
Bio::SearchIO HOWTO
Jason Stajich, Duke University [http://www.duke.edu]

<jason-at-bioperl.org>

Brian Osborne, Cognia Corporation [http://www.cognia.com]
<brian-at-cognia.com>

This document is copyright Jason Stajich, Brian Osborne, 2002-2004. It can be copied and dis-
tributed under the terms of the Perl Artistic License.

2002-07-14

Revision History
js2002-07-14Revision 0.1

first draft
js2002-10-11Revision 0.2

added info on extending Search objects
BIO2003-02-13Revision 0.3

added table and text to Parsing section
BIO2003-09-10Revision 0.4

updated Parsing section
JES and BIO2004-01-30Revision 0.5

Fixed some missing table entries for Hit functions, typo fixes.
JES2004-06-21Revision 0.6

Made document redistributable under Perl Artistic.
JES and BIO2004-12-02Revision 0.7

Section on lightweight objects
BIO2005-08-15Revision 0.8

Table of formats

This is a HOWTO written in DocBook (XML) for the reasoning behind the creation of the
Bio::SearchIO system, how to use it, and how one goes about writing new adaptors to different
output formats. We will also describe how the Bio::SearchIO::Writer modules work for outputting
various formats from Bio::Search objects.

Table of Contents
1. Background ... 1
2. Design .. 2
3. Parsing with Bio::SearchIO ... 3
4. Creating Reports for SearchIO ... 9
5. Implementation .. 9
6. Writing and formatting output .. 10
7. Extending SearchIO ... 11
8. Lightweight Objects ... 12
9. Useful links .. 13

1. Background
One of the most common and necessary tasks in bioinformatics is parsing analysis reports so that one can write
programs which can help interpret the sheer volume of data that can be produced by processing many sequences.
To this end the Bioperl project has produced a number of parsers for the ubiquitous BLAST report. Steve Chervitz
wrote one of the first Bioperl modules for BLAST called Bio::Tools::Blast. Ian Korf allowed us to import and

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.duke.edu
http://www.cognia.com
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

modify his BPlite (Blast Parser) Bio::Tools::BPlite module into Bioperl. This is of course in a sea of BLAST
parsers that have been written by numerous people, but we will only cover the ones associated directly with the
Bioperl project in this document. One of the reasons for writing yet another BLAST parser in the form of
Bio::SearchIO is that even though both Bio::Tools::Blast and Bio::Tools::BPlite did their job correctly, and could
parse WU-BLAST and NCBI-BLAST output, they did not adequately genericize what they were doing. By this
we mean everything was written around the BLAST format and was not easily applicable to parsing, say, FastA
alignments or a new alignment format. One of the powerful features of the Object-Oriented framework in Bioperl
is the ability to read in, say, a sequence file in different formats or from different data sources like a database or
XML-flatfile, and have the program code process the sequences objects in the same manner. We wanted to have
this capability in place for analysis reports as well and thus the generic design of the Bio::SearchIO module.

2. Design
The Bio::SearchIO system was designed with the following assumptions: That all reports parsed with it could be
separated into a hierarchy of components. The Result is the entire analysis for a single query sequence, and multiple
Results can be concatenated together into a single file (i.e. running blastall with a fasta database as the input file
rather than a single sequence). Each Result is a set of Hits for the query sequence. Hits are sequences in the searched
database which could be aligned to the query sequence and met the minimal search parameters, such as e-value
threshold. Each Hit has one or more High-scoring segment Pairs (HSPs) which are the alignments of the query
and hit sequence. Each Result has a set of one or more Hits and each Hit has a set of one or more HSPs, and this
relationship can be used to describe results from all pairwise alignment programs including BLAST, FastA, and
implementations of the Smith-Waterman and Needleman-Wunsch algorithms.

A design pattern, called Factory, is utilized in object oriented programming to separate the entity which process
data from objects which will hold the information produced. In the same manner that the Bio::SeqIO
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqIO.html] module is used to parse different file formats and
produces objects which are Bio::PrimarySeqI [http://doc.bioperl.org/releases/bioperl-1.4/Bio/PrimarySeq.html]
compliant, we have written Bio::SearchIO [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html] to
produce the Bio::Search objects. Sequences are a little less complicated so there is only one primary object
(Bio::PrimarySeqI) which Search results need three main components to represent the data processed in a file:
Bio::Search::Result::ResultI [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultI.html] (top level
results), Bio::Search::Hit::HitI [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/HitI.html] (hits) and
Bio::Search::HSP::HSPI [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPI.html] (HSPs). The
Bio::SearchIO [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html] object is then a factory which produces
Bio::Search::Result::ResultI [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultI.html] objects
and the Bio::Search::Result::ResultI [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultI.html]
objects contain information about the query, the database searched, and the full collection of Hits found for the
query.

The generality of the SearchIO approach is demonstrated by large number of report formats that have appeared
since its introduction. These formats are listed below.

2

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/PrimarySeq.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/HitI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultI.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMame

BLAST (WUBLAST, NCBIBLAST, bl2seq)blast

FASTA -m9 and -m0fasta

BLAST -m9 or -m8 (NCBI, not WUBLAST tabular)blasttable

MEGABLASTmegablast

UCSC PSLpsl

WABAwaba

AXTaxt

Sim4sim4

HMMER hmmpfam and hmmsearchhmmer

Exonerate CIGARexonerate

NCBI BLAST XMLblastxml

Genewise -genesfwise

Table 1. SearchIO Formats

3. Parsing with Bio::SearchIO
This section is going to describe how to use the SearchIO system to process reports. We'll describe BLAST reports
but the idea is that once you understand the methods associated with the objects you won't need to know anything
special about other SearchIO parsers.

Before we get into the details we should admit that there is some confusion about the names and functions of the
objects for historical reasons. Both Steve Chervitz and Jason Stajich have implemented parsers in this system.
Steve created the psiblast parser (which does parse regular BLAST files too) and a host of objects named
Bio::Search::XXX::BlastXXX where XXX is HSP, Hit, and Result. These objects are created by his Bio::Sear-
chIO::psiblast implementation. The objects Jason has created are called Bio::Search::XXX::GenericXXX where,
again, XXX is HSP, Hit, and Result. Because of some of the assumptions made in Steve's implementation and his
utilization of what is known as 'lazy parsing', it is probably not going to be very easy to maintain his system without
his help. On the other hand Jason has tried to make his implementations much easier to follow because all the
parsing is done in one module.

The important take home message is that you cannot assume that methods in the BlastXXX objects are in fact
implemented by the GenericHSP objects. More likely than not the BlastXXX objects will be deprecated and dis-
mantled as their functionality is ported to the GenericHSP objects. For this reason we'll only be discussing the
Generic* objects, though we'll use the terms 'hit', 'HSP', and 'result'.

Here's example code which processes a BLAST report finding all the hits where the HSPs are greater than 100
residues and the percent identity is less than 75 percent. This code demonstrates that a result, in this case from a
BLAST report, contains one or more hits, and a hit contains one or HSPs.

 use strict;
 use Bio::SearchIO;

 my $in = new Bio::SearchIO(-format => 'blast',
 -file => 'report.bls');
 while(my $result = $in->next_result) {
 while(my $hit = $result->next_hit) {
 while(my $hsp = $hit->next_hsp) {
 if($hsp->length('total') > 100) {
 if ($hsp->percent_identity >= 75) {
 print "Hit= ", $hit->name,

3

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 ",Length=", $hsp->length('total'),
 ",Percent_id=", $hsp->percent_identity, "\n";
 }
 }
 }
 }
 }

The example above shows just a few of the many methods available in SearchIO. In order to display all these
methods and what they return let's use a report as input, a simple BLASTX result:

BLASTX 2.2.4 [Aug-26-2002]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= gi|20521485|dbj|AP004641.2 Oryza sativa (japonica
cultivar-group) genomic DNA, chromosome 1, BAC clone:B1147B04, 3785
bases, 977CE9AF checksum.
 (3059 letters)

Database: test.fa
 5 sequences; 1291 total letters

 Score E
Sequences producing significant alignments: (bits) Value

gb|443893|124775 LaForas sequence 92 2e-022

>gb|443893|124775 LaForas sequence
 Length = 331

 Score = 92.0 bits (227), Expect = 2e-022
 Identities = 46/52 (88%), Positives = 48/52 (91%)
 Frame = +1

Query: 2896 DMGRCSSGCNRYPEPMTPDTMIKLYREKEGLGAYIWMPTPDMSTEGRVQMLP 3051
 D+ + SSGCNRYPEPMTPDTMIKLYRE EGL AYIWMPTPDMSTEGRVQMLP
Sbjct: 197 DIVQNSSGCNRYPEPMTPDTMIKLYRE-EGL-AYIWMPTPDMSTEGRVQMLP 246

 Database: test.fa
 Posted date: Feb 12, 2003 9:51 AM
 Number of letters in database: 1291
 Number of sequences in database: 5

Lambda K H
 0.318 0.135 0.401

Gapped
Lambda K H

4

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 0.267 0.0410 0.140

Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 7140
Number of Sequences: 5
Number of extensions: 180
Number of successful extensions: 2
Number of sequences better than 10.0: 2
Number of HSP's better than 10.0 without gapping: 1
Number of HSP's successfully gapped in prelim test: 0
Number of HSP's that attempted gapping in prelim test: 0
Number of HSP's gapped (non-prelim): 1
length of database: 1291
effective HSP length: 46
effective length of database: 1061
effective search space used: 1032353
frameshift window, decay const: 50, 0.1
T: 12
A: 40
X1: 16 (7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 32 (17.6 bits)

Table 2 shows all the data returned by methods used by the Result, Hit, and HSP objects when the report shown
above is used as input. Note that many of the methods shown can be used to either get or set values, but we're just
showing what they get.

5

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExampleMethodObject

algorithmBLASTXalgorithmResult

algorithm version2.2.4 [Aug-26-2002]algorithm_versionResult

query namegi|20521485|dbj|AP004641.2query_nameResult

query accessionAP004641.2query_accessionResult

query length3059query_lengthResult

query descriptionOryza sativa ... 977CE9AF
checksum.

query_descriptionResult

database nametest.fadatabase_nameResult

number of residues in database1291database_lettersResult

number of database entries5database_entriesResult

statistics usedeffectivespaceused ... dblettersavailable_statisticsResult

parameters usedgapext matrix allowgaps ga-
popen

available_parametersResult

number of hits1num_hitsResult

Search::Hit::GenericHit objecthitsResult

hit namegb|443893|124775nameHit

Length of the Hit sequence331lengthHit

accession443893accessionHit

hit descriptionLaForas sequencedescriptionHit

algorithmBLASTXalgorithmHit

hit raw score92raw_scoreHit

hit significance2e-022significanceHit

hit bits92.0bitsHit

Search::HSP::GenericHSP objecthspsHit

number of HSPs in hit1num_hspsHit

locus name124775locusHit

accession number443893accession_numberHit

algorithmBLASTXalgorithmHSP

e-value2e-022evalueHSP

alias for evalue()2e-022expectHSP

Fraction identical0.884615384615385frac_identicalHSP

desc0.923076923076923frac_conservedHSP

number of gaps2gapsHSP

string from alignmentDMGRCSSG ...query_stringHSP

string from alignmentDIVQNSS ...hit_stringHSP

string from alignmentD+ + SSGCN ...homology_stringHSP

length of HSP (including gaps)52length('total')HSP

length of hit participating in alignment
minus gaps

50length('hit')HSP

length of query participating in align-
ment minus gaps

156length('query')HSP

Length of the HSP (including gaps)
alias for length('total')

52hsp_lengthHSP

6

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExampleMethodObject

$hsp->query->frame,$hsp->hit-
>frame

0frameHSP

number of conserved residues48num_conservedHSP

number of identical residues46num_identicalHSP

rank of HSP1rankHSP

identical positions as array(966,971,972,973,974,975 ...)seq_inds('query','identical')HSP

conserved positions as array(967,969)seq_inds('query' , 'con-
served')

HSP

identical positions as array(197,202,203,204,205 ...)seq_inds('hit','identical')HSP

conserved positions as array(198,200)seq_inds('hit','conserved')HSP

score227scoreHSP

bits92.0bitsHSP

start and end as array(2896,3051)range('query')HSP

start and end as array(197,246)range('hit')HSP

% identical88.4615384615385percent_identityHSP

strand of the hit1strand('hit')HSP

strand of the query1strand('query')HSP

start position from alignment2896start('query')HSP

end position from alignment3051end('query')HSP

start position from alignment197start('hit')HSP

end position from alignment246end('hit')HSP

number of identical and conserved as
array

(46,48)matches('hit')HSP

number of identical and conserved as
array

(46,48)matches('query')HSP

Bio::SimpleAlign objectalignmentHSP

Group field from WU-BLAST reports
run with -topcomboN or -topcomboE
specified

hsp_groupHSP

Links field from WU-BLAST reports
run with -links showing consistent
HSP linking

linksHSP

Table 2. SearchIO Methods

Table 2 shows that a method can return a string, an array, or an object. When an object is returned some additional
code will probably be needed to get the data of interest. For example, if you wanted a printable alignment after
you'd parsed BLAST output you could use the get_aln() method, retrieve a Bio::SimpleAlign
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SimpleAlign.html] object and use it like this:

 use Bio::AlignIO;
 # $aln will be a Bio::SimpleAlign object
 my $aln = $hsp->get_aln;
 my $alnIO = Bio::AlignIO->new(-format=>"msf");
 my $alignment_as_string = $alnIO->write_aln($aln);

7

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://doc.bioperl.org/releases/bioperl-1.4/Bio/SimpleAlign.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

On one hand it appears to be a complication, but by entering the worlds of the AlignIO and SimpleAlign objects
you now have access to their functionality and flexibility. This is the beauty of Bioperl!

Some of these methods deserve a bit more explanation since they do more than simply extract data directly from
the output. For example, the ambiguous_aln() method is designed to tell us whether two or more HSPs from a
given hit overlap, and whether the overlap refers to the queries or the hits, or both. One situation is where overlaps
would be found in one but not the other arises where there are repeats in the query or hit. The ambiguous_aln()
method will return one of these 4 values:

query sequence contains overlapping sub-sequences while
hit sequence does not

q

hit sequence contains overlapping sub-sequences while
query does not

s

query and hit sequences contain overlapping sub-se-
quences relative to each other

qw

query and hit sequence do not contain multiple domains
relative to each other OR both contain the same distribu-
tion of similar domains

-

Another method that's useful in dissecting an HSP is the seq_inds() method of the HSP object. What this method
does is tell us what the positions are of all the identical, conserved, mismatched, or gap ("identical", "conserved",
"nomatch", "gap") residues in an alignment, referring to the query or hit strand ("sbjct" is synonymous with "hit").
It could be used like this:

 # put all the conserved matches in query strand into an array
 my @str_array = split "",$hsp->query_string;
 foreach ($hsp->seq_inds('query','conserved')){
 push @conserved,$str_array[$_ - 1];
 }

seq_inds() can be very useful for extracting the mismatch bases in an alignment If you wanted to figure out which
bases are not matching in an alignment you could use seq_inds to get these positions and then extract out these
specific bases from the alignment.

In most cases the SearchIO methods extract data directly from output but there's one important exception, the
frame() method of the HSP object. Instead of using the values in the BLAST report it converts them to values ac-
cording to the GFF specification, which is a format used by many Bioperl modules involved in gene annotation
(for more on GFF see http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml).

Specifically, the frame() method returns 0, 1, or 2 instead of the expected -3, -2, -1, +1, +2, or +3 in BLAST. GFF
frame values are meaningful relative to the strand of the hit or query sequence so in order to reconstruct the BLAST
frame you need to both the strand, 1 or -1, and the GFF frame value:

 my $blast_frame = ($hsp->query->frame + 1) * $hsp->query->strand;

One frequently-asked question has to do with getting sorted output from a report, or sorting hits or HSPs just as
they're sorted in the input file. There's little in the way of sorting in SearchIO's methods, generally speaking you'll
just use a standard Perl approach. Here is an example that sorts hits according to their bit scores:

my @hits = $result->hits;
for my $hit (sort { $a-> bits <=> $b->bits } @hits) {
 # Do something...
}

8

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Our simple table of methods does not show all available arguments or returned values for all the SearchIO methods.
The best place to explore any method in detail is http://doc.bioperl.org which provides the HTML versions of the
Perl POD (Plain Old Documentation) that is embedded in every well-written Perl module - there's also a list of
modules at the bottom of this HOWTO. Other sources of code are the examples/searchio/ and scripts/searchio
directories in the Bioperl package.

4. Creating Reports for SearchIO
One note on creating reports that can be parsed by SearchIO: the developers haven't attempted to parse all the
possible reports that could be created by programs with many command-line options, like blastall. Certainly you
should be able to parse reports created using the default settings, but if you're running blastall, say, using some
special set of options and you've encountered a parsing problem this may be the explanation.

For example, one can currently parse BLAST output created with the default settings as well as the reports created
when using the "-m 8" or "-m 9" options (use format "blasttable") or the XML-formatted reports but it's still possible
to find sets of options that SearchIO can't parse.

You might also find it useful not to have to create reports as files. SearchIO, like SeqIO
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqIO.html], is aware of STDIN so you can pipe output from the
search application directly to it (on operating systems that allow such things). It could look something like this:

use strict;
use Bio::SearchIO;

my $fh;
my $fasta = "/usr/local/bin/fasta34";
my $library = "hs.seq";
my $query = "deserts.seq";
my $options = "-E 0.01 -m 0 -d 10 -Q";
my $command = "$fasta $options $query $library";

open $fh,"$command |";

my $searchio = Bio::SearchIO->new(-format => 'fasta',
 -fh => $fh);

5. Implementation
This section is going to describe how the SearchIO system was implemented, it is probably not necessary to under-
stand all of this unless you are curious or want to implement your own Bio::SearchIO parser. We have utilized an
event-based system to process these reports. This is analagous to the SAX (Simple API for XML) system used to
process XML documents. Event based parsing can be simply thought of as simple start and end events. When you
hit the beginning of a report a start event is thrown, when you hit the end of the report an end event is thrown. So
the report events are paired, and everything else that is thrown in between the paired start and end events is related
to that report.

Another way to think of it is as if you pick a number and color for a card in a standard deck. Let's say you pick red
and 2. The you start dealing cards from our deck and pile them one on top of each other. When you see your first
red 2 you start a new pile, and start dealing cards onto that pile until you see the next red 2. Everything in your
pile that happened between when you saw the beginning red 2 and ending red 2 is data you'll want to keep and
process. In the same way all the events you see between a pair of start and end events (like 'report' or 'hsp') are data
associated with object or child object in its hierarchy. A listener object processes all of these events, in our example
the listener is the table where the stack of cards is sitting, and later it is the hand which moves the pile of cards
when a new stack is started. The listener will take the events and process them. We've neglected to tell you of a
third event that is thrown and caught. This is the characters event in SAX terminology, which is simply data. So

9

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://doc.bioperl.org
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqIO.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

one sends a start event, then some data, then an end event. This process is analagous to a finite state machine in
computer science (and I'm sure the computer scientists reading this right are already yawning) where what we do
with data received is dependent on the state we're in. The state that the listener is in is affected by the events that
are processed.

A small caveat: in an ideal situation a processor would throw events and not need to maintain any state information,
it would just be processing data and the listener would manage the information and state. However, a lot of the
parsing of these human-readable reports requires contextual information to apply the correct regular expressions.
So in fact the event thrower has to know what state it is in and apply different methods based on this. In contrast
the XML parsers simply keep track of what state they are in, but can process all the data with the same system of
reading the tag and sending the data that is in between the XML start and end tags.

All of this framework has been built up so to implement a new parser one only needs to write a module that produces
the appropriate start and end events and the existing framework will do the work of creating the objects for you.
Here's how we've implemented event-based parsing for Bio::SearchIO
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html]. The Bio::SearchIO is just the front-end to this
process, in fact the processing of these reports is done by different modules in the Bio/SearchIO directory. So if
you look at your bioperl distribution and the modules in Bio/SearchIO you'll see modules in there like blast.pm,
fasta.pm, blastxml.pm, SearchResultEventBuilder.pm, EventHandlerI.pm (depending on what version of the toolkit
there may be more modules in there). There is also a SearchWriterI.pm and Writer directory in there but we'll save
that for later. If you don't have the distribution handy you can navigate this at the bioperl CVS web page
[http://cvs.open-bio.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-live/Bio/SearchIO/?cvsroot=bioperl].

Let's use the blast.pm module as an example to describe the relationship of the modules in this directory (could
have substituted any of the other format parsers like fasta.pm or blastxml.pm - these are always lowercase for his-
torical reasons). The module has some features you should look for - the first is the hash in the BEGIN block called
%MAPPING. This key/value pairs here are the shorthand for how we map events from this module to general
event names. This is only necessary because if we have an XML processor (see the blastxml.pm module) the event
names will be the same as the XML tag names (like <Hsp_bit-score> in the NCBI BLAST XML DTD). So to
make this general we'll make sure all of the events inside our parser map to the values in the %MAPPING hash -
we can call them whatever we want inside this module. Some of the events map to hash references (like Statistics_db-
len) and this is so we can map multiple values to the same top-level attribute field but we know they will be stored
as a hash value in the subsequent object (in this example, keyed by the name 'dbentries'). The capital "RESULT",
"HSP", or "HIT" in the value name allow us to encode the event state in the event so we don't have to pass in two
values. It is also easy for someone to quickly read the list of events and know which ones are related to Hits and
which ones are related to HSPs. The listener in our architecture is the Bio::SearchIO::SearchResultEventBuilder
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/SearchResultEventBuilder.html]. This object is attached
as a listener through the Bio::SearchIO [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html] method
add_EventListener. In fact you could have multiple event listeners and they could do different things. In our case
we want to create Bio::Search objects, but an event listener could just as easily be writing data directly into a
database or writing to a file, based on the events. The SearchResultEventBuilder takes the events thrown by the
SearchIO classes and builds the appropriate Bio::Search::HSP object from it.

Sometimes special objects are needed that are extensions beyond what the GenericHSP or GenericHit objects are
meant to represent. For this case we have implemented Bio::SearchIO::SearchResultEventBuilder so that it can
use factories for creating its resulting Bio::Search objects - see the Bio::SearchIO::hmmer::_initialize method for
an example of how this can be set.

6. Writing and formatting output
Often people want to write back out a BLAST report for users who are most comfortable with that output or if you
want to visualize the context of a weakly aligned region and use human intuition to score the confidence of a pu-
tative homologue. The Bio::SearchIO::Writer modules are for creating output using the information.

Bio::SearchIO::Writer currently creates output in a few different formats: text (recreating something like the BLAST
report itself, in part or entirely), HTML, BSML, "ResultTable" (tab-delimited format), "HSPTable" (tab-delimited,
for HSPs), and Gbrowse GFF.

10

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html
http://cvs.open-bio.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-live/Bio/SearchIO/?cvsroot=bioperl
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/SearchResultEventBuilder.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The simplest way to output data in HTML format is as follows.

 my $writerhtml = new Bio::SearchIO::Writer::HTMLResultWriter();
 my $outhtml = new Bio::SearchIO(-writer => $writerhtml,
 -file => ">searchio.html");
 # get a result from Bio::SearchIO parsing or build it up in memory
 $outhtml->write_result($result);

If you wanted to get the output as a string rather than write it out to a file, simply use the following.

 $writerhtml->to_string($result);

The HTMLResultWriter supports setting your own remote database url for the sequence links in the event you'd
like to point to your own SRS or local HTTP-based connection to the sequence data. Simply use the remote_data-
base_url method which accepts a sequence type as input (protein or nucleotide).

You can also override the id_parser() method to define what the unique IDs are from these sequence ids in the
event you would like to use something other than the accession number that is gleaned from the sequence string.

If your data is instead stored in a database you could build the Bio::Search objects up in memory directly from
your database and then use the Writer object to output the data.

7. Extending SearchIO
The framework for Bio::SearchIO [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html] is just a starting
point for parsing these reports and creating objects which represent the information. If you would like to create
your own set of objects which extend the current functionality we have built the system so that it will support this.
For example, you may have built your own HSP object which supports a special operation like realign_with_sw(),
which might realign the HSP via a Smith-Waterman algorithm, pulling extra bases from the flanking sequence.
You might call your module Bio::Search::HSP::RealignHSP and put it in a file called Bio/Search/HSP/Re-
alignHSP.pm. Note that you don't have to put this file directly in the bioperl source directory - you can create your
own local directory structure that is in parallel to the bioperl release source code as long as you have updated your
PERL5LIB to contain your local directory or you are using the 'use lib' directive in your script. Also, you don't
have to use the namespace Bio::Search::HSP as namespaces don't mean anything to perl with respect to object in-
heritance, but do we recommend you name things in a logical manner so that others might read and understand
your code (and if you feel encouraged to donate your code to the project it might easily integrated with existing
modules).

So, you're going to write your new special module, you do need to make sure it inherits from the base
Bio::Search::HSP::HSPI [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPI.html] object. Additionally
unless you want to reimplement all the initialization state in the current Bio::Search::HSP::GenericHSP
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/GenericHSP.html] you should just plan to extend that
object. You need to follow the chained constructor system that we have set up so that the arguments are properly
processed. Here is a sample of what your code might look like (don't forget to write your own POD so that it will
be documented, we've left it off here to keep things simple).

 package Bio::Search::HSP::RealignHSP;
 use strict;
 use Bio::Search::HSP::GenericHSP;
 use vars qw(@ISA); # for inheritance
 @ISA = qw(Bio::Search::HSP::GenericHSP); # RealignHSP inherits from GenericHSP

 sub new {

11

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/GenericHSP.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 my ($class,@args) = @_;
 my $self = $class->SUPER::new(@args); # chained contructor

 # process the 1 additional argument this object supports
 my ($ownarg1) = $self->_rearrange([OWNARG1],@args);

 return $self; # remember to pass the object reference back out
 }

 sub realign_hsp {
 my ($self) = @_;
 # implement my special realign method here
 }

The above code gives you a skeleton of how to start to implement your object. To register it so that it is used when
the SearchIO system makes HSPs you just need to call a couple of functions. The code below outlines them.

use Bio::SearchIO;
use Bio::Search::HSP::HSPFactory;
use Bio::Search::Hit::HitFactory;

setup the blast parser, you can do this with and SearchIO parser however
my $searchio = new Bio::SearchIO(-file => $blastfile,
 -format =>'blast');
build HSP factory with a certain type of HSPs to make
the default is Bio::Search::HSP::GenericHSP
my $hspfact = new Bio::Search::HSP::HSPFactory(-type =>
 'Bio::Search::HSP::RealignHSP');
if you wanted to replace the Hit factory you can do this as well
additionally there is an analagous
Bio::Search::Result::ResultFactory for setting custom Result objects
my $hitfact = new Bio::Search::Hit::HitFactory(-type =>
 'Bio::Search::Hit::SUPERDUPER_Hit');
$searchio->_eventHandler->register_factory('hsp', $hspfact);
$searchio->_eventHandler->register_factory('hit', $hitfact);

We have to register the HSPFactory, which is the object which will create HSPI objects, by allowing this to be
built by a factory rather than a hard-coded Bio::Search::HSP::GenericHSP->new(...) call. We are allowing the user
to take advantage of the whole parsing structure and the ability to slot their own object into the process rather than
re-implementing very much. We think this is very powerful and worth the system overhead, but it may not permit
this to be as efficient in parsing as we would like. Future work will hopefully address speed and memory issues
with this parser. Volunteers and improvement code are always welcome.

8. Lightweight Objects
The approaches described above will create a lot of objects, one for each of the components of a report. When you
have 2000 hits in a BLASTX result there will be quite a few objects built, and a lot of memory consumed. It's
possible that you'll want to use an approach that's less memory-intensive if your result sets are large. One option
is to use the tabular output from BLAST when dealing with large datasets.

There are other workarounds depending on what kind of data you want. We designed SearchIO to be a modular
system which separates parsing the data from instantiating objects by throwing events (like SAX) and having a
listener build objects from these events. So one can instantiate a different listener which builds simpler objects and
throws away the data you don't want.

12

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Here is an example of such a lightweight listener - FastHitEventBuilder - it just throws away the HSPs and only
builds Result and Hit objects.

 use Bio::SearchIO;
 use Bio::SearchIO::FastHitEventBuilder;

 my $searchio = new Bio::SearchIO(-format => $format, -file => $file);

 $searchio->attach_EventHandler(new
 Bio::SearchIO::FastHitEventBuilder);

 while(my $r = $searchio->next_result) {
 while(my $h = $r->next_hit) {
 # Hits will NOT have HSPs
 print $h->significance,"\n";
 }
 }

You could also build your own listener object - SearchResultEventBuilder and FastHitEventBuilder are 2 example
implementations that specify the type of Result/Hit/HSP objects that are created by the listeners. You could creating
some lightweight Hit and HSP objects and have SearchResultEventBuilder create these instead of the default full-
fledged ones.

The whole parser/listener design assumes that you want to process all the data for a result before moving on to the
next one. From the listener's standpoint this means you have to store all the data you just got from the parser.
Whether this is in memory, or potentially stored in a temporary file or database, would be up to the implementation.

9. Useful links
SearchIO Modules

SearchIO.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html]
SearchIO/axt.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/axt.html]
SearchIO/blast.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/blast.html]
SearchIO/blasttable.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/blasttable.html]
SearchIO/blastxml.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/blastxml.html]
SearchIO/EventHandlerI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/EventHandlerI.html]
SearchIO/exonerate.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/exonerate.html]
SearchIO/fasta.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/fasta.html]
S e a r c h I O / F a s t H i t E v e n t B u i l d e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/FastHitEventBuilder.html]
SearchIO/hmmer.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/hmmer.html]
S e a r c h I O / I t e r a t e d S e a r c h R e s u l t E v e n t B u i l d e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/IteratedSearchResultEventBuilder.html]
SearchIO/megablast.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/megablast.html]
SearchIO/psl.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/psl.html]
S e a r c h I O / S e a r c h R e s u l t E v e n t B u i l d e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/SearchResultEventBuilder.html]
SearchIO/SearchWriterI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/SearchWriterI.html]
SearchIO/sim4.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/sim4.html]
SearchIO/waba.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/waba.html]
SearchIO/wise.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/wise.html]
S e a r c h I O / W r i t e r / B S M L R e s u l t W r i t e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/BSMLResultWriter.html]
S e a r c h I O / W r i t e r / G b r o w s e G F F . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/GbrowseGFF.html]

13

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/axt.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/blast.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/blasttable.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/blastxml.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/EventHandlerI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/exonerate.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/fasta.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/FastHitEventBuilder.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/hmmer.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/IteratedSearchResultEventBuilder.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/megablast.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/psl.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/SearchResultEventBuilder.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/SearchWriterI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/sim4.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/waba.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/wise.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/BSMLResultWriter.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/GbrowseGFF.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

S e a r c h I O / W r i t e r / H i t T a b l e W r i t e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/HitTableWriter.html]
S e a r c h I O / W r i t e r / H S P T a b l e W r i t e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/HSPTableWriter.html]
S e a r c h I O / W r i t e r / H T M L R e s u l t W r i t e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/HTMLResultWriter.html]
S e a r c h I O / W r i t e r / R e s u l t T a b l e W r i t e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/ResultTableWriter.html]
S e a r c h I O / W r i t e r / T e x t R e s u l t W r i t e r . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/TextResultWriter.html]
Search/BlastUtils.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/BlastUtils.html]
Search/DatabaseI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/DatabaseI.html]
Search/GenericDatabase.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/GenericDatabase.html]
Search/Hit/BlastHit.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/BlastHit.html]
Search/Hit/Fasta.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/Fasta.html]
S e a r c h / H i t / G e n e r i c H i t . h t m l " > S e a r c h / H i t / G e n e r i c H i t . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/GenericHit.html]
Search/Hit/HitFactory.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/HitFactory.html]
Search/Hit/HitI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/HitI.html]
Search/Hit/HMMERHit.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/HMMERHit.html]
Search/Hit/PsiBlastHit.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/PsiBlastHit.html]
Search/HSP/BlastHSP.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/BlastHSP.html]
Search/HSP/FastaHSP.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/FastaHSP.html]
Search/HSP/GenericHSP.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/GenericHSP.html]
Search/HSP/HMMERHSP.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HMMERHSP.html]
Search/HSP/HSPFactory.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPFactory.html]
Search/HSP/HSPI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPI.html]
Search/HSP/PsiBlastHSP.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/PsiBlastHSP.html]
Search/HSP/PSLHSP.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/PSLHSP.html]
Search/HSP/WABAHSP.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/WABAHSP.html]
S e a r c h / I t e r a t i o n / G e n e r i c I t e r a t i o n . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Iteration/GenericIteration.html]
Search/Iteration/IterationI [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Iteration/IterationI.html]
Search/Processor.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Processor.html]
Search/Result/BlastResult.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/BlastResult.html]
Search/Result/GenericResult.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/GenericResult.html]
Search/Result/HMMERResult.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/HMMERResult.html]
Search/Result/ResultFactory.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultFactory.html]
Search/Result/ResultI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultI.html]
Search/Result/WABAResult.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/WABAResult.html]
Search/SearchUtils.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/SearchUtils.html]
Search/BlastStatistics.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/BlastStatistics.html]
Search/GenericStatistics.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/GenericStatistics.html]
Search/StatisticsI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/StatisticsI.html]

14

Bio::SearchIO HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/HitTableWriter.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/HSPTableWriter.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/HTMLResultWriter.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/ResultTableWriter.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO/Writer/TextResultWriter.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/BlastUtils.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/DatabaseI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/GenericDatabase.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/BlastHit.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/Fasta.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/GenericHit.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/HitFactory.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/HitI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/HMMERHit.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Hit/PsiBlastHit.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/BlastHSP.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/FastaHSP.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/GenericHSP.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HMMERHSP.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPFactory.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/HSPI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/PsiBlastHSP.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/PSLHSP.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/HSP/WABAHSP.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Iteration/GenericIteration.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Iteration/IterationI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Processor.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/BlastResult.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/GenericResult.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/HMMERResult.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultFactory.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/ResultI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/Result/WABAResult.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/SearchUtils.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/BlastStatistics.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/GenericStatistics.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search/StatisticsI.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

