
Phylogenetic Tree HOWTO
Jason Stajich, Dept Molecular Genetics and Microbiology, Duke University

<jason AT bioperl.org>

This document is copyright Jason Stajich, 2003. It can be copied and distributed under the terms
of the Perl Artistic License.

2003-12-01

Revision History
JES2003-12-01Revision 0.1

First version
BIO2004-11-05Revision 0.2

Add SVG section and links
JES2005-07-11Revision 0.3

Explore Node objects more

This HOWTO intends to show how to use the Bioperl Tree objects to manipulate phylogenetic
trees. It shows how to read and write trees, query them for information about specific nodes or
overall statistics, and create pictures of trees. Advanced topics include discussion of generating
random trees and extensions of the basic structure for integration with other modules in Bioperl.

Table of Contents
1. Introduction ... 1
2. Reading and Writing Trees .. 2
3. Example Code .. 2
4. Bio::Tree::TreeI methods .. 2
5. Bio::Tree::TreeFunctionsI ... 3
6. Making Images of Trees ... 5
7. Constructing Trees .. 5
8. Advanced Topics ... 6
9. References and More Reading ... 6
10. Additional Information ... 7

1. Introduction
Generating and manipulating phylogenetic trees is an important part of modern systematics and molecular evolution
research. The construction of trees is the subject of a rich literature and active research. This HOWTO and the
modules described within are focused on querying and manipulating trees once they have been created.

The data we intend to capture with these objects concerns the notion of Trees and their Nodes. A Tree is made up
of Nodes and the relationships which connect these nodes. The basic representation of parent and child nodes is
intended to represent the directionality of evolution. This is to capture the idea that some ancestral species gave
rise, through speciation events, to a number of child species. The data in the trees need not be a strictly bifurcating
tree (or binary trees to the CS types), and a parent node can give rise to 1 or many child nodes.

In practice there are just a few main objects, or modules, you need to know about. There is the main Tree object
Bio::Tree::Tree which is the main entry point to the data represented by a tree. A Node is represented gen-
erically by Bio::Tree::Node, however there are subclasses of this object to handle particular cases where we
need a richer object (see Bio::PopGen::Simulations::Coalescent for more information). The connec-
tions between Nodes are described using a few simple concepts. There is the concept of pointers or references
where a particular Node keeps track of who its parent is and who its children are. A Node can only have 1 parent
and it can have 1 or many children. In fact all of the information in a tree pertaining to the relationships between

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Nodes and specific data, like bootstrap values and labels, are all stored in the Node objects while the
Bio::Tree::Tree object is just a container for some summary information about the tree and a description of
the tree's root node.

2. Reading and Writing Trees
Trees are used to represent the ancestry of a collection of taxa, sequences, or populations.

Using Bio::TreeIO one can read trees from files or datastreams and create Bio::Tree::Tree objects. This
is analagous to how we read sequences from sequence files with Bio::SeqIO to create Bioperl sequence objects
which can be queried and manipulated. Similarly we can write Bio::Tree::Tree objects out to string repres-
entations like the Newick or New Hampshire format which can be printed to a file, a datastream, stored in database,
etc.

The main module for reading and writing trees is the Bio::TreeIO factory module which has several driver
modules which plug into it. These drivers include Bio::TreeIO::newick for New Hampshire or Newick
format, Bio::TreeIO::nhx for the New Hampshire eXtended format from Sean Eddy and Christian Zmeck
as part of their RIO and ATV system [reference here]. The driver Bio::TreeIO::nexus supports parsing tree
data from PAUP's Nexus format. However this driver currently only supports parsing, not writing, of Nexus format
tree files. There are also modules for lintree and Page1 output formats.

3. Example Code
Here is some code which will read in a Tree from a file called "tree.tre" and produce a Bio::Tree::Tree object which
is stored in the variable

$tree

.

Like most modules which do input/output you can also specify the argument -fh in place of -file to provide a glob
or filehandle in place of the filename.

 use Bio::TreeIO;
 # parse in newick/new hampshire format
 my $input = new Bio::TreeIO(-file => "tree.tre",
 -format => "newick");
 my $tree = $input->next_tree;

Once you have a Tree object you can do a number of things with it. These are all methods required in
Bio::Tree::TreeI.

4. Bio::Tree::TreeI methods
Request the taxa (leaves of the tree).

my @taxa = $tree->get_leaf_nodes;

Get the root node.

my $root = $tree->get_root_node;

Get the total length of the tree (sum of all the branch lengths), which is only useful if the nodes actually have the
branch length stored, of course.

2

Phylogenetic Tree HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

my $total_length = $tree->total_branch_length;

5. Bio::Tree::TreeFunctionsI
An additional interface was written which implements utility functions which are useful for manipulating a Tree.

Find a particular node, either by name or by some other field that is stored in a Node. The field type should be the
function name we can call on all of the Nodes in the Tree.

 # find all the nodes named 'node1' (there should be only one)
 my @nodes = $tree->find_node(-id => 'node1');
 # find all the nodes which have description 'BMP'
 my @nodes = $tree->find_node(-description => 'BMP');
 # find all the nodes with bootstrap value of 70
 my @nodes = $tree->find_node(-bootstrap => 70);

If you would like to do more sophisticated searches, like "find all the nodes with bootstrap values better than 70",
you can easily implement this yourself.

 my @nodes = grep { $_->bootstrap > 70 } $tree->get_nodes;

Remove a Node from the Tree and update the children/ancestor links where the Node is an intervening one.

 # provide the node object to remove from the Tree
 $tree->remove_Node($node);
 # or specify the node Name to remove
 $tree->remove_Node('Node12');

Get the lowest common ancestor for a set of Nodes. This method is used to find an internal Node of the Tree which
can be traced, through its children, to the requested set of Nodes. It is used in the calculations of monophyly and
paraphyly and in determining the distance between two nodes.

 # Provide a list of Nodes that are in this tree
 # This only works when @nodes is 2 sequences
 my $lca = $tree->get_lca(-nodes => \@nodes);

In order to get the LCA for multiple nodes we have to iterate until they converge on a single node.

 use strict;
 use Bio::TreeIO;
 my $tree = Bio::TreeIO->new(-format => 'newick', -fh => *DATA)->next_tree;
 my @nodes = grep { $_->id =~ /c|d|f/ } $tree->get_nodes;
 my @orig = @nodes;
 while(@nodes > 1) {
 my $lca = $tree->get_lca(-nodes => [shift @nodes, shift @nodes]);
 push @nodes, $lca;
 }
 my $lca = shift @nodes;

3

Phylogenetic Tree HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 print "lca is ",$lca->id, " for ", join(",",map { $_->id } @orig), "\n";

 @nodes = grep { $_->id =~ /a|z/ } $tree->get_nodes;
 @orig = @nodes;
 while(@nodes > 1) {
 my $lca = $tree->get_lca(-nodes => [shift @nodes, shift @nodes]);
 push @nodes, $lca;
 }
 $lca = shift @nodes;
 print "lca is ",$lca->id, " for ", join(",",map { $_->id } @orig), "\n";

 __DATA__
 (a,((c,d)z,(e,f)y)x)root;

Get the distance between two nodes by adding up the branch lengths of all the connecting edges between two
nodes.

 my $distances = $tree->distance(-nodes => [$node1,$node2]);

Perform a test of monophyly for a set of nodes and a given outgroup node. This means the common ancestor for
the members of the internal_nodes group is more recent than the common ancestor that any of them share with the
outgroup node.

 if($tree->is_monophyletic(-nodes => \@internal_nodes,
 -outgroup => $outgroup)) {
 print "these nodes are monophyletic: ",
 join(",",map { $_->id } @internal_nodes), "\n";
 }

Perform a test of paraphyly for a set of nodes and a given outgroup node. This means that a common ancestor 'A'
for the members of the ingroup is more recent than a common ancestor 'B' that they share with the outgroup node
and that there are no other nodes in the tree which have 'A' as a common ancestor before 'B'.

 if($tree->is_paraphyletic(-nodes => \@internal_nodes,
 -outgroup => $outgroup) > 0) {
 print "these nodes are monophyletic: ",
 join(",",map { $_->id } @internal_nodes), "\n";
 }

Re-root a tree, specifying a different node as the root (and a different node as the outgroup).

 # node can either be a Leaf node in which case it becomes the
 # outgroup and its ancestor is the new root of the tree
 # or it can be an internal node which will become the new
 # root of the Tree
 $tree->reroot($node);

4

Phylogenetic Tree HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

6. Making Images of Trees
You can also make images of trees. If you have the module SVG::Graph installed you can create an SVG image
of your tree. The example below uses TreeIO to get a Tree object and then its tree is written to an image file.

 use Bio::TreeIO;
 my $in = new Bio::TreeIO(-file => 'input',
 -format => 'newick');
 my $out = new Bio::TreeIO(-file => '>mytree.svg',
 -format => 'svggraph');

 while(my $tree = $in->next_tree) {
 $out->write_tree($tree);
 }

Alternatively you could use an output format of "tabtree", this option will create an ASCII drawing of the tree.

7. Constructing Trees
Pairwise distances for all sequences in an alignment can be computed with Bio::Align::DNAStatistics
and and Bio::Align::ProteinStatistics. There are several different methods implemented. For DNA
alignments, Jukes-Cantor (1969), Juke-Cantor uncorrected, Kimura 2-parameter (1980), Felsenstein (1981), Tajima-
Nei (1984), and Tamura (1992) are currently implemented. In addition, for coding sequences, synonymous and
non-synonymous counts can be computed with the calc_KaKs_pair. For Protein sequences alignments only
Kimura (1983) is currently supported although other methods will be added.

To use these methods simply initialize a statistics module, and pass in an alignment object (Bio::SimpleAlign)
and the type of distance method to use and the module will return a Bio::Matrix::PhylipDist matrix object
of pairwise distances. The code example below shows how this could be done.

Given the matrix of pairwise distances one can build a phylogenetic tree using 2 simple methods provided in the
Bio::Tree::DistanceFactory. Simple request either Neighbor-Joining (NJ) trees or Unweighted Pair
Group Method with Arithmatic Mean (UPGMA) clusters. There are caveats with these methods and whether or
not the distances are additive. The method check_additivity in Bio::Tree::DistanceFactory is
provided to calculate whether or not additivity holds for the data.

The following is a basic code snippet which describes how to use the pairwise distance and tree building modules
in Bioperl.

 use Bio::AlignIO;
 use Bio::Align::DNAStatistics;
 use Bio::Tree::DistanceFactory;
 # for a dna alignment
 # can also use ProteinStatistics
 my $aln = Bio::AlignIO->new(-file => 'filename', -format=>'clustalw');
 my $stats = Bio::Align::DNAStatistics->new;
 my $mat = $stats->distance(-method => 'Kimura',
 -align => $aln);
 my $dfactory = Bio::Tree::DistanceFactory->new(-method => 'NJ');
 my $tree = $dfactory->make_tree($mat);

TODO: Using external programs: phylip,MrBayes,paup,puzzle,protml

5

Phylogenetic Tree HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-parametric bootstrapping is one method to test the consistency of the data with the optimal tree. A set of
subreplicates are generated from the alignment using the method from Bio::Align::Utilities called
bootstrap_replicates. One passes in an alignment object and the count of the number of replicates to
generate.

 use Bio::Align::Utilities qw(:all);
 my $replicates = bootstrap_replicates($aln,$count);

8. Advanced Topics
It is possible to generate random tree topologies with a Bioperl object called Bio::Tree::RandomFactory.
The factory only requires the specification of the total number of taxa in order to simulate a history. One can request
different methods for generating the random phylogeny. At present, however, only the simple Yule backward is
implemented and is the default.

The trees can be generated with the following code. You can either specify the names of taxa or just a count of
total number of taxa in the simulation.

 use Bio::TreeIO;
 use Bio::Tree::RandomFactory;
 # initialize a TreeIO writer to output the trees as we create them
 my $out = Bio::TreeIO->new(-format => 'newick',
 -file => ">randomtrees.tre");
 my @listoftaxa = qw(A B C D E F G H);
 my $factory = new Bio::Tree::RandomFactory(-taxa => \@listoftaxa);
 # generate 10 random trees
 for(my $i = 0; $i < 10; $i++) {
 $out->write_tree($factory->next_tree);
 }
 # One can also just request a total number of taxa (8 here) and
 # not provide labels for them
 # In addition one can specify the total number of trees
 # the object should return so we can call this in a while
 # loop
 $factory = new Bio::Tree::RandomFactory(-num_taxa => 8
 -max_count=> 10);
 while(my $tree = $factory->next_tree) {
 $out->write_tree($tree);
 }

There are more sophisticated operations that you may wish to pursue with these objects. We have tried to create a
framework for this type of data, but by no means should this be looked at as the final product. If you have a partic-
ular statistic or function that applies to trees that you would like to see included in the toolkit we encourage you
to send details to the Bioperl list, bioperl-l@bioperl.org.

9. References and More Reading
For more reading and some references for the techniques above see these titles.

J. Felsenstein, "Infering Phylogenies" 2003. Sinuar and Associates.
D. Swoffrod, Olsen, Waddell and D. Hillis, "Phylogenetic Inference" 1996. in Mol. Systematics, 2nd ed, 1996, Ch
11.

6

Phylogenetic Tree HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Eddy SR, Durbin R, Krogh A, Mitchison G, "Biological Sequence Analysis" 1998. Cambridge Univ Press, Cam-
bridge, UK.

10. Additional Information
Here's a list of the relevant modules. If you have questions or comments that aren't addressed herein then write the
Bioperl community at bioperl-l@bioperl.org.

Related Modules

Bio/TreeIO.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO.html]
Bio/Tree/Tree.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/Tree.html]
Bio/Align/DNAStatistics.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Align/DNAStatistics.html]
Bio/Align/ProteinStatistics.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Align/ProteinStatistics.html]
Bio/Align/Utilities.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Align/Utilities.html]
Bio/Matrix/PhylipDist.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Matrix/PhylipDist.html]
B i o / P o p G e n / S i m u l a t i o n / C o a l e s c e n t . p m
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/PopGen/Simulation/Coalescent.html]
Bio/SimpleAlign.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SimpleAlign.html]
Bio/Tree/DistanceFactory.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/DistanceFactory.html]
Bio/Tree/Node.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/Node.html]
Bio/Tree/RandomFactory.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/RandomFactory.html]
Bio/Tree/TreeI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/TreeI.html]
Bio/Tree/AlleleNode.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/AlleleNode.html]
Bio/Tree/NodeI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/NodeI.html]
Bio/Tree/NodeNHX.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/NodeNHX.html]
Bio/Tree/TreeFunctionsI.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/TreeFunctionsI.html]
Bio/Tree/Statistics.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/Statistics.html]
Bio/TreeIO/newick.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/newick.html]
Bio/TreeIO/nexus.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/nexus.html]
Bio/TreeIO/nhx.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/nhx.html]
Bio/TreeIO/pag.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/pag.html]
Bio/TreeIO/svggraph.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/svggraph.html]
Bio/TreeIO/lintree.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/lintree.html]
Bio/TreeIO/tabtree.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/tabtree.html]
Bio/TreeIO/TreeEventBuilder.pm [http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/TreeEventBuilder.html]

7

Phylogenetic Tree HOWTO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/Tree.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Align/DNAStatistics.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Align/ProteinStatistics.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Align/Utilities.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Matrix/PhylipDist.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/PopGen/Simulation/Coalescent.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SimpleAlign.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/DistanceFactory.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/Node.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/RandomFactory.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/TreeI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/AlleleNode.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/NodeI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/NodeNHX.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/TreeFunctionsI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tree/Statistics.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/newick.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/nexus.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/nhx.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/pag.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/svggraph.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/lintree.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/tabtree.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/TreeIO/TreeEventBuilder.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

