The Python/C API
Release 2.6.4

Guido van Rossum

Fred L. Drake, Jr., editor

October 30, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Include Files. o e e 3
1.2 Objects, Typesand ReferenceCounts 4
1.3 EXCEPLiONS. o e e e e e e 7
1.4 Embedding Python 8
1.5 Debugging Builds. 9
The Very High Level Layer 11
Reference Counting 15
Exception Handling 17
4.1 Standard EXCeptions e e e e 21
4.2 Deprecation of String EXceptions L 22
Utilities 23
5.1 Operating System Utilities e e 23
5.2 System Functions. e e e 23
5.3 ProcessControl. e 24
5.4 Importing Modules e 24
5.5 Datamarshalling suppart. e 27
5.6 Parsing arguments and buildingvalues. 28
5.7 String conversionand formatting e 34
5.8 Reflection 35
Abstract Objects Layer 37
6.1 ObjectProtocol e e 37
6.2 Number Protocol A1
6.3 Sequence Protocal 44
6.4 Mapping Protocol. 46
6.5 Iterator Protocol. e A7
6.6 Old Buffer Protocol e 48
Concrete Objects Layer 49
7.1 Fundamental Objects. e e e 49
7.2 Numeric ObJeCtS. e e e e e e 50
7.3 Sequence Objects. e e e 55
7.4 Mapping Objects e 76
75 OtherObjects e e e e e e e 18
Initialization, Finalization, and Threads 91
8.1 Thread State and the Global InterpreterLock 94
8.2 Profilingand Tracing e e 98
8.3 Advanced Debugger SuUpport e e e e 100

9 Memory Management
9.1 OVEIVIEW. . . . o i o o e e e e e e e
9.2 MemorylInterface. Lo
9.3 Examples

10 Object Implementation Support

10.1 Allocating ObjectsontheHeap

10.2 Common Object Structures
10.3 TypeObjects. e
10.4 Number Object Structures.
10.5 Mapping Object Structures.
10.6 Sequence Object Structures.
10.7 Buffer Object Structures

10.8 Supporting Cyclic Garbage Collection

A Glossary

B About these documents

B.1 Contributors to the Python Documentation.

C History and License
C.1 Historyofthesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright

Index

101
101
102
102

105
105
106
109
123
124
125
125
126

129

135
135

137
137
138
140

149

151

The Python/C API, Release 2.6.4

Release?2.6

Date October 30, 2009

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion textending and Embedding the Python Interpreier Extending and Embedding

Pythor), which describes the general principles of extension writing but does not document the API functions in
detail.

CONTENTS

The Python/C API, Release 2.6.4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the
Python/C API. There are two fundamentally different reasons for using the Python/C API. The first reason is to
write extension modulefor specific purposes; these are C modules that extend the Python interpreter. This is
probably the most common use. The second reason is to use Python as a component in a larger application; this
technique is generally referred to@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well.
There are several tools that automate the process to some extent. While people have embedded Python in other
applications since its early existence, the process of embedding Python is less straightforward than writing an
extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it's probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headersstdio.h> , <string.h> , <errno.h>
<limits.h> , and<stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some sys-
tems, younustincludePython.h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of
the prefixed?y or _Py. Names beginning withPy are for internal use by the Python implementation and should
not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin®myitbr _Py. This confuses the reader, and jeop-
ardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories
prefix/include/pythonversion/ and exec_prefix/include/pythonversion/ , Wherepre-

fix and exec_prefixare defined by the corresponding parameters to Pythmi§igure script andversionis
sys.version[:3] . On Windows, the headers are installegefix/include , Whereprefix is the instal-

lation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler's search path for includest Do
place the parent directories on the search path and thefindade <pythonX.Y/Python.h> ; this will
break on multi-platform builds since the platform independent headers prefec include the platform specific
headers fronexec_prefix

The Python/C API, Release 2.6.4

C++ users should note that though the API is defined entirely using C, the header files do properly declare the
entry points to bextern "C" , so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value &fyi@pgct* . This

type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types
are treated the same way by the Python language in most situations (e.g., assignments, scope rules, and argument
passing), it is only fitting that they should be represented by a single C type. Almost all Python objects live on
the heap: you never declare an automatic or static variable ofRyfiject , only pointer variables of type
PyObject* can be declared. The sole exception are the type objects; since these must never be deallocated, they
are typically static®yTypeObject objects.

All Python objects (even Python integers) haviypeand areference countAn object’s type determines what
kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as expldihed in
standard type hierarchgin The Python Language Referehicd-or each of the well-known types there is a macro
to check whether an object is of that type; for instarieg.ist_Check(a) is true if (and only if) the object
pointed to bya is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When an object’s reference
count becomes zero, the object is deallocated. If it contains references to other objects, their reference count
is decremented. Those other objects may be deallocated in turn, if this decrement makes their reference count
become zero, and so on. (There’s an obvious problem with objects that reference each other here; for now, the
solution is “don’t do that.”) Reference counts are always manipulated explicitly. The normal way is to use
the macroPy INCREF() to increment an object’s reference count by one, BpdDECREF() to decrement

it by one. ThePy DECREF() macro is considerably more complex than the incref one, since it must check
whether the reference count becomes zero and then cause the object’s deallocator to be called. The deallocator is a
function pointer contained in the object’s type structure. The type-specific deallocator takes care of decrementing
the reference counts for other objects contained in the object if this is a compound object type, such as a list,
as well as performing any additional finalization that's needed. There’s no chance that the reference count can
overflow; at least as many bits are used to hold the reference count as there are distinct memory locations in virtual
memory (assumingizeof(Py_ssize t) >= sizeof(void*)). Thus, the reference count increment is

a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an
object. In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes
down by one when the variable goes out of scope. However, these two cancel each other out, so at the end the
reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from being
deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to increment the reference count temporarily.
An important situation where this arises is in objects that are passed as arguments to C functions in an extension
module that are called from Python; the call mechanism guarantees to hold a reference to every argument for the
duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing
its reference count. Some other operation might conceivably remove the object from the list, decrementing its
reference count and possible deallocating it. The real danger is that innocent-looking operations may invoke
arbitrary Python code which could do this; there is a code path which allows control to flow back to the user from
aPy DECREF(), so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begiRy®@bijbct
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility tofsalDECREF() when they are done
with the result; this soon becomes second nature.

4 Chapter 1. Introduction

The Python/C API, Release 2.6.4

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in telmmsefship of ref-

erences Ownership pertains to references, never to objects (objects are not owned: they are always shared).
“Owning a reference” means being responsible for calling Py_DECREF on it when the reference is no longer
needed. Ownership can also be transferred, meaning that the code that receives ownership of the reference then
becomes responsible for eventually decref’ing it by calling DECREF() or Py_XDECREF() when it's no

longer needed—or passing on this responsibility (usually to its caller). When a function passes ownership of a
reference on to its caller, the caller is said to receinewreference. When no ownership is transferred, the caller

is said toborrowthe reference. Nothing needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does n&tealing a referenceneans that when you pass a reference to a
function, that function assumes that it now owns that reference, and you are not responsible for it any longer. Few
functions steal references; the two notable exception®gréest Setltem() andPyTuple_Setltem() ,

which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions
were designed to steal a reference because of a common idiom for populating a tuple or list with newly created

objects; for example, the code to create the t(pje2, "three") could look like this (forgetting about error
handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyInt_FromLong(1L));

PyTuple_Setltem(t, 1, PyInt_FromLong(2L));

PyTuple_Setltem(t, 2, PyString_FromString("three "));

Here,PyInt_FromLong() returns a new reference which is immediately stolerPbyuple Setltem()
When you want to keep using an object although the reference to it will be stoleRyufeCREF() to grab
another reference before calling the reference-stealing function.

Incidentally, PyTuple_Setltem() is the only way to set tuple itemsPySequence_Setltem() and
PyObject_Setltem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiyd.ist New() andPyList_Setltem()

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function,Py_BuildValue() , that can create most common objects from C values, directeddvynat string

For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *list;

tuple = Py_Buildvalue("(is) ", 1, 2, "three ");
list = Py Buildvalue("fis] ", 1, 2, "three ");
It is much more common to useyObject Setltem() and friends with items whose references you are

only borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour
regarding reference counts is much saner, since you don't have to increment a reference count so you can give
a reference away (“have it be stolen”). For example, this function sets all items of a list (actually, any mutable
sequence) to a given item:

int

set_all (PyObject *target, PyObject *item)

{

n = PyObject Length(target);

if (n <0)
return -1;
for (i =0;i <n i ++){

PyObject *index = Pylnt_FromLong(i);

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 2.6.4

if (!index)
return -1;
if (PyObject_Setltem(target, index, item) < 0)
return -1,
Py DECREF(index);
}
return 0O,

}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly,
and the reference you get is the only reference to the object. Therefore, the generic functions that return object
references, lik&yObject_Getltem() andPySequence_Getltem() , always return a new reference (the

caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function
you call only —the plumagdthe type of the object passed as an argument to the funataegn’t enter into it!

Thus, if you extract an item from a list usirgyList_Getltem() , you don’t own the reference — but if you
obtain the same item from the same list usifggSequence_Getltem() (which happens to take exactly the
same arguments), you do own a reference to the returned object. Here is an example of how you could write
a function that computes the sum of the items in a list of integers; once Bsingt_Getltem() , and once
usingPySequence_Getltem()

long
sum_list (PyObject *list)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PyList_Size(list);
if (n <0)
return -1; /* Not a list */
for (i =0;i <ni++){
item = PyList Getltem(list, i); [* Can't fail */
if (! PyInt_Check(item)) continue ; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}
long
sum_sequence (PyObject *sequence)
{ . .
int i, n;
long total = O;

PyObject *item;
n = PySequence_Length(sequence);

if (n < 0)
return -1; /* Has no length */
for (i =0;i0i <n; i ++){
item = PySequence_Getltem(sequence, i);
if (tem == NULD
return - 1; /* Not a sequence, or other failure */

if (Pylnt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}

return total;

6 Chapter 1. Introduction

The Python/C API, Release 2.6.4

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int ,long ,double andchar* . A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled ex-
ceptions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the
top-level interpreter, where they are reported to the user accompanied by a stack traceback. For C programmers,
however, error checking always has to be explicit. All functions in the Python/C API can raise exceptions, unless
an explicit claim is made otherwise in a function’s documentation. In general, when a function encounters an
error, it sets an exception, discards any object references that it owns, and returns an error indicator — usually
NULL or -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few func-
tions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr_Occurred() . Exception state is maintained in per-thread storage (this is equivalent to using
global storage in an unthreaded application). A thread can be in one of two states: an exception has occurred,
or not. The functionPyErr_Occurred() can be used to check for this: it returns a borrowed reference to

the exception type object when an exception has occurredNaid otherwise. There are a humber of func-

tions to set the exception stat@yErr_SetString() is the most common (though not the most general)
function to set the exception state, agerr_Clear() clears the exception state. The full exception state
consists of three objects (all of which canKEILL): the exception type, the corresponding exception value, and

the traceback. These have the same meanings as the Python epfeels_type , sys.exc_value , and
sys.exc_traceback ; however, they are not the same: the Python objects represent the last exception being
handled by a Pythotny ... except statement, while the C level exception state only exists while an exception is
being passed on between C functions until it reaches the Python bytecode interpreter's main loop, which takes care
of transferring it tosys.exc_type and friends. Note that starting with Python 1.5, the preferred, thread-safe
way to access the exception state from Python code is to call the fusgtioexc_info() , which returns the
per-thread exception state for Python code. Also, the semantics of both ways to access the exception state have
changed so that a function which catches an exception will save and restore its thread’s exception state so as to
preserve the exception state of its caller. This prevents common bugs in exception handling code caused by an
innocent-looking function overwriting the exception being handled; it also reduces the often unwanted lifetime
extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the
called function raised an exception, and if so, pass the exception state on to its caller. It should discard any object
references that it owns, and return an error indicator, but it shutlsket another exception — that would overwrite

the exception that was just raised, and lose important information about the exact cause of the error. A simple
example of detecting exceptions and passing them on is shown suthesequence() example above. It so
happens that that example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent
Python code:

def incr_item(dict, key)
try:
item = dict[key]
except KeyError:
item =0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:
int
incr_item (PyObject *dict, PyObject *key)

1.3. Exceptions 7

The Python/C API, Release 2.6.4

/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL *const_ one = NULL *incremented_item = NULL
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject Getltem(dict, key);
if (tem == NULD {
/* Handle KeyError only: */
if (! PyErr_ExceptionMatches(PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(OL);
if (tem == NULD
goto error;
}
const one = PyInt_ FromLong(1L);
if (const_one == NULLD
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULD
goto error,

if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

[* Continue with cleanup code */

error:
[* Cleanup code, shared by success and failure path */

[* Use Py XDECREF() to ignore NULL references */
Py_XDECREF(item);

Py _XDECREF(const_one);

Py _XDECREF(incremented_item);

return rv; [* -1 for error, O for success */

}

This example represents an endorsed use of goto statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py XDECREF() to dispose of owned references that mayNbdl_L (note the X’ in the namePy DECREF()
would crash when confronted withNULL reference). It is important that the variables used to hold owned refer-
ences are initialized tNULL for this to work; likewise, the proposed return value is initializedlto(failure) and

only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have
to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality
of the interpreter can only be used after the interpreter has been initialized. The basic initialization function

is Py_Initialize() . This initializes the table of loaded modules, and creates the fundamental modules
__builtin__,__main__ , sys, andexceptions . It also initializes the module search paslyg.path).
Py_Initialize() does not set the “script argument lisy6.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a caRy8ys_SetArgv(argc, argv) sub-

8 Chapter 1. Introduction

The Python/C API, Release 2.6.4

sequent to the call tBy_Initialize()

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py _Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory natieépythonX.Y relative to the parent direc-

tory where the executable nampgthon is found on the shell command search path (the environment variable
PATH).

For instance, if the Python executable is found/usr/local/bin/python , it will assume that the
libraries are in/ustr/local/lib/pythonX.Y . (In fact, this particular path is also the “fallback” lo-
cation, used when no executable file nanmdhon is found alongPATH.) The user can override this
behavior by setting the environment variab®y THONHOME , or insert additional directories in front of
the standard path by settingYTHONPATH. The embedding application can steer the search by call-
ing Py_SetProgramName(file) beforecalling Py_Initialize() . Note thatPYTHONHOME still
overrides this andPYTHONPATH is still inserted in front of the standard path. An application that
requires total control has to provide its own implementationPof GetPath() , Py GetPrefix() ,
Py_GetExecPrefix() , and Py_GetProgramFullPath() (all defined in Modules/getpath.c).
Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make
another call toPy_Initialize()) or the application is simply done with its use of Python and wants to
free memory allocated by Python. This can be accomplished by cating-inalize() . The function

Py _IsInitialized() returns true if Python is currently in the initialized state. More information about
these functions is given in a later chapter. Notice thatFinalize() doesnot free all memory allocated by
the Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These
checks tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the fNéisc/SpecialBuilds.txt in the Python

source distribution. Builds are available that support tracing of reference counts, debugging the memory allocator,
or low-level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the
remainder of this section.

Compiling the interpreter with th®y DEBUGMmacro defined produces what is generally meant by “a debug
build” of Python. Py_DEBUGSs enabled in the Unix build by addingwith-pydebug to theconfigure
command. It is also implied by the presence of the not-Python-spe@iftBUGmMacro. WherPy DEBUGs
enabled in the Unix build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
» Extra checks are added to the object allocator.
 Extra checks are added to the parser and compiler.
« Downcasts from wide types to narrow types are checked for loss of information.

« A number of assertions are added to the dictionary and set implementations. In addition, the set object
acquires dest_c_api() method.

« Sanity checks of the input arguments are added to frame creation.

» The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
» Low-level tracing and extra exception checking are added to the runtime virtual machine.

« Extra checks are added to the memory arena implementation.

» Extra debugging is added to the thread module.

There may be additional checks not mentioned here.

1.5. Debugging Builds 9

The Python/C API, Release 2.6.4

Defining Py_ TRACE_REFSenables reference tracing. When defined, a circular doubly linked list of active
objects is maintained by adding two extra fields to evépDbject . Total allocations are tracked as well.

Upon exit, all existing references are printed. (In interactive mode this happens after every statement run by the
interpreter.) Implied byy DEBUG

Please refer tblisc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Chapter 1. Introduction

CHAPTER

TWO

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not
let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input , Py_file_input , andPy_single_input . These are described following the functions
which accept them as parameters.

Note also that several of these functions tBKeE* parameters. One particular issue which needs to be handled
carefully is that thé-ILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken
thatFILE* parameters are only passed to these functions if it is certain that they were created by the same library
that the Python runtime is using.

int Py_Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python.
The argc and argv parameters should be prepared exactly as those which are passed to a C program’s
main() function. It is important to note that the argument list may be modified (but the contents of
the strings pointed to by the argument list are not). The return value will be the integer passed to the
sys.exit() function, 1 if the interpreter exits due to an exception,2if the parameter list does not
represent a valid Python command line.

Note that if an otherwise unhandl&ystemError is raised, this function will not returf, but exit the
process, as long @&y _InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filenamg

This is a simplified interface tByRun_AnyFileExFlags() below, leavingcloseitset to0 andflagsset
to NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags
This is a simplified interface t8yRun_AnyFileExFlags() below, leaving theloseitargument set to
0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int clos@it
This is a simplified interface t&yRun_AnyFileExFlags() below, leaving thdlagsargument set to
NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value BfyRun_InteractiveLoop() , otherwise return the result of
PyRun_SimpleFile() . If filenameis NULL, this function use8???" as the filename.

int PyRun_SimpleString (const char *commarnd
This is a simplified interface tByRun_SimpleStringFlags() below, leaving théyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags
Executes the Python source code freommandn the__main__ module according to thigagsargument.
If __main__ does not already exist, it is created. Retudnsn success orl if an exception was raised.
If there was an error, there is no way to get the exception information. For the meatfiaggo$ee below.

11

The Python/C API, Release 2.6.4

Note that if an otherwise unhandl&ystemError s raised, this function will not retursl , but exit the
process, as long &y _InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filenamp
This is a simplified interface t®yRun_SimpleFileExFlags() below, leavingcloseitset to0 and
flagsset toNULL.

int PyRun_SimpleFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
This is a simplified interface t8yRun_SimpleFileExFlags() below, leavingcloseitset to0.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closéit
This is a simplified interface tByRun_SimpleFileExFlags() below, leavinglagsset toNULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags
Similar to PyRun_SimpleStringFlags() , but the Python source code is read frfprinstead of an
in-memory string. filenameshould be the name of the file. tloseitis true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filenampg
This is a simplified interface tByRun_InteractiveOneFlags() below, leavinglagsset toNULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
Read and execute a single statement from a file associated with an interactive device accordifigge the
argument. Iffilenameis NULL, "???" is used instead. The user will be prompted usigg.psl and
sys.ps2 . ReturnsD when the input was executed successfully,if there was an exception, or an error
code from theerrcode.h include file distributed as part of Python if there was a parse error. (Note that
errcode.h is notincluded byPython.h , so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filenamp
This is a simplified interface tByRun_InteractiveLoopFlags() below, leavinglagsset toNULL.
int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs

Read and execute statements from a file associated with an interactive device until EOF is reached. If
filenameis NULL, "???" is used instead. The user will be prompted usigg.psl andsys.ps2
Returns0 at EOF.

struct _node* PyParser_SimpleParseString (const char *str, int stark
This is a simplified interface tyParser_SimpleParseStringFlagsFilename() below, leav-
ing filenameset toNULL andflagsset to0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags
This is a simplified interface t®yParser_SimpleParseStringFlagsFilename() below, leav-

ing filenameset toNULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *file-

name, int start, int flags
Parse Python source code fratnusing the start tokestart according to thélagsargument. The result can

be used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be
evaluated many times.

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start
This is a simplified interface t8yParser_SimpleParseFileFlags() below, leavinglagsset to0

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int

flag9
Similar toPyParser_SimpleParseStringFlagsFilename() , but the Python source code is read

from fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *lochals
Return value: New reference.
This is a simplified interface tByRun_StringFlags() below, leavinglagsset toNULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, Py-
CompilerFlags *flagy
Return value: New reference.
Execute Python source code fratn in the context specified by the dictionarigiebalsandlocalswith the

12 Chapter 2. The Very High Level Layer

The Python/C API, Release 2.6.4

compiler flags specified biyfags The parametestart specifies the start token that should be used to parse
the source code.

Returns the result of executing the code as a Python objeltiJat if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *logals
Return value: New reference.
This is a simplified interface tByRun_FileExFlags() below, leavingcloseitset to0 andflagsset to
NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closei)
Return value: New reference.

This is a simplified interface tByRun_FileExFlags() below, leavinglagsset toNULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject

*locals, PyCompilerFlags *flags
Return value: New reference.

This is a simplified interface tByRun_FileExFlags() below, leavingcloseitset to0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject

*locals, int closeit, PyCompilerFlags *flags
Return value: New reference.

Similar to PyRun_StringFlags() , but the Python source code is read frdminstead of an in-
memory string. filenameshould be the name of the file. Hloseitis true, the file is closed before
PyRun_FileExFlags() returns.

PyObject* Py _CompileString (const char *str, const char *filename, int start
Return value: New reference.
This is a simplified interface t8y _CompileStringFlags() below, leavinglagsset toNULL.

PyObject* Py _CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags
*flags

Return value: New reference. 9
Parse and compile the Python source codstrirreturning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and shdald beal input
Py_file_input , or Py_single_input . The filename specified bjlenameis used to construct the
code object and may appear in tracebackSymtaxError exception messages. This retuigLL if
the code cannot be parsed or compiled.

PyObject* PyEval _EvalCode (PyCodeObject *co, PyObject *globals, PyObject *lodals
Return value: New reference.
This is a simplified interface tByEval _EvalCodeEx() , with just the code object, and the dictionaries
of global and local variables. The other arguments are d¢tUtol.

PyObject* PyEval EvalCodeEx (PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject
**args, int argcount, PyObject **kws, int kwcount, PyObject **defs,
int defcount, PyObject *closuye
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment

consists of dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a
closure tuple of cells.

PyObject* PyEval_EvalFrame (PyFrameObject *j
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEX, for backward compat-
ibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code ob-
ject associated with the execution frafnis executed, interpreting bytecode and executing calls as needed.
The additionathrowflagparameter can mostly be ignored - if true, then it causes an exception to immedi-
ately be thrown; this is used for thierow() = methods of generator objects.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cj
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

13

The Python/C API, Release 2.6.4

int

int

int

Py eval_input
The start symbol from the Python grammar for isolated expressions; for use with
Py_CompileString()

Py _file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source;
for use withPy CompileString() . This is the symbol to use when compiling arbitrarily long Python

source code.

Py_single_input
The start symbol from the Python grammar for a single statement; for us@witGompileString()
This is the symbol used for the interactive interpreter loop.

PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as

int flags , and in cases where code is being executed, it is pasdegGampilerFlags *flags

In this casefrom __ future__ import can modifyflags

WhenevePyCompilerFlags *flags is NULL, cf_flags s treated as equal @, and any modifi-
cation due tdrom __ future__ import is discarded.

struct ~ PyCompilerFlags {

int cf_flags;
}
int CO_FUTURE_DIVISION
This bit can be set iflagsto cause division operatérto be interpreted as “true division” accordingR&P
238
14 Chapter 2. The Very High Level Layer

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0238

CHAPTER

THREE

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.
void Py_INCREF(PyObject *9

void

void

void

void

The following functions are for runtime dynamic embedding of Pythd?y IncRef(PyObject *o)

Increment the reference count for object The object must not bBIULL,; if you aren’t sure that it isn’t
NULL, usePy XINCREF() .

Py_XINCREHK PyObiject *q

Increment the reference count for objecThe object may bBIULL, in which case the macro has no effect.
Py_DECREF PyObject *q

Decrement the reference count for objectThe object must not bRULL; if you aren’t sure that it isn't

NULL, usePy XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function
(which must not béNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when & class
instancewitha_del__ () method is deallocated). While exceptions in such code are not propadated,
the executed code has free access to all Python global variables. This means that any objeqt that is
reachable from a global variable should be in a consistent state befoleECREF() is invoked. For
example, code to delete an object from a list should copy a reference to the deleted object in a temporary
variable, update the list data structure, and thenfealIDECREF() for the temporary variable.

Py_XDECREFPyObiject *q
Decrement the reference count for objectThe object may b&lULL, in which case the macro has no
effect; otherwise the effect is the same asHgr DECREF(), and the same warning applies.

Py_CLEAR PyObject *g
Decrement the reference count for objecThe object may bBIULL, in which case the macro has no effect;
otherwise the effect is the same as for DECREF(), except that the argument is also seNidLL. The
warning forPy DECREF() does not apply with respect to the object passed because the macro carefully
uses a temporary variable and sets the argumedttio. before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed
during garbage collection. New in version 2.4.

Py _DecRef(PyObject *0) . They are simply exported function versions Bff XINCREF() and
Py XDECREF(), respectively.

The following functions or macros are only for use within the interpreter cord®y Dealloc()

_Py ForgetReference() , _Py NewReference() , as well as the global variablePy RefTotal

15

The Python/C API, Release 2.6.4

16 Chapter 3. Reference Counting

CHAPTER

FOUR

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to under-
stand some of the basics of Python exception handling. It works somewhat like therthrox variable: there is

a global indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will
set it to indicate the cause of the error on failure. Most functions also return an error indicator, bRuiallyf

they are supposed to return a pointer; orif they return an integer (exception: tRgArg_*() functions return

1 for success and for failure).

When a function must fail because some function it called failed, it generally doesn'’t set the error indicator; the
function it called already set it. Itis responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); ihehouitinue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways. The error indicator consists of three Python objects
corresponding to the Python variab®s.exc_type ,sys.exc_value andsys.exc_traceback . AP|
functions exist to interact with the error indicator in various ways. There is a separate error indicator for each
thread.

void PyErr_PrintEx (intset_sys_last_vars
Print a standard traceback ¢gs.stderr and clear the error indicator. Call this function only when the
error indicator is set. (Otherwise it will cause a fatal error!)

If set sys last varsis nonzero, the variablessys.last_type , sys.last_value and
sys.last_traceback will be set to the type, value and traceback of the printed exception, re-
spectively.

void PyErr_Print ()
Alias for PyErr_PrintEx(1)

PyObject* PyErr_Occurred ()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the excepyjpe(the first argument to the last call to
one of thePyErr_Set*() functions or toPyErr_Restore()). If not set, returrNULL. You do not
own a reference to the return value, so you do not ne@yt®ECREF() it.

Note: Do not compare the return value to a specific exception;Rygar ExceptionMatches()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of
a class, in the case of a class exception, or it may the a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exg

Equivalent toPyErr_GivenExceptionMatches(PyErr_Occurred(), exc) . This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *eXc
Return true if thegivenexception matches the exceptiondkrc If excis a class object, this also returns
true whengivenis an instance of a subclass.eifcis a tuple, all exceptions in the tuple (and recursively in
subtuples) are searched for a match.

17

The Python/C API, Release 2.6.4

void

void

void

void

void

void

PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returnedPiyrr_Fetch() below can be “unnormalized”,
meaning thatexc is a class object butval is not an instance of the same class. This function can be
used to instantiate the class in that case. If the values are already normalized, nothing happens. The delayed
normalization is implemented to improve performance.

PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables tdULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object mayNdLL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that needs
to save and restore the error indicator temporarily.

PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects aréNULL, the error indicator is cleared. Do not pags$@LL type and norNULL value or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object: you must own a reference
to each object before the call and after the call you no longer own these references. (If you don’t understand
this, don’t use this function. | warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator
temporarily; use’yErr_Fetch() to save the current exception state.

PyErr_SetString (PyObiject *type, const char *messgge
This is the most common way to set the error indicator. The first argument specifies the exception type;
it is normally one of the standard exceptions, ¢gExc_RuntimeError . You need not increment its
reference count. The second argument is an error message; it is converted to a string object.

PyErr_SetObject (PyObject *type, PyObiject *valje
This function is similar taPyErr_SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format)...

Return value: Always NULL.

This function sets the error indicator and retuMidLL. exceptionshould be a Python exception (class,
not an instance). format should be a string, containing format codes, similarptintf() . The
width.precision before a format code is parsed, but the width part is ignored.

18

Chapter 4. Exception Handling

The Python/C API, Release 2.6.4

void

int

Format Type Comment
Charac-
ters
%% n/a The literal % character.
%cC int A single character, represented as an C int.
%d int Exactly equivalent t@rintf("%d")
%u un- Exactly equivalent t@rintf("%u")
signed
int
%Id long Exactly equivalent t@rintf("%ld")
%lu un- Exactly equivalent t@rintf("%Iu")
signed
long
%zd Py_ssize Bxactly equivalent tgrintf("%zd")
%zu size t | Exactly equivalent t@rintf("%zu")
%i int Exactly equivalent tgrintf("%i")
%X int Exactly equivalent tgrintf("%x")
%s char* | A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalemiriotf("%p") except
that it is guaranteed to start with the litef regardless of what the platform’s
printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result
string, and any extra arguments discarded.

PyErr_SetNone (PyObject *typé¢
This is a shorthand fdPyErr_SetObject(type, Py_None)
PyErr_BadArgument ()

This is a shorthand faPyErr_SetString(PyExc_TypeError, message) , wheremessagéndi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()

Return value: Always NULL.
This is a shorthand faPyErr_SetNone(PyExc_MemoryError) ; it returnsNULL so an object allo-
cation function can writeeturn PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *typé

Return value: Always NULL.

This is a convenience function to raise an exception when a C library function has returned an error
and set the C variablerrno . It constructs a tuple object whose first item is the integreno value

and whose second item is the corresponding error message (gottestfeynor()), and then calls
PyErr_SetObject(type, object) . On Unix, when theerrno value iSEINTR, indicating an in-
terrupted system call, this cal’s/Err_CheckSignals() , and if that set the error indicator, leaves it set

to that. The function always returdJLL, so a wrapper function around a system call can watarn
PyErr_SetFromErrno(type); when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilename (PyObiject *type, const char *filenarpe

Return value: Always NULL.

Similar to PyErr_SetFromErrno() , with the additional behavior that fflenameis not NULL, it is
passed to the constructor tyfpe as a third parameter. In the case of exceptions sud®Bsror and
OSError , this is used to define tifdename attribute of the exception instance.

PyObject* PyErr_SetFromWindowsErr (intierr)

Return value: Always NULL.

This is a convenience function to raigéndowsError . If called withierr of O, the error code returned

by a call toGetLastError() is used instead. It calls the Win32 functiBlormatMessage() to
retrieve the Windows description of error code giveniéy or GetLastError() , then it constructs a
tuple object whose first item is therr value and whose second item is the corresponding error message
(gotten fromFormatMessage()), and then call®yErr_SetObject(PyExc_WindowsError,

object) . This function always returndULL. Availability: Windows.

19

The Python/C API, Release 2.6.4

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int iery

Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr() , with an additional parameter specifying the exception type
to be raised. Availability: Windows. New in version 2.3.

PyObject* PyErr_SetFromWindowsErrWithFilename (intierr, const char *filenampg

Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr() , with the additional behavior that filenameis notNULL,
it is passed to the constructor\dfindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *file-
name
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErrWithFilename() , with an additional parameter specifying
the exception type to be raised. Availability: Windows. New in version 2.3.
void PyErr_BadinternalCall 0
This is a shorthand fdPyErr_SetString(PyExc_SystemError, message) , Wheremessagin-

int

int

int

int

dicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

PyErr_WarnEx (PyObject *category, char *message, int stacklgvel

Issue a warning message. T¢etegoryargument is a warning category (see belowNal L; themessage
argument is a message strirgacklevels a positive number giving a number of stack frames; the warning
will be issued from the currently executing line of code in that stack fram&taéklevebf 1 is the function
calling PyErr_WarnEx() , 2 is the function above that, and so forth.

This function normally prints a warning messagesys.stdery however, it is also possible that the user

has specified that warnings are to be turned into errors, and in that case this will raise an exception. It
is also possible that the function raises an exception because of a problem with the warning machinery
(the implementation imports th@arnings module to do the heavy lifting). The return valueQisf no
exception is raised, ofl if an exception is raised. (It is not possible to determine whether a warning
message is actually printed, nor what the reason is for the exception; this is intentional.) If an exception is
raised, the caller should do its normal exception handling (for exarRpleDECREF() owned references

and return an error value).

Warning categories must be subclassed/afning ; the default warning category RuntimeWarning
The standard Python warning categories are available as global variables whose namgExare
followed by the Python exception name. These have the By@bject* ; they are all class ob-
jects. Their names ar®yExc_Warning , PyExc_UserWarning , PyExc_UnicodeWarning
PyExc_DeprecationWarning , PyExc_SyntaxWarning , PyExc_RuntimeWarning , and
PyExc_FutureWarning . PyExc_Warning is a subclass oPyExc_Exception ; the other warn-
ing categories are subclassefyExc_Warning .

For information about warning control, see the documentation fowtiraings module and thew option
in the command line documentation. There is no C API for warning control.

PyErr_Warn (PyObiject *category, char *message

Issue a warning message. Totategoryargument is a warning category (see belowNtLL; the mes-
sageargument is a message string. The warning will appear to be issued from the function calling
PyErr_Warn() , equivalent to calling®’yErr_WarnEx() with astacklevebf 1.

Deprecated; useyErr_WarnEx() instead.

PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno,

const char *module, PyObiject *regisiry
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrap-

per around the Python functiomarnings.warn_explicit() , see there for more information. The
moduleandregistryarguments may be set MULL to get the default effect described there.

PyErr_WarnPy3k (char *message, int stackleyel
Issue aDeprecationWarning with the givenmessageandstacklevelf the Py Py3kWarningFlag
flag is enabled. New in version 2.6.

20

Chapter 4. Exception Handling

The Python/C API, Release 2.6.4

int

void

int

PyErr_CheckSignals ()

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the
processes and if so, invokes the corresponding signal handler. sighal module is supported, this

can invoke a signal handler written in Python. In all cases, the default effe®I@&INT is to raise the
Keyboardinterrupt exception. If an exception is raised the error indicator is set and the function
returns-1 ; otherwise the function return®. The error indicator may or may not be cleared if it was
previously set.

PyErr_Setinterrupt 0

This function simulates the effect of aSIGINT signal arriving — the next time
PyErr_CheckSignals() is called, KeyboardInterrupt will be raised. It may be called
without holding the interpreter lock.

PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which\@ byte will be written whenever a signal is
received. It returns the previous such file descriptor. The vadludisables the feature; this is the initial
state. This is equivalent tignal.set_wakeup_fd() in Python, but without any error checkinéd
should be a valid file descriptor. The function should only be called from the main thread.

PyObject* PyErr_NewException (char *name, PyObject *base, PyObject *dict

void

Return value: New reference.

This utility function creates and returns a new exception object. nEmeeargument must be the name of
the new exception, a C string of the fonmodule.class . Thebaseanddict arguments are normally
NULL. This creates a class object derived fremception (accessible in C aByExc_Exception).

The__module__ attribute of the new class is set to the first part (up to the last dot) efaheargument,
and the class name is set to the last part (after the last dot).ba@$eargument can be used to specify
alternate base classes; it can either be only one class or a tuple of classd&t Ahgument can be used to
specify a dictionary of class variables and methods.

PyErr_WriteUnraisable (PyObject *ob)
This utility function prints a warning message ggs.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception
occursinan_del_ () method.

The function is called with a single argumaenttj that identifies the context in which the unraisable exception
occurred. The repr adbj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose narRg&ace followed by the Python
exception name. These have the typeObject* ; they are all class objects. For completeness, here are all the
variables:

4.1. Standard Exceptions 21

The Python/C API, Release 2.6.4

C Name Python Name Notes
PyExc_BaseException BaseException @), @
PyExc_Exception Exception Q)
PyExc_StandardError StandardError Q)
PyExc_ArithmeticError ArithmeticError Q)
PyExc_LookupError LookupError 1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError

PyExc_EOFError EOFError

PyExc_EnvironmentError
PyExc_FloatingPointError
PyExc_IOError

EnvironmentError
FloatingPointError
IOError

PyExc_ImportError ImportError
PyExc_IndexError IndexError
PyExc_KeyError KeyError
PyExc_Keyboardinterrupt KeyboardInterrupt
PyExc_MemoryError MemoryError
PyExc_NameError NameError

PyExc_NotimplementedError
PyExc_OSError

PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError (2
PyExc_RuntimeError RuntimeError
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemEXxit

PyExc_TypeError TypeError

PyExc_ValueError ValueError

PyExc_WindowsError
PyExc_ZeroDivisionError

NotlmplementedError
OSError

WindowsError
ZeroDivisionError

(1)

3)

Notes:

1. Thisis a base class for other standard exceptions.

2. This is the same aseakref.ReferenceError

3. Only defined on Windows; protect code that uses this by testing that the preprocessomM8adNDOWS

is defined.

4. New in version 2.5.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived BaseException

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also
change in a future release.

22 Chapter 4. Exception Handling

CHAPTER

FIVE

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Ultilities

int

long

void

int

Py_FdisInteractive (FILE *fp, const char *filenamp
Return true (nonzero) if the standard I/O fifewith namefilenameis deemed interactive. This is the case
for files for whichisatty(fileno(fp)) is true. If the global flag’y_InteractiveFlag is true,

this function also returns true if tHdenamepointer iSNULL or if the name is equal to one of the strings
'<stdin>’ or'??7?

PyOS_GetLastModificationTime (char *filenam¢
Return the time of last modification of the fifdename The result is encoded in the same way as the
timestamp returned by the standard C library functiore()

PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the
Python interpreter will continue to be used. If a new executable is loaded into the new process, this function
does not need to be called.

PyOS_CheckStack ()

Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
whenUSE_STACKCHECIK defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECKill be defined automatically; you should never change the definition in your own
code.

PyOS_sighandler_t PyOS_getsig (inti)

Return the current signal handler for sigmal This is a thin wrapper around eithsigaction() or
signal() . Do not call those functions directlyPyOS_sighandler_t is a typedef alias fovoid
(*)(int)

PyOS_sighandler_t PyOS_setsig (inti, PyOS_sighandler_t)h

Set the signal handler for signiaio beh; return the old signal handler. This is a thin wrapper around either
sigaction() orsignal() . Do not call those functions directl?yOS_sighandler t is a typedef
alias forvoid (*)(int)

5.2 System Functions

These are utility functions that make functionality from #ys module accessible to C code. They all work with
the current interpreter threadsys module’s dict, which is contained in the internal thread state structure.

23

The Python/C API, Release 2.6.4

PyObject * PySys GetObject (char *namg
Return value: Borrowed reference.
Return the objeahamefrom thesys module orNULL if it does not exist, without setting an exception.

FILE * PySys GetFile (char*name, FILE *dej
Return theFILE* associated with the objenamein thesys module, ordef if nameis not in the module
or is not associated withILE* .

int PySys SetObject (char *name, PyObject *V
Setnamein the sys module tov unlessv is NULL, in which casenameis deleted from the sys module.
Returns0 on success;1 on error.

void PySys ResetWarnOptions ()
Resetsys.warnoptions to an empty list.

void PySys AddWarnOption (char *s)
Appendsto sys.warnoptions

void PySys SetPath (char *path
Setsys.path to a list object of paths found ipath which should be a list of paths separated with the
platform’s search path delimiter (on Unix,; on Windows).

void PySys WriteStdout (const char *format, .).
Write the output string described igrmatto sys.stdout . No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes,
the output string is truncated. In particular, this means that no unrestricted “%s” formats should occur;
these should be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the
maximum size of other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can
print hundreds of digits for very large numbers.

If a problem occurs, osys.stdout is unset, the formatted message is written to the real (C |staidut

void PySys WriteStderr (const char *format, .).
As above, but write tays.stderr or stderrinstead.

5.3 Process Control

void Py FatalError (const char *message
Print a fatal error message and Kkill the process. No cleanup is performed. This function should only be
invoked when a condition is detected that would make it dangerous to continue using the Python interpreter;
e.g., when the object administration appears to be corrupted. On Unix, the standard C library function
abort() is called which will attempt to producecmre file.

void Py _Exit (intstatug

Exit the current process. This caly/ Finalize() and then calls the standard C library function
exit(status)

int Py _AtExit (void (*func) ()
Register a cleanup function to be callediy Finalize() . The cleanup function will be called with no

arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulPy AtEXxit() returnsO; on failure, it returnsl1 . The cleanup function registered last is
called first. Each cleanup function will be called at most once. Since Python'’s internal finalization will have
completed before the cleanup function, no Python APIs should be callfohby

5.4 Importing Modules

PyObject* Pylmport_ImportModule (const char *namg
Return value: New reference.

24 Chapter 5. Utilities

The Python/C API, Release 2.6.4

This is a simplified interface tBylmport_ImportModuleEx() below, leaving thelobalsandlocals
arguments set tblULL andlevel set to 0. When th@ameargument contains a dot (when it specifies a
submodule of a package), tfremlistargument is set to the li§t’] so that the return value is the named
module rather than the top-level package containing it as would otherwise be the case. (Unfortunately, this
has an additional side effect wheamein fact specifies a subpackage instead of a submodule: the sub-
modules specified in the package'sall__ variable are loaded.) Return a new reference to the imported
module, orNULL with an exception set on failure. Before Python 2.4, the module may still be created in
the failure case — examimgys.modules to find out. Starting with Python 2.4, a failing import of a
module no longer leaves the modulesys.modules . Changed in version 2.4: Failing imports remove
incomplete module objects.Changed in version 2.6: Always uses absolute imports.

PyObject* Pylmport_ImportModuleNoBlock (const char *namg
This version ofPylmport_ImportModule() does not block. It's intended to be used in C functions
that import other modules to execute a function. The import may block if another thread holds the import
lock. The functionPylmport_ImportModuleNoBlock() never blocks. It first tries to fetch the
module from sys.modules and falls backRglmport_ImportModule() unless the lock is held, in
which case the function will raise dmportError . New in version 2.6.

PyObject* Pylmport_ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
Return value: New reference.

Import a module. This is best described by referring to the built-in Python functionport_ () , as
the standard _import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level pack&ggl bmith an exception

set on failure (before Python 2.4, the module may still be created in this case). Likeifioport_ ()

the return value when a submodule of a package was requested is normally the top-level package, unless
a non-emptyfromlist was given. Changed in version 2.4: Failing imports remove incomplete module ob-
jects.Changed in version 2.6: The function is an aliasfdmport_ImportModuleLevel() with -1

as level, meaning relative import.

PyObject* Pylmport_ImportModuleLevel (char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist, int leve)
Import a module. This is best described by referring to the built-in Python functionport_ () , as

the standard _import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level packaggl bmwvith an exception
set on failure. Like for _import__ () , the return value when a submodule of a package was requested
is normally the top-level package, unless a non-enfipiylist was given. New in version 2.5.

PyObject* Pylmport_Import (PyObject *namg
Return value: New reference.
This is a higher-level interface that calls the current “import hook function”. It invokes the
__import__() function from the__ builtins__ of the current globals. This means that the import
is done using whatever import hooks are installed in the current environment, egxday orihooks .
Changed in version 2.6: Always uses absolute imports.

PyObject* Pylmport_ReloadModule (PyObject *n)
Return value: New reference.
Reload a module. This is best described by referring to the built-in Python funetiomd() , as the
standardeload() function calls this function directly. Return a new reference to the reloaded module,
or NULL with an exception set on failure (the module still exists in this case).

PyObject* Pylmport_AddModule (const char *namg
Return value: Borrowed reference.
Return the module object corresponding to a module name. néhgeargument may be of the form
package.module . First check the modules dictionary if there’s one there, and if not, create a new
one and insert it in the modules dictionary. RetNHdLL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get
an empty module object. Usg/Import_ImportModule() or one of its variants to import a module.
Package structures implied by a dotted namenfoneare not created if not already present.

5.4. Importing Modules 25

The Python/C API, Release 2.6.4

PyObject* Pylmport_ExecCodeModule (char *name, PyObject *cp

Return value: New reference.

Given a module name (possibly of the forpackage.module) and a code object read from a
Python bytecode file or obtained from the built-in functioompile() , load the module. Return
a new reference to the module object, MULL with an exception set if an error occurred. Before
Python 2.4, the module could still be created in error cases. Starting with Pythoma&ngis re-
moved fromsys.modules in error cases, and evenirifamewas already irsys.modules on entry
to Pylmport_ExecCodeModule() . Leaving incompletely initialized modules Bys.modules is
dangerous, as imports of such modules have no way to know that the module object is an unknown (and
probably damaged with respect to the module author’s intents) state.

This function will reload the module if it was already imported. $gémport ReloadModule() for
the intended way to reload a module.

If namepoints to a dotted name of the foqpackage.module , any package structures not already created
will still not be created. Changed in version 2rameis removed fronsys.modules in error cases.

long Pylmport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.kpgc and.pyo files). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport_GetModuleDict 0
Return value: Borrowed reference.
Return the dictionary used for the module administration (agya.modules). Note that this is a per-
interpreter variable.

PyObject* Pylmport_Getimporter (PyObject *path
Return an importer object forsys.path /pkg._ _path__ item path possibly by fetching it from the
sys.path_importer_cache dict. If it wasn't yet cached, traversys.path_hooks until a hook
is found that can handle the path item. Retilone if no hook could; this tells our caller it should fall
back to the built-in import mechanism. Cache the resullyis.path_importer_cache . Return a
new reference to the importer object. New in version 2.6.

void _Pylmport_Init 0
Initialize the import mechanism. For internal use only.

void Pylmport_Cleanup ()
Empty the module table. For internal use only.

void _Pylmport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport_FindExtension (char *, char *)
For internal use only.

PyObject* _Pylmport_FixupExtension (char *, char *)
For internal use only.

int Pylmport_ImportFrozenModule (char *nam¢
Load a frozen module namethme Returnl for success if the module is not found, andl with
an exception set if the initialization failed. To access the imported module on a successful load, use
Pylmport_ImportModule() . (Note the misnomer — this function would reload the module if it
was already imported.)

_frozen
This is the structure type definition for frozen module descriptors, as generated figaheutility (see
Tools/freeze/ in the Python source distribution). Its definition, foundriclude/import.h ,Is:

struct _frozen {
char *name;
unsigned char *code;
int size;

26 Chapter 5. Utilities

The Python/C API, Release 2.6.4

struct _frozen* Pylmport_FrozenModules
This pointer is initialized to point to an array efruct _frozen records, terminated by one whose
members are aNULL or zero. When a frozen module is imported, it is searched in this table. Third-party
code could play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport_Appendinittab (char *name, void (*initfunc)(void)
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
Pylmport_ExtendInittab() , returning-1 if the table could not be extended. The new module
can be imported by the namame and uses the functidnitfunc as the initialization function called on the
first attempted import. This should be called befBse Initialize()

_inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name
and initialization function for a module built into the interpreter. Programs which embed Python may use

an array of these structures in conjunction withimport_ExtendInittab() to provide additional
built-in modules. The structure is definedlirclude/import.h as:
struct _inittab {

char *name;
void (*initfunc)(void);

I3

int Pylmport_ExtendInittab (‘struct _inittab *newtap
Add a collection of modules to the table of built-in modules. Tibeitabarray must end with a sentinel entry
which containdNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returng) on success ol if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Pefdretialize()

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data formatresthal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the historical version, version 1 (new in Python
2.4) shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses a binary format
for floating point numbers?y MARSHAL_VERSIOMdicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version
Marshal along integer,value to file. This will only write the least-significant 32 bits walue regardless
of the size of the nativiong type. Changed in version 2.4¢ersionindicates the file format.

void PyMarshal WriteObjectToFile (PyObject *value, FILE *file, int versign
Marshal a Python objectalug tofile. Changed in version 2.4zersionindicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int versign
Return value: New reference.
Return a string object containing the marshalled representativaleé Changed in version 2.4.ersion
indicates the file format.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that'’s relevant), but it's not clear that negative values won't be handled properly when there’s
no error. What's the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadLongFromFile (FILE *file)
Return a dong from the data stream inRILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native sizéoofy .

5.5. Data marshalling support 27

The Python/C API, Release 2.6.4

int PyMarshal_ReadShortFromFile (FILE *file)
Return a Gshort from the data stream infILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native sizslubrt .

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream FllsE* opened for reading. On error, sets the appropriate
exception EOFError or TypeError) and returndNULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream in FRiLE* opened for reading. Unlike
PyMarshal _ReadObjectFromFile() , this function assumes that no further objects will be read from

the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won't be reading anything else from the file. On error, sets the appropriate excE@ieBr¢or

or TypeError) and returndNULL.

PyObject* PyMarshal_ReadObjectFromString (char *string, Py_ssize tlgn
Return value: New reference.
Return a Python object from the data stream in a character buffer conténibgtes pointed to bgtring.
On error, sets the appropriate exceptiB®EError or TypeError) and returndNULL. Changed in ver-
sion 2.5: This function used ant type forlen. This might require changes in your code for properly
supporting 64-bit systems.

5.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information
and examples are available fiixtending and Embedding the Python Interpreier Extending and Embedding
Pythor).

The first three of these functions described, PyArg ParseTuple() ,
PyArg_ParseTupleAndKeywords() , and PyArg_Parse() , all useformat stringswhich are used

to tell the function about the expected arguments. The format strings use the same syntax for each of these
functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually

a single character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not
a parenthesized sequence normally corresponds to a single address argument to these functions. In the following
description, the quoted form is the format unit; the entry in (round) parentheses is the Python object type that
matches the format unit; and the entry in [square] brackets is the type of the C variable(s) whose address should
be passed.

s (string or Unicode object) [const char *] Convert a Python string or Unicode object to a C pointer to a char-
acter string. You must not provide storage for the string itself; a pointer to an existing string is stored into
the character pointer variable whose address you pass. The C string is NUL-terminated. The Python string
must not contain embedded NUL bytes; if it doedygpeError exception is raised. Unicode objects are
converted to C strings using the default encoding. If this conversion fdilsj@deError s raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (orPy_ssize t , see below)]
This variant ons stores into two C variables, the first one a pointer to a character string, the second one
its length. In this case the Python string may contain embedded null bytes. Unicode objects pass back
a pointer to the default encoded string version of the object if such a conversion is possible. All other
read-buffer compatible objects pass back a reference to the raw internal data representation.

Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE_T_CLEANbefore includingPython.h . If the macro is defined, length isRy_ssize_t
rather than an int.

s* (string, Unicode, or any buffer compatible object) [Py_buffer *] Similar tos#, this code fills a Py_buffer
structure provided by the caller. The buffer gets locked, so that the caller can subsequently use

28 Chapter 5. Utilities

The Python/C API, Release 2.6.4

the buffer even inside &y BEGIN_ALLOW_THREADS®Ilock; the caller is responsible for calling
PyBuffer_Release with the structure after it has processed the data. New in version 2.6.

z (string or None) [const char *] Like s, but the Python object may also Bi®ne, in which case the C pointer
is set toNULL.

z# (string or None or any read buffer compatible object) [const char *, int] This is tos# asz istos.

z* (string or None or any buffer compatible object) [Py_buffer*] This is tos* asz istos. New in version
2.6.

u (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated
buffer of 16-bit Unicode (UTF-16) data. As with, there is no need to provide storage for the Unicode
data buffer; a pointer to the existing Unicode data is stored inté®théJNICODEpointer variable whose
address you pass.

u# (Unicode object) [Py_UNICODE *, int] This variant oru stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting their
read-buffer pointer as pointer toRy UNICODEarray.

es (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
This variant ors is used for encoding Unicode and objects convertible to Unicode into a character buffer.
It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and mustdmsta char* which

points to the name of an encoding as a NUL-terminated stringlJdl, in which case the default encoding

is used. An exception is raised if the named encoding is not known to Python. The second argument must
be achar** ; the value of the pointer it references will be set to a buffer with the contents of the argument
text. The text will be encoded in the encoding specified by the first argument.

PyArg_ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this
buffer and adjustbuffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after use.

et (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same ases except that 8-bit string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

es# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length
This variant ors# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike thees format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and mustdmesa char* which points

to the name of an encoding as a NUL-terminated string\GL.L, in which case the default encoding is
used. An exception is raised if the named encoding is not known to Python. The second argument must be
achar** ; the value of the pointer it references will be set to a buffer with the contents of the argument
text. The text will be encoded in the encoding specified by the first argument. The third argument must be
a pointer to an integer; the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded
data into this buffer and sébuffer to reference the newly allocated storage. The caller is responsible for
callingPyMem_Free() to free the allocated buffer after usage.

If *buffer points to a norNULL pointer (an already allocated buffeByArg_ParseTuple() will use
this location as the buffer and interpret the initial valuétniffer_lengthas the buffer size. It will then copy
the encoded data into the buffer and NUL-terminate it. If the buffer is not large enolgiyeError

will be set.

In both casestbuffer_lengthis set to the length of the encoded data without the trailing NUL byte.

et# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length
Same ags# except that string objects are passed through without recoding them. Instead, the implemen-
tation assumes that the string object uses the encoding passed in as parameter.

5.6. Parsing arguments and building values 29

The Python/C API, Release 2.6.4

b (integer) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C
unsigned char

B (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

h (integer) [short int] Convert a Python integer to asbort int

H (integer) [unsigned short int] Convert a Python integer to a @hsigned short int , without overflow
checking. New in version 2.3.

i (integer) [int] Convert a Python integer to a plaini@ .

| (integer) [unsigned int] Convert a Python integer to aisigned int , without overflow checking. New
in version 2.3.

I (integer) [long int] Convert a Python integer to aléng int

k (integer) [unsigned long] Convert a Python integer or long integer to aisigned long without overflow
checking. New in version 2.3.

L (integer) [PY_LONG_LONG] Convert a Python integer to aléng long . This format is only available
on platforms that suppolbng long (or_int64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Convert a Python integer or long integer to aidsigned long
long without overflow checking. This format is only available on platforms that suppastgned
long long (orunsigned _int64 on Windows). New in version 2.3.

n (integer) [Py_ssize_t]Convert a Python integer or long integer to ¢ ssize_t . New in version 2.5.
c (string of length 1) [char] Convert a Python character, represented as a string of length 1, tharC

f (float) [float] Convert a Python floating point number to dl@at

d (float) [double] Convert a Python floating point number to alGuble .

D (complex) [Py_complex] Convert a Python complex number to &€ complex structure.

O(object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program
thus receives the actual object that was passed. The object’s reference count is not increased. The pointer
stored is noNULL.

O! (object) [typeobjectPyObject *] Store a Python object in a C object pointer. This is simila®tdut takes
two C arguments: the first is the address of a Python type object, the second is the address of the C variable
(of typePyObject*) into which the object pointer is stored. If the Python object does not have the required
type, TypeError s raised.

O&(object) [converter anything] Convert a Python object to a C variable throughaaverterfunction. This
takes two arguments: the first is a function, the second is the address of a C variable (of arbitrary type),
converted tovoid * . Theconverterfunction in turn is called as follows:

status = converter(object, address);

whereobjectis the Python object to be converted aadbresss thevoid* argument that was passed to
thePyArg_Parse*() function. The returnedtatusshould bel for a successful conversion afdf the
conversion has failed. When the conversion fails dhverterfunction should raise an exception and leave
the content oaddressunmodified.

S (string) [PyStringObject *] Like Obut requires that the Python object is a string object. RaigesError
if the object is not a string object. The C variable may also be declarBg@bject*

U (Unicode string) [PyUnicodeObject *] Like Obut requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declaféd@isject*

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-only
buffer interface. Thehar* variable is set to point to the first byte of the buffer, anditite is set to the
length of the buffer. Only single-segment buffer objects are accepigetError is raised for all others.

30 Chapter 5. Utilities

The Python/C API, Release 2.6.4

w (read-write character buffer) [char *] Similar tos, but accepts any object which implements the read-write
buffer interface. The caller must determine the length of the buffer by other means,wo# irstead. Only
single-segment buffer objects are acceplggieError is raised for all others.

w# (read-write character buffer) [char *, Py_ssize t] Like s#, but accepts any object which implements the
read-write buffer interface. Thehar * variable is set to point to the first byte of the buffer, and
the Py _ssize t is set to the length of the buffer. Only single-segment buffer objects are accepted;
TypeError is raised for all others.

w* (read-write byte-oriented buffer) [Py_buffer *] This is towwhats* istos. New in version 2.6.

(items) (tuple) [matching-item$ The object must be a Python sequence whose length is the number of format
units initems The C arguments must correspond to the individual format unitefns Format units for
sequences may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual
parameters, not an arbitrary sequence. Code which previously caypelirror to be raised here may
now proceed without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done
— the most significant bits are silently truncated when the receiving field is too small to receive the value (actually,
the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They
are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not
specifiedPyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception thatArg ParseTuple() raises).

; The list of format units ends here; the string after the semicolon is used as the error mpesteapof the
default error message. and; mutually exclude each other.

Note that any Python object references which are provided to the calleoaoevedreferences; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the
format string; these are used to store values from the input tuple. There are a few cases, as described in the list of
format units above, where these parameters are used as input values; they should match what is specified for the
corresponding format unit in that case.

For the conversion to succeed, tirg object must match the format and the format must be exhausted. On success,
the PyArg_Parse*() functions return true, otherwise they return false and raise an appropriate exception.
When thePyArg Parse*() functions fail due to conversion failure in one of the format units, the variables at
the addresses corresponding to that and the following format units are left untouched.

int PyArg_ParseTuple (PyObject *args, const char *format,)..
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vaijgs
Identical toPyArg_ParseTuple() , except that it accepts a va_list rather than a variable number of
arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...
Parse the parameters of a function that takes both positional and keyword parameters into local variables.

Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], va_list varg3
Identical toPyArg ParseTupleAndKeywords() , except that it accepts a va_list rather than a variable

number of arguments.

5.6. Parsing arguments and building values 31

The Python/C API, Release 2.6.4

int

int

PyArg_Parse (PyObject *args, const char *format,)..

Function used to deconstruct the argument lists of “old-style” functions — these are functions which use
the METH_OLDARGSarameter parsing method. This is not recommended for use in parameter parsing in
new code, and most code in the standard interpreter has been modified to no longer use this for that purpose.
It does remain a convenient way to decompose other tuples, however, and may continue to be used for that
purpose.

PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...

A simpler form of parameter retrieval which does not use a format string to specify the types of the argu-
ments. Functions which use this method to retrieve their parameters should be dedldEgid-as/ARARGS

in function or method tables. The tuple containing the actual parameters should be paaggEditsiust
actually be a tuple. The length of the tuple must be at Isastand no more thamax min andmaxmay

be equal. Additional arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values froangs they will contain borrowed refer-
ences. The variables which correspond to optional parameters not giagdyill not be filled in; these

should be initialized by the caller. This function returns true on success and falggs i not a tuple or
contains the wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources fomtbakref helper module for
weak references:

static PyObject *
weakref ref (PyObject *self, PyObject *args)

{
PyObject *object;
PyObject *callback = NULL
PyObject *result = NULL
if (PyArg_UnpackTuple(args, “ref ", 1, 2, &object, &callback)) {
result = PyWeakref NewRef(object, callback);
}
return result;
}
The call to PyArg_UnpackTuple() in this example is entirely equivalent to this call to

PyArg_ParseTuple()
PyArg_ParseTuple(args, "O|O:ref ", &object, &callback)

New in version 2.2.Changed in version 2.5: This function usethantype formin andmax This might
require changes in your code for properly supporting 64-bit systems.

PyObject* Py _BuildvValue (const char *format, .).

Return value: New reference.

Create a new value based on a format string similar to those acceptedby/Ahe Parse*() family of
functions and a sequence of values. Returns the valbiJat in the case of an error; an exception will be
raised ifNULL is returned.

Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two
or more format units. If the format string is empty, it retuisne; if it contains exactly one format unit,

it returns whatever object is described by that format unit. To force it to return a tuple of size 0 or one,
parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, asfantiss# for-

mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated byPy BuildValue() . In other words, if your code invokesalloc() and passes the allocated
memory toPy BuildValue() , your code is responsible for calliffgee() for that memory once

Py _BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the
Python object type that the format unit will return; and the entry in [square] brackets is the type of the C

32

Chapter 5. Utilities

The Python/C API, Release 2.6.4

value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such
ass#). This can be used to make long format strings a tad more readable.

s (string) [char *] Convert a null-terminated C string to a Python object. If the C string poinfelisL,
None is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is
NULL, the length is ignored andone is returned.

Z (string or None) [char *] Same as.
z# (string or None) [char *, int] Same as#.

u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4)
data to a Python Unicode object. If the Unicode buffer point®&Ut L, None is returned.

u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its
length to a Python Unicode object. If the Unicode buffer pointeNWLL, the length is ignored
andNone is returned.

i (integer) [int] Converta plain Gnt to a Python integer object.

b (integer) [char] Convert a plain Char to a Python integer object.

h (integer) [short int] Convert a plain Ghort int to a Python integer object.

| (integer) [long int] Converta dong int to a Python integer object.

B (integer) [unsigned char] Convert a Qunsigned char to a Python integer object.

H (integer) [unsigned short int] Convert a Qunsigned short int to a Python integer object.

| (integer/long) [unsigned int] Convert a Qunsigned int to a Python integer object or a Python long
integer object, if it is larger thasys.maxint

k (integer/long) [unsigned long] Convert a Cunsigned long to a Python integer object or a Python
long integer object, if it is larger thasys.maxint

L (long) [PY_LONG_LONG] Converta dong long to a Python long integer object. Only available
on platforms that suppolvng long

K (long) [unsigned PY_LONG_LONG] Convert a Qunsigned long long to a Python long integer
object. Only available on platforms that suppansigned long long

n (int) [Py_ssize t] Converta CPy_ssize t to a Python integer or long integer. New in version 2.5.
c (string of length 1) [char] Converta Gnt representing a character to a Python string of length 1.
d (float) [double] Convert a Cdouble to a Python floating point number.

f (float) [float] Same asl.

D (complex) [Py_complex *] Convert a CPy_complex structure to a Python complex number.

O(object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incre-
mented by one). If the object passed in iNldLL pointer, it is assumed that this was caused because
the call producing the argument found an error and set an exception. TherafoRjildValue()
will return NULL but won't raise an exception. If no exception has been raisedSystemError
is set.

S (object) [PyObject *] Same a®©.

N (object) [PyObject *] Same a®, except it doesn't increment the reference count on the object. Useful
when the object is created by a call to an object constructor in the argument list.

O&(object) [converter anything] Convertanythingto a Python object through@nverterfunction. The
function is called withanything (which should be compatible wittioid *) as its argument and
should return a “new” Python object, BIULL if an error occurred.

5.6. Parsing arguments and building values 33

The Python/C API, Release 2.6.4

(items) (tuple) [matching-item$ Convert a sequence of C values to a Python tuple with the same num-
ber of items.

[items] (list) [matching-item$ Convert a sequence of C values to a Python list with the same number
of items.

{items} (dictionary) [matching-item$ Convert a sequence of C values to a Python dictionary. Each
pair of consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, tiystemError exception is set anNULL returned.

PyObject* Py _VaBuildValue (const char *format, va_list vargs
Identical toPy_BuildValue() , except that it accepts a va_list rather than a variable number of argu-
ments.

5.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprintf (char *str, size_t size, const char *format) ...
Output not more thasizebytes tostr according to the format strinfiprmat and the extra arguments. See
the Unix man pagenprintf(2)

int PyOS_vsnprintf (char *str, size_t size, const char *format, va_lisjva
Output not more thasizebytes tostr according to the format striniprmatand the variable argument list
va. Unix man page/snprintf(2)

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functiorssprintf() and
vsnprintf() . Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure thatr*[*size-1] is always\0' upon return. They never write more thaize bytes
(including the trailing\O’ into str. Both functions require thatr '= NULL ,size > 0 andformat !=
NULL

If the platform doesn’t havesnprintf() and the buffer size needed to avoid truncation exceemby more
than 512 bytes, Python aborts witiPg_FatalError.

The return valuerg) for these functions should be interpreted as follows:

« When0 <= rv < size , the output conversion was successful amctharacters were written tstr
(excluding the trailing\0’ byte atstr*[*rv]).

* Whenrv >= size , the output conversion was truncated and a buffer with+ 1 bytes would have
been needed to succeati*[*size-1]is\O’ in this case.

« Whenrv < 0, “something bad happenedstr*[*size-1] is \O’ in this case too, but the rest efr is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_ascii_strtod (const char *nptr, char **endpfy
Convert a string to a@ouble . This function behaves like the Standard C functstrod() does in the
C locale. It does this without changing the current locale, since that would not be thread-safe.

PyOS_ascii_strtod() should typically be used for reading configuration files or other non-user input
that should be locale independent. New in version 2.4. See the Unix marstoegk?2) for details.

char * PyOS_ascii_formatd (char *buffer, size_t buf_len, const char *format, doub)e d

Convert adouble to a string using the” as the decimal separatdéormatis aprintf() -style format
string specifying the number format. Allowed conversion characterseare’e’ ,'f ,'F' ,’'g’ and
‘G .

The return value is a pointer tmuffer with the converted string or NULL if the conversion failed. New in
version 2.4,

34 Chapter 5. Utilities

The Python/C API, Release 2.6.4

double PyOS ascii_atof (const char *nptj
Convert a string to @ouble in a locale-independent way. New in version 2.4. See the Unix man page
atof(2) for details.

char * PyOS_stricmp (char *s1, char *s2
Case insensitive comparison of strings. The function works almost identicatyctmp() except that it
ignores the case. New in version 2.6.

char * PyOS_strnicmp (char *s1, char *s2, Py_ssize_t s)ze
Case insensitive comparison of strings. The function works almost identicatyriomp() except that
it ignores the case. New in version 2.6.

5.8 Reflection

PyObject* PyEval_GetBuiltins 0
Return value: Borrowed reference.
Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no
frame is currently executing.

PyObject* PyEval _GetlLocals ()
Return value: Borrowed reference.
Return a dictionary of the local variables in the current execution framiJbi if no frame is currently
executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference.
Return a dictionary of the global variables in the current execution framéUat_ if no frame is currently
executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference.
Return the current thread state’s frame, whicNLL if no frame is currently executing.

int PyEval_GetRestricted 0
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char* PyEval_GetFuncName (PyObject *fung
Return the name dfincif it is a function, class or instance object, else the nanfeds type.

const char* PyEval_GetFuncDesc (PyObiject *fung
Return a description string, depending on the typefwofc Return values include “()" for func-
tions and methods, ” constructor”, ” instance”, and ” object”. Concatenated with the result of
PyEval_GetFuncName() ,the result will be a description déinc

5.8. Reflection 35

The Python/C API, Release 2.6.4

36 Chapter 5. Utilities

CHAPTER

SIX

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object
types (e.g. all numerical types, or all sequence types). When used on object types for which they do not apply,
they will raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has
been created biyyList New() , but whose items have not been set to someMbihl value yet.

6.1 Object Protocol

int PyObject_Print (PyObject *o, FILE *fp, int flagy
Print an objecb, on file fp. Returns-1 on error. The flags argument is used to enable certain printing
options. The only option currently supportedAg_PRINT_RAW if given, thestr() of the object is
written instead of theepr()

int PyObject HasAttr (PyObject *o, PyObject *attr_name
Returnsl if o has the attributattr_name andO otherwise. This is equivalent to the Python expression

hasattr(o, attr_name) . This function always succeeds.

int PyObject HasAttrString (PyObject *o, const char *attr_nanme
Returnsl if o has the attributattr_name andO otherwise. This is equivalent to the Python expression
hasattr(o, attr_name) . This function always succeeds.

PyObject* PyObject_GetAttr (PyObject *o, PyObiject *attr_name
Return value: New reference.
Retrieve an attribute namexdtr_namefrom objecto. Returns the attribute value on successiNoiLL on
failure. This is the equivalent of the Python expressiattr_name

PyObject* PyObject_GetAttrString (PyObiject *o, const char *attr_name
Return value: New reference.
Retrieve an attribute namexdtr_namefrom objecto. Returns the attribute value on successiNoi_L on
failure. This is the equivalent of the Python expressiattr_name

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *nane
Generic attribute getter function that is meant to be put into a type objpcietattro slot. It looks
for a descriptor in the dictionary of classes in the object's MRO as well as an attribute in the object’s
__dict__ (if present). As outlined inmplementing Descriptorén The Python Language Referehce
data descriptors take preference over instance attributes, while non-data descriptors don't. Otherwise, an
AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObiject *attr_name, PyObject)*v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statemerdttr hame = v

int PyObject_SetAttrString (PyObiject *o, const char *attr_name, PyObjec)*v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statemerdttr name = v

37

The Python/C API, Release 2.6.4

int

int

int

PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *vajue

Generic attribute setter function that is meant to be put into a type objpctetattro slot. It looks

for a data descriptor in the dictionary of classes in the object's MRO, and if found it takes preference over
setting the attribute in the instance dictionary. Otherwise, the attribute is set in the objetits (if
present). Otherwise, akitributeError is raised andl is returned.

PyObject_DelAttr (PyObject *o, PyObject *attr_name
Delete attribute nameaktr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statemendel o.attr_name

PyObject_DelAttrString (PyObject *o, const char *attr_name
Delete attribute nameattr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statemendel o.attr_name

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int op)d

int

int

int

Return value: New reference.

Compare the values afl and 02 using the operation specified lmpid, which must be one oPy LT,
Py LE, Py EQ Py NE, Py GT, or Py_GE, corresponding t&, <=, ==, I= , >, or >= respectively. This
is the equivalent of the Python expressimh op 02, whereop is the operator corresponding ¢gid.
Returns the value of the comparison on succesllrl on failure.

PyObject_RichCompareBool (PyObject *o1, PyObject *02, int op)d

Compare the values afl and o2 using the operation specified lmpid, which must be one oPy LT,
Py LE, Py EQ Py NE, Py GT, or Py _GE, corresponding te<, <=, ==, =, >, or >= respectively.
Returns-1 on error,0 if the result is falsel otherwise. This is the equivalent of the Python expressibn
op 02, whereop is the operator correspondingapid.

PyObject_Cmp (PyObject *01, PyObject *02, int *resylt

Compare the values @fl and 02 using a routine provided bgl, if one exists, otherwise with a routine
provided byo2. The result of the comparison is returnedr@sult Returns-1 on failure. This is the
equivalent of the Python statemeasult = cmp(ol, 02)

PyObject_Compare (PyObject *o1, PyObject *op

Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a routine
provided byo2. Returns the result of the comparison on success. On error, the value returned is undefined;
usePyErr_Occurred() to detect an error. This is equivalent to the Python expressigp(ol, 02)

PyObject* PyObject_ Repr (PyObject*q

Return value: New reference.

Compute a string representation of objecReturns the string representation on sucdski,L on failure.
This is the equivalent of the Python expressiepr(o) . Called by theepr() built-in function and by
reverse quotes.

PyObject* PyObject_Str (PyObject *9

Return value: New reference.

Compute a string representation of objecReturns the string representation on sucdski,L on failure.
This is the equivalent of the Python expressitnfo) . Called by thestr() built-in function and by the
print statement.

PyObject* PyObject Bytes (PyObject *q

Compute a bytes representation of obgcin 2.x, this is just a alias fdPyObject_Str()

PyObject* PyObject_Unicode (PyObject*g

int

Return value: New reference.

Compute a Unicode string representation of obfecReturns the Unicode string representation on suc-
cess,NULL on failure. This is the equivalent of the Python expressioicode(o) . Called by the
unicode() built-in function.

PyObject_IsInstance (PyObject *inst, PyObject *cls

Returnsl if instis an instance of the clagss or a subclass ofls, or O if not. On error, returnsl and
sets an exception. Hlsis a type object rather than a class objéstObject Isinstance() returns
1 if instis of typecls. If clsis a tuple, the check will be done against every entrglén The result will
bel when at least one of the checks retutn®therwise it will be0. If instis not a class instance ants
is neither a type object, nor a class object, nor a tupkt,must have a_class__ attribute — the class

38

Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

relationship of the value of that attribute withs will be used to determine the result of this function. New
in version 2.1.Changed in version 2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of exten-
sions to the class system may want to be aware #falidB are class object® is a subclass AAif it inherits from

A either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the
class relationship of the two objects. When testirig a subclass o4, if Ais B, PyObject IsSubclass()

returns true. IfA andB are different objectsB's __bases _ attribute is searched in a depth-first fashionAor

— the presence of the bases__ attribute is considered sufficient for this determination.

int PyObject_IsSubclass (PyObject *derived, PyObject *cJs
Returnsl if the classderivedis identical to or derived from the clasts, otherwise return§. In case of
an error, returnsl . If clsis a tuple, the check will be done against every entrglén The result will bel
when at least one of the checks retutnstherwise it will be0. If eitherderivedor clsis not an actual class
object (or tuple), this function uses the generic algorithm described above. New in version 2.1.Changed in
version 2.3: Older versions of Python did not support a tuple as the second argument.

int PyCallable_Check (PyObject*q
Determine if the objeat is callable. Returd if the object is callable an@l otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject Jkw
Return value: New reference.
Call a callable Python objecallable objectwith arguments given by the tupdegs, and named arguments
given by the dictionarkw. If no named arguments are needied,may beNULL. argsmust not beNULL,
use an empty tuple if no arguments are needed. Returns the result of the call on sucbidkl @n
failure. This is the equivalent of the Python expresspply(callable_object, args, kw) or
callable_object(*args, **kw) . New in version 2.2.

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *arys
Return value: New reference.

Call a callable Python objedatallable_object with arguments given by the tupkrgs If no argu-
ments are needed, themmgs may be NULL. Returns the result of the call on success,NMWLL on
failure. This is the equivalent of the Python expressapply(callable_object, args) or
callable_object(*args)

PyObject* PyObject_CallFunction (PyObject *callable, char *format,).
Return value: New reference.

Call a callable Python objeatallable, with a variable number of C arguments. The C arguments are
described using 8y BuildValue() style format string. The format may BULL, indicating that no
arguments are provided. Returns the result of the call on succdsblLdron failure. This is the equivalent
of the Python expressiaspply(callable, args) or callable(*args) . Note that if you only
passPyObject * args,PyObject_CallFunctionObjArgs() is a faster alternative.

PyObject* PyObject_CallMethod (PyObiject *o, char *method, char *format,)...
Return value: New reference.
Call the method namehethodof objecto with a variable number of C arguments. The C arguments are
described by &y BuildValue() format string that should produce a tuple. The format majNbé&L,
indicating that no arguments are provided. Returns the result of the call on succB&d, loon failure.
This is the equivalent of the Python expressiomethod(args) . Note that if you only pasByObject
* args,PyObject_CallMethodObjArgs() is a faster alternative.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL
Return value: New reference.
Call a callable Python objectllable, with a variable number dPyObject* arguments. The arguments
are provided as a variable number of parameters followedlyl . Returns the result of the call on success,
or NULL on failure. New in version 2.2.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL
Return value: New reference.
Calls a method of the object where the name of the method is given as a Python string obj@etnre
It is called with a variable number ¢fyObject* arguments. The arguments are provided as a variable

6.1. Object Protocol 39

The Python/C API, Release 2.6.4

number of parameters followed WWULL. Returns the result of the call on successN&fLL on failure.
New in version 2.2.

long PyObject_Hash (PyObiject*9
Compute and return the hash value of an obgecOn failure, return1 . This is the equivalent of the
Python expressiohash(o)

long PyObject HashNotimplemented (PyObject *9
Set aTypeError indicating thattype(o) is not hashable and returt . This function receives special
treatment when stored intp_hash slot, allowing a type to explicitly indicate to the interpreter that it is
not hashable. New in version 2.6.

int PyObject IsTrue (PyObject*9
Returndl if the objectois considered to be true, afdtherwise. This is equivalent to the Python expression
not not o . On failure, returnl .

int PyObject_Not (PyObject*g
Returng) if the objectois considered to be true, atidtherwise. This is equivalent to the Python expression
not o . On failure, returnl .

PyObject* PyObject_Type (PyObject*q
Return value: New reference.
Wheno is nonNULL, returns a type object corresponding to the object type of obje®n failure, raises
SystemError and returndNULL. This is equivalent to the Python expresstgpe(o) . This function
increments the reference count of the return value. There's really no reason to use this function instead of
the common expressiom>ob_type , which returns a pointer of typ@yTypeObject* , except when
the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type
Return true if the objeat is of typetypeor a subtype ofype Both parameters must be nOJLL. New in
version 2.2.

Py ssize 't PyObject_Length (PyObject*g

Py ssize 't PyObject_Size (PyObject*q
Return the length of objeat. If the objecto provides either the sequence and mapping protocols, the
sequence length is returned. On errdr, is returned. This is the equivalent to the Python expression
len(o) . Changed in version 2.5: These functions returnethain type. This might require changes in
your code for properly supporting 64-bit systems.

PyObject* PyObject_Getltem (PyObject *o, PyObject *key
Return value: New reference.
Return element o corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressioro[key]

int PyObject_Setltem (PyObject *o, PyObiject *key, PyObjectyv
Map the objeckeyto the valuev. Returns-1 on failure. This is the equivalent of the Python statement
o[key] = v

int PyObject Delltem (PyObject *o, PyObject *key
Delete the mapping fdkeyfrom o. Returns-1 on failure. This is the equivalent of the Python statement
del o[key]

int PyObject_AsFileDescriptor (PyObject *g
Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’Sileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retufin®n failure.

PyObject* PyObject_Dir (PyObject *9
Return value: New reference.
This is equivalent to the Python expressé@ir(o) , returning a (possibly empty) list of strings appropriate
for the object argument, ddULL if there was an error. If the argumentN8JLL, this is like the Python
dir() , returning the names of the current locals; in this case, if no execution frame is activélihéris
returned buPyErr_Occurred() will return false.

40 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyObject_Getlter (PyObject *g
Return value: New reference.
This is equivalent to the Python expressiter(o) . It returns a new iterator for the object argument,
or the object itself if the object is already an iterator. RaibgseError and returndNULL if the object
cannot be iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *g
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add (PyObject *01, PyObject *opP
Return value: New reference.
Returns the result of addirgl ando2, or NULL on failure. This is the equivalent of the Python expression
ol + o2.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *op
Return value: New reference.
Returns the result of subtractima® from o1, or NULL on failure. This is the equivalent of the Python
expressiorol - 02 .

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *op
Return value: New reference.
Returns the result of multiplyingl and 02, or NULL on failure. This is the equivalent of the Python
expressiorol * 02 .

PyObject* PyNumber_Divide (PyObject*ol, PyObject *oR
Return value: New reference.
Returns the result of dividingl by 02, or NULL on failure. This is the equivalent of the Python expression
ol / o2 .

PyObject* PyNumber_FloorDivide (PyObject *o1, PyObject *oR
Return value: New reference.
Return the floor ob1 divided byo2, or NULL on failure. This is equivalent to the “classic” division of
integers. New in version 2.2.

PyObject* PyNumber_TrueDivide (PyObject *o1, PyObject *op
Return value: New reference.
Return a reasonable approximation for the mathematical valud dfvided byo2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. New in version 2.2.

PyObject* PyNumber_Remainder (PyObject *0l1, PyObject *oR2
Return value: New reference.
Returns the remainder of dividingl by 02, or NULL on failure. This is the equivalent of the Python
expressiorol % o2

PyObject* PyNumber_Divmod (PyObject *o1, PyObject *op
Return value: New reference.
See the built-in functiordivmod() . ReturnsNULL on failure. This is the equivalent of the Python
expressiordivmod(ol, 02)

PyObject* PyNumber_Power (PyObject *01, PyObject *02, PyObject *»3
Return value: New reference.
See the built-in functiopow() . ReturnNULL on failure. This is the equivalent of the Python expression
pow(ol, 02, 03) , whereo3is optional. Ifo3is to be ignored, pas8y None in its place (passing
NULL for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *9
Return value: New reference.

6.2. Number Protocol 41

The Python/C API, Release 2.6.4

Returns the negation @fon success, dlULL on failure. This is the equivalent of the Python expression
-0 .

PyObject* PyNumber_Positive (PyObject *9
Return value: New reference.
Returnso on success, ddULL on failure. This is the equivalent of the Python expression

PyObject* PyNumber_Absolute (PyObject *9
Return value: New reference.
Returns the absolute value of or NULL on failure. This is the equivalent of the Python expression
abs(o) .

PyObject* PyNumber_Invert (PyObject *9
Return value: New reference.
Returns the bitwise negation ofon success, oNULL on failure. This is the equivalent of the Python
expression-o.

PyObject* PyNumber_Lshift (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the result of left shiftingl by 02 on success, dlULL on failure. This is the equivalent of the
Python expressionl << 02.

PyObject* PyNumber_Rshift (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the result of right shiftingl by 02 on success, dlULL on failure. This is the equivalent of the
Python expressionl >> 02.

PyObject* PyNumber_And (PyObject *o1, PyObject *op
Return value: New reference.
Returns the “bitwise and” a1l ando2 on success andULL on failure. This is the equivalent of the Python
expressiorol & 02.

PyObject* PyNumber_Xor (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the “bitwise exclusive or” @fl by 02 on success, ddULL on failure. This is the equivalent of the
Python expressionl " 02 .

PyObject* PyNumber_Or (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the “bitwise or” 061 ando2 on success, dlULL on failure. This is the equivalent of the Python
expressiorol | o2 .

PyObject* PyNumber_InPlaceAdd (PyObject *ol1, PyObject *oR
Return value: New reference.
Returns the result of addirall ando2, or NULL on failure. The operation is doire-placewhenol supports
it. This is the equivalent of the Python statemeht += 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *01, PyObject *oR
Return value: New reference.
Returns the result of subtractim® from 01, or NULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python staternént= 02 .

PyObject* PyNumber_InPlaceMultiply (PyObject *01, PyObiject *oR
Return value: New reference.
Returns the result of multiplyingl ando2, or NULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python stateroént= 02 .

PyObject* PyNumber_InPlaceDivide (PyObject *01, PyObject *op
Return value: New reference.

Returns the result of dividingl by 02, or NULL on failure. The operation is dofie-placewhenol supports
it. This is the equivalent of the Python statememt /= 02 .

PyObject* PyNumber_InPlaceFloorDivide (PyObiject *o1, PyObject *oR
Return value: New reference.

42 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

Returns the mathematical floor of dividimd. by 02, or NULL on failure. The operation is done-place
whenolsupports it. This is the equivalent of the Python stateroént/= 02 . New in version 2.2.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *01, PyObject *op
Return value: New reference.
Return a reasonable approximation for the mathematical valwd divided byo2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. The operation is doireplacewhenol supports it. New in version 2.2.

PyObject* PyNumber_InPlaceRemainder (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the remainder of dividingl by 02, or NULL on failure. The operation is dore-placewhenol
supports it. This is the equivalent of the Python stateroén®o= 02.

PyObject* PyNumber_InPlacePower (PyObject *o1, PyObject *02, PyObject *»3
Return value: New reference.

See the built-in functiopow() . ReturnsNULL on failure. The operation is dorie-place when ol
supports it. This is the equivalent of the Python statenodnt*= 02 when 03 isPy None, or an in-
place variant opow(ol, 02, 03) otherwise. Ifo3is to be ignored, pasdy_None in its place (passing
NULL for o3would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *o01, PyObject *oR
Return value: New reference.
Returns the result of left shiftingl by 02 on success, ddULL on failure. The operation is dorie-place
whenol supports it. This is the equivalent of the Python staternénk<= 02 .

PyObject* PyNumber_InPlaceRshift (PyObject *01, PyObject *op
Return value: New reference.
Returns the result of right shiftingll by 02 on success, ddULL on failure. The operation is dorie-place
whenol supports it. This is the equivalent of the Python staternént>= 02 .

PyObject* PyNumber_InPlaceAnd (PyObject *o1, PyObject *op
Return value: New reference.
Returns the “bitwise and” ob1 ando2 on success anNULL on failure. The operation is done-place
whenolsupports it. This is the equivalent of the Python stateroén&= 02.

PyObject* PyNumber_InPlaceXor (PyObject *01, PyObject *op
Return value: New reference.
Returns the “bitwise exclusive or” @il by 02 on success, oNULL on failure. The operation is done
in-placewhenol supports it. This is the equivalent of the Python stateroént*= 02 .

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *oR
Return value: New reference.
Returns the “bitwise or” 0b1 ando2 on success, ddULL on failure. The operation is dorie-placewhen
o0l supports it. This is the equivalent of the Python staternéni{= 02 .

int PyNumber_Coerce (PyObject **p1, PyObject **p2
This function takes the addresses of two variables of §p@bject* . If the objects pointed to bypl
and*p2 have the same type, increment their reference count and i@t{success). If the objects can be
converted to a common numeric type, repl&ge and*p2 by their converted value (with ‘new’ reference
counts), and returf. If no conversion is possible, or if some other error occurs, returigfailure) and
don’t increment the reference counts. The &Number_Coerce(&ol, &02) s equivalent to the
Python statemerdl, 02 = coerce(ol, 02)

int PyNumber_CoerceEx (PyObject **p1, PyObject **p2
This function is similar toPyNumber_Coerce() , except that it return& when the conversion is not
possible and when no error is raised. Reference counts are still not increased in this case.

PyObject* PyNumber_Int (PyObject *9
Return value: New reference.
Returns theo converted to an integer object on succesaNUILL on failure. If the argument is outside
the integer range a long object will be returned instead. This is the equivalent of the Python expression
int(o)

6.2. Number Protocol 43

The Python/C API, Release 2.6.4

PyObject* PyNumber_Long (PyObject *g

Return value: New reference.
Returns theo converted to a long integer object on succes$NOLL on failure. This is the equivalent of
the Python expressidong(o)

PyObject* PyNumber_Float (PyObject*q

Return value: New reference.
Returns theo converted to a float object on successNWLL on failure. This is the equivalent of the
Python expressiofioat(o)

PyObject* PyNumber_Index (PyObject*q

Returns theo converted to a Python int or long on succes®Nboi_L with a TypeError exception raised
on failure. New in version 2.5.

PyObject* PyNumber_ToBase (PyObject *n, int basgp

Returns the integerconverted tdaseas a string with a base markeréb’ ,’00’ ,or’0x’ if applicable.
Whenbaseis not 2, 8, 10, or 16, the format is#¥num’ where x is the base. His not an int object, it is
converted witiPyNumber_Index() first. New in version 2.6.

Py ssize 't PyNumber_AsSsize t (PyObject *o, PyObject *eXc

int

Returnso converted to a Py_ssize t valueoitan be interpreted as an integerol€an be converted to a
Python int or long but the attempt to convert to a Py_ssize_t value would raiSgexflowError , then
theexcargument is the type of exception that will be raised (usualliexError or OverflowError).

If excis NULL, then the exception is cleared and the value is clippdeMoSSIZE T _MiINor a negative
integer orPY_SSIZE_T_MAJor a positive integer. New in version 2.5.

Pyindex_Check (PyObject*q
Returns True ib is an index integer (has the nb_index slot of the tp_as_number structure filled in). New in
version 2.5.

6.3 Sequence Protocol

int

PySequence_Check (PyObject *g
Returnl if the object provides sequence protocol, &atherwise. This function always succeeds.

Py ssize 't PySequence_Size (PyObject*q
Py ssize 't PySequence_Length (PyObject*g

Returns the number of objects in sequea@® success, and. on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expressign) . Changed in version 2.5: These
functions returned amt type. This might require changes in your code for properly supporting 64-bit
systems.

PyObject* PySequence_Concat (PyObject *01, PyObject *op

Return value: New reference.
Return the concatenation ol ando2 on success, ar/dULL on failure. This is the equivalent of the Python
expressiorol + 02.

PyObject* PySequence_Repeat (PyObject*o, Py _ssize_t coynt

Return value: New reference.

Return the result of repeating sequence objecbunttimes, orNULL on failure. This is the equivalent of
the Python expressiom * count . Changed in version 2.5: This function usediah type forcount
This might require changes in your code for properly supporting 64-bit systems.

PyObject* PySequence_InPlaceConcat (PyObject *o1, PyObject *op

Return value: New reference.
Return the concatenation ofl. ando2 on success, andULL on failure. The operation is done-place
whenol supports it. This is the equivalent of the Python expressibn+= 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py _ssize t coynt

Return value: New reference.
Return the result of repeating sequence objecbunttimes, orNULL on failure. The operation is done

44

Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

in-placewheno supports it. This is the equivalent of the Python expressiots count . Changed in
version 2.5: This function used @mt type forcount This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_Getltem (PyObject *o, Py_ssize }i
Return value: New reference.
Return theith element ofo, or NULL on failure. This is the equivalent of the Python expressifih .
Changed in version 2.5: This function usediain type fori. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PySequence_GetSlice (PyObject *o, Py _ssize til, Py ssize }ti2
Return value: New reference.
Return the slice of sequence objedbetweenil andi2, or NULL on failure. This is the equivalent of the
Python expressioq[il:i2] . Changed in version 2.5: This function usediatn type foril andi2. This
might require changes in your code for properly supporting 64-bit systems.

int PySequence_Setltem (PyObject *o, Py_ssize_ti, PyObject)*v
Assign object/ to theith element ob. Returns1 on failure. This is the equivalent of the Python statement
o[i] = v . This functiondoes notsteal a reference ta Changed in version 2.5: This function used an
int type fori. This might require changes in your code for properly supporting 64-bit systems.

int PySequence_Delltem (PyObject *o, Py_ssize }i
Delete theith element of objecb. Returns-1 on failure. This is the equivalent of the Python statement
del o[i] . Changed in version 2.5: This function usedimin type fori. This might require changes in
your code for properly supporting 64-bit systems.

int PySequence_SetSlice (PyObject *o, Py_ssize til, Py _ssize ti2, PyObjegt *v
Assign the sequence objecto the slice in sequence objeztfrom il to i2. This is the equivalent of the
Python statemerd[il:i2] = v . Changed in version 2.5: This function usediain type foril andi2.
This might require changes in your code for properly supporting 64-bit systems.

int PySequence_DelSlice (PyObject *o, Py_ssize til, Py ssize }ti2
Delete the slice in sequence objecfrom il to i2. Returns-1 on failure. This is the equivalent of the
Python statemertel o[il1:i2] . Changed in version 2.5: This function usedi@n type foril andi2.
This might require changes in your code for properly supporting 64-bit systems.

Py ssize 't PySequence_Count (PyObject *o, PyObject *valie
Return the number of occurrenceswafluein o, that is, return the number of keys for whiofkey] ==
value . On failure, returnl . This is equivalent to the Python expressmoount(value) . Changed
in version 2.5: This function returned &m type. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_Contains (PyObject *o, PyObiject *value
Determine ifo containsvalue If an item inois equal tovalue returnl, otherwise retur®. On error, return
-1 . This is equivalent to the Python expressi@ue in o

Py ssize t PySequence_Index (PyObject *o, PyObject *value
Return the first indexfor whicho[i] == value . On error, returrl . This is equivalent to the Python
expressioro.index(value) . Changed in version 2.5: This function returnedmn type. This might
require changes in your code for properly supporting 64-bit systems.

PyObject* PySequence_List (PyObject *g
Return value: New reference.
Return a list object with the same contents as the arbitrary seqoeite returned list is guaranteed to be
new.

PyObject* PySequence_Tuple (PyObject*q
Return value: New reference.
Return a tuple object with the same contents as the arbitrary seqoenbiJLL on failure. Ifois a tuple,
a new reference will be returned, otherwise a tuple will be constructed with the appropriate contents. This
is equivalent to the Python expressioiple(o)

PyObject* PySequence_Fast (PyObject *o, const char *mn
Return value: New reference.

6.3. Sequence Protocol 45

The Python/C API, Release 2.6.4

Returns the sequenaeas a tuple, unless it is already a tuple or list, in which case returned. Use
PySequence Fast GET ITEM() toaccessthe members of the result. Rettdds L on failure. If the
object is not a sequence, raiSegpeError with mas the message text.

PyObject* PySequence_Fast GET_ITEM (PyObject *o, Py_ssize }i
Return value: Borrowed reference.
Return thath element ob, assuming thab was returned byPySequence Fast() , ois notNULL, and
thati is within bounds. Changed in version 2.5: This function usethain type fori. This might require
changes in your code for properly supporting 64-bit systems.

PyObject** PySequence_Fast ITEMS (PyObject*g
Return the underlying array of PyObject pointers. Assumesothais returned biPySequence_Fast()
andois notNULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change. New in version 2.4.

PyObject* PySequence_ ITEM (PyObject *o, Py_ssize }i
Return value: New reference.
Return theth element oo or NULL on failure. Macro form oPySequence Getltem() but without
checking thaPySequence_Check(o)() is true and without adjustment for negative indices. New in
version 2.3.Changed in version 2.5: This function usethan type fori. This might require changes in
your code for properly supporting 64-bit systems.

Py ssize t PySequence Fast GET_SIZE (PyObject*q
Returns the length ofo, assuming thato was returned byPySequence Fast() and that
0 is not NULL. The size can also be gotten by callingySequence Size() on o, but
PySequence_Fast GET_SIZE() s faster because it can assumis a list or tuple.

6.4 Mapping Protocol

int PyMapping_Check (PyObject*9
Returnl if the object provides mapping protocol, aBatherwise. This function always succeeds.

Py ssize t PyMapping_Size (PyObject*g

Py ssize 't PyMapping_Length (PyObject *9
Returns the number of keys in objeztn success, andl on failure. For objects that do not provide
mapping protocol, this is equivalent to the Python expresiafo) . Changed in version 2.5: These
functions returned amt type. This might require changes in your code for properly supporting 64-bit
systems.

int PyMapping_DelltemString (PyObiject *o, char *key
Remove the mapping for objeleeyfrom the objecb. Return-1 on failure. This is equivalent to the Python
statementel o[key]

int PyMapping_Delltem (PyObiject *o, PyObject *key
Remove the mapping for objeletyfrom the objecb. Return-1 on failure. This is equivalent to the Python
statemendel o[key]

int PyMapping_HasKeyString (PyObiject *o, char *key
On success, returhif the mapping object has the ké&gyandO otherwise. This is equivalent tifkey]
returningTrue on success andalse on an exception. This function always succeeds.

int PyMapping_HasKey (PyObject *o, PyObject *kgy
Returnl if the mapping object has the kégyandO otherwise. This is equivalent mkey] , returning
True on success analse on an exception. This function always succeeds.

PyObject* PyMapping_Keys (PyObject *g
Return value: New reference.
On success, return a list of the keys in objecOn failure, returrNULL. This is equivalent to the Python
expressioro.keys()

46 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyMapping_Values (PyObject*g
Return value: New reference.
On success, return a list of the values in obfedDn failure, returrNULL. This is equivalent to the Python
expressioro.values()

PyObject* PyMapping_ltems (PyObject *g
Return value: New reference.
On success, return a list of the items in objecivhere each item is a tuple containing a key-value pair. On
failure, returnNULL. This is equivalent to the Python expressmitems()

PyObject* PyMapping_GetltemString (PyObject *o, char *key
Return value: New reference.
Return element o corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressioro[key]

int PyMapping_SetltemString (PyObject *o, char *key, PyObject jv
Map the objeckeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python
statemenolkey] = v

6.5 lterator Protocol

New in version 2.2. There are only a couple of functions specifically for working with iterators.

int Pylter_Check (PyObject*qg
Return true if the objeab supports the iterator protocol.

PyObject* Pylter_Next (PyObject *g
Return value: New reference.
Return the next value from the iteration If the object is an iterator, this retrieves the next value from the
iteration, and return8lULL with no exception set if there are no remaining items. If the object is not an
iterator, TypeError is raised, or if there is an error in retrieving the item, retiMti_L and passes along
the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_Getlter(obj);
PyObject *item;

if (iterator == NULD {
[* propagate error */

}

while (item = Pylter_Next(iterator)) {
[* do something with item */
[* release reference when done */
Py_DECREF(item);

}

Py DECREF(iterator);

if (PyErr_Occurred()) {
[* propagate error */

}
else {

[* continue doing useful work */
}

6.5. lIterator Protocol 47

The Python/C API, Release 2.6.4

6.6 Old Buffer Protocol

This section describes the legacy buffer protocol, which has been introduced in Python 1.6. It is still supported
but deprecated in the Python 2.x series. Python 3.0 introduces a new buffer protocol which fixes weaknesses and
shortcomings of the protocol, and has been backported to Python 2.Bu8eeObjectdor more information.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer Jen
Returns a pointer to a read-only memory location usable as character-based inpolhj atgeiment must
support the single-segment character buffer interface. On success, @fsatsbuffer to the memory
location andbuffer_lento the buffer length. Returnd and sets &ypeError on error. New in version
1.6.Changed in version 2.5: This function usedragn* type forbuffer_len This might require changes
in your code for properly supporting 64-bit systems.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer Jen
Returns a pointer to a read-only memory location containing arbitrary dataobjlaegument must support
the single-segment readable buffer interface. On success, rétusatsbufferto the memory location and
buffer_lento the buffer length. Returnd and sets &ypeError on error. New in version 1.6.Changed
in version 2.5: This function used am * type forbuffer_len This might require changes in your code
for properly supporting 64-bit systems.

int PyObject_CheckReadBuffer (PyObject *9
Returnsl if o supports the single-segment readable buffer interface. Otherwise retuN®w in version
2.2.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len
Returns a pointer to a writeable memory location. T argument must support the single-segment,
character buffer interface. On success, retlrnsetsbuffer to the memory location anluffer_lento the
buffer length. Returnsl and sets &ypeError on error. New in version 1.6.Changed in version 2.5:
This function used amt * type forbuffer_len This might require changes in your code for properly
supporting 64-bit systems.

48 Chapter 6. Abstract Objects Layer

CHAPTER

SEVEN

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type
is not a good idea; if you receive an object from a Python program and you are not sure that it has the right type,
you must perform a type check first; for example, to check that an object is a dictionaByDse Check()

The chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects whigh are
passed in, many of them do not check flLL being passed instead of a valid object. AllowNg/LL to be
passed in can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton dijeet.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same objeties andtypes.TypeType inthe Python
layer.

int PyType_Check (PyObject *q
Return true if the objeatis a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact (PyObject*9
Return true if the objeat is a type object, but not a subtype of the standard type object. Return false in all
other cases. New in version 2.2.

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag. New in version 2.6.

void PyType_ Modified (PyTypeObject *type
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after
any manual modification of the attributes or base classes of the type. New in version 2.6.

int PyType_ HasFeature (PyObiject *o, int featurg
Return true if the type objectsets the featurieature Type features are denoted by single bit flags.

int PyType IS _GC (PyObject *9
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS HAVE_GMNew in version 2.0.

49

The Python/C API, Release 2.6.4

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject}b
Return true ifais a subtype ob. New in version 2.2.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitgms
Return value: New reference.
New in version 2.2.Changed in version 2.5: This function useihantype fornitems This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyType_GenericNew (PyTypeObiject *type, PyObject *args, PyObject *kyvds
Return value: New reference.
New in version 2.2.

int PyType_ Ready (PyTypeObiject *type
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Reétonnsuccess, or returl and sets
an exception on error. New in version 2.2.

7.1.2 The None Object

Note that the®?yTypeObject for None is not directly exposed in the Python/C API. Siidene is a singleton,
testing for object identity (using= in C) is sufficient. There is n®yNone_Check() function for the same
reason.

PyObject* Py _None
The PythorNone object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

Py RETURN_NONE
Properly handle returningy_None from within a C function. New in version 2.4.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject PyInt_Type
This instance oPyTypeObject represents the Python plain integer type. This is the same objett as
andtypes.IntType

int Pylnt_Check (PyObject*q
Return true ifo is of typePyInt_Type or a subtype oPyInt Type . Changed in version 2.2: Allowed
subtypes to be accepted.

int PyIint_CheckExact (PyObject*g
Return true ifo is of typePyInt_Type , but not a subtype dPyInt_Type . New in version 2.2.

PyObject* Pylnt_FromString (char *str, char **pend, int basg
Return value: New reference.
Return a newPyIntObject or PyLongObject based on the string value 8tr, which is interpreted
according to the radix ibase If pendis nonNULL, *pend will point to the first character istr which
follows the representation of the number.bHseis 0, the radix will be determined based on the leading
characters oétr: if str starts with'Ox’ or’0X’ , radix 16 will be used; iftr starts with’'0’ , radix 8 will
be used; otherwise radix 10 will be usedbHseis notO0, it must be betweel and36, inclusive. Leading
spaces are ignored. If there are no digifalueError will be raised. If the string represents a number too
large to be contained within the machinag int type and overflow warnings are being suppressed, a
PyLongObject will be returned. If overflow warnings are not being suppresbidl L will be returned
in this case.

50 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyInt_FromLong (long ival)
Return value: New reference.
Create a new integer object with a valueail.

The current implementation keeps an array of integer objects for all integers befivessrd 256, when
you create an int in that range you actually just get back a reference to the existing object. So it should be
possible to change the value bf | suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyInt_FromSsize t (Py_ssize_tival
Return value: New reference.
Create a new integer object with a valueiwdl. If the value is larger thabhONG_MAXr smaller than
LONG_MINa long integer object is returned. New in version 2.5.

PyObject* PyInt_FromSize_t (size_tiva)
Create a new integer object with a valueivdl. If the value exceedsONG_MAXa long integer object is
returned. New in version 2.5.

long Pyint_AsLong (PyObject *ig
Will first attempt to cast the object toRyIntObject , if it is not already one, and then return its value.
If there is an error;1 is returned, and the caller should chédkErr_Occurred() to find out whether
there was an error, or whether the value just happened to be -1.

long Pylnt_AS_LONG (PyObject *i9
Return the value of the objeitt. No error checking is performed.

unsigned long PyInt_AsUnsignedLongMask (PyObiject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long. This function does not check for overflow. New in version 2.3.

unsigned PY_LONG_LONG Pyint_AsUnsignedLongLongMask (PyObject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long long, without checking for overflow. New in version 2.3.

Py _ssize t Pyint_AsSsize t (PyObject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and
then return its value aBy_ssize t . New in version 2.5.

long PyInt_GetMax ()
Return the system’s idea of the largest integer it can hah@®®NG_MAXas defined in the system header
files).

int PyInt_ClearFreeList 0
Clear the integer free list. Return the number of items that could not be freed. New in version 2.6.

7.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two bdtleaiasse and
Py _True . As such, the normal creation and deletion functions don't apply to booleans. The following macros
are available, however.

int PyBool _Check (PyObject*9
Return true ifo is of typePyBool_Type . New in version 2.3.

PyObject* Py False
The PythorFalse object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject* Py _True
The PythonTrue object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py _RETURN_FALSE
ReturnPy_False from a function, properly incrementing its reference count. New in version 2.4,

7.2. Numeric Objects 51

The Python/C API, Release 2.6.4

Py _RETURN_TRUE
ReturnPy_True from a function, properly incrementing its reference count. New in version 2.4.

PyObject* PyBool_FromLong (longV)
Return value: New reference.
Return a new reference ®_True orPy_ False depending on the truth value of New in version 2.3.

7.2.3 Long Integer Objects

PyLongObject
This subtype oPyObject represents a Python long integer object.

PyTypeObject PyLong_Type
This instance oPyTypeObject represents the Python long integer type. This is the same objlertgs
andtypes.LongType

int PyLong_Check (PyObject *p
Return true if its argument is ByLongObject or a subtype oPyLongObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyLong_CheckExact (PyObject*p
Return true if its argument isRyLongObject , but not a subtype dPyLongObject . New in version
2.2.

PyObject* PyLong_FromLong (longV)
Return value: New reference.
Return a newPyLongObject object fromv, or NULL on failure.

PyObject* PyLong_FromUnsignedLong (unsigned long)y
Return value: New reference.
Return a newPyLongObject object from a Qunsigned long , or NULL on failure.

PyObject* PyLong_FromSsize t (Py_ssize tV
Return a newPyLongObject object from a CPy_ssize t , or NULL on failure. New in version 2.6.

PyObject* PyLong_FromSize_t (size_tY
Return a newyLongObject object from a Gsize_t , or NULL on failure. New in version 2.6.

PyObject* PyLong_FromLongLong (PY_LONG_LONGyV
Return value: New reference.
Return a newPyLongObject object from a Aong long , or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned PY_LONG_LONQG v
Return value: New reference.
Return a newPyLongObject object from a Qunsigned long long , or NULL on failure.

PyObject* PyLong_FromDouble (double y
Return value: New reference.
Return a newPyLongObject object from the integer part af or NULL on failure.

PyObject* PyLong_FromString (char *str, char **pend, int basg
Return value: New reference.
Return a newPyLongObject based on the string value gtr, which is interpreted according to the radix
in base If pendis nonNULL, *pend will point to the first character istr which follows the representation
of the number. Ibaseis 0, the radix will be determined based on the leading charactess:df str starts
with ’0x” or’0X’ , radix 16 will be used; iktr starts with'0’ , radix 8 will be used; otherwise radix 10
will be used. Ifbaseis not0, it must be betweeB and36, inclusive. Leading spaces are ignored. If there
are no digitsValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_tlength, int base
Return value: New reference.
Convert a sequence of Unicode digits to a Python long integer value. The first paramptents to the
first character of the Unicode strinengthgives the number of characters, dpakseis the radix for the
conversion. The radix must be in the range [2, 36]; if it is out of raMgdeError will be raised. New

52 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

in version 1.6.Changed in version 2.5: This function usethan for length This might require changes in
your code for properly supporting 64-bit systems.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference.
Create a Python integer or long integer from the poipteThe pointer value can be retrieved from the
resulting value using§yLong_AsVoidPtr() . Newin version 1.5.2.Changed in version 2.5: If the integer
is larger than LONG_MAX, a positive long integer is returned.

long PyLong_AsLong (PyObiject *pylong
Return a Clong representation of the contents pylong If pylongis greater tha ONG_MAXan
OverflowError is raised and1l will be returned.

Py ssize 't PyLong AsSsize t (PyObject *pylony
Return a CPy_ssize_t representation of the contents pfflong If pylong is greater than
PY _SSIZE T _MAX anOverflowError is raised andl will be returned. New in version 2.6.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong
Return a Cunsigned long representation of the contents pflong If pylongis greater than
ULONG_MAXanOverflowError is raised.

PY_LONG_LONGyLong_AsLongLong (PyObject *pylong
Returna dong long from a Python long integer. [fylongcannot be represented albag long , an
OverflowError will be raised. New in version 2.2.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong (PyObject *pylony
Return a Cunsigned long long from a Python long integer. Ifylongcannot be represented as an
unsigned long long , anOverflowError will be raised if the value is positive, orgypeError
will be raised if the value is negative. New in version 2.2.

unsigned long PyLong_AsUnsignedLongMask (PyObject *ig
Return a Qunsigned long from a Python long integer, without checking for overflow. New in version
2.3.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask (PyObject *ig
Return a Qunsigned long long from a Python long integer, without checking for overflow. New in
version 2.3.

double PyLong_AsDouble (PyObject *pylongy
Return a Gouble representation of the contentspyfiong If pylongcannot be approximately represented
as adouble , anOverflowError exception is raised and.0 will be returned.

void* PyLong_ AsVoidPtr (PyObject *pylong
Convert a Python integer or long integgylongto a Cvoid pointer. If pylong cannot be converted,
an OverflowError will be raised. This is only assured to produce a usabie pointer for values
created witiPyLong_FromVoidPtr() . New in version 1.5.2.Changed in version 2.5: For values outside
0..LONG_MAX, both signed and unsigned integers are accepted.

7.2.4 Floating Point Objects

PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance oPyTypeObject represents the Python floating point type. This is the same object as
float andtypes.FloatType

int PyFloat Check (PyObject*p
Return true if its argument isRyFloatObject ~ or a subtype oPyFloatObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFloat_CheckExact (PyObject*p

Return true if its argument isRyFloatObject , but not a subtype d?yFloatObject . New in version
2.2.

7.2. Numeric Objects 53

The Python/C API, Release 2.6.4

PyObject* PyFloat FromString (PyObject *str, char **pendl
Return value: New reference.
Create &yFloatObject object based on the string valuestr, or NULL on failure. Thependargument
is ignored. It remains only for backward compatibility.

PyObject* PyFloat_FromDouble (doubley
Return value: New reference.
Create &PyFloatObject object fromv, or NULL on failure.

double PyFloat AsDouble (PyObiject *pyfloat
Return a Gdouble representation of the contentsmyffloat If pyfloatis not a Python floating point object
buthasa_ float_ () method, this method will first be called to convpyffloatinto a float.

double PyFloat AS_DOUBLE (PyObject *pyfloax
Return a Gdouble representation of the contentsmffloat but without error checking.

PyObject* PyFloat_Getinfo (void)
Return a structseq instance which contains information about the precision, minimum and maximum values
of a float. It's a thin wrapper around the headerflitmt.h . New in version 2.6.

double PyFloat_GetMax ()
Return the maximum representable finite flb@L_MAXas Cdouble . New in version 2.6.

double PyFloat GetMin ()
Return the minimum normalized positive fldaBL_MIN as Cdouble . New in version 2.6.

int PyFloat_ClearFreeList 0
Clear the float free list. Return the number of items that could not be freed. New in version 2.6.

7.2.5 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex
number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as reswtsalaesather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py complex Py c sum(Py_complex left, Py _complex right
Return the sum of two complex numbers, using theyCcomplex representation.

Py complex _Py c diff (Py_complex left, Py _complex right

Return the difference between two complex numbers, using the Complex representation.
Py complex Py c neg (Py_complex complgx

Return the negation of the complex numbemplexusing the GPy_complex representation.

Py complex _Py c prod (Py_complex left, Py _complex right
Return the product of two complex numbers, using thieéyCcomplex representation.

54 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Py complex Py c quot (Py _complex dividend, Py complex divisor
Return the quotient of two complex humbers, using thi@éyCcomplex representation.

Py_complex _Py_c_pow (Py_complex num, Py_complex gxp
Return the exponentiation aimby exp using the GPy_complex representation.

Complex Numbers as Python Objects

PyComplexObiject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance oPyTypeObject represents the Python complex number type. It is the same object as
complex andtypes.ComplexType

int PyComplex_Check (PyObject *p
Return true if its argument is AyComplexObject or a subtype oPyComplexObject . Changed in
version 2.2: Allowed subtypes to be accepted.

int PyComplex_CheckExact (PyObject*p
Return true if its argument isRyComplexObject , but not a subtype dPyComplexObject . New in
version 2.2.

PyObject* PyComplex FromCComplex (Py_complex)y
Return value: New reference.
Create a new Python complex number object fromRyCcomplex value.

PyObject* PyComplex_FromDoubles (double real, double imgg
Return value: New reference.
Return a newyComplexObject object fromreal andimag

double PyComplex_RealAsDouble (PyObject *op
Return the real part afp as a Cdouble .

double PyComplex_ImagAsDouble (PyObject *op
Return the imaginary part @p as a Cdouble .

Py complex PyComplex_AsCComplex (PyObject *op
Return thePy complex value of the complex numbemp. Changed in version 2.6: tpis not a Python
complex number object but has acomplex__() method, this method will first be called to convept
to a Python complex number object.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

7.3.1 Byte Array Objects

New in version 2.6.

PyByteArrayObject
This subtype oPyObject represents a Python bytearray object.

PyTypeObject PyByteArray_Type
This instance ofPyTypeObject represents the Python bytearray type; it is the same object as
bytearray in the Python layer.

7.3. Sequence Objects 55

The Python/C API, Release 2.6.4

Type check macros
int PyByteArray Check (PyObject*g
Return true if the objeab is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray CheckExact (PyObject*g
Return true if the objeab is a bytearray object, but not an instance of a subtype of the bytearray type.

Direct API functions

PyObject* PyByteArray FromObject (PyObject *g
Return a new bytearray object from any objexstthat implements the buffer protocol.

PyObject* PyByteArray FromStringAndSize (const char *string, Py_ssize tlen
Create a new bytearray object fratring and its lengthlen. On failure,NULL is returned.

PyObject* PyByteArray Concat (PyObject *a, PyObject *p
Concat bytearraya andb and return a new bytearray with the result.

Py ssize 't PyByteArray_Size (PyObject *bytearray
Return the size dbytearrayafter checking for &lULL pointer.

char* PyByteArray_ AsString (PyObject *bytearray
Return the contents diytearrayas a char array after checking foN&JLL pointer.

int PyByteArray Resize (PyObject *bytearray, Py _ssize tlen
Resize the internal buffer diytearrayto len.

Macros

These macros trade safety for speed and they don't check pointers.

char* PyByteArray AS_STRING (PyObject *bytearray
Macro version ofPyByteArray AsString()

Py ssize t PyByteArray GET_SIZE (PyObject *bytearray
Macro version oPyByteArray Size()

7.3.2 String/Bytes Objects

These functions raisEypeError when expecting a string parameter and are called with a non-string parameter.

Note: These functions have been renamed to PyBytes * in Python 3.x. Unless otherwise noted, the PyBytes
functions available in 3.x are aliased to their PyString_* equivalents to help porting.

PyStringObject
This subtype oPyObject represents a Python string object.

PyTypeObject PyString_Type
This instance ofPyTypeObject represents the Python string type; it is the same objedtrasand
types.StringType in the Python layer. .

int PyString_Check (PyObject*q

Return true if the objeat is a string object or an instance of a subtype of the string type. Changed in version
2.2: Allowed subtypes to be accepted.

int PyString_CheckExact (PyObject *g
Return true if the objeab is a string object, but not an instance of a subtype of the string type. New in
version 2.2,

56 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyString_FromString (const char *y
Return value: New reference.
Return a new string object with a copy of the strimgs value on success, abhULL on failure. The
parameter must not beNULL,; it will not be checked.

PyObject* PyString_FromStringAndSize (const char *v, Py_ssize_tIgn
Return value: New reference.
Return a new string object with a copy of the strings value and lengtten on success, andULL on
failure. If vis NULL, the contents of the string are uninitialized. Changed in version 2.5: This function used
anint type forlen. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyString_FromFormat (const char *format, .).
Return value: New reference.
Take a Cprintf() -style format string and a variable number of arguments, calculate the size of the
resulting Python string and return a string with the values formatted into it. The variable arguments must
be C types and must correspond exactly to the format charactersfrthat string. The following format
characters are allowed:

Format Type Comment
Charac-
ters
%% n/a The literal % character.
%cC int A single character, represented as an C int.
%d int Exactly equivalent t@rintf("%d")
%u un- Exactly equivalent t@rintf("%u")
signed
int
%Id long Exactly equivalent tgrintf("%ld")
%lu un- Exactly equivalent t@rintf("%Iu")
signed
long
%zd Py _ssize Bxactly equivalent tgrintf("%zd")
%zu size_t | Exactly equivalent tgrintf("%zu")
%i int Exactly equivalent t@rintf("%i")
%X int Exactly equivalent tgrintf("%x")
%s char* | A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalemtriotf("%p") except
that it is guaranteed to start with the litef regardless of what the platform’s
printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result
string, and any extra arguments discarded.

PyObject* PyString_FromFormatV (const char *format, va_list vargs
Return value: New reference.
Identical toPyString_FromFormat() except that it takes exactly two arguments.

Py ssize t PyString_Size (PyObject *string
Return the length of the string in string objestting. Changed in version 2.5: This function returned an
int type. This might require changes in your code for properly supporting 64-bit systems.

Py _ssize t PyString_ GET_SIZE (PyObject *string
Macro form of PyString_Size() but without error checking. Changed in version 2.5: This macro
returned annt type. This might require changes in your code for properly supporting 64-bit systems.

char* PyString_AsString (PyObject *string
Return a NUL-terminated representation of the contentraig. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString_FromStringAndSize(NULL, size) . It must not be deallocated. $tringis a Unicode
object, this function computes the default encodingtoihg and operates on that. $tringis not a string
object at all PyString_AsString() returnsNULL and raise§ypeError

7.3. Sequence Objects 57

The Python/C API, Release 2.6.4

char* PyString_ AS_STRING (PyObiject *string
Macro form ofPyString_AsString() but without error checking. Only string objects are supported;
no Unicode objects should be passed.

int PyString_AsStringAndSize (PyObiject *obj, char **buffer, Py_ssize_t *length
Return a NUL-terminated representation of the contents of the adipgtitrough the output variabldmiffer
andlength

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default
encoded version of the object.lé&nhgthis NULL, the resulting buffer may not contain NUL characters; if it
does, the function returnrd and aTypeError is raised.

The buffer refers to an internal string bufferaj, not a copy. The data must not be modified in any way,

unless the string was just created usiyString_FromStringAndSize(NULL, size) . It must
not be deallocated. Htringis a Unicode object, this function computes the default encodirsgyivig and
operates on that. Htringis not a string object at alRyString_AsStringAndSize() returns-1 and

raisesTypeError . Changed in version 2.5: This function usedian * type forlength This might
require changes in your code for properly supporting 64-bit systems.

void PyString_Concat (PyObject **string, PyObject *newpalt
Create a new string object fistring containing the contents olewpartappended tstring; the caller will
own the new reference. The reference to the old valugrifg will be stolen. If the new string cannot be
created, the old reference $tring will still be discarded and the value &$tring will be set toNULL; the
appropriate exception will be set.

void PyString_ConcatAndDel (PyObject **string, PyObject *newpalt
Create a new string object frstring containing the contents efewpartappended tstring. This version
decrements the reference counnefvpart

int _PyString_Resize (PyObject **string, Py_ssize_t newsjze
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don’t use this if the string may already be known in other parts of the code. It is an error to call this
function if the refcount on the input string object is not one. Pass the address of an existing string object
as an Ivalue (it may be written into), and the new size desired. On su¢s&asy holds the resized string
object andD is returned; the address fatring may differ from its input value. If the reallocation fails, the
original string object atstring is deallocatedtstring is set toNULL, a memory exception is set, art is
returned. Changed in version 2.5: This function usethain type fornewsize This might require changes
in your code for properly supporting 64-bit systems.

PyObject* PyString_Format (PyObject *format, PyObject *args
Return value: New reference.
Return a new string object frolormatandargs Analogous tcformat % args . Theargsargument
must be a tuple.

void PyString_InterninPlace (PyObject **string
Intern the argumentstring in place. The argument must be the address of a pointer variable pointing to
a Python string object. If there is an existing interned string that is the sarfstrig, it sets*string to
it (decrementing the reference count of the old string object and incrementing the reference count of the
interned string object), otherwise it leavestring alone and interns it (incrementing its reference count).
(Clarification: even though there is a lot of talk about reference counts, think of this function as reference-
count-neutral; you own the object after the call if and only if you owned it before the call.)

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_InternFromString (const char *y
Return value: New reference.
A combination ofPyString_ FromString() andPyString_InterninPlace() , returning either

a new string object that has been interned, or a new (“owned”) reference to an earlier interned string object
with the same value.

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *@rrors
Return value: New reference.

58 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Create an object by decodimigebytes of the encoded bufferusing the codec registered fencoding

encodinganderrors have the same meaning as the parameters of the same nameimcbee() built-

in function. The codec to be used is looked up using the Python codec registry. Retukrif an exception
was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias. Changed in version 2.5:
This function used amt type forsize This might require changes in your code for properly supporting
64-bit systems.

PyObject* PyString_AsDecodedObject (PyObject *str, const char *encoding, const char *errprs
Return value: New reference.
Decode a string object by passing it to the codec registeredrfoodingand return the result as Python
object. encodingand errors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. Returif an
exception was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Encode (constchar*s, Py_ssize_t size, const char *encoding, const char *¢rrors
Return value: New reference.
Encode thechar buffer of the given size by passing it to the codec registereéfondingand return a
Python objectencodinganderrors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. IRetLLif an
exception was raised by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias. Changed in version 2.5:
This function used amt type forsize This might require changes in your code for properly supporting
64-bit systems.

PyObject* PyString_AsEncodedObject (PyObject *str, const char *encoding, const char *errprs
Return value: New reference.
Encode a string object using the codec registeredtioodingand return the result as Python objesricod-
ing anderrors have the same meaning as the parameters of the same name in therstddg() method.
The codec to be used is looked up using the Python codec registry. R&tiluinif an exception was raised
by the codec.

Note: This function is not available in 3.x and does not have a PyBytes alias.

7.3.3 Unicode Objects and Codecs
Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents the storage type which is used by Python internally as basis for holding Unicode or-
dinals. Python’s default builds use a 16-bit type For UNICODEand store Unicode values internally as
UCS2. ltis also possible to build a UCS4 version of Python (most recent Linux distributions come with
UCS4 builds of Python). These builds then use a 32-bit typd”forUNICODEand store Unicode data
internally as UCS4. On platforms whewechar_t is available and compatible with the chosen Python
Unicode build variantPy _UNICODEis a typedef alias fowchar_t to enhance native platform compat-
ibility. On all other platformsPy UNICODEIs a typedef alias for eithamsigned short (UCS2) or
unsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing
extensions or interfaces.

PyUnicodeObject
This subtype oPyObject represents a Python Unicode object.

PyTypeObject PyUnicode_Type
This instance oPyTypeObject represents the Python Unicode type. It is exposed to Python code as
unicode andtypes.UnicodeType

7.3. Sequence Objects 59

The Python/C API, Release 2.6.4

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject*q
Return true if the objeab is a Unicode object or an instance of a Unicode subtype. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyUnicode_CheckExact (PyObject*g
Return true if the objead is a Unicode object, but not an instance of a subtype. New in version 2.2.
Py ssize 't PyUnicode_GET_SIZE (PyObject*g
Return the size of the object has to be &yUnicodeObject (not checked). Changed in version 2.5:

This function returned aimt type. This might require changes in your code for properly supporting 64-bit
systems.

Py ssize t PyUnicode_GET_DATA_SIZE (PyObject *q
Return the size of the object’s internal buffer in byteshas to be &yUnicodeObject (not checked).
Changed in version 2.5: This function returnediain type. This might require changes in your code for
properly supporting 64-bit systems.

Py _UNICODE* PyUnicode_AS_ UNICODE (PyObject *g
Return a pointer to the internBly UNICODEbuffer of the objecto has to be &@yUnicodeObject (not
checked).

const char* PyUnicode_AS DATA (PyObject *9
Return a pointer to the internal buffer of the objezhas to be @yUnicodeObject (not checked).

int PyUnicode_ClearFreeList 0
Clear the free list. Return the total number of freed items. New in version 2.6.

Unicode provides many different character properties. The most often needed ones are available through these
macros which are mapped to C functions depending on the Python configuration.

int Py _UNICODE_ISSPACKE Py _UNICODE ch
Return 1 or 0 depending on whetharis a whitespace character.

int Py _UNICODE_ISLOWERPy_UNICODE ch
Return 1 or 0 depending on whetlddris a lowercase character.

int Py _UNICODE_ISUPPERPY_UNICODE ch
Return 1 or 0 depending on whetledris an uppercase character.

int Py _UNICODE_ISTITLE (Py_UNICODE ch
Return 1 or 0 depending on whettdris a titlecase character.

int Py _UNICODE_ISLINEBREAK Py_UNICODE ch
Return 1 or 0 depending on whettedris a linebreak character.

int Py _UNICODE_ISDECIMAL Py_UNICODE ch
Return 1 or 0 depending on whetharis a decimal character.

int Py _UNICODE_ISDIGIT (Py_UNICODE ch
Return 1 or 0 depending on whettetris a digit character.

int Py _UNICODE_ISNUMERICPy_UNICODE ch
Return 1 or 0 depending on whetharis a numeric character.

int Py_UNICODE_ISALPHA Py_UNICODE ch
Return 1 or 0 depending on whetteris an alphabetic character.

int Py _UNICODE_ISALNUNIPy _UNICODE ch
Return 1 or 0 depending on whetharis an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py _UNICODE Py _UNICODE_TOLOWERY UNICODE ch
Return the characteh converted to lower case.

60 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Py_UNICODE Py_UNICODE_TOUPPHERPY_UNICODE ch
Return the characteh converted to upper case.

Py_UNICODE Py_UNICODE_TOTITLH Py_UNICODE ch
Return the characteh converted to title case.

int Py _UNICODE_TODECIMALPY_UNICODE ch
Return the characteh converted to a decimal positive integer. Rettinif this is not possible. This macro
does not raise exceptions.

int Py _UNICODE_TODIGIT(Py_UNICODE ch
Return the characteh converted to a single digit integer. Retufn if this is not possible. This macro does
not raise exceptions.

double Py_UNICODE_TONUMERI[®y_UNICODE ch
Return the characteth converted to a double. Returth.0 if this is not possible. This macro does not
raise exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize t gjize
Return value: New reference.
Create a Unicode Object from the Py_UNICODE bufiesf the given sizeu may beNULL which causes
the contents to be undefined. Itis the user’s responsibility to fill in the needed data. The buffer is copied into
the new object. If the buffer is n&tULL, the return value might be a shared object. Therefore, modification
of the resulting Unicode object is only allowed wheis NULL. Changed in version 2.5: This function used
anint type forsize This might require changes in your code for properly supporting 64-bit systems.

Py _UNICODE* PyUnicode_AsUnicode (PyObject *unicodg
Return a read-only pointer to the Unicode object’s intefhal UNICODEbuffer, NULL if unicodeis not a
Unicode object.

Py ssize t PyUnicode_GetSize (PyObject *unicodg
Return the length of the Unicode object. Changed in version 2.5: This function returived appe. This
might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *er-

rors)
Return value: New reference.

Coerce an encoded objemij to an Unicode object and return a reference with incremented refcount.

String and other char buffer compatible objects are decoded according to the given encoding and using the
error handling defined by errors. Both canNdgLL to have the interface use the default values (see the next
section for details).

All other objects, including Unicode objects, causEypeError to be set.
The API returndNULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode_FromObject (PyObiject *ob)
Return value: New reference.
Shortcut for PyUnicode_FromEncodedObject(obj, NULL, "strict") which is used
throughout the interpreter whenever coercion to Unicode is needed.

If the platform supportsvchar_t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Supportis optimized if Python’s dwyn UNICODEype is identical to the system’s
wchar_t .

PyObject* PyUnicode_FromWideChar (constwchar_t*w, Py ssize t sjze
Return value: New reference.
Create a Unicode object from tichar_t bufferw of the given size. ReturNULL on failure. Changed in
version 2.5: This function used @&mt type forsize This might require changes in your code for properly
supporting 64-bit systems.

Py ssize t PyUnicode AsWideChar (PyUnicodeObject *unicode, wchar_t *w, Py_ssize tksize
Copy the Unicode object contents into thehar_t bufferw. At mostsizewchar_t characters are copied

7.3. Sequence Objects 61

The Python/C API, Release 2.6.4

(excluding a possibly trailing O-termination character). Return the numbescloér t characters copied
or -1 in case of an error. Note that the resultimchar_t string may or may not be O-terminated. It is the
responsibility of the caller to make sure that thehar_t string is O-terminated in case this is required by
the application. Changed in version 2.5: This function returneidtantype and used aimt type forsize
This might require changes in your code for properly supporting 64-bit systems.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable
via the following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have
the same semantics as the ones of the builtricode() = Unicode object constructor.

Setting encoding ttNULL causes the default encoding to be used which is ASCII. The file system calls should
usePy_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as
read-only: On some systems, it will be a pointer to a static string, on others, it will change at run-time (such as
when the application invokes setlocale).

Error handling is set by errors which may also be s@ith L meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is “stricValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for sim-
plicity.
These are the generic codec APls:

PyObject* PyUnicode_Decode (constchar*s, Py ssize tsize, const char *encoding, const char *@rrors
Return value: New reference.
Create a Unicode object by decodisigebytes of the encoded strirggencodinganderrors have the same
meaning as the parameters of the same name iartleede() built-in function. The codec to be used is
looked up using the Python codec registry. RetNtiLL if an exception was raised by the codec. Changed
in version 2.5: This function used @mt type forsize This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_Encode (const Py UNICODE *s, Py_ssize_t size, const char *encoding, const

char *errors)
Return value: New reference.

Encode the®y UNICODEDbuffer of the given size and return a Python string objecicodinganderrors
have the same meaning as the parameters of the same name in the énicode() method. The codec
to be used is looked up using the Python codec registry. R&tUHrL if an exception was raised by the
codec. Changed in version 2.5: This function usedhan type forsize This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *er-

rors)
Return value: New reference.

Encode a Unicode object and return the result as Python string objemtdinganderrors have the same
meaning as the parameters of the same name in the Unicadele() method. The codec to be used is
looked up using the Python codec registry. ReMtsLL if an exception was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (constchar *s, Py _ssize_t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodisigebytes of the UTF-8 encoded strisggReturnNULL if an exception
was raised by the codec. Changed in version 2.5: This function uset atype forsize This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py ssize t size, const char *errors,
Py_ssize t *consumgd
Return value: New reference.
If consumeds NULL, behave likePyUnicode DecodeUTF8() . If consumeds not NULL, trailing
incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be decoded and

62 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

the number of bytes that have been decoded will be storedrisumed New in version 2.4.Changed in
version 2.5: This function used &m type forsize This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF8 (const Py UNICODE *s, Py_ssize t size, const char *ejrors
Return value: New reference.
Encode thePy UNICODEDbuffer of the given size using UTF-8 and return a Python string object. Return
NULL if an exception was raised by the codec. Changed in version 2.5: This function uised &pe for
size This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode AsUTF8String (PyObject *unicod®
Return value: New reference.

Encode a Unicode object using UTF-8 and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

These are the UTF-32 codec APls:

PyObject* PyUnicode_DecodeUTF32 (constchar*s, Py_ssize_tsize, const char *errors, int *bytegrder
Decodelengthbytes from a UTF-32 encoded buffer string and return the corresponding Unicode object.
errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis nonNULL, the decoder starts decoding using the given byte order:

* pyteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode striflgytéforder
is-1 or1, any byte order mark is copied to the output.

After completion *byteorderis set to the current byte order at the end of input data.
In a narrow build codepoints outside the BMP will be decoded as surrogate pairs.
If byteorderis NULL, the codec starts in native order mode.

ReturnNULL if an exception was raised by the codec. New in version 2.6.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize t size, const char *errors, int
*byteorder, Py_ssize_t *consunmjed
If consumedis NULL, behave likePyUnicode DecodeUTF32() . If consumedis not NULL,
PyUnicode DecodeUTF32Stateful() will not treat trailing incomplete UTF-32 byte sequences

(such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the
number of bytes that have been decoded will be storedmsumedNew in version 2.6.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int

byteorde)
Return a Python bytes object holding the UTF-32 encoded value of the Unicode da@uitput is written

according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder isO, the output string will always start with the Unicode BOM mark (U+FEFF). In the other
two modes, no BOM mark is prepended.

If Py_UNICODE_WIDHs not defined, surrogate pairs will be output as a single codepoint.
ReturnNULL if an exception was raised by the codec. New in version 2.6.

PyObject* PyUnicode_AsUTF32String (PyObject *unicodg
Return a Python string using the UTF-32 encoding in native byte order. The string always starts with a BOM
mark. Error handling is “strict”. ReturNULL if an exception was raised by the codec. New in version 2.6.

7.3. Sequence Objects 63

The Python/C API, Release 2.6.4

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (constchar*s, Py _ssize_tsize, const char *errors, int *bytegrder
Return value: New reference.
Decodelengthbytes from a UTF-16 encoded buffer string and return the corresponding Unicode object.
errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis nonNULL, the decoder starts decoding using the given byte order:

*pyteorder == -1: little endian
* pyteorder == 0: native order
* pyteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode strifiyytdéorder s

-1 or1, any byte order mark is copied to the output (where it will result in eithefeff or a\ufffe
character).

After completion *byteorderis set to the current byte order at the end of input data.
If byteorderis NULL, the codec starts in native order mode.

ReturnNULL if an exception was raised by the codec. Changed in version 2.5: This function usgd an
type forsize This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize t size, const char *errors, int
*byteorder, Py_ssize_t *consumjed

Return value: New reference.
If consumedis NULL, behave likePyUnicode DecodeUTF16() . If consumedis not NULL,
PyUnicode DecodeUTF16Stateful() will not treat trailing incomplete UTF-16 byte sequences
(such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded
and the number of bytes that have been decoded will be stosmthsumedNew in version 2.4.Changed in
version 2.5: This function used &m type forsizeand anint * type forconsumedThis might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF16 (const Py UNICODE *s, Py ssize t size, const char *errors, int
byteorde)
Return value: New reference.
Return a Python string object holding the UTF-16 encoded value of the Unicode datautput is written

according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is0O, the output string will always start with the Unicode BOM mark (U+FEFF). In the other
two modes, no BOM mark is prepended.

If Py_UNICODE_WIDHs defined, a singl®y UNICODEvalue may get represented as a surrogate pair.
If it is not defined, eacPy UNICODEvalues is interpreted as an UCS-2 character.

ReturnNULL if an exception was raised by the codec. Changed in version 2.5: This function usgd an
type forsize This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsUTF16String (PyObject *unicodg
Return value: New reference.
Return a Python string using the UTF-16 encoding in native byte order. The string always starts with a
BOM mark. Error handling is “strict”. ReturNULL if an exception was raised by the codec.

These are the “Unicode Escape” codec APls:

PyObject* PyUnicode_DecodeUnicodeEscape (constchar*s, Py_ssize_t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodisigebytes of the Unicode-Escape encoded stangeturnNULL if an

64 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

exception was raised by the codec. Changed in version 2.5: This function uged dype forsize This
might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t gize
Return value: New reference.
Encode thé®’y UNICODEbuffer of the given size using Unicode-Escape and return a Python string object.
ReturnNULL if an exception was raised by the codec. Changed in version 2.5: This function usgd an
type forsize This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Unicode-Escape and return the result as Python string object. Error handling
is “strict”. ReturnNULL if an exception was raised by the codec.

These are the “Raw Unicode Escape” codec APlIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize t size, const char *er-

rors)
Return value: New reference.

Create a Unicode object by decodisigebytes of the Raw-Unicode-Escape encoded ssiReturnNULL
if an exception was raised by the codec. Changed in version 2.5: This function used aype forsize
This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py UNICODE *s, Py ssize t size, const

char *errors)
Return value: New reference.

Encode the®y UNICODEDbuffer of the given size using Raw-Unicode-Escape and return a Python string
object. ReturrNULL if an exception was raised by the codec. Changed in version 2.5: This function used
anint type forsize This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Raw-Unicode-Escape and return the result as Python string object. Error
handling is “strict”. ReturNULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are
accepted by the codecs during encoding.

PyObject* PyUnicode DecodeLatinl (const char *s, Py_ssize t size, const char *erjors
Return value: New reference.
Create a Unicode object by decodsigebytes of the Latin-1 encoded strisgReturnNULL if an exception
was raised by the codec. Changed in version 2.5: This function uset atype forsize This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode EncodelLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *ejrors
Return value: New reference.
Encode the?y UNICODEDbuffer of the given size using Latin-1 and return a Python string object. Return
NULL if an exception was raised by the codec. Changed in version 2.5: This function uised &pe for
size This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsLatin1String (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Latin-1 and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCIl (const char *s, Py_ssize_t size, const char *erjors
Return value: New reference.
Create a Unicode object by decodisigebytes of the ASCII encoded striig ReturnNULL if an exception
was raised by the codec. Changed in version 2.5: This function used artype for size This might
require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeASCIl (const Py_UNICODE *s, Py_ssize _t size, const char *ejrors
Return value: New reference.

7.3. Sequence Objects 65

The Python/C API, Release 2.6.4

Encode the®y UNICODEDbuffer of the given size using ASCII and return a Python string object. Return
NULL if an exception was raised by the codec. Changed in version 2.5: This function uised &pe for
size This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsASCIIString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using ASCII and return the result as Python string object. Error handling is “strict”.
ReturnNULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included inetheodings package). The codec uses mapping to encode
and decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then
interpreted as Unicode ordinals) or None (meaning “undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then
interpreted as Latin-1 ordinals) or None (meaning “undefined mapping” and causing an error).

The mapping objects provided must only support the __getitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings
which map characters to different code points.

PyObject* PyUnicode_DecodeCharmap (constchar *s, Py _ssize t size, PyObject *mapping, const char

*errors)
Return value: New reference.

Create a Unicode object by decodisgebytes of the encoded strirgjusing the givermappingobject.
ReturnNULL if an exception was raised by the codecméppingis NULL latin-1 decoding will be done.

Else it can be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte values
greater that the length of the string and U+FFFE “characters” are treated as “undefined mapping”. Changed
in version 2.4: Allowed unicode string as mapping argument.Changed in version 2.5: This function used an
int type forsize This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeCharmap (const Py _UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *error$
Return value: New reference.

Encode the®?y UNICODEDbuffer of the given size using the givenappingobject and return a Python
string object. ReturtNULL if an exception was raised by the codec. Changed in version 2.5: This function
used arnnt type forsize This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mappihg
Return value: New reference.
Encode a Unicode object using the giveappingobject and return the result as Python string object. Error
handling is “strict”. ReturNULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObiject *table,

const char *error$
Return value: New reference.

Translate &y UNICODEbuffer of the given length by applying a character mappatgeto it and return
the resulting Unicode object. RetuRULL when an exception was raised by the codec.

Themappingiable must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide thegetitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which caussokupError) are left untouched and are copied as-is.
Changed in version 2.5: This function usediain type forsize This might require changes in your code
for properly supporting 64-bit systems.

66 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS
converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The
target encoding is defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodisigebytes of the MBCS encoded strisgReturnNULL if an exception
was raised by the codec. Changed in version 2.5: This function uset atype forsize This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode DecodeMBCSStateful (const char *s, int size, const char *errors, int *con-

sumeql
If consumedis NULL, behave like PyUnicode DecodeMBCS() . If consumedis not NULL,
PyUnicode _DecodeMBCSStateful() will not decode trailing lead byte and the number of bytes
that have been decoded will be store¢@msumedNew in version 2.5.

PyObject* PyUnicode_EncodeMBCS (const Py _UNICODE *s, Py_ssize_t size, const char *ejrors
Return value: New reference.
Encode thé’y UNICODEbuffer of the given size using MBCS and return a Python string object. Return
NULL if an exception was raised by the codec. Changed in version 2.5: This function used &pe for
size This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_AsMBCSString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using MBCS and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in
the descriptions) and return Unicode objects or integers as appropriate.

They all returnrNULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right
Return value: New reference.
Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxpplit
Return value: New reference.
Split a string giving a list of Unicode strings. If sep MULL, splitting will be done at all whitespace
substrings. Otherwise, splits occur at the given separator. At massplitsplits will be done. If negative,
no limit is set. Separators are not included in the resulting list. Changed in version 2.5: This function used
anint type formaxsplit This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_Splitlines (PyObiject *s, int keepend
Return value: New reference.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line
break. Ifkeepends 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errgrs
Return value: New reference.
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide thegetitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which causeokupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It mayNb#l L which indicates to use the default error handling.

7.3. Sequence Objects 67

The Python/C API, Release 2.6.4

PyObject* PyUnicode_Join (PyObject *separator, PyObject *sgq
Return value: New reference.
Join a sequence of strings using the given separator and return the resulting Unicode string.

int PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-
Return value: New referencttl—:-c.m)
Return 1 ifsubstrmatchestr*[*start :end at the given tail enddirection== -1 means to do a prefix match,
direction == 1 a suffix match), 0 otherwise. Returh if an error occurred. Changed in version 2.5:
This function used amt type forstartandend This might require changes in your code for properly
supporting 64-bit systems.

Py ssize t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize t start, Py _ssize t end, int di-

Return the first position dubstﬁcgt?g%*start :end using the giverdirection(direction==1 means to do a
forward searchdirection== -1 a backward search). The return value is the index of the first match; a value
of -1 indicates that no match was found, a@dindicates that an error occurred and an exception has been
set. Changed in version 2.5: This function usedran type forstartandend This might require changes

in your code for properly supporting 64-bit systems.

Py ssize t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize } end
Return the number of non-overlapping occurrencesubfstrin str[start:end] . Return-1 if an error
occurred. Changed in version 2.5: This function returnedhan type and used aimt type forstart and
end This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t max-

cound
Return value: New reference.

Replace at moshaxcounbccurrences oubstrin str with replstr and return the resulting Unicode object.
maxcount= -1 means replace all occurrences. Changed in version 2.5: This function us¢d &pe for
maxcount This might require changes in your code for properly supporting 64-bit systems.

int PyUnicode_Compare (PyObiject *left, PyObject *right
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_RichCompare (PyObject *left, PyObject *right, int op
Rich compare two unicode strings and return one of the following:

*NULL in case an exception was raised
*Py True orPy False for successful comparisons
Py Notimplemented in case the type combination is unknown

Note thatPy EQandPy_NE comparisons can causeJaicodeWarning in case the conversion of the
arguments to Unicode fails withlanicodeDecodeError

Possible values fasp arePy_GT, Py_GE Py _EQ, Py NE Py LT, andPy_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args
Return value: New reference.
Return a new string object frofiormatandargs this is analogous tormat % args . Theargsargu-
ment must be a tuple.

int PyUnicode_Contains (PyObject *container, PyObject *elemént
Check whetheelemenis contained ircontainerand return true or false accordingly.

elemenhas to coerce to a one element Unicode strifigis returned if there was an error.

7.3.4 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions
can be used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer
interface to access the object data directly, without needing to copy it first.

68 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the
character contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should
be noted that array elements may be multi-byte values.

An example user of the buffer interface is the file objeetiste() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg_ParseTuple() that operate against an object’s buffer interface, returning data from the target object.

Starting from version 1.6, Python has been providing Python-level buffer objects and a C-level buffer API so that
any built-in or used-defined type can expose its characteristics. Both, however, have been deprecated because of
various shortcomings, and have been officially removed in Python 3.0 in favour of a new C-level buffer APl and a
new Python-level object namedemoryview .

The new buffer API has been backported to Python 2.6, andnémaoryview object has been backported to
Python 2.7. It is strongly advised to use them rather than the old APIs, unless you are blocked from doing so for
compatibility reasons.

The new-style Py_buffer struct

Py buffer

void buf
A pointer to the start of the memory for the object.

Py ssize t len
The total length of the memory in bytes.

int readonly
An indicator of whether the buffer is read only.

const char format
A NULL terminated string irstruct module style syntax giving the contents of the elements avail-
able through the buffer. If this INULL, "B" (unsigned bytes) is assumed.

int ndim
The number of dimensions the memory represents as a multi-dimensional array. Ifstrisl®s
andsuboffsets must beNULL.

Py ssize t shape
Anarray ofPy_ssize_t sthelength ofhdim giving the shape of the memory as a multi-dimensional
array. Note tha{(*shape)[0] * ... * (*shape)[ndims-1])*itemsize should be
equal tolen .

Py ssize t strides
An array of Py_ssize_t s the length ofhdim giving the number of bytes to skip to get to a new
element in each dimension.

Py ssize t suboffsets
An array ofPy_ssize t s the length ohdim . If these suboffset numbers are greater than or equal
to 0, then the value stored along the indicated dimension is a pointer and the suboffset value dictates
how many bytes to add to the pointer after de-referencing. A suboffset value that it negative indicates
that no de-referencing should occur (striding in a contiguous memaory block).

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimesional
index when there are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, void *buf, Py ssize t * strides,
Py ssize t *suboffsets, Py_ssize t *indices) {
char *pointer = (char *)buf;
int i
for (i = 0;i < ndim;i ++) {
pointer += strides]i] *indicesi];

7.3. Sequence Objects 69

The Python/C API, Release 2.6.4

if (suboffsets]i] >=0) {
pointer = *((char **)pointer) + suboffsetsi];
}

}

return (void *)pointer;

}

Py ssize t itemsize
This is a storage for the itemsize (in bytes) of each element of the shared memaory. It is technically
un-necessary as it can be obtained usip@uffer SizeFromFormat() , however an exporter
may know this information without parsing the format string and it is necessary to know the itemsize
for proper interpretation of striding. Therefore, storing it is more convenient and faster.

void internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by
the exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must
be freed when the buffer is released. The consumer should never alter this value.

Buffer related functions

int PyObject_CheckBuffer (PyObject *ob)
Return 1 ifobj supports the buffer interface otherwise 0.

int PyObject_GetBuffer (PyObject *obj, Py_buffer *view, int flags
Exportobjinto aPy_buffer , view. These arguments must neverELL. Theflagsargument is a bit
field indicating what kind of buffer the caller is prepared to deal with and therefore what kind of buffer the
exporter is allowed to return. The buffer interface allows for complicated memory sharing possibilities, but
some caller may not be able to handle all the complexity but may want to see if the exporter will let them
take a simpler view to its memaory.

Some exporters may not be able to share memory in every possible way and may need to raise errors to
signal to some consumers that something is just not possible. These errors showBdfferError

unless there is another error that is actually causing the problem. The exporter can use flags information to
simplify how much of thePy_buffer structure is filled in with non-default values and/or raise an error if

the object can’t support a simpler view of its memory.

0 is returned on success and -1 on error.

The following table gives possible values to flegsarguments.

70 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Flag

Description

PyBUF_SIMPLE

PyBUF_WRITABLE

PyBUF_STRIDES

PyBUF_ND

PyBUF_C_CONTIGUOUS
PyBUF_F_CONTIGUOUS
PyBUF_ANY_CONTIGUOUS

PyBUF_INDIRECT

PyBUF_FORMAT

PyBUF_STRIDED
PyBUF_STRIDED_RO
PyBUF_RECORDS

PyBUF_RECORDS_RO
PyBUF_FULL

PyBUF_FULL_RO
PyBUF_CONTIG
PyBUF_CONTIG_RO

This is the default flag state. The returned buffer may or may not h
writable memory. The format of the data will be assumed to be

ave

unsigned bytes. This is a “stand-alone” flag constant. It never needs to

be ‘|'d to the others. The exporter will raise an error if it cannot
provide such a contiguous buffer of bytes.

The returned buffer must be writable. If it is not writable, then raise|
error.

This impliesPyBUF_ND The returned buffer must provide strides
information (i.e. the strides cannot be NULL). This would be used

an

when the consumer can handle strided, discontiguous arrays. Handling
strides automatically assumes you can handle shape. The exporter can

raise an error if a strided representation of the data is not possible
without the suboffsets).

The returned buffer must provide shape information. The memory
be assumed C-style contiguous (last dimension varies the fastest)

(i.e.

will
The

exporter may raise an error if it cannot provide this kind of contiguqus

buffer. If this is not given then shape will BeULL.

These flags indicate that the contiguity returned buffer must be
respectively, C-contiguous (last dimension varies the fastest), Fort
contiguous (first dimension varies the fastest) or either one. All of
these flags implyyBUF_STRIDESand guarantee that the strides
buffer info structure will be filled in correctly.

This flag indicates the returned buffer must have suboffsets
information (which can be NULL if no suboffsets are needed). Thig
can be used when the consumer can handle indirect array referen
implied by these suboffsets. This impliegBUF_STRIDES

The returned buffer must have true format information if this flag is
provided. This would be used when the consumer is going to be

checking for what ‘kind’ of data is actually stored. An exporter shou

always be able to provide this information if requested. If format is
explicitly requested then the format must be returneNEkL (which
meansB’ , or unsigned bytes)

This is equivalent t§PyBUF_STRIDES | PyBUF_WRITABLE).
This is equivalent t§PyBUF_STRIDES) .

This is equivalent t¢PyBUF_STRIDES | PyBUF_FORMAT |
PyBUF_WRITABLE)

This is equivalent t§PyBUF_STRIDES | PyBUF_FORMAT).
This is equivalent t§PyBUF_INDIRECT | PyBUF_FORMAT |
PyBUF_WRITABLE)

This is equivalent t¢PyBUF_INDIRECT | PyBUF_FORMAT).
This is equivalent t¢PyBUF_ND | PyBUF_WRITABLE).

This is equivalent t¢PyBUF_ND).

an

ting

d
not

Release the buffafiew. This should be called when the buffer is no longer being used as it may free memory

(const char)
from the struct-stypePy_buffer.format

void PyBuffer_Release (Py_buffer *viewy
from it.

Py ssize t PyBuffer_SizeFromFormat
Return the implied-Py_buffer.itemsize

int PyObject_CopyToObject

(PyObject *obj, void *buf, Py_ssize_t len, char fortjan

Copy len bytes of data pointed to by the contiguous chunk of memory pointed taubynto the buffer
exported by obj. The buffer must of course be writable. Return 0 on success and return -1 and raise an error
on failure. If the object does not have a writable buffer, then an error is raisddrtréin is 'F’ , then if
the object is multi-dimensional, then the data will be copied into the array in Fortran-style (first dimension
varies the fastest). fortranis’'C’ , then the data will be copied into the array in C-style (last dimension
varies the fastest). fortranis’A’ , then it does not matter and the copy will be made in whatever way is

more efficient.

7.3. Sequence Objects

71

The Python/C API, Release 2.6.4

int PyBuffer_IsContiguous (Py_buffer *view, char fortrap
Return 1 if the memory defined by theewis C-style fortran is 'C’) or Fortran-style fortran is 'F’)
contiguous or either ondqftranis’A’). Return O otherwise.

void PyBuffer_FillContiguousStrides (intndim, Py_ssize t*shape, Py_ssize_t*strides, Py_ssize_t
itemsize, char fortran
Fill the stridesarray with byte-strides of a contiguous (C-stylddftran is'C’ or Fortran-style iffortran

is’F’ array of the given shape with the given number of bytes per element.

int PyBuffer_Fillinfo (Py_buffer *view, void *buf, Py_ssize_t len, int readonly, int infoflags
Fill in a buffer-info structureview, correctly for an exporter that can only share a contiguous chunk of
memory of “unsigned bytes” of the given length. Return 0 on success and -1 (with raising an error) on error.

Old-style buffer objects

More information on the buffer interface is provided in the secBaiffer Object Structureainder the description
for PyBufferProcs

A “buffer object” is defined in thébufferobject.h header (included byython.h). These objects look

very similar to string objects at the Python programming level: they support slicing, indexing, concatenation, and
some other standard string operations. However, their data can come from one of two sources: from a block of
memory, or from another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python program-
mer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for manipulation before passing to an operating system
library, or it could be used to pass around structured data in its native, in-memory format.

PyBufferObject
This subtype oPyObject represents a buffer object.

PyTypeObject PyBuffer_Type
The instance oPyTypeObject which represents the Python buffer type; it is the same objdmtifsr
andtypes.BufferType in the Python layer. .

int Py _END_OF_BUFFER
This constant may be passed as thlsze parameter to PyBuffer FromObject() or
PyBuffer_FromReadWriteObject() . It indicates that the newPyBufferObject should
refer tobaseobject from the specifiedffsetto the end of its exported buffer. Using this enables the caller
to avoid querying théaseobject for its length.

int PyBuffer_Check (PyObject*p
Return true if the argument has typgBuffer_Type

PyObject* PyBuffer_FromObject (PyObject *base, Py_ssize_t offset, Py_ssize_} size
Return value: New reference.
Return a new read-only buffer object. This rai3gpeError if basedoesn’t support the read-only buffer
protocol or doesn'’t provide exactly one buffer segment, or it raidgeError if offsetis less than zero.
The buffer will hold a reference to tHeaseobject, and the buffer's contents will refer to thaseobject’s
buffer interface, starting as positiaffsetand extending fosizebytes. Ifsizeis Py _END_OF_BUFFER
then the new buffer's contents extend to the length oftthgeobject’s exported buffer data. Changed in
version 2.5: This function used amt type foroffsetandsize This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyBuffer_FromReadWriteObject (PyObject *base, Py_ssize t offset, Py _ssize } size
Return value: New reference.
Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer_FromObiject() . If the baseobject does not export the writeable buffer protocol, then
TypeError is raised. Changed in version 2.5: This function useéhan type foroffsetandsize This
might require changes in your code for properly supporting 64-bit systems.

72 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyBuffer_FromMemory (void *ptr, Py_ssize tsize
Return value: New reference.
Return a new read-only buffer object that reads from a specified location in memory, with a specified size.
The caller is responsible for ensuring that the memory buffer, passegin &snot deallocated while the re-
turned buffer object exists. Rais€alueError if sizeis less than zero. Note they END_OF BUFFER
maynotbe passed for theizeparameteryalueError will be raised in that case. Changed in version 2.5:
This function used amt type forsize This might require changes in your code for properly supporting
64-bit systems.

PyObject* PyBuffer_FromReadWriteMemory (void *ptr, Py_ssize_t sie
Return value: New reference.
Similar toPyBuffer FromMemory() , but the returned buffer is writable. Changed in version 2.5: This
function used aimt type forsize This might require changes in your code for properly supporting 64-bit
systems.

PyObject* PyBuffer_New (Py_ssize tsije
Return value: New reference.
Return a new writable buffer object that maintains its own memory buffaizgfbytes. ValueError
is returned if size is not zero or positive. Note that the memory buffer (as returned by
PyObject_AsWriteBuffer()) is not specifically aligned. Changed in version 2.5: This function
used arint type forsize This might require changes in your code for properly supporting 64-bit systems.

7.3.5 Tuple Objects

PyTupleObject
This subtype oPyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance oPyTypeObject represents the Python tuple type; it is the same objeti@le and
types.TupleType in the Python layer..

int PyTuple_Check (PyObject*p
Return true ifp is a tuple object or an instance of a subtype of the tuple type. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyTuple_CheckExact (PyObject*p
Return true ifp is a tuple object, but not an instance of a subtype of the tuple type. New in version 2.2.

PyObject* PyTuple_New (Py_ssize tlen
Return value: New reference.
Return a new tuple object of sizen, or NULL on failure. Changed in version 2.5: This function used an
int type forlen. This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyTuple_Pack (Py_ssize_tn,).
Return value: New reference.
Return a new tuple object of size or NULL on failure. The tuple values are initialized to the
subsequenh C arguments pointing to Python object®yTuple_Pack(2, a, b) is equivalent to
Py_Buildvalue("(00)", a, b) . New in version 2.4.Changed in version 2.5: This function used an
int type forn. This might require changes in your code for properly supporting 64-bit systems.

Py ssize t PyTuple_Size (PyObject*p
Take a pointer to a tuple object, and return the size of that tuple. Changed in version 2.5: This function
returned arint type. This might require changes in your code for properly supporting 64-bit systems.

Py ssize t PyTuple_GET_SIZE (PyObject *p
Return the size of the tupfg which must be nomWNULL and point to a tuple; no error checking is performed.
Changed in version 2.5: This function returnedin type. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyTuple_Getltem (PyObject *p, Py_ssize_t pps
Return value: Borrowed reference.
Return the object at positiguosin the tuple pointed to bp. If posis out of bounds, returNULL and sets

7.3. Sequence Objects 73

The Python/C API, Release 2.6.4

anindexError exception. Changed in version 2.5: This function useéhan type forpos This might
require changes in your code for properly supporting 64-bit systems.

PyObject* PyTuple_GET_ITEM (PyObiject *p, Py_ssize_t pps
Return value: Borrowed reference.

Like PyTuple_Getltem() , but does no checking of its arguments. Changed in version 2.5: This func-
tion used arint type forpos This might require changes in your code for properly supporting 64-bit
systems.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize tlow, Py_ssize_t high
Return value: New reference.
Take a slice of the tuple pointed to Ipyfrom low to high and return it as a new tuple. Changed in version
2.5: This function used ant type forlow andhigh. This might require changes in your code for properly
supporting 64-bit systems.

int PyTuple_Setltem (PyObject *p, Py_ssize_t pos, PyObjec) *o
Insert a reference to objeatat positionposof the tuple pointed to bp. Return0 on success.

Note: This function “steals” a reference to Changed in version 2.5: This function usedrin type for
pos This might require changes in your code for properly supporting 64-bit systems.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObjec) *o
Like PyTuple_Setltem() , but does no error checking, and shooldy be used to fill in brand new
tuples.

Note: This function “steals” a reference to Changed in version 2.5: This function usedrin type for
pos This might require changes in your code for properly supporting 64-bit systems.

int _PyTuple_Resize (PyObject **p, Py_ssize_t news)ze
Can be used to resize a tupleewsizewill be the new length of the tuple. Because tuplessaneposedo
be immutable, this should only be used if there is only one reference to the objeciotDse this if the
tuple may already be known to some other part of the code. The tuple will always grow or shrink at the
end. Think of this as destroying the old tuple and creating a new one, only more efficiently. R&tuns
success. Client code should never assume that the resulting vatjpevdfl be the same as before calling
this function. If the object referenced by is replaced, the origingp is destroyed. On failure, return$
and setsp to NULL, and raisedMemoryError or SystemError . Changed in version 2.2: Removed
unused third parametdast_is_stickyChanged in version 2.5: This function usedan type fornewsize
This might require changes in your code for properly supporting 64-bit systems.

int PyTuple_ClearFreelList 0
Clear the free list. Return the total number of freed items. New in version 2.6.

7.3.6 List Objects

PyListObject
This subtype oPyObject represents a Python list object.

PyTypeObject PyList_Type
This instance oPyTypeObject represents the Python list type. This is the same objetistas and
types.ListType in the Python layer.

int PyList Check (PyObject*p
Return true ifp is a list object or an instance of a subtype of the list type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyList CheckExact (PyObject*p

Return true ifpis a list object, but not an instance of a subtype of the list type. New in version 2.2.
PyObject* PyList New (Py_ssize tlen

Return value: New reference.

Return a new list of lengtten on success, ddULL on failure.

Note: If lengthis greater than zero, the returned list object’s items are d8tiol. Thus you cannot use
abstract API functions such &/Sequence_Setltem() or expose the object to Python code before

74 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

setting all items to a real object witPyList Setltem() . Changed in version 2.5: This function used
anint for size This might require changes in your code for properly supporting 64-bit systems.

Py ssize t PyList_Size (PyObject *lis}
Return the length of the list object list; this is equivalent tden(list) on a list object. Changed in
version 2.5: This function returned art . This might require changes in your code for properly supporting
64-bit systems.

Py _ssize t PyList GET_SIZE (PyObiject *lis)
Macro form ofPyList_Size() without error checking. Changed in version 2.5: This macro returned an
int . This might require changes in your code for properly supporting 64-bit systems.

PyObject* PyList_Getltem (PyObiject *list, Py _ssize_t indgx
Return value: Borrowed reference.
Return the object at positigrosin the list pointed to by. The position must be positive, indexing from the
end of the list is not supported. osis out of bounds, returBhULL and set aindexError exception.
Changed in version 2.5: This function usedimin for index This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyList GET_ITEM (PyObject *list, Py _ssize }i
Return value: Borrowed reference.
Macro form of PyList_Getltem() without error checking. Changed in version 2.5: This macro used
anint fori. This might require changes in your code for properly supporting 64-bit systems.

int PyList Setltem (PyObiject *list, Py_ssize_t index, PyObject *ifem
Set the item at indeidexin list to item Return0O on success orl on failure.

Note: This function “steals” a reference ttemand discards a reference to an item already in the list at
the affected position. Changed in version 2.5: This function usddtanfor index This might require
changes in your code for properly supporting 64-bit systems.

void PyList SET_ITEM (PyObject *list, Py_ssize ti, PyObject)o
Macro form of PyList_Setltem() without error checking. This is normally only used to fill in new
lists where there is no previous content.

Note: This macro “steals” a reference tiem, and, unlikePyList_Setltem() , doesnot discard a
reference to any item that it being replaced; any referendistiat positioni will be leaked. Changed in
version 2.5: This macro used art for i. This might require changes in your code for properly supporting
64-bit systems.

int PyList_Insert (PyObiject *list, Py_ssize_t index, PyObject *ifem
Insert the itenmiteminto listlist in front of indexindex Return0 if successful; returAl and set an exception
if unsuccessful. Analogous tst.insert(index, item) . Changed in version 2.5: This function
used annt for index This might require changes in your code for properly supporting 64-bit systems.

int PyList Append (PyObject *list, PyObject *iteth
Append the objecitem at the end of listist. ReturnO if successful; returnrl and set an exception if
unsuccessful. Analogous list.append(item)

PyObject* PyList GetSlice (PyObject *list, Py_ssize tlow, Py_ssize_t high
Return value: New reference.
Return a list of the objects ifist containing the objectbetween lowand high. ReturnNULL and set
an exception if unsuccessful. Analogoudittlow:high] . Negative indices, as when slicing from
Python, are not supported. Changed in version 2.5: This function usatl afor low andhigh. This might
require changes in your code for properly supporting 64-bit systems.

int PyList_SetSlice (PyObiject *list, Py_ssize _tlow, Py_ssize_t high, PyObiject *itejnlist
Set the slice ofist betweeriow andhighto the contents atemlist Analogous tdist[low:high] =
itemlist . Theitemlistmay beNULL, indicating the assignment of an empty list (slice deletion). Return
0 on success;1 on failure. Negative indices, as when slicing from Python, are not supported. Changed
in version 2.5: This function used amt for low andhigh. This might require changes in your code for
properly supporting 64-bit systems.

int PyList Sort (PyObject *lis})
Sort the items ofist in place. Retur® on success,1 on failure. This is equivalent tiist.sort()

7.3. Sequence Objects 75

The Python/C API, Release 2.6.4

int PyList Reverse (PyObiject *lis)
Reverse the items dist in place. Return0 on success;1 on failure. This is the equivalent of
list.reverse()

PyObject* PyList_AsTuple (PyObject *lis)
Return value: New reference.
Return a new tuple object containing the contentsbf equivalent tauple(list)

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype oPyObject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance oPyTypeObject represents the Python dictionary type. This is exposed to Python pro-
grams aglict andtypes.DictType

int PyDict_ Check (PyObject*p
Return true ifp is a dict object or an instance of a subtype of the dict type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyDict_CheckExact (PyObject*p
Return true ifp is a dict object, but not an instance of a subtype of the dict type. New in version 2.4.

PyObject* PyDict_New ()
Return value: New reference.
Return a new empty dictionary, tULL on failure.

PyObject* PyDictProxy New (PyObject *dic)
Return value: New reference.
Return a proxy object for a mapping which enforces read-only behavior. This is normally used to create a
proxy to prevent modification of the dictionary for non-dynamic class types. New in version 2.2.

void PyDict_Clear (PyObject™*p
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *kgy
Determine if dictionaryp containskey. If an item inp is matchekey, returnl, otherwise returi®. On error,
return-1 . This is equivalent to the Python expressi@y in p . New in version 2.4.

PyObject* PyDict Copy (PyObject*p
Return value: New reference.
Return a new dictionary that contains the same key-value pajrshew in version 1.6.

int PyDict_Setltem (PyObject *p, PyObject *key, PyObject *yal
Insertvalueinto the dictionaryp with a key ofkey keymust behashableif it isn't, TypeError will be
raised. Returi® on success ol on failure.

int PyDict_SetltemString (PyObject *p, const char *key, PyObject *yal
Insertvalueinto the dictionaryp usingkeyas a keykeyshould be a&har* . The key object is created using
PyString_FromsString(key) . Return0 on success o1l on failure.

int PyDict Delltem (PyObject *p, PyObject *key
Remove the entry in dictionany with key key. keymust be hashable; if it isn'fTypeError is raised.
Return0 on success otl on failure.

int PyDict_DelltemString (PyObject *p, char *key
Remove the entry in dictionagywhich has a key specified by the strikgy. ReturnO on success ol on
failure.

76 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* PyDict_Getltem (PyObject *p, PyObject *key
Return value: Borrowed reference.
Return the object from dictionany which has a kekey ReturnNULL if the keykeyis not present, but
withoutsetting an exception.

PyObject* PyDict_GetltemString (PyObject *p, const char *kgy
Return value: Borrowed reference.
This is the same aByDict_Getltem() , butkeyis specified as ahar* , rather than &yObject*

PyObject* PyDict_Items (PyObject *p
Return value: New reference.
Return aPyListObject containing all the items from the dictionary, as in the dictionary method
dict.items()

PyObject* PyDict_Keys (PyObject*p
Return value: New reference.
Return aPyListObject containing all the keys from the dictionary, as in the dictionary method
dict.keys()

PyObject* PyDict Values (PyObject*p
Return value: New reference.
Return aPyListObject containing all the values from the dictionapy as in the dictionary method
dict.values()

Py ssize t PyDict _Size (PyObject*p
Return the number of items in the dictionary. This is equivalerdetgp) on a dictionary. Changed
in version 2.5: This function returned @&mt type. This might require changes in your code for properly
supporting 64-bit systems.

int PyDict_Next (PyObject*p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue
Iterate over all key-value pairs in the dictiongryThePy _ssize t referred to bypposmust be initialized
to O prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parampk¢sendpvalueshould either point
to PyObject* variables that will be filled in with each key and value, respectively, or majNUEL.
Any references returned through them are borrowsmhsshould not be altered during iteration. Its value
represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.

For example:

PyObject *key, *value;
Py ssize t pos = 0;

while (PyDict_Next(self - >dict, &pos, &key, &value)) {
[* do something interesting with the values... */

}

The dictionaryp should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of
the keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;

Py ssize t pos = 0;
while (PyDict_Next(self - >dict, &pos, &key, &value)) {
int i = Pylnt_ AS_ LONG(value) + 1;
PyObject *o = Pylnt_FromLong(i);
if (0 == NULL)
return - 1;
if (PyDict_Setltem(self - >dict, key, 0) < 0) {
Py DECREF(0);
return -1,

7.4. Mapping Objects 7

The Python/C API, Release 2.6.4

}
Py_DECREF(0);

}

Changed in version 2.5: This function usedian * type forppos This might require changes in your
code for properly supporting 64-bit systems.

int PyDict_ Merge (PyObject*a, PyObject *b, int override
Iterate over mapping objettadding key-value pairs to dictionasy b may be a dictionary, or any object
supportingPyMapping_Keys() andPyObject_Getltem() . If overrideis true, existing pairs i
will be replaced if a matching key is found Im otherwise pairs will only be added if there is not a matching
key ina. ReturnO on success oil if an exception was raised. New in version 2.2.

int PyDict Update (PyObject *a, PyObject *p
This is the same a@yDict_Merge(a, b, 1) in C, ora.update(b) in Python. Retur® on success
or-1 if an exception was raised. New in version 2.2.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int overrijle
Update or merge into dictionagy from the key-value pairs iseq2 seq2must be an iterable object produc-
ing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the lasowersidfe
is true, else the first wins. Retufnon success ol if an exception was raised. Equivalent Python (except
for the return value):

def PyDict_ MergeFromSeq2(a, seq2, override)
for key, value in seq2:

if override or key not in a
alkey] = value

New in version 2.2.

7.5 Other Objects

7.5.1 Class and Instance Objects

Note that the class objects described here represent old-style classes, which will go away in Python 3. When
creating new types for extension modules, you will want to work with type objects (s@ctienObjects

PyClassObject
The C structure of the objects used to describe built-in classes.

PyObject* PyClass_Type
This is the type object for class objects; it is the same objetts.ClassType in the Python layer.

int PyClass_Check (PyObject*q

Return true if the object is a class object, including instances of types derived from the standard class
object. Return false in all other cases.

int PyClass_IsSubclass (PyObject *klass, PyObject *base
Return true ifklassis a subclass dfase Return false in all other cases.

There are very few functions specific to instance objects.

PyTypeObject Pyinstance_Type
Type object for class instances.

int Pylnstance_Check (PyObject *ob)
Return true ifobj is an instance.

PyObject* Pylnstance_New (PyObiject *class, PyObject *arg, PyObject *kw
Return value: New reference.
Create a new instance of a specific class. The paran@tgasidkw are used as the positional and keyword
parameters to the object’s constructor.

78 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyObject* Pylnstance_NewRaw (PyObject *class, PyObject *dirt
Return value: New reference.
Create a new instance of a specific class without calling its construtassis the class of new object. The
dict parameter will be used as the object'sdict__ ; if NULL, a new dictionary will be created for the
instance.

7.5.2 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance dPyTypeObject and represents the Python function type. It is exposed to Python
programmers atypes.FunctionType

int PyFunction_Check (PyObject*g
Return true ifo is a function object (has typeyFunction_Type). The parameter must not bD&JLL.

PyObject* PyFunction_New (PyObject *code, PyObject *glob3gls
Return value: New reference.
Return a new function object associated with the code olojedé globalsmust be a dictionary with the
global variables accessible to the function.

The function’s docstring, name and module__are retrieved from the code object, the argument defaults
and closure are set tdULL.

PyObject* PyFunction_GetCode (PyObject *op

Return value: Borrowed reference.

Return the code object associated with the function olgjpct
PyObject* PyFunction_GetGlobals (PyObiject *op

Return value: Borrowed reference.

Return the globals dictionary associated with the function olgjpct

PyObject* PyFunction_GetModule (PyObject *op
Return value: Borrowed reference.
Return the__module__attribute of the function objedp. This is normally a string containing the module
name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults (PyObiject *op
Return value: Borrowed reference.
Return the argument default values of the function olgpeciThis can be a tuple of argumentsiiLL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults
Set the argument default values for the function objgrdefaultsmust bePy_Noneor a tuple.

RaisesSystemError and returns1 on failure.

PyObject* PyFunction_GetClosure (PyObject *op
Return value: Borrowed reference.
Return the closure associated with the function olgectThis can beNULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closuje
Set the closure associated with the function objgciclosuremust bePy Noneor a tuple of cell objects.

RaisesSystemError and returnsl on failure.

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

7.5. Other Objects 79

The Python/C API, Release 2.6.4

PyTypeObject PyMethod_Type

int

This instance oPyTypeObject represents the Python method type. This is exposed to Python programs
astypes.MethodType

PyMethod_Check (PyObject *9

Return true ifo is a method object (has typg/Method_Type). The parameter must not b&JLL.

PyObject* PyMethod_New (PyObject *func, PyObiject *self, PyObject *class

Return value: New reference.

Return a new method object, withncbeing any callable object; this is the function that will be called when
the method is called. If this method should be bound to an instaetfeshould be the instance awthss
should be the class sklf otherwiseself should beNULL andclassshould be the class which provides the
unbound method..

PyObject* PyMethod_Class (PyObject *meth

Return value: Borrowed reference.
Return the class object from which the methudthwas created; if this was created from an instance, it
will be the class of the instance.

PyObject* PyMethod_GET_CLASY PyObject *meth

Return value: Borrowed reference.
Macro version oPyMethod_Class() which avoids error checking.

PyObject* PyMethod_Function (PyObject *meth

Return value: Borrowed reference.
Return the function object associated with the metimadh

PyObject* PyMethod_GET_FUNCTION PyObject *meth

Return value: Borrowed reference.
Macro version ofPyMethod_Function() which avoids error checking.

PyObject* PyMethod_Self (PyObject *meth

Return value: Borrowed reference.
Return the instance associated with the metimedhif it is bound, otherwise returhNULL.

PyObject* PyMethod_GET_SELF(PyObject *meth

int

Return value: Borrowed reference.
Macro version oPyMethod_Self() which avoids error checking.

PyMethod_ClearFreeList 0
Clear the free list. Return the total number of freed items. New in version 2.6.

7.5.4 File Objects

Python’s built-in file objects are implemented entirely on fteE* support from the C standard library. This is
an implementation detail and may change in future releases of Python.

PyFileObject

This subtype oPyObject represents a Python file object.

PyTypeObject PyFile_Type

int

int

This instance oPyTypeObject represents the Python file type. This is exposed to Python programs as
file andtypes.FileType

PyFile_Check (PyObject*p
Return true if its argument is RyFileObject or a subtype oPyFileObject . Changed in version
2.2: Allowed subtypes to be accepted.

PyFile_CheckExact (PyObject*p
Return true if its argument isyFileObject , but not a subtype dPyFileObject . New in version
2.2.

PyObject* PyFile_FromString (char *filename, char *mode

Return value: New reference.

80

Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

On success, return a new file object that is opened on the file givélebgme with a file mode given by
mode wheremodehas the same semantics as the standard C rdiofre®() . On failure, returrNULL.

PyObject* PyFile_FromFile (FILE *fp, char *name, char *mode, int (*close)(FILEY)
Return value: New reference.
Create a newyFileObject from the already-open standard C file poinfer, The functionclosewill
be called when the file should be closed. ReMNtLL on failure.

FILE* PyFile_AsFile (PyObject*p
Return the file object associated wjlas aFILE* .

If the caller will ever use the returnellLE* object while the GIL is released it must also call the
PyFile_IncUseCount() andPyFile_DecUseCount() functions described below as appropriate.

void PyFile_IncUseCount (PyFileObject *p
Increments the PyFileObject’s internal use count to indicate that the undefyiriey is being used.
This prevents Python from calling f_close() on it from another thread. Callers of this must call
PyFile_DecUseCount() when they are finished with tHelLE* . Otherwise the file object will never
be closed by Python.

The GIL must be held while calling this function.

The suggested use is to call this aftar=ile_AsFile() just before you release the GIL. New in version
2.6.

void PyFile_DecUseCount (PyFileObject*p
Decrements the PyFileObject’s internal unlocked_count member to indicate that the caller is done with its
own use of thé=ILE* . This may only be called to undo a prior callRyFile_IncUseCount()

The GIL must be held while calling this function. New in version 2.6.

PyObject* PyFile_GetLine (PyObject *p, int)

Return value: New reference.

Equivalent top.readline([n]) , this function reads one line from the objgctp may be a file object
or any object with aeadline() method. Ifnis 0, exactly one line is read, regardless of the length of
the line. Ifnis greater tha®, no more tham bytes will be read from the file; a partial line can be returned.
In both cases, an empty string is returned if the end of the file is reached immediatalis IEss than
0, however, one line is read regardless of length,EBBOFError is raised if the end of the file is reached
immediately.

PyObject* PyFile_Name (PyObject*pn
Return value: Borrowed reference.
Return the name of the file specified pws a string object.

void PyFile_SetBufSize (PyFileObject *p, int)
Available on systems witlsetvbuf() only. This should only be called immediately after file object
creation.

int PyFile_SetEncoding (PyFileObject *p, const char *ernc
Set the file's encoding for Unicode outputdnc Return 1 on success and 0 on failure. New in version 2.3.

int PyFile_SetEncodingAndErrors (PyFileObject *p, const char *enc, *erro}s
Set the file’s encoding for Unicode outputeéac and its error mode terr. Return 1 on success and 0 on
failure. New in version 2.6.

int PyFile_SoftSpace (PyObject *p, int newflap
This function exists for internal use by the interpreter. Setsthféspace attribute ofp to newflagand
return the previous valugn does not have to be a file object for this function to work properly; any object
is supported (thought its only interesting if teeftspace attribute can be set). This function clears any
errors, and will retur® as the previous value if the attribute either does not exist or if there were errors in
retrieving it. There is no way to detect errors from this function, but doing so should not be needed.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags
Write objectobj to file objectp. The only supported flag fdlagsis Py_PRINT_RAWif given, thestr()
of the object is written instead of thepr() . ReturnO on success o+l on failure; the appropriate
exception will be set.

7.5. Other Objects 81

The Python/C API, Release 2.6.4

int PyFile_WriteString (const char *s, PyObject *p
Write stringsto file objectp. Return0 on success otl on failure; the appropriate exception will be set.

7.5.5 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule_Type
This instance oPyTypeObject represents the Python module type. This is exposed to Python programs
astypes.ModuleType

int PyModule_Check (PyObiject*p
Return true ifp is a module object, or a subtype of a module object. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyModule_CheckExact (PyObject*p
Return true ifp is a module object, but not a subtyperdfModule_Type . New in version 2.2.

PyObject* PyModule_New (const char *namg
Return value: New reference.
Return a new module object with the name___ attribute set taname Only the module’s _doc__ and
__hame___ attributes are filled in; the caller is responsible for providing éile_ attribute.

PyObject* PyModule_GetDict (PyObject *module
Return value: Borrowed reference.
Return the dictionary object that implementsodulés namespace; this object is the same as the
__dict__attribute of the module object. This function never fails. Itis recommended extensions use other
PyModule_*() andPyObject_*() functions rather than directly manipulate a module’slict__

char* PyModule_GetName (PyObject *modul
Returnmodulés __name__ value. If the module does not provide one, or if it is not a string,
SystemError is raised andNULL is returned.

char* PyModule_GetFilename (PyObject *modulg
Return the name of the file from whichodulewas loaded usinghodulés __ file_ attribute. If this is
not defined, or if it is not a string, raisystemError and returrNULL.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value
Add an object tamoduleasname This is a convenience function which can be used from the module’s
initialization function. This steals a referencev@lue Return-1 on error,0 on success. New in version
2.0.

int PyModule_AddIntConstant (PyObject *module, const char *name, long vglue
Add an integer constant tmoduleasname This convenience function can be used from the module’s
initialization function. Returnl on error,0 on success. New in version 2.0.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value
Add a string constant tmoduleasname This convenience function can be used from the module’s ini-
tialization function. The stringaluemust be null-terminated. Returd on error,0 on success. New in
version 2.0.

int PyModule_AddIntMacro (PyObject *module, macjo
Add an int constant tomodule The name and the value are taken fromacra For example
PyModule_AddConstant(module, AF_INET) adds the int constamiF_INET with the value of
AF_INETto module Return-1 on error,0 on success. New in version 2.6.

int PyModule_AddStringMacro (PyObject *module, macjo
Add a string constant tmodule

New in version 2.6.

82 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

7.5.6 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary
sequence supporting thegetitem__ () method. The second works with a callable object and a sentinel value,
calling the callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqlter_Type
Type object for iterator objects returned BySeqlter New() and the one-argument form of the
iter() built-in function for built-in sequence types. New in version 2.2.

int PySeqlter_Check (op)
Return true if the type abpis PySeqlter Type . New inversion 2.2.

PyObject* PySeqlter_ New (PyObject *sej
Return value: New reference.
Return an iterator that works with a general sequence olgeqt, The iteration ends when the sequence
raisesindexError for the subscripting operation. New in version 2.2.

PyTypeObject PyCalllter_Type
Type object for iterator objects returned ByCalllter New() and the two-argument form of the
iter() built-in function. New in version 2.2.

int PyCalllter_Check (op)
Return true if the type abpis PyCalllter_Type . New in version 2.2,

PyObject* PyCalllter New (PyObject *callable, PyObject *sentinel
Return value: New reference.
Return a new iterator. The first parameteallable can be any Python callable object that can be called
with no parameters; each call to it should return the next item in the iteration. Yétablereturns a value
equal tosentine] the iteration will be terminated. New in version 2.2,

7.5.7 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty Type
The type object for the built-in descriptor types. New in version 2.2.

PyObject* PyDescr_NewGetSet (PyTypeObiject *type, struct PyGetSetDef *gétset
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewMember (PyTypeObiject *type, struct PyMemberDef *njeth
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewMethod (PyTypeObiject *type, struct PyMethodDef *mleth
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method
Return value: New reference.
New in version 2.3.

int PyDescr_IsData (PyObject *descy
Return true if the descriptor objeadgscrdescribes a data attribute, or false if it describes a mettiestcr
must be a descriptor object; there is no error checking. New in version 2.2.

7.5. Other Objects 83

The Python/C API, Release 2.6.4

PyObject* PyWrapper_New (PyObject *, PyObject ¥
Return value: New reference.
New in version 2.2.

7.5.8 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the samslace andtypes.SliceType

int PySlice_Check (PyObject *ol)
Return true ifobis a slice objectpb must not beNULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *sdep
Return value: New reference.
Return a new slice object with the given values. Fhaat, stop andstepparameters are used as the values
of the slice object attributes of the same names. Any of the values miyJbg, in which case thé&lone
will be used for the corresponding attribute. RetddLL if the new object could not be allocated.

int PySlice_GetlIndices (PySliceObiject *slice, Py_ssize t length, Py_ssize_t *start, Py_ssize t *stop,
Py ssize t*stép
Retrieve the start, stop and step indices from the slice objeg assuming a sequence of lendghgth
Treats indices greater thdengthas errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices Wasenahd
failed to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python prior
to 2.3, you would probably do well to incorporate the sourc@yflice GetindicesEx() , Suitably
renamed, in the source of your extension. Changed in version 2.5: This function usgd aype for
lengthand anint * type forstart, stop andstep This might require changes in your code for properly
supporting 64-bit systems.

int PySlice_GetIindicesEx (PySliceObject *slice, Py_ssize_tlength, Py _ssize t *start, Py_ssize_t *stop,
Py ssize t*step, Py_ssize_t *slicelength
Usable replacement fd?ySlice_Getlindices() . Retrieve the start, stop, and step indices from the
slice objectsliceassuming a sequence of lendghgth and store the length of the slicesficelength Out
of bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set. New in version 2.3.Changed in version 2.5: This
function used aint type forlengthand anint * type forstart, stop step andslicelength This might
require changes in your code for properly supporting 64-bit systems.

7.5.9 Weak Reference Objects

Python supportsveak referenceas first-class objects. There are two specific object types which directly imple-
ment weak references. The first is a simple reference object, and the second acts as a proxy for the original object
as much as it can.

int PyWeakref_Check (ob)
Return true ifobis either a reference or proxy object. New in version 2.2.

int PyWeakref CheckRef (ob)
Return true ifobis a reference object. New in version 2.2.

int PyWeakref _CheckProxy (ob)
Return true ifobis a proxy object. New in version 2.2.

PyObject* PyWeakref NewRef (PyObject *ob, PyObject *callbagk
Return value: New reference.
Return a weak reference object for the objebt This will always return a new reference, but is not
guaranteed to create a new object; an existing reference object may be returned. The second parameter,
callback can be a callable object that receives notification wbieis garbage collected; it should accept a

84 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

single parameter, which will be the weak reference object itealilbackmay also beNone or NULL. If
obis not a weakly-referencable object, ocdllbackis not callableNone, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref NewProxy (PyObject *ob, PyObject *callbagk
Return value: New reference.
Return a weak reference proxy object for the obat This will always return a new reference, but is
not guaranteed to create a new object; an existing proxy object may be returned. The second parameter,
callback can be a callable object that receives notification wiileis garbage collected; it should accept a
single parameter, which will be the weak reference object itealiilbackmay also beNone or NULL. If
obis not a weakly-referencable object, ocdllbackis not callableNone, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref GetObject (PyObiject *ref)
Return value: Borrowed reference.
Return the referenced object from a weak refererefe|f the referent is no longer live, returidone. New
in version 2.2.

PyObject* PyWeakref GET_OBJECT(PyObiject *ref)
Return value: Borrowed reference.
Similar toPyWeakref GetObject() , but implemented as a macro that does no error checking. New
in version 2.2.

7.5.10 CObjects

Refer toProviding a C API for an Extension Modu{a Extending and Embedding Pythdor more information
on using these objects.

PyCObject
This subtype oPyObject represents an opaque value, useful for C extension modules who need to pass
an opaque value (asvaid* pointer) through Python code to other C code. It is often used to make a C
function pointer defined in one module available to other modules, so the regular import mechanism can be
used to access C APIs defined in dynamically loaded modules.

int PyCObject_Check (PyObject*p
Return true if its argument isRyCObject .

PyObject* PyCObject FromVoidPtr (void* cobj, void (*destr)(void *)
Return value: New reference.
Create aPyCObject from thevoid * cobj. The destrfunction will be called when the object is re-
claimed, unless it iSlULL.

PyObject* PyCObject_FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void ¥)
Return value: New reference.
Create aPyCObject from thevoid * cobj. The destrfunction will be called when the object is re-
claimed. Thedescargument can be used to pass extra callback data for the destructor function.

void* PyCObject_AsVoidPtr (PyObject* selj
Return the objectoid * thatthePyCObject self was created with.

void* PyCObject GetDesc (PyObject* selj
Return the descriptiomoid * that thePyCObject self was created with.

int PyCObject_SetVoidPtr (PyObject* self, void* cob)j
Set the void pointer insidself to cobj. ThePyCObject must not have an associated destructor. Return
true on success, false on failure.

7.5.11 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object
is created to store the value; the local variables of each stack frame that references the value contains a reference

7.5. Other Objects 85

The Python/C API, Release 2.6.4

to the cells from outer scopes which also use that variable. When the value is accessed, the value contained in
the cell is used instead of the cell object itself. This de-referencing of the cell object requires support from the
generated byte-code; these are not automatically de-referenced when accessed. Cell objects are not likely to be
useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check (ob)
Return true ifobis a cell objectpb must not beNULL.

PyObject* PyCell_New (PyObject *ol)
Return value: New reference.
Create and return a new cell object containing the valuérhe parameter may beULL.

PyObject* PyCell Get (PyObject *cel)
Return value: New reference.
Return the contents of the cekll.

PyObject* PyCell_GET (PyObject *cel)
Return value: Borrowed reference.
Return the contents of the cekll, but without checking thatell is nonNULL and a cell object.

int PyCell_Set (PyObject*cell, PyObject *value
Set the contents of the cell objeszll to value This releases the reference to any current content of the cell.
valuemay beNULL. cell must be norNULL; if it is not a cell object-1 will be returned. On succes8,
will be returned.

void PyCell SET (PyObject *cell, PyObject *value
Sets the value of the cell objextll to value No reference counts are adjusted, and no checks are made for
safety;cell must be norNULL and must be a cell object.

7.5.12 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating
over a function that yields values, rather than explicitly callihgsen New() .

PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects

int PyGen_Check (ob)
Return true ifobis a generator objectib must not beNULL.

int PyGen_CheckExact (ob)
Return true ifob's type isPyGen_Typés a generator objectib must not beNULL.

PyObject* PyGen_New(PyFrameObject *framg
Return value: New reference.
Create and return a new generator object based ofrgheeobject. A reference tframeis stolen by this
function. The parameter must not N&JLL.

7.5.13 DateTime Objects

Various date and time objects are supplied bydhtetime module. Before using any of these functions, the
header filedatetime.h must be included in your source (note that this is not include®ytyon.h), and

the macroPyDateTime_IMPORT() must be invoked. The macro puts a pointer to a C structure into a static
variable,PyDateTimeAPI , that is used by the following macros.

86 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

Type-check macros:

int PyDate Check (PyObject *oh
Return true ifob is of type PyDateTime_DateType or a subtype oPyDateTime_DateType . ob
must not beNULL. New in version 2.4.

int PyDate CheckExact (PyObject *ob
Return true ifobis of typePyDateTime_DateType . obmust not beNULL. New in version 2.4,

int PyDateTime_Check (PyObject *ol)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of
PyDateTime_DateTimeType . obmust not beNULL. New in version 2.4.

int PyDateTime_CheckExact (PyObject *ob)
Return true ifobis of typePyDateTime_DateTimeType . obmust not beNULL. New in version 2.4.

int PyTime_Check (PyObject *ob
Return true ifobis of type PyDateTime_TimeType or a subtype oPyDateTime_TimeType . ob
must not beNULL. New in version 2.4.

int PyTime_CheckExact (PyObject *ob
Return true ifobis of typePyDateTime_TimeType . obmust not beNULL. New in version 2.4.

int PyDelta_Check (PyObject*ol)
Return true ifobis of typePyDateTime_DeltaType or a subtype oPyDateTime_DeltaType . ob
must not beNULL. New in version 2.4.

int PyDelta_CheckExact (PyObject *ob
Return true ifobis of typePyDateTime_DeltaType . obmust not beNULL. New in version 2.4.

int PyTZInfo_Check (PyObject*ob)
Return true ifobis of typePyDateTime_TZInfoType or a subtype oPyDateTime_TZInfoType
ob must not beNULL. New in version 2.4.

int PyTZInfo_CheckExact (PyObject *ob)
Return true ifobis of typePyDateTime_TZInfoType . obmust not beNULL. New in version 2.4.

Macros to create objects:

PyObject* PyDate FromDate (intyear, int month, int day
Return value: New reference.
Return adatetime.date object with the specified year, month and day. New in version 2.4.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int useconyl
Return value: New reference.

Return adatetime.datetime object with the specified year, month, day, hour, minute, second and
microsecond. New in version 2.4.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecgnd
Return value: New reference.
Return adatetime.time object with the specified hour, minute, second and microsecond. New in
version 2.4,

PyObject* PyDelta_FromDSU (int days, int seconds, int usecohds
Return value: New reference.
Return adatetime.timedelta object representing the given number of days, seconds and microsec-
onds. Normalization is performed so that the resulting number of microseconds and seconds lie in the ranges
documented fodatetime.timedelta objects. New in version 2.4.

Macros to extract fields from date objects. The argument must be an instaPgBateTime_Date , including
subclasses (such ByDateTime_DateTime). The argument must not ddULL, and the type is not checked:

int PyDateTime_GET_YEAR(PyDateTime_Date *p
Return the year, as a positive int. New in version 2.4.

7.5. Other Objects 87

The Python/C API, Release 2.6.4

int PyDateTime_GET_MONTH PyDateTime_Date *p
Return the month, as an int from 1 through 12. New in version 2.4.

int PyDateTime_GET_DAY (PyDateTime_Date *p
Return the day, as an int from 1 through 31. New in version 2.4.

Macros to extract fields from datetime objects. The argument must be an instahd@aieTime_DateTime
including subclasses. The argument must ndilb L, and the type is not checked:

int PyDateTime_DATE_GET_HOUR PyDateTime_DateTime jo
Return the hour, as an int from 0 through 23. New in version 2.4.

int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime o
Return the minute, as an int from 0 through 59. New in version 2.4,

int PyDateTime_DATE_GET_SECONDPyDateTime_DateTime jo
Return the second, as an int from 0 through 59. New in version 2.4.

int PyDateTime_DATE_GET_MICROSECONIPyDateTime_DateTime jo
Return the microsecond, as an int from 0 through 999999. New in version 2.4,

Macros to extract fields from time objects. The argument must be an instaRg®afeTime_Time , including
subclasses. The argument must nolNbd L, and the type is not checked:

int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o
Return the hour, as an int from 0 through 23. New in version 2.4,

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *o
Return the minute, as an int from O through 59. New in version 2.4.

int PyDateTime_TIME_GET_SECONL PyDateTime_Time *o
Return the second, as an int from 0 through 59. New in version 2.4.

int PyDateTime_TIME_GET_MICROSECONDPyDateTime_Time *o
Return the microsecond, as an int from 0 through 999999. New in version 2.4.

Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp (PyObject *arg$
Return value: New reference.
Create and return a nedatetime.datetime object given an argument tuple suitable for passing to
datetime.datetime.fromtimestamp() . New in version 2.4.

PyObject* PyDate_FromTimestamp (PyObject *arg$
Return value: New reference.
Create and return a newatetime.date object given an argument tuple suitable for passing to
datetime.date.fromtimestamp() . New in version 2.4,

7.5.14 Set Objects

New in version 2.5. This section details the public APl feet and frozenset objects. Any
functionality not listed below is best accessed using the either the abstract object protocol (in-

cluding PyObject CallMethod() ., PyObject_RichCompareBool() , PyObject Hash() ,
PyObject_Repr() , PyObject_IsTrue() , PyObject_Print() , and PyObject_Getlter()) or
the abstract number protocol (includifgNumber_And() , PyNumber_Subtract() , PyNumber_Or() ,
PyNumber_Xor() , PyNumber_InPlaceAnd() PyNumber_InPlaceSubtract() ,
PyNumber_InPlaceOr() , andPyNumber_InPlaceXor()).

PySetObject

This subtype ofPyObject is used to hold the internal data for batbt andfrozenset objects. Itis

like a PyDictObject inthat it is a fixed size for small sets (much like tuple storage) and will point to a
separate, variable sized block of memory for medium and large sized sets (much like list storage). None of
the fields of this structure should be considered public and are subject to change. All access should be done
through the documented API rather than by manipulating the values in the structure.

88 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.4

PyTypeObject PySet Type
This is an instance dPyTypeObject representing the Pythaset type.

PyTypeObject PyFrozenSet_Type
This is an instance dPyTypeObject representing the Pythdrozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check (PyObject*p
Return true ifpis aset object or an instance of a subtype. New in version 2.6.

int PyFrozenSet_Check (PyObject*p
Return true ifpis afrozenset object or an instance of a subtype. New in version 2.6.

int PyAnySet Check (PyObject*p
Return true ifpis aset object, afrozenset object, or an instance of a subtype.

int PyAnySet CheckExact (PyObject*p
Return true ifpis aset object or afrozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject*p
Return true ifp is afrozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObject *iterablg
Return value: New reference.
Return a newset containing objects returned by titerable Theiterable may beNULL to create a new
empty set. Return the new set on succedddLL on failure. Rais&ypeError if iterableis not actually
iterable. The constructor is also useful for copying a sesét(s)).

PyObject* PyFrozenSet New (PyObject *iterablg
Return value: New reference.
Return a nevirozenset containing objects returned by therable Theiterablemay beNULL to create
a new empty frozenset. Return the new set on succeN$Jbt on failure. Raisél'ypeError if iterable
is not actually iterable. Changed in version 2.6: Now guaranteed to return a branlezewset
Formerly, frozensets of zero-length were a singleton. This got in the way of building-up new frozensets
with PySet_Add()

The following functions and macros are available for instancesetdf or frozenset or instances of their
subtypes.

Py ssize 't PySet Size (PyObject *anysgt
Return the length of aset or frozenset object. Equivalent tolen(anyset) . Raises a
PyExc_SystemError if anysetis not aset , frozenset , or an instance of a subtype. Changed in
version 2.5: This function returned &mt . This might require changes in your code for properly support-
ing 64-bit systems.

Py ssize 't PySet GET_SIZE (PyObject *anysét
Macro form ofPySet_Size() without error checking.

int PySet Contains (PyObject *anyset, PyObject *kpy
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Pythoantains__ ()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the keyis unhashable. Rais®&yExc_SystemError if anyseis not aset , frozenset
or an instance of a subtype.

int PySet Add (PyObject *set, PyObject *kgy
Add keyto aset instance. Does not apply foozenset instances. Return 0 on success or -1 on failure.
Raise alypeError if the keyis unhashable. RaiseMemoryError if there is no room to grow. Raise a
SystemError if setis an not an instance gkt or its subtype. Changed in version 2.6: Now works with
instances ofrozenset or its subtypes. Lik&yTuple Setltem() in that it can be used to fill-in the
values of brand new frozensets before they are exposed to other code.

The following functions are available for instancesef or its subtypes but not for instancesfaizenset or
its subtypes.

7.5. Other Objects 89

The Python/C API, Release 2.6.4

int

PySet Discard (PyObiject *set, PyObject *kgy

Return 1 if found and removed, O if not found (no action taken), and -1 if an error is encountered.
Does not rais&KeyError for missing keys. Raise @ypeError if the keyis unhashable. Unlike the
Pythondiscard() method, this function does not automatically convert unhashable sets into temporary
frozensets. RaisRyExc_SystemError if setis an not an instance gkt or its subtype.

PyObject* PySet Pop (PyObject *set

int

Return value: New reference.

Return a new reference to an arbitrary object ingatand removes the object from teet ReturnNULL
on failure. Rais&eyError if the setis empty. Raise@ystemError if setis an not an instance gkt
or its subtype.

PySet Clear (PyObject *set
Empty an existing set of all elements.

90

Chapter 7. Concrete Objects Layer

CHAPTER
EIGHT

void

void

int

void

PyT

INITIALIZATION, FINALIZATION, AND
THREADS

Py_lInitialize 0

Initialize the Python interpreter. In an application embedding Python, this should be called be-
fore using any other Python/C API functions; with the exceptionFgf SetProgramName() ,
PyEval_InitThreads() , PyEval_ReleaselLock() , and PyEval_AcquireLock() . This
initializes the table of loaded modulesyé.modules), and creates the fundamental modules
__builtin__, __main__ andsys. It also initializes the module search paglyg.path). It does

not setsys.argv ; usePySys SetArgv() for that. This is a no-op when called for a second time
(without calling Py _Finalize() first). There is no return value; it is a fatal error if the initialization
fails.

Py _InitializeEx (intinitsigs)
This function works likePy _Initialize() if initsigsis 1. If initsigsis 0, it skips initialization registra-
tion of signal handlers, which might be useful when Python is embedded. New in version 2.4.

Py_lsInitialized 0
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py Finalize() is called, this returns false unfly Initialize() is called again.

Py_Finalize ()
Undo all initializations made by _Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (seg_Newlnterpreter() below) that were created and not yet destroyed
since the last call t&y_Initialize() . Ideally, this frees all memory allocated by the Python inter-
preter. This is a no-op when called for a second time (without cakinginitialize() again first).

There is no return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading
the DLL. During a hunt for memory leaks in an application a developer might want to free all memory
allocated by Python before exiting from the application.

Bugs and caveats:The destruction of modules and objects in modules is done in random order; this may
cause destructors (del__ () methods) to fail when they depend on other objects (even functions) or
modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of
memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory
tied up in circular references between objects is not freed. Some memory allocated by extension modules
may not be freed. Some extensions may not work properly if their initialization routine is called more than
once; this can happen if an application calls Initialize() andPy_Finalize() more than once.

hreadState* Py _Newlnterpreter 0
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, in-
cluding the fundamental modules builtin__ , __main__ andsys . The table of loaded modules
(sys.modules) and the module search patyé.path) are also separate. The new environment has

91

The Python/C API, Release 2.6.4

no sys.argv variable. It has new standard I/O stream file objexsts.stdin , sys.stdout and
sys.stderr (however these refer to the same underlyiiigE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
in the current thread state. Note that no actual thread is created; see the discussion of thread states below.
If creation of the new interpreter is unsuccessiUULL is returned; no exception is set since the exception
state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C
API functions, the global interpreter lock must be held before calling this function and is still held when

it returns; however, unlike most other Python/C API functions, there needn’t be a current thread state on
entry.) Extension modules are shared between (sub-)interpreters as follows: the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled
away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and
filled with the contents of this copy; the extensioimg function is not called. Note that this is different

from what happens when an extension is imported after the interpreter has been completely re-initialized by
callingPy_Finalize() andPy _Initialize() ; inthat case, the extensiontsitmodule function

is called again. Bugs and caveats:Because sub-interpreters (and the main interpreter) are part of the
same process, the insulation between them isn’t perfect — for example, using low-level file operations like
os.close() they can (accidentally or maliciously) affect each other’'s open files. Because of the way
extensions are shared between (sub-)interpreters, some extensions may not work properly; this is especially
likely when the extension makes use of (static) global variables, or when the extension manipulates its
module’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into

a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined
functions, methods, instances or classes between sub-interpreters, since import operations executed by such
objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules. (XXX This is a hard-to-fix
bug that will be addressed in a future release.)

Also note that the use of this functionality is incompatible with extension modules such as PyObjC and
ctypes that use thByGILState *() APIs (and this is inherent in the way thyGILState *()
functions work). Simple things may work, but confusing behavior will always be near.

void Py_Endinterpreter (PyThreadState *tstaje
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the
current thread state. See the discussion of thread states below. When the call returns, the current thread
state iSNULL. All thread states associated with this interpreter are destroyed. (The global interpreter lock
must be held before calling this function and is still held when it returifg.)Finalize() will destroy
all sub-interpreters that haven’t been explicitly destroyed at that point.

void Py_SetProgramName (char *namé
This function should be called befoRy _Initialize() is called for the first time, if it is called at all.
It tells the interpreter the value of tleegv[0] argument to thenain() function of the program. This is
used byPy GetPath() and some other functions below to find the Python run-time libraries relative to
the interpreter executable. The default valupyshon’ . The argument should point to a zero-terminated
character string in static storage whose contents will not change for the duration of the program’s execution.
No code in the Python interpreter will change the contents of this storage.

char* Py _GetProgramName ()
Return the program name set wily SetProgramName() , or the default. The returned string points
into static storage; the caller should not modify its value.

char* Py_GetPrefix ()
Return theprefixfor installed platform-independent files. This is derived through a number of complicated
rules from the program name set wity _SetProgramName() and some environment variables; for
example, if the program name ‘fsisr/local/bin/python’ , the prefix is'/usr/local’ . The
returned string points into static storage; the caller should not modify its value. This corresponds to the
prefix variable in the top-leveMakefile and the--prefix argument to theonfigure script at build
time. The value is available to Python codesgs.prefix . Itis only useful on Unix. See also the next
function.

char* Py GetExecPrefix ()
Return theexec-prefixfor installed platformdependentfiles. This is derived through a number of
complicated rules from the program name set wWith SetProgramName() and some environment
variables; for example, if the program name figsr/local/bin/python’ , the exec-prefix is

92 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.4

"lusr/local’ . The returned string points into static storage; the caller should not modify its value.
This corresponds to thexec_prefixvariable in the top-leveMakefile and the--exec-prefix argu-

ment to theconfigure script at build time. The value is available to Python codeyasexec_prefix

It is only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables
and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent
files may be installed in thaisr/local/plat subtree while platform independent may be installed in
Jusr/local

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines
running the Solaris 2.x operating system are considered the same platform, but Intel machines running
Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different
major revisions of the same operating system generally also form different platforms. Non-Unix operating
systems are a different story; the installation strategies on those systems are so different that the prefix and
exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are
platform independent (but not independent from the Python version by which they were compiled!).

System administrators will know how to configure timeount or automount programs to share
Jusr/local between platforms while havinisr/local/plat be a different filesystem for each
platform.

char* Py_GetProgramFullPath 0
Return the full program name of the Python executable; this is computed as a side-effect of deriving
the default module search path from the program name (s€ybgetProgramName() above). The
returned string points into static storage; the caller should not modify its value. The value is available to
Python code asys.executable

char* Py GetPath ()

Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is
7 on Unix and Mac OS X;;’ on Windows. The returned string points into static storage; the caller
should not modify its value. The value is available to Python code as theybgpath , which may be
modified to change the future search path for loaded modules.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]

The first word (up to the first space character) is the current Python version; the first three characters are
the major and minor version separated by a period. The returned string points into static storage; the caller
should not modify its value. The value is available to Python codasersion

const char* Py_GetBuildNumber ()
Return a string representing the Subversion revision that this Python executable was built from. This number
is a string because it may contain a trailing ‘M’ if Python was built from a mixed revision source tree. New
in version 2.5.

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of
the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x,
which is also known as SunOS 5.x, the valusigios5’ . On Mac OS X, itisdarwin’ . On Windows,
itis'win’ . The returned string points into static storage; the caller should not modify its value. The value
is available to Python code ags.platform

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’ The re-
turned string points into static storage; the caller should not modify its value. The value is available to
Python code asys.copyright

93

The Python/C API, Release 2.6.4

const char* Py _GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for exam-

ple:
"[GCC 2.7.2.2]

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the varialslgs.version

const char* Py _GetBuildinfo ()
Return information about the sequence number and build date and time of the current Python interpreter
instance, for example

"#67, Aug 1 1997, 22:34:28

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the varialsies.version

void PySys SetArgv (intargc, char **argv)
Setsys.argv based orargc andargv. These parameters are similar to those passed to the program'’s
main() function with the difference that the first entry should refer to the script file to be executed rather
than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in
argv can be an empty string. If this function fails to initialisgs.argv , a fatal condition is signalled
usingPy_FatalError()

This function also prepends the executed script's paflysgpath . If no script is executed (in the case of
callingpython -c orjust the interactive interpreter), the empty string is used instead.

void Py_SetPythonHome (char *hom¢
Set the default “home” directory, that is, the location of the standard Python libraries. The libraries are
searched irhome/lib/pythonversion andhome/lib/pythonversion . The argument should
point to a zero-terminated character string in static storage whose contents will not change for the duration
of the program’s execution. No code in the Python interpreter will change the contents of this storage.

char* Py_GetPythonHome ()
Return the default “home”, that is, the value set by a previous calytaSetPythonHome() , or the
value of thePYTHONHOME environment variable if it is set.

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock, called theglobal interpreter lockor GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference
count could end up being incremented only once instead of twice. Therefore, the rule exists that only the thread
that has acquired the global interpreter lock may operate on Python objects or call Python/C API functions. In
order to support multi-threaded Python programs, the interpreter regularly releases and reacquires the lock — by
default, every 100 bytecode instructions (this can be changedswystlsetcheckinterval()). The lock is

also released and reacquired around potentially blocking 1/0O operations like reading or writing a file, so that other
threads can run while the thread that requests the I/O is waiting for the I/O operation to complete. The Python in-
terpreter needs to keep some bookkeeping information separate per thread — for this it uses a data structure called
PyThreadState . There's one global variable, however: the pointer to the cuffgmtireadState structure.

Before the addition ofhread-local storag€TLS) the current thread state had to be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the global interpreter lock.
...Do some blocking | / O operation...

94 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.4

Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py _BEGIN_ALLOW_THREADS
...Do some blocking | / O operation...
Py END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREAD®acro opens a new block and declares a hidden local variable; the
Py _END_ALLOW_THREAD®acro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and GIL manipu-
lations.

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval _SaveThread();
...Do some blocking | / O operation...
PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();

...Do some blocking | / O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particUba-val RestoreThread() saves and restores the value of

the global variablerro , since the lock manipulation does not guaranteeehaio is left alone. Also, when

thread support is disable®yEval _SaveThread() and PyEval_RestoreThread() don’t manipulate

the GIL; in this casePyEval Releaselock() andPyEval_AcquireLock() are not available. This is

done so that dynamically loaded extensions compiled with thread support enabled can be loaded by an interpreter
that was compiled with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and
saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another
thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when
acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

Itis important to note that when threads are created from C, they don't have the global interpreter lock, nor is there

a thread state data structure for them. Such threads must bootstrap themselves into existence, by first creating a
thread state data structure, then acquiring the lock, and finally storing their thread state pointer, before they can
start using the Python/C API. When they are done, they should reset the thread state pointer, release the lock, and
finally free their thread state data structure.

Beginning with version 2.3, threads can now take advantage ¢fyidl State_*() functions to do all of the
above automatically. The typical idiom for calling into Python from a C thread is now:

PyGILState_ STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result */

[* Release the thread. No Python API allowed beyond this point. */
PyGILState Release(gstate);

Note that thePyGILState *() functions assume there is only one global interpreter (created auto-
matically by Py _Initialize()). Python still supports the creation of additional interpreters (using

8.1. Thread State and the Global Interpreter Lock 95

The Python/C API, Release 2.6.4

Py_NewiInterpreter()), but mixing multiple interpreters and tiRyGILState_*() APl is unsupported.

Another important thing to note about threads is their behaviour in the face of tbek¢ call. On most
systems withfork() , after a process forks only the thread that issued the fork will exist. That also means
any locks held by other threads will never be released. Python solves this.fork() by acquiring the

locks it uses internally before the fork, and releasing them afterwards. In addition, it reséisckn®bjectgin

The Python Library Refereng@ the child. When extending or embedding Python, there is no way to inform
Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
asposix_atfork() would need to be used to accomplish the same thing. Additionally, when extending or
embedding Python, callinfprk() directly rather than througbs.fork() (and returning to or calling into
Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the
fork. PyOS_AfterFork() tries to reset the necessary locks, but is not always able to.

PylInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to
the same interpreter share their module administration and a few other internal items. There are no public
members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available mem-
ory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to
which interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState * interp , which points to this thread’s interpreter state.

void PyEval_InitThreads 0

Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-
ing a second thread or engaging in any other thread operations siiyJtasl Releaselock() or
PyEval_ReleaseThread(tstate) . It is not needed before callingyEval SaveThread() or
PyEval_RestoreThread() . This is a no-op when called for a second time. It is safe to call this
function before calling?y_Initialize() . When only the main thread exists, no GIL operations are
needed. This is a common situation (most Python programs do not use threads), and the lock operations
slow the interpreter down a bit. Therefore, the lock is not created initially. This situation is equivalent
to having acquired the lock: when there is only a single thread, all object accesses are safe. Therefore,
when this function initializes the global interpreter lock, it also acquires it. Before the Pithead

module creates a new thread, knowing that either it has the lock or the lock hasn’t been created yet, it calls
PyEval_InitThreads() . When this call returns, it is guaranteed that the lock has been created and
that the calling thread has acquired it.

Itis not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

int PyEval_Threadslnitialized 0
Returns a non-zero value HyEval_InitThreads() has been called. This function can be called
without holding the GIL, and therefore can be used to avoid calls to the locking APl when running single-
threaded. This function is not available when thread support is disabled at compile time. New in version
2.4,

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the
lock, a deadlock ensues. This function is not available when thread support is disabled at compile time.

void PyEval ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available
when thread support is disabled at compile time.

void PyEval_AcquireThread (PyThreadState *tstaje
Acquire the global interpreter lock and set the current thread stédeate which should not b&ULL. The
lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function is
not available when thread support is disabled at compile time.

96 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.4

void PyEval ReleaseThread (PyThreadState *tstaje
Reset the current thread stateNtLL and release the global interpreter lock. The lock must have been
created earlier and must be held by the current thread.tStheeargument, which must not BeULL, is
only used to check that it represents the current thread state — if it isn’t, a fatal error is reported. This
function is not available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread
state toNULL, returning the previous thread state (which is NaiLL). If the lock has been created, the
current thread must have acquired it. (This function is available even when thread support is disabled at
compile time.)

void PyEval RestoreThread (PyThreadState *tstaje
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread
state totstate which must not beNULL. If the lock has been created, the current thread must not have
acquired it, otherwise deadlock ensues. (This function is available even when thread support is disabled at
compile time.)

void PyEval_RelnitThreads 0
This function is called fronPyOS_ AfterFork() to ensure that newly created child processes don't hold
locks referring to threads which are not running in the child process.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py BEGIN_ALLOW_THREADS
This macro expands fo PyThreadState * save; _save = PyEval_SaveThread(); . Note
that it contains an opening brace; it must be matched with a folloRind=ND ALLOW_THREAD®acro.
See above for further discussion of this macro. Itis a no-op when thread support is disabled at compile time.

Py _END_ALLOW_THREADS
This macro expands tByEval_RestoreThread(_save); } . Note that it contains a closing brace;
it must be matched with an earliey BEGIN_ALLOW_ THREAD@®acro. See above for further discussion
of this macro. It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS

This macro expands to PyEval RestoreThread(_save); : it is equivalent to
Py END_ ALLOW_ THREAD#thout the closing brace. It is a no-op when thread support is disabled at
compile time.
Py _UNBLOCK_THREADS
This macro expands to_save = PyEval SaveThread(); : it is equivalent to

Py BEGIN_ ALLOW_ THREAD®vithout the opening brace and variable declaration. It is a no-op
when thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be
called only when the global interpreter lock has been created.

PylInterpreterState* PylnterpreterState New 0
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is
necessary to serialize calls to this function.

void PylnterpreterState_Clear (PyInterpreterState *interp
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PylnterpreterState_Delete (PyInterpreterState *interp
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must
have been reset with a previous calRginterpreterState Clear()

PyThreadState* PyThreadState_ New (PylnterpreterState *interp
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need
not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstaje
Reset all information in a thread state object. The global interpreter lock must be held.

8.1. Thread State and the Global Interpreter Lock 97

The Python/C API, Release 2.6.4

void PyThreadState Delete (PyThreadState *tstaje
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been
reset with a previous call 8y ThreadState_Clear()

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is
NULL, this issues a fatal error (so that the caller needn’t checki€dirL).

PyThreadState* PyThreadState_ Swap (PyThreadState *tstaje
Swap the current thread state with the thread state given by the argtstaetwhich may beNULL. The
global interpreter lock must be held.

PyObject* PyThreadState_GetDict 0
Return value: Borrowed reference.
Return a dictionary in which extensions can store thread-specific state information. Each extension should
use a unigue key to use to store state in the dictionary. It is okay to call this function when no current thread
state is available. If this function returb8JLL, no exception has been raised and the caller should assume
no current thread state is available. Changed in version 2.3: Previously this could only be called when a
current thread is active, adlULL meant that an exception was raised.

int PyThreadState SetAsyncExc (long id, PyObject *exg
Asynchronously raise an exception in a thread. thargument is the thread id of the target threexi
is the exception object to be raised. This function does not steal any referereeas i prevent naive
misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the
number of thread states modified; this is normally one, but will be zero if the thread id isn’t fouexic If
is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions. New in version
2.3.

PyGILState STATE PyGlLState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python,
or of the global interpreter lock. This may be called as many times as desired by a thread as long as
each call is matched with a call ®yGlILState_Release() . In general, other thread-related APIs
may be used betwedPyGILState Ensure() andPyGILState Release() calls as long as the
thread state is restored to its previous state before the Release(). For example, normal usage of the
Py BEGIN_ALLOW_THREAD&nhdPy END_ALLOW_THREAD®acros is acceptable.

The return value is an opaque “handle” to the thread state Whyé&iLState Ensure() was called,
and must be passed RyGILState Release() to ensure Python is left in the same state. Even though
recursive calls are allowed, these handi@snotbe shared - each unique calRgGILState Ensure()

must save the handle for its call RyGILState_Release()

When the function returns, the current thread will hold the GIL. Failure is a fatal error. New in version 2.3.

void PyGlLState Release (PyGILState STATE
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to
the correspondin@yGILState Ensure() call (but generally this state will be unknown to the caller,
hence the use of the GILState API.)

Every call toPyGILState Ensure() must be matched by a call ®yGILState Release() on
the same thread. New in version 2.3.

8.2 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities.
These are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was
added. This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level
callable objects, making a direct C function call instead. The essential attributes of the facility have not changed,
the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function
are the same as had been reported to the Python-level trace functions in previous versions.

98 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.4

(*Py_tracefunc)

int

int

int

int

int

int

int

void

void

The type of the trace function registered usig=val SetProfile() andPyEval_SetTrace()

The first parameter is the object passed to the registration functiobjaframeis the frame object to
which the event pertainswhat is one of the constant®yTrace CALL , PyTrace EXCEPTION,
PyTrace LINE , PyTrace_ RETURN, PyTrace C CALL, PyTrace C_EXCEPTION, or
PyTrace C_RETURN, andarg depends on the value wfhat

Value of what Meaning of arg

PyTrace CALL Always NULL.

PyTrace_ EXCEPTION Exception information as returned bys.exc_info()
PyTrace_LINE Always NULL.

PyTrace_ RETURN Value being returned to the caller.

PyTrace C_CALL Name of function being called.
PyTrace_C_EXCEPTION | Always NULL.

PyTrace_C_RETURN Always NULL.

PyTrace_CALL

The value of thevhatparameter to 8y tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

PyTrace_EXCEPTION

The value of thavhat parameter to &y _tracefunc function when an exception has been raised. The
callback function is called with this value fevhat when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propaga-
tion causes the Python stack to unwind, the callback is called upon return to each frame as the exception
propagates. Only trace functions receives these events; they are not needed by the profiler.

PyTrace_LINE
The value passed as tivbatparameter to a trace function (but not a profiling function) when a line-number
event is being reported.

PyTrace_ RETURN
The value for thavhatparameter t¢’y_tracefunc functions when a call is returning without propagat-
ing an exception.

PyTrace_C_CALL
The value for thavhatparameter té’y_tracefunc functions when a C function is about to be called.

PyTrace_C_EXCEPTION
The value for thevhatparameter t®y tracefunc functions when a C function has thrown an exception.

PyTrace_C_RETURN
The value for thavhatparameter té’y_tracefunc functions when a C function has returned.

PyEval_SetProfile (Py_tracefunc func, PyObject *gbj
Set the profiler function téunc Theobj parameter is passed to the function as its first parameter, and may
be any Python object, dMULL. If the profile function needs to maintain state, using a different value for
obj for each thread provides a convenient and thread-safe place to store it. The profile function is called for
all monitored events except the line-number events.

PyEval_SetTrace (Py_tracefunc func, PyObject *gbj
Set the tracing function tlunc. This is similar toPyEval_SetProfile() , except the tracing function
does receive line-number events.

PyObject* PyEval GetCallStats (PyObject *selj

Return a tuple of function call counts. There are constants defined for the positions within the tuple:

8.2. Profiling and Tracing 99

The Python/C API, Release 2.6.4

Name Value
PCALL_ALL
PCALL_FUNCTION
PCALL_FAST_FUNCTION
PCALL_FASTER_FUNCTION
PCALL_METHOD
PCALL BOUND_METHOD
PCALL_CFUNCTION
PCALL_TYPE
PCALL_GENERATOR
PCALL_OTHER
PCALL_POP 0

PCALL_FAST_FUNCTIONneans no argument tuple needs to be cre®&ALL_FASTER_FUNCTION
means that the fast-path frame setup code is used.

P OoO~NOULAWNEO

If there is a method call where the call can be optimized by changing the argument tuple and calling the
function directly, it gets recorded twice.

This function is only present if Python is compiled wilALL_PROFILE defined.

8.3 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState* PylnterpreterState_Head 0
Return the interpreter state object at the head of the list of all such objects. New in version 2.2.

PylnterpreterState* PylnterpreterState_Next (PyInterpreterState *interp
Return the next interpreter state object aiiteerp from the list of all such objects. New in version 2.2.

PyThreadState * PyinterpreterState_ThreadHead (PylInterpreterState *interp
Return the a pointer to the firBfy ThreadState object in the list of threads associated with the interpreter
interp. New in version 2.2.

PyThreadState* PyThreadState_Next (PyThreadState *tstaje
Return the next thread state object aftstate from the list of all such objects belonging to the same
PyInterpreterState object. New in version 2.2.

100 Chapter 8. Initialization, Finalization, and Threads

CHAPTER

NINE

MEMORY MANAGEMENT

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The
management of this private heap is ensured internally byPgthon memory managerThe Python memory
manager has different components which deal with various dynamic storage management aspects, like sharing,
segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing
all Python-related data by interacting with the memory manager of the operating system. On top of the raw
memory allocator, several object-specific allocators operate on the same heap and implement distinct memory
management policies adapted to the peculiarities of every object type. For example, integer objects are managed
differently within the heap than strings, tuples or dictionaries because integers imply different storage requirements
and speed/space tradeoffs. The Python memory manager thus delegates some of the work to the object-specific
allocators, but ensures that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and
that the user has no control over it, even if she regularly manipulates object pointers to memory blocks inside
that heap. The allocation of heap space for Python objects and other internal buffers is performed on demand by
the Python memory manager through the Python/C API functions listed in this document. To avoid memory
corruption, extension writers should never try to operate on Python objects with the functions exported by the
C library: malloc() , calloc() , realloc() andfree() . This will result in mixed calls between the C
allocator and the Python memory manager with fatal consequences, because they implement different algorithms
and operate on different heaps. However, one may safely allocate and release memory blocks with the C library
allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for 11O */

if (buf == NULD
return PyErr_NoMemory();
...Do some | /O operation involving buf...
res = PyString_FromsString(buf);
free(buf); /* malloc’ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because
the latter is under control of the Python memory manager. For example, this is required when the interpreter is
extended with new object types written in C. Another reason for using the Python heap is the defimrtthe

Python memory manager about the memory needs of the extension module. Even when the requested memory
is used exclusively for internal, highly-specific purposes, delegating all memory requests to the Python memory
manager causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently,
under certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage
collection, memory compaction or other preventive procedures. Note that by using the C library allocator as shown

101

The Python/C API, Release 2.6.4

in the previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero
bytes, are available for allocating and releasing memory from the Python heap:

void* PyMem_Malloc (size_t)
Allocatesn bytes and returns a pointer of typeid* to the allocated memory, &#ULL if the request fails.
Requesting zero bytes returns a distinct MBLL pointer if possible, as iPyMem_Malloc(1)() had
been called instead. The memory will not have been initialized in any way.

void* PyMem_Realloc (void *p, size_th
Resizes the memory block pointed to ppyo n bytes. The contents will be unchanged to the minimum of
the old and the new sizes. ffis NULL, the call is equivalent tyMem_Malloc(n)() ; else ifnis equal
to zero, the memory block is resized but is not freed, and the returned pointer BUWIdn-Unlessp is
NULL, it must have been returned by a previous calPtd/em_Malloc() or PyMem_Realloc() . If
the request failsyMem_Realloc() returnsNULL andp remains a valid pointer to the previous memory
area.

void PyMem_Free(void *p)
Frees the memory block pointed to ky which must have been returned by a previous call to
PyMem_Malloc() or PyMem_Realloc() . Otherwise, or ifPyMem_Free(p)() has been called
before, undefined behavior occursplis NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Notd ¥aErefers to any C type.

TYPE* PyMem_NeWTYPE, size_th
Same a®yMem_Malloc() , but allocategn * sizeof(TYPE)) bytes of memory. Returns a pointer
cast toTYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t)n
Same a$yMem_Realloc() , but the memory block is resized (o0 * sizeof(TYPE)) bytes. Re-
turns a pointer cast toYPE*. On returnp will be a pointer to the new memory area,WLL in the event
of failure. This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid
losing memory when handling errors.

void PyMem_Del(void *p)
Same a®yMem_Free() .

In addition, the following macro sets are provided for calling the Python memory allocator directly, without
involving the C API functions listed above. However, note that their use does not preserve binary compatibility
across Python versions and is therefore deprecated in extension modules.

PyMem_MALLOC() PyMem_REALLOC() PyMem_FREE().
PyMem_NEW() PyMem_RESIZE() , PyMem_DEL().

9.3 Examples

Here is the example from secti@wverview rewritten so that the 1/0 buffer is allocated from the Python heap by
using the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); [* for 1/O */

if (buf == NULL
return PyErr_NoMemory();
/* ..Do some /O operation involving buf... */

102 Chapter 9. Memory Management

The Python/C API, Release 2.6.4

res = PyString_FromString(buf);
PyMem_Free(buf); [* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_Newghar , BUFSIZ); /* for I/O */

if (buf == NULD
return PyErr_NoMemory();
/¥ ..Do some /O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set.
Indeed, it is required to use the same memory API family for a given memory block, so that the risk of mixing
different allocators is reduced to a minimum. The following code sequence contains two errors, one of which is
labeled adatal because it mixes two different allocators operating on different heaps.

char *bufl = PyMem_New€har , BUFSIZ);

char *buf2 = (char *) malloc(BUFSIZ);

char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
PyMem_Del(buf3); I* Wrong -- should be PyMem_Free() */
free(buf2); [* Right -- allocated via malloc() */
free(bufl); [* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released wiklyObject New() , PyObject NewVar() andPyObject Del()

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 103

The Python/C API, Release 2.6.4

104 Chapter 9. Memory Management

CHAPTER

TEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* _PyObject New (PyTypeObject *type
Return value: New reference.

PyVarObject* _PyObject NewVar (PyTypeObject *type, Py_ssize t 3ize
Return value: New reference.
Changed in version 2.5: This function usediain type forsize This might require changes in your code
for properly supporting 64-bit systems.

void _PyObject Del (PyObject*op

PyObject* PyObiject_Init (PyObject *op, PyTypeObject *tyjpe
Return value: Borrowed reference.
Initialize a newly-allocated objecatp with its type and initial reference. Returns the initialized object. If
typeindicates that the object participates in the cyclic garbage detector, it is added to the detector’s set of
observed objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitvVar (PyVarObiject *op, PyTypeObject *type, Py_ssize t)size
Return value: Borrowed reference.
This does everythin@yObject_Init() does, and also initializes the length information for a variable-
size object. Changed in version 2.5: This function usehantype forsize This might require changes in
your code for properly supporting 64-bit systems.

TYPE* PyObject New (TYPE, PyTypeObiject *type
Return value: New reference.
Allocate a new Python object using the C structure tyy&Eand the Python type objettpe Fields not
defined by the Python object header are not initialized; the object’s reference count will be one. The size of
the memory allocation is determined from tipe basicsize field of the type object.

TYPE* PyObject NewVar (TYPE, PyTypeObject *type, Py_ssize_tkize
Return value: New reference.
Allocate a new Python object using the C structure tyy&@Eand the Python type objettpe Fields not
defined by the Python object header are not initialized. The allocated memory allows TofRiEstructure
plussizefields of the size given by the itemsize field oftype This is useful for implementing objects
like tuples, which are able to determine their size at construction time. Embedding the array of fields into
the same allocation decreases the number of allocations, improving the memory management efficiency.
Changed in version 2.5: This function usediain type forsize This might require changes in your code
for properly supporting 64-bit systems.

void PyObject Del (PyObject *op
Releases memory allocated to an object usig®bject New() or PyObject NewVar() . Thisis

105

The Python/C API, Release 2.6.4

normally called from thep_dealloc handler specified in the object’s type. The fields of the object
should not be accessed after this call as the memory is no longer a valid Python object.

PyObject* Py_InitModule (char *name, PyMethodDef *methgds
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object.
Changed in version 2.3: Older versions of Python did not supdbltL as the value for thenethods
argument.

PyObject* Py_InitModule3 (char *name, PyMethodDef *methods, char *gloc
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module dbject. If
is nonNULL, it will be used to define the docstring for the module. Changed in version 2.3: Older versions
of Python did not suppoNULL as the value for thenethodsargument.

PyObject* Py_InitModule4 (char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module dbject. If
is nonNULL, it will be used to define the docstring for the moduleséif is nonNULL, it will passed to
the functions of the module as their (otherwidgLL) first parameter. (This was added as an experimental
feature, and there are no known uses in the current version of Pythongpker, the only value which
should be passed is defined by the condRAitHON_API_VERSION

Note: Most uses of this function should probably be using Riye InitModule3() instead; only use
this if you are sure you need it. Changed in version 2.3: Older versions of Python did not SMpjharas
the value for thenethodsargument.

PyObject Py NoneStruct
Object which is visible in Python dgone. This should only be accessed using®ye None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in
memory. These are represented byBly®©bject andPyVarObject types, which are defined, in turn, by the
expansions of some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to
treat a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference
count and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion
of thePyObject HEAD macro.

PyVarObject
This is an extension dPyObject that adds theb_size field. This is only used for objects that have
some notion ofength This type does not often appear in the Python/C API. It corresponds to the fields
defined by the expansion of tiyObject VAR_HEAD macro.

These macros are used in the definitioiPgDbject andPyVarObject

PyObject HEAD
This is a macro which expands to the declarations of the fields oPtt@gbject type; it is used when
declaring new types which represent objects without a varying length. The specific fields it expands to de-
pend on the definition dy_TRACE_REFSBY default, that macro is not defined, aAgObject HEAD
expands to:

Py ssize t ob_refcnt;
PyTypeObject *ob_type;

106 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

WhenPy_TRACE_REFSs defined, it expands to:

PyObject *_ob_next, *_ob_prev;
Py ssize t ob_refent;
PyTypeObject *ob_type;

PyObject VAR_HEAD
This is a macro which expands to the declarations of the fields d?yhrObject type; it is used when
declaring new types which represent objects with a length that varies from instance to instance. This macro
always expands to:

PyObject HEAD
Py ssize t ob_size;

Note thatPyObject HEAD is part of the expansion, and that its own expansion varies depending on the
definition of Py_TRACE_REFS

PyObject HEAD_INIT
This is a macro which expands to initialization values for a e@bject type. This macro expands to:

PyObject EXTRA_INIT
1, type,

PyVarObject HEAD_INIT
This is a macro which expands to initialization values for a rigywarObject type, including the
ob_size field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return valdiJisL, an exception shall have
been set. If noNULL, the return value is interpreted as the return value of the function as exposed in Python.
The function must return a new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning

ml_name char * name of the method

ml_meth PyCFunction| pointer to the C implementation

ml_flags int flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return
PyObject* . If the function is not of the®?yCFunction , the compiler will require a cast in the method ta-
ble. Even thouglPyCFunction defines the first parameter &yObject* , it is common that the method
implementation uses a the specific C type ofsbH object.

The ml_flags field is a bitfield which can include the following flags. The individual flags indicate ei-
ther a calling convention or a binding convention. Of the calling convention flags,MBIyH_VARARG&Nd
METH_KEYWORI[RSn be combined (but note thsit=TH_KEYWORRne is equivalent tMETH_VARARGS

| METH_KEYWORDSAnNy of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have the Ryg&-unction . The function
expects twd’yObject* values. The first one is ttself object for methods; for module functions, it has the
value giventd?y_InitModule4() (orNULL if Py_InitModule() was used). The second parameter
(often calledargs) is a tuple object representing all arguments. This parameter is typically processed using
PyArg_ParseTuple() or PyArg_UnpackTuple()

10.2. Common Object Structures 107

The Python/C API, Release 2.6.4

METH_KEYWORDS
Methods with these flags must be of tyggyCFunctionWithKeywords . The function ex-
pects three parametersself args and a dictionary of all the keyword arguments. The flag
is typically combined with METH VARARGSand the parameters are typically processed using
PyArg_ParseTupleAndKeywords()

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGHag. They need to be of tygeyCFunction . When used with object methods, the first
parameter is typically namezklf and will hold a reference to the object instance. In all cases the second
parameter will beNULL.

METH_O
Methods with a single object argument can be listed with EheTH_Oflag, instead of invoking
PyArg_ParseTuple() with a"O" argument. They have the tyfpg/CFunction , with the self pa-
rameter, and &yObject* parameter representing the single argument.

METH_OLDARGS
This calling convention is deprecated. The method must be offyE-unction . The second argument
is NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects
if more than one argument is given. There is no way for a function using this convention to distinguish
between a call with multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of
classes. These may not be used for functions defined for modules. At most one of these flags may be set for any
given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to createlass methodsimilar to what is created when using ttlassmethod() built-in function.
New in version 2.3.

METH_STATIC
The method will be passedULL as the first parameter rather than an instance of the type. This is used to
createstatic methodssimilar to what is created when using thtaticmethod() built-in function. New
in version 2.3.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. WithiliBTH_COEXISTthe default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existaoceontins
slot, for example, would generate a wrapped method namedntains__ () and preclude the loading
of a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded
in place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions
are optimized more than wrapper object calls. New in version 2.4.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field C Type Meaning

name char * name of the member

type int the type of the member in the C struct

offset Py_ssize t| the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable

doc char * points to the contents of the docstring

type can be one of many_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

108 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

Macro name C type

T _SHORT short

T_INT int

T LONG long

T _FLOAT float
T_DOUBLE double
T_STRING char *
T_OBJECT PyObject *
T_OBJECT_EX | PyObject*

T CHAR char

T_BYTE char
T_UBYTE unsigned char
T_UINT unsigned int

T _USHORT unsigned short
T _ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG | unsigned long long
T PYSSIZET Py ssize t

T _OBJECTand T_OBJECT_EXdiffer in that T_OBJECT returnsNone if the member isNULL and
T_OBJECT_EXraises arAttributeError

flags can be O for write and read accessREADONLYor read-only access. Using STRING for
type impliesREADONLYOnly T_OBJECTandT_OBJECT_EXmembers can be deleted. (They are set
to NULL).

PyObject* Py FindMethod (PyMethodDef table[], PyObject *ob, char *name
Return value: New reference.
Return a bound method object for an extension type implemented in C. This can be use-
ful in the implementation of atp getattro or tp_getattr handler that does not use the
PyObject_GenericGetAttr() function.

10.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
thePyTypeObject structure. Type objects can be handled using any dPti@bject *() orPyType *()

functions, but do not offer much that's interesting to most Python applications. These objects are fundamental to
how objects behave, so they are very important to the interpreter itself and to any extension module that implements
new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type
object stores a large number of values, mostly C function pointers, each of which implements a small part of the
type’s functionality. The fields of the type object are examined in detail in this section. The fields will be described

in the order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intinto-
bjargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmp-
func, reprfunc, hashfunc

The structure definition foPyTypeObject can be found innclude/object.h . For convenience of refer-
ence, this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; [* For allocation */

[* Methods to implement standard operations */

10.3. Type Objects 109

The Python/C API, Release 2.6.4

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

[* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

[* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

[* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

[* Assigned meaning in release 2.0 */
[* call function for all accessible objects */
traverseproc tp_traverse;

[* delete references to contained objects */
inquiry tp_clear;

[* Assigned meaning in release 2.1 */
[* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */
[* lterators */

getiterfunc tp_iter;
iternextfunc tp_iternext;

[* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

110 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; [* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject IS GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObject;

The type object structure extends thgVarObject structure. Theb size field is used for dynamic types
(created bytype _new() , usually called from a class statement). Note thafype Type (the metatype)
initializestp_itemsize , which means that its instances (i.e. type objectsjthave theob_size field.

PyObject* _ob_next

PyObject* _ob_prev
These fields are only present when the mayoTRACE_REFSs defined. Their initialization ttlULL is
taken care of by th@yObject HEAD_INIT macro. For statically allocated objects, these fields always
remainNULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-
linked list of all live objects on the heap. This could be used for various debugging purposes; currently
the only use is to print the objects that are still alive at the end of a run when the environment variable
PYTHONDUMPREFS is set.

These fields are not inherited by subtypes.

Py ssize 't ob_refcnt
This is the type object’s reference count, initialized tby thePyObject HEAD_INIT macro. Note that
for statically allocated type objects, the type’s instances (objects wiinsgpe points back to the type)
donotcount as references. But for dynamically allocated type objects, the ins@mcesnt as references.

This field is not inherited by subtypes. Changed in version 2.5: This field used to ibé atype. This
might require changes in your code for properly supporting 64-bit systems.

PyTypeObject* ob_type
This is the type's type, in other words its metatype. It is initialized by the argument to the
PyObject HEAD_INIT macro, and its value should normally B®yType_Type . However, for dy-
namically loadable extension modules that must be usable on Windows (at least), the compiler complains
that this is not a valid initializer. Therefore, the convention is to pddkL to thePyObject HEAD _INIT
macro and to initialize this field explicitly at the start of the module’s initialization function, before doing
anything else. This is typically done like this:

Foo_Type.ob_type = &PyType Type;

This should be done before any instances of the type are créatégpe Ready() checks ifob_type

is NULL, and if so, initializes it: in Python 2.2, it is set &PyType_Type ; in Python 2.2.1 and later it
is initialized to theob_type field of the base clas®yType Ready() will not change this field if it is
non-zero.

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by
subtypes.

Py ssize t ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type
objects, this field has a special internal meaning.

This field is not inherited by subtypes.

char* tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is

10.3. Type Objects 111

The Python/C API, Release 2.6.4

part of the full module name. For example, a type naihééfined in modulélin subpackag®in package
P should have thép_name initializer "P.Q.M.T"

For dynamically allocated type objects, this should just be the type name, and the module name explicitly
stored in the type dict as the value for Key module__’

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as themodule__ attribute, and everything after the last dot is made accessible as the
__hame___ attribute.

If no dot is present, the entirpp_name field is made accessible as thename__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This
means your type will be impossible to pickle.

This field is not inherited by subtypes.

Py ssize t tp_basicsize
Py ssize t tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have gzetemsize field, types with
variable-length instances have a non-zigratemsize field. For a type with fixed-length instances, all
instances have the same size, givetpirbasicsize

For a type with variable-length instances, the instances must have aive field, and the instance size

is tp_basicsize plus N timestp_itemsize , where N is the “length” of the object. The value of

N is typically stored in the instancetsh_size field. There are exceptions: for example, long ints use

a negativeob_size to indicate a negative number, and Naiss(ob_size) there. Also, the presence

of anob_size field in the instance layout doesn’t mean that the instance structure is variable-length (for
example, the structure for the list type has fixed-length instances, yet those instances have a meaningful
ob_size field).

The basic size includes the fields in the instance declared by the ni&dbwject HEAD or
PyObject_ VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and_ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for thetp_basicsize is to use thesizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC
header size was includedip_basicsize).

These fields are inherited separately by subtypes. If the base type has a nom-Zerosize it is
generally not safe to sgi_itemsize to a different non-zero value in a subtype (though this depends on
the implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by

the value ofp_basicsize . Example: suppose a type implements an arradooble . tp_itemsize
is sizeof(double) . It is the programmer’s responsibility thgh basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirementdouble).

destructor tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singdtesandEllipsis).

The destructor function is called by they DECREF() and Py XDECREF() macros when the new
reference count is zero. At this point, the instance is still in existence, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function used
to allocate the buffer), and finally (as its last action) call the typp’sree function. If the type

is not subtypable (doesn’t have tliey TPFLAGS BASETYPHlag bit set), it is permissible to call

the object deallocator directly instead of vip free . The object deallocator should be the one
used to allocate the instance; this is normatyObject Del() if the instance was allocated using
PyObject New() orPyObject VarNew() ,orPyObject GC Del() iftheinstance was allocated
usingPyObject. GC_New() orPyObject GC_VarNew()

This field is inherited by subtypes.

112

Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

printfunc tp_print
An optional pointer to the instance print function.

The print function is only called when the instance is printed teafile; when it is printed to a pseudo-
file (like a StringlO instance), the instancelp_repr ortp_str function is called to convert it to a
string. These are also called when the tygp’sprint field is NULL. A type should never implement
tp_print in a way that produces different output th@anrepr ortp_str would.

The print function is called with the same signature &5/Object Print() : int

tp_print(PyObject *self, FILE *file, int flags) . The self argument is the in-
stance to be printed. THéde argument is the stdio file to which it is to be printed. Ttegsargument is
composed of flag bits. The only flag bit currently defineBys PRINT_RAWWhen thePy PRINT_RAW
flag bit is set, the instance should be printed the same walp agr would format it; when the
Py_PRINT_RAWlag bit is clear, the instance should be printed the same wias espr would format
it. It should return1 and set an exception condition when an error occurred during the comparison.

It is possible that thep print field will be deprecated. In any case, it is recommended not to define
tp_print , butinstead to rely otp_repr andtp_str for printing.

This field is inherited by subtypes.

getattrfunc tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as fyObject_GetAttrString()

This field is inherited by subtypes together with getattro . a subtype inherits bottp_getattr
andtp_getattro from its base type when the subtypé’s getattr andtp_getattro are both
NULL.

setattrfunc tp_setattr
An optional pointer to the set-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as foyObject SetAttrString()

This field is inherited by subtypes together with setattro . a subtype inherits botip_setattr
andtp_setattro from its base type when the subtypgs setattr andtp_setattro are both
NULL.

cmpfunc tp_compare
An optional pointer to the three-way comparison function.

The signature is the same as feyObject Compare() . The function should returth if self greater
thanother, O if selfis equal toother, and-1 if self less tharother. It should returnl and set an exception
condition when an error occurred during the comparison.

This field is inherited by subtypes together with richcompare andtp_hash : a subtypes inher-
its all three oftp_compare , tp_richcompare , andtp_hash when the subtype’sp_compare ,
tp_richcompare , andtp_hash are allNULL.

reprfunc tp_repr
An optional pointer to a function that implements the built-in functiepr()

The signature is the same as foyObject_Repr() ; it must return a string or a Unicode object. Ideally,
this function should return a string that, when passeevid() , given a suitable environment, returns an
object with the same value. If this is not feasible, it should return a string startingwittand ending with
>" from which both the type and the value of the object can be deduced.

When this field is not set, a string of the forfos object at %p> is returned, wher&bsis replaced
by the type name, arfbpby the object's memory address.

This field is inherited by subtypes.

10.3. Type Objects 113

The Python/C API, Release 2.6.4

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documentedNimmber Object Structures

Thetp_as number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documentedizquence Object Structures

Thetp_as sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented/inpping Object Structures

Thetp_as mapping field is not inherited, but the contained fields are inherited individually.

hashfunc tp_hash
An optional pointer to a function that implements the built-in functi@sh() .

The signature is the same as foyObject Hash() ; it must return a C long. The valué@ should not
be returned as a normal return value; when an error occurs during the computation of the hash value, the
function should set an exception and retutn

This field can be set explicitly tByObject HashNotimplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalentlsish__ = None at the Python
level, causingsinstance(o, collections.Hashable) to correctly returnFalse . Note that
the converse is also true - settinghash__ = None on a class at the Python level will result in the
tp_hash slot being set t¢’yObject _HashNotimplemented()

When this field is not set, two possibilities exist: if ttre compare andtp _richcompare fields are
both NULL, a default hash value based on the object’s address is returned; otherWigegeError s
raised.

This field is inherited by subtypes together with richcompare andtp_compare : a subtypes in-
herits all three ofp_compare ,tp_richcompare ,andtp_hash , when the subtype'® compare ,
tp_richcompare andtp_hash are allINULL.

ternaryfunc tp_call
An optional pointer to a function that implements calling the object. This shouNdUid. if the object is
not callable. The signature is the same asfpDbject_Call()

This field is inherited by subtypes.

reprfunc tp_str
An optional pointer to a function that implements the built-in operasinf) . (Note thatstr is a type
now, andstr() calls the constructor for that type. This constructor cBi§©bject_Str() to do the
actual work, andPyObject_Str() will call this handler.)

The signature is the same as feyObject_Str() ; it must return a string or a Unicode object. This
function should return a “friendly” string representation of the object, as this is the representation that will
be used by the print statement.

When this field is not seRyObject_Repr() is called to return a string representation.

This field is inherited by subtypes.

getattrofunc tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as feyObject_GetAttr() . It is usually convenient to set this field to
PyObject_GenericGetAttr() , which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with getattr ~ : a subtype inherits botip _getattr and
tp_getattro from its base type when the subtypgis getattr andtp_getattro are bothNULL.

114 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

setattrofunc tp_setattro
An optional pointer to the set-attribute function.
The signature is the same as feyObject_SetAttr() . It is usually convenient to set this field to
PyObject_GenericSetAttr() , which implements the normal way of setting object attributes.

This field is inherited by subtypes together with setattr : a subtype inherits botip_setattr and
tp_setattro from its base type when the subtypgds setattr andtp_setattro are bothNULL.

PyBufferProcs* tp_as_buffer

long

Pointer to an additional structure that contains fields relevant only to objects which implement the buffer
interface. These fields are documente@®irifer Object Structures

Thetp_as_buffer field is not inherited, but the contained fields are inherited individually.

tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as number ,tp_as sequence ,tp_as mapping ,andtp_as buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and
must be considered to have a zerdNWLL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has
a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into
the subtype together with a pointer to the extension structure. PTh@é PFLAGS HAVE_Gdlag bit is
inherited together with thg_traverse andtp clear fields, i.e. if thePy TPFLAGS HAVE GC

flag bit is clear in the subtype and thie traverse andtp_clear fields in the subtype exist (as
indicated by the®’y TPFLAGS HAVE_RICHCOMPAREg bit) and havéNULL values.

The following bit masks are currently defined; these can be ORed together usingpeeator to form the
value of thetp_flags field. The macrd®?yType HasFeature() takes atype and a flags valtpand

f, and checks whethép->tp_flags & f is non-zero.
Py TPFLAGS_HAVE_GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced bytp_as_buffer has the

bf getcharbuffer field.

Py TPFLAGS HAVE_SEQUENCE_IN
If this bit is set, thePySequenceMethods struct referenced byp as sequence has the
sqg_contains field.

Py _TPFLAGS_GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py _TPFLAGS_HAVE_INPLACEOPS
If this bit is set, thePySequenceMethods struct referenced byp as sequence and
the PyNumberMethods structure referenced bytp_as number contain the fields for
in-place operators. In particular, this means that thgNumberMethods structure has

the fields nb_inplace_add , nb_inplace_subtract , hb_inplace_multiply ,
nb_inplace_divide , nb_inplace _remainder , nb_inplace_power
nb_inplace_Ishift , hb_inplace_rshift ,nb_inplace_and ,nb_inplace_xor ,and

nb_inplace_or ; and thePySequenceMethods struct has the fieldsg_inplace_concat
andsq_inplace_repeat

Py TPFLAGS_CHECKTYPES
If this bit is set, the binary and ternary operations in thgNumberMethods structure refer-
enced bytp_as_number accept arguments of arbitrary object types, and do their own type con-
versions if needed. If this bit is clear, those operations require that all arguments have the cur-
rent type as their type, and the caller is supposed to perform a coercion operation first. This ap-
pliestonb_add ,nb_subtract ,nb_multiply ,nb_divide ,nb_remainder ,nb_divmod ,
nb_power , nb_Ishift , nb_rshift ,nb_and,nb_xor , andnb_or .

10.3. Type Objects 115

The Python/C API, Release 2.6.4

char*

Py _TPFLAGS_HAVE_RICHCOMPARE
If this bit is set, the type object has the richcompare field, as well as thép_traverse and
thetp_clear fields.

Py TPFLAGS_HAVE_WEAKREFS
If this bit is set, thetp_weaklistoffset field is defined. Instances of a type are weakly refer-
enceable if the type'p_weaklistoffset field has a value greater than zero.

Py TPFLAGS HAVE_ITER
If this bit is set, the type object has the iter ~ andtp_iternext fields.

Py TPFLAGS_HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Python
2.2: tp_methods , tp_members , tp_getset , tp base , tp_dict , tp_descr _get
tp_descr_set , tp_dictoffset ,tp_init ,tp_alloc ,tp_new,tp free ,tp_is gc
tp_bases ,tp_mro ,tp_cache ,tp_subclasses ,andtp weaklist

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case)) thege field
of its instances is considered a reference to the type, and the type object is INCREF'ed when a new

instance is created, and DECREF’ed when an instance is destroyed (this does not apply to instances

of subtypes; only the type referenced by the instance’s ob_type gets INCREF'ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a “final” class in Java).

Py TPFLAGS_ READY
This bit is set when the type object has been fully initializedyyype_Ready()

Py_TPFLAGS_READYING
This bit is set whilePyType_Ready() is in the process of initializing the type object.

Py TPFLAGS HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be
created using’yObject GC_New() and destroyed usingyObject GC_Del() . More infor-
mation in sectiorSupporting Cyclic Garbage CollectioriThis bit also implies that the GC-related
fieldstp_traverse andtp_clear are present in the type object; but those fields also exist when
Py TPFLAGS HAVE_G® clear buPy TPFLAGS HAVE_RICHCOMPAMRESet.

Py TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in
the type object and its extension structures. Currently, it includes the following
bits: Py TPFLAGS HAVE_GETCHARBUFFER Py TPFLAGS_HAVE_SEQUENCE_JN
Py TPFLAGS HAVE_INPLACEOPRS Py TPFLAGS HAVE_RICHCOMPARE
Py TPFLAGS_HAVE_WEAKREFS Py TPFLAGS_HAVE_ITER and
Py _TPFLAGS_HAVE_CLASS

tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed
asthe doc__ attribute on the type and instances of the type.

This field isnotinherited by subtypes.

The following three fields only exist if they TPFLAGS HAVE_RICHCOMPARE&g bit is set.

traverseproc tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py TPFLAGS HAVE_GG@lag bit is set. More information about Python’s garbage collection scheme
can be found in sectioBupporting Cyclic Garbage Collection

Thetp_ traverse pointer is used by the garbage collector to detect reference cycles. A typical imple-
mentation of a&p_traverse function simply callsPy VISIT() on each of the instance’s members
that are Python objects. For example, this is functamal_traverse() from thethread extension
module:

116

Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

static int
local_traverse (localobject *self, visitproc visit, void *arg)
{

Py _VISIT(self - >args);
Py _VISIT(self - >kw);
Py VISIT(self - >dict);
return 0,

}

Note thatPy VISIT() is called only on those members that can participate in reference cycles. Although
there is also &elf->key = member, it can only b&lULL or a Python string and therefore cannot be part
of a reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may
want to visit it anyway just so thgc module’sget_referents() function will include it.

Note thatPy VISIT() requires thevisit and arg parameters tdocal_traverse() to have these
specific names; don’t name them just anything.

This field is inherited by subtypes together with clear and thePy TPFLAGS_HAVE_G(lag bit:
the flag bit,tp_traverse , andtp_clear are all inherited from the base type if they are all zero in the
subtypeandthe subtype has they TPFLAGS HAVE_RICHCOMPAHRE&G bit set.

inquiry tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py TPFLAGS HAVE_Gflag bit is set.

Thetp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, dfy_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supplyt@ clear function. For example, the tuple type does not
implement ap_clear function, because it's possible to prove that no reference cycle can be composed
entirely of tuples. Therefore the clear functions of other types must be sufficient to break any cycle
containing a tuple. This isn’t immediately obvious, and there’s rarely a good reason to avoid implementing
tp_clear

Implementations ofp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those membexéiid., as in the following example:

static int
local_clear (localobject * self)
{

Py_CLEAR(self - >key);
Py_CLEAR(self - >args);
Py _CLEAR(self ->kw);
Py_CLEAR(self - >dict);
return O;

}

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the
contained object must not be decremented until after the pointer to the contained object it 1@ his

is because decrementing the reference count may cause the contained object to become trash, triggering a
chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref
callbacks, associated with the contained object). If it's possible for such code to refesdhagain, it's

important that the pointer to the contained objectNddLL at that time, so thaself knows the contained

object can no longer be used. Thg CLEAR() macro performs the operations in a safe order.

Because the goal op _clear functions is to break reference cycles, it's not necessary to clear contained
objects like Python strings or Python integers, which can't participate in reference cycles. On the other hand,
it may be convenient to clear all contained Python objects, and write the typelsalloc function to
invoketp_clear

10.3. Type Objects 117

The Python/C API, Release 2.6.4

More information about Python’s garbage collection scheme can be found in s&ctigrorting Cyclic
Garbage Collection

This field is inherited by subtypes together with traverse and thePy TPFLAGS HAVE_Gdlag
bit: the flag bit,tp_traverse , andtp_clear are all inherited from the base type if they are all zero in
the subtypendthe subtype has they TPFLAGS HAVE_RICHCOMPAH&g bit set.

richcmpfunc tp_richcompare

An optional pointer to the rich comparison function, whose signature HgObject
*tp_richcompare(PyObject *a, PyObject *b, int op)

The function should return the result of the comparison (ustgllyTrue orPy_False). If the compari-
son is undefined, it must retuRy_Notimplemented , if another error occurred it must retufULLand
set an exception condition.

Note: If you want to implement a type for which only a limited set of comparisons makes sense$e.qg.
and!=, but not< and friends), directly rais€ypeError in the rich comparison function.

This field is inherited by subtypes together wih compare andtp _hash : a subtype inherits
all three oftp_compare , tp_richcompare , andtp_hash , when the subtype'sp compare ,
tp_richcompare , andtp_hash are allNULL.

The following constants are defined to be used as the third argumety fochcompare and for
PyObject_RichCompare()

Constant | Comparison
Py LT <

Py_LE <=

Py_EQ ==

Py_NE 1=

Py_GT >

Py_G E >=

The next field only exists if they TPFLAGS HAVE_ WEAKREHM&g bit is set.

long

tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject_ClearWeakRefs() and thePyWeakref *() functions. The instance structure needs
to include a field of typé’yObject* which is initialized toNULL.

Do not confuse this field witlp_weaklist ; that is the list head for weak references to the type object
itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype uses a different weak reference list head than the base type. Since the list head is
always found vidgp_weaklistoffset , this should not be a problem.

When a type defined by a class statement has rsbots_ declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to
the instance layout and setting tipe weaklistoffset of that slot’s offset.

When a type’s__slots__ declaration contains a slot named weakref _ , that slot becomes
the weak reference list head for instances of the type, and the slot’s offset is stored in the type’s
tp_weaklistoffset

When a type’s_slots declaration does not contain a slot namedveakref |, the type inherits
its tp_weaklistoffset from its base type.

The next two fields only exist if they TPFLAGS_HAVE_ITERflag bit is set.

getiterfunc tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that
the instances of this type are iterable (although sequences may be iterable without this function, and classic
instances always have this function, even if they don't define ater__ () method).

This function has the same signaturePg®©bject_Getlter()

118

Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

This field is inherited by subtypes.

iternextfunc tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it
must returnNULL; a Stoplteration exception may or may not be set. When another error occurs, it

must returnNULL too. Its presence normally signals that the instances of this type are iterators (although
classic instances always have this function, even if they don't defiexi®) method).

Iterator types should also define tipeiter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signaturePgster Next()
This field is inherited by subtypes.

The next fields, up to and includirig_weaklist , only exist if thePy TPFLAGS_HAVE_CLAS3ag bit is
set.

struct PyMethodDef* tp_methods
An optional pointer to a statidULL-terminated array dPyMethodDef structures, declaring regular meth-
ods of this type.

For each entry in the array, an entry is added to the type’s dictionary{séect below) containing a
method descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* tp_members
An optional pointer to a statiNULL-terminated array oPyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionanj{sdet below) containing a
member descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* tp_getset
An optional pointer to a statillULL-terminated array oPyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionant{seest below) containing a
getset descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

Docs for PyGetSetDef (XXX belong elsewhere):

typedef PyObject *(*getter)(PyObiject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
typedef struct PyGetSetDef {

char *name; [* attribute name */

getter get; [* C function to get the attribute */

setter set; [* C function to set the attribute */

char *doc; /* optional doc string */

void *closure; /* optional additional data for getter and setter */
} PyGetSetDef;

PyTypeObject* tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single
inheritance is supported; multiple inheritance require dynamically creating a type object by calling the
metatype.

This field is not inherited by subtypes (obviously), but it default&RyBaseObject_Type (which to
Python programmers is known as the tyigect).

10.3. Type Objects 119

The Python/C API, Release 2.6.4

PyObject* tp_dict

The type’s dictionary is stored here By Type Ready()

This field should normally be initialized tdULL before PyType_Ready is called; it may also be initialized

to a dictionary containing initial attributes for the type. Otelype Ready() has initialized the type,

extra attributes for the type may be added to this dictionary only if they don’t correspond to overloaded
operations (like_add__ ()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

descrgetfunc tp_descr_get

An optional pointer to a “descriptor get” function.

The function signature is
PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

XXX explain.
This field is inherited by subtypes.

descrsetfunc tp_descr_set

long

An optional pointer to a “descriptor set” function.

The function signature is
int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

This field is inherited by subtypes.
XXX explain.

tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr()

Do not confuse this field witkp_dict ; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure.
If the value is less than zero, it specifies the offset fromehd of the instance structure. A negative

offset is more expensive to use, and should only be used when the instance structure contains a variable-
length part. This is used for example to add an instance variable dictionary to subtygbes of tuple

Note that thetp_basicsize field should account for the dictionary added to the end in that case, even
though the dictionary is not included in the basic object layout. On a system with a pointer size of 4 bytes,
tp_dictoffset should be set te4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negjatisietoffset as follows:

dictoffset = tp_basicsize + abs(ob_size) *tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void *):
round up to sizeof (void *)

wheretp_basicsize , tp_itemsize and tp_dictoffset are taken from the type object, and
ob_size istakenfromtheinstance. The absolute value is taken because long ints use thekigrisf

to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr())

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype instances store the dictionary at a difference offset than the base type. Since the
dictionary is always found vigp_dictoffset , this should not be a problem.

120

Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

When a type defined by a class statement has rstots declaration, and none of its base types has
an instance variable dictionary, a dictionary slot is added to the instance layout a@pddieoffset
is set to that slot’s offset.

When a type defined by a class statement has salots declaration, the type inherits its
tp_dictoffset from its base type.
(Adding a slot named _dict _ tothe slots declaration does not have the expected effect, it just

causes confusion. Maybe this should be added as a feature just likeakref _ though.)

initproc tp_init
An optional pointer to an instance initialization function.

This function corresponds to the init_ () method of classes. Like init_ () , it is possible to
create an instance without callinginit__ () , and it is possible to reinitialize an instance by calling its
_init__() method again.

The function signature is
int tp_init(PyObject *self, PyObject *args, PyObject * kwds)

The self argument is the instance to be initialized; angs and kwdsarguments represent positional and
keyword arguments of the call to init__()

Thetp init function, if notNULL, is called when an instance is created normally by calling its type,
after the type’'dp_new function has returned an instance of the type. Iftthenew function returns an
instance of some other type that is not a subtype of the original typgy moit function is called; if
tp_new returns an instance of a subtype of the original type, the subtypeisit is called. (VERSION
NOTE: described here is what is implemented in Python 2.2.1 and later. In Python 2(@2, ithe of

the type of the object returned lyy new was always called, if ndfIULL.)

This field is inherited by subtypes.

allocfunc tp_alloc
An optional pointer to an instance allocation function.

The function signature is
PyObject *tp_alloc(PyTypeObject *self, Py_ssize t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return
a pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to
zeros, but withbb_refcnt settol andob_type set to the type argument. If the typéys itemsize

is non-zero, the object'sb_size field should be initialized tomitemsand the length of the allocated
memory block should bép_basicsize + nitems*tp_itemsize , rounded up to a multiple of
sizeof(void*) ; otherwise nitemsis not used and the length of the block shouldfbéebasicsize

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done bip _new .

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is always set RyType_ GenericAlloc() , to force a standard heap
allocation strategy. That is also the recommended value for statically defined types.

newfunc tp_new
An optional pointer to an instance creation function.

If this function iSNULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject * kwds)

10.3. Type Objects 121

The Python/C API, Release 2.6.4

The subtype argument is the type of the object being createdygisandkwdsarguments represent posi-
tional and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose
tp_new function is called; it may be a subtype of that type (but not an unrelated type).

Thetp_new function should calsubtype->tp_alloc(subtype, nitems) to allocate space for

the object, and then do only as much further initialization as is absolutely necessary. Initialization that can
safely be ignored or repeated should be placed irigh&it handler. A good rule of thumb is that for
immutable types, all initialization should take placepnnew , while for mutable types, most initialization
should be deferred tip_init

This field is inherited by subtypes, except it is not inherited by static types wihosese is NULL or
&PyBaseObject_Type . The latter exception is a precaution so that old extension types don’'t become
callable simply by being linked with Python 2.2.

destructor tp_free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signatestrisctor

void tp_free(PyObject *)

In Python 2.3 and beyond, its signaturdrisefunc

void tp_free(void *)

The only initializer that is compatible with both versions ByObject_Del , whose definition has suit-

ably adapted in Python 2.3.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is set to a deallocator suitable to naydtype GenericAlloc() and the
value of thePy TPFLAGS HAVE_Gflag bit.

inquiry tp_is_gc
An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is suf-
ficient to look at the object’s type' flags field, and check th&®y TPFLAGS HAVE_Gdlag bit.

But some types have a mixture of statically and dynamically allocated instances, and the statically allocated
instances are not collectible. Such types should define this function; it should fefarra collectible
instance, an@ for a non-collectible instance. The signature is

int tp_is_gc(PyObject * self)
(The only example of this are types themselves. The metafypeype_Type , defines this function to

distinguish between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in
2.2.1 and later versions.)

PyObject* tp_bases
Tuple of base types.

This is set for types created by a class statement. It shoultlLthé. for statically defined types.
This field is not inherited.

PyObject* tp_mro
Tuple containing the expanded set of base types, starting with the type itself and endiofjedh , in
Method Resolution Order.
This field is not inherited; it is calculated fresh ByType Ready()

PyObject* tp_cache
Unused. Not inherited. Internal use only.

122 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

PyObject* tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test m&PNT_ALLOCS defined, and are for internal
use only. They are documented here for completeness. None of these fields are inherited by subtypes.

Py ssize t tp_allocs
Number of allocations.

Py ssize t tp_frees
Number of frees.

Py ssize t tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* tp_next
Pointer to the next type object with a non-zé¢poallocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is
called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects
from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which
called tp_dealloc will not violate any assumptions of the library.

10.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol.
Almost every function below is used by the function of similar name documented iditheer Protocol
section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_divide;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_nonzero; /* Used by PyObiject IsTrue */
unaryfunc nb_invert;
binaryfunc nb_lIshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
coercion nb_coerce; /* Used by the coerce() function */
unaryfunc nb_int;
unaryfunc nb_long;
unaryfunc nb_float;
unaryfunc nb_oct;

10.4. Number Object Structures 123

The Python/C API, Release 2.6.4

unaryfunc nb_hex;

/* Added in release 2.0 */
binaryfunc nb_inplace_add,;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_divide;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_Ishift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

[* Added in release 2.2 */
binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

/* Added in release 2.5 */
unaryfunc nb_index;
} PyNumberMethods;

Binary and ternary functions may receive different kinds of arguments, depending on the flag bit
Py_TPFLAGS_CHECKTYPES

e If Py TPFLAGS CHECKTYPER not set, the function arguments are guaranteed to be of the object’s
type; the caller is responsible for calling the coercion method specified byttheoerce member to
convert the arguments:

coercion nb_coerce
This function is used byyNumber CoerceEx() and has the same signature. The first argument
is always a pointer to an object of the defined type. If the conversion to a common “larger” type is
possible, the function replaces the pointers with new references to the converted objects anf.returns
If the conversion is not possible, the function retutndf an error condition is set, it will returrl .

 If the Py_TPFLAGS CHECKTYPE#fag is set, binary and ternary functions must check the type of all
their operands, and implement the necessary conversions (at least one of the operands is an instance of the
defined type). This is the recommended way; with Python 3.0 coercion will disappear completely.

If the operation is not defined for the given operands, binary and ternary functions must return
Py_Notimplemented , if another error occurred they must retiMbJLL and set an exception.

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It
has three members:

lenfunc mp_length
This function is used bipyMapping_Length() andPyObject_Size() , and has the same signature.
This slot may be set thIULL if the object has no defined length.

binaryfunc mp_subscript
This function is used bi?yObject_Getltem() and has the same signature. This slot must be filled for
thePyMapping_Check() function to returrl, it can beNULL otherwise.

124 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

objobjargproc mp_ass_subscript
This function is used byyObject_Setltem() and has the same signature. If this sloNidLL, the
object does not support item assignment.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc sqg_length
This function is used bPySequence_Size() andPyObject_Size() , and has the same signature.

binaryfunc sq_concat
This function is used byySequence_Concat() and has the same signature. It is also used bythe
operator, after trying the numeric addition via tipeas_number.nb_add slot.

ssizeargfunc sq_repeat
This function is used byySequence_Repeat() and has the same signature. It is also used by the
operator, after trying numeric multiplication via thg as_number.nb_mul slot.

ssizeargfunc sq_item
This function is used bySequence_Getltem() and has the same signature. This slot must be filled
for thePySequence Check() function to returril, it can beNULL otherwise.

Negative indexes are handled as follows: if gtg length slot is filled, it is called and the sequence
length is used to compute a positive index which is passedjtitem . If sq_length is NULL, the
index is passed as is to the function.

ssizeobjargproc sq_ass_item
This function is used bi?ySequence_Setltem() and has the same signature. This slot may be left to
NULL if the object does not support item assignment.

objobjproc sq_contains
This function may be used byySequence_Contains() and has the same signature. This slot may
be left toNULL, in this casePySequence Contains() simply traverses the sequence until it finds a
match.

binaryfunc sq_inplace_concat
This function is used biPySequence_InPlaceConcat() and has the same signature. It should mod-
ify its first operand, and return it.

ssizeargfunc sq_inplace_repeat
This function is used biPySequence_InPlaceRepeat() and has the same signature. It should mod-
ify its first operand, and return it.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data,
where each chunk is specified as a pointer/length pair. These chunks aresegheehtand are presumed to be
non-contiguous in memory.

If an object does not export the buffer interface, thentjitsas_buffer member in thePyTypeObject
structure should bRIULL. Otherwise, thép_as_buffer will point to aPyBufferProcs structure.

Note: It is very important that youPyTypeObject structure use®y TPFLAGS DEFAULTor the value

of thetp_flags member rather thafl. This tells the Python runtime that yo@yBufferProcs structure
contains theébf _getcharbuffer slot. Older versions of Python did not have this member, so a nhew Python
interpreter using an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

10.6. Sequence Object Structures 125

The Python/C API, Release 2.6.4

The first slot isbf _getreadbuffer , of type getreadbufferproc . If this slot isNULL, then the
object does not support reading from the internal data. This is non-sensical, so implementors should fill this
in, but callers should test that the slot contains a NaH-L value.

The next slot idf_getwritebuffer having typegetwritebufferproc . This slot may beNULL
if the object does not allow writing into its returned buffers.

The third slot isbf _getsegcount , with typegetsegcountproc . This slot must not b&lULL and is

used to inform the caller how many segments the object contains. Simple objects Byélirasy_Type
andPyBuffer_Type objects contain a single segment. The last sldf igetcharbuffer , of type
getcharbufferproc . This slot will only be present if they TPFLAGS HAVE_GETCHARBUFFER
flag is present in thép_flags field of the object'sPyTypeObject . Before using this slot, the caller
should test whether it is present by using thelype HasFeature() function. If the flag is present,
bf_getcharbuffer may beNULL, indicating that the object’s contents cannot be use8-bi char-

acters The slot function may also raise an error if the object's contents cannot be interpreted as 8-bit
characters. For example, if the object is an array which is configured to hold floating point values, an excep-
tion may be raised if a caller attempts to tegetcharbuffer to fetch a sequence of 8-bit characters.
This notion of exporting the internal buffers as “text” is used to distinguish between objects that are binary
in nature, and those which have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This implies
that a buffer size oN does not mean there akecharacters present.

Py _TPFLAGS_HAVE_GETCHARBUFFER
Flag bit set in the type structure to indicate that tiiegetcharbuffer slot is known. This being set
does not indicate that the object supports the buffer interface or thddf tigetcharbuffer slot is
nonNULL.

(*readbufferproc)
Return a pointer to a readable segment of the bufféiptrptr . This function is allowed to raise an
exception, in which case it must retwrh . The segmentvhich is specified must be zero or positive, and
strictly less than the number of segments returned bypthgetsegcount slot function. On success, it
returns the length of the segment, and &pteptr ~ to a pointer to that memory.

(*writebufferproc)
Return a pointer to a writable memory bufferfjiptrptr , and the length of that segment as the function
return value. The memory buffer must correspond to buffer segsegrhent Must return-1 and set
an exception on errorTypeError should be raised if the object only supports read-only buffers, and
SystemError should be raised whesegmenspecifies a segment that doesn’t exist.

(*segcountproc)
Return the number of memory segments which comprise the buffengfs notNULL, the implementation
must report the sum of the sizes (in bytes) of all segmentieitp . The function cannot fail.

(*charbufferproc)
Return the size of the segmesggmenthatptrptr is set to.*ptrptr is set to the memory buffer. Returns
-1 onerror.

10.8 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from
object types which are “containers” for other objects which may also be containers. Types which do not store
references to other objects, or which only store references to atomic types (such as numbers or strings), do not
need to provide any explicit support for garbage collection.

To create a container type, the flags field of the type object must include thiey TPFLAGS HAVE_GC
and provide an implementation of the traverse handler. If instances of the type are mutabli aclear
implementation must also be provided.

Py_TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these

126 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.4

objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1.

2.

The memory for the object must be allocated usin@yObject GC_New() or
PyObject_GC_VarNew()
Once all the fields which may contain references to other containers are initialized, it must call

PyObject_ GC_Track()

TYPE* PyObject_ GC_New (TYPE, PyTypeObject *type

Analogous tdPyObject_New() but for container objects with they TPFLAGS HAVE_ Gdag set.

TYPE* PyObject GC_NewVar (TYPE, PyTypeObject *type, Py_ssize tkize

Analogous toPyObject NewVar() but for container objects with they TPFLAGS HAVE_Gdlag
set. Changed in version 2.5: This function usedrdn type forsize This might require changes in your
code for properly supporting 64-bit systems.

TYPE* PyObject GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newkize

void

void

Resize an object allocated ByObject NewVar() . Returns the resized object BULL on failure.
Changed in version 2.5: This function usedian type fornewsize This might require changes in your
code for properly supporting 64-bit systems.

PyObject_GC_Track (PyObject *op
Adds the objecbp to the set of container objects tracked by the collector. The collector can run at unex-

pected times so objects must be valid while being tracked. This should be called once all the fields followed
by thetp_traverse handler become valid, usually near the end of the constructor.

PyObject GC_TRACK (PyObject *op
A macro version oPyObject GC_Track() . It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1.
2.

void

void

void

Before fields which refer to other containers are invalida®sd)bject GC UnTrack() must be called.
The object’s memory must be deallocated usty@bject GC_Del()

PyObject_GC_Del (void *op)
Releases memory allocated to an object usip@bject GC New() or PyObject GC_NewVar()

PyObject_ GC_UnTrack (void *op)
Remove the objectop from the set of container objects tracked by the collector. Note that
PyObject_GC_Track() can be called again on this object to add it back to the set of tracked objects.
The deallocatortp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

PyObject GC_UNTRACK(PyObject *op
A macro version oPyObject GC _UnTrack() . It should not be used for extension modules.

Thetp_traverse handler accepts a function parameter of this type:

(*visitproc)

Type of the visitor function passed to the traverse handler. The function should be called with an
object to traverse agbjectand the third parameter to the traverse handler asrg. The Python core

uses several visitor functions to implement cyclic garbage detection; it's not expected that users will need
to write their own visitor functions.

Thetp_traverse handler must have the following type:

(*traverseproc)

Traversal function for a container object. Implementations must callvigie function for each object
directly contained bgelf with the parameters tasit being the contained object and g value passed to
the handler. Theisit function must not be called withdULL object argument. I¥isit returns a non-zero
value that value should be returned immediately.

To simplify writing tp_traverse handlers, &y VISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exaasit andarg:

10.8. Supporting Cyclic Garbage Collection 127

The Python/C API, Release 2.6.4

void

Py_VISIT (PyObject*q
Call thevisit callback, with arguments andarg. If visit returns a non-zero value, then return it. Using this
macro,tp_traverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, void *arg)
{

Py_VISIT(self - >foo);
Py VISIT(self - >bar);
return 0,

}

New in version 2.4.

Thetp_clear handler must be of thequiry type, orNULL if the object is immutable.

(*inquiry)

Drop references that may have created reference cycles. Immutable objects do not have to define this method
since they can never directly create reference cycles. Note that the object must still be valid after calling
this method (don't just calPy_DECREF() on a reference). The collector will call this method if it detects

that this object is involved in a reference cycle.

128

Chapter 10. Object Implementation Support

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library #62to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translat{gm The Python Library
Reference

abstract base classAbstract Base Classes (abbreviated ABCs) complemiedit-typingby providing a way to
define interfaces when other techniques Iliasattr() would be clumsy. Python comes with many
built-in ABCs for data structures (in thmllections module), numbers (in theumbers module), and
streams (in thé module). You can create your own ABC with tabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-lengthaccepts or passes (if in the function definition or call)
several positional arguments in a list, whife does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an objecto has an attributa it would be referenced asa

BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cachedoyc and.pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on avirtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic classAny class which does not inherit froabject . Seenew-style classClassic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For examjié(3.15) converts the floating point number to the inte-
ger 3, but in 3+4.5 , each argument is of a different type (one int, one float), and both must be con-
verted to the same type before they can be added or it will rai$gpgError . Coercion between
two operands can be performed with tbeerce built-in function; thus,3+4.5 is equivalent to call-
ing operator.add(*coerce(3, 4.5)) and results iroperator.add(3.0, 4.5) . Without
coercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.gfloat(3)+4.5 rather than jusB+4.5 .

129

http://www.python.org/~guido/

The Python/C API, Release 2.6.4

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often writteni in mathematics oj in engineering. Python has built-in support for complex
numbers, which are written with this latter notation; the imaginary part is written vyitbudfix, e.g.,3+1j .
To get access to complex equivalents of tieth module, usemath . Use of complex numbers is a fairly
advanced mathematical feature. If you're not aware of a need for them, it's almost certain you can safely
ignore them.

context manager An object which controls the environment seen inwith statement by defining
_enter__ () and__exit_ () methods. SeBEP 343

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decoratorsadassmethod() andstaticmethod()

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
f = staticmethod(f)

@staticmethod
def f(...):

Seethe documentation for function definitigim The Python Language Referehéar more about decora-
tors.

descriptor Any new-styleobject which defines the methodsget () , set () ,or__delete ()
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, usinga.bto get, set or delete an attribute looks up the object naoiadhe class dictionary foa,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, Iseglementing Descriptorén The Python Language
Referencp

dictionary An associative array, where arbitrary keys are mapped to values. The dis¢ ofclosely resembles
that forlist , but the keys can be any object with ahash__ () function, not just integers. Called a
hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into tHec__ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation
of the object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or
attribute signature rather than by explicit relationship to some type object (“If it looks like a duck and
quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed
code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests tgieg)
or isinstance() . (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employbkasattr() tests olEAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of maényy andexcept statements. The technique contrasts with the
LBYLstyle common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There

130 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python/C API, Release 2.6.4

are alsostatemerg which cannot be used as expressions, sugbriat or if . Assignments are also
statements, not expressions.

extension module A module written in C or C++, using Python's C API to interact with the core and with user
code.

finder An object that tries to find thdoader for a module. It must implement a method named
find_module() . SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. Seeaigomentandmethod

__future__ A pseudo module which programmers can use to enable new language features which are not compat-
ible with the current interpreter. For example, the expressiod currently evaluates t@. If the module
in which it is executed had enabléde divisionby executing:

from _ future__ import division

the expressiodl/4 would evaluate t@.75 . By importing the__future_ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

>>> import __ future__
>>> _ future__.division
_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage col-
lection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using gield statement instead ofraturn statement. Generator functions often contain one
or morefor orwhile loops whichyield elements back to the caller. The function execution is stopped
at theyield keyword (returning the result) and is resumed there when the next element is requested by
calling thenext() method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optibnaxpression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread executeSrytthen
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter to
be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much
finer granularity), but so far none have been successful because performance suffered in the common single-
processor case.

hashable An object is hashableif it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needsen () or__cmp_ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is thielif)

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python. Good for beginners, it also serves as clear example
code for those wanting to implement a moderately sophisticated, multi-platform GUI application.

131

http://www.python.org/dev/peps/pep-0302

The Python/C API, Release 2.6.4

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekkidn currently
evaluates t@ in contrast to th&.75 returned by float division. Also calleitbor division When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (suchfemat), the result will be coerced (seeercior)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using/theoperator instead of the operator. See also
future_.

importer An object that both finds and loads a module; bofmderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just fheh with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remenhiedp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
alsointeractive

iterable A container object capable of returning its members one at a time. Examples of iterables include all
sequence types (suchlég | str , andtuple) and some non-sequence types liket andfile and
objects of any classes you define with ariter__ () or __getitem__() method. Iterables can be
used in &or loop and in many other places where a sequence is neeill (, map() , ...). When an
iterable object is passed as an argument to the built-in funitBof) , it returns an iterator for the object.
This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to calliter() or deal with iterator objects yourself. Tlier statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. Séeratso,
sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the itena¢atld method return suc-
cessive items in the stream. When no more data are availaBtepdteration exception is raised
instead. At this point, the iterator object is exhausted and any further callstext§ method just raise
Stoplteration again. Iterators are required to have arnter__ () method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as alist) produces a fresh new iterator each time you pass it titéh@ function or use it in dor
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found itberator Typeqin The Python Library Referenge

keyword argument Arguments which are preceded withvariable_name= in the call. The variable name
designates the local name in the function to which the value is assighed used to accept or pass a
dictionary of keyword arguments. Segyument

lambda An anonymous inline function consisting of a singbegressiorwhich is evaluated when the function is
called. The syntax to create a lambda functiolambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theAFP approach and is characterized by the presence of iharsfatements.

list A built-in PythonsequenceDespite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a
list of strings containing even hex numbers (0x..) in the range from 0 to 255if Tlbause is optional. If
omitted, all elements ilange(256) are processed.

132 Appendix A. Glossary

The Python/C API, Release 2.6.4

loader An object that loads a module. It must define a method ndwetl module() . A loader is typically
returned by dinder. SeePEP 302for details.

mapping A container object (such adict) which supports arbitrary key lookups using the special method
__getitem__()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found iBustomizing class creatigiin The Python Language Referehce

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its fissgument(which is usually calledelf). Seefunctionand
nested scope

mutable Mutable objects can change their value but keep tdé€ir . See alsommutable

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for ex-
ample time.localtime() returns a tuple-like object where tlyearis accessible either with an index
such ag[0] or with a named attribute liketm_year).

A named tuple can be a built-in type such t®e.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a

self-documenting representation likenployee(name=’jones’, title="programmer’)

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested nhamespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functidmsiltin__.open()
andos.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writimglom.seed()
or itertools.izip() makes it clear that those functions are implemented byrédmelom and
itertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fronobject . This includes all built-in types likéist anddict
Only new-style classes can use Python’s newer, versatile features Bkats ~ , descriptors, properties,
and__ getattribute__ ()

More information can be found iNew-style and classic classg@s The Python Language Referehce

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
anynew-style class

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the cali. is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a functiorar§ement

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3
was something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable usirfgra statement. Many other languages don't
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food))
print food[i]

133

http://www.python.org/dev/peps/pep-0302

The Python/C API, Release 2.6.4

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPythonimplementation. Theys module defines getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterable which supports efficient element access using integer indices via thetitem__ ()
special method and defineden() method that returns the length of the sequence. Some built-in se-
quence types arést , str , tuple , andunicode . Note thatdict also supports getitem__ ()
and__len_ () , butis considered a mapping rather than a sequence because the lookups use arbitrary
immutablekeys rather than integers.

slice An object usually containing a portion of sequence A slice is created using the subscript notation,
[l with colons between numbers when several are given, such\amiable_name[1:3:5] . The
bracket (subscript) notation ussce objects internally (or in older versions, getslice_ () and
__setslice_ ()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented irspecial method namém The Python Language Referehce

statement A statement is part of a suite (a “block” of code). A statement is eithexaressiomr a one of several
constructs with a keyword, such #és, while or print

triple-quoted string A string which is bound by three instances of either a quotation mark () or an apostrophe
(). While they don't provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits class__ attribute or can be retrieved witlipe(obj)

virtual machine A computer defined entirely in software. Python'’s virtual machine executésytheodemitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typimgport this " at the interactive prompt.

134 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated fre@tructuredTexsources bysphinx a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain takes place odotte@ python.orgnailing list. We're
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

e Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

« theDocutilsproject for creating reStructuredText and the Docutils suite;
» Fredrik Lundh for hisAlternative Python Referengaroject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythofor information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete — if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.ong and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesus Cea Avion, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander
Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl,
Keith Briggs, lan Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario,
Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter
Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson,
Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernan Martinez Foffani, Stefan Franke, Jim Ful-
ton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan
Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond,
Harald Hanche-Olsen, Manus Hand, Gerhard Héring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas
Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hof-
fleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson,
Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas
de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel
Kozan, Andrew M. Kuchling, Dave Kuhiman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph
Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, UIf A. Lindgren, Everett Lipman, Mirko Liss,
Martin von Lowis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew Maclintyre, Vladimir Marangozov,
Vincent Marchetti, Laura Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Monta-
naro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup,
Denis S. Otkidach, Zooko O’'Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen,
Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, Francois Pinard,
Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel,
Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse II, Mark Russell, Nick Russo, Chris

135

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python/C API, Release 2.6.4

Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sern-
brant, Justin Sheehy, Charlie Shepherd, Michael Simcich, lonel Simionescu, Michael Sloan, Gregory P. Smith,
Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein, Peter
Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Martijn
Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Wel-
bourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

Itis only with the input and contributions of the Python community that Python has such wonderful documentation
— Thank You!

136 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.upin Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.con)/ In 2001, the Python Software Foundation (PSF,tgge//www.python.org/psj/was

formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (s&p://www.opensource.ordor the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru 1.2| n/a 1991-1995| CWI yes
1.3thru1.5.2| 1.2 1995-1999| CNRI yes
1.6 15.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.11 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 2.11 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 222 2002-2003| PSF yes
2.3 222 2002-2003| PSF yes
2.3.1 2.3 2002-2003| PSF yes
2.3.2 231 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
234 2.3.3 2004 PSF yes
2.35 234 2005 PSF yes
2.4 2.3 2004 PSF yes
241 24 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
Continued on next page

137

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python/C API, Release 2.6.4

Table C.1 — continued from previous page

2.4.4 2.4.3 2006 PSF yes
25 24 2006 PSF yes
251 2.5 2007 PSF yes
252 251 2008 PSF yes
253 252 2008 PSF yes
2.6 2.5 2008 PSF yes
26.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’'t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.4

1.

This LICENSE AGREEMENT is between the Python Software Foundation (“PSF"), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.6.4 software in source or binary form
and its associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.4 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.4 alone or in any derivative version prepared
by Licensee.

. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.4 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.6.4.

. PSF is making Python 2.6.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-

TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-

CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.6.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.4 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or

joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

. By copying, installing or otherwise using Python 2.6.4, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1.

This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

138

Appendix C. History and License

The Python/C API, Release 2.6.4

2. Subiject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available étttp://www.pythonlabs.com/logos.htmay be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’'s License Agreement and CNRI's notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI's License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

C.2. Terms and conditions for accessing or otherwise using Python 139

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

The Python/C API, Release 2.6.4

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995,
Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download frdttp://www.math.keio.ac.jp/matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

140 Appendix C. History and License

http://www.math.keio.ac.jp/

The Python/C API, Release 2.6.4

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://lwww.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

Thesocket module uses the functiongetaddrinfo() ,andgetnameinfo() , which are coded in separate
source files from the WIDE Projediitp://www.wide.ad.jp/

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 141

http://www.wide.ad.jp/

The Python/C API, Release 2.6.4

C.3.3 Floating point exception control

The source for thépectl module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. [

Permission to use, copy, modify, and distribute this software for |
any purpose without fee is hereby granted, provided that this en- |
tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |

This software was prepared as an account of work sponsored by an |
agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |
ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its wuse would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

142 Appendix C. History and License

The Python/C API, Release 2.6.4

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.
1999-11-04 Ipd Edited comments slightly for automatic TOC extraction.
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 143

The Python/C API, Release 2.6.4

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

144 Appendix C. History and License

The Python/C API, Release 2.6.4

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3. Licenses and Acknowledgements for Incorporated Software 145

The Python/C API, Release 2.6.4

C.3.10 XML Remote Procedure Calls

Thexmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

Thetest_epoll contains the following notice:
Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

146 Appendix C. History and License

The Python/C API, Release 2.6.4

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 147

The Python/C API, Release 2.6.4

148 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2009 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licensdor complete license and permissions information.

149

The Python/C API, Release 2.6.4

150 Appendix D. Copyright

Symbols

..,129
_Pylmport_FindExtension (C functior)
_Pylmport_Fini (C function)26
__Pylmport_FixupExtension (C functior§6
_Pylmport_Init (C function)26
__PyObject_Del (C function),05
PyObject GC_TRACK (C function),27
PyObject GC_UNTRACK (C function),27
_PyObject_New (C function),05
_PyObject_NewVar (C function},05
_PyString_Resize (C functiorj3
_PyTuple_Resize (C functionj
_Py_NoneStruct (C variable)p6
_Py_c_diff (C function) 54
_Py ¢ _neg (C functionh4
_Py _c_pow (C function$5
_Py c_prod (C functiong4
_Py _c_quot (C functionh4
_Py _c_sum (C functionp4
__all__ (package variableg)5
__builtin_

module,8, 91
__dict__ (module attributeR2
__doc__ (module attributey?
__file__ (module attribute32
__ future__ 131
__import__

built-in function, 25
__main__

module,8, 91
__name__ (module attribute)?
__slots__ 134
_frozen (C type)26
_inittab (C type)27
_ob_next (C member),11
_ob_prev (C member),11
>>> 129
2t03,129

A

abort(),24
abs

built-in function,42
abstract base class?9

apply

INDEX

built-in function, 39
argument129
argv (in module sysp4
attribute,129

B

BaseException (built-in exceptior)2
BDFL, 129
buf (C member)69
buffer
object,68
buffer interface£8
BufferType (in module types),2
built-in function
__import__ 25
abs42
apply,39
bytes,38
classmethod] 08
cmp,38
coerce43
compile,26
divmod,41
float, 44
hash 40, 114
int, 43
len, 40, 44, 46, 75, 77, 89
long, 44
pow, 41, 43
reload,25
repr,38, 113
staticmethod108
str, 38
tuple,45, 76
type,40
unicode,38
bytearray
object,55
bytecode 129
bytes
built-in function, 38

C

calloc(),101
charbufferproc (C type),26
class,129

151

The Python/C API, Release 2.6.4

object,78
classic class] 29
classmethod

built-in function, 108
ClassType (in module typesj3
cleanup functions24
close() (in module osp2
cmp

built-in function, 38
CO_FUTURE_DIVISION (C variable)| 4
CObject

object,85
coerce

built-in function, 43
coercion,129
compile

built-in function,26
complex number]29

object,54
context managef,30
copyright (in module sysp3
CPython,130

D

decorator130
descriptor130
dictionary,130

object,76
DictionaryType (in module types),6
DictType (in module types);6
divmod

built-in function,41
docstring,130
duck-typing,130

E

EAFP,130
environment variable
exec_prefix3
PATH, 9
prefix, 3
PYTHONDUMPREFS 111
PYTHONHOME,9, 94
PYTHONPATH,9
EOFError (built-in exception§1
errno,95
exc_info() (in module sys),
exc_traceback (in module sys$),17
exc_type (in module sysJ, 17
exc_value (in module sysj, 17
exceptions
module,3
exec_prefix3
executable (in module sys)3
exit(), 24
expression130
extension modulel 31

F
file
object,80
FileType (in module typesg0
finder,131
float
built-in function, 44
floating point
object,53
FloatType (in modules types)3
fopen(),81
free(),101
freeze utility,26
frozenset
object,88
function,131
object,79

G

garbage collection, 31
generatorl31

generator expressiofi31
GIL, 131

global interpreter lock94, 131

H

hash
built-in function,40, 114
hashable]l31

IDLE, 131
ihooks

module,25
immutable, 131
importer,132
incr_item(),7, 8
inquiry (C type),128
instance

object,78
int

built-in function,43
integer

object,50
integer division, 132
interactive,132
internal (C member)70
interpreted,132
interpreter lock94
IntType (in modules typesh0
itemsize (C membery,0
iterable, 132
iterator,132

K

KeyboardInterrupt (built-in exception},1
keyword argument] 32

152

Index

The Python/C API, Release 2.6.4

L

lambda,132
LBYL, 132
len

built-in function, 40, 44, 46, 75, 77, 89
list, 132

object,74
list comprehensiori, 32
ListType (in module types);4
loader,132
lock, interpreter94
long

built-in function,44
long integer

object,52
LONG_MAX, 51,53
LongType (in modules types)2

M

main(),92, 94
malloc(),101
mapping,133

object,76
metaclass] 33
METH_CLASS (built-in variable)108
METH_COEXIST (built-in variable)108
METH_KEYWORDS (built-in variable) 107
METH_NOARGS (built-in variable)108
METH_O (built-in variable), 108
METH_OLDARGS (built-in variable)108
METH_STATIC (built-in variable),108
METH_VARARGS (built-in variable),107
method,133

object,79
MethodType (in module typesJ9, 80
module

__builtin__,8,91

__main__ 8,91

exceptions§g

ihooks,25

object,82

rexec,25

search pathg, 91, 93

signal,21

sys,8, 91

thread 96
modules (in module sysp5, 91
ModuleType (in module types$2
mp_ass_subscript (C membetp4
mp_length (C member),24
mp_subscript (C member)24
mutable,133

N

named tuple133
namespace,33
nb_coerce (C memben24
ndim (C member)g9

nested scop€,33
new-style class] 33
None

object,50
numeric

object,50

O

ob_refcnt (C member),11
ob_size (C member),11
ob_type (C member),11
object,133
buffer, 68
bytearray55
class,78
CObject,85
complex numberb4
dictionary,76
file, 80
floating point,53
frozenset38
function, 79
instance,/8
integer,50
list, 74
long integer52
mapping,76
method,79
module,82
None,50
numeric,50
sequence;s
set,88
string,56
tuple,73
type,4, 49
OverflowError (built-in exception);3

P

package variable

_all__,25
PATH, 9
path

module searclg, 91, 93
path (in module sys}, 91, 93
platform (in module sys})3
positional argument],33
pow

built-in function,41, 43
prefix, 3
Py_AtEXxit (C function),24
Py BEGIN_ALLOW THREADS95
Py BEGIN_ALLOW_THREADS (C macrop?7
Py BLOCK_THREADS (C macroR?7
Py_buffer (C type)69
Py_BuildValue (C function)32
Py CLEAR (C function)15
Py_CompileString (C function},3

Index

153

The Python/C API, Release 2.6.4

Py CompileString()14

Py CompileStringFlags (C functior)3
Py _complex (C typeh4

Py DECREF (C function)15

Py _DECREF()4

Py _END_ALLOW_THREADS95
Py END_ALLOW_THREADS (C macrop7
Py END_OF BUFFER (C variable)?
Py_Endinterpreter (C functiony2
Py_eval_input (C variable),3
Py_Exit (C function)24

Py False (C variablej1l
Py_FatalError (C functionR4
Py_FatalError()94
Py_Fdisinteractive (C function}3
Py_file_input (C variable)14
Py_Finalize (C function)91
Py_Finalize()24, 91, 92
Py_FindMethod (C function).09
Py_GetBuildinfo (C function)94
Py_GetBuildNumber (C function®3
Py _GetCompiler (C functionp3

Py _GetCopyright (C functionp3
Py_GetExecPrefix (C functiond2
Py_GetExecPrefix(p

Py_GetPath (C functionp3
Py_GetPath()9, 92

Py_GetPlatform (C functionp3
Py_GetPrefix (C function?2
Py_GetPrefix()9
Py_GetProgramFullPath (C functio®)3
Py_GetProgramFullPath(,

Py _GetProgramName (C functio)?
Py _GetPythonHome (C functiorf4
Py_GetVersion (C function3
Py_INCREF (C function)15

Py _INCREF()A4

Py _Initialize (C function)91
Py_Initialize(),8, 92, 96
Py_InitializeEx (C function)91
Py_InitModule (C function)106
Py_InitModule3 (C function)106
Py_InitModule4 (C function)106

Py _lslInitialized (C function)91
Py_lIslnitialized(),9

Py_Main (C function),L 1

Py _NewiInterpreter (C functiond1
Py_None (C variable 0
Py_PRINT_RAWS81

Py _RETURN_FALSE (C macroj1l
Py_RETURN_NONE (C macro}0
Py RETURN_TRUE (C macrohl
Py_SetProgramName (C functio8),
Py _SetProgramNameg@, 91-93

Py SetPythonHome (C functior§4
Py_single_input (C variable)4
PY_SSIZE_T_MAX,53

Py _TPFLAGS_BASETYPE (built-in variable},16

Py_TPFLAGS_CHECKTYPES (built-in variable),
115

Py_TPFLAGS_DEFAULT (built-in variable), 16

Py _TPFLAGS_GC (built-in variable),15

Py _TPFLAGS_HAVE_CLASS (built-in variable),
116

Py_TPFLAGS_HAVE_GC (built-in variable),16

Py TPFLAGS HAVE_GETCHARBUFFER (built-
in variable),115 126

Py TPFLAGS_HAVE_INPLACEOPS (built-in
variable),115

Py TPFLAGS_ HAVE_ITER (built-in variable),16

Py _TPFLAGS_ HAVE_RICHCOMPARE (built-in
variable),115

Py TPFLAGS_HAVE_SEQUENCE_IN (built-in
variable),115

Py_TPFLAGS_HAVE_WEAKREFS (built-in vari-
able),116

Py_TPFLAGS_HEAPTYPE (built-in variable),16

Py TPFLAGS_READY (built-in variable),16

Py _TPFLAGS_READYING (built-in variable), 16

Py _tracefunc (C typep8

Py _True (C variable)p1

Py _UNBLOCK_THREADS (C macro7

Py_UNICODE (C type)59

Py_UNICODE_ISALNUM (C function)50

Py_UNICODE_ISALPHA (C function)60

Py _UNICODE_ISDECIMAL (C function)g0

Py _UNICODE_ISDIGIT (C function)g0

Py_UNICODE_ISLINEBREAK (C function)60

Py_UNICODE_ISLOWER (C functionf0

Py_UNICODE_ISNUMERIC (C function$;,0

Py_UNICODE_ISSPACE (C function$0

Py_UNICODE_ISTITLE (C function)s0

Py_UNICODE_ISUPPER (C functiony0

Py_UNICODE_TODECIMAL (C function)61

Py_UNICODE_TODIGIT (C function)61

Py_UNICODE_TOLOWER (C function0

Py_UNICODE_TONUMERIC (C function}1

Py _UNICODE_TOTITLE (C function)61

Py_UNICODE_TOUPPER (C functiony0

Py_VaBuildValue (C function)34

Py_VISIT (C function),127

Py XDECREF (C function)]5

Py XDECREF()8

Py_XINCREF (C function)15

PyAnySet_Check (C function®9

PyAnySet_CheckExact (C functior§9

PyArg_Parse (C functionjl

PyArg_ParseTuple (C functiony,L

PyArg_ParseTupleAndKeywords (C functioB),

PyArg_UnpackTuple (C functionj2

PyArg_VaParse (C function}l

PyArg_VaParseTupleAndKeywords (C functio8),

PyBool_Check (C functionj1

PyBool_FromLong (C functionp?2

PyBuffer_Check (C function);2

PyBuffer_FillContiguousStrides (C function)2

154

Index

The Python/C API, Release 2.6.4

PyBuffer_Fillinfo (C function),72
PyBuffer_FromMemory (C function};2
PyBuffer_FromObiject (C function),2
PyBuffer_FromReadWriteMemory (C functiorn)3
PyBuffer_FromReadWriteObject (C function?
PyBuffer_IsContiguous (C functionj,1
PyBuffer_New (C function)73
PyBuffer_Release (C functionj,L
PyBuffer_SizeFromFormat (C function)1
PyBuffer_Type (C variable);2
PyBufferObject (C type)72
PyBufferProcsy?2

PyBufferProcs (C type) 25
PyByteArray_AS_STRING (C function})6
PyByteArray_AsString (C functionj6
PyByteArray Check (C functionh6
PyByteArray _CheckExact (C functiorfp
PyByteArray_Concat (C function}6
PyByteArray _FromObiject (C function6
PyByteArray _FromsStringAndSize (C functiorpf
PyByteArray GET_SIZE (C functionh6
PyByteArray _Resize (C functiony6
PyByteArray_Size (C function)6
PyByteArray_Type (C variable}h5
PyByteArrayObject (C typeh5
PyCallable_Check (C function}9
PyCalllter_Check (C functiong3
PyCalllter_New (C function)33
PyCalllter_Type (C variable33
PyCell_Check (C function6
PyCell_GET (C function)36

PyCell_Get (C function)36

PyCell_New (C function)36

PyCell_SET (C function)36

PyCell_Set (C function)36

PyCell_Type (C variable 6

PyCellObject (C type)36

PyCFunction (C type)107
PyClass_Check (C functionj8
PyClass_IsSubclass (C functioiig
PyClass_Type (C variablej3
PyClassObject (C type)3

PyCObject (C type)35
PyCObject_AsVoidPtr (C function®5
PyCObject_Check (C functiony5
PyCObject_FromVoidPtr (C functionb
PyCObject_FromVoidPtrAndDesc (C functioBh
PyCObject_GetDesc (C functiorgs
PyCObject_SetVoidPtr (C functionp
PyCompilerFlags (C type)4
PyComplex_AsCComplex (C functiorjb
PyComplex_Check (C functionys
PyComplex_CheckExact (C functiorys
PyComplex_FromCComplex (C functiory
PyComplex_FromDoubles (C functiory)s
PyComplex_ImagAsDouble (C functior§5
PyComplex_RealAsDouble (C functior;
PyComplex_Type (C variable}5

PyComplexObject (C typeR5

PyDate_Check (C function®7

PyDate_CheckExact (C functior§7

PyDate_FromDate (C function}/

PyDate_FromTimestamp (C functio®g

PyDateTime_Check (C functior/

PyDateTime_CheckExact (C functio®){

PyDateTime_DATE_GET_HOUR (C functiorf)3

PyDateTime_DATE_GET_MICROSECOND (C
function),88

PyDateTime_DATE_GET_MINUTE (C function),
88

PyDateTime_DATE_GET_SECOND (C function),
88

PyDateTime_FromDateAndTime (C functioB)]

PyDateTime_FromTimestamp (C functioB3

PyDateTime_GET_DAY (C function38

PyDateTime_GET_MONTH (C function$7

PyDateTime_GET_YEAR (C functiony7

PyDateTime_TIME_GET_HOUR (C function}8

PyDateTime_TIME_GET_MICROSECOND (C
function),88

PyDateTime_TIME_GET_MINUTE (C function),
88

PyDateTime_TIME_GET_SECOND (C function),
88

PyDelta_Check (C function®7

PyDelta_CheckExact (C functiorfy

PyDelta_FromDSU (C function®7

PyDescr_IsData (C functiony3

PyDescr_NewClassMethod (C functioB3

PyDescr_NewGetSet (C functiord3

PyDescr_NewMember (C functior§3

PyDescr_NewMethod (C function3

PyDescr_NewWrapper (C functior§3

PyDict_Check (C function)76

PyDict_CheckExact (C function},6

PyDict_Clear (C function)/6

PyDict_Contains (C function),6

PyDict_Copy (C function)76

PyDict_Delltem (C function)76

PyDict_DelltemString (C function);6

PyDict_Getltem (C function){6

PyDict_GetltemString (C functiony,7

PyDict_ltems (C function)77

PyDict_Keys (C function)77

PyDict_Merge (C function)78

PyDict_MergeFromSeq2 (C functior’)3

PyDict_New (C function)76

PyDict_Next (C function);77

PyDict_Setltem (C function);6

PyDict_SetltemString (C functiony,6

PyDict_Size (C function)77

PyDict_Type (C variable);6

PyDict_Update (C function);8

PyDict_Values (C function);7

PyDictObject (C type)76

PyDictProxy_New (C function)/6

Index

155

The Python/C API, Release 2.6.4

PyErr_BadArgument (C function),9

PyErr_BadInternalCall (C function)0

PyErr_CheckSignals (C functiorp

PyErr_Clear (C function)18

PyErr_Clear()7, 8

PyErr_ExceptionMatches (C functior)/

PyErr_ExceptionMatches(§,

PyErr_Fetch (C function)8

PyErr_Format (C function).8

PyErr_GivenExceptionMatches (C functiofy,

PyErr_NewException (C function),1

PyErr_NoMemory (C function)19

PyErr_NormalizeException (C functior)/

PyErr_Occurred (C function),7

PyErr_Occurred()/

PyErr_Print (C function)17

PyErr_PrintEx (C function)17

PyErr_Restore (C function),8

PyErr_SetExcFromWindowsErr (C functiod))

PyErr_SetExcFromWindowsErrWithFilename
function),20

PyErr_SetFromErrno (C function)9

PyErr_SetFromErrnoWithFilename (C functiof}

PyErr_SetFromWindowsErr (C functior)9

PyErr_SetFromWindowsErrWithFilename (C func-

tion), 20
PyErr_Setinterrupt (C function,1
PyErr_SetNone (C function),9
PyErr_SetObject (C function),8
PyErr_SetString (C function),8
PyErr_SetString()7
PyErr_Warn (C function)20
PyErr_WarnEx (C function)20
PyErr_WarnExplicit (C function)20
PyErr_WarnPy3k (C function0
PyErr_WriteUnraisable (C function),1
PyEval_AcquireLock (C function6
PyEval_AcquireLock()91, 95
PyEval_AcquireThread (C functior§p
PyEval_EvalCode (C function},3
PyEval_EvalCodeEx (C function)3
PyEval_EvalFrame (C function},3
PyEval_EvalFrameEx (C function)3
PyEval_GetBuiltins (C function35
PyEval_GetCallStats (C functior)9
PyEval_GetFrame (C function}p
PyEval_GetFuncDesc (C functior®5
PyEval_GetFuncName (C functior35
PyEval_GetGlobals (C function}5
PyEval_GetLocals (C functionp5
PyEval_GetRestricted (C functior§5
PyEval_InitThreads (C function®6
PyEval_InitThreads(®1
PyEval_MergeCompilerFlags (C functiori)3
PyEval_RelnitThreads (C functiorf)y
PyEval_ReleaseLock (C functior§
PyEval_ReleaselLock(®1, 95, 96
PyEval_ReleaseThread (C functiofii

PyEval ReleaseThread@6
PyEval_RestoreThread (C functioB)]
PyEval_RestoreThread@5, 96
PyEval_SaveThread (C functiord)/
PyEval_SaveThread(5, 96
PyEval_SetProfile (C function)9
PyEval_SetTrace (C functior§9
PyEval_ThreadslInitialized (C functiorf)6
PyExc_ArithmeticError22
PyExc_AssertionErrof2
PyExc_AttributeError22
PyExc_BaseExceptiog2
PyExc_EnvironmentErroR2
PyExc_EOFError22
PyExc_Exception?22
PyExc_FloatingPointErrof2
PyExc_ImportError22
PyExc_IndexError2?2
PyExc_IOError22
PyExc_Keyboardinterrupg?2
PyExc_KeyError22
PyExc_LookupError22
PyExc_MemoryError22
PyExc_NameErroR?2
PyExc_NotlmplementedErro22
PyExc_OSError22
PyExc_OverflowError22
PyExc_ReferenceErroz2
PyExc_RuntimeErroR?2
PyExc_StandardErro22
PyExc_SyntaxErro22
PyExc_SystemErrog2
PyExc_SystemExif)2
PyExc_TypeError22
PyExc_ValueError22
PyExc_WindowsError2
PyExc_ZeroDivisionError22
PyFile_AsFile (C function)31
PyFile_Check (C function80
PyFile_CheckExact (C functiony0
PyFile_DecUseCount (C functior),L
PyFile_FromFile (C function)31
PyFile_FromString (C functiong0
PyFile_GetLine (C function1
PyFile_IncUseCount (C function1
PyFile_Name (C functiong1
PyFile_SetBufSize (C function§1
PyFile_SetEncoding (C functior;L
PyFile_SetEncodingAndErrors (C functioB)l,
PyFile_SoftSpace (C functior§L
PyFile_Type (C variable B0
PyFile_WriteObject (C functiong1
PyFile_WriteString (C function}32
PyFileObject (C type)30

PyFloat_ AS_DOUBLE (C function4
PyFloat_AsDouble (C functionh4
PyFloat_Check (C functionh3
PyFloat_CheckExact (C functiorj3

156

Index

The Python/C API, Release 2.6.4

PyFloat_ClearFreeList (C functiorf4
PyFloat_FromDouble (C functionj4
PyFloat_FromString (C function}3
PyFloat_GetInfo (C functiong4
PyFloat_GetMax (C functionj4
PyFloat_GetMin (C function};4
PyFloat_Type (C variableh3
PyFloatObject (C typeh3
PyFrozenSet_Check (C functio®R
PyFrozenSet_CheckExact (C functio@,
PyFrozenSet_New (C functiorf)9
PyFrozenSet_Type (C variabl&p
PyFunction_Check (C functionj9
PyFunction_GetClosure (C functior)9
PyFunction_GetCode (C function)9
PyFunction_GetDefaults (C function)9
PyFunction_GetGlobals (C functiory)9
PyFunction_GetModule (C functionj9
PyFunction_New (C function},9
PyFunction_SetClosure (C functiom?
PyFunction_SetDefaults (C functiorm)9
PyFunction_Type (C variable}9
PyFunctionObiject (C type),9
PyGen_Check (C function$6
PyGen_CheckExact (C functior§6
PyGen_New (C function6

PyGen_Type (C variable}6

PyGenObiject (C typeR6

PyGILState Ensure (C functiorfg
PyGILState_Release (C functio)g
Pylmport_AddModule (C function®5
Pylmport_Appendinittab (C function),7
Pylmport_Cleanup (C function6
Pylmport_ExecCodeModule (C functiords
Pylmport_Extendlnittab (C function},7
Pylmport_FrozenModules (C variabl&g
Pylmport_Getimporter (C function},6
Pylmport_GetMagicNumber (C functior)6
Pylmport_GetModuleDict (C function,6
Pylmport_Import (C function)25
Pylmport_ImportFrozenModule (C functior®6
Pylmport_ImportModule (C functionp4
Pylmport_ImportModuleEx (C function},5
Pylmport_ImportModuleLevel (C function?5
Pylmport_ImportModuleNoBlock (C function}5
Pylmport_ReloadModule (C functior)5
PyIndex_Check (C functionji4
Pylnstance_Check (C function)3
Pylnstance_New (C functionj3
Pylnstance_NewRaw (C functior)9
Pylnstance_Type (C variable)3

PyInt_ AS_LONG (C function)51
PyInt_AsLong (C function)51
PyInt_AsSsize t (C functionhl
PyInt_AsUnsignedLongLongMask (C functiof)l.
PyInt_AsUnsignedLongMask (C functior)1
PyInt_Check (C function0
PyInt_CheckExact (C function}0

PyInt_ClearFreeList (C function}1
PyInt_FromLong (C function);0
PyInt_FromSize_t (C functionj1
PyInt_FromSsize_t (C function}1
PyInt_FromString (C function0
PyInt_GetMax (C function);1
PyInt_Type (C variable);0
PylInterpreterState (C type)6
PylInterpreterState_Clear (C functiofy,
PylInterpreterState_Delete (C functiof,
PyinterpreterState_Head (C functiof0
PylInterpreterState_ New (C functiof)/
PylInterpreterState_Next (C functiori))O
PylInterpreterState_ThreadHead (C functidri))
PyIntObject (C type)50
Pylter_Check (C function}}7
Pylter_Next (C function)47
PyList_Append (C function){5
PyList_AsTuple (C function)76
PyList_Check (C function)/4
PyList_CheckExact (C functiony4
PyList. GET_ITEM (C function)75
PyList GET_SIZE (C function){5
PyList_Getltem (C function)7/5
PyList_Getltem()6
PyList_GetSlice (C function)/5
PyList_Insert (C function)75
PyList_New (C function)74
PyList_Reverse (C function),6
PyList_SET_ITEM (C function)75
PyList_Setltem (C function);5
PyList_Setltem()5
PyList_SetSlice (C function),5
PyList_Size (C function)75
PyList_Sort (C function)75
PyList_Type (C variable)/4
PyListObject (C type)74
PyLong_AsDouble (C function}3
PyLong_AsLong (C function};3
PyLong_AsLongLong (C functionh3
PyLong_AsSsize_t (C function)3
PyLong_AsUnsignedLong (C functior3
PyLong_AsUnsignedLongLong (C functiory)3
PyLong_AsUnsignedLongLongMask (C function),
53
PyLong_AsUnsignedLongMask (C functio®)3
PyLong_AsVoidPtr (C function)p3
PyLong_Check (C function)2
PyLong_CheckExact (C functiorj2
PyLong_FromDouble (C function}2
PyLong_FromLong (C functionjh2
PyLong_FromLongLong (C function}2
PyLong_FromSize_t (C functionj2
PyLong_FromSsize_t (C functiorf2
PyLong_FromString (C functionj2
PyLong_FromUnicode (C function}2
PyLong_FromUnsignedLong (C functiory?
PyLong_FromUnsignedLongLong (C functioBy,

Index

157

The Python/C API, Release 2.6.4

PyLong_FromVoidPtr (C functionj3
PyLong_Type (C variableh2
PyLongObject (C type)h2
PyMapping_Check (C function},6
PyMapping_Delltem (C function}i6
PyMapping_DelltemString (C functiond6
PyMapping_GetltemString (C function)y
PyMapping_HasKey (C functionj,6
PyMapping_HasKeyString (C functiom)6
PyMapping_Items (C function}i7
PyMapping_Keys (C function}i6
PyMapping_Length (C function).6
PyMapping_SetltemString (C function)7
PyMapping_Size (C function}6
PyMapping_Values (C function}i6
PyMappingMethods (C type),24
PyMarshal_ReadLastObjectFromFile (C function),
28
PyMarshal_ReadLongFromFile (C functiog,
PyMarshal_ReadObjectFromFile (C functioB,
PyMarshal_ReadObjectFromString (C functiozs,
PyMarshal _ReadShortFromFile (C functiogy,
PyMarshal_WriteLongToFile (C function,’
PyMarshal_WriteObjectToFile (C functiordy
PyMarshal_WriteObjectToString (C functior®)y
PyMem_Del (C function)102
PyMem_Free (C function),02
PyMem_Malloc (C function)102
PyMem_New (C function)102
PyMem_Realloc (C function),02
PyMem_Resize (C function},02
PyMemberDef (C type)108
PyMethod Check (C function0
PyMethod_Class (C function0
PyMethod_ClearFreeList (C functior§0
PyMethod_Function (C function$0
PyMethod_GET_CLASS (C function30
PyMethod GET_FUNCTION (C function$0
PyMethod GET_SELF (C function$0
PyMethod_New (C functiong0
PyMethod_Self (C function80
PyMethod_Type (C variable},9
PyMethodDef (C type)107
PyModule _AddIntConstant (C functiorf)2
PyModule_AddIntMacro (C functiong2
PyModule_AddObiject (C function2
PyModule_AddStringConstant (C functio@y
PyModule_AddStringMacro (C function32
PyModule _Check (C function®2
PyModule_CheckExact (C functior)2
PyModule_GetDict (C function2
PyModule_GetFilename (C functiorg?2
PyModule_GetName (C functior}2
PyModule_New (C function}§2
PyModule_Type (C variableB2
PyNumber_Absolute (C functiond2
PyNumber_Add (C function}}1
PyNumber_And (C function}}2

PyNumber_AsSsize t (C function)4
PyNumber_Check (C function,1
PyNumber_Coerce (C functior)3
PyNumber_CoerceEx (C functior)3
PyNumber_Divide (C function)}}1
PyNumber_Divmod (C function}1
PyNumber_Float (C function)}4
PyNumber_FloorDivide (C functioni1
PyNumber_Index (C function}4
PyNumber_InPlaceAdd (C functior)2
PyNumber_InPlaceAnd (C functior3
PyNumber_InPlaceDivide (C functior)2
PyNumber_InPlaceFloorDivide (C functior)?
PyNumber_InPlaceLshift (C function}3
PyNumber_InPlaceMultiply (C function,2
PyNumber_InPlaceOr (C function)3
PyNumber_InPlacePower (C functiod)3
PyNumber_InPlaceRemainder (C functiof3,
PyNumber_InPlaceRshift (C functior)3
PyNumber_InPlaceSubtract (C functioa},
PyNumber_InPlaceTrueDivide (C functiod)3
PyNumber_InPlaceXor (C functior 3
PyNumber_Int (C function}43
PyNumber_Invert (C function}i2
PyNumber_Long (C function}4
PyNumber_Lshift (C function)}2
PyNumber_Multiply (C function)41
PyNumber_Negative (C functior},L
PyNumber_Or (C function}}2
PyNumber_Positive (C functiord2
PyNumber_Power (C functiorj,1
PyNumber_Remainder (C functiom)]
PyNumber_Rshift (C function}i2
PyNumber_Subtract (C functior)1
PyNumber_ToBase (C functiom4
PyNumber_TrueDivide (C functionj,1
PyNumber_Xor (C function)}2
PyNumberMethods (C type}23

PyObiject (C type)106
PyObject_AsCharBuffer (C function}3
PyObject_AsFileDescriptor (C functior)p
PyObject_AsReadBuffer (C functiom)8
PyObject_AsWriteBuffer (C function8
PyObject_Bytes (C functionj8
PyObject_Call (C function)39
PyObject_CallFunction (C function}9
PyObject_CallFunctionObjArgs (C functior§9
PyObject_CallMethod (C function}9
PyObject_CallMethodObjArgs (C functior§9
PyObject_CallObject (C functionp9
PyObject_CheckBuffer (C functionj0
PyObject_CheckReadBuffer (C functiod}
PyObject_Cmp (C functioni8
PyObject_Compare (C functior§8
PyObject_CopyToObject (C functionjl
PyObject_Del (C function)1 05
PyObiject_DelAttr (C function)38
PyObject_DelAttrString (C functioni8

158

Index

The Python/C API, Release 2.6.4

PyObject_Delltem (C function}0
PyObject_Dir (C function)40
PyObject_GC_Del (C function),27
PyObject_GC_New (C function),27
PyObject_ GC_NewVar (C function}27
PyObject GC_Resize (C functior)27
PyObject_ GC_Track (C function}27
PyObject_ GC_UnTrack (C function)27
PyObject_GenericGetAttr (C functiordy
PyObject_GenericSetAttr (C functior§)7
PyObject_GetAttr (C function37
PyObject_GetAttrString (C function}7
PyObject_GetBuffer (C function},0
PyObject_Getltem (C function}0
PyObject_Getlter (C function},0
PyObject_HasAttr (C function7
PyObject_HasAttrString (C function3,7
PyObject_Hash (C function3,0
PyObject_HashNotimplemented (C functiof,
PyObject_ HEAD (C macro),06
PyObject HEAD_INIT (C macro)1.07
PyObject_Init (C function)105
PyObject_InitVar (C function)105
PyObiject_IsInstance (C functior§3
PyObject_IsSubclass (C functior3?
PyObject_IsTrue (C function}0
PyObject_Length (C function}0
PyObject_New (C function),05
PyObject_NewVar (C function),05
PyObject_Not (C function)40
PyObject_Print (C function37
PyObiject_Repr (C function8
PyObject_RichCompare (C functior3g
PyObject_RichCompareBool (C functior3g
PyObject_SetAttr (C functioni7
PyObject_SetAttrString (C function},/
PyObject_Setltem (C functionj0
PyObject_Size (C function)0
PyObject_Str (C function38
PyObject_Type (C function}0
PyObject_TypeCheck (C functior)p
PyObject_Unicode (C function}8
PyObject_VAR_HEAD (C macro),07
PyOS_AfterFork (C function23
PyOS_ascii_atof (C functionp4
PyOS_ascii_formatd (C function}4
PyOS_ascii_strtod (C functionj4
PyOS_CheckStack (C functiord3
PyOS_GetLastModificationTime (C functior))3
PyOS_getsig (C functionp3
PyOS_setsig (C function}3
PyOS_snprintf (C functionj34
PyOS_stricmp (C function5
PyOS_strnicmp (C functionj5
PyOS_vsnprintf (C functionj34
PyParser_SimpleParseFile (C functich,
PyParser_SimpleParseFileFlags (C functidg),
PyParser_SimpleParseString (C functidi®),

PyParser_SimpleParseStringFlags (C functiag),

PyParser_SimpleParseStringFlagsFilename (C func-

tion), 12
PyProperty Type (C variable}3
PyRun_AnyFile (C function)] 1
PyRun_AnyFileEx (C function)] 1
PyRun_AnyFileExFlags (C function),1
PyRun_AnyFileFlags (C function),1
PyRun_File (C function)]13
PyRun_FileEx (C function)1.3
PyRun_FileExFlags (C function),3
PyRun_FileFlags (C function),3
PyRun_InteractiveLoop (C function)?
PyRun_InteractiveLoopFlags (C functioiy,
PyRun_InteractiveOne (C functior)?
PyRun_InteractiveOneFlags (C functiofhy,
PyRun_SimpleFile (C function},2
PyRun_SimpleFileEx (C function),2
PyRun_SimpleFileExFlags (C functiori)?
PyRun_SimpleFileFlags (C functiori)?
PyRun_SimpleString (C function),1
PyRun_SimpleStringFlags (C functiori)l
PyRun_String (C function), 2
PyRun_StringFlags (C function)2
PySeqlter_Check (C functior§3
PySeqlter_New (C functioni3
PySeqlter_Type (C variable}3
PySequence_Check (C function)i
PySequence_Concat (C function),
PySequence_Contains (C function,
PySequence_Count (C functiod)
PySequence_Delltem (C functiodfp
PySequence_DelSlice (C functiod)
PySequence_Fast (C functiod)
PySequence_Fast GET_ITEM (C functiof,
PySequence_Fast GET_SIZE (C functietf,
PySequence_Fast_ITEMS (C function,
PySequence_Getltem (C functiod}
PySequence_ Getltem@,
PySequence_GetSlice (C function}h
PySequence_Index (C functiod)f
PySequence_InPlaceConcat (C functiai),
PySequence_InPlaceRepeat (C functidd),
PySequence ITEM (C functior}6
PySequence_Length (C functiord)}
PySequence_List (C functiom}5
PySequence_Repeat (C functiofy,
PySequence_Setltem (C functiod}
PySequence_SetSlice (C function},
PySequence_Size (C functiody}
PySequence_Tuple (C functiodf;
PySequenceMethods (C typép5
PySet_Add (C function)39
PySet Check (C function®9
PySet_Clear (C function®0
PySet_Contains (C functior§9
PySet_Discard (C function$9
PySet GET_SIZE (C function9

Index

159

The Python/C API, Release 2.6.4

PySet New (C function9
PySet_Pop (C function0
PySet_Size (C function9
PySet_Type (C variable®8
PySetObiject (C typeR8
PySignal_SetWakeupFd (C functiod),
PySlice_Check (C functioni4
PySlice_Getlndices (C functionj4
PySlice_GetIndicesEx (C functior4
PySlice_New (C function4
PySlice_Type (C variable}4
PyString_ AS_STRING (C function})7
PyString_AsDecodedObject (C functios))
PyString_AsEncodedObiject (C functioBy
PyString_AsString (C function)7
PyString_AsStringAndSize (C functior§3
PyString_Check (C functionh6
PyString_CheckExact (C functiorfp
PyString_Concat (C function}8
PyString_ConcatAndDel (C functiorf3
PyString_Decode (C function)8
PyString_Encode (C function)9
PyString_Format (C functionh8
PyString_FromFormat (C functior),/
PyString_FromFormatV (C functionj,”
PyString_FromsString (C function}6
PyString_FromString()76
PyString_FromStringAndSize (C functior/
PyString_GET_SIZE (C function}7
PyString_InternFromString (C functior8
PyString_InterninPlace (C functiorj3
PyString_Size (C function)7
PyString_Type (C variablep6
PyStringObject (C typek6
PySys_AddWarnOption (C functiord4
PySys_GetFile (C functionp4
PySys_GetObject (C functiorj3
PySys ResetWarnOptions (C functioi?,
PySys_SetArgv (C functionp4
PySys_SetArgv()3, 91
PySys_SetObject (C functiorf4
PySys_SetPath (C functior4
PySys_WriteStderr (C functiony4
PySys_WriteStdout (C functiony4
Python 3000133
Python Enhancement Proposals

PEP 23814

PEP 302131, 133

PEP 343130
PYTHONDUMPREFS111
PYTHONHOME,9, 94
Pythonic,133
PYTHONPATH,9
PyThreadState&94
PyThreadState (C type)s
PyThreadState_Clear (C functioB)]
PyThreadState_Delete (C functiofy,
PyThreadState_Get (C functio®)

PyThreadState_GetDict (C functio9)§
PyThreadState_New (C functiory)7
PyThreadState_Next (C functiori))0
PyThreadState _SetAsyncExc (C functiof,
PyThreadState Swap (C functio3
PyTime_Check (C function7
PyTime_CheckExact (C function/
PyTime_FromTime (C function7
PyTrace_C_CALL (C variablep9
PyTrace_C_EXCEPTION (C variabl&)9
PyTrace_C_RETURN (C variabl&)9
PyTrace CALL (C variable))9
PyTrace_EXCEPTION (C variabled9
PyTrace_LINE (C variableR9
PyTrace_ RETURN (C variable)9
PyTuple_Check (C functiony,3
PyTuple_CheckExact (C functionj3
PyTuple_ClearFreeList (C functionj4
PyTuple_GET_ITEM (C function){4
PyTuple_GET_SIZE (C function},3
PyTuple_Getltem (C functionY,3
PyTuple_GetSlice (C function)4
PyTuple_New (C function){3
PyTuple_Pack (C function},3
PyTuple_SET_ITEM (C function);4
PyTuple_Setltem (C functiony4
PyTuple_Setltem(%
PyTuple_Size (C functiony,3
PyTuple_Type (C variableY,3
PyTupleObject (C type);3
PyType_Check (C function}i9
PyType_CheckExact (C functiom)9
PyType_ClearCache (C functior)?
PyType_GenericAlloc (C function0
PyType_GenericNew (C functionjp
PyType_HasFeature (C functiod))
PyType_HasFeature()26
PyType IS_GC (C function)9
PyType_IsSubtype (C functior9
PyType_Modified (C function)}9
PyType_Ready (C function}0
PyType_Type (C variable},9
PyTypeObiject (C type}9
PyTZInfo_Check (C function87
PyTZInfo_CheckExact (C function$,7
PyUnicode_AS_DATA (C function)30
PyUnicode_AS_UNICODE (C function0
PyUnicode_AsASCIIString (C function6
PyUnicode_AsCharmapString (C functiof}
PyUnicode_AsEncodedString (C functiof},
PyUnicode_AsL atin1String (C functior§5
PyUnicode_AsMBCSString (C functionjy/
PyUnicode_AsRawUnicodeEscapeString (C func-
tion), 65
PyUnicode_AsUnicode (C functior§l
PyUnicode_AsUnicodeEscapeString (C function),
65
PyUnicode_AsUTF16String (C functiorg4

160

Index

The Python/C API, Release 2.6.4

PyUnicode_AsUTF32String (C functior§3
PyUnicode_AsUTF8String (C functionj3
PyUnicode_AsWideChar (C functiorfl
PyUnicode_Check (C functiony0
PyUnicode_CheckExact (C functior))
PyUnicode_ClearFreeList (C functiorg
PyUnicode_Compare (C functior§3
PyUnicode_Concat (C functionj/
PyUnicode_Contains (C functiorf)3
PyUnicode_Count (C functiony8
PyUnicode_Decode (C functiorf)?2
PyUnicode _DecodeASCII (C functiorfb
PyUnicode_DecodeCharmap (C functio®,
PyUnicode_DecodelLatinl (C functior§)s
PyUnicode_DecodeMBCS (C functior)/
PyUnicode_DecodeMBCSStateful (C functiofy,
PyUnicode_DecodeRawUnicodeEscape (C func-
tion), 65
PyUnicode_DecodeUnicodeEscape (C functién),
PyUnicode_DecodeUTF16 (C functioiy
PyUnicode_DecodeUTF16Stateful (C functioty,
PyUnicode_DecodeUTF32 (C functio®)3
PyUnicode DecodeUTF32Stateful (C functiod,
PyUnicode_DecodeUTF8 (C functior)?
PyUnicode_DecodeUTF8Stateful (C functiofy,
PyUnicode_Encode (C functiorf)2
PyUnicode_EncodeASCIl (C functiorg5
PyUnicode_EncodeCharmap (C functio®d,
PyUnicode Encodelatinl (C functior®);
PyUnicode_EncodeMBCS (C functiorg)/
PyUnicode_EncodeRawUnicodeEscape (C func-
tion), 65
PyUnicode EncodeUnicodeEscape (C functiés),
PyUnicode_EncodeUTF16 (C functioiy}
PyUnicode_EncodeUTF32 (C functio®)3
PyUnicode_EncodeUTF8 (C functior§)3
PyUnicode_Find (C function}8
PyUnicode_Format (C functiony3
PyUnicode_FromEncodedObject (C functiol,
PyUnicode_FromObject (C functiorfL
PyUnicode_FromUnicode (C functiorgl
PyUnicode_FromWideChar (C functior§)l
PyUnicode_GET_DATA_SIZE (C function$0
PyUnicode_GET_SIZE (C function§0
PyUnicode_GetSize (C functiorf)1
PyUnicode_Join (C function}7
PyUnicode_Replace (C functior§3
PyUnicode_RichCompare (C functio®g
PyUnicode_Split (C functiong7
PyUnicode_Splitlines (C function,7
PyUnicode_Tailmatch (C functiony3
PyUnicode_Translate (C functior§7
PyUnicode_TranslateCharmap (C functio®y,
PyUnicode_Type (C variable)9
PyUnicodeObiject (C typeh9
PyVarObject (C type)106
PyVarObject_ HEAD_INIT (C macro),07
PyWeakref Check (C function4

PyWeakref CheckProxy (C functiorg4
PyWeakref_CheckRef (C functiorf)4
PyWeakref GET_OBJECT (C functiorb
PyWeakref GetObject (C functior§s
PyWeakref NewProxy (C function§s
PyWeakref NewRef (C function®4
PyWrapper_New (C function3

R

readbufferproc (C type),26
readonly (C member}y9
realloc(),101
reference countl34
reload

built-in function, 25
repr

built-in function, 38, 113
rexec

module,25

S

search

path, moduleg, 91, 93
segcountproc (C type),26
sequencel 34

object,55
set

object,88
set_all(),6
setcheckinterval() (in module sy$y
setvbuf(),81
shape (C member}9
SIGINT, 21
signal

module,21
slice,134
SliceType (in module types$4
softspace (file attributeg1
special method] 34
sq_ass_item (C membef)25
sq_concat (C memben)25
sq_contains (C member)25
sq_inplace_concat (C membetp5
sg_inplace_repeat (C membetp5
sq_item (C member),25
sq_length (C member),25
sq_repeat (C member)25
statement]134
staticmethod

built-in function, 108
stderr (in module sysj1
stdin (in module syspP1
stdout (in module sysp1
str

built-in function, 38
strerror(),19
strides (C member}9
string

Index

161

The Python/C API, Release 2.6.4

object,56
StringType (in module types}h6
suboffsets (C member$9
sum_list(),6
sum_sequence(J,
sys

module,8, 91
SystemError (built-in exception$?2

T

thread

module,96
tp_alloc (C member)121
tp_allocs (C member),23
tp_as_buffer (C member),15
tp_as_mapping (C membef)1 4
tp_as_number (C membef)]3
tp_as_sequence (C member)4
tp_base (C member),19
tp_bases (C member)22
tp_basicsize (C member)12
tp_cache (C member)22
tp_call (C member)114
tp_clear (C member),17
tp_compare (C member),13
tp_dealloc (C member),12
tp_descr_get (C member)20
tp_descr_set (C membef)20
tp_dict (C member)119
tp_dictoffset (C member),20
tp_doc (C member),16
tp_flags (C member)},15
tp_free (C member), 22
tp_frees (C member),23
tp_getattr (C member),13
tp_getattro (C member),14
tp_getset (C member),19
tp_hash (C member),14
tp_init (C member)121
tp_is_gc (C member),22
tp_itemsize (C member),12
tp_iter (C member)]118
tp_iternext (C member),19
tp_maxalloc (C member),23
tp_members (C member)19
tp_methods (C member);19
tp_mro (C member)122
tp_name (C member),11
tp_new (C member),21
tp_next (C member),23
tp_print (C member)112
tp_repr (C member),13
tp_richcompare (C member)18
tp_setattr (C member),13
tp_setattro (C member),14
tp_str (C member)1 14
tp_subclasses (C membetp2
tp_traverse (C member)16

tp_weaklist (C member),23
tp_weaklistoffset (C member)},18
traverseproc (C type),27
triple-quoted string134
tuple
built-in function, 45, 76
object,73
TupleType (in module types),3
type, 134
built-in function,40
object,4, 49
TypeType (in module types},9

U

ULONG_MAX, 53
unicode
built-in function, 38

Vv

version (in module sysp3, 94
virtual machine 134
visitproc (C type), 127

W
writebufferproc (C type)126

Z
Zen of Python134

162

Index

	Introduction
	Include Files
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Standard Exceptions
	Deprecation of String Exceptions

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Mapping Objects
	Other Objects

	Initialization, Finalization, and Threads
	Thread State and the Global Interpreter Lock
	Profiling and Tracing
	Advanced Debugger Support

	Memory Management
	Overview
	Memory Interface
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Supporting Cyclic Garbage Collection

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

