YAZ++ User's Guide and Reference

Mike Taylor

Adam Dickmeiss

YAZ++ User’s Guide and Reference
by Mike Taylor and Adam Dickmeiss

Copyright © 1999, 2000, 2001, 2002, 2003, 2004 Index Data Aps and Mike Taylor

YAZ++ (http://lwww.indexdata.dk/yazplusplus/) is a set of libraries and header files that make it easier to use the
popular C-language YAZ toolkit (http://www.indexdata.dk/yaz/) from C++, together with some utilities written
using these libraries. It includes an implementation of the C++ binding for ZOBDOM-C+4).

This manual covers version 0.8.
CVS ID: $Id: yaz++.xml.in,v 1.13 2004/04/11 12:13:32 adam Exp $

Table of Contents

I a1 0T (W Tox 1 To] o HP SRRSO 1
I Tol=] oo TSR 1

2 115 = 1| = 4T o ISP 2
(S TUT] o [T o T o U o S 2

(2 TUT] o [T o ToT AT/ T o [0 =SS 3

G T4 © 1 1Y @ R 5
a0 T [Tt o) o TS 5

4@ 10]V oo g T=Te1 1o o TSR 5

L= (=] =] 1R 6
ZOOM::quEry N0 SUDCIASSES.......coiiiiieiieitiecte ettt sttt sttt e s be e tesbesaesbesbeebesbeessessesanesaesbesatensenns 6

A @ 1@ LY B o) 1= 0@ V=Y oY/ S 6

4@ 1 1Y B @ @ T 1= 7

IS CUSSION.....ecuvetiitiete et et et ete st et et e et e et e ebe et e sbesbeeatesbeessanbesasensesaeessesbesbeenbeebeenseasesaeesbesbeenbenbeennansennis 7
REFEIENCES ... ettt ettt et e et e eaeete s heete s b e sbeenbeebeeaseebesaeesbesbeenbesbeeanenseanis 7

74 @ @ 1Y =YYW 157 SR 7
REFEIENCES ... ettt bt et e s beeae s aeetesbeebeenbesbeeasesbesaeesbesbeenbesbeennensennis 8
ZOOMEITEBCONI .euvvieiieiiieieeeeiiteeeeee ittt eeeesiateeeeeessreeeeeaaatseeaeasaateeaesassssesesaaaasseeeeasassaeeesanssseseessasteneesesnreneesansnns 8
MemMOry ManAgEMEIL..........ccoiiiiiieiie it e sr e r e s 9
REFEIENCES ettt e e b e s ae e ee s he e ae s b e e be et e sbe et e sbesaeestesbeenbesteeneenseans 9
ZOOM::exception ANA SUDCIASSES......coueieeieeiriiieeeerierie ettt sttt e et seesee e e e enesneenea 10
ZOOM:SYSIEMEXCEPLON .eeeiiiiieeitee ettt e e e s r e s e e s s e s esr e e s amn e e s ana e e snn e e sneeesreeennns 10

A @@ 1Y F o 1o | =31 eT=T o o] o TR PS TR URT PSR 10

4@ 1@ 1Y o[T=T Y] b e7=Y o 14 o o USSR 11

REVISEA SAMPIE PrOGIAML......c ettt ettt sttt se e e s be b e e e e s e e e e enesneeeas 11

LR LS (=] (=] (o X S 12

A YAZ CHH AP ettt ettt b e be b et aeeheeheebe b et et e At eaeebeebeste e eneeheebeeheeretenteneeneereets 13
L1 =T = Lo =SS 13
IYazSOCKEtODSEIVADIE........c.oeeeee e e nreens 13

N VAo T =1 (O] o 1T=T =T PSSR 13
IYaz_PDU_ODBSEIVADLE. ..ottt st e e et nre e 14

N VA o 10 O o 1=T= =Y PSR 14
VA @ LU= oY S TSRS RRRT 14

L a] 0] (=T g T=T) r= o] S 15

R VS 1o Lo 1= 11/ = T = o =T 15

YAZ_ PDU_ASSOC......uiiiuiiiitieitiesie st stee st sttt sttt s be e bt e s ae e s abe e sbeesbeesabe e bt e sbeesabeeabeenbeesabeebeenaeesane s 15
VA A X1 o oSSR 16

YAZ IR _ASSOC.... ettt ettt sttt sttt sttt sae e et e st e e nbe e s e b e e be e he e sa bt e beenre e nare e reenaeenare s 17
VA A S 1= Y] oS 18

A LICENSE. ..ttt ettt ettt et e e te e be s he et e beehe et ehe e teeheeatebeehe e beebe et sheeatebeeheenteeteeseareeneentenreens 19
YAZ LICENSE ..ttt ettt et et e et te st et e st e eteeebesbeeaeesbeeaaebeebeenseebeeseesheeasesbeebeenbeeaeensesreeneebesteenbenteenns 19

Chapter 1. Introduction

YAZ++ (http://www.indexdata.dk/yazplusplus/) is a C++ layer for YAZ and implements the ANSI Z39.50
protocol for information retrieval (client and server side). While YAZ itself can be used from both C and C++ it
is limited by the common denominator C.

The YAZ++ packages also features a ZOOM interface for C++ (ZOOM C++
((http://zoom.z3950.0rg/bind/cplusplus/)).

Later versions (0.7+) of YAZ++ also supports SRW/SRU.

Licensing

YAZ++ and ZOOM-C++ is is covered by théAZ license

Chapter 2. Installation

You need a C++ compiler to compile and use YAZ++. The software was implemented using GCC so we know
that works well with YAZ++. From time to time the software has been compiled on Windows using Visual C++.
Other compilers should work too. Let us know of portability problems, etc. with your system.

YAZ++ is built on top of the YAZ (http://indexdata.dk/yaz/) toolkit. You need to install that first. For some
platforms there are binary packages for YAZ.

Building on Unix
On UNIX, the software is compiled as follows:

$./configure
$ make

$ su

make install

You can supply options for theonfigure script. The most useful ones are:

--prefix directory

Specifies installation prefix. By defauiltsr/local is used.

--with-yazconfig directory

Specifies the location gfaz-config . Theyaz-config program is generated in the source directory of
YAZ as well as the binaries directory when YAZ is installed (via make install).

If you don’t supply this optiongonfigure will look for yaz-config in directories of the PATH
environment - which is nearly always what you want.

For the whole list otonfigure options, refer to the helpiconfigure --help

Configure uses GCC'’s C/C++ compiler if available. To specify another compilezxsefio use other compiler
flags, specifyfCXXFLAGSTo useCCwith debugging you could use:

CXXFLAGS="-g" CXX=CC ./configure

This is what you have after successful compilation:
src/libyazcpp.la
The YAZ++ library. This library gets installed in your libraries directopydfix /lib).

src/libzoomcepp.la

TheZOOM-C++library. This library gets installed in your libraries directopréfix /lib).

Chapter 2. Installation

include/yaz++/*.h
Various C++ header files, which you'll need for YAZ++ development. All these are installed in your header
files areaprefix /includelyaz++).

yaz++-config
A Bourne shell-script utility that returns the values of the CFLAGS and LIBS environment variables needed
in order to compile your applications with the YAZ++ library. This script gets installed in your binaries
directory prefix /bin).

zoom/zclient
ZOOM C++ demonstration client that uses the ZOOM C++ classes. This client does not get installed in the
system directories.

src/yaz-my-client

YAZ C++ demonstration client. This client does not get installed in the system directories.

srclyaz-my-server

YAZ C++ demonstration server. This server does not get installed in the system directories.

Building on Windows

YAZ++ is shipped with "makefiles" for the NMAKE tool that comes with Microsoft Visual Studio
(http://msdn.microsoft.com/vstudio/). Version 6 and .NET has been tested. We expect that YAZ++ compiles with
version 5 as well.

Start a command prompt and switch the sub directaiywhere the filenakefile is located. Customize the
installation by editing thenakefile file (for example by using notepad). The following summarizes the most
important settings in that file:

DEBUG

If set to 1, the software is compiled with debugging libraries (code generation is multi-threaded debug
DLL). If set to 0, the software is compiled with release libraries (code generation is multi-threaded DLL).

YAZ_DIR

Specifies the directory of the YAZ source.

When satisfied with the settings in the makefile, type

nmake

Tip: If the nmake command is not found on your system you probably haven't defined the environment
variables required to use that tool. To fix that, find and run the batch file vcvars32.bat . You need to run it
from within the command prompt or set the environment variables "globally"; otherwise it doesn’t work.

Chapter 2. Installation

If you wish to recompile YAZ++ - for example if you modify settings in tinekefile you can delete object
files, etc by running.

nmake clean

The following files are generated upon successful compilation:
bin/yazpp.dll
YAZ++ DLL . Includes ZOOM C++ as well.

lib/lyazpp.lib
Import library foryazpp.dll

bin/zclient.exe

ZOOM C++ demo client. A simple WIN32 console application.

Chapter 3. ZOOM-C++

Introduction

ZOOM (http://zoom.z3950.0rg/) is the emerging standard API for information retrieval programming using the
Z39.50 protocol. ZOOM'’s Abstract API (http://zoom.z3950.org/api/) specifies semantics for classes representing
key IR concepts such as connections, queries, result sets and records; and there are various bindings
(http://zoom.z3950.0rg/bind/) specifying how those concepts should be represented in various programming
languages.

The YAZ++ library includes an implementation of the C++ binding (http://zoom.z3950.0rg/bind/cplusplus/) for
ZOO0M, enabling quick, easy development of client applications.

For example, here is a tiny Z39.50 client that fetches and displays the MARC record for Farlow & Brett
Surman’sThe Complete Dinosaurom the Library of Congress’s 239.50 server:

#include <iostream>
#include <yaz++/zoom.h>

using namespace ZOOM;

int main(int argc, char **argv)

{

connection conn("z3950.loc.gov", 7090);
conn.option("databaseName", "Voyager");
conn.option("preferredRecordSyntax”, "USMARC");
resultSet rs(conn, prefixQuery("@attr 1=7 0253333490"));
const record *rec = rs.getRecord(0);

cout << rec->render() << endl;

Note: For the sake of simplicity, this program does not check for errors: we show a more robust version of the
same program later.)

YAZ++'s implementation of the C++ binding is a thin layer over YAZ's implementation of the C binding. For
information on the supported options and other such details, see the ZOOM-C documentation, which can be
found on-line at http://www.indexdata.dk/yaz/doc/zoom.tkl

All of the classes defined by ZOOM-C++ are in th@OMamespace. We will now consider the five main classes
in turn:

- connection

« query and its subclassgsefixQuery andCCLQuery
 resultSet

- record

« exception and its subclasseystemException , bib1Exception andqueryException

Chapter 3. ZOOM-C++

ZOOM::connection

A ZOOM::connection object represents an open connection to a Z39.50 server. Such a connection is forged by
constructing aonnection object.

The class has this declaration:

class connection {
public:
connection (const char *hostname, int portnum);
~connection ();
const char *option (const char *key) const;
const char *option (const char *key, const char *val);

When a newconnection is created, the hostname and port number of a Z39.50 server must be supplied, and
the network connection is forged and wrapped in the new object. If the connection can't be established - perhaps
because the hosthame couldn’t be resolved, or there is no server listening on the specified port - then an
exception is thrown.

The only other methods oncannection object are for getting and setting options. Any hame-value pair of

strings may be set as options, and subsequently retrieved, but certain options have special meanings which are
understood by the ZOOM code and affect the behaviour of the object that carries them. For example, the value of
thedatabaseName option is used as the name of the database to query when a search is executed against the
connection . For a full list of such special options, see the ZOOM abstract APl and the ZOOM-C

documentation (links below).

References

« Section 3.2 (Connection) of the ZOOM Abstract API (http://zoom.z3950.0rg/api/zoom-1.3.html#3.2)

- The Connections section of the ZOOM-C documentation
(http://www.indexdata.dk/yaz/doc/zoom.tkl#zoom.connections)

ZOOM::query and subclasses

ThezOOM::query class is a virtual base class, representing a query to be submitted to a server. This class has
no methods, but two (so far) concrete subclasses, each implementing a specific query notation.

ZOOM::prefixQuery

class prefixQuery : public query {
public:
prefixQuery (const char *pqgn);
~prefixQuery ();
3

This class enables a query to be created by compiling YAZ's cryptic but powerful Prefix Query Notation (PQN)
(http://www.indexdata.dk/yaz/doc/tools.tkl#PQF).

Chapter 3. ZOOM-C++

ZOOM::CCLQuery

class CCLQuery : public query {

public:
CCLQuery (const char *ccl, void *qualset);
~CCLQuery ();

h

This class enables a query to be created using the simpler but less expressive Common Command Language
(CCL) (http://www.indexdata.dk/yaz/doc/tools.tkl#CCL). The qualifiers recognised by the CCL parser are
specified in an external configuration file in the format described by the YAZ documentation.

If query construction fails for either type qfiery object - typically because the query string itself is not valid
PQN or CCL - then amxception is thrown.

Discussion

It will be readily recognised that these objects have no methods other than their constructors: their only role in
life is to be used in searching, by being passed todh@tSet class’s constructor.

Given a suitable set of CCL qualifiers, the following pairs of queries are equivalent:

prefixQuery("dinosaur");
CCLQuery("dinosaur");

prefixQuery("@and complete dinosaur");
CCLQuery("complete and dinosaur");

prefixQuery("@and complete @or dinosaur pterosaur");
CCLQuery("complete and (dinosaur or pterosaur)");

prefixQuery("@attr 1=7 0253333490");
CCLQuery("isbn=0253333490");

References

+ Section 3.3 (Query) of the ZOOM Abstract API (http://zoom.z3950.0rg/api/zoom-1.3.html#3.3)

« The Queries section of the ZOOM-C documentation (http://www.indexdata.dk/yaz/doc/zoom.query.tkl)

ZOOM::resultSet

A ZOOM:resultSet object represents a set of records identified by a query that has been executed against a
particular connection. The sole purpose of bathnection andquery objects is that they can be used to
create newesultSet s - that is, to perform a search on the server on the remote end of the connection.

The class has this declaration:

class resultSet {

Chapter 3. ZOOM-C++

public:
resultSet (connection &c, const query &Qq);
~resultSet ();
const char *option (const char *key) const;
const char *option (const char *key, const char *val);
size_t size () const;
const record *getRecord (size_t i) const;

NewresultSet s are created by the constructor, which is passathaection , indicating the server on which
the search is to be performed, anduery , indicating what search to perform. If the search fails - for example,
because the query uses attributes that the server doesn’t implement - thee@ion is thrown.

Like connection s,resultSet objects can carry name-value options. The special options which affect
ZOOM-C++'s behaviour are the same as those for ZOOM-C and are described in its documentation (link
below). In particular, th@referredRecordSyntax option may be set to a string such as “USMARC”,
“SUTRS” etc. to indicate what the format in which records should be retrieved; ardkthentSetName

option indicates whether brief records (“B”), full records (“F”) or some other composition should be used.

Thesize() method returns the number of records in the result set. Zero is a legitimate value: a search that finds
no records is not the same as a search that fails.

Finally, thegetRecord method returns thieth record from the result set, wherds zero-based: that is,
legitmate values range from zero up to one less than the result-set size. If the method fails, for example because
the requested record is out of rangehibw s anexception

References

« Section 3.4 (Result Set) of the ZOOM Abstract API (http://zoom.z3950.org/api/zoom-1.3.html#3.4)

- The Result Sets section of the ZOOM-C documentation (http://www.indexdata.dk/yaz/doc/zoom.resultsets.tkl)

ZOOM::record

A ZOOM::record object represents a chunk of data fromesultSet returned from a server.

The class has this declaration:

class record {

public:
~record ();
enum syntax {

UNKNOWN, GRS1, SUTRS, USMARC, UKMARC, XML

%
record *clone () const;
syntax recsyn () const;
const char *render () const;
const char *rawdata () const;

Records returned from Z39.50 servers are encoded using a record syntax: the various national MARC formats
are commonly used for bibliographic data, GRS-1 or XML for complex structured data, SUTRS for simple

Chapter 3. ZOOM-C++

human-readable text, etc. Thezord::syntax enumeration specifies constants representing common record
syntaxes, and thecsyn() method returns the value corresponding to the record-syntax of the record on which
it is invoked.

Note: Because this interface uses an enumeration, it is difficult to extend to other record syntaxes - for
example, DANMARC, the MARC variant widely used in Denmark. We might either grow the enumeration
substantially, or change the interface to return either an integer or a string.

The simplest thing to do with a retrieved record is simplyeiader() it. This returns a human-readable, but not
necessarily very pretty, representation of the contents of the record. This is useful primarily for testing and
debugging, since the application has no control over how the record appears. (The applicatioot daiste

the returned string - it is “owned” by the record object.)

More sophisticated applications will want to deal with the raw data themselvesvthata() method returns

it. Its format will vary depending on the record syntax: SUTRS, MARC and XML records are returned “as is”,
and GRS-1 records as a pointer to their top-level node, whiclzissanericRecord structure as defined in the
<yaz/z-grs.h> header file. (The application musbtdelete the returned data - it is “owned” by the record
object.)

Perceptive readers will notice that there are no methods for access to individual fields within a record. That’s
because the different record syntaxes are so different that there is no even a uniform notion of what a field is
across them all, let alone a sensible way to implement such a function. Fetch the raw data instead, and pick it
apart “by hand”.

Memory Management

Therecord objects returned fromesultSet::getRecord() are “owned” by the result set object: that
means that the application is not responsibledtgete ing them - eachecord is automatically deallocated
when theresultSet that owns it isdelete d.

Usually that’s what you want: it means that you can easily fetch a record, use it and forget all about it, like this:

resultSet rs(conn, query);
cout << rs.getRecord(0)->render();

But sometimes you wantracord to live on past the lifetime of theesultSet ~ from which it was fetched. In
this case, thelone(f) method can be used to make an autonomous copy. The applicatiodefatst it
when it doesn’t need it any longer:

record *rec;
{
resultSet rs(conn, query);
rec = rs.getRecord(0)->clone();
/I ‘rs’ goes out of scope here, and is deleted
}
cout << rec->render();
delete rec;

Chapter 3. ZOOM-C++

References

« Section 3.5 (Record) of the ZOOM Abstract API (http://zoom.z3950.0rg/api/zoom-1.3.html#3.5)

- The Records section of the ZOOM-C documentation (http://www.indexdata.dk/yaz/doc/zoom.records.tkl)

ZOOM::exception and subclasses

TheZOOM::exception class is a virtual base class, representing a diagnostic generated by the ZOOM-C++
library or returned from a server. Its subclasses represent particular kinds of error.

When any of the ZOOM methods fail, they respondfogw ing an object of typexception or one of its
subclasses. This most usually happens withctimaection constructor, the various query constructors, the
resultSet constructor (which is actually the searching method) readltSet::getRecord()

The base class has this declaration:

class exception {
public:
exception (int code);
int errcode () const;
const char *errmsg () const;

h

It has three concrete subclasses:

ZOOM::systemException

class systemException: public exception {
public:

systemException ();

int errcode () const;

const char *errmsg () const;

b

Represents a “system error”, typically indicating that a system call failed - often in the low-level networking code
that underlies Z39.5@&rrcode() returns the value that the system variadi@o had at the time the exception
was constructed; arefrmsg() returns a human-readable error-message corresponidng to that error code.

ZOOM::bib1Exception

class biblException: public exception {
public:
bib1Exception (int errcode, const char *addinfo);
int errcode () const;
const char *errmsg () const;
const char *addinfo () const;

10

Chapter 3. ZOOM-C++

Represents an error condition communicated by a Z39.50 serverde() returns the BIB-1 diagnostic code
of the error, anédrrmsg() a human-readable error message corresponding to thatamutiifo() returns any
additional information associated with the error.

For example, if a ZOOM application tries to search in the “Voyager” database of a server that does not have a
database of that namep#l1Exception will be thrown in whicherrcode() returns 109errmsg() returns

the corresponding error message “Database unavailableddaintfo() returns the name of the requested, but
unavailable, database.

ZOOM::queryException

class queryException: public exception {
public:
static const int PREFIX = 1;
static const int CCL = 2;
queryException (int gtype, const char *source);
int errcode () const;
const char *errmsg () const;
const char *addinfo () const;

This class represents an error in parsing a query into a form that a Z39.50 can understand. It must be created with
theqtype parameter equal to one of the query-type constants, which can be retrieved afi@tle()

method;errmsg() returns an error-message specifying which kind of query was malformedidalirdo()

returns a copy of the query itself (that is, the valueafrce with which the exception object was created.)

Revised Sample Program
Now we can revise the sample program fromititeoductionto catch exceptions and report any errors:
[* g++ -0 zoom-c++-hw zoom-c++-hw.cpp -lyaz++ -lyaz */

#include <iostream>
#include <yaz++/zoom.h>

using namespace ZOOM;

int main(int argc, char **argv)
{

try {
connection conn("z3950.loc.gov", 7090);

conn.option("databaseName", "Voyager");
conn.option("preferredRecordSyntax”, "USMARC");
resultSet rs(conn, prefixQuery("@attr 1=7 0253333490"));
const record *rec = rs.getRecord(0);
cout << rec->render() << endl;
} catch (systemException &e) {
cerr << "System error " <<
e.errcode() << " (" << e.errmsg() << ")" << endl
} catch (bibl1Exception &e) {
cerr << "BIB-1 error " <<
e.errcode() << " (" << e.errmsg() << "): " << e.addinfo() << endl;
} catch (queryException &e) {

11

Chapter 3. ZOOM-C++

cerr << "Query error " <<
e.errcode() << " (" << e.errmsg() << "): " << e.addinfo() << endl;
} catch (exception &e) {
cerr << "Error " <<
e.errcode() << " (" << e.errmsg() << ")" << endl;

The heart of this program is the same as in the original version, but it's now wrapped intdock followed by
severakatch blocks which try to give helpful diagnostics if something goes wrong.

The first such block diagnoses system-level errors such as memory exhaustion or a network connection being
broken by a server’s untimely death; the second catches errors at the Z39.50 level, such as a server’s report that it
can't provide records in USMARC syntax; the third is there in case there’s something wrong with the syntax of

the query (although in this case it's correct); and finally, thedash block is a belt-and-braces measure to be

sure that nothing escapes us.

References

« Section 3.7 (Exception) of the ZOOM Abstract API (http://zoom.z3950.0rg/api/zoom-1.3.html#3.7)

« Bib-1 Diagnostics (http://lcweb.loc.gov/z3950/agency/defns/bibldiag.html) on the Z39.50 Maintenance
Agency (http://lcweb.loc.gov/z3950/agency/) site.

Because C does not support exceptions, ZOOM-C has no API element that corresponds directly with
ZOOM-C++'sexception class and its subclasses. The closest thing iZd@M_connection_error function
described in The Connections section (http://www.indexdata.dk/yaz/doc/zoom.tkl#zoom.connections) of the
documentation.

12

Chapter 4. YAZ C++ API

The YAZ C++ APl is an client - and server API that exposes all YAZ features. The API doesn’t hide YAZ C data
structures, but provides a set of useful high-level objects for creating clients - and servers.

The following sections include a short description of the interfaces and implementations (concrete classes).

In order to understand the structure, you should look at the example ydienty-client.cpp and the
example serveyaz-my-server.cpp . If that is too easy, you can always turn to the implementation of the
proxy itself and send us a patch if you implement a new useful feature.

Note: The documentation here is very limited. We plan to enhance it - provided there is interest for it.

Interfaces

IlYazSocketObservable

This interface is capable of observing sockets. When a socket even occurs it invokes an object implementing the
IYazSocketObserventerface.

#include <yaz++/socket-observer.h>

class my_socketobservable : public IYazSocketObservable {
/I Add an observer interested in socket fd
virtual void addObserver(int fd, IYazSocketObserver *observer) = 0;
/I Delete an observer
virtual void deleteObserver(lYazSocketObserver *observer) = O;
/I Delete all observers
virtual void deleteObservers() = 0;
/I Specify the events that the observer is interested in.
virtual void maskObserver(lYazSocketObserver *observer,
int mask) = 0;
/I Specify timeout
virtual void timeoutObserver(lYazSocketObserver *observer,
unsigned timeout)=0;

IYazSocketObserver

This interface is interested in socket events supportingaeSocketObservablaterface.

#include <yaz++/socket-observer.h>

class my_socketobserver : public IYazSocketObserver {
public:
/I Notify the observer that something happened to socket
virtual void socketNotify(int event) = 0;

13

Chapter 4. YAZ C++ API

IlYaz_PDU_Observable

This interface is is responsible for sending - and receiving PDUs over the network (YAZ COMSTACK). When
events occur, an instance implementilfgz_PDU_Observeis notified.

#include <yaz++/pdu-observer.h>

class my_pduobservable : public IYaz_PDU_Observable {
public:

/I Send encoded PDU buffer of specified length

virtual int send_PDU(const char *buf, int len) = 0;

/I Connect with server specified by addr.

virtual void connect(lYaz_PDU_Observer *observer,
const char *addr) = O;

/| Listen on address addr.

virtual void listen(lYaz_PDU_Observer *observer, const char *addr)=0;

/I Close connection

virtual void close() = O;

/I Make clone of this object using this interface

virtual 1Yaz_PDU_Observable *clone() = 0;

/I Destroy completely

virtual void destroy() = O;

/I Set Idle Time

virtual void idleTime (int timeout) = O;

IlYaz_PDU_Observer
This interface is interested in PDUs and using an object implemehtary PDU_Observable

#include <yaz++/pdu-observer.h>

class my_pduobserver : public IYaz_PDU_Observer {
public:
/I A PDU has been received
virtual void recv_PDU(const char *buf, int len) = O;
/I Called when lyaz_PDU_Observable::connect was successful.
virtual void connectNotify() = O;
/I Called whenever the connection was closed
virtual void failNotify() = O;
/I Called whenever there is a timeout
virtual void timeoutNotify() = 0;
/I Make clone of observer using IYaz_PDU_Observable interface
virtual 1Yaz_PDU_Observer *sessionNotify(
IlYaz_PDU_Observable *the_PDU_Observable, int fd) = 0;

14

Chapter 4. YAZ C++ API

Yaz_Query

Abstract query.

#include <yaz++/query.h>
class my_query : public Yaz_Query {
public:
/I Print query in buffer described by str and len
virtual void print (char *str, int len) = O;

Implementations

Yaz_SocketManager

This class implements thévazSocketObservablaterface and is a portable socket wrapper around the select
call. This implementation is useful for daemons, command line clients, etc.

#include <yaz++/socket-manager.h>

class Yaz_SocketManager : public IYazSocketObservable {
public:
/I Add an observer
virtual void addObserver(int fd, IYazSocketObserver *observer);
/I Delete an observer
virtual void deleteObserver(lYazSocketObserver *observer);
/I Delete all observers
virtual void deleteObservers();
/I Set event mask for observer
virtual void maskObserver(lYazSocketObserver *observer, int mask);
/I Set timeout
virtual void timeoutObserver(IlYazSocketObserver *observer,
unsigned timeout);
/I Process one event. return > 0 if event could be processed;
int processEvent();
Yaz_SocketManager();
virtual ~Yaz_SocketManager();

Yaz_PDU_Assoc

This class implements the interfad®sz_PDU_ObservablandlYazSocketObserve his object implements a
non-blocking client/server channel that transmits BER encoded PDUs (or those offered by YAZ COMSTACK).

#include <yaz++/pdu-assoc.h>

class Yaz_PDU_Assoc : public IYaz_PDU_Observable,
IYazSocketObserver {

15

Chapter 4. YAZ C++ API

public:

COMSTACK comstack(const char *type_and_host, void **vp);

/I Create object using specified socketObservable

Yaz_PDU_Assoc(lYazSocketObservable *socketObservable);

/I Create Object using existing comstack

Yaz_PDU_Assoc(lYazSocketObservable *socketObservable,
COMSTACK cs);

/I Close socket and destroy object.

virtual ~Yaz_PDU_Assoc();

/I Clone the object

IlYaz_PDU_Observable *clone();

/I Send PDU

int send_PDU(const char *buf, int len);

/I connect to server (client role)

void connect(lYaz_PDU_Observer *observer, const char *addr);

Il listen for clients (server role)

void listen(lYaz_PDU_Observer *observer, const char *addr);

/I Socket notification

void socketNotify(int event);

/I Close socket

void close();

/I Close and destroy

void destroy();

/I Set Idle Time

void idleTime (int timeout);

/I Child start...

virtual void childNotify(COMSTACK cs);

Yaz_Z Assoc

This class implements the interfaldéaz_PDU_ObsereiThis object implements a Z39.50 client/server channel
AKA Z-Association.

#include <yaz++/z-assoc.h>

class Yaz_Z Assoc : public IYaz_PDU_Observer {
public:
/I Create object using the PDU Observer specified
Yaz_Z Assoc(lYaz_PDU_Observable *the_PDU_Observable);
/| Destroy association and close PDU Observer
virtual ~Yaz_Z_Assoc();
/Il Receive PDU
void recv_PDU(const char *buf, int len);
/I Connect notification
virtual void connectNotify() = O;
/I Failure notification
virtual void failNotify() = O;
/I Timeout notification
virtual void timeoutNotify() = 0;
/I Timeout specify
void timeout(int timeout);
/I Begin Z39.50 client role
void client(const char *addr);

16

Chapter 4. YAZ C++ API

/I Begin Z39.50 server role
void server(const char *addr);
/I Close connection

void close();

/| Decode Z39.50 PDU.

Z_APDU *decode_Z PDU(const char *buf, int len);
/Il Encode Z39.50 PDU.

int encode_Z_PDU(Z_APDU *apdu, char **buf, int *len);
/Il Send Z39.50 PDU

int send_Z_ PDU(Z_APDU *apdu);

/I Receive 739.50 PDU

virtual void recv_Z_PDU(Z_APDU *apdu) = O0;

/I Create 7Z39.50 PDU with reasonable defaults
Z_APDU *create_Z_ PDU(int type);

/Il Request Alloc

ODR odr_encode ();

ODR odr_decode ();

ODR odr_print ();

void set_ APDU_log(const char *fname);

const char *get APDU_log();

/I OtherIinformation
void get_otherInfoAPDU(Z_APDU *apdu, Z_Otherinformation ***oip);
Z_OtherInformationUnit *update_otherinformation (
Z_Otherinformation **otherinformationP, int createFlag,
int *oid, int categoryValue, int deleteFlag);
void set_otherIinformationString (
Z_Otherinformation **otherlinformationP,
int *oid, int categoryValue,
const char *str);
void set_otherInformationString (
Z_OtherIinformation **otherinformation,
int oidval, int categoryValue,
const char *str);
void set_otherinformationString (
Z APDU *apdu,
int oidval, int categoryValue,
const char *str);

Z_Referenceld *getReflD(char* str);
Z_Referenceld **get_referenceldP(Z_APDU *apdu);
void transfer_referenceld(Z_APDU *from, Z_APDU *to);

const char *get_hostname();

Yaz_IR_Assoc
This object is just a specialization ¥az_Z Asso@nd provides more facilities for the Z39.50 client role.

#include <yaz++/ir-assoc.h>

class Yaz_IR_Assoc : public Yaz_Z_Assoc {

17

Chapter 4. YAZ C++ API

The example clienyaz-my-client.cpp , uses this class.

Yaz_Z Server
This object is just a specialization ¥8z_Z Asso@nd provides more facilities for the Z39.50 server role.

#include <yaz++/z-server.h>

class Yaz_Z Server : public Yaz_Z_Server {

b

The example serveyaz-my-server.cpp , uses this class.

18

Appendix A. License

YAZ License

Copyright © 1999-2004 Index Data Aps and Mike Taylor.

Permission to use, copy, modify, distribute, and sell this software and its documentation, in whole or in part, for
any purpose, is hereby granted, provided that:

1. This copyright and permission notice appear in all copies of the software and its documentation. Notices of
copyright or attribution which appear at the beginning of any file must remain unchanged.

2. The names of Index Data or the individual authors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED "AS I1S" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL INDEX
DATA BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES

OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY
OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

19

