3
2
&

Beginners HOWTO

Brian Osborne, Cognia Corporation [http://www.cognia.com]
<brran-at-cognia.com>

James Thompson, <tex-at-biocompute.net>

This document is copyright Brian Osborne, 2004. For reproduction other than personal use please
contact brian at cognia.com.

2005-02-08

This is a HOWTO written in DocBook (XML) that talks about using Bioperl
[http://www.bioperl.org/], for biologists who would like to learn more about writing their own
bioinformatics scripts using Bioper| [http://www.bioperl.org/].

What is Bioper!| [http://bioperl.org]? It is an open source bioinformatics toolkit used by researchers
all over the world. If you're looking for a script built to fit your exact need it's likely you won't

find it in Bioper| [http://bioperl.org]. What you will find is a diverse set of Perl modules that will
enable you to write your own script, and a commmunity of people who are willing to help you.

Table of Contents

ONO OB~ WN B

©

10
11
12
13
14
15
16

. Introduction
. Installing Bioper|

. Getting Assistance
. Perl Itself
. Starting to write a script on Unix
. Creating a sequence, and an object
. Writing a sequence to a file
. Retrieving a sequence from a file
. Retrieving a sequence from a database
. The Sequence object
. Example Sequence objects
. BLAST
. Indexing for Fast Retrieval
. More on Bioperl
. Perl's Documentation System
. The Basics of Perl Objects

1. Introduction

If you're a molecular biologist it's likely that you're interested in gene and protein sequences, and you study them
in some way on a regular basis. Perhaps you'd like to try your hand at automating some of these tasks, or you're
just curious about learning more about the programming side of bioinformatics. In this HOWTO you'll see discussions
of some of the common uses of Bioperl [http://bioperl.org], like sequence analysis with BLAST and retrieving
sequences from public databases. You'll also see how to write Bioper| [http://bioperl.org] scripts that chain these
tasks together, that's how you'll be able to do really powerful things with Bioper! [http://bioperl.org].

You will also see some discussions of software concepts, this can't be avoided. The more you understand about
programming the better, but all efforts will be made to not introduce too much unfamiliar material. However, there
will be an introducton to modularity, or objects. This is one of the aspects of the Bioper| [http://bioperl.org] package
that you'll have to come to grips with as you attempt more complex tasks with your scripts.

http://www.renderx.com/


http://www.cognia.com
http://www.bioperl.org/
http://www.bioperl.org/
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Beginners HOWTO

One of the challenging aspects of learning a new skill is learning the jargon, and programming certainly has its
share of interesting terms and concepts. Be patient - remember that the programmers learning biology have had
just as tough a task (if not worse - just ask them!).

Note

This HOWTO does not discuss a very nice module that's designed for beginners, Bio::Perl
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Perl.ntml]. The reason is that though this is an excellent
introductory tool, it is not object-oriented and can't be extended. What we're attempting here is to introduce
Bioper! [http://bioperl.org] and show you ways to expand your new-found skills.

2. Installing Bioperl [http://bioperl.org]

The first thing to determine is the Bioper| [http://bioperl.org] platform - Unix or Windows? Here are some things
to consider, if you're choosing between the two.

Unix Advantages

Knowing some Unix is a useful skill. No matter how prevalent Windows is on the desktop, Unix rules bioinform-
atics.

Unix isn't as hard as you may think, if you know less than 10 commands you're ready to work.

Every bioinformatics application you've ever heard of runs on Unix.

If you want to do serious computation the typical Unix server is probably more stable and more powerful than the
available Windows machine.

There may be an administrator taking care of the machine - maybe she'll even install Bioperl [http://bioperl.org]
for you! Ask and see.

Unix Disadvantages

The command-line can seem unfamiliar and awkward at first.

Your Unix account may be on a server - not too portable!

You may not have easy access to all your familiar programs.

You'll probably have to learn to use a Unix word processor, like emacs or vi.

You may not have control of the machine, the administrator will. You may not be able to download all of Genbank,

for example!
Windows Advantages

Simplicity, if Windows is what you're working with now.
Plenty of Bioper| [http://bioperl.org] users run it on Windows.

Windows Disadvantages

Not all bioinformatics applications run on Windows.
It's your computer, you will have to deal with the installation details yourself.
Your computer may not be able to handle serious computation gracefully.

Tip
If you decide to use Unix there are many Web pages that can give you a good introduction, google "intro-
duction unix" to see more than a few.

You should also read the instructions for Unix installation [http://bioperl.org/Core/Latest/INSTALL] or Windows
installation [http://bioperl.org/Core/Latest/INSTALL.WIN]. Many of the letters to the the bioperl-I mailing list
concern problems with installation, and there is a set of concerns that come up repeatedly:

1.  On Windows, messages like "Error: Failed to download URL http://bioperl.org/DIST/GD.ppd", or "Not
found". The explanation is that Bioper| [http://bioperl.org] does not supply every accessory module that's

http://www.renderx.com/


http://doc.bioperl.org/releases/bioperl-1.4/Bio/Perl.html
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org/Core/Latest/INSTALL
http://bioperl.org/Core/Latest/INSTALL.WIN
http://bioperl.org/Core/Latest/INSTALL.WIN
http://bioperl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

INSTALL

necessary to run all of Bioperl [http://bioperl.org]. You'll need to search other repositories to install all of
these accessory modules. See the INSTALL.WIN [http://bioperl.org/Core/Latest/INSTALL.WIN] file for more

that specific module by hand. See

On Unix, messages like "Can't locate <some-module>.pm in @INC...". This means that Perl could not find
install

a particular module and the explanation usually is that this module is not installed. You can either install

2.
Bundle::Bioperl

Seeing messages like "Tests Failed". If you see an error during installation consider whether this problem is
test pass, but that may be a lot of work, with much of it fixing modules that aren't in Bioper| [http://bioperl.org]

information.
[http://bioperl.org] or
[http://bioperl.org/Core/Latest/INSTALL] for details.
going to affect your use of Bioperl [http://bioperl.org]. There are almost 800 modules in Bioperl
[http://bioperl.org], and ten times that many tests are run during the installation. If there's a complaint about
GD it's only relevant if you want to use the Bio/Graphics modules, if you see an error about some XML
parser it's only going to affect you if you're reading XML files. Yes, you could try and make each and every

People will run into problems installing Bioperl [http://bioperl.org] or writing scripts using Bioperl
[http://bioperl.org], nothing unusual about that. If you need assistance the way to get it is to mail bioperl-I@biop-

itself.
3. Getting Assistance
erl.org. There are a good number of helpful people who regularly read this list but if you want their advice it's best

Please include:

to give sufficent detail.
The version of Bioperl [http://bioperl.org] you're working with.

1.
The platform or operating system you're using.

2.
3. What you are trying to do.
The code that gives the error, if you're writing a script.
Every once in a while a message will appear in bioperl-I coming from someone in distress that goes unanswered.
The explanation is usually that the person neglected to include 1 or more of the details above, usually the script or

4,

5. Any error messages you saw.

the error messages.

Note

And every once in a while, not often, an email will go unanswered because the the tone is unpleasant.
lack of documentation is not the way to make friends!

Bioper! [http://bioperl.org] is a 100% volunteer effort, we all have other jobs, complaining about bugs or

Here are a few things you might want to look at if you want to learn more about Perl:
Perl's own documentation. Do "perldoc perl” from the command-line for an introduction.

Learning Perl [http://www.oreilly.com/catalog/lperl3/] is the most frequently cited beginner's book.
Perl in a Nutshell [http://www.oreilly.com/catalog/perlnut2/] is also good. Not much in the way of examples, but

covers many topics succintly.
3
http://www.renderx.com/

rende


http://bioperl.org
http://bioperl.org/Core/Latest/INSTALL.WIN
http://bioperl.org
http://bioperl.org/Core/Latest/INSTALL
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://www.oreilly.com/catalog/lperl3/
http://www.oreilly.com/catalog/perlnut2/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

5. Starting to write a script on Unix

Sometimes the trickiest part is this step, writing something and getting it to run, so this section attempts to address
some of the more common tribulations.

In Unix when you're ready to work you're usually in the command-line or "shell" environment. First find out Perl's
version by typing this command:

>perl -v
You will see something like:

This is perl, v5.8.2 built for cygwin-thread-multi-64int

Copyright 1987-2003, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl® or “perldoc perl". |If you have access to the
Internet, point your browser at http://www.perl_com/, the Perl Home Page.

Hopefully you're using Perl version 5.4 or higher, earlier versions may be troublesome. Now let's find out where
the Perl program is located:

>which perl
This will give you something like:
>/bin/perl

Now that we know where Perl is located we're ready to write a script, and line 1 of the script will specify this loc-
ation. You're probably using some Unix word processor, emacs or vi, for example (nano or pico are other possible
choices, very easy to use, but not found on all Unix machines unfortunately). Start to write your script by entering

something like:

>emacs seqio.pl

And make this the first line of the script:
#1/bin/perl -w

The -w flag tells Perl to warn you if and when various common errors are encountered, it's useful.

rende

http://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

6. Creating a sequence, and an object
Our first script will create a sequence. Well, not just a sequence, you will be creating a "sequence object”, since
Bioper| [http://bioperl.org] is written in an object-oriented way. Why be object-oriented? Why introduce these odd
or intrusive notions into software that should be "biological” or "intuitive™? The reason is that thinking in terms of
modules or objects turns out to be the most flexible, and ultimately the simplest, way to deal with data as complex
as biological data. Once you get over your initial skepticism, and have written a few scripts, you will find this idea

Bio::Seq
Bio::Seq

One way to think about an object in software is that it is a container for data. The typical sequence entry contains
a

differents sorts of data (a sequence, one or more identifiers, and so on) so it will serve as a nice example of what

an object can be.
to create
The

of an object becoming a bit more natural.
All objects in Bioperl [http://bioperl.org] are created by specific Bioper| [http://bioperl.org] modules, so if you
This line tells Perl to use a module on your machine called "Bio/Seqg.pm”. We will use this Bio::Seq

want to create an object you're also going to have to tell Perl which module to use. Let's add another line:

module
object.

#1/bin/perl -w
use Bio::Seq;
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html]
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html]
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html] module is one of the central modules in Bioperl
[http://bioperl.org]. The analogous Bio::Seq [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html] object, or
"Sequence object", or "Seq object”, is ubiquitous in Bioper! [http://bioperl.org], it contains a single sequence and
associated names, identifiers, and properties. Let's create a very simple sequence object at first, like so:

#1/bin/perl -w

use Bio::Seq;
That's it! The variable $seq_obj is the Sequence object, a simple one, containing just a sequence. Note that the

$seq_obj = Bio::Seg->new(-seq => "aaaatgggggggggggccccgtt”
-alphabet => "dna” );
code tells Bioper! [http://bioperl.org] that the sequence is DNA (the choices here are 'dna’, 'rna’, and 'protein'), this
is the wise thing to do. If you don't tell Bioper| [http://bioperl.org] it will attempt to guess the alphabet. Normally
it guesses correctly but if your sequence has lots of odd or ambiguous characters, such as N or X, Bioperl

[http://bioperl.org]'s guess may be incorrect and this may lead to some problems.
Bio:: Seq [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html] objects can be created manually, as above, but
they're also create automatically in many operations in Bioper| [http://bioperl.org], for example when alignment

Any time you explicitly create an object, you will use this new() method. The syntax of this line is one you'll see
again and again in Bioper| [http://bioperl.org]: the name of the object or variable, the module name, the -> symbol,

files or database entries or BLAST reports are parsed.
the method name new, some argument name like -seq, the => symbol, and then the argument or value itself, like

aaaatgggggggggggccccytt.
5
http://www.renderx.com/

Note

If you've programmed before you've come across the term "function” or "sub-routine". In object-oriented
programming the term "method" is used instead.

rende


http://bioperl.org
http://bioperl.org
http://bioperl.org
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html
http://bioperl.org
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html
http://bioperl.org
http://bioperl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
2
&

Beginners HOWTO

The object was described as a data container, but it is more than that. It can also do work, meaning it can use or
call specific methods taken from the module or modules that were used to create it. For example, the Bio::Seq
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html] module can access a method named seq() that will
print out the sequence of Bio::Seq [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html] objects. You could
use it like this:

#1/bin/perl -w
use Bio::Seq;

$seq_obj = Bio::Seg->new(-seq => "aaaatgggggggggggccccgtt",
-alphabet => "dna” );

print $seq_obj->seq;

As you'd expect, this script will print out aaaatgggggggggggccccgtt. That -> symbol is used when an object calls
or accesses its methods.

Let's make our example a bit more true-to-life, since a typical sequence needs an identifier, perhaps a description,
in addition to its sequence.

#1/bin/perl -w
use Bio::Seq;

$seq_obj = Bio::Seg->new(-seq => "aaaatgggggggggggccccgtt"”,
—-display_id => "#12345",
-desc => "example 1",
-alphabet => "dna" );

print $seq_obj->seq();

aaaatgggggggggggcececegtt, #12345, and example 1 are called "arguments” in programming jargon. You could say
that this example shows how to pass arguments to the new method.

7. Writing a sequence to a file

This next example will show how two objects can work together to create a sequence file. We already have a Se-
guence object, $seq_obj, and we will create an additional object whose responsibility it is to read from and write
to files. This object is the SeqlO object, where 10 stands for Input-Output. By using Bio::SeglO
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqlO.html] in this manner you will be able to get input and make
output for all of the sequence file formats supported by Bioperl [http://bioperl.org] (the SeqiO HOWTO
[http://bioperl.org/HOWTOs/html/SeqlO.html] has a complete list of supported formats). The way you create
Bio::SeqlO objects is very similar to the way we used new() to create a Bio::Seq
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html], or sequence, object:

use Bio::SeqlO;

$seqio_obj = Bio::SeqlO->new(-File => ">sequence.fasta”,
-format => "fasta" );

http://www.renderx.com/


http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqIO.html
http://bioperl.org
http://bioperl.org/HOWTOs/html/SeqIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

Note that > in the -file argument. This character indicates that we're going to writeto the file named "sequence.fasta",

the same character we'd use if we were using Perl's open() function to write to a file. The "-format™ argument,

"fasta”, tells the SeqlO object that it should create the file in fasta format.

Let's put our 2 examples together:

#1/bin/perl -w

use Bio::Seq;

use Bio::SeqlO;

-display_id => "#12345",
-alphabet

-desc => "example 1",
> lldnall );

Bio: :Seqg->new(-seq => "‘aaaatgggggggggggccccgtt’,
=> ">sequence.fasta”,

$seq_obj
-format => "fasta" );

Bio::SeqlO->new(-file

Let's consider that last write_seq line where you see two objects since this is where some neophytes start to

$seqio_obj
$seqio_obj->write_seq($seq_obj);
get a bit nervous. What's going on there? In that line we handed or passed the Sequence object to the SeqlO object

as an argument to its wr i te_seq method. Another way to think about this is that we hand the Sequence object
to the SeqlO object since SeqlO understands how to take information from the Sequence object and write to a file

using that information, in this case in fasta format. If you run this script like this:

>perl seqio.pl
You should create a file called "sequence.fasta" that looks like this:
Let's demonstrate the intelligence of the SeqlO - the example below shows what file content is created when the
dna linear UNK

>#12345 example 1
aaaatgggggggggggccccgtt
23 bp

argument to "-format" is set to "genbank" instead of "fasta":
3t

#12345
Location/Qualifiers
12 ¢

example 1
4 c

LOCUS
DEFINITION
ACCESSION unknown
FEATURES
BASE COUNT 4 a
ORIGIN
1 aaaatggggg ggggggcccc gtt
//
8. Retrieving a sequence from a file
One beginner's mistake is to not use Bio:: Seql O [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqlO.html] when
working with sequence files. This is understandable in some respects. You may have read about Perl's open
7
http://www.renderx.com/

rende


http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqIO.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

function, and Bioper| [http://bioperl.org]'s way of retrieving sequences may look odd and overly complicated, at

first. But don't use open! Using open immediately forces you to do the parsing of the sequence file and this can
get complicated very quickly. Trust the SeqlO object, it's built to open and parse all the common sequence formats,
it can read and write to files, and it's built to operate with all the other Bioper| [http://bioperl.org] modules that you

will want to use.
Let's read the file we created previously, "sequence.fasta", using SeqlO. The syntax will look familiar:

-format => "fasta" );

#1/bin/perl -w

use Bio::SeqlO;
Bio: :SeqlO->new(-File => '"'sequence.fasta",
One difference is immediately apparent: there is no > character. Just as with with the open() function this
means we'll be reading from the "sequence.fasta" file. Let's add the key line, where we actually retrieve the Sequence

$seqio_obj

object from the file using the next_seq method:
Bio::Seql O

-format => "fasta" );

#1/bin/perl -w
of
AlignlO

use Bio::SeqlO;
method

Bio::SeqlO->new(-file => "'sequence.fasta",
the
of

$seqgio_obj =

$seq_obj = $seqio_obj->next_seq;

Here we've used the next_seq()
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqlO.html] object. When you use, or call, next_seq() the SeqlO
object will get the next available sequence, in this case the first sequence in the file that was just opened. The Se-

guence object, $seq_ob], that's created will be identical to to the Sequence object we created manually in our
first example. This is another idiom that's used frequently in Bioper| [http://bioperl.org], the next_<something>

across the same idea in the next _aln method

[http://doc.bioperl.org/releases/bioperl-1.4/Bio/AlignlO.html] (reading and writing alignment files) and the

You'll
next_hit method of Searchl O [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Search10.html] (reading the output

come
of sequence comparison programs such as BLAST and HMMER).
If there were multiple sequences in the input file you could just continue to call next_seq() in some loop, and

method.
SeqlO would retrieve the Seq objects, one by one, until none were left:
while ($seq_obj = $seqio_obj->next_seq){
# print the sequence
print $seq_obj->seq,\n";
}
Do you have to supply a "-format" argument when you are reading from a file, as we did? Not necessarily, but it's
the safe thing to do. If you don't give a format then the SeqlO object will try to determine the format from the file
suffix or extension (and a list of the file extensions is in the SeqlO HOWTO
[http://bioperl.org/HOWTOs/html/SeqlO.html]). In fact, the suffix "fasta" is one that SeqlO understands, so "-
format" is unnecessary above. Without a known suffix SeqlO will attempt to guess the format based on the file's
contents but there's no guarantee that it can guess correctly for every single format.
8
http://www.renderx.com/

rende


http://bioperl.org
http://bioperl.org
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqIO.html
http://bioperl.org
http://doc.bioperl.org/releases/bioperl-1.4/Bio/AlignIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SearchIO.html
http://bioperl.org/HOWTOs/html/SeqIO.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO
protein™). This helps because Bioper|

" 'ma”

It may be useful to tell SeqlO the alphabet of the input, using the "-alphabet" argument. What this does

Tip
is to tell SeglO not to try to determine the alphabet ("dna
sequence "MGGGGTCAATT" is DNA) or there may be odd characters in the sequence that SeqlO objects

9. Retrieving a sequence from a database

[http://bioperl.org] may guess incorrectly (e.g. Bioper! [http://bioperl.org] is going to guess that the protein

SegHound

to (e.g. "-"). Set "-alphabet" to a value when reading sequences and SeqlO will not attempt to guess the
sources, files, remote databases, local databases, regardless of their format. Let's use this capability to get a entry

alphabet of those sequences or validate the sequences.
One of the strengths of Bioper| [http://bioperl.org] is that it allows you to retrieve sequences from all sorts of

EMBL,

[http://www.expasy.ch],

from Genbank. What will we retrieve? Again, a Sequence object. Let's choose our module:
SwissProt GenPept,
[http://www.blueprint.org/seghound], or RefSeq in an analogous fashion (e.g "use Bio::DB::SwissProt™). Now

use Bio::DB::GenBank;
could also  query

We

use Bio::DB::GenBank;
Bio: :DB::GenBank->new;

we'll create the object:
$db_obj
In this case we've created a "database object" using the new method, but without any arguments. Let's ask the object

to do something useful:
use Bio::DB::GenBank;
Bio: :DB: :GenBank->new;
The argument passed to the get_Seq_by id method is an identifier, 2, a Genbank GI number. You could also
Bio::DB::Query::GenBank

$db_obj =
$seq_obj = $db_obj->get _Seq_by id(2);

use the get_Seq_by_acc method, this would accept an accession number, "A12345" for example. Make sure
to use the proper identifier for the method you use, the methods are not interchangeable.
There are more sophisticated ways to query Genbank than this. This next example attempts to do something "bio-
logical", using the module
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/DB/Query/Genbank.html]. Want all Arabidopsis topoisomerases
from Genbank Nucleotide? This would be a reasonable first attempt:

=> "nucleotide”,

use Bio::DB::Query::GenBank;
Bio: :DB: :Query: :GenBank->new(-db
-query => $query );

$query = "Arabidopsis[ORGN] AND topoisomerase[TITL] and 0:3000[SLEN]";

$query_obj
9
http://www.renderx.com/

rende


http://bioperl.org
http://bioperl.org
http://bioperl.org
http://www.expasy.ch
http://www.blueprint.org/seqhound
http://doc.bioperl.org/releases/bioperl-1.4/Bio/DB/Query/Genbank.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

Note

This capability to query by string and field is only available for GenBank as of Bioper| [http://bioperl.org]
version 1.5, queries to other databases, like Swissprot [http://www.expasy.ch] or EMBL, are limited to
create a database object, some object that can get Sequence objects for us, just as we did in the first Genbank example:

identifiers and accessions. You can find detailed information on Genbank's query fields here

[http://www.ncbi.nlm.nih.gov/entrez/query/static/help/Summary_Matrices.html].
=> "“nucleotide”,

That is how we would construct a query object, but we haven't retrieved sequences yet. To do so we will have to

use Bio::DB::GenBank;
use Bio::DB::Query::GenBank;
Bio: :DB: :Query: :GenBank->new(-db
-query => $query );

$query = "Arabidopsis[ORGN] AND topoisomerase[TITL] and 0:3000[SLEN]"

$query_obj
Bio: :DB: :GenBank->new;
$stream _obj = $gb_obj->get_Stream by query($query_obj);

$gb_obj
while ($seq_obj = $stream_obj->next_seq) {
# do something with the sequence object
print $seq_obj->display_id, '"\t", $seq_obj->length, '\n"

That $stream_obj and its get_Stream_by_query method may not look familiar. The idea is that you will
use a streamwhenever you expect to retrieve a stream or series of sequence objects. Much like get_Seq_by id,

but built to retrieve one or more objects, not just one object.
Notice how carefully separated the responsibilities of each object are in the code above: there's an object just to
hold the query, an object to execute the query using this query object, an object to do the 1/0, and finally the sequence

object.

Warning

Be careful what you ask for, many of today's nucleotide database entries are genome-size and you will
SLEN field to limit the size of the sequences you retrieve.

probably run out of memory if your query happens to match one of these monstrosities. You can use the

10. The Sequence object

There's been a lot of discussion around the Sequence object, and this object has been created in a few different
ways, but we haven't shown what it's capable of doing. The table below lists the methods available to you if you
have a Sequence object in hand. "Returns" means what the object will give you when you ask it for data. Some

methods, such as seq(), can be used to get or set values. You're setting when you assign a value, you're getting

when you ask the object what values it has. For example, to get or retrieve a value

$seq_obj->seq;

$sequence

To set or assign a value:

rende

10
http://www.renderx.com/


http://bioperl.org
http://www.expasy.ch
http://www.ncbi.nlm.nih.gov/entrez/query/static/help/Summary_Matrices.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

$

Beginners HOWTO
$seq_obj->seq(*"MMTYDFFFFVVNNNNPPPPAAAW™) ;
Name Returns |Example Note
new Sequence|$so = Bio::Seg->new(- create a new one
object seq =>"MP")
seq sequence|$seq = $so->seq get or set the sequence
string
display_id |identifier |$ s o - > d i s - getor setan identifier
play_id("NP_123456")
primary_id|identifier |$ S 0 - get or set an identifier
>primary_id(12345)
desc description |$so->desc("Example get or set a description
1)
accession |identifier |$acc = $so->accession get or set an identifier
length length, a|$len = $so->length get the length
number
alphabet |alphabet |$so->alphabet('dna’)  get or set the alphabet (‘dna’,'rna’,'protein")
subseq sequence|$string = $seq_obj- Arguments are start and end
string >subseq(10,40)
trunc Sequence|$s02 = $sol- Truncate, arguments are start and end
object >trunc(10,40)
revcom Sequence|$so2 = $sol->revcom Reverse complement
object
translate  [Sequence|$prot_obj = $dna_obj- S e e Bio::PrimarySeql
object >translate [http://doc.bioperl.org/releases/bioperl-1.4/Bio/PrimarySeql.html]
for more
species Species ob- |$species_obj = $s0-S e e B i o: Species
ject >species [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Species.html]  for
more
seq_ver-|version, if{$so->seq version("1") get or set a version
sion available
keywords |keywords,|@array =  $so- get or set keywords
if available |>keywords
namespace |namespace, s 0 - get or set the name space
if available |>namespace("Private")
authority |authority, if|$so->authority("Fly- get or set the organization
available |Base™)
is_circular |Boolean  |if $so->is_circular { # get or set
}
Table 1. Sequence Object Methods
The table above shows the methods you're likely to use that concern the Sequence object directly. There are also
a number of methods that are concerned with the Features and Annotations associated with the Sequence object.
This is something of a tangent but if you'd like to learn about Features and Annotations see the relevant HOWTO
[http://bioperl.org/HOWTOs/html/Feature-Annotation.html]. The methods related to this topic are shown below.

render

http://www.renderx.com/

11



http://doc.bioperl.org/releases/bioperl-1.4/Bio/PrimarySeqI.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Species.html
http://bioperl.org/HOWTOs/html/Feature-Annotation.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

Beginners HOWTO
array includes sub-fea-

tures

Returns
array of SeqFeature objects
array of SeqFeature objects

get or set

array of SeqFeatures removed

Name
get_SeqFeatures
get_all_SeqFeatures

number of SeqFeature objects

array of Annotation objects

remove_SeqFeatures

feature_count
add_SeqFeature

annotation
Table 2. Feature and Annotation M ethods
11. Example Sequence objects
Let's use some of the methods above and see what they return when the sequence object is obtained from different

sources. In the Genbank example we're assuming we've used Genbank to retrieve or create a Sequence object. So

this object could have have been retrieved like this:

use Bio::DB::GenBank;
Bio: :DB::GenBank->new;

$seq_obj = $db_obj->get_Seq_by acc(''J01673");

$db_obj
Or it could have been created from a file like this:
Bio::SeqlO->new(-file => "J01673.gb",
-format => "genbank' );
BCT 26-APR-1993

linear

DNA

use Bio::SeqlO;

$seqio_obj
$seq_obj = $seqio_obj->next_seq;
1880 bp
E.coli rho gene coding for transcription termination factor.

What the Genbank file looks like:
leader peptide; rho gene; transcription terminator.

ECORHO

J01673 J01674
J01673.1 GI1:147605
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales

LOCUS
DEFINITION
ACCESSION
VERSION
KEYWORDS attenuator;
SOURCE Escherichia coli
ORGANISM Escherichia coli
Enterobacteriaceae; Escherichia.
REFERENCE 1 (bases 1 to 1880)
AUTHORS Brown,S., Albrechtsen,B., Pedersen,S. and Klemm,P.
TITLE Localization and regulation of the structural gene for
transcription-termination factor rho of Escherichia coli
JOURNAL J. Mol. Biol. 162 (2), 283-298 (1982)
MEDL INE 83138788
PUBMED 6219230
REFERENCE 2 (bases 1 to 1880)
AUTHORS Pinkham,J.L. and Platt,T.
12
http://www.renderx.com/

rende


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

The nucleotide sequence of the rho gene of E. coli K-12
Nucleic Acids Res. 11 (11), 3531-3545 (1983)

Original source text: Escherichia coli (strain K-12) DNA.
A clean copy of the sequence for [2] was kindly provided by

TITLE
JOURNAL
MEDLINE 83220759
PUBMED 6304634
COMMENT
J.L.Pinkham and T.Platt.
Location/Qualifiers
1..1880
/organism="Escherichia coli"
/mol_type="‘genomic DNA"

/strain="K-12"

FEATURES
source
/db_xref="taxon:562"

MRNA 212..>1880
/product="rho mRNA™
CDS 282..383
/note=""rho operon leader peptide"
/codon_start=1
/transl_table=11
/protein_id="AAA24531_1"
/db_xref="G1:147606"
/translation="MRSEQISGSSLNPSCRFSSAYSPVTRQRKDMSR""
gene 468..1727
/gene=""rho""
CDS 468..1727
/gene=""rho""
/note=""transcription termination factor"
/codon_start=1
/transl_table=11
/protein_id="AAA24532_1"
/translation="MNLTELKNTPVSEL I TLGENMGLENLARMRKQD I IFAILKQHAK
SGEDIFGDGVLEILQDGFGFLRSADSSYLAGPDDIYVSPSQIRRFNLRTGDTISGKIR

/db_xref="GI1:147607"
PPKEGERYFALLKVNEVNFDKPENARNKILFENLTPLHANSRLRMERGNGSTEDLTAR
VLDLASP IGRGQRGL IVAPPKAGKTMLLQNTAQSITAYNHPDCVLMVLL IDERPEEVTE

MQRLVKGEVVASTFDEPASRHVQVAEMV I EKAKRLVEHKKDV I ILLDSITRLARAYNT

VVPASGKVLTGGVDANALHRPKRFFGAARNVEEGGSLT I IATALIDTGSKMDEVIYEE
FKGTGNMELHLSRKIAEKRVFPAIDYNRSGTRKEELLTTQEELQKMWILRK I IHPMGE

I1DAMEFL INKLAMTKTNDDFFEMMKRS""
1 aaccctagca ctgcgccgaa atatggcatc cgtggtatcc cgactctgct gctgttcaaa
61 aacggtgaag tggcggcaac caaagtgggt gcactgtcta aaggtcagtt gaaagagttc

15 bp upstream from Hhal site.
...deleted...

ORIGIN
1801 tgggcatgtt aggaaaattc ctggaatttg ctggcatgtt atgcaatttg catatcaaat

1861 ggttaatttt tgcacaggac

//
Either way, the values returned by various methods are shown below.

13
http://www.renderx.com/

rende


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Beginners HOWTO

Method Returns

display_id ECORHO

desc E.coli rho gene coding for transcription termination factor.
display_name ECORHO

accession J01673

primary_id 147605

seq_version 1

keywords attenuator; leader peptide; rho gene; transcription terminator
is_circular

namespace

authority

length 1880

seq AACCCT...ACAGGAC

Table 3. Values from the Sequence object (Genbank)

There's a few comments that need to be made. First, you noticed that there's an awful lot of information missing.
All of this missing information is stored in what Bioper| [http://bioperl.org] calls Features and Annotations, see
the Feature and Annotation HOWTO [http://bioperl.org/HOWTOs/html/Feature-Annotation.html] if you'd like to
learn more about this. Second, a few of the methods don't return anything, like namespace and authority.
The reason is that though these are good values in principle there are no commonly agreed upon standard names
- perhaps someday the authors will be able to rewrite the code when we all agree what these values should be. Finally,
you may be wondering why the method names are what they are and why particular fields or identifiers end up
associated with particular methods. Again, without having standard names for things that are agreed upon by the
creators of our public databases all the authors could do is use common sense, and these choices seem to be reas-

onable ones.

Next let's take a look at the values returned by the methods used by the Sequence object when a fasta file is used
as input. The fasta file entry looks like this, clearly much simpler than the corresponding Genbank entry:

>gi1]147605]gb]J01673.1]ECORHO E.coli rho gene coding for transcription terminati

on factor
AACCCTAGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGCTGCTGTTCAAAAACGGTGAAG

TGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGACGCTAACCTGGCGTA
...deleted...

ACGTGTTTACGTGGCGTTTTGCTTTTATATCTGTAATCTTAATGCCGCGCTGGGCATGTTAGGAAAATTC

CTGGAATTTGCTGGCATGTTATGCAATTTGCATATCAAATGGTTAATTTTTGCACAGGAC

And here are the values:

14

http://www.renderx.com/


http://bioperl.org
http://bioperl.org/HOWTOs/html/Feature-Annotation.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO
Method Returns
display_id gi|147605|gb[J01673.1|ECORHO
desc E.coli rho gene coding for transcription termination factor
display_name 0i|147605|gb]J01673.1]ECORHO
accession unknown
primary_id 0i|147605|gb|J01673.1|ECORHO
is_circular
namespace
authority
length 1880
seq AACCCT...ACAGGAC
If you compare these values to the values taken from the Genbank entry you'll see that certain values are missing,
like seq_version. That's because these values like this aren't usually present in the typical fasta file.

Another natural question is why the values returned by methods like display_ id are different even though the
only thing distinguishing these entries are their respective formats. The reason is that there are no rules governing

Table 4. Values from Genbank
how one interconverts formats, meaning how Genbank creates fasta files from Genbank files may be different from
these databases agree on standard sets of names and formats all the Bioper! [http://bioperl.org] authors can do is

how SwissProt [http://www.expasy.ch] performs the same interconversion. Again, until the organizations creating
do make reasonable choices.
Yes, Bioperl [http://bioperl.org] could follow the conventions of a single organization like Genbank such
that display_ id returns the same value when using Genbank format or Genbank's fasta format but
why? Does any single organization deserve to become a standard when, really, what they should be doing
913 AA.

Note
is talking to each other and using the same terms?
PRT;

Let's use a Swissprot [http://www.expasy.ch] file as our last example. The input entry looks like this:
Amyotrophic lateral sclerosis 2 chromosomal region candidate gene

A2S3_RAT
Sciurognathi; Muridae; Murinae; Rattus.

STANDARD;
Q8R2H7; Q8R2H6; Q8R4G3;
28-FEB-2003 (Rel. 41, Created)
protein 3 homolog (GABA-A receptor interacting factor-1) (GRIF-1) (O-
Craniata; Vertebrata; Euteleostomi;

GIcNAc transferase-interacting protein of 98 kDa).

ID
AC
DT
DE
DE
DE
GN  ALS2CR3 OR GRIF1 OR OIP98.
0S Rattus norvegicus (Rat).
ocC Eukaryota; Metazoa; Chordata;
oC Mammalia; Eutheria; Rodentia;
OX  NCBI_TaxI1D=10116;
RN [1]
RP ~ SEQUENCE FROM N.A. (ISOFORMS 1 AND 2), SUBCELLULAR LOCATION, AND
RP INTERACTION WITH GABA-A RECEPTOR.
RC  TISSUE=Brain;
RX  MEDLINE=22162448; PubMed=12034717;
RA  Beck M., Brickley K., Wilkinson H.L., Sharma S., Smith M_,
RA Chazot P.L., Pollard S., Stephenson F_A_;
RT "ldentification, molecular cloning, and characterization of a novel
RT  GABAA receptor-associated protein, GRIF-1_.";
15
http://www.renderx.com/

render


http://www.expasy.ch
http://bioperl.org
http://bioperl.org
http://www.expasy.ch
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

J. Biol. Chem. 277:30079-30090(2002) .
Submitted (FEB-2003) to the EMBL/GenBank/DDBJ databases.

RL
RN [2]
RP
RA  Stephenson F.A_;
"ldentification and cloning of a novel family of coiled-coil domain

REVISIONS TO 579 AND 595-596, AND VARIANTS VAL-609 AND PRO-820.
RL
[3]
INTERACTION WITH O-GLCNAC TRANSFERASE,
AND O-GLYCOSYLATION.
STRAIN=Sprague-Dawley; TISSUE=Brain;
Interacts with GABA-A receptor and O-GIcNac transferase.

SEQUENCE FROM N.A. (ISOFORM 3),

RP
RC

RX

RA

SUBCELLULAR LOCATION: Cytoplasmic.

RN
MEDLINE=22464403; PubMed=12435728;
RT
Event=Alternative splicing; Named isoforms=3;

RP
lyer S_.P_N., Akimoto Y., Hart G.W_;
proteins that interact with 0-GIcNAc transferase.™;

J. Biol. Chem. 278:5399-5409(2003).

RT
SUBUNIT:
ALTERNATIVE PRODUCTS:
Name=1; Synonyms=GRIF-1a;
Isold=Q8R2H7-1; Sequence=Displayed;
Isold=Q8R2H7-2; Sequence=VSP_003786, VSP_003787;

RL
cc -I-
cc -I-
cc -I-
cC
cC
cC
CcC Name=2; Synonyms=GRIF-1b;
cC
CcC Name=3;
cC Isold=Q8R2H7-3; Sequence=VSP_003788;
CcC -1- PTM: O-glycosylated.
CC  -I- SIMILARITY: TO HUMAN OIP106.
DR  EMBL; AJ288898; CAC81785.2; -.
DR  EMBL; AJ288898; CAC81786.2; -.
DR  EMBL; AF474163; AAL84588.1; -.
DR  GO; GO:0005737; C:cytoplasm; IEP.
DR GO; GO0:0005634; C:nucleus; IDA.
DR  GO; G0:0005886; C:plasma membrane; IEP.
DR  GO; G0:0006357; P:regulation of transcription from Pol 11 pro...; IDA.
DR InterPro; IPRO06933; HAP1_N.
DR  Pfam; PF04849; HAP1_N; 1.
KW  Coiled coil; Alternative splicing; Polymorphism.
FT  DOMAIN 134 355 COILED COIL (POTENTIAL).
FT  VARSPLIC 653 672 VATSNPGKCLSFTNSTFTFT -> ALVSHHCPVEAVRAVHP
FT TRL (in isoform 2).
FT /FT1d=VSP_003786.
VARSPLIC 673 913 Missing (in isoform 2).
/FT1d=VSP_003787.
620 687 VQQPLQLEQKPAPPPPVTG IFLPPMTSAGGPVSVATSNPGK
CLSFTNSTFTFTTCRILHPSDITQVTP -> GSAASSTGAE
ACTTPASNGYLPAAHDLSRGTSL (in isoform 3).
/FT1d=VSP_003788.
E -> V.
S -> P.
DOE135DBEC30C28C CRC64;

FT
FT
FT
FT VARIANT
FT 820
SQ 913 AA;
...deleted...

VARTANT

FT
FT
VARSPLIC
609
SEQUENCE
MSLSQNAIFK SQTGEENLMS SNHRDSESIT DVCSNEDLPE VELVNLLEEQ LPQYKLRVDS
GIARVVKTPV PRENGKSREA EMGLQKPDSA VYLNSGGSLL GGLRRNQSLP VMMGSFGAPV

FT
609
820
101638 MW;
LFLYENQDWS QSSHQQQDAS ETLSPVLAEE TFRYMILGTD RVEQMTKTYN DIDMVTHLLA

CTTSPKMGIL KED
16
http://www.renderx.com/

//

rende


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO
The corresponding set of values is shown below.
Method Returns
display _id A2S3_RAT
desc Amyotrophic lateral ... protein of 98 kDa).
display_name A2S3_RAT
accession Q8R2H7
is_circular
namespace
authority
length 913
seq MSLSQ...ILKED
Table 5. Values from Swissprot [http://www.expasy.ch]
As in the Genbank example there's information that the Sequence object doesn't supply, and it's stored in Annotation
objects. See the Feature and Annotation HOWTO [http://bioperl.org/HOWTOs/html/Feature-Annotation.html] for

in this case Bio::Tools::Run::SandAloneBlast

12. BLAST

This example also assumes that you used the formatdb program to index the database sequence file "db.fa".

You have access to a large number of sequence analysis programs within Bioper| [http://bioperl.org]. Typically
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tools/Run/StandAloneBlast.html]. You stipulate the parameters

this means you have a means to run the program and frequently a means of parsing the resulting output, or report,

as well. Certainly the most popular analytical program is BLAST [http://www.ncbi.nlm.nih.gov/BLAST/], so let's
use it as an example. First you'll need to get BLAST, also known as blastall, installed on your machine and running.

As usual, we start by choosing a module to use,
used by the blastall program by populating an array, it's called @params in this example but any name for the

array will work:
=> "pblastn”,
As you'd expect, we want to create a Blast object, and we will pass a Sequence object to the Blast object, this Se-

use Bio::Tools::Run::StandAloneBlast;
(program

@params =
database => "db.fa" );

guence object will be used as the query:
use Bio::Tools::Run::StandAloneBlast;

use Bio::Seq;
=>""test query",

(program

=> "plastn”,
Bio::Tools: :Run::StandAloneBlast->new(@params);

@params =
database => "db.fa" );

17
http://www.renderx.com/

$blast_obj
Bio: :Seqg->new(-id
=>"TTTAAATATATTTTGAAGTATAGATTATATGTT")

$seq_obj
-seq

render


http://www.expasy.ch
http://bioperl.org/HOWTOs/html/Feature-Annotation.html
http://bioperl.org
http://www.ncbi.nlm.nih.gov/BLAST/
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tools/Run/StandAloneBlast.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Beginners HOWTO

$report_obj $blast_obj->blastall($seq_obj);

$report_obj->next_result;

$result_obj

print $result_obj->num_hits;

By calling the blastal I method you're actually running BLAST, creating the report file, and parsing the file's
contents. All the data in the report ends up in the report object, and you can access or print out the data in all sorts
of ways. The report object, $report_obj, and the result object, $result_obj, come from the SearchlO
modules. The SearchlO HOWTO [http://bioperl.org/HOWTOs/html/SearchlO.html] will tell you all about using

these objects to extract useful data from your BLAST analyses.

Here's an example of how one would use SearchlO to extract data from a BLAST report:

use Bio::SearchlO;

$report_obj = new Bio::SearchlO(-format => "blast”,
-file => "report.bls");
while( $result = $report_obj->next _result ) {
while( $hit = $result->next_hit ) {
while( $hsp = $hit->next_hsp ) {
iT ( $hsp->percent_identity > 75 ) {

print "Hit\t", $hit->name, \n",
"Length\t", $hsp->length("total "), '\n",
"Percent_id\t", $hsp->percent_identity, '"\n";
}
}
}
}

This code prints out details about the match when the HSP or aligned pair are greater than 75% identical.

Sometimes  you'll see errors when you try to use Bio::Tools::Run::SandAloneBlast
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tools/Run/StandAloneBlast.html] that have nothing to do with
Bioper| [http://bioperl.org]. Make sure that BLAST is set up properly and running before you attempt to script it
using Bio:: Tools::Run::StandAloneBlast

[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tools/Run/Stand AloneBlast.html]. There are some notes on setting
up BLAST in the INSTALL [http://bioperl.org/Core/Latest/INSTALL] file.

Bioper| [http://bioperl.org] enables you to run a wide variety of bioinformatics programs but in order to do so, in
most cases, you will need to install the accessory bioperl-run package. In addition there is no guarantee that there
is a corresponding parser for the program that you wish to run, but parsers have been built for the most popular
programs. You can find the bioperl-run package on the download page [http://bioperl.org/Core/Latest/index.shtml].

13. Indexing for Fast Retrieval

One of the under-appreciated features of Bioper| [http://bioperl.org] is its ability to index sequence files. The idea
is that you would create some sequence file locally and create an index file for it that enables you to retrieve se-
guences from the sequence file. Why would you want to do this? Speed, for one. Retrieving sequences from local,
indexed sequence files is much faster than using the Bio::DB* modules that were used above. It's also much faster
than using SeqlO, in part because SeqlO is stepping through the file, one sequence at a time, starting at the beginning
of the file. Flexibility is another reason. What if you'd created your own collection of sequences, not found in a
public database? By indexing this collection you'll get fast access to your sequences.

18

http://www.renderx.com/


http://bioperl.org/HOWTOs/html/SearchIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tools/Run/StandAloneBlast.html
http://bioperl.org
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Tools/Run/StandAloneBlast.html
http://bioperl.org/Core/Latest/INSTALL
http://bioperl.org
http://bioperl.org/Core/Latest/index.shtml
http://bioperl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

There's only one requirement here, the term or id that you use to retrieve the sequence object must be unique in

the index, these indices are not built to retrieve multiple sequence objects at a time.
Let's begin our script with the use statement and also set up our environment with some variables (the sequence

file, fasta format, will be called "sequence.fa"):

use Bio::Index::Fasta;
$ENV{BIOPERL_INDEX_TYPE} = "SDBM_File";
The lines above show that you can set environmental variables from within Perl and they are stored in Perl's own

$ENV{BIOPERL_INDEX} = ".""
%ENV hash. This is essentially the same thing as the following in tcsh or csh:

>setenv BIOPERL_INDEX_TYPE SDBM_File

Or the following in the bash shell:
>export BIOPERL_INDEX TYPE=SDBM_File
with Perl. BIOPERL_INDEX stipulates the location of the index file, and this way you could have more than one

The BIOPERL_INDEX_TYPE variable refers to the indexing scheme, and SDBM_File is the scheme that comes
index file per sequence file if you wanted, by designating multiple locations (and the utility of more than 1 index
will become apparent).
Now let's construct the index:
$ENV{BIOPERL_INDEX_TYPE} = "'SDBM File"
$ENV{BIOPERL_INDEX} = "".";
use Bio::Index::Fasta;
"'sequence.fa";
Bio::Index: :Fasta->new (-Filename => $file_name . "_idx",
-write_flag => 1);

$file_name
$id = "48882";
$inx->make_index($file_name);

called "sequence.fa.idx". Then you would retrieve a sequence object like this:

$inx
You would execute this script in the directory containing the "sequence.fa" file, and it would create an index file

By default the fasta indexing code will use the string following the > character as a key, meaning that fasta header

$seq_obj = $inx->Fetch($id)
line should look something like this if you want to fetch using the value "48882":

19

http://www.renderx.com/

>48882 pdb]1CRA
However, what if you wanted to retrieve using some other key, like "1CRA" in the example above? You can cus-

tomize the index by using Bio::Index::Fasta [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Index/Fasta.html]'s

render


http://doc.bioperl.org/releases/bioperl-1.4/Bio/Index/Fasta.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Beginners HOWTO

id_parser method, which accepts the name of a function as an argument where that function tells the indexing

object what key to use. For example:

$inx->id_parser(\&get_id);
$inx->make_index($file_name);

sub get id {
$header = shift;
$header =~ /pdb\|(\S+)/;
$1;
}
To be precise, one would say that the 1d_parser method accepts a reference to a function as an argument.
14. More on Bioperl [http://bioperl.org]
Perhaps this article has gotten you interested in learning a bit more about Bioperl [http://bioperl.org]. Here are

some other things you might want to look at:
bioscripts.pod

The bptutorial [http://bioperl.org/Core/Latest/bptutorial.html] gives a good overview of many different topics.
The HOWTOs [http://bioperl.org/HOWTQOs]. Each one covers a topic in some detail, but there are certainly
some HOWTOs that are missing that we would like to see written. Would you like to become an expert and

Few topics are covered in detail but many of the most important modules and concepts are covered.

1.
The module documentation [http://doc.bioperl.org/releases/bioperl-1.4/]. Each module is documented, but the
of  scripts,

Bioper| [http://bioperl.org] scripts. You'll find them in the scripts/ directory and in the examples/ directory of
the Bioper! [http://bioperl.org] package. The former contains more carefully written and documented scripts
list

quality and quantity varies by module.
that can be installed along with Bioper! [http://bioperl.org]. You should feel free to contribute scripts to either
a

2.
write one yourself?
3.
4,
of these  directories.  There's also complete
[http://bioperl.org/Core/Latest/bioscripts.html].
User-contributed documentation [http://bioperl.org/Core/Latest/modules.html#user]. There's some very good

5.
material here.
' .
15. Perl's Documentation System
The documentation for Perl is available using a system known as POD, which stands for Plain Old Documentation.
You can access this built-in documentation by using the "perldoc" command. To view information on how to use

perldoc, type the following at the command line:
Perldoc is a very useful and versatile tool, shown below are some more examples on how to use perldoc.

>perldoc perldoc
Read about Perl's built-in print function:

>perldoc -f print
20
http://www.renderx.com/

rende


http://bioperl.org
http://bioperl.org
http://bioperl.org/Core/Latest/bptutorial.html
http://bioperl.org/HOWTOs
http://doc.bioperl.org/releases/bioperl-1.4/
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org/Core/Latest/bioscripts.html
http://bioperl.org/Core/Latest/modules.html#user
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Beginners HOWTO

Read about any module, including any of the Bioper| [http://bioperl.org] modules:

>perldoc Bio::SeqlO

16. The Basics of Perl Objects

Object-oriented programming (OOP) is a software engineering technique for modularizing code. The difference
between object-oriented programming and procedural programming can be simply illustrated.

A Smple Procedural Example Assume that we have a DNA sequence stored in the scalar variable $sequence.
We'd like to generate the reverse complement of this sequence and store it in $reverse_complement. Shown
below is the procedural Perl technique of using a function, or sub-routine, to operate on this scalar data:

use Bio::Perl;

$reverse_complement = revcom( $sequence );

The hallmark of a procedural program is that data and functions to operate on that data are kept separate. In order
to generate the reverse complement of a DNA sequence, we need to call a function that operates on that DNA se-
quence.

A Smple Object-Oriented Example Shown below is the object-oriented way of generating the reverse complement
of a DNA sequence:

$reversed_obj = $seq_obj->revcom;

The main difference between this object-oriented example and the procedural example shown before is that the
method for generating the reverse complement, revconm, is part of $seq_obj. To put it another way, the object
$seq_obj knows how to calculate and return its reverse complement. Encapsaluting both data and functions into
the same construct is the fundamental idea behind object-oriented programming.

Terminology In the object-oriented example above, $seq_obj is called an object, and revcom is called a
method. An object is a data structure that has both data and methods associated with it. Objects are separated into
types called classes, and the class of an object defines both the data that it can hold and the methods that it knows.
A specific object that has a defined class is referred to as an instance of that class. In perl you could say that each
module is actually a class, but for some reason the author of Perl elected to use the term "module” rather than
"class".

That's the sort of explanation you'll get in programming books, but what is a Perl object really? Usually a hash. In
Bioper! [http://bioperl.org] the data that the object contains is stored in a single, complex hash and the object, like
$seq_obj, is a reference to this hash. In addition, the methods that the object can use are also stored in this hash
as particular kinds of references. You could say that an object in Bioper| [http://bioperl.org] is a special kind of
hash reference.

Bioper! [http://bioperl.org] uses the object-oriented paradigm, and here are some texts if you want to learn more:
1. Object Oriented Perl [http://www.manning.com/Conway/]

2. The Bioperl design documentation [http://bioperl.org/Core/Latest/biodesign.html], for anyone who'd like to
write their own modules.

21

http://www.renderx.com/


http://bioperl.org
http://bioperl.org
http://bioperl.org
http://bioperl.org
http://www.manning.com/Conway/
http://bioperl.org/Core/Latest/biodesign.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

