0s.environ

Note that this is not a fully-fledged string interpolation function. A v&licdiriable can consist only of
upper and lower case letters, numbers and an underscore. No { } or () style quoting is available.

grok_environment_error (exc, [prefix="error: ")
Generate a useful error message fronEarironmentError (IOError or OSError) exception ob-
ject. Handles Python 1.5.1 and later styles, and does what it can to deal with exception objects that don't
have a filename (which happens when the error is due to a two-file operation, svehaase() or
link()). Returns the error message as a string prefixed pvéfix

split_quoted (9
Split a string up according to Unix shell-like rules for quotes and backslashes. In short: words are delimited
by spaces, as long as those spaces are not escaped by a backslash, or inside a quoted string. Single and
double quotes are equivalent, and the quote characters can be backslash-escaped. The backslash is stripped
from any two-character escape sequence, leaving only the escaped character. The quote characters are
stripped from any quoted string. Returns a list of words.

execute (func, args, [msg=None, verbose=0, dry_run30]
Perform some action that affects the outside world (for instance, writing to the filesystem). Such actions are
special because they are disabled bydhe runflag. This method takes care of all that bureaucracy for
you; all you have to do is supply the function to call and an argument tuple for it (to embody the “external
action” being performed), and an optional message to print.

strtobool (val)
Convert a string representation of truth to true (1) or false (0).

True values arg/, yes, t, true , on and1; false values ar@, no, f, false , off and0. Raises
ValueError if valis anything else.

byte compile (py_files, [optimize=0, force=0, prefix=None, base_dir=None, verbose=1, dry run=0, di-

rect=None)
Byte-compile a collection of Python source files to eitlpgric or.pyo files in the same directorpy_files

is a list of files to compile; any files that don’t end.ppy are silently skippedoptimizemust be one of the
following:

<0 - don't optimize (generatgpyc)
*1 - normal optimization (likepython -O)
2 - extra optimization (likgpython -OO)
If forceis true, all files are recompiled regardless of timestamps.

The source filename encoded in edsliecodefile defaults to the filenames listed py_files you can
modify these withprefixandbasedir prefixis a string that will be stripped off of each source filename, and
base_diris a directory nhame that will be prepended (aftesfixis stripped). You can supply either or both
(or neither) ofprefixandbase_dir as you wish.

If dry_runis true, doesn’t actually do anything that would affect the filesystem.

Byte-compilation is either done directly in this interpreter process with the stapglacdmpile module,
or indirectly by writing a temporary script and executing it. Normally, you shoul@yét compile()

11.13. distutils.util — Miscellaneous other utility functions 53

Distributing Python Modules, Release 2.6.4

figure out to use direct compilation or not (see the source for details)diféet flag is used by the script
generated in indirect mode; unless you know what you're doing, leave it bktrte.

rfc822_escape (heade)
Return a version oheaderescaped for inclusion in aRFC 822 header, by ensuring there are 8 spaces
space after each newline. Note that it does no other modification of the string.

11.14 distutils.dist — The Distribution class

This module provides theDistribution class, which represents the module distribution being
built/installed/distributed.

11.15 distutils.extension — The Extension class

This module provides thExtension class, used to describe C/C++ extension modules in setup scripts.

11.16 distutils.debug — Distutils debug mode

This module provides the DEBUG flag.

11.17 distutils.errors — Distutils exceptions

Provides exceptions used by the Distutils modules. Note that Distutils modules may raise standard exceptions; in
particular, SystemExit is usually raised for errors that are obviously the end-user’s fault (eg. bad command-line
arguments).

This module is safe to use from ... import * mode; it only exports symbols whose names start with
Distutils and end withError .

11.18 distutils.fancy_getopt — Wrapper around the standard
getopt module

This module provides a wrapper around the standgtdpt module that provides the following additional
features:

« short and long options are tied together
 options have help strings, $ancy getopt() could potentially create a complete usage summary
» options set attributes of a passed-in object

 boolean options can have “negative aliases” — eg-gfiiet is the “negative alias” of-verbose
then--quiet on the command line setgrboseo false.

** Should be replaced witbptik (which is also now known agptparse in Python 2.3 and later}*

fancy_getopt (options, negative_opt, object, ajgs
Wrapper function.optionsis a list of (long_option, short_option, help_string) 3-tuples
as described in the constructor feancyGetopt . negative_opshould be a dictionary mapping option
names to option names, both the key and value should be ptiEnslist. objectis an object which will
be used to store values (see gatopt() = method of the~ancyGetopt class).argsis the argument list.
Will use sys.argv[1:] if you passNone asargs.

54 Chapter 11. API Reference

http://tools.ietf.org/html/rfc822.html

Distributing Python Modules, Release 2.6.4

wrap_text (text, width
Wrapstextto less tharwidth wide.

classFancyGetopt ([option_table=None]
The option_table is a list of 3-tuple@iong_option, short_option, help_string)

If an option takes an argument, isng_optionshould have="appendedshort_optionshould just be
a single character, N0 in any case.short_optionshould beNone if a long_optiondoesn’t have a
correspondinghort_option All option tuples must have long options.

TheFancyGetopt class provides the following methods:

getopt ([args=None, object=Nong]
Parse command-line options in args. Store as attributebjact
If argsis None or not supplied, usesys.argv[1:] . If objectis None or not supplied, creates a new
OptionDummy instance, stores option values there, and returns a {apis, object) . If object
is supplied, it is modified in place angktopt() just returnsargs in both cases, the returnedlgsis a
modified copy of the passed-argslist, which is left untouched.

get_option_order 0
Returns the list of(option, value) tuples processed by the previous rungutopt() Raises
RuntimeError if getopt() hasn’t been called yet.

generate_help ([header=None]
Generate help text (a list of strings, one per suggested line of output) from the option table for this
FancyGetopt object.

If supplied, prints the suppliekeaderat the top of the help.

11.19 distutils.filelist — The FileList class

This module provides thEileList class, used for poking about the filesystem and building lists of files.

11.20 distutils.log — Simple PEP 282-style logging
11.21 distutils.spawn — Spawn a sub-process
This module provides thepawn() function, a front-end to various platform-specific functions for launching an-
other program in a sub-process. Also provified_executable() to search the path for a given executable
name.
11.22 distutils.sysconfig — System configuration informa-
tion
The distutils.sysconfig module provides access to Python’s low-level configuration information. The

specific configuration variables available depend heavily on the platform and configuration. The specific variables
depend on the build process for the specific version of Python being run; the variables are those found in the
Makefile and configuration header that are installed with Python on Unix systems. The configuration header is

calledpyconfig.h for Python versions starting with 2.2, andnfig.h for earlier versions of Python.

Some additional functions are provided which perform some useful manipulations for other parts of the
distutils package.

PREFIX
The result ofos.path.normpath(sys.prefix)

11.19. distutils.filelist — The FileList class 55

Distributing Python Modules, Release 2.6.4

EXEC_PREFIX
The result ofos.path.normpath(sys.exec_prefix)

get_config_var (name¢
Return the value of a single variable. This is equivalergdb config_vars().get(name)

get_config_vars (..)
Return a set of variable definitions. If there are no arguments, this returns a dictionary mapping names of
configuration variables to values. If arguments are provided, they should be strings, and the return value
will be a sequence giving the associated values. If a given name does not have a correspondiNgnalue,
will be included for that variable.

get_config_h_filename 0
Return the full path name of the configuration header. For Unix, this will be the header generated by
the configure script; for other platforms the header will have been supplied directly by the Python source
distribution. The file is a platform-specific text file.

get_makefile_filename 0
Return the full path name of thdakefile used to build Python. For Unix, this will be a file generated by
the configure script; the meaning for other platforms will vary. The file is a platform-specific text file, if it
exists. This function is only useful on POSIX platforms.

get_python_inc ([plat_specific, [prefix])
Return the directory for either the general or platform-dependent C include filgat IEpecifids true, the
platform-dependent include directory is returned; if false or omitted, the platform-independent directory is
returned. Ifprefixis given, it is used as either the prefix insteadP&fEFIX, or as the exec-prefix instead of
EXEC_PREFIXif plat_specifids true.

get_python_lib ([plat_specific, [standard_lib, [prefix]]]
Return the directory for either the general or platform-dependent library installatiplat Ispecifids true,
the platform-dependent include directory is returned; if false or omitted, the platform-independent directory
is returned. Ifprefixis given, it is used as either the prefix insteadP&fEFIX, or as the exec-prefix instead
of EXEC_PREFIXif plat_specifids true. If standard_libis true, the directory for the standard library is
returned rather than the directory for the installation of third-party extensions.

The following function is only intended for use within thestutils package.

customize_compiler (compile
Do any platform-specific customization oflestutils.ccompiler.CCompiler instance.

This function is only needed on Unix at this time, but should be called consistently to support forward-
compatibility. Itinserts the information that varies across Unix flavors and is stored in PytMakedile

This information includes the selected compiler, compiler and linker options, and the extension used by the
linker for shared objects.

This function is even more special-purpose, and should only be used from Python’s own build procedures.

set_python_build 0
Inform thedistutils.sysconfig module that it is being used as part of the build process for Python.
This changes a lot of relative locations for files, allowing them to be located in the build area rather than in
an installed Python.

11.23 distutils.text_file — The TextFile class

This module provides th&extFile class, which gives an interface to text files that (optionally) takes care of
stripping comments, ignoring blank lines, and joining lines with backslashes.

classTextFile ([flename=None, file=None, **option}]
This class provides a file-like object that takes care of all the things you commonly want to do when process-
ing a text file that has some line-by-line syntax: strip comments (as lo#gsagour comment character),
skip blank lines, join adjacent lines by escaping the newline (ie. backslash at end of line), strip leading
and/or trailing whitespace. All of these are optional and independently controllable.

56 Chapter 11. API Reference

Distributing Python Modules, Release 2.6.4

The class provides warn() method so you can generate warning messages that report physical line
number, even if the logical line in question spans multiple physical lines. Also providesdline()
for implementing line-at-a-time lookahead.

TextFile instances are create with eitifdename file, or both. RuntimeError s raised if both are
None. filenameshould be a string, anfile a file object (or something that providesadline() and
close() methods). Itis recommended that you supply at lé&stame so thafTextFile can include it
in warning messages. fife is not suppliedTextFile creates its own using th@pen() built-in function.

The options are all boolean, and affect the values returneddnjiine()

option description de-
name fault
strip_commeigdrom’#’ to end-of- line, as well as any whitespace leading up td#he—unlessiit | true
is escaped by a backslash
Istrip_ws| strip leading whitespace from each line before returning it false
rstrip_ws| strip trailing whitespace (including line terminator!) from each line before returning it.| true
skip_blankskip lines that are empty *after* stripping comments and whitespace. (If both Istrip_wstrue
and rstrip_ws are false, then some lines may consist of solely whitespace: these will 'not*
be skipped, even gkip_blankss true.)
join_lines if a backslash is the last non-newline character on a line after stripping comments andfalse
whitespace, join the following line to it to form one logical line; if N consecutive lines end
with a backslash, then N+1 physical lines will be joined to form one logical line.
col- strip leading whitespace from lines that are joined to their predecessor; only matters |f false
lapse_joip (join_lines and not Istrip_ws)

Note that sincestrip_wscan strip the trailing newline, the semanticsrefdline() must differ from
those of the built-in file object'seadline() method! In particularreadline() returnsNone for
end-of-file: an empty string might just be a blank line (or an all-whitespace linetrip_wsis true but
skip_blankss not.

open (filenamé
Open a new fildilename This overrides anfile or filenameconstructor arguments.

close ()
Close the current file and forget everything we know about it (including the filename and the current
line number).

warn (msg, [line=None])
Print (to stderr) a warning message tied to the current logical line in the current file. If the current
logical line in the file spans multiple physical lines, the warning refers to the whole range, such as
"lines 3-5" . If line is supplied, it overrides the current line number; it may be a list or tuple to
indicate a range of physical lines, or an integer for a single physical line.

readline ()
Read and return a single logical line from the current file (or from an internal buffer if lines have
previously been “unread” withinreadline()). If the join_linesoption is true, this may involve
reading multiple physical lines concatenated into a single string. Updates the current line number, so
callingwarn() afterreadline() emits a warning about the physical line(s) just read. Returns
None on end-of-file, since the empty string can occusifip_wsis true butstrip_blankss not.

readlines ()
Read and return the list of all logical lines remaining in the current file. This updates the current line
number to the last line of the file.

unreadline (line)
Pushline (a string) onto an internal buffer that will be checked by futtgadline() calls. Handy
for implementing a parser with line-at-a-time lookahead. Note that lines that are “unread” with
unreadline() are not subsequently re-cleansed (whitespace stripped, or whatever) when read with
readline() . If multiple calls are made tanreadline() before a call taeadline() , the
lines will be returned most in most recent first order.

11.23. distutils.text_file — The TextFile class 57

Distributing Python Modules, Release 2.6.4

11.24 distutils.version — Version number classes
11.25 distutils.cmd — Abstract base class for Distutils com-
mands

This module supplies the abstract base classimand

classCommand dist)
Abstract base class for defining command classes, the “worker bees” of the Distutils. A useful analogy for
command classes is to think of them as subroutines with local variables optieds The options are de-
clared ininitialize_options() and defined (given their final values)finalize_options() ,
both of which must be defined by every command class. The distinction between the two is necessary be-
cause option values might come from the outside world (command line, config file, ...), and any options
dependent on other options must be computed after these outside influences have been processed — hence
finalize_options() . The body of the subroutine, where it does all its work based on the values of its
options, is theun() method, which must also be implemented by every command class.

The class constructor takes a single argunagstt a Distribution instance.

11.26 distutils.command — Individual Distutils commands
11.27 distutils.command.bdist — Build a binary installer

11.28 distutils.command.bdist_packager — Abstract base
class for packagers

11.29 distutils.command.bdist_dumb — Build a “dumb” in-
staller
11.30 distutils.command.bdist_msi — Build a Microsoft In-

staller binary package

classbdist_ msi (Commanil
Builds aWindows Installei(.msi) binary package.

In most cases, thiedist._msi installer is a better choice than thdist_wininst installer, because it
provides better support for Win64 platforms, allows administrators to perform non-interactive installations,
and allows installation through group policies.

58 Chapter 11. API Reference

http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx

Distributing Python Modules, Release 2.6.4

11.30. distutils.command.bdist_msi — Build a Microsoft Installer binary package 59

Distributing Python Modules, Release 2.6.4

11.31

11.32

11.33

11.34

11.35

11.36

11.37

11.38

11.39

11.40

11.41

11.42

11.43

11.44

11.45

60

distutils.command.bdist_rpm — Build a binary distribu-
tion as a Redhat RPM and SRPM

distutils.command.bdist_wininst — Build a Windows
installer

distutils.command.sdist — Build a source distribution
distutils.command.build — Build all files of a package
distutils.command.build_clib — Build any C libraries
in a package

distutils.command.build_ext — Build any extensions
in a package

distutils.command.build_py — Build the .py/.pyc files

of a package

distutils.command.build_scripts — Build the scripts
of a package

distutils.command.clean — Clean a package build area
distutils.command.config — Perform package configu-
ration

distutils.command.install — Install a package
distutils.command.install_data — Install data files

from a package

distutils.command.install_headers — Install C/C++
header files from a package

distutils.command.install_lib — Install library files
from a package

distutils.command.install_scripts — Install script
files from a package

the Python package Index Chapter 11. API Reference

Distributing Python Modules, Release 2.6.4

Theregister command registers the package with the Python Package Index. This is described in more detail
in PEP 301

11.47 Creating a new Distutils command

This section outlines the steps to create a new Distutils command.

A new command lives in a module in thistutils.command package. There is a sample template in

that directory callecommand_template . Copy this file to a new module with the same name as the new
command you're implementing. This module should implement a class with the same name as the module (and
the command). So, for instance, to create the comnpe®l banana (so that users can rusetup.py
peel_banana), you'd copycommand_template to distutils/command/peel_banana.py , then

edit it so that it’s implementing the clapgel_banana , a subclass dfiistutils.cmd.Command

Subclasses dtommandmust define the following methods.

initialize_options 0
Set default values for all the options that this command supports. Note that these defaults may be overridden
by other commands, by the setup script, by config files, or by the command-line. Thus, this is not the place
to code dependencies between options; genenaltiglize _options() implementations are just a
bunch ofself.foo = None assignments.

finalize_options 0
Set final values for all the options that this command supports. This is always called as late as possible, ie.
after any option assignments from the command-line or from other commands have been done. Thus, this
is the place to to code option dependenciefodfdepends oibar, then it is safe to sdbo from bar as long
asfoo still has the same value it was assignechitialize _options()

run ()
A command’s raison d’etre: carry out the action it exists to perform, controlled by the options initialized
in initialize_options() , customized by other commands, the setup script, the command-line, and
config files, and finalized iriinalize_options() . All terminal output and filesystem interaction
should be done byun()

sub_commandermalizes the notion of a “family” of commands, ggstall as the parent with sub-commands
install_lib , install_headers , etc. The parent of a family of commands defised commandas

a class attribute; it's a list of 2-tupldgsommand_name, predicate) , with command_nama string and
predicatean unbound method, a string or Nongredicateis a method of the parent command that determines
whether the corresponding command is applicable in the current situation. (Egsta# headers is only
applicable if we have any C header files to install priédicateis None, that command is always applicable.

sub_commandis usually defined at the *end* of a class, because predicates can be unbound methods, so they
must already have been defined. The canonical example isstaf command.

11.47. Creating a new Distutils command 61

http://www.python.org/dev/peps/pep-0301

Distributing Python Modules, Release 2.6.4

62 Chapter 11. API Reference

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library #62to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translat{gm The Python Library
Reference

abstract base classAbstract Base Classes (abbreviated ABCs) complemiedit-typingby providing a way to
define interfaces when other techniques Iliasattr() would be clumsy. Python comes with many
built-in ABCs for data structures (in thmllections module), numbers (in theumbers module), and
streams (in thé module). You can create your own ABC with tabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-lengthaccepts or passes (if in the function definition or call)
several positional arguments in a list, whife does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an objecto has an attributa it would be referenced asa

BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cachedoyc and.pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on avirtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic classAny class which does not inherit froabject . Seenew-style classClassic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For examjié(3.15) converts the floating point number to the inte-
ger 3, but in 3+4.5 , each argument is of a different type (one int, one float), and both must be con-
verted to the same type before they can be added or it will rai$gpgError . Coercion between
two operands can be performed with tbeerce built-in function; thus,3+4.5 is equivalent to call-
ing operator.add(*coerce(3, 4.5)) and results iroperator.add(3.0, 4.5) . Without
coercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.gfloat(3)+4.5 rather than jusB+4.5 .

63

http://www.python.org/~guido/

Distributing Python Modules, Release 2.6.4

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often writteni in mathematics oj in engineering. Python has built-in support for complex
numbers, which are written with this latter notation; the imaginary part is written vyitbudfix, e.g.,3+1j .
To get access to complex equivalents of tieth module, usemath . Use of complex numbers is a fairly
advanced mathematical feature. If you're not aware of a need for them, it's almost certain you can safely
ignore them.

context manager An object which controls the environment seen inwith statement by defining
_enter__ () and__exit_ () methods. SeBEP 343

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decoratorsadassmethod() andstaticmethod()

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
f = staticmethod ()

@staticmethod
def f(...):

Seethe documentation for function definitigim The Python Language Referehéar more about decora-
tors.

descriptor Any new-styleobject which defines the methodsget () , set () ,or__delete ()
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, usinga.bto get, set or delete an attribute looks up the object naoiadhe class dictionary foa,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, Iseglementing Descriptorén The Python Language
Referencp

dictionary An associative array, where arbitrary keys are mapped to values. The dis¢ ofclosely resembles
that forlist , but the keys can be any object with ahash__ () function, not just integers. Called a
hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into tHec__ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation
of the object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or
attribute signature rather than by explicit relationship to some type object (“If it looks like a duck and
quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed
code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests tgieg)
or isinstance() . (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employbkasattr() tests olEAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of maényy andexcept statements. The technique contrasts with the
LBYLstyle common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There

64 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

Distributing Python Modules, Release 2.6.4

are alsostatemerg which cannot be used as expressions, sugbriat or if . Assignments are also
statements, not expressions.

extension module A module written in C or C++, using Python's C API to interact with the core and with user
code.

finder An object that tries to find thdoader for a module. It must implement a method named
find_module() . SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. Seeaigomentandmethod

__future__ A pseudo module which programmers can use to enable new language features which are not compat-
ible with the current interpreter. For example, the expressiod currently evaluates t@. If the module
in which it is executed had enabléde divisionby executing:

from _ future import division

the expressiodl/4 would evaluate t@.75 . By importing the__future_ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

>>> jmport _ future__

>>> future__ . division

_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage col-
lection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using gield statement instead ofraturn statement. Generator functions often contain one
or morefor orwhile loops whichyield elements back to the caller. The function execution is stopped
at theyield keyword (returning the result) and is resumed there when the next element is requested by
calling thenext() method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optibnaxpression. The combined expression
generates values for an enclosing function:

>>> sum(i *i for i in range (10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread executeSrytthen
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter to
be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much
finer granularity), but so far none have been successful because performance suffered in the common single-
processor case.

hashable An object is hashableif it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needsen () or__cmp_ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is thielif)

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python. Good for beginners, it also serves as clear example
code for those wanting to implement a moderately sophisticated, multi-platform GUI application.

65

http://www.python.org/dev/peps/pep-0302

Distributing Python Modules, Release 2.6.4

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekkidn currently
evaluates t@ in contrast to th&.75 returned by float division. Also calleitbor division When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (suchfemat), the result will be coerced (seeercior)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using/theoperator instead of the operator. See also
future_.

importer An object that both finds and loads a module; bofmderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just fheh with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remenhiedp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
alsointeractive

iterable A container object capable of returning its members one at a time. Examples of iterables include all
sequence types (suchlég | str , andtuple) and some non-sequence types liket andfile and
objects of any classes you define with ariter__ () or __getitem__() method. Iterables can be
used in &or loop and in many other places where a sequence is neeill (, map() , ...). When an
iterable object is passed as an argument to the built-in funitBof) , it returns an iterator for the object.
This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to calliter() or deal with iterator objects yourself. Tlier statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. Séeratso,
sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the itena¢atld method return suc-
cessive items in the stream. When no more data are availaBtepdteration exception is raised
instead. At this point, the iterator object is exhausted and any further callstext§ method just raise
Stoplteration again. Iterators are required to have arnter__ () method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as alist) produces a fresh new iterator each time you pass it titéh@ function or use it in dor
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found itberator Typeqin The Python Library Referenge

keyword argument Arguments which are preceded withvariable_name= in the call. The variable name
designates the local name in the function to which the value is assighed used to accept or pass a
dictionary of keyword arguments. Segyument

lambda An anonymous inline function consisting of a singbegressiorwhich is evaluated when the function is
called. The syntax to create a lambda functiolambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theAFP approach and is characterized by the presence of iharsfatements.

list A built-in PythonsequenceDespite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a
list of strings containing even hex numbers (0x..) in the range from 0 to 255if Tlbause is optional. If
omitted, all elements ilange(256) are processed.

66 Appendix A. Glossary

Distributing Python Modules, Release 2.6.4

loader An object that loads a module. It must define a method ndwetl module() . A loader is typically
returned by dinder. SeePEP 302for details.

mapping A container object (such adict) which supports arbitrary key lookups using the special method
__getitem__()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found iBustomizing class creatigiin The Python Language Referehce

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its fissgument(which is usually calledelf). Seefunctionand
nested scope

mutable Mutable objects can change their value but keep tdé€ir . See alsommutable

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for ex-
ample time.localtime() returns a tuple-like object where tlyearis accessible either with an index
such ag[0] or with a named attribute liketm_year).

A named tuple can be a built-in type such t®e.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a

self-documenting representation likenployee(name=’jones’, title="programmer’)

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested nhamespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functidmsiltin__.open()
andos.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writimglom.seed()
or itertools.izip() makes it clear that those functions are implemented byrédmelom and
itertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fronobject . This includes all built-in types likéist anddict
Only new-style classes can use Python’s newer, versatile features Bkats ~ , descriptors, properties,
and__ getattribute__ ()

More information can be found iNew-style and classic classg@s The Python Language Referehce

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
anynew-style class

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the cali. is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a functiorar§ement

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3
was something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable usirfgra statement. Many other languages don't
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range (len (food)):
print food][i]

67

http://www.python.org/dev/peps/pep-0302

Distributing Python Modules, Release 2.6.4

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPythonimplementation. Theys module defines getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterable which supports efficient element access using integer indices via thetitem__ ()
special method and defineden() method that returns the length of the sequence. Some built-in se-
quence types arést , str , tuple , andunicode . Note thatdict also supports getitem__ ()
and__len_ () , butis considered a mapping rather than a sequence because the lookups use arbitrary
immutablekeys rather than integers.

slice An object usually containing a portion of sequence A slice is created using the subscript notation,
[l with colons between numbers when several are given, such\amiable_name[1:3:5] . The
bracket (subscript) notation ussce objects internally (or in older versions, getslice_ () and
__setslice_ ()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented irspecial method namém The Python Language Referehce

statement A statement is part of a suite (a “block” of code). A statement is eithexaressiomr a one of several
constructs with a keyword, such #és, while or print

triple-quoted string A string which is bound by three instances of either a quotation mark () or an apostrophe
(). While they don't provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits class__ attribute or can be retrieved witlipe(obj)

virtual machine A computer defined entirely in software. Python'’s virtual machine executésytheodemitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typimgport this " at the interactive prompt.

68 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated fre@tructuredTexsources bysphinx a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain takes place odotte@ python.orgnailing list. We're
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

e Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

« theDocutilsproject for creating reStructuredText and the Docutils suite;
» Fredrik Lundh for hisAlternative Python Referengaroject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythofor information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete — if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.ong and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesus Cea Avion, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander
Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl,
Keith Briggs, lan Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario,
Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter
Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson,
Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernan Martinez Foffani, Stefan Franke, Jim Ful-
ton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan
Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond,
Harald Hanche-Olsen, Manus Hand, Gerhard Héring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas
Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hof-
fleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson,
Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas
de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel
Kozan, Andrew M. Kuchling, Dave Kuhiman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph
Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, UIf A. Lindgren, Everett Lipman, Mirko Liss,
Martin von Lowis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew Maclintyre, Vladimir Marangozov,
Vincent Marchetti, Laura Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Monta-
naro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup,
Denis S. Otkidach, Zooko O’'Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen,
Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, Francois Pinard,
Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel,
Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse II, Mark Russell, Nick Russo, Chris

69

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

Distributing Python Modules, Release 2.6.4

Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sern-
brant, Justin Sheehy, Charlie Shepherd, Michael Simcich, lonel Simionescu, Michael Sloan, Gregory P. Smith,
Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein, Peter
Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Martijn
Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Wel-
bourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

Itis only with the input and contributions of the Python community that Python has such wonderful documentation
— Thank You!

70 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.upin Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.con)/ In 2001, the Python Software Foundation (PSF,tgge//www.python.org/psj/was

formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (s&p://www.opensource.ordor the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru 1.2| n/a 1991-1995| CWI yes
1.3thru1.5.2| 1.2 1995-1999| CNRI yes
1.6 15.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.11 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 2.11 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 222 2002-2003| PSF yes
2.3 222 2002-2003| PSF yes
2.3.1 2.3 2002-2003| PSF yes
2.3.2 231 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
234 2.3.3 2004 PSF yes
2.35 234 2005 PSF yes
2.4 2.3 2004 PSF yes
241 24 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
Continued on next page

71

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Distributing Python Modules, Release 2.6.4

Table C.1 — continued from previous page

2.4.4 2.4.3 2006 PSF yes
25 24 2006 PSF yes
251 2.5 2007 PSF yes
252 251 2008 PSF yes
253 252 2008 PSF yes
2.6 2.5 2008 PSF yes
26.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’'t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.4

1.

This LICENSE AGREEMENT is between the Python Software Foundation (“PSF"), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.6.4 software in source or binary form
and its associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.4 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.4 alone or in any derivative version prepared
by Licensee.

. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.4 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.6.4.

. PSF is making Python 2.6.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-

TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-

CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.6.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.4 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or

joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

. By copying, installing or otherwise using Python 2.6.4, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1.

This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

72

Appendix C. History and License

Distributing Python Modules, Release 2.6.4

2. Subiject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available étttp://www.pythonlabs.com/logos.htmay be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’'s License Agreement and CNRI's notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI's License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

C.2. Terms and conditions for accessing or otherwise using Python 73

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Distributing Python Modules, Release 2.6.4

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995,
Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download frdttp://www.math.keio.ac.jp/matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

74 Appendix C. History and License

http://www.math.keio.ac.jp/

Distributing Python Modules, Release 2.6.4

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://lwww.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

Thesocket module uses the functiongetaddrinfo() ,andgetnameinfo() , which are coded in separate
source files from the WIDE Projediitp://www.wide.ad.jp/

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 75

http://www.wide.ad.jp/

Distributing Python Modules, Release 2.6.4

C.3.3 Floating point exception control

The source for thépectl module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. [

Permission to use, copy, modify, and distribute this software for |
any purpose without fee is hereby granted, provided that this en- |
tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |

This software was prepared as an account of work sponsored by an |
agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |
ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its wuse would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

76 Appendix C. History and License

Distributing Python Modules, Release 2.6.4

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.
1999-11-04 Ipd Edited comments slightly for automatic TOC extraction.
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 77

Distributing Python Modules, Release 2.6.4

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

78 Appendix C. History and License

Distributing Python Modules, Release 2.6.4

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3. Licenses and Acknowledgements for Incorporated Software 79

Distributing Python Modules, Release 2.6.4

C.3.10 XML Remote Procedure Calls

Thexmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

Thetest_epoll contains the following notice:
Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

80 Appendix C. History and License

Distributing Python Modules, Release 2.6.4

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 81

Distributing Python Modules, Release 2.6.4

82 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2009 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licensdor complete license and permissions information.

83

Distributing Python Modules, Release 2.6.4

84 Appendix D. Copyright

D

distutils.archive_util , 50
distutils.bcppcompiler , 49
distutils.ccompiler , 44
distutils.cmd , 58

distutils.command , 58
distutils.command.bdist , 58
distutils.command.bdist_dumb , 58
distutils.command.bdist_msi , 58

distutils.command.bdist_packager , 58

distutils.command.bdist_rpm , 60

distutils.command.bdist_wininst , 60

distutils.command.build , 60

distutils.command.build_clib , 60

distutils.command.build_ext , 60

distutils.command.build_py , 60

distutils.command.build_scripts , 60

distutils.command.clean , 60

distutils.command.config , 60

distutils.command.install , 60

distutils.command.install_data , 60

distutils.command.install_headers ,
60

distutils.command.install_lib , 60

distutils.command.install_scripts ,
60

distutils.command.register , 60

distutils.command.sdist , 60

distutils.core , 41

distutils.cygwinccompiler , 49

distutils.debug , 54

distutils.dep_util , 50

distutils.dir_util , 51

distutils.dist , 54

distutils.emxccompiler , 50

distutils.errors , 54

distutils.extension , 54

distutils.fancy_getopt , 54

distutils.file_util , 51

distutils.filelist , 55

distutils.log , 55

distutils.msvccompiler , 49

distutils.mwerkscompiler , 50

distutils.spawn , 55

distutils.sysconfig , 55

MODULE INDEX

distutils.text_file , 56
distutils.unixccompiler , 49
distutils.util , 52
distutils.version , 58

85

Distributing Python Modules, Release 2.6.4

86 Module Index

Symbols
..,63

_ future__p5
__slots__ 68
>>> 63
2t03,63

A

abstract base clas33

add_include_dir() (distutils.ccompiler.CCompiler

method) 45

add_library() (distutils.ccompiler.CCompiler
method)45

add_library_dir() (distutils.ccompiler.CCompiler
method)45

add_link_object() (distutils.ccompiler.CCompiler
method)45

add_runtime_library_dir() (distu-
tils.ccompiler.CCompiler method),
45

announce() (distutils.ccompiler.CCompiler method),
48

argumentf3

attribute,63

B

BDFL, 63

bdist_msi (class in distutils.command.bdist_ms8§,
byte compile() (in module distutils.util3
bytecodef3

C

CCompiler (class in distutils.ccompiled4

change_root() (in module distutils.utif2

check_environ() (in module distutils.utiB2

class,63

classic clas$3

close() (distutils.text_file.TextFile method)/

coercion,63

Command (class in distutils.cmd@

Command (class in distutils.core)}

compile() (distutils.ccompiler.CCompiler method),
46

complex number63

context managef4

INDEX

convert_path() (in module distutils.utif)2

copy_file() (in module distutils.file_util1

copy_tree() (in module distutils.dir_util}1

CPython64

create_shortcut() (built-in function},7

create_static_lib() (distutils.ccompiler.CCompiler
method) 47

create_tree() (in module distutils.dir_uti§j]1

customize_compiler() (in module
tils.sysconfig) 56

distu-

D

debug_print()
method),49
decoratorp4
define_macro()
method) 45
descriptorg4
detect_language()
method)46
dictionary,64
directory_created() (built-in function,7
Distribution (class in distutils.core};3
distutils.archive_util (module}0
distutils.bcppcompiler (module}9
distutils.ccompiler (module}i4
distutils.cmd (module);8
distutils.command (module}8
distutils.command.bdist (modul&)3
distutils.command.bdist_dumb (modul&}
distutils.command.bdist_msi (modulé&g
distutils.command.bdist_packager (modus),
distutils.command.bdist_rpm (modulé))
distutils.command.bdist_wininst (modulé&))
distutils.command.build (modulejp
distutils.command.build_clib (modulej)
distutils.command.build_ext (module))
distutils.command.build_py (module§)
distutils.command.build_scripts (modulé&))
distutils.command.clean (modulé&))
distutils.command.config (module0
distutils.command.install (modulejp
distutils.command.install_data (modulé}
distutils.command.install_headers (moduk),
distutils.command.install_lib (modulejp
distutils.command.install_scripts (modulé}

(distutils.ccompiler.CCompiler

(distutils.ccompiler.CCompiler

(distutils.ccompiler.CCompiler

87

Distributing Python Modules, Release 2.6.4

distutils.command.register (modulé))
distutils.command.sdist (module&))
distutils.core (module}1
distutils.cygwinccompiler (module}9
distutils.debug (modulep4
distutils.dep_util (module{0
distutils.dir_util (module)51
distutils.dist (module)54
distutils.emxccompiler (module}0
distutils.errors (moduleh4
distutils.extension (module}4
distutils.fancy_getopt (module)4
distutils.file_util (module)51
distutils.filelist (module)b5
distutils.log (module)55
distutils.msvccompiler (module}9
distutils.mwerkscompiler (modul€}0
distutils.spawn (module}h5
distutils.sysconfig (moduleh5
distutils.text_file (module);6
distutils.unixccompiler (module}9
distutils.util (module)52
distutils.version (module}8
docstring,64

duck-typing,64

E

EAFP,64
environment variable
HOME, 53
PATH, 31
PLAT, 53
EXEC_PREFIX (in module distutils.sysconfig)s
executable_filename() (distu-
tils.ccompiler.CCompiler method),
48
execute() (distutils.ccompiler.CCompiler method),
48
execute() (in module distutils.utilR3
expressiont4
Extension (class in distutils.core)3
extension module§5

F

fancy_getopt() (in module distutils.fancy getopt),
54

FancyGetopt (class in distutils.fancy_getopf),

file_created() (built-in function®7

finalize_options() (distu-
tils.command.register.Command method),

61

find_library file() (distutils.ccompiler.CCompiler
method),46

finder,65

function, 65

G

garbage collectior§5

gen_lib_options() (in module distutils.ccompiler),
44
gen_preprocess_options() (in
tils.ccompiler),44
generate_help() (distutils.fancy_getopt.FancyGetopt
method),55
generatorps
generator expressiofis
get_config_h_filename() (in
tils.sysconfig) 56
get_config_var() (in module distutils.sysconfig},
get_config_vars() (in module distutils.sysconfig,

module distu-

module distu-

get_default_compiler() (in module distu-
tils.ccompiler) 44

get_makefile_filename() (in module distu-
tils.sysconfig) 56

get_option_order() (distu-
tils.fancy_getopt.FancyGetopt method),

55
get_platform() (in module distutils.utilz2
get_python_inc() (in module distutils.sysconfig
get_python_lib() (in module distutils.sysconfigh
get_special_folder_path() (built-in functiord)7
getopt() (distutils.fancy_getopt.FancyGetopt
method),55
GIL, 65
global interpreter lockg5
grok_environment_error() (in module distutils.util),
53

H

has_function()
method)46

hashable65

HOME, 53

IDLE, 65

immutable,65

importer,66

initialize_options() (distu-
tils.command.register.Command method),
61

integer division66

interactive,66

interpreted56

iterable,66

iterator,66

K
keyword argument;6

L

lambda,66

LBYL, 66

library_dir_option() (distutils.ccompiler.CCompiler
method)46

(distutils.ccompiler.CCompiler

88

Index

Distributing Python Modules, Release 2.6.4

library_filename()
method),48

library_option() (distutils.ccompiler.CCompiler
method)46

link() (distutils.ccompiler.CCompiler method}7

link_executable() (distutils.ccompiler.CCompiler
method) 47

link_shared_lib()
method)48

link_shared_object() (distutils.ccompiler.CCompiler
method)48

list, 66

list comprehensiorG6

loader,66

M

make_archive() (in module distutils.archive_uti}

make_tarball() (in module distutils.archive_utih0)

make_zipfile() (in module distutils.archive_utifj)

mapping,67

metaclasst 7

method,67

mkpath() (distutils.ccompiler.CCompiler method),
48

mkpath() (in module distutils.dir_util1

move_file() (distutils.ccompiler.CCompiler
method)48

move_file() (in module distutils.file_utilp1

mutable,67

N

named tuple67

namespaceq7

nested scope7

new-style class;7

new_compiler() (in module distutils.ccompiledy
newer() (in module distutils.dep_utifp
newer_group() (in module distutils.dep_utk))
newer_pairwise() (in module distutils.dep_utt))

O

object,67

object_filenames() (distutils.ccompiler.CCompiler
method)48

open() (distutils.text_file.TextFile method)/

P

PATH, 31
PLAT, 53
positional argumen§7
PREFIX (in module distutils.sysconfig)b
preprocess() (distutils.ccompiler.CCompiler
method)48
Python 300067
Python Enhancement Proposals
PEP 30161
PEP 30255, 67
PEP 31442

(distutils.ccompiler.CCompiler

(distutils.ccompiler.CCompiler

PEP 34364
Pythonic,67

R

readline() (distutils.text_file.TextFile method)/
readlines() (distutils.text_file.TextFile methody,
reference count;8
remove_tree() (in module distutils.dir_utif1
RFC
RFC 82254
rfc822_escape() (in module distutils.utiby}
run() (distutils.command.register.Command
method),61
run_setup() (in module distutils.core)?

runtime_library_dir_option() (distu-
tils.ccompiler.CCompiler method),
46

S

sequence;8

set_executables() (distutils.ccompiler.CCompiler
method)46

set_include_dirs() (distutils.ccompiler.CCompiler
method)45

set_libraries() (distutils.ccompiler.CCompiler
method) 45

set_library _dirs() (distutils.ccompiler.CCompiler
method) 45

set_link_objects() (distutils.ccompiler.CCompiler
method)45

set_python_build() (in module distutils.sysconfig),
56

set_runtime_library_dirs() (distu-
tils.ccompiler.CCompiler method),
45

setup() (in module distutils.core),l

shared_object_filename() (distu-
tils.ccompiler.CCompiler method),
48

show_compilers() (in module distutils.ccompiler),
44

slice,68

spawn() (distutils.ccompiler.CCompiler method3,
special method;8

split_quoted() (in module distutils.utilp3
statement8

strtobool() (in module distutils.util3
subst_vars() (in module distutils.utif3

T

TextFile (class in distutils.text_fileh6
triple-quoted string68
type,68

U

undefine_macro()
method)45
unreadline() (distutils.text_file.TextFile methody,

(distutils.ccompiler.CCompiler

Index

89

Distributing Python Modules, Release 2.6.4

\Y

virtual machineg8

W

warn() (distutils.ccompiler.CCompiler methodf
warn() (distutils.text_file.TextFile method)y
wrap_text() (in module distutils.fancy_getopi)}
write_file() (in module distutils.file_util)52

Z
Zen of Python£8

90

Index

	An Introduction to Distutils
	Concepts & Terminology
	A Simple Example
	General Python terminology
	Distutils-specific terminology

	Writing the Setup Script
	Listing whole packages
	Listing individual modules
	Describing extension modules
	Relationships between Distributions and Packages
	Installing Scripts
	Installing Package Data
	Installing Additional Files
	Additional meta-data
	Debugging the setup script

	Writing the Setup Configuration File
	Creating a Source Distribution
	Specifying the files to distribute
	Manifest-related options

	Creating Built Distributions
	Creating dumb built distributions
	Creating RPM packages
	Creating Windows Installers
	Cross-compiling on Windows
	Vista User Access Control (UAC)

	Registering with the Package Index
	The .pypirc file

	Uploading Packages to the Package Index
	Examples
	Pure Python distribution (by module)
	Pure Python distribution (by package)
	Single extension module

	Extending Distutils
	Integrating new commands
	Adding new distribution types

	Command Reference
	Installing modules: the install command family
	Creating a source distribution: the sdist command

	API Reference
	distutils.core --- Core Distutils functionality
	distutils.ccompiler --- CCompiler base class
	distutils.unixccompiler --- Unix C Compiler
	distutils.msvccompiler --- Microsoft Compiler
	distutils.bcppcompiler --- Borland Compiler
	distutils.cygwincompiler --- Cygwin Compiler
	distutils.emxccompiler --- OS/2 EMX Compiler
	distutils.mwerkscompiler --- Metrowerks CodeWarrior support
	distutils.archive_util --- Archiving utilities
	distutils.dep_util --- Dependency checking
	distutils.dir_util --- Directory tree operations
	distutils.file_util --- Single file operations
	distutils.util --- Miscellaneous other utility functions
	distutils.dist --- The Distribution class
	distutils.extension --- The Extension class
	distutils.debug --- Distutils debug mode
	distutils.errors --- Distutils exceptions
	distutils.fancy_getopt --- Wrapper around the standard getopt module
	distutils.filelist --- The FileList class
	distutils.log --- Simple PEP 282-style logging
	distutils.spawn --- Spawn a sub-process
	distutils.sysconfig --- System configuration information
	distutils.text_file --- The TextFile class
	distutils.version --- Version number classes
	distutils.cmd --- Abstract base class for Distutils commands
	distutils.command --- Individual Distutils commands
	distutils.command.bdist --- Build a binary installer
	distutils.command.bdist_packager --- Abstract base class for packagers
	distutils.command.bdist_dumb --- Build a ``dumb'' installer
	distutils.command.bdist_msi --- Build a Microsoft Installer binary package
	distutils.command.bdist_rpm --- Build a binary distribution as a Redhat RPM and SRPM
	distutils.command.bdist_wininst --- Build a Windows installer
	distutils.command.sdist --- Build a source distribution
	distutils.command.build --- Build all files of a package
	distutils.command.build_clib --- Build any C libraries in a package
	distutils.command.build_ext --- Build any extensions in a package
	distutils.command.build_py --- Build the .py/.pyc files of a package
	distutils.command.build_scripts --- Build the scripts of a package
	distutils.command.clean --- Clean a package build area
	distutils.command.config --- Perform package configuration
	distutils.command.install --- Install a package
	distutils.command.install_data --- Install data files from a package
	distutils.command.install_headers --- Install C/C++ header files from a package
	distutils.command.install_lib --- Install library files from a package
	distutils.command.install_scripts --- Install script files from a package
	distutils.command.register --- Register a module with the Python Package Index
	Creating a new Distutils command

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Module Index
	Index

