
Scsh Reference Manual
For scsh release 0.6.4

April 2003

Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Mike Sperber

Acknowledgements

Who should I thank? My so-called “colleagues,” who laugh at me behind my
back, all the while becoming famous on my work? My worthless graduate stu-
dents, whose computer skills appear to be limited to downloading bitmaps off
of netnews? My parents, who are still waiting for me to quit “fooling around
with computers,” go to med school, and become a radiologist? My depart-
ment chairman, a manager who gives one new insight into and sympathy for
disgruntled postal workers?

My God, no one could blame me—no one!—if I went off the edge and just
lost it completely one day. I couldn’t get through the day as it is without the
Prozac and Jack Daniels I keep on the shelf, behind my Tops-20 JSYS manu-
als. I start getting the shakes real bad around 10am, right before my advisor
meetings. A 10 oz. Jack ’n Zac helps me get through the meetings without one
of my students winding up with his severed head in a bowling-ball bag. They
look at me funny; they think I twitch a lot. I’m not twitching. I’m controlling
my impulse to snag my 9mm Sig-Sauer out from my day-pack and make a few
strong points about the quality of undergraduate education in Amerika.

If I thought anyone cared, if I thought anyone would even be reading this,
I’d probably make an effort to keep up appearances until the last possible mo-
ment. But no one does, and no one will. So I can pretty much say exactly what
I think.

Oh, yes, the acknowledgements. I think not. I did it. I did it all, by myself.

Olin Shivers
Cambridge
September 4, 1994

ii

Contents

Contents iii

1 Introduction 1
1.1 Copyright & source-code license 1
1.2 Obtaining scsh . 2
1.3 Building scsh . 2
1.4 Caveats . 3
1.5 Naming conventions . 3
1.6 Lexical issues . 4

1.6.1 Extended symbol syntax 4
1.6.2 Extended string syntax . 5
1.6.3 Block comments and executable interpreter-triggers . . . 5
1.6.4 Here-strings . 5
1.6.5 Dot . 7

1.7 Record types and the define-record form 7
1.8 A word about Unix standards . 9

2 Process notation 10
2.1 Extended process forms and I/O redirections 10

2.1.1 Port and file descriptor sync 11
2.2 Process forms . 12
2.3 Using extended process forms in Scheme 13

2.3.1 Procedures and special forms 14
2.3.2 Interfacing process output to Scheme 14

2.4 More complex process operations 16
2.4.1 Pids and ports together 17

iii

2.4.2 Multiple stream capture 17

2.5 Conditional process sequencing forms 19

2.6 Process filters . 20

3 System Calls 21
3.1 Errors . 21

3.1.1 Interactive mode and error handling 23

3.2 I/O . 24

3.2.1 Standard R5RS I/O procedures 24

3.2.2 Port manipulation and standard ports 24

3.2.3 String ports . 26

3.2.4 Revealed ports and file descriptors 26

3.2.5 Port-mapping machinery 29

3.2.6 Unix I/O . 31

3.2.7 Buffered I/O . 37

3.2.8 File locking . 39

3.3 File system . 41

3.4 Processes . 54

3.4.1 Process objects and process reaping 57

3.4.2 Process waiting . 60

3.4.3 Analysing process status codes 61

3.5 Process state . 62

3.6 User and group database access 64

3.7 Accessing command-line arguments 64

3.8 System parameters . 66

3.9 Signal system . 67

3.10 Time . 71

3.10.1 Terminology . 71

3.10.2 Basic data types . 71

3.10.3 Time zones . 73

3.10.4 Procedures . 73

3.11 Environment variables . 77

3.11.1 Path lists and colon lists 79

3.11.2 $USER, $HOME, and $PATH 80

3.12 Terminal device control . 81

iv

3.12.1 Portability across OS variants 81
3.12.2 Miscellaneous procedures 82
3.12.3 The tty-info record type 82
3.12.4 Using tty-info records . 84
3.12.5 Other terminal-device procedures 85
3.12.6 Control terminals, sessions, and terminal process groups 86
3.12.7 Pseudo-terminals . 87

4 Networking 94
4.1 High-level interface . 94
4.2 Sockets . 95
4.3 Socket addresses . 97
4.4 Socket primitives . 98
4.5 Performing input and output on sockets 99
4.6 Socket options . 100
4.7 Database-information entries . 101

5 Strings and characters 103
5.1 Manipulating file names . 104

5.1.1 Terminology . 104
5.1.2 Procedures . 105

5.2 Other string manipulation facilities 110
5.3 ASCII encoding . 110
5.4 Character predicates . 110
5.5 Deprecated character-set procedures 111

6 Pattern-matching strings with regular expressions 112
6.1 Summary SRE syntax . 113
6.2 Examples . 117
6.3 A short tutorial . 117
6.4 Choices . 119

6.4.1 Embedding regexps within Scheme programs 128
6.5 Regexp functions . 129

6.5.1 Obsolete, deprecated procedures 129
6.5.2 Standard procedures and syntax 129

6.6 The regexp ADT . 135

v

6.7 Syntax-hacking tools . 138

7 Reading delimited strings 140

8 Awk, record I/O, and field parsing 143
8.1 Record I/O and field parsing . 143

8.1.1 Reading records . 144
8.1.2 Parsing fields . 144
8.1.3 Field readers . 148
8.1.4 Forward-progress guarantees and empty-string matches 148
8.1.5 Reader limitations . 150

8.2 Awk . 150
8.2.1 Examples . 153

8.3 Backwards compatibility . 155

9 Concurrent system programming 156
9.1 Threads . 156
9.2 Locks . 157
9.3 Placeholders . 158
9.4 The event interface to interrupts 158
9.5 Interaction between threads and process state 159

10 Miscellaneous routines 161
10.1 Integer bitwise ops . 161
10.2 List procedures . 161
10.3 Password encryption . 162
10.4 Dot-Locking . 162
10.5 Syslog facility . 163
10.6 MD5 interface . 167

11 Running scsh 169
11.1 Scsh command-line switches . 170

11.1.1 Scripts and programs . 170
11.1.2 Inserting interpreter triggers into scsh programs 170
11.1.3 Module system . 171
11.1.4 Switches . 172
11.1.5 The meta argument . 177

vi

11.1.6 Examples . 180
11.1.7 Process exit values . 182

11.2 The scsh virtual machine . 182
11.2.1 VM arguments . 183
11.2.2 Stripped image . 184
11.2.3 Inserting interpreter triggers into heap images 184
11.2.4 Inserting a double-level trigger into Scheme programs . 184

11.3 Compiling scsh programs . 185
11.4 Standard file locations . 186

Index 187

vii

viii

Chapter 1

Introduction

This is the reference manual for scsh, a Unix shell that is embedded within
Scheme. Scsh is a Scheme system designed for writing useful standalone Unix
programs and shell scripts—it spans a wide range of application, from “script”
applications usually handled with perl or sh, to more standard systems appli-
cations usually written in C.

Scsh comes built on top of Scheme 48, and has two components: a process
notation for running programs and setting up pipelines and redirections, and
a complete syscall library for low-level access to the operating system. This
manual gives a complete description of scsh. A general discussion of the de-
sign principles behind scsh can be found in a companion paper, “A Scheme
Shell.”

1.1 Copyright & source-code license

Scsh is open source. The complete sources come with the standard distribution,
which can be downloaded off the net. Scsh has an ideologically hip, BSD-style
license.

We note that the code is a rich source for other Scheme implementations
to mine. Not only the code, but the APIs are available for implementors work-
ing on Scheme environments for systems programming. These APIs represent
years of work, and should provide a big head-start on any related effort. (Just
don’t call it “scsh,” unless it’s exactly compliant with the scsh interfaces.)

Take all the code you like; we’ll just write more.

1

1.2 Obtaining scsh

Scsh is distributed via net publication. We place new releases at well-known
network sites, and allow them to propagate from there. We currently release
scsh to the following Internet sites:

ftp://ftp.scsh.net/pub/scsh
http://prdownloads.sourceforge.net/scsh/

Each should have a compressed tar file of the entire scsh release, which in-
cludes all the source code and the manual, and a separate file containing just
this manual in Postscript form, for those who simply wish to read about the
system.

However, nothing is certain for long on the Net. Probably the best way to
get a copy of scsh is to use a network resource-discovery tool, such as archie,
to find ftp servers storing scsh tar files. Take the set of sites storing the most
recent release of scsh, choose one close to your site, and download the tar file.

1.3 Building scsh

Scsh currently runs on a fairly large set of Unix systems, including Linux,
FreeBSD, OpenBSD, NetBSD, MacOS X, SunOS, Solaris, AIX, NeXTSTEP,
Irix, and HP-UX. We use the Gnu project’s autoconfig tool to generate self-
configuring shell scripts that customise the scsh Makefile for different OS vari-
ants. This means that if you use one of the common Unix implementations,
building scsh should require exactly the following steps:

gunzip scsh.tar.gz Uncompress the release tar file.
untar xfv scsh.tar Unpack the source code.
cd scsh-0.6.x Move to the source directory.
./configure Examine host; build Makefile.
make Build system.

When you are done, you should have a virtual machine compiled in file
scshvm, and a heap image in file scsh/scsh.image. Typing

make install

will install these programs in your installation directory (by default,
/usr/local), along with a small stub startup binary, scsh.

If you don’t have the patience to do this, you can start up a Scheme shell
immediately after the initial make by simply saying

./scshvm -o ./scshvm -i scsh/scsh.image

2

See chapter 11 for full details on installation locations and startup options.
It is not too difficult to port scsh to another Unix platform if your OS is not

supported by the current release. See the release notes for more details on how
to do this.

1.4 Caveats

It is important to note what scsh is not, as well as what it is. Scsh, in the current
release, is primarily designed for the writing of shell scripts—programming.
It is not a very comfortable system for interactive command use: the current
release lacks job control, command-line editing, a terse, convenient command
syntax, and it does not read in an initialisation file analogous to .login or
.profile. We hope to address all of these issues in future releases; we even
have designs for several of these features; but the system as-released does not
currently provide these features.

1.5 Naming conventions

Scsh follows a general naming scheme that consistently employs a set of abbre-
viations. This is intended to make it easier to remember the names of things.
Some of the common ones are:

fdes Means “file descriptor,” a small integer used in Unix to represent I/O
channels.

...* A given bit of functionality sometimes comes in two related forms, the
first being a special form that contains a body of Scheme code to be exe-
cuted in some context, and the other being a procedure that takes a pro-
cedural argument (a “thunk”) to be called in the same context. The pro-
cedure variant is named by taking the name of the special form, and ap-
pending an asterisk. For example:

;;; Special form:
(with-cwd "/etc"
(for-each print-file (directory-files))
(display "All done"))

;;; Procedure:
(with-cwd* "/etc"
(lambda ()
(for-each print-file (directory-files))
(display "All done")))

3

action/modifier The infix “/” is pronounced “with,” as in exec/env—“exec
with environment.”

call/... Procedures that call their argument on some computed value are
usually named “call/...,” e.g., (call/fdes port proc), which calls proc
on port’s file descriptor, returning whatever proc returns. The abbreviated
name means “call with file descriptor.”

with-... Procedures that call their argument, and special forms that execute
their bodies in some special dynamic context frequently have names
of the form with-.... For example, (with-env env body1 ...) and
(with-env* env thunk). These forms set the process environment body,
execute their body or thunk, and then return after resetting the environ-
ment to its original state.

create- Procedures that create objects in the file system (files, directories,
temp files, fifos, etc.), begin with create-....

delete- Procedures that delete objects from the file system (files, directories,
temp files, fifos, etc.), begin with delete-....

record:field Procedures that access fields of a record are usually written with
a colon between the name of the record and the name of the field, as in
user-info:home-dir.

%... A percent sign is used to prefix lower-level scsh primitives that are not
commonly used.

-info Data structures packaging up information about various OS entities fre-
quently end in . . .-info. Examples: user-info, file-info, group-info,
and host-info.

Enumerated constants from some set s are usually named s/const1, s/const2,
For example, the various Unix signal integers have the names signal/cont,
signal/kill, signal/int, signal/hup, and so forth.

1.6 Lexical issues

Scsh’s lexical syntax is just R5RS Scheme, with the following exceptions.

1.6.1 Extended symbol syntax

Scsh’s symbol syntax differs from R5RS Scheme in the following ways:

• In scsh, symbol case is preserved by read and is significant on symbol
comparison. This means

4

(run (less Readme))

displays the right file.

• “-” and “+” are allowed to begin symbols. So the following are legitimate
symbols:

-O2 -geometry +Wn

• “|” and “.” are symbol constituents. This allows | for the pipe symbol,
and .. for the parent-directory symbol. (Of course, “.” alone is not a
symbol, but a dotted-pair marker.)

• A symbol may begin with a digit. So the following are legitimate sym-
bols:

9x15 80x36-3+440

1.6.2 Extended string syntax

Scsh strings are allowed to contain the ANSI C escape sequences such as \n and
\161.

1.6.3 Block comments and executable interpreter-triggers

Scsh allows source files to begin with a header of the form

#!/usr/local/bin/scsh -s

The Unix operating system treats source files beginning with the headers of
this form specially; they can be directly executed by the operating system (see
chapter 11 for information on how to use this feature). The scsh interpreter
ignores this special header by treating #! as a comment marker similar to ;.
When the scsh reader encounters #!, it skips characters until it finds the closing
sequence newline/exclamation-point/sharp-sign/newline.

Although the form of the #! read-macro was chosen to support interpreter-
triggers for executable Unix scripts, it is a general block-comment sequence
and can be used as such anywhere in a scsh program.

1.6.4 Here-strings

The read macro #< is used to introduce “here-strings” in programs, similar
to the << “here document” redirections provided by sh and csh. There are
two kinds of here-string, character-delimited and line-delimited; they are both
introduced by the #< sequence.

5

Character-delimited here-strings

A character-delimited here-string has the form

#<x...stuff...x

where x is any single character (except <, see below), which is used to delimit
the string bounds. Some examples:

Here-string syntax Ordinary string syntax
#<|Hello, world.| "Hello, world."
#<!"Ouch," he said.! "\"Ouch,\" he said."

There is no interpretation of characters within the here-string; the characters
are all copied verbatim.

Line-delimited here-strings

If the sequence begins ”#<<” then it introduces a line-delimited here-string.
These are similar to the “here documents” of sh and csh. Line-delimited here-
strings are delimited by the rest of the text line that follows the ”#<<” sequence.
For example:

#<<FOO
Hello, there.
This is read by Scheme as a string,
terminated by the first occurrence
of newline-F-O-O-newline or newline-F-O-O-eof.
FOO

Thus,

#<<foo
Hello, world.
foo

is the same thing as

"Hello, world."

Line-delimited here-strings are useful for writing down long, constant
strings—such as long, multi-line format strings, or arguments to Unix pro-
grams, e.g.,

6

;; Free up some disk space for my netnews files.
(run (csh -c #<<EOF
cd /urops
rm -rf *
echo All done.

EOF
))

The advantage they have over the double-quote syntax (e.g., "Hello,
world.") is that there is no need to backslash-quote special characters inter-
nal to the string, such as the double-quote or backslash characters.

The detailed syntax of line-delimited here-strings is as follows. The charac-
ters ”#<<” begin the here-string. The characters between the ”#<<” and the next
newline are the delimiter line. All characters between the ”#<<” and the next
newline comprise the delimiter line—including any white space. The body
of the string begins on the following line, and is terminated by a line of text
which exactly matches the delimiter line. This terminating line can be ended
by either a newline or end-of-file. Absolutely no interpretation is done on the
input string. Control characters, white space, quotes, backslash—everything
is copied as-is. The newline immediately preceding the terminating delimiter
line is not included in the result string (leave an extra blank line if you need
to put a final newline in the here-string—see the example above). If EOF is
encountered before reading the end of the here-string, an error is signalled.

1.6.5 Dot

It is unfortunate that the single-dot token, “.”, is both a fundamental Unix file
name and a deep, primitive syntactic token in Scheme—it means the following
will not parse correctly in scsh:

(run/strings (find . -name *.c -print))

You must instead quote the dot:

(run/strings (find "." -name *.c -print))

When you write shell scripts that manipulate the file system, keep in mind
the special status of the dot token.

1.7 Record types and the define-record form

Scsh’s interfaces occasionally provide data in structured record types; an exam-
ple is the file-info record whose various fields describe the size, protection,

7

last date of modification, and other pertinent data for a particular file. These
record types are described in this manual using the define-record notation,
which looks like the following:

(define-record ship
x
y
(size 100))

This form defines a ship record, with three fields: its x and y coordinates, and
its size. The values of the x and y fields are specified as parameters to the ship-
building procedure, (make-ship x y), and the size field is initialised to 100.
All told, the define-record form above defines the following procedures:

Procedure Definition
(make-ship x y) Create a new ship record.
(ship:x ship) Retrieve the x field.
(ship:y ship) Retrieve the y field.
(ship:size ship) Retrieve the size field.
(set-ship:x ship new-x) Assign the x field.
(set-ship:y ship new-y) Assign the y field.
(set-ship:size ship new-size) Assign the size field.
(modify-ship:x ship xfun) Modify x field with xfun.
(modify-ship:y ship yfun) Modify y field with yfun.
(modify-ship:size ship sizefun) Modify size field with sizefun.
(ship? object) Type predicate.
(copy-ship ship) Shallow-copy of the record.

An implementation of define-record is available as a macro for Scheme
programmers to define their own record types; the syntax is accessed by
opening the package defrec-package, which exports the single syntax form
define-record. See the source code for the defrec-package module for fur-
ther details of the macro.

You must open this package to access the form. Scsh does not export
a record-definition package by default as there are several from which to
choose. Besides the define-record macro, which Shivers prefers1, you might
instead wish to employ the notationally-distinct define-record-type macro
that Jonathan Rees prefers2. It can be found in the define-record-types struc-
ture.

Alternatively, you may define your own, of course.

1He wrote it.
2He wrote it.

8

1.8 A word about Unix standards

“The wonderful thing about Unix standards is that there are so many to choose
from.” You may be totally bewildered about the multitude of various stan-
dards that exist. Rest assured that nowhere in this manual will you encounter
an attempt to spell it all out for you; you could not read and internalise such a
twisted account without bleeding from the nose and ears.

However, you might keep in mind the following simple fact: of all the
standards, POSIX is the least common denominator. So when this manual re-
peatedly refers to POSIX, the point is “the thing we are describing should be
portable just about anywhere.” Scsh sticks to POSIX when at all possible; its
major departure is symbolic links, which aren’t in POSIX (see—it really is a
least common denominator).

9

Chapter 2

Process notation

Scsh has a notation for controlling Unix processes that takes the form of s-
expressions; this notation can then be embedded inside of standard Scheme
code. The basic elements of this notation are process forms, extended process forms,
and redirections.

2.1 Extended process forms and I/O redirections

An extended process form is a specification of a Unix process to run, in a particu-
lar I/O environment:

epf ::= (pf redir1 ... redirn)

where pf is a process form and the rediri are redirection specs. A redirection spec
is one of:

(< [fdes] file-name) ; Open file for read.
(> [fdes] file-name) ; Open file create/truncate.
(<< [fdes] object) ; Use object’s printed rep.
(>> [fdes] file-name) ; Open file for append.
(= fdes fdes/port) ; Dup2
(- fdes/port) ; Close fdes/port.
stdports ; 0,1,2 dup’d from standard ports.

The input redirections default to file descriptor 0; the output redirections de-
fault to file descriptor 1.

The subforms of a redirection are implicitly backquoted, and symbols
stand for their print-names. So (> ,x) means “output to the file named
by Scheme variable x,” and (< /usr/shivers/.login) means “read from
/usr/shivers/.login.”

10

Here are two more examples of I/O redirection:

(< ,(vector-ref fv i))
(>> 2 /tmp/buf)

These two redirections cause the file fv[i] to be opened on stdin, and
/tmp/buf to be opened for append writes on stderr.

The redirection (<< object) causes input to come from the printed represen-
tation of object. For example,

(<< "The quick brown fox jumped over the lazy dog.")

causes reads from stdin to produce the characters of the above string. The
object is converted to its printed representation using the display procedure,
so

(<< (A five element list))

is the same as

(<< "(A five element list)")

is the same as

(<< ,(reverse ’(list element five A))).

(Here we use the implicit backquoting feature to compute the list to be printed.)

The redirection (= fdes fdes/port) causes fdes/port to be dup’d into file de-
scriptor fdes. For example, the redirection

(= 2 1)

causes stderr to be the same as stdout. fdes/port can also be a port, for example:

(= 2 ,(current-output-port))

causes stderr to be dup’d from the current output port. In this case, it is an
error if the port is not a file port (e.g., a string port). More complex redirections
can be accomplished using the begin process form, discussed below, which
gives the programmer full control of I/O redirection from Scheme.

2.1.1 Port and file descriptor sync

It’s important to remember that rebinding Scheme’s current I/O ports (e.g.,
using call-with-input-file to rebind the value of (current-input-port))
does not automatically “rebind” the file referenced by the Unix stdio file
descriptors 0, 1, and 2. This is impossible to do in general, since some
Scheme ports are not representable as Unix file descriptors. For example,
many Scheme implementations provide “string ports,” that is, ports that col-
lect characters sent to them into memory buffers. The accumulated string

11

can later be retrieved from the port as a string. If a user were to bind
(current-output-port) to such a port, it would be impossible to associate
file descriptor 1 with this port, as it cannot be represented in Unix. So, if the
user subsequently forked off some other program as a subprocess, that pro-
gram would of course not see the Scheme string port as its standard output.

To keep stdio synced with the values of Scheme’s current I/O ports, use
the special redirection stdports. This causes 0, 1, 2 to be redirected from the
current Scheme standard ports. It is equivalent to the three redirections:

(= 0 ,(current-input-port))
(= 1 ,(current-output-port))
(= 2 ,(error-output-port))

The redirections are done in the indicated order. This will cause an error if
one of the current I/O ports isn’t a Unix port (e.g., if one is a string port). This
Scheme/Unix I/O synchronisation can also be had in Scheme code (as opposed
to a redirection spec) with the (stdports->stdio) procedure.

2.2 Process forms

A process form specifies a computation to perform as an independent Unix pro-
cess. It can be one of the following:

(begin . scheme-code)
(| pf1 ... pfn)
(|+ connect-list pf1 ... pfn)
(epf . epf)
(prog arg1 ... argn)

; Run scheme-code in a fork.
; Simple pipeline
; Complex pipeline
; An extended process form.
; Default: exec the program.

The default case (prog arg1 ... argn) is also implicitly backquoted. That is, it
is equivalent to:

(begin (apply exec-path ‘(prog arg1 ... argn)))

Exec-path is the version of the exec() system call that uses scsh’s path list
to search for an executable. The program and the arguments must be either
strings, symbols, or integers. Symbols and integers are coerced to strings. A
symbol’s print-name is used. Integers are converted to strings in base 10. Using
symbols instead of strings is convenient, since it suppresses the clutter of the
surrounding "..." quotation marks. To aid this purpose, scsh reads symbols
in a case-sensitive manner, so that you can say

(more Readme)

12

and get the right file.
A connect-list is a specification of how two processes are to be wired to-

gether by pipes. It has the form ((from1 from2 ... to) ...) and is implicitly
backquoted. For example,

(|+ ((1 2 0) (3 1)) pf1 pf2)

runs pf1 and pf2. The first clause (1 2 0) causes pf1’s stdout (1) and stderr (2)
to be connected via pipe to pf2’s stdin (0). The second clause (3 1) causes pf1’s
file descriptor 3 to be connected to pf2’s file descriptor 1.

The begin process form does a stdio->stdports synchronisation in the
child process before executing the body of the form. This guarantees that the
begin form, like all other process forms, “sees” the effects of any associated
I/O redirections.

Note that R5RS does not specify whether or not | and |+ are readable sym-
bols. Scsh does.

2.3 Using extended process forms in Scheme

Process forms and extended process forms are not Scheme. They are a dif-
ferent notation for expressing computation that, like Scheme, is based upon
s-expressions. Extended process forms are used in Scheme programs by em-
bedding them inside special Scheme forms. There are three basic Scheme forms
that use extended process forms: exec-epf, &, and run.

(exec-epf . epf) −→ no return value syntax
(& . epf) −→ proc syntax
(run . epf) −→ status syntax

The (exec-epf . epf) form nukes the current process: it establishes the
I/O redirections and then overlays the current process with the requested
computation.

The (& . epf) form is similar, except that the process is forked off in back-
ground. The form returns the subprocess’ process object.

The (run . epf) form runs the process in foreground: after forking off
the computation, it waits for the subprocess to exit, and returns its exit
status.

These special forms are macros that expand into the equivalent series of
system calls. The definition of the exec-epf macro is non-trivial, as it
produces the code to handle I/O redirections and set up pipelines. How-
ever, the definitions of the & and run macros are very simple:

(& . epf) ≡ (fork (λ () (exec-epf . epf)))
(run . epf) ≡ (wait (& . epf))

13

2.3.1 Procedures and special forms

It is a general design principle in scsh that all functionality made available
through special syntax is also available in a straightforward procedural form.
So there are procedural equivalents for all of the process notation. In this way,
the programmer is not restricted by the particular details of the syntax. Here
are some of the syntax/procedure equivalents:

Notation Procedure
| fork/pipe
|+ fork/pipe+
exec-epf exec-path
redirection open, dup
& fork
run wait + fork

Having a solid procedural foundation also allows for general notational experi-
mentation using Scheme’s macros. For example, the programmer can build his
own pipeline notation on top of the fork and fork/pipe procedures. Chapter 3
gives the full story on all the procedures in the syscall library.

2.3.2 Interfacing process output to Scheme

There is a family of procedures and special forms that can be used to capture
the output of processes as Scheme data.

(run/port . epf) −→ port syntax
(run/file . epf) −→ string syntax
(run/string . epf) −→ string syntax
(run/strings . epf) −→ string list syntax
(run/sexp . epf) −→ object syntax
(run/sexps . epf) −→ list syntax

These forms all fork off subprocesses, collecting the process’ output to
stdout in some form or another. The subprocess runs with file descriptor
1 and the current output port bound to a pipe.

14

run/port Value is a port open on process’s stdout. Re-
turns immediately after forking child.

run/file Value is name of a temp file containing pro-
cess’s output. Returns when process exits.

run/string Value is a string containing process’ output.
Returns when eof read.

run/strings Splits process’ output into a list of newline-
delimited strings. Returns when eof read.

run/sexp Reads a single object from process’ stdout
with read. Returns as soon as the read
completes.

run/sexps Repeatedly reads objects from process’ std-
out with read. Returns accumulated list
upon eof.

The delimiting newlines are not included in the strings returned by
run/strings.

These special forms just expand into calls to the following analogous pro-
cedures.

(run/port* thunk) −→ port procedure
(run/file* thunk) −→ string procedure
(run/string* thunk) −→ string procedure
(run/strings* thunk) −→ string list procedure
(run/sexp* thunk) −→ object procedure
(run/sexps* thunk) −→ object list procedure

For example, (run/port . epf) expands into

(run/port* (λ () (exec-epf . epf))).

The following procedures are also of utility for generally parsing input
streams in scsh:

(port->string port) −→ string procedure
(port->sexp-list port) −→ list procedure
(port->string-list port) −→ string list procedure
(port->list reader port) −→ list procedure

Port->string reads the port until eof, then returns the accumulated
string. Port->sexp-list repeatedly reads data from the port until eof,
then returns the accumulated list of items. Port->string-list repeat-
edly reads newline-terminated strings from the port until eof, then re-
turns the accumulated list of strings. The delimiting newlines are not

15

part of the returned strings. Port->list generalises these two pro-
cedures. It uses reader to repeatedly read objects from a port. It ac-
cumulates these objects into a list, which is returned upon eof. The
port->string-list and port->sexp-list procedures are trivial to de-
fine, being merely port->list curried with the appropriate parsers:

(port->string-list port) ≡ (port->list read-line port)
(port->sexp-list port) ≡ (port->list read port)

The following compositions also hold:

run/string* ≡ port->string ◦ run/port*
run/strings* ≡ port->string-list ◦ run/port*
run/sexp* ≡ read ◦ run/port*
run/sexps* ≡ port->sexp-list ◦ run/port*

(port-fold port reader op . seeds) −→ object∗ procedure

This procedure can be used to perform a variety of iterative operations
over an input stream. It repeatedly uses reader to read an object from port.
If the first read returns eof, then the entire port-fold operation returns
the seeds as multiple values. If the first read operation returns some other
value v, then op is applied to v and the seeds: (op v . seeds). This should
return a new set of seed values, and the reduction then loops, reading a
new value from the port, and so forth. (If multiple seed values are used,
then op must return multiple values.)

For example, (port->list reader port) could be defined as

(reverse (port-fold port reader cons ’()))

An imperative way to look at port-fold is to say that it abstracts the
idea of a loop over a stream of values read from some port, where the
seed values express the loop state.

Remark: This procedure was formerly named reduce-port . The old
binding is still provided, but is deprecated and will probably vanish
in a future release.

2.4 More complex process operations

The procedures and special forms in the previous section provide for the com-
mon case, where the programmer is only interested in the output of the pro-
cess. These special forms and procedures provide more complicated facilities
for manipulating processes.

16

2.4.1 Pids and ports together

(run/port+proc . epf) −→ [port proc] syntax
(run/port+proc* thunk) −→ [port proc] procedure

This special form and its analogous procedure can be used if the pro-
grammer also wishes access to the process’ pid, exit status, or other in-
formation. They both fork off a subprocess, returning two values: a port
open on the process’ stdout (and current output port), and the subpro-
cess’s process object. A process object encapsulates the subprocess’ pro-
cess id and exit code; it is the value passed to the wait system call.

For example, to uncompress a tech report, reading the uncompressed
data into scsh, and also be able to track the exit status of the decompres-
sion process, use the following:

(receive (port child) (run/port+proc (zcat tr91-145.tex.Z))
(let* ((paper (port->string port))

(status (wait child)))
. . . use paper, status, and child here. . .))

Note that you must first do the port->string and then do the wait—the
other way around may lock up when the zcat fills up its output pipe
buffer.

2.4.2 Multiple stream capture

Occasionally, the programmer may want to capture multiple distinct out-
put streams from a process. For instance, he may wish to read the stdout
and stderr streams into two distinct strings. This is accomplished with the
run/collecting form and its analogous procedure, run/collecting*.

(run/collecting fds . epf) −→ [status port. . .] syntax
(run/collecting* fds thunk) −→ [status port. . .] procedure

Run/collecting and run/collecting* run processes that produce mul-
tiple output streams and return ports open on these streams. To avoid
issues of deadlock, run/collecting doesn’t use pipes. Instead, it first
runs the process with output to temp files, then returns ports open on the
temp files. For example,

(run/collecting (1 2) (ls))

runs ls with stdout (fd 1) and stderr (fd 2) redirected to temporary files.
When the ls is done, run/collecting returns three values: the ls pro-
cess’ exit status, and two ports open on the temporary files. The files
are deleted before run/collecting returns, so when the ports are closed,

17

they vanish. The fds list of file descriptors is implicitly backquoted by
the special-form version.

For example, if Kaiming has his mailbox protected, then

(receive (status out err)
(run/collecting (1 2) (cat /usr/kmshea/mbox))

(list status (port->string out) (port->string err)))

might produce the list

(256 "" "cat: /usr/kmshea/mbox: Permission denied")

What is the deadlock hazard that causes run/collecting to use temp
files? Processes with multiple output streams can lock up if they use
pipes to communicate with Scheme I/O readers. For example, suppose
some Unix program myprog does the following:

1. First, outputs a single “(” to stderr.

2. Then, outputs a megabyte of data to stdout.

3. Finally, outputs a single “)” to stderr, and exits.

Our scsh programmer decides to run myprog with stdout and stderr redi-
rected via Unix pipes to the ports port1 and port2, respectively. He gets
into trouble when he subsequently says (read port2). The Scheme read
routine reads the open paren, and then hangs in a read() system call try-
ing to read a matching close paren. But before myprog sends the close
paren down the stderr pipe, it first tries to write a megabyte of data to
the stdout pipe. However, Scheme is not reading that pipe—it’s stuck
waiting for input on stderr. So the stdout pipe quickly fills up, and
myprog hangs, waiting for the pipe to drain. The myprog child is stuck
in a stdout/port1 write; the Scheme parent is stuck in a stderr/port2
read. Deadlock.

Here’s a concrete example that does exactly the above:

18

(receive (status port1 port2)
(run/collecting (1 2)

(begin
;; Write an open paren to stderr.
(run (echo "(") (= 1 2))
;; Copy a lot of stuff to stdout.
(run (cat /usr/dict/words))
;; Write a close paren to stderr.
(run (echo ")") (= 1 2))))

;; OK. Here, I have a port PORT1 built over a pipe
;; connected to the BEGIN subproc’s stdout, and
;; PORT2 built over a pipe connected to the BEGIN
;; subproc’s stderr.
(read port2) ; Should return the empty list.
(port->string port1)) ; Should return a big string.

In order to avoid this problem, run/collecting and run/collecting*
first run the child process to completion, buffering all the output streams
in temp files (using the temp-file-channel procedure, see below). When
the child process exits, ports open on the buffered output are returned.
This approach has two disadvantages over using pipes:

• The total output from the child output is temporarily written to the
disk before returning from run/collecting. If this output is some
large intermediate result, the disk could fill up.

• The child producer and Scheme consumer are serialised; there is no
concurrency overlap in their execution.

However, it remains a simple solution that avoids deadlock. More
sophisticated solutions can easily be programmed up as needed—
run/collecting* itself is only 12 lines of simple code.

See temp-file-channel for more information on creating temp files as
communication channels.

2.5 Conditional process sequencing forms

These forms allow conditional execution of a sequence of processes.

(|| pf1 . . . pfn) −→ boolean syntax

Run each proc until one completes successfully (i.e., exit status zero). Re-
turn true if some proc completes successfully; otherwise #f.

19

(&& pf1 . . . pfn) −→ boolean syntax

Run each proc until one fails (i.e., exit status non-zero). Return true if all
procs complete successfully; otherwise #f.

2.6 Process filters

These procedures are useful for forking off processes to filter text streams.

(char-filter filter) −→ procedure procedure

The filter argument is a character→character procedure. Returns a pro-
cedure that when called, repeatedly reads a character from the current
input port, applies filter to the character, and writes the result to the cur-
rent output port. The procedure returns upon reaching eof on the input
port.

For example, to downcase a stream of text in a spell-checking pipeline,
instead of using the Unix tr A-Z a-z command, we can say:

(run (| (delatex)
(begin ((char-filter char-downcase))) ; tr A-Z a-z
(spell)
(sort)
(uniq))

(< scsh.tex)
(> spell-errors.txt))

(string-filter filter [buflen]) −→ procedure procedure

The filter argument is a string→string procedure. Returns a procedure
that when called, repeatedly reads a string from the current input port,
applies filter to the string, and writes the result to the current output port.
The procedure returns upon reaching eof on the input port.

The optional buflen argument controls the number of characters each in-
ternal read operation requests; this means that filter will never be applied
to a string longer than buflen chars. The default buflen value is 1024.

20

Chapter 3

System Calls

Scsh provides (almost) complete access to the basic Unix kernel services: pro-
cesses, files, signals and so forth. These procedures comprise a Scheme binding
for POSIX, with a few of the more standard extensions thrown in (e.g., symbolic
links, fchown, fstat, sockets).

3.1 Errors

Scsh syscalls never return error codes, and do not use a global errno variable
to report errors. Errors are consistently reported by raising exceptions. This
frees up the procedures to return useful values, and allows the programmer to
assume that if a syscall returns, it succeeded. This greatly simplifies the flow of
the code from the programmer’s point of view.

Since Scheme does not yet have a standard exception system, the scsh defi-
nition remains somewhat vague on the actual form of exceptions and exception
handlers. When a standard exception system is defined, scsh will move to it.
For now, scsh uses the Scheme 48 exception system, with a simple sugaring on
top to hide the details in the common case.

System call error exceptions contain the Unix errno code reported by the
system call. Unlike C, the errno value is a part of the exception packet, it is not
accessed through a global variable.

For reference purposes, the Unix errno numbers are bound to the variables
errno/perm, errno/noent, etc. System calls never return error/intr—they
automatically retry.

(errno-error errno syscall . data) −→ no return value procedure

21

Raises a Unix error exception for Unix error number errno. The syscall
and data arguments are packaged up in the exception packet passed to
the exception handler.

(with-errno-handler* handler thunk) −→ value(s) of thunk procedure
(with-errno-handler handler-spec . body) −→ value of body syntax

Unix syscalls raise error exceptions by calling errno-error. Programs
can use with-errno-handler* to establish handlers for these exceptions.

If a Unix error arises while thunk is executing, handler is called on two
arguments like this:

(handler errno packet)

packet is a list of the form

packet = (errno-msg syscall . data),

where errno-msg is the standard Unix error message for the error, syscall
is the procedure that generated the error, and data is a list of information
generated by the error, which varies from syscall to syscall.

If handler returns, the handler search continues upwards. Handler can
acquire the exception by invoking a saved continuation. This procedure
can be sugared over with the following syntax:

(with-errno-handler
((errno packet) clause ...)

body1
body2
...)

This form executes the body forms with a particular errno handler in-
stalled. When an errno error is raised, the handler search machinery
will bind variable errno to the error’s integer code, and variable packet
to the error’s auxiliary data packet. Then, the clauses will be checked for
a match. The first clause that matches is executed, and its value is the
value of the entire with-errno-handler form. If no clause matches, the
handler search continues.

Error clauses have two forms

((errno ...) body ...)
(else body ...)

In the first type of clause, the errno forms are integer expressions. They
are evaluated and compared to the error’s errno value. An else clause

22

matches any errno value. Note that the errno and data variables are lexi-
cally visible to the error clauses.

Example:

(with-errno-handler
((errno packet) ; Only handle 3 particular errors.
((errno/wouldblock errno/again)
(loop))
((errno/acces)
(format #t "Not allowed access!")
#f))

(foo frobbotz)
(blatz garglemumph))

It is not defined what dynamic context the handler executes in, so fluid
variables cannot reliably be referenced.

Note that Scsh system calls always retry when interrupted, so that the
errno/intr exception is never raised. If the programmer wishes to abort
a system call on an interrupt, he should have the interrupt handler ex-
plicitly raise an exception or invoke a stored continuation to throw out of
the system call.

3.1.1 Interactive mode and error handling

Scsh runs in two modes: interactive and script mode. It starts up in interac-
tive mode if the scsh interpreter is started up with no script argument. Other-
wise, scsh starts up in script mode. The mode determines whether scsh prints
prompts in between reading and evaluating forms, and it affects the default er-
ror handler. In interactive mode, the default error handler will report the error,
and generate an interactive breakpoint so that the user can interact with the
system to examine, fix, or dismiss from the error. In script mode, the default
error handler causes the scsh process to exit.

When scsh forks a child with (fork), the child resets to script mode. This
can be overridden if the programmer wishes.

23

3.2 I/O

3.2.1 Standard R5RS I/O procedures

In scsh, most standard R5RS I/O operations (such as display or read-char)
work on both integer file descriptors and Scheme ports. When doing I/O with
a file descriptor, the I/O operation is done directly on the file, bypassing any
buffered data that may have accumulated in an associated port. Note that
character-at-a-time operations such as read-char are likely to be quite slow
when performed directly upon file descriptors.

The standard R5RS procedures read-char, char-ready?, write, display,
newline, and write-char are all generic, accepting integer file descriptor ar-
guments as well as ports. Scsh also mandates the availability of format, and
further requires format to accept file descriptor arguments as well as ports.

The procedures peek-char and read do not accept file descriptor argu-
ments, since these functions require the ability to read ahead in the input
stream, a feature not supported by Unix I/O.

3.2.2 Port manipulation and standard ports

(close-after port consumer) −→ value(s) of consumer procedure
Returns (consumer port), but closes the port on return. No dynamic-
wind magic.

Remark: Is there a less-awkward name?

(error-output-port) −→ port procedure

This procedure is analogous to current-output-port, but produces a
port used for error messages—the scsh equivalent of stderr.

(with-current-input-port* port thunk) −→ value(s) of thunk procedure
(with-current-output-port* port thunk) −→ value(s) of thunk procedure
(with-error-output-port* port thunk) −→ value(s) of thunk procedure

These procedures install port as the current input, current output, and
error output port, respectively, for the duration of a call to thunk.

(with-current-input-port port . body) −→ value(s) of body syntax
(with-current-output-port port . body) −→ value(s) of body syntax
(with-error-output-port port . body) −→ value(s) of body syntax

These special forms are simply syntactic sugar for the with-current-
input-port* procedure and friends.

24

(set-current-input-port! port) −→ undefined procedure
(set-current-output-port! port) −→ undefined procedure
(set-error-output-port! port) −→ undefined procedure

These procedures alter the dynamic binding of the current I/O port pro-
cedures to new values.

(close fd/port) −→ boolean procedure

Close the port or file descriptor.

If fd/port is a file descriptor, and it has a port allocated to it, the port is
shifted to a new file descriptor created with (dup fd/port) before clos-
ing fd/port. The port then has its revealed count set to zero. This reflects
the design criteria that ports are not associated with file descriptors, but
with open files.

To close a file descriptor, and any associated port it might have, you must
instead say one of (as appropriate):

(close (fdes->inport fd))
(close (fdes->outport fd))

The procedure returns true if it closed an open port. If the port was al-
ready closed, it returns false; this is not an error.

(stdports->stdio) −→ undefined procedure
(stdio->stdports) −→ undefined procedure

These two procedures are used to synchronise Unix’ standard I/O file
descriptors and Scheme’s current I/O ports.

(stdports->stdio) causes the standard I/O file descriptors (0, 1, and 2)
to take their values from the current I/O ports. It is exactly equivalent to
the series of redirections:1

(dup (current-input-port) 0)
(dup (current-output-port) 1)
(dup (error-output-port) 2)

stdio->stdports causes the bindings of the current I/O ports to be
changed to ports constructed over the standard I/O file descriptors. It
is exactly equivalent to the series of assignments

(set-current-input-port! (fdes->inport 0))
(set-current-output-port! (fdes->outport 1))
(set-error-output-port! (fdes->outport 2))

1Why not move->fdes? Because the current output port and error port might be the same port.

25

However, you are more likely to find the dynamic-extent variant,
with-stdio-ports*, below, to be of use in general programming.

(with-stdio-ports* thunk) −→ value(s) of thunk procedure
(with-stdio-ports body . . .) −→ value(s) of body syntax

with-stdio-ports* binds the standard ports (current-input-port),
(current-output-port), and (error-output-port) to be ports on file
descriptors 0, 1, 2, and then calls thunk. It is equivalent to:

(with-current-input-port (fdes->inport 0)
(with-current-output-port (fdes->inport 1)
(with-error-output-port (fdes->outport 2)
(thunk))))

The with-stdio-ports special form is merely syntactic sugar.

3.2.3 String ports

Scheme 48 has string ports, which you can use. Scsh has not committed to
the particular interface or names that Scheme 48 uses, so be warned that the
interface described herein may be liable to change.

(make-string-input-port string) −→ port procedure

Returns a port that reads characters from the supplied string.

(make-string-output-port) −→ port procedure
(string-output-port-output port) −→ string procedure

A string output port is a port that collects the characters given to
it into a string. The accumulated string is retrieved by applying
string-output-port-output to the port.

(call-with-string-output-port procedure) −→ string procedure

The procedure value is called on a port. When it returns,
call-with-string-output-port returns a string containing the charac-
ters that were written to that port during the execution of procedure.

3.2.4 Revealed ports and file descriptors

The material in this section and the following one is not critical for most appli-
cations. You may safely skim or completely skip this section on a first reading.

Dealing with Unix file descriptors in a Scheme environment is difficult. In
Unix, open files are part of the process environment, and are referenced by

26

small integers called file descriptors. Open file descriptors are the fundamen-
tal way I/O redirections are passed to subprocesses, since file descriptors are
preserved across fork’s and exec’s.

Scheme, on the other hand, uses ports for specifying I/O sources. Ports are
garbage-collected Scheme objects, not integers. Ports can be garbage collected;
when a port is collected, it is also closed. Because file descriptors are just in-
tegers, it’s impossible to garbage collect them—you wouldn’t be able to close
file descriptor 3 unless there were no 3’s in the system, and you could further
prove that your program would never again compute a 3. This is difficult at
best.

If a Scheme program only used Scheme ports, and never actually used file
descriptors, this would not be a problem. But Scheme code must descend to
the file descriptor level in at least two circumstances:

• when interfacing to foreign code

• when interfacing to a subprocess.

This causes a problem. Suppose we have a Scheme port constructed on top
of file descriptor 2. We intend to fork off a program that will inherit this file
descriptor. If we drop references to the port, the garbage collector may prema-
turely close file 2 before we fork the subprocess. The interface described below
is intended to fix this and other problems arising from the mismatch between
ports and file descriptors.

The Scheme kernel maintains a port table that maps a file descriptor to the
Scheme port allocated for it (or, #f if there is no port allocated for this file
descriptor). This is used to ensure that there is at most one open port for each
open file descriptor.

The port data structure for file ports has two fields besides the descriptor:
revealed and closed?. When a file port is closed with (close port), the port’s
file descriptor is closed, its entry in the port table is cleared, and the port’s
closed? field is set to true.

When a file descriptor is closed with (close fdes), any associated port
is shifted to a new file descriptor created with (dup fdes). The port has its
revealed count reset to zero (and hence becomes eligible for closing on GC).
See discussion below. To really put a stake through a descriptor’s heart without
waiting for associated ports to be GC’d, you must say one of

(close (fdes->inport fdes))
(close (fdes->output fdes))

The revealed field is an aid to garbage collection. It is an integer semaphore.
If it is zero, the port’s file descriptor can be closed when the port is collected.

27

Essentially, the revealed field reflects whether or not the port’s file descriptor
has escaped to the Scheme user. If the Scheme user doesn’t know what file de-
scriptor is associated with a given port, then he can’t possibly retain an “inte-
ger handle” on the port after dropping pointers to the port itself, so the garbage
collector is free to close the file.

Ports allocated with open-output-file and open-input-file are unre-
vealed ports—i.e., revealed is initialised to 0. No one knows the port’s file de-
scriptor, so the file descriptor can be closed when the port is collected.

The functions fdes->output-port, fdes->input-port, port->fdes are
used to shift back and forth between file descriptors and ports. When
port->fdes reveals a port’s file descriptor, it increments the port’s revealed
field. When the user is through with the file descriptor, he can call
(release-port-handle port), which decrements the count. The func-
tion (call/fdes fd/port proc) automates this protocol. call/fdes uses
dynamic-wind to enforce the protocol. If proc throws out of the call/fdes ap-
plication, the unwind handler releases the descriptor handle; if the user sub-
sequently tries to throw back into proc’s context, the wind handler raises an
error. When the user maps a file descriptor to a port with fdes->outport or
fdes->inport, the port has its revealed field incremented.

Not all file descriptors are created by requests to make ports. Some are in-
herited on process invocation via exec(2), and are simply part of the global
environment. Subprocesses may depend upon them, so if a port is later al-
located for these file descriptors, is should be considered as a revealed port.
For example, when the Scheme shell’s process starts up, it opens ports on
file descriptors 0, 1, and 2 for the initial values of (current-input-port),
(current-output-port), and (error-output-port). These ports are ini-
tialised with revealed set to 1, so that stdin, stdout, and stderr are not closed
even if the user drops the port.

Unrevealed file ports have the nice property that they can be closed when
all pointers to the port are dropped. This can happen during gc, or at an
exec()—since all memory is dropped at an exec(). No one knows the file
descriptor associated with the port, so the exec’d process certainly can’t refer
to it.

This facility preserves the transparent close-on-collect property for file ports
that are used in straightforward ways, yet allows access to the underlying Unix
substrate without interference from the garbage collector. This is critical, since
shell programming absolutely requires access to the Unix file descriptors, as
their numerical values are a critical part of the process interface.

A port’s underlying file descriptor can be shifted around with dup(2) when
convenient. That is, the actual file descriptor on top of which a port is con-
structed can be shifted around underneath the port by the scsh kernel when

28

necessary. This is important, because when the user is setting up file descrip-
tors prior to a exec(2), he may explicitly use a file descriptor that has already
been allocated to some port. In this case, the scsh kernel just shifts the port’s
file descriptor to some new location with dup, freeing up its old descriptor. This
prevents errors from happening in the following scenario. Suppose we have a
file open on port f. Now we want to run a program that reads input on file 0,
writes output to file 1, errors to file 2, and logs execution information on file 3.
We want to run this program with input from f. So we write:

(run (/usr/shivers/bin/prog)
(> 1 output.txt)
(> 2 error.log)
(> 3 trace.log)
(= 0 ,f))

Now, suppose by ill chance that, unbeknownst to us, when the operating
system opened f’s file, it allocated descriptor 3 for it. If we blindly redirect
trace.log into file descriptor 3, we’ll clobber f! However, the port-shuffling
machinery saves us: when the run form tries to dup trace.log’s file descriptor
to 3, dup will notice that file descriptor 3 is already associated with an unre-
vealed port (i.e., f). So, it will first move f to some other file descriptor. This
keeps f alive and well so that it can subsequently be dup’d into descriptor 0
for prog’s stdin.

The port-shifting machinery makes the following guarantee: a port is only
moved when the underlying file descriptor is closed, either by a close() or a
dup2() operation. Otherwise a port/file-descriptor association is stable.

Under normal circumstances, all this machinery just works behind the
scenes to keep things straightened out. The only time the user has to think
about it is when he starts accessing file descriptors from ports, which he should
almost never have to do. If a user starts asking what file descriptors have been
allocated to what ports, he has to take responsibility for managing this infor-
mation.

3.2.5 Port-mapping machinery

The procedures provided in this section are almost never needed. You may
safely skim or completely skip this section on a first reading.

Here are the routines for manipulating ports in scsh. The important points
to remember are:

• A file port is associated with an open file, not a particular file descriptor.

29

• The association between a file port and a particular file descriptor is never
changed except when the file descriptor is explicitly closed. “Closing”
includes being used as the target of a dup2, so the set of procedures below
that close their targets are close, two-argument dup, and move->fdes. If
the target file descriptor of one of these routines has an allocated port,
the port will be shifted to another freshly-allocated file descriptor, and
marked as unrevealed, thus preserving the port but freeing its old file
descriptor.

These rules are what is necessary to “make things work out” with no surprises
in the general case.

(fdes->inport fd) −→ port procedure
(fdes->outport fd) −→ port procedure
(port->fdes port) −→ fixnum procedure

These increment the port’s revealed count.

(port-revealed port) −→ integer or #f procedure

Return the port’s revealed count if positive, otherwise #f.

(release-port-handle port) −→ undefined procedure

Decrement the port’s revealed count.

(call/fdes fd/port consumer) −→ value(s) of consumer procedure

Calls consumer on a file descriptor; takes care of revealed bookkeeping.
If fd/port is a file descriptor, this is just (consumer fd/port). If fd/port is a
port, calls consumer on its underlying file descriptor. While consumer is
running, the port’s revealed count is incremented.

When call/fdes is called with port argument, you are not allowed to
throw into consumer with a stored continuation, as that would violate the
revealed-count bookkeeping.

(move->fdes fd/port target-fd) −→ port or fdes procedure

Maps fd→fd and port→port.

If fd/port is a file-descriptor not equal to target-fd, dup it to target-fd and
close it. Returns target-fd.

If fd/port is a port, it is shifted to target-fd, by duping its underlying file-
descriptor if necessary. Fd/port’s original file descriptor is closed (if it was
different from target-fd). Returns the port. This operation resets fd/port’s
revealed count to 1.

In all cases when fd/port is actually shifted, if there is a port already using
target-fd, it is first relocated to some other file descriptor.

30

3.2.6 Unix I/O

(dup fd/port [newfd]) −→ fd/port procedure
(dup->inport fd/port [newfd]) −→ port procedure
(dup->outport fd/port [newfd]) −→ port procedure
(dup->fdes fd/port [newfd]) −→ fd procedure

These procedures provide the functionality of C’s dup() and dup2().
The different routines return different types of values: dup->inport,
dup->outport, and dup->fdes return input ports, output ports, and in-
teger file descriptors, respectively. dup’s return value depends on on the
type of fd/port—it maps fd→fd and port→port.

These procedures use the Unix dup() syscall to replicate the file descrip-
tor or file port fd/port. If a newfd file descriptor is given, it is used as the
target of the dup operation, i.e., the operation is a dup2(). In this case,
procedures that return a port (such as dup->inport) will return one with
the revealed count set to one. For example, (dup (current-input-port)
5) produces a new port with underlying file descriptor 5, whose revealed
count is 1. If newfd is not specified, then the operating system chooses the
file descriptor, and any returned port is marked as unrevealed.

If the newfd target is given, and some port is already using that file de-
scriptor, the port is first quietly shifted (with another dup) to some other
file descriptor (zeroing its revealed count).

Since Scheme doesn’t provide read/write ports, dup->inport and
dup->outport can be useful for getting an output version of an input
port, or vice versa. For example, if p is an input port open on a tty, and we
would like to do output to that tty, we can simply use (dup->outport p)
to produce an equivalent output port for the tty. Be sure to open the file
with the open/read+write flag for this.

(seek fd/port offset [whence]) −→ integer procedure

Reposition the I/O cursor for a file descriptor or port. whence is one
of {seek/set, seek/delta, seek/end}, and defaults to seek/set. If
seek/set, then offset is an absolute index into the file; if seek/delta,
then offset is a relative offset from the current I/O cursor; if seek/end,
then offset is a relative offset from the end of file. The fd/port argument
may be a port or an integer file descriptor. Not all such values are seek-
able; this is dependent on the OS implementation. The return value is the
resulting position of the I/O cursor in the I/O stream.

Oops: The current implementation doesn’t handle offset arguments
that are not immediate integers (i.e., representable in 30 bits).

(tell fd/port) −→ integer procedure

31

Returns the position of the I/O cursor in the the I/O stream. Not all file
descriptors or ports support cursor-reporting; this is dependent on the
OS implementation.

(open-file fname flags [perms]) −→ port procedure

Perms defaults to #o666. Flags is an integer bitmask, composed by or’ing
together constants listed in table 3.1 (page 33). You must use exactly
one of the open/read, open/write, or open/read+write flags. The re-
turned port is an input port if the flags permit it, otherwise an output
port. R5RS/Scheme 48/scsh do not have input/output ports, so it’s one
or the other. This should be fixed. (You can hack simultaneous I/O on
a file by opening it r/w, taking the result input port, and duping it to an
output port with dup->outport.)

(open-input-file fname [flags]) −→ port procedure
(open-output-file fname [flags perms]) −→ port procedure

These are equivalent to open-file, after first setting the read/write bits
of the flags argument to open/read or open/write, respectively. Flags
defaults to zero for open-input-file, and

(bitwise-ior open/create open/truncate)

for open-output-file. These defaults make the procedures backwards-
compatible with their unary R5RS definitions.

(open-fdes fname flags [perms]) −→ integer procedure

Returns a file descriptor.

(fdes-flags fd/port) −→ integer procedure
(set-fdes-flags fd/port integer) −→ undefined procedure

These procedures allow reading and writing of an open file’s flags. The
only such flag defined by POSIX is fdflags/close-on-exec; your Unix
implementation may provide others.

These procedures should not be particularly useful to the programmer, as
the scsh runtime already provides automatic control of the close-on-exec
property. Unrevealed ports always have their file descriptors marked
close-on-exec, as they can be closed when the scsh process execs a new
program. Whenever the user reveals or unreveals a port’s file descrip-
tor, the runtime automatically sets or clears the flag for the programmer.
Programmers that manipulate this flag should be aware of these extra,
automatic operations.

32

Allowed operations Status flag
Open+Get+Set These flags can be used

in open-file,
fdes-status, and
set-fdes-status calls.

open/append
open/non-blocking
open/async (Non-POSIX)
open/fsync (Non-POSIX)

Open+Get These flags can be used
in open-file and
fdes-status calls, but
are ignored by
set-fdes-status.

open/read
open/write
open/read+write
open/access-mask

Open These flags are only
relevant in open-file
calls; they are ignored
by fdes-status and
set-fdes-status calls.

open/create
open/exclusive
open/no-control-tty
open/truncate

Table 3.1: Status flags for open-file, fdes-status and set-fdes-status.
Only POSIX flags are guaranteed to be present; your operating system may de-
fine others. The open/access-mask value is not an actual flag, but a bit mask
used to select the field for the open/read, open/write and open/read+write
bits.

(fdes-status fd/port) −→ integer procedure
(set-fdes-status fd/port integer) −→ undefined procedure

These procedures allow reading and writing of an open file’s status flags
(table 3.1).

Note that this file-descriptor state is shared between file descriptors cre-
ated by dup—if you create port b by applying dup to port a, and change
b’s status flags, you will also have changed a’s status flags.

(pipe) −→ [rport wport] procedure

Returns two ports, the read and write end-points of a Unix pipe.

(read-string nbytes [fd/port]) −→ string or #f procedure
(read-string! str [fd/port start end]) −→ nread or #f procedure

These calls read exactly as much data as you requested, unless there is
not enough data (eof). read-string! reads the data into string str at
the indices in the half-open interval [start, end); the default interval is the
whole string: start = 0 and end = (string-length string). They will

33

persistently retry on partial reads and when interrupted until (1) error,
(2) eof, or (3) the input request is completely satisfied. Partial reads can
occur when reading from an intermittent source, such as a pipe or tty.

read-string returns the string read; read-string! returns the number
of characters read. They both return false at eof. A request to read zero
bytes returns immediately, with no eof check.

The values of start and end must specify a well-defined interval in str, i.e.,
0 ≤ start ≤ end ≤ (string-length str).

Any partially-read data is included in the error exception packet. Error
returns on non-blocking input are considered an error.

(read-string/partial nbytes [fd/port]) −→ string or #f procedure
(read-string!/partial str [fd/port start end]) −→ nread or #f procedure

These are atomic best-effort/forward-progress calls. Best effort: they
may read less than you request if there is a lesser amount of data im-
mediately available (e.g., because you are reading from a pipe or a tty).
Forward progress: if no data is immediately available (e.g., empty pipe),
they will block. Therefore, if you request an n > 0 byte read, while you
may not get everything you asked for, you will always get something
(barring eof).

There is one case in which the forward-progress guarantee is cancelled:
when the programmer explicitly sets the port to non-blocking I/O. In this
case, if no data is immediately available, the procedure will not block, but
will immediately return a zero-byte read.

read-string/partial reads the data into a freshly allocated string,
which it returns as its value. read-string!/partial reads the data into
string str at the indices in the half-open interval [start, end); the default
interval is the whole string: start = 0 and end = (string-length string).
The values of start and end must specify a well-defined interval in str, i.e.,
0 ≤ start ≤ end ≤ (string-length str). It returns the number of bytes
read.

A request to read zero bytes returns immediatedly, with no eof check.

In sum, there are only three ways you can get a zero-byte read: (1) you
request one, (2) you turn on non-blocking I/O, or (3) you try to read at
eof.

These are the routines to use for non-blocking input. They are also use-
ful when you wish to efficiently process data in large blocks, and your
algorithm is insensitive to the block size of any particular read operation.

(select rvec wvec evec [timeout]) −→ [rvec’ wvec’ evec’] procedure
(select! rvec wvec evec [timeout]) −→ [nr nw ne] procedure

34

The select procedure allows a process to block and wait for events on
multiple I/O channels. The rvec and evec arguments are vectors of input
ports and integer file descriptors; wvec is a vector of output ports and
integer file descriptors. The procedure returns three vectors whose el-
ements are subsets of the corresponding arguments. Every element of
rvec’ is ready for input; every element of wvec’ is ready for output; every
element of evec’ has an exceptional condition pending.

The select call will block until at least one of the I/O channels passed
to it is ready for operation. For an input port this means that it either
has data sitting its buffer or that the underlying file descriptor has data
waiting. For an output port this means that it either has space available
in the associated buffer or that the underlying file descriptor can accept
output. For file descriptors, no buffers are checked, even if they have
associated ports.

The timeout value can be used to force the call to time-out after a given
number of seconds. It defaults to the special value #f, meaning wait
indefinitely. A zero value can be used to poll the I/O channels.

If an I/O channel appears more than once in a given vector—perhaps
occuring once as a Scheme port, and once as the port’s underlying inte-
ger file descriptor—only one of these two references may appear in the
returned vector. Buffered I/O ports are handled specially—if an input
port’s buffer is not empty, or an output port’s buffer is not yet full, then
these ports are immediately considered eligible for I/O without using
the actual, primitive select system call to check the underlying file de-
scriptor. This works pretty well for buffered input ports, but is a little
problematic for buffered output ports.

The select! procedure is similar, but indicates the subset of active I/O
channels by side-effecting the argument vectors. Non-active I/O chan-
nels in the argument vectors are overwritten with #f values. The call
returns the number of active elements remaining in each vector. As a
convenience, the vectors passed in to select! are allowed to contain #f
values as well as integers and ports.

Remark: Select and select! do not call their POSIX counter-
parts directly—there is a POSIX select sitting at the very heart of the
Scheme 48/scsh I/O system, so all multiplexed I/O is really select-
based. Therefore, you cannot expect a performance increase from
writing a single-threaded program using select and select! instead
of writing a multi-threaded program where each thread handles one
I/O connection.
The moral of this story is that select and select! make sense in only
two situations: legacy code written for an older version of scsh, and
programs which make inherent use of select/select! which do not

35

benefit from multiple threads. Examples are network clients that send
requests to multiple alternate servers and discard all but one of them.
In any case, the select-ports and select-port-channels pro-
cedures described below are usually a preferable alternative to
select/select!: they are much simpler to use, and also have a
slightly more efficient implementation.

(select-ports timeout port . . .) −→ ready-ports procedure

The select-ports call will block until at least one of the ports passed to it
is ready for operation or until the timeout has expired. For an input port
this means that it either has data sitting its buffer or that the underlying
file descriptor has data waiting. For an output port this means that it
either has space available in the associated buffer or that the underlying
file descriptor can accept output.

The timeout value can be used to force the call to time out after a given
number of seconds. A value of #f means to wait indefinitely. A zero
value can be used to poll the ports.

Select-ports returns a list of the ports ready for operation. Note that
this list may be empty if the timeout expired before any ports became
ready.

(select-port-channels timeout port . . .) −→ ready-ports procedure

Select-port-channels is like select-ports, except that it only looks at
the operating system objects the ports refer to, ignoring any buffering
performed by the ports.

Remark: Select-port-channels should be used with care: for ex-
ample, if an input port has data in the buffer but no data available
on the underlying file descriptor, select-port-channels will block,
even though a read operation on the port would be able to complete
without blocking.
Select-port-channels is intended for situations where the program
is not checking for available data, but rather for waiting until a port
has established a connection—for example, to a network port.

(write-string string [fd/port start end]) −→ undefined procedure

This procedure writes all the data requested. If the procedure cannot
perform the write with a single kernel call (due to interrupts or partial
writes), it will perform multiple write operations until all the data is writ-
ten or an error has occurred. A non-blocking I/O error is considered an
error. (Error exception packets for this syscall include the amount of data
partially transferred before the error occurred.)

36

The data written are the characters of string in the half-open interval
[start, end). The default interval is the whole string: start = 0 and
end = (string-length string). The values of start and end must specify
a well-defined interval in str, i.e., 0 ≤ start ≤ end ≤ (string-length str).
A zero-byte write returns immediately, with no error.

Output to buffered ports: write-string’s efforts end as soon as all the
data has been placed in the output buffer. Errors and true output may
not happen until a later time, of course.

(write-string/partial string [fd/port start end]) −→ nwritten procedure

This routine is the atomic best-effort/forward-progress analog to
write-string. It returns the number of bytes written, which may be
less than you asked for. Partial writes can occur when (1) we write off
the physical end of the media, (2) the write is interrrupted, or (3) the file
descriptor is set for non-blocking I/O.

If the file descriptor is not set up for non-blocking I/O, then a successful
return from these procedures makes a forward progress guarantee—that
is, a partial write took place of at least one byte:

• If we are at the end of physical media, and no write takes place, an
error exception is raised. So a return implies we wrote something.

• If the call is interrupted after a partial transfer, it returns immedi-
ately. But if the call is interrupted before any data transfer, then the
write is retried.

If we request a zero-byte write, then the call immediately returns 0. If the
file descriptor is set for non-blocking I/O, then the call may return 0 if it
was unable to immediately write anything (e.g., full pipe). Barring these
two cases, a write either returns nwritten > 0, or raises an error exception.

Non-blocking I/O is only available on file descriptors and unbuffered
ports. Doing non-blocking I/O to a buffered port is not well-defined,
and is an error (the problem is the subsequent flush operation).

Oops: write-string/partial is currently not implemented. Con-
sider using threads to achive the same functionality.

3.2.7 Buffered I/O

Scheme 48 ports use buffered I/O—data is transferred to or from the OS in
blocks. Scsh provides control of this mechanism: the programmer may force

37

saved-up output data to be transferred to the OS when he chooses, and may
also choose which I/O buffering policy to employ for a given port (or turn
buffering off completely).

It can be useful to turn I/O buffering off in some cases, for example when
an I/O stream is to be shared by multiple subprocesses. For this reason, scsh al-
locates an unbuffered port for file descriptor 0 at start-up time. Because shells
frequently share stdin with subprocesses, if the shell does buffered reads, it
might “steal” input intended for a subprocess. For this reason, all shells, in-
cluding sh, csh, and scsh, read stdin unbuffered. Applications that can tolerate
buffered input on stdin can reset (current-input-port) to block buffering for
higher performance.

{Note So support peek-char a Scheme implementation has to maintain a
buffer for all input ports. In scsh, for “unbuffered” input ports the buffer size
is one. As you cannot request less then one character there is no unrequested
reading so this can still be called “unbuffered input”.}

(set-port-buffering port policy [size]) −→ undefined procedure

This procedure allows the programmer to assign a particular I/O buffer-
ing policy to a port, and to choose the size of the associated buffer. It
may only be used on new ports, i.e., before I/O is performed on the port.
There are three buffering policies that may be chosen:

bufpol/block General block buffering (general default)
bufpol/line Line buffering (tty default)
bufpol/none Direct I/O—no buffering2

The line buffering policy flushes output whenever a newline is output;
whenever the buffer is full; or whenever an input is read from stdin. Line
buffering is the default for ports open on terminal devices.

Oops: The current implementation doesn’t support bufpol/line.

The size argument requests an I/O buffer of size bytes. For output ports,
size must be non-negative, for input ports size must be positve. If not
given, a reasonable default is used. For output ports, if given and zero,
buffering is turned off (i.e., size = 0 for any policy is equivalent to
policy = bufpol/none). For input ports, setting the size to one corre-
sponds to unbuffered input as defined above. If given, size must be zero
respectively one for bufpol/none.

(force-output [fd/port]) −→ undefined procedure

This procedure does nothing when applied to an integer file descriptor
or unbuffered port. It flushes buffered output when applied to a buffered
port, and raises a write-error exception on error. Returns no value.

38

(flush-all-ports) −→ undefined procedure

This procedure flushes all open output ports with buffered data.

3.2.8 File locking

Scsh provides POSIX advisory file locking. Advisory locks are locks that can be
checked by user code, but do not affect other I/O operations. For example, if
a process has an exclusive lock on a region of a file, other processes will not be
able to obtain locks on that region of the file, but they will still be able to read
and write the file with no hindrance. Using advisory locks requires cooperation
amongst the agents accessing the shared resource.

Remark: Unfortunately, POSIX file locks are associated with actual files,
not with associated open file descriptors. Once a process locks a file, using
some file descriptor fd, the next time any file descriptor referencing that file
is closed, all associated locks are released. This severely limits the utility of
POSIX advisory file locks, and we’d recommend caution when using them.
It is not without reason that the FreeBSD man pages refer to POSIX file
locking as “completely stupid.”
Scsh moves Scheme ports from file descriptor to file descriptor with dup()

and close() as required by the runtime, so it is impossible to keep file locks
open across one of these shifts. Hence we can only offer POSIX advisory
file locking directly on raw integer file descriptors; regrettably, there are no
facilities for locking Scheme ports.
Note that once a Scheme port is revealed in scsh, the runtime will not shift
the port around with dup() and close(). This means the file-locking pro-
cedures can then be applied to the port’s associated file descriptor.

POSIX allows the user to lock a region of a file with either an exclusive or
shared lock. Locked regions are described by the lock-region record:

(define-record lock-region
exclusive?
start
len
whence
proc)

• The exclusive? field is true if the lock is exclusive; false if it is shared.

39

• The whence field is one of the values from the seek call: seek/set,
seek/delta, or seek/end, and determines the interpretation of the start
field:

– If seek/set, the start value is simply an absolute index into the
file.

– If seek/delta, the start value is an offset from the file descriptor’s
current position in the file.

– If seek/end, the start value is an offset from the end of the file.

The region of the file being locked is given by the start and len fields;
if len is zero, it means “infinity,” that is, the region extends from the
starting point through the end of the file, even as the file is extended by
subsequent write operations.

• The proc field gives the process object for the process holding the region
lock, when relevant (see get-lock-region below).

(make-lock-region exclusive? start len [whence]) −→ lock-region procedure

This procedure makes a lock-region record. The whence field defaults to
seek/set.

(lock-region fdes lock) −→ undefined procedure
(lock-region/no-block fdes lock) −→ boolean procedure

These procedures lock a region of the file referenced by file descriptor
fdes. The lock-region procedure blocks until the lock is granted; the
non-blocking variant returns a boolean indicating whether or not the lock
was granted. To take an exclusive (write) lock, you must have the file
descriptor open with write access; to take a shared (read) lock, you must
have the file descriptor open with read access.

(get-lock-region fdes lock) −→ lock-region or #f procedure

Return the first lock region on fdes that would conflict with lock region
lock. If there is no such lock region, return false. This procedure fills out
the proc field of the returned lock region, and is the only procedure that
has anything to do with this field. (See section 3.4.1 for a description of
process objects.) Note that if you apply this procedure to a file system
that is shared across multiple operating systems (i.e., an NFS file system),
the proc field may be ambiguous. We note, again, that POSIX advisory
file locking is not a terribly useful or well-designed facility.

(unlock-region fdes lock) −→ undefined procedure

40

Release a lock from a file.

(with-region-lock* fdes lock thunk) −→ value(s) of thunk procedure
(with-region-lock fdes lock body . . .) −→ value(s) of body syntax

This procedure obtains the requested lock, and then calls (thunk). When
thunk returns, the lock is released. A non-local exit (e.g., throwing to a
saved continuation or raising an exception) also causes the lock to be
released.

After a normal return from thunk, its return values are returned by
with-region-lock*. The with-region-lock special form is equivalent
syntactic sugar.

3.3 File system

Besides the following procedures, which allow access to the computer’s file
system, scsh also provides a set of procedures which manipulate file names.
These string-processing procedures are documented in section 5.1.

(create-directory fname [perms override?]) −→ undefined procedure
(create-fifo fname [perms override?]) −→ undefined procedure
(create-hard-link oldname newname [override?]) −→ undefined procedure
(create-symlink old-name new-name [override?]) −→ undefined procedure

These procedures create objects of various kinds in the file system.

The override? argument controls the action if there is already an object in
the file system with the new name:

#f signal an error (default)

’query prompt the user

other delete the old object (with delete-file or
delete-directory, as appropriate) before
creating the new object.

Perms defaults to #o777 (but is masked by the current umask).

Remark: Currently, if you try to create a hard or symbolic link from a
file to itself, you will error out with override? false, and simply delete
your file with override? true. Catching this will require some sort of
true-name procedure, which I currently do not have.

(delete-directory fname) −→ undefined procedure

41

(delete-file fname) −→ undefined procedure
(delete-filesys-object fname) −→ undefined procedure

These procedures delete objects from the file system. The delete-
filesys-object procedure will delete an object of any type from the file
system: files, (empty) directories, symlinks, fifos, etc..

If the object being deleted doesn’t exist, delete-directory and
delete-file raise an error, while delete-filesys-object simply re-
turns.

(read-symlink fname) −→ string procedure

Return the filename referenced by symbolic link fname.

(rename-file old-fname new-fname [override?]) −→ undefined procedure

If you override an existing object, then old-fname and new-fname must
type-match—either both directories, or both non-directories. This is re-
quired by the semantics of Unix rename().

Remark: There is an unfortunate atomicity problem with the
rename-file procedure: if you specify no-override, but create file
new-fname sometime between rename-file’s existence check and the
actual rename operation, your file will be clobbered with old-fname.
There is no way to fix this problem, given the semantics of Unix
rename(); at least it is highly unlikely to occur in practice.

(set-file-mode fname/fd/port mode) −→ undefined procedure
(set-file-owner fname/fd/port uid) −→ undefined procedure
(set-file-group fname/fd/port gid) −→ undefined procedure

These procedures set the permission bits, owner id, and group id of a
file, respectively. The file can be specified by giving the file name, or
either an integer file descriptor or a port open on the file. Setting file user
ownership usually requires root privileges.

(set-file-times fname [access-time mod-time]) −→ undefined procedure

This procedure sets the access and modified times for the file fname to the
supplied values (see section 3.10 for the scsh representation of time). If
neither time argument is supplied, they are both taken to be the current
time. You must provide both times or neither. If the procedure completes
successfully, the file’s time of last status-change (ctime) is set to the cur-
rent time.

42

(sync-file fd/port) −→ undefined procedure
(sync-file-system) −→ undefined procedure

Calling sync-file causes Unix to update the disk data structures for a
given file. If fd/port is a port, any buffered data it may have is first flushed.
Calling sync-file-system synchronises the kernel’s entire file system
with the disk.

These procedures are not POSIX. Interestingly enough, sync-file-
system doesn’t actually do what it is claimed to do. We just threw it
in for humor value. See the sync(2) man page for Unix enlightenment.

(truncate-file fname/fd/port len) −→ undefined procedure

The specified file is truncated to len bytes in length.

(file-info fname/fd/port [chase?]) −→ file-info-record procedure

The file-info procedure returns a record structure containing every-
thing there is to know about a file. If the chase? flag is true (the default),
then the procedure chases symlinks and reports on the files to which they
refer. If chase? is false, then the procedure checks the actual file itself, even
if it’s a symlink. The chase? flag is ignored if the file argument is a file de-
scriptor or port.

The value returned is a file-info record, defined to have the following struc-
ture:

(define-record file-info
type ; {block-special, char-special, directory,

; fifo, regular, socket, symlink}
device ; Device file resides on.
inode ; File’s inode.
mode ; File’s mode bits: permissions, setuid, setgid
nlinks ; Number of hard links to this file.
uid ; Owner of file.
gid ; File’s group id.
size ; Size of file, in bytes.
atime ; Time of last access.
mtime ; Time of last mod.
ctime) ; Time of last status change.

The uid field of a file-info record is accessed with the procedure

(file-info:uid x)

43

and similarly for the other fields. The type field is a symbol; all
other fields are integers. A file-info record is discriminated with the
file-info? predicate.

The following procedures all return selected information about a file;
they are built on top of file-info, and are called with the same argu-
ments that are passed to it.

Procedure returns
file-type type
file-inode inode
file-mode mode
file-nlinks nlinks
file-owner uid
file-group gid
file-size size
file-last-access atime
file-last-mod mtime
file-last-status-change ctime

Example:

;; All my files in /usr/tmp:
(filter (λ (f) (= (file-owner f) (user-uid)))

(directory-files "/usr/tmp")))

Remark: file-info was named file-attributes in releases of
scsh prior to release 0.4. We changed the name to file-info for
consistency with the other information-retrieval procedures in scsh:
user-info, group-info, host-info, network-info , service-info,
and protocol-info.
The file-attributes binding is still supported in the current release
of scsh, but is deprecated, and may go away in a future release.

(file-directory? fname/fd/port [chase?]) −→ boolean procedure
(file-fifo? fname/fd/port [chase?]) −→ boolean procedure
(file-regular? fname/fd/port [chase?]) −→ boolean procedure
(file-socket? fname/fd/port [chase?]) −→ boolean procedure
(file-special? fname/fd/port [chase?]) −→ boolean procedure
(file-symlink? fname/fd/port) −→ boolean procedure

These procedures are file-type predicates that test the type of a given file.
They are applied to the same arguments to which file-info is applied;
the sole exception is file-symlink?, which does not take the optional
chase? second argument.

44

For example,

(file-directory? "/usr/dalbertz") =⇒ #t

There are variants of these procedures which work directly on file-info
records:

(file-info-directory? file-info) −→ boolean procedure
(file-info-fifo? file-info) −→ boolean procedure
(file-info-regular? file-info) −→ boolean procedure
(file-info-socket? file-info) −→ boolean procedure
(file-info-special? file-info) −→ boolean procedure
(file-info-symlink? file-info) −→ boolean procedure

The following set of procedures are a convenient means to work on the
permission bits of a file:

(file-not-readable? fname/fd/port) −→ boolean procedure
(file-not-writable? fname/fd/port) −→ boolean procedure
(file-not-executable? fname/fd/port) −→ boolean procedure

Returns:
Value meaning

#f Access permitted

’search-denied Can’t stat—a protected directory
is blocking access.

’permission Permission denied.

’no-directory Some directory doesn’t exist.

’nonexistent File doesn’t exist.
A file is considered writeable if either (1) it exists and is writeable or (2)

it doesn’t exist and the directory is writeable. Since symlink permission
bits are ignored by the filesystem, these calls do not take a chase? flag.

Note that these procedures use the process’ effective user and group ids
for permission checking. POSIX defines an access() function that uses
the process’ real uid and gids. This is handy for setuid programs that
would like to find out if the actual user has specific rights; scsh ought to
provide this functionality (but doesn’t at the current time).

There are several problems with these procedures. First, there’s an atom-
icity issue. In between checking permissions for a file and then trying an
operation on the file, another process could change the permissions, so a
return value from these functions guarantees nothing. Second, the code
special-cases permission checking when the uid is root—if the file exists,

45

root is assumed to have the requested permission. However, not even
root can write a file that is on a read-only file system, such as a CD ROM.
In this case, file-not-writable? will lie, saying that root has write ac-
cess, when in fact the opening the file for write access will fail. Finally,
write permission confounds write access and create access. These should
be disentangled.

Some of these problems could be avoided if POSIX had a real-uid vari-
ant of the access() call we could use, but the atomicity issue is still a
problem. In the final analysis, the only way to find out if you have the
right to perform an operation on a file is to try and open it for the desired
operation. These permission-checking functions are mostly intended for
script-writing, where loose guarantees are tolerated.

(file-readable? fname/fd/port) −→ boolean procedure
(file-writable? fname/fd/port) −→ boolean procedure
(file-executable? fname/fd/port) −→ boolean procedure

These procedures are the logical negation of the preceding
file-not-...? procedures. Refer to them for a discussion of their
problems and limitations.

(file-info-not-readable? file-info) −→ boolean procedure
(file-info-not-writable? file-info) −→ boolean procedure
(file-info-not-executable? file-info) −→ boolean procedure

(file-info-readable? file-info) −→ boolean procedure
(file-info-writable? file-info) −→ boolean procedure
(file-info-executable? file-info) −→ boolean procedure

There are variants which work directly on file-info records.

(file-not-exists? fname/fd/port [chase?]) −→ object procedure

Returns:
#f Exists.

#t Doesn’t exist.

’search-denied Some protected directory is
blocking the search.

(file-exists? fname/fd/port [chase?]) −→ boolean procedure

This is simply (not (file-not-exists? fname [chase?]))

(directory-files [dir dotfiles?]) −→ string list procedure

46

Return the list of files in directory dir, which defaults to the current work-
ing directory. The dotfiles? flag (default #f) causes dot files to be included
in the list. Regardless of the value of dotfiles?, the two files . and .. are
never returned.

The directory dir is not prepended to each file name in the result list. That
is,

(directory-files "/etc")

returns

("chown" "exports" "fstab" ...)

not

("/etc/chown" "/etc/exports" "/etc/fstab" ...)

To use the files in returned list, the programmer can either manually
prepend the directory:

(map (λ (f) (string-append dir "/" f)) files)

or cd to the directory before using the file names:

(with-cwd dir
(for-each delete-file (directory-files)))

or use the glob procedure, defined below.

A directory list can be generated by (run/strings (ls)), but this is un-
reliable, as filenames with whitespace in their names will be split into
separate entries. Using directory-files is reliable.

(open-directory-stream dir) −→ directory-stream-record procedure

(read-directory-stream directory-stream-record) −→ string or #f procedure

(close-directory-stream directory-stream-record) −→ undefined procedure
These functions implement a direct interface to the opendir()/

readdir()/ closedir() family of functions for processing directory streams.
(open-directory-stream dir) creates a stream of files in the directory
dir. (read-directory-stream directory-stream) returns the next file in
the stream or #fif no such file exists. Finally, (close-directory-stream
directory-stream) closes the stream.

(glob pat1 . . .) −→ string list procedure

Glob each pattern against the filesystem and return the sorted list. Du-
plicates are not removed. Patterns matching nothing are not included
literally.3 C shell {a,b,c} patterns are expanded. Backslash quotes char-
acters, turning off the special meaning of {, }, *, [,], and ?.

3Why bother to mention such a silly possibility? Because that is what sh does.

47

Note that the rules of backslash for Scheme strings and glob patterns
work together to require four backslashes in a row to specify a single
literal backslash. Fortunately, it is very rare that a backslash occurs in a
Unix file name.

A glob subpattern will not match against dot files unless the first char-
acter of the subpattern is a literal “.”. Further, a dot subpattern will
not match the files . or .. unless it is a constant pattern, as in (glob
"../*/*.c"). So a directory’s dot files can be reliably generated with the
simple glob pattern ".*".

Some examples:

(glob "*.c" "*.h")
;; All the C and #include files in my directory.

(glob "*.c" "*/*.c")
;; All the C files in this directory and
;; its immediate subdirectories.

(glob "lexer/*.c" "parser/*.c")
(glob "{lexer,parser}/*.c")

;; All the C files in the lexer and parser dirs.

(glob "\\{lexer,parser\\}/*.c")
;; All the C files in the strange
;; directory "{lexer,parser}".

(glob "**")
;; All the files ending in "*", e.g.
;; ("foo*" "bar*")

(glob "*lexer*")
("mylexer.c" "lexer1.notes")
;; All files containing the string "lexer".

(glob "lexer")
;; Either ("lexer") or ().

If the first character of the pattern (after expanding braces) is a slash, the
search begins at root; otherwise, the search begins in the current working
directory.

If the last character of the pattern (after expanding braces) is a slash, then
the result matches must be directories, e.g.,

48

(glob "/usr/man/man?/") =⇒
("/usr/man/man1/" "/usr/man/man2/" ...)

Globbing can sometimes be useful when we need a list of a directory’s
files where each element in the list includes the pathname for the file.
Compare:

(directory-files "../include") =⇒
("cig.h" "decls.h" ...)

(glob "../include/*") =⇒
("../include/cig.h" "../include/decls.h" ...)

(glob-quote str) −→ string procedure

Returns a constant glob pattern that exactly matches str. All wild-card
characters in str are quoted with a backslash.

(glob-quote "Any *.c files?")
=⇒ "Any *.c files\?"

(file-match root dot-files? pat1 pat2 . . . patn) −→ string list procedure

{Note This procedure is deprecated, and will probably either go away
or be substantially altered in a future release. New code should not call
this procedure. The problem is that it relies upon Posix-notation regu-
lar expressions; the rest of scsh has been converted over to the new SRE
notation.}
file-match provides a more powerful file-matching service, at the ex-
pense of a less convenient notation. It is intermediate in power between
most shell matching machinery and recursive find(1).

Each pattern is a regexp. The procedure searches from root, matching the
first-level files against pattern pat1, the second-level files against pat2, and
so forth. The list of files matching the whole path pattern is returned, in
sorted order. The matcher uses Spencer’s regular expression package.

The files . and .. are never matched. Other dot files are only matched if
the dot-files? argument is #t.

A given pati pattern is matched as a regexp, so it is not forced to match
the entire file name. E.g., pattern "t" matches any file containing a “t” in
its name, while pattern "^t$" matches only a file whose entire name is
“t”.

The pati patterns can be more general than stated above.

49

• A single pattern can specify multiple levels of the path by em-
bedding / characters within the pattern. For example, the pattern
"a/b/c" gives a match equivalent to the list of patterns "a" "b"
"c".

• A pati pattern can be a procedure, which is used as a match predi-
cate. It will be repeatedly called with a candidate file-name to test.
The file-name will be the entire path accumulated. If the procedure
raises an error condition, file-match will catch the error and treat
it as a failed match. This keeps file-match from being blown out of
the water by applying tests to dangling symlinks and other similar
situations.

Some examples:
(file-match "/usr/lib" #f "m$" "^tab") =⇒

("/usr/lib/term/tab300" "/usr/lib/term/tab300-12" ...)

(file-match "." #f "^lex|parse|codegen$" "\\.c$") =⇒
("lex/lex.c" "lex/lexinit.c" "lex/test.c"
"parse/actions.c" "parse/error.c" parse/test.c"
"codegen/io.c" "codegen/walk.c")

(file-match "." #f "^lex|parse|codegen$/\\.c$")
;; The same.

(file-match "." #f file-directory?)
;; Return all subdirs of the current directory.

(file-match "/" #f file-directory?) =⇒
("/bin" "/dev" "/etc" "/tmp" "/usr")
;; All subdirs of root.

(file-match "." #f "\\.c")
;; All the C files in my directory.

(define (ext extension)
(λ (fn) (string-suffix? fn extension)))

(define (true . x) #t)

50

(file-match "." #f "./\\.c")
(file-match "." #f "" "\\.c")
(file-match "." #f true "\\.c")
(file-match "." #f true (ext "c"))

;; All the C files of all my immediate subdirs.

(file-match "." #f "lexer") =⇒
("mylexer.c" "lexer.notes")
;; Compare with (glob "lexer"), above.

Note that when root is the current working directory ("."), when it is
converted to directory form, it becomes "", and doesn’t show up in the
result file-names.

It is regrettable that the regexp wild card char, “.”, is such an important
file name literal, as dot-file prefix and extension delimiter.

(create-temp-file [prefix]) −→ string procedure

Create-temp-file creates a new temporary file and return its name. The
optional argument specifies the filename prefix to use, and defaults to
the value of "$TMPDIR/pid" if $TMPDIR is set and to "/var/tmp/pid" oth-
erwise, where pid is the current process’ id. The procedure generates a
sequence of filenames that have prefix as a common prefix, looking for
a filename that doesn’t already exist in the file system. When it finds
one, it creates it, with permission #o600 and returns the filename. (The
file permission can be changed to a more permissive permission with
set-file-mode after being created).

This file is guaranteed to be brand new. No other process will have it
open. This procedure does not simply return a filename that is very likely
to be unused. It returns a filename that definitely did not exist at the
moment create-temp-file created it.

It is not necessary for the process’ pid to be a part of the filename for the
uniqueness guarantees to hold. The pid component of the default prefix
simply serves to scatter the name searches into sparse regions, so that
collisions are less likely to occur. This speeds things up, but does not
affect correctness.

Security note: doing I/O to files created this way in /var/tmp/ is not
necessarily secure. General users have write access to /var/tmp/, so even
if an attacker cannot access the new temp file, he can delete it and replace
it with one of his own. A subsequent open of this filename will then
give you his file, to which he has access rights. There are several ways to
defeat this attack,

51

1. Use temp-file-iterate, below, to return the file descriptor allo-
cated when the file is opened. This will work if the file only needs
to be opened once.

2. If the file needs to be opened twice or more, create it in a protected
directory, e.g., $HOME.

3. Ensure that /var/tmp has its sticky bit set. This requires system ad-
ministrator privileges.

The actual default prefix used is controlled by the dynamic variable
temp-file-template, and can be overridden for increased security.
See temp-file-iterate.

(temp-file-iterate maker [template]) −→ object+ procedure
temp-file-template string

This procedure can be used to perform certain atomic transactions on the
file system involving filenames. Some examples:

• Linking a file to a fresh backup temp name.

• Creating and opening an unused, secure temp file.

• Creating an unused temporary directory.

This procedure uses template to generate a series of trial file names.
Template is a format control string, and defaults to

"$TMPDIR/pid.~a"

if $TMPDIR is set and

"/var/tmp/pid.~a"

otherwise where pid is the current process’ process id. File names are
generated by calling format to instantiate the template’s ~a field with a
varying string.

Maker is a procedure which is serially called on each file name gener-
ated. It must return at least one value; it may return multiple values. If
the first return value is #f or if maker raises the errno/exist errno ex-
ception, temp-file-iterate will loop, generating a new file name and
calling maker again. If the first return value is true, the loop is terminated,
returning whatever value(s) maker returned.

After a number of unsuccessful trials, temp-file-iterate may give up
and signal an error.

Thus, if we ignore its optional prefix argument, create-temp-file could
be defined as:

52

(define (create-temp-file)
(let ((flags (bitwise-ior open/create open/exclusive)))
(temp-file-iterate

(λ (f)
(close (open-output-file f flags #o600))
f))))

To rename a file to a temporary name:

(temp-file-iterate (λ (backup)
(create-hard-link old-file backup)
backup)

".#temp.~a") ; Keep link in cwd.
(delete-file old-file)

Recall that scsh reports syscall failure by raising an error exception, not
by returning an error code. This is critical to to this example—the pro-
grammer can assume that if the temp-file-iterate call returns, it re-
turns successully. So the following delete-file call can be reliably in-
voked, safe in the knowledge that the backup link has definitely been
established.

To create a unique temporary directory:

(temp-file-iterate (λ (dir) (create-directory dir) dir)
"/var/tmp/tempdir.~a")

Similar operations can be used to generate unique symlinks and fifos, or
to return values other than the new filename (e.g., an open file descriptor
or port).

The default template is in fact taken from the value of the dynamic vari-
able *temp-file-template*, which itself defaults to "$TMPDIR/pid.~a"
if $TMPDIR is set and "/usr/tmp/pid.~a" otherwise, where pid is the scsh
process’ pid. For increased security, a user may wish to change the tem-
plate to use a directory not allowing world write access (e.g., his home
directory).

(temp-file-channel) −→ [inp outp] procedure

This procedure can be used to provide an interprocess communications
channel with arbitrary-sized buffering. It returns two values, an input
port and an output port, both open on a new temp file. The temp file itself
is deleted from the Unix file tree before temp-file-channel returns, so
the file is essentially unnamed, and its disk storage is reclaimed as soon
as the two ports are closed.

Temp-file-channel is analogous to port-pipe with two exceptions:

53

• If the writer process gets ahead of the reader process, it will not hang
waiting for some small pipe buffer to drain. It will simply buffer the
data on disk. This is good.

• If the reader process gets ahead of the writer process, it will also not
hang waiting for data from the writer process. It will simply see and
report an end of file. This is bad.
In order to ensure that an end-of-file returned to the reader is legit-
imate, the reader and writer must serialise their I/O. The simplest
way to do this is for the reader to delay doing input until the writer
has completely finished doing output, or exited.

3.4 Processes

(exec prog arg1 . . . argn) −→ no return value procedure
(exec-path prog arg1 . . . argn) −→ no return value procedure
(exec/env prog env arg1 . . . argn) −→ no return value procedure
(exec-path/env prog env arg1 . . . argn) −→ no return value procedure

The .../env variants take an environment specified as a string→string
alist. An environment of #t is taken to mean the current process’ envi-
ronment (i.e., the value of the external char **environ).

[Rationale: #f is a more convenient marker for the current environment
than #t, but would cause an ambiguity on Schemes that identify #f and
().]

The path-searching variants search the directories in the list exec-path-
list for the program. A path-search is not performed if the program
name contains a slash character—it is used directly. So a program with
a name like "bin/prog" always executes the program bin/prog in the
current working directory. See $path and exec-path-list, below.

Note that there is no analog to the C function execv(). To get the effect
just do

(apply exec prog arglist)

All of these procedures flush buffered output and close unrevealed ports
before executing the new binary. To avoid flushing buffered output, see
%exec below.

Note that the C exec() procedure allows the zeroth element of the argu-
ment vector to be different from the file being executed, e.g.

char *argv[] = {"-", "-f", 0};
exec("/bin/csh", argv, envp);

54

The scsh exec, exec-path, exec/env, and exec-path/env procedures do
not give this functionality—element 0 of the arg vector is always identical
to the prog argument. In the rare case the user wishes to differentiate
these two items, he can use the low-level %exec and exec-path-search
procedures. These procedures never return under any circumstances. As
with any other system call, if there is an error, they raise an exception.

(%exec prog arglist env) −→ undefined procedure
(exec-path-search fname pathlist) −→ string or #f procedure

The %exec procedure is the low-level interface to the system call. The
arglist parameter is a list of arguments; env is either a string→string al-
ist or #t. The new program’s argv[0] will be taken from (car arglist),
not from prog. An environment of #t means the current process’ environ-
ment. %exec does not flush buffered output (see flush-all-ports).

All exec procedures, including %exec, coerce the prog and arg values
to strings using the usual conversion rules: numbers are converted to
decimal numerals, and symbols converted to their print-names.

exec-path-search searches the directories of pathlist looking for an oc-
currence of file fname. If no executable file is found, it returns #f. If
fname contains a slash character, the path search is short-circuited, but
the procedure still checks to ensure that the file exists and is executable—
if not, it still returns #f. Users of this procedure should be aware that
it invites a potential race condition: between checking the file with
exec-path-search and executing it with %exec, the file’s status might
change. The only atomic way to do the search is to loop over the candi-
date file names, exec’ing each one and looping when the exec operation
fails.

See $path and exec-path-list, below.

(exit [status]) −→ no return value procedure
(%exit [status]) −→ no return value procedure

These procedures terminate the current process with a given exit status.
The default exit status is 0. The low-level %exit procedure immediately
terminates the process without flushing buffered output.

(call-terminally thunk) −→ no return value procedure

call-terminally calls its thunk. When the thunk returns, the process
exits. Although call-terminally could be implemented as

(λ (thunk) (thunk) (exit 0))

an implementation can take advantage of the fact that this procedure
never returns. For example, the runtime can start with a fresh stack and

55

also start with a fresh dynamic environment, where shadowed bindings
are discarded. This can allow the old stack and dynamic environment
to be collected (assuming this data is not reachable through some live
continuation).

(suspend) −→ undefined procedure

Suspend the current process with a SIGSTOP signal.

(fork [thunk or #f] [continue-threads?]) −→ proc or #f procedure
(%fork [thunk or #f] [continue-threads?]) −→ proc or #f procedure

fork with no arguments or #f instead of a thunk is like C fork(). In
the parent process, it returns the child’s process object (see below for more
information on process objects). In the child process, it returns #f.

fork with an argument only returns in the parent process, returning the
child’s process object. The child process calls thunk and then exits.

fork flushes buffered output before forking, and sets the child process
to non-interactive. %fork does not perform this bookkeeping; it simply
forks.

The optional boolean argument continue-threads? specifies whether the
currently active threads continue to run in the child or not. The default is
#f.

(fork/pipe [thunk] [continue-threads?]) −→ proc or #f procedure
(%fork/pipe [thunk] [continue-threads?]) −→ proc or #f procedure

Like fork and %fork, but the parent and child communicate via a pipe
connecting the parent’s stdin to the child’s stdout. These procedures side-
effect the parent by changing his stdin.

In effect, fork/pipe splices a process into the data stream immediately
upstream of the current process. This is the basic function for creat-
ing pipelines. Long pipelines are built by performing a sequence of
fork/pipe calls. For example, to create a background two-process pipe a
| b, we write:

(fork (λ () (fork/pipe a) (b)))

which returns the process object for b’s process.

To create a background three-process pipe a | b | c, we write:

(fork (λ () (fork/pipe a)
(fork/pipe b)
(c)))

56

which returns the process object for c’s process.

Note that these procedures affect file descriptors, not ports. That is, the
pipe is allocated connecting the child’s file descriptor 1 to the parent’s file
descriptor 0. Any previous Scheme port built over these affected file descriptors
is shifted to a new, unused file descriptor with dup before allocating the I/O pipe.
This means, for example, that the ports bound to (current-input-port)
and (current-output-port) in either process are not affected—they still
refer to the same I/O sources and sinks as before. Remember the simple
scsh rule: Scheme ports are bound to I/O sources and sinks, not particular
file descriptors.

If the child process wishes to rebind the current output port to the pipe
on file descriptor 1, it can do this using with-current-output-port
or a related form. Similarly, if the parent wishes to change the cur-
rent input port to the pipe on file descriptor 0, it can do this using
set-current-input-port! or a related form. Here is an example show-
ing how to set up the I/O ports on both sides of the pipe:

(fork/pipe (λ ()
(with-current-output-port (fdes->outport 1)
(display "Hello, world.\n"))))

(set-current-input-port! (fdes->inport 0))
(read-line) ; Read the string output by the child.

None of this is necessary when the I/O is performed by an exec’d pro-
gram in the child or parent process, only when the pipe will be referenced
by Scheme code through one of the default current I/O ports.

(fork/pipe+ conns [thunk] [continue-threads?]) −→ proc or #f procedure
(%fork/pipe+ conns [thunk] [continue-threads?]) −→ proc or #f procedure

Like fork/pipe, but the pipe connections between the child and parent
are specified by the connection list conns. See the

(|+ conns pf1 ... pfn)

process form for a description of connection lists.

3.4.1 Process objects and process reaping

Scsh uses process objects to represent Unix processes. They are created by the
fork procedure, and have the following exposed structure:

(define-record proc
pid)

57

The only exposed slot in a proc record is the process’ pid, the integer id as-
signed by Unix to the process. The only exported primitive procedures for ma-
nipulating process objects are proc? and proc:pid. Process objects are created
with the fork procedure.

(pid->proc pid [probe?]) −→ proc procedure

This procedure maps integer Unix process ids to scsh process objects. It
is intended for use in interactive and debugging code, and is deprecated
for use in production code. If there is no process object in the system
indexed by the given pid, pid->proc’s action is determined by the probe?
parameter (default #f):

probe? Return
#f signal error condition.
’create Create new proc object.
True value #f

Sometime after a child process terminates, scsh will perform a wait system
call on the child in background, caching the process’ exit status in the child’s
proc object. This is called “reaping” the process. Once the child has been
waited, the Unix kernel can free the storage allocated for the dead process’
exit information, so process reaping prevents the process table from becoming
cluttered with un-waited dead child processes (a.k.a. “zombies”). This can be
especially severe if the scsh process never waits on child processes at all; if the
process table overflows with forgotten zombies, the OS may be unable to fork
further processes.

Reaping a child process moves its exit status information from the kernel
into the scsh process, where it is cached inside the child’s process object. If
the scsh user drops all pointers to the process object, it will simply be garbage
collected. On the other hand, if the scsh program retains a pointer to the pro-
cess object, it can use scsh’s wait system call to synchronise with the child and
retrieve its exit status multiple times (this is not possible with simple Unix in-
teger pids in C—the programmer can only wait on a pid once).

Thus, process objects allow scsh programmer to do two things not allowed
in other programming environments:

• Subprocesses that are never waited on are still removed from the pro-
cess table, and their associated exit status data is eventually automati-
cally garbage collected.

• Subprocesses can be waited on multiple times.

However, note that once a child has exited, if the scsh programmer drops
all pointers to the child’s proc object, the child’s exit status will be reaped and

58

thrown away. This is the intended behaviour, and it means that integer pids are
not enough to cause a process’s exit status to be retained by the scsh runtime.
(This is because it is clearly impossible to GC data referenced by integers.)

As a convenience for interactive use and debugging, all procedures that
take process objects will also accept integer Unix pids as arguments, coercing
them to the corresponding process objects. Since integer process ids are not
reliable ways to keep a child’s exit status from being reaped and garbage col-
lected, programmers are encouraged to use process objects in production code.

(autoreap-policy [policy]) −→ old-policy procedure

The scsh programmer can choose different policies for automatic process
reaping. The policy is determined by applying this procedure to one of
the values ’early, ’late, or #f (i.e., no autoreap).

early The child is reaped from the Unix kernel’s process table into scsh
as soon as it dies. This is done by having a signal handler for the
SIGCHLD signal reap the process.

late The child is not autoreaped until it dies and the scsh program drops
all pointers to its process object. That is, the process table is cleaned
out during garbage collection.

#f If autoreaping is turned off, process reaping is completely under con-
trol of the programmer, who can force outstanding zombies to be
reaped by manually calling the reap-zombies procedure (see be-
low).

Note that under any of the autoreap policies, a particular process p can
be manually reaped into scsh by simply calling (wait p). All zombies
can be manually reaped with reap-zombies.

The autoreap-policy procedure returns the policy’s previous value.
Calling autoreap-policy with no arguments returns the current policy
without no change.

(reap-zombies) −→ boolean procedure

This procedure reaps all outstanding exited child processes into scsh. It
returns true if there are no more child processes to wait on, and false if
there are outstanding processes still running or suspended.

Issues with process reaping

Reaping a process does not reveal its process group at the time of death; this
information is lost when the process reaped. This means that a dead, reaped

59

process is not eligible as a return value for a future wait-process-group call.
This is not likely to be a problem for most code, as programs almost never wait
on exited processes by process group. Process group waiting is usually applied
to stopped processes, which are never reaped. So it is unlikely that this will be
a problem for most programs.

Automatic process reaping is a useful programming convenience. How-
ever, if a program is careful to wait for all children, and does not wish auto-
matic reaping to happen, the programmer can simply turn process autoreaping
off.

Programs that do not wish to use automatic process reaping should be
aware that some scsh routines create subprocesses but do not return the child’s
pid: run/port*, and its related procedures and special forms (run/strings, et
al.). Automatic process reaping will clean the child processes created by these
procedures out of the kernel’s process table. If a program doesn’t use process
reaping, it should either avoid these forms, or use wait-any to wait for the
children to exit.

3.4.2 Process waiting

(wait proc/pid [flags]) −→ status procedure
This procedure waits until a child process exits, and returns its exit code.
The proc/pid argument is either a process object (section 3.4.1) or an in-
teger process id. Wait returns the child’s exit status code (or suspension
code, if the wait/stopped-children option is used, see below). Status
values can be queried with the procedures in section 3.4.3.

The flags argument is an integer whose bits specify additional options. It
is composed by or’ing together the following flags:

Flag Meaning
wait/poll Return #f immediately if child still active.
wait/stopped-children Wait for suspend as well as exit.

(wait-any [flags]) −→ [proc status] procedure

The optional flags argument is as for wait. This procedure waits for any
child process to exit (or stop, if the wait/stopped-children flag is used)
It returns the process’ process object and status code. If there are no chil-
dren left for which to wait, the two values [#f #t] are returned. If the
wait/poll flag is used, and none of the children are immediately eligble
for waiting, then the values [#f #f] are returned:

[#f #f] Poll, none ready
[#f #t] No children

60

Wait-any will not return a process that has been previously
waited by any other process-wait procedure (wait, wait-any, and
wait-process-group). It will return reaped processes that haven’t yet
been waited.

The use of wait-any is deprecated.

(wait-process-group proc/pid [flags]) −→ [proc status] procedure

This procedure waits for any child whose process group is proc/pid (either
a process object or a pid). The flags argument is as for wait.

Note that if the programmer wishes to wait for exited processes by pro-
cess group, the program should take care not to use process reaping
(section 3.4.1), as this loses process group information. However, most
process-group waiting is for stopped processes (to implement job con-
trol), so this is rarely an issue, as stopped processes are not subject to
reaping.

3.4.3 Analysing process status codes

When a child process dies (or is suspended), its parent can call the wait pro-
cedure to recover the exit (or suspension) status of the child. The exit status is
a small integer that encodes information describing how the child terminated.
The bit-level format of the exit status is not defined by POSIX; you must use
the following three functions to decode one. However, if a child terminates
normally with exit code 0, POSIX does require wait to return an exit status that
is exactly zero. So (zero? status) is a correct way to test for non-error, normal
termination, e.g.,

(if (zero? (run (rcp scsh.tar.gz lambda.csd.hku.hk:)))
(delete-file "scsh.tar.gz"))

(status:exit-val status) −→ integer or #f procedure
(status:stop-sig status) −→ integer or #f procedure
(status:term-sig status) −→ integer or #f procedure

For a given status value produced by calling wait, exactly one of these
routines will return a true value.

If the child process exited normally, status:exit-val returns the exit
code for the child process (i.e., the value the child passed to exit or re-
turned from main). Otherwise, this function returns false.

61

If the child process was suspended by a signal, status:stop-sig returns
the signal that suspended the child. Otherwise, this function returns
false.

If the child process terminated abnormally, status:term-sig returns the
signal that terminated the child. Otherwise, this function returns false.

3.5 Process state

(umask) −→ fixnum procedure
(set-umask perms) −→ undefined procedure
(with-umask* perms thunk) −→ value(s) of thunk procedure
(with-umask perms . body) −→ value(s) of body syntax

The process’ current umask is retrieved with umask, and set with
(set-umask perms). Calling with-umask* changes the umask to perms
for the duration of the call to thunk. If the program throws out of thunk
by invoking a continuation, the umask is reset to its external value. If
the program throws back into thunk by calling a stored continuation, the
umask is restored to the perms value. The special form with-umask is
equivalent in effect to the procedure with-umask*, but does not require
the programmer to explicitly wrap a (λ () ...) around the body of the
code to be executed.

(chdir [fname]) −→ undefined procedure
(cwd) −→ string procedure
(with-cwd* fname thunk) −→ value(s) of thunk procedure
(with-cwd fname . body) −→ value(s) of body syntax

These forms manipulate the current working directory. The cwd can be
changed with chdir (although in most cases, with-cwd is preferrable). If
chdir is called with no arguments, it changes the cwd to the user’s home
directory. The with-cwd* procedure calls thunk with the cwd temporar-
ily set to fname; when thunk returns, or is exited in a non-local fashion
(e.g., by raising an exception or by invoking a continuation), the cwd is
returned to its original value. The special form with-cwd is simply syn-
tactic sugar for with-cwd*.

(pid) −→ fixnum procedure
(parent-pid) −→ fixnum procedure
(process-group) −→ fixnum procedure
(set-process-group [proc/pid] pgrp) −→ undefined procedure

(pid) and (parent-pid) retrieve the process id for the current process
and its parent. (process-group) returns the process group of the current

62

process. A process’ process-group can be set with set-process-group;
the value proc/pid specifies the affected process. It may be either a process
object or an integer process id, and defaults to the current process.

(set-priority which who priority) −→ undefined procedure
(priority which who) −→ fixnum procedure
(nice [proc/pid delta]) −→ undefined procedure

These procedures set and access the priority of processes. I can’t remem-
ber how set-priority and priority work, so no documentation, and
besides, they aren’t implemented yet, anyway.

(user-login-name) −→ string procedure
(user-uid) −→ fixnum procedure
(user-gid) −→ fixnum procedure
(user-supplementary-gids) −→ fixnum list procedure
(set-uid uid) −→ undefined procedure
(set-gid gid) −→ undefined procedure

These routines get and set the effective and real user and group ids. The
set-uid and set-gid routines correspond to the POSIX setuid() and
setgid() procedures.

(user-effective-uid) −→ fixnum procedure
(set-user-effective-uid fixnum) −→ undefined procedure
(with-user-effective-uid* fixnum thunk) −→ value(s) of thunk procedure
(with-user-effective-uid fixnum . body) −→ value(s) of body syntax
(user-effective-gid) −→ fixnum procedure
(set-user-effective-gid fixnum) −→ undefined procedure
(with-user-effective-gid* fixnum thunk) −→ value(s) of thunk procedure
(with-user-effective-gid fixnum . body) −→ value(s) of body syntax

These forms manipulate the effective user/group IDs. Possible values
for setting this resource are either the real user/group ID or the saved
set-user/group-ID. The with-... forms perform the ususal temprary
assignment during the execution of the second argument. The effective
user and group IDs are thread-local.

(process-times) −→ [fixnum fixnum fixnum fixnum] procedure

Returns four values:
user CPU time in clock-ticks
system CPU time in clock-ticks
user CPU time of all descendant processes
system CPU time of all descendant processes

Note that CPU time clock resolution is not the same as the real-time clock
resolution provided by time+ticks. That’s Unix.

63

(cpu-ticks/sec) −→ integer procedure

Returns the resolution of the CPU timer in clock ticks per second. This
can be used to convert the times reported by process-times to seconds.

3.6 User and group database access

These procedures are used to access the user and group databases (e.g., the
ones traditionally stored in /etc/passwd and /etc/group.)

(user-info uid/name) −→ record procedure

Return a user-info record giving the recorded information for a partic-
ular user:

(define-record user-info
name uid gid home-dir shell)

The uid/name argument is either an integer uid or a string user-name.

(->uid uid/name) −→ fixnum procedure
(->username uid/name) −→ string procedure

These two procedures coerce integer uid’s and user names to a particular
form.

(group-info gid/name) −→ record procedure

Return a group-info record giving the recorded information for a partic-
ular group:

(define-record group-info
name gid members)

The gid/name argument is either an integer gid or a string group-name.

3.7 Accessing command-line arguments

command-line-arguments string list
(command-line) −→ string list procedure

The list of strings command-line-arguments contains the arguments
passed to the scsh process on the command line. Calling (command-line)
returns the complete argv string list, including the program. So if we run
a scsh program

/usr/shivers/bin/myls -CF src

64

then command-line-arguments is

("-CF" "src")

and (command-line) returns

("/usr/shivers/bin/myls" "-CF" "src")

command-line returns a fresh list each time it is called. In this way,
the programmer can get a fresh copy of the original argument list if
command-line-arguments has been modified or is lexically shadowed.

(arg arglist n [default]) −→ string procedure
(arg* arglist n [default-thunk]) −→ string procedure
(argv n [default]) −→ string procedure

These procedures are useful for accessing arguments from argument lists.
arg returns the nth element of arglist. The index is 1-based. If n is too
large, default is returned; if no default, then an error is signaled.
arg* is similar, except that the default-thunk is called to generate the de-
fault value.
(argv n) is simply (arg (command-line) (+ n 1)). The +1 offset en-
sures that the two forms

(arg command-line-arguments n)
(argv n)

return the same argument (assuming the user has not rebound or modi-
fied command-line-arguments).
Example:

(if (null? command-line-arguments)
(& (xterm -n ,host -title ,host

-name ,(string-append "xterm_" host)))
(let* ((progname (file-name-nondirectory (argv 1)))

(title (string-append host ":" progname)))
(& (xterm -n ,title

-title ,title
-e ,@command-line-arguments))))

A subtlety: when the scsh interpreter is used to execute a scsh program,
the program name reported in the head of the (command-line) list is the
scsh program, not the interpreter. For example, if we have a shell script
in file fullecho:

#!/usr/local/bin/scsh -s
!#
(for-each (λ (arg) (display arg) (display " "))

(command-line))

65

and we run the program

fullecho hello world

the program will print out

fullecho hello world

not

/usr/local/bin/scsh -s fullecho hello world

This argument line processing ensures that if a scsh program is sub-
sequently compiled into a standalone executable or byte-compiled to a
heap-image executable by the Scheme 48 virtual machine, its semantics
will be unchanged—the arglist processing is invariant. In effect, the

/usr/local/bin/scsh -s

is not part of the program; it’s a specification for the machine to execute
the program on, so it is not properly part of the program’s argument list.

3.8 System parameters

(system-name) −→ string procedure

Returns the name of the host on which we are executing. This may be a
local name, such as “solar,” as opposed to a fully-qualified domain name
such as “solar.csie.ntu.edu.tw.”

(uname) −→ uname-record procedure

Returns a uname-record of the following structure:

(define-record uname
os-name
node-name
release
version
machine)

Each of the fields contains a string.

Be aware that POSIX limits the length of all entries to 32 characters, and
that the node name does not necessarily correspond to the fully-qualified
domain name.

66

3.9 Signal system

Signal numbers are bound to the variables signal/hup, signal/int, See
tables 3.9 and 3.3 for the full list.

(signal-process proc sig) −→ undefined procedure
(signal-process-group prgrp sig) −→ undefined procedure

These two procedures send signals to a specific process, and all the pro-
cesses in a specific process group, respectively. The proc and prgrp argu-
ments are either processes or integer process ids.

(itimer secs) −→ undefined procedure

Schedules a timer interrupt in secs seconds.

{Note A}s the thread system needs the timer interrupt for its own purpose,
itimer works by spawning a thread which calls the interrupt handler for
interrupt/alrm after the specified time.

(process-sleep secs) −→ undefined procedure
(process-sleep-until time) −→ undefined procedure

The sleep procedure causes the process to sleep for secs seconds. The
sleep-until procedure causes the process to sleep until time (see sec-
tion 3.10).

{Note The use of these procedures is deprecated as they suspend all run-
ning threads, including the ones Scsh uses for administrtive purposes.
Consider using the sleep procedure from the thread package.}

Interrupt handlers

Scsh interrupt handlers are complicated by the fact that scsh is implemented
on top of the Scheme 48 virtual machine, which has its own interrupt system,
independent of the Unix signal system. This means that Unix signals are de-
livered in two stages: first, Unix delivers the signal to the Scheme 48 virtual
machine, then the Scheme 48 virtual machine delivers the signal to the execut-
ing Scheme program as a Scheme 48 interrupt. This ensures that signal delivery
happens between two vm instructions, keeping individual instructions atomic.

The Scheme 48 machine has its own set of interrupts, which includes the
asynchronous Unix signals (table 3.9). Note that scsh does not support signal
handlers for “synchronous” Unix signals, such as signal/ill or signal/pipe
(see table 3.3). Synchronous occurrences of these signals are better handled by
raising a Scheme exception. We recommend you avoid using signal handlers
unless you absolutely have to; Section 9.4 describes a better interface to signals.

(signal->interrupt integer) −→ integer procedure

67

Interrupt Unix signal OS Variant
interrupt/alrma signal/alrm POSIX

interrupt/intb signal/int POSIX
interrupt/memory-shortage N/A
interrupt/chld signal/chld POSIX
interrupt/cont signal/cont POSIX
interrupt/hup signal/hup POSIX
interrupt/quit signal/quit POSIX
interrupt/term signal/term POSIX
interrupt/tstp signal/tstp POSIX
interrupt/usr1 signal/usr1 POSIX
interrupt/usr2 signal/usr2 POSIX

interrupt/info signal/info BSD only
interrupt/io signal/io BSD + SVR4
interrupt/poll signal/poll SVR4 only
interrupt/prof signal/prof BSD + SVR4
interrupt/pwr signal/pwr SVR4 only
interrupt/urg signal/urg BSD + SVR4
interrupt/vtalrm signal/vtalrm BSD + SVR4
interrupt/winch signal/winch BSD + SVR4
interrupt/xcpu signal/xcpu BSD + SVR4
interrupt/xfsz signal/xfsz BSD + SVR4

Table 3.2: Scheme 48 virtual-machine interrupts and related Unix signals. Only
the POSIX signals are guaranteed to be defined; however, your implementation
and OS may define other signals and interrupts not listed here.

aAlso bound to Scheme 48 interrupt interrupt/alarm.
bAlso bound to Scheme 48 interrupt interrupt/keyboard.

68

Unix signal Type OS Variant
signal/stop Uncatchable POSIX
signal/kill Uncatchable POSIX

signal/abrt Synchronous POSIX
signal/fpe Synchronous POSIX
signal/ill Synchronous POSIX
signal/pipe Synchronous POSIX
signal/segv Synchronous POSIX
signal/ttin Synchronous POSIX
signal/ttou Synchronous POSIX

signal/bus Synchronous BSD + SVR4
signal/emt Synchronous BSD + SVR4
signal/iot Synchronous BSD + SVR4
signal/sys Synchronous BSD + SVR4
signal/trap Synchronous BSD + SVR4

Table 3.3: Uncatchable and synchronous Unix signals. While these signals may
be sent with signal-process or signal-process-group, there are no corre-
sponding scsh interrupt handlers. Only the POSIX signals are guaranteed to be
defined; however, your implementation and OS may define other signals not
listed here.

69

The programmer maps from Unix signals to Scheme 48 interrupts with
the signal->interrupt procedure. If the signal does not have a defined
Scheme 48 interrupt, an errror is signaled.

(interrupt-set integer1 . . . integern) −→ integer procedure

This procedure builds interrupt sets from its interrupt arguments. A set
is represented as an integer using a two’s-complement representation of
the bit set.

(enabled-interrupts) −→ interrupt-set procedure
(set-enabled-interrupts interrupt-set) −→ interrupt-set procedure

Get and set the value of the enabled-interrupt set. Only interrupts in this
set have their handlers called when delivered. When a disabled interrupt
is delivered to the Scheme 48 machine, it is held pending until it becomes
enabled, at which time its handler is invoked.

Interrupt sets are represented as integer bit sets (constructed with the
interrupt-set function). The set-enabled-interrupts procedure re-
turns the previous value of the enabled-interrupt set.

(with-enabled-interrupts interrupt-set . body) −→ value(s) of body syntax
(with-enabled-interrupts* interrupt-set thunk) −→ value(s) of thunk procedure

Run code with a given set of interrupts enabled. Note that “enabling”
an interrupt means enabling delivery from the Scheme 48 vm to the scsh
program. Using the Scheme 48 interrupt system is fairly lightweight,
and does not involve actually making a system call. Note that enabling
an interrupt means that the assigned interrupt handler is allowed to run
when the interrupt is delivered. Interrupts not enabled are held pending
when delivered.

Interrupt sets are represented as integer bit sets (constructed with the
interrupt-set function).

(set-interrupt-handler interrupt handler) −→ old-handler procedure

Assigns a handler for a given interrupt, and returns the interrupt’s old
handler. The handler argument is #f (ignore), #t (default), or a procedure
taking an integer argument; the return value follows the same conven-
tions. Note that the interrupt argument is an interrupt value, not a signal
value. An interrupt is delivered to the Scheme 48 machine by (1) block-
ing all interrupts, and (2) applying the handler procedure to the set of
interrupts that were enabled prior to the interrupt delivery. If the pro-
cedure returns normally (i.e., it doesn’t throw to a continuation), the set

70

of enabled interrupts will be returned to its previous value. (To restore
the enabled-interrupt set before throwing out of an interrupt handler, see
set-enabled-interrupts)

{Note If you set a handler for the interrupt/chld interrupt, you may
break scsh’s autoreaping process machinery. See the discussion of au-
toreaping in section 3.4.1.}

(interrupt-handler interrupt) −→ handler procedure

Return the handler for a given interrupt. Note that the argument is an
interrupt value, not a signal value. A handler is either #f (ignore), #t
(default), or a procedure taking an integer argument.

3.10 Time

Scsh’s time system is fairly sophisticated, particularly with respect to its careful
treatment of time zones. However, casual users shouldn’t be intimidated; all of
the complexity is optional, and defaulting all the optional arguments reduces
the system to a simple interface.

3.10.1 Terminology

“UTC” and “UCT” stand for “universal coordinated time,” which is the official
name for what is colloquially referred to as “Greenwich Mean Time.”

POSIX allows a single time zone to specify two different offsets from UTC:
one standard one, and one for “summer time.” Summer time is frequently
some sort of daylight savings time.

The scsh time package consistently uses this terminology: we never say
“gmt” or “dst;” we always say “utc” and “summer time.”

3.10.2 Basic data types

We have two types: time and date.

A time specifies an instant in the history of the universe. It is location and
time-zone independent.4 A time is a real value giving the number of elapsed
seconds since the Unix “epoch” (Midnight, January 1, 1970 UTC). Time values

4Physics pedants please note: The scsh authors live in a Newtonian universe. We disclaim
responsibility for calculations performed in non-ANSI standard light-cones.

71

provide arbitrary time resolution, limited only by the number system of the
underlying Scheme system.

A date is a name for an instant in time that is specified relative to some
location/time-zone in the world, e.g.:

Friday October 31, 1994 3:47:21 pm EST.
Dates provide one-second resolution, and are expressed with the following
record type:

(define-record date ; A Posix tm struct
seconds ; Seconds after the minute [0-59]
minute ; Minutes after the hour [0-59]
hour ; Hours since midnight [0-23]
month-day ; Day of the month [1-31]
month ; Months since January [0-11]
year ; Years since 1900
tz-name ; Time-zone name: #f or a string.
tz-secs ; Time-zone offset: #f or an integer.
summer? ; Summer (Daylight Savings) time in effect?
week-day ; Days since Sunday [0-6]
year-day) ; Days since Jan. 1 [0-365]

If the tz-secs field is given, it specifies the time-zone’s offset from UTC in
seconds. If it is specified, the tz-name and summer? fields are ignored when
using the date structure to determine a specific instant in time.

If the tz-name field is given, it is a time-zone string such as "EST" or
"HKT" understood by the OS. Since POSIX time-zone strings can specify dual
standard/summer time-zones (e.g., ”EST5EDT” specifies U.S. Eastern Stan-
dard/Eastern Daylight Time), the value of the summer? field is used to resolve
the amiguous boundary cases. For example, on the morning of the Fall day-
light savings change-over, 1:00am–2:00am happens twice. Hence the date 1:30
am on this morning can specify two different seconds; the summer? flag says
which one.

A date with tz-name = tz-secs = #f is a date that is specified in terms of
the system’s current time zone.

There is redundancy in the date data structure. For example, the year-day
field is redundant with the month-day and month fields. Either of these implies
the values of the week-day field. The summer? and tz-name fields are redun-
dant with the tz-secs field in terms of specifying an instant in time. This
redundancy is provided because consumers of dates may want it broken out
in different ways. The scsh procedures that produce date records fill them out
completely. However, when date records produced by the programmer are
passed to scsh procedures, the redundancy is resolved by ignoring some of the
secondary fields. This is described for each procedure below.

72

(make-date s min h mday mon y [tzn tzs summ? wday yday]) −→ date procedure

When making a date record, the last five elements of the record are op-
tional, and default to #f, #f, #f, 0, and 0 respectively. This is useful when
creating a date record to pass as an argument to time. Other procedures,
however, may refuse to work with these incomplete date records.

3.10.3 Time zones

Several time procedures take time zones as arguments. When optional, the
time zone defaults to local time zone. Otherwise the time zone can be one of:

#f Local time
Integer Seconds of offset from UTC. For example, New

York City is -18000 (-5 hours), San Francisco is
-28800 (-8 hours).

String A POSIX time zone string understood by the OS
(i.e.., the sort of time zone assigned to the $TZ
environment variable).

An integer time zone gives the number of seconds you must add to UTC to get
time in that zone. It is not “seconds west” of UTC—that flips the sign.

To get UTC time, use a time zone of either 0 or "UCT0".

3.10.4 Procedures

(time+ticks) −→ [secs ticks] procedure
(ticks/sec) −→ real procedure

The current time, with sub-second resolution. Sub-second resolution is
not provided by POSIX, but is available on many systems. The time is
returned as elapsed seconds since the Unix epoch, plus a number of sub-
second “ticks.” The length of a tick may vary from implementation to
implementation; it can be determined from (ticks/sec).

The system clock is not required to report time at the full resolution given
by (ticks/sec). For example, on BSD, time is reported at 1µs resolution,
so (ticks/sec) is 1,000,000. That doesn’t mean the system clock has
micro-second resolution.

If the OS does not support sub-second resolution, the ticks value is always
0, and (ticks/sec) returns 1.

Remark: I chose to represent system clock resolution as ticks/sec
instead of sec/tick to increase the odds that the value could be repre-
sented as an exact integer, increasing efficiency and making it easier

73

for Scheme implementations that don’t have sophisticated numeric
support to deal with the quantity.
You can convert seconds and ticks to seconds with the expression

(+ secs (/ ticks (ticks/sec)))

Given that, why not have the fine-grain time procedure just return a
non-integer real for time? Following Common Lisp, I chose to allow
the system clock to report sub-second time in its own units to lower
the overhead of determining the time. This would be important for a
system that wanted to precisely time the duration of some event. Time
stamps could be collected with little overhead, deferring the overhead
of precisely calculating with them until after collection.
This is all a bit academic for the Scheme 48 implementation, where we
determine time with a heavyweight system call, but it’s nice to plan
for the future.

(date) −→ date-record procedure
(date [time tz]) −→ date-record procedure

Simple (date) returns the current date, in the local time zone.

With the optional arguments, date converts the time to the date as spec-
ified by the time zone tz. Time defaults to the current time; tz defaults to
local time, and is as described in the time-zone section.

If the tz argument is an integer, the date’s tz-name field is a POSIX time
zone of the form “UTC+hh :mm :ss ”; the trailing :mm :ss portion is deleted
if it is zeroes.

Oops: The Posix facility for converting dates to times, mktime(), has
a broken design: it indicates an error by returning -1, which is also a
legal return value (for date 23:59:59 UCT, 12/31/1969). Scsh resolves
the ambiguity in a paranoid fashion: it always reports an error if the
underlying Unix facility returns -1. We feel your pain.

(time) −→ integer procedure
(time [date]) −→ integer procedure

Simple (time) returns the current time.

With the optional date argument, time converts a date to a time. Date
defaults to the current date.

Note that the input date record is overconstrained. time ignores date’s
week-day and year-day fields. If the date’s tz-secs field is set, the
tz-name and summer? fields are ignored.

74

If the tz-secs field is #f, then the time-zone is taken from the tz-name
field. A false tz-name means the system’s current time zone. When cal-
culating with time-zones, the date’s summer? field is used to resolve am-
biguities:

#f Resolve an ambiguous time in favor of non-summer time.
true Resolve an ambiguous time in favor of summer time.

This is useful in boundary cases during the change-over. For example, in
the Fall, when US daylight savings time changes over at 2:00 am, 1:30 am
happens twice—it names two instants in time, an hour apart.
Outside of these boundary cases, the summer? flag is ignored. For ex-
ample, if the standard/summer change-overs happen in the Fall and the
Spring, then the value of summer? is ignored for a January or July date. A
January date would be resolved with standard time, and a July date with
summer time, regardless of the summer? value.
The summer? flag is also ignored if the time zone doesn’t have a summer
time—for example, simple UTC.

(date->string date) −→ string procedure
(format-date fmt date) −→ string procedure

Date->string formats the date as a 24-character string of the form:
Sun Sep 16 01:03:52 1973

Format-date formats the date according to the format string fmt. The
format string is copied verbatim, except that tilde characters indicate con-
version specifiers that are replaced by fields from the date record. Figure
3.1 gives the full set of conversion specifiers supported by format-date.

(fill-in-date! date) −→ date procedure

This procedure fills in missing, redundant slots in a date record. In de-
creasing order of priority:

• year, month, month-day ⇒ year-day
If the year, month, and month-day fields are all defined (are all inte-
gers), the year-day field is set to the corresponding value.

• year, year-day ⇒ month, month-day
If the month and month-day fields aren’t set, but the year and
year-day fields are set, then month and month-day are calculated.

• year, month, month-day, year-day ⇒ week-day
If either of the above rules is able to determine what day it is, the
week-day field is then set.

• tz-secs ⇒ tz-name
If tz-secs is defined, but tz-name is not, it is assigned a time-zone
name of the form “UTC+hh :mm :ss ”; the trailing :mm :ss portion is
deleted if it is zeroes.

75

~~ Converted to the ~ character.
~a abbreviated weekday name
~A full weekday name
~b abbreviated month name
~B full month name
~c time and date using the time and date representation for the locale

(~X ~x)
~d day of the month as a decimal number (01-31)
~H hour based on a 24-hour clock as a decimal number (00-23)
~I hour based on a 12-hour clock as a decimal number (01-12)
~j day of the year as a decimal number (001-366)
~m month as a decimal number (01-12)
~M minute as a decimal number (00-59)
~p AM/PM designation associated with a 12-hour clock
~S second as a decimal number (00-61)
~U week number of the year; Sunday is first day of week (00-53)
~w weekday as a decimal number (0-6), where Sunday is 0
~W week number of the year; Monday is first day of week (00-53)
~x date using the date representation for the locale
~X time using the time representation for the locale
~y year without century (00-99)
~Y year with century (e.g.1990)
~Z time zone name or abbreviation, or no characters if no time zone is

determinable

Figure 3.1: format-date conversion specifiers

76

• tz-name, date, summer? ⇒ tz-secs, summer?
If the date information is provided up to second resolution, tz-name
is also provided, and tz-secs is not set, then tz-secs and summer?
are set to their correct values. Summer-time ambiguities are re-
solved using the original value of summer?. If the time zone doesn’t
have a summer time variant, then summer? is set to #f.

• local time, date, summer? ⇒ tz-name, tz-secs, summer?
If the date information is provided up to second resolution, but no
time zone information is provided (both tz-name and tz-secs aren’t
set), then we proceed as in the above case, except the system’s cur-
rent time zone is used.

These rules allow one particular ambiguity to escape: if both tz-name
and tz-secs are set, they are not brought into agreement. It isn’t clear
how to do this, nor is it clear which one should take precedence.

Oops: fill-in-date! isn’t implemented yet.

3.11 Environment variables

(setenv var val) −→ undefined procedure
(getenv var) −→ string procedure

These functions get and set the process environment, stored in the exter-
nal C variable char **environ. An environment variable var is a string.
If an environment variable is set to a string val, then the process’ global
environment structure is altered with an entry of the form "var=val". If
val is #f, then any entry for var is deleted.

(env->alist) −→ string→string alist procedure

The env->alist procedure converts the entire environment into an alist,
e.g.,

(("TERM" . "vt100")
("SHELL" . "/usr/local/bin/scsh")
("PATH" . "/sbin:/usr/sbin:/bin:/usr/bin")
("EDITOR" . "emacs")
...)

(alist->env alist) −→ undefined procedure

77

Alist must be an alist whose keys are all strings, and whose values are
all either strings or string lists. String lists are converted to colon lists
(see below). The alist is installed as the current Unix environment (i.e.,
converted to a null-terminated C vector of "var=val" strings which is as-
signed to the global char **environ).

;;; Note $PATH entry is converted
;;; to /sbin:/usr/sbin:/bin:/usr/bin.
(alist->env ’(("TERM" . "vt100")

("PATH" "/sbin" "/usr/sbin" "/bin")
("SHELL" . "/usr/local/bin/scsh")))

Note that env->alist and alist->env are not exact inverses—
alist->env will convert a list value into a single colon-separated string,
but env->alist will not parse colon-separated values into lists. (See the
$PATH element in the examples given for each procedure.)

The following three functions help the programmer manipulate alist tables
in some generally useful ways. They are all defined using equal? for key com-
parison.

(alist-delete key alist) −→ alist procedure

Delete any entry labelled by value key.

(alist-update key val alist) −→ alist procedure

Delete key from alist, then cons on a (key . val) entry.

(alist-compress alist) −→ alist procedure

Compresses alist by removing shadowed entries. Example:

;;; Shadowed (1 . c) entry removed.
(alist-compress ’((1 . a) (2 . b) (1 . c) (3 . d)))

=⇒ ((1 . a) (2 . b) (3 . d))

(with-env* env-alist-delta thunk) −→ value(s) of thunk procedure
(with-total-env* env-alist thunk) −→ value(s) of thunk procedure

These procedures call thunk in the context of an altered environment.
They return whatever values thunk returns. Non-local returns restore the
environment to its outer value; throwing back into the thunk by invoking
a stored continuation restores the environment back to its inner value.

78

The env-alist-delta argument specifies a modification to the current environ-
ment—thunk’s environment is the original environment overridden with
the bindings specified by the alist delta.

The env-alist argument specifies a complete environment that is installed
for thunk.

(with-env env-alist-delta . body) −→ value(s) of body syntax
(with-total-env env-alist . body) −→ value(s) of body syntax

These special forms provide syntactic sugar for with-env* and with-
total-env*. The env alists are not evaluated positions, but are implicitly
backquoted. In this way, they tend to resemble binding lists for let and
let* forms.

Example: These four pieces of code all run the mailer with special $TERM
and $EDITOR values.

(with-env (("TERM" . "xterm") ("EDITOR" . ,my-editor))

(run (mail shivers@lcs.mit.edu)))

(with-env* ‘(("TERM" . "xterm") ("EDITOR" . ,my-editor))

(λ () (run (mail shivers@csd.hku.hk))))

(run (begin (setenv "TERM" "xterm") ; Env mutation happens

(setenv "EDITOR" my-editor) ; in the subshell.

(exec-epf (mail shivers@research.att.com))))

;; In this example, we compute an alternate environment ENV2

;; as an alist, and install it with an explicit call to the

;; EXEC-PATH/ENV procedure.

(let* ((env (env->alist)) ; Get the current environment,

(env1 (alist-update env "TERM" "xterm")) ; and compute

(env2 (alist-update env1 "EDITOR" my-editor))) ; the new env.

(run (begin (exec-path/env "mail" env2 "shivers@cs.cmu.edu"))))

3.11.1 Path lists and colon lists

When environment variables such as $PATH need to encode a list of strings
(such as a list of directories to be searched), the common Unix convention is
to separate the list elements with colon delimiters.5 To convert between the
colon-separated string encoding and the list-of-strings representation, see the
infix-splitter function (section 8.1.2) and the string library’s string-join
function. For example,

5. . . and hope the individual list elements don’t contain colons themselves.

79

(define split (infix-splitter (rx ":")))
(split "/sbin:/bin::/usr/bin") ⇒

’("/sbin" "/bin" "" "/usr/bin")
(string-join ":" ’("/sbin" "/bin" "" "/usr/bin")) ⇒

"/sbin:/bin::/usr/bin"

The following two functions are useful for manipulating these ordered lists,
once they have been parsed from their colon-separated form.

(add-before elt before list) −→ list procedure
(add-after elt after list) −→ list procedure

These functions are for modifying search-path lists, where element order
is significant.

add-before adds elt to the list immediately before the first occurrence of
before in the list. If before is not in the list, elt is added to the end of the list.

add-after is similar: elt is added after the last occurrence of after. If after
is not found, elt is added to the beginning of the list.

Neither function destructively alters the original path-list. The result may
share structure with the original list. Both functions use equal? for com-
paring elements.

3.11.2 $USER, $HOME, and $PATH

Like sh and unlike csh, scsh has no interactive dependencies on environment
variables. It does, however, initialise certain internal values at startup time
from the initial process environment, in particular $HOME and $PATH. Scsh
never uses $USER at all. It computes (user-login-name) from the system call
(user-uid).

home-directory string
exec-path-list string list thread-fluid

Scsh accesses $HOME at start-up time, and stores the value in the global
variable home-directory. It uses this value for ~ lookups and for return-
ing to home on (chdir).

Scsh accesses $PATH at start-up time, colon-splits the path list, and stores
the value in the thread fluid exec-path-list. This list is used for
exec-path and exec-path/env searches.

To access, rebind or side-effect thread-fluid cells, you must open the
thread-fluids package.

80

3.12 Terminal device control

Scsh provides a complete set of routines for manipulating terminal devices—
putting them in “raw” mode, changing and querying their special characters,
modifying their I/O speeds, and so forth. The scsh interface is designed both
for generality and portability across different Unix platforms, so you don’t
have to rewrite your program each time you move to a new system. We’ve
also made an effort to use reasonable, Scheme-like names for the multitudi-
nous named constants involved, so when you are reading code, you’ll have
less likelihood of getting lost in a bewildering maze of obfuscatory constants
named ICRNL, INPCK, IUCLC, and ONOCR.

This section can only lay out the basic functionality of the terminal device
interface. For further details, see the termios(3) man page on your system, or
consult one of the standard Unix texts.

3.12.1 Portability across OS variants

Terminal-control software is inescapably complex, ugly, and low-level. Unix
variants each provide their own way of controlling terminal devices, making
it difficult to provide interfaces that are portable across different Unix systems.
Scsh’s terminal support is based primarily upon the POSIX termios interface.
Programs that can be written using only the POSIX interface are likely to be
widely portable.

The bulk of the documentation that follows consists of several pages worth
of tables defining different named constants that enable and disable different
features of the terminal driver. Some of these flags are POSIX; others are taken
from the two common branches of Unix development, SVR4 and 4.3+ Berkeley.
Scsh guarantees that the non-POSIX constants will be bound identifiers.

• If your OS supports a particular non-POSIX flag, its named constant will
be bound to the flag’s value.

• If your OS doesn’t support the flag, its named constant will be present,
but bound to #f.

This means that if you want to use SVR4 or Berkeley features in a program,
your program can portably test the values of the flags before using them—the
flags can reliably be referenced without producing OS-dependent “unbound
variable” errors.

Finally, note that although POSIX, SVR4, and Berkeley cover the lion’s share
of the terminal-driver functionality, each operating system inevitably has non-
standard extensions. While a particular scsh implementation may provide
these extensions, they are not portable, and so are not documented here.

81

3.12.2 Miscellaneous procedures

(tty? fd/port) −→ boolean procedure

Return true if the argument is a tty.

(tty-file-name fd/port) −→ string procedure

The argument fd/port must be a file descriptor or port open on a tty. Re-
turn the file-name of the tty.

3.12.3 The tty-info record type

The primary data-structure that describes a terminal’s mode is a tty-info
record, defined as follows:

(define-record tty-info
control-chars ; String: Magic input chars
input-flags ; Int: Input processing
output-flags ; Int: Output processing
control-flags ; Int: Serial-line control
local-flags ; Int: Line-editting UI
input-speed ; Int: Code for input speed
output-speed ; Int: Code for output speed
min ; Int: Raw-mode input policy
time) ; Int: Raw-mode input policy

The control-characters string

The control-chars field is a character string; its characters may be indexed by
integer values taken from table 3.4.

As discussed above, only the POSIX entries in table 3.4 are guaranteed to
be legal, integer indices. A program can reliably test the OS to see if the non-
POSIX characters are supported by checking the index constants. If the control-
character function is supported by the terminal driver, then the corresponding
index will be bound to an integer; if it is not supported, the index will be bound
to #f.

To disable a given control-character function, set its corresponding
entry in the tty-info:control-chars string to the special character
disable-tty-char (and then use the (set-tty-info fd/port info) procedure
to update the terminal’s state).

82

The flag fields

The tty-info record’s input-flags, output-flags, control-flags, and
local-flags fields are all bit sets represented as two’s-complement integers.
Their values are composed by or’ing together values taken from the named
constants listed in tables 3.5 through 3.9.

As discussed above, only the POSIX entries listed in these tables are guar-
anteed to be legal, integer flag values. A program can reliably test the OS to see
if the non-POSIX flags are supported by checking the named constants. If the
feature is supported by the terminal driver, then the corresponding flag will be
bound to an integer; if it is not supported, the flag will be bound to #f.

The speed fields

The input-speed and output-speed fields determine the I/O rate of the ter-
minal’s line. The value of these fields is an integer giving the speed in bits-per-
second. The following speeds are supported by POSIX:

0 134 600 4800
50 150 1200 9600
75 200 1800 19200

110 300 2400 38400

Your OS may accept others; it may also allow the special symbols ’exta and
’extb.

The min and time fields

The integer min and time fields determine input blocking behaviour during
non-canonical (raw) input; otherwise, they are ignored. See the termios(3) man
page for further details.

Be warned that POSIX allows the base system call’s representation of the
tty-info record to share storage for the min field and the ttychar/eof element
of the control-characters string, and for the time field and the ttychar/eol
element of the control-characters string. Many implementations in fact do this.

To stay out of trouble, set the min and time fields only if you are putting the
terminal into raw mode; set the eof and eol control-characters only if you are
putting the terminal into canonical mode. It’s ugly, but it’s Unix.

83

3.12.4 Using tty-info records

(make-tty-info if of cf lf ispeed ospeed min time) −→ tty-info-record procedure
(copy-tty-info tty-info-record) −→ tty-info-record procedure

These procedures make it possible to create new tty-info records. The
typical method for creating a new record is to copy one retrieved by a call
to the tty-info procedure, then modify the copy as desired. Note that
the make-tty-info procedure does not take a parameter to define the
new record’s control characters.6 Instead, it simply returns a tty-info
record whose control-character string has all elements initialised to ASCII
nul. You may then install the special characters by assigning to the
string. Similarly, the control-character string in the record produced by
copy-tty-info does not share structure with the string in the record be-
ing copied, so you may mutate it freely.

(tty-info [fd/port/fname]) −→ tty-info-record procedure

The fd/port/fname parameter is an integer file descriptor or Scheme I/O
port opened on a terminal device, or a file-name for a terminal device;
it defaults to the current input port. This procedure returns a tty-info
record describing the terminal’s current mode.

(set-tty-info/now fd/port/fname info) −→ no-value procedure
(set-tty-info/drain fd/port/fname info) −→ no-value procedure
(set-tty-info/flush fd/port/fname info) −→ no-value procedure

The fd/port/fname parameter is an integer file descriptor or Scheme I/O
port opened on a terminal device, or a file-name for a terminal device.
The procedure chosen determines when and how the terminal’s mode is
altered:

Procedure Meaning
set-tty-info/now Make change immediately.
set-tty-info/drain Drain output, then change.
set-tty-info/flush Drain output, flush input, then change.

Oops: If I had defined these with the parameters in the reverse order,
I could have made fd/port/fname optional. Too late now.

6 Why? Because the length of the string varies from Unix to Unix. For example, the word-erase
control character (typically control-w) is provided by most Unixes, but not part of the POSIX spec.

84

3.12.5 Other terminal-device procedures

(send-tty-break [fd/port/fname duration]) −→ no-value procedure
The fd/port/fname parameter is an integer file descriptor or Scheme I/O
port opened on a terminal device, or a file-name for a terminal device;
it defaults to the current output port. Send a break signal to the desig-
nated terminal. A break signal is a sequence of continuous zeros on the
terminal’s transmission line.

The duration argument determines the length of the break signal. A zero
value (the default) causes a break of between 0.25 and 0.5 seconds to be
sent; other values determine a period in a manner that will depend upon
local community standards.

(drain-tty [fd/port/fname]) −→ no-value procedure

The fd/port/fname parameter is an integer file descriptor or Scheme I/O
port opened on a terminal device, or a file-name for a terminal device; it
defaults to the current output port.

This procedure waits until all the output written to the terminal device
has been transmitted to the device. If fd/port/fname is an output port with
buffered I/O enabled, then the port’s buffered characters are flushed be-
fore waiting for the device to drain.

(flush-tty/input [fd/port/fname]) −→ no-value procedure
(flush-tty/output [fd/port/fname]) −→ no-value procedure
(flush-tty/both [fd/port/fname]) −→ no-value procedure

The fd/port/fname parameter is an integer file descriptor or Scheme
I/O port opened on a terminal device, or a file-name for a termi-
nal device; it defaults to the current input port (flush-tty/input and
flush-tty/both), or output port (flush-tty/output).

These procedures discard the unread input chars or unwritten output
chars in the tty’s kernel buffers.

(start-tty-output [fd/port/fname]) −→ no-value procedure
(stop-tty-output [fd/port/fname]) −→ no-value procedure
(start-tty-input [fd/port/fname]) −→ no-value procedure
(stop-tty-input [fd/port/fname]) −→ no-value procedure

These procedures can be used to control a terminal’s input and output
flow. The fd/port/fname parameter is an integer file descriptor or Scheme
I/O port opened on a terminal device, or a file-name for a terminal de-
vice; it defaults to the current input or output port.

The stop-tty-output and start-tty-output procedures suspend and
resume output from a terminal device. The stop-tty-input and

85

start-tty-input procedures transmit the special STOP and START
characters to the terminal with the intention of stopping and starting ter-
minal input flow.

3.12.6 Control terminals, sessions, and terminal process groups

(open-control-tty tty-name [flags]) −→ port procedure
This procedure opens terminal device tty-name as the process’ control ter-
minal (see the termios man page for more information on control termi-
nals). The tty-name argument is a file-name such as /dev/ttya. The flags
argument is a value suitable as the second argument to the open-file
call; it defaults to open/read+write, causing the terminal to be opened
for both input and output.

The port returned is an input port if the flags permit it, otherwise an out-
put port. R5RS/Scheme 48/scsh do not have input/output ports, so it’s
one or the other. However, you can get both read and write ports open
on a terminal by opening it read/write, taking the result input port, and
duping it to an output port with dup->outport.

This procedure guarantees to make the opened terminal the process’ con-
trol terminal only if the process does not have an assigned control ter-
minal at the time of the call. If the scsh process already has a control
terminal, the results are undefined.

To arrange for the process to have no control terminal prior to calling this
procedure, use the become-session-leader procedure.

(become-session-leader) −→ integer procedure

This is the C setsid() call. POSIX job-control has a three-level hierarchy:
session/process-group/process. Every session has an associated control
terminal. This procedure places the current process into a brand new
session, and disassociates the process from any previous control termi-
nal. You may subsequently use open-control-tty to open a new control
terminal.

It is an error to call this procedure if the current process is already a
process-group leader. One way to guarantee this is not the case is only to
call this procedure after forking.

(tty-process-group fd/port/fname) −→ integer procedure
(set-tty-process-group fd/port/fname pgrp) −→ undefined procedure

This pair of procedures gets and sets the process group of a given termi-
nal.

86

(control-tty-file-name) −→ string procedure

Return the file-name of the process’ control tty. On every version of Unix
of which we are aware, this is just the string "/dev/tty". However, this
procedure uses the official Posix interface, so it is more portable than sim-
ply using a constant string.

3.12.7 Pseudo-terminals

Scsh implements an interface to Berkeley-style pseudo-terminals.

(fork-pty-session thunk) −→ [process pty-in pty-out tty-name] procedure

This procedure gives a convenient high-level interface to pseudo-
terminals. It first allocates a pty/tty pair of devices, and then forks a
child to execute procedure thunk. In the child process

• Stdio and the current I/O ports are bound to the terminal device.

• The child is placed in its own, new session (see become-session-
leader).

• The terminal device becomes the new session’s controlling terminal
(see open-control-tty).

• The (error-output-port) is unbuffered.

The fork-pty-session procedure returns four values: the child’s process
object, two ports open on the controlling pty device, and the name of the
child’s corresponding terminal device.

(open-pty) −→ pty-inport tty-name procedure

This procedure finds a free pty/tty pair, and opens the pty device with
read/write access. It returns a port on the pty, and the name of the corre-
sponding terminal device.

The port returned is an input port—Scheme doesn’t allow input/output
ports. However, you can easily use (dup->outport pty-inport) to pro-
duce a matching output port. You may wish to turn off I/O buffering for
this output port.

(pty-name->tty-name pty-name) −→ tty-name procedure
(tty-name->pty-name tty-name) −→ pty-name procedure

These two procedures map between corresponding terminal and pty con-
troller names. For example,

(pty-name->tty-name "/dev/ptyq3") =⇒ "/dev/ttyq3"
(tty-name->pty-name "/dev/ttyrc") =⇒ "/dev/ptyrc"

87

Remark: This is rather Berkeley-specific. SVR4 ptys are rare enough
that I’ve no real idea if it generalises across the Unix gap. Experts are
invited to advise. Users feel free to not worry—the predominance of
current popular Unix systems use Berkeley ptys.

(make-pty-generator) −→ procedure procedure

This procedure returns a generator of candidate pty names. Each time the
returned procedure is called, it produces a new candidate. Software that
wishes to search through the set of available ptys can use a pty generator
to iterate over them. After producing all the possible ptys, a generator
returns #f every time it is called. Example:

(define pg (make-pty-generator))
(pg) =⇒ "/dev/ptyp0"
(pg) =⇒ "/dev/ptyp1"

...
(pg) =⇒ "/dev/ptyqe"
(pg) =⇒ "/dev/ptyqf" (Last one)

(pg) =⇒ #f
(pg) =⇒ #f

...

88

Scsh C Typical char
POSIX
ttychar/delete-char ERASE del
ttychar/delete-line KILL ^U
ttychar/eof EOF ^D
ttychar/eol EOL
ttychar/interrupt INTR ^C
ttychar/quit QUIT ^\
ttychar/suspend SUSP ^Z
ttychar/start START ^Q
ttychar/stop STOP ^S

SVR4 and 4.3+BSD
ttychar/delayed-suspend DSUSP ^Y
ttychar/delete-word WERASE ^W
ttychar/discard DISCARD ^O
ttychar/eol2 EOL2
ttychar/literal-next LNEXT ^V
ttychar/reprint REPRINT ^R

4.3+BSD
ttychar/status STATUS ^T

Table 3.4: Indices into the tty-info record’s control-chars string, and the char-
acter traditionally found at each index. Only the indices for the POSIX entries
are guaranteed to be non-#f.

89

Scsh C Meaning
POSIX
ttyin/check-parity INPCK Check parity.
ttyin/ignore-bad-parity-chars IGNPAR Ignore chars with parity errors.
ttyin/mark-parity-errors PARMRK Insert chars to mark parity errors.
ttyin/ignore-break IGNBRK Ignore breaks.
ttyin/interrupt-on-break BRKINT Signal on breaks.
ttyin/7bits ISTRIP Strip char to seven bits.
ttyin/cr->nl ICRNL Map carriage-return to newline.
ttyin/ignore-cr IGNCR Ignore carriage-returns.
ttyin/nl->cr INLCR Map newline to carriage-return.
ttyin/input-flow-ctl IXOFF Enable input flow control.
ttyin/output-flow-ctl IXON Enable output flow control.
SVR4 and 4.3+BSD
ttyin/xon-any IXANY Any char restarts after stop.
ttyin/beep-on-overflow IMAXBEL Ring bell when queue full.
SVR4
ttyin/lowercase IUCLC Map upper case to lower case.

Table 3.5: Input-flags. These are the named flags for the tty-info record’s
input-flags field. These flags generally control the processing of input chars.
Only the POSIX entries are guaranteed to be non-#f.

Scsh C Meaning
POSIX
ttyout/enable OPOST Enable output processing.
SVR4 and 4.3+BSD
ttyout/nl->crnl ONLCR Map nl to cr-nl.
4.3+BSD
ttyout/discard-eot ONOEOT Discard EOT chars.
ttyout/expand-tabs OXTABS7 Expand tabs.
SVR4
ttyout/cr->nl OCRNL Map cr to nl.
ttyout/nl-does-cr ONLRET Nl performs cr as well.
ttyout/no-col0-cr ONOCR No cr output in column 0.
ttyout/delay-w/fill-char OFILL Send fill char to delay.
ttyout/fill-w/del OFDEL Fill char is ASCII DEL.
ttyout/uppercase OLCUC Map lower to upper case.

Table 3.6: Output-flags. These are the named flags for the tty-info record’s
output-flags field. These flags generally control the processing of output chars.
Only the POSIX entries are guaranteed to be non-#f.

90

Value Comment
Backspace delay ttyout/bs-delay Bit-field mask

ttyout/bs-delay0
ttyout/bs-delay1

Carriage-return delay ttyout/cr-delay Bit-field mask
ttyout/cr-delay0
ttyout/cr-delay1
ttyout/cr-delay2
ttyout/cr-delay3

Form-feed delay ttyout/ff-delay Bit-field mask
ttyout/ff-delay0
ttyout/ff-delay1

Horizontal-tab delay ttyout/tab-delay Bit-field mask
ttyout/tab-delay0
ttyout/tab-delay1
ttyout/tab-delay2
ttyout/tab-delayx Expand tabs

Newline delay ttyout/nl-delay Bit-field mask
ttyout/nl-delay0
ttyout/nl-delay1

Vertical tab delay ttyout/vtab-delay Bit-field mask
ttyout/vtab-delay0
ttyout/vtab-delay1

All ttyout/all-delay Total bit-field mask

Table 3.7: Delay constants. These are the named flags for the tty-info record’s
output-flags field. These flags control the output delays associated with printing
special characters. They are non-POSIX, and have non-#f values only on SVR4
systems.

91

Scsh C Meaning
POSIX
ttyc/char-size CSIZE Character size mask
ttyc/char-size5 CS5 5 bits
ttyc/char-size6 CS6 6 bits
ttyc/char-size7 CS7 7 bits
ttyc/char-size8 CS8 8 bits
ttyc/enable-parity PARENB Generate and detect parity.
ttyc/odd-parity PARODD Odd parity.
ttyc/enable-read CREAD Enable reception of chars.
ttyc/hup-on-close HUPCL Hang up on last close.
ttyc/no-modem-sync LOCAL Ignore modem lines.
ttyc/2-stop-bits CSTOPB Send two stop bits.
4.3+BSD
ttyc/ignore-flags CIGNORE Ignore control flags.
ttyc/CTS-output-flow-ctl CCTS_OFLOW CTS flow control of output
ttyc/RTS-input-flow-ctl CRTS_IFLOW RTS flow control of input
ttyc/carrier-flow-ctl MDMBUF

Table 3.8: Control-flags. These are the named flags for the tty-info record’s
control-flags field. These flags generally control the details of the terminal’s
serial line. Only the POSIX entries are guaranteed to be non-#f.

92

Scsh C Meaning
POSIX
ttyl/canonical ICANON Canonical input processing.
ttyl/echo ECHO Enable echoing.
ttyl/echo-delete-line ECHOK Echo newline after line kill.
ttyl/echo-nl ECHONL Echo newline even if echo is off.
ttyl/visual-delete ECHOE Visually erase chars.
ttyl/enable-signals ISIG Enable ^C, ^Z signalling.
ttyl/extended IEXTEN Enable extensions.
ttyl/no-flush-on-interrupt NOFLSH Don’t flush after interrupt.
ttyl/ttou-signal ITOSTOP SIGTTOU on background output.
SVR4 and 4.3+BSD
ttyl/echo-ctl ECHOCTL Echo control chars as “^X”.
ttyl/flush-output FLUSHO Output is being flushed.
ttyl/hardcopy-delete ECHOPRT Visual erase for hardcopy.
ttyl/reprint-unread-chars PENDIN Retype pending input.
ttyl/visual-delete-line ECHOKE Visually erase a line-kill.
4.3+BSD
ttyl/alt-delete-word ALTWERASE Alternate word erase algorithm
ttyl/no-kernel-status NOKERNINFO No kernel status on ^T.
SVR4
ttyl/case-map XCASE Canonical case presentation

Table 3.9: Local-flags. These are the named flags for the tty-info record’s
local-flags field. These flags generally control the details of the line-editting
user interface. Only the POSIX entries are guaranteed to be non-#f.

93

Chapter 4

Networking

The Scheme Shell provides a BSD-style sockets interface. There is not an of-
ficial standard for a network interface for scsh to adopt (this is the subject of
the forthcoming Posix.8 standard). However, Berkeley sockets are a de facto
standard, being found on most Unix workstations and PC operating systems.

It is fairly straightforward to add higher-level network protocols such as
smtp, telnet, or http on top of the the basic socket-level support scsh provides.
The Scheme Underground has also released a network library with many of
these protocols as a companion to the current release of scsh. See this code for
examples showing the use of the sockets interface.

4.1 High-level interface

For convenience, and to avoid some of the messy details of the socket interface,
we provide a high level socket interface. These routines attempt to make it easy
to write simple clients and servers without having to think of many of the de-
tails of initiating socket connections. We welcome suggested improvements to
this interface, including better names, which right now are solely descriptions
of the procedure’s action. This might be fine for people who already under-
stand sockets, but does not help the new networking programmer.

(socket-connect protocol-family socket-type . args) −→ socket procedure

socket-connect is intended for creating client applications.
protocol-family is specified as either the protocol-family/internet
or protocol-family/unix. socket-type is specified as either
socket-type/stream or socket-type/datagram. See socket for a
more complete description of these terms.

94

The variable args list is meant to specify protocol family specific informa-
tion. For Internet sockets, this consists of two arguments: a host name
and a port number. For Unix sockets, this consists of a pathname.

socket-connect returns a socket which can be used for input and out-
put from a remote server. See socket for a description of the socket record.

(bind-listen-accept-loop protocol-family proc arg) −→ does-not-return procedure

bind-listen-accept-loop is intended for creating server applications.
protocol-family is specified as either the protocol-family/internet or
protocol-family/unix. proc is a procedure of two arguments: a socket
and a socket-address. arg specifies a port number for Internet sockets or a
pathname for Unix sockets. See socket for a more complete description
of these terms.

proc is called with a socket and a socket address each time there is a con-
nection from a client application. The socket allows communications
with the client. The socket address specifies the address of the remote
client.

This procedure does not return, but loops indefinitely accepting connec-
tions from client programs.

(bind-prepare-listen-accept-loop protocol-family prepare proc arg) −→ does-not-return procedure

Same as bind-listen-accept-loop but runs the thunk prepare after bind-
ing the address and before entering the loop. The typical task of the
prepare procedure is to change the user id from the superuser to some
unprivileged id once the address has been bound.

4.2 Sockets

(create-socket protocol-family type [protocol]) −→ socket procedure
(create-socket-pair type) −→ [socket1 socket2] procedure
(close-socket socket) −→ undefined procedure

A socket is one end of a network connection. Three specific properties
of sockets are specified at creation time: the protocol-family, type, and
protocol.

The protocol-family specifies the protocol family to be used with the
socket. This also determines the address family of socket addresses,
which are described in more detail below. Scsh currently supports the
Unix internal protocols and the Internet protocols using the following
constants:

95

protocol-family/unspecified
protocol-family/unix
protocol-family/internet

The type specifies the style of communication. Examples that your oper-
ating system probably provides are stream and datagram sockets. Others
maybe available depending on your system. Typical values are:

socket-type/stream
socket-type/datagram
socket-type/raw

The protocol specifies a particular protocol to use within a protocol family
and type. Usually only one choice exists, but it’s probably safest to set this
explicitly. See the protocol database routines for information on looking
up protocol constants.

New sockets are typically created with create-socket. However,
create-socket-pair can also be used to create a pair of connected sock-
ets in the protocol-family/unix protocol-family. The value of a re-
turned socket is a socket record, defined to have the following structure:

(define-record socket
family ; protocol family
inport ; input-port
outport) ; output-port

The family specifies the protocol family of the socket. The inport and
outport fields are ports that can be used for input and output, respec-
tively. For a stream socket, they are only usable after a connection has
been established via connect-socket or accept-connection. For a data-
gram socket, outport can be immediately using send-message, and inport
can be used after bind has created a local address.

close-socket provides a convenient way to close a socket’s port. It is
preferred to explicitly closing the inport and outport because using close
on sockets is not currently portable across operating systems.

(port->socket port protocol-family) −→ socket procedure

This procedure turns port into a socket object. The port’s underly-
ing file descriptor must be a socket with protocol family protocol-family.
port->socket applies dup->inport and dup->outport to port to create
the ports of the socket object.

port->socket comes in handy for writing servers which run as children
of inetd: after receiving a connection inetd creates a socket and passes
it as standard input to its child.

96

4.3 Socket addresses

The format of a socket-address depends on the address family of the socket.
Address-family-specific routines are provided to convert protocol-specific ad-
dresses to socket addresses. The value returned by these routines is a socket-
address record, defined to have the following visible structure:

(define-record socket-address
family) ; address family

The family is one of the following constants:

address-family/unspecified
address-family/unix
address-family/internet

(unix-address->socket-address pathname) −→ socket-address procedure
unix-address->socket-address returns a socket-address based on the
string pathname. There is a system dependent limit on the length of
pathname.

(internet-address->socket-address host-address service-port) −→ socket-address procedure
internet-address->socket-address returns a socket-address based on
an integer host-address and an integer service-port. Besides being a 32-bit
host address, an Internet host address can also be one of the following
constants:

internet-address/any
internet-address/loopback
internet-address/broadcast

The use of internet-address/any is described below in bind-socket.
internet-address/loopback is an address that always specifies the local
machine. internet-address/broadcast is used for network broadcast
communications.
For information on obtaining a host’s address, see the host-info func-
tion.

(socket-address->unix-address socket-address) −→ pathname procedure
(socket-address->internet-address socket-address) −→ [host-address service-port] procedure

The routines socket-address->internet-address and
socket-address->unix-address return the address-family-specific
addresses. Be aware that most implementations don’t correctly re-
turn anything more than an empty string for addresses in the Unix
address-family.

97

4.4 Socket primitives

The procedures in this section are presented in the order in which a typical
program will use them. Consult a text on network systems programming for
more information on sockets.1 The last two tutorials are freely available as part
of BSD. In the absence of these, your Unix manual pages for socket might be a
good starting point for information.

(connect-socket socket socket-address) −→ undefined procedure

connect-socket sets up a connection from a socket to a remote
socket-address. A connection has different meanings depending on the
socket type. A stream socket must be connected before use. A datagram
socket can be connected multiple times, but need not be connected at all
if the remote address is specified with each send-message, described be-
low. Also, datagram sockets may be disassociated from a remote address
by connecting to a null remote address.

(connect-socket-no-wait socket socket-address) −→ boolean procedure
(connect-socket-successful? socket) −→ boolean procedure

Just like connect-socket, connect-socket-no-wait sets up a connec-
tion from a socket to a remote socket-address. Unlike connect-socket,
connect-socket-no-wait does not block if it cannot establish the con-
nection immediately. Instead it will return #f at once. In this case a sub-
sequent select on the output port of the socket will report the output
port as ready as soon as the operation system has established the connec-
tion or as soon as setting up the connection led to an error. Afterwards,
the procedure connect-socket-successful? can be used to test whether
the connection has been established successfully or not.

(bind-socket socket socket-address) −→ undefined procedure

bind-socket assigns a certain local socket-address to a socket. Binding a
socket reserves the local address. To receive connections after binding
the socket, use listen-socket for stream sockets and receive-message
for datagram sockets.

Binding an Internet socket with a host address of internet-address/any
indicates that the caller does not care to specify from which local network

1 Some recommended ones are:

• “Unix Network Programming” by W. Richard Stevens

• “An Introductory 4.3BSD Interprocess Communication Tutorial.” (reprinted in UNIX Pro-
grammer’s Supplementary Documents Volume 1, PS1:7)

• “An Advanced 4.3BSD Interprocess Communication Tutorial.” (reprinted in UNIX Pro-
grammer’s Supplementary Documents Volume 1, PS1:8)

98

interface connections are received. Binding an Internet socket with a ser-
vice port number of zero indicates that the caller has no preference as to
the port number assigned.
Binding a socket in the Unix address family creates a socket special file
in the file system that must be deleted before the address can be reused.
See delete-file.

(listen-socket socket backlog) −→ undefined procedure
listen-socket allows a stream socket to start receiving connections, al-
lowing a queue of up to backlog connection requests. Queued connections
may be accepted by accept-connection.

(accept-connection socket) −→ [new-socket socket-address] procedure
accept-connection receives a connection on a socket, returning a new
socket that can be used for this connection and the remote socket address
associated with the connection.

(socket-local-address socket) −→ socket-address procedure
(socket-remote-address socket) −→ socket-address procedure

Sockets can be associated with a local address or a remote address
or both. socket-local-address returns the local socket-address record
associated with socket. socket-remote-address returns the remote
socket-address record associated with socket.

(shutdown-socket socket how-to) −→ undefined procedure
shutdown-socket shuts down part of a full-duplex socket. The method
of shutting done is specified by the how-to argument, one of:

shutdown/receives
shutdown/sends
shutdown/sends+receives

4.5 Performing input and output on sockets

(receive-message socket length [flags]) −→ [string-or-#f socket-address] procedure
(receive-message! socket string [start] [end] [flags]) −→ [count-or-#f socket-address] procedure
(receive-message/partial socket length [flags]) −→ [string-or-#f socket-address] procedure
(receive-message!/partial socket string [start] [end] [flags]) −→ [count-or-#f socket-address] procedure

(send-message socket string [start] [end] [flags] [socket-address]) −→ undefined procedure
(send-message/partial socket string [start] [end] [flags] [socket-address]) −→ count procedure

For most uses, standard input and output routines such as read-string
and write-string should suffice. However, in some cases an extended

99

interface is required. The receive-message and send-message calls par-
allel the read-string and write-string calls with a similar naming
scheme.
One additional feature of these routines is that receive-message re-
turns the remote socket-address and send-message takes an optional remote
socket-address. This allows a program to know the source of input
from a datagram socket and to use a datagram socket for output without
first connecting it.
All of these procedures take an optional flags field. This argument is an
integer bit-mask, composed by or’ing together the following constants:

message/out-of-band
message/peek
message/dont-route

See read-string and write-string for a more detailed description of
the arguments and return values.

4.6 Socket options

(socket-option socket level option) −→ value procedure
(set-socket-option socket level option value) −→ undefined procedure

socket-option and set-socket-option allow the inspection and mod-
ification, respectively, of several options available on sockets. The level
argument specifies what protocol level is to be examined or affected. A
level of level/socket specifies the highest possible level that is avail-
able on all socket types. A specific protocol number can also be used as
provided by protocol-info, described below.
There are several different classes of socket options. The first class con-
sists of boolean options which can be either true or false. Examples of
this option type are:

socket/debug
socket/accept-connect
socket/reuse-address
socket/keep-alive
socket/dont-route
socket/broadcast
socket/use-loop-back
socket/oob-inline
socket/use-privileged
socket/cant-signal
tcp/no-delay

100

Value options are another category of socket options. Options of this type
are an integer value. Examples of this option type are:

socket/send-buffer
socket/receive-buffer
socket/send-low-water
socket/receive-low-water
socket/error
socket/type
ip/time-to-live
tcp/max-segment

A third option type specifies how long for data to linger after a socket has
been closed. There is only one option of this type: socket/linger. It is
set with either #fto disable it or an integer number of seconds to linger
and returns a value of the same type upon inspection.

The fourth and final option type of this time is a timeout option.
There are two examples of this option type: socket/send-timeout and
socket/receive-timeout. These are set with a real number of microsec-
onds resolution and returns a value of the same type upon inspection.

4.7 Database-information entries

(host-info name-or-socket-address) −→ host-info procedure
(network-info name-or-socket-address) −→ network-info or #f procedure
(service-info name-or-number [protocol-name]) −→ service-info or #f procedure
(protocol-info name-or-number) −→ protocol-info or #f procedure

host-info allows a program to look up a host entry based on either its
string name or socket-address. The value returned by this routine is a host-
info record, defined to have the following structure:

(define-record host-info
name ; Host name
aliases ; Alternative names
addresses) ; Host addresses

host-info could fail and raise an error for one of the following reasons:

herror/host-not-found
herror/try-again
herror/no-recovery
herror/no-data
herror/no-address

101

network-info allows a program to look up a network entry based on
either its string name or socket-address. The value returned by this routine
is a network-info record, defined to have the following structure:

(define-record network-info
name ; Network name
aliases ; Alternative names
net) ; Network number

service-info allows a program to look up a service entry based on ei-
ther its string name or integer port. The value returned by this routine is
a service-info record, defined to have the following structure:

(define-record service-info
name ; Service name
aliases ; Alternative names
port ; Port number
protocol) ; Protocol name

protocol-info allows a program to look up a protocol entry based on ei-
ther its string name or integer number. The value returned by this routine
is a protocol-info record, defined to have the following structure:

(define-record protocol-info
name ; Protocol name
aliases ; Alternative names
number) ; Protocol number)

network-info, service-info and protocol-info return #fif the speci-
fied entity was not found.

102

Chapter 5

Strings and characters

Strings are the basic communication medium for Unix processes, so a Unix pro-
gramming environment must have reasonable facilities for manipulating them.
Scsh provides a powerful set of procedures for processing strings and charac-
ters. Besides the the facilities described in this chapter, scsh also provides

• Regular expressions (chapter 6)
A complete regular-expression system.

• Field parsing, delimited record I/O and the awk loop (chapter 8)
These procedures let you read in chunks of text delimited by selected
characters, and parse each record into fields based on regular expressions
(for example, splitting a string at every occurrence of colon or white-
space). The awk form allows you to loop over streams of these records
in a convenient way.

• The SRFI-13 string libraries
This pair of libraries contains procedures that create, fold, iterate
over, search, compare, assemble, cut, hash, case-map, and other-
wise manipulate strings. They are provided by the string-lib and
string-lib-internals packages, and are also available in the default
scsh package.

More documentation on these procedures can be found at URLs
http://srfi.schemers.org/srfi-13/srfi-13.html
http://srfi.schemers.org/srfi-13/srfi-13.txt

• The SRFI-14 character-set library
This library provides a set-of-characters abstraction, which is frequently
useful when searching, parsing, filtering or otherwise operating on

103

http://srfi.schemers.org/srfi-13/srfi-13.html
http://srfi.schemers.org/srfi-13/srfi-13.txt

strings and character data. The SRFI is provided by the char-set-lib
package; it’s bindings are also available in the default scsh package.

More documentation on this library can be found at URLs
http://srfi.schemers.org/srfi-14/srfi-14.html
http://srfi.schemers.org/srfi-14/srfi-14.txt

5.1 Manipulating file names

These procedures do not access the file-system at all; they merely operate on
file-name strings. Much of this structure is patterned after the gnu emacs de-
sign. Perhaps a more sophisticated system would be better, something like
the pathname abstractions of COMMON LISP or MIT Scheme. However, being
Unix-specific, we can be a little less general.

5.1.1 Terminology

These procedures carefully adhere to the POSIX standard for file-name reso-
lution, which occasionally entails some slightly odd things. This section will
describe these rules, and give some basic terminology.

A file-name is either the file-system root (“/”), or a series of slash-terminated
directory components, followed by a a file component. Root is the only file-
name that may end in slash. Some examples:

File name Dir components File component
src/des/main.c ("src" "des") "main.c"
/src/des/main.c ("" "src" "des") "main.c"
main.c () "main.c"

Note that the relative filename src/des/main.c and the absolute filename
/src/des/main.c are distinguished by the presence of the root component ""
in the absolute path.

Multiple embedded slashes within a path have the same meaning as a sin-
gle slash. More than two leading slashes at the beginning of a path have the
same meaning as a single leading slash—they indicate that the file-name is an
absolute one, with the path leading from root. However, POSIX permits the OS
to give special meaning to two leading slashes. For this reason, the routines in
this section do not simplify two leading slashes to a single slash.

A file-name in directory form is either a file-name terminated by a slash, e.g.,
“/src/des/”, or the empty string, “”. The empty string corresponds to the cur-
rent working directory, whose file-name is dot (“.”). Working backwards from
the append-a-slash rule, we extend the syntax of POSIX file-names to define the

104

http://srfi.schemers.org/srfi-14/srfi-14.html
http://srfi.schemers.org/srfi-14/srfi-14.txt

empty string to be a file-name form of the root directory “/”. (However, “/” is
also acceptable as a file-name form for root.) So the empty string has two in-
terpretations: as a file-name form, it is the file-system root; as a directory form,
it is the current working directory. Slash is also an ambiguous form: / is both
a directory-form and a file-name form.

The directory form of a file-name is very rarely used. Almost all
of the procedures in scsh name directories by giving their file-name
form (without the trailing slash), not their directory form. So, you say
“/usr/include”, and “.”, not “/usr/include/” and “”. The sole exceptions
are file-name-as-directory and directory-as-file-name, whose jobs are
to convert back-and-forth between these forms, and file-name-directory,
whose job it is to split out the directory portion of a file-name. However, most
procedures that expect a directory argument will coerce a file-name in direc-
tory form to file-name form if it does not have a trailing slash. Bear in mind
that the ambiguous case, empty string, will be interpreted in file-name form,
i.e., as root.

5.1.2 Procedures

(file-name-directory? fname) −→ boolean procedure
(file-name-non-directory? fname) −→ boolean procedure

These predicates return true if the string is in directory form, or file-name
form (see the above discussion of these two forms). Note that they both
return true on the ambiguous case of empty string, which is both a direc-
tory (current working directory), and a file name (the file-system root).

File name ...-directory? ...-non-directory?
"src/des" #f #t
"src/des/" #t #f
"/" #t #f
"." #f #t
"" #t #t

(file-name-as-directory fname) −→ string procedure

Convert a file-name to directory form. Basically, add a trailing slash if
needed:

(file-name-as-directory "src/des") =⇒ "src/des/"
(file-name-as-directory "src/des/") =⇒ "src/des/"

., /, and "" are special:
(file-name-as-directory ".") =⇒ ""
(file-name-as-directory "/") =⇒ "/"
(file-name-as-directory "") =⇒ "/"

105

(directory-as-file-name fname) −→ string procedure

Convert a directory to a simple file-name. Basically, kill a trailing slash if
one is present:

(directory-as-file-name "foo/bar/") =⇒ "foo/bar"

/ and "" are special:
(directory-as-file-name "/") =⇒ "/"
(directory-as-file-name "") =⇒ "." (i.e., the cwd)

(file-name-absolute? fname) −→ boolean procedure

Does fname begin with a root or ~ component? (Recognising ~ as a home-
directory specification is an extension of POSIX rules.)

(file-name-absolute? "/usr/shivers") =⇒ #t
(file-name-absolute? "src/des") =⇒ #f
(file-name-absolute? "~/src/des") =⇒ #t

Non-obvious case:
(file-name-absolute? "") =⇒ #t (i.e., root)

(file-name-directory fname) −→ string or false procedure

Return the directory component of fname in directory form. If the file-
name is already in directory form, return it as-is.

(file-name-directory "/usr/bdc") =⇒ "/usr/"
(file-name-directory "/usr/bdc/") =⇒ "/usr/bdc/"
(file-name-directory "bdc/.login") =⇒ "bdc/"
(file-name-directory "main.c") =⇒ ""

Root has no directory component:
(file-name-directory "/") =⇒ ""
(file-name-directory "") =⇒ ""

(file-name-nondirectory fname) −→ string procedure

Return non-directory component of fname.

106

(file-name-nondirectory "/usr/ian") =⇒ "ian"
(file-name-nondirectory "/usr/ian/") =⇒ ""
(file-name-nondirectory "ian/.login") =⇒ ".login"
(file-name-nondirectory "main.c") =⇒ "main.c"
(file-name-nondirectory "") =⇒ ""
(file-name-nondirectory "/") =⇒ "/"

(split-file-name fname) −→ string list procedure

Split a file-name into its components.

(split-file-name "src/des/main.c")
=⇒ ("src" "des" "main.c")

(split-file-name "/src/des/main.c")
=⇒ ("" "src" "des" "main.c")

(split-file-name "main.c")
=⇒ ("main.c")

(split-file-name "/")
=⇒ ("")

(path-list->file-name path-list [dir]) −→ string procedure

Inverse of split-file-name.

(path-list->file-name ’("src" "des" "main.c"))
=⇒ "src/des/main.c"

(path-list->file-name ’("" "src" "des" "main.c"))
=⇒ "/src/des/main.c"

Optional dir arg anchors relative path-lists:
(path-list->file-name ’("src" "des" "main.c")

"/usr/shivers")
=⇒ "/usr/shivers/src/des/main.c"

The optional dir argument is usefully (cwd).

(file-name-extension fname) −→ string procedure

Return the file-name’s extension.
(file-name-extension "main.c") =⇒ ".c"
(file-name-extension "main.c.old") =⇒ ".old"
(file-name-extension "/usr/shivers") =⇒ ""

107

Weird cases:
(file-name-extension "foo.") =⇒ "."
(file-name-extension "foo..") =⇒ "."

Dot files are not extensions:
(file-name-extension "/usr/shivers/.login") =⇒ ""

(file-name-sans-extension fname) −→ string procedure

Return everything but the extension.

(file-name-sans-extension "main.c") =⇒ "main"
(file-name-sans-extension "main.c.old") =⇒ "main.c""
(file-name-sans-extension "/usr/shivers")

=⇒ "/usr/shivers"

Weird cases:
(file-name-sans-extension "foo.") =⇒ "foo"
(file-name-sans-extension "foo..") =⇒ "foo."

Dot files are not extensions:
(file-name-sans-extension "/usr/shivers/.login")

=⇒ "/usr/shivers/.login

Note that appending the results of file-name-extension and file-
name-sans-extension in all cases produces the original file-name.

(parse-file-name fname) −→ [dir name extension] procedure

Let f be (file-name-nondirectory fname). This function returns the
three values:

• (file-name-directory fname)

• (file-name-sans-extension f))

• (file-name-extension f)

The inverse of parse-file-name, in all cases, is string-append. The
boundary case of / was chosen to preserve this inverse.

(replace-extension fname ext) −→ string procedure

This procedure replaces fname’s extension with ext. It is exactly equiva-
lent to

(string-append (file-name-sans-extension fname) ext)

108

(simplify-file-name fname) −→ string procedure

Removes leading and internal occurrences of dot. A trailing dot is left
alone, as the parent could be a symlink. Removes internal and trailing
double-slashes. A leading double-slash is left alone, in accordance with
POSIX. However, triple and more leading slashes are reduced to a single
slash, in accordance with POSIX. Double-dots (parent directory) are left
alone, in case they come after symlinks or appear in a /../machine/...
“super-root” form (which POSIX permits).

(resolve-file-name fname [dir]) −→ string procedure

• Do ~ expansion.

• If dir is given, convert a relative file-name to an absolute file-name,
relative to directory dir.

(expand-file-name fname [dir]) −→ string procedure

Resolve and simplify the file-name.

(absolute-file-name fname [dir]) −→ string procedure

Convert file-name fname into an absolute file name, relative to directory
dir, which defaults to the current working directory. The file name is
simplified before being returned.

This procedure does not treat a leading tilde character specially.

(home-dir [user]) −→ string procedure

home-dir returns user’s home directory. User defaults to the current user.

(home-dir) =⇒ "/user1/lecturer/shivers"
(home-dir "ctkwan") =⇒ "/user0/research/ctkwan"

(home-file [user] fname) −→ string procedure

Returns file-name fname relative to user’s home directory; user defaults to
the current user.

(home-file "man") =⇒ "/usr/shivers/man"
(home-file "fcmlau" "man") =⇒ "/usr/fcmlau/man"

The general substitute-env-vars string procedure, defined in the previ-
ous section, is also frequently useful for expanding file-names.

109

5.2 Other string manipulation facilities

(substitute-env-vars fname) −→ string procedure

Replace occurrences of environment variables with their values. An en-
vironment variable is denoted by a dollar sign followed by alphanumeric
chars and underscores, or is surrounded by braces.

(substitute-env-vars "$USER/.login")
=⇒ "shivers/.login"

(substitute-env-vars "${USER}_log") =⇒ "shivers_log"

5.3 ASCII encoding

(char->ascii character) −→ integer procedure
(ascii->char integer) −→ character procedure

These are identical to char->integer and integer->char except that
they use the ASCII encoding.

5.4 Character predicates

(char-letter? character) −→ boolean procedure
(char-lower-case? character) −→ boolean procedure
(char-upper-case? character) −→ boolean procedure
(char-title-case? character) −→ boolean procedure
(char-digit? character) −→ boolean procedure
(char-letter+digit? character) −→ boolean procedure
(char-graphic? character) −→ boolean procedure
(char-printing? character) −→ boolean procedure
(char-whitespace? character) −→ boolean procedure
(char-blank? character) −→ boolean procedure
(char-iso-control? character) −→ boolean procedure
(char-punctuation? character) −→ boolean procedure
(char-hex-digit? character) −→ boolean procedure
(char-ascii? character) −→ boolean procedure

Each of these predicates tests for membership in one of the standard char-
acter sets provided by the SRFI-14 character-set library. Additionally, the
following redundant bindings are provided for R5RS compatibility:

110

R5RS name scsh definition
char-alphabetic? char-letter+digit?
char-numeric? char-digit?
char-alphanumeric? char-letter+digit?

5.5 Deprecated character-set procedures

The SRFI-13 character-set library grew out of an earlier library developed for
scsh. However, the SRFI standardisation process introduced incompatibilities
with the original scsh bindings. The current version of scsh provides the library
obsolete-char-set-lib, which contains the old bindings found in previous
releases of scsh. The following table lists the members of this library, along
with the equivalent SRFI-13 binding. This obsolete library is deprecated and
not open by default in the standard scsh environment; new code should use
the SRFI-13 bindings.

Old obsolete-char-set-lib SRFI-13 char-set-lib
char-set-members char-set->list
chars->char-set list->char-set
ascii-range->char-set ucs-range->char-set (not exact)
predicate->char-set char-set-filter (not exact)
char-set-every? char-set-every
char-set-any? char-set-any

char-set-invert char-set-complement
char-set-invert! char-set-complement!

char-set:alphabetic char-set:letter
char-set:numeric char-set:digit
char-set:alphanumeric char-set:letter+digit
char-set:control char-set:iso-control

Note also that the ->char-set procedure no longer handles a predicate argu-
ment.

111

Chapter 6

Pattern-matching strings with
regular expressions

Scsh provides a rich facility for matching regular-expression patterns in strings.
The system is composed of several pieces:

• An s-expression notation for writing down general regular expressions.
In most systems, regexp patterns are encoded as string literals, such as
"g(oo|ee)se". In scsh, they are written using s-expressions, such as (:
"g" (| "oo" "ee") "se"), and are called sre’s. The sre notation has sev-
eral advantages over the traditional string-based notation. It’s more ex-
pressive, can be commented, and can be indented to expose the structure
of the form.

• An abstract data type (ADT) representation for regexp values. Traditional
regular-expression systems compute regular expressions from run-time
values using strings. This can be awkward. Scsh, instead, provides a
separate data type for regexps, with a set of basic constructor and ac-
cessor functions; regular expressions can be dynamically computed and
manipulated using these functions.

• Some tools that work on the regexp ADT: case-sensitve to case-insensitive
regexp transform, a regexp simplifier, and so forth.

• Parsers and unparsers that can convert between external representations
and the regexp ADT. The supported external representations are

– Posix strings

– S-expression notation (that is, sre’s)

112

Being able to convert regexps to Posix strings allows implementations to
implement regexp matching using standard Posix C-based engines.

• Macro support for the s-expression notation. The rx macro provides a
new special form that allows you to embed regexps in the s-expression
notation within a Scheme program. Evaluating the macro form produces
a regexp ADT value which can be used by Scheme pattern-matching pro-
cedures and other regexp consumers.

• Pattern-matching and searching procedures. Spencer’s Posix regexp en-
gine is linked in to the runtime; the regexp code uses this engine to pro-
vide text matching.

The regexp language supported is a complete superset of Posix functional-
ity, providing:

• sequencing and choice (|)

• repetition (*, +, ?, {m,n})

• character classes (e.g., [aeiou]) and wildcard (.)

• beginning/end of string anchors (^, $)

• case-sensitivity control

• submatch-marking

6.1 Summary SRE syntax

The following figures give a summary of the SRE syntax; the next section is a
friendlier tutorial introduction.

113

string Literal match—interpreted relative to the current
case-sensitivity lexical context (default is case-
sensitive)

(string1 string2 ...) Set of chars, e.g., ("abc" "XYZ"). Interpreted
relative to the current case-sensitivity lexical
context.

(* sre ...) 0 or more matches
(+ sre ...) 1 or more matches
(? sre ...) 0 or 1 matches
(= n sre ...) n matches
(>= n sre ...) n or more matches
(** n m sre ...) n to m matches

N and m are Scheme expressions producing non-negative integers.
M may also be #f, meaning “infinity.”

(| sre ...) Choice (or is R5RS symbol;
(or sre ...) | is not specified by R5RS.)

(: sre ...) Sequence (seq is legal
(seq sre ...) Common Lisp symbol)

(submatch sre ...) Numbered submatch

(dsm pre post sre ...) Deleted submatches
Pre and post are numerals.

(uncase sre ...) Case-folded match
(w/case sre ...) Introduce a lexical case-sensitivity
(w/nocase sre ...) context.

,@exp Dynamically computed regexp
,exp Same as ,@exp, but no submatch info

Exp must produce a character, string, char-set, or regexp.

bos eos Beginning/end of string
bol eol Beginning/end of line

Figure 6.1: SRE syntax summary (part 1)

114

(posix-string string) Escape for Posix string notation

char Singleton char set
class-name alphanumeric, whitespace, etc.

These two forms are interpreted subject to the lexical case-sensitivity
context.

(~ cset-sre ...) Complement-of-union ([^...])
(- cset-sre ...) Difference
(& cset-sre ...) Intersection

(/ range-spec ...) Character range—interpreted subject to the lexi-
cal case-sensitivy context

Figure 6.2: SRE syntax summary (part 2)

class-name ::= any
| nonl
| lower-case | lower
| upper-case | upper
| alphabetic | alpha
| numeric | digit | num
| alphanumeric | alnum
| punctuation | punct
| graphic | graph
| whitespace | space | white
| printing | print
| control | cntrl
| hex-digit | xdigit | hex
| ascii

range-spec ::= string | char
The chars are taken in pairs to form inclusive ranges.

Figure 6.3: SRE character-class names and range specs.

115

<cset-sre> ::= (~ <cset-sre> ...) Set complement-of-union
| (- <cset-sre> ...) Set difference
| (& <cset-sre> ...) Intersection
| (| <cset-sre> ...) Set union
| (/ <range-spec> ...) Range

| (<string>) Constant set
| <char> Singleton constant set
| <string> For 1-char string "c"

| <class-name> Constant set

| ,<exp> <exp> evals to a char-set,
| ,@<exp> char, single-char string,

or re-char-set regexp.

| (uncase <cset-sre>) Case-folding
| (w/case <cset-sre>)
| (w/nocase <cset-sre>)

Figure 6.4: applied to SRE’s that specify character sets. These are the “type-
checking” rules for character-set SRE’s.

116

6.2 Examples

(- alpha ("aeiouAEIOU")) ; Various forms of
(- alpha ("aeiou") ("AEIOU")) ; non-vowel letter
(w/nocase (- alpha ("aeiou")))
(- (/"azAZ") ("aeiouAEIOU"))
(w/nocase (- (/"az") ("aeiou")))

;;; Upper-case letter, lower-case vowel, or digit
(| upper ("aeiou") digit)
(| (/"AZ09") ("aeiou"))

;;; Not an SRE, but Scheme code containing some embedded SREs.
(let* ((ws (rx (+ whitespace))) ; Seq of whitespace

(date (rx (: (| "Jan" "Feb" "Mar" ...) ; A month/day date.
,ws
(| ("123456789") ; 1-9

(: ("12") digit) ; 10-29
"30" "31"))))) ; 30-31

;; Now we can use DATE several times:
(rx ... ,date ... (* ... ,date ...)

... ,date))

;;; More Scheme code
(define (csl re) ; A comma-separated list of RE’s is
(rx (| "" ; either zero of them (empty string), or

(: ,re ; one RE, followed by
(* ", " ,re))))) ; Zero or more comma-space-RE matches.

(csl (rx (| "John" "Paul" "George" "Ringo")))

6.3 A short tutorial

S-expression regexps are called ”SRE”s. Keep in mind that they are not Scheme
expressions; they are another, separate notation that is expressed using the un-
derlying framework of s-expression list structure: lists, symbols, etc. SRE’s
can be embedded inside of Scheme expressions using special forms that extend
Scheme’s syntax (such as the rx macro); there are places in the SRE grammar
where one may place a Scheme expression. In these ways, SRE’s and Scheme
expressions can be intertwined. But this isn’t fundamental; SRE’s may be used
in a completely Scheme-independent context. By simply restricting the nota-

117

tion to eliminate two special Scheme-embedding forms, they can be a com-
pletely independent notation.

Constant strings The simplest SRE is a string, denoting a constant regexp.
For example, the SRE

"Spot"

matches only the string <<capital-S, little-p, little-o, little-t>>. There is no in-
terpretation of the characters in the string at all—the SRE

".*["

matches the string <<period, asterisk, open-bracket>>.

Simple character sets To specify a set of characters, write a list whose single
element is a string containing the set’s elements. So the SRE

("aeiou")

only matches a vowel. One way to think of this, notationally, is that the set
brackets are (" and ").

Wild card Another simple SRE is the symbol any, which matches any single
character—including newline and ASCII nul.

Sequences We can form sequences of SRE’s with the SRE (: sre ...). So the
SRE

(: "x" any "z")

matches any three-character string starting with “x” and ending with “z”. As
we’ll see shortly, many SRE forms have bodies that are implicit sequences of
other SRE’s, analogous to the manner in which the body of a Scheme lambda
or let expression is an implicit begin sequence. The regexp (seq sre ...) is
completely equivalent to (: sre ...); it’s included in order to have a syntax
that doesn’t require : to be a legal symbol 1

1That is, for use within s-expression syntax frameworks that, unlike R5RS, don’t allow for : as
a legal symbol. A Common Lisp embedding of SREs, for example, would need to use seq instead
of :.

118

6.4 Choices

The SRE (| sre ...) is a regexp that matches anything any of the sre regexps
match. So the regular expression

(| "sasha" "Pete")

matches either the string “sasha” or the string “Pete”. The regexp

(| ("aeiou") ("0123456789"))

is the same as

("aeiou0123456789")

The regexp (or sre ...) is completely equivalent to (| sre ...); it’s included
in order to have a syntax that doesn’t require | to be a legal symbol.

Repetition There are several SRE forms that match multiple occurences of a
regular expression. For example, the SRE (* sre ...) matches zero or more
occurences of the sequence (: sre ...). Here is the complete list of SRE repe-
tition forms:

SRE means at least no more than
(* sre ...) zero-or-more 0 infinity
(+ sre ...) one-or-more 1 infinity
(? sre ...) zero-or-one 0 1
(= from sre ...) exactly-n from from
(>= from sre ...) n-or-more from infinity
(** from to sre ...) n-to-m from to

A from field is a Scheme expression that produces an integer. A to field is a
Scheme expression that produces either an integer, or false, meaning infinity.

While it is illegal for the from or to fields to be negative, it is allowed for
from to be greater than to in a ** form—this simply produces a regexp that will
never match anything.

As an example, we can describe the names of car/cdr access functions
(”car”, ”cdr”, ”cadr”, ”cdar”, ”caar” , ”cddr”, ”caaadr”, etc.) with either of
the SREs

(: "c" (+ (| "a" "d")) "r")
(: "c" (+ ("ad")) "r")

We can limit the a/d chains to 4 characters or less with the SRE

119

(: "c" (** 1 4 ("ad")) "r")

Some boundary cases:

(** 5 2 "foo") ; Will never match
(** 0 0 "foo") ; Matches the empty string

Character classes There is a special set of SRE’s that form “character
classes”—basically, a regexp that matches one character from some specified
set of characters. There are operators to take the intersection, union, comple-
ment, and difference of character classes to produce a new character class. (Ex-
cept for union, these capabilities are not provided for general regexps as they
are computationally intractable in the general case.)

A single character is the simplest character class: #\x is a character class
that matches only the character “x”. A string that has only one letter is also a
character class: "x" is the same SRE as #\x.

The character-set notation (string) we’ve seen is a primitive character class,
as is the wildcard any. When arguments to the choice operator, |, are all char-
acter classes, then the choice form is itself a character-class. So these SREs are
all character-classes:

("aeiou")
(| #\a #\e #\i #\o #\u)
(| ("aeiou") ("1234567890"))

However, these SRE’s are not character-classes:

"aeiou"
(| "foo" #\x)

The (~ cset-sre ...) char class matches one character not in the specified
classes:

(~ ("0248") ("1359"))

matches any character that is not a digit.
More compactly, we can use the / operator to specify character sets by giv-

ing the endpoints of contiguous ranges, where the endpoints are specified by a
sequence of strings and characters. For example, any of these char classes

(/ #\A #\Z #\a #\z #\0 #\9)
(/ "AZ" #\a #\z "09")
(/ "AZ" #\a "z09")
(/"AZaz09")

120

matches a letter or a digit. The range endpoints are taken in pairs to form
inclusive ranges of characters. Note that the exact set of characters included
in a range is dependent on the underlying implementation’s character type, so
ranges may not be portable across different implementations.

There is a wide selection of predefined, named character classes that may
be used. One such SRE is the wildcard any. nonl is a character class matching
anything but newline; it is equivalent to

(~ #\newline)

and is useful as a wildcard in line-oriented matching.

There are also predefined named char classes for the standard Posix and
Gnu character classes:

scsh name Posix/ctype Alternate name Comment
lower-case lower
upper-case upper
alphabetic alpha
numeric digit num
alphanumeric alnum alphanum
punctuation punct
graphic graph
blank (Gnu extension)
whitespace space white “space” is deprecated.
printing print
control cntrl
hex-digit xdigit hex
ascii (Gnu extension)

See the scsh character-set documentation or the Posix isalpha(3) man page for
the exact definitions of these sets.

You can use either the long scsh name or the shorter Posix and alternate
names to refer to these char classes. The standard Posix name “space” is pro-
vided, but deprecated, since it is ambiguous. It means “whitespace,” the set
of whitespace characters, not the singleton set of the #\space character. If you
want a short name for the set of whitespace characters, use the char-class name
“white” instead.

Char classes may be intersected with the operator (& cset-sre ...), and set-
difference can be performed with (- cset-sre ...). These operators are partic-
ularly useful when you want to specify a set by negation with respect to a limited
universe. For example, the set of all non-vowel letters is

(- alpha ("aeiou") ("AEIOU"))

whereas writing a simple complement

121

(~ ("aeiouAEIOU"))

gives a char class that will match any non-vowel—including punctuation, dig-
its, white space, control characters, and ASCII nul.

We can compute a char class by writing the SRE

,cset-exp

where cset-exp is a Scheme expression producing a value that can be coerced
to a character set: a character set, character, one-character string, or char-class
regexp value. This regexp matches one character from the set.

The char-class SRE ,@cset-exp is entirely equivalent to ,cset-exp when
cset-exp produces a character set (but see below for the more general non-char-
class context, where there is a distinction between ,exp and ,@exp.

As an example of character-class SREs, an SRE that matches a lower-case
vowel, upper-case letter, or digit is

(| ("aeiou") (/"AZ09"))

or, equivalently

(| ("aeiou") upper-case numeric)

Boundary cases: the empty-complement char class

(~)

matches any character; it is equivalent to any. The empty-union char class

(|)

never matches at all. This is rarely useful for human-written regexps, but may
be of occasional utility in machine-generated regexps, perhaps produced by
macros.

The rules for determining if an SRE is a simple, char-class SRE or a more
complex SRE form a little “type system” for SRE’s. See the summary section
preceding this one for a complete listing of these rules.

{Note There is no way to include the ASCII NUL character in a character
set or search for it in any other way using regular expression. This is because
the POSIX regexp facility is based on the C language which uses ASCII NUL
to terminate strings.}

122

Case sensitivity There are three forms that control case sensitivity:

(uncase sre ...)
(w/case sre ...)
(w/nocase sre ...)

uncase is a regexp operator producing a regexp that matches any case per-
mutation of any string that matches (: sre ...). For example, the regexp

(uncase "foo")

matches the strings “foo”, “foO”, “fOo”, “fOO”, “Foo”, . . .

Expressions in SRE notation are interpreted in a lexical case-sensitivy con-
text. The forms w/case and w/nocase are the scoping operators for this con-
text, which controls how constant strings and char-class forms are interpreted
in their bodies. So, for example, the regexp

(w/nocase "abc"
(* "FOO" (w/case "Bar"))
("aeiou"))

defines a case-insensitive match for all of its elements except for the sub-
element ”Bar”, which must match exactly capital-B, little-a, little-r. The default,
the outermost, top-level context is case sensitive.

The lexical case-sensitivity context affects the interpretation of

• constant strings, such as "foo",

• chars, such as #\x,

• char sets, such as ("abc"), and

• ranges, such as (/"az") that appear within that context. It does not affect
dynamically computed regexps—ones that are introduced by ,exp and
,@exp forms. It does not affect named char-classes—presumably, if you
wrote lower, you didn’t mean alpha.

uncase is not the same as w/nocase. To point up one distinction, consider
the two regexps

(uncase (~ "a"))
(w/nocase (~ "a"))

123

The regexp (~ "a") matches any character except “a,” which means it does
match “A.” Now, (uncase re) matches any case-permutation of a string that re
matches. (~ "a") matches “A,” so (uncase (~ "a")) matches “A” and “a”—
and, for that matter, every other character. So (uncase (~ "a")) is equivalent
to any.

In contrast, (w/nocase (~ "a")) establishes a case-insensitive lexical con-
text in which the "a" is interpreted, making the SRE equivalent to (~ ("aA")).

Dynamic regexps SRE notation allows you to compute parts of a regular ex-
pressions at run time. The SRE

,exp

is a regexp whose body exp is a Scheme expression producing a string, charac-
ter, char-set, or regexp as its value. Strings and characters are converted into
constant regexps; char-sets are converted into char-class regexps; and regexp
values are substituted in place. So we can write regexps like this

(: "feeding the "
,(if (> n 1) "geese" "goose"))

This is how you can drop computed strings, such as someone’s name, or the
decimal numeral for a computed number, into a complex regexp.

If we have a large, complex regular expression that is used multiple times in
some other, containing regular expression, we can name it, using the binding
forms of the embedding language (e.g., Scheme), and refer to it by name in the
containing expression. For example, consider the Scheme expression

(let* ((ws (rx (+ whitespace))) ; Seq of whitespace
;; Something like "Mar 14"
(date (rx (: (| "Jan" "Feb" "Mar" ...)

,ws
(| ("123456789") ; 1-9

(: ("12") digit) ; 10-29
"30" ; 30
"31"))))) ; 31

;; Now we can use DATE several times:
(rx ... ,date ... (* ... ,date ...)

... ,date ...))

where the (rx sre ...) macro is the Scheme special form that produces a
Scheme regexp value given a body in SRE notation.

As we saw in the char-class section, if a dynamic regexp is used in a char-
class context (e.g., as an argument to a ~ operation), the expression must be

124

coercable not merely to a general regexp, but to a character sre—so it must be
either a singleton string, a character, a scsh char set, or a char-class regexp.

We can also define and use functions on regexps in the host language.
For example, consider the following Scheme expressions, containing embed-
ded SRE’s (inside the rx macro expressions) which in term contain embedded
Scheme expressions computing dynamic regexps:

(define (csl re)
;; A comma-separated list of RE’s is either
(rx (| "" ; zero of them (empty string),

(: ,re ; or RE followed by
(* ", " ,re))))); zero or more comma-space-RE matches.

(rx ... ,date ...
,(csl (rx (| "John" "Paul" "George" "Ringo")))
...
,(csl date)
...)

We leave the extension of csl to allow for an optional “and” between the last
two matches as an exercise for the interested reader (e.g., to match “John, Paul,
George and Ringo”).

Note, in passing, one of the nice features of SRE notation: they can be com-
mented, and indented in a fashion to show the lexical extent of the subexpres-
sions.

When we embed a computed regexp inside another regular expression with
the ,exp form, we must specify how to account for the submatches that may be
in the computed part. For example, suppose we have the regexp

(rx (submatch (* "foo"))
(submatch (? "bar"))
,(f x)
(submatch "baz"))

It’s clear that the submatch for the (* "foo") part of the regexp is submatch
#1, and the (? "bar") part is submatch #2. But what number submatch is
the "baz" submatch? It’s not clear. Suppose the Scheme expression (f x)
produces a regular expression that itself has 3 subforms. Are these counted
(making the "baz" submatch #6), or not counted (making the "bar" submatch
#3)?

SRE notation provides for both possibilities. The SRE

,exp

125

does not contribute its submatches to its containing regexp; it has zero sub-
matches. So one can reliably assign submatch indices to forms appearing after
a ,exp form in a regexp.

On the other hand, the SRE

,@exp

“splices” its resulting regexp into place, exposing its submatches to the con-
taining regexp. This is useful if the computed regexp is defined to produce a
certain number of submatches—if that is part of exp’s “contract.”

String and line units The regexps bos and eos match the empty string at the
beginning and end of the string, respectively.

The regexps bol and eol match the empty string at the beginning and end
of a line, respectively. A line begins at the beginning of the string, and just after
every newline character. A line ends at the end of the string, and just before
every newline character. The char class nonl matches any character except
newline, and is useful in conjunction with line-based pattern matching.

{Note bol and eol are not supported by scsh’s current regexp search en-
gine, which is Spencer’s Posix matcher. This is the only element of the notation
that is not supported by the current scsh reference implementation.}

Posix string notation The SRE (posix-string string), where string is a
string literal (not a general Scheme expression), allows one to use Posix string
notation for a regexp. It’s intended as backwards compatibility and is depre-
cated. For example, (posix-string "[aeiou]+|x*|y{3,5}") matches a string
of vowels, a possibly empty string of x’s, or three to five y’s.

Note that parentheses are used ambiguously in Posix notation—both for
grouping and submatch marking. The (posix-string string) form makes the
conservative assumption: all parentheses introduce submatches.

Deleted submatches Deleted submatches, or “DSM’s,” are a subtle feature
that are never required in expressions written by humans. They can be intro-
duced by the simplifier when reducing regular expressions to simpler equiva-
lents, and are included in the syntax to give it expressibility spanning the full
regexp ADT. They may appear when unparsing simplified regular expressions
that have been run through the simplifier; otherwise you are not likely to see
them. Feel free to skip this section.

The regexp simplifier can sometimes eliminate entire sub-expressions from
a regexp. For example, the regexp

126

(: "foo" (** 0 0 "apple") "bar")

can be simplified to

"foobar"

since (** 0 0 "apple") will always match the empty string. The regexp

(| "foo"
(: "Richard" (|) "Nixon")
"bar")

can be simplified to

(| "foo" "bar")

The empty choice (|) can’t match anything, so the whole

(: "Richard" (|) "Nixon")

sequence can’t match, and we can remove it from the choice.
However, if deleting part of a regular expression removes a submatch form,

any following submatch forms will have their numbering changed, which
would be an error. For example, if we simplify

(: (** 0 0 (submatch "apple"))
(submatch "bar"))

to

(submatch "bar")

then the "bar" submatch changes from submatch #2 to submatch #1—so this
is not a legal simplification.

When the simplifier deletes a sub-regexp that contains submatches, it in-
troduces a special regexp form to account for the missing, deleted submatches,
thus keeping the submatch accounting correct.

(dsm pre post sre ...)

is a regexp that matches the sequence (: sre ...). pre and post are integer
constants. The DSM form introduces pre deleted submatches before the body,
and post deleted submatches after the body. If the body (: sre . . .) itself has
body-sm submatches, then the total number of submatches for the DSM form is

pre + body-sm + post.

127

These extra, deleted submatches are never assigned string indices in any match
values produced when matching the regexp against a string.

As examples,

(| (: (submatch "Richard") (|) "Nixon")
(submatch "bar"))

can be simplified to

(dsm 1 0 (submatch "bar"))

The regexp

(: (** 0 0 (submatch "apple"))
(submatch "bar"))

can be simplified to

(dsm 1 0 (submatch "bar"))

6.4.1 Embedding regexps within Scheme programs

SRE’s can be placed in a Scheme program using the (rx sre ...) Scheme
form, which evaluates to a Scheme regexp value.

Static and dynamic regexps

We separate SRE expressions into two classes: static and dynamic expressions.
A static expression is one that has no run-time dependencies; it is a complete,
self-contained description of a regular set. A dynamic expression is one that
requires run-time computation to determine the particular regular set being
described. There are two places where one can embed run-time computations
in an SRE:

• The from or to repetition counts of **, =, and >= forms;

• ,exp and ,@exp forms.

A static SRE is one that does not contain any ,exp or ,@exp forms, and whose
**, =, and >= forms all contain constant repetition counts.

Scsh’s rx macro is able, at macro-expansion time, to completely parse, sim-
plify and translate any static SRE into the equivalent Posix string which is used
to drive the underlying C-based matching engine; there is no run-time over-
head. Dynamic SRE’s are partially simplified and then expanded into Scheme
code that constructs the regexp at run-time.

128

6.5 Regexp functions

6.5.1 Obsolete, deprecated procedures

These two procedures are survivors from the previous, now-obsolete scsh reg-
exp interface. Old code must open the re-old-funs package to access them.
They should not be used in new code.

(string-match posix-re-string string [start]) −→ match or false procedure
(make-regexp posix-re-string) −→ regexp procedure

These are old functions included for backwards compatibility with pre-
vious releases. They are deprecated and will go away at some point in
the future.

Note that the new release has no “regexp compiling” procedure at all—
regexp values are compiled for the matching engine on-demand, and the
necessary data structures are cached inside the ADT values.

6.5.2 Standard procedures and syntax

(rx sre . . .) −→ regexp Syntax
This allows you to describe a regexp value with SRE notation.

(regexp? x) −→ boolean procedure

Returns true if the value is a regular expression.

(regexp-search re string [start flags]) −→ match-data or false procedure
(regexp-search? re string [start flags]) −→ boolean procedure

Search string starting at position start, looking for a match for regexp re.
If a match is found, return a match structure describing the match, other-
wise #f. Start defaults to 0.

Flags is the bitwise-or of regexp/bos-not-bol and regexp/eos-not-eol.
regexp/bos-not-bol means the beginning of the string isn’t a line-begin.
regexp/eos-not-eol is analogous. {Note They’re currently ignored be-
cause begining/end-of-line anchors aren’t supported by the current im-
plementation.}
Use regexp-search? when you don’t need submatch information, as it
has the potential to be significantly faster on submatch-containing reg-
exps.

There is no longer a separate regexp “compilation” function; regexp val-
ues are compiled for the C engine on demand, and the resulting C struc-
tures are cached in the regexp structure after the first use.

129

(match:start m [i]) −→ integer or false procedure
(match:end m [i]) −→ integer or false procedure
(match:substring m [i]) −→ string or false procedure

match:start returns the start position of the submatch denoted by
match-number. The whole regexp is 0; positive integers index submatches
in the regexp, counting left-to-right. Match-number defaults to 0.

If the regular expression matches as a whole, but a particular sub-
expression does not match, then match:start returns #f.

match:end is analogous to match:start, returning the end position of
the indexed submatch.

match:substring returns the substring matched regexp’s submatch. If
there was no match for the indexed submatch, it returns false.

(regexp-substitute port-or-false match . items) −→ object procedure

This procedure can be used to perform string substitutions based on
regular-expression matches. The results of the substitution can be either
output to a port or returned as a string.

The match argument is a regular-expression match structure that controls
the substitution. If port is an output port, the items are written out to the
port:

• If an item is a string, it is copied directly to the port.

• If an item is an integer, the corresponding submatch from match is
written to the port.

• If an item is ’pre, the prefix of the matched string (the text preceding
the match) is written to the port.

• If an item is ’post, the suffix of the matched string is written.

If port is #f, nothing is written, and a string is constructed and returned
instead.

(regexp-substitute/global port-or-false re str . items) −→ object procedure

This procedure is similar to regexp-substitute, but can be used to per-
form repeated match/substitute operations over a string. It has the fol-
lowing differences with regexp-substitute:

• It takes a regular expression and string to be matched as parameters,
instead of a completed match structure.

• If the regular expression doesn’t match the string, this procedure is
the identity transform—it returns or outputs the string.

130

• If an item is ’post, the procedure recurses on the suffix string (the
text from string following the match). Including a ’post in the list
of items is how one gets multiple match/substitution operations.

• If an item is a procedure, it is applied to the match structure for a
given match. The procedure returns a string to be used in the result.

The regexp parameter can be either a compiled regular expression or a
string specifying a regular expression.

Some examples:

;;; Replace occurrences of "Cotton" with "Jin".

(regexp-substitute/global #f (rx "Cotton") s

’pre "Jin" ’post)

;;; mm/dd/yy -> dd/mm/yy date conversion.

(regexp-substitute/global #f (rx (submatch (+ digit)) "/" ; 1 = M

(submatch (+ digit)) "/" ; 2 = D

(submatch (+ digit))) ; 3 = Y

s ; Source string

’pre 2 "/" 1 "/" 3 ’post)

;;; "9/29/61" -> "Sep 29, 1961" date conversion.

(regexp-substitute/global #f (rx (submatch (+ digit)) "/" ; 1 = M

(submatch (+ digit)) "/" ; 2 = D

(submatch (+ digit))) ; 3 = Y

s ; Source string

’pre

;; Sleazy converter -- ignores "year 2000" issue,

;; and blows up if month is out of range.

(lambda (m)

(let ((mon (vector-ref ’#("Jan" "Feb" "Mar" "Apr" "May" "Jun"

"Jul" "Aug" "Sep" "Oct" "Nov" "Dec")

(- (string->number (match:substring m 1)) 1)))

(day (match:substring m 2))

(year (match:substring m 3)))

(string-append mon " " day ", 19" year)))

’post)

;;; Remove potentially offensive substrings from string S.

(define (kill-matches re s)

(regexp-substitute/global #f re s ’pre ’post))

(kill-matches (rx (| "Windows" "tcl" "Intel")) s) ; Protect the children.

(regexp-fold re kons knil s [finish start]) −→ object procedure

131

The following definition is a bit unwieldy, but the intuition is sim-
ple: this procedure uses the regexp re to divide up string s into non-
matching/matching chunks, and then “folds” the procedure kons across
this sequence of chunks. It is useful when you wish to operate on a
string in sub-units defined by some regular expression, as are the related
regexp-fold-right and regexp-for-each procedures.

Search from start (defaulting to 0) for a match to re; call this match m. Let
i be the index of the end of the match (that is, (match:end m 0)). Loop
as follows:

(regexp-fold re kons (kons start m knil) s finish i)
If there is no match, return instead

(finish start knil)
Finish defaults to (lambda (i knil) knil).

In other words, we divide up s into a sequence of non-
matching/matching chunks:

NM1 M1 NM1 M2 . . . NMk−1 Mk−1 NMk

where NM1 is the initial part of s that isn’t matched by the regexp re,
M1 is the first match, NM2 is the following part of s that isn’t matched,
M2 is the second match, and so forth—NMk is the final non-matching
chunk of s. We apply kons from left to right to build up a result, pass-
ing it one non-matching/matching chunk each time: on an application
(kons i m knil), the non-matching chunk goes from i to (match:begin
m 0), and the following matching chunk goes from (match:begin m 0)
to (match:end m 0). The last non-matching chunk NMk is processed by
k. So the computation we perform is

(final Q (kons jk Mk ... (kons J1 M1 knil) ...))

where Ji is the index of the start of NMi, Mi is a match value describing
Mi, and Q is the index of the beginning of NMk.

Hint: The let-match macro is frequently useful for operating on the
match value M passed to the kons function.

(regexp-fold-right re kons knil s [finish start]) −→ object procedure

The right-to-left variant of regexp-fold.

This procedure repeatedly matches regexp re across string s. This divides
s up into a sequence of matching/non-matching chunks:

NM1 M1 NM1 M2 . . . NMk−1 Mk−1 NMk

where NM1 is the initial part of s that isn’t matched by the regexp re, M1

is the first match, NM2 is the following part of s that isn’t matched, M2

132

is the second match, and so forth—NMk is the final non-matching chunk
of s. We apply kons from right to left to build up a result, passing it one
non-matching/matching chunk each time:

(final Q (kons M1 j1 ... (kons Mk Jk knil) ...))

where MTCHi is a match value describing Mi, Ji is the index of the end
of NMi (or, equivalently, the beginning of Mi+1), and Q is the index of
the beginning of M1. In other words, KONS is passed a match, an index
describing the following non-matching text, and the value produced by
folding the following text. The FINAL function ”polishes off” the fold op-
eration by handling the initial chunk of non-matching text (NM0, above).
FINISH defaults to (lambda (i knil) knil)

Example: To pick out all the matches to re in s, say

(regexp-fold-right re
(λ (m i lis)
(cons (match:substring m 0) lis))

’() s)

Hint: The let-match macro is frequently useful for operating on the
match value m passed to the kons function.

(regexp-for-each re proc s [start]) −→ undefined procedure

Repeatedly match regexp re against string s. Apply proc to each match
that is produced. Matches do not overlap.

Hint: The let-match macro is frequently useful for operating on the
match value m passed to varproc.

(let-match match-exp mvars body . . .) −→ object Syntax
(if-match match-exp mvars on-match no-match) −→ object Syntax

Mvars is a list of vars that is bound to the match and submatches of the
string; #F is allowed as a don’t-care element. For example,

(let-match (regexp-search date s) (whole-date month day year)
... body ...)

matches the regexp against string s, then evaluates the body of the
let-match in a scope where whole-date is bound to the matched string,
and month, day and year are bound to the first, second and third sub-
matches.

if-match is similar, but if the match expression is false, then the no-match
expression is evaluated; this would be an error in let-match.

(match-cond clause . . .) −→ object Syntax

133

This macro allows one to conditionally attempt a sequence of pattern
matches, interspersed with other, general conditional tests. There are
four kinds of match-cond clause, one introducing a pattern match, and
the other three simply being regular cond-style clauses, marked by the
test and else keywords:

(match-cond (match-exp match-vars body ...) ; As in if-match
(test exp body ...) ; As in cond
(test exp => proc) ; As in cond
(else body ...)) ; As in cond

(flush-submatches re) −→ re procedure
(uncase re) −→ re procedure
(simplify-regexp re) −→ re procedure
(uncase-char-set cset) −→ re procedure
(uncase-string str) −→ re procedure

These functions map regexps and char sets to other regexps.
flush-submatches returns a regexp which matches exactly what its ar-
gument matches, but contains no submatches.

uncase returns a regexp that matches any case-permutation of its argu-
ment regexp.

simplify-regexp applies the simplifier to its argument. This is done au-
tomatically when compiling regular expressions, so this is only useful for
programmers that are directly examining the ADT value with lower-level
accessors.

uncase-char-set maps a char set to a regular expression that
matches any character from that set, regardless of case. Similarly,
uncase-string returns a regexp that matches any case-permutation of
the string. For example, (uncase-string "Knight") returns the same
value that (rx ("kK") ("nN") ("iI") ("gG") ("hH") ("tT")) or (rx
(w/nocase "Knight")).

(sre->regexp sre) −→ re procedure
(regexp->sre re) −→ sre procedure

These are the SRE parser and unparser. That is, sre->regexp maps an
SRE to a regexp value, and regexp->sre does the inverse. The latter
function can be useful for printing out regexps in a readable format.

134

(sre->regexp ’(: "Olin " (? "G. ") "Shivers")) =⇒ regexp
(define re (re-seq (re-string "Pete ")

(re-repeat 1 #f (re-string "Sz"))
(re-string "ilagyi")))

(regexp->sre (re-repeat 0 1 re))
=⇒ ’(? "Pete" (+ "Sz") "ilagyi")

(posix-string->regexp string) −→ re procedure
(regexp->posix-string re) −→ string procedure

These two functions are the Posix notation parser and unparser. That is,
posix-string->regexp maps a Posix-notation regular expression, such
as "g(ee|oo)se", to a regexp value, and regexp->posix-string does the
inverse.

You can use these tools to map between scsh regexps and Posix regexp
strings, which can be useful if you want to do conversion between SRE’s
and Posix form. For example, you can write a particularly complex reg-
exp in SRE form, or compute it using the ADT constructors, then convert
to Posix form, print it out, cut and paste it into a C or emacs lisp program.
Or you can import an old regexp from some other program, parse it into
an ADT value, render it to an SRE, print it out, then cut and paste it into
a scsh program.

Note:

• The string parser doesn’t handle the exotica of character class names
such as [[:alnum:]]; the current implementation was written in in
three hours.

6.6 The regexp ADT

The following functions may be used to construct and examine scsh’s regexp
abstract data type. They are in the following Scheme 48 packages: re-adt-lib
re-lib scsh

Each basic class of regexp has a predicate, a basic constructor, a “smart”
consructor that performs limited “peephole” optimisation on its arguments,
and a set of accessors. The ...:tsm accessor returns the total number of sub-
matches contained in the regular expression.

(re-seq? x) −→ boolean Type predicate
(make-re-seq re . . .) −→ re Basic constructor
(re-seq re . . .) −→ re Smart constructor
(re-seq:elts re) −→ re-list Accessor

135

(re-seq:tsm re) −→ integer Accessor

(re-choice? x) −→ boolean Type predicate
(make-re-choice re-list) −→ re Basic constructor
(re-choice re . . .) −→ re Smart constructor
(re-choice:elts re) −→ re-list Accessor
(re-choice:tsm re) −→ integer Accessor

(re-repeat? x) −→ boolean Type predicate
(make-re-repeat from to body) −→ re Accessor
(re-repeat:from re) −→ integer Accessor
(re-repeat:to re) −→ integer Accessor
(re-repeat:tsm re) −→ integer Accessor

(re-submatch? x) −→ boolean Type predicate
(make-re-submatch body [pre-dsm post-dsm]) −→ re Accessor
(re-submatch:pre-dsm re) −→ integer Accessor
(re-submatch:post-dsm re) −→ integer Accessor
(re-submatch:tsm re) −→ integer Accessor

(re-string? x) −→ boolean Type predicate
(make-re-string chars) −→ re Basic constructor
(re-string chars) −→ re Basic constructor
(re-string:chars re) −→ string Accessor

(re-char-set? x) −→ boolean Type predicate
(make-re-char-set cset) −→ re Basic constructor
(re-char-set cset) −→ re Basic constructor
(re-char-set:cset re) −→ char-set Accessor

(re-dsm? x) −→ boolean Type predicate
(make-re-dsm body pre-dsm post-dsm) −→ re Basic constructor
(re-dsm body pre-dsm post-dsm) −→ re Smart constructor
(re-dsm:body re) −→ re Accessor
(re-dsm:pre-dsm re) −→ integer Accessor
(re-dsm:post-dsm re) −→ integer Accessor
(re-dsm:tsm re) −→ integer Accessor

re-bos regexp
re-eos regexp
re-bol regexp
re-eol regexp

These variables are bound to the primitive anchor regexps.

(re-bos? object) −→ boolean procedure
(re-eos? object) −→ boolean procedure
(re-bol? object) −→ boolean procedure
(re-eol? object) −→ boolean procedure

136

These predicates recognise the associated primitive anchor regexp.

re-trivial regexp
(re-trivial? re) −→ boolean procedure

The variable re-trivial is bound to a regular expression that matches
the empty string (corresponding to the SRE "" or (:)); it is recognised
by the associated predicate. Note that the predicate is only guaranteed to
recognise this particular trivial regexp; other trivial regexps built using
other constructors may or may not produce a true value.

re-empty regexp
(re-empty? re) −→ boolean procedure

The variable re-empty is bound to a regular expression that never
matches (corresponding to the SRE (|)); it is recognised by the associ-
ated predicate. Note that the predicate is only guaranteed to recognise
this particular empty regexp; other empty regexps built using other con-
structors may or may not produce a true value.

re-any regexp
(re-any? re) −→ boolean procedure

The variable re-any is bound to a regular expression that matches any
character (corresponding to the SRE any); it is recognised by the associ-
ated predicate. Note that the predicate is only guaranteed to recognise
this particular any-character regexp value; other any-character regexps
built using other constructors may or may not produce a true value.

re-nonl regexp

The variable re-nonl is bound to a regular expression that matches any
non-newline character (corresponding to the SRE (~ #\newline)).

(regexp? object) −→ boolean procedure

Is the object a regexp?

(re-tsm re) −→ integer procedure

Return the total number of submatches contained in the regexp.

(clean-up-cres) −→ undefined procedure

The current scsh implementation should call this function periodically to
release C-heap storage associated with compiled regexps. Hopefully, this
procedure will be removed at a later date.

137

6.7 Syntax-hacking tools

The Scheme 48 package sre-syntax-tools exports several tools for macro
writers that want to use SREs in their macros. In the functions defined below,
compare and rename parameters are as passed to Clinger-Rees explicit-renaming
low-level macros.

(if-sre-form form conseq-form alt-form) −→ form Syntax

If form is a legal SRE, this is equivalent to the expression conseq-form, oth-
erwise it expands to alt-form.
This is useful for high-level macro authors who want to write a macro
where one field in the macro can be an SRE or possibly something else.
E.g., we might have a conditional form wherein if the test part of one arm
is an SRE, it expands to a regexp match on some implied value, otherwise
the form is evaluated as a boolean Scheme expression. For example, a
conditional macro might expand into code containing the following form,
which in turn would have one of two possible expansions:
(if-sre-form test-exp ; If TEST-EXP is SRE,

(regexp-search? (rx test-exp) line) ; match it w/the line,
test-exp) ; otw it’s a text exp.

(sre-form? form rename compare) −→ boolean procedure

This procedure is for low-level macros doing things equivalent to
if-sre-form. It returns true if the form is a legal SRE.
Note that neither sre-form nor if-sre-form does a deep recursion over
the form in the case where the form is a list. They simply check the car of
the form for one of the legal SRE keywords.

(parse-sre sre-form compare rename) −→ re procedure
(parse-sres sre-forms compare rename) −→ re procedure

Parse sre-form into an ADT. Note that if the SRE is dynamic—contains
,exp or ,@exp forms, or has repeat operators whose from/to counts are
not constants—then the returned ADT will have Scheme expressions in the
corresponding slots of the regexp records instead of the corresponding
integer, char-set, or regexp. In other words, we use the ADT as its own
AST. It’s called a “hack.”
parse-sres parses a list of SRE forms that comprise an implicit sequence.

(regexp->scheme re rename) −→ Scheme-expression procedure

Returns a Scheme expression that will construct the regexp re using ADT
constructors such as make-re-sequence, make-re-repeat, and so forth.
If the regexp is static, it will be simplified and pre-translated to a Posix
string as well, which will be part of the constructed regexp value.

138

(static-regexp? re) −→ boolean procedure

Is the regexp a static one?

139

Chapter 7

Reading delimited strings

Scsh provides a set of procedures that read delimited strings from input ports.
There are procedures to read a single line of text (terminated by a newline char-
acter), a single paragraph (terminated by a blank line), and general delimited
strings (terminated by a character belonging to an arbitrary character set).

These procedures can be applied to any Scheme input port. However, the
scsh virtual machine has native-code support for performing delimited reads
on Unix ports, and these input operations should be particularly fast—much
faster than doing the equivalent character-at-a-time operation from Scheme
code.

All of the delimited input operations described below take a handle-delim
parameter, which determines what the procedure does with the terminating
delimiter character. There are four possible choices for a handle-delim param-
eter:

handle-delim Meaning
’trim Ignore delimiter character.
’peek Leave delimiter character in input stream.
’concat Append delimiter character to returned value.
’split Return delimiter as second value.

The first case, ’trim, is the standard default for all the routines described in
this section. The last three cases allow the programmer to distinguish between
strings that are terminated by a delimiter character, and strings that are termi-
nated by an end-of-file.

(read-line [port handle-newline]) −→ string or eof-object procedure

Reads and returns one line of text; on eof, returns the eof object. A line is
terminated by newline or eof.

140

handle-newline determines what read-line does with the newline or EOF
that terminates the line; it takes the general set of values described for
the general handle-delim case above, and defaults to ’trim (discard the
newline). Using this argument allows one to tell whether or not the last
line of input in a file is newline terminated.

(read-paragraph [port handle-delim]) −→ string or eof procedure

This procedure skips blank lines, then reads text from a port until a blank
line or eof is found. A “blank line” is a (possibly empty) line composed
only of white space. The handle-delim parameter determines how the ter-
minating blank line is handled. It is described above, and defaults to
’trim. The ’peek option is not available.

The following procedures read in strings from ports delimited by characters
belonging to a specific set. See section 5.5 for information on character set
manipulation.

(read-delimited char-set [port handle-delim]) −→ string or eof procedure

Read until we encounter one of the chars in char-set or eof. The
handle-delim parameter determines how the terminating character is han-
dled. It is described above, and defaults to ’trim.

The char-set argument may be a charset, a string, a character, or a charac-
ter predicate; it is coerced to a charset.

(read-delimited! char-set buf [port handle-delim start end]) −→ nchars or eof or #f procedure

A side-effecting variant of read-delimited.

The data is written into the string buf at the indices in the half-open in-
terval [start, end); the default interval is the whole string: start = 0 and
end = (string-length buf). The values of start and end must specify a
well-defined interval in str, i.e., 0 ≤ start ≤ end ≤ (string-length buf).

It returns nbytes, the number of bytes read. If the buffer filled up without
a delimiter character being found, #f is returned. If the port is at eof
when the read starts, the eof object is returned.

If an integer is returned (i.e., the read is successfully terminated by read-
ing a delimiter character), then the handle-delim parameter determines
how the terminating character is handled. It is described above, and de-
faults to ’trim.

(%read-delimited! char-set buf gobble? [port start end]) −→ [char-or-eof-or-#f integer] procedure

This low-level delimited reader uses an alternate interface. It returns two
values: terminator and num-read.

141

terminator A value describing why the read was terminated:

Character or eof-object ⇒ Read terminated by this value.
#f ⇒ Filled buffer without finding a delimiter.

num-read Number of characters read into buf.

If the read is successfully terminated by reading a delimiter character,
then the gobble? parameter determines what to do with the terminating
character. If true, the character is removed from the input stream; if false,
the character is left in the input stream where a subsequent read oper-
ation will retrieve it. In either case, the character is also the first value
returned by the procedure call.

(skip-char-set skip-chars [port]) −→ integer procedure

Skip characters occurring in the set skip-chars; return the number of char-
acters skipped. The skip-chars argument may be a charset, a string, a char-
acter, or a character predicate; it is coerced to a charset.

142

Chapter 8

Awk, record I/O, and field
parsing

Unix programs frequently process streams of records, where each record is
delimited by a newline, and records are broken into fields with other delim-
iters (for example, the colon character in /etc/passwd). Scsh has procedures
that allow the programmer to easily do this kind of processing. Scsh’s field
parsers can also be used to parse other kinds of delimited strings, such as
colon-separated $PATH lists. These routines can be used with scsh’s awk loop
construct to conveniently perform pattern-directed computation over streams
of records.

8.1 Record I/O and field parsing

The procedures in this section are used to read records from I/O streams and
parse them into fields. A record is defined as text terminated by some delimiter
(usually a newline). A record can be split into fields by using regular expres-
sions in one of several ways: to match fields, to separate fields, or to terminate
fields. The field parsers can be applied to arbitrary strings (one common use
is splitting environment variables such as $PATH at colons into its component
elements).

The general delimited-input procedures described in chapter 7 are also use-
ful for reading simple records, such as single lines, paragraphs of text, or
strings terminated by specific characters.

143

8.1.1 Reading records

(record-reader [delims elide-delims? handle-delim]) −→ procedure procedure
Returns a procedure that reads records from a port. The procedure is
invoked as follows:

(reader [port]) −→ string or eof

A record is a sequence of characters terminated by one of the characters
in delims or eof. If elide-delims? is true, then a contiguous sequence of
delimiter chars are taken as a single record delimiter. If elide-delims? is
false, then a delimiter char coming immediately after a delimiter char
produces an empty-string record. The reader consumes the delimiting
char(s) before returning from a read.

The delims set defaults to the set {newline}. It may be a charset, string,
character, or character predicate, and is coerced to a charset. The
elide-delims? flag defaults to #f.

The handle-delim argument controls what is done with the record’s termi-
nating delimiter.

’trim Delimiters are trimmed. (The default)
’split Reader returns delimiter string as a

second argument. If record is termi-
nated by EOF, then the eof object is
returned as this second argument.

’concat The record and its delimiter are re-
turned as a single string.

The reader procedure returned takes one optional argument, the port
from which to read, which defaults to the current input port. It returns a
string or eof.

8.1.2 Parsing fields

(field-splitter [field num-fields]) −→ procedure procedure
(infix-splitter [delim num-fields handle-delim]) −→ procedure procedure
(suffix-splitter [delim num-fields handle-delim]) −→ procedure procedure
(sloppy-suffix-splitter [delim num-fields handle-delim]) −→ procedure procedure

These functions return a parser function that can be used as follows:

(parser string [start]) −→ string-list

The returned parsers split strings into fields defined by regular expres-
sions. You can parse by specifying a pattern that separates fields, a pattern
that terminates fields, or a pattern that matches fields:

144

Procedure Pattern
field-splitter matches fields
infix-splitter separates fields
suffix-splitter terminates fields
sloppy-suffix-splitter terminates fields

These parser generators are controlled by a range of options, so that you
can precisely specify what kind of parsing you want. However, these
options default to reasonable values for general use.

Defaults:
delim = (rx (| (+ white) eos)) (suffix delimiter: white space or eos)

(rx (+ white)) (infix delimiter: white space)
field = (rx (+ (~ white))) (non-white-space)
num-fields = #f (as many fields as possible)
handle-delim = ’trim (discard delimiter chars)

. . . which means: break the string at white space, discarding the white
space, and parse as many fields as possible.

The delim parameter is a regular expression matching the text that occurs
between fields. See chapter 6 for information on regular expressions, and
the rx form used to specify them. In the separator case, it defaults to a
pattern matching white space; in the terminator case, it defaults to white
space or end-of-string.

The field parameter is a regular expression used to match fields. It de-
faults to non-white-space.

The delim patterns may also be given as a string, character, or char-set,
which are coerced to regular expressions. So the following expressions
are all equivalent, each producing a function that splits strings apart at
colons:

(infix-splitter (rx ":"))
(infix-splitter ":")
(infix-splitter #\:)
(infix-splitter (char-set #\:))

The boolean handle-delim determines what to do with delimiters.
’trim Delimiters are thrown away after parsing. (default)
’concat Delimiters are appended to the field preceding them.
’split Delimiters are returned as separate elements in the field list.

The num-fields argument used to create the parser specifies how many
fields to parse. If #f (the default), the procedure parses them all. If a pos-
itive integer n, exactly that many fields are parsed; it is an error if there
are more or fewer than n fields in the record. If num-fields is a negative
integer or zero, then |n| fields are parsed, and the remainder of the string

145

is returned in the last element of the field list; it is an error if fewer than
|n| fields can be parsed.

The field parser produced is a procedure that can be employed as follows:

(parse string [start]) =⇒ string-list

The optional start argument (default 0) specifies where in the string to
begin the parse. It is an error if start > (string-length string).

The parsers returned by the four parser generators implement different
kinds of field parsing:

field-splitter The regular expression specifies the actual field.

suffix-splitter Delimiters are interpreted as element terminators. If
vertical-bar is the the delimiter, then the string "" is the empty
record (), "foo|" produces a one-field record ("foo"), and "foo"
is an error.
The syntax of suffix-delimited records is:

〈 record 〉 ::= "" (Empty record)
| 〈 element 〉 〈delim 〉 〈 record 〉

It is an error if a non-empty record does not end with a delimiter.
To make the last delimiter optional, make sure the delimiter regexp
matches the end-of-string (sre eos).

infix-splitter Delimiters are interpreted as element separators. If
comma is the delimiter, then the string "foo," produces a two-field
record ("foo" "").
The syntax of infix-delimited records is:

〈 record 〉 ::= "" (Forced to be empty record)
| 〈 real-infix-record 〉

〈 real-infix-record 〉 ::= 〈 element 〉 〈delim 〉 〈 real-infix-record 〉
| 〈 element 〉

Note that separator semantics doesn’t really allow for empty
records—the straightforward grammar (i.e., 〈 real-infix-record 〉)
parses an empty string as a singleton list whose one field is the
empty string, (""), not as the empty record (). This is unfortunate,
since it means that infix string parsing doesn’t make string-append
and append isomorphic. For example,

((infix-splitter ":") (string-append x ":" y))

doesn’t always equal

(append ((infix-splitter ":") x)
((infix-splitter ":") y))

146

Record : suffix :|$ suffix : infix non-: field
"" () () () ()

":" ("") ("") ("" "") ()

"foo:" ("foo") ("foo") ("foo" "") ("foo")

":foo" error ("" "foo") ("" "foo") ("foo")

"foo:bar" error ("foo" "bar") ("foo" "bar") ("foo" "bar")

Figure 8.1: Using different grammars to split records into fields.

It fails when x or y are the empty string. Terminator semantics does
preserve a similar isomorphism.
However, separator semantics is frequently what other Unix soft-
ware uses, so to parse their strings, we need to use it. For example,
Unix $PATH lists have separator semantics. The path list "/bin:" is
broken up into ("/bin" ""), not ("/bin"). Comma-separated lists
should also be parsed this way.

sloppy-suffix The same as the suffix case, except that the parser will
skip an initial delimiter string if the string begins with one instead
of parsing an initial empty field. This can be used, for example,
to field-split a sequence of English text at white-space boundaries,
where the string may begin or end with white space, by using regex

(rx (| (+ white) eos))

(But you would be better off using field-splitter in this case.)

Figure 8.1 shows how the different parser grammars split apart the same
strings. Having to choose between the different grammars requires you to
decide what you want, but at least you can be precise about what you are
parsing. Take fifteen seconds and think it out. Say what you mean; mean what
you say.

(join-strings string-list [delimiter grammar]) −→ string procedure

This procedure is a simple unparser—it pastes strings together using the
delimiter string.

The grammar argument is one of the symbols infix (the default) or
suffix; it determines whether the delimiter string is used as a separa-
tor or as a terminator.

The delimiter is the string used to delimit elements; it defaults to a single
space " ".

Example:

147

(join-strings ’("foo" "bar" "baz") ":")
=⇒ "foo:bar:baz"

8.1.3 Field readers

(field-reader [field-parser rec-reader]) −→ procedure procedure
This utility returns a procedure that reads records with field structure
from a port. The reader’s interface is designed to make it useful in the
awk loop macro (section 8.2). The reader is used as follows:

(reader [port]) =⇒ [raw-record parsed-record] or [eof ()]

When the reader is applied to an input port (default: the current input
port), it reads a record using rec-reader. If this record isn’t the eof object, it
is parsed with field-parser. These two values—the record, and its parsed
representation—are returned as multiple values from the reader.

When called at eof, the reader returns [eof-object ()].

Although the record reader typically returns a string, and the field-parser
typically takes a string argument, this is not required. The record reader
can produce, and the field-parser consume, values of any type. However,
the empty list returned as the parsed value on eof is hardwired into the
field reader.

For example, if port p is open on /etc/passwd, then

((field-reader (infix-splitter ":" 7)) p)

returns two values:
"dalbertz:mx3Uaqq0:107:22:David Albertz:/users/dalbertz:/bin/csh"

("dalbertz" "mx3Uaqq0" "107" "22" "David Albertz" "/users/dalbertz"

"/bin/csh")

The field-parser defaults to the value of (field-splitter), a parser that
picks out sequences of non-white-space strings.

The rec-reader defaults to read-line.

Figure 8.2 shows field-reader being used to read different kinds of
Unix records.

8.1.4 Forward-progress guarantees and empty-string matches

A loop that pulls text off a string by repeatedly matching a regexp against that
string can conceivably get stuck in an infinite loop if the regexp matches the
empty string. For example, the SREs bos, eos, (* any), and (| "foo" (*
("f"))) can all match the empty string.

148

;;; /etc/passwd reader
(field-reader (infix-splitter ":" 7))

; wandy:3xuncWdpKhR.:73:22:Wandy Saetan:/usr/wandy:/bin/csh

;;; Two ls -l output readers
(field-reader (infix-splitter (rx (+ white)) 8))
(field-reader (infix-splitter (rx (+ white)) -7))

; -rw-r--r-- 1 shivers 22880 Sep 24 12:45 scsh.scm

;;; Internet hostname reader
(field-reader (field-splitter (rx (+ (~ ".")))))

; stat.sinica.edu.tw

;;; Internet IP address reader
(field-reader (field-splitter (rx (+ (~ "."))) 4))

; 18.24.0.241

;;; Line of integers
(let ((parser (field-splitter (rx (? ("+-")) (+ digit)))))

(field-reader (λ (s) (map string->number (parser s))))
; 18 24 0 241

;;; Same as above.
(let ((reader (field-reader (field-splitter (rx (? ("+-"))

(+ digit))))))
(λ maybe-port (map string->number (apply reader maybe-port))))

; Yale beat harvard 26 to 7.

Figure 8.2: Some examples of field-reader

149

The routines in this package that iterate through strings with regular ex-
pressions are careful to handle this empty-string case. If a regexp matches the
empty string, the next search starts, not from the end of the match (which in
the empty string case is also the beginning—that’s the problem), but from the
next character over. This is the correct behaviour. Regexps match the longest
possible string at a given location, so if the regexp matched the empty string
at location i, then it is guaranteed it could not have matched a longer pattern
starting with character i. So we can safely begin our search for the next match
at char i + 1.

With this provision, every iteration through the loop makes some forward
progress, and the loop is guaranteed to terminate.

This has the effect you want with field parsing. For example, if you split a
string with the empty pattern, you will explode the string into its individual
characters:

((suffix-splitter (rx)) "foo") =⇒ ("" "f" "o" "o")

However, even though this boundary case is handled correctly, we don’t rec-
ommend using it. Say what you mean—just use a field splitter:

((field-splitter (rx any)) "foo") =⇒ ("f" "o" "o")

Or, more efficiently,

((λ (s) (map string (string->list s))) "foo")

8.1.5 Reader limitations

Since all of the readers in this package require the ability to peek ahead one
char in the input stream, they cannot be applied to raw integer file descriptors,
only Scheme input ports. This is because Unix doesn’t support peeking ahead
into input streams.

8.2 Awk

Scsh provides a loop macro and a set of field parsers that can be used to per-
form text processing very similar to the Awk programming language. The
basic functionality of Awk is factored in scsh into its component parts. The
control structure is provided by the awk loop macro; the text I/O and parsers
are provided by the field-reader subroutine library (section 8.1). This factoring
allows the programmer to compose the basic loop structure with any parser or
input mechanism at all. If the parsers provided by the field-reader package are
insufficient, the programmer can write a custom parser in Scheme and use it
with equal ease in the awk framework.

Awk-in-scheme is given by a loop macro called awk. It looks like this:

150

(awk 〈next-record 〉 〈 record&field-vars 〉
[〈counter 〉] 〈 state-var-decls 〉

〈clause1 〉 ...)

The body of the loop is a series of clauses, each one representing a kind of
condition/action pair. The loop repeatedly reads a record, and then executes
each clause whose condition is satisfied by the record.

Here’s an example that reads lines from port p and prints the line number
and line of every line containing the string “Church-Rosser”:

(awk (read-line) (ln) lineno ()
("Church-Rosser" (format #t "~d: ~s~%" lineno ln)))

This example has just one clause in the loop body, the one that tests for matches
against the regular expression “Church-Rosser”.

The 〈next-record 〉 form is an expression that is evaluated each time through
the loop to produce a record to process. This expression can return multiple
values; these values are bound to the variables given in the 〈 record&field-vars 〉
list of variables. The first value returned is assumed to be the record; when it
is the end-of-file object, the loop terminates.

For example, let’s suppose we want to read items from /etc/password, and
we use the field-reader procedure to define a record parser for /etc/passwd
entries:

(define read-passwd (field-reader (infix-splitter ":" 7)))

binds read-passwd to a procedure that reads in a line of text when it is called,
and splits the text at colons. It returns two values: the entire line read,
and a seven-element list of the split-out fields. (See section 8.1 for more on
field-reader and infix-splitter.)

So if the 〈next-record 〉 form in an awk expression is (read-passwd), then
〈 record&field-vars 〉 must be a list of two variables, e.g.,

(record field-vec)

since read-passwd returns two values.

Note that awk allows us to use any record reader we want in the loop, re-
turning whatever number of values we like. These values don’t have to be
strings or string lists. The only requirement is that the record reader return the
eof object as its first value when the loop should terminate.

The awk loop allows the programmer to have loop variables. These are
declared and initialised by the 〈 state-var-decls 〉 form, a

((var init-exp) (var init-exp) ...)

151

list rather like the let form. Whenever a clause in the loop body executes, it
evaluates to as many values as there are state variables, updating them.

The optional 〈counter 〉 variable is an iteration counter. It is bound to 0 when
the loop starts. The counter is incremented each time a non-eof record is read.

There are several kinds of loop clause. When evaluating the body of the
loop, awk evaluates all the clauses sequentially. Unlike cond, it does not stop
after the first clause is satisfied; it checks them all.

• (test body1 body2 ...)
If test is true, execute the body forms. The last body form is the value
of the clause. The test and body forms are evaluated in the scope of the
record and state variables.

The test form can be one of:

integer: The test is true for that iteration of the
loop. The first iteration is #1.

sre: A regular expression, in SRE notation
(see chapter 6) can be used as a test.
The test is successful if the pattern
matches the record. In particular, note
that any string is an SRE.

(when expr): The body of a when test is evaluated
as a Scheme boolean expression in the
inner scope of the awk form.

expr: If the form is none of the above, it
is treated as a Scheme expression—
in practice, the when keyword is only
needed in cases where SRE/Scheme
expression ambiguity might occur.

• (range start-test stop-test body1 ...)
(:range start-test stop-test body1 ...)
(range: start-test stop-test body1 ...)
(:range: start-test stop-test body1 ...)

These clauses become activated when start-test is true; they stay active on
all further iterations until stop-test is true.

So, to print out the first ten lines of a file, we use the clause:

(:range: 1 10 (display record))

The colons control whether or not the start and stop lines are processed
by the clause. For example:

152

(range 1 5 ...) Lines 2 3 4
(:range 1 5 ...) Lines 1 2 3 4
(range: 1 5 ...) Lines 2 3 4 5
(:range: 1 5 ...) Lines 1 2 3 4 5

A line can trigger both tests, either simultaneously starting and stopping
an active region, or simultaneously stopping one and starting a new one,
so ranges can abut seamlessly.

• (else body1 body2 ...)
If no other clause has executed since the top of the loop, or since the last
else clause, this clause executes.

• (test => exp)
If evaluating test produces a true value, apply exp to that value. If test
is a regular expression, then exp is applied to the match data structure
returned by the regexp match routine.

• (after body1 ...)
This clause executes when the loop encounters EOF. The body forms ex-
ecute in the scope of the state vars and the record-count var, if there are
any. The value of the last body form is the value of the entire awk form.

If there is no after clause, awk returns the loop’s state variables as multi-
ple values.

8.2.1 Examples

Here are some examples of awk being used to process various types of input
stream.

(define $ nth) ; Saves typing.

;;; Print out the name and home-directory of everyone in /etc/passwd:
(let ((read-passwd (field-reader (infix-splitter ":" 7))))
(call-with-input-file "/etc/passwd"
(lambda (port)
(awk (read-passwd port) (record fields) ()
(#t (format #t "~a’s home directory is ~a~%"

($ fields 0)
($ fields 5)))))))

153

;;; Print out the user-name and home-directory of everyone whose
;;; name begins with "S"
(let ((read-passwd (field-reader (infix-splitter ":" 7))))
(call-with-input-file "/etc/passwd"
(lambda (port)
(awk (read-passwd port) (record fields) ()
((: bos "S")
(format #t "~a’s home directory is ~a~%"

($ fields 0)
($ fields 5)))))))

;;; Read a series of integers from stdin. This expression evaluates
;;; to the number of positive numbers that were read. Note our
;;; "record-reader" is the standard Scheme READ procedure.
(awk (read) (i) ((npos 0))
((> i 0) (+ npos 1)))

;;; Filter -- pass only lines containing my name.
(awk (read-line) (line) ()
("Olin" (display line) (newline)))

;;; Count the number of non-comment lines of code in my Scheme source.
(awk (read-line) (line) ((nlines 0))
((: bos (* white) ";") nlines) ; A comment line.
(else (+ nlines 1))) ; Not a comment line.

;;; Read numbers, counting the evens and odds.
(awk (read) (val) ((evens 0) (odds 0))
((> val 0) (display "pos ") (values evens odds)) ; Tell me about
((< val 0) (display "neg ") (values evens odds)) ; sign, too.
(else (display "zero ") (values evens odds))

((even? val) (values (+ evens 1) odds))
(else (values evens (+ odds 1))))

;;; Determine the max length of all the lines in the file.
(awk (read-line) (line) ((max-len 0))
(#t (max max-len (string-length line))))

154

;;; (This could also be done with PORT-FOLD:)
(port-fold (current-input-port) read-line

(lambda (line maxlen) (max (string-length line) maxlen))
0)

;;; Print every line longer than 80 chars.
;;; Prefix each line with its line #.
(awk (read-line) (line) lineno ()
((> (string-length line) 80)
(format #t "~d: ~s~%" lineno line)))

;;; Strip blank lines from input.
(awk (read-line) (line) ()
((~ white) (display line) (newline)))

;;; Sort the entries in /etc/passwd by login name.
(for-each (lambda (entry) (display (cdr entry)) (newline)) ; Out

(sort (lambda (x y) (string<? (car x) (car y))) ; Sort
(let ((read (field-reader (infix-splitter ":" 7)))) ; In
(awk (read) (line fields) ((ans ’()))
(#t (cons (cons ($ fields 0) line) ans))))))

;;; Prefix line numbers to the input stream.
(awk (read-line) (line) lineno ()
(#t (format #t "~d:\t~a~%" lineno line)))

8.3 Backwards compatibility

Previous scsh releases provided an awk form with a different syntax, designed
around regular expressions written in Posix notation as strings, rather than
SREs.

This form is still available in a separate module for old code. It’ll be docu-
mented in the next release of this manual. Dig around in the sources for it.

155

Chapter 9

Concurrent system
programming

The Scheme Shell provides the user with support for concurrent programming.
The interface consists of several parts:

• The thread system

• Synchronization vehicles

• Process state abstractions

Whereas the user deals with threads and synchronization explicitly, the process
state abstractions are built into the rest of the system, almost transparent for the
user. Section 9.5 describes the interaction between process state and threads.

9.1 Threads

A thread can be thought of as a procedure that can run independently of and
concurrent to the rest of the system. The calling procedure fires the thread up
and forgets about it.

The current thread interface is completely taken from Scheme 48. This doc-
umentation is an extension of the file doc/threads.txt.

The thread structure is named threads, it has to be opened explicitly.

(spawn thunk [name]) −→ undefined procedure
Create and schedule a new thread that will execute thunk, a procedure with

no arguments. Note that Scsh’s spawn does not return a reference to a thread
object. The optional argument name is used when printing the thread.

156

The new thread will not inherit the values for the process state from its par-
ent, see the procedure fork-thread in Section 9.5 for a way to create a thread
with semantics similar to process forking.

(relinquish-timeslice) −→ undefined procedure
Let other threads run for a while.

(sleep time) −→ undefined procedure
Puts the current thread into sleep for time milliseconds. The time at which

the thread is run again may be longer of course.

(terminate-current-thread) −→ does-not-return procedure
Kill the current thread.
Mainly for debugging purposes, there is also an interface to the internal

representation of thread objects:

(current-thread) −→ thread-object procedure
Return the object to which the current thread internally corresponds. Note

that this procedure is exported by the package threads-internal only.

(thread? thing) −→ boolean procedure
Returns true iff thing is a thread object.

(thread-name thread) −→ name procedure
Name corresponds to the second parameter that was given to spawn when

thread was created.

(thread-uid thread) −→ integer procedure
Returns a unique identifier for the current thread.

9.2 Locks

Locks are a simple mean for mutual exclusion. They implement a concept com-
monly known as semaphores. Threads can obtain and release locks. If a thread
tries to obtain a lock which is held by another thread, the first thread is blocked.
To access the following procedures, you must open the structure locks.

(make-lock) −→ lock procedure
Creates a lock.

(lock? thing) −→ boolean procedure
Returns true iff thing is a lock.

(obtain-lock lock) −→ undefined procedure
Obtain lock. Causes the thread to block if the lock is held by a thread.

157

(maybe-obtain-lock lock) −→ boolean procedure
Tries to obtain lock, but returns false if the lock cannot be obtained.

(release-lock lock) −→ boolean procedure
Releases lock. Returns true if the lock immediately got a new owner, false

otherwise.

(lock-owner-uid lock) −→ integer procedure
Returns the uid of the thread that currently holds lock or false if the lock is

free.

9.3 Placeholders

Placeholers combine synchronization with value delivery. They can be thought
of as special variables. After creation the value of the placeholder is undefined.
If a thread tries to read the placeholders value this thread is blocked. Multi-
ple threads are allowed to block on a single placeholder. They will continue
running after another thread sets the value of the placeholder. Now all read-
ing threads receive the value and continue executing. Setting a placeholder to
two different values causes an error. The structure placeholders features the
following procedures:

(make-placeholder) −→ placeholder procedure
Creates a new placeholder.

(placeholder? thing) −→ boolean procedure
Returns true iff thing is a placeholder.

(placeholder-set! placeholder value) −→ undefined procedure
Sets the placeholders value to value. If the placeholder is already set to a

different value an exception is risen.

(placeholder-value placeholder) −→ value procedure
Returns the value of the placeholder. If the placeholder is yet unset, the

current thread is blocked until another thread sets the value by means of
placeholder-set!.

9.4 The event interface to interrupts

Scsh provides an synchronous interface to the asynchronous signals delivered
by the operation system1. The key element in this system is an object called

1Olin’s paper “Automatic management of operation-system resources” describes this system in
detail.

158

sigevent which corresponds to the single occurrence of a signal. A sigevent has
two fields: the Unix signal that occurred and a pointer to the sigevent that
happened or will happen. That is, events are kept in a linked list in increasing-
time order. Scsh’s structure sigevents provides various procedures to access
this list:

(most-recent-sigevent) −→ sigevent procedure
Returns the most recent sigevent — the head of the sigevent list.

(sigevent? object) −→ boolean procedure
The predicate for sigevents.

(next-sigevent pre-event type) −→ event procedure
Returns the next sigevent of type type after sigevent pre-event. If no such

event exists, the procedure blocks.

(next-sigevent-set pre-event set) −→ event procedure
Returns the next sigevent whose type is in set after pre-event. If no such

event exists, the procdure blocks.

(next-sigevent/no-wait pre-event type) −→ event or #f procedure
Same as next-sigevent, but returns #fif no appropriate event exists.

(next-sigevent-set/no-wait set pre-event) −→ event or #f procedure
Same as next-sigevent-set, but returns #fif no appropriate event exists.
As a small example, consider this piece of code that toggles the variable

state by USR1 and USR2:

(define state #t)

(let lp ((sigevent (most-recent-sigevent)))
(let ((next (next-sigevent sigevent interrupt/usr1)))
(set! state #f)
(let ((next (next-sigevent next interrupt/usr2)))
(set! state #t)
(lp next))))

9.5 Interaction between threads and process state

In Unix, a number of resources are global to the process: signal handlers, work-
ing directory, umask, environment, user and group ids. Modular program-
ming is difficult in the context of this global state and for concurrent program-
ming things get even worse. Section 9.4 presents how scsh turns the global,

159

asynchronous signals handlers into modular, synchronous sigevents. Concur-
rent programming also benefit from sigevents as every thread may chase down
the sigevent chain separately.

Scsh treats the working directory, umask, environment, and the effective
user/group ID as thread-local resources. The initial value of the resources is
determined by the way a thread is started: spawn assigns the initial values
whereas fork-thread adopts the values of its parent. Here is a detailed de-
scription of the whole facility:

• The procedures to access and modify the resources remain as described
in the previous chapters (cwd and chdir, umask and set-umask, getenv
and putenv).

• Every thread receives its own copy of each resource.

• If spawn is used to start a new thread, the values of the resources are the
same as they where at the start of scsh.

• The procedure

(fork-thread thunk) −→ undefined procedure

from the structure thread-fluids starts a thread which inherits the val-
ues of all resources from its parent. This behaviour is similar to what
happens at process forking.

• The actual process state is updated only when necessary, i.e. on access or
modification but not on context switch from one thread to another.

(spoon thunk) −→ undefined procedure
This is just an alias for fork-thread suggested by Alan Bawden.
For user and group identities arbitrary changing is not possible. There-

fore they remain global process state: If a thread changes one of these val-
ues, all other threads see the new value. Consequently, scsh does not provide
with-uid and friends.

160

Chapter 10

Miscellaneous routines

10.1 Integer bitwise ops

(arithmetic-shift i j) −→ integer procedure
(bitwise-and i j) −→ integer procedure
(bitwise-ior i j) −→ integer procedure
(bitwise-not i) −→ integer procedure
(bitwise-xor i j) −→ integer procedure

These operations operate on integers representing semi-infinite bit
strings, using a 2’s-complement encoding.

arithmetic-shift shifts i by j bits. A left shift is j > 0; a right shift is
j < 0.

10.2 List procedures

(nth list i) −→ object procedure (obsolete)

Returns the ith element of list. The first element (the car) is (nth list 0),
the second element is (nth list 1), and so on.

This procedure is provided as it is useful for accessing elements from the
lists returned by the field-readers (chapter 8).

The functionality of nth is equivalent to that of R5RS’s list-ref. There-
fore, nth will go away in a future release.

161

10.3 Password encryption

(crypt key salt) −→ encrypted value procedure

Decrypts key by directly calling the crypt function using salt to perturb the
hashing algorithm. Salt must be a two-character string consisting of digits,
alphabetic characters, “.” or “\”. The length of key may be at most eight.

10.4 Dot-Locking

Section 3.2.8 already points out that POSIX’s file locks are almost useless in
practice. To bypass this restriction other advisory locking mechanisms, based
only on standard file operations, where invented. One of them is the so-called
dot-locking scheme where the lock of file-name is represented by the file file-
name.lock. Care is taken that only one process may generate the lock for a
given file.

Here is scsh’s interface to dot-locking:

(obtain-dot-lock file-name [interval retry-number stale-time]) −→ boolean procedure

Tries to obtain the lock for file-name. If the file is already locked, the thread
sleeps for interval seconds (default is 1) before it retries. If the lock cannot
be obtained after retry-number attempts, the procedure returns #f, other-
wise #t. The default value of retry-number is #f which corresponds to an
infinite number of retires.

If stale-time is non-#f, it specifies the minimum age a lock may have
(in seconds) before it is considered stale. Obtain-dot-lock attempts to
delete stale locks. If it was succcessful obtaining a lock after breaking
it, obtain-dot-lock returns broken. If stale-time is #f, obtain-dot-lock
never considers a lock stale. The default for stale-time is 300.

Note that it is possible that obtain-dot-lock breaks a lock but never-
theless fails to obtain it otherwise. If it is necessary to handle this case
specially, use break-dot-lock directly (see below) rather than specifying
a non-#f stale-time

(break-dot-lock file-name) −→ undefined procedure

Breaks the lock for file-name if one exists. Note that breaking a lock
does not imply a subsequent obtain-dot-lock will succeed, as an-
other party may have acquired the lock between break-dot-lock and
obtain-dot-lock.

(release-dot-lock file-name) −→ boolean procedure

162

Releases the lock for file-name. On success, release-dot-lock returns #t,
otherwise #f. Note that this procedure can also be used to break the lock
for file-name.

(with-dot-lock* file-name thunk) −→ value(s) of thunk procedure
(with-dot-lock file-name body . . .) −→ value(s) of body syntax

The procedure with-dot-lock* obtains the requested lock, and then calls
(thunk). When thunk returns, the lock is released. A non-local exit (e.g.,
throwing to a saved continuation or raising an exception) also causes the
lock to be released.

After a normal return from thunk, its return values are returned by
with-dot-lock*. The with-dot-lock special form is equivalent syntac-
tic sugar.

10.5 Syslog facility

(Note: the functionality presented in this section is still somewhat experimental
and thus subject to interface changes.)

The procedures in this section provide access to the 4.2BSD syslog facil-
ity present in most POSIX systems. The functionality is in a structure called
syslog. There’s an additional structure syslog-channels documented below.
The scsh interface to the syslog facility differs significantly from that of the
Unix library functionality in order to support multiple simultaneous connec-
tions to the syslog facility.

Log messages carry a variety of parameters beside the text of the message
itself, namely a set of options controlling the output format and destination,
the facility identifying the class of programs the message is coming from, an
identifier specifying the conrete program, and the level identifying the impor-
tance of the message. Moreover, a log mask can prevent messages at certain
levels to be actually sent to the syslog daemon.

Log options

A log option specifies details of the I/O behavior of the syslog facility. A syslog
option is an element of a finite type (see the Scheme 48 manual) constructed by
the syslog-option macro. The syslog facility works with sets of options which
are represented as enum sets (see the Scheme 48 manual).

(syslog-option option-name) −→ option syntax

(syslog-option? x) −→ boolean procedure

(make-syslog-options list) −→ options procedure

163

(syslog-options option-name . . .) −→ options syntax

(syslog-options? x) −→ boolean procedure

Syslog-option constructs a log option from the name of an option. (The
possible names are listed below.) Syslog-option? is a predicate for log
options. Options are comparable using eq?. Make-syslog-options con-
structs a set of options from a list of options. Syslog-options is a macro
which expands into an expression returning a set of options from names.
Syslog-options? is a predicate for sets of options.

Here is a list of possible names of syslog options:

console If syslog cannot pass the message to syslogd it will attempt to write
the message to the console.

delay Delay opening the connection to syslogd immediately until the first
message is logged.

no-delay Open the connection to syslogd immediately. Normally the open is
delayed until the first message is logged. Useful for programs that need
to manage the order in which file descriptors are allocated.

NOTA BENE: The delay and no-delay options are included for com-
pleteness, but do not have the expected effect in the present Scheme in-
terface: Because the Scheme interface has to multiplex multiple simulta-
neous connections to the syslog facility over a single one, open and close
operations on that facility happen at unpredictable times.

log-pid Log the process id with each message: useful for identifying instanti-
ations of daemons.

Log facilities

A log facility identifies the originator of a log message from a finite set known
to the system. Each originator is identified by a name:

(syslog-facility facility-name) −→ facility syntax

(syslog-facility? x) −→ boolean procedure

Syslog-facility is macro that expands into an expression returning a
facility for a given name. Syslog-facility? is a predicate for facilities.
Facilities are comparable via eq?.

Here is a list of possible names of syslog facilities:

authorization The authorization system: login, su, getty, etc.

164

cron The cron daemon.

daemon System daemons, such as routed, that are not provided for explicitly
by other facilities.

kernel Messages generated by the kernel.

lpr The line printer spooling system: lpr, lpc, lpd, etc.

mail The mail system.

news The network news system.

user Messages generated by random user processes.

uucp The uucp system.

local0 local1 local2 local3 local4 local5 local6 local7 Reserved for lo-
cal use.

Log levels

A log level identifies the importance of a message from a fixed set of possible
levels.

(syslog-level level-name) −→ level syntax

(syslog-level? x) −→ boolean procedure

Syslog-level is macro that expands into an expression returning a facil-
ity for a given name. Syslog-level? is a predicate for facilities. Levels
are comparable via eq?.

Here is a list of possible names of syslog levels:

emergency A panic condition. This is normally broadcast to all users.

alert A condition that should be corrected immediately, such as a corrupted
system database.

critical Critical conditions, e.g., hard device errors.

error Errors.

warning Warning messages.

notice Conditions that are not error conditions, but should possibly be han-
dled specially.

info Informational messages.

debug Messages that contain information normally of use only when debug-
ging a program.

165

Log masks

A log masks can mask out log messages at a set of levels. A log mask is an
enum set of log levels.

(make-syslog-mask list) −→ mask procedure

(syslog-mask level-name . . .) −→ mask syntax

syslog-mask-all mask

(syslog-mask-upto level) −→ mask procedure

(syslog-mask? x) −→ boolean procedure

Make-syslog-mask constructs a mask from a list of levels. Syslog-mask is
a macro which constructs a mask from names of levels. Syslog-mask-all
is a predefined log mask containing all levels. Syslog-mask-upto returns
a mask consisting of all levels up to and including a certain level, starting
with emergency.

Logging

Scheme 48 dynamically maintains implicit connections to the syslog facility
specifying a current identifier, current options, a current facility and a current
log mask. This implicit connection is held in a thread fluid (see Section 9.5).
Hence, every thread maintains it own implicit connection to syslog. Note that
the connection is not implicitly preserved across a spawn, but it is preserved
across a fork-thread:

(with-syslog-destination string options facility mask thunk) −→ value procedure

(set-syslog-destination! string options facility mask) −→ undefined procedure

With-syslog-destination dynamically binds parameters of the im-
plicit connection to the syslog facility and runs thunk within those
parameter bindings, returning what thunk returns. Each of the pa-
rameters may be #f in which case the previous values will be used.
Set-syslog-destination! sets the parameters of the implicit connection
of the current thread.

(syslog level message) −→ undefined procedure

(syslog level message [string options syslog-facility]) −→ undefined procedure

Syslog actually logs a message. Each of the parameters of the implicit
connection (except for the log mask) can be explicitly specified as well
for the current call to syslog, overriding the parameters of the channel.
The parameters revert to their original values after the call.

166

Syslog channels

The syslog-channels structure allows direct manipulation of syslog channels,
the objects that represent connections to the syslog facility. Note that it is not
necessary to explicitly open a syslog channel to do logging.

(open-syslog-channel string options facility mask) −→ channel procedure

(close-syslog-channel channel) −→ undefined procedure

(syslog level message channel) −→ undefined procedure

Open-syslog-channel and close-syslog-channel create and destroy a
connection to the syslog facility, respectively. The specified form of call-
ing syslog logs to the specified channel.

10.6 MD5 interface

Scsh provides a direct interface to the MD5 functions to compute the “finger-
print” or “message digest” of a file or string. It uses the C library written by
Colin Plum.

(md5-digest-for-string string) −→ md5-digest procedure

Calculates the MD5 digest for the given string.

(md5-digest-for-port port [buffer-size]) −→ md5-digest procedure

Reads the contents of the port and calculates the MD5 digest for it.
The optional argument buffer-size determines the size of the port’s input
buffer in bytes. It defaults to 1024 bytes.

(md5-digest? thing) −→ boolean procedure

The type predicate for MD5 digests: md5-digest? returns true if and only
if thing is a MD5 digest.

(md5-digest->number md5-digest) −→ number procedure

Returns the number corresponding to the MD5 digest.

(number->md5-digest number) −→ md5-digest procedure

Creates a MD5 digest from a number.

(make-md5-context) −→ md5-context procedure
(md5-context? thing) −→ boolean procedure
(update-md5-context! md5-context string) −→ undefined procedure
(md5-context->md5-digest md5-context) −→ md5-digest procedure

167

These procedures provide a low-level interface to the library. A
md5-context stores the state of a MD5 computation, it is created by
make-md5-context, its type predicate is md5-context?. The pro-
cedure update-md5-context! extends the md5-context by the given
string. Finally, md5-context->md5-digest returns the md5-digest for the
md5-context. With these procedures it is possible to incrementally add
strings to a md5-context before computing the digest.

168

Chapter 11

Running scsh

Scsh is currently implemented on top of Scheme 48, a freely-available Scheme
implementation written by Jonathan Rees and Richard Kelsey. Scheme 48 uses
a byte-code interpreter for good code density, portability and medium effi-
ciency. It is R5RS. It also has a module system designed by Jonathan Rees.

Scsh’s design is not Scheme 48 specific, although the current implementa-
tion is necessarily so. Scsh is intended to be implementable in other Scheme
implementations. The Scheme 48 virtual machine that scsh uses is a specially
modified version; standard Scheme 48 virtual machines cannot be used with
the scsh heap image.

There are several different ways to invoke scsh. You can run it as an
interactive Scheme system, with a standard read-eval-print interaction loop.
Scsh can also be invoked as the interpreter for a shell script by putting a
“#!/usr/local/bin/scsh -s” line at the top of the shell script.

Descending a level, it is also possible to invoke the underlying virtual ma-
chine byte-code interpreter directly on dumped heap images. Scsh programs
can be pre-compiled to byte-codes and dumped as raw, binary heap images.
Writing heap images strips out unused portions of the scsh runtime (such as
the compiler, the debugger, and other complex subsystems), reducing memory
demands and saving loading and compilation times. The heap image format
allows for an initial #!/usr/local/lib/scsh/scshvm trigger on the first line
of the image, making heap images directly executable as another kind of shell
script.

Finally, scsh’s static linker system allows dumped heap images to be com-
piled to a raw Unix a.out(5) format, which can be linked into the text section of
the vm binary. This produces a true Unix executable binary file. Since the byte
codes comprising the program are in the file’s text section, they are not traced
or copied by the garbage collector, do not occupy space in the vm’s heap, and

169

do not need to be loaded and linked at startup time. This reduces the program’s
startup time, memory requirements, and paging overhead.

This chapter will cover these various ways of invoking scsh programs.

11.1 Scsh command-line switches

When the scsh top-level starts up, it scans the command line for switches that
control its behaviour. These arguments are removed from the command line;
the remaining arguments can be accessed as the value of the scsh variable
command-line-arguments.

11.1.1 Scripts and programs

The scsh command-line switches provide sophisticated support for the authors
of shell scripts and programs; they also allow the programmer to write pro-
grams that use the Scheme 48 module system.

There is a difference between a script, which performs its action as it is
loaded, and a program, which is loaded/linked, and then performs its action
by having control transferred to an entry point (e.g., the main() function in C
programs) that was defined by the load/link operation.

A script, by the above definition, cannot be compiled by the simple mecha-
nism of loading it into a scsh process and dumping out a heap image—it exe-
cutes as it loads. It does not have a top-level main()-type entry point.

It is more flexible and useful to implement a system as a program than as a
script. Programs can be compiled straightforwardly; they can also export pro-
cedural interfaces for use by other Scheme packages. However, scsh supports
both the script and the program style of programming.

11.1.2 Inserting interpreter triggers into scsh programs

When Unix tries to execute an executable file whose first 16 bits are the charac-
ter pair “#!”, it treats the file not as machine-code to be directly executed by the
native processor, but as source code to be executed by some interpreter. The
interpreter to use is specified immediately after the “#!” sequence on the first
line of the source file (along with one optional initial argument). The kernel
reads in the name of the interpreter, and executes that instead. The interpreter
is passed the source filename as its first argument, with the original arguments
following. Consult the Unix man page for the exec system call for more infor-
mation.

170

Scsh allows Scheme programs to have these triggers placed on their first
line. Scsh treats the character sequence “#!” as a block-comment sequence,1

and skips all following characters until it reads the comment-terminating
sequence newline/exclamation-point/sharp-sign/newline (i.e., the sequence
“!#” occurring on its own line).

In this way, the programmer can arrange for an initial

#!/usr/local/bin/scsh -s
!#

header appearing in a Scheme program to be ignored when the program is
loaded into scsh.

11.1.3 Module system

Scsh uses the Scheme 48 module system, which defines packages, structures, and
interfaces.

Package A package is an environment—that is, a set of variable/value bind-
ings. You can evaluate Scheme forms inside a package, or load a file into a
package. Packages export sets of bindings; these sets are called structures.

Structure A structure is a named view on a package—a set of bindings. Other
packages can open the structure, importing its bindings into their environ-
ment. Packages can provide more than one structure, revealing different
portions of the package’s environment.

Interface An interface is the “type” of a structure. An interface is the set of
names exported by a structure. These names can also be marked with
other static information (e.g., advisory type declarations, or syntax infor-
mation).

More information on the the Scheme 48 module system can be found in the file
module.ps in the doc directory of the Scheme 48 and scsh releases.

Programming Scheme with a module system is different from program-
ming in older Scheme implementations, and the associated development prob-
lems are consequently different. In Schemes that lack modular abstraction
mechanisms, everything is accessible; the major problem is preventing name-
space conflicts. In Scheme 48, name-space conflicts vanish; the major problem
is that not all bindings are accessible from every place. It takes a little extra
work to specify what packages export which values.

1Why a block-comment instead of an end-of-line delimited comment? See the section on meta-
args.

171

It may take you a little while to get used to the new style of program devel-
opment. Although scsh can be used without referring to the module system at
all, we recommend taking the time to learn and use it. The effort will pay off
in the construction of modular, factorable programs.

Module warning

Most scsh programs will need to import from the scheme structure as well as
from the scsh structure. However, putting both of these structures in the same
open clause is a bad idea because the structures scheme and scsh export some
names of I/O functions in common but with different definitions. The current
implementation of the module system does not recognize this as an error but
silently overwrites the exports of one structure with the exports of the other. If
the scheme structure overwrites the exports of the scsh structures the program
will access the R5RS definitions of the I/O functions which is not what you
want.

Previous versions of this manual suggested to list scheme and scsh in a spe-
cific order in the open clause of a structure to ensure that the definitions from
scsh overwrite the ones from scheme. This approach is error-prone and frag-
ile: A simple change in the implementation of the module system will render
thousands of programs useless. Starting with release 0.6.3 scsh provides a bet-
ter means to deal with this problem: the structure scheme-with-scsh provides
all the exports of the modules scheme and scsh but exports the right denota-
tions for the I/O functions in question. To make a long story short:

Scsh programs should open the structure scheme-with-scsh if they need
access to the exports of scheme and scsh.

For programs which should run in versions of scsh prior to release 0.6.3,
programmers should make sure to always put the scsh reference first.

11.1.4 Switches

The scsh top-level takes command-line switches in the following format:

scsh [meta-arg] [switchi ...] [end-option arg1 ... argn]

where

172

meta-arg: \ script-file-name

switch: -e entry-point Specify top-level entry-point.
-o structure Open structure in current package.
-m structure Switch to package.
-n new-package Switch to new package.

-lm module-file-name Load module into config package.
-le exec-file-name Load module into exec package.
-l file-name Load file into current package.
-ll module-file-name As in -lm, but search the library path list.
+lp dir Add dir to front of library path list.
lp+ dir Add dir to end of library path list.
+lpe dir +lp, with env var and ˜user expansion.
lpe+ dir lp+, with env var and ˜user expansion.
+lpsd Add script-file’s dir to front of path list.
lpsd+ Add script-file’s dir to end of path list.
-lp-clear Clear library path list to ().
-lp-default Reset library path list to system default.
-ds Do script.
-dm Do script module.
-de Do script exec.

end-option: -s script
-sfd num
-c exp
--

These command-line switches essentially provide a little linker language for
linking a shell script or a program together with Scheme 48 modules or Scheme
48 exec programs 2. The command-line processor serially opens structures and
loads code into a given package. Switches that side-effect a package operate
on a particular “current” package; there are switches to change this package.
(These switches provide functionality equivalent to the interactive ,open ,load
,in and ,new commands.) Except where indicated, switches specify actions
that are executed in a left-to-right order. The initial current package is the user
package, which is completely empty and opens (imports the bindings of) the
R5RS and scsh structures.

If the Scheme process is started up in an interactive mode, then the cur-
rent package in force at the end of switch scanning is the one inside which the
interactive read-eval-print loop is started.

2See the Section “Command programs” in the Scheme 48 manual for a description of the exec
language.

173

The command-line switch processor works in two passes: it first parses the
switches, building a list of actions to perform, then the actions are performed
serially. The switch list is terminated by one of the end-option switches. The
argi arguments occurring after an end-option switch are passed to the scsh pro-
gram as the value of command-line-arguments and the tail of the list returned
by (command-line). That is, an end-option switch separates switches that con-
trol the scsh “machine” from the actual arguments being passed to the scsh
program that runs on that machine.

The following switches and end options are defined:

• -o struct
Open the structure in the current package.

• -n package
Make and enter a new package. The package has an associated structure
named package with an empty export list. If package is the string “#f”, the
new package is anonmyous, with no associated named structure.

The new package initially opens no other structures, not even the R5RS
bindings. You must follow a “-n foo” switch with “-o scheme” to access
the standard identifiers such as car and define.

• -m struct
Change the current package to the package underlying structure struct.
(The -m stands for “module.”)

• -lm module-file-name
Load the specified file into scsh’s config package — the file must contain
source written in the Scheme 48 module language (“load module”). Does
not alter the current package.

• -le exec-file-name
Load the specified file into scsh’s exec package — the file must contain
source written in the Scheme 48 exec language (“load exec”). Does not
alter the current package.

• -l file-name
Load the specified file into the current package.

• -c exp
Evaluate expression exp in the current package and exit. This is called
-c after a common shell convention (see sh and csh). The expression is
evaluated in the the current package (and hence is affected by -m’s and
-n’s.)

When the scsh top-level constructs the scsh command-line in this case, it
takes "scsh" to be the program name. This switch terminates argument
scanning; following args become the tail of the command-line list.

174

• -e entry-point
Specify an entry point for a program. The entry-point is a variable that
is taken from the current package in force at the end of switch evalua-
tion. The entry point does not have to be exported by the package in a
structure; it can be internal to the package. The top level passes control to
the entry point by applying it to the command-line list (so programs ex-
ecuting in private packages can reference their command-line arguments
without opening the scsh package to access the (command-line) proce-
dure). Note that, like the list returned by the (command-line) procedure,
the list passed to the entry point includes the name of the program being
executed (as the first element of the list), not just the arguments to the
program.

A -e switch can occur anywhere in the switch list, but it is the last action
performed by switch scanning if it occurs. (We violate ordering here as
the shell-script #! mechanism prevents you from putting the -e switch
last, where it belongs.)

• -s script
Specify a file to load. A -ds (do-script), -dm (do-module), or -de (do-exec)
switch occurring earlier in the switch list gives the place where the script
should be loaded. If there is no -ds, -dm, or -de switch, then the script is
loaded at the end of switch scanning, into the module that is current at
the end of switch scanning.

We use the -ds switch to violate left-to-right switch execution order as the
-s switch is required to be last (because of the #! machinery), independent
of when/where in the switch-processing order it should be loaded.

When the scsh top-level constructs the scsh command-line in this case,
it takes script to be the program name. This switch terminates switch
parsing; following args are ignored by the switch-scanner and are passed
through to the program as the tail of the command-line list.

• -sfd num
Loads the script from file descriptor num. This switch is like the -s
switch, except that the script is loaded from one of the process’ open in-
put file descriptors. For example, to have the script loaded from standard
input, specify -sfd 0.

• --
Terminate argument scanning and start up scsh in interactive mode.
If the argument list just runs out, without either a terminating -s or
-- arg, then scsh also starts up in interactive mode, with an empty
command-line-arguments list (for example, simply entering scsh at a
shell prompt with no args at all).

175

When the scsh top-level constructs the scsh command-line in this case,
it takes "scsh" to be the program name. This switch terminates switch
parsing; following args are ignored by the switch-scanner and are passed
through to the program as the tail of the command-line list.

• -ds
Specify when to load the script (“do-script”). If this switch occurs, the
switch list must be terminated by a -s script switch. The script is loaded
into the package that is current at the -ds switch.

• -dm
As above, but the current module is ignored. The script is loaded into the
config package (“do-module”), and hence must be written in the Scheme
48 module language. This switch doesn’t affect the current module—
after executing this switch, the current module is the same as as it was
before.

This switch is provided to make it easy to write shell scripts in the Scheme
48 module language.

• -de
As above, but the current module is ignored. The script is loaded into the
exec package (“do-exec”), and hence must be written in the Scheme 48
exec language.

This switch is provided to make it easy to write shell scripts in the Scheme
48 exec language.

• -ll module-file-name
Load library module into config package. This is just like the -lm switch,
except that it searches the library-directory path list for the file to load.

Specifically, it means: search through the library-directories list of directo-
ries looking for a module file of the given name, and load it in.

The library-directories list defaults to ("/usr/local/lib/scsh/modules/").
It will be installation-dependent in a later version of scsh.

If the environment variable $SCSH LIB DIRS is set, it is used to determine
the library search path. The value of this environment variable is treated
as a sequence of s-expressions, which are “read” from the string:

– A string is treated as a directory,

– #f is replaced with the default list of directories.

A $SCSH LIB DIRS assignment of this form

SCSH_LIB_DIRS=’"." "/usr/contrib/lib/scsh/" #f "/home/shivers/lib/scsh"’

176

would produce this list of strings for the library-directories list:

("." "/usr/contrib/lib/scsh/"
"/usr/local/lib/scsh/modules/"
"/home/shivers/lib/scsh")

When searching for a directory containing a given library module, nonex-
istent or read-protected directories are silently ignored; it is not an error
to have them in the library-directories list.

It is a startup error if reading the $SCSH LIB DIRS environment variable
causes a read error, or produces a value that isn’t a list of strings or #f.

Directory search can be recursive. A directory name that ends with a
slash is recursively searched.

• +lp lib-dir,lp+ lib-dir
Add directory lib-dir to the beginning or end of the library-directories path
list, respectively.

lib-dir is a single directory. It is not split at colons or otherwise processed.

• +lpe, lpe+
As above, except that ˜home-directory syntax and environment variables
are expanded out.

• -lp-clear, -lp-default
Set the library-directories path list to the empty list and the system default,
respectively.

These two switches are useful if you would like to protect your script
from influence by the $SCSH LIB DIRS variable.

In these cases, the $SCSH LIB DIRS environment variable is never even
parsed, so a bogus value will not affect the script’s execution at all.

11.1.5 The meta argument

The scsh switch parser takes a special command-line switch, a single back-
slash called the “meta-argument,” which is useful for shell scripts. If the initial
command-line argument is a “\” argument, followed by a filename argument
fname, scsh will open the file fname and read more arguments from the second
line of this file. This list of arguments will then replace the “\” argument—
i.e., the new arguments are inserted in front of fname, and the argument parser
resumes argument scanning. This is used to overcome a limitation of the #!
feature: the #! line can only specify a single argument after the interpreter. For
example, we might hope the following scsh script, ekko, would implement a
simple-minded version of the Unix echo program:

177

#!/usr/local/bin/scsh -e main -s
!#
(define (main args)
(map (λ (arg) (display arg) (display " "))

(cdr args))
(newline))

The idea would be that the command

ekko Hi there.

would by expanded by the exec(2) kernel call into

/usr/local/bin/scsh -e main -s ekko Hi there.

In theory, this would cause scsh to start up, load in file ekko, call the entry point
on the command-line list

(main ’("ekko" "Hi" "there."))

and exit.
Unfortunately, the Unix exec(2) syscall’s support for scripts is not very

general or well-designed. It will not handle multiple arguments; the #! line
is usually required to contain no more than 32 characters; it is not recursive.
If these restrictions are violated, most Unix systems will not provide accurate
error reporting, but either fail silently, or simply incorrectly implement the de-
sired functionality. These are the facts of Unix life.

In the ekko example above, our #! trigger line has three arguments (“-e”,
“main”, and “-s”), so it will not work. The meta-argument is how we work
around this problem. We must instead invoke the scsh interpreter with the sin-
gle \ argument, and put the rest of the arguments on line two of the program.
Here’s the correct program:

#!/usr/local/bin/scsh \
-e main -s
!#
(define (main args)
(map (λ (arg) (display arg) (display " "))

(cdr args))
(newline))

Now, the invocation starts as

ekko Hi there.

and is expanded by exec(2) into

/usr/local/bin/scsh \ ekko Hi there.

178

When scsh starts up, it expands the “\” argument into the arguments read from
line two of ekko, producing this argument list:

-e main -s ekko Hi there.
↑

Expanded from \ ekko

With this argument list, processing proceeds as we intended.

Secondary argument syntax

Scsh uses a very simple grammar to encode the extra arguments on the second
line of the scsh script. The only special characters are space, tab, newline, and
backslash.

• Each space character terminates an argument. This means that two
spaces in a row introduce an empty-string argument.

• The tab character is not permitted (unless you quote it with the backslash
character described below). This is to prevent the insidious bug where
you believe you have six space characters, but you really have a tab char-
acter, and vice-versa.

• The newline character terminates an argument, like the space character,
and also terminates the argument sequence. This means that an empty
line parses to the singleton list whose one element is the empty string:
(""). The grammar doesn’t admit the empty list.

• The backslash character is the escape character. It escapes backslash,
space, tab, and newline, turning off their special functions, and allow-
ing them to be included in arguments. The ANSI C escape sequences
(\b, \n, \r and \t) are also supported; these also produce argument-
constituents—\n doesn’t act like a terminating newline. The escape se-
quence \nnn for exactly three octal digits reads as the character whose
ASCII code is nnn. It is an error if backslash is followed by just one or two
octal digits: \3Q is an error. Octal escapes are always constituent chars.
Backslash followed by other chars is not allowed (so we can extend the
escape-code space later if we like).

You have to construct these line-two argument lines carefully. In particular,
beware of trailing spaces at the end of the line—they’ll give you extra trailing
empty-string arguments. Here’s an example:

#!/bin/interpreter \
foo bar quux\ yow

179

would produce the arguments

("foo" "bar" "" "quux yow")

11.1.6 Examples

• scsh -dm -m myprog -e top -s myprog.scm
Load myprog.scm into the config package, then shift to the myprog pack-
age and call (top ’("myprog.scm")), then exit. This sort of invocation
is typically used in #! script lines (see below).

• scsh -c ’(display "Hello, world.")’
A simple program.

• scsh -o bigscheme
Start up interactively in the user package after opening structure
bigscheme.

• scsh -o bigscheme -- Three args passed
Start up interactively in the user package after opening bigscheme. The
command-line-args variable in the scsh package is bound to the list
("Three" "args" "passed"), and the (command-line) procedure re-
turns the list ("scsh" "Three" "args" "passed").

• Program ekko
This shell script, called ekko, implements a version of the Unix echo pro-
gram:

#!/usr/local/bin/scsh -s
!#
(for-each (λ (arg) (display arg) (display " "))

command-line-args)

Note this short program is an example of a script—it executes as it loads.
The Unix rule for executing #! shell scripts causes

ekko Hello, world.

to expand as

/usr/local/bin/scsh -s ekko Hello, world.

• Program ekko
This is the same program, not as a script. Writing it this way makes it
possible to compile the program (and then, for instance, dump it out as a
heap image).

180

#!/usr/local/bin/scsh \
-e top -s
!#
(define (top args)
(for-each (λ (arg) (display arg) (display " "))

(cdr args)))

The exec(2) expansion of the #! line together with the scsh expansion
of the “\ ekko” meta-argument (see section 11.1.5) gives the following
command-line expansion:

ekko Hello, world.
=⇒ /usr/local/bin/scsh \ ekko Hello, world.
=⇒ /usr/local/bin/scsh -e top -s ekko Hello, world.

• Program sort
This is a program to replace the Unix sort utility—sorting lines read from
stdin, and printing the results on stdout. Note that the source code de-
fines a general sorting package, which is useful (1) as a Scheme module
exporting sort procedures to other Scheme code, and (2) as a standalone
program invoked from the top procedure.

#!/usr/local/bin/scsh \
-dm -m sort-toplevel -e top -s
!#

;;; This is a sorting module. TOP procedure exports
;;; the functionality as a Unix program akin to sort(1).
(define-structures ((sort-struct (export sort-list

sort-vector!))
(sort-toplevel (export top)))

(open scheme)

(begin (define (sort-list elts <=) ...)
(define (sort-vec! vec <=) ...)

;; Parse the command line and
;; sort stdin to stdout.
(define (top args)

...)))

The expansion below shows how the command-line scanner (1) loads the
config file sort (written in the Scheme 48 module language), (2) switches
to the package underlying the sort-toplevel structure, (3) calls (top
’("sort" "foo" "bar")) in the package, and finally (4) exits.

181

sort foo bar

=⇒ /usr/local/bin/scsh \ sort foo bar

=⇒ /usr/local/bin/scsh -dm -m sort-toplevel -e top -s sort foo bar

An alternate method would have used a

-n #f -o sort-toplevel

sequence of switches to specify a top-level package.

Note that the sort example can be compiled into a Unix program by loading
the file into an scsh process, and dumping a heap with top-level top. Even if
we don’t want to export the sort’s functionality as a subroutine library, it is still
useful to write the sort program with the module language. The command line
design allows us to run this program as either an interpreted script (given the
#! args in the header) or as a compiled heap image.

11.1.7 Process exit values

Scsh ignores the value produced by its top-level computation when determin-
ing its exit status code. If the top-level computation completed with no errors,
scsh dies with exit code 0. For example, a scsh process whose top-level is spec-
ified by a -c exp or a -e entry entry point ignores the value produced by eval-
uating exp and calling entry, respectively. If these computations terminate with
no errors, the scsh process exits with an exit code of 0.

To return a specific exit status, use the exit procedure explicitly, e.g.,
scsh -c \
"(exit (status:exit-val (run (| (fmt) (mail shivers)))))"

11.2 The scsh virtual machine

To run the Scheme 48 implementation of scsh, you run a specially modified
copy of the Scheme 48 virtual machine with a scsh heap image. The scsh bi-
nary is actually nothing but a small cover program that invokes the byte-code
interpreter on the scsh heap image for you. This allows you to simply start
up an interactive scsh from a command line, as well as write shell scripts that
begin with the simple trigger

#!/usr/local/bin/scsh -s

You can also directly execute the virtual machine, which takes its own set
of command-line switches.. For example, this command starts the vm up with
a 1Mword heap (split into two semispaces):

182

scshvm -o scshvm -h 1000000 -i scsh.image arg1 arg2 ...

The vm peels off initial vm arguments up to the -i heap image argument,
which terminates vm argument parsing. The rest of the arguments are
passed off to the scsh top-level. Scsh’s top-level removes scsh switches,
as discussed in the previous section; the rest show up as the value of
command-line-arguments.

Directly executing the vm can be useful to specify non-standard switches,
or invoke the virtual machine on special heap images, which can contain pre-
compiled scsh programs with their own top-level procedures.

11.2.1 VM arguments

The vm takes arguments in the following form:

scshvm [meta-arg] [vm-options+] [end-option scheme-args]

where

meta-arg: \ filename

vm-option: -h heap-size-in-words
-s stack-size-in-words
-o object-file-name

end-option: -i image-file-name
--

The vm’s meta-switch “\ filename” is handled the same as scsh’s meta-
switch, and serves the same purpose.

VM options

The -o object-file-name switch tells the vm where to find relocation information
for its foreign-function calls. Scsh will use a pre-compiled default if it is not
specified. Scsh must have this information to run, since scsh’s syscall interfaces
are done with foreign-function calls.

The -h and -s options tell the vm how much space to allocate for the heap
and stack. The heap size value is the total number of words allocated for the
heap; this space is then split into two semi-spaces for Scheme 48’s stop-and-
copy collector.

183

End options

End options terminate argument parsing. The -i switch is followed by the
name of a heap image for the vm to execute. The image-file-name string is also
taken to be the name of the program being executed by the VM; this name be-
comes the head of the argument list passed to the heap image’s top-level entry
point. The tail of the argument list is constructed from all following arguments.

The -- switch terminates argument parsing without giving a specific heap
image; the vm will start up using a default heap (whose location is compiled
into the vm). All the following arguments comprise the tail of the list passed
off to the heap image’s top-level procedure.

Notice that you are not allowed to pass arguments to the heap image’s top-
level procedure (e.g., scsh) without delimiting them with -i or -- flags.

11.2.2 Stripped image

Besides the standard image scsh.image scsh also ships with the much
smaller image stripped-scsh.image. This image contains the same code
as the standard image but has almost all debugging information removed.
stripped-scsh.image is intended to be used with standalone programs where
startup time and memory consumption count but debugging an errors the
scheme code is not that important. To use the image the VM has to be called
directly and the path to the image must be given after the -i argument.

11.2.3 Inserting interpreter triggers into heap images

Scheme 48’s heap image format allows for an informational header: when the
vm loads in a heap image, it ignores all data occurring before the first control-L
character (ASCII 12). This means that you can insert a “#!” trigger line into a
heap image, making it a form of executable “shell script.” Since the vm requires
multiple arguments to be given on the command line, you must use the meta-
switch. Here’s an example heap-image header:

#!/usr/local/lib/scsh/scshvm \
-o /usr/local/lib/scsh/scshvm -i
... Your heap image goes here ...

11.2.4 Inserting a double-level trigger into Scheme programs

If you’re a nerd, you may enjoy doing a double-level machine shift in the trig-
ger line of your Scheme programs with the following magic:

184

#!/usr/local/lib/scsh/scshvm \

-o /usr/local/lib/scsh/scshvm -i /usr/local/lib/scsh/scsh.image -s

!#

... Your Scheme program goes here ...

11.3 Compiling scsh programs

Scsh allows you to create a heap image with your own top-level procedure.
Adding the pair of lines

#!/usr/local/lib/scsh/scshvm \
-o /usr/local/lib/scsh/scshvm -i

to the top of the heap image will turn it into an executable Unix file.

You can create heap images with the following two procedures.

(dump-scsh-program main fname) −→ undefined procedure

This procedure writes out a scsh heap image. When the heap image is
executed by the Scheme 48 vm, it will call the main procedure, passing
it the vm’s argument list. When main returns an integer value i, the vm
exits with exit status i. The Scheme vm will parse command-line switches
as described in section 11.2.1; remaining arguments form the tail of the
command-line list that is passed to main. (The head of the list is the name
of the program being executed by the vm.) Further argument parsing (as
described for scsh in section 11.1.4) is not performed.

The heap image created by dump-scsh-program has unused code and
data pruned out, so small programs compile to much smaller heap im-
ages.

(dump-scsh fname) −→ undefined procedure

This procedure writes out a heap image with the standard scsh top-level.
When the image is resumed by the vm, it will parse and execute scsh
command-line switches as described in section 11.1.4.

You can use this procedure to write out custom scsh heap images that
have specific packages preloaded and start up in specific packages.

Unfortunately, Scheme 48 does not support separate compilation of Scheme
files or Scheme modules. The only way to compile is to load source and then
dump out a heap image. One occasionally hears rumours that this is being
addressed by the Scheme 48 development team.

185

11.4 Standard file locations

Because the scshvm binary is intended to be used for writing shell scripts, it is
important that the binary be installed in a standard place, so that shell scripts
can dependably refer to it. The standard directory for the scsh tree should be
/usr/local/lib/scsh/. Whenever possible, the vm should be located in

/usr/local/lib/scsh/scshvm

and a scsh heap image should be located in

/usr/local/lib/scsh/scsh.image

The top-level scsh program should be located in

/usr/local/lib/scsh/scsh

with a symbolic link to it from

/usr/local/bin/scsh

The Scheme 48 image format allows heap images to have #! triggers, so
scsh.image should have a #! trigger of the following form:

#!/usr/local/lib/scsh/scshvm \
-o /usr/local/lib/scsh/scshvm -i
... heap image goes here ...

186

Index

temp-file-template, 52
->uid, 64
->username, 64
%exec, 55
%exit, 55
%fork, 56
%fork/pipe, 56
%fork/pipe+, 57
%read-delimited!, 141
&, 13
&, 13
&&, 20

reduce-port , 16

absolute-file-name, 109
accept-connection, 99
add-after, 80
add-before, 80
alist->env, 77
alist-compress, 78
alist-delete, 78
alist-update, 78
arg, 65
arg*, 65
argv, 65
arithmetic-shift, 161
ascii->char, 110
autoreap-policy, 59
awk, 151

become-session-leader, 86
bind-listen-accept-loop, 95

bind-prepare-listen-accept-loop,
95

bind-socket, 98
bitwise-and, 161
bitwise-ior, 161
bitwise-not, 161
bitwise-xor, 161
break-dot-lock, 162
bufpol/block, 38
bufpol/line, 38
bufpol/none, 38

call-terminally, 55
call-with-string-output-port, 26
call/fdes, 30
char->ascii, 110
char-ascii?, 110
char-blank?, 110
char-digit?, 110
char-filter, 20
char-graphic?, 110
char-hex-digit?, 110
char-iso-control?, 110
char-letter+digit?, 110
char-letter?, 110
char-lower-case?, 110
char-printing?, 110
char-punctuation?, 110
char-title-case?, 110
char-upper-case?, 110
char-whitespace?, 110
chdir, 62
clean-up-cres, 137

187

close, 25
close-after, 24
close-directory-stream, 47
close-socket, 95
close-syslog-channel, 167
command-line, 64
command-line-arguments, 64
connect-socket, 98
connect-socket-no-wait, 98
connect-socket-successful?, 98
control-tty-file-name, 87
copy-tty-info, 84
cpu-ticks/sec, 64
create-directory, 41
create-fifo, 41
create-hard-link, 41
create-socket, 95
create-socket-pair, 95
create-symlink, 41
create-temp-file, 51
crypt, 162
current-thread, 157
cwd, 62

date, 72
date, 74
date->string, 75
define-record, 7
delete-directory, 41
delete-file, 42
delete-filesys-object, 42
directory-as-file-name, 106
directory-files, 46
disable-tty-char, 82
drain-tty, 85
dump-scsh, 185
dump-scsh-program, 185
dup, 31
dup->fdes, 31
dup->inport, 31
dup->outport, 31

enabled-interrupts, 70
env->alist, 77

errno-error, 21
error-output-port, 24
exec, 54
exec-epf, 13
exec-epf, 13
exec-path, 54
exec-path-list, 80
exec-path-search, 55
exec-path/env, 54
exec/env, 54
exit, 55
expand-file-name, 109

fdes->inport, 30
fdes->outport, 30
fdes-flags, 32
fdes-status, 33
field-reader, 148
field-splitter, 144
file-directory?, 44
file-executable?, 46
file-exists?, 46
file-fifo?, 44
file-group, 44
file-info, 43
file-info-directory?, 45
file-info-executable?, 46
file-info-fifo?, 45
file-info-not-executable?, 46
file-info-not-readable?, 46
file-info-not-writable?, 46
file-info-readable?, 46
file-info-regular?, 45
file-info-socket?, 45
file-info-special?, 45
file-info-symlink?, 45
file-info-writable?, 46
file-info:atime, 43
file-info:ctime, 43
file-info:device, 43
file-info:gid, 43
file-info:inode, 43
file-info:mode, 43
file-info:mtime, 43

188

file-info:nlinks, 43
file-info:size, 43
file-info:type, 43
file-info:uid, 43
file-inode, 44
file-last-access, 44
file-last-mod, 44
file-last-status-change, 44
file-match, 49
file-mode, 44
file-name-absolute?, 106
file-name-as-directory, 105
file-name-directory, 106
file-name-directory?, 105
file-name-extension, 107
file-name-non-directory?, 105
file-name-nondirectory, 106
file-name-sans-extension, 108
file-nlinks, 44
file-not-executable?, 45
file-not-exists?, 46
file-not-readable?, 45
file-not-writable?, 45
file-owner, 44
file-readable?, 46
file-regular?, 44
file-size, 44
file-socket?, 44
file-special?, 44
file-symlink?, 44
file-type, 44
file-writable?, 46
fill-in-date!, 75
flush-all-ports, 39
flush-submatches, 134
flush-tty/both, 85
flush-tty/input, 85
flush-tty/output, 85
force-output, 38
fork, 56
fork-pty-session, 87
fork-thread, 160
fork/pipe, 56
fork/pipe+, 57

format-date, 75

get-lock-region, 40
getenv, 77
glob, 47
glob-quote, 49
group-info, 64
group-info:gid, 64
group-info:members, 64
group-info:name, 64

home-dir, 109
home-directory, 80
home-file, 109
host-info, 101

if-match, 133
if-sre-form, 138
infix-splitter, 144
internet-address->socket-address,

97
interrupt-handler, 71
interrupt-set, 70
interrupt/alarm, 68
interrupt/alrm, 68
interrupt/chld, 68
interrupt/cont, 68
interrupt/hup, 68
interrupt/info, 68
interrupt/int, 68
interrupt/io, 68
interrupt/keyboard, 68
interrupt/memory-shortage, 68
interrupt/poll, 68
interrupt/prof, 68
interrupt/pwr, 68
interrupt/quit, 68
interrupt/term, 68
interrupt/tstp, 68
interrupt/urg, 68
interrupt/usr1, 68
interrupt/usr2, 68
interrupt/vtalrm, 68
interrupt/winch, 68

189

interrupt/xcpu, 68
interrupt/xfsz, 68
itimer, 67

join-strings, 147

let-match, 133
listen-socket, 99
lock-owner-uid, 158
lock-region, 40
lock-region/no-block, 40
lock-region:end, 39
lock-region:exclusive?, 39
lock-region:len, 39
lock-region:proc, 39
lock-region:start, 39
lock-region:whence, 39
lock-region?, 39
lock?, 157

make-date, 73
make-lock, 157
make-lock-region, 40
make-md5-context, 167
make-placeholder, 158
make-pty-generator, 88
make-re-char-set, 136
make-re-choice, 136
make-re-dsm, 136
make-re-repeat, 136
make-re-seq, 135
make-re-string, 136
make-re-submatch, 136
make-regexp, 129
make-string-input-port, 26
make-string-output-port, 26
make-syslog-mask, 166
make-syslog-options, 163
make-tty-info, 84
match-cond, 133
match:end, 130
match:start, 130
match:substring, 130
maybe-obtain-lock, 158

md5-context->md5-digest, 167
md5-context?, 167
md5-digest->number, 167
md5-digest-for-port, 167
md5-digest-for-string, 167
md5-digest?, 167
most-recent-sigevent, 159
move->fdes, 30

network-info, 101
next-sigevent, 159
next-sigevent-set, 159
next-sigevent-set/no-wait, 159
next-sigevent/no-wait, 159
nice, 63
nth, 161
number->md5-digest, 167

obtain-dot-lock, 162
obtain-lock, 157
open-control-tty, 86
open-directory-stream, 47
open-fdes, 32
open-file, 32
open-input-file, 32
open-output-file, 32
open-pty, 87
open-syslog-channel, 167

parent-pid, 62
parse-file-name, 108
parse-sre, 138
parse-sres, 138
path-list->file-name, 107
pid, 62
pid->proc, 58
pipe, 33
placeholder-value, 158
placeholder?, 158
port->fdes, 30
port->list, 15
port->sexp-list, 15
port->socket, 96
port->string, 15

190

port->string-list, 15
port-fold, 16
port-revealed, 30
posix-string->regexp, 135
priority, 63
proc, 58
proc:pid, 58
proc?, 58
process-group, 62
process-sleep, 67
process-sleep-until, 67
process-times, 63
protocol-info, 101
pty-name->tty-name, 87

re-any, 137
re-any?, 137
re-bol, 136
re-bol?, 136
re-bos, 136
re-bos?, 136
re-char-set, 136
re-char-set:cset, 136
re-char-set?, 136
re-choice, 136
re-choice:elts, 136
re-choice:tsm, 136
re-choice?, 136
re-dsm, 136
re-dsm:body, 136
re-dsm:post-dsm, 136
re-dsm:pre-dsm, 136
re-dsm:tsm, 136
re-dsm?, 136
re-empty, 137
re-empty?, 137
re-eol, 136
re-eol?, 136
re-eos, 136
re-eos?, 136
re-nonl, 137
re-repeat:from, 136
re-repeat:to, 136
re-repeat:tsm, 136

re-repeat?, 136
re-seq, 135
re-seq:elts, 135
re-seq:tsm, 136
re-seq?, 135
re-string, 136
re-string:chars, 136
re-string?, 136
re-submatch:post-dsm, 136
re-submatch:pre-dsm, 136
re-submatch:tsm, 136
re-submatch?, 136
re-trivial, 137
re-trivial?, 137
re-tsm, 137
read-delimited, 141
read-delimited!, 141
read-directory-stream, 47
read-line, 140
read-paragraph, 141
read-string, 33
read-string!, 33
read-string!/partial, 34
read-string/partial, 34
read-symlink, 42
reap-zombies, 59
receive-message, 99
receive-message!, 99
receive-message!/partial, 99
receive-message/partial, 99
record-reader, 144
regexp->posix-string, 135
regexp->scheme, 138
regexp->sre, 134
regexp-fold, 131
regexp-fold-right, 132
regexp-for-each, 133
regexp-search, 129
regexp-search?, 129
regexp-substitute, 130
regexp-substitute/global, 130
regexp?, 129, 137
release-dot-lock, 162
release-lock, 158

191

release-port-handle, 30
relinquish-timeslice, 157
rename-file, 42
replace-extension, 108
resolve-file-name, 109
run, 13
run, 13
run/collecting, 17
run/collecting*, 17
run/file, 14
run/file*, 15
run/port, 14
run/port*, 15
run/port+proc, 17
run/port+proc*, 17
run/sexp, 14
run/sexp*, 15
run/sexps, 14
run/sexps*, 15
run/string, 14
run/string*, 15
run/strings, 14
run/strings*, 15
rx, 129

seek, 31
select , 34
select-port-channels, 36
select-ports, 36
send-message, 99
send-message/partial, 99
send-tty-break, 85
service-info, 101
set-enabled-interrupts, 70
set-fdes-flags, 32
set-fdes-status, 33
set-file-group, 42
set-file-mode, 42
set-file-owner, 42
set-file-times, 42
set-gid, 63
set-interrupt-handler, 70
set-port-buffering, 38
set-priority, 63

set-process-group, 62
set-socket-option, 100
set-tty-info/drain, 84
set-tty-info/flush, 84
set-tty-info/now, 84
set-tty-process-group, 86
set-uid, 63
set-umask, 62
set-user-effective-gid, 63
set-user-effective-uid, 63
setenv, 77
shutdown-socket, 99
sigevent?, 159
signal->interrupt, 67
signal-process, 67
signal-process-group, 67
signal/abrt, 69
signal/alrm, 68
signal/bus, 69
signal/chld, 68
signal/cont, 68
signal/emt, 69
signal/fpe, 69
signal/hup, 68
signal/ill, 69
signal/info, 68
signal/int, 68
signal/io, 68
signal/iot, 69
signal/kill, 69
signal/pipe, 69
signal/poll, 68
signal/prof, 68
signal/pwr, 68
signal/quit, 68
signal/segv, 69
signal/stop, 69
signal/sys, 69
signal/term, 68
signal/trap, 69
signal/tstp, 68
signal/ttin, 69
signal/ttou, 69
signal/urg, 68

192

signal/usr1, 68
signal/usr2, 68
signal/vtalrm, 68
signal/winch, 68
signal/xcpu, 68
signal/xfsz, 68
simplify-file-name, 109
simplify-regexp, 134
skip-char-set, 142
sleep, 157
sloppy-suffix-splitter, 144
socket-address->internet-address,

97
socket-address->unix-address, 97
socket-connect, 94
socket-local-address, 99
socket-option, 100
socket-remote-address, 99
spawn, 156
split-file-name, 107
spoon, 160
sre->regexp, 134
sre-form?, 138
start-tty-input, 85
start-tty-output, 85
static-regexp?, 139
status:exit-val, 61
status:stop-sig, 61
status:term-sig, 61
stdio->stdports, 25
stdports->stdio, 25
stop-tty-input, 85
stop-tty-output, 85
string-filter, 20
string-match, 129
string-output-port-output, 26
substitute-env-vars, 110
suffix-splitter, 144
suspend, 56
sync-file, 43
sync-file-system, 43
syslog, 166, 167
syslog-facility, 164
syslog-facility?, 164

syslog-level, 165
syslog-level?, 165
syslog-mask, 166
syslog-mask-all, 166
syslog-mask-upto, 166
syslog-mask?, 166
syslog-option, 163
syslog-option?, 163
syslog-options, 164
syslog-options?, 164
system-name, 66

tell, 31
temp-file-channel, 53
temp-file-iterate, 52
terminate-current-thread, 157
thread-name, 157
thread-uid, 157
thread?, 157
ticks/sec, 73
time, 71
time, 74
time+ticks, 73
truncate-file, 43
tty-file-name, 82
tty-info, 84
tty-info record type, 82
tty-info:control-chars, 82
tty-info:control-flags, 82
tty-info:input-flags, 82
tty-info:input-speed, 82
tty-info:local-flags, 82
tty-info:min, 82
tty-info:output-flags, 82
tty-info:output-speed, 82
tty-info:time, 82
tty-info?, 82
tty-name->pty-name, 87
tty-process-group, 86
tty?, 82
ttyc/2-stop-bits, 92
ttyc/carrier-flow-ctl, 92
ttyc/char-size, 92
ttyc/char-size5, 92

193

ttyc/char-size6, 92
ttyc/char-size7, 92
ttyc/char-size8, 92
ttyc/CTS-output-flow-ctl, 92
ttyc/enable-parity, 92
ttyc/enable-read, 92
ttyc/hup-on-close, 92
ttyc/ignore-flags, 92
ttyc/no-modem-sync, 92
ttyc/odd-parity, 92
ttyc/RTS-input-flow-ctl, 92
ttychar/delayed-suspend, 89
ttychar/delete-char, 89
ttychar/delete-line, 89
ttychar/delete-word, 89
ttychar/discard, 89
ttychar/eof, 89
ttychar/eol, 89
ttychar/eol2, 89
ttychar/interrupt, 89
ttychar/literal-next, 89
ttychar/quit, 89
ttychar/reprint, 89
ttychar/start, 89
ttychar/status, 89
ttychar/stop, 89
ttychar/suspend, 89
ttyin/7bits, 90
ttyin/beep-on-overflow, 90
ttyin/check-parity, 90
ttyin/cr->nl, 90
ttyin/ignore-bad-parity-chars, 90
ttyin/ignore-break, 90
ttyin/ignore-cr, 90
ttyin/input-flow-ctl, 90
ttyin/interrupt-on-break, 90
ttyin/lowercase, 90
ttyin/mark-parity-errors, 90
ttyin/nl->cr, 90
ttyin/output-flow-ctl, 90
ttyin/xon-any, 90
ttyl/alt-delete-word, 93
ttyl/canonical, 93
ttyl/case-map, 93

ttyl/echo, 93
ttyl/echo-ctl, 93
ttyl/echo-delete-line, 93
ttyl/echo-nl, 93
ttyl/enable-signals, 93
ttyl/extended, 93
ttyl/flush-output, 93
ttyl/hardcopy-delete, 93
ttyl/no-flush-on-interrupt, 93
ttyl/no-kernel-status, 93
ttyl/reprint-unread-chars, 93
ttyl/ttou-signal, 93
ttyl/visual-delete, 93
ttyl/visual-delete-line, 93
ttyout/all-delay, 91
ttyout/bs-delay, 91
ttyout/bs-delay0, 91
ttyout/bs-delay1, 91
ttyout/cr->nl, 90
ttyout/cr-delay, 91
ttyout/cr-delay0, 91
ttyout/cr-delay1, 91
ttyout/cr-delay2, 91
ttyout/cr-delay3, 91
ttyout/delay-w/fill-char, 90
ttyout/discard-eot, 90
ttyout/enable, 90
ttyout/expand-tabs, 90
ttyout/ff-delay, 91
ttyout/ff-delay0, 91
ttyout/ff-delay1, 91
ttyout/fill-w/del, 90
ttyout/nl->crnl, 90
ttyout/nl-delay, 91
ttyout/nl-delay0, 91
ttyout/nl-delay1, 91
ttyout/nl-does-cr, 90
ttyout/no-col0-cr, 90
ttyout/tab-delay, 91
ttyout/tab-delay0, 91
ttyout/tab-delay1, 91
ttyout/tab-delay2, 91
ttyout/tab-delayx, 91
ttyout/uppercase, 90

194

ttyout/vtab-delay, 91
ttyout/vtab-delay0, 91
ttyout/vtab-delay1, 91

umask, 62
uname, 66
uncase, 134
uncase-char-set, 134
uncase-string, 134
unix-address->socket-address, 97
unlock-region, 40
user-effective-gid, 63
user-effective-uid, 63
user-gid, 63
user-info, 64
user-info:gid, 64
user-info:home-dir, 64
user-info:name, 64
user-info:shell, 64
user-info:uid, 64
user-login-name, 63
user-supplementary-gids, 63
user-uid, 63

wait, 60
wait-any, 60
wait-process-group, 61
with-current-input-port, 24
with-current-input-port*, 24
with-current-output-port, 24
with-current-output-port*, 24
with-cwd, 62
with-cwd*, 62
with-dot-lock, 163
with-dot-lock*, 163
with-enabled-interrupts, 70
with-enabled-interrupts*, 70
with-env, 79
with-env*, 78
with-errno-handler, 22
with-errno-handler*, 22
with-error-output-port, 24
with-error-output-port*, 24
with-region-lock, 41

with-region-lock*, 41
with-stdio-ports, 26
with-stdio-ports*, 26
with-syslog-destination, 166
with-total-env, 79
with-total-env*, 78
with-umask, 62
with-umask*, 62
with-user-effective-gid, 63
with-user-effective-gid*, 63
with-user-effective-uid, 63
with-user-effective-uid*, 63
write-string, 36
write-string/partial, 37

195

	Contents
	Introduction
	Copyright & source-code license
	Obtaining scsh
	Building scsh
	Caveats
	Naming conventions
	Lexical issues
	Extended symbol syntax
	Extended string syntax
	Block comments and executable interpreter-triggers
	Here-strings
	Dot

	Record types and the define-record form
	A word about Unix standards

	Process notation
	Extended process forms and I/O redirections
	Port and file descriptor sync

	Process forms
	Using extended process forms in Scheme
	Procedures and special forms
	Interfacing process output to Scheme

	More complex process operations
	Pids and ports together
	Multiple stream capture

	Conditional process sequencing forms
	Process filters

	System Calls
	Errors
	Interactive mode and error handling

	I/O
	Standard R5RS I/O procedures
	Port manipulation and standard ports
	String ports
	Revealed ports and file descriptors
	Port-mapping machinery
	Unix I/O
	Buffered I/O
	File locking

	File system
	Processes
	Process objects and process reaping
	Process waiting
	Analysing process status codes

	Process state
	User and group database access
	Accessing command-line arguments
	System parameters
	Signal system
	Time
	Terminology
	Basic data types
	Time zones
	Procedures

	Environment variables
	Path lists and colon lists
	$USER, $HOME, and $PATH

	Terminal device control
	Portability across OS variants
	Miscellaneous procedures
	The tty-info record type
	Using tty-info records
	Other terminal-device procedures
	Control terminals, sessions, and terminal process groups
	Pseudo-terminals

	Networking
	High-level interface
	Sockets
	Socket addresses
	Socket primitives
	Performing input and output on sockets
	Socket options
	Database-information entries

	Strings and characters
	Manipulating file names
	Terminology
	Procedures

	Other string manipulation facilities
	ASCII encoding
	Character predicates
	Deprecated character-set procedures

	Pattern-matching strings with regular expressions
	Summary SRE syntax
	Examples
	A short tutorial
	Choices
	Embedding regexps within Scheme programs

	Regexp functions
	Obsolete, deprecated procedures
	Standard procedures and syntax

	The regexp ADT
	Syntax-hacking tools

	Reading delimited strings
	Awk, record I/O, and field parsing
	Record I/O and field parsing
	Reading records
	Parsing fields
	Field readers
	Forward-progress guarantees and empty-string matches
	Reader limitations

	Awk
	Examples

	Backwards compatibility

	Concurrent system programming
	Threads
	Locks
	Placeholders
	The event interface to interrupts
	Interaction between threads and process state

	Miscellaneous routines
	Integer bitwise ops
	List procedures
	Password encryption
	Dot-Locking
	Syslog facility
	MD5 interface

	Running scsh
	Scsh command-line switches
	Scripts and programs
	Inserting interpreter triggers into scsh programs
	Module system
	Switches
	The meta argument
	Examples
	Process exit values

	The scsh virtual machine
	VM arguments
	Stripped image
	Inserting interpreter triggers into heap images
	Inserting a double-level trigger into Scheme programs

	Compiling scsh programs
	Standard file locations

	Index

