Bio::Graphics HOWTO

Lincoln Stein, Cold Spring Harbor Laboratory [http://www.cshl.org]

Ids

<Istein@cshl.org>
This document is copyright Lincoln Stein, 2002. It can be copied and distributed under the terms

of the Perl Artistic License.
2002-09-01
Revision History
Revision 0.2 2003-05-15
Current as of BioPerl 1.2.2
This HOWTO describes how to render sequence data graphically in a horizontal map. It applies
to a variety of situations ranging from rendering the feature table of a GenBank entry, to graphing
the positions and scores of a BLAST search, to rendering a clone map. It describes the program-
matic interface to the Bio::Graphics module, and discusses how to create dynamic web pages
using Bio::DB::GFF and the gbrowse package.
... 1
2
2
4
6
8
12
15
19

Table of Contents

1. Introduction
2. Preliminaries
3. Getting Started

4. Adding a Scale to the Image
5. Improving the Image

6. Parsing Real BLAST Output

7. Rendering Features from a GenBank or EMBL File

8. A Better Version of the Feature Renderer
This HOWTO describes the Bio::Graphics module, and some of the applications that were built on top of it.

9. Summary
1. Introduction
Bio::Graphics was designed to solve the following common problems:
You have a list of BLAST hits on a sequence and you want to generate a picture that shows where the hits go

and what their score is.
repeats, promoters and other features.
The Bio::Graphics module was designed to solve these problems. In addition, using the Bio::DB::GFF module
(part of BioPerl) and the gbrowse program (available from http://www.gmod.org) you can create interactive web

You have a big GenBank file with a complex feature table, and you want to render the positions of the genes,

You have a list of ESTSs that you've mapped to a genome, and you want to show how they align.

You have created a clone fingerprint map, and you want to display it.

pages to explore your data.
This document takes you through a few common applications of Bio::Graphics in a cookbook fashion.

httpo://www.renderx.com/

rende

http://www.cshl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

Bio::Graphics is dependent on GD, a Perl module for generating bitmapped graphics written by the author. GD in
turn is dependent on libgd, a C library written by Thomas Boutell, formerly also of Cold Spring Harbor Laboratory

2. Preliminaries
If you are on a Linux system, you might already have GD installed. To verify, run the following command:

(www.boutell.com/gd). To use Bio::Graphics, you must have both these software libraries installed.

% perl -MGD -e "print $GD::VERSION®;
you'll have to install the module. For users of ActiveState Perl this is very easy. Just start up the PPM program and

If the program prints out a version number, you are in luck. Otherwise, if you get a "Can't locate GD.pm" error,
issue the command "install GD". For users of other versions of Perl, you should go to www.cpan.org, download
a recent version of the GD module, unpack it, and follow the installation directions. You may also need to upgrade

to a recent version of the libgd C library.
You may need to upgrade to a recent version of the libgd C library. At the time this was written, there were two

versions of libgd. libgd version 1.8.4 is the stable version, and corresponds to GD version 1.43. libgd version 2.0.1
is the beta version; although it has many cool features, it also has a few known bugs (which Bio::Graphics works

around). If you use libgd 2.0.1 or higher, be sure it matches GD version 2.0.1 or higher.

You will also need to install the Text::Shellwords module, which is available from CPAN.

All the code examples and BLAST input files we'll use are available in the doc/howto/examples/graphics directory

in the BioPerl package.

3. Getting Started
Our first example will be rendering a table of BLAST hits on a sequence that is exactly 1000 residues long. For
parsed by the Bio::SearchlO module, but for now, our table looks like this:

now, we're ignoring finicky little details like HSPs, and assume that each hit is a single span from start to end.
Also, we'll be using the BLAST score rather than P or E value. Later on, we'll switch to using real BLAST output

381 2 200

210 2 210

800 2 200
1000 380 921
812 402 972
1200 400 970

hit score start end

hsHOX3

ScHOX3
xHOX3
hsHOX2
ScHOX2

xHOX2

BUM 400 300 620

PRES1 127 310 700

Figure 1. Simple blast hit file (datal.txt)

Our first attempt to parse and render this file looks like this

httpo://www.renderx.com/

rende

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

=> 800);

=> 1);

Example 1. Rendering the ssimple blast hit file (render_blast1.pl)

#1/usr/bin/perl

o

This is code example 1 in the Graphics-HOWTO
Bio: :Graphics: :Panel->new(-length => 1000, -width
$panel->add_track(-glyph => "generic®,-label
split /\t+/;

use strict;
use Bio::Graphics;
use Bio::SegFeature::Generic;

A WNPRF

my $panel =
my $track =
while (<>) { # read blast file
1gnore comments

next if /™"\#/;
my($name, $score, $start, $end)

o Ol

Bio: :SeqFeature: :Generic->new(-display_name=>%name,-score=>$score,
-start=>$start,-end=>%end) ;

7

8 chomp;

9

10
11

my $feature

12
$track->add_feature($feature);
that we'll use later. We also load Bio: :SegFeature: :Generic in order to create a series of Bio::SeqFeaturel

The script begins by loading the Bio::Graphics module (line 3), which in turn brings in a number of other modules

13
14 3}
print $panel->png;
5). The Panel can contain multiple horizontal tracks, each of which has its own way of rendering features (called
a "glyph™), color, labeling convention, and so forth. In this simple example, we create a single track by calling the

15
objects for rendering. We then create a Bio::Graphics::Panel object by calling its new() method, specifying that

the panel is to correspond to a sequence that is 1000 nucleotides long, and has a physical width of 800 pixels (line

panel object's add_track() method (line 6), specify a glyph type of "generic", and ask that the objects in the track
be labeled by providing a true value to the -label argument. This gives us a track object that we can add our hits

We're now ready to render the blast hit file. We loop through it (line 7-14), stripping off the comments, and parsing
way to do this is to create a Bio::SeqFeature::Generic object, which is similar to Bio::PrimarySeq, except that it

out the name, score and range (line 10). We now need a Bio::SeqFeaturel object to place in the track. The easiest
provides a way of attaching start and end positions to the sequence, as well as such nebulous but useful attributes
as the "score™ and "source". The Bio::SeqFeature::Generic->new() method, invoked in line 11, takes arguments

After creating the feature object, we add it to the track by calling the track's add_feature() method (line 13).

to.
corresponding to the name of each hit, its start and end coordinates, and its score.
After processing all the hits, we call the panel's png() method to render them and convert it into a Portable Network
Graphics file, the contents of which are printed to standard output. We can now view the result by piping it to our

| mportant

If you are on a Windows platform, you need to put STDOUT into binary mode so that the PNG file does
the statement "binmode(STDOUT)".

not go through Window's carriage return/linefeed transformations. Before the final print statement, put

favorite image display program.
This advice also applies to certain versions of RedHat, which ship with a patched (and possibly broken) version
httpo://www.renderx.com/

of Perl.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

% render_blastl._pl datal.txt | display -

hsHDKS BUM

IscHDXS I I PRES1

leHEIXS I hsHDKZ I

I I I *1HDKZ I
IlscHEIXZ

Figure 2. Rendering BLAST hits
Users of operating systems that don't support pipes can simply redirect the output to a file and view it in their fa-

vorite image program.

4. Adding a Scale to the Image
This is all very nice, but it's missing two essential components:

It doesn't have a scale.
It doesn't distinguish between hits with different scores.

Example 2 fixes these problems

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

Example 2. Rendering the blast hit file with scores and scale
=> 800,

#1/usr/bin/perl
This is code example 2 in the Graphics-HOWTO
-width
-pad_left => 10,

lib "/home/lIstein/projects/bioperl-live”;
Bio: :Graphics: :Panel->new(-length => 1000,
-pad_right => 10,

0
1
2 use strict;
3 use
4 use Bio::Graphics;
5 use Bio::SeqgFeature: :Generic;
my $panel =
),
=> "arrow”,

$panel->add_track($full_length,
-glyph
-tick = 2,
-fgcolor => "black",
=> 1,

my $full_length = Bio::SeqFeature: :Generic->new(-start=>1,-end=>1000);
-double
-label => 1,

=> 0,

=> 1000);

)
my $track = $panel->add_track(-glyph => "graded_segments®,
-bgcolor => "blue”,

-min_score

-max_score
Bio: :SeqFeature: :Generic->new(-display_name=>%name,-score=>$score,

18
19
20
21
22
23 while (<>) { # read blast file
24 chomp;
25 next if /"\#/; # ignhore comments
26 my($name,$score,$start,$end) = split /\t+/;
27 my $feature =
28
29 $track->add_feature($feature);
30 }
31 print $panel->png;
There are several changes to look at. The first is minor. We'd like to put a boundary around the left and right edges
of the image so that the features don't bump up against the margin, so we specify a 10 pixel leeway with the
-pad_I| ef t and - pad_ri ght arguments in lines 8 and 9

The next change is more subtle. We want to draw a scale all the way across the image. To do this, we create a track

its start and end coordinates. Lines 12-17 create a new track containing this feature. Unlike the previous example,
in which we created the track first and then added features one at a time with add_feature(), we show here how to

to contain the scale, and a feature that spans the track from the start to the end. Line 11 creates the feature, giving

add feature(s) directly in the call to add_track(). If the first argument to add_track is either a single feature or a

feature array ref, then add_track() will automatically incorporate the feature(s) into the track in a single efficient
step. The remainder of the arguments configure the track as before. The -glyph argument says to use the "arrow"

glyph. The -tick argument indicates that the arrow should contain tick marks, and that both major and minor ticks

should be shown (tick type of "2"). We set the foreground color to black, and request that arrows should be placed

at both ends (-double =>1).

-start=>$start,-end=>%end) ;

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

Q00

falele} [Eele)

"graded_segments" glyph. This glyph takes the specified background color for the feature, and either darkens or
4&0 goo

In lines 18-22, we get a bit fancier with the blast hit track. Now, instead of creating a generic glyph, we use the

lightens it according to its score. We specify the base background color (-bgcolor => 'blue"), and the minimum and

maximum scores to scale to (-min_score and -max_score). (You may need to experiment with the min and max

scores in order to get the glyph to scale the colors the way you want.) The remainder of the program is the same.
?50 I

When we run the modified script, we get this image.
2&0 350
BUM
PRES1
hzHORE
*1HORZ
FcHORZ

1
100

hgHORS
FcHORS
X 1HORS

| mpor tant
Remember that if you are on a Windows platform, you need to put STDOUT into binary mode so that

Figure 3. Theimproved image
the PNG file does not go through Window's carriage return/linefeed transformations. Before the final

print statement, write binmode(STDOUT).

5. Improving the Image

Before we move into displaying gapped alignments, let's tweak the image slightly so that higher scoring hits appear
at the top of the image, and the score itself is printed in red underneath each hit. The changes are shown in Example

3.

Obtain the list of glyphs by running perldoc on Bio::Graphics::Glyph. Obtain a description of the glyph options by running perldoc on indi-
httpo://www.renderx.com/

vidual glyphs, for example "perldoc Bio::Graphics::Glyph::arrow."

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

Example 3. Rendering the blast hit file with scores and scale
=> 800,

#1/usr/bin/perl
-width
-pad_left => 10,

o

strict;

Bio: :Graphics;

Bio: :SeqFeature: :Generic;
),

This is code example 3 in the Graphics-HOWTO
my $full_length = Bio::SeqFeature: :Generic->new(-start=>1,-end=>1000);

lib "/home/lIstein/projects/bioperl-live”;

use
use
use
use
my $panel

Bio: :Graphics: :Panel->new(-length => 1000,
-pad_right => 10,

ab~rwNPF

“arrow”,

$panel->add_track($full_length,
_g|yph =>
-tick = 2,
-fgcolor => "black",
=> 1,
=1,

-double
-label

)
my $track = $panel->add_track(-glyph => "graded_segments®,
-bgcolor => "blue”,
-min_score => 0,
=> "red",
=> "high_score",

-max_score => 1000,
-font2color
sub {
shift;
$feature->score;

-sort_order
-description =>

18
19
20
21
22
23
24
25
26 my $feature
27 my $score
28 return "score=$score';
29 ;s
30 while (<>) { # read blast file
31 chomp;
32 next if /"\#/; # ignhore comments
33 my($name,$score,$start,$end) = split /\t+/;
my $feature = Bio::SeqFeature: :Generic->new(-score=>%$score,
-display_name=>$name,
-start=>$start,-end=>%end) ;
$track->add_feature($feature);

37
}
print $panel->png;
sort order of hi gh_scor e, which sorts the hits from top to bottom in reverse order of their score.
The second change is more complicated, and involves the -description option that appears in the add_track()

call on lines 25-28. The value of - descr i pt i on will be printed beneath each feature. We could pass - descr i p-

t i onaconstant string, but that would simply print the same string under each feature. Instead we pass - descr i p-

34
39
There are two changes to look at. The first appears in line 24, where we pass the - sort _or der option to the

accept a number of prepackaged sort orders or a coderef for custom sorting. In this case, we pass a prepackaged

call that creates the blast hit track. - sort _or der changes the way that features sort from top to bottom, and will
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

ti on a code reference to a subroutine that will be invoked while the picture is being rendered. This subroutine
will be passed the current feature, and must return the string to use as the value of the description. In our code, we

simply fetch out the BLAST hit's score using its score () method, and incorporate that into the description string.

Tip
The ability to use a code reference as a configuration option isn't unique to - descri pti on. In fact,
0.4k
*1HOKZ
FCare=1200
hsHO®2
score=1000

ScHOKE

you can use a code reference for any of the options passed to add_track().
Another minor change is the use of - f ont 2col or in line 23. This simply sets the color used for the description
O.EK O.EK

Foore=512

strings. Figure 3 shows the effect of these changes.
O.EK

1
01K

X 1HORS
FCare=500
hsHOK3
soore=381
FcHORS
BUM
Soore=400
PRES1

Foore=127

similarity hits that can be rendered directly by Bio: :Graphics.

Code example 4 shows the new utility.

Foore=210
Figure 4. Theimage with descriptions and sorted hits
From here it's just a small step to writing a general purpose utility that will read a BLAST file, parse its output,

6. Parsing Real BLAST Output
and output a picture. The key is to use the Bio: :Search 10 infrastructure because it produces Bio::SeqFeaturel

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
2
&

Bio::Graphics HOWTO

Example 4. Parsing and Rendering a Real BLAST File with Bio::Searchl O

()] ab~rwNPF o

o

10
11
12
13
14

15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
a4
45

#1/usr/bin/perl

This is code example 4 in the Graphics-HOWTO
use strict;

use lib "$ENV{HOME}/projects/bioperl-live";
use Bio::Graphics;

use Bio::SearchlO;

my $file = shift or die "Usage: render_blast4_pl <blast file>\n";

my $searchio = Bio::SearchlO->new(-File => $file,
-format => "blast") or die "parse failed";

my $result = $searchio->next_result() or die "no result";

my $panel = Bio::Graphics::Panel->new(-length => $result->query_length,
-width => 800,
-pad_left => 10,

-pad_right => 10,

)

my $Ffull_length = Bio::SeqgFeature::Generic->new(-start=>1,-end=>%result->query_len
-display_name=>$result->query_name
$panel->add_track($full_length,
-glyph => "arrow",
-tick = 2,
-fgcolor => "black",
-double => 1,
-label = 1,

)
my $track = $panel->add_track(-glyph => "graded_segments”,
-label =1,
-connector => "dashed”,
-bgcolor => "blue”,

-font2color => “"red",
-sort_order => "high_score”,
—-description => sub {
my $feature = shift;
return unless $feature->has_tag(“description®);
my ($description) = $feature->each_tag_value("descl
my $score = $feature->score;
"$description, score=$score';

P

while(my $hit = $result->next_hit) {
next unless $hit->significance < 1E-20;

my $feature = Bio::SeqFeature: :Generic->new(-score => $hit->raw_score,
-display_name => $hit->name,
-tag = {
description => $hit->de:
}.
)

while(my $hsp = $hit->next_hsp) {

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

$feature->add_sub_SeqFeature($hsp, "EXPAND");

46
b

47
$track->add_feature($feature);

48
49 }
50 print $panel->png;
In lines 6-8 we read the name of the file that contains the BLAST results from the command line, and pass it to
Bio: :Searchl0->new(), returning a Bio: :Search 10 object. We read a single result from the searchlO
object (line 9). This assumes that the BLAST output file contains a single run of BLAST only.
We then initialize the panel and tracks as before. The only change here is in lines 24-36, where we create the track
for the BLAST hits. The - descri pti on option has now been enhanced to create a line of text that incorporates
the "description” tag from the feature object as well as its similarity score. There's also a slight change in line 26,
where we introduce the - connect or option. This allows us to configure a line that connects the segments of a
discontinuous feature, such as the HSPs in a BLAST hit. In this case, we asked the rendering engine to produce a
The remainder of the script retrieves each of the hits from the BLAST file, creates a Feature object representing

dashed connector line.
The start and end bounds of the hit are determined by the union of its HSPs. We loop through each of the hit's
HSPs by calling its next_hsp () method, and add each HSP to the newly-created hit feature by calling the feature's

the hit, and then retrieves each HSP and incorporates it into the feature. Line 37 beginsawhi le () loop that retrieves
score are used to initialize the feature, and how the description is turned into a tag named "description."”
add_sub_SegFeature() method (line 46). The EXPAND parameter instructs the feature to expand its start

each of the similarity hits in turn. We filter the hit by its significance, throwing out any that have an expectation
value greater than 1E-20 (you will have to adjust this in your own utilities). We then use the information in the hit

to construct a Bio: :SeqFeature: :Generic object (lines 39-44). Notice how the name of the hit and the

and end coordinates to enclose the added subfeature.
Once all the HSPs are added to the feature, we insert the feature into the track as before using the track's

add_Tfeature() function.
Figure 4 shows the output from a sample BLAST hit file.

10

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

US1677 . .
1k 2k
US1677
---------- |
Human non-hiztone chromatin protein HMGL CHMGL) gene, complete cds.,. score=dl129
L35477
------------ k. L
Muz muzculus (clone Clebp-1) high mobility group 1 protein CHMG-1), score=353
XE0457
----------- R R e LR EELELELRRRELELERLELEE B e -----------
M.musculus HHGL gene, score=353
LGid 31
-------------------------------------- e R L L LR LR LERLLLELELRLRLRRRLELERRY BRELRRARE |
Muz muzculus HMG-1 mRMA, complete cds., score=39
LOE0da
------------ R R LR EELELEEELLELEEEELRLEREELELERRELELRERETELRRRELEERS SELRRRERRY |
Human non-hiztone chromosomal protein CHMG-1) retropzeudogens., score=349
*12597

211997

------------ ______ -- I
M.muzculus mENA for non-hiztone chromosomal high-mobility group 1. score=345
D&3574

------------ A - ---- - oo neenonesesoenesesones B AR NAUARRRCELRNRRG RERLLELERN
Human mEMA for HMG-1, complete cds., score=345
2959115
X12796
I - N - ---- - oo neeeeonesmoeseesesoenes Y - - -- -- - oo tooTeToTooensTosensossessossessossssssossssssossosososesoeees i I
Bovine mRMA for high mobility group 1 CHMGLY protein, score=335
RE04EE M2E110
I - k| IR -- -- - - -ere e oS eeeesessesssressssrsssassssssssssssesssssseseed REELE |
M.muzculus HMGL-R-227 gene, score=210 Bowine high-mobility-group protein CHMG-13 mRMNA. 37 end.. score=327
AFOOA343

------------ R e e LR LR LR EELELEREELELERRELELRRREEELRREEY RELRRRERRRE |
Mus muzculus HMG-like protein (Trf) mRMA. complete cds., score=305
MZ1683 : M2165d
I - ---- - I - v e e e A - - -+ -+ "o teeTereTSserensssersssssssssssessssssessssssesssssseseses - |
Pig nonhiztone protein HMGL mRNA, complete cds., score=303
XE0462 L13505
I -] [|
M.musculus HHGL-R-154 gene, score=184 Homo sapiens
014715
[SEMRRERERRERD RLRLSLLILRLILALLARILELARRELERRRRELEY Rl e e e bbb L b L LR LRl - |
Human chromozomal protein HMGL related gene., score=252

¥O0365
------------- R R LR LR L LR L LR ELEARELELERRELELEEELINIIRELEARELRY
Chinese hamster HMG-1 gene for high mobility group protein 1, score=246

M&E3552
YOO463
I - I - ---- - oo eneonesoeoeneseeoenes LR e e b L LR LELLELELEEERLELEERREELED .- L]
Rat mEMNA for high mobility group protein HMGL, score=226
#0461
I -t ||
M.muzculus HMGL-R-145 gene, score=147
XE0459
|
M.musculus HHGL-R-177 gene, score=133
KE04E7
] .|
M.muzculus HMGL-R-57 gene. score=133
XE0465
I - L
M.musculus HHGL-R-1658 gene, score=133
KE04E3
] ||
M.muzculus HMGL-R-159 gene, score=131
X060
I - ||
M.musculus HHGL-R-135 gene, score=127
L32559 =
Rainbow trout HMG-1 gene exons 2-5, complete cdz., score=127
X046

||
M.musculus HHGL-R-161 gene, score=125
KOZE6E6
|

Uz21933
|] L
denopus laevis high mobility group protein-1 CHMG-1) mRMA, complete,. score=107

Figure5. Output from the BLAST parsing and rendering script

The next section will demonstrate how to parse and display feature tables from GenBank and EMBL.

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

I mportant

Remember that if you are on a Windows platform, you need to put STDOUT into binary mode so that
print statement, write binmode(STDOUT).

the PNG file does not go through Window's carriage return/linefeed transformations. Before the final

7. Rendering Features from a GenBank or EM-

With Bio: :Graphics you can render the feature table of a GenBank or EMBL file quite easily. The trick is to
use Bio: :SeqlOtogenerate aset of Bio: : SeqFeaturel objects, and to use those features to populate tracks

BL File
(see the Feature-Annotation HOWTO [http://bioperl.org/HOWTOs/html/Feature-Annotation.html] for more inform-

by its primary tag (such as "exon") and create a new track for each tag type.

ation on features). The documentation for each of the individual. For simplicity's sake, we will sort each feature
Code example 5 shows the code for rendering an EMBL or GenBank entry.

12

httpo://www.renderx.com/

rende

http://bioperl.org/HOWTOs/html/Feature-Annotation.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

Example5. Theembl2picture.pl script turnsany EMBL or GenBank entry into agraphical

rendering

0 #1/usr/bin/perl

1 # Ffile: embl2picture.pl

2 # This is code example 5 in the Graphics-HOWTO

3 # Author: Lincoln Stein

4 use strict;

5 wuse lib "$ENV{HOME}/projects/bioperl-live";

6 use Bio::Graphics;

7 use Bio::SeqlO;

8 use Bio::SeqgFeature: :Generic;

9 my $file = shift or die "provide a sequence file as the argu
10 my $io = Bio::SeqlO->new(-file=>$file) or die "couldn®"t create Bio::Seql0";
11 my $seq = $io->next_seq or die "couldn"t find a sequence in the Fil
12 my $wholeseq = Bio::SeqFeature: :Generic->new(-start=>1,-end=>%seq->length,
13 -display_name=>$seq->display_name);
14 my @fFeatures = $seq->all_SeqFeatures;

15 # partition features by their primary tags
16 my %sorted_features;
17 for my $f (@features) {
18 my $tag = $f->primary_tag;
19 push @{$sorted_features{$tag}}, $f;
20 }
21 my $panel = Bio::Graphics::Panel->new(
22 -length => $seq->length,
23 -key style => "between”,
24 -width => 800,
25 -pad_left => 10,
26 -pad_right => 10,
27)s;
28 $panel->add_track($wholeseq,
29 -glyph => "arrow",
30 -bump => 0,
31 -double=>1,
32 -tick => 2);
33 $panel->add_track($wholeseq,
34 -glyph => "generic”,
35 -bgcolor => "blue”,
36 -label => 1,
37);
38 # general case
39 my @colors = gw(cyan orange blue purple green chartreuse magenta yellow aqua);
40 my $idx = 0;
41 for my $tag (sort keys %sorted_features) {
42 my $features = $sorted_Tfeatures{$tag};
43 $panel->add_track($features,
44 -glyph => “"generic”,
13

3
2
&
L

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO
=> S$colors[$idx++ % @colors],

=> "plack",

-bgcolor
-fgcolor
-font2color => “red”,

-key => "${tag}s",

-bump = +1,
-height => 8,

=>]_,
=>]_,

-label
-description

45
46
47
48
49
50
51
52
53
54 }
55 print $panel->png;
The way this script works is simple. After the library load preamble, the script reads the name of the GenBank or
EMBL file from the command line (line 8). It passes the filename to Bio: :Seql0's new() method, and reads
the first sequence object from it (lines 9-11). If anything goes wrong, the script dies with an error message.
The returned object is a Bio::Seql object, which has a length but no defined start or end coordinates. We would
like to create a drawable Bio::SeqFeaturel object to use for the scale, so we generate a new Bio::SeqFeature::Gen-

);

56 exit O;

eric object that goes from a start of 1 to the length of the sequence. (lines 12-13).
Next, we create the Bio: :Graphics: :Panel object (lines 21-27). As in previous examples, we specify the

The script reads the features from the sequence object by calling al 1 _SeqFeatures(), and then sorts each
feature by its primary tag into a hash of array references named %sorted_features (lines 14-20).

width of the image, as well as some extra white space to pad out the left and right borders.
We now add two tracks, one for the scale (lines 28-32) and the other for the sequence as a whole (33-37). As in

the object is incorporated into the track immediately.

the earlier examples, we pass add_track() the sequence object as the first argument before the options so that
We are now ready to create a track for each feature type. In order to distinguish the tracks by color, we initialize
responding list of features from %sorted_features (line 42) and create a track for it using the "generic" glyph
and the next color in the list (lines 43-53). We set the —label and -description options to the value "1".
This signals Bio: :Graphics that it should do the best it can to choose useful label and description values on

an array of 9 color names and simply cycle through them (lines 39-54). For each feature tag, we retrieve the cor-

its own.
After adding all the feature types, we call the panel's png() method to generate a graphic file, which we print to

STDOUT. If we are on a Windows platform, we would have to include b inmode (STDOUT)) prior to this statement

in order to avoid Windows textmode carriage return/linefeed transformations.

Figure 5 shows an example of the output of this script.

14
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

HSCFYIIT
.
CDSs
0 0 [} g O [m] [m] | e—
EMBEL/GenBankSwissProt
EXONS
0] —
EMEL /GenBank SwissProt EMEL /GenBank SwissProt EMEL /GenBank SwissProt EMEL /GenBank, SwizsPr
0 1 [m]
EMEL /GenBank SwissProt EMEL /GenBank, SwizsProt EMEL /GenBank, SwizsProt
[m] [m]
EMEL /GenBank, SwizsProt EMEL /GenBank SwissProt
FENES
EMBEL/GenBankSwissProt
introns
] . | I
EMEL /GenBank, SwizsProt EMEL /GenBank SwissProt EMEL /GenBank SwissProt
. | []]
EMEL /GenBank SwissProt EMEL /GenBank SwissProt EMEL /GenBank SwissProt
.]]
EMEL /GenBank SwissProt EMEL /GenBank, SwizsProt

prin_transcripts
EMEL /GenBank, SwizsProt
EMEL /GenBank, SwizsProt

EMEL /GenBank, SwizsProt
SO0Urces
[
EMEL /GenBank, SwizsProt

Figure 6. The embl2picture.pl script

8. A Better Version of the Feature Renderer

The previous example's rendering has numerous deficiencies. For one thing, there are no lines connecting the
various CDS rectangles in the CDS track to show how they are organized into a spliced transcript. For another,
the repetition of the source tag "EMBL/GenBank/SwissProt" is not particularly illuminating.

However, it's quite easy to customize the display, making the script into a generally useful utility. The revised code
is shown in example 6.

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
2
&

Bio::Graphics HOWTO

Example 6. Theembl2picture.pl script turnsany EMBL or GenBank entry into agraphical
rendering

0

WN P

~N o ok

12
13
14

15
16

17

18
19
20
21
22

23

24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41

#1/usr/bin/perl

File: embl2picture.pl
This is code example 6 in the Graphics-HOWTO
Author: Lincoln Stein

use strict;

use lib "$ENV{HOME}/projects/bioperl-live";
use Bio::Graphics;

use Bio::SeqlO;

use constant USAGE =><<END;

Usage: $0 <File>
Render a GenBank/EMBL entry into drawable form.
Return as a GIF or PNG image on standard output.

File must be in embl, genbank, or another SeqlO-
recognized format. Only the Ffirst entry will be
rendered.

Example to try:
embl2picture.pl factor7.embl | display -

END

my $file = shift or die USAGE;

my $io = Bio::SeqlO->new(-File=>$%Ffile) or die USAGE;

my $seq = $io->next_seq or die USAGE;

my $wholeseq = Bio::SeqFeature: :Generic->new(-start=>1,-end=>%$seq->length,
-display_name=>$seq->display_name);

my @features = $seq->all_SeqgFeatures;

sort features by their primary tags
my %sorted_ features;
for my $f (@fFeatures) {

my $tag = $f->primary_tag;

push @{$sorted_features{$tag}}, $f;
}

my $panel = Bio::Graphics::Panel->new(
-length => $seq->length,
-key style => "between”,
-width => 800,
-pad_left => 10,
-pad_right => 10,
)
$panel->add_track($wholeseq,
-glyph => "arrow",
-bump => 0,
-double=>1,
-tick => 2);

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bio::Graphics HOWTO

=> "generic”,

-glyph
-bgcolor => "blue”,

$panel->add_track($wholeseq,
-label => 1,

42

43

44
45
46);

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74

-bgcolor
-fgcolor
-font2col
-key
-bump

special cases
it ($sorted_features{CDS}) {
-glyph

-label

)-

}
it ($sorted_features

$panel->add_track

}
75 # genera
76 my @col
77
78
79
80
81
82
83
84
85
86

my

87
88

rende

$panel->add_track($sorted_features{CDS},
=>

-height
-description

delete $sorted_features{"CDS"};

delete $sorted_features{tRNA};

for my $tag (sort keys %sorted_features) {

my $id
$panel->add_track($features,
-glyph
-bgcolor

"transcript2-,

=>

"orange”,
"black”,
"red",

"CDS*",

=>
or =>

=>

+1,

=>
= 12,

=> \&gene_label,
\&gene_description,

=>

{tRNAD) {
($sorted_features{tRNA},
-glyph => “transcript2-,
-bgcolor => “red",
-fgcolor => “black",
-font2color => "red”,
=> "tRNAs",
+1,
12,

=>

=>

-key

-bump
-height

-label => \&gene_label,
gw(cyan orange blue purple green chartreuse magenta yellow aqua);

)-

1 case
0;

=>

ors
"generic”,
=> S$colors[$idx++ % @colors],

$sorted_features{$tag};

X
=> "plack",

$features
-fgcolor
-font2color => "red”,
=> "${tag}s",
+1,
=> \&generic_description

=>

=> 8,

-key
-bump

-height

-description

);

89

20 3}

91 print $panel->png;
92 exit O;
sub gene_label {

my $feature = shift;

17

httpo://www.renderx.com/

93
94

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Bio::Graphics HOWTO

95 my @notes;
96 foreach (gw(product gene)) {

97 next unless $feature->has_tag($);

98 @notes = $feature->each_tag_value($);
99 last;

100 3}

101 $notes[0];

102 }

103 sub gene_description {
104 my $feature = shift;
105 my @notes;

106 foreach (gw(note)) {

107 next unless $feature->has_tag($);

108 @notes = $feature->each_tag_value($));
109 last;

110 3}

111 return unless @notes;

112 substr($notes[0],30) = *..." if length $notes[0] > 30;
113 $notes[0];
114 3}

115 sub generic_description {

116 my $feature = shift;

117 my $description;

118 foreach ($feature->all_tags) {

119 my @values = $feature->each_tag_value($));
120 $description .= $_ eq "note® ? "@values"™ : "$ =@values; ";
121 }

122 $description =~ s/; $//; # get rid of last
123 $description;
124 3}

At 124 lines, this is the longest example in this HOWTO, but the changes are straightforward. The major difference
occurs in lines 47-61 and 62-74, where we handle two special cases: "CDS" records and "tRNAs". For these two
feature types we would like to draw the features like genes using the "transcript2" glyph. This glyph draws inverted
V's for introns, if there are any, and will turn the last (or only) exon into an arrow to indicate the direction of tran-
scription.

First we look to see whether there are any features with the primary tag of "CDS" (lines 47-61). If so, we create a
track for them using the desired glyph. Line 49 shows how to add several features to a track at creation time. If the
first argument to add_track() is an array reference, all the features contained in the array will be incorporated
into the track. We provide custom code references for the - | abel and - descri pti on options. As we shall
see later, the subroutines these code references point to are responsible for extracting names and descriptions for
the coding regions. After we handle this special case, we remove the CDS feature type from the %sorted_fea-
tures array.

We do the same thing for tRNA features, but with a different color scheme (lines 62-74).

Having dealt with the special cases, we render the remaining feature types using the same code we used earlier.
The only change is that instead of allowing Bio: :Graphics: :Panel to guess at the description from the
feature's source tag, we use the —description option to point to a subroutine that will generate more informative
description strings.

The gene_label () (lines 93-102) and gene_description() (lines 103-114) subroutines are simple. The
first one searches the feature for the tags "product” and/or "gene" and uses the first one it finds as the label for the

18

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Bio::Graphics HOWTO

feature. The gene_description() subroutine is similar, except that it returns the value of the first tag named
"note". If the description is over 30 characters long, it is truncated.

The generic_description() (lines 115-124) is invoked to generate descriptions of all non-gene features.
We simply concatenate together the names and values of tags. For example the entry:

source 1..12850
/db_xref=""taxon:9606"
/organism="Homo sapiens"
/map=""13q34""

will be turned into the description string "db_xref=taxon:9606; organism=Homo Sapiens; map=13g34".

After adding all the feature types, we call the panel's png() method to generate a graphic file, which we print to

STDOUT.

Figure 6 shows an example of the output of this script.

1K 2K 3k 4k Gk &k 7K gk Ak 10K 11K 12K
HSCFYIT
.
CDS
-t 04— it ==
factor WII
EeXONS
[} 1 O [m] | e—
gene=F7; Ffactor WII: GOO-119-897 numher=2 number=3 number=3 number=& factor YII
0 [m] O
optional number=d number=7
genes
]
gene=F7
introns
N N N _ _§ |
intron Al intron A intron B Intron O Intron E Intron F
[|]
intron C Intraon G

prin_transcripts
factor VIT pre-mREMA Calt.)

factor VIT pre-mREMA Calt.)

factor VIT pre-mREMA Calt.)

sources

map=13g34; organizm=Homo sapiens: db_xref=taxon: 9606

Figure 7. The embl2picture.pl script

9. Summary

In summary, we have seen how to use the Bio: :Graphics module to generate representations of sequence
features as horizontal maps. We applied these techniques to two common problems: rendering the output of a
BLAST run, and rendering the feature table of a GenBank/EMBL entry.

The graphics module is quite flexible. In addition to the options that we have seen, there are glyphs for generating
point-like features such as SNPs, specialized glyphs that draw GC content and open reading frames, and glyphs
that generate histograms, bar charts and other types of graphs. Bio: :Graphics has been used to represent
physical (clone) maps, radiation hybrid maps, EST clusters, cytogenetic maps, restriction maps, and much more.

Although we haven't shown it, Bio: :Graphics provides support for generating HTML image maps. The Gen-
eric Genome Browser [http://www.gmod.org] uses this facility to generate clickable, browsable images of the
genome from a variety of genome databases.

httpo://www.renderx.com/

http://www.gmod.org
http://www.gmod.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Bio::Graphics HOWTO

Another application you should investigate is the render_sequence.pl script. This script uses the BioFetch interface
to fetch GenBank/EMBL/SwissProt entries dynamically from the web before rendering them into PNG images.

Finally, if you find yourself constantly tweaking the graphic options, you might be interested in Bio: :Graph-
ics: :FeatureFile, autility module for interpreting and rendering a simple tab-delimited format for sequence
features. feature_draw.PLS is a Perl script built on top of this module, which you can find in the scripts/graphics
directory in the Bioperl distribution.

20

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

