| v

ERLANG

Event Tracer (ET)

Copyright © 2002-2009 Ericsson AB. All Rights Reserved.
Event Tracer (ET) 1.3.3
November 23 2009

Copyright © 2002-2009 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you

may not use this file except in compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License. The Initial Developer of the Original Code is Ericsson AB. All Rights
Reserved..

November 23 2009

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 1

1.1 Introduction

1 User's Guide

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

1.1 Introduction

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

The viewed trace datais normally collected from Erlang trace ports or files.

1.1.1 Scope and Purpose

This manual describes the Event Tracer (ET) application, as a component of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Devel opment Environment, which
is described in a separate User's Guide.

1.1.2 Prerequisites

The following prerequisitesis required for understanding the material in the Event Tracer (ET) User's Guide:

o familiarity with the Erlang system and Erlang programming in general and the especially the art of Erlang tracing.
The application requires Erlang/OTP release R7B or later.

1.1.3 About This Manual

In addition to thisintroductory chapter, the Megaco User's Guide contains the following chapters:

e Chapter 2: "Usage" describes the architecture and typical usage of the application.
e Chapter 3: "Examples' gives some usage examples

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Event Tracer (ET) and about the Erlang/OTP
development system:

e the Reference Manual of theEvent Tracer (ET).

» documentation of basictracinginer | ang: trace/ 4ander| ang: trace_pat t er n/ 3 andthentheutilities
derived from these: dbg, obser ver andet .

e Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Usage

1.2.1 Overview

The two major components of the Event Tracer (ET) tool is agraphical sequence chart viewer (et _vi ewer) and its
backing storage (et _col | ect or). One collector may be used as backing storage for several simultaneous viewers
where each one may display a different view of the same trace data.

2 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.2 Usage

Theinterface between the collector and its viewersis public in order to enable other types of viewers. However in the
following text we will focus on usage of theet _vi ewer .

The main start function is et _vi ewer: start/ 1. It will by default start both an et _col | ect or and an
et _viewer:

% erl -pa et/exanples
Erl ang (BEAM emul ator versi on 2002. 10. 08 [source]

Eshel | V2002.10.08 (abort with ~Q

1> {ok, Viewer} = et _viewer:start([]).
{ ok, <0. 31. 0>}

A viewer gets trace events from its collector by polling it regularly for more events to display. Trace events are for
example reported to the collector withet _col | ector: report_event/ 6:

2> Col l ector = et_viewer:get_collector_pid(Viewer).

<0. 30. 0>

3> et _collector:report_event(Coll ector, 60, ny_shell, mesia tm start_outer,
"Start outer transaction"),

3> et _collector:report_event(Collector, 40, mesia_tm ny_shell, new tid,
"New transaction id is 4711"),

3> et _collector:report_event(Collector, 20, ny_shell, mesia | ocker, try wite_lock,
"Acquire wite lock for {ny_tab, key}"),

3> et _collector:report_event(Coll ector, 10, mmesia_l ocker, nmy_shell, granted,
"You got the wite lock for {ny_tab, key}"),

3> et _collector:report_event(Coll ector, 60, ny_shell, do_conmmt,
"Perform transaction commt"),

3> et _collector:report_event(Coll ector, 40, ny_shell, mesia_|l ocker, release_tid,
"Rel ease all locks for transaction 4711"),

3> et _collector:report_event(Collector, 60, ny_shell, mesia tm delete_transaction,
"End of outer transaction"),

3> et _collector:report_event(Coll ector, 20, ny_shell, end_outer,

"Transaction returned {atom c, ok}").
{ok, {tabl e_handl e, <0. 30. 0>, 11, trace_ts, #Fun<et _col | ect or. 0. 83904657>} }
4>

Thisisasimulation of the process events caused by a Mnesia transaction that writes arecord in alocal table:

mesi a: transaction(fun() -> mesia:wite({ny_tab, key, val}) end).

At this stage when we have a couple of events, it is time to show how it looks like in the graphical interface of
et _viewer:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 3

1.2 Usage

et_viewer (filter: collector)

L=
File Viewer Collector Fiter Help |

_I Freeze Detail Level
| Hide From=To e
_I Hide Unknown S|
my_shell e s ia_tm mnesia_locker

Af
N

start_outer

¥

new_tid

toy_write_lock

¥

granted

do_commit

release_tid

¥

delete_transaction

=

end_onter

L= i =

Figure 2.1: A simulated Mnesia transaction which writes one record

In the sequence chart, the actors (which symbolically has performed the traced event) are shown as named vertical

bars. The order of the actors may be altered by dragging (hold mouse button 1 pressed during the operation) the name
tag of an actor and drop it elsewhere:

et_viewer (filter: collector)

File Viewer Collector Filter Help |

_| Freeze Detall Level
_i Hide From=To 00
_I Hide Unknown =
my_shell miesia_locker miesia_tm 5
new_tid

trm_write_lock

b

granted
-

do_commit

release_tid

[
=

delete_transaction

b

end_onter

P | =

Figure 2.2: Two actors has switched places

4 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.2 Usage

An event may be an action performed by one single actor (blue text label) or it may involve two actors and is then
depicted as an arrow directed from one actor to another (red text label). Details of an event can be shown by clicking
(press and release the mouse button 1) on the event label text or on the arrow:

et_contents_viewer (filter: collect M
File Hide 3Search Fiters |
DETAIL LEVEL: 20 I
LABEL: try write lock
FROM: my_shell
TO: mesia_ locker
PARSED: 2002-10-14 14.27.49.Z616dl
CONTENTS :

Aoquire write lock for {my_tab, keyi
£
E =)

Figure 2.3: Details of a write lock message

1.2.2 Filters and dictionary

The Event Tracer (ET) uses named filters in various contexts. An Event Trace filter isan Er | ang f un that takes
some trace data as input and returns a possibly modified version of it:

filter(TraceData) -> true | {true, NewEvent} | false

TraceData = NewEvent | term()
NewEvent = record(event)

The interface of the filter function is the same as the the filter functions for thegood old | i st s: zf / 2. If thefilter
returnsf al se it meansthat the Tr aceDat a shouldbedropped. {t r ue, NewEvent} meansthattheTr aceDat a
should be replaced with NewEvent . Andt r ue meansthat the Tr aceDat a dataalready is an event record and that
it should be kept asit is.

The first filter that the trace data is exposed for is the collector filter. When a trace event is reported with
et _collector:report/2 (oret_collector:report_event/5, 6) thefirst thing that happens, is that a
message is sent to the collector processto fetch a handle that contains some useful stuff, such asthe collector filter fun
and an ets table identifier. Then the collector filter fun isapplied and if it returnst r ue (or {t rue, NewEvent}),
the event will be stored in an etstable. As an optimization, subsequent callstoet _col | ect or: r epor t -functions
can use the handle directly instead of the collector pid.

The collector filter (that is the filter named col | ect or) isalittle bit special, as its input may be any Erlang term
and is not limited to take an event record as the other filter functions.

Thecollector managesakey/value based dictionary, wherethefiltersare stored. Updates of thedictionary ispropagated
to al subscribing processes. When aviewer is started it is registered as a subscriber of dictionary updates.

Inaviewer thereisonly onefilter that isactive and all trace eventsthat the viewer gets from the collector will passthru
that filter. By writing clever filtersit is possible to customize how the events looks like in the viewer. The following
filter replacesthe actor namesmmesi a_t mandmesi a_| ocker andleaveseverything elseintherecord asit was:

If we now add the filter to the running collector:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 5

1.2 Usage

4> Fun = fun(E) -> et_deno: ngr_actors(E) end.

#Fun<er| _eval . 5. 123085357>

5> et_collector:dict_insert(Collector, {filter, nmgr_actors}, Fun).
ok

6>

you will see that the Fi | t er menu in all viewers have got a new entry called ngr _act or s. Select it, and a new
viewer window will pop up:

et_viewer (filter: mgr_actors)
File Viewer Collector Fiter Help |
_| Freeze Detail Level
_i Hide From=To oy
_1 Hide Unknown =
my_shell trans_mgr lock_mgr 5
start_outer
new_tid
toy_write_lock
granted
do_commit
release_tid
delete_transaction
end_onter
= I P

Figure 2.4: The same trace data in a different view

In order to see the nitty gritty details of an event you may click on the event in order to start a contents viewer for that
event. In the contents viewer there is also afilter menu in order to enable inspection of the event from other views
than the one selected in the viewer. A click onthenew t i d event will cause a contents viewer window to pop up,
showing the event inthengr _act or s view:

6 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.2 Usage

et_contents_viewer (filter: mgr_actors)
File Hide Search FHiters |

DETAIL LEVEL: 40 I
LABEL: new tid

FROM: Ltrans_mgr

TC: my_shell

PARSED: 2002-10-14 14.27.49,.2616%22

CONTENTR:

[forig from,mnesia tm},
forig_to,my_shell},
forig contents,"New transaction id is 4711"}]

4

P~ =

Figure 2.5: The trace event in the mgr_actors view

Select the col | ect or entry inthe Fi | t er s menu and a new contents viewer window will pop up showing the
same trace event in the collectors view:

et_contents_viewer (filter: collector) il
File Hide Search Hiters |
DETAIL LEVEL: 40 I
LABEL: new tid
FROM: mnesia tm
TO: my_shell
PARZED: 2002-10-14 14.27.49.2616022
CONTEMNTS @

Hew transacticn id is 4711

LS

E =

Figure 2.6: The same trace event in the collectors view

1.2.3 Trace clients

Asyou have seen it is possible to usethe et _col | ect or : r epor t -functions explicitly. By using those functions
you can writeyour own trace client that readstrace datafrom any source stored in any format and just feed the collector
with it. Y ou may replace the default collector filter with afilter that converts new exciting trace data formats to event-
records or you may convert it to an event-record before you invokeet _col | ect or: report/ 2 and then rely on
the default collector filter to handle the new format.

There are also existing functionsin the API that reads from various sourcesand callset _col | ect or: report/ 2:
» Thetrace events that are hosted by the collector may be stored to file and later be loaded by selecting save and
| oad entriesintheviewersFi | e-menu or viatheet _col | ect or API.

e |t is aso possible to perform live tracing of a running system by making use of the built-in trace support in
the Erlang emulator. These Erlang traces can be directed to files or to ports. See the reference manua for
erlang:trace/ 4,erl ang: trace_pattern/3,dbgandttb for moreinfo.

There are also corresponding trace client types that can read the Erlang trace data format from such files or
ports. Theet _col | ector:start_trace_client/ 3 function makes use of these Erlang trace clients and
redirects the trace data to the collector.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 7

1.2 Usage

The default collector filter converts the Erlang trace data format into event-records.If you want to perform this
differently you can of course write your own collector filter from scratch. But it may probably save you some
efforts if you first apply the default filter in et _sel ect or: parse_event/ 2 before you apply your own
conversions of its output.

1.2.4 Global tracing and phone home

Setting up an Erlang tracer on a set of nodes and connecting trace clientsto the ports of these tracersisnot intuitive. In
order to make this it easier the Event Tracer as a notion of global tracing. When used, theet _col | ect or process
will monitor Erlang nodes and when one connects, an Erlang tracer will automatically be started on the other node. A
corresponding trace client will & so be started on the collector nodein order to automatically forward the trace eventsto
the collector. Set the boolean parameter t r ace_gl obal totrue for eithertheet _col | ect or oret _vi ewer

in order to activate the global tracing. Thereis no restriction on how many concurrent (anonymous) collectorsyou can
have, but you can only have one global collector asits nameisregisteredin gl obal .

In order to further simplify the tracing you can make use of the et : report _event/ 4,5 (or its equivalents
et : phone_hone/ 4, 5 :-). These functions are intended to be invoked from other applications when there are
interesting events, in your application that needsto be highlighted. The functions are extremely light weight asthey do
nothing besides returning an atom. These functions are specifically designed to be traced for. Asthe caller explicitly
providesthe valuesfor the event-record fields, the default collector filter is able to automatically provide a customized
event-record without any user defined filter functions.

In normal operationtheet : report _event/ 4, 5 calsare aimost for free. When tracing is needed you can either
activate tracing on these functions explicitly. Or you can combine the usage of t r ace_gl obal with the usage of
trace_pattern. Whenset, thet race_patt er n will automatically be activated on all connected nodes.

Onenicethingwiththet r ace_pat t er nisthatit providesavery simpleway of minimizing theamount of generated
trace data by allowing you to explicitly control the detail level of the tracing. Asyou may have seentheet _vi ewer
haveadlider called”" Det ai | Level " that allowsyou to control the detail level of the trace events displayed in the
viewer. On the other hand if you set alow detail level inthet race_patt er n, lots of the trace data will never be
generated and thus not sent over the socket to the trace client and stored in the collector.

1.2.5 Viewer window

Almost al functionality available in the et _vi ewer is aso available via shortcuts. Which key that has the same
effect as selecting a menu entry is shown enclosed in parentheses. For example pressing the key r is equivalent to
selecting the menu entry Vi ewer - >Ref r esh.

File menu:

¢ Close Collector and all Viewers - Close the collector and all viewers connected to that collector.

» Closeother Viewers, but keep Collector - Keep this viewer and its collector, but close all other viewers connected
to this collector.

» ClosethisViewer, but keep Collector - Close this viewer, but al other viewers and the collector.
» Save Collector to file - Save dl events stored in the collector to file.
e Load Collector from file - Load the collector with events from afile.

Viewer menu:

e First- Scroll t hi s viewer to thefirst collector event.

* Prev-Scrollt hi s viewer one"page" backwards. Normally this meansthat the first event displayed in the viewer
will be the last one and the previous nax_event s events will be read from the collector.

* Next- Scroll t hi s viewer one "page" forward. Normally this means that the last event displayed in the viewer
will bethefirst one and max_event s more events will be read from the collector.

e Last- Scroll t hi s viewer to the last collector event.

8| Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.2 Usage

Refresh - Clear t hi s viewer and re-read its events from the collector.
Up 5 - Scroll 5 events backwards.
Down 5 - Scroll 5 events forward.

Abort search. Display all. - Switch the display mode to show all events regardless of any ongoing searches. Abort
the searches.

Collector menu:

First - Scroll al | viewersto the first collector event.

Prev - Scroll al | viewersone "page" backwards. Normally this meansthat the first event displayed in the viewer
will be the last one and the previous max_event s events will be read from the collector.

Next - Scroll al | viewers one "page" forward. Normally this means that the last event displayed in the viewer
will bethefirst one and max_event s more events will be read from the collector.

Last - Scroll al | viewersto the last collector event.
Refresh - Clear al | viewers and re-read their events from the collector.

Filters menu:

ActiveFilter (=) - Start anew viewer window with the same active filter and scale as the current one.
ActiveFilter (+) - Start anew viewer window with the same active filter but alarger scale than the current one.
ActiveFilter (-) - Start anew viewer window with the same active filter but a smaller scale than the current one.
collector (0) - Start anew viewer with the collector filter as activefilter.

AnotherFilter (2) - If morefiltersareinserted into the dictionary, thesewill turn up here asentriesintheFi | t er s
menu. The second filter will be number 2, the next one number 3 etc. The names are sorted.

Slider and radio buttons:

Freeze - When true, this means that the viewer will not read more events from the collector until set to false.
Hide From=To - When true, this means that the viewer will hide all events where the from-actor equals to its
to-actor.

Hide Unknown - When true, this means that the viewer will hide all events where either of the from-actor or to-
actor is UNKNOWN.

Detail level - This dlider controls the resolution of the viewer. Only events with a detail level srral | er than the
selected one (default=100=max) are displayed.

Other features:

Display details of an event - Click on the event name and a new window will pop up, displaying the contents
of an event.

Toggle actor search - Normally the viewer will be in adisplay mode where al events are shown. By clicking on
an actor name the tool will switch display mode to only show events with selected actors.

Click on an actor and only events with that actor will be displayed. Click on another actor to include that actor to
the selected ones. Clicking on an already selected actor will removeit from the collections of selected actors. When
the collection of selected actors becomes empty the normal mode where all actorsare shown will be entered again.

Abort actor search with the a key or with the Vi ewer - >Abort sear ch menu choice.

Move actor - Drag and drop an actor by first clicking on the actor name, keeping the button pressed while moving
the cursor to a new location and release the button where the actor should be moved to.

1.2.6 Configuration

The event-records in the ets-table are ordered by their timestamp. Which timestamp that should be used is controlled
viathe event _or der parameter. Default ist r ace_t s which means the time when the trace data was generated.
event _t s meansthe time when the trace data was parsed (transformed into an event-record).

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 9

1.3 Examples

1.2.7 Contents viewer window

File menu:

Close - Close this window.
Save - Save the contents of this window to file.

Filters menu:

ActiveFilter - Start anew contents viewer window with the same active filter.

AnotherFilter (2) - If morefiltersareinserted into the dictionary, thesewill turn up hereasentriesintheFi | t er s
menu. The second filter will be number 2, the next one number 3 etc. The names are sorted.

Hide menu:

Hide actor in viewer - Known actors are shown as a named vertical bars in the viewer window. By hiding the
actor, its vertical bar will be removed and the viewer will be refreshed.

Hiding the actor is only useful if the max_act or s threshold has been reached, as it then will imply that the
"hidden" actor will be displayed asif it were” UNKNOWN' . If themax_act or s threshold not have been reached,
the actor will re-appear as a vertica bar in the viewer.

Show actor in viewer - This implies that the actor will be added as a known actor in the viewer with its own
vertical bar.

Search menu:

Forward from this event - Set this event to be the first event in the viewer and change its display mode to be enter
forward search mode. The actor of this event (from, to or both) will be added to the list of selected actors.
Reverse from this event - Set this event to be the first event in the viewer and change its display mode to be enter
reverse search mode. The actor of thisevent (from, to or both) will be added to thelist of selected actors. Observe,
that the events will be shown in reverse order.

Abort search. Display all - Switch the display mode of the viewer to show all events regardless of any ongoing
searches. Abort the searches.

1.3 Examples

1.3.1 A simulated Mnesia transaction

The Erlang code for running the simulated M nesia transaction example in the previous chapter isincluded in the et /
exanpl es/ et _deno. erl file

If youinvoketheet _denp: si m trans() function aviewer window will pop up and the sequence trace will be
almost the same asiif the following M nesia transaction would have been run:

mesi a: transaction(fun() -> mesia:wite({ny_tab, key, val}) end).

And the viewer window will look like:

$ erl -pa ../exanples
Erl ang (BEAM enul ator version 2002. 10. 08 [source]

Eshel | V2002.10.08 (abort with ~Q

10 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Examples

1> et _denp:simtrans().
{ ok, {t abl e_handl e, <0. 30. 0>, 11, trace_t s, #Fun<et _col | ect or. 0. 83904657>} }
2>

et_viewer (filter: collector) il

File Viewer Collector Filter Help |

| Freeze Detail Level
_i Hide From=To 00
_I Hide Unknown L
my_shell miesia_tm moesia_locker 5
start_onter
new_tid

trm_write_lock

b

granted
-

do_commit

release_tid

b

delete_transaction
P

=

end_onter

I ' i

Figure 3.1: A simulated Mnesia transaction which writes one record

1.3.2 Some convenient functions used in the Mnesia transaction example

The nodul e_as_act or filter converts the event-records so the module names becomes actors and the invoked
functions becomes labels. If the information about who the caller was it will be displayed as an arrow directed from
thecaller tothecalee. The[{ message, {caller}}, {return_trace}] optionstodbg:tpl /2 function
will imply the necessary information in the Erlang traces. Here followsthe nodul e_as_act or filter:

Thepl ai n_process_i nf o filter does not alter the event-records. It merely ensures that the event not related to
processes are skipped:

The pl ai n_process_info_nolink filter does not ater the event-records. It do makes use of the
pl ai n_process_i nf o, but do aso ensure that the process info related to linking and unlinking is skipped:

In order to simplify the startup of an et _vi ewer process with the filters mentioned above, plus some others (that
also are found in et / exanpl es/ et _deno. er| src/et_collector.erl the et _deno: start/ 0, 1 functions can
be used:

A simple one-liner starts the tool:
erl -pa ../exanples -s et_denp

Thefilters are included by the following parameters:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 11

1.3 Examples

1.3.3 Erlang trace of a Mnesia transaction

Thefollowing piece of codeet _deno: t race_mmesi a/ 0 activates call tracing of both local and external function
cals for all modules in the Mnesia application. The call traces are configured cover al processes (both existing and
those that are spawned in the future) and include timestampsfor trace data. It do also activate tracing of processrelated
events for Mnesias static processes plus the calling process (that is your shell). Please, observe that thewher ei s/ 1
call inthe following code requires that both the traced Mnesiaapplication and theet _vi ewer isrunning on the same
node:

Theet _deno: |ive_trans/ 0 function startsthe aglobal controller, starts aviewer, starts Mnesia, creates alocal
table, activates tracing (as described above) and registers the shell process is as 'my_shell’ for clarity. Finally the a
simple Mnesia transaction that writes a single record is run:

Now weruntheet deno: |ive_trans/ 0 function:

erl -pa ../exanples -s et_denp |live_trans
Erl ang (BEAM enul ator version 2002. 10. 08 [sour ce]

Eshel | V2002.10.08 (abort with "G
1>

Please, explorethe different filtersin order to see how the traced transaction can be seen from different point of views:

Mnesia tracer (filter: named_process_info_nolink)
File Viewer Collector Filter Help |
| Freeze Detail Level
W Hide From=To 00
_I Hide Unknown =
my_shell miesia_tm miesia_locker ;
start_ounter
new_tid
trm_write_lock
granted
release_tid
delete_transaction
I'\l I -

Figure 3.2: A real Mnesia transaction which writes one record

1.3.4 Erlang trace of Megaco startup

The Event Tracer (ET) tool was initialy written in order to demonstrate how messages where sent over the Megaco
protocol. This were back in the old days before the standard bodies of IETF and ITU had approved Megaco (also
called H.248) as an international standard.

12 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Examples

In the Megaco application of Erlang/OTP, the code is carefully instrumented with callstoet : report _event/ 5.
For call adetail level isset in order to dynamically control the trace level in asimple manner.

The megaco_filter module implements a customized filter for Megaco messages. It does also make use of
trace_gl obal combined with usage of thetrace_pattern:

- modul e(megaco_filter).
-export([start/0]).

start() ->

Options =
[{event _order, event_ts},
{scale, 3},
{max_actors, infinity},
{trace_pattern, {negaco, max}},
{trace_gl obal, true},
{dict_insert, {filter, megaco_filter}, fun filter/1},
{active_filter, megaco_filter},
{title, "Megaco tracer - Erlang/OIP"}],

et _viewer:start(Options).

First we start an Erlang node with the aglobal collector and itsviewer. Theet _vi ewer: search for: [] +
+ ["gateway_tt"] printoutiscaused by aclick onthe "gateway_tt" actor name in the viewer. It meansthat only
events with that actor will be displayed in the viewer.

erl -sname observer -s negaco_filter
Erl ang (BEAM enul ator version 2002. 10. 08 [sour ce]

Eshel | V2002.10.08 (abort with G
(observer @nrod) 1> et _viewer: search for: [] ++ ["gateway_tt"]

Secondly we start another Erlang node which we connect the observer node, before we start the application that we
want to trace. In this case we start a Media Gateway Controller that listens for both TCP and UDP on the text and
binary ports for Megaco:

erl -sname ngc -pa ../../megaco/ exanpl es/ si npl e
Erl ang (BEAM enul ator version 2002. 10. 08 [sour ce]

Eshel | V2002.10.08 (abort with G
(mgc@anr od) 1> net : pi ng(obser ver @nr od) .
pong
(nmgc@anr od) 2> negaco: start ().
ok
(nmgc@anr od) 3> negaco_si npl e_ngc: start ().
{ ok, [{ ok, 2944,
{megaco_recei ve_handl e, {devi ceNang, “"control |l er"},
nmegaco_pretty_text_encoder,
[1,
megaco_tcp}},
{ok, 2944,
{megaco_recei ve_handl e, { devi ceNang, “"control |l er"},
nmegaco_pretty_text_encoder,

(1.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 13

1.3 Examples

megaco_udp}},
{ ok, 2945,
{megaco_recei ve_handl e, { devi ceNane, "control | er"},
megaco_bi nary_encoder,
(1.
megaco_tcp}},
{ ok, 2945,
{megaco_recei ve_handl e, { devi ceNane, "control | er"},
megaco_bi nary_encoder,
(1.
megaco_udp}}]}
(mgc@nr od) 4>

And finally we start an Erlang node for the Media Gateways and connect to the observer node. Each Media Gateway
connectsto the controller and sendsan initial Service Change message. The controller accepts the gateways and sends
areply to each one using the same transport mechanism and message encoding according to the preference of each
gateway. That isall combinations of TCP/IP transport, UDP/IP transport, text encoding and ASN.1 BER encoding:

erl -sname ng -pa ../../nmegaco/ exanpl es/ si npl e
Erl ang (BEAM emul at or versi on 2002. 10. 08 [sour ce]

Eshel | V2002.10.08 (abort with QG

(mg@nr od) 1> net : pi ng(obser ver @nr od) .

pong

(mg@nr od) 2> nmegaco_si npl e_ng: start ().

[{{deviceNane, "gateway_tt"},{error,{start_user, megaco_not _started}}}
{{devi ceNane, "gateway_tb"}, {error, {start_user, megaco_not _started}}}
{{devi ceNane, "gateway_ut"}, {error, {start_user, megaco_not _started}}}
{{devi ceNane, "gat eway_ub"}, {error, {start_user, megaco_not _started}}}

(mg@nr od) 3> negaco: start ().

ok

(mg@nr od) 4> megaco_si npl e_ng: start ().

[{{deviceNane, "gateway_tt"},

{1,
{ok, [{' ActionReply', O,
asnl_NOVALUE,
asnl_NOVALUE,
[{servi ceChangeRepl y,
{' Servi ceChangeRepl y' ,
[{megaco_term.id,false, ["root"]}],
{servi ceChangeResPar ns,
{"' Servi ceChangeResParni ,
{devi ceNan®e| ...},
asnl_NOVALUE[...}}}}1}]1}1},

]

{{devi ceNane, "gateway_tb"},
{1,
{ok, [{' ActionReply', O,
asnl_NOVALUE,
asnl_NOVALUE,
[{servi ceChangeRepl y,
{' Servi ceChangeRepl y',
[{megaco_term.id,false, ["root"]}],
{servi ceChangeResPar ns,
{' Servi ceChangeResParni ,
(EEER I 33 3 AR AR
{{devi ceNane, "gateway_ut"},
{1,
{ok, [{' ActionReply', O,
asnl_NOVALUE,
asnl_NOVALUE,

14 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Examples

[{servi ceChangeRepl y,
{"' Servi ceChangeRepl y* ,
[{regaco_term.id,false,["root"]}],
{servi ceChangeResPar ns,
{' Servi ceChangeResParm , {...}|...}}}} 1} 1} 1},
{{devi ceNane, "gat eway_ub"},

{1,
{ok,[{" ActionReply', O,
asnl_NOVALUE,
asnl_NOVALUE,
[{servi ceChangeRepl y,
{"' Servi ceChangeRepl y* ,
[{regaco_term.id,false,["root"]}],
{servi ceChangeResPar ns,
{' Servi ceChangeResParm |...}}}}]1}]} } Y]
(nmg@nr od) 5>

The Megaco adopted viewer looks like this, when we have clicked on the "gateway_tt" actor name in order to only
display the events regarding that actor:

Megaco tracer - Erlang/OTP (filter: megaco_filter)
File Viewer Collector Fiter Help |

_| Freeze Detail Level

@ Hide From=To
_1 Hide Unknown S

100

-

gatewan_tt gateway_ttEuzer prelininary_mid controller

callback: connect

I

retumn! connect
-«

send tran: request] #1

¥

send 144 bntes #1

¥

receive 144 byptes

¥

send tran: reply #1

send 128 bptes #1

callback: connect

I

retumn! connect
-«

receive 128 byptes

trans reply #1

¥

callback: tranz reply #1

I

callback: f{call)y tfans reply #1

handle ack #1

| S P

Figure 3.3: The viewer adopted for Megaco

A pretty printed Megaco message looks like this:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 15

1.3 Examples

Figure 3.4: A textual Megaco message

And the corresponding internal form for the same Megaco message looks like this:

Figure 3.5: The internal form of a Megaco message

16 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Examples

2 Reference Manual

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 17

et

et

Erlang module

Interface module for the Event Trace (ET) application

Exports

report _event(Detail Level, Fronio, Label, Contents) -> hopefully traced
report _event(Detail Level, From To, Label, Contents) -> hopefully traced
phone_home(Det ai | Level , FroniTo, Label, Contents) -> hopefully traced
phone_home(Detail Level, From To, Label, Contents) -> hopefully traced

Types.
DetailL evel = integer (X) when X =<0, X >= 100
From = actor ()
To = actor()
FromTo = actor()
Label = atom() | string() | term()
Contents=[{Key, Value}] | term()
actor() =term()

Reports an event, such as a message.

These functions areintended to be invoked at strategic placesin user applicationsin order to enable simplified tracing.
The functions are extremely light weight as they do nothing besides returning an atom. These functions are designed
for being traced. The global tracing mechanism in et_collector defaults to set its trace pattern to these functions.

Thelabel isintended to provide a brief summary of the event. A simple tag would do.

The contents can be any term but in order to simplify post processing of the traced events, aplain list of { Key, Value}
tuplesis preferred.

Some events, such as messages, are directed from some actor to another. Other events (termed actions) may be
undirected and only have one actor.

18 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et_collector

et _collector

Erlang module

Interface module for the Event Trace (ET) application

Exports

start _link(Options) -> {ok, CollectorPid} | {error, Reason}

Types:
Options = [option()]
option() = {parent_pid, pid()} | {event_order, event_order()} | {dict_insert, {filter, collector},
collector_fun()} | {dict_insert, {filter, event_filter_name()}, event_filter_fun()} | {dict_insert, {subscriber,
pid()}, dict_val()} | {dict_insert, dict_key(), dict_val()} | {dict_delete, dict_key()} | {trace_client,
trace client()} | {trace _global, boolean()} | {trace pattern, trace pattern()} | {trace port, integer()} |
{trace_max_queue, integer ()}

event_order () = trace_ts|event_ts
trace pattern() = {report_module(), extended_dbg_match_spec()} | undefined

report_module() = atom() | undefined <v>extended_dbg_match_spec()() = detail_level() |
dbg_match_spec()

detail_level() = min | max | integer (X) when X =< 0, X >= 100

trace client() = {event_file, file_name()} | {dbg_trace type(), dbg trace parameters()}
file_name() = string()

collector_fun() = trace filter_fun() | event_filter_fun()

trace filter_fun() = fun(TraceData) -> false | true | {true, NewEvent}
event_filter_fun() = fun(Event) -> false | true | {true, NewEvent}
event_filter _name() = atom()

TraceData = erlang_trace _data()

Event = NewEvent = record(event)

dict_key() =term()

dict_val() =term()

Collector Pid = pid()

Reason = term()

Start a collector process.

The collector collects trace events and keeps them ordered by their timestamp. The timestamp may either reflect the
time when the actual trace data was generated (trace _ts) or when the trace data was transformed into an event record
(event_ts). If the time stamp is missing in the trace data (missing timestamp option to erlang:trace/4) the trace tswill
be set to the event _ts.

Events are reported to the collector directly with the report function or indirectly via one or more trace clients. All
reported events arefirst filtered thru the collector filter before they are stored by the collector. By replacing the default
collector filter with a customized dito it is possible to allow any trace data as input. The collector filter is a dictionary
entry with the predefined key {filter, collector} and the value is a fun of arity 1. See et_selector:make_event/1 for
interface details, such aswhich erlang:trace/1 tuples that are accepted.

The collector hasabuilt-in dictionary service. Any term may be stored asvalue in the dictionary and bound to aunique
key. When new values are inserted with an existing key, the new values will overwrite the existing ones. Processes

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 19

et_collector

may subscribe on dictionary updates by using { subscriber, pid()} as dictionary key. All dictionary updates will be
propagated to the subscriber processes matching the pattern {{subscriber, ' '}, ' '} where the first ' ' is interpreted
asapid().

In global trace mode, the collector will automatically start tracing on all connected Erlang nodes. When a node
connects, a port tracer will be started on that node and a corresponding trace client on the collector node. By default
the global trace patternis'max’.

Default values:

o parent_pid - self().

e event_order - trace ts.

e trace global - false.

» trace pattern - undefined.
e trace port - 4711.

e trace_max_queue - 50.

stop(Col l ectorPid) -> ok
Types:

Collector Pid = pid()
Stop a collector process.

save_event _file(CollectorPid, FileName, Options) -> ok | {error, Reason}
Types.
Callector Pid = pid()
FileName = string()
Options = [option()]
Reason = term()
option() = event_option() | file_option() | table_option()
event_option() = existing
file_option() = write | append
table option() = keep | clear
Save the eventsto afile.

By default the currently stored events (existing) are written to a brand new file (write) and the events are kept (keep)
after they have been written to thefile.

Instead of keeping the events after writing them to file, it is possible to remove all stored events after they have
successfully written to file (clear).

The options defaults to existing, write and keep.

| oad_event file(CollectorPid, FileNane) -> {ok, BadBytes} | exit(Reason)
Types:

Collector Pid = pid()

FileName = string()

BadBytes = integer (X) where X >=0

Reason =term()
Load the event table from afile.

20 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et_collector

report (Handl e, TraceOrEvent) -> {ok, Continuation} | exit(Reason)
report _event (Handl e, Detail Level, FronfTo, Label, Contents) -> {ok,
Conti nuation} | exit(Reason)

report _event (Handl e, Detail Level, From To, Label, Contents) -> {ok,
Conti nuation} | exit(Reason)

Types:
Handle = Initial | Continuation
Initial = collector_pid()
collector_pid() = pid()
Continuation = record(table_handle)
TraceOrEvent =record(event) | dbg_trace tuple() | end_of trace
Reason = term()
DetailL evel = integer (X) when X =<0, X >= 100
From = actor ()
To=actor()
FromTo = actor()
Label =atom() | string() | term()
Contents=[{Key, Value}] | term()
actor () =term()

Report an event to the collector.

All eventsarefiltered thru the collector filter, which optionally may transform or discard the event. Thefirst call should

use the pid of the collector process as report handle, while subsequent calls should use the table handle.

make key(Type, Stuff) -> Key

Types:
Type=record(table_handle) | trace_ts| event_ts
Stuff = record(event) | Key
Key =record(event_ts) | record(trace ts)

Make a key out of an event record or an old key.

get _table_handl e(Col I ectorPid) -> Handl e
Types:

Collector Pid = pid()

Handle = record(table_handle)

Return atable handle.

get _gl obal _pid() -> CollectorPid | exit(Reason)
Types:

Collector Pid = pid()

Reason =term()

Return athe identity of the globally registered collector if thereis any.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 21

et_collector

change_pattern(Col |l ectorPid, RawPattern) -> {old_pattern, TracePattern}
Types:

Collector Pid = pid()

RawPattern = {report_module&(), extended_dbg_match_spec()}

report_module() = atom() | undefined

extended_dbg_match_spec()() = detail_level() | dbg_match_spec()

RawPattern = detail_level()

detail_level() = min | max | integer (X) when X =<0, X >= 100

TracePattern = {report_module(), dbg_match_spec_match_spec()}
Change active trace pattern globally on al trace nodes.

dict _insert(CollectorPid, {filter, collector}, FilterFun) -> ok
dict_insert(CollectorPid, {subscriber, SubscriberPid}, Void) -> ok
dict _insert(CollectorPid, Key, Val) -> ok

Types:
Collector Pid = pid()
Filter Fun =filter_fun()
Subscriber Pid = pid()
Void =term()
Key =term()
Val =term()
Insert adictionary entry and send a{et, {dict_insert, Key, Val}} tupleto all registered subscribers.
If the entry isanew subscriber, it will imply that the new subscriber processfirst will get one message for each already
stored dictionary entry, before it and all old subscribers will get this particular entry. The collector process links to

and then supervises the subscriber process. If the subscriber process diesit will imply that it gets unregistered aswith
anormal dict_delete/2.

di ct _| ookup(Col I ectorPid, Key) -> [Val]
Types:

Collector Pid = pid()

Filter Fun = filter_fun()

Collector Pid = pid()

Key =term()

Val =term()
Lookup adictionary entry and return zero or one value.

di ct _del ete(Coll ectorPid, Key) -> ok
Types:
Collector Pid = pid()
Subscriber Pid = pid()
Key = {subscriber, SubscriberPid} | term()
Delete adictionary entry and send a{ et, {dict_delete, Key}} tuple to all registered subscribers.

22 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et_collector

If the deleted entry isaregistered subscriber, it will imply that the subscriber process getsis unregistered as subscriber
aswell asit getsit final message.

dict_match(CollectorPid, Pattern) -> [Match]
Types.
CollectorPid = pid()
Pattern ="' ' | {key_pattern(), val_pattern()}
key pattern() = ets match_object_pattern()
val_pattern() = ets match_object_pattern()
Match = {key(), val()}
key() = term()
val() =term()
Match some dictionary entries

mul ticast(_CollectorPid, Mg) -> ok
Types:

Collector Pid = pid()

Collector Pid = pid()

Msg = term()
Sends a message to al registered subscribers.

start _trace client(CollectorPid, Type, Paraneters) -> file | oaded |
{trace_client_pid, pid()} | exit(Reason)
Types.
Type=dbg_trace client_type()
Parameters = dbg_trace client_parameters()
Pid = dbg_trace client_pid()
Load raw Erlang trace from afile, port or process.

iterate(Handl e, Prev, Linmit) -> NewAcc
Short for iterate(Handle, Prev, Limit, undefined, Prev) -> NewAcc

iterate(Handl e, Prev, Limt, Fun, Acc) -> NewAcc
Types:

Handle = collector_pid() | table_handle()

Prev =first | last | event_key()

Limit = done() | forward() | backward()

collector_pid() = pid()

table_handle() = record(table_handle)

event_key() = record(event) | record(event_ts) | record(trace ts)

dong() =0

forward() = infinity | integer (X) where X >0

backward() = '-infinity' | integer (X) where X <0

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 23

et_collector

Fun = fun(Event, Acc) -> NewAcc <v>Acc = NewAcc = term()
Iterate over the currently stored events.

Iterates over the currently stored eventsand appliesafunction for each event. Theiteration may be performed forwards
or backwards and may be limited to a maximum number of events (abs(Limit)).

cl ear_tabl e(Handl e) -> ok

Types:
Handle = collector_pid() | table_handle&()
collector_pid() = pid()
table _handle() = record(table_handle)

Clear the event table.

24 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et_selector

et _selector

Erlang module

Exports

make pattern(RawPattern) -> TracePattern
Types:
RawPattern = detail_level()
TracePattern = erlang_trace pattern_match_spec()
detail_level() = min | max | integer (X) when X =<0, X >= 100
Makes atrace pattern suitable to feed change_pattern/1
Min detail level deactivates tracing of callsto phone_home/4,5
Max detail level activates tracing of all callsto phone_home/4,5
integer(X) detail level activates tracing of al calls to phone_home/4,5 whose detail level argument is lesser than X.
See also erlang:trace pattern/2 for more info about its match_spec()

change_pattern(Pattern) -> ok
Types:
Pattern = detail_level() | empty_match_spec() | erlang_trace pattern_match_spec()
detail_level() = min | max | integer (X) when X =<0, X >= 100
empty_match_spec() =]
Activates/deactivates tracing by changing the current trace pattern.
Min detail level deactivates tracing of callsto phone_home/4,5
Max detail level activates tracing of all callsto phone_home/4,5
integer(X) detail level activates tracing of all callsto phone_home/4,5 whose detail level argument is lesser than X.
An empty match spec deactivates tracing of callsto phone_home/4,5
Other match specs activates tracing of calls to phone_home/4,5 accordingly with erlang:trace pattern/2.

parse_event (Mbd, ValidTraceData) -> false | true | {true, Event}
Types:
Mod = module_name() | undefined <v>module_name() = atom() <v>ValidTraceData =
erlang_trace data() | record(event)

erlang_trace data() = {trace, Pid, Label, Info} | {trace, Pid, Labdl, Info, Extra} | {trace_ts, Pid, Label,
Info, ReportedT S} | {trace_ts, Pid, Label, Info, Extra, ReportedTS} | {seq_trace, Label, Info} | {seq_trace,
Label, Info, ReportedTS} | {drop, Number OfDropped|tems}

Transforms trace data and makes an event record out of it.
See erlang:trace/3 for more info about the semantics of the trace data.

An event record consists of the following fields: detail_level - Noise hasahigh level as opposed to essentials. trace ts
- Time when the trace was generated. Same as event_tsif omitted in trace data. event_ts - Time when the event record

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 25

et_selector

was created. from - From actor, such as sender of amessage. to - To actor, such as receiver of message. label - Label
intended to provide a brief event summary. contents - All nitty gritty details of the event.

See et:phone_home/4 and et:phone_home/5 for details.

Returns: {true, Event} - where Event is an #event{} record representing the trace data true - means that the trace data
already is an event record and that it is valid as it is. No transformation is needed. false - means that the trace data
is uninteresting and should be dropped

26 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et _viewer

et viewer

Erlang module

Exports

file(FileNane) -> {ok, ViewerPid} | {error, Reason}
Types.
FileName() = string()
Viewer Pid = pid()
Reason =term()
Start anew event viewer and a corresponding collector and load them with trace events from atracefile.

start() -> ok
Simplified start of a sequence chart viewer with global tracing activated.
Convenient to be used from the command line (erl -s et_viewer).

start (Options) -> ok
Start of a sequence chart viewer without linking to the parent process.

start _link(Options) -> {ok, ViewerPid} | {error, Reason}

Types:
Options = [option() | collector_option()]
option() = {parent_pid, extended_pid()} | {title, term()} | {detail_level, detail_level()} | {is_suspended,
boolean()} | {scale, integer ()} | {width, integer ()} | {height, integer ()} | {collector_pid, extended_pid()}
| {event_order, event_order ()} | {active filter, atom()} | {max_events, extended_integer ()} |
{max_actors, extended_integer ()} | {trace_pattern, et_collector_trace_pattern()} | {trace _port,
et_collector_trace port()} | {trace_global, et_collector_trace global()} | {trace client,
et_collector_trace client()} | {dict_insert, {filter, filter_name()}, event_filter_fun()} | {dict_insert,
et_collector_dict_key(), et_collector_dict_val()} | {dict_delete, {filter, filter_name()}} | {dict_delete,
et_collector_dict_key()} | {actors, actors()} | {first_event, first_key()} | {hide_unknown, boolean()} |
{hide_actions, boolean()} | {display_mode, display_mode()}

extended_pid() = pid() | undefined

detail_level() = min | max | integer (X) when X >=0, X =< 100
event_order () = trace ts|event_ts

extended_integer () = integer () | infinity

display_mode() = all | {search_actors, direction(), first_key(), actors()}
direction() = forward | reverse

first_key() = event_key()

actors() = [term()]

filter_name() = atom()

filter_fun() = fun(Event) -> false | true | {true, NewEvent}
Event = NewEvent = record(event)

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 27

et_viewer

Viewer Pid = pid()
Reason = term()
Start a sequence chart viewer for trace events (messages/actions)
A filter_fun() takes an event record as sole argument and returns false | true | { true, NewEvent} .

If the collector _pid is undefined a new et _collector will be started with the following
parameter settings. parent _pid, event _order, trace_global, trace_pattern, trace_port,
trace_nax_queue,trace_client,dict_insert anddi ct _del et e. Thenewet vi ewer will register
itself asanet _col | ect or subscriber.

Default values:

e parent_pid - self().

o title-"et_viewer".

e detail_level - max.

e is suspended - false.

e scde-2.
e width - 800.
« height - 600.

« collector_pid - undefined.
e event_order - trace ts.

e active filter - collector.

e max_events- 100.

e max_actors- 5.

o actors- ["UNKNOWN"].
o first_event - first.

e hide_unknown - false.

e hide actions- false.

e display_mode- all.

get _collector_pid(ViewerPid) -> CollectorPid
Types:

Viewer Pid = pid()

Collector Pid = pid()
Returns the identifier of the collector process.

stop(ViewerPid) -> ok
Types:

Viewer Pid = pid()
Stops a viewer process.

28 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

	Event Tracer (ET)
	User's Guide
	Introduction
	Scope and Purpose
	Prerequisites
	About This Manual
	Where to Find More Information

	Usage
	Overview
	Filters and dictionary
	Trace clients
	Global tracing and phone home
	Viewer window
	Configuration
	Contents viewer window

	Examples
	A simulated Mnesia transaction
	Some convenient functions used in the Mnesia transaction example
	Erlang trace of a Mnesia transaction
	Erlang trace of Megaco startup

	Reference Manual
	et
	report_event/4
	report_event/5
	phone_home/4
	phone_home/5

	et_collector
	start_link/1
	stop/1
	save_event_file/3
	load_event_file/2
	report/2
	report_event/5
	report_event/6
	make_key/2
	get_table_handle/1
	get_global_pid/0
	change_pattern/2
	dict_insert/4
	dict_insert/4
	dict_insert/3
	dict_lookup/2
	dict_delete/2
	dict_match/2
	multicast/2
	start_trace_client/3
	iterate/3
	iterate/5
	clear_table/1

	et_selector
	make_pattern/1
	change_pattern/1
	parse_event/2

	et_viewer
	file/1
	start/0
	start/1
	start_link/1
	get_collector_pid/1
	stop/1

