
The Twisted Documentation

The Twisted Development Team

June 27, 2003

Contents

1 Introduction 11
1.1 High-Level Overview of Twisted . 11
1.2 The Vision For Twisted . 12
1.3 Overview of Twisted Internet . 13
1.4 Overview of Twisted Web . 13

1.4.1 Introduction . 13
1.4.2 Twisted Web’s Structure . 14
1.4.3 Resources . 14
1.4.4 Woven . 14

1.5 Overview of Twisted Spread . 15
1.5.1 Rationale . 15

1.6 Introduction to Twisted Enterprise . 15
1.6.1 Abstract . 15
1.6.2 What you should already know . 15
1.6.3 Quick Overview . 15
1.6.4 How do I use adbapi? . 16
1.6.5 And that’s it! . 17

1.7 Why and How to use Twisted.Cred . 17
1.7.1 Authentication and Account Management in Twisted . 17

1.8 Overview of Twisted IM . 18
1.8.1 Code flow . 18

2 The Basics 20
2.1 Installing Twisted . 20

2.1.1 Installation . 20
2.1.2 Optional Compilation . 20
2.1.3 Running Tests . 21

2.2 The Basics . 21
2.2.1 Application . 21
2.2.2 Serialization . 21
2.2.3 mktap and tapconvert . 22
2.2.4 twistd . 22
2.2.5 tap2deb . 22

2.3 Debugging with Manhole . 23

1

CONTENTS 2

2.3.1 Creating the Manhole Service . 23
2.3.2 Using the Manhole PB Client . 23
2.3.3 Special Commands . 23

2.4 Creating and working with a telnet server . 24
2.4.1 Simple Configuration . 24
2.4.2 More Complicated Configuration . 26

3 Low-Level Twisted 29
3.1 Asynchronous Programming . 29

3.1.1 Introduction . 29
3.1.2 Async Design Issues . 30
3.1.3 Using Reflection . 30

3.2 Reactor Basics . 30
3.3 Writing Servers . 31

3.3.1 Overview . 31
3.3.2 Protocols . 31
3.3.3 Factories . 34

3.4 Writing Clients . 36
3.4.1 Overview . 36
3.4.2 Protocol . 36
3.4.3 ClientFactory . 36
3.4.4 A Higher-Level Example: ircLogBot . 37

3.5 UDP Networking . 38
3.5.1 Overview . 38
3.5.2 DatagramProtocol . 39
3.5.3 Connected UDP . 39

3.6 Using Processes . 40
3.6.1 Overview . 40
3.6.2 Running Another Process . 40
3.6.3 Writing a ProcessProtocol . 41
3.6.4 Things that can happen to your ProcessProtocol . 42
3.6.5 Things you can do from your ProcessProtocol . 42
3.6.6 Verbose Example . 43
3.6.7 Doing it the Easy Way . 44

3.7 Deferring Execution . 45
3.7.1 The Context . 45
3.7.2 Deferreds . 46
3.7.3 Class Overview . 51
3.7.4 DeferredList . 53

3.8 Scheduling tasks for the future . 55
3.9 Using Threads in Twisted . 56

3.9.1 Introduction . 56
3.9.2 Running code in a thread-safe manner . 56
3.9.3 Running code in threads . 56
3.9.4 Utility Methods . 57
3.9.5 Managing the Thread Pool . 57

CONTENTS 3

3.10 Choosing a Reactor and GUI Toolkit Integration . 58
3.10.1 Overview . 58
3.10.2 Reactor Functionality . 59
3.10.3 General Purpose Reactors . 59
3.10.4 Platform-Specific Reactors . 59
3.10.5 GUI Integration Reactors . 60
3.10.6 Non-Reactor GUI Integration . 61

4 High-Level Twisted 62
4.1 Using app.Application . 62

4.1.1 Motivation . 62
4.1.2 Example Application . 63
4.1.3 Saving State Across Sessions: Adding Persistent Data . 65
4.1.4 Configuration arguments . 66

4.2 Writing a New Plug-In for mktap . 67
4.2.1 Getting Started . 67
4.2.2 Twisted and You: Where Does Your Code Fit In? . 67
4.2.3 What is a Plug-In? . 68
4.2.4 Twisted Quotes: A Case Study . 69

4.3 Twisted Enterprise Row Objects . 75
4.3.1 Class Definitions . 75
4.3.2 Initialization . 76
4.3.3 Creating Row Objects . 76
4.3.4 Relationships Between Tables . 77
4.3.5 Duplicate Row Objects . 77
4.3.6 Updating Row Objects . 78
4.3.7 Deleting Row Objects . 78

4.4 Using usage.Options . 78
4.4.1 Introduction . 78
4.4.2 Boolean Options . 78
4.4.3 Parameters . 80
4.4.4 Option Subcommands . 81
4.4.5 Generic Code For Options . 82
4.4.6 Parsing Arguments . 82
4.4.7 Post Processing . 83

4.5 Cooperative Data Flows (via generators) . 83
4.5.1 Background . 83
4.5.2 Iterators and generators . 85
4.5.3 Introducing Flow . 87
4.5.4 Integrating with Twisted . 90
4.5.5 Threading . 93

4.6 DirDBM: Directory-based Storage . 95
4.6.1 dirdbm.DirDBM . 95
4.6.2 dirdbm.Shelf . 95

4.7 Twisted Components: Interfaces and Adapters . 96
4.7.1 twisted.python.components: Twisted’s implementation of Interfaces and Components 98

CONTENTS 4

4.8 Upgrading Applications . 101
4.8.1 Basic Persistence: Application and .tap files . 101
4.8.2 Versioned: New Code Meets Old Data . 102
4.8.3 Rebuild: Loading New Code Without Restarting . 104

5 Perspective Broker 106
5.1 Introduction to Perspective Broker . 106

5.1.1 Introduction . 106
5.1.2 Class Roadmap . 106
5.1.3 Things you can Call Remotely . 108
5.1.4 Things you can Copy Remotely . 108

5.2 Using Perspective Broker . 110
5.2.1 Basic Example . 110
5.2.2 Complete Example . 112
5.2.3 Passing more references . 115
5.2.4 References can come back to you . 116
5.2.5 References to client-side objects . 118
5.2.6 Raising Remote Exceptions . 119
5.2.7 Try/Except blocks and Failure.trap . 122

5.3 PB Copyable: Passing Complex Types . 125
5.3.1 Overview . 125
5.3.2 Motivation . 126
5.3.3 Passing Objects . 126
5.3.4 pb.Copyable . 127
5.3.5 pb.Cacheable . 134

5.4 Authentication with Perspective Broker . 139
5.4.1 Motivation . 139
5.4.2 A sample application . 141
5.4.3 Perspectives . 141
5.4.4 Class Overview . 146
5.4.5 Class Responsibilities . 147
5.4.6 How that example worked . 149
5.4.7 Code Walkthrough: pb.connect() . 150
5.4.8 Viewable . 150
5.4.9 A Larger Example . 151

5.5 Managing Clients of Perspectives . 151
5.5.1 Overview . 151
5.5.2 Clientless Perspective . 152
5.5.3 Single Client . 152
5.5.4 Multiple Client . 157
5.5.5 Anonymous Clients . 158
5.5.6 Feedback . 160

CONTENTS 5

6 Web Applications 161
6.1 Configuring and Using the Twisted.Web Server . 161

6.1.1 Twisted Web Development . 161
6.1.2 Advanced Configuration . 164
6.1.3 Installing a pre-configured server . 167
6.1.4 Using Twisted.Web . 167
6.1.5 Rewriting URLs . 170
6.1.6 Knowing When We’re Not Wanted . 171
6.1.7 As-Is Serving . 171

6.2 Web Application Development . 172
6.2.1 Code layout . 172
6.2.2 Web application deployment . 172
6.2.3 Understanding resource scripts (.rpy files) . 173

6.3 Light Weight Templating With Resource Templates . 173
6.3.1 Overview . 173
6.3.2 Configuring Twisted.Web . 173
6.3.3 Using ResourceTemplate . 173

6.4 Creating XML-RPC Servers and Clients with Twisted . 174
6.4.1 Introduction . 174
6.4.2 Creating a XML-RPC server . 174
6.4.3 SOAP Support . 176
6.4.4 Creating an XML-RPC Client . 176
6.4.5 Serving SOAP and XML-RPC simultaneously . 177

7 Woven 179
7.1 Woven . 179

7.1.1 Twisted Overview . 179
7.1.2 Twisted Web Object Publishing and Woven . 179
7.1.3 Smalltalk Model-View-Controller Overview . 180
7.1.4 Woven Model-View-Controller Overview . 180
7.1.5 Overview of Woven Main Concepts . 181
7.1.6 In Depth Pages about Woven components . 181
7.1.7 Templates . 182
7.1.8 Models . 183
7.1.9 Views . 184
7.1.10 Controllers . 184
7.1.11 Pages . 184
7.1.12 Further Reading . 187

7.2 PicturePile: a tutorial Woven application . 188
7.2.1 Custom Views . 191
7.2.2 Simple Input Handling . 192
7.2.3 Sessions . 193

7.3 Model In Depth . 195
7.3.1 Main Concepts . 195
7.3.2 Submodel Paths . 196
7.3.3 The Model Stack and Relative Submodel Paths . 198

CONTENTS 6

7.3.4 IModel Adapters . 199
7.3.5 Registering an IModel adapter for a class . 200
7.3.6 Model Factories . 200

7.4 View In Depth . 201
7.4.1 Main Concepts . 201
7.4.2 View factories . 202
7.4.3 generate . 202
7.4.4 Widgets . 203
7.4.5 lmx . 204
7.4.6 wvupdate . 206
7.4.7 The View stack . 206

7.5 Controllers in Depth . 207
7.5.1 Main Concepts . 208
7.5.2 Controller factories . 209
7.5.3 Handle . 209
7.5.4 InputHandlers . 209
7.5.5 Event handlers . 210

7.6 LivePage . 211
7.7 Page In Depth . 213

7.7.1 Main Concepts . 213
7.7.2 Root Models . 213
7.7.3 Templates . 214
7.7.4 Child Pages . 214
7.7.5 Factories . 215

7.8 Form In Depth . 217
7.9 Guard In Depth . 217

8 Dot Products 218
8.1 Creating and working with a names (DNS) server . 218
8.2 Using the Lore Documentation System . 219

8.2.1 Writing Lore Documents . 219
8.2.2 Writing Lore XHTML Templates . 222
8.2.3 Using Lore to Generate HTML . 222
8.2.4 Using Lore to Generate LaTex . 222
8.2.5 Linting . 222

8.3 Extending the Lore Documentation System . 223
8.3.1 Overview . 223
8.3.2 Inputs and Outputs . 223
8.3.3 Other Uses for Lore Extensions . 228

8.4 Writing a client with Twisted.Conch . 229
8.4.1 Introduction . 229
8.4.2 Writing a client . 229
8.4.3 The Transport . 229
8.4.4 The Authorization Client . 230
8.4.5 The Connection . 231
8.4.6 The Channel . 231

CONTENTS 7

8.4.7 The main() function . 232

9 Working on the Twisted Code Base 233
9.1 Twisted Coding Standard . 233

9.1.1 Naming . 233
9.1.2 Testing . 233
9.1.3 Whitespace . 234
9.1.4 Modules . 234
9.1.5 Packages . 234
9.1.6 Docstrings . 235
9.1.7 Scripts . 235
9.1.8 Standard Library Extension Modules . 236
9.1.9 ChangeLog . 236
9.1.10 Classes . 236
9.1.11 Methods . 237
9.1.12 Functions . 237
9.1.13 Attributes . 237
9.1.14 Database . 238
9.1.15 C Code . 238
9.1.16 Checkin Messages . 238
9.1.17 Recommendations . 238

9.2 HTML Documentation Standard for Twisted . 239
9.2.1 Allowable Tags . 239
9.2.2 Multi-line Code Snippets . 239
9.2.3 Code inside paragraph text . 240
9.2.4 Headers . 241
9.2.5 XHTML . 241
9.2.6 Tag Case . 241
9.2.7 Footnotes . 241
9.2.8 Suggestions . 241
9.2.9 all . 241

9.3 Unit Tests in Twisted . 241
9.3.1 Unit Tests in the Twisted Philosophy . 241
9.3.2 What to Test, What Not to Test . 242
9.3.3 Running the Tests . 242
9.3.4 Adding a Test . 242
9.3.5 Associating Test Cases With Source Files . 243
9.3.6 Links . 243

9.4 Working from Twisted CVS . 244
9.4.1 Checkout . 244
9.4.2 Alternate tree names . 244
9.4.3 Compiling C extensions . 244
9.4.4 Running tests . 245
9.4.5 Admin scripts . 245
9.4.6 Building docs . 246
9.4.7 Emacs . 246

CONTENTS 8

9.4.8 Building Debian packages . 246

10 Manual Pages 247
10.1 CONCH.1 . 247

10.1.1 NAME . 247
10.1.2 SYNOPSIS . 247
10.1.3 DESCRIPTION . 247
10.1.4 DESCRIPTION . 248
10.1.5 AUTHOR . 248
10.1.6 REPORTING BUGS . 248
10.1.7 COPYRIGHT . 248
10.1.8 SEE ALSO . 248

10.2 GENERATELORE.1 . 249
10.2.1 NAME . 249
10.2.2 SYNOPSIS . 249
10.2.3 DESCRIPTION . 249
10.2.4 DESCRIPTION . 249
10.2.5 SEE ALSO . 249
10.2.6 AUTHOR . 249
10.2.7 REPORTING BUGS . 250
10.2.8 COPYRIGHT . 250

10.3 IM.1 . 251
10.3.1 NAME . 251
10.3.2 SYNOPSIS . 251
10.3.3 DESCRIPTION . 251
10.3.4 AUTHOR . 251
10.3.5 REPORTING BUGS . 251
10.3.6 COPYRIGHT . 251

10.4 MANHOLE.1 . 252
10.4.1 NAME . 252
10.4.2 SYNOPSIS . 252
10.4.3 DESCRIPTION . 252
10.4.4 AUTHOR . 252
10.4.5 REPORTING BUGS . 252
10.4.6 COPYRIGHT . 252

10.5 MKTAP.1 . 253
10.5.1 NAME . 253
10.5.2 SYNOPSIS . 253
10.5.3 DESCRIPTION . 253
10.5.4 portforward options . 253
10.5.5 web options . 253
10.5.6 toc options . 254
10.5.7 mail options . 254
10.5.8 telnet options . 254
10.5.9 socks options . 255
10.5.10 ftp options . 255

CONTENTS 9

10.5.11 manhole options . 255
10.5.12 words options . 255
10.5.13 AUTHOR . 255
10.5.14 REPORTING BUGS . 255
10.5.15 COPYRIGHT . 255
10.5.16 SEE ALSO . 256

10.6 IM.1 . 257
10.6.1 NAME . 257
10.6.2 SYNOPSIS . 257
10.6.3 DESCRIPTION . 257
10.6.4 AUTHOR . 257
10.6.5 REPORTING BUGS . 257
10.6.6 COPYRIGHT . 257

10.7 TAP2DEB.1 . 258
10.7.1 NAME . 258
10.7.2 SYNOPSIS . 258
10.7.3 DESCRIPTION . 258
10.7.4 AUTHOR . 258
10.7.5 REPORTING BUGS . 258
10.7.6 COPYRIGHT . 258
10.7.7 SEE ALSO . 259

10.8 TAPCONVERT.1 . 260
10.8.1 NAME . 260
10.8.2 SYNOPSIS . 260
10.8.3 DESCRIPTION . 260
10.8.4 AUTHOR . 260
10.8.5 REPORTING BUGS . 260
10.8.6 COPYRIGHT . 260
10.8.7 SEE ALSO . 260

10.9 TRIAL.1 . 261
10.9.1 NAME . 261
10.9.2 SYNOPSIS . 261
10.9.3 DESCRIPTION . 261
10.9.4 AUTHOR . 261
10.9.5 REPORTING BUGS . 262
10.9.6 COPYRIGHT . 262

10.10TWISTD.1 . 263
10.10.1 NAME . 263
10.10.2 SYNOPSIS . 263
10.10.3 DESCRIPTION . 263
10.10.4 AUTHOR . 264
10.10.5 REPORTING BUGS . 264
10.10.6 COPYRIGHT . 264
10.10.7 SEE ALSO . 264

10.11WEBSETROOT.1 . 265
10.11.1 NAME . 265

CONTENTS 10

10.11.2 SYNOPSIS . 265
10.11.3 DESCRIPTION . 265
10.11.4 AUTHOR . 265
10.11.5 REPORTING BUGS . 265
10.11.6 COPYRIGHT . 265
10.11.7 SEE ALSO . 265

11 Appendix 266
11.1 The Twisted FAQ . 266

11.1.1 General . 266
11.1.2 Stability . 267
11.1.3 Installation . 267
11.1.4 Core Twisted . 267
11.1.5 Web . 269
11.1.6 Requests and Contributing . 270
11.1.7 Documentation . 271
11.1.8 Communicating with us . 271

11.2 Twisted Glossary . 272
11.3 Banana Protocol Specifications . 276

11.3.1 Introduction . 276
11.3.2 Banana Encodings . 276
11.3.3 Element Types . 276
11.3.4 Profiles . 277
11.3.5 Protocol Handshake and Behaviour . 278

Chapter 1

Introduction

1.1 High-Level Overview of Twisted

11

CHAPTER 1. INTRODUCTION 12

1.2 The Vision For Twisted

Many other documents in this repository are dedicated to defining what Twisted is. Here, I will attempt to explain not
what Twisted is, but what it should be, once I’ve met my goals with it.

First, Twisted should be fun. It began as a game, it is being used commercially in games, and it will be, I hope, an
interactive and entertaining experience for the end-user.

Twisted is a platform for developing internet applications. While python, by itself, is a very powerful language,
there are many facilities it lacks which other languages have spent great attention to adding. It can do this now;
Twisted is a good (if somewhat idiosyncratic) pure-python framework or library, depending on how you treat it, and it
continues to improve.

CHAPTER 1. INTRODUCTION 13

As a platform, Twisted should be focused on integration. Ideally, all functionality will be accessible through
all protocols. Failing that, all functionality should be configurable through at least one protocol, with a seamless
and consistent user-interface. The next phase of development will be focusing strongly on a configuration system
which will unify many disparate pieces of the current infrastructure, and allow them to be tacked together by a non-
programmer.

Twisted should be a collaboration application. The next major phase of development will also involve lots of chat,
mail, and news functionality, both in clients and in servers.

Finally, Twisted should be a personal information space as well as a shared one. Twisted should unify all your
messages and contacts for you across multiple machines and in multiple environments, through multiple modes of
access, while also being industrial-strength enough to run the back end of an online sales service with millions of
users.

1.3 Overview of Twisted Internet

Twisted Internet is a compatible collection of event-loops for Python. It contains the code to dispatch events to
interested observers, and a portable API so that observers need not care about which event loop is running. Thus, it is
possible to use the same code for different loops, from Twisted’s basic, yet portable, select-based loop to the loops
of various GUI toolkits like GTK+ or Tk. Twisted Internet also contains a powerful persistence API so that network
programs can be shutdown and then resurrected with most of the code unaware of this.

Twisted Internet contains the various interfaces to the reactor API, whose usage is documented in the low-level
chapter. Those APIs are IReactorCore, IReactorTCP, IReactorSSL, IReactorUNIX, IReactorUDP,
IReactorTime, IReactorProcess and IReactorThreads. The reactor APIs allow non-persistent calls to
be made.

Twisted Internet also covers the interfaces for the various transports, in ITransport and friends. These inter-
faces allow Twisted network code to be written without regard to the underlying implementation of the transport.

The IProtocolFactory dictates how factories, which are usually a large part of third party code, are written.
The app.Application class allows for a similar API to the reactor, which is automatically persistent. Appli-

cations usually persist and resurrect automatically, depending on the usage. See the Application documentation (page
62) for more information.

1.4 Overview of Twisted Web

1.4.1 Introduction

Twisted Web is a web application server written in pure Python, with APIs at multiple levels of abstraction to facilitate
different kinds of web programming. The most useful for web application designers is Woven (page 179), a high-level
MVC-and-template oriented system. There is also the Resource system, which Woven is built on.

CHAPTER 1. INTRODUCTION 14

1.4.2 Twisted Web’s Structure

When the Web Server receives a request from a Client, it creates a Request object and passes it on to the Resource
system. The Resource system dispatches to the appropriate Resource object based on what path was requested by the
client. The Resource is asked to render itself, and the result is returned to the client.

1.4.3 Resources

Resources are the lowest-level abstraction for applications in the Twisted web server. Each Resource is a 1:1 mapping
with a path that is requested: you can think of a Resource as a single “page” to be rendered. The interface for
making Resources is very simple; they must have a method named render which takes a single argument, which is
the Request object (an instance of twisted.web.server.Request). This render method must return a string,
which will be returned to the web browser making the request. Alternatively, they can return a special constant,
twisted.web.server.NOT DONE YET, which tells the web server not to close the connection; you must then
use request.write(data) to render the page, and call request.finish()whenever you’re done.

1.4.4 Woven

Woven is an added layer of abstraction over Resources – it’s much nicer for most sorts of web applications. For more
information on Woven, see Woven Overview (page 179).

CHAPTER 1. INTRODUCTION 15

1.5 Overview of Twisted Spread

Perspective Broker (affectionately known as “PB”) is an asynchronous, symmetric1, network protocol for secure,
remote method calls. PB is “translucent, not transparent”, meaning that it is very visible and obvious to see the
difference between local method calls and potentially remote method calls, but remote method calls are still extremely
convenient to make, and it is easy to emulate them to have objects which work both locally and remotely.

PB supports user-defined serialized data in return values, which can be either copied each time the value is returned,
or “cached”: only copied once and updated by notifications.

PB gets its name from the fact that access to objects is through a “perspective”. This means that when you are
responding to a remote method call, you can establish who is making the call.

1.5.1 Rationale

No other currently existing protocols have all the properties of PB at the same time. The particularly interesting
combination of attributes, though, is that PB is flexible and lightweight, allowing for rapid development, while still
powerful enough to do two-way method calls and user-defined data types.

It is important to have these attributes in order to allow for a protocol which is extensible. One of the facets of
this flexibility is that PB can integrate an arbitrary number of services could be aggregated over a single connection,
as well as publish and call new methods on existing objects without restarting the server or client.

1.6 Introduction to Twisted Enterprise

1.6.1 Abstract

Twisted is an asynchronous networking framework, but most database API implementations unfortunately have block-
ing interfaces – for this reason, twisted.enterprise.adbapiwas created. It is a non-blocking interface to the
standardized DB-API 2.0 API, which allows you to access a number of different RDBMSes.

1.6.2 What you should already know
� Python :-)

� How to write a simple Twisted Server (see this tutorial (page 31) to learn how)

� Familiarity with using database interfaces (see the documentation for DBAPI 2.02 or this article3 by Andrew
Kuchling)

1.6.3 Quick Overview

Twisted is an asynchronous framework. This means standard database modules cannot be used directly, as they
typically work something like:

1There is a negotiation phase for banana with particular roles for listener and initiator, so it’s not completely symmetric, but after the connection
is fully established, the protocol is completely symmetrical.

2http://www.python.org/topics/database/DatabaseAPI-2.0.html
3http://www.amk.ca/python/writing/DB-API.html

CHAPTER 1. INTRODUCTION 16

Create connection...
db = dbmodule.connect(’mydb’, ’andrew’, ’password’)
...which blocks for an unknown amount of time

Create a cursor
cursor = db.cursor()

Do a query...
resultset = cursor.query(’SELECT * FROM table WHERE ...’)
...which could take a long time, perhaps even minutes.

Those delays are unacceptable when using an asynchronous framework such as Twisted. For this reason, twisted
provides twisted.enterprise.adbapi, an asynchronous wrapper for any DB-API 2.04-compliant module. It
is currently best tested with the pyPgSQL5 module for PostgreSQL6.

enterprise.adbapi will do blocking database operations in seperate threads, which trigger callbacks in the
originating thread when they complete. In the meantime, the original thread can continue doing normal work, like
servicing other requests.

1.6.4 How do I use adbapi?

Rather than creating a database connection directly, use the adbapi.ConnectionPool class to manage a connec-
tions for you. This allows enterprise.adbapi to use multiple connections, one per thread. This is easy:

Using the "dbmodule" from the previous example, create a ConnectionPool
from twisted.enterprise import adbapi
dbpool = adbapi.ConnectionPool("dbmodule", ’mydb’, ’andrew’, ’password’)

Things to note about doing this:

� There is no need to import dbmodule directly. You just pass the name to adbapi.ConnectionPool’s
constructor.

� The parameters you would pass to dbmodule.connect are passed as extra arguments to adbapi.Connection
Pool’s constructor. Keyword parameters work as well.

Now we can do a database query:

equivalent of cursor.execute(statement), return cursor.fetchall():
def getAge(user):

return dbpool.runQuery("SELECT age FROM users WHERE name = ?", user)

def printResult(l):
if l:

print l[0][0], "years old"
else:

4http://www.python.org/topics/database/DatabaseAPI-2.0.html
5http://pypgsql.sourceforge.net/
6http://www.postgresql.org/

CHAPTER 1. INTRODUCTION 17

print "No such user"

getAge("joe").addCallback(printResult)

This is straightforward, except perhaps for the return value of getAge. It returns a twisted.internet.
defer.Deferred, which allows arbitrary callbacks to be called upon completion (or upon failure). More docu-
mentation on Deferred is available here (page 45).

In addition to runQuery, there is also runOperation, and runInteraction that gets called with a
callable (e.g. a function). The function will be called in the thread with a twisted.enterprise.adbapi.
Transaction, which basically mimics a DB-API cursor. In all cases a database transaction will be commited after
your database usage is finished, unless an exception is raised in which case it will be rollbacked.

Also worth noting is that this example assumes that dbmodule uses the “qmarks” paramstyle (see the DB-API
specification). If your dbmodule uses a different paramstyle (e.g. pyformat) then use that. Twisted doesn’t attempt to
offer any sort of magic paramater munging – runQuery(query, params, ...) maps directly onto cursor.
execute(query, params, ...).

1.6.5 And that’s it!

That’s all you need to know to use a database from within Twisted. You probably should read the adbapi module’s
documentation to get an idea of the other functions it has, but hopefully this document presents the core ideas.

1.7 Why and How to use Twisted.Cred

1.7.1 Authentication and Account Management in Twisted

(This document is a work in progress. Later it will include some examples but for now a brief explanation is better
than nothing!)

Twisted unifies authentication and account management of multiple services in the Twisted.Cred package. Al-
though this authentication model was originally designed to integrate services in the Perspective Broker (page 15)
remote method invocation protocol, it is useful in many kinds of servers, and work is underway to move all systems
that require log-in in Twisted to use twisted.cred.

In order to use twisted.cred, your code has to be structured around a subclass of Service. A service is a particular
unit of functionality which has a way to request Perspective objects. You will probably have to subclass both of
these.

In order to simplify integration of services that come from lots of different places, Twisted.Cred presents user-
account related information in two different ways. Application-independent user information, such as passwords,
public keys, and other things related to the existence and authentication of a particular person should reside in an
Identity. Information related to a particular service, such as e-mail messages, high scores, or to-do lists should be
represented by a Perspective.

In support of these two basic abstractions is the Authorizer. An authorizer serves primarily as the storage
mechanism for a collection of identities. Its usage varies depending on whether the services it is providing authentica-
tion for can support multiple services on one port. Authorizer is an abstract class, but you don’t need to implement
your own; the simplest authorizer to get started with is DefaultAuthorizer.

At this point, there are basically 2 ways that an authorizer can be used. It is either the root of a PB object hierarchy,
or simply the authorizer for some number of non-PB services.

CHAPTER 1. INTRODUCTION 18

Setting Up a Service

from twisted.internet.app import MultiService
A service which collects other services.
from twisted.cred.authorizer import DefaultAuthorizer
A simple in-memory Authorizer implementation.
from my.service import MyService, OtherService
Two sample user-written services.

multiserv = MultiService("pb")
multiservice named "pb" to hold other services
auth = DefaultAuthorizer()
auth.setApplication(multiserv)
the authorizer for both of our other services
myserv = MyService("my service", multiserv, auth)
otherserv = OtherService("another service", multiserv, auth)
create both of our services pointing to their authorizer

from twisted.internet import reactor
from twisted.spread import pb
reactor.listenTCP(pb.portno, pb.AuthRoot(auth))
If the services are all pb.Service subclasses, we can connect them to a
network like this. It will look up services through the serviceCollection
passed to the Authorizer; which in this case was a MultiService but could
also be an Application.

1.8 Overview of Twisted IM

Twisted IM (Instance Messenger) is a multi-protocol chat framework, based on the Twisted framework we’ve all come
to know and love. It’s fairly simple and extensible in two directions - it’s pretty easy to add new protocols, and it’s
also quite easy to add new front-ends.

1.8.1 Code flow

Twisted IM is usually started from the file twisted/scripts/im.py (maybe with a shell-script wrapper or
similar). Twisted currently comes with two interfaces for Twisted IM - one written in GTK for Python under Linux,
and one written in Swing for Jython. im.py picks an implementation and starts it - if you want to write your own
interface, you can modify im.py to start it under appropriate conditions.

Once started, both interfaces behave in a very similar fashion, so I won’t be getting into differences here.

AccountManager

Control flow starts at the relevant subclass of baseaccount.AccountManager. The AccountManager is respon-
sible for, well, managing accounts - remembering what accounts are available, their settings, adding and removal of
accounts, and making accounts log on at startup.

CHAPTER 1. INTRODUCTION 19

This would be a good place to start your interface, load a list of accounts from disk and tell them to login. Most
of the method names in AccountManager are pretty self-explanatory, and your subclass can override whatever it
wants, but you need to override init . Something like this:

def __init__(self):
self.chatui = ... # Your subclass of basechat.ChatUI
self.accounts = ... # Load account list
for a in self.accounts:
a.logOn(self.chatui)

ChatUI

Account objects talk to the user via a subclass of basechat.ChatUI. This class keeps track of all the various
conversations that are currently active, so that when an account receives and incoming message, it can put that message
in its correct context.

How much of this class you need to override depends on what you need to do. You will need to override get
Conversation (a one-on-one conversation, like an IRC DCC chat) and getGroupConversation (a multiple
user conversation, like an IRC channel). You might want to override getGroup and getPerson.

The main problem with the default versions of the above routines is that they take a parameter, Class, which
defaults to an abstract implementation of that class - for example, getConversation has a Class parameter that
defaults to basechat.Conversationwhich raises a lot of NotImplementedErrors. In your subclass, over-
ride the method with a new method whose Class parameter defaults to your own implementation of Conversation,
that simply calls the parent class’ implementation.

Conversation and GroupConversation

These classes are where your interface meets the chat protocol. Chat protocols get a message, find the appropriate
Conversation or GroupConversation object, and call its methods when various interesting things happen.

Override whatever methods you want to get the information you want to display. You must override the hide
and show methods, however - they are called frequently and the default implementation raises NotImplemented
Error.

Accounts

An account is an instance of a subclass of basesupport.AbstractAccount. For more details and sample code,
see the various *support files in twisted.im.

Chapter 2

The Basics

2.1 Installing Twisted

2.1.1 Installation

If you are on Windows, you may want to skip this and simply get the Windows Installer version of Twisted from the
download page1.

If you are on Debian. you may want to use the Debian packages. The last stable release of
Twisted is at “deb http://twistedmatrix.com/users/moshez/apt ./”, and the last prerelease of Twisted is at “deb
http://twistedmatrix.com/users/moshez/snapshot ./”

To install Twisted, just make sure the Twisted-$VERSION/ directory is in the PYTHONPATH environment
variable. For example, if you extracted Twisted-1.0.6.tar.gz to /home/bob/, then you would have something like:

export PYTHONPATH=$PYTHONPATH:/home/bob/Twisted-1.0.6/

in your ˜/.bash profile, ˜/.zshrc, ˜/.cshrc, etc. If you use Windows NT, 2000, or XP, then set your
environment variables by right-clicking on My Computer and selecting Properties, then the Advanced tab, and click
on the “Environment Variables” button. If you use some other version of windows, you’ll need to set the variable at a
command prompt, or in autoexec.bat, with the ’set’ command.

If you’d like to install Twisted system-wide on your machine and into the default PYTHONPATH, you can use
setup.py to do so:

python ./setup.py install

Be sure to run setup.py with appropriate privileges (root under Unix).

2.1.2 Optional Compilation

There are a couple of small optional alternative implementations of pieces of Twisted that are in C for increased
performance. If you don’t run the installer, and you need these modules, you’ll need to perform a couple of extra
steps:

1http://www.twistedmatrix.com/products/download

20

CHAPTER 2. THE BASICS 21

$ python ./setup.py build_ext

This will (eventually) generate some shared libraries (cBanana.so, cReactor.so) within a directory tree called
’build’ under the Twisted directory.

If you don’t go on to install the build results into a directory on the $PYTHONPATH, then you will need to create
a couple of symlinks:

$ cd twisted/spread
$ ln -s ../../build/lib.linux-i686-2.1/twisted/spread/cBanana.so cBanana.so
$ cd ../internet
$ ln -s ../../build/lib.linux-i686-2.1/twisted/internet/cReactor.so cReactor.so

The exact details of the symlinks may vary based on your system.

2.1.3 Running Tests

See our unit tests run, proving that the software is BugFree(TM):

% admin/runtests

(From the directory where Twisted was originally untarred/unzipped to.)
Some of these tests will fail if you don’t have the Crypto packages installed on your system.

2.2 The Basics

2.2.1 Application

Twisted programs usually work with twisted.internet.app.Application. This class usually holds all
persistent configuration of a running server – ports to bind to, places where connections to must be kept or attempted,
periodic actions to do and almost everything else.

Other HOWTOs describe how to write custom code for Applications, but this one describes how to use already
written code (which can be part of Twisted or from a third-party Twisted plugin developer). The Twisted distribution
comes with an assortment of tools to create and manipulate Applications.

Applications are just Python objects, which can be created and manipulated in the same ways as any other
object. In particular, they can be serialized to files. Twisted supports several serialization formats.

2.2.2 Serialization

TAP A Twisted Application Pickle. This format is supported by the native Python pickle support. While not being
human readable, this format is the fastest to load and save.

TAX Twisted contains twisted.persisted.marmalade, a module that supports serializing and deserializing
from a format which follows the XML standard. This format is human readable and editable.

TAS Twisted contains twisted.persisted.aot, a module that supports serializing into Python source. This
has the advantage of using Python’s own parser and being able to later manually add Python code to the file.

CHAPTER 2. THE BASICS 22

2.2.3 mktap and tapconvert

The mktap(1) utility is the main way to create a TAP (or TAX or TAS) file. It can be used to create an Application
for all of the major Twisted server types like web, ftp or IRC. It also supports plugins, so when you install a Twisted
plugin (that is, unpack it into a directory on your PYTHONPATH) it will automatically detect it and use any Twisted
Application support in it. It can create any of the above Application formats.

In order to see which server types are available, use mktap --help. For a given server, mktap --help
<name> shows the possible configuration options. mktap supports a number of generic options to configure the
application – for full details, read the man page.

One important option is --append <filename>. This is used when there is already a Twisted application
serialized to which a server should be added. For example, it can be used to add a telnet server, which would let you
probe and reconfigure the application by telnetting into it.

Another useful utility is tapconvert(1), which converts between all three Application formats.

2.2.4 twistd

Having an Application in a variety of formats, aesthetically pleasing as it may be, does not actually cause anything
to happen. For that, we need a program which takes a “dead” Application and brings life to it. For UNIX systems
(and, until there are are alternatives, for other operating systems too), this program is twistd(1). Strictly speak-
ing, twistd is not necessary – unserializing the application and calling its .run method could be done manually.
twistd(1), however, supplies many options which are highly useful for program set up.

twistd supports choosing a reactor (for more on reactors, see Choosing a Reactor (page 58)), logging to a log-
file, daemonizing and more. twistd supports all Applications mentioned above – and an additional one. Some-
times is is convenient to write the code for building a class in straight Python. One big source of such Python
files is the doc/examples directory. When a straight Python file which defines an Application object called
application is used, use the -y option.

When twistd runs, it records its process id in a twistd.pid file (this can be configured via a command line
switch). In order to shutdown the twistd process, kill that pid (usually you would do kill ‘cat twisted.
pid‘). When the process is killed in an orderly fashion it will leave behind the “shutdown Application” which is
named the same as the original file with a -shutdown added to its base name. This contains the new configuration
information, as changed in the application.

As always, the gory details are in the manual page.

2.2.5 tap2deb

For Twisted-based server application developers who want to deploy on Debian, Twisted supplies the tap2deb
program. This program wraps a Twisted Application file (of any of the supported formats – Python, source, xml or
pickle) in a Debian package, including correct installation and removal scripts and init.d scripts. This frees the
installer from manually stopping or starting the service, and will make sure it goes properly up on startup and down
on shutdown and that it obeys the init levels.

For the more savvy Debian users, the tap2deb also generates the source package, allowing her to modify and
polish things which automated software cannot detect (such as dependencies or relationships to virtual packages). In
addition, the Twisted team itself intends to produce Debian packages for some common services, such as web servers
and an inetd replacement. Those packages will enjoy the best of all worlds – both the consistency which comes from
being based on the tap2deb and the delicate manual tweaking of a Debian maintainer, insuring perfect integration
with Debian.

CHAPTER 2. THE BASICS 23

Right now, there is a beta Debian archive of a web server available at Moshe’s archive2.

2.3 Debugging with Manhole

2.3.1 Creating the Manhole Service

In order to create a manhole server, use a command like mktap manhole -u [username] -w [password].
If you’ve already got a “TAP” for a server, you can use the argument --append [tapname] to mktap to add a
manhole service to that “TAP”.

2.3.2 Using the Manhole PB Client

The second service offered by twisted.manhole is a Perspective Broker -based server. This gives the client a remote ref-
erence to a twisted.manhole.service.Service object, which offers remotely-callable methods to evaluate
Python code.

With this in place and running, you’re ready to connect with the manhole client. This is a Gtk+-based GUI
application named manhole that gets installed along with the rest of twisted. Execute the command manhole
to start the client, and it will bring up a dialog that asks for hostname, port number, Service name, username, and
password (and also “Perspective” but don’t worry about that for now). Use the default host/port of localhost/8787 to
indicate where the twisted.manhole service is listening, and use boss/sekrit for the username and password. Use
the default Service name “twisted.manhole”, and leave the Perspective blank.

Click the “Log In” button to establish the connection, and you will be greeted with a short message in a window
with an output area in the top, and an input area at the bottom. This is just like the python interpreter accessed through
the telnet shell, but with a different GUI. You can type arbitrary python code into the input area and get the results in
the output area. Note that multi-line sequences are all sent together, so if you define a function (or anything else that
uses indentation to tell the interpreter that you aren’t finished yet), you’ll need to type one additional Return to tell the
client to send off the code.

At this point, you can get access to the main Application object just like you did before with the telnet-based
shell. You can use that to obtain the Service objects inside it, or references to the Factory objects that are listening
on TCP or UDP ports, by doing:

from twisted.internet import app
a = app.theApplication
service = a.getServiceNamed("twisted.manhole")
(port, factory, backlog, interface) = a.tcpPorts[0]

After that, you can do anything you want with those objects.

2.3.3 Special Commands

Note:
At this time, not all commands are available in all manhole clients. /browse is currently only

implemented in the GTK 1.x client, the “Spelunking” view is only available with GTK 1.x + GNOME.

2http://twistedmatrix.com/users/moshez/apt

CHAPTER 2. THE BASICS 24

There are a few special commands so far that make debugging Twisted objects really nice. Well, just one at
the moment, really: /browse. You can /browse any type of object, and it will give you some nice information
about that object in the “Spelunking” window that pops up when manhole establishes a connection to the manhole
Service. Try the following in the manhole window and watch what happens in the “Spelunking” box (word wrapped
for clarity):

/browse ["hello", "there"]
<ObjectLink of ["hello", "there"] type list>:
[’hello’,
’there’,]

class A:
def foo(self):

self.x = 1

x = A()
/browse x
<ObjectLink of x type instance>:

{members: {}
class: ’A’
methods: {}}

TODO: Add an example using twisted.python.rebuild.rebuild. This lets you tell your application
(remotely) to reload its classes, allowing you to upgrade a running server without missing a beat.

Have fun!

2.4 Creating and working with a telnet server

2.4.1 Simple Configuration

To start things off, we’re going to create a simple server that just gives you remote access to a Python interpreter. We
will use a telnet client to access this server.

Run mktap telnet -p 4040 -u admin -w admin at your shell prompt. If you list the contents of your
current directory, you’ll notice a new file – telnet.tap. After you do this, run twistd -f telnet.tap. Since
the Application has a telnet server that you specified to be on port 4040, it will start listening for connections on this
port. Try connecting with your favorite telnet utility to 127.0.0.1 port 4040.

$ telnet localhost 4040
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.

twisted.manhole.telnet.ShellFactory
Twisted 1.0.4
username: admin

CHAPTER 2. THE BASICS 25

password: admin
>>>

Now, you should see a Python prompt – >>>. You can type any valid Python code here. Let’s try looking around.

>>> dir()
[’__builtins__’]

Ok, not much. let’s play a little more:

>>> import __main__
>>> dir(__main__)
[’__builtins__’, ’__doc__’, ’__name__’, ’os’, ’run’, ’string’, ’sys’]

>>> from twisted.internet import app
>>> app.theApplication
<’telnet’ app>
>>> app.theApplication.tcpPorts
[(4040, <twisted.manhole.telnet.ShellFactory instance at 0x8268edc>,5,’’)]

From this session we learned that there is an application object stored in twisted.internet.app.the
Application that’s a telnet app, and that it is listening on port 4040 with something called a ShellFactory.
There are lots of other attributes in theApplication, which we’re not going to worry about for now.

Alright, so now you’ve decided that you hate Twisted and want to shut it down. Or you just want to go to
bed. Either way, I’ll tell you what to do. First, disconnect from your telnet server. Then, back at your system’s
shell prompt, type kill ‘cat twistd.pid‘ (the quotes around cat twistd.pid are backticks, not single-
quotes). If you list the contents of your current directory again, you’ll notice that there will be a file named telnet-
shutdown.tap. If you wanted to restart the server with exactly the same state as you left it, you could just run twistd
-f telnet-shutdown.tap. This is why Twisted doesn’t need any sort of configuration files – all the configura-
tion data is stored right in the objects!

Now that you’ve learned how to create a telnet server with ’mktap telnet’, we’ll delve a little deeper and learn how
one is created behind the scenes. Start up a python interpreter and make sure that the ’twisted’ directory is in your
module search path.

Python 2.2.2 (#1, Mar 21 2003, 23:01:54)
[GCC 3.2.3 20030316 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.path.append(’/twisted/Twisted’)

I installed Twisted in /twisted, so the place where my ’twisted’ package directory is at is /twisted/Twisted/twisted
(confusing, I know). For Python to find the ’twisted’ package, it must have the directory containing the package in
sys.path – which is why I added /twisted/Twisted.

>>> from twisted.internet import app
>>> from twisted.manhole import telnet
>>> application = app.Application(’telnet’)
>>> ts = telnet.ShellFactory()
>>> application.listenTCP(4040, ts)

CHAPTER 2. THE BASICS 26

The above is basically what mktap telnet does. First we create a new Twisted Application, we create a new
telnet Shell Factory, and we tell the application to listen on TCP port 4040 with the ShellFactory we’ve created.

Now let’s start the application. This causes all ports on the application to start listening for incoming connections.
This step is basically what the ’twistd’ utility does.

>>> application.run()
twisted.protocols.telnet.ShellFactory starting on 4040

You now have a functioning telnet server! You can connect with your telnet program and work with it just the
same as you did before. The username and password both default to “admin”, but you can change those by modifying
the attributes of the ShellFactory object you created earlier. When you’re done using the telnet server, you can
switch back to your python console and hit ctrl-C. The following should appear:

Starting Shutdown Sequence.
Stopping main loop.
Main loop terminated.
Saving telnet application to telnet-shutdown.tap...
Saved.
>>>

Your server was pickled up again and saved to the telnet-shutdown.tap file, just like when you did kill ‘cat
twistd.pid‘.

2.4.2 More Complicated Configuration

Let’s suppose that we have the following application:

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet.protocol import Factory
from twisted.protocols.wire import QOTD

app = Application("demo")

add QOTD server
f = Factory()
f.protocol = QOTD
app.listenTCP(8123, f)

app.run()

Source listing — manhole1.py

This will give us a basic quote-of-the-day server: running telnet localhost 8123 will give us a quote.
However, once this is running, it would be nice to poke around inside it. We can add the manhole-shell by adding a
few lines to create a new server (a Factory) listening on a different point:

CHAPTER 2. THE BASICS 27

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet.protocol import Factory
from twisted.protocols.wire import QOTD
import twisted.manhole.telnet

app = Application("demo")

add QOTD server
f = Factory()
f.protocol = QOTD
app.listenTCP(8123, f)

Add a manhole shell
f = twisted.manhole.telnet.ShellFactory()
f.username = "boss"
f.password = "sekrit"
f.namespace[’foo’] = 12
app.listenTCP(8007, f)

app.run()

Source listing — manhole2.py

With this in place, you can telnet to port 8007, give the username “boss” and password “sekrit”, and you’ll end
up with a shell that behaves very much like the Python interpreter that you get by running python all by itself, with
lines you type prefixed with >>>.

% telnet localhost 8007
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.

twisted.manhole.telnet.ShellFactory
Twisted 0.99.2
username: boss
password: *****
>>>

Note that the original Quote-Of-The-Day server is still running on port 8123 by using nc localhost 8123
(or telnet localhost 8123 if you don’t have netcat installed).

% nc localhost 8123
An apple a day keeps the doctor away.

The initial namespace of the manhole interpreter is defined by a dictionary stored in the ’namespace’ at-
tribute of the ShellFactory. For convenience, you can put references to any objects you like in that dict (f.

CHAPTER 2. THE BASICS 28

namespace[’foo’] = 12), and then retrieve them by name from the telnet session.

>>> foo
12

Of course we can change that namespace by evaluating expressions in the interpreter. To be a useful debugging
tool, however, we want to get access to our servers (the protocol Factory instances and everything hanging off of
them). We start by gaining access to the main Application instance through a global variable stored in the app
module (assuming we ran using an Application and not the reactor directly):

>>> import twisted.internet.app
>>> a = twisted.internet.app.theApplication
>>> a
<’demo’ app>

This object holds a number of things of interest: the list of Services (subclasses of ApplicationService that have
been added to the application, most notably Perspective Broker services), and the list of ports on which protocol
Factories are listening. The ports are kept in a number of lists, and the Factory object itself is available inside those
lists (word wrapped for clarity):

>>> a.tcpPorts
[(8123, <twisted.internet.protocol.Factory instance at 0x8249b8c>, 5, ’’),
(8007, <twisted.manhole.telnet.ShellFactory instance at 0x824aefc>, 5, ’’)
]
>>> f = a.tcpPorts[0][1]
>>> f
<twisted.internet.protocol.Factory instance at 0x8249b8c>

Now that we have access to that QOTD Factory, what can we do? We can modify any attribute of the object, or
call functions on it. Remember that the Factory stores a reference to a subclass of Protocol, and it uses that reference
to create new Protocol instances for each new connection. We can change that reference to make the Factory create
something else:

>>> f.protocol
<class twisted.protocols.wire.QOTD at 0x824a66c>
>>> from twisted.protocols.wire import Daytime
>>> f.protocol = Daytime

Congratulations, you’ve just changed the Factory to use the Daytime protocol instead of the QOTD protocol. You
have just transformed the QOTD server into a Daytime server. Connect to port 8123 now and see the difference: you
get a timestamp instead of a quote:

% nc localhost 8123
Sat Sep 28 09:11:37 2002

From here, you can do anything you want to your application. It is a good idea to check the source for the
Application and Service classes to see what else you can extract from them.

Note: to terminate your session, you’ll need to exit the telnet or netcat program (the usual control-D that works
in the Python interpreter won’t work here). Try control-] for telnet. Also note that any exceptions caused by your
manhole session will be displayed both in the telnet session and in the stderr on the application side.

Chapter 3

Low-Level Twisted

3.1 Asynchronous Programming

3.1.1 Introduction

There are many ways to write network programs. The main ones are:

1. Handle each connection in a separate process

2. Handle each connection in a separate thread1

3. Use non-blocking system calls to handle all connections in one thread.

When dealing with many connections in one thread, the scheduling is the responsibility of the application, not the
operating system, and is usually implemented by calling a registered function when each connection is ready to for
reading or writing – commonly known as asynchronous, event-driven or callback-based programming.

Multi-threaded programming is tricky, even with high level abstractions, and Python’s Global Interpreter Lock2

limits the potential performance gain. Forking Python processes also has many disadvantages, such as Python’s
reference counting not playing well with copy-on-write and problems with shared state. Consequently, it was felt
the best option was an event-driven framework. A benefit of such an approach is that by letting other event-driven
frameworks take over the main loop, server and client code are essentially the same – making peer-to-peer a reality.

However, event-driven programming still contains some tricky aspects. As each callback must be finished as soon
as possible, it is not possible to keep persistent state in function-local variables. In addition, some programming
techniques, such as recursion, are impossible to use – for example, this rules out protocol handlers being recursive-
descent parsers. Event-driven programming has a reputation of being hard to use due to the frequent need to write
state machines. Twisted was built with the assumption that with the right library, event-driven programming is easier
than multi-threaded programming.

Note that Twisted still allows the use of threads if you really need them, usually to interface with synchronous
legacy code. See Using Threads (page 56) for details.

1There are variations on this method, such as a limited-size pool of threads servicing all connections, which are essentially just optimizations of
the same idea.

2http://www.python.org/doc/current/api/threads.html

29

CHAPTER 3. LOW-LEVEL TWISTED 30

3.1.2 Async Design Issues

In Python, code is often divided into a generic class calling overridable methods which subclasses implement. In that,
and similar, cases, it is important to think about likely implementations. If it is conceivable that an implementation
might perform an action which takes a long time (either because of network or CPU issues), then one should design
that method to be asynchronous. In general, this means to transform the method to be callback based. In Twisted, it
usually means returning a Deferred (page 45).

Since non-volatile state cannot be kept in local variables, because each method must return quickly, it is usually
kept in instance variables. In cases where recursion would have been tempting, it is usually necessary to keep stacks
manually, using Python’s list and the .append and .pop method. Because those state machines frequently get non-
trivial, it is better to layer them such that each one state machine does one thing – converting events from one level of
abstraction to the next higher level of abstraction. This allows the code to be clearer, as well as easier to debug.

3.1.3 Using Reflection

One consequence of using the callback style of programming is the need to name small chunks of code. While this
may seem like a trivial issue, used correctly it can prove to be an advantage. If strictly consistent naming is used, then
much of the common code in parsers of the form of if/else rules or long cases can be avoided. For example, the SMTP
client code has an instance variable which signifies what it is trying to do. When receiving a response from the server,
it just calls the method "do %s %s" % (self.state, responseCode). This eliminates the requirement for
registering the callback or adding to large if/else chains. In addition, subclasses can easily override or change the
actions when receiving some responses, with no additional harness code. The SMTP client implementation can be
found in twisted/protocols/smtp.py.

3.2 Reactor Basics

The reactor is the core of the event loop within Twisted and provides a basic interface to a number of services, including
network communications, threading, and event dispatching.

There are multiple implementations of the reactor, each modified to provide better support for specialized features
over the default implementation. More information about these and how to use a particular implementation is available
via Choosing a Reactor (page 58).

You can get to the reactor object using the following code:

from twisted.internet import reactor

The reactor usually implements a set of interfaces, but depending on the chosen reactor and the platform, some of
the interfaces may not be implemented:

� IReactorCore: Core (required) functionality.

� IReactorFDSet: Use FileDescriptor objects.

� IReactorProcess: Process management. Read the Using Processes (page 40) document for more informa-
tion.

� IReactorSSL: SSL networking support.

� IReactorTCP: TCP networking support. More information can be found in the Writing Servers (page 31) and
Writing Clients (page 36) documents.

CHAPTER 3. LOW-LEVEL TWISTED 31

� IReactorThreads: Threading use and management. More information can be found within Threading In
Twisted (page 56).

� IReactorTime: Scheduling interface. More information can be found within Scheduling Tasks (page 55).

� IReactorUDP: UDP networking support. More information can be found within UDP Networking (page 38).

� IReactorUNIX: UNIX socket support.

3.3 Writing Servers

3.3.1 Overview

Twisted is a framework designed to be very flexible and let you write powerful servers. The cost of this flexibility is a
few layers in the way to writing your server.

This document describes the Protocol layer, where you implement protocol parsing and handling. If you are
implementing an application then you should read this document second, after first reading the top level overview
of how to begin writing your Twisted application, in Writing Plug-Ins for Twisted (page 67). This document is only
relevant to TCP, SSL and Unix socket servers, there is a separate document (page 38) for UDP.

Your protocol handling class will usually subclass twisted.internet.protocol.Protocol. Most pro-
tocol handlers inherit either from this class or from one of its convenience children. An instance of the protocol class
might be instantiated per-connection, on demand, and might go away when the connection is finished. This means that
persistent configuration is not saved in the Protocol.

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.
protocol.Factory. The default factory class just instantiates each Protocol, and then sets on it an attribute
called factory which points to itself. This lets every Protocol access, and possibly modify, the persistent con-
figuration.

It is usually useful to be able to offer the same service on multiple ports or network addresses. This is why the
Factory does not listen to connections, and in fact does not know anything about the network. See twisted.
internet.interfaces.IReactorTCP.listenTCP, and the other IReactor*.listen* APIs for more
information.

This document will explain each step of the way.

3.3.2 Protocols

As mentioned above, this, along with auxiliary classes and functions, is where most of the code is. A Twisted protocol
handles data in an asynchronous manner. What this means is that the protocol never waits for an event, but rather
responds to events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def dataReceived(self, data):
self.transport.write(data)

CHAPTER 3. LOW-LEVEL TWISTED 32

This is one of the simplest protocols. It simply writes back whatever is written to it, and does not respond to all
events. Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away\r\n")
self.transport.loseConnection()

This protocol responds to the initial connection with a well known quote, and then terminates the connection.
The connectionMade event is usually where set up of the connection object happens, as well as any initial greetings

(as in the QOTD protocol above, which is actually based on RFC 865). The connectionLost event is where tearing
down of any connection-specific objects is done. Here is an example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def connectionMade(self):
self.factory.numProtocols = self.factory.numProtocols+1
if self.factory.numProtocols > 100:

self.transport.write("Too many connections, try later")
self.transport.loseConnection()

def connectionLost(self, reason):
self.factory.numProtocols = self.factory.numProtocols-1

def dataReceived(self, data):
self.transport.write(data)

Here connectionMade and connectionLost cooperate to keep a count of the active protocols in the factory.
connectionMade immediately closes the connection if there are too many active protocols.

Using the Protocol

In this section, I will explain how to test your protocol easily. (In order to see how you should write a production-grade
Twisted server, though, you should read the Writing Plug-Ins for Twisted (page 67) HOWTO as well).

Here is code that will run the QOTD server discussed earlier

from twisted.internet.protocol import Protocol, Factory
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away\r\n")

CHAPTER 3. LOW-LEVEL TWISTED 33

self.transport.loseConnection()

Next lines are magic:
factory = Factory()
factory.protocol = QOTD

8007 is the port you want to run under. Choose something >1024
reactor.listenTCP(8007, factory)
reactor.run()

Don’t worry about the last 6 magic lines – you will understand what they do later in the document.

Helper Protocols

Many protocols build upon similar lower-level abstraction. The most popular in internet protocols is being line-based.
Lines are usually terminated with a CR-LF combinations.

However, quite a few protocols are mixed - they have line-based sections and then raw data sections. Examples
include HTTP/1.1 and the Freenet protocol.

For those cases, there is the LineReceiver protocol. This protocol dispatches to two different event handlers
- lineReceived and rawDataReceived. By default, only lineReceived will be called, once for each line.
However, if setRawMode is called, the protocol will call rawDataReceived until setLineMode is called again.

Here is an example for a simple use of the line receiver:

from twisted.protocols.basic import LineReceiver

class Answer(LineReceiver):

answers = {’How are you?’: ’Fine’, None : "I don’t know what you mean"}

def lineReceived(self, line):
if self.answers.has_key(line):

self.sendLine(self.answers[line])
else:

self.sendLine(self.answers[None])

Note that the delimiter is not part of the line.
Several other, less popular, helpers exist, such as a netstring based protocol and a prefixed-message-length protocol.

State Machines

Many Twisted protocol handlers need to write a state machine to record the state they are at. Here are some pieces of
advice which help to write state machines:

� Don’t write big state machines. Prefer to write a state machine which deals with one level of abstraction at a
time.

� Use Python’s dynamicity to create open ended state machines. See, for example, the code for the SMTP client.
� Don’t mix application-specific code with Protocol handling code. When the protocol handler has to make an

application-specific call, keep it as a method call.

CHAPTER 3. LOW-LEVEL TWISTED 34

3.3.3 Factories

As mentioned before, usually the class twisted.internet.protocol.Factoryworks, and there is no need
to subclass it. However, sometimes there can be factory-specific configuration of the protocols, or other considerations.
In those cases, there is a need to subclass Factory.

For a factory which simply instantiates instances of a specific protocol class, simply instantiate Factory, and
sets its protocol attribute:

from twisted.internet.protocol import Factory
from twisted.protocols.wire import Echo

myFactory = Factory()
myFactory.protocol = Echo

If there is a need to easily construct factories for a specific configuration, a factory function is often useful:

from twisted.internet.protocol import Factory, Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quote+’\r\n’)
self.transport.loseConnection()

def makeQOTDFactory(quote=None):
factory = Factory()
factory.protocol = QOTD
factory.quote = quote or ’An apple a day keeps the doctor away’
return factory

A Factory has two methods to perform application-specific building up and tearing down (since a Factory is
frequently persisted, it is often not appropriate to do them in init or del , and would frequently be too
early or too late).

Here is an example of a factory which allows its Protocols to write to a special log-file:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class LoggingProtocol(LineReceiver):

def lineReceived(self, line):
self.factory.fp.write(line+’\n’)

class LogfileFactory(Factory):

CHAPTER 3. LOW-LEVEL TWISTED 35

protocol = LoggingProtocol

def __init__(self, fileName):
self.file = fileName

def startFactory(self):
self.fp = open(file, ’a’)

def stopFactory(self):
self.fp.close()

Putting it All Together

So, you know what factories are, and want to run the QOTD with configurable quote server, do you? No problems,
here is an example.

from twisted.internet.protocol import Factory, Protocol
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quote+’\r\n’)
self.transport.loseConnection()

class QOTDFactory(Factory):

protocol = QOTD

def __init__(self, quote=None):
self.quote = quote or ’An apple a day keeps the doctor away’

reactor.listenTCP(8007, QOTDFactory("configurable quote"))
reactor.run()

The only lines you might not understand are the last two.
listenTCP is the method which connects a Factory to the network. It uses the reactor interface, which lets

many different loops handle the networking code, without modifying end-user code, like this. As mentioned above, if
you want to write your code to be a production-grade Twisted server, and not a mere 20-line hack, you will want to
use the Application object (page 62).

CHAPTER 3. LOW-LEVEL TWISTED 36

3.4 Writing Clients

3.4.1 Overview

Twisted is a framework designed to be very flexible, and let you write powerful clients. The cost of this flexibility is a
few layers in the way to writing your client. This document covers creating clients that can be used for TCP, SSL and
Unix sockets, UDP is covered in a different document (page 38).

At the base, the place where you actually implement the protocol parsing and handling, is the Protocol class.
This class will usually be decended from twisted.internet.protocol.Protocol. Most protocol handlers
inherit either from this class or from one of its convenience children. An instance of the protocol class will be
instantiated when you connect to the server, and will go away when the connection is finished. This means that
persistent configuration is not saved in the Protocol.

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.
protocol.ClientFactory. The default factory class just instantiate the Protocol, and then sets on it an attribute
called factory which points to itself. This let the Protocol access, and possibly modify, the persistent configuration.

3.4.2 Protocol

As mentioned above, this, and auxiliary classes and functions, is where most of the code is. A Twisted protocol handles
data in an asynchronous manner. What this means is that the protocol never waits for an event, but rather responds to
events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
from sys import stdout
class Echo(Protocol):

def dataReceived(self, data):
stdout.write(data)

This is one of the simplest protocols. It simply writes to standard output whatever it reads from the connection.
There are many events it does not respond to. Here is an example of a Protocol responding to another event.

from twisted.internet.protocol import Protocol
class WelcomeMessage(Protocol):

def connectionMade(self):
self.transport.write("Hello server, I am the client!\r\n")
self.transport.loseConnection()

This protocol connects to the server, sends it a welcome message, and then terminates the connection.
The connectionMade event is usually where set up of the Protocol object happens, as well as any initial greetings

(as in the WelcomeMessage protocol above). Any tearing down of Protocol-specific objects is done in connectionLost.

3.4.3 ClientFactory

With the new API, Protocols no longer connect directly using reactor.client*. Instead, we use reactor.connect* and
a ClientFactory. The ClientFactory is in charge of creating the Protocol, and also receives events relating to the

CHAPTER 3. LOW-LEVEL TWISTED 37

connection state. This allows it to do things like reconnect on the event of a connection error. Here is an example of a
simple ClientFactory that uses the Echo protocol (above) and also prints what state the connection is in.

from twisted.internet.protocol import Protocol, ClientFactory
from sys import stdout
class Echo(Protocol):

def dataReceived(self, data):
stdout.write(data)

class EchoClientFactory(ClientFactory):

def startedConnection(self, connector):
print ’Started to connect.’

def buildProtocol(self, addr):
print ’Connected.’
return Echo()

def clientConnectionLost(self, connector, reason):
print ’Lost connection. Reason:’, reason

def clientConnectionFailed(self, connector, reason):
print ’Connection failed. Reason:’, reason

To connect this EchoClientFactory to a server, you could use this code:

from twisted.internet import reactor
reactor.connectTCP(host, port, EchoClientFactory())
reactor.run()

3.4.4 A Higher-Level Example: ircLogBot

Overview of ircLogBot

The clients so far have been fairly simple. A more complicated example comes with Twisted in the doc/examples
directory. ircLogBot.py connects to an IRC server, joins a channel, and logs all traffic on it to a file. It demonstrates
some of the connection-level logic of reconnecting on a lost connection, as well as storing persistent data in the Factory.

Reconnection

Many times, the connection of a client will be lost unintentionally due to network errors. In the case of the ircLogBot,
leaving the bot disconnected will result in the loss of the log data until the administrator reconnects the bot. However,
with the new API this can be automated. The relevant part of ircLogBot.py follows:

from twisted.internet import protocol
class LogBotFactory(protocol.ClientFactory):

CHAPTER 3. LOW-LEVEL TWISTED 38

def clientConnectionLost(self, connector, reason):
connector.connect()

That last line is the most important. The connector passed as the first argument is the interface between a connec-
tion and a protocol. When the connection fails and the factory receives the clientConnectionLost event, the factory
can call connector.connect() to start the connection over again from scratch.

Persistent Data in the Factory

Since the Protocol instance is recreated each time the connection is made, the client needs some way to keep track of
data that should be persisted. In the case of ircLogBot.py: (LogBot.log() just logs the data to the file object stored
in LogBot.file)

from twisted.internet import protocol
from twisted.protocols import irc
class LogBot(irc.IRCClient):

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.file = open(self.factory.filename, "a")
self.log("[connected at %s]" %

time.asctime(time.localtime(time.time())))

def signedOn(self):
self.join(self.factory.channel)

class LogBotFactory(protocol.ClientFactory):

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

When the protocol is created, it gets a reference to the factory as self.factory. It can then access attributes of the
factory in its logic. In the case of LogBot, it opens the file and connects to the channel stored in the factory.

3.5 UDP Networking

3.5.1 Overview

Unlike TCP, UDP has no notion of connections. A UDP socket can receive datagrams from any server on the network,
and send datagrams to any host on the network. In addition, datagrams may arrive in any order, never arrive at all, or
be duplicated in transit.

Since there are no multiple connections, we only use a single object, a protocol, for each UDP socket. We then use
the reactor to connect this protocol to a UDP transport, using the twisted.internet.interfaces.IReactor
UDP reactor API.

CHAPTER 3. LOW-LEVEL TWISTED 39

3.5.2 DatagramProtocol

At the base, the place where you actually implement the protocol parsing and handling, is the DatagramProtocol
class. This class will usually be decended from twisted.internet.protocol.DatagramProtocol. Most
protocol handlers inherit either from this class or from one of its convenience children. The DatagramProtocol class
receives datagrams, and can send them out over the network. Received datagrams include the address they were sent
from, and when sending datagrams the address to send to must be specified.

Here is a simple example:

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Echo(DatagramProtocol):

def datagramReceived(self, data, (host, port)):
print "received %r from %s:%d" % (data, host, port)
self.transport.write(data, (host, port))

reactor.listenUDP(9999, Echo())
reactor.run()

As you can see, the protocol is registed with the reactor. This means it may be persisted if it’s added to an
application, and thus it has twisted.internet.protocol.DatagramProtocol.startProtocol and
twisted.internet.protocol.DatagramProtocol.stopProtocol methods that will get called when
the protocol is connected and disconnected from a UDP socket.

The protocol’s transport attribute will implement the twisted.internet.interfaces.
IUDPTransport interface.

3.5.3 Connected UDP

A connected UDP socket is slighly different from a standard one - it can only send and receive datagrams to/from a
single address, but this does not in any way imply a connection. Datagrams may still arrive in any order, and the port
on the other side may have no one listening. The benefit of the connected UDP socket is that it is faster.

Unlike a regular UDP protocol, we do not need to specify where to send datagrams to, and are not told where they
came from since they can only come from address the socket is ’connected’ to.

The protocol’s transport attribute will implement the twisted.internet.interfaces.
IUDPConnectedTransport interface.

from twisted.internet.protocol import ConnectedDatagramProtocol
from twisted.internet import reactor

class Echo(ConnectedDatagramProtocol):

def datagramReceived(self, data):
self.transport.write(data)

reactor.connectUDP("www.example.com", 9999, Echo())
reactor.run()

CHAPTER 3. LOW-LEVEL TWISTED 40

3.6 Using Processes

3.6.1 Overview

Along with connection to servers across the internet, Twisted also connects to local processes with much the same
API. The API is described in more detail in the documentation of:

� twisted.internet.interfaces.IReactorProcess

� twisted.internet.interfaces.IProcessTransport

� twisted.internet.protocol.ProcessProtocol

3.6.2 Running Another Process

Processes are run through the reactor, using reactor.spawnProcess(). Pipes are created to the child process,
and added to the reactor core so that the application will not block while sending data into or pulling data out of the new
process. reactor.spawnProcess() requires two arguments, processProtocol and executable, and optionally
takes six more: arguments, environment, path, userID, groupID, and usePTY.

from twisted.internet import reactor

mypp = MyProcessProtocol()
reactor.spawnProcess(processProtocol, executable, args=[program, arg1, arg2],

env={’HOME’: os.environ[’HOME’]}, path,
uid, gid, usePTY)

� processProtocol should be an instance of a subclass of twisted.internet.protocol.Process
Protocol. The interface is described below.

� executable is the full path of the program to run. It will be connected to processProtocol.

� args is a list of command line arguments to be passed to the process. args[0] should be the name of the
process.

� env is a dictionary containing the environment to pass through to the process.

� path is the directory to run the process in. The child will switch to the given directory just before starting the
new program. The default is to stay in the current directory.

� uid and gid are the user ID and group ID to run the subprocess as. Of course, changing identities will be more
likely to succeed if you start as root.

� usePTY specifies whether the child process should be run with a pty, or if it should just get a pair of pipes.
Interactive programs (where you don’t know when it may read or write) need to be run with ptys.

args and env have empty default values, but many programs depend upon them to be set correctly. At the very
least, args[0] should probably be the same as executable. If you just provide os.environ for env, the child
program will inherit the environment from the current process, which is usually the civilized thing to do (unless you
want to explicitly clean the environment as a security precaution).

reactor.spawnProcess() returns an instance that implements the twisted.internet.
interfaces.IProcessTransport.

CHAPTER 3. LOW-LEVEL TWISTED 41

3.6.3 Writing a ProcessProtocol

The ProcessProtocol you pass to spawnProcess is your interaction with the process. It has a very similar signature to
a regular Protocol, but it has several extra methods to deal with events specific to a process. In our example, we will
interface with ’wc’ to create a word count of user-given text. First, we’ll start by importing the required modules, and
writing the initialization for our ProcessProtocol.

from twisted.internet import protocol
class WCProcessProtocol(protocol.ProcessProtocol):

def __init__(self, text):
self.text = text

When the ProcessProtocol is connected to the protocol, it has the connectionMade method called. In our protocol,
we will write our text to the standard input of our process and then close standard input, to the let the process know
we are done writing to it.

def connectionMade(self):
self.transport.write(self.text)
self.transport.closeStdin()

At this point, the process has receieved the data, and it’s time for us to read the results. Instead of being receieved
in dataReceived, data from standard output is receieve in outReceived. This is to distinguish it from data on standard
error.

def outReceived(self, data):
fieldLength = len(data) / 3
lines = int(data[:fieldLength])
words = int(data[fieldLength:fieldLength*2])
chars = int(data[fieldLength*2:])
self.transport.loseConnection()
self.receiveCounts(lines, words, chars)

Now, the process has parsed the output, and ended the connection to the process. Then it sends the results on to
the final method, receiveCounts. This is for users of the class to override, so as to do other things with the data. For
our demonstration, we will just print the results.

def receiveCounts(self, lines, words, chars):
print ’Received counts from wc.’
print ’Lines:’, lines
print ’Words:’, words
print ’Characters:’, chars

We’re done! To use our WCProcessProtocol, we create an instance, and pass it to spawnProcess.

from twisted.internet import reactor
wcProcess = WCProcessProtocol("accessing protocols through Twisted is fun!\n")
reactor.spawnProcess(wcProcess, ’wc’, [’wc’])
reactor.run()

CHAPTER 3. LOW-LEVEL TWISTED 42

3.6.4 Things that can happen to your ProcessProtocol

These are the methods that you can usefully override in your subclass of ProcessProtocol:

� .connectionMade: This is called when the program is started, and makes a good place to write data into the
stdin pipe (using self.transport.write()).

� .outReceived(data): This is called with data that was received from the process’ stdout pipe. Pipes tend
to provide data in larger chunks than sockets (one kilobyte is a common buffer size), so you may not experience
the “random dribs and drabs” behavior typical of network sockets, but regardless you should be prepared to deal
if you don’t get all your data in a single call. To do it properly, outReceived ought to simply accumulate the
data and put off doing anything with it until the process has finished.

� .errReceived(data): This is called with data from the process’ stderr pipe. It behaves just like out
Received.

� .inConnectionLost: This is called when the reactor notices that the process’ stdin pipe has closed. Pro-
grams don’t typically close their own stdin, so this will probably get called when your ProcessProtocol has shut
down the write side with self.transport.loseConnection().

� .outConnectionLost: This is called when the program closes its stdout pipe. This usually happens when
the program terminates.

� .errConnectionLost: Same as outConnectionLost, but for stderr instead of stdout.

� .processEnded(status): This is called when the child process has been reaped, and receives information
about the process’ exit status. The status is passed in the form of a Failure instance, created with a .value
that either holds a ProcessDone object if the process terminated normally (it died of natural causes instead
of receiving a signal, and if the exit code was 0), or a ProcessTerminated object (with an .exitCode
attribute) if something went wrong. This scheme may seem a bit weird, but I trust that it proves useful when
dealing with exceptions that occur in asynchronous code.

This will always be called afterinConnectionLost, outConnectionLost, and errConnection
Lost are called.

The base-class definitions of these functions are all no-ops. This will result in all stdout and stderr being thrown
away. Note that it is important for data you don’t care about to be thrown away: if the pipe were not read, the child
process would eventually block as it tried to write to a full pipe.

3.6.5 Things you can do from your ProcessProtocol

The following are the basic ways to control the child process:

� self.transport.write(data): Stuff some data in the stdin pipe. Note that this write method will
queue any data that can’t be written immediately. Writing will resume in the future when the pipe becomes
writable again.

� self.transport.closeStdin: Close the stdin pipe. Programs which act as filters (reading from stdin,
modifying the data, writing to stdout) usually take this as a sign that they should finish their job and terminate.
For these programs, it is important to close stdin when you’re done with it, otherwise the child process will
never quit.

CHAPTER 3. LOW-LEVEL TWISTED 43

� self.transport.closeStdout: Not usually called, since you’re putting the process into a state where
any attempt to write to stdout will cause a SIGPIPE error. This isn’t a nice thing to do to the poor process.

� self.transport.closeStderr: Not usually called, same reason as closeStdout.

� self.transport.loseConnection: Close all three pipes.

� os.kill(self.transport.pid, signal.SIGKILL): Kill the child process. This will eventually
result in processEnded being called.

3.6.6 Verbose Example

Here is an example that is rather verbose about exactly when all the methods are called. It writes a number of lines
into the wc program and then parses the output.

#! /usr/bin/python

from twisted.internet import protocol
from twisted.internet import reactor
import re

class MyPP(protocol.ProcessProtocol):
def __init__(self, verses):

self.verses = verses
self.data = ""

def connectionMade(self):
print "connectionMade!"
for i in range(self.verses):

self.transport.write("Aleph-null bottles of beer on the wall,\n" +
"Aleph-null bottles of beer,\n" +
"Take on down and pass it around,\n" +
"Aleph-null bottles of beer on the wall.\n")

self.transport.closeStdin() # tell them we’re done
def outReceived(self, data):

print "outReceived! with %d bytes!" % len(data)
self.data = self.data + data

def errReceived(self, data):
print "errReceived! with %d bytes!" % len(data)

def inConnectionLost(self):
print "inConnectionLost! stdin is closed! (we probably did it)"

def outConnectionLost(self):
print "outConnectionLost! The child closed their stdout!"
now is the time to examine what they wrote
#print "I saw them write:", self.data
(dummy, lines, words, chars, file) = re.split(r’\s+’, self.data)
print "I saw %s lines" % lines

def errConnectionLost(self):

CHAPTER 3. LOW-LEVEL TWISTED 44

print "errConnectionLost! The child closed their stderr."
def processEnded(self, status_object):

print "processEnded, status %d" % status_object.value.exitCode
print "quitting"
reactor.stop()

pp = MyPP(10)
reactor.spawnProcess(pp, "wc", ["wc"], {})
reactor.run()

Source listing — process.py

The exact output of this program depends upon the relative timing of some un-synchronized events. In particular,
the program may observe the child process close its stderr pipe before or after it reads data from the stdout pipe. One
possible transcript would look like this:

% ./process.py
connectionMade!
inConnectionLost! stdin is closed! (we probably did it)
errConnectionLost! The child closed their stderr.
outReceived! with 24 bytes!
outConnectionLost! The child closed their stdout!
I saw 40 lines
processEnded, status 0
quitting
Main loop terminated.
%

3.6.7 Doing it the Easy Way

Frequently, one just need a simple way to get all the output from a program. For those cases, the twisted.
internet.utils.getProcessOutput function can be used. Here is a simple example:

from twisted.internet import protocol, utils, reactor
from twisted.python import failure
from cStringIO import StringIO

class FortuneQuoter(protocol.Protocol):

fortune = ’/usr/games/fortune’

def connectionMade(self):
output = utils.getProcessOutput(self.fortune)
output.addCallbacks(self.writeResponse, self.noResponse)

def writeResponse(self, resp):

CHAPTER 3. LOW-LEVEL TWISTED 45

self.transport.write(resp)
self.transport.loseConnection()

def noResponse(self, err):
self.transport.loseConnection()

if __name__ == ’__main__’:
f = protocol.Factory()
f.protocol = FortuneQuoter
reactor.listenTCP(10999, f)
reactor.run()

Source listing — quotes.py

If you need to get just the final exit code, the twisted.internet.utils.getProcessValue function is
useful. Here is an example:

from twisted.internet import utils, reactor

def printTrueValue(val):
print val
output = utils.getProcessValue(’false’)
output.addCallback(printFalseValue)

def printFalseValue(val):
print val
reactor.stop()

output = utils.getProcessValue(’true’)
output.addCallback(printTrueValue)
reactor.run()

Source listing — trueandfalse.py

3.7 Deferring Execution

3.7.1 The Context

Dealing with Blocking Code

When coding I/O based programs - networking code, databases, file access - there are many APIs that are blocking,
and many methods where the common idiom is to block until a result is gotten.

CHAPTER 3. LOW-LEVEL TWISTED 46

class Getter:
def getData(self, x):

imagine I/O blocking code here
print "blocking"
import time
time.sleep(4)
return x * 3

g = Getter()
print g.getData(3)

Don’t Call Us, We’ll Call You

Twisted can not support blocking calls in most of its code, since it is single threaded, and event based. The solution
for this issue is to refactor the code, so that instead of blocking until data is available, we return immediately, and use
a callback to notify the requester once the data eventually arrives.

from twisted.internet import reactor

class Getter:
def getData(self, x, callback):

this won’t block
reactor.callLater(2, callback, x * 3)

def printData(d):
print d

g = Getter()
g.getData(3, printData)

startup the event loop, exiting after 4 seconds
reactor.callLater(4, reactor.stop);
reactor.run()

There are several things missing in this simple example. There is no way to know if the data never comes back;
no mechanism for handling errors. The example does not handle a multiple callback functions, nor does it give a
method to merge arguments before and after execution. Further, there is no way to distinguish between different calls
to gotData from different producer objects. Deferred solves these problems, by creating a single, unified way to
handle callbacks and errors from deferred execution.

3.7.2 Deferreds

A twisted.internet.defer.Deferred is a promise that a function will at some point have a result. We can
attach callback functions to a Deferred, and once it gets a result these callbacks will be called. In addition Deferreds
allow the developer to register a callback for an error, with the default behavior of logging the error. The deferred
mechanism standardizes the application programmer’s interface with all sorts of blocking or delayed operations.

CHAPTER 3. LOW-LEVEL TWISTED 47

from twisted.internet import reactor, defer

class Getter:
def getData(self, x):

this won’t block
d = defer.Deferred()
reactor.callLater(2, d.callback, x * 3)
return d

def printData(d):
print d

g = Getter()
d = g.getData(3)
d.addCallback(printData)

reactor.callLater(4, reactor.stop); reactor.run()

As we said, multiple callbacks can be added to a Deferred. The first callback in the Deferred’s callback chain will
be called with the result, the second with the result of the first callback, and so on. Why do we need this? Well, consider
a Deferred returned by twisted.enterprise.adbapi - the result of a SQL query. A web widget might add a callback that
converts this result into HTML, and pass the Deferred onwards, where the callback will be used by twisted to return
the result to the HTTP client. The callback chain will be bypassed in case of errors or exceptions.

from twisted.internet import reactor, defer

class Getter:
def gotResults(self, x):

"""The Deferred mechanism provides a mechanism to signal error
conditions. In this case, even numbers are bad.

"""
if x % 2:

self.d.callback(x*3)
else:

self.d.errback(ValueError("You used an even number!"))

def _toHTML(self, r):
return "Result: %s" % r

def getData(self, x):
"""The Deferred mechanism allows for chained callbacks.

In this example, the output of gotResults is first
passed through _toHTML on its way to printData.

"""
self.d = defer.Deferred()
reactor.callLater(2, self.gotResults, x)
self.d.addCallback(self._toHTML)

CHAPTER 3. LOW-LEVEL TWISTED 48

return self.d

def printData(d):
print d

def printError(failure):
import sys
sys.stderr.write(str(failure))

this will print an error message
g = Getter()
d = g.getData(3)
d.addCallback(printData)
d.addErrback(printError)

this will print "Result: 12"
g = Getter()
d = g.getData(4)
d.addCallback(printData)
d.addErrback(printError)

reactor.callLater(4, reactor.stop); reactor.run()

Visual Explanation

1. Requesting method (data sink) requests data, gets Deferred object.

2. Requesting method attaches callbacks to Deferred object.

CHAPTER 3. LOW-LEVEL TWISTED 49

1. When the result is ready, give it to the Deferred object. .callback(result) if the operation succeeded,
.errback(failure) if it failed. Note that failure is typically an instance of a twisted.python.
failure.Failure instance.

2. Deferred object triggers previously-added (call/err)back with the result or failure. Execution then follows
the following rules, going down the chain of callbacks to be processed.

� Result of the callback is always passed as the first argument to the next callback, creating a chain of
processors.

� If a callback raises an exception, switch to errback.
� An unhandled failure gets passed down the line of errbacks, this creating an asynchronous analog to a

series to a series of except: statements.
� If an errback doesn’t raise an exception or return a twisted.python.failure.Failure instance,

switch to callback.

CHAPTER 3. LOW-LEVEL TWISTED 50

More about callbacks

You add multiple callbacks to a Deferred:

g = Getter()
d = g.getResult(3)
d.addCallback(processResult)
d.addCallback(printResult)

Each callback feeds its return value into the next callback (callbacks will be called in the order you add them).
Thus in the previous example, processResult’s return value will be passed to printResult, instead of the
value initially passed into the callback. This gives you a flexible way to chain results together, possibly modifying
values along the way, (for example, you may wish to pre-processed database query results).

More about errbacks

Deferred’s error handling is modeled after Python’s exception handling. In the case that no errors occur, all the
callbacks run, one after the other, as described above.

If the errback is called instead of the callback (e.g. because a DB query raised an error), then a twisted.
python.failure.Failure is passed into the first errback (you can add multiple errbacks, just like with call-
backs). You can think of your errbacks as being like except blocks of ordinary Python code.

Unless you explicitly raise an error in except block, the Exception is caught and stops propagating, and
normal execution continues. The same thing happens with errbacks: unless you explicitly return a Failure or
(re-)raise an exception, the error stops propagating, and normal callbacks continue executing from that point (using
the value returned from the errback). If the errback does returns a Failure or raise an exception, then that is passed
to the next errback, and so on.

Note: If an errback doesn’t return anything, then it effectively returns None, meaning that callbacks will continue
to be executed after this errback. This may not be what you expect to happen, so be careful. Make sure your errbacks
return a Failure (probably the one that was passed to it), or a meaningful return value for the next callback.

Also, twisted.python.failure.Failure instances have a useful method called trap, allowing you to
effectively do the equivalent of:

try:
code that may throw an exception
cookSpamAndEggs()

except (SpamException, EggException):
Handle SpamExceptions and EggExceptions
...

You do this by:

def errorHandler(failure):
failure.trap(SpamException, EggException)
Handle SpamExceptions and EggExceptions

d.addCallback(cookSpamAndEggs)
d.addErrback(errorHandler)

CHAPTER 3. LOW-LEVEL TWISTED 51

If none of arguments passed to failure.trap match the error encapsulated in that Failure, then it re-raises
the error.

There’s another potential “gotcha” here. There’s a convenience method twisted.internet.defer.
Deferred.addCallbacks which is similar to, but not exactly the same as, addCallback followed by add
Errback. In particular, consider these two cases:

Case 1
d = getDeferredFromSomewhere()
d.addCallback(callback1)
d.addErrback(errback1)
d.addCallback(callback2)
d.addErrback(errback2)

Case 2
d = getDeferredFromSomewhere()
d.addCallbacks(callback1, errback1)
d.addCallbacks(callback2, errback2)

If an error occurs in callback1, then for Case 1 errback1 will be called with the failure. For Case 2,
errback2 will be called. Be careful with your callbacks and errbacks.

Unhandled Errors

If a Deferred is garbage-collected with an unhandled error (i.e. it would call the next errback if there was one), then
Twisted will write the error’s traceback to the log file. This means that you can typically get away with not adding
errbacks and still get errors logged. Be careful though; if you keep a reference to the Deferred around, preventing it
from being garbage-collected, then you may never see the error (and your callbacks will mysteriously seem to have
never been called). If unsure, you should explicitly add an errback after your callbacks, even if all you do is:

Make sure errors get logged
from twisted.python import log
d.addErrback(log.err)

3.7.3 Class Overview

This is the overview API reference for Deferred. It is not meant to be a substitute for the docstrings in the Deferred
class, but can provide guidelines for its use.

Basic Callback Functions
� addCallbacks(self, callback[, errback, callbackArgs, errbackArgs, errback
Keywords, asDefaults])

This is the method with which you will use to interact with Deferred. It adds a pair of callbacks “parallel” to
each other (see diagram above) in the list of callbacks made when the Deferred is called back to. The signa-
ture of a method added using addCallbacks should be myMethod(result, *methodArgs, **method
Keywords). If your method is passed in the callback slot, for example, all arguments in the tuple callback
Args will be passed as *methodArgs to your method.

CHAPTER 3. LOW-LEVEL TWISTED 52

There exist various convenience methods that are derivative of addCallbacks. I will not cover them in detail
here, but it is important to know about them in order to create concise code.

– addCallback(callback, *callbackArgs, **callbackKeywords)

Adds your callback at the next point in the processing chain, while adding an errback that will re-raise its
first argument, not affecting further processing in the error case.

– addErrback(errback, *errbackArgs, **errbackKeywords)

Adds your errback at the next point in the processing chain, while adding a callback that will return its first
argument, not affecting further processing in the success case.

– addBoth(callbackOrErrback, *callbackOrErrbackArgs, **callbackOrErrback
Keywords)

This method adds the same callback into both sides of the processing chain at both points. Keep in mind
that the type of the first argument is indeterminate if you use this method! Use it for finally: style
blocks.

� callback(result)

Run success callbacks with the given result. This can only be run once. Later calls to this or errback will
raise twisted.internet.defer.AlreadyCalledError. If further callbacks or errbacks are added
after this point, addCallbacks will run the callbacks immediately.

� errback(failure)

Run error callbacks with the given failure. This can only be run once. Later calls to this or callback will
raise twisted.internet.defer.AlreadyCalledError. If further callbacks or errbacks are added
after this point, addCallbacks will run the callbacks immediately.

Chaining Deferreds

If you need one Deferred to wait on another, all you need to do is return a Deferred from a method added to addCall-
backs. Specifically, if you return Deferred B from a method added to Deferred A using A.addCallbacks, Deferred A’s
processing chain will stop until Deferred B’s .callback() method is called; at that point, the next callback in A will be
passed the result of the last callback in Deferred B’s processing chain at the time.

If this seems confusing, don’t worry about it right now – when you run into a situation where you need this
behavior, you will probably recognize it immediately and realize why this happens. If you want to chain deferreds
manually, there is also a convenience method to help you.

� chainDeferred(otherDeferred)

Add otherDeferred to the end of this Deferred’s processing chain. When self.callback is called, the result
of my processing chain up to this point will be passed to otherDeferred.callback. Further additions to
my callback chain do not affect otherDeferred

This is the same as self.addCallbacks(otherDeferred.callback, otherDeferred.
errback)

CHAPTER 3. LOW-LEVEL TWISTED 53

Automatic Error Conditions
� setTimeout(seconds[, timeoutFunc])

Set a timeout function to be triggered if this Deferred is not called within that time period. By default, this will
raise a TimeoutError after seconds.

A Brief Interlude: Technical Details

While deferreds greatly simplify the process of writing asynchronous code by providing a standard for registering
callbacks, there are some subtle and sometimes confusing rules that you need to follow if you are going to use them.
This mostly applies to people who are writing new systems that use Deferreds internally, and not writers of applications
that just add callbacks to Deferreds produced and processed by other systems. Nevertheless, it is good to know.

Deferreds are one-shot. A generalization of the Deferred API to generic event-sources is in progress – watch
this space for updates! – but Deferred itself is only for events that occur once. You can only call Deferred.
callback or Deferred.errback once. The processing chain continues each time you add new callbacks to an
already-called-back-to Deferred.

The important consequence of this is that sometimes, addCallbacks will call its argument synchronously, and
sometimes it will not. In situations where callbacks modify state, it is highly desirable for the chain of processing to
halt until all callbacks are added. For this, it is possible to pause and unpause a Deferred’s processing chain while
you are adding lots of callbacks.

Be careful when you use these methods! If you pause a Deferred, it is your responsibility to make sure that you
unpause it; code that calls callback or errback should never call unpause, as this would negate its usefulness!

Advanced Processing Chain Control
� pause()

Cease calling any methods as they are added, and do not respond to callback, until self.unpause() is
called.

� unpause()

If callback has been called on this Deferred already, call all the callbacks that have been added to this
Deferred since pause was called.

Whether it was called or not, this will put this Deferred in a state where further calls to addCallbacks or
callback will work as normal.

3.7.4 DeferredList

Sometimes you want to be notified after several different events have all happened, rather than individually waiting
for each one. For example, you may want to wait for all the connections in a list to close. twisted.internet.
defer.DeferredList is the way to do this.

To create a DeferredList from multiple Deferreds, you simply pass a list of the Deferreds you want it to wait for:

Creates a DeferredList
dl = defer.DeferredList([deferred1, deferred2, deferred3])

You can also add the Deferreds later:

CHAPTER 3. LOW-LEVEL TWISTED 54

dl.addDeferred(deferred4)

You can now treat the DeferredList like an ordinary Deferred; you can call addCallbacks and so on. The
DeferredList will call its callback when all the deferreds have completed. The callback will be called with a list of the
results of the Deferreds it contains, like so:

def printResult(result):
print result

deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred3 = defer.Deferred()
dl = defer.DeferredList([deferred1, deferred2, deferred3])
dl.addCallback(printResult)
deferred1.callback(’one’)
deferred2.errback(’bang!’)
deferred3.callback(’three’)
At this point, dl will fire its callback, printing:
[(1, ’one’), (0, ’bang!’), (1, ’three’)]
(note that defer.SUCCESS == 1, and defer.FAILURE == 0)

A standard DeferredList will never call errback.

Note:
If you want to apply callbacks to the individual Deferreds that go into the DeferredList, you should

be careful about when those callbacks are added. The act of adding a Deferred to a DeferredList inserts
a callback into that Deferred (when that callback is run, it checks to see if the DeferredList has been
completed yet). The important thing to remember is that it is this callback which records the value that
goes into the result list handed to the DeferredList’s callback.

Therefore, if you add a callback to the Deferred after adding the Deferred to the DeferredList, the
value returned by that callback will not be given to the DeferredList’s callback. To avoid confusion, we
recommend not adding callbacks to a Deferred once it has been used in a DeferredList.

def printResult(result):
print result

def addTen(result):
return result + " ten"

Deferred gets callback before DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred1.addCallback(addTen)
dl = defer.DeferredList([deferred1, deferred2])
dl.addCallback(printResult)
deferred1.callback("one") # fires addTen, checks DeferredList, stores "one ten"
deferred2.callback("two")
At this point, dl will fire its callback, printing:
[(1, ’one ten’), (1, ’two’)]

CHAPTER 3. LOW-LEVEL TWISTED 55

Deferred gets callback after DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
dl = defer.DeferredList([deferred1, deferred2])
deferred1.addCallback(addTen) # will run *after* DeferredList gets its value
dl.addCallback(printResult)
deferred1.callback("one") # checks DeferredList, stores "one", fires addTen
deferred2.callback("two")
At this point, dl will fire its callback, printing:
[(1, ’one), (1, ’two’)]

Other behaviours

DeferredList accepts two keywords arguments that modify its behaviour: fireOnOneCallback and fireOnOne
Errback. If fireOnOneCallback is set, the DeferredList will immediately call its callback as soon as any of its
Deferreds call their callback. Similarly, fireOnOneErrback will call errback as soon as any of the Deferreds call
their errback. Note that DeferredList is still one-shot, like ordinary Deferreds, so after a callback or errback has been
called the DeferredList will do nothing further (it will just silently ignore any other results from its Deferreds).

The fireOnOneErrback option is particularly useful when you want to wait for all the results if everything
succeeds, but also want to know immediately if something fails.

3.8 Scheduling tasks for the future

Let’s say we want to run a task X seconds in the future. The way to do that is defined in the reactor interfacetwisted.
internet.interfaces.IReactorTime:

from twisted.internet import reactor

def f(s):
print "this will run in 3.5 seconds: %s" % s

reactor.callLater(3.5, f, "hello, world")

If we want a task to run every X seconds repeatedly, we can just re-add it every time it’s run:

from twisted.internet import reactor

def runEverySecond():
print "a second has passed"
reactor.callLater(1, runEverySecond)

reactor.callLater(1, runEverySecond)

If we want to cancel a task that we’ve scheduled:

from twisted.internet import reactor

CHAPTER 3. LOW-LEVEL TWISTED 56

def f():
print "I’ll never run."

callID = reactor.callLater(5, f)
callID.cancel()

3.9 Using Threads in Twisted

3.9.1 Introduction

Before you start using threads, make sure you do at the start of your program:

from twisted.python import threadable
threadable.init()

This will make certain parts of Twisted thread-safe so you can use them safely. However, note that most parts of
Twisted are not thread-safe.

3.9.2 Running code in a thread-safe manner

Most code in Twisted is not thread-safe. For example, writing data to a transport from a protocol is not thread-safe.
Therefore, we want a way to schedule methods to be run in the main event loop. This can be done using the function
twisted.internet.interfaces.IReactorThreads.callFromThread:

from twisted.internet import reactor
from twisted.python import threadable
threadable.init(1)

def notThreadSafe(x):
"""do something that isn’t thread-safe"""
...

def threadSafeScheduler():
"""Run in thread-safe manner."""
reactor.callFromThread(notThreadSafe, 3) # will run ’notThreadSafe(3)’

in the event loop

3.9.3 Running code in threads

Sometimes we may want to run methods in threads - for example, in order to access blocking APIs. Twisted pro-
vides methods for doing so using the IReactorThreads API (twisted.internet.interfaces.IReactor
Threads). Additional utility functions are provided in twisted.internet.threads. Basically, these meth-
ods allow us to queue methods to be run by a thread pool.

For example, to run a method in a thread we can do:

from twisted.internet import reactor

CHAPTER 3. LOW-LEVEL TWISTED 57

def aSillyBlockingMethod(x):
import time
time.sleep(2)
print x

run method in thread
reactor.callInThread(aSillyBlockingMethod, "2 seconds have passed")

3.9.4 Utility Methods

The utility methods are not part of the twisted.internet.reactorAPIs, but are implemented in twisted.
internet.threads.

If we have multiple methods to run sequentially within a thread, we can do:

from twisted.internet import threads

def aSillyBlockingMethodOne(x):
import time
time.sleep(2)
print x

def aSillyBlockingMethodTwo(x):
print x

run both methods sequentially in a thread
commands = [(aSillyBlockingMethodOne, ["Calling First"], {})]
commands.append((aSillyBlockingMethodTwo, ["And the second"], {}))
threads.callMultipleInThread(commands)

For functions whose results we wish to get, we can have the result returned as a Deferred:

from twisted.internet import threads

def doLongCalculation():
.... do long calculation here ...
return 3

def printResult(x):
print x

run method in thread and get result as defer.Deferred
d = threads.deferToThread(doLongCalculation)
d.addCallback(printResult)

3.9.5 Managing the Thread Pool

The thread pool is implemented by twisted.python.threadpool.ThreadPool.

CHAPTER 3. LOW-LEVEL TWISTED 58

We may want to modify the size of the threadpool, increasing or decreasing the number of threads in use. We can
do this do this quite easily:

from twisted.internet import reactor

reactor.suggestThreadPoolSize(20)

The size of the thread pool defaults to a maximum of 10 threads. Be careful that you understand threads and their
resource usage before drastically altering the thread pool sizes.

3.10 Choosing a Reactor and GUI Toolkit Integration

3.10.1 Overview

Twisted provides a variety of implementations of the twisted.internet.reactor. The specialized implemen-
tations are suited for different purposes and are designed to integrate better with particular platforms.

The general purpose reactor implementations are:
� The select()-based reactor (page 59)
� The poll()-based reactor (page 59)

Platform-specific reactor implementations exist for:
� cReactor for Unix (page 59)
� KQueue for FreeBSD (page 60)
� Java (page 60)
� Win32 (page 60)

The remaining custom reactor implementations provide support for integrating with the native event loops of
various graphical toolkits. This lets your Twisted application use all of the usual Twisted APIs while still being a
graphical application.

Twisted currently integrates with the following graphical toolkits:
� GTK+ 1.2 and 2.0 (page 60)
� Qt (page 60)
� Tkinter (page 61)
� WxPython (page 61)
� Win32 (page 60)
� PyUI (page 61)

When using applications that runnable using twistd, e.g. TAPs or plugins, there is no need to choose a reactor
explicitly, since this can be chosen using twistd’s -r option.

In all cases, the event loop is started by calling reactor.run().
IMPORTANT: installing a reactor should be the first thing done in the app, since any code that does from

twisted.internet import reactor will automatically install the default reactor if the code hasen’t already
installed one.

CHAPTER 3. LOW-LEVEL TWISTED 59

3.10.2 Reactor Functionality

TCP SSL UDP Threading Processes Scheduling Platforms
select() Y Y Y Y Y (Unix only) Y Unix, Win32
poll() Y Y Y Y Y Y Unix
Win32 Y Y Y Y Y Y Win32
Java Y N N Y N Y Java 1.1+
GTK+ Y Y Y Y Y (Unix only) Y Unix, Win32
Qt Y Y Y Y Y (Unix only) Y Unix, Win32
kqueue Y Y Y Y Y Y FreeBSD
C Y N N Y Y Y Unix

Table 3.1: Summary of reactor features

3.10.3 General Purpose Reactors

Select()-based Reactor

The SelectReactor is the default reactor.

from twisted.internet import reactor

The SelectReactor may be explicitly installed by:

from twisted.internet import default
default.install()

Poll()-based Reactor

The PollReactor will work on any platform that provides poll(). With larger numbers of connected sockets, it may
provide for better performance.

from twisted.internet import pollreactor
pollreactor.install()

3.10.4 Platform-Specific Reactors

cReactor for Unix

The cReactor is a high-performance C implementation of the Reactor interfaces. It is currently experimental and under
active development. Be sure to see the installation notes (page 20) prior to using the cReactor.

from twisted.internet import cReactor
cReactor.install()

CHAPTER 3. LOW-LEVEL TWISTED 60

KQueue

The KQueue Reactor allows Twisted to use FreeBSD’s kqueue mechanism for event scheduling. See instructions in
the twisted.internet.kqreactor’s docstring for installation notes.

from twisted.internet import kqreactor
kqreactor.install()

Java

The Java Reactor allows Twisted to run under Jython3. It does not currently support AWT or Swing integration.

from twisted.internet import javareactor
javareactor.install()

Win32

The Win32 reactor is not yet complete and has various limitations and issues that need to be addressed. The reactor
supports GUI integration with the win32gui module, so it can be used for native Win32 GUI applications.

from twisted.internet import win32eventreactor
win32eventreactor.install()

3.10.5 GUI Integration Reactors

GTK+

Twisted integrates with PyGTK4, versions 1.2 and 2.0. Sample applications using GTK+ and Twisted are available in
the Twisted CVS.

from twisted.internet import gtkreactor
gtkreactor.install()

Qt

An example Twisted application that uses Qt can be found in doc/examples/qtdemo.py.
When installing the reactor, pass a QApplication instance, and if you don’t a new one will be created for you.

from qt import QApplication
app = QApplication([])

from twisted.internet import qtreactor
qtreactor.install(app)

3http://www.jython.org/
4http://www.daa.com.au/˜james/pygtk/

CHAPTER 3. LOW-LEVEL TWISTED 61

3.10.6 Non-Reactor GUI Integration

Tkinter

The support for Tkinter5 doesn’t use a specialized reactor. Instead, there is some specialized support code:

from Tkinter import *
from twisted.internet import tksupport

root = Tk()
root.withdraw()

Install the Reactor support
tksupport.install(root)

An example Twisted application that uses Tk can be found in twisted/words/ui/tkim.py.

wxPython

As with Tkinter (this page), the support for integrating Twisted with a wxPython6 application uses specialized support
code rather than a simple reactor.

from wxPython.wx import *
from twisted.internet import wxsupport, reactor

myWxAppInstance = wxApp(0)
wxsupport.install(myWxAppInstance)

An example Twisted application that uses WxWindows can be found in doc/examples/wxdemo.py.

PyUI

As with Tkinter (this page), the support for integrating Twisted with a PyUI7 application uses specialized support code
rather than a simple reactor.

from twisted.internet import pyuisupport, reactor

pyuisupport.install(args=(640, 480), kw={’renderer’: ’gl’})

An example Twisted application that uses PyUI can bve found in doc/examples/pyuidemo.py.

5http://www.python.org/topics/tkinter/
6http://www.wxpython.org
7http://pyui.sourceforge.net

Chapter 4

High-Level Twisted

4.1 Using app.Application

4.1.1 Motivation

Calling reactor methods (like .listenTCP and .run) directly, as in the examples in Writing Servers (page 31),
is a good way to immediately demonstrate the use of Factories and Protocols. But you would ask for more from a
fully-fledged, easy-to-run, easy-to-configure Internet Server. Twisted provides many of these features as a partnership
between its Application object and the twistd administrator’s program.

What more could we want? Well:
� starting as a daemon:

One of the important aspects of a server program is that it can be run in the background, with output detached
from the terminal, run in a chroot jail or under a different user id.

� configuration arguments:

suppose your quote of the day (’QOTD’) server behaves a bit more like the normal port 17 server and pulls a
random line from /usr/share/fortunes. Your QOTDFactory() might take a filename to indicate where
the QOTD protocols should pull these lines. It would be nice if the person installing your quote server didn’t
have to modify any Python code to change where this file should be found.

Likewise, what if they want it to listen on some other port? That shouldn’t require editing the code.

� basic persistence:

If your protocol demands that you keep some state from one invocation of the server to the next, you’ll need to
save some information before the server shuts down, and to restore it again when you start back up.

Suppose your protocol’s purpose in life is to generate one-time keys, and that people can connect to it to retrieve
a single-use key. (Don’t ask me why they might want to do this. Security is such a weird big thing that chances
are somebody out there will want to do something that’s probably pretty dumb when you think about it carefully).
The important thing is that you never give out the same key twice. So you have to remember a sequence number,
and each time you give out a key, you bump up the number. Before you shut down, you save the number to a
file somewhere; at start up, if the file exists you read the number from it, if it doesn’t exist, you start at 0. (an
example is included below)

62

CHAPTER 4. HIGH-LEVEL TWISTED 63

This kind of persistent data is a common need, and many kinds of servers require it. Hence Twisted provides an
easy way to record and reload this data.

This functionality is provided by the Application class (defined in twisted/internet/app.py). You create an Appli-
cation with a constructor like any other object. Then you tell the app to listen to ports (just like you told the reactor to
in the previous example), providing a Factory on each one. The difference is that the App won’t starting listening on
those ports right away, but will wait until it starts to run.

When you’re done setting up an Application object, there are three options. You can run it directly by calling
the application’s .run() method. You can use twistd -y app.py to run your application directly from python
source code. Or you can save the Application out to a file by calling the .save() method. The saved application can
then be started later by using twistd -f app-start.tap.

4.1.2 Example Application

Here is a short example of the first option, running the server immediately. This example uses the pre-defined Daytime
protocol, which simply sends the current time to each client.:

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.protocols.wire import Daytime
from twisted.internet.protocol import Factory

application = Application("daytimer")
f = Factory()
f.protocol = Daytime
application.listenTCP(8813, f)

if ’__main__’ == __name__:
application.run()

Source listing — app1.py

This program will start listening to port 8813 in the app.run() call, and won’t return from that call until the
server is terminated (probably when you send it SIGINT via ˆC on the keyboard).

To use the second option, the same source file can be used, but using the twistd -y command to start the
application as a daemon. If persistence is not required, then use the --no save option.

$ twistd --no_save --python=app1.py
$ tail -f twistd.log
04/04/2003 23:45 [-] Log opened.
04/04/2003 23:45 [-] twistd 1.0.4alpha1 (/usr/local/bin/python 2.2.2)
starting up
04/04/2003 23:45 [-] license user: Nobody <>
04/04/2003 23:45 [-] organization: No Organization
04/04/2003 23:45 [-] reactor class: twisted.internet.default.SelectReactor
04/04/2003 23:45 [-] Loading

CHAPTER 4. HIGH-LEVEL TWISTED 64

/home/cce/work/Twisted/doc/howto/listings/application/app1.py...
04/04/2003 23:45 [-] Loaded.
04/04/2003 23:45 [*daytimer*] twisted.internet.protocol.Factory starting on
8813
04/04/2003 23:45 [*daytimer*] Starting factory
<twisted.internet.protocol.Factory instance at 0x835dcac>

To use the third option and launch the server later, just use .save() instead of .run(). The .save() method
takes a base name for the generated .tap file:

...
app.listenTCP(8813, f)

app.save("start")

When you run this program, it will create a file called daytime-start.tap, and then exit. (The name is
obtained by combining the application name with the argument to .save()). To start the server from the “freeze-
dried”.tap file, use twistd (text wrapped to be more readable):

% ./app2.py
Saving daytimer application to daytimer-start.tap...
Saved.
% twistd -f daytimer-start.tap
% tail twistd.log
30/09/2002 01:38 [-] Log opened.
30/09/2002 01:38 [-] twistd 0.99.2 (/usr/bin/python2.2 2.2.1) starting up
30/09/2002 01:38 [-] license user: Nobody <>
30/09/2002 01:38 [-] organization: No Organization
30/09/2002 01:38 [-] reactor class: twisted.internet.default.SelectReactor
30/09/2002 01:38 [-] Loading daytimer-start.tap...
30/09/2002 01:38 [-] Loaded.
30/09/2002 01:38 [*daytimer*] twisted.internet.protocol.Factory starting on 8813
30/09/2002 01:38 [*daytimer*] Starting factory
<twisted.internet.protocol.Factory instance at 0x81ac9fc>
%

That will “thaw out” the .tap file, create the Application, and then run it just as if you’d invoked app.run()
yourself. It forks the new server off into the background (so twistd itself completes instead of waiting for the server to
die), writes the server’s process ID to a file called twistd.pid, and directs all the server’s stdout messages to a file
called twistd.log (these file names can be changed by appropriate arguments to twistd: see twistd -h for a
list).

When you try this example, be aware that twistd returns right away, but it takes a second or two for the server
to actually start. The twistd.pid file won’t be created until it does. Wait a moment before doing ls or netstat,
or you’ll think that the server failed to start. If it persists in failing, look in twistd.log for details. Remember that
trying to bind to a reserved port will fail unless you’re root, and the exception will be listed at the end of the log file.

To kill the server, just do:

% kill ‘cat twistd.pid‘

CHAPTER 4. HIGH-LEVEL TWISTED 65

When the server is shut down, you’ll notice that it creates a file called daytimer-shutdown.tap in the
directory it was run from (again, the name is derived from the application name and the word “shutdown”). This
.tap file is just like the daytimer-start.tap created by your original setup program, except that it represents
the state of the Application object as it existed just before shutdown, rather than when it was freshly created by your
code.

Also note that the twistd.pid file is automatically deleted when the application shuts down.

4.1.3 Saving State Across Sessions: Adding Persistent Data

You can add persistent data (like that sequence number described above) to the protocol Factory object, and it will
get saved in the -shutdown.tap file. Then, if you restart the server with twistd -f daytimer-shutdown.
tap, the new server will get the data saved by the old server, and it can pick up where the old one left off, as if the
server had been running continuously the whole time.

To take advantage of this, simply add the attributes you want to the Factory, or to your subclass of Service (see
the docs on Perspective Broker for details about Services). When the application terminates, it simply pickles up the
whole Application (and everything it references, including Factories and Services). Any attributes or objects you have
added will be saved and later restored.

Here is an example:

#! /usr/bin/python

from twisted.internet.protocol import Protocol, Factory

class OneTimeKey(Protocol):
def connectionMade(self):

key = self.factory.nextkey
print "giving key", key
self.factory.nextkey += 1
self.transport.write("%d\n" % key)
self.transport.loseConnection()

def main():
namespaces are weird. if we used OneTimeKey directly, it would
pickle the instance as __main__.OneTimeKey, since we run this
module directly. So we reimport this module so the pickle refers
to it by its real name.
import app3
from twisted.internet.app import Application
f = Factory()
f.protocol = app3.OneTimeKey
f.nextkey = 0
app = Application("otk")
app.listenTCP(8123, f)
app.save("start")

CHAPTER 4. HIGH-LEVEL TWISTED 66

if __name__ == ’__main__’:
main()

Source listing — app3.py

To demonstrate this, do the following:

% ./app3.py
Saving otk application to otk-start.tap...
Saved.
% twistd -f otk-start.tap
%
% nc localhost 8123
0
% nc localhost 8123
1
% nc localhost 8123
2
%

Note that the stdout of the process is being directed into the log file, contained in twistd.log. Now stop the
server, verify that it is no longer running, then restart it from the saved-at-shutdown .tap file:

% kill ‘cat twistd.pid ‘
% nc localhost 8123
localhost [127.0.0.1] 8123 (?) : Connection refused
% twistd -f otk-shutdown.tap
% nc localhost 8123
3
%

Notice how the saved .nextkey attribute was restored, and the application picks up where it left off.

4.1.4 Configuration arguments

To do this right, you’ll want to follow the sequence described by the writing plugins (page 67) document. Instead of
writing a short program that creates a .tap file (by creating an Application, doing various .listenTCPs on it, then
calling .save), you will write a subroutine called updateApplication(). This subroutine should take a bunch of config
arguments (using the usage.Options class described in the plugins document) and use them to create Factories and feed
them to .listenTCP on an existing Application instance.

With that in place, and a few files to register this new server you’ve created, a utility program called ’mktap’
can relieve you of the business of gathering user arguments and creating the app instance. mktap can use the Op-
tions subclass you define in your build-a-tap class to figure out what arguments are legal (--port taking a num-
ber, --quotes taking a filename, etc), provide --help with a list of valid arguments, and parse everything the
user passes in argv[]. It creates the Application, then passes the app and the parsed options to your update
Application()method, where you do the server-specific creation of a Factory and the various listenTCP calls.
Then mktap saves out the .tap file, ready for starting by twistd.

The end result is that installing your new server is simplified to the following steps:

CHAPTER 4. HIGH-LEVEL TWISTED 67

� Unpack your server module (including the classes and plugin glue files) into somewhere on your PYTHON-
PATH, perhaps /usr/local/lib/python.

� Run the standard mktap program, giving it the name of your module and whatever configuration arguments it
requires. Watch it create a .tap file.

� Use twistd to start the server contained in the .tap file.

Pretty easy. At least your users will think so.
And, once your application is defined by the .tap file, there are other tools that can be used to configure it.

tap2deb is a tool that creates installable Debian .deb packages from your .tap file, making installation even
easier.

The Application object has some other features designed to solve common server needs:

� logging is controlled, through the log.Logger class

� the process can switch to a different uid/gid after binding reserved ports

� styles.Versioned allows old saved copies of an object to be upgraded when new versions of the class are available

� Applications have Authorizers, used to authenticate client connections

� Applications have Services, which can be accessed by PB clients

4.2 Writing a New Plug-In for mktap

4.2.1 Getting Started

Twisted is a very general and powerful tool. It can power anything connected to a network, from your corporate
message-broadcasting network to your desktop IRC client. This is great for integrating lots of different tools, but can
make it very difficult to document and understand how the whole platform is supposed to work. A side effect of this is
that it’s hard to get started with a project using Twisted, because it’s hard to find out where to start.

This guide is to help you understand the “right way” to get started working on a Twisted application. It probably
won’t answer your specific questions about how to do things like schedule functions to call in the future (page 55)
or listen on a socket (page 31); there are other documents that address these concerns and you can read them later.
Although there are other ways for Twisted to call your code, all Twisted projects should start as a plug-in of some kind.

4.2.2 Twisted and You: Where Does Your Code Fit In?

If you’re like most people that have asked me questions about this, you’ve probably come to Twisted thinking of it as
a library of code to help you write an application. It can be, but it is much more useful to think of your code as the
library. Twisted is a framework.

The difference between a framework and a library is that a developer’s code will run a library’s functions; a
framework runs the developer’s functions, instead. The difference is subtle, but significant; there are a range of
resources which have to be allocated and managed regarding start-up and shut-down of an process, such as spawning
of threads and handling events. You don’t have to use Twisted this way. It is quite possible to write applications that
use Twisted almost exclusively as a library. If you use it as a framework, though, Twisted will help you by managing
these resources itself.

CHAPTER 4. HIGH-LEVEL TWISTED 68

The central framework class that you will deal with, both as a Twisted developer and administrator, is twisted.
internet.app.Application. There is one Application instance per Twisted process, and it is the top-level
manager of resources and handler of events in the Twisted framework. (Unlike some other frameworks, developers
do not subclass Application; rather than defining methods on it, you register event handlers to be called by it.)
To store configuration data, as well as other information, Twisted serializes Application instances, storing all
event handlers that have been registered with them. Since the whole Application instance is serialized, Twisted
“configuration” files are significantly more comprehensive than those for other systems. These files store everything
related to a running Application instance; in essence the full state of a running process.

The central concept that a Twisted system administrator will work with are files that contain Application
instances serialized in various formats optimized for different uses. .TAP files are optimized for speed of loading
and saving, .TAX files are editable by administrators familiar with XML syntax, and .TAS files are generated Python
source code, most useful for developers. The two command-line programs which work with these files are mktap and
twistd. The mktap utility create .TA* files from simple command-line arguments, and the twistd daemon will
load and run those files.

There are many ways in which your code will be called by various parts of the Twisted framework by the time
you’re done. The initial one we’re going to focus on here is a plug-in for the mktap utility. mktap produces complete,
runnable Application instances, so no additional work is necessary to make your code work with twistd. First
we will go through the process of creating a plug-in that Twisted can find, then we make it adhere to the mktap
interface. Finally we will load that plug-in with a server.

4.2.3 What is a Plug-In?

Python makes it very easy to dynamically load and evaluate programs. The plug-in system for Twisted, twisted.
python.plugin, is a way to find (without loading) and then load plug-ins for particular systems.

Unlike other “plug-in” systems, like the well known ones associated with The Gimp, Photoshop, and Apache
twisted.python.plugin is generic. Any one of the Twisted “dot-products”1 can define mechanisms for ex-
tensibility using plug-ins. Two Twisted dot-products already load such plug-ins. The twisted.tappackage loads
Twisted Application builder modules (TAP plug-ins) and the twisted.coil package loads configuration modules
(COIL plug-ins).

Twisted finds its plug-ins by using pre-existing Python concepts; the load path, and packages. Every top-level
Python package2 (that is, a directory whose parent is on sys.path and which contains an init .py) can poten-
tially contain some number of plug-ins. Packages which contain plug-ins are called “drop-ins”, because you “drop”
them into your sys.path. The only difference between a package and a drop-in is the existence of a file named
plugins.tml (TML for Twisted Module List) that contains some special Python expressions to identify the loca-
tion of sub-packages or modules which can be loaded.

If you look at twisted/plugins.tml, you will notice that Twisted is a drop-in for itself! You can browse
through it for lots of examples of plug-ins being registered.

The most prevalent kind of plug-in is the TAP (Twisted Application builder) type. These are relatively simple to
get started with. Let’s look at an excerpt from Twisted’s own plugins.tml for an example of registering one:

...

register("Twisted Web Automated TAP builder",
"twisted.tap.web",

1http://twistedmatrix.com/products/dot-products
2http://www.python.org/doc/current/tut/node8.html#SECTION008400000000000000000

CHAPTER 4. HIGH-LEVEL TWISTED 69

description="""
Builds a Twisted Application instance that contains a general-purpose
web server, which can serve from a filesystem or application resource.
""",
type="tap",
tapname="web")

...

plugins.tml will be a list of calls to one function:

register(name, module, type=plugin_type,
description=user_description
[, **plugin_specific_data])

� name is a free-form string, to be displayed to the user in presentation contexts (like a web page, or a list-box in
a GUI).

� module is a string which must be the fully-qualified name of a Python module.

� type is the name of the system you are plugging in to. Be sure to spell this right, or Twisted won’t find your
plug-in at all!

� **plugin specific data is a dictionary of information associated with the plug-in, specific to the type
of plug-in it is. Note that some plug-in types may require a specific bit of data in order to work.

Note the tapname parameter given in the example above. This parameter is an example of
**plugin specific data. The parameter tapname is only used by "tap"-type modules. It indicates what
name to use on the mktap command line. In English, this particular call to register means “When the user types
mktap web, it selects the module twisted.tap.web to handle the rest of the arguments”.

Now that you understand how to register a plug-in, let’s move along to writing your first one.

4.2.4 Twisted Quotes: A Case Study

As an example, we are going to work on a Quote of the Day application, TwistedQuotes. Aspects of this applica-
tion will be explored in more depth throughout in the Twisted documentation.

TwistedQuotes is a very simple plugin which is a great demonstration of Twisted’s power. It will export a small
kernel of functionality – Quote of the Day – which can be accessed through every interface that Twisted supports: web
pages, e-mail, instant messaging, a specific Quote of the Day protocol, and more.

Before you Begin

First, make a directory, TwistedQuotes, where you’re going to keep your code. If you installed Twisted from
source, the path of least resistance is probably just to make a directory inside your Twisted-X.X.X directory,
which will already be in your sys.path. If you want to put it elsewhere, make sure that your TwistedQuotes
directory is a package on your python path.

CHAPTER 4. HIGH-LEVEL TWISTED 70

Note:
The directory you add to your PYTHONPATH needs to be the directory containing your package’s

directory! For example, if your TwistedQuotes directory is /my/stuff/TwistedQuotes, you can export
PYTHONPATH=/my/stuff:$PYTHONPATH in UNIX, or edit the PYTHONPATH environment vari-
able to add /my/stuff; at the beginning through the System Properties dialog on Windows.

You will then need to add an init .py to this directory, to mark it as a package. (For more information
on exactly how Python packages work, read this section3 of the Python tutorial.) In order to test that everything is
working, start up the Python interactive interpreter, or your favorite IDE, and verify that the package imports properly.

Python 2.1.3 (#1, Apr 20 2002, 22:45:31)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import TwistedQuotes
>>> # No traceback means you’re fine.

A Look at the Heart of the Application

(You’ll need to put this code into a file called quoters.py in your TwistedQuotes directory.)

from twisted.python import components

from random import choice

class IQuoter(components.Interface):
"""An object that returns quotes."""

def getQuote(self):
"""Return a quote."""

class StaticQuoter:
"""Return a static quote."""

__implements__ = IQuoter

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
"""Load quotes from a fortune-format file."""

3http://www.python.org/doc/current/tut/node8.html#SECTION008400000000000000000

CHAPTER 4. HIGH-LEVEL TWISTED 71

__implements__ = IQuoter

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
return choice(open(choice(self.filenames)).read().split(’\n%\n’))

Twisted Quotes Central Abstraction — quoters.py

This code listing shows us what the Twisted Quotes system is all about. The code doesn’t have any way of talking
to the outside world, but it provides a library which is a clear and uncluttered abstraction: “give me the quote of the
day”.

Note that this module does not import any Twisted functionality at all! The reason for doing things this way is
integration. If your “business objects” are not stuck to your user interface, you can make a module that can integrate
those objects with different protocols, GUIs, and file formats. Having such classes provides a way to decouple your
components from each other, by allowing each to be used independently.

In this manner, Twisted itself has minimal impact on the logic of your program. Although the Twisted “dot
products” are highly interoperable, they also follow this approach. You can use them independently because they are
not stuck to each other. They communicate in well-defined ways, and only when that communication provides some
additional feature. Thus, you can use twisted.web with twisted.enterprise, but neither requires the other,
because they are integrated around the concept of Deferreds (page 45). (Don’t worry we’ll get to each of those features
in later documentation.)

Your Twisted applications should follow this style as much as possible. Have (at least) one module which imple-
ments your specific functionality, independant of any user-interface code.

Next, we’re going to need to associate this abstract logic with some way of displaying it to the user. We’ll do this
by writing a Twisted server protocol, which will respond to the clients that connect to it by sending a quote to the
client and then closing the connection. Note: don’t get too focused on the details of this – different ways to interface
with the user are 90% of what Twisted does, and there are lots of documents describing the different ways to do it.

(You’ll need to put this code into a file called quoteproto.py in your TwistedQuotes directory.)

from twisted.internet.protocol import Factory, Protocol
from twisted.internet.app import Application

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quoter.getQuote()+’\r\n’)
self.transport.loseConnection()

class QOTDFactory(Factory):

protocol = QOTD

def __init__(self, quoter):

CHAPTER 4. HIGH-LEVEL TWISTED 72

self.quoter = quoter

Twisted Quotes Protocol Implementation — quoteproto.py

This is a very straightforward Protocol implementation, and the pattern described above is repeated here. The
Protocol contains essentially no logic of its own, just enough to tie together an object which can generate quotes (a
Quoter) and an object which can relay bytes to a TCP connection (a Transport). When a client connects to this
server, a QOTD instance is created, and its connectionMade method is called.

The QOTDFactory’s role is to specify to the Twisted framework how to create a Protocol instance that will
handle the connection. Twisted will not instantiate a QOTDFactory; you will do that yourself later, in the mktap
plug-in below.

Note: you can read more specifics of Protocol and Factory in the Writing Servers (page 31) HOWTO.
Once we have an abstraction – a Quoter – and we have a mechanism to connect it to the network – the QOTD

protocol – the next thing to do is to put the last link in the chain of functionality between abstraction and user. This
last link will allow a user to choose a Quoter and configure the protocol.

Practically speaking, this link is an interface for a savvy user who will run the server. (In this case, you; when you
have more users, a system administrator.) For the purposes of this example we will first implement a mktap interface.
Like most system administrator tools, this is command-line oriented. (It is possible to implement a graphical front-end
to mktap, using the same plug-in structure, but this has not been done yet.)

Creating the extension to mktap is done through implementing a module that follows the mktap plug-in interface,
and then registering it to be found and loaded by twisted.python.plugin. As described above, registration is
done by adding a call to register in the file TwistedQuotes/plugins.tml

(You’ll need to put this code into a file called quotetap.py in your TwistedQuotes directory.)

from TwistedQuotes import quoteproto # Protocol and Factory
from TwistedQuotes import quoters # "give me a quote" code

from twisted.python import usage # twisted command-line processing

class Options(usage.Options):
optParameters = [["port", "p", 8007,

"Port number to listen on for QOTD protocol."],
["static", "s", "An apple a day keeps the doctor away.",
"A static quote to display."],

["file", "f", None,
"A fortune-format text file to read quotes from."]]

def updateApplication(app, config):
if config["file"]: # If I was given a "file" option...

Read quotes from a file, selecting a random one each time,
quoter = quoters.FortuneQuoter([config[’file’]])

else: # otherwise,
read a single quote from the command line (or use the default).
quoter = quoters.StaticQuoter(config[’static’])

port = int(config["port"]) # TCP port to listen on
factory = quoteproto.QOTDFactory(quoter) # here we create a QOTDFactory

CHAPTER 4. HIGH-LEVEL TWISTED 73

Finally, set up our factory, with its custom quoter, to create QOTD
protocol instances when events arrive on the specified port.
app.listenTCP(port, factory)

Twisted Quotes TAP construction module — quotetap.py

This module has to conform to a fairly simple interface. It must have a class called Optionswhich is a subclass of
twisted.python.usage.Options. It must also have a function updateApplication(app, config),
which will be passed an instance of a twisted.internet.app.Applicationand an instance of the Options
class defined in the module itself, TwistedQuotes.quotetap.Options. Command-line options given on the
mktap command line fill in the values in Options and are used in updateApplication to make the actual
connections between objects.

A more detailed discussion of twisted.python.usage.Options can be found in the document Using
usage.Options (page 78).

Now that we’ve implemented all the necessary pieces, we can finish putting them together by writing a TML file
which allows the mktap utility to find our protocol module.

register("Quote of the Day TAP Builder",
"TwistedQuotes.quotetap",
description="""
Example of a TAP builder module.
""",
type="tap",
tapname="qotd")

Twisted Quotes Plug-in registration — plugins.tml

Now the QOTD server is ready to be instantiated! Let’s start up a server and get a quote from it.

% mktap qotd
Saving qotd application to qotd.tap...
Saved.
% twistd -f qotd.tap
% nc localhost 8007
An apple a day keeps the doctor away.
% kill ‘cat twistd.pid‘

Let’s walk through the above example. First, we run mktap specifying the Application type (qotd) to create.
mktap reads in our plugins.tml file, instantiates an Application object, fills in the appropriate data, and
serializes it out to a qotd.tap file. Next, we launch the server using the twistd daemon, passing qotd.tap as
a command line option. The server launches, listens on the default port from quotetap.py. Next, we run nc to
connect to the running server. In this step, the QOTDFactory creates a Quoter instance, which responds to our
network connection by sending a quote string (in this case, the default quote) over our connection, and then closes the
connection. Finally, we shutdown the server by killing it via a saved out process id file.

(nc is the netcat4 utility, which no UNIX system should be without.)

4http://www.atstake.com/research/tools/index.html#network utilities

CHAPTER 4. HIGH-LEVEL TWISTED 74

So we just saw Twisted in action as a framework. With relatively little code, we’ve got a server that can respond
to a request over a network, with two potential alternative back-ends (fortune files and static text).

After reading this (and following along with your own example, of course), you should be familiar with the process
of getting your own Twisted code with unique functionality in it running inside of a server. You should be familiar
with the concept of a drop-in and a plug-in, and understand both how to create them and how to install them from
other people on your system.

By following the rules set out at the beginning of this HOWTO, we have accidentally implemented another piece
of useful functionality.

% mktap
Usage: mktap [options] <command> [command options]

Options:
-x, --xml DEPRECATED: same as --type=xml
-s, --source DEPRECATED: same as --type=source
-e, --encrypted Encrypt file before writing
-p, --progress Show progress of plugin loading
-d, --debug Show debug information for plugin loading
-u, --uid= [default: 1000]
-g, --gid= [default: 1000]
-a, --append= An existing .tap file to append the plugin to, rather than

creating a new one.
-t, --type= The output format to use; this can be ’pickle’, ’xml’, or

’source’. [default: pickle]
--help display this message

Commands:
coil A web-based configuration manager.
ftp An FTP server.
im A multi-protocol chat client.
inetd
issues Bug reporting/tracking service.
mail An email service.
manhole An interactive remote debugger service.
news News Server
parent Parent service.
pinger Zoot Pinger TAP builder module
ponger Zoot Ponger TAP builder module
portforward A simple port-forwarder.
qotd Example of a TAP builder module.
sibling Sibling service.
socks A SOCKSv4 proxy service.
ssh
telnet A simple, telnet-based remote debugging service.
toc An AIM TOC service.
web A general-purpose web server which can serve from a

filesystem or application resource.

CHAPTER 4. HIGH-LEVEL TWISTED 75

words A chat service.
zoot Zoot TAP builder module

Not only does our Options class get instantiated by mktap directly, the user can query mktap for interactive
help! This is just one small benefit to using Twisted as it was designed. As more tools that use the tap style of plug-in,
more useful functionality will become available from Twisted Quotes. For example, a graphical tool could provide
not just help messages at the command line, but a listing of all available TAP types and forms for each, for the user to
enter information.

It is this kind of power that results from using a dynamic, powerful framework like Twisted. I hope that you take
your newfound knowledge and discover all kinds of cool things like this that you get for free just by using it!

The plug-in system is a relatively new part of Twisted, and not as many things use it as they should yet. Watch this
space for new developments regarding plug-ins, other systems that you can plug your code into, and more documen-
tation for people wanting to write systems that can be plugged in to!

4.3 Twisted Enterprise Row Objects

The twisted.enterprise.rowmodule is a method of interfacing simple python objects with rows in relational
database tables. It has two components: the RowObject class which developers sub-class for each relational table
that their code interacts with, and the Reflector which is responsible for updates, inserts, queries and deletes
against the database.

The row module is intended for applications such as on-line games, and web-site that require a back-end database
interface. It is not a full functioned object-relational mapper for python - it deals best with simple data types structured
in ways that can be easily represented in a relational database. It is well suited to building a python interface to an
existing relational database, and slightly less suited to added database persistance to an existing python application.

4.3.1 Class Definitions

To interface to relational database tables, the developer must create a class derived from the twisted.
enterprise.row.RowObject class for each table. These derived classes must define a number of class at-
tributes which contains information about the database table that class corresponds to. The required class attributes
are:

� rowColumns - list of the column names and types in the table with the correct case

� rowKeyColumns - list of key columns in form: [(columnName, typeName)]

� rowTableName - the name of the database table

There are also two optional class attributes that can be specified:

� rowForeignKeys - list of foreign keys to other database tables in the form: [(tableName, [(child
ColumnName, childColumnType), ...], [(parentColumnName, parentColumnType),
...], containerMethodName, autoLoad]

� rowFactoryMethod - a method that creates instances of this class

For example:

CHAPTER 4. HIGH-LEVEL TWISTED 76

class RoomRow(row.RowObject):
rowColumns = [("roomId", "int"),

("town_id", "int"),
("name", "varchar"),
("owner", "varchar"),
("posx", "int"),
("posy", "int"),
("width", "int"),
("height", "int")]

rowKeyColumns = [("roomId", "int4")]
rowTableName = "testrooms"
rowFactoryMethod = [testRoomFactory]

The items in the rowColumns list will become data members of classes of this type when they are created by the
Reflector.

4.3.2 Initialization

The initialization phase builds the SQL for the database interactions. It uses the system catalogs of the database to do
this, but requires some basic information to get started. The class attributes of the classes derived from RowClass are
used for this. Those classes are passed to a Reflector when it is created.

There are currently two available reflectors in Twisted Enterprise, the SQL Reflector for relational databases which
uses the python DB API, and the XML Reflector which uses a file system containing XML files. The XML reflector
is currently extremely slow.

An example class list for the RoomRow class we specified above using the SQLReflector:

from twisted.enterprise.sqlreflector import SQLReflector

dbpool = adbapi.ConnectionPool("pyPgSQL.PgSQL")
reflector = SQLReflector(dbpool, [RoomRow])

4.3.3 Creating Row Objects

There are two methods of creating RowObjects - loading from the database, and creating a new instance ready to be
inserted.

To load rows from the database and create RowObject instances for each of the rows, use the loadObjectsFrom
method of the Reflector. This takes a tableName, an optional “user data” parameter, and an optional “where clause”.
The where clause may be omitted which will retrieve all the rows from the table. For example:

def gotRooms(rooms):
for room in rooms:

print "Got room:", room.id

d = reflector.loadObjectsFrom("testrooms",
whereClause=[("id", reflector.EQUAL, 5)])

d.addCallback(gotRooms)

CHAPTER 4. HIGH-LEVEL TWISTED 77

For more advanced RowObject construction, loadObjectsFrom may use a factoryMethod that was specified as a
class attribute for the RowClass derived class. This method will be called for each of the rows with the class object, the
userData parameter, and a dictionary of data from the database keyed by column name. This factory method should
return a fully populated RowObject instance and may be used to do pre-processing, lookups, and data transformations
before exposing the data to user code. An example factory method:

def testRoomFactory(roomClass, userData, kw):
newRoom = roomClass(userData)
newRoom.__dict__.update(kw)
return newRoom

The last method of creating a row object is for new instances that do not already exist in the database table. In this
case, create a new instance and assign its primary key attributes and all of its member data attributes, then pass it to
the insertRow method of the Reflector. For example:

newRoom = RoomRow()
newRoom.assignKeyAttr("roomI", 11)
newRoom.town_id = 20
newRoom.name = ’newRoom1’
newRoom.owner = ’fred’
newRoom.posx = 100
newRoom.posy = 100
newRoom.width = 15
newRoom.height = 20
reflector.insertRow(newRoom).addCallback(onInsert)

This will insert a new row into the database table for this new RowObject instance. Note that the assignKey
Attr method must be used to set primary key attributes - regular attribute assignment of a primary key attribute of a
rowObject will raise an exception. This prevents the database identity of RowObject from being changed by mistake.

4.3.4 Relationships Between Tables

Specifying a foreign key for a RowClass creates a relationship between database tables. When loadObjectsFrom
is called for a table, it will automatically load all the children rows for the rows from the specified table. The child rows
will be put into a list member variable of the rowObject instance with the name childRows or if a containerMethod
is specified for the foreign key relationship, that method will be called on the parent row object for each row that is
being added to it as a child.

The autoLoad member of the foreign key definition is a flag that specifies whether child rows should be auto-loaded
for that relationship when a parent row is loaded.

4.3.5 Duplicate Row Objects

If a reflector tries to load an instance of a rowObject that is already loaded, it will return a reference to the existing
rowObject rather than creating a new instance. The reflector maintains a cache of weak references to all loaded row
objects by their unique keys for this purpose.

CHAPTER 4. HIGH-LEVEL TWISTED 78

4.3.6 Updating Row Objects

RowObjects have a dirty member attribute that is set to 1 when any of the member attributes of the instance that
map to database columns are changed. This dirty flag can be used to tell when RowObjects need to be updated back
to the database. In addition, the setDirty method can be overridden to provide more complex automated handling
such as dirty lists (be sure to call the base class setDirty though!).

When it is determined that a RowObject instance is dirty and need to have its state updated into the database, pass
that object to the updateRow method of the Reflector. For example:

reflector.updateRow(room).addCallback(onUpdated)

For more complex behavior, the reflector can generate the SQL for the update but not perform the update. This can
be useful for batching up multiple updates into single requests. For example:

updateSQL = reflector.updateRowSQL(room)

4.3.7 Deleting Row Objects

To delete a row from a database pass the RowObject instance for that row to the Reflector deleteRow method.
Deleting the python Rowobject instance does not automatically delete the row from the database. For example:

reflector.deleteRow(room)

4.4 Using usage.Options

4.4.1 Introduction

There is frequently a need for programs to parse a UNIX-like command line program: options preceded by - or --,
sometimes followed by a parameter, followed by a list of arguments. The twisted.python.usage provides a
class, Options, to facilitate such parsing.

While Python has the getopt module for doing this, it provides a very low level of abstraction for options.
Twisted has a higher level of abstraction, in the class twisted.python.usage.Options. It uses Python’s
reflection facilities to provide an easy to use yet flexible interface to the command line. While most command line
processors either force the application writer to write her own loops, or have arbitrary limitations on the command line
(the most common one being not being able to have more then one instance of a specific option, thus rendering the
idiom program -v -v -v impossible), Twisted allows the programmer to decide how much control she wants.

The Options class is used by subclassing. Since a lot of time it will be used in the twisted.tap package,
where the local conventions require the specific options parsing class to also be called Options, it is usually imported
with

from twisted.python import usage

4.4.2 Boolean Options

For simple boolean options, define the attribute optFlags like this:

class Options(usage.Options):

optFlags = [["fast", "f", "Act quickly"], ["safe", "s", "Act safely"]]

CHAPTER 4. HIGH-LEVEL TWISTED 79

optFlags should be a list of 3-lists. The first element is the long name, and will be used on the command line
as --fast. The second one is the short name, and will be used on the command line as -f. The last element is a
description of the flag and will be used to generate the usage information text. The long name also determines the
name of the key that will be set on the Options instance. Its value will be 1 if the option was seen, 0 otherwise. Here
is an example for usage:

class Options(usage.Options):

optFlags = [
["fast", "f", "Act quickly"],
["good", "g", "Act well"],
["cheap", "c", "Act cheaply"]

]

command_line = ["-g", "--fast"]

options = Options()
try:

options.parseOptions(command_line)
except usage.UsageError, errortext:

print ’%s: %s’ % (sys.argv[0], errortext)
print ’%s: Try --help for usage details.’ % (sys.argv[0])
sys.exit(1)

if options[’fast’]:
print "fast",

if options[’good’]:
print "good",

if options[’cheap’]:
print "cheap",

print

The above will print fast good.
Note here that Options fully supports the mapping interface. You can access it mostly just like you can access any

other dict. Options are stored as mapping items in the Options instance: parameters as ’paramname’: ’value’ and flags
as ’flagname’: 1 or 0.

Inheritance, Or: How I Learned to Stop Worrying and Love the Superclass

Sometimes there is a need for several option processors with a unifying core. Perhaps you want all your commands to
understand -q/--quiet means to be quiet, or something similar. On the face of it, this looks impossible: in Python,
the subclass’s optFlags would shadow the superclass’s. However, usage.Options uses special reflection code
to get all of the optFlags defined in the hierarchy. So the following:

class BaseOptions(usage.Options):

optFlags = [["quiet", "q"], None]

CHAPTER 4. HIGH-LEVEL TWISTED 80

class SpecificOptions(BaseOptions):

optFlags = [
["fast", "f", None], ["good", "g", None], ["cheap", "c", None]

]

Is the same as:

class SpecificOptions(BaseOptions):

optFlags = [
["quiet", "q", "Silence output"],
["fast", "f", "Run quickly"],
["good", "g", "Don’t validate input"],
["cheap", "c", "Use cheap resources"]

]

4.4.3 Parameters

Parameters are specified using the attribute optParameters. They must be given a default. If you want to make
sure you got the parameter from the command line, give a non-string default. Since the command line only has strings,
this is completely reliable.

Here is an example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [
["fast", "f", "Run quickly"],
["good", "g", "Don’t validate input"],
["cheap", "c", "Use cheap resources"]

]
optParameters = [["user", "u", None, "The user name"]]

config = Options()
try:

config.parseOptions() # When given no argument, parses sys.argv[1:]
except usage.UsageError, errortext:

print ’%s: %s’ % (sys.argv[0], errortext)
print ’%s: Try --help for usage details.’ % (sys.argv[0])
sys.exit(1)

if config[’user’] is not None:
print "Hello", config[’user’]

print "So, you want it:"

CHAPTER 4. HIGH-LEVEL TWISTED 81

if config[’fast’]:
print "fast",

if config[’good’]:
print "good",

if config[’cheap’]:
print "cheap",

print

Like optFlags, optParameters works smoothly with inheritance.

4.4.4 Option Subcommands

It is useful, on occassion, to group a set of options together based on the logical “action” to which they belong. For
this, the usage.Options class allows you to define a set of “subcommands”, each of which can provide its own
usage.Options instance to handle its particular options.

Here is an example for an Options class that might parse options like those the cvs program takes

from twisted.python import usage

class ImportOptions(usage.Options):
optParameters = [

[’module’, ’m’, None, None], [’vendor’, ’v’, None, None],
[’release’, ’r’, None]

]

class CheckoutOptions(usage.Options):
optParameters = [[’module’, ’m’, None, None], [’tag’, ’r’, None, None]]

class Options(usage.Options):
subCommands = [[’import’, None, ImportOptions, "Do an Import"],

[’checkout’, None, CheckoutOptions, "Do a Checkout"]]

optParameters = [
[’compression’, ’z’, 0, ’Use compression’],
[’repository’, ’r’, None, ’Specify an alternate repository’]

]

config = Options(); config.parseOptions()
if config.subCommand == ’import’:

doImport(config.subOptions)
elif config.subCommand == ’checkout’:

doCheckout(config.subOptions)

The subCommands attribute of Options directs the parser to the two other Options subclasses when the
strings "import" or "checkout" are present on the command line. All options after the given command string
are passed to the specified Options subclass for further parsing. Only one subcommand may be specified at a time.
After parsing has completed, the Options instance has two new attributes - subCommand and subOptions -
which hold the command string and the Options instance used to parse the remaining options.

CHAPTER 4. HIGH-LEVEL TWISTED 82

4.4.5 Generic Code For Options

Sometimes, just setting an attribute on the basis of the options is not flexible enough. In those cases, Twisted does not
even attempt to provide abstractions such as “counts” or “lists”, but rathers lets you call your own method, which will
be called whenever the option is encountered.

Here is an example of counting verbosity

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self[’verbosity’] = 0 # default

def opt_verbose(self):
self[’verbosity’] = self[’verbosity’]+1

def opt_quiet(self):
self[’verbosity’] = self[’verbosity’]-1

opt_v = opt_verbose
opt_q = opt_quiet

Command lines that look like command -v -v -v -v will increase verbosity to 4, while command -q -q
-q will decrease verbosity to -3.

The usage.Options class knows that these are parameter-less options, since the methods do not receive an
argument. Here is an example for a method with a parameter:

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self[’symbols’] = []

def opt_define(self, symbol):
self[’symbols’].append(symbol)

opt_D = opt_define

This example is useful for the common idiom of having command -DFOO -DBAR to define symbols.

4.4.6 Parsing Arguments

usage.Options does not stop helping when the last parameter is gone. All the other arguments are sent into a
function which should deal with them. Here is an example for a cmp like command.

CHAPTER 4. HIGH-LEVEL TWISTED 83

from twisted.python import usage

class Options(usage.Options):

optParameters = [["max_differences", "d", 1, None]]

def parseArgs(self, origin, changed):
self[’origin’] = origin
self[’changed’] = changed

The command should look like command origin changed.
If you want to have a variable number of left-over arguments, just use def parseArgs(self, *args):.

This is useful for commands like the UNIX cat(1).

4.4.7 Post Processing

Sometimes, you want to perform post processing of options to patch up inconsistencies, and the like. Here is an
example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [
["fast", "f", "Run quickly"],
["good", "g", "Don’t validate input"],
["cheap", "c", "Use cheap resources"]

]

def postOptions(self):
if self[’fast’] and self[’good’] and self[’cheap’]:

raise usage.UsageError, "can’t have it all, brother"

4.5 Cooperative Data Flows (via generators)

4.5.1 Background

Handling more than one Request

When creating services to handle simultaneous requests, processing state must be managed. A common approach,
threading, applies the method used for single user operations: keeping processing state within local variables and
function arguments. In this case, the operating environment handles variable allocation and cleanup. Unfortunately,
threading requires much preemption and locking magic to keep each thread’s execution independent, yet allowing data
to be shared between threads. This magic can lead to subtle programming errors, and, in the case of Python, slowness
as every changes to a mutable object must be synchronized with the global interpreter lock.

An alternative is to use a event-driven approach, where each operation is broken down into distinct steps, each
step scheduled for operation in an delayed execution queue. In this approach, an object is often used used to maintain

CHAPTER 4. HIGH-LEVEL TWISTED 84

state information between each step, allowing other operations to be performed. Often each step is a member function,
queued within Twisted using reactor.CallLater.

from twisted.internet import reactor

class Request:
def __init__(self, name):

self.name = name
reactor.callLater(0, self.step_one)

def step_one(self):
print self.name, ": Step One"
reactor.callLater(0, self.step_two)

def step_two(self):
print self.name, ": Step Two"
reactor.callLater(0, self.step_done)

def step_done(self):
cleanup, and don’t call reactor again.
pass

Request("James")
Request("Wendy")

start and shut down the event loop
reactor.callLater(1, reactor.stop)
reactor.run()

In the output of this example, one can see that execution alternates between steps for James and Wendy’s request.
In effect, the requests are done in a parallel, cooperative manner. While this is a good start, it isn’t perfect as the event
loop is stopped with a hard-coded timeout. It would be better for each Request object to signal when it is completed
so that the event loop can be shut down sooner.

Deferred Callbacks

In Twisted, communication between operations is often accomplished with defer.Deferred. The Deferred object
decouples an asyncronous operation by providing a temporary storage location for its result. Instead of calling the
operation and waiting for a return value, an operation schedules itself to be executed with reactor.callLaterand
then returns a defer.Deferred object. At this point, the caller can register a callback function to be executed
when the operation has completed. In the example below, defer.DeferredList is used to merge the result of
each request into a single notification, which is used to stop the main event loop.

from twisted.internet import reactor, defer

class Request:
def __init__(self, name):

self.name = name
self.d = defer.Deferred()
reactor.callLater(0, self.step_one)

CHAPTER 4. HIGH-LEVEL TWISTED 85

def step_one(self):
print self.name, ": Step One"
reactor.callLater(0, self.step_two)

def step_two(self):
print self.name, ": Step Two"
reactor.callLater(0, self.step_done)

def step_done(self):
self.d.callback(None) # notify callback that we are done

james = Request("James")
wendy = Request("Wendy")

start and shut down the event loop
d = defer.DeferredList([james.d, wendy.d])
d.addCallback(lambda _: reactor.stop())
reactor.run()

While this Deferred approach is very good, it can get quickly complicated, especially if the request is not a
simple linear sequence of steps, or when results must flow between steps incrementally. The flow module addresses
these shortcomings using python generators.

4.5.2 Iterators and generators

An iterator is basically an object which produces a sequence of values. Python’s iterators are simply objects with an
iter () member function which returns an object (usually itself) which has a next() member function. The

next() method is then invoked till it raises a StopIteration exception.

from twisted.python.compat import iter, StopIteration

class Counter:
def __init__(self, count):

self.count = count
def __iter__(self):

return self
def next(self):

ret = self.count
self.count -= 1
if ret: return ret
raise StopIteration
return ret

import sys
if sys.version_info < (2,2):

def list(it):
ret = []
it = iter(it)
try:

CHAPTER 4. HIGH-LEVEL TWISTED 86

while 1:
ret.append(it.next())

except StopIteration: pass
return ret

print list(Counter(3))

prints: [3, 2, 1]

State pattern

Often times it is useful for an iterator to change state during its production of values. This can be done nicely with the
’state’ pattern.

class States:
def __iter__(self):

self.next = self.state_one
return self

def state_one(self):
self.next = self.state_two
return "one"

def state_two(self):
self.next = self.state_stop
return "two"

def state_stop(self):
raise StopIteration

print list(States())

prints: [’one’, ’two’]

Generators

With Python 2.2, there is a wonderful syntax sugar for creating iterators... generators. When a generator is first
executed, an iterator is returned. And from there on, each invocation of next() gives the subsequent value produced
by the yield statement. With generators, the two iterators above become very easy to express.

from __future__ import generators

def Counter(count):
while count > 0:

yield count
count -= 1

def States():
yield "one"
yield "two"

CHAPTER 4. HIGH-LEVEL TWISTED 87

print list(Counter(3))
print list(States())

prints:
[3, 2, 1]
[’one’, ’two’]

One technical difference between iterators and generators, is that raising an exception from a generator perma-
nently halts the generator, while raising an exception from an iterator’s next() method does not invalidate the
iterator, that is, one could call the next() method again and possibly get results. From here on, we use the generator
syntax for building iterators.

Chaining Generators

It is often useful to view an operation information as a flow between stages, where each stage may have several states
or steps. This can be coded where the output of one generator is consumed by another. In this view, the last generator
in the chain ’pulls’ data from previous stages.

from __future__ import generators

def Counter(count):
while count > 0:

yield count
count -= 1

def Consumer():
producer = Counter(3)
for result in producer:

if 2 != result:
yield result

print list(Consumer())

prints: [3, 1]

While this is a very clean syntax for creating a multi-stage operation, it would block all other operations. Therefore,
some mechanism for pausing the generator and resuming it later is required.

4.5.3 Introducing Flow

The flow module provides this ability to cooperate with other tasks. This is accomplished by wrapping iterables in
a flow stage object and following an alternating yield pattern. That is, before each value pulled from the stage, the
operation must yield the wrapper object. During this yield bookkeeping is done to prepare the next value, or, if the
next value is not available, re-scheduling the operation to be executed later.

from __future__ import generators
from twisted.flow import flow

CHAPTER 4. HIGH-LEVEL TWISTED 88

def Counter(count):
while count > 0:

yield count
count -= 1

def Consumer():
producer = flow.wrap(Counter(3))
yield producer
for result in producer:

if 2 != result:
yield result

yield producer

print list(flow.Block(Consumer))

prints: [3, 1]

Equivalent Forms

In the above code, producer.next() is called implicitly, and thus the generator above is equivalent to...

from __future__ import generators
def Consumer():

producer = flow.wrap(Counter(3))
while True:

yield producer
result = producer.next()
if 2 != result:

yield result

The next() method of the wrapper object does several things. First, it checks to see if there are results ready, if
so it returns the next one. If not, it looks for a failure, raising it. And finally, checking to see if the end of the input has
been reached. More concretely...

from __future__ import generators
def Consumer():

producer = flow.wrap(Counter(3))
while True:

yield producer
if producer.results:

result = producer.results.pop(0)
yield result
continue

if producer.failure:
producer.stop = 1
producer.failure.trap()

CHAPTER 4. HIGH-LEVEL TWISTED 89

if producer.stop:
break

Handling failures

Another difference between plain old iterables and one wrapped with the flow module is that exceptions caught are
wrapped with a twisted.python.failure.Failure object for later delivery. There are two basic ways to
recover from exceptions. One way is to list expected exceptions in the call to flow.wrap. Alternatively, a try/except
block can be used, catching flow.Failure objects.

from __future__ import generators
from twisted.flow import flow

def Producer(throw):
yield 1
yield 2
raise throw
yield 3

def Consumer(producer):
producer = flow.wrap(producer, IOError)
yield producer
try:

for result in producer:
if result is IOError:

handle trapped error
yield "trapped"

else:
yield result

yield producer
except AssertionError, err:

handle assertion error
yield str(err)

print list(flow.Block(Consumer(Producer(IOError("trap")))))
print list(flow.Block(Consumer(Producer(AssertionError("notrap")))))

prints: [1, 2, ’trapped’]
prints: [1, 2, ’notrap’]

Cooperate

This seems like quite the effort, wrapping each iterator and then having to alter the calling sequence. Why? The
answer is that it allows for a flow.Cooperate object to be returned. When this happens, the entire call chain can
be paused so that other flows can use the call stack. For flow.Block, the implementation of Cooperate simply puts the
call chain to sleep.

CHAPTER 4. HIGH-LEVEL TWISTED 90

from __future__ import generators
from twisted.flow import flow

def gen():
yield ’immediate’
yield flow.Cooperate(2)
yield ’delayed’

for x in flow.Block(gen):
print x

prints:
immediate
delayed

Merge and Zip

Cooperate can be demonstrated with flow.Merge and flow.Zip components. These two stages join two or more
generators into a single stream. The Merge operation does this by rotating between any of its input streams which are
available. The Zip operation, on the other hand, waits for a result from each stream before it produces a result.

from __future__ import generators
from twisted.flow import flow

def Right():
yield "one"
yield "two"
yield flow.Cooperate()
yield "three"

def Left():
yield 1
yield 2
yield 3

print "Zip", list(flow.Block(flow.Zip(Right,Left)))
print "Merge", list(flow.Block(flow.Merge(Right,Left)))

Zip [(’one’, 1), (’two’, 2), (’three’, 3)]
Merge [’one’, 1, ’two’, 2, 3, ’three’]

4.5.4 Integrating with Twisted

While flow.Block is useful for understanding how flow works, it undermines the whole purpose by sleeping during
Cooperate and blocking other operations. Following are numerous examples of how to integrate flow with the Twisted
framework in a non-blocking manner.

CHAPTER 4. HIGH-LEVEL TWISTED 91

Deferred Flow

For starters, the long example of Wendy and James, with its numerous calls to reactor.callLater to schedule
each step of the operation can be rewritten using flow.Deferred.

from __future__ import generators
from twisted.internet import reactor, defer
from twisted.flow import flow

def request(name):
print name, ": Step One"
yield flow.Cooperate()
print name, ": Step Two"

james = flow.Deferred(request("James"))
wendy = flow.Deferred(request("Wendy"))

start and shut down the event loop
d = defer.DeferredList([wendy, james])
d.addCallback(lambda _: reactor.stop())
reactor.run()

Under the sheets, when flow.Deferred encounters a flow.Cooperate event, it reschedules itself to be
resumed at a later time, allowing other asyncronous operations to proceed. Once again, defer.DeferredList is
only used here to stop the reactor after all operations are completed.

Flow Resources

By using flow.Deferred it is easy to make up a web resource which is both long running, but also can serve more
than one customer at a time. Run the example below, and with two browsers, view the webpage. Notice that both web
pages are being created at the same time.

from __future__ import generators
from twisted.internet import reactor
from twisted.web import server, resource
from twisted.flow import flow

def cooperative(count):
""" simulate a cooperative resource, that not block """
from random import random
idx = 0
while idx < count:

val = random()
yield flow.Cooperate(val)
yield str(val)[-5:]
idx += 1

def flowRender(req):

CHAPTER 4. HIGH-LEVEL TWISTED 92

count = int(req.args.get("count",["30"])[0])
req.write("<html><body>")
req.write(" %s Random numbers: \n" % count)
source = flow.wrap(cooperative(count))
yield source
for itm in source:

req.write("%s\n" % itm)
yield source

req.write("</body></html>\n")

class FlowResource(resource.Resource):
def __init__(self, gen):

resource.Resource.__init__(self)
self.gen = gen

def isLeaf(self): return true
def render(self, req):

self.d = flow.Deferred(self.gen(req))
self.d.addCallback(lambda _: req.finish())
return server.NOT_DONE_YET

print "visit http://localhost:8081/ to view the example"
root = FlowResource(flowRender)
site = server.Site(root)
reactor.listenTCP(8081,site)
reactor.run()

Flow Protocols

The flow module can also be used to construct protocols easily, following is an echo client and server. For each proto-
col, one must yield the connection before reading from it. When the generator finishes, the connection is automatically
closed.

from __future__ import generators
from twisted.flow import flow
from twisted.internet import protocol, reactor
PORT = 8392

def echoServer(conn):
yield conn
for data in conn:

conn.write(data)
yield conn

reactor.callLater(0,reactor.stop)

server = protocol.ServerFactory()
server.protocol = flow.makeProtocol(echoServer)

CHAPTER 4. HIGH-LEVEL TWISTED 93

reactor.listenTCP(PORT,server)

def echoClient(conn):
conn.write("Hello World")
yield conn
print conn.next()
conn.write("Another Line")
yield conn
print conn.next()

client = protocol.ClientFactory()
client.protocol = flow.makeProtocol(echoClient)
reactor.connectTCP("localhost", PORT, client)
reactor.run()

4.5.5 Threading

While the Flow module allows for multiple cooperative tasks to work in a single thread, sometimes it is necessary
to have the output of another thread be consumed within a flow. This can be done with flow.Threaded, which
takes an iterable object and executes it in another thread. Following is a sample iterable, countSleep which simulates a
blocking producer which must be put into a thread. To show that flow.Threaded does not block other operations,
a similar, cooperative count is included.

from __future__ import generators
from twisted.internet import reactor, defer
from twisted.flow import flow

def countSleep(index):
from time import sleep
for index in range(index):

sleep(.3)
print "sleep", index
yield index

def countCooperate(index):
for index in range(index):

yield flow.Cooperate(.1)
print "cooperate", index
yield "coop %s" % index

d = flow.Deferred(flow.Merge(
flow.Threaded(countSleep(5)),
countCooperate(5)))

alternatively
d1 = flow.Deferred(flow.Threaded(countSleep(5)))

CHAPTER 4. HIGH-LEVEL TWISTED 94

d2 = flow.Deferred(countCooperate(10))
d = defer.DeferredList([d1,d2])

def prn(x):
print x
reactor.stop()

d.addCallback(prn)
reactor.run()

Using database connections

Since most standard database drivers are thread based, the flow builds on the ThreadedIterator by providing a
QueryIterator, which takes an sql query and a ConnectionPool.

from __future__ import generators
from twisted.enterprise import adbapi
from twisted.internet import reactor
from twisted.flow import flow

dbpool = adbapi.ConnectionPool("SomeDriver",host=’localhost’,
db=’Database’,user=’User’,passwd=’Password’)

sql = """
(SELECT ’one’)

UNION ALL
(SELECT ’two’)

UNION ALL
(SELECT ’three’)

"""

def consumer():
query = flow.Threaded(flow.QueryIterator(dbpool, sql))
yield query
for row in query:

print "Processed result : ", row

from twisted.internet import reactor
def finish(result):

print "Deferred Complete : ", result
f = flow.Deferred(consumer())
f.addBoth(finish)
reactor.callLater(1,reactor.stop)
reactor.run()

prints
Processed result : (’one’,)

CHAPTER 4. HIGH-LEVEL TWISTED 95

Processed result : (’two’,)
Processed result : (’three’,)
Deferred Complete: []

4.6 DirDBM: Directory-based Storage

4.6.1 dirdbm.DirDBM

twisted.persisted.dirdbm.DirDBM is a DBM-like storage system. That is, it stores mappings between keys
and values, like a Python dictionary, except that it stores the values in files in a directory - each entry is a different file.
The keys must always be strings, as are the values. Other than that, DirDBM objects act just like Python dictionaries.

DirDBM is useful for cases when you want to store small amounts of data in an organized fashion, without having
to deal with the complexity of a RDBMS or other sophisticated database. It is simple, easy to use, cross-platform, and
doesn’t require any external C libraries, unlike Python’s built-in DBM modules.

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.DirDBM("/tmp/dir")
>>> d["librarian"] = "ook"
>>> d["librarian"]
’ook’
>>> d.keys()
[’librarian’]
>>> del d["librarian"]
>>> d.items()
[]

4.6.2 dirdbm.Shelf

Sometimes it is neccessary to persist more complicated objects than strings. With some care, dirdbm.Shelf can
transparently persist them. Shelf works exactly like DirDBM, except that the values (but not the keys) can be
arbitrary picklable objects. However, notice that mutating an object after it has been stored in the Shelf has no effect
on the Shelf. When mutating objects, it is neccessary to explictly store them back in the Shelf afterwards:

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.Shelf("/tmp/dir2")
>>> d["key"] = [1, 2]
>>> d["key"]
[1, 2]
>>> l = d["key"]
>>> l.append(3)
>>> d["key"]
[1, 2]
>>> d["key"] = l
>>> d["key"]
[1, 2, 3]

CHAPTER 4. HIGH-LEVEL TWISTED 96

4.7 Twisted Components: Interfaces and Adapters

Object oriented programming languages allow programmers to reuse portions of existing code by creating new
“classes” of objects which subclass another class. When a class subclasses another, it is said to inherit all of its
behaviour. The subclass can then “override” and “extend” the behavior provided to it by the superclass. Inheritance is
very useful in many situations, but because it is so convenient to use, often becomes abused in large software systems,
especially when multiple inheritance is involved. One solution is to use delegation instead of “inheritance” where ap-
propriate. Delegation is simply the act of asking another object to perform a task for an object. To support this design
pattern, which is often referred to as the components pattern because it involves many small interacting components,
interfaces and adapters were created by the Zope 3 team.

“Interfaces” are simply markers which objects can use to say “I implement this interface”. Other objects may
then make requests like “Please give me an object which implements interface X for object type Y”. Objects which
implement an interface for another object type are called “adapters”.

The superclass-subclass relationship is said to be an is-a relationship. When designing object hierarchies, object
modellers use subclassing when they can say that the subclass is the same class as the superclass. For example:

class Shape:
sideLength = 0
def getSideLength(self):

return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotImplementedError, "Subclasses must implement area"

class Triangle(Shape):
def area(self):

return (self.sideLength * self.sideLength) / 2

class Square(Shape):
def area(self):

return self.sideLength * self.sideLength

In the above example, a Triangle is-a Shape, so it subclasses Shape, and a Square is-a Shape, so it also subclasses
Shape.

However, subclassing can get complicated, especially when Multiple Inheritance enters the picture. Multiple In-
heritance allows a class to inherit from more than one base class. Software which relies heavily on inheritance often
ends up having both very wide and very deep inheritance trees, meaning that one class inherits from many superclasses
spread throughout the system. Since subclassing with Multiple Inheritance means implementation inheritance, locat-
ing a method’s actual implementation and ensuring the correct method is actually being invoked becomes a challenge.
For example:

class Area:
sideLength = 0
def getSideLength(self):

CHAPTER 4. HIGH-LEVEL TWISTED 97

return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotImplementedError, "Subclasses must implement area"

class Color:
color = None
def setColor(self, color):

self.color = color

def getColor(self):
return self.color

class Square(Area, Color):
def area(self):

return self.sideLength * self.sideLength

The reason programmers like using implementation inheritance is because it makes code easier to read since the
implementation details of Area are in a separate place than the implementation details of Color. This is nice, because
conceivably an object could have a color but not an area, or an area but not a color. The problem, though, is that Square
is not really an Area or a Color, but has an area and color. Thus, we should really be using another object oriented
technique called composition, which relies on delegation rather than inheritance to break code into small reusable
chunks. Let us continue with the Multiple Inheritance example, though, because it is often used in practice.

What if both the Color and the Area base class defined the same method, perhaps calculate? Where would
the implementation come from? The implementation that is located for Square().calculate() depends on
the method resolution order, or MRO, and can change when programmers change seemingly unrelated things by
refactoring classes in other parts of the system, causing obscure bugs. Our first thought might be to change the calculate
method name to avoid name clashes, to perhaps calculateArea and calculateColor. While explicit, this
change could potentially require a large number of changes throughout a system, and is error-prone, especially when
attempting to integrate two systems which you didn’t write.

Let’s imagine another example. We have an electric appliance, say a hair dryer. The hair dryer is american voltage.
We have two electric sockets, one of them an american 110 Volt socket, and one of them a foreign 220 Volt socket.
If we plug the hair dryer into the 220 Volt socket, it is going to expect 110 Volt current and errors will result. Going
back and changing the hair dryer to support both plug110Volt and plug220Volt methods would be tedious,
and what if we decided we needed to plug the hair dryer into yet another type of socket? For example:

class HairDryer:
def plug(self, socket):

if socket.voltage() == 110:
print "I was plugged in properly and am operating."

else:
print "I was plugged in improperly and "
print "now you have no hair dryer any more."

CHAPTER 4. HIGH-LEVEL TWISTED 98

class AmericanSocket:
def voltage(self):

return 110

class ForeignSocket:
def voltage(self):

return 220

Given these classes, the following operations can be performed:

>>> hd = HairDryer()
>>> am = AmericanSocket()
>>> hd.plug(am)
I was plugged in properly and am operating.
>>> fs = ForeignSocket()
>>> hd.plug(fs)
I was plugged in improperly and
now you have no hair dryer any more.

We are going to attempt to solve this problem by writing an Adapter for the ForeignSocketwhich converts the
voltage for use with an American hair dryer. An Adapter is a class which is constructed with one and only one argu-
ment, the “adaptee” or “original” object. There is a simple implementation in twisted.python.components.
Adapter which defines the init shown below, so you can subclass it if you desire. In this example, we will
show all code involved for clarity:

class AdaptToAmericanSocket:
def __init__(self, original):

self.original = original

def voltage(self):
return self.original.voltage() / 2

Now, we can use it as so:

>>> hd = HairDryer()
>>> fs = ForeignSocket()
>>> adapted = AdaptToAmericanSocket(fs)
>>> hd.plug(adapted)
I was plugged in properly and am operating.

So, as you can see, an adapter can ’override’ the original implementation. It can also ’extend’ the interface of the
original object by providing methods the original object did not have. Note that an Adapter must explicitly delegate
any method calls it does not wish to modify to the original, otherwise the Adapter cannot be used in places where
the original is expected. Usually this is not a problem, as an Adapter is created to conform an object to a particular
interface and then discarded.

4.7.1 twisted.python.components: Twisted’s implementation of Interfaces and Components

Adapters are a useful way of using multiple classes to factor code into discrete chunks. However, they are not very
interesting without some more infrastructure. If each piece of code which wished to use an adapted object had to

CHAPTER 4. HIGH-LEVEL TWISTED 99

explicitly construct the adapter itself, the coupling between components would be too tight. We would like to achieve
“loose coupling”, and this is where twisted.python.components comes in.

First, we need to discuss Interfaces in more detail. As we mentioned earlier, an Interface is nothing more
than a class which is used as a marker. Interfaces should be subclasses of twisted.python.components.
Interface, and have a very odd look to python programmers not used to them:

from twisted.python import components

class IAmericanSocket(components.Interface):
def voltage(self):

"""Return the voltage produced by this socket object, as an integer.
"""

Notice how it looks just like a regular class definition, other than inheriting from components.Interface.
However, the method definitions inside the class block do not have any self parameters, and also do not have any
method body! Since Python does not have any native language-level support for Interfaces like Java does, this is what
distinguishes an Interface definition from a Class.

Now that we have a defined Interface, we can talk about objects using terms like this: “The AmericanSocket
class implements the IAmericanSocket interface” and “Please give me an object which adapts ForeignSocket
to the IAmericanSocket interface”. We can make declarations about what interfaces a certain class implements,
and we can request adapters which implement a certain interface for a specific class.

Let’s look at how we declare that a class implements an interface:

class AmericanSocket:
__implements__ = (IAmericanSocket,)
def voltage(self):

return 110

So, to declare that a class implements an interface, we simply set the implements class variable to a tuple
of interfaces. A single item tuple in Python is created by enclosing an item in parentheses and placing a single trailing
comma after it.

Now, let’s say we want to rewrite the AdaptToAmericanSocket class as a real adapter. We simply subclass
components.Adapter and provide implementations of the methods in the IAmericanSocket interface:

class AdaptToAmericanSocket(components.Adapter):
__implements__ = (IAmericanSocket,)
def voltage(self):

return self.original.voltage() / 2

Notice how we placed the implements declaration on this adapter class. So far, we have not achieved anything by
using components other than requiring us to type more. In order for components to be useful, we must use the com-
ponent registry. Since AdaptToAmericanSocket implements IAmericanSocket and regulates the voltage of
a ForeignSocket object, we can register AdaptToAmericanSocket as an IAmericanSocket adapter for
the ForeignSocket class. It is easier to see how this is done in code than to describe it:

from twisted.python import components

class IAmericanSocket(components.Interface):

CHAPTER 4. HIGH-LEVEL TWISTED 100

def voltage():
"""Return the voltage produced by this socket object, as an integer.
"""

class AmericanSocket:
__implements__ = (IAmericanSocket,)
def voltage(self):

return 110

class ForeignSocket:
def voltage(self):

return 220

class AdaptToAmericanSocket(components.Adapter):
__implements__ = (IAmericanSocket,)
def voltage(self):

return self.original.voltage() / 2

components.registerAdapter(
AdaptToAmericanSocket,
ForeignSocket,
IAmericanSocket)

Now, if we run this script in the interactive interpreter, we can discover a little more about how to use components.
The first thing we can do is discover whether an object implements an interface or not:

>>> as = AmericanSocket()
>>> fs = ForeignSocket()
>>> components.implements(as, IAmericanSocket)
1
>>> components.implements(fs, IAmericanSocket)
0

As you can see, the AmericanSocket instance claims to implement IAmericanSocket, but the Foreign
Socket does not. If we wanted to use the HairDryer with the AmericanSocket, we could know that it would
be safe to do so by checking whether it implements IAmericanSocket. However, if we decide we want to use
HairDryer with a ForeignSocket instance, we must adapt it to IAmericanSocket before doing so. We use
the interface object to do this:

>>> IAmericanSocket(fs)
<__main__.AdaptToAmericanSocket instance at 0x1a5120>

When calling an interface with an object as an argument, the interface looks in the adapter registry for an adapter
which implements the interface for the given instance’s class. If it finds one, it constructs an instance of the Adapter
class, passing the constructor the original instance, and returns it. Now the HairDryer can safely be used with
the adapted ForeignSocket. But what happens if we attempt to adapt an object which already implements
IAmericanSocket? We simply get back the original instance:

CHAPTER 4. HIGH-LEVEL TWISTED 101

>>> IAmericanSocket(as)
<__main__.AmericanSocket instance at 0x36bff0>

So, we could write a new “smart”HairDryer which automatically looked up an adapter for the socket you tried
to plug it into:

class HairDryer:
def plug(self, socket):

adapted = IAmericanSocket(socket)
assert socket.voltage() == 110, "BOOM"
print "I was plugged in properly and am operating"

Now, if we create an instance of our new “smart”HairDryer and attempt to plug it in to various sockets, the
HairDryer will adapt itself automatically depending on the type of socket it is plugged in to:

>>> as = AmericanSocket()
>>> fs = ForeignSocket()
>>> hd = HairDryer()
>>> hd.plug(as)
I was plugged in properly and am operating
>>> hd.plug(fs)
I was plugged in properly and am operating

Voila; the magic of components.

4.8 Upgrading Applications

Applications must frequently deal with data that lives longer than the programs that create it. Sometimes the structure
of that data changes over time, but new versions of a program must be able to accomodate data created by an older
version. These versions may change very quickly, especially during development of new code. Sometimes different
versions of the same program are running at the same time, sharing data across a network connection. These situations
all result in a need for a way to upgrade data structures.

4.8.1 Basic Persistence: Application and .tap files

Simple object persistence (using pickle or jelly) provides the fundamental “save the object to disk” functionality
at application shutdown. If you use the Application class, every object referenced by your Application will be
saved into the -shutdown.tap file when the program terminates. When you use twistd to launch that new .tap
file, the Application object will be restored along with all of its referenced data.

This provides a simple way to have data outlive any particular invocation of your program: simply store it as an
attribute of the Application. Note that all Services are referenced by the Application, so their attributes will be stored
as well. Ports that have been bound with listenTCP (and the like) are also remembered, and the sockets are created at
startup time (when Application.run is called).

To influence the way that the Application is persisted, you can set its .persistStyle attribute to a string
like “pickle”, “xml”, or “aot”. These use different serializers (and different extensions: “.tap”, “.tax”, and “.tas”
respectively) for the saved Application.

You can manually cause the application to be saved by calling its .save method.

CHAPTER 4. HIGH-LEVEL TWISTED 102

4.8.2 Versioned: New Code Meets Old Data

So suppose you’re running version 1 of some application, and you want to upgrade to version 2. You shut down the
program, giving you a .tap file that you could restore with twistd to get back to the same state that you had before. The
upgrade process is to then install the new version of the application, and then use twistd to launch the saved .tap file.
The old data will be loaded into classes created with the new code, and now you’ll have a program running with the
new behavior but the old data.

But what about the data structures that have changed? Since these structures are really just pickled class instances,
the real question is what about the class definitions that have changed? Changes to class methods are easy: nothing
about them is saved in the .tap file. The issue is when the data attributes of a instance are added, removed, or their
format is changed.

Twisted provides a mechanism called Versioned to ease these upgrades. Each version of the data structure (i.e.
each version of the class) gets a version number. This number must change every time you add or remove a data
attribute to the class. It must also change every time you modify one of those data attributes: for example, if you use a
string in one version and an integer in another, those versions must have different version numbers.

The version number is defined in a class attribute named persistenceVersion. This is an integer which
will be stored in the .tap file along with the rest of the instance state. When the object is unserialized, the saved
persistenceVersion is compared against the current class’s value, and if they differ, special upgrade methods are called.
These methods are named upgradeToVersionNN, and there must be one for each intermediate version. These
methods are expected to manipulate the instance’s state from the previous version’s format into that of the new version.

To use this, simply have your class inherit from Versioned. You don’t have to do this from the very beginning
of time: all objects have an implicit version number of “0” when they don’t inherit from Versioned. So when you first
make an incompatible data-format change to your class, add Versioned to the inheritance list, and add an upgrade
ToVersion1 method.

For example, suppose the first version of our class saves an integer which measures the size of a line. We release
this as version 1.0 of our neat application:

class Thing:
def __init__(self, length):

self.length = length

Then we fix some bugs elsewhere, and release versions 1.1 and 1.2 of the application. Later, we decide that we
should add some units to the length, so that people can refer to it in inches or meters. Version 1.3 is shipped with the
following code:

class Thing(Versioned):
persistenceVersion = 1
def __init__(self, length, units):

self.length = "%d %s" % (length, units)
def upgradeToVersion1(self):

self.length = "%d inches" % self.length

Note that we must make an assumption about what the previous value meant: in this case, we assume the number
was in inches.

1.4 and 1.5 are shipped with other changes. Then in version 1.6 we decide that saving the two values as a string
was foolish and that it would be better to save the number and the string separately, using a tuple. We ship 1.6 with
the following:

CHAPTER 4. HIGH-LEVEL TWISTED 103

class Thing(Versioned):
persistenceVersion = 2
def __init__(self, length, units):

self.length = (length, units)
def upgradeToVersion1(self):

self.length = "%d inches" % self.length
def upgradeToVersion2(self):

(length, units) = self.length.split()
self.length = (length, units)

Note that we must provide both upgradeToVersion1andupgradeToVersion2. We have to assume that
the saved .tap files which will be provided to this class come from a random assortment of old versions: we must be
prepared to accept anything ever saved by a released version of our application.

Finally, version 2.0 adds multiple dimensions. Instead of merely recording the length of a line, it records the size
of an N-dimensional rectangular solid. For backwards compatiblity, all 1.X version of the program are assumed to be
dealing with a 1-dimensional line. We change the name of the attribute from .length to .size to reflect the new
meaning.

class Thing(Versioned):
persistenceVersion = 3
def __init__(self, dimensions):

dimensions is a list of tuples, each is (length, units)
self.size = dimensions
self.name = ["line", "square", "cube", "hypercube"][len(dimensions)]

def upgradeToVersion1(self):
self.length = "%d inches" % self.length

def upgradeToVersion2(self):
(length, units) = self.length.split()
self.length = (length, units)

def upgradeToVersion3(self):
self.size = [self.length]
del self.length
self.name = "line"

If a .tap file from the earliest version of our program were to be loaded by the latest code, the following sequence
would occur for each Thing instance contained inside:

1. An instance of Thing would be created, with a dict that contained a single attribute .size, which was an
integer, like “5”.

2. self.upgradeToVersion1()would be called, changing self.size into a string, like “5 inches”.

3. self.upgradeToVersion2()would be called, changing self.size into a tuple, like (5, “inches”).

4. Finally, self.upgradeToVersion3() would be called, creating self.size as a list holding a single
dimension, like [(5, “inches”)]. The old .length attribute is deleted, and a new .name is created with the
type of shape this instance represents (“line”).

Some hints for the upgradeVersion methods:

CHAPTER 4. HIGH-LEVEL TWISTED 104

� They must do everything the init method would have done, as well as any methods that might have been
called during the lifetime of the object.

� If the class has (or used to have) methods which can add attributes that weren’t created in init , then the
saved object may have a haphazard subset of those attributes, depending upon which methods were called. The
upgradeVersion methods must be prepared to deal with this. hasattr and .get may be useful.

� Once you have released a class with a given upgradeVersionmethod, you should never change that method.
(assuming you care about infinite backwards compatibility).

� You must add a new upgradeVersion method (and bump the persistenceVersion value) for each and every
release that has a different set of data attributes than the previous release.

� Versioned works by providing setstate and getstate methods. You probably don’t want to
override these methods without being very careful to call the Versioned versions at exactly the right time. It
also requires a doUpgrade function to be called after all the objects are loaded. This is done automatically by
Application.run.

� Depending upon how they are serialized, Versioned objects can probably be sent across a network connec-
tion, and the upgrade process can be made to occur upon receipt. (You’ll want to look at the requireUpgrade
function). This might be useful in providing compability with an older peer. Note, however, that Versioned
does not let you go backwards in time; there is no downgradeVersionNNmethod. This means it is probably
only useful for compatibility in one direction: the newer-to-older direction must still be explicitly handled by
the application.

� In general, backwards compatibility is handled by pretending that the old code was restricting itself to a nar-
row subset of the capabilities of the new code. The job of the upgrade routines is then to translate the old
representation into a new one.

For more information, look at the doc strings for styles.Versioned, as well as the app.Application
class and the Application HOWTO (page 62).

4.8.3 Rebuild: Loading New Code Without Restarting

Versioned is good for handling changes between released versions of your program, where the application state is
saved on disk during the upgrade. But while you are developing that code, you often want to change the behavior of
the running program, without the slowdown of saving everything out to disk, shutting down, and restarting. Sometimes
it will be difficult or time-consuming to get back to the previous state: the running program could include ephemeral
objects (like open sockets) which cannot be persisted.

twisted.python.rebuild provides a function called rebuild which helps smooth this cycle. It allows
objects in a running program to be upgraded to a new version of the code without shutting down.

To use it, simply call rebuild on the module that holds the classes you want to be upgraded. Through deep gc
magic, all instances of classes in that module will be located and upgraded.

Typically, this is done in response to a privileged command sent over a network connection. The usual development
cycle is to start the server, get it into an interesting state, see a problem, edit the class definition, then push the “rebuild
yourself” button. That “button” could be a magic web page which, when requested, runs rebuild(mymodule),
or a special IRC command, or perhaps just a socket that listens for connections and accepts a password to trigger the
rebuild. (You want this to be a privileged operation to prevent someone from making your server do a rebuild while
you’re in the middle of editing the code).

CHAPTER 4. HIGH-LEVEL TWISTED 105

A few useful notes about the rebuild process:

� If the module has a top-level attribute named ALLOW TWISTED REBUILD, this attribute must evaluate to True.
Should it be false, the rebuild attempt will raise an exception.

� Adapters (from twisted.python.components) use top-level registration function calls. These are han-
dled correctly during rebuilds, and the usual duplicate registration errors are not raised.

� Rebuilds may be slow: every single object known to the interpreter must be examined to see if it is one of the
classes being changed.

Finally, note that rebuildcannot currently be mixed with Versioned. rebuild does not run any of the
classes’ methods, whereas Versioned works by running setstate during the load process and doUpgrade
afterwards. This means rebuild can only be used to process upgrades that do not change the data attributes of any
of the involved classes. Any time attributes are added or removed, the program must be shut down, persisted, and
restarted, with upgradeToVersionNN methods used to handle the attributes. (this may change in the future, but for
now the implementation is easier and more reliable with this restriction).

Chapter 5

Perspective Broker

5.1 Introduction to Perspective Broker

5.1.1 Introduction

Suppose you find yourself in control of both ends of the wire: you have two programs that need to talk to each other,
and you get to use any protocol you want. If you can think of your problem in terms of objects that need to make
method calls on each other, then chances are good that you can use twisted’s Perspective Broker protocol rather than
trying to shoehorn your needs into something like HTTP, or implementing yet another RPC mechanism1.

The Perspective Broker system (abbreviated “PB”, spawning numerous sandwich-related puns) is based upon a
few central concepts:

� serialization: taking fairly arbitrary objects and types, turning them into a chunk of bytes, sending them over a
wire, then reconstituting them on the other end. By keeping careful track of object ids, the serialized objects can
contain references to other objects and the remote copy will still be useful.

� remote method calls: doing something to a local object and causing a method to get run on a distant one. The
local object is called a RemoteReference, and you “do something” by running its .callRemote method.

This document will contain several examples that will (hopefully) appear redundant and verbose once you’ve
figured out what’s going on. To begin with, much of the code will just be labelled “magic”: don’t worry about how
these parts work yet. It will be explained more fully later.

5.1.2 Class Roadmap

To start with, here are the major classes involved in PB, with links to the file where they are defined (all of which are
under twisted/, of course). Don’t worry about understanding what they all do yet: it’s easier to figure them out through
their interaction than explaining them one at a time.

� Application : internet/app.py

� Service : spread/pb.py, subclassed from Service in cred/service.py

1Most of Twisted is like this. Hell, most of unix is like this: if you think it would be useful, someone else has probably thought that way in the
past, and acted on it, and you can take advantage of the tool they created to solve the same problem you’re facing now.

106

CHAPTER 5. PERSPECTIVE BROKER 107

� MultiService : internet/app.py

� Factory : internet/protocol.py

� BrokerFactory : spread/pb.py

� Broker : spread/pb.py

� AuthRoot : spread/pb.py

Other classes that are involved at some point:

� RemoteReference : spread/pb.py

� pb.Root : spread/pb.py, actually defined as Root in spread/flavors.py

� pb.Referenceable : spread/pb.py, actually defined as Referenceable in spread/flavors.
py

Classes that get involved when you start to care about authorization and security:

� Authorizer : cred/authorizer.py

� Identity : cred/identity.py

� Perspective : spread/pb.py, subclassed from Perspective in cred/perspective.py

Subclassing

Technically you can subclass anything you want, but techically you could also write a whole new framework, which
would just waste a lot of time. Knowing which classes are useful to change (by making subclasses) is one of the bits
of knowledge you pick up after using Twisted for a few weeks. Here are some hints to get started:

� Protocol: subclass this if you need to implement a new protocol on the wire, like HTTP or SMTP (except
that almost all of the standard ones are already implemented). You might also subclass one of the standard
implementations if you want to change its back-end behavior: make an SMTP server which actually stores the
messages in files instead of mailing them, or a Finger server that returns random messages instead of current
login status.

� pb.Root, pb.Referenceable: you’ll subclass these to make remotely-referenceable objects using PB.
You don’t need to change any of the existing behavior, just inherit all of it and add the remotely-accessible
methods that you want to export.

� pb.Perspective, pb.Service: you’ll probably end up subclassing these when you get into PB program-
ming (with authorization). There are a few methods you’ll change, especially with regards to creating new
Perspectives.

� Authorizer: subclass this if you want to get users from /etc/passwd, or a database, or LDAP, or other list of
usernames and passwords.

XXX: add lists of useful-to-override methods here

CHAPTER 5. PERSPECTIVE BROKER 108

5.1.3 Things you can Call Remotely

At this writing, there are three “flavors” of objects that can be accessed remotely through RemoteReference
objects. Each of these flavors has a rule for how the callRemotemessage is transformed into a local method call on
the server. In order to use one of these “flavors”, subclass them and name your published methods with the appropriate
prefix.

� twisted.spread.pb.Perspective

This is the first class we dealt with. Perspectives are slightly special because they are the root object that a given
user can access from a service. A user should only receive a reference to their own Perspective. PB works hard
to verify, as best it can, that any method that can be called on a perspective directly is being called on behalf of
the user who is represented by that perspective. (Services with unusual requirements for “on behalf of”, such as
simulations with the ability to posess another player’s avatar, are accomplished by providing indirected access
to another user’s Perspective.)

Perspectives are not usually serialized as remote references, so do not return a perspective directly.

Remotely accessible methods on Perspectives are named with the perspective prefix.

� twisted.spread.flavors.Referenceable

Referenceable objects are the simplest kind of PB object. You can call methods on them and return them from
methods to provide access to other objects’ methods.

However, when a method is called on a Referenceable, it’s not possible to tell who called it.

Remotely accessible methods on Referenceables are named with the remote prefix.

� twisted.spread.flavors.Viewable

Viewable objects are remotely referenceable objects which have the additional requirement that it must be possi-
ble to tell who is calling them. The argument list to a Viewable’s remote methods is modified in order to include
the Perspective representing the calling user.

Remotely accessible methods on Viewables are named with the view prefix.

5.1.4 Things you can Copy Remotely

In addition to returning objects that you can call remote methods on, you can return structured copies of local objects.
There are 2 basic flavors that allow for copying objects remotely. Again, you can use these by subclassing them.

In order to specify what state you want to have copied when these are serialized, you can either use the Python default
getstate or specialized method calls for that flavor.

� twisted.spread.flavors.Copyable

This is the simpler kind of object that can be copied. Every time this object is returned from a method or passed
as an argument, it is serialized and unserialized.

Copyable provides a method you can override, getStateToCopyFor(perspective), which allows
you to decide what an object will look like for the user who is requesting it. The perspective argument will
be an instance of the Perspective subclass for your service, the one which is either pasing an argument or
returning a result an instance of your Copyable class.

CHAPTER 5. PERSPECTIVE BROKER 109

For security reasons, in order to allow a particular Copyable class to actually be copied, you must declare a
RemoteCopy handler for that Copyable subclass. The easiest way to do this is to declare both in the same
module, like so:

from twisted.spread import flavors
class Foo(flavors.Copyable):

pass
class RemoteFoo(flavors.RemoteCopy):

pass
flavors.setCopierForClass(str(Foo), RemoteFoo)

In this case, each time a Foo is copied between peers, a RemoteFoo will be instantiated and populated with the
Foo’s state. If you do not do this, PB will complain that there have been security violations, and it may close the
connection.

� twisted.spread.flavors.Cacheable

Let me preface this with a warning: Cacheable may be hard to understand. The motivation for it may be unclear
if you don’t have some experience with real-world applications that use remote method calling of some kind.
Once you understand why you need it, what it does will likely seem simple and obvious, but if you get confused
by this, forget about it and come back later. It’s possible to use PB without understanding Cacheable at all.

Cacheable is a flavor which is designed to be copied only when necessary, and updated on the fly as changes are
made to it. When passed as an argument or a return value, if a Cacheable exists on the side of the connection it
is being copied to, it will be referred to by ID and not copied.

Cacheable is designed to minimize errors involved in replicating an object between multiple servers, espe-
cially those related to having stale information. In order to do this, Cacheable automatically registers observers
and queries state atomically, together. You can override the method getStateToCacheAndObserve
For(self, perspective, observer) in order to specify how your observers will be stored and up-
dated.

Similar to getStateToCopyFor, getStateToCacheAndObserveFor passes a Perspective in-
stance from your service. It also passes an observer, which is a remote reference to a “secret” fourth refer-
enceable flavor: RemoteCache.

A RemoteCache is simply the object that represents your Cacheable on the other side of the connection. It
is registered using the same method as RemoteCopy, above. RemoteCache is different, however, in that it will
be referenced by its peer. It acts as a Referenceable, where all methods prefixed with observe will be callable
remotely. It is recommended that your object maintain a list (note: library support for this is forthcoming!) of
observers, and update them using callRemotewhen the Cacheable changes in a way that should be noticeable
to its clients.

Finally, when all references to a Cacheable from a given Perspective are lost, stopped
Observing(perspective, observer) will be called on the Cacheable, with the same perspec-
tive/observer pair that getStateToCacheAndObserveFor was originally called with. Any cleanup re-
mote calls can be made there, as well as removing the observer object from any lists which it was previously in.
Any further calls to this observer object will be invalid.

CHAPTER 5. PERSPECTIVE BROKER 110

5.2 Using Perspective Broker

5.2.1 Basic Example

The first example to look at is a complete (although somewhat trivial) application. It uses BrokerFactory() on
the server side, and pb.getObjectAt() on the client side.

from twisted.spread import pb
from twisted.internet import app
class Echoer(pb.Root):

def remote_echo(self, st):
print ’echoing:’, st
return st

if __name__ == ’__main__’:
appl = app.Application("pbsimple")
appl.listenTCP(8789, pb.BrokerFactory(Echoer()))
appl.run()

Source listing — pbsimple.py

from twisted.spread import pb
from twisted.internet import reactor
def gotObject(object):

print "got object:",object
object.callRemote("echo", "hello network").addCallback(gotEcho)

def gotEcho(echo):
print ’server echoed:’,echo
reactor.stop()

def gotNoObject(reason):
print "no object:",reason
reactor.stop()

pb.getObjectAt("localhost", 8789, 30).addCallbacks(gotObject, gotNoObject)
reactor.run()

Source listing — pbsimpleclient.py

First we look at the server. This defines an Echoer class (derived from pb.Root), with a method called
remote echo(). pb.Root objects (because of their inheritance of pb.Referenceable, described later) can
define methods with names of the form remote *; a client which obtains a remote reference to that pb.Root object
will be able to invoke those methods.

The pb.Root-ish object is given to a pb.BrokerFactory(). This is a Factory object like any other: the
Protocol objects it creates for new connections know how to speak the PB protocol. The object you give to pb.
BrokerFactory() becomes the “root object”, which simply makes it available for the client to retrieve. The client
may only request references to the objects you want to provide it: this helps you implement your security model.
Because it is so common to export just a single object (and because a remote * method on that one can return a

CHAPTER 5. PERSPECTIVE BROKER 111

reference to any other object you might want to give out), the simplest example is one where the BrokerFactory
is given the root object, and the client retrieves it.

The client side calls pb.getObjectAt to make a connection to a given port. This is a convenience function (not
a method) which runs through the PB protocol steps necessary to retrieve the root object from a BrokerFactory
sitting at the given port.

Because .getObjectAt() has to make a network connection and exchange some data, it may take a while, so
it returns a Deferred, to which the gotObject() callback is attached. (See the documentation on Deferring Execution
(page 45) for a complete explanation of Deferreds). If and when the connection succeeds and a reference to the
remote root object is obtained, this callback is run. The first argument passed to the callback is a remote reference
to the distant root object. (you can give other arguments to the callback too, see the other parameters for .add
Callback() and .addCallbacks()).

The callback does:

object.callRemote("echo", "hello network")

which causes the server’s .remote echo() method to be invoked. (running .callRemote("boom")
would cause .remote boom() to be run, etc). Again because of the delay involved, callRemote() returns a
Deferred. Assuming the remote method was run without causing an exception (including an attempt to invoke an
unknown method), the callback attached to that Deferred will be invoked with any objects that were returned by
the remote method call.

In this example, the server’s Echoer object has a method invoked, exactly as if some code on the server side had
done:

echoer_object.remote_echo("hello network")

and from the definition of remote echo() we see that this just returns the same string it was given: “hello
network”.

From the client’s point of view, the remote call gets another Deferred object instead of that string. call
Remote()always returns a Deferred. This is why PB is described as a system for “translucent” remote method
calls instead of “transparent” ones: you cannot pretend that the remote object is really local. Trying to do so (as
some other RPC mechanisms do, coughCORBAcough) breaks down when faced with the asynchronous nature of the
network. Using Deferreds turns out to be a very clean way to deal with the whole thing.

The remote reference object (the one given to getObjectAt()’s success callback) is an instance the Remote
Reference class. This means you can use it to invoke methods on the remote object that it refers to. Only instances
of RemoteReference eligible for .callRemote(). The RemoteReference object is the one that lives on
the remote side (the client, in this case), not the local side (where the actual object is defined).

In our example, the local object is that Echoer() instance, which inherits from pb.Root, which inherits from
pb.Referenceable. It is that Referenceable class that makes the object eligible to be available for remote
method calls2. If you have an object that is Referenceable, then any client that manages to get a reference to it can
invoke any remote * methods they please.

Note:
The only thing they can do is invoke those methods. In particular, they cannot access attributes. From

a security point of view, you control what they can do by limiting what the remote * methods can do.

2There are a few other classes that can bestow this ability, but pb.Referenceable is the easiest to understand; see ’flavors’ below for details on
the others.

CHAPTER 5. PERSPECTIVE BROKER 112

Also note: the other classes like Referenceable allow access to other methods, in particular
perspective * and view * may be accessed. Don’t write local-only methods with these names,
because then remote callers will be able to do more than you intended.

Also also note: the other classes like pb.Copyabledo allow access to attributes, but you control
which ones they can see.

You don’t have to be a pb.Root to be remotely callable, but you do have to be pb.Referenceable. (Objects
that inherit from pb.Referenceable but not from pb.Root can be remotely called, but only pb.Root-ish
objects can be given to the BrokerFactory.)

5.2.2 Complete Example

A service is the “global” state associated with your application, which can contain things such as support for archiving
objects, basic abstractions common to all users, and collections of domain-specific objects. A perspective is the
representation of a user with respect to a particular service. For PB, a Perspective is where all interaction begins.
When a user logs in for the first time, all the methods they can initially call are methods of their Perspective. The
Perspective’s methods can return objects which themselves have methods that you can call, as well as copies of
objects, as described later.

from twisted.spread import pb

class QuoteReader(pb.Perspective):
def perspective_nextQuote(self):

return self.service.quoter.getQuote()

class QuoteService(pb.Service):
def __init__(self, quoter, serviceName, serviceParent, authorizer):

pb.Service.__init__(self, serviceName, serviceParent, authorizer)
self.quoter = quoter

perspectiveClass = QuoteReader

Quote Service and Perspective — pbquote.py

For examples of these, we’re returning to the TwistedQuotes project discussed in the “Writing Plugins”. The PB
Service for TwistedQuotes is pretty small. The only thing it needs to keep track of for itself is the quoter object;
PB’s service, that we will inherit from, already keeps track of perspectives.

The perspective is a QuoteReader, which publishes one method. By subclassing Perspective, we are
declaring that all methods with the perspective prefix are remotely accessible.

In order to get this Service published, so that we can actually connect to it, we need to re-visit the TAP building
plugin, so we can actually get an Application that has a PB broker factory listening on a port. (The default port for PB
is 8787.)

from TwistedQuotes import quoteproto # Protocol and Factory
from TwistedQuotes import quoters # "give me a quote" code
from TwistedQuotes import pbquote # perspective broker binding

from twisted.python import usage # twisted command-line processing

CHAPTER 5. PERSPECTIVE BROKER 113

from twisted.spread import pb # Perspective Broker
from twisted.cred import authorizer # cred authorizer, to allow logins

class Options(usage.Options):
optParameters = [["port", "p", 8007,

"Port number to listen on for QOTD protocol."],
["static", "s", "An apple a day keeps the doctor away.",
"A static quote to display."],

["file", "f", None,
"A fortune-format text file to read quotes from."],

["pb", "b", None,
"Port to listen with PB server"]]

def updateApplication(app, config):
if config["file"]: # If I was given a "file" option...

Read quotes from a file, selecting a random one each time,
quoter = quoters.FortuneQuoter([config[’file’]])

else: # otherwise,
read a single quote from the command line (or use the default).
quoter = quoters.StaticQuoter(config[’static’])

port = int(config["port"]) # TCP port to listen on
factory = quoteproto.QOTDFactory(quoter) # here we create a QOTDFactory
Finally, set up our factory, with its custom quoter, to create QOTD
protocol instances when events arrive on the specified port.
pbport = config[’pb’] # TCP PB port to listen on
if pbport:

auth = authorizer.DefaultAuthorizer(app)
pbserv = pbquote.QuoteService(quoter, "twisted.quotes", app, auth)
create a quotereader "guest" give that perspective a password and
create an account based on it, with the password "guest".
pbserv.createPerspective("guest").makeIdentity("guest")
pbfact = pb.BrokerFactory(pb.AuthRoot(auth))
app.listenTCP(int(pbport), pbfact)

app.listenTCP(port, factory)

TAP Plugin with PB Quotes Service support — quotetap2.py

In the TAP builder, we create a QuoteService that wraps the quoter. We then create a QuoteReader per-
spective and attach it to the QuoteService, through the createPerspective call inherited from Service.
Finally, we register with the QuoteService’s authorizer.

Accessing this through a client is fairly easy, as we can use the pb.connect convenience function.

from sys import stdout
from twisted.python import log
log.discardLogs()
from twisted.internet import reactor

CHAPTER 5. PERSPECTIVE BROKER 114

from twisted.spread import pb

def connected(perspective):
perspective.callRemote(’nextQuote’).addCallbacks(success, failure)

def success(quote):
stdout.write(quote + "\n")
reactor.stop()

def failure(error):
stdout.write("Failed to obtain quote.\n")
reactor.stop()

pb.connect("localhost", # host name
pb.portno, # port number
"guest", # identity name
"guest", # password
"twisted.quotes", # service name
"guest", # perspective name (usually same as identity)
None, # client reference, used to initiate server->client calls
30 # timeout of 30 seconds before connection gives up
).addCallbacks(connected, # what to do when we get connected

failure) # and what to do when we can’t

reactor.run() # start the main loop

PB Quotes Client Code — pbquoteclient.py

pb.connect will handle all the details of creating a connection and authenticating. It returns a Deferred,
which will have its callback called when pb.connect connects to a perspective, and have its errback called
when the object-connection fails for any reason, whether it’s host lookup failure, connection refusal, or incorrect
authentication credentials.

In this example, the connected callback should be made when the script is run. Looking at the code, it should
be clear that in the event of a connection success, the client will print out a quote and exit. If you start up a server, you
can see:

% mktap qotd --pb 8787
Saving qotd application to qotd.tap...
Saved.
% twistd -f qotd.tap
% python -c ’import TwistedQuotes.pbquoteclient’
An apple a day keeps the doctor away.

The argument to this callback, perspective, is a RemoteReference. The perspective reference repre-
sents a reference to a QuoteReader perspective object.

RemoteReference objects have one method which is their purpose for being: callRemote. This method
allows you to call a remote method on the object being referred to by the Reference. RemoteReference.call

CHAPTER 5. PERSPECTIVE BROKER 115

Remote, like pb.connect, returns a Deferred. When a response to the method-call being sent arrives, the
Deferred’s callback or errback will be made, depending on whether an error occurred in processing the
method-call.

This introduction to PB does not showcase all of the features that it provides, but hopefully it gives you a good
idea of where to get started setting up your own application. Here are some of the other building blocks you can use.

5.2.3 Passing more references

Here is an example of using pb.Referenceable in a second class. The second Referenceable object can
have remote methods invoked too, just like the first. In this example, the initial root object has a method that returns a
reference to the second object.

#! /usr/bin/python

from twisted.spread import pb
import twisted.internet.app

class Two(pb.Referenceable):
def remote_three(self, arg):

print "Two.three was given", arg

class One(pb.Root):
def remote_getTwo(self):

two = Two()
print "returning a Two called", two
return two

app = twisted.internet.app.Application("pb1server")
app.listenTCP(8800, pb.BrokerFactory(One()))
app.run(save=0)

Source listing — pb1server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
def1 = pb.getObjectAt("localhost", 8800, 30)
def1.addCallbacks(got_obj1, err_obj1)
reactor.run()

def err_obj1(reason):
print "error getting first object", reason

CHAPTER 5. PERSPECTIVE BROKER 116

reactor.stop()

def got_obj1(obj1):
print "got first object:", obj1
print "asking it to getTwo"
def2 = obj1.callRemote("getTwo")
def2.addCallbacks(got_obj2)

def got_obj2(obj2):
print "got second object:", obj2
print "telling it to do three(12)"
obj2.callRemote("three", 12)

main()

Source listing — pb1client.py

The root object has a method called remote getTwo, which returns the Two() instance. On the client end, the
callback gets a RemoteReference to that instance. The client can then invoke two’s .remote three()method.

You can use this technique to provide access to arbitrary sets of objects. Just remember that any object that might
get passed “over the wire” must inherit from Referenceable (or one of the other flavors). If you try to pass a non-
Referenceable object (say, by returning one from a remote * method), you’ll get an InsecureJelly exception3.

5.2.4 References can come back to you

If your server gives a reference to a client, and then that client gives the reference back to the server, the server will
wind up with the same object it gave out originally. The serialization layer watches for returning reference identifiers
and turns them into actual objects. You need to stay aware of where the object lives: if it is on your side, you do actual
method calls. If it is on the other side, you do .callRemote()4.

#! /usr/bin/python

from twisted.spread import pb
import twisted.internet.app

class Two(pb.Referenceable):
def remote_print(self, arg):

print "two.print was given", arg

class One(pb.Root):

3This can be overridden, by subclassing one of the Serializable flavors and defining custom serialization code for your class. See pb-
copyable.html (page 125) for details.

4The binary nature of this local vs. remote scheme works because you cannot give RemoteReferences to a third party. If you could, then your
object A could go to B, B could give it to C, C might give it back to you, and you would be hard pressed to tell if the object lived in C’s memory
space, in B’s, or if it was really your own object, tarnished and sullied after being handed down like a really ugly picture that your great aunt owned
and which nobody wants but which nobody can bear to throw out. Ok, not really like that, but you get the idea.

CHAPTER 5. PERSPECTIVE BROKER 117

def __init__(self, two):
#pb.Root.__init__(self) # pb.Root doesn’t implement __init__
self.two = two

def remote_getTwo(self):
print "One.getTwo(), returning my two called", two
return two

def remote_checkTwo(self, newtwo):
print "One.checkTwo(): comparing my two", self.two
print "One.checkTwo(): against your two", newtwo
if two == newtwo:

print "One.checkTwo(): our twos are the same"

app = twisted.internet.app.Application("pb2server")
two = Two()
root_obj = One(two)
app.listenTCP(8800, pb.BrokerFactory(root_obj))
app.run(save=0)

Source listing — pb2server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
foo = Foo()
pb.getObjectAt("localhost", 8800, 30).addCallback(foo.step1)
reactor.run()

keeping globals around is starting to get ugly, so we use a simple class
instead. Instead of hooking one function to the next, we hook one method
to the next.

class Foo:
def __init__(self):

self.oneRef = None

def step1(self, obj):
print "got one object:", obj
self.oneRef = obj
print "asking it to getTwo"
self.oneRef.callRemote("getTwo").addCallback(self.step2)

CHAPTER 5. PERSPECTIVE BROKER 118

def step2(self, two):
print "got two object:", two
print "giving it back to one"
print "one is", self.oneRef
self.oneRef.callRemote("checkTwo", two)

main()

Source listing — pb2client.py

The server gives a Two() instance to the client, who then returns the reference back to the server. The server
compares the “two” given with the “two” received and shows that they are the same, and that both are real objects
instead of remote references.

A few other techniques are demonstrated in pb2client.py. One is that the callbacks are are added with
.addCallback instead of .addCallbacks. As you can tell from the Deferred (page 45) documentation, .add
Callback is a simplified form which only adds a success callback. The other is that to keep track of state from one
callback to the next (the remote reference to the main One() object), we create a simple class, store the reference in
an instance thereof, and point the callbacks at a sequence of bound methods. This is a convenient way to encapsulate
a state machine. Each response kicks off the next method, and any data that needs to be carried from one state to the
next can simply be saved as an attribute of the object.

Remember that the client can give you back any remote reference you’ve given them. Don’t base your zillion-
dollar stock-trading clearinghouse server on the idea that you trust the client to give you back the right reference. The
security model inherent in PB means that they can only give you back a reference that you’ve given them for the current
connection (not one you’ve given to someone else instead, nor one you gave them last time before the TCP session
went down, nor one you haven’t yet given to the client), but just like with URLs and HTTP cookies, the particular
reference they give you is entirely under their control.

5.2.5 References to client-side objects

Anything that’s Referenceable can get passed across the wire, in either direction. The “client” can give a reference to
the “server”, and then the server can use .callRemote() to invoke methods on the client end. This fuzzes the distinction
between “client” and “server”: the only real difference is who initiates the original TCP connection; after that it’s all
symmetric.

#! /usr/bin/python

from twisted.spread import pb
import twisted.internet.app

class One(pb.Root):
def remote_takeTwo(self, two):

print "received a Two called", two
print "telling it to print(12)"
two.callRemote("print", 12)

app = twisted.internet.app.Application("pb3server")

CHAPTER 5. PERSPECTIVE BROKER 119

app.listenTCP(8800, pb.BrokerFactory(One()))
app.run(save=0)

Source listing — pb3server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

class Two(pb.Referenceable):
def remote_print(self, arg):

print "Two.print() called with", arg

def main():
two = Two()
def1 = pb.getObjectAt("localhost", 8800, 30)
def1.addCallback(got_obj, two) # hands our ’two’ to the callback
reactor.run()

def got_obj(obj, two):
print "got One:", obj
print "giving it our two"
obj.callRemote("takeTwo", two)

main()

Source listing — pb3client.py

In this example, the client gives a reference to its own object to the server. The server then invokes a remote
method on the client-side object.

5.2.6 Raising Remote Exceptions

Everything so far has covered what happens when things go right. What about when they go wrong? The Python Way
is to raise an exception of some sort. The Twisted Way is the same.

The only special thing you do is to define your Exception subclass by deriving it from pb.Error. (You do
define Exception subclasses, right? String exceptions are, like, so 5 minutes ago. Get with the new century, ok?).
When any remotely-invokable method (like remote * or perspective *) raises a pb.Error-derived exception,
a serialized form of that Exception object will be sent back over the wire5. The other side (which did callRemote)
will have the “errback” callback run with a Failure object that contains a copy of the exception object. This
Failure object can be queried to retrieve the error message and a stack traceback.

5To be precise, the Failure will be sent if any exception is raised, not just pb.Error-derived ones. But the server will print ugly error messages if
you raise ones that aren’t derived from pb.Error.

CHAPTER 5. PERSPECTIVE BROKER 120

Failure is a special class, defined in twisted/python/failure.py, created to make it easier to handle
asynchronous exceptions. Just as exception handlers can be nested, errback functions can be chained. If one errback
can’t handle the particular type of failure, it can be “passed along” to a errback handler further down the chain.

For simple purposes, think of the Failure as just a container for remotely-thrown Exception objects. To
extract the string that was put into the exception, use its .getErrorMessage() method. To get the type of the
exception (as a string), look at its .type attribute. The stack traceback is available too. The intent is to let the errback
function get just as much information about the exception as Python’s normal try: clauses do, even though the
exception occurred in somebody else’s memory space at some unknown time in the past.

#! /usr/bin/python

from twisted.spread import pb
import twisted.internet.app

class MyError(pb.Error):
"""This is an Expected Exception. Something bad happened."""
pass

class MyError2(Exception):
"""This is an Unexpected Exception. Something really bad happened."""
pass

class One(pb.Root):
def remote_broken(self):

msg = "fall down go boom"
print "raising a MyError exception with data ’%s’" % msg
raise MyError(msg)

def remote_broken2(self):
msg = "hadda owie"
print "raising a MyError2 exception with data ’%s’" % msg
raise MyError2(msg)

def main():
app = twisted.internet.app.Application("exc_server")
app.listenTCP(8800, pb.BrokerFactory(One()))
app.run(save=0)

if __name__ == ’__main__’:
main()

Source listing — exc server.py

#! /usr/bin/python

from twisted.spread import pb

CHAPTER 5. PERSPECTIVE BROKER 121

from twisted.internet import reactor

def main():
d = pb.getObjectAt("localhost", 8800, 30)
d.addCallbacks(got_obj)
reactor.run()

def got_obj(obj):
change "broken" into "broken2" to demonstrate an unhandled exception
d2 = obj.callRemote("broken")
d2.addCallback(working)
d2.addErrback(broken)

def working():
print "erm, it wasn’t *supposed* to work.."

def broken(reason):
print "got remote Exception"
reason should be a Failure (or subclass) holding the MyError exception
print " .__class__ =", reason.__class__
print " .getErrorMessage() =", reason.getErrorMessage()
print " .type =", reason.type
reactor.stop()

main()

Source listing — exc client.py

% ./exc_client.py
got remote Exception
.__class__ = twisted.spread.pb.CopiedFailure
.getErrorMessage() = fall down go boom
.type = __main__.MyError

Main loop terminated.

Oh, and what happens if you raise some other kind of exception? Something that isn’t subclassed from pb.
Error? Well, those are called “unexpected exceptions”, which make Twisted think that something has really gone
wrong. These will raise an exception on the server side. This won’t break the connection (the exception is trapped,
just like most exceptions that occur in response to network traffic), but it will print out an unsightly stack trace on
the server’s stderr with a message that says “Peer Will Receive PB Traceback”, just as if the exception had happened
outside a remotely-invokable method. (This message will go the current log target, if log.startLoggingwas used
to redirect it). The client will get the same Failure object in either case, but subclassing your exception from pb.
Error is the way to tell Twisted that you expect this sort of exception, and that it is ok to just let the client handle it
instead of also asking the server to complain. Look at exc client.py and change it to invoke broken2() instead
of broken() to see the change in the server’s behavior.

CHAPTER 5. PERSPECTIVE BROKER 122

If you don’t add an errback function to the Deferred, then a remote exception will still send a Failure
object back over, but it will get lodged in the Deferred with nowhere to go. When that Deferred finally goes out
of scope, the side that did callRemote will emit a message about an “Unhandled error in Deferred”, along with an
ugly stack trace. It can’t raise an exception at that point (after all, the callRemote that triggered the problem is long
gone), but it will emit a traceback. So be a good programmer and always add errback handlers, even if they are just
calls to log.err.

5.2.7 Try/Except blocks and Failure.trap

To implement the equivalent of the Python try/except blocks (which can trap particular kinds of exceptions and pass
others “up” to higher-level try/except blocks), you can use the .trap() method in conjunction with multiple
errback handlers on the Deferred. Re-raising an exception in an errback handler serves to pass that new
exception to the next handler in the chain. The trap method is given a list of exceptions to look for, and will re-raise
anything that isn’t on the list. Instead of passing unhandled exceptions “up” to an enclosing try block, this has the
effect of passing the exception “off” to later errback handlers on the same Deferred. The trap calls are used in
chained errbacks to test for each kind of exception in sequence.

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet import reactor
from twisted.spread import pb

class MyException(pb.Error):
pass

class One(pb.Root):
def remote_fooMethod(self, arg):

if arg == "panic!":
raise MyException

return "response"
def remote_shutdown(self):

reactor.stop()

app = Application("trap_server")
app.listenTCP(8800, pb.BrokerFactory(One()))
app.run(save=0)

Source listing — trap server.py

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

CHAPTER 5. PERSPECTIVE BROKER 123

class MyException(pb.Error): pass
class MyOtherException(pb.Error): pass

class ScaryObject:
not safe for serialization
pass

def worksLike(obj):
the callback/errback sequence in class One works just like an
asynchronous version of the following:
try:

response = obj.callMethod(name, arg)
except pb.DeadReferenceError:

print " stale reference: the client disconnected or crashed"
except jelly.InsecureJelly:

print " InsecureJelly: you tried to send something unsafe to them"
except (MyException, MyOtherException):

print " remote raised a MyException" # or MyOtherException
except:

print " something else happened"
else:

print " method successful, response:", response

class One:
def worked(self, response):

print " method successful, response:", response
def check_InsecureJelly(self, failure):

failure.trap(jelly.InsecureJelly)
print " InsecureJelly: you tried to send something unsafe to them"
return None

def check_MyException(self, failure):
which = failure.trap(MyException, MyOtherException)
if which == MyException:

print " remote raised a MyException"
else:

print " remote raised a MyOtherException"
return None

def catch_everythingElse(self, failure):
print " something else happened"
log.err(failure)
return None

def doCall(self, explanation, arg):
print explanation
try:

CHAPTER 5. PERSPECTIVE BROKER 124

deferred = self.remote.callRemote("fooMethod", arg)
deferred.addCallback(self.worked)
deferred.addErrback(self.check_InsecureJelly)
deferred.addErrback(self.check_MyException)
deferred.addErrback(self.catch_everythingElse)

except pb.DeadReferenceError:
print " stale reference: the client disconnected or crashed"

def callOne(self):
self.doCall("callOne: call with safe object", "safe string")

def callTwo(self):
self.doCall("callTwo: call with dangerous object", ScaryObject())

def callThree(self):
self.doCall("callThree: call that raises remote exception", "panic!")

def callShutdown(self):
print "telling them to shut down"
self.remote.callRemote("shutdown")

def callFour(self):
self.doCall("callFour: call on stale reference", "dummy")

def got_obj(self, obj):
self.remote = obj
reactor.callLater(1, self.callOne)
reactor.callLater(2, self.callTwo)
reactor.callLater(3, self.callThree)
reactor.callLater(4, self.callShutdown)
reactor.callLater(5, self.callFour)
reactor.callLater(6, reactor.stop)

deferred = pb.getObjectAt("localhost", 8800, 30)
deferred.addCallback(One().got_obj)
reactor.run()

Source listing — trap client.py

% ./trap_client.py
callOne: call with safe object
method successful, response: response

callTwo: call with dangerous object
InsecureJelly: you tried to send something unsafe to them

callThree: call that raises remote exception
remote raised a MyException

telling them to shut down
callFour: call on stale reference
stale reference: the client disconnected or crashed

CHAPTER 5. PERSPECTIVE BROKER 125

%

In this example, callTwo tries to send an instance of a locally-defined class through callRemote. The default
security model implemented by pb.Jelly on the remote end will not allow unknown classes to be unserialized (i.e.
taken off the wire as a stream of bytes and turned back into an object: a living, breathing instance of some class):
one reason is that it does not know which local class ought to be used to create an instance that corresponds to the
remote object6. The receiving end of the connection gets to decide what to accept and what to reject. It indicates
its disapproval by raising a pb.InsecureJelly exception. Because it occurs at the remote end, the exception is
returned to the caller asynchronously, so an errback handler for the associated Deferred is run. That errback
receives a Failure which wraps the InsecureJelly.

Remember that trap re-raises exceptions that it wasn’t asked to look for. You can only check for one set of
exceptions per errback handler: all others must be checked in a subsequent handler. check MyException shows
how multiple kinds of exceptions can be checked in a single errback: give a list of exception types to trap, and it
will return the matching member. In this case, the kinds of exceptions we are checking for (MyException and My
OtherException) may be raised by the remote end: they inherit from pb.Error.

The handler can return None to terminate processing of the errback chain (to be precise, it switches to the callback
that follows the errback; if there is no callback then processing terminates). It is a good idea to put an errback that
will catch everything (no trap tests, no possible chance of raising more exceptions, always returns None) at the end
of the chain. Just as with regular try: except: handlers, you need to think carefully about ways in which your
errback handlers could themselves raise exceptions. The extra importance in an asynchronous environment is that an
exception that falls off the end of the Deferred will not be signalled until that Deferred goes out of scope, and at
that point may only cause a log message (which could even be thrown away if log.startLogging is not used to
point it at stdout or a log file). In contrast, a synchronous exception that is not handled by any other except: block
will very visibly terminate the program immediately with a noisy stack trace.

callFour shows another kind of exception that can occur while using callRemote: pb.DeadReference
Error. This one occurs when the remote end has disconnected or crashed, leaving the local side with a stale reference.
This kind of exception happens to be reported right away (XXX: is this guaranteed? probably not), so must be caught
in a traditional synchronous try: except pb.DeadReferenceError block.

Yet another kind that can occur is a pb.PBConnectionLost exception. This occurs (asynchronously) if the
connection was lost while you were waiting for a callRemote call to complete. When the line goes dead, all
pending requests are terminated with this exception. Note that you have no way of knowing whether the request made
it to the other end or not, nor how far along in processing it they had managed before the connection was lost. XXX:
explain transaction semantics, find a decent reference.

5.3 PB Copyable: Passing Complex Types

5.3.1 Overview

This chapter focuses on how to use PB to pass complex types (specifically class instances) to and from a remote
process. The first section is on simply copying the contents of an object to a remote process (pb.Copyable). The

6The naive approach of simply doing import SomeClass to match a remote caller who claims to have an object of type “Some-
Class” could have nasty consequences for some modules that do significant operations in their init methods (think telnetlib.
Telnet(host=’localhost’, port=’chargen’), or even more powerful classes that you have available in your server program). Al-
lowing a remote entity to create arbitrary classes in your namespace is nearly equivalent to allowing them to run arbitrary code.

The pb.InsecureJelly exception arises because the class being sent over the wire has not been registered with the serialization layer (known
as jelly). The easiest way to make it possible to copy entire class instances over the wire is to have them inherit from pb.Copyable, and then
to use setUnjellyableForClass(remoteClass, localClass) on the receiving side. See XXX for an example.

CHAPTER 5. PERSPECTIVE BROKER 126

second covers how to copy those contents once, then update them later when they change (Cacheable).

5.3.2 Motivation

From the previous chapter (page 110), you’ve seen how to pass basic types to a remote process, by using them in
the arguments or return values of a callRemote function. However, if you’ve experimented with it, you may have
discovered problems when trying to pass anything more complicated than a primitive int/list/dict/string type, or another
pb.Referenceable object. At some point you want to pass entire objects between processes, instead of having to
reduce them down to dictionaries on one end and then re-instantiating them on the other.

5.3.3 Passing Objects

The most obvious and straightforward way to send an object to a remote process is with something like the following
code. It also happens that this code doesn’t work, as will be explained below.

class LilyPond:
def __init__(self, frogs):
self.frogs = frogs

pond = LilyPond(12)
ref.callRemote("sendPond", pond)

If you try to run this, you might hope that a suitable remote end which implements the remote sendPond
method would see that method get invoked with an instance from the LilyPond class. But instead, you’ll encounter
the dreaded InsecureJelly exception. This is Twisted’s way of telling you that you’ve violated a security restric-
tion, and that the receiving end refuses to accept your object.

Security Options

What’s the big deal? What’s wrong with just copying a class into another process’ namespace?
Reversing the question might make it easier to see the issue: what is the problem with accepting a stranger’s request

to create an arbitrary object in your local namespace? The real question is how much power you are granting them:
what actions can they convince you to take on the basis of the bytes they are sending you over that remote connection.

Objects generally represent more power than basic types like strings and dictionaries because they also contain (or
reference) code, which can modify other data structures when executed. Once previously-trusted data is subverted, the
rest of the program is compromised.

The built-in Python “batteries included” classes are relatively tame, but you still wouldn’t want to let a foreign
program use them to create arbitrary objects in your namespace or on your computer. Imagine a protocol that involved
sending a file-like object with a read() method that was supposed to used later to retrieve a document. Then
imagine what if that object were created with os.fdopen("˜/.gnupg/secring.gpg"). Or an instance of
telnetlib.Telnet("localhost", "chargen").

Classes you’ve written for your own program are likely to have far more power. They may run code during
init , or even have special meaning simply because of their existence. A program might have User objects to

represent user accounts, and have a rule that says all User objects in the system are referenced when authorizing a
login session. (In this system, User. init would probably add the object to a global list of known users). The
simple act of creating an object would give access to somebody. If you could be tricked into creating a bad object, an
unauthorized user would get access.

CHAPTER 5. PERSPECTIVE BROKER 127

So object creation needs to be part of a system’s security design. The dotted line between “trusted inside” and
“untrusted outside” needs to describe what may be done in response to outside events. One of those events is the
receipt of an object through a PB remote procedure call, which is a request to create an object in your “inside”
namespace. The question is what to do in response to it. For this reason, you must explicitly specific what remote
classes will be accepted, and how their local representatives are to be created.

What class to use?

Another basic question to answer before we can do anything useful with an incoming serialized object is: what class
should we create? The simplistic answer is to create the “same kind” that was serialized on the sender’s end of the
wire, but this is not as easy or as straightforward as you might think. Remember that the request is coming from a
different program, using a potentially different set of class libraries. In fact, since PB has also been implemented in
Java, Emacs-Lisp, and other languages, there’s no guarantee that the sender is even running Python! All we know on
the receiving end is a list of two things which describe the instance they are trying to send us: the name of the class,
and a representation of the contents of the object.

PB lets you specify the mapping from remote class names to local classes with the setUnjellyableFor
Class function7. This function takes a remote/sender class reference (either the fully-qualified name as used by the
sending end, or a class object from which the name can be extracted), and a local/recipient class (used to create the
local representation for incoming serialized objects). Whenever the remote end sends an object, the class name that
they transmit is looked up in the table controlled by this function. If a matching class is found, it is used to create the
local object. If not, you get the InsecureJelly exception.

In general you expect both ends to share the same codebase: either you control the program that is running on
both ends of the wire, or both programs share some kind of common language that is implemented in code which
exists on both ends. You wouldn’t expect them to send you an object of the MyFooziWhatZit class unless you also
had a definition for that class. So it is reasonable for the Jelly layer to reject all incoming classes except the ones that
you have explicitly marked with setUnjellyableForClass. But keep in mind that the sender’s idea of a User
object might differ from the recipient’s, either through namespace collisions between unrelated packages, version skew
between nodes that haven’t been updated at the same rate, or a malicious intruder trying to cause your code to fail in
some interesting or potentially vulnerable way.

5.3.4 pb.Copyable

Ok, enough of this theory. How do you send a fully-fledged object from one side to the other?

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

7Note that, in this context, “unjelly” is a verb with the opposite meaning of “jelly”. The verb “to jelly” means to serialize an object or data
structure into a sequence of bytes (or other primitive transmittable/storable representation), while “to unjelly” means to unserialize the bytestream
into a live object in the receiver’s memory space. “Unjellyable” is a noun, (not an adjective), referring to the the class that serves as a destination or
recipient of the unjellying process. “A is unjellyable into B” means that a serialized representation A (of some remote object) can be unserialized
into a local object of type B. It is these objects “B” that are the “Unjellyable” second argument of the setUnjellyableForClass function.

In particular, “unjellyable” does not mean “cannot be jellied”. Unpersistable means “not persistable”, but “unjelly”, “unserialize”, and
“unpickle” mean to reverse the operations of “jellying”, “serializing”, and “pickling”.

CHAPTER 5. PERSPECTIVE BROKER 128

class LilyPond:
def setStuff(self, color, numFrogs):

self.color = color
self.numFrogs = numFrogs

def countFrogs(self):
print "%d frogs" % self.numFrogs

class CopyPond(LilyPond, pb.Copyable):
pass

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived", response
reactor.stop()

def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.InsecureJelly:

print " InsecureJelly"
else:

print failure
reactor.stop()
return None

def main():
from copy_sender import CopyPond # so it’s not __main__.CopyPond
pond = CopyPond()
pond.setStuff("green", 7)
pond.countFrogs()
class name:
print ".".join([pond.__class__.__module__, pond.__class__.__name__])

sender = Sender(pond)
deferred = pb.getObjectAt("localhost", 8800, 30)
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == ’__main__’:
main()

CHAPTER 5. PERSPECTIVE BROKER 129

Source listing — copy sender.py

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet import reactor
from twisted.spread import pb
from copy_sender import LilyPond, CopyPond

from twisted.python import log
import sys
#log.startLogging(sys.stdout)

class ReceiverPond(pb.RemoteCopy, LilyPond):
pass

pb.setUnjellyableForClass(CopyPond, ReceiverPond)

class Receiver(pb.Root):
def remote_takePond(self, pond):

print " got pond:", pond
pond.countFrogs()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

app = Application("copy_receiver")
app.listenTCP(8800, pb.BrokerFactory(Receiver()))
app.run(save=0)

Source listing — copy receiver.py

The sending side has a class called LilyPond. To make this eligble for transport through callRemote (either
as an argument, a return value, or something referenced by either of those [like a dictionary value]), it must inherit
from one of the four Serializable classes. In this section, we focus on Copyable. The copyable subclass of
LilyPond is called CopyPond. We create an instance of it and send it through callRemote as an argument to
the receiver’s remote takePond method. The Jelly layer will serialize (“jelly”) that object as an instance with a
class name of “copy sender.CopyPond” and some chunk of data that represents the object’s state. pond. class .
module and pond. class . name are used to derive the class name string. The object’s getState

ToCopy method is used to get the state: this is provided by pb.Copyable, and the default just retrieves self.
dict . This works just like the optional getstate method used by pickle. The pair of name and state are

sent over the wire to the receiver.
The receiving end defines a local class named ReceiverPond to represent incoming LilyPond instances. This

class derives from the sender’s LilyPond class (with a fully-qualified name of copy sender.LilyPond), which
specifies how we expect it to behave. We trust that this is the same LilyPond class as the sender used. (At the very

CHAPTER 5. PERSPECTIVE BROKER 130

least, we hope ours will be able to accept a state created by theirs). It also inherits from pb.RemoteCopy, which is
a requirement for all classes that act in this local-representative role (those which are given to the second argument of
setUnjellyableForClass). RemoteCopy provides the methods that tell the Jelly layer how to create the local
object from the incoming serialized state.

Then setUnjellyableForClass is used to register the two classes. This has two effects: instances of the
remote class (the first argument) will be allowed in through the security layer, and instances of the local class (the
second argument) will be used to contain the state that is transmitted when the sender serializes the remote object.

When the receiver unserializes (“unjellies”) the object, it will create an instance of the local ReceiverPond
class, and hand the transmitted state (usually in the form of a dictionary) to that object’s setCopyableState
method. This acts just like the setstate method that pickle uses when unserializing an object. getState
ToCopy/setCopyableState are distinct from getstate / setstate to allow objects to be persisted
(across time) differently than they are transmitted (across [memory]space).

When this is run, it produces the following output:

% ./copy_receiver.py
twisted.spread.pb.BrokerFactory starting on 8800
Starting factory <twisted.spread.pb.BrokerFactory instance at 0x815085c>

[program pauses here until copy_sender.py is run]
got pond: <__main__.ReceiverPond instance at 0x832941c>

7 frogs

% ./copy_sender.py
7 frogs
copy_sender.CopyPond
pond arrived safe and sound
Main loop terminated.
%

Controlling the Copied State

By overriding getStateToCopy and setCopyableState, you can control how the object is transmitted over
the wire. For example, you might want perform some data-reduction: pre-compute some results instead of sending all
the raw data over the wire. Or you could replace references to a local object on the sender’s side with markers before
sending, then upon receipt replace those markers with references to a receiver-side proxy that could perform the same
operations against a local cache of data.

Another good use for getStateToCopy is to implement “local-only” attributes: data that is only accessible by
the local process, not to any remote users. For example, a .password attribute could be removed from the object
state before sending to a remote system. Combined with the fact that Copyable objects return unchanged from a
round trip, this could be used to build a challenge-response system (in fact PB does this with pb.Referenceable
objects to implement authorization as described here (page 139)).

Whatever getStateToCopy returns from the sending object will be serialized and sent over the wire; set
CopyableState gets whatever comes over the wire and is responsible for setting up the state of the object it lives
in.

#! /usr/bin/python

from twisted.spread import pb

CHAPTER 5. PERSPECTIVE BROKER 131

class FrogPond:
def __init__(self, numFrogs, numToads):

self.numFrogs = numFrogs
self.numToads = numToads

def count(self):
return self.numFrogs + self.numToads

class SenderPond(FrogPond, pb.Copyable):
def getStateToCopy(self):

d = self.__dict__.copy()
d[’frogsAndToads’] = d[’numFrogs’] + d[’numToads’]
del d[’numFrogs’]
del d[’numToads’]
return d

class ReceiverPond(pb.RemoteCopy):
def setCopyableState(self, state):

self.__dict__ = state
def count(self):

return self.frogsAndToads

pb.setUnjellyableForClass(SenderPond, ReceiverPond)

Source listing — copy2 classes.py

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor
from copy2_classes import SenderPond

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, obj):
d = obj.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived", response
reactor.stop()

def notOk(self, failure):

CHAPTER 5. PERSPECTIVE BROKER 132

print "error during takePond:"
if failure.type == jelly.InsecureJelly:

print " InsecureJelly"
else:

print failure
reactor.stop()
return None

def main():
pond = SenderPond(3, 4)
print "count %d" % pond.count()

sender = Sender(pond)
deferred = pb.getObjectAt("localhost", 8800, 30)
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == ’__main__’:
main()

Source listing — copy2 sender.py

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet import reactor
from twisted.spread import pb
import copy2_classes # needed to get ReceiverPond registered with Jelly

class Receiver(pb.Root):
def remote_takePond(self, pond):

print " got pond:", pond
print " count %d" % pond.count()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

app = Application("copy_receiver")
app.listenTCP(8800, pb.BrokerFactory(Receiver()))
app.run(save=0)

Source listing — copy2 receiver.py

In this example, the classes are defined in a separate source file, which also sets up the binding between them.
The SenderPond and ReceiverPond are unrelated save for this binding: they happen to implement the same

CHAPTER 5. PERSPECTIVE BROKER 133

methods, but use different internal instance variables to accomplish them.
The recipient of the object doesn’t even have to import the class definition into their namespace. It is sufficient

that they import the class definition (and thus execute the setUnjellyableForClass statement). The Jelly layer
remembers the class definition until a matching object is received. The sender of the object needs the definition, of
course, to create the object in the first place.

When run, the copy2 example emits the following:

% ./copy2_receiver.py
twisted.spread.pb.BrokerFactory starting on 8800
Starting factory <twisted.spread.pb.BrokerFactory instance at 0x8337f2c>
got pond: <copy2_classes.ReceiverPond instance at 0x8150dbc>
count 7

% ./copy2_sender.py
count 7
pond arrived safe and sound
Main loop terminated.
%

Things To Watch Out For
� The first argument to setUnjellyableForClass must refer to the class as known by the sender. The

sender has no way of knowing about how your local import statements are set up, and Python’s flexible
namespace semantics allow you to access the same class through a variety of different names. You must match
whatever the sender does. Having both ends import the class from a separate file, using a canonical module
name (no “sibiling imports”), is a good way to get this right, especially when both the sending and the receiving
classes are defined together, with the setUnjellyableForClass immediately following them. (XXX: this
works, but does this really get the right names into the table? Or does it only work because both are defined in
the same (wrong) place?)

� The class that is sent must inherit from pb.Copyable. The class that is registered to receive it must inherit
from pb.RemoteCopy8.

� The same class can be used to send and receive. Just have it inherit from both pb.Copyable and pb.Remote
Copy. This will also make it possible to send the same class symmetrically back and forth over the wire. But
don’t get confused about when it is coming (and using setCopyableState) versus when it is going (using
getStateToCopy).

� InsecureJelly exceptions are raised by the receiving end. They will be delivered asynchronously to an
errback handler. If you do not add one to the Deferred returned by callRemote, then you will never
receive notification of the problem.

� The class that is derived from pb.RemoteCopy will be created using a constructor init method that
takes no arguments. All setup must be performed in the setCopyableState method. As the docstring on
RemoteCopy says, don’t implement a constructor that requires arguments in a subclass of RemoteCopy.
XXX: check this, the code around jelly. Unjellier.unjelly:489 tries to avoid calling init just in case the
constructor requires args.

8pb.RemoteCopy is actually defined as flavors.RemoteCopy, but pb.RemoteCopy is the preferred way to access it

CHAPTER 5. PERSPECTIVE BROKER 134

More Information
� pb.Copyable is mostly implemented in twisted.spread.flavors, and the docstrings there are the

best source of additional information.

� Copyable is also used in twisted.web.distrib to deliver HTTP requests to other programs for render-
ing, allowing subtrees of URL space to be delegated to multiple programs (on multiple machines).

� twisted.manhole.exploreralso uses Copyable to distribute debugging information from the program
under test to the debugging tool.

5.3.5 pb.Cacheable

Sometimes the object you want to send to the remote process is big and slow. “big” means it takes a lot of data (storage,
network bandwidth, processing) to represent its state. “slow” means that state doesn’t change very frequently. It may
be more efficient to send the full state only once, the first time it is needed, then afterwards only send the differences
or changes in state whenever it is modified. The pb.Cacheable class provides a framework to implement this.

pb.Cacheable is derived from pb.Copyable, so it is based upon the idea of an object’s state being captured
on the sending side, and then turned into a new object on the receiving side. This is extended to have an object
“publishing” on the sending side (derived from pb.Cacheable), matched with one “observing” on the receiving
side (derived from pb.RemoteCache).

To effectively use pb.Cacheable, you need to isolate changes to your object into accessor functions (specifi-
cally “setter” functions). Your object needs to get control every single time some attribute is changed9.

You derive your sender-side class from pb.Cacheable, and you add two methods: getStateToCacheAnd
ObserveFor and stoppedObserving. The first is called when a remote caching reference is first created, and
retrieves the data with which the cache is first filled. It also provides an object called the “observer”10 that points at
that receiver-side cache. Every time the state of the object is changed, you give a message to the observer, informing
them of the change. The other method, stoppedObserving, is called when the remote cache goes away, so that
you can stop sending updates.

On the receiver end, you make your cache class inherit from pb.RemoteCache, and implement the set
CopyableState as you would for a pb.RemoteCopy object. In addition, you must implement methods to receive
the updates sent to the observer by the pb.Cacheable: these methods should have names that start with observe ,
and match the callRemote invocations from the sender side just as the usual remote * and perspective *
methods match normal callRemote calls.

The first time a reference to the pb.Cacheable object is sent to any particular recipient, a sender-side Observer
will be created for it, and the getStateToCacheAndObserveFor method will be called to get the current state
and register the Observer. The state which that returns is sent to the remote end and turned into a local representation
using setCopyableState just like pb.RemoteCopy, described above (in fact it inherits from that class).

After that, your “setter” functions on the sender side should call callRemote on the Observer, which causes
observe * methods to run on the receiver, which are then supposed to update the receiver-local (cached) state.

When the receiver stops following the cached object and the last reference goes away, the pb.RemoteCache
object can be freed. Just before it dies, it tells the sender side it no longer cares about the original object. When that

9of course you could be clever and add a hook to setattr , along with magical change-announcing subclasses of the usual builtin types, to
detect changes that result from normal “=” set operations. The result might be hard to maintain or extend, though.

10this is actually a RemoteCacheObserver, but it isn’t very useful to subclass or modify, so simply treat it as a little demon that sits in your
pb.Cacheable class and helps you distribute change notifications. The only useful thing to do with it is to run its callRemote method, which
acts just like a normal pb.Referenceable’s method of the same name.

CHAPTER 5. PERSPECTIVE BROKER 135

reference count goes to zero, the Observer goes away and the pb.Cacheable object can stop announcing every
change that takes place. The stoppedObserving method is used to tell the pb.Cacheable that the Observer
has gone away.

With the pb.Cacheable and pb.RemoteCache classes in place, bound together by a call to pb.set
UnjellyableForClass, all that remains is to pass a reference to your pb.Cacheable over the wire to the
remote end. The corresponding pb.RemoteCache object will automatically be created, and the matching methods
will be used to keep the receiver-side slave object in sync with the sender-side master object.

Example

Here is a complete example, in which the MasterDuckPond is controlled by the sending side, and the SlaveDuck
Pond is a cache that tracks changes to the master:

#! /usr/bin/python

from twisted.spread import pb

class MasterDuckPond(pb.Cacheable):
def __init__(self, ducks):

self.observers = []
self.ducks = ducks

def count(self):
print "I have [%d] ducks" % len(self.ducks)

def addDuck(self, duck):
self.ducks.append(duck)
for o in self.observers: o.callRemote(’addDuck’, duck)

def removeDuck(self, duck):
self.ducks.remove(duck)
for o in self.observers: o.callRemote(’removeDuck’, duck)

def getStateToCacheAndObserveFor(self, perspective, observer):
self.observers.append(observer)
you should ignore pb.Cacheable-specific state, like self.observers
return self.ducks # in this case, just a list of ducks

def stoppedObserving(self, perspective, observer):
self.observers.remove(observer)

class SlaveDuckPond(pb.RemoteCache):
This is a cache of a remote MasterDuckPond
def count(self):

return len(self.cacheducks)
def getDucks(self):

return self.cacheducks
def setCopyableState(self, state):

print " cache - sitting, er, setting ducks"
self.cacheducks = state

def observe_addDuck(self, newDuck):

CHAPTER 5. PERSPECTIVE BROKER 136

print " cache - addDuck"
self.cacheducks.append(newDuck)

def observe_removeDuck(self, deadDuck):
print " cache - removeDuck"
self.cacheducks.remove(deadDuck)

pb.setUnjellyableForClass(MasterDuckPond, SlaveDuckPond)

Source listing — cache classes.py

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor
from cache_classes import MasterDuckPond

class Sender:
def __init__(self, pond):

self.pond = pond

def phase1(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.phase2).addErrback(log.err)

def phase2(self, response):
self.pond.addDuck("ugly duckling")
self.pond.count()
reactor.callLater(1, self.phase3)

def phase3(self):
d = self.remote.callRemote("checkDucks")
d.addCallback(self.phase4).addErrback(log.err)

def phase4(self, dummy):
self.pond.removeDuck("one duck")
self.pond.count()
self.remote.callRemote("checkDucks")
d = self.remote.callRemote("ignorePond")
d.addCallback(self.phase5)

def phase5(self, dummy):
d = self.remote.callRemote("shutdown")
d.addCallback(self.phase6)

def phase6(self, dummy):
reactor.stop()

def main():

CHAPTER 5. PERSPECTIVE BROKER 137

master = MasterDuckPond(["one duck", "two duck"])
master.count()

sender = Sender(master)
deferred = pb.getObjectAt("localhost", 8800, 30)
deferred.addCallback(sender.phase1)
reactor.run()

if __name__ == ’__main__’:
main()

Source listing — cache sender.py

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet import reactor
from twisted.spread import pb
import cache_classes

class Receiver(pb.Root):
def remote_takePond(self, pond):

self.pond = pond
print "got pond:", pond # a DuckPondCache
self.remote_checkDucks()

def remote_checkDucks(self):
print "[%d] ducks: " % self.pond.count(), self.pond.getDucks()

def remote_ignorePond(self):
stop watching the pond
print "dropping pond"
gc causes __del__ causes ’decache’ msg causes stoppedObserving
self.pond = None

def remote_shutdown(self):
reactor.stop()

app = Application("copy_receiver")
app.listenTCP(8800, pb.BrokerFactory(Receiver()))
app.run(save=0)

Source listing — cache receiver.py

When run, this example emits the following:

% ./cache_receiver.py
cache - sitting, er, setting ducks

CHAPTER 5. PERSPECTIVE BROKER 138

got pond: <cache_classes.SlaveDuckPond instance at 0x82a15e4>
[2] ducks: [’one duck’, ’two duck’]
cache - addDuck

[3] ducks: [’one duck’, ’two duck’, ’ugly duckling’]
cache - removeDuck

[2] ducks: [’two duck’, ’ugly duckling’]
dropping pond
%

% ./cache_sender.py
I have [2] ducks
I have [3] ducks
I have [2] ducks
Main loop terminated.
%

Points to notice:

� There is one Observer for each remote program that holds an active reference. Multiple references inside
the same program don’t matter: the serialization layer notices the duplicates and does the appropriate reference
counting11.

� Multiple Observers need to be kept in a list, and all of them need to be updated when something changes. By
sending the initial state at the same time as you add the observer to the list, in a single atomic action that cannot
be interrupted by a state change, you insure that you can send the same status update to all the observers.

� The observer.callRemote calls can still fail. If the remote side has disconnected very recently and
stoppedObserving has not yet been called, you may get a DeadReferenceError. It is a good idea
to add an errback to those callRemotes to throw away such an error. This is a useful idiom:

observer.callRemote(’foo’, arg).addErrback(lambda f: None)

(XXX: verify that this is actually a concern)

� getStateToCacheAndObserverFormust return some object that represents the current state of the ob-
ject. This may simply be the object’s dict attribute. It is a good idea to remove the pb.Cacheable-
specific members of it before sending it to the remote end. The list of Observers, in particular, should be left
out, to avoid dizzying recursive Cacheable references. The mind boggles as to the potential consequences of
leaving in such an item.

� A perspective argument is available to getStateToCacheAndObserveFor, as well as stopped
Observing. I think the purpose of this is to allow viewer-specific changes to the way the cache is updated. If
all remote viewers are supposed to see the same data, it can be ignored.

XXX: understand, then explain use of varying cached state depending upon perspective.

11this applies to multiple references through the same Broker. If you’ve managed to make multiple TCP connections to the same program, you
deserve whatever you get.

CHAPTER 5. PERSPECTIVE BROKER 139

More Information
� The best source for information comes from the docstrings in twisted.spread.flavors, where pb.
Cacheable is implemented.

� twisted.manhole.explorer uses Cacheable, and does some fairly interesting things with it. (XXX:
I’ve heard explorer is currently broken, it might not be a good example to recommend)

� The spread.publish module also uses Cacheable, and might be a source of further information.

5.4 Authentication with Perspective Broker

5.4.1 Motivation

In the examples shown in Using Perspective Broker (page 110) there were some problems. You had to trust the user
when they said their name was “bob”: no passwords or anything. If you wanted a direct-send one-to-one message
feature, you might have implemented it by handing a User reference directly off to another User. (so they could invoke
.remote sendMessage() on the receiving User): but that lets them do anything else to that user too, things that
should probably be restricted to the “owner” user, like .remote joinGroup() or .remote quit().

And there were probably places where the easiest implementation was to have the client send a message that
included their own name as an argument. Sending a message to the group could just be:

class Group(pb.Referenceable):

...

def remote_sendMessage(self, from_user, message):
for user in self.users:

user.callRemote("sendMessage", "[%s]: %s" % (from_user, message))

But obviously this lets users spoof each other: there’s no reason that Alice couldn’t do:

remotegroup.callRemote("sendMessage", "bob", "i like pork")

much to the horror of Bob’s vegetarian friends.
(In general, learn to get suspicious if you see groupName or userName in the argument list of a remotely-

invokable method).
You could fix this by adding more classes (with fewer remotely-invokable methods), and making sure that the

reference you give to Alice won’t let her pretend to be anybody else. You’d probably give Alice her own object, with
her name buried inside:

class User(pb.Referenceable):
def __init__(self, name):
self.name = name

def remote_sendMessage(self, group, message):
g = findgroup(group)
for user in g.users:

user.callRemote("sendMessage", "[%s]: %s" % (self.name, message))

CHAPTER 5. PERSPECTIVE BROKER 140

This improves matters because, as long as Alice only has a reference to this object and nobody else’s, she can’t
cause a different self.name to get used. Of course, you have to make sure that you don’t give her a reference to the
wrong object.

Note:
Third party references (there aren’t any)
Note that the reference that the server gives to a client is only useable by that one client: if they try

to hand it off to a third party, they’ll get an exception (XXX: which? looks like an assert in pb.py:290
RemoteReference.jellyFor). This helps somewhat: only the client you gave the reference to can cause
any damage with it. Of course, the client might be a brainless zombie, simply doing anything some
third party wants. When it’s not proxying callRemote invocations, it’s probably terrorizing the living
and searching out human brains for sustenance. In short, if you don’t trust them, don’t give them that
reference.

Also note that the design of the serialization mechanism (implemented in twisted.spread.
jelly: pb, jelly, spread.. get it? Also look for “banana” and “marmalade”. What other networking
framework can claim API names based on sandwich ingredients?) makes it impossible for the client to
obtain a reference that they weren’t explicitly given. References passed over the wire are given id numbers
and recorded in a per-connection dictionary. If you didn’t give them the reference, the id number won’t
be in the dict, and no amount of id guessing by a malicious client will give them anything else. The dict
goes away when the connection is dropped, limiting further the scope of those references.

Of course, everything you’ve ever given them over that connection can come back to you. If expect the
client to invoke your method with some object A that you sent to them earlier, and instead they send you
object B (that you also sent to them earlier), and you don’t check it somehow, then you’ve just opened up
a security hole. It may be better to keep such objects in a dictionary on the server side, and have the client
send you an index string instead. Doing it that way makes it obvious that they can send you anything
they want, and improves the chances that you’ll remember to implement the right checks. (This is exactly
what PB is doing underneath, with a per-connection dictionary of Referenceable objects, indexed by
a number).

But now she could sneak into another group. So you might have to have an object per-group-per-user:

class UserGroup(pb.Referenceable):
def __init__(self, group, user):
self.group = group
self.user = user

def remote_sendMessage(self, message):
name = self.user.name
for user in self.group.users:

user.callRemote("sendMessage", "[%s]: %s" % (name, message))

But that means more code, and more code is bad, especially when it’s a common problem (everybody designs with
security in mind, right? Right??).

So we have a security problem. We need a way to ask for and verify a password, so we know that Bob is really
Bob and not Alice wearing her “Hi, my name is Bob” t-shirt. And it would make the code cleaner (i.e.: fewer classes)
if some methods could know reliably who is calling them.

CHAPTER 5. PERSPECTIVE BROKER 141

5.4.2 A sample application

As a framework for this chapter, we’ll be referring to a hypothetical game implemented by several programs using the
Twisted framework. This game will have multiple players, where users log in using their client programs, and there is
a server, and users can do some things but not others12.

The players make moves in this game by invoking remote methods on objects that live in the server. The clients
can’t really be relied upon to tell the server who they are with each move they make: they might get it wrong, or
(horrors!) lie to mess up the other player.

Let’s simplify it to a server-based game of Go (if that can be considered simple). Go has two players, white and
black, who take turns placing stones of their own color at the intersections of a 19x19 grid. If we represent the game
and board as an object in the server called Game, then the players might interact with it using something like this:

class Game(pb.Referenceable):
def remote_getBoard(self):
return self.board # a dict, with the state of the board

def remote_move(self, playerName, x, y):
self.board[x,y] = playerName

“But Wait”, you say, yes that method takes a playerName, which means they could cheat and move for the other
player. So instead, do this:

class Game(pb.Referenceable):
def remote_getBoard(self):
return self.board # a dict, with the state of the board

def move(self, playerName, x, y):
self.board[x,y] = playerName

and move the responsibility (and capability) for calling Game.move() out to a different class. That class is a pb.
Perspective.

5.4.3 Perspectives

pb.Perspective (and some related classes: Identity, Authorizer, and Service) is a layer on top of the basic PB
system that handles username/password checking. The basic idea is that there is a separate Perspective object (probably
a subclass you’ve created) for each user13, and only the authorized user gets a remote reference to that Perspective
object. You can store whatever permissions or capabilities the user possesses in that object, and then use them when
the user invokes a remote method. You give the user access to the Perspective object instead of the objects that do the
real work.

Your code can then look like this:

class Game:
def getBoard(self):
return self.board # a dict, with the state of the board

def move(self, playerName, x, y):
self.board[x,y] = playerName

12There actually exists such a thing. It’s called twisted.reality, and was the whole reason Twisted was created. I haven’t played it yet: I’m too
afraid.

13Actually there is a perspective per user*service, but we’ll get into that later

CHAPTER 5. PERSPECTIVE BROKER 142

class PlayerPerspective(pb.Perspective):
def __init__(self, playerName, game):
self.playerName = playerName
self.game = game

def perspective_move(self, x, y):
self.game.move(self.playerName, x, y)

def perspective_getBoard(self):
return self.game.getBoard()

The code on the server side creates the PlayerPerspective object, giving it the right playerName and a reference to
the Game object. The remote player doesn’t get a reference to the Game object, only their own PlayerPerspective, so
they don’t have an opportunity to lie about their name: it comes from the .playerName attribute, not an argument
of their remote method call.

Here is a brief example of using a Perspective. Most of the support code is magic for now: we’ll explain it later.

Note:
This example has more support code than you’d actually need. If you only have one Service, then

there’s probably a one-to-one relationship between your Identities and your Perspectives. If that’s the
case, you can use a utility method called Perspective.makeIdentity() instead of creating the perspectives
and identities in separate steps. This is shorter, but hides some of the details that are useful here to explain
what’s going on. Again, this will make more sense later.

#! /usr/bin/python

from twisted.spread import pb
from twisted.cred.authorizer import DefaultAuthorizer
import twisted.internet.app

class MyPerspective(pb.Perspective):
def perspective_foo(self, arg):

print "I am", self.myname, "perspective_foo(",arg,") called on", self

much of the following is magic
app = twisted.internet.app.Application("pb5server")
auth = DefaultAuthorizer(app)
create the service, tell it to generate MyPerspective objects when asked
s = pb.Service("myservice", app, auth)
s.perspectiveClass = MyPerspective

create a MyPerspective
p1 = s.createPerspective("perspective1")
p1.myname = "p1"
create an Identity, give it a name and password, and allow it access to
the MyPerspective we created before
i1 = auth.createIdentity("user1")
i1.setPassword("pass1")

CHAPTER 5. PERSPECTIVE BROKER 143

i1.addKeyByString("myservice", "perspective1")
auth.addIdentity(i1)

start the application
app.listenTCP(8800, pb.BrokerFactory(pb.AuthRoot(auth)))
app.run(save=0)

Source listing — pb5server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
def1 = pb.connect("localhost", 8800,

"user1", "pass1",
"myservice", "perspective1",
timeout=30)

def1.addCallbacks(connected)
reactor.run()

def connected(perspective):
print "got perspective ref:", perspective
print "asking it to foo(12)"
perspective.callRemote("foo", 12)

main()

Source listing — pb5client.py

Note that once this example has done the method call, you’ll have to terminate both ends yourself. Also note that
the Perspective’s .attached() and .detached() methods are run when the client connects and disconnects.
The base class implementations of these methods just prints a message.

Ok, so that wasn’t really very exciting. It doesn’t accomplish much more than the first PB example, and used a
lot more code to do it. Let’s try it again with two users this time, each with their own Perspective. We also override
.attached() and .detached(), just to see how they are called.

Note:
The Perspective object is usually expected to outlast the user’s connection to it: it is nominally

created some time before the user connects, and survives after they disconnect. .attached() and
.detached() are invoked to let the Perspective know when the user has connected and disconnected.

When the client runs pb.connect to establish the connection, they can provide it with an optional
client argument (which must be a pb.Referenceable object). If they do, then a reference to

CHAPTER 5. PERSPECTIVE BROKER 144

that object will be handed to the server-side Perspective’s .attached method, in the clientref
argument.

The server-side Perspective can use it to invoke remote methods on something in the client, so that
the client doesn’t always have to drive the interaction. In a chat server, the client object would be the one
to which “display text” messages were sent. In a game, this would provide a way to tell the clients that
someone has made a move, so they can update their game boards. To actually use it, you’d probably want
to subclass Perspective and change the .attached method to stash the clientref somewhere, because the
default implementation just drops it.

.attached() also receives a reference to the Identity object that represents the user. (The user
has proved, by using a password of some sort, that they are that Identity, and then they can access
any service/perspective on the Identity’s keyring). The method can use that reference to extract more
information about the user.

In addition, .attached() has the opportunity to return a different Perspective, if it so chooses. You
could have all users initially access the same Perspective, but then as they connect (and .attached()
gets called), give them unique Perspectives based upon their individual Identities. The client will get a
reference to whatever .attached() returns, so the default case is to ’return self’.

Finally, when the client goes away (i.e., the network connection has been closed), .detached()
will be called. The Perspective can use this to mark the user as having gone away: this may mean that
outgoing messages should be queued in the Perspective until they reconnect, or callers should be given an
error message because they messages cannot be delivered, etc. It can also be used to terminate or suspend
any sessions the user was participating in. detached is called with the same ’clientref’ and Identity
objects that were given to the original ’attached’ call. It will be invoked on the Perspective object that was
returned by .attached().

#! /usr/bin/python

from twisted.spread import pb
from twisted.cred.authorizer import DefaultAuthorizer
import twisted.internet.app

class MyPerspective(pb.Perspective):
def attached(self, clientref, identity):

print "client attached! they are:", identity
return self

def detached(self, ref, identity):
print "client detached! they were:", identity

def perspective_foo(self, arg):
print "I am", self.myname, "perspective_foo(",arg,") called on", self

much of the following is magic
app = twisted.internet.app.Application("pb6server")
auth = DefaultAuthorizer(app)
create the service, tell it to generate MyPerspective objects when asked
s = pb.Service("myservice", app, auth)
s.perspectiveClass = MyPerspective

CHAPTER 5. PERSPECTIVE BROKER 145

create one MyPerspective
p1 = s.createPerspective("perspective1")
p1.myname = "p1"
create an Identity, give it a name and password, and allow it access to
the MyPerspective we created before
i1 = auth.createIdentity("user1")
i1.setPassword("pass1")
i1.addKeyByString("myservice", "perspective1")
auth.addIdentity(i1)

create another MyPerspective
p2 = s.createPerspective("perspective2")
p2.myname = "p2"
i2 = auth.createIdentity("user2")
i2.setPassword("pass2")
i2.addKeyByString("myservice", "perspective2")
auth.addIdentity(i2)

start the application
app.listenTCP(8800, pb.BrokerFactory(pb.AuthRoot(auth)))
app.run(save=0)

Source listing — pb6server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
def1 = pb.connect("localhost", 8800,

"user1", "pass1",
"myservice", "perspective1",
timeout=30)

def1.addCallbacks(connected)
reactor.run()

def connected(perspective):
print "got perspective1 ref:", perspective
print "asking it to foo(13)"
perspective.callRemote("foo", 13)

main()

CHAPTER 5. PERSPECTIVE BROKER 146

Source listing — pb6client1.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
def1 = pb.connect("localhost", 8800,

"user2", "pass2",
"myservice", "perspective2",
timeout=30)

def1.addCallbacks(connected)
reactor.run()

def connected(perspective):
print "got perspective2 ref:", perspective
print "asking it to foo(14)"
perspective.callRemote("foo", 14)

main()

Source listing — pb6client2.py

While pb6server.py is running, try starting pb6client1, then pb6client2. Compare the argument passed by the
.callRemote() in each client. You can see how each client logs into a different Perspective.

5.4.4 Class Overview

Now that we’ve seen some of the motivation behind the Perspective class, let’s start to de-mystify some of the parts
labeled “magic” in pb6server.py. Here are the major classes involved:

� Application: twisted/internet/app.py

� Service: twisted/cred/service.py

� Authorizer: twisted/cred/authorizer.py

� Identity: twisted/cred/identity.py

� Perspective: twisted/cred/pb.py

You’ve already seen Application. It holds the program-wide settings, like which uid/gid it should run under,
and contains a list of ports that it should listen on (with a Factory for each one to create Protocol objects). When used
for PB, we put a pb.BrokerFactory on the port. The Application also holds a list of Services.

A Service is, well, a service. A web server would be a Service, as would a chat server, or any other kind
of server you might choose to run. What’s the difference between a Service and an Application? You can

CHAPTER 5. PERSPECTIVE BROKER 147

have multiple Services in a single Application: perhaps both a web-based chat service and an IM server in
the same program, that let you exchange messages between the two. Or your program might provide different kinds
of interfaces to different classes of users: administrators could get one Service, while mere end-users get a less-
powerful Service.

Note:
Note that the Service is a server of some sort, but that doesn’t mean there’s a one-to-one relationship

between the Service and the TCP port that’s being listened to. In theory, several different Services
can hang off the same TCP port. Look at the MultiService class for details.

The Service is reponsible for providing Perspective objects. More on that later.
The Authorizer is a class that provides Identity objects. The abstract base class is twisted.cred.

authorizer.Authorizer, and for simple purposes you can just use DefaultAuthorizer, which is a sub-
class that stores pre-generated Identities in a simple dict (indexed by username). The Authorizer’s purpose in
life is to implement the .getIdentityRequest()method, which takes a user name and (eventually) returns the
corresponding Identity object.

Each Identity object represents a single user, with a username and a password of some sort. Its job is to talk
to the as-yet-anonymous remote user and verify that they really are who they claim to be. The default twisted.
cred.authorizer.Identity class implements MD5-hashed challenge-response password authorization, much
like the HTTP MD5-Authentication method: the server sends a random challenge string, the client concatenates a
hash of their password with the challenge string, and sends back a hash of the result. At this point the client is said
to be “authorized” for access to that Identity, and they are given a remote reference to the Identity (actually a
wrapper around it), giving them all the privileges of that Identity.

Those privileges are limited to requesting Perspectives. The Identity object also has a “keyring”, which
is a list of (serviceName, perspectiveName) pairs that the corresponding authorized user is allowed to access. Once
the user has been authenticated, the Identity’s job is to implement .requestPerspectiveForKey(), which
it does by verifying the “key” exists on the keyring, then asking the matching Service to do .getPerspective
ForIdentity().

Finally, the Perspective is the subclass of pb.Perspective that implements whatever perspective * meth-
ods you wish to expose to an authenticated remote user. It also implements .attached() and .detached(),
which are run when the user connects (actually when they finish the authentication sequence) or disconnects. Each
Perspective has a name, which is scoped to the Service which owns the Perspective.

5.4.5 Class Responsibilities

Now that we’ve gone over the classes and objects involved, let’s look at the specific responsibilities of each. Most of
these classes are on the hook to implement just one or two particular methods, and the rest of the class is just support
code (or the main method has been broken up for ease of subclassing). This section indicates what those main methods
are and when they get called.

Authorizer

The Authorizer has to provide Identity objects (requested by name) by implementing .getIdentity
Request(). The DefaultAuthorizer class just looks up the name in a dict called self.identities,
so when you use it, you have to make the Identities ahead of time (using i = auth.createIdentity()) and
store them in that dict (by handing them to auth.addIdentity(i)).

CHAPTER 5. PERSPECTIVE BROKER 148

However, you can make a subclass of Authorizer with a .getIdentityRequest method that behaves
differently: your version could look in /etc/passwd, or do an SQL database lookup14, or create new Identities for
anyone that asks (with a really secret password like ’1234’ that the user will probably never change, even if you ask
them to). The Identities could be created by your server at startup time and stored in a dict, or they could be pickled
and stored in a file until needed (in which case .getIdentityRequest() would use the username to find a file,
unpickle the contents, and return the resulting Identity object), or created brand-new based upon whatever data
you want. Any function that returns a Deferred (that will eventually get called back with the Identity object) can
be used here.

Note:
For static Identities that are available right away, the Deferred’s callback() method is called right

away. This is why the interface of .getIdentityRequest() specifies that its Deferred is returned
unarmed, so that the caller has a chance to actually add a callback to it before the callback gets run. (XXX:
check, I think armed/unarmed is an outdated concept)

Identity

The Identity object thus returned has two responsibilities. The first is to authenticate the user, because so far they
are unverified: they have claimed to be somebody (by giving a username to the Authorizer), but have not yet proved
that claim. It does this by implementing .verifyPassword, which is called by IdentityWrapper (described later)
as part of the challenge-response sequence. If the password is valid, .verifyPassword should return a Deferred
and run its callback. If the password is wrong, the Deferred should have the error-back run instead.

The second responsibility is to provide Perspective objects to users who are allowed to access them. The
authenticated user gives a service name and a perspective name, and .requestPerspectiveForKey() is in-
voked to retrieve the given Perspective. The Identity is the one who decides which services/perspectives the
user is allowed to access. Unless you override it in a subclass, the default implementation uses a simple dict called
.keyring, which has keys that are (servicename, perspectivename) pairs. If the requested name pair is in the keyring,
access is allowed, and the Identity will proceed to ask the Service to give back the specified Perspective
to the user. .requestPerspectiveForKey() is required to return a Deferred, which will eventually be called
back with a Perspective object, or error-backed with a Failure object if they were not allowed access.

XXX: explain perspective names being scoped to services better
You could subclass Identity to change the behavior of either of these, but chances are you won’t bother. The

only reason to change .verifyPassword() would be to replace it with some kind of public-key verification
scheme, but that would require changes to pb.IdentityWrapper too, as well as significant changes on the client
side. Any changes you might want to make to .requestPerspectiveForKey() are probably more appropriate
to put in the Service’s .getPerspectiveForIdentitymethod instead. The Identity simply passes all requests
for Perspectives off to the Service.

The default Identity objects are created with a username and password, and a “keyring” of valid ser-
vice/perspective name pairs. They are children of an Authorizer object. The best way to create them is to have the
Authorizer do it for you, then fill in the details, by doing the following:

i = auth.createIdentity("username")
i.setPassword("password")
i.addKeyByString("service", "perspective")
auth.addIdentity(i)

14See twisted.enterprise.dbcred for a module that does exactly that.

CHAPTER 5. PERSPECTIVE BROKER 149

Service

The Service object’s job is to provide Perspective instances, by implementing .getPerspectiveFor
Identity(). This function takes a Perspective name, and is expected to return a Deferred which will (eventu-
ally) be called back with an instance of Perspective (or a subclass).

The default implementation (in twisted.spread.pb.Service) retrieves static pre-generated
Perspectives from a dict (indexed by perspective name), much like DefaultAuthorizer does with Identi-
ties. And like Authorizer, it is very useful to subclass pb.Service to change the way .getPerspective
ForIdentity()works: to create Perspectives out of persistent data or database lookups, to set extra attributes
in the Perspective, etc.

When using the default implementation, you have to create the Perspectives at startup time. Each Service
object has an attribute named .perspectiveClass, which helps it to create the Perspective objects for you.
You do this by running p = svc.createPerspective("perspective name").

You should use .createPerspective() rather than running the constructor of your Perspective-subclass by
hand, because the Perspective object needs a pointer to its parent Service object, and the Service needs to have
a list of all the Perspectives that it contains.

5.4.6 How that example worked

Ok, so that’s what everything is supposed to do. Now you can walk through the previous example and see what
was going on: we created a subclass called MyPerspective, made a DefaultAuthorizer and added it to the
Application, created a Service and told it to make MyPerspectives, used .createPerspective() to
build a few, for each one we made an Identity (with a username and password), and allowed that Identity to
access a single MyPerspective by adding it to the keyring. We added the Identity objects to the Authorizer,
and then glued the authorizer to the pb.BrokerFactory.

How did that last bit of magic glue work? I won’t tell you here, because it isn’t very useful to override it, but you
effectively hang an Authorizer off of a TCP port. The combination of the object and methods exported by the pb.
AuthRoot object works together with the code inside the pb.connect() function to implement both sides of the
challenge-response sequence. When you (as the client) use pb.connect() to get to a given host/port, you end up
talking to a single Authorizer. The username/password you give get matched against the Identities provided
by that authorizer, and then the servicename/perspectivename you give are matched against the ones authorized by the
Identity (in its .keyring attribute). You eventually get back a remote reference to a Perspective provided
by the Service that you named.

Note:
Here is how the magic glue code works:

app.listenTCP(8800, pb.BrokerFactory(pb.AuthRoot(auth)))

pb.AuthRoot() provides objects that are subclassed from pb.Root, so as we saw in the first
example, they can be served up by pb.BrokerFactory(). AuthRoot happens to use the .root
Object hook described earlier to serve up an AuthServ object, which wraps the Authorizer and
offers a method called .remote username, which is called by the client to declare which Identity
it claims to be. That method starts the challenge-response sequence.

CHAPTER 5. PERSPECTIVE BROKER 150

5.4.7 Code Walkthrough: pb.connect()

So, now that you’ve seen the complete sequence, it’s time for a code walkthrough. This will give you a chance to see
the places where you might write subclasses to implement different behaviors. We will look at what happens when
pb6client1.py meets pb6server.py. We tune in just as the client has run the pb.connect() call.

The client-side code can be summarized by the following sequence of function calls, all implemented in
twisted/spread/pb.py . pb.connect() calls getObjectAt() directly, after that each step is executed as a call-
back when the previous step completes.

getObjectAt(host,port,timeout)
logIn(): authServRef.callRemote(’username’, username)
_cbLogInRespond(): challenger.callRemote(’respond’, f[challenge,password])
_cbLogInResponded(): identity.callRemote(’attach’, servicename,

perspectivename, client)
usercallback(perspective)

The client does getObjectAt() to connect to the given host and port, and retrieve the object named root.
On the server side, the BrokerFactory accepts the connection, asks the pb.AuthRoot object for its .root
Object(), getting an AuthServ object (containing both the authorizer and the Broker protocol object). It gives
a remote reference to that AuthServ out to the client.

Now the client invokes the ’.remote username’ method on that AuthServ. The AuthServ asks the
Authorizer to .getIdentityRequest(): this retrieves (or creates) the Identity. When that finishes,
it asks the Identity to create a random challenge (usually just a random string). The client is given back both the
challenge and a reference to a new AuthChallenger object which will only accept a response that matches that
exact challenge.

The client does its part of the MD5 challenge-response protocol and sends the response to the Auth
Challenger’s .remote response() method. The AuthChallenger verifies the response: if it is valid
then it gives back a reference to an IdentityWrapper, which contains an internal reference to the Identity that
we now know matches the user at the other end of the connection.

The client then invokes the .remote attach method on that IdentityWrapper, passing in a service-
Name, perspectiveName, and remoteRef. The wrapper asks the Identity to get a perspective using identity.
requestPerspectiveForKey, which does the “is this user allowed to get this service/perspective” check by
looking at the tuples on its .keyring, and if that is allowed then it gets the Service (by giving serviceName to
the authorizer), then asks the Service to provide the perspective (with svc.getPerspectiveForIdentity).
The default Service will ignore the identity object and just look for Perspectives by perspectiveName. The
Service looks up or creates the Perspective and returns it. The .remote attach method runs the Per-
spective’s .attached method (although there are some intermediate steps, in IdentityWrapper. attached,
to make sure .detached will eventually be run, and the Perspective’s .brokerAttached method is executed
to give it a chance to return some other Perspective instead). Finally a remote reference to the Perspective is
returned to the client.

The client gives the Perspective reference to the callback that was attached to the Deferred that pb.
connect() returned, which brings us back up to the code visible in pb6client1.py.

5.4.8 Viewable

Once you have Perspective objects to represent users, the Viewable class can come into play. This class behaves
a lot like Referenceable: it turns into a RemoteReference when sent over the wire, and certain methods can

CHAPTER 5. PERSPECTIVE BROKER 151

be invoked by the holder of that reference. However, the methods that can be called have names that start with view
instead of remote , and those methods are always called with an extra perspective argument:

class Foo(pb.Viewable):
def view_doFoo(self, perspective, arg1, arg2):

pass

This is useful if you want to let multiple clients share a reference to the same object. The view methods can
use the “perspective” argument to figure out which client is calling them. This gives them a way to do additional
permission checks, do per-user accounting, etc.

5.4.9 A Larger Example

Now it’s time to look more closely at the Go server described before.
To simplify the example, we will build a server that handles just a single game. There are a variety of players who

can participate in the game, named Alice, Bob, etc (the usual suspects). Two of them log in, choose sides, and begin
to make moves.

We assume that the rules of the game are encapsulated into a GoGame object, so we can focus on the code that
handles the remote players.

XXX: finish this section
That’s the end of the tour. If you have any questions, the folks at the welcome office will be more than happy to

help. Don’t forget to stop at the gift store on your way out, and have a really nice day. Buh-bye now! Kevin Turner� http://twistedmatrix.com/users/acapnotic/ �

5.5 Managing Clients of Perspectives

5.5.1 Overview

As we’ve watched several applications build on top of twisted.cred and Perspective Broker (page 106), we’ve
seen several models of interaction between Perspectives and the clients which connect to them. In the future,
these patterns may be codified by support classes in the framework, but for now we shall just document them here.
They are:

Clientless Perspective (page 152) in which the Perspective remains oblivious of the fact that clients attach to it.

Single Client (page 152) in which no more than one client is attached to a Perspective. There are two sub-categories,
based on how this limit is enforced:

� excess connections from clients are refused (page 152) (seen in CVSToys15).
� new connections replace (page 156) the old (seen in twisted.words).

Multiple Client (page 157) in which the Perspective keeps a list of clients instead of a single one. The clients all share
this Perspective, the actions of any may effect the perspective for all. (Seen in twisted.manhole.)

Anonymous Clients (page 158) where any number of clients may connect to the service using a particular perspective
name, but clients may not effect one another and any changes to the perspective do not persist.

explain or point to how clients get attached to perspectives (pb.connect, guard(?)).

15http://twistedmatrix.com/users/acapnotic/wares/code/CVSToys/

CHAPTER 5. PERSPECTIVE BROKER 152

5.5.2 Clientless Perspective

from twisted.cred import perspective

class ClientlessPerspective(perspective.Perspective):
"""I have no notion of ’client’ whatsoever.

I may still have methods which carry out actions and/or return
objects (perspective_ methods and Referenceable objects, in the
case of PB), but I take no notice when clients attach or detach
from me. Nor do I push data to clients; the only data they
receive from me is the return values of any methods they choose to
call.
"""
pass

Source listing — clientless.py

Needless to say, the ClientlessPerspective is not ideal for all applications. A common model for network
applications is to have the client functioning as an observer of messages distributed by the server (i.e. chat services,
build failure notification, etc.). For this purpose, the server needs maintain a list of observers on reachable clients. The
Perspective class provides facilities for this, offering attached() and detached() methods which are called with
references to clients connecting or disconnecting from the service.

5.5.3 Single Client

from twisted.cred import error, perspective

class PerspectiveInUse(error.Unauthorized):
"""Raised when a client requests a perspective already connected to another.
"""
XXX: Is there any information this exception should carry, i.e.
the Perspective in question.
the client it’s currently attached to.
the Identity which attached it.

class SingleClientPerspective(perspective.Perspective):
"""One client may attach to me at a time.

If another client tries to attach while a previous one is still connected,
it will encounter a PerspectiveInUse exception.

@ivar client: The client attached to me, if any. (Passed by the
client as the I{client} argument to L{pb.connect}.

@type client: L{RemoteReference}

CHAPTER 5. PERSPECTIVE BROKER 153

"""

client = None

def attached(self, ref, identity):
if self.client is not None:

raise PerspectiveInUse
self.client = ref

Perspective.attached methods must return a Perspective to tell the
caller what they actually ended up being attached to.
return self

def detached(self, ref, identity):
assert ref is self.client, "Detaching something that isn’t attached."
del self.client

def sendMessage(self, message):
"""Send a message to my client.

(This isn’t a defined Perspective method, just an example of something
you would define in your sub-class to use to talk to your client.)
"""
Using ’assert’ in this case is probably not a good idea for real
code. Define an exception, or choose to let it pass without comment,
as your needs see fit.
assert self.client is not None, "No client to send a message to!"
Nor is the ’message’ method defined by twisted.cred -- your client
can have any interface you desire, any type of object may be passed
to ’attached’.
self.client.message(message)

def __getstate__(self):
state = styles.Versioned.__getstate__(self)
References to clients generally aren’t persistable.
try:

del state[’client’]
except KeyError:

pass
return state

Source listing — single.py

Here’s a more complex example, using the more specialized brokerAttached method of Perspective Broker.

from twisted.cred import error

CHAPTER 5. PERSPECTIVE BROKER 154

from twisted.spread import pb

class PerspectiveInUse(error.Unauthorized):
"""Raised when a client requests a perspective already connected to another.
"""
XXX: Is there any information this exception should carry, i.e.
the Perspective in question.
the client it’s currently attached to.
the Identity which attached it.

class SingleClientPerspective_PB(pb.Perspective):
"""One client may attach to me at a time.

With verbose logging and some detection for lost connections.
"""

client = None

This example is from cvstoys.actions.pb.Notifiee.

def brokerAttached(self, ref, identity, broker):
log.msg("%(identityName)s<auth%(authID)X>@"

"%(peer)s<broker%(brokerID)X> "
"requests attaching client %(client)s to "
"%(perspectiveName)s@%(serviceName)s" %
{’identityName’: identity.name,
’authID’: id(identity.authorizer),
’peer’: broker.transport.getPeer(),
’brokerID’: id(broker),
’client’: ref,
’perspectiveName’: self.getPerspectiveName(),
’serviceName’: self.service.getServiceName(),
})

if self.client:
oldclient, oldid, oldbroker = self.client
if oldbroker:

brokerstr = "<broker%X>" % (id(oldbroker),)
else:

brokerstr = "<no broker>"
log.msg(

"%(pn)s@%(sn)s already has client %(client)s "
"from %(id)s@%(broker)s" %
{’pn’: self.getPerspectiveName(),
’sn’: self.service.getServiceName(),

CHAPTER 5. PERSPECTIVE BROKER 155

’id’: oldid.name,
’client’: oldclient,
’broker’: brokerstr})

Here’s the part that checks is the currently connected client
has a stale connection. It *shouldn’t* happen, but if it did,
it would suck to not be able to sign back on because the system
wouldn’t believe you were logged off.
if (not oldbroker) or (oldbroker.connected and oldbroker.transport):

if oldbroker:
brokerstr = "%s%s" % (oldbroker.transport.getPeer(),

brokerstr)
log.msg("%s@%s refusing new client %s from broker %s." %

(self.getPerspectiveName(),
self.service.getServiceName(),
ref, broker))

raise PerspectiveInUse("This perspective %r already has a "
"client. (Connected by %r from %s.)"
% (self, oldid.name, brokerstr))

elif oldbroker:
log.msg("BUG: Broker %s disconnected but client %s never"

"detached.\n(I’m dropping the old client and "
"allowing a new one to attach.)" %
(oldbroker, self.client,))

self.brokerDetached(self, self.client, identity, oldbroker)
proceed with normal attach

#endif self.client
self.client = (ref, identity, broker)
return self

def detached(self, ref, identity):
del self.client

def sendMessage(self, message):
"""Send a message to my client.

(This isn’t a defined Perspective method, just an example of something
you would define in your sub-class to use to talk to your client.)
"""
Using ’assert’ in this case is probably not a good idea for real
code. Define an exception, or choose to let it pass without comment,
as your needs see fit.
assert self.client is not None, "No client to send a message to!"
This invokes remote_message(message) on the client object.
self.client.callRemote("message", message)

CHAPTER 5. PERSPECTIVE BROKER 156

def __getstate__(self):
state = styles.Versioned.__getstate__(self)
try:

del state[’client’]
except KeyError:

pass
return state

Source listing — single-pb.py

Here’s an example which attempts to enforce the single-client limit in a different manner:

from twisted.spread import pb

class SingleClientWithAKickPerspective(pb.Perspective):
"""One client may attach to me at a time.

If a new client requests to be attached to me, any currently
connected perspective will be disconnected.
"""

This example is from twisted.words.service.Participant.

client = None

def __getstate__(self):
state = styles.Versioned.__getstate__(self)
try:

del state[’client’]
except KeyError:

pass
return state

def attached(self, client, identity):
if self.client is not None:

self.detached(client, identity)
self.client = client
return self

def detached(self, client, identity):
self.client = None

For the case where ’detached’ was called by ’attached’ wanting to
kick someone off, is this all we need to do? I’m afraid not --
no-one ever told the client that it had been detached! So the
client, which will still have a reference to this perspective until

CHAPTER 5. PERSPECTIVE BROKER 157

its broker dies, will continue to execute methods on it, will
continue to get results returned by those methods. It just won’t get
events sent to self.client. Meanwhile, the newly attached client
will probably be confused, because its Perspective is doing things
the new client did not ask it to do and it thinks it is the only
thing connected.

Source listing — single-kick.py

What do we learn?

� twisted.words, the only system that ships with Twisted which uses Perspectives in Perspective Broker, is a
lousy example. ;)

� detached is not sufficient to kick a client off.

In fact, it turns out to be hard to kick a client off a Perspective, because there’s no way you can force them to lose
the reference they hold. The best you can do is define a “goodbye” method on the client interface and hope they honor
and implement it correctly. If the client is talking to you over a transport (as is the case with Perspective Broker),
you can kick them off somewhat forcibly by closing the transport, but this is bad practice for several reasons. First, it
requires knowing how to access and shut down the transport, which breaks some abstractions. Second, it’s a damned
inconsiderate thing to do if that transport may have been also carrying traffic for other services.

I can think of several lines along which you could develop from here:

� Add a way to mark references as invalid to Perspective Broker. Then when the client tried to call a method on
the perspective, it would get an exception saying it wasn’t allowed to talk to that object any more. Obviously,
this only works for Perspective Broker, and not for other systems which might access your Service.

� Forget about the whole idea of kicking clients off. Anyone who has gained a reference to the Perspective through
the Authorizer has a right to keep it. If another client wants to attach before the first one is done, you’ll just have
to accommodate them both. Which leads us to...

5.5.4 Multiple Client

from twisted.spread import pb

class MultipleClientPerspective(pb.Perspective):
"""Many clients may use this Perspective at once."""

This example is from twisted.manhole.service.Perspective.

def __init__(self, perspectiveName, identityName="Nobody"):
pb.Perspective.__init__(self, perspectiveName, identityName)
self.clients = {}

def attached(self, client, identity):
The clients dictionary is really only used as a set and not as a

CHAPTER 5. PERSPECTIVE BROKER 158

mapping, but we go ahead and throw the Identity into the value slot
because hey, it’s there.
self.clients[client] = identity
return self

def detached(self, client, identity):
try:

del self.clients[client]
except KeyError:

This is probably something as benign as the client being removed
by a DeadReferenceError in sendMessage and again when the broker
formally closes down. No big deal.
pass

def sendMessage(self, message):
"""Pass a message to my clients’ console.
"""
for client in self.clients.keys():

try:
client.callRemote(’message’, message)

except pb.DeadReferenceError:
Stale broker. This is the error you get if in the process
of doing the callRemote, the broker finds out the transport
just died, or something along those lines. So remove that
client from our list.
self.detached(client, None)

def __getstate__(self):
state = styles.Versioned.__getstate__(self)
state[’clients’] = {}
return state

Source listing — multiple.py

5.5.5 Anonymous Clients

Last item on the list: Anonymous perspectives. One way to do it would be to use a ClientlessPerspective or
MultipleClientPerspective and promise to not have any methods that stored state on or otherwise modified
the perspective instance so no client can interfere with any other. Another way to do it, without that restriction, would
be to use disposable Perspectives:

from twisted.cred import perspective

class AnonymousPerspective(perspective.Perspective):
"""Define this as a perspective with whatever capabilities you feel safe

CHAPTER 5. PERSPECTIVE BROKER 159

to give to anonymous users.
"""

class UnattachablePerspective(perspective.Perspective):
"""I am a special class of Perspective that can never be attached to.

I can be stored in a Service’s collection of perspectives and
placed on an Identity’s keyring, but the client will never obtain
a reference to me. Instead, they’ll get back a single-use
perspective, of the class named by L{disposablePerspectiveClass}.
"""

The code in this example is ALL NEW (and thus not been field-tested or
mother-approved), but might be used in CVSToys or BuildBot, where we’re
publishing public read-only messages and aren’t interested in maintaining
accounts for the people who sign on to read them.

disposablePerspectiveClass = AnonymousPerspective
_counter = 0

def attached(self, client, identity):
name = "%s#%d" % (self.name, self._counter)
self._counter = self._counter + 1
p = self.disposablePerspectiveClass(name)
p.setService(self.service)
You might add p to the Service’s cache of perspectives at this point,
so s.getPerspectiveNamed(p.getPerspectiveName()) would work. Just as
long as you remember to remove it from the cache when it’s through,
so you don’t leak memory.
return p.attached(client, identity)

def detached(self, client, identity):
assert 0, "How can this be? Nothing should have ever attached to me."

Source listing — unattachable.py

If you wanted to have all access to a Service be anonymous, you could make a service like this:

class AnonymousService(service.Service):
class perspectiveClass(UnattachablePerspective):

disposablePerspectiveClass = MyAnonymousPerspective
XXX: does this lazy subclassing work, or do you end up with a class
that isn’t persistable because it’s not module-level or something?

But to make only certain log-ins anonymous:

theService = Service(serviceName)

CHAPTER 5. PERSPECTIVE BROKER 160

anonymousPerspective = UnattachablePerspective("anonymous")
anonymousPerspective.disposablePerspectiveClass = MyAnonymousPerspective
theService.addPerspective(anonymousPerspective)
Set anonymous’s password to the empty string:
anonymousPerspective.makeIdentity(’’)

5.5.6 Feedback

That’s all for today, thanks for playing. We’d like to hear about how you’re using this code! Questions, comments,
reservations? Please send them to twisted-python@twistedmatrix.com16.

16mailto:twisted-python@twistedmatrix.com

Chapter 6

Web Applications

6.1 Configuring and Using the Twisted.Web Server

6.1.1 Twisted Web Development

Twisted Web serves python objects that implement the interface IResource.

Main Concepts
� Site Objects (this page) are responsible for creating HTTPChannel instances to parse the HTTP request, and

begin the object lookup process. They contain the root Resource, the resource which represents the URL / on
the site.

� Resource (page 162) objects represent a single URL segment. The IResource interface describes the methods
a Resource object must implement in order to participate in the object publishing process.

� Resource trees (page 162) are arrangements of Resource objects into a Resource tree. Starting at the root
Resource object, the tree of Resource objects defines the URLs which will be valid.

� .rpy scripts (page 163) are python scripts which the twisted.web static file server will execute, much like a CGI.
However, unlike CGI they must create a Resource object which will be rendered when the URL is visited.

� Resource rendering (page 164) occurs when Twisted Web locates a leaf Resource object. A Resource can either
return an html string or write to the request object.

� Session (page 164) objects allow you to store information across multiple requests. Each individual browser
using the system has a unique Session instance.

Site Objects

Site objects serve as the glue between a port to listen for HTTP requests on, and a root Resource object.
When using mktap web --path /foo/bar/baz, a Site object is created with a root Resource that serves

files out of the given path.
You can also create a Site instance by hand, passing it a Resource object which will serve as the root of the

site:

161

CHAPTER 6. WEB APPLICATIONS 162

from twisted.web import server, resource
from twisted.internet import reactor

class Simple(resource.Resource):
isLeaf = True
def render(self, request):

return "<html>Hello, world!</html>"

site = server.Site(Simple())
reactor.listenTCP(8080, site)
reactor.run()

Resource objects

Resource objects represent a single URL segment of a site. During URL parsing, getChild is called on the
current Resource to produce the next Resource object.

When the leaf Resource is reached, either because there were no more URL segments or a Resource had isLeaf set
to True, the leaf Resource is rendered by calling render(request).

During the Resource location process, the URL segments which have already been processed and those which
have not yet been processed are available in request.prepath and request.postpath.

A Resource can know where it is in the URL tree by looking at request.prepath, a list of URL segment
strings.

A Resource can know which path segments will be processed after it by looking at request.postpath.
If the URL ends in a slash, for example http://example.com/foo/bar/, the final URL segment will be

an empty string. Resources can thus know if they were requested with or without a final slash.
Here is a simple Resource object:

from twisted.web.resource import Resource

class Hello(Resource):
def getChild(self, name, request):

if name == ’’:
return self

return Resource.getChild(
self, name, request)

def render(self, request):
return """<html>

Hello, world! I am located at %r.
</html>""" % (request.prepath)

resource = Hello()

Resource Trees

Resources can be arranged in trees using putChild. putChild puts a Resource instance into another Resource
instance, making it available at the given path segment name:

CHAPTER 6. WEB APPLICATIONS 163

root = Hello()
root.putChild(’fred’, Hello())
root.putChild(’bob’, Hello())

If this root resource is served as the root of a Site instance, the following URLs will all be valid:

� http://example.com/

� http://example.com/fred

� http://example.com/bob

� http://example.com/fred/

� http://example.com/bob/

.rpy scripts

Files with the extension .rpy are python scripts which, when placed in a directory served by Twisted Web, will be
executed when visited through the web.

An .rpy script must define a variable, resource, which is the Resource object that will render the request.
.rpy files are very convenient for rapid development and prototyping. Since they are executed on every web

request, defining a Resource subclass in an .rpywill make viewing the results of changes to your class visible simply
by refreshing the page:

class MyResource(resource.Resource):
def render(self, request):

return "<html>Hello, world!</html>"

resource = MyResource()

However, it is often a better idea to define Resource subclasses in Python modules. In order for changes in modules
to be visible, you must either restart the Python process, or reload the module:

import myresource

Comment out this line when finished debugging
reload(myresource)

resource = myresource.MyResource()

Creating a Twisted Web server which serves a directory is easy:

% mktap web --path /Users/dsp/Sites
% twistd -nf web.tap

CHAPTER 6. WEB APPLICATIONS 164

Resource rendering

Resource rendering occurs when Twisted Web locates a leaf Resource object to handle a web request. A Resource
object may do various things to produce output which will be sent back to the browser:

� Return a string

� Call request.write("stuff") as many times as desired, then call request.finish() and return
server.NOT DONE YET (This is deceptive, since you are in fact done with the request, but is the correct way
to do this)

� Request a Deferred, return server.NOT DONE YET, and call request.write("stuff") and
request.finish() later, in a callback on the Deferred.

Session

HTTP is a stateless protocol; every request-response is treated as an individual unit, distinguishable from any other
request only by the URL requested. With the advent of Cookies in the mid nineties, dynamic web servers gained the
ability to distinguish between requests coming from different browser sessions by sending a Cookie to a browser. The
browser then sends this cookie whenever it makes a request to a web server, allowing the server to track which requests
come from which browser session.

Twisted Web provides an abstraction of this browser-tracking behavior called the Session object. Calling
request.getSession() checks to see if a session cookie has been set; if not, it creates a unique session id,
creates a Session object, stores it in the Site, and returns it. If a session object already exists, the same session object
is returned. In this way, you can store data specific to the session in the session object.

6.1.2 Advanced Configuration

Non-trivial configurations of Twisted Web are achieved with Python configuration files. This is a Python snippet
which builds up a variable called application. Usually, the listenTCP method will be used to make the application
listen on a TCP port (80, in case direct web serving is desired), with the listener being a twisted.web.server.
Site.

The Site will wrap a Resource object – the root.

from twisted.internet import app
from twisted.web import static, server

root = static.File("/var/www/htdocs")
application = app.Application(’web’)
application.listenTCP(80, server.Site(root))

Most advanced configurations will be in the form of tweaking the root resource object.

Adding Children

Usually, the root’s children will be based on the filesystem’s contents. It is possible to override the filesystem by
explicit putChild methods.

Here are two examples. The first one adds a /doc child to serve the documentation of the installed packages,
while the second one adds a cgi-bin directory for CGI scripts.

CHAPTER 6. WEB APPLICATIONS 165

from twisted.internet import app
from twisted.web import static, server

root = static.File("/var/www/htdocs")
root.putChild("doc", static.File("/usr/share/doc"))
application = app.Application(’web’)
application.listenTCP(80, server.Site(root))

from twisted.internet import app
from twisted.web import static, server, twcgi

root = static.File("/var/www/htdocs")
root.putChild("cgi-bin", twcgi.CGIDirectory("/var/www/cgi-bin"))
application = app.Application(’web’)
application.listenTCP(80, server.Site(root))

Modifying File Resources

File resources, be they root object or children thereof, have two important attributes that often need to be modified:
indices and processors. indices determines which files are treated as “index files” – served up when a
directory is rendered. processors determine how certain file extensions are treated.

Here is an example for both, creating a site where all .rpy extensions are Resource Scripts, and which renders
directories by searching for a index.rpy file.

from twisted.internet import app
from twisted.web import static, server, script

root = static.File("/var/www/htdocs")
root.indices=[’index.rpy’]
root.processors = {’.rpy’: script.ResourceScript}
application = app.Application(’web’)
application.listenTCP(80, server.Site(root))

File objects also have a method called ignoreExt. This method can be used to give extension-less URLs to
users, so that implementation is hidden. Here is an example:

from twisted.internet import app
from twisted.web import static, server, script

root = static.File("/var/www/htdocs")
root.ignoreExt(".rpy")
root.processors = {’.rpy’: script.ResourceScript}
application = app.Application(’web’)
application.listenTCP(80, server.Site(root))

Now, a URL such as /foo might be served from a Resource Script called foo.rpy, if no file by the name of
foo exists.

CHAPTER 6. WEB APPLICATIONS 166

Virtual Hosts

Virtual hosting is done via a special resource, that should be used as the root resource – NameVirtualHost. Name
VirtualHost has an attribute named default, which holds the default website. If a different root for some other
name is desired, the addHost method should be called.

from twisted.internet import app
from twisted.web import static, server, vhost

root = vhost.NameVirtualHost()

Add a default -- htdocs
root.default=static.File("/var/www/htdocs")

Add a simple virtual host -- foo.com
root.addHost("foo.com", static.File("/var/www/foo"))

Add a simple virtual host -- bar.com
root.addHost("bar.com", static.File("/var/www/bar"))

The "baz" people want to use Resource Scripts in their web site
baz = static.File("/var/www/baz")
baz.processors = {’.rpy’: ResourceScript}
baz.ignoreExt(’.rpy’)
root.addHost(’baz’, baz)

application = app.Application(’web’)
application.listenTCP(80, server.Site(root))

Advanced Techniques

Since the configuration is a Python snippet, it is possible to use the full power of Python. Here are some simple
examples:

No need for configuration of virtual hosts -- just make sure
a directory /var/vhosts/<vhost name> exists:
from twisted.web import vhost, static, server
from twisted.internet import app

root = vhost.NameVirtualHost()
root.default = static.File("/var/www/htdocs")
for dir in os.listdir("/var/vhosts"):

root.addHost(dir, static.File(os.path.join("/var/vhosts", dir)))

application = app.Application(’web’)
application.listenTCP(80, server.Site(root))

CHAPTER 6. WEB APPLICATIONS 167

Determine ports we listen on based on a file with numbers:
from twisted.web import vhost, static, server
from twisted.internet import app

root = static.File("/var/www/htdocs")

site = server.Site(root)
application = app.Application(’web’)

for num in map(int, open("/etc/web/ports").read().split()):
application.listenTCP(num, server.Site(root))

6.1.3 Installing a pre-configured server

In many cases, you’ll end up repeating common usage patterns of twisted.web. In those cases you’ll probably want to
use Twisted’s pre-configured web server setup.

To install the Twisted.Web server, you’ll need to have installed Twisted (page 20).
Pre-configured Twisted servers, like the web server, do not have configuration files. Instead, you instantiate the

server and store it into a ’Pickle’ file, web.tap. This file will then be loaded by the Twisted Daemon.

% mktap web --path /path/to/web/content

If you just want to serve content from your own home directory, the following will do:

% mktap web --path ˜/public_html/

Some other configuration options are available as well:

� --port: Specify the port for the web server to listen on. This defaults to 8080.

� --logfile: Specify the path to the log file.

The full set of options that are available can be seen with:

% mktap web --help

6.1.4 Using Twisted.Web

Stopping and Starting the Server

Once you’ve created your web.tap file and done any configuration, you can start the server:

% twistd -f web.tap

You can stop the server at any time by going back to the directory you started it in and running the command:

% kill ‘cat twistd.pid‘

Serving Flat HTML

Twisted.Web serves flat HTML files just as it does any other flat file.

CHAPTER 6. WEB APPLICATIONS 168

Resource Scripts

A Resource script is a Python file ending with the extension.rpy, which is required to create an instance of a (subclass
of a) twisted.web.resource.Resource.

Resource scripts have 3 special variables:

� file : The name of the .rpy file, including the full path. This variable is automatically defined and present
within the namespace.

� registry: An object of class static.Registry. It can be used to access and set persistent data keyed by
a class.

� resource: The variable which must be defined by the script and set to the resource instance that will be used
to render the page.

A very simple Resource Script might look like:

from twisted.web import resource
class MyGreatResource(resource.Resource):

def render(self, request):
return "<html>foo</html>"

resource = MyGreatResource()

A slightly more complicated resource script, which accesses some persistent data, might look like:

from twisted.web import resource
from SillyWeb import Counter

counter = registry.getComponent(Counter)
if not counter:

registry.setComponent(Counter, Counter())
counter = registry.getComponent(Counter)

class MyResource(resource.Resource):
def render(self, request):

counter.increment()
return "you are visitor %d" % counter.getValue()

resource = MyResource()

This is assuming you have the SillyWeb.Countermodule, implemented something like the following:

class Counter:

def __init__(self):
self.value = 0

def increment(self):

CHAPTER 6. WEB APPLICATIONS 169

self.value += 1

def getValue(self):
return self.value

Woven

The Woven API is an advanced system for giving web UIs to your application with something resembling MVC and
templates. See its documentation (page 179) for more details.

Spreadable Web Servers

One of the most interesting applications of Twisted.Web is the distributed webserver; multiple servers can all answer
requests on the same port, using the twisted.spread package for “spreadable” computing. In two different
directories, run the commands:

% mktap web --user
% mktap web --personal [other options, if you desire]

Both of these create a web.tap; you need to run both at the same time. Once you have, go to
http://localhost:8080/your username.twistd/ – you will see the front page from the server you cre-
ated with the --personal option. What’s happening here is that the request you’ve sent is being relayed from the
central (User) server to your own (Personal) server, over a PB connection. This technique can be highly useful for
small “community” sites; using the code that makes this demo work, you can connect one HTTP port to multiple re-
sources running with different permissions on the same machine, on different local machines, or even over the internet
to a remote site.

Serving PHP/Perl/CGI

Everything related to CGI is located in the twisted.web.twcgi, and it’s here you’ll find the classes that you need
to subclass in order to support the language of your (or somebody elses) taste. You’ll also need to create your own
kind of resource if you are using a non-unix operatingsystem (such as Windows), or if the default resources has wrong
pathnames to the parsers.

The following snippet is a .rpy that serves perl-files. Look at twisted.web.twcgi for more examples regard-
ing twisted.web and CGI.

from twisted.web import static, twcgi

class PerlScript(twcgi.FilteredScript):
filter = ’/usr/bin/perl’ # Points to the perl parser

resource = static.File("/perlsite") # Points to the perl website
resource.processors = {".pl": PerlScript} # Files that end with .pl will be

processed by PerlScript
resource.indexNames = [’index.pl’]

CHAPTER 6. WEB APPLICATIONS 170

Using VHostMonster

It is common to use one server (for example, Apache) on a site with multiple names which then uses reverse proxy (in
Apache, via mod proxy) to different internal web servers, possibly on different machines. However, naive config-
uration causes miscommunication: the internal server firmly believes it is running on “internal-name:port”, and will
generate URLs to that effect, which will be completely wrong when received by the client.

While Apache has the ProxyPassReverse directive, it is really a hack and is nowhere near comprehensive enough.
Instead, the recommended practice in case the internal web server is Twisted.Web is to use VHostMonster.

From the Twisted side, using VHostMonster is easy: just drop a file named (for example) vhost.rpy containing
the following:

from twisted.web import vhost
resource = vhost.VHostMonsterResource()

Of course, an equivalent .trp can also be used. Make sure the web server is configured with the correct processors
for the rpy or trp extensions (the web server mktap web --path generates by default is so configured).

From the Apache side, instead of using the following ProxyPass directive:

<VirtualHost ip-addr>
ProxyPass / http://localhost:8538/
ServerName example.com
</VirtualHost>

Use the following directive:

<VirtualHost ip-addr>
ProxyPass / http://localhost:8538/vhost.rpy/http/example.com:80/
ServerName example.com
</VirtualHost>

Here is an example for Twisted.Web’s reverse proxy:

from twisted.internet import app
from twisted.web import proxy, server, vhost
vhostName = ’example.com’
reverseProxy = proxy.ReverseProxyResource(’internal’, 8538,

’/vhost.rpy/http/’+vhostName+’/’)
root = vhost.NamedVirtualHost()
root.addHost(vhostName, reverseProxy)
site = server.Site(root)
application = app.Application(’web-proxy’)
application.listenTCP(80, site)

6.1.5 Rewriting URLs

Sometimes it is convenient to modify the content of the Request object before passing it on. Because this is
most often used to rewrite either the URL, the similarity to Apache’s mod rewrite has inspired the twisted.
web.rewrite module. Using this module is done via wrapping a resource with a twisted.web.rewrite.
RewriterResource which then has rewrite rules. Rewrite rules are functions which accept a request object, and

CHAPTER 6. WEB APPLICATIONS 171

possible modify it. After all rewrite rules run, the child resolution chain continues as if the wrapped resource, rather
than the RewriterResource, was the child.

Here is an example, using the only rule currently supplied by Twisted itself:

default_root = rewrite.RewriterResource(default, rewrite.tildeToUsers)

This causes the URL /˜foo/bar.html to be treated like /users/foo/bar.html. If done after setting de-
fault’s users child to a distrib.UserDirectory, it gives a configuration similar to the classical configuration
of web server, common since the first NCSA servers.

6.1.6 Knowing When We’re Not Wanted

Sometimes it is useful to know when the other side has broken the connection. Here is an example which does that:

from twisted.web.resource import Resource
from twisted.web import server
from twisted.internet import reactor
from twisted.python.util import println

class ExampleResource(Resource):

def render(self, request):
request.write("hello world")
d = request.notifyFinish()
d.addCallback(lambda _: println("finished normally"))
d.addErrback(println, "error")
reactor.callLater(10, request.finish)
return server.NOT_DONE_YET

resource = ExampleResource()

This will allow us to run statistics on the log-file to see how many users are frustrated after merely 10 seconds.

6.1.7 As-Is Serving

Sometimes, you want to be able to send headers and status directly. While you can do this with a ResourceScript,
an easier way is to use AsIsProcessor. Use it by, for example, addding it as a processor for the .asis extension.
Here is a sample file:

HTTP/1.0 200 OK
Content-Type: text/html

Hello world

CHAPTER 6. WEB APPLICATIONS 172

6.2 Web Application Development

6.2.1 Code layout

The development of a Twisted Web application should be orthogonal to its deployment. This means is that if you are
developing a web application, it should be a resource with children, and internal links. Some of the children might use
Woven (page 179), some might be resources manually using .write, and so on. Regardless, the code should be in a
Python module, or package, outside the web tree.

You will probably want to test your application as you develop it. There are many ways to test, including dropping
an .rpy which looks like:

from mypackage import toplevel
resource = toplevel.Resource(file="foo/bar", color="blue")

into a directory, and then running:

% mktap web --path=/directory
% twistd -f web.tap

You can also write a Python script like:

#!/usr/bin/python2.2

from twisted.web import server
from twisted.internet import reactor
from mypackage import toplevel

reactor.listenTCP(8080,
server.Site(toplevel.Resource(file="foo/bar", color="blue")))

reactor.run()

6.2.2 Web application deployment

Which one of these development strategies you use is not terribly important, since (and this is the important part)
deployment is orthogonal. Later, when you want users to actually use your code, you should worry about what to do
– or rather, don’t. Users may have widely different needs. Some may want to run your code in a different process, so
they’ll use distributed web (twisted.web.distrib). Some may be using the twisted-web Debian package,
and will drop in:

% cat > /etc/local.d/99addmypackage.py
from mypackage import toplevel
default.putChild("mypackage", toplevel.Resource(file="foo/bar", color="blue"))
ˆD

If you want to be friendly to your users, you can supply many examples in your package, like the above .rpy and
the Debian-package drop-in. But the ultimate friendliness is to write a useful resource which does not have deployment
assumptions built in.

CHAPTER 6. WEB APPLICATIONS 173

6.2.3 Understanding resource scripts (.rpy files)

Twisted Web is not PHP – it has better tools for organizing code Python modules and packages, so use them. In
PHP, the only tool for organizing code is a web page, which leads to silly things like PHP pages full of functions
that other pages import, and so on. If you were to write your code this way with Twisted Web, you would do web
development using many .rpy files, all importing some Python module. This is a bad idea – it mashes deployment
with development, and makes sure your users will be tied to the file-system.

We have .rpys because they are useful and necessary. But using them incorrectly leads to horribly unmaintainable
applications. The best way to ensure you are using them correctly is to not use them at all, until you are on your final
deployment stages. You should then find your .rpy files will be less than 10 lines, because you will not have more
than 10 lines to write.

6.3 Light Weight Templating With Resource Templates

6.3.1 Overview

While Twisted supports solution like Woven (page 179) for high-content sophisticated templating needs, sometimes
one needs a less file-heavy system which lets one directly write HTML. While ResourceScripts are available, they
have a high overhead of coding, needing some boring string arithmetic. ResourceTemplates fill the space between
Woven and ResourceScript using Quixote’s PTL (Python Templating Language).

ResourceTemplates need Quixote installed. In Debian1, that means using Python 2.2 and installing the quixote
package (apt-get install quixote). Other operating systems require other ways to install quixote, or it can
be done manually.

6.3.2 Configuring Twisted.Web

The easiest way to get Twisted.Web to support ResourceTemplates is to bind them to some extension using the web
tap’s --processor flag. Here is an example:

% mktap web --path=/var/www \
--processor=.rtl=twisted.web.script.ResourceTemplate

The above command line binds the rtl extension to use the ResourceTemplate processor. Other ways are possible,
but would require more Python coding and are outside the scope of this HOWTO.

6.3.3 Using ResourceTemplate

ResourceTemplates are coded in an extension of Python called the “Python Templating Language”. Complete docu-
mentation of the PTL is available at the quixote web site2. The web server will expect the PTL source file to define a
variable named resource. This should be a twisted.web.server.Resource, whose .render method be
called. Usually, you would want to define render using the keyword template rather than def.

Here is a simple example for a resource template.

1http://www.debian.org
2http://www.mems-exchange.org/software/quixote/doc/PTL.html

CHAPTER 6. WEB APPLICATIONS 174

from twisted.web.resource import Resource
from TwistedQuotes import quoters

quotefile = os.path.join(os.path.split(__file__)[0], "quotes.txt")

quoter = quoters.FortuneQuoter([quotefile])

class QuoteResource(Resource):

template render(self, request):
"""\
<html>
<head><title>Quotes Galore</title></head>

<body><h1>Quotes</h1>"""
quoter.getQuote()
"</body></html>"

resource = QuoteResource()

Resource Template for Quotes — webquote.rtl

6.4 Creating XML-RPC Servers and Clients with Twisted

6.4.1 Introduction

XML-RPC3 is a simple request/reply protocol that runs over HTTP. It is simple, easy to implement and supported by
most programming languages. Twisted’s XML-RPC support uses the xmlrpclib library for parsing - it’s included with
Python 2.2, but can be downloaded for Python 2.1 from Pythonware4.

6.4.2 Creating a XML-RPC server

Making a server is very easy - all you need to do is inherit from twisted.web.xmlrpc.XMLRPC. You then create
methods beginning with xmlrpc . The methods’ arguments determine what arguments it will accept from XML-RPC
clients. The result is what will be returned to the clients.

Methods published via XML-RPC can return all the basic XML-RPC types, such as strings, lists and so on (just re-
turn a regular python integer, etc). They can also return Failure instances to indicate an error has occured, or Binary,
Boolean or DateTime instances (all of these are the same as the respective classes in xmlrpclib. In addition, XML-
RPC published methods can return Deferred instances whose results are one of the above. This allows you to return

3http://www.xmlrpc.com
4http://www.pythonware.com/products/xmlrpc/

CHAPTER 6. WEB APPLICATIONS 175

results that can’t be calculated immediately, such as database queries. See the Deferred documentation (page 45) for
more details.

XMLRPC instances are Resource objects, and they can thus be published using a Site. The following example has
two methods published via XML-RPC, add(a, b) and echo(x). You can run it directly or with twistd -y
script.py

from twisted.web import xmlrpc, server

class Example(xmlrpc.XMLRPC):
"""An example object to be published."""

def xmlrpc_echo(self, x):
"""Return all passed args."""
return x

def xmlrpc_add(self, a, b):
"""Return sum of arguments."""
return a + b

def main():
from twisted.internet.app import Application
app = Application("xmlrpc")
r = Example()
app.listenTCP(7080, server.Site(r))
return app

application = main()

if __name__ == ’__main__’:
application.run(save=0)

After we run this command, we can connect with a client and send commands to the server:

>>> import xmlrpclib
>>> s = xmlrpclib.Server(’http://localhost:7080/’)
>>> s.echo("lala")
’lala’
>>> s.add(1, 2)
3

XML-RPC resources can also be part of a normal Twisted web server, using resource scripts. The following is an
example of such a resource script:

from twisted.web import xmlrpc
from TwistedQuotes import quoters
import os

CHAPTER 6. WEB APPLICATIONS 176

quotefile = os.path.join(os.path.split(__file__)[0], "quotes.txt")
quoter = quoters.FortuneQuoter([quotefile])

class Quoter(xmlrpc.XMLRPC):

def xmlrpc_quote(self):
return quoter.getQuote()

resource = Quoter()

Source listing — xmlquote.rpy

6.4.3 SOAP Support

From the point of view, of a Twisted developer, there is little difference between XML-RPC support and SOAP support.
Here is an example of SOAP usage:

from twisted.web import soap
from TwistedQuotes import quoters
import os

quotefile = os.path.join(os.path.split(__file__)[0], "quotes.txt")
quoter = quoters.FortuneQuoter([quotefile])

class Quoter(soap.SOAPPublisher):
"""Publish one method, ’quote’."""

def soap_quote(self):
return quoter.getQuote()

resource = Quoter()

Source listing — soap.rpy

6.4.4 Creating an XML-RPC Client

XML-RPC clients in Twisted are meant to look as something which will be familiar either to xmlrpclib or to Per-
spective Broker users, taking features from both, as appropriate. There are two major deviations from the xmlrpclib
way which should be noted:

1. No implicit /RPC2. If the services uses this path for the XML-RPC calls, then it will have to be given explicitly.

2. No magic getattr : calls must be made by an explicit callMethod.

CHAPTER 6. WEB APPLICATIONS 177

The interface Twisted presents to XML-RPC client is that of a proxy object: twisted.web.xmlrpc.Proxy.
The constructor for the object receives a URL: it must be an HTTP or HTTPS URL. When an XML-RPC service is
described, the URL to that service will be given there.

Having a proxy object, one can just call the callMethod method, which accepts a method name and a variable
argument list (but no named arguments, as these are not supported by XML-RPC). It returns a deferred, which will
be called back with the result. If there is any error, at any level, the errback will be called. The exception will be the
relevant Twisted error in the case of a problem with the underlying connection (for example, a timeout), IOError
containing the status and message in the case of a non-200 status or a xmlrpclib.Fault in the case of an XML-
RPC level problem.

from twisted.web.xmlrpc import Proxy
from twisted.internet import reactor

def printValue(value):
print repr(value)
reactor.stop()

def printError(error):
print ’error’, error
reactor.stop()

proxy = Proxy(’http://advogato.org/XMLRPC’)
proxy.callRemote(’test.sumprod’, 3, 5).addCallbacks(printValue, printError)
reactor.run()

prints:

[8, 15]

6.4.5 Serving SOAP and XML-RPC simultaneously

twisted.web.xmlrpc.XMLRPC and twisted.web.soap.SOAPPublisher are both Resources. So, to
serve both XML-RPC and SOAP in the one web server, you can use the putChild method of Resources.

The following example uses an empty resource.Resource as the root resource for a Site, and then adds
/RPC2 and /SOAP paths to it.

from twisted.web import soap, xmlrpc, resource, server
from TwistedQuotes import quoters
import os

quotefile = os.path.join(os.path.dirname(__file__), "quotes.txt")
quoter = quoters.FortuneQuoter([quotefile])

class XMLRPCQuoter(xmlrpc.XMLRPC):
def xmlrpc_quote(self):

return quoter.getQuote()

CHAPTER 6. WEB APPLICATIONS 178

class SOAPQuoter(soap.SOAPPublisher):
def soap_quote(self):

return quoter.getQuote()

def main():
from twisted.internet.app import Application
app = Application("xmlrpc")
root = resource.Resource()
root.putChild(’RPC2’, XMLRPCQuoter())
root.putChild(’SOAP’, SOAPQuoter())
app.listenTCP(7080, server.Site(root))
return app

application = main()

if __name__ == ’__main__’:
application.run(save=0)

Source listing — xmlAndSoapQuote.py

Refer to Twisted Web Development (page 161) for more details about Resources.

Chapter 7

Woven

7.1 Woven

Woven is a Web Application Framework for building highly interactive web applications, written in Python. It sep-
arates HTML Templates from page-generation logic written in Python, and uses the Model View Controller (MVC)
pattern to create dynamic HTML on the fly. Woven is higher level framework that depends on the Twisted Web
package of the Twisted Framework.

7.1.1 Twisted Overview

Twisted is a framework written in Python for building network applications. A core design feature of Twisted is its
asynchronous networking nature. Because of the high overhead and locking requirements of threads, Twisted chooses
to instead use the highly efficient network event notification mechanisms provided by the OS in the form of the C
poll() or select() calls. Twisted uses the Reactor pattern, which is an event-loop style of programming which
facilitates asynchronous programming.

Asynchronous programming requires breaking your program into smaller function chunks that trigger an operation
which may potentially take a long time (for example, a network request) and return. In order to continue the flow of
your code when the operation has completed, you must register a “callback function” which will be called with the
resulting data when it is ready. Twisted includes a generalized callback handling mechanism, Deferred, discussed in
the Deferred execution paper1.

However, since writing Woven applications already involves breaking your functions into small, reusable Model-
View-Controller components, Woven is able to handle the asynchronous nature of Twisted for you. By writing Models
which provide data, potentially asynchronously, and Views which render data when it is ready, you are doing all that
is required to act as a good citizen within the Twisted framework.

7.1.2 Twisted Web Object Publishing and Woven

Twisted includes a Web Server that handles HTTP requests and returns dynamic pages. It is useful when used in
conjunction with Apache for serving static files such as Images. Apache can be set up to forward a specific URL via

1http://www.twistedmatrix.com/documents/historic/2003/pycon/deferex/deferex.html

179

CHAPTER 7. WOVEN 180

ProxyPass to the Twisted Web server. Twisted Web uses the concept of Object Publishing, similar to Zope, where
there is a root Python Object below which all other Objects representing URLs are located.

When a request comes in to Twisted Web, Twisted Web splits the URL into segments and begins looking
for Objects below the root by calling getChild tail-recursively. For example, if the URL http://example.
com/foo/bar/baz is requested, Twisted splits this into the list of path segments [’foo’, ’bar’, ’baz’].
It then calls root.getChild(’foo’), calls getChild(’bar’) on the result, calls getChild(’baz’) on
the second result, and finally calls render(request) on the result of the final getChild call.

For more details about Twisted Web, see Overview of Twisted Web (page 13).

7.1.3 Smalltalk Model-View-Controller Overview

Originally developed for Smalltalk, the MVC design pattern is a flexible mechanism for creating both GUI and web
application user interfaces. The primary advantage of the MVC pattern is separation of business logic from presenta-
tion details and provides a loose coupling between an application’s Model (state) and View (presentation). All of this
makes code reuse easier and enables a division of labor between application design and user interface design, albeit at
the expense of a little extra work.

A “Model” is an object that represents or encapsulates an application’s business logic or state. The model contains
both data and business logic code, but does not contain presentation or rendering code.

A “View” is an object that contains presentation or rendering code, but does not contain business logic code.
Finally, a “Controller” is a dispatcher object that mediates flow between the Model and the View. In traditional

Smalltalk MVC, the Controller is responsible for polling the Mouse and Keyboard and converting the user’s actions
(Click a button, for example) into high-level events (Change the Model data from 0 to 1, and redraw a View which
represents this Model to the user).

7.1.4 Woven Model-View-Controller Overview

In Woven, a Model is a python object that holds the data that will eventually be rendered by a view object into a
portion of an HTML page. Woven Models may be any Python object; Woven accomplishes this using “IModel
Adapters”:Components. Since different Python objects may act as “Containers” using different semantics, IModel
adapters are required to allow Woven to address all Container objects uniformly. For example, Dictionaries are indexed
using string keys. Lists are indexed using integer keys. Objects provide references to other objects using dot syntax
(foo.bar), not square bracket syntax (foo[’bar’]). IModel Adapters are provided for all the basic Python
types, Dictionaries, Lists, Integers, Floats, Strings, and Instances, and work behind the scenes to provide Model data
to your Pages.

In Woven, a View is comprised of a Page object and many Widget objects. A Page object loads a template file
(an XHTML file) that contains references to Widget objects (python objects that replace specific portions of the DOM
created from the XHTML file). A single XHTML template references one Page object, but many Widget objects.

Widgets come in two flavors: local and global. Local Widgets are specific to only one template file, because the
logic they perform is very specific, while global Widgets are general enough to replace placeholder content in many
template files. Local Widgets are defined on the Page class, by defining a method with the prefix wvupdate . Global
Widgets are defined as subclasses of the Widget class.

In Woven, Page objects act as the default Controller object, similar to Servlets in Struts. ((please explain further?))
Since the Web is Request-Response and not event-driven like a Smalltalk application, the most basic event to be
handled from the user is “URL Requested”. The root Page object contains logic for locating the correct Page object
to handle the request. Once this object is located, it handles the “url requested” event by rendering itself into HTML.
Thus, the Page object acts as both the main View and Controller for this event.

CHAPTER 7. WOVEN 181

However, unlike Struts, Woven also supports more Smalltalk-like Controller programming. With a Controller, it is
possible to register a Python event handling function which will be called when a specific JavaScript event occurs in
the Browser. These events are relayed to the server out-of-band (without causing the main page to refresh) and can be
handled asynchronously. Thus, it is possible to program Web Applications which act more like traditional Smalltalk
Desktop Applications.

Often in Woven, it is convenient for a single object to have both the View and Controller responsibilities, though
this is not strictly necessary. It is only useful to split out the Controller logic from the View if the request argument
handling is general enough to be reusable across multiple pages.

7.1.5 Overview of Woven Main Concepts
� XHTML Templates (page 182) must be valid XHTML documents. They provide a skeleton html page with

placeholder content. Any element on the page which is destined for dynamic content must include spe-
cial attributes to specify the name of model and view, like this: <tag model="aModel" view="a
View">placeholder text</tag>

� Model (page 183) objects provide data for display in a web page.

� View (page 184) objects are given a DOM node created from the HTML template and model data, and are
responsible for inserting the data into the node using the DOM api.

� Controller (page 184) objects accept input from the request and update the Model objects with the new input.

� Page (page 184) objects tie a model tree to a template, and provide view and controller factories to the template.
This is the entry point of a web page built using Woven.

� Rendering (page 185) occurs when a web browser visits a Page. Woven recurses the template looking for nodes
to handle, connects the correct Model object to a View and a Controller, and invokes them to render the node.

� Further Concepts (page 187) contains links to pages with more in depth information about Woven components.

7.1.6 In Depth Pages about Woven components
� Twisted Web (page 13)

� Model (page 195)

� View (page 201)

� Controller (page 207)

� Page (page 213)

� LivePage (page 211)

� Form (page 217)

� Guard (page 217)

CHAPTER 7. WOVEN 182

7.1.7 Templates

Templates in Woven are XHTML documents, marked up with four special woven attributes:

CHAPTER 7. WOVEN 183

� model= indicates which model object will be associated with this node.

� view= indicates which view object will be associated with this node.

� controller= indicates which controller object will be associated with this node.

� pattern= marks a node so it may be located by the View code, without the view knowing where the pattern=
node is located or what style the pattern node contains.

HTML Template example

<html>
<body>

<h3 model="name" view="Text" />
<div model="stuff" view="List">

</div>

</body>
</html>

7.1.8 Models

Model objects are arranged in a tree. Each Woven page has a model tree with exactly one root. All data required for
display by a Woven page is made available through named sub-models below this root.

Any Python object may be used as a Woven model.
An example of a model tree built using simple python data structures, Dictionaries, Lists, and Strings:

model = {
’name’: ’Welcome to Woven’,
’stuff’: [

’Foo’,
’Bar’,
’Baz’

]
}

Each model in this tree has a submodel path which we can use to refer to it.

� The main dictionary is named /

� The name string is named /name

� The stuff list is named /stuff

� The first element of the stuff list is named /stuff/0

� The second element of the stuff list is named /stuff/1

� The third element of the stuff list is named /stuff/2

CHAPTER 7. WOVEN 184

7.1.9 Views

View objects are constructed each time a view= directive is encountered.
If view="Text" is specified on a Node, an instance of the Text class will be constructed to handle the node.
An example View widget which simply inserts the model data into the DOM as a text node:

class Text(view.View):
def generate(self, request, node, model):

data = str(model.getData())
newTextNode = request.d.createTextNode(data)
node.appendChild(newTextNode)
return node

The node that is returned from the generate method replaces the template node in the final HTML output.

Note:In the above case, the same node that was passed in was returned, after being changed (“mu-
tated”).

The View object should return a DOM node that has been populated with the given model data.

7.1.10 Controllers

Controllers are responsible for accepting input from the user and making appropriate changes to the model.
They are also responsible for ensuring that the data submitted by the user is valid before changing the model.
Very few applications need the flexibility of separate Controller objects. Often, is is more convenient and clear to

place the Controller logic in the View, where the View can make sure it has the latest data before rendering itself.
An example of a Controller which verifies the user’s input before committing it to the Model:

class NewName:
def handle(self, request):

newName = request.args.get("newname", None)
if newName is None:
The user did not submit the form; do not do anything.
return

if newName == "":
self.view.setError("Sorry, you didn’t enter a name.")

else:
self.model.setData(newName)
Tell the model that we are done making changes to it,
and Views that rely upon this model should rerender.
self.model.notify({’request’: request})

7.1.11 Pages

Pages are the entry point into a Woven application. The Page object accepts a request to render a web page from
twisted.web and drives the page rendering process by parsing the template, locating Model objects in the tree, and
invoking Controller and View objects.

CHAPTER 7. WOVEN 185

Page is a subclass of Resource, the twisted.web class representing an individual URL. Resource instances can
be hooked up to the twisted.web HTTP server in several ways. The simplest way to hook up a Resource to a web URL
is to start a static twisted.web server, which will serve files out of the given directory:

% mktap web --path /Users/dsp/Sites
% twistd -nf web.tap

If you visit the URL http://localhost:8080/, you will see the contents of the directory you specified. To
create a URL which will be served by an instance of Page, create a Python script. In this script, instantiate a Page
instance, passing it a Model and a Template, and assign it to a variable named resource:

from twisted.web.woven import page

model = {’name’: ’Welcome to Woven’,
’stuff’: [’Foo’, ’Bar’, ’Baz’]}

template = """<html>
<body>

<h3 model="name" view="Text" />
<div model="stuff" view="List">

<p pattern="listItem" view="Text" />
</div>

</body>
</html>

"""

resource = page.Page(model, template=template)

Name this script test.rpy and place it in the directory served by twisted.web. Then visit the URL
http://localhost:8080/test.rpy with your web browser, and you should see a page with the HTML-
formatted model data.

Page rendering process

When Woven renders a page, it first constructs a DOM (Document Object Model) which represents the template in
memory using Python objects.

Woven then traverses the DOM, depth first, looking for nodes with woven directives (nodes with model=, view=,
or controller= attributes).

When a directive node is encountered, Woven locates/constructs Model, View, and Controller objects to handle
this node.

The Controller is then triggered by calling handle. The controller may take any action required of it to update the
Model data, or may do nothing.

The View is then rendered by calling generate. The View object is passed a DOM node and a reference to the
Model. The view then manipulates the DOM node, placing the Model data in it.

The DOM returned from the View is then traversed, looking for directives to handle.
When the entire DOM has been traversed and mutated, the DOM is converted to HTML and sent to the browser.

CHAPTER 7. WOVEN 186

CHAPTER 7. WOVEN 187

7.1.12 Further Reading

Twisted Web (page 13) is the Object-publishing web server woven uses to glue HTTP requests to Page rendering.
Page (page 213) objects are the IResource implementors in the Woven framework. They represent URL segments

and drive the Woven template rendering process. They also contain convenient methods for specifying Page trees.

CHAPTER 7. WOVEN 188

Model (page 195) objects provide data to Woven pages. Woven includes IModel adapters for the basic Python types
and makes it easy for you to write your own Model classes and IModel adapters for your already-existing classes.

View (page 201) objects insert Model data into the DOM provided by the Template. They use DOM syntax for
HTML generation, and have convenient syntax for locating and copying pattern= nodes abstractly.

Controller (page 207) objects accept input from the request and update the Model data. Controller objects are
optional; often your Page or View instances can contain the controller logic and still make sense. Controllers are for
cases which are general enough to warrant validation and commit logic.

LivePage (page 211) objects allow you to build DHTML behaviors into your Woven pages using pure server-side
Python. It includes code for asynchronously forwarding client-side JavaScript events to the server without refreshing
the page, and sending JavaScript to a page from the server after it has already been loaded.

Form (page 217) is a woven module that makes it easy to create HTML forms from existing Python methods which
take keyword arguments. It also supports basic input validation.

Guard (page 217) is a woven module that allows you to wrap your Page instances with login pages, to prevent
unauthorized users from accessing them.

7.2 PicturePile: a tutorial Woven application

To illustrate the basic design of a Woven app, we’re going to walk through building a simple image gallery. Given a
directory of images, it will display a listing of that directory; when a subdirectory or image is clicked on, it will be
displayed.

To begin, we write an HTML template for the directory index, and save it as directory-listing.html:

<html>
<head>
<title model="title" view="Text">Directory listing</title>

</head>
<body>
<h1 model="title" view="Text"></h1>
<ul model="directory" view="List">

<li pattern="listItem">
<li pattern="emptyList">This directory is empty.

</body>

</html>

The main things that distinguish a Woven template from standard XHTML are the model, view, and pattern
attributes on tags. Predictably, model and view specify which model and view will be chosen to fill the correspond-
ing node. The pattern attribute is used with views that have multiple parts, such as List. This example uses two
patterns List provides; listItem marks the node that will be used as the template for each item in the list, and
emptyList marks the node displayed when the list has no items.

Next, we create a Page that will display the directory listing, filling the template above (after a few imports):

import os
from twisted.internet import app
from twisted.web.woven import page
from twisted.web import server

CHAPTER 7. WOVEN 189

from twisted.web import microdom

class DirectoryListing(page.Page):

templateFile = "directory-listing.html"
templateDirectory = os.path.split(os.path.abspath(__file__))[0]

def initialize(self, *args, **kwargs):
self.directory = kwargs[’directory’]

def wmfactory_title(self, request):
return self.directory

def wmfactory_directory(self, request):
files = os.listdir(self.directory)
for i in xrange(len(files)):

if os.path.isdir(os.path.join(self.directory,files[i])):
files[i] = files[i] + ’/’

return files

def getDynamicChild(self, name, request):
path = os.path.join(self.directory,name)
if os.path.exists(path):

if os.path.isdir(path):
return DirectoryListing(directory=path)

else:
return ImageDisplay(image=path)

Due to the somewhat complex inheritance hierarchy in Woven’s internals, a lot of processing is done in the
init method for Page. Therefore, a separate initialize method is provided so that one can easily ac-

cess keyword args without having to disturb the internal setup; it is called with the same args that Page. init
receives.

The templateFile attribute tells the Page what file to load the template from; in this case, we will store the
templates in the same directory as the Python module. The wmfactory (short for Woven Model Factory) methods
return objects to be used as models; In this case, wmfactory title will return a string, the directory’s name, and
wmfactory directory will return a list of strings, the directory’s content.

Upon rendering, Woven will scan the template’s DOM tree for nodes to fill; when it encounters one, it gets the
model (in this case by calling methods on the Page prefixed with wmfactory), then creates a view for that model;
this page uses standard widgets for its models and so contains no custom view code. The view fills the DOM node
with the appropriate data. Here, the view for title is Text, and so will merely insert the string. The view for
directory is List, and so each element of the list will be formatted within the ’ � ul � ’. Since the view for list
items is Anchor, each item in the list will be formatted as an <a> tag.

So, for a directory “Images” containing “foo.jpeg”, “baz.png”, and a directory “MoreImages”, the rendered page
will look like this:

<html>
<head>

CHAPTER 7. WOVEN 190

<title>/Users/ashort/Pictures</title>
</head>
<body>
<h1>/Users/ashort/Pictures</h1>

foo.jpeg

baz.png

MoreImages/

</body>

</html>

As you can see, the nodes marked with model and view are replaced with the data from their models, as formatted
by their views. In particular, the List view repeated the node marked with the listItem pattern for each item in the
list.

For displaying the actual images, we use this template, which we save as image-display.html:

<html>
<head>
<title model="image" view="Text">Filename</title>

</head>
<body>

</body>
</html>

And here is the definition of ImageDisplay:

from twisted.web import static

class ImageDisplay(page.Page):

templateFile="image-display.html"

def initialize(self, *args, **kwargs):
self.image = kwargs[’image’]

def wmfactory_image(self, request):
return self.image

def wchild_preview(self, request):
return static.File(self.image)

CHAPTER 7. WOVEN 191

Instead of using getDynamicChild, this class uses a wchild method to return the image data when the
preview child is requested. getDynamicChild is only called if there are no wchild methods available to
handle the requested URL.

Finally, we create a webserver set to start with a directory listing, and connect it to a port. We will tell this Site to
serve a DirectoryListing of a directory named “Pictures” in our home directory:

rootDirectory = os.path.expanduser("˜/Pictures")
site = server.Site(DirectoryListing(directory=rootDirectory))
application = app.Application("PicturePile")
application.listenTCP(8088, site)

And then start the server:

if __name__ == ’__main__’:
import sys
from twisted.python import log
log.startLogging(sys.stdout, 0)
application.run()

7.2.1 Custom Views

Now, let’s add thumbnails to our directory listing. We begin by changing the view for the links to “thumbnail”:

<html>
<head>
<title model="title" view="Text">Directory listing</title>

</head>
<body>
<h1 model="title" view="Text"></h1>
<ul model="directory" view="List">

<li pattern="listItem">
<li pattern="emptyList">This directory is empty.

</body>

</html>

Woven doesn’t include a standard “thumbnail” widget, so we’ll have to write the code for this view ourselves.
(Standard widgets are named with initial capital letters; by convention, custom views are named like methods, with
initial lowercase letters.)

The simplest way to do it is with a wvupdate (short for Woven View Update) method on our DirectoryListing
class:

def wvupdate_thumbnail(self, request, node, data):
a = microdom.lmx(node)
a[’href’] = data
if os.path.isdir(os.path.join(self.directory,data)):

a.text(data)
else:

a.img(src=(data+’/preview’),width=’200’,height=’200’).text(data)

CHAPTER 7. WOVEN 192

When the thumbnail view is requested, this method is called with the HTTP request, the DOM node marked
with this view, and the data from the associated model (in this case, the name of the image or directory). With this
approach, we can now modify the DOM as necessary. First, we wrap the node in lmx, a class provided by Twisted’s
DOM implementation that provides convenient syntax for modifying DOM nodes; attributes can be treated as dictio-
nary keys, and the text and add methods provide for adding text to the node and adding children, respectively. If
this item is a directory, a textual link is displayed; else, it produces an IMG tag of fixed size.

7.2.2 Simple Input Handling

Limiting thumbnails to a single size is rather inflexible; our app would be nicer if one could adjust it. Let’s add a list
of thumbnail sizes to the directory listing. Again, we start with the template:

<html>
<head>

<title model="title" view="Text">Directory listing</title>
</head>
<body>

<h1 model="title" view="Text"></h1>
<form action="">

Thumbnail size:
<select name="thumbnailSize" onChange="submit()" view="adjuster">
<option value="400">400x400</option>
<option value="200">200x200</option>
<option value="100">100x100</option>
<option value="50">50x50</option>

</select>
</form>
<ul model="directory" view="List">

<li pattern="listItem">
<li pattern="emptyList">This directory is empty.

</body>

</html>

Source listing — directory-listing3.html

This time, we add a form with a list of thumbnail sizes named thumbnailSize: we want the form to reflect the
selected option, so we place an adjuster view on the select tag that looks for the right option tag and puts
selected=1 on it (the default size being 200):

def wvupdate_adjuster(self, request, widget, data):
size = request.args.get(’thumbnailSize’,(’200’,))[0]
domhelpers.locateNodes(widget.node.childNodes,

’value’, size)[0].setAttribute(’selected’, ’1’)

request.args is a dictionary, mapping argument names to lists of values (since multiple HTTP arguments are
possible). In this case, we only care about the first argument named thumbnailSize. domhelpers.locate

CHAPTER 7. WOVEN 193

Nodes is a helper function which, given a list of DOM nodes, a key, and a value, will search each tree and return all
nodes that have the requested key-value pair.

Next, we modify the thumbnail view to look at the arguments from the HTTP request and use that as the size
for the images:

def wvupdate_thumbnail(self, request, node, data):
size = request.args.get(’thumbnailSize’,(’200’,))[0]
a = microdom.lmx(node)
a[’href’] = data
if os.path.isdir(os.path.join(self.directory,data)):

a.text(data)
else:

a.img(src=(data+’/preview’),width=size,height=size).text(data)

7.2.3 Sessions

A disadvantage to the approach taken in the previous section is that subdirectories do receive the same thumbnail sizing
as their parents; also, reloading the page sets it back to the default size of 200x200. To remedy this, we need a way to
store data that lasts longer than a single page render. Fortunately, twisted.web provides this in the form of a Session
object. Since only one Session exists per user for all applications on the server, the Session object is Componentized,
and each application adds adapters to contain their own state and behaviour, as explained in the Components (page
96) documentation. So, we start with an interface, and a class that implements it, and registration of our class upon
Session:

class IPreferences(components.Interface):
pass

class Preferences(components.Adapter):
__implements__ = IPreferences

components.registerAdapter(Preferences, server.Session, IPreferences)

We’re just going to store data on this class, so no methods are defined.
Next, we change our view methods, wvupdate thumbnail and wvupdate adjuster, to retrieve their size

data from the Preferences object stored on the Session, instead of the HTTP request:

def wvupdate_thumbnail(self, request, node, data):
prefs = request.getSession(IPreferences)
size = getattr(prefs, ’size’,’200’)
a = microdom.lmx(node)
a[’href’] = data
if os.path.isdir(os.path.join(self.directory,data)):

a.text(data)
else:

a.img(src=(data+’/preview’),width=size,height=size).text(data)

def wvupdate_adjuster(self, request, widget, data):

CHAPTER 7. WOVEN 194

prefs = request.getSession(IPreferences)
size = getattr(prefs, ’size’,’200’)
domhelpers.locateNodes(widget.node.childNodes,

’value’, size)[0].setAttribute(’selected’, ’1’)

Controllers

Now we turn to the question of how the data gets into the session in the first place. While it is possible to to place it
there from within the wvupdate methods, since they both have access to the HTTP request, it is desirable at times to
separate out input handling, which is what controllers are for. So, we add a wcfactory (short for Woven Controller
Factory) method to DirectoryListing:

def wcfactory_adjuster(self, request, node, model):
return ImageSizer(model, name=’thumbnailSize’)

ImageSizer is a controller. It checks the input for validity (in this case, since it subclasses Anything, it merely en-
sures the input is non-empty) and calls handleValid if the check succeeds; in this case, we retrieve the Preferences
component from the session, and store the size received from the form upon it:

class ImageSizer(input.Anything):
def handleValid(self, request, data):

prefs = request.getSession(IPreferences)
prefs.size = data

Finally, we must modify the template to use our new controller. Since we are concerned with the input from the
<select> element of the form, we place the controller upon it:

<html>
<head>

<title model="title" view="Text">Directory listing</title>
</head>
<body>

<h1 model="title" view="Text"></h1>
<form action="">

Thumbnail size:
<select name="thumbnailSize" onChange="submit()" view="adjuster"
controller="adjuster">
<option value="400">400x400</option>
<option value="200">200x200</option>
<option value="100">100x100</option>
<option value="50">50x50</option>

</select>
</form>
<ul model="directory" view="List">

<li pattern="listItem">
<li pattern="emptyList">This directory is empty.

</body>

</html>

CHAPTER 7. WOVEN 195

Source listing — directory-listing4.html

Now, the selected size will be remembered across subdirectories and page reloads.

7.3 Model In Depth

Model objects provide data to View objects as a Page is being rendered.

7.3.1 Main Concepts
� Root Models are the data entry point for every woven Page. All Model data for display on a Page should be

made available through this Root Model. Described further in the Page section (page 213).

CHAPTER 7. WOVEN 196

� Submodel Paths (page 196) allow Woven to locate the correct Model data for a node.

� The Model Stack (page 198) is how Woven keeps track of which Model object is currently “in scope”. Instead of
specifying model= attributes in the Template with “absolute submodel paths”, you can specify a model relative
to the top of the “Model stack” with a “relative submodel path”.

� IModel Adapters (page 199) allow you to write wrappers for existing objects. Subclassing a base Model in the
models module will make writing an IModel Adapter easier.

� Model Factories (page 200) allow you to produce Model objects on demand with a Python method.

7.3.2 Submodel Paths

Each Model Woven has access to in the tree has a “submodel path”. Submodel paths start at the Root Model and
specify each segment Woven must follow to locate the Model. Submodel paths are slash-separated strings similar to
filesystem paths. For the basic Python container types, Dictionaries and Lists, a submodel path segment is simply the
key into the container. Given the model:

model = {’name’: "Donovan",
’interests’: ["Computers", "Music"],
’inventory’: {’dresser’: [’socks’,’shirts’],

’studio’: [’Audiowerk8’, ’800mhz PC’, ’iMac’],
}

}

CHAPTER 7. WOVEN 197

The following submodel paths are valid:

� / specifies the Root Model, a Dictionary

� /name specifies the name entry in the Dictionary, a String

� /interests specifies the interests entry in the Dictionary, a List

� /interests/0 specifies the first element of the interests list, a String

� /interests/1 specifies the second element of the interests list, a String

� /inventory/dresser/0 specifies the first element of the dresser list in the inventory dictionary, a
String

CHAPTER 7. WOVEN 198

etc...
When woven encouters a model= directive on a node, it will look up the model and pass it to the View object that

will render the node:

<html>
<body>

<h3 model="/interests/3" view="Text" />
</body>

</html>

7.3.3 The Model Stack and Relative Submodel Paths

While “absolute model paths” are useful for specifying exactly which Model data you want associated with a node,
the more frequent use case is to specify a “relative model path” which is a path relative to the Model currently on top
of the “Model stack”. Relative model paths are easy to distinguish because they do not begin with a slash.

When Woven encounters a node with a model= attribute, it looks up the Model object and places it on top of the
“Model stack”. During the processing of this node and all of the node’s child nodes, this Model object remains on the
top of the stack. Once all child nodes have completed processing, it is popped off of the Model stack.

This means that child nodes can refer to elements of the Model on top of the Model stack with relative submodel
paths. For example, we may wish to render the “interests” list from the above example as two separate HTML
elements. To do so, we first place the “interests” list on top of the Model stack, and then refer to elements of this list:

<html>
I am interested in:
<div model="interests" view="None">
<p>First thing: </p>
<p>Second thing: </p>

</div>
</html>

In this case, the “interests” list was in scope for the duration of the � div � tag, and the individual interest strings
were in scope for the duration of the individual � span � tags.

The List widget uses this Stack concept to operate on DOM nodes abstractly, without knowing or caring what
directives will occur when the child nodes it returns are handled. We can also use the familiar . and .. concepts from
unix shell syntax to refer to Models:

<html>
<div model="interests" view="List">
<h3 pattern="listHeader" model="../name" view="Text" />>
<p pattern="listItem" view="Text" />
<h6 pattern="listFooter" model="." view="Text" />

</div>
<html>

The List widget makes copies of the pattern nodes without knowing or caring which directives have been placed
on them, or how many children are contained within the node. It then simply sets the model= attribute of each of the
nodes to the correct index into the list. More about pattern directives is available in the Views (page 201) section.

CHAPTER 7. WOVEN 199

In the above example, even though the interests list had been placed on the Model stack, we were able to
access the name string without knowing its absolute path by using the relative path ../name, and we were able to
render the interests list with a different View Widget using the relative path ..

The output from generating the above HTML will look like this:

<html>
<div>
<h3>Donovan</h3>
<p>Computers</p>
<p>Music</p>
<h6>[’Computers’, ’Music’]</h6>
</div>

</html>

7.3.4 IModel Adapters

The IModel interface is documented in twisted.web.woven.interfaces.IModel. It describes the inter-
faces Models must implement in order to participate in the Woven Model stack. If you are inheriting from twisted.
web.woven.model.Model, most of these interfaces will be implemented for you.

The interfaces that we will be most interested in implementing are those that are designed to be overridden for
customization, getData and setData.

For example, we may wish to create a wrapper for some data which we will retrieve out of a SQL database. To do
so, we create a subclass of Model:

class DatabaseJunk(model.Model):
def getData(self, request):

someCursor.execute("select * from foo")
return someCursor.fetchall()

def getSubmodel(self, request, name):
row = self.getData(request)[int(name)]
return RowUpdater(row)

class RowUpdater(model.Model):
def __init__(self, id):

self.row = row

def getData(self, request):
return self.row

def setData(self, request, data):
someCursor.execute(
"update foo set bar=%s, baz=%s where id = %s",
(data[0], data[1], self.row[0]))

The result of getData must be an IModel implementor, or may be a Deferred. Thus you may use the IModel
interface to produce data from an adbapi call, a pb call, etc. When the data returned is a Deferred, Woven will pause
rendering of the current node until the data is available.

CHAPTER 7. WOVEN 200

7.3.5 Registering an IModel adapter for a class

Woven makes use of the twisted component system. Components, which are discussed in the Components (page 96)
section, allow classes to declare that they implement a specific Interface for another class. This is useful if you already
have classes in which you store data, and wish to create thin IModel adapter wrappers around them:

class MyData:
def __init__(self, something=""):

self.something = something

class MyDataModel(models.MethodModel):
When the MyDataModel adapter is wrapped around an instance
of MyData, the original MyData instance will be stored in ’orig’
def wmfactory_something(self, request):

return self.orig.something

from twisted.python import components
from twisted.web.woven import interfaces

components.registerAdapter(MyDataModel, MyData, interfaces.IModel)

7.3.6 Model Factories

Using a separate Model class for each individual piece of data in the system makes sense when you are able to
generalize your Model classes enough so they are reusable. However, it is often easier, especially if you need to
perform highly varied SQL calls to produce your data, to use a Model which supports Model factories.

There are two ways to use Model factories. The first is to have a separate Model class which subclasses model.
MethodModel. The second is to simply not pass any Model at all to the Page instance, in which case the Page itself
will act as a MethodModel.

MethodModel classes should provide methods prefixed with wmfactory , which will be called when the direc-
tive model= is present in a template. For example, given the node <div model="foo" />, a method named
wmfactory foo will be called:

class MyModel(model.MethodModel):
def wmfactory_foo(self, request):

return [’foo’, ’bar’, ’baz’]

If you did not pass any Model object when you created your Page instance, the Page class will act as a Method-
Model. Thus, you can place your wmfactory methods directly on your Page subclass:

class MyPage(page.Page):
def wmfactory_foo(self, request):

return [’foo’, ’bar’, ’baz’]

Model factories are a useful way to write some Python code which generates your page model data, for pages
which need to look up or calculate data in some way.

CHAPTER 7. WOVEN 201

7.4 View In Depth

View objects are given a Model and a template DOM node, and use the DOM api to insert the given Model data
into the DOM. Views are where you manipulate the HTML, in the form of DOM, which will be sent to the web
browser.

7.4.1 Main Concepts
� View factories (page 202) provide the glue from a DOM node with a ’view=’ directive to an instance of a

View class.

� generate (page 202) is the method which is called on the View instance to render a node.

� Widgets (page 203) are views that have convenient syntax for rendering a View.

CHAPTER 7. WOVEN 202

� lmx (page 204) is a much more convenient API for constructing DOM nodes programatically than the actual
DOM API.

� wvupdate (page 206) methods provide a convenient way to customize a generic Widget’s rendering process
without writing an inconvenient amount of boilerplate.

� The View stack (page 206) allows your View classes to expose private subviews which are only visible while
your View is in scope on the stack.

7.4.2 View factories

View factories provide the glue between a view= directive on a DOM node and a View instance. When a DOM
node with a view= directive is encountered, Woven looks for a corresponding wvfactory method on your Page
instance. A View factory is required to return an object which implements the interface IView:

class MyView(view.View):
def generate(self, request, node):

return request.d.createTextNode("Hello, world!")

class MyPage(page.Page):
def wvfactory_foo(self, request, node, model):

return MyView(model)

A View factory should almost always construct the View with the Model object it is passed. The exception to
this rule is when the View is designed to render data which is not available in the Model tree, such as data which is
obtained from the request or from a session object:

class MyPage(page.Page):
def wvfactory_currentPageName(self, request, node, model):

return widgets.Text(request.prepath[-1])

Note that if the Model the View is constructed with is not the Model which was passed in to the factory, Woven
will notice this and place the new Model data on the Model stack.

You may set View factories programatically on a generic Page instance after it has been constructed. The first
View factory example could be written:

class MyView(view.View):
def generate(self, request, node):

return request.d.createTextNode("Hello, world!")

resource = page.Page()
resource.setSubviewFactory("foo", MyView)

7.4.3 generate

The generate method is the most important method in the IView interface. It is the entry point from the Woven
framework into your custom Python View code. When your View instance was constructed, it was passed a Model as
the first argument. This is the Model data which generate should insert into the DOM. generate is passed the request
and a template DOM node, and must return a DOM node, which will replace the template in the DOM tree:

CHAPTER 7. WOVEN 203

class MyView(view.View):
def generate(self, request, node):

return request.d.createTextNode("Hello, world!")

Note that the current DOM Document object is available as request.d. You should use this document object as
a text node and element factory, so the details about the underlying DOM implementation remain hidden.

Often, it is incredibly useful to use the incoming template node as a “skin” for your Views. In the simplest form,
this involves simply adding nodes to the incoming template node and returning it from generate:

class MySkinnedView(view.View):
def generate(self, request, node):

modelData = self.getData()
newNode = request.d.createTextNode(str(modelData))
node.appendChild(newNode)
return node

However, Woven also supports the concept of “pattern=” nodes, nodes which are marked in the template with a
given “pattern=” directive so they may be located by the View abstractly. To support this, Woven contains a View
subclass called Widget, which provides a far more convenient API for rendering your Views.

7.4.4 Widgets

Rendering Views is such an important part of developing a Woven application that it needs to be as convenient as
possible. To support reducing the amount of boilerplate required to write a new View, the View subclass Widget was
created. When subclassing Widget, simply override setUp instead of generate. setUp differs from generate in that it is
passed a reference to the Model data, not the Model wrapper, and may simply mutate the template DOM node in place
without having to worry about returning anything:

class MyWidget(widgets.Widget):
def setUp(self, request, node, data):

newNode = request.d.createTextNode(str(data))
node.appendChild(newNode)

Widget also supports a very useful and convenient method called getPattern which allows you to locate nodes in
the template node which have a pattern= attribute on them, regardless of where they are in the template, what style
the node is, or how many children the node has:

class MyPatternWidget(widgets.Widget):
def setUp(self, request, node, data):

if data > 10:
newNode = self.getPattern("large")

else:
newNode = self.getPattern("small")

node.appendChild(newNode)

This widget could be used with the following template to abstractly allow the designer to style elements which are
larger than 10:

CHAPTER 7. WOVEN 204

<div model="listOfIntegers" view="List">
<div pattern="listItem" view="MyPatternWidget">

</div>
</div>

Notice how the Widgets chain themselves to create the final page; the List widget makes copies of the pattern
node which have view="MyPatternWidget" on them; the MyPatternWidget widget makes copies of the
pattern="large" or pattern="small" nodes which have view="Text" directives on them; and the Text
widget inserts the actual model data from the list into the innermost element.

Widgets, along with the DOM api and the getPattern helper method, provide a powerful way for you to write view
logic in Python without knowing or caring what type of HTML nodes are in your Template.

7.4.5 lmx

Generating View structure using the DOM is very useful for separating the Template from the actual logic which
structures the View. However, if you need to do a large amount of HTML generation in Python, it becomes very
cumbersome quickly. lmx is a lightweight wrapper around DOM nodes that allows you to quickly and easily build
large HTML structures from Python:

from twisted.web.microdom import lmx

class LMXWidget(widgets.Widget):
def setUp(self, request, node, data):

l = lmx(node)
for color in data:

l.div(style=
"width: 2in; height: 1in; background-color: %s" % color)

When an lmx instance is wrapped around a DOM node, calling a method on the lmx instance creates a new DOM
node inside a new lmx instance. The new DOM node will have the same tag name as the name of the method that was
called, and an attribute for each keyword argument that was passed to the method. The returned value is the new DOM
node wrapped in a new lmx instance. Text nodes can be added to an lmx instance by calling the special method text.

lmx can enable you to quickly generate a large amount of HTML programatically. For example, to build a calendar
for the current month, create a Widget which uses lmx to add DOM nodes to the incoming template node. Here is a
complete example which when placed in an rpy and visited through the web will render the current month’s calendar:

import time
import calendar
calendar.setfirstweekday(calendar.SUNDAY)

from twisted.web.microdom import lmx
from twisted.web.woven import widgets

class Calendar(widgets.Widget):
def setUp(self, request, node, data):

CHAPTER 7. WOVEN 205

node.tagName = "table"
curTime = time.localtime()
curMonth = calendar.monthcalendar(curTime[0], curTime[1])
today = curTime[2]
month = lmx(node)
headers = month.tr()
for dayName in ["Su", "M", "T", "W", "Th", "F" , "S"]:

headers.td(
_class="dayName", align="middle"

).text(dayName)
for curWeek in curMonth:

week = month.tr(_class="week")
for curDay in curWeek:

if curDay == 0:
week.td(_class="blankDay")

else:
if curDay == today:

className = "today"
else:

className = "day"
week.td(

_class=className, align="right"
).text(str(curDay))

from twisted.web.woven import page

resource = page.Page(template="""<html>
<head>

<style type="text/css">
.week { }
.day { border: 1px solid black; height: 2em; width: 2em; color: blue }
.today { border: 1px solid red; height: 2em; width: 2em; color: red }
.blankDay { height: 2em; width: 2em;}

</style>
</head>
<body>

<div view="calendar" />
</body>

</html>""")

resource.setSubviewFactory("calendar", Calendar)

CHAPTER 7. WOVEN 206

7.4.6 wvupdate

Sometimes, you need to create some view-rendering code for a very specific purpose. Since this code will most likely
not be reusable across pages, it is irritating to have to create a Widget just to house this code. Thus, Woven allows you
to place specially named wvupdate methods on your Page subclass. Think of a wvupdate method as a setUp
method that lives on the Page class. When Woven encounters a view= directive that matches with a wvupdate
method name, it will create a generic Widget instance and call the wvupdate method instead of setUp.

Note that the generic Widget instance is passed in as the third argument to a wvupdate method instead of a
DOM node instance. Often this fact is not important, however, if you wish to access a Widget API such as getPattern,
you must do so using the widget argument rather than self:

class MyPage(page.Page):
def wvupdate_foo(self, request, widget, data):

if data > 10:
newNode = widget.getPattern("large")

else:
newNode = widget.getPattern("small")

newNode.appendChild(request.d.createTextNode(str(data)))
widget.appendChild(newNode)

It is often possible to use wvupdate methods to quickly prototype some View code, and generalize this code
later. By moving the wvupdate code into a Widget subclass, you make this code available to many different Pages.

7.4.7 The View stack

Woven uses a View stack to keep track of which View objects are currently in scope. You can use this fact to provide
View objects which contain a lot of view-manipulation logic, but are still cleanly implemented. When Woven encoun-
ters a node with a view= directive, it locates the View (by looking for a wvfactory method) and places it on the
View stack.

While this node is being rendered, the new View is in scope, and is searched for wvfactory methods before
other Views and the Page object. Thus you can create a View which is made up of other smaller parts:

from twisted.web.woven import view, page

class ShowHide(view.View):
template = """
<div view="hider">

<div pattern="contents" view="contents">
Here are the contents!

</div>
</div>

"""

def wvupdate_hider(self, request, widget, data):
We want the widget to be cleared before rendering
widget.clearNode = 1

CHAPTER 7. WOVEN 207

hidden = int(request.args.get("hide", [0])[0])

if hidden:
opener = request.d.createElement("a")
opener.setAttribute("href", "?hide=0")
opener.appendChild(request.d.createTextNode("Open"))
widget.appendChild(opener)

else:
closer = request.d.createElement("a")
closer.setAttribute("href", "?hide=1")
closer.appendChild(request.d.createTextNode("Close"))
widget.appendChild(closer)
widget.appendChild(widget.getPattern("contents"))

def wvupdate_contents(self, request, widget, data):
widget.clearNode = 1
widget.appendChild(request.d.createTextNode("Some contents here"))

resource = page.Page(template="""<html>
<body>

</body>

</html>""")

resource.setSubviewFactory("showHide", ShowHide)

7.5 Controllers in Depth

CHAPTER 7. WOVEN 208

Controller objects are a way to generalize and reuse input handling logic. In Twisted Web, form input is passed
to a Resource instance in request.args. You can create controller classes to encapsulate generic request.args handling,
and perform validation and Model updating tasks.

7.5.1 Main Concepts
� Controller factories (page 209) provide the glue from a DOM node with a ’controller=’ directive to an instance

of a Controller class.

� handle (page 209) is the method which is called on the Controller instance to handle a node.

� InputHandlers (page 209) are Controllers which have (somewhat) convenient syntax for handling a node.

� Event handlers (page 210), when used with LivePage (page 211), are a brain-exploding way of handling
JavaScript events in your pages with server-side Python code.

CHAPTER 7. WOVEN 209

7.5.2 Controller factories

Controller factories provide the glue between a controller= directive on a DOM node and a Controller instance.
When a DOM node with a controller= directive is encountered, Woven looks for a corresponding wcfactory
method on your Page instance. A Controller factory is required to return an object which implements the interface
IController.

class MyController(controller.Controller):
pass

class MyPage(page.Page):
def wcfactory_foo(self, request, node, model):

return MyController(model)

7.5.3 Handle

Handle is the API your controller must implement to handle a node. It’s return value may be a Deferred if you wish to
pause the rendering of the View until some data is ready, or it may be None

class MyController(controller.Controller):
def handle(self, request, node):

name = request.args.get("name", [None])[0]
print "HOORJ! YOUR NAME IS %s" % name

7.5.4 InputHandlers

InputHandlers are defined in woven.input. They were an early attempt to create a class which made it easy to
create new input validators and input committers. It is usable in its current state, although the API is a bit baroque.
Subclasses of input.InputHandler can override the following methods to decide what to do with data

initialize() initialize this Controller. This is most useful for registering event handlers on the View with addE-
ventHandler (page 210), discussed below.

getInput(self, request) get input from the request and return it. Return None to indicate no data was
available for this InputHandler to handle.

check(self, request, data) Check the input returned from getInput and return:

� None if no data was submitted (data was None), or
� True if the data that was submitted was valid, or
� False if the data that was submitted was not valid.

handleValid(self, request, data) handle the valid submission of some data. By default this calls
self.parent.aggregateValid.

aggregateValid(self, request, inputhandler, data) Some input was validated by a child Con-
troller. This is generally implemented on a controller which is placed on a <form> to gather input from
controllers placed on <input> nodes.

CHAPTER 7. WOVEN 210

handleInvalid(self, request, data) handle the invalid submission of some data. By default this calls
self.parent.aggregateInvalid.

aggregateInvalid(self, request, inputhandler, data) Some input was declared invalid by a
child Controller. This is generally implemented on a controller which is placed on a <form> to gather in-
put from controllers placed on <input> nodes.

commit(self, request, node, data) Enough valid input was gathered to allow us to change the Model.

InputHandlers have been parameterized enough so you may simply use a generic InputHandler rather than sub-
classing and overriding:

class MyPage(page.Page):
def checkName(self, request, name):

if name is None: return None
No fred allowed
if name == ’fred’:

return False
return True

def commitName(self, request, name=""):
ctx = getContext()
ctx.execute("insert into people (name) values %s", name)

def wcfactory_addPerson(self, request, node, model):
return input.InputHandler(

model,
name="name", # The name of the argument in the request to check
check=self.checkName,
commit=self.commitName)

7.5.5 Event handlers

Note:
In order for Event Handlers to work, you must be using LivePage (page 211), and include the web-

ConduitGlue View in your HTML template.

Event handlers give you the powerful ability to respond to in-browser JavaScript event handlers with server-side
Python code. Event handlers are registered on the View instance; in some cases, it may make most sense for your
View instances to implement their own event handlers. However, in order to support good separation of concerns and
code reuse, you may want to consider implementing your event handlers on a Controller instance.

The easiest way to achieve this is to subclass input.Anything (XXX: this should just be controller.Controller)
and override initialize (XXX: this should be setUp):

class MyEventHandler(input.Anything):
def initialize(self):

self.view.addEventHandler("onclick", self.onClick)
self.view.addEventHandler("onmouseover", self.onMouseOver, "’HELLO’")

CHAPTER 7. WOVEN 211

def onClick(self, request, widget):
print self, "CLICKED!!!"

def onMouseOver(self, request, widget, argument):
print self, "MOUSE OVER!!!", argument

Note that the first argument to addEventHandler is the JavaScript event name, and the second argument is the
python function or method which will handle this event. You may also pass any additional arguments you desire.
These arguments must be valid JavaScript, and will be evaluated in the browser context. The results of these JavaScript
expressions will be passed to your Python event handler.

Note that when we passed an extra argument when adding an onmouseover event handler, we passed a string
enclosed in two sets of quotes. This is because the result of evaluating "’HELLO’" as JavaScript in the browser
is the string ’HELLO’, which is then passed to the Python event handler. If we had simply passed "HELLO" to
addEventHandler, Woven would have evaluated "HELLO" in the browser context, resulting in an error because the
variable HELLO is not defined.

Any normal client-side JavaScript object may be accessed, such as document and window. Also, the JavaScript
variable node is defined as the DOM node on which the event handler is operating. This is useful for examining the
current value of an <input> node.

Here are some examples of useful Event handlers:

class Redirect(input.Anything):
def initialize(self):

self.view.addEventHandler(
"onclick",
self.onClick,
"window.location = ’http://www.google.com’")

def onClick(self, request, widget, arg):
print "The window was redirected."

class OnChanger(input.Anything):
def initialize(self):

self.view.addEventHandler(
"onchange",
self.changed,
"node.value")

def changed(self, request, widget, newValue):
print "The input box changed to", newValue

7.6 LivePage

Note:
This is just a quick bootstrap page for now.

CHAPTER 7. WOVEN 212

To use LivePage, subclass or instantiate LivePage instead of Page. Then, in your HTML template, include the
following HTML fragment somewhere towards the bottom of the page:

Then, Event handlers (page 210) can forward client-side JavaScript events to the Server, and you can send
JavaScript to the browser after a page has already loaded. Example:

class Foo(page.LivePage):
template = (’<html><body>’

’Nothing here!’
’</body></html>’)

CHAPTER 7. WOVEN 213

def setUp(self, request):
global currentPage

don’t save this in a global but somewhere your code can get
to it later
currentPage = request.getSession(interfaces.IWovenLivePage)

then later, in response to some server-side event
def fooHappened():

global currentPage

currentPage.sendScript("alert(’hello, world!’)")

7.7 Page In Depth

Page objects are the glue between a web request, a Model object, and a Template.

7.7.1 Main Concepts
� Root Models (this page) are passed to Page objects when they are constructed. If no Model is passed, a Page

will act as its own Root Model.

� Templates (page 214) for Page objects can be specified in various ways.

� Child Pages (page 214) for handling the next URL segment can be constructed using a convenient syntax sup-
ported by Page.

� Factories (page 215) for View and Controller objects are contained in the Page. The View factories and Con-
troller factories will be matched up with view= and controller= directives located in the template during
the rendering process.

7.7.2 Root Models

A Root Model is the base of a Woven Model tree. All Model data that the Page will use for rendering should be made
available through this Model. Any Python object can be used as a Model within Woven, even Dictionaries, Lists,
Strings, Integers, and Floats. This is accomplished through the use of IModel adapters, which normalize Model access
methods.

A Root Model is passed to the Page constructor as the first argument:

model = {’name’: ’Donovan’,
’interests’: [’Computers’, ’Music’, ’Bling Bling’]
}

resource = page.Page(model)

If no Model object is passed as the first argument to the Page constructor, the Page object itself will be treated like
a MethodModel. See Models (page 195) for more information about Model objects.

Using a Page object as a Model factory (by not passing a Root Model) is discussed below in Factories (page 215).

CHAPTER 7. WOVEN 214

7.7.3 Templates

The Template a page will render can be specified in various ways.

� Passing template="<html>Hello</html>"

� Passing templateFile="Template.html"

� Passing both templateFile and templateDirectory="/Users/dsp/Templates"

Every Page object must be able to find a Template in order to render itself. There are three main ways a template
can be specified. The first is simply by passing the template as a keyword argument to the Page constructor:

resource = page.Page(template="<html>Hello world!</html>")

However, it is desireable to store templates as separate HTML files on disk, where they can be edited easily by an
external HTML editor. This can be accomplished by placing the template next to the .rpy script in the twisted.web
directory and passing templateFile to the Page constructor:

resource = page.Page(templateFile="MyTemplate.html")

Finally, you may wish to place templates in a specific location, away from the python code entirely. To do so, pass
both templateFile and templateDirectory to the Page constructor, indicating where you would like the template to be
found:

resource = page.Page(
templateFile="MyTemplate.html",
templateDirectory="/Users/dsp/Templates")

If you are subclassing Page to provide child, model, view, or controller factories (discussed below), you may wish
instead to specify a Page’s template using a class attribute:

class MyPage(page.Page):
templateFile = "MyTemplate.html"

A useful technique for storing your templates in a place where they are conveniently located next to your Python
modules is to define templateDirectory as a class attribute, using Python’s introspection abilities to discover where
your Python module is located:

class MyPage(page.Page):
templateFile = "MyTemplate.html"
templateDirectory = os.path.join(os.path.split(__file__)[0], "templates")

How you manage your templates is up to you.

7.7.4 Child Pages

As discussed in the Twisted Web (page 161) section of the documentation, Resource objects provide access to their
children by providing a getChild method which returns the next Resource object in the URL tree. Woven Page
instances implement IResource and thus follow the same rules as any other Resource instance.

Woven Page instances can be built into Resource Trees in the same manner as regular Resources, using putChild.
However, it is often convenient to construct a Page instance on the fly with a method.

CHAPTER 7. WOVEN 215

Page instances with methods prefixed with wchild will be invoked in getChild if there is a method matching the
requested name. For example, if an instance of this class is used as the root Resource object, several URLs will be
valid:

class MyPage(page.Page):
template = """<html>

Root Page
<p>Fred</p>
<p>Bob</p>

</html>"""

def wchild_fred(self, request):
return page.Page(template="<html>Fred!</html>")

def wchild_bob(self, request):
return page.Page(template="<html>Bob!</html>")

The following URLs would then be valid:

� http://example.com/

� http://example.com/fred

� http://example.com/bob

� http://example.com/fred/

� http://example.com/bob/

There is one special wchild method for when the URL ends in a slash. When twisted.web calls getChild
with an empty string (when the URL ends in a slash), the wchild method that is called is wchild index.

By default, all Page instances will attempt to add a slash to the end of the URL if they are visited through
the web. Thus, visiting http://example.com/fred in the above example will redirect your browser to
http://example.com/fred/. This generally makes writing relative links to other pages easier.

If this is not the behavior you would like, define the class attribute addSlash to be false:

class MyPage(page.Page):
addSlash = False
template = "<html>No slash for you!</html>"

7.7.5 Factories

So far, we have observed the use of the special model=, view=, and controller= attributes (“directives”) in
Woven templates, but have not discussed how these attributes are translated to Python code.

There are three types of Woven factories:

1. View factories (page 216)

2. Controller factories (page 216)

3. Model factories (page 217)

CHAPTER 7. WOVEN 216

View factories

When a view directive is encountered in a Woven template, it is translated into a wvfactory call. For example,
the node <div view="cool" /> will cause the method wvfactory cool to be called on your Page instance.
View factories are methods which have the following signature, and must return an IView implementor:

def wvfactory_cool(self, request, node, model):
return widgets.Text(model)

Widget subclasses are the most common return value from wvfactory methods. Widgets are discussed in the
Views (page 201) section. However, Page is also an implementor of IView, and you may take advantage of this to
insert HTML fragments from other locations into a page which is being rendered:

class MyPage(page.Page):
template = """<html>
<body>

Some stuff goes here.
<div view="header" />
Some more stuff goes here.
<div view="body" />
Even more stuff goes here.

</body>
</html>"""

def wvfactory_header(self, request, node, model):
return page.Page(template="<div>This is the header.</div>")

def wvfactory_body(self, request, node, model):
return page.Page(template="<div>This is the body.</div>")

There is also a convenient special method, wvupdate , which reduces the amount of boilerplate code required
to quickly modify the template. wvupdate methods have a slightly different signature; instead of being passed the
DOM node which contained the view= directive, they are passed an instance of the generic Widget class, and they
are passed the unwrapped Model data rather than the IModel wrapper:

def wvupdate_red(self, request, widget, data):
widget.setAttribute(’style’, ’color: red’)

See the Views (page 201) section for more information on writing your application’s View code.
Note that if an appropriately named View factory is not found on your page class, Woven will look for the name in

the widgets module before giving up and raising an exception. This is why we have been able to create templates
that have nodes like <div view="Text" /> and <div view="List" /> without getting exceptions.

Controller factories

When a controller directive is encountered in a Woven template, it is translated into a wcfactory call. For ex-
ample, the node <input type="text" name="foo" controller="number" /< will cause the method
wcfactory number to be called on your Page instance. Controller factories are methods which have the following
signature, and must return an IController implementor:

CHAPTER 7. WOVEN 217

def wcfactory_number(self, request, node, model):
return input.Integer(model)

The IController implementation classes which validate input currently live in the input module. This will prob-
ably be changed in the future.

See the Controllers (page 207) section for more information on writing your application’s Controller code.
Note that if an appropriately named Controller factory is not found on your page class, Woven will look for the

name in the input module before giving up and raising an exception.

Model factories

If your Page instance is passed a Root Model composed of basic python types, Woven is able to use IModel adapters
to allow your Template to access the entire Model tree automatically. However, often it can be useful to produce your
model data in some sort of method call which retrieves the data.

If your Page instance was initialized without a Root Model object, Woven will use the Page instance itself
as a MethodModel. When a model directive is encountered in a Woven template, it will be translated into a
wmfactory call on your Page instance. For example, the node <div model="name" /> will cause the method
wmfactory name to be called. Model factories are methods which have the following signature, and may return
any Python object:

def wmfactory_name(self, request):
return "Fred Bob"

See the Models (page 195) section for more information on writing your application’s IModel adapters.

7.8 Form In Depth

XXX: To be written

7.9 Guard In Depth

XXX: To be written

Chapter 8

Dot Products

8.1 Creating and working with a names (DNS) server

A Names server can be perform three basic operations:

� act as a recursive server, forwarding queries to other servers

� perform local caching of recursively discovered records

� act as the authoritative server for a domain

Creating a non-authoritative server

The first two of these are easy, and you can create a server that performs them with the command mktap dns
--recursive --cache, or launch tkmktap and configure a dns server with it. The result should be a file named
dns.tap. Now switch to a superuser account (if required by your platform to bind to port 53) and run twistd -f
dns.tap. The Application will run and bind to port 53. Try performing a lookup with it, dig twistedmatrix.
com @127.0.0.1.

Creating an authoritative server

To act as the authority for a domain, two things are necessary: the address of the machine on which the domain name
server will run must be registered as a nameserver for the domain; and the domain name server must be configured to
act as the authority. The first requirement is beyond the scope of this howto and will not be covered.

To configure Names to act as the authority for example-domain.com, we first create a zone file for this domain.

zone = [
SOA(

For whom we are the authority
’example-domain.com’,

This nameserver’s name
mname = "ns1.example-domain.com",

218

CHAPTER 8. DOT PRODUCTS 219

Mailbox of individual who handles this
rname = "root.example-domain.com",

Unique serial identifying this SOA data
serial = 2003010601,

Time interval before zone should be refreshed
refresh = "1H",

Interval before failed refresh should be retried
retry = "1H",

Upper limit on time interval before expiry
expire = "1H",

Minimum TTL
minimum = "1H"

),

A(’example-domain.com’, ’127.0.0.1’),
NS(’ns1.example-domain.com’, ’example-domain.com’),

CNAME(’www.example-domain.com’, ’example-domain.com’),
CNAME(’ftp.example-domain.com’, ’example-domain.com’),

MX(’example-domain.com’, 0, ’mail.example-domain.com’),
A(’mail.example-domain.com’, ’123.0.16.43’)

]

Zone file — example-domain.com

Next, run the command mktap dns --pyzone example-domain.com, and then (as above) twistd
-f dns.tap. Now try querying the domain locally (again, with dig): dig -t any example-domain.com
@127.0.0.1.

Names can also read a traditional, BIND-syntax zone file. Specify these with the --bindzone parameter. The
$GENERATE and $INCLUDE directives are not yet supported.

8.2 Using the Lore Documentation System

8.2.1 Writing Lore Documents

Overview

Lore documents are a special subset of XHTML documents. They use specific subset of XHTML, together with
custom classes, to allow a wide variety of document elements, including some Python-specific ones. Lore documents,

CHAPTER 8. DOT PRODUCTS 220

in particular, are well-formed XML documents. XML can be written using a wide variety of tools: from run of the
mill editors such as vi, through editors with XML help like EMACS and ending with XML specific tools like (need
name of XML editor here). Here, we will not cover the specifics of writing XML documents, except for a very broad
overview.

XML documents contain elements, which are delimited by an opening tag which looks like <tag-name
attribute="value"> and ends with a closing tag, which looks like </tag-name>. If an elements happen
to contain nothing, it can be shortened to <tag-name />. Elements can contain other elements, or text. Text can
contain any characters except � , � and &. These characters are rendered by <, > and &, respectively.

A Lore document is a single html element. Inside this element, there are exactly two top-level elements: head
and body. The head element must contain exactly one element: title, containing the title of the document. Most
of the document will be contained in the body element. The body element must start with an h1 (top-level header)
element, which contains the exact same content as the title element.

Thus, a fairly minimal Lore document might look like:

<html>
<head><title>Title</title></head>
<body><h1>Title</h1></body>
</html>

Elements and Their Uses

p: The paragraph element. Most of the document should be inside paragraphs.
span: The span element is an element which has no meaning – unless it has a special class attributes. The

following classes have the stated meanings:

footnote a small comment which should not be inside the main text-flow.

manhole-output This signifies, within a manhole transcript, that the enclosed text is the output and not something
the user has to input.

span This should be an empty element, with an attribute value. That attribute should be an index term, in the
format of generic!specific!more specific. Usually, you will only have one level, in which case
value="term" works.

div: The div element is equivalent to a span, except it always appears outside paragraphs. The following classes
have the given meanings:

note A short note which is not necessary for the understanding of the text.

doit An indication that the discussed feature is not complete or implemented yet.

boxed An indication that the text should be clearly separated from its surroundings.

a: This element can have several meanings, depending on the attributes:

name attribute Add a label to the current position, which might be used in this document or other documents to refer
to.

href=URL Refer to some WWW resource.

CHAPTER 8. DOT PRODUCTS 221

href=relative-path, href=relative-path#label or href=#label Refer to a position in a Lore re-
source. By default, relative links to .html files are changed to point to a .xhtml file. If you need a link to a
local non-Lore .html file, use class=absolute to make Lore treat it as an absolute link.

href=relative-pathwith class=py-listing or class=html-listing Indicate the given resource is
a part of the text flow, and should be inlined (and if possible, syntax highlighted).

ol, ul: A list. It can be enumerated or bulleted. Inside a list, the element li (for a list element) is valid.
h2, h3: Second- and third-level section headings.
code: a string which has meaning to the computer. There are many possible classes:

API A class, function or a module. It does not have to be a fully qualified name – but if it isn’t, a base attribute is
necessary. Example: <code class="API" base="urllib">urlencode<code>.

shell Shell (usually Bourne) code.

python Python code

py-prototype Function prototype

py-filename Python file

py-src-string Python string

py-signature Function signature

py-src-parameter Parameter

py-src-identifier Identifier

py-src-keyword Keyword

pre: Preformatted text, usually for file listings. It can be used with the python class to indicate Python syntax
coloring. Other possible classes are shell (to indicate a shell-transcript) or python-interpreter (to indicate
an interactive interpreter transcript).

img: Insert the image indicated by the src attribute.
q: The quote signs (") are not recommended except in preformatted or code environment. Instead, quote by using

the q element which allows nested quotes and properly distinguishes opening quote from closing quote.
em, strong: Emphasise (or strongly emphasise) text.
table: Tabular data. Inside a table, use the tr element for each rows, and inside it use either td for a regular

table cell or th for a table header (column or row).
blockquote: A long quote which should be properly seperated from the main text.
cite: Cite a resource.
sub, sup: subscripts and superscripts.
link: currently, the only link elements supported are for for indicating authorship. <link rel="author"

href="author-address@examples.com" title="Author Name" /> should be used to indicate au-
thorship. Multiple instances are allowed, and indicate shared authorship.

CHAPTER 8. DOT PRODUCTS 222

8.2.2 Writing Lore XHTML Templates

One of Lore’s output formats is XHTML. Lore itself is very markup-light, but the output XHTML is much more
markup intensive. Part of the auto-generated markup is directed by a special template.

The output of Lore is inserted into template in the following way:

� The title is appended into each element with class title.

� The body is inserted into the first element that has class body.

� The table of contents is inserted into the first element that has class toc.

In particular, most of the header is not tampered with – so it is easy to indicate a CSS stylesheet in the template.

8.2.3 Using Lore to Generate HTML

After having written a template, the easiest way to build HTML from the Lore document is by:

% lore --config template=mytemplate.tpl mydocument.html

This will create a file called mydocument.xhtml.
For example, to generate the HTML version of the Twisted docs from a CVS checkout, do:1

% lore --config template=doc/howto/template.tpl doc/howto/*.html

8.2.4 Using Lore to Generate LaTex

Articles

% lore --output latex mydocument.html

Books

Have a Lore file for each section. Then, have a LaTeX file which inputs all the given LaTeX files. Generate all the
LaTeX files by using

% lore --output latex --config section *.html

in the relevant directory.

8.2.5 Linting

% lore --output lint mydocument.html

This will generate compiler-style (file:line:column:message) warnings. It is possible to integrate these warnings
into a smart editor such as EMACS, but it has not been done yet.

1See also the admin/process-docs script.

CHAPTER 8. DOT PRODUCTS 223

8.3 Extending the Lore Documentation System

8.3.1 Overview

The Lore Documentation System (page 219), out of the box, is specialized for documenting Twisted. Its markup
includes CSS classes for Python, HTML, filenames, and other Twisted-focused categories. But don’t think this means
Lore can’t be used for other documentation tasks! Lore is designed to allow extensions, giving any Python programmer
the ability to customize Lore for documenting almost anything.

There are several reasons why you would want to extend Lore. You may want to attach file formats Lore does
not understand to your documentation. You may want to create callouts that have special meanings to the reader, to
give a memorable appearance to text such as, “WARNING: This software was written by a frothing madman!” You
may want to create color-coding for a different programming language, or you may find that Lore does not provide
you with enough structure to mark your document up completely. All of these situations can be solved by creating an
extension.

8.3.2 Inputs and Outputs

Lore works by reading the HTML source of your document, and producing whatever output the user specifies on the
command line. If the HTML document is well-formed XML that meets a certain minimum standard, Lore will be able
to to produce some output. All Lore extensions will be written to redefine the input, and most will redefine the output
in some way. The name of the default input is “lore”. When you write your extension, you will come up with a new
name for your input, telling Lore what rules to use to process the file.

Lore can produce XHTML, LaTeX, and DocBook document formats, which can be displayed directly if you have
a user agent capable of viewing them, or processed into a third form such as PostScript or PDF. Another output is
called “lint”, after the static-checking utility for C, and is used for the same reason: to statically check input files for
problems. The “lint” output is just a stream of error messages, not a formatted document, but is important because it
gives users the ability to validate their input before trying to process it. For the first example, the only output we will
be concerned with is LaTeX.

Creating New Inputs

Create a new input to tell Lore that your document is marked up differently from a vanilla Lore document. This gives
you the power to define a new tag class, for example:

<p>The Frabjulon Limpet 2000
is the industry-leading aquatic
mollusc counter, bar none.</p>

The above HTML is an instance of a new input to Lore, which we will call MyHTML, to differentiate it from the
“lore” input. We want it to have the following markup:

� A productname class for the � span � tag, which produces underlined text

� A marketinglie class for � span � tag, which produces larger type, bold text

Note that I chose class names that are valid Python identifiers. You will see why shortly. To get these two effects
in Lore’s HTML output, all we have to do is create a cascading stylesheet (CSS), and use it in the Lore XHTML
Template. However, we also want these effects to work in LaTeX, and we want the output of lint to produce no
warnings when it sees lines with these 2 classes. To make LaTeX and lint work, we start by creating a plugin.

CHAPTER 8. DOT PRODUCTS 224

register(’MyHTML’, "myhtml.factory", description="My Lore Plugin",
type="lore", tapname="myhtml")

Listing 1: The Plugin File — plugins.tml

Name this file plugins.tml, and put it in a new package directory named myhtml. Also create an init .
py file in your new package. Note that the init file can contain nothing but a doc string, but it must exist. If
init .py is empty, you will have problems with certain unzip programs that don’t extract empty files.

The combination of plugin file and init file causes the new package to be treated like a Twisted plugin, one that
Lore knows how to make use of. The first three arguments to register() are the human-readable name, module
name, and description of your plugin. The type parameter makes this plugin visible to the Lore system (rather than
some other part of Twisted). The tapname parameter is an arbitrary filename with no extension; by convention you
should use the lowercase version of your first argument (the human-readable name). Users of your extension will pass
this argument to lore with the --input parameter on the command line. (For more details on plugins, read Writing
a New Plug-In for Twisted (page 67).)

Let’s look at that module name more closely: myhtml.factory. We will be creating this file next, in the
package named myhtml. The purpose of the factory module is to tell Lore how to process your input.

from twisted.lore import default
import spitters

class MyProcessingFunctionFactory(default.ProcessingFunctionFactory):
latexSpitters={None: spitters.MyLatexSpitter,

}

initialize the global variable factory with an instance of your new factory
factory=MyProcessingFunctionFactory()

Listing 2: The Input Factory — factory.py-1

In Listing 2, we create a subclass of ProcessingFunctionFactory. This class provides a hook for you, a class
variable named latexSpitters. This variable tells Lore what new class will be generating LaTeX from your input
format. We redefine latexSpitters to MyLatexSpitter in the subclass because this class knows what to do
with the new input we have already defined. Last, you must define the module-level variable factory. It should
be an instance with the same interface as ProcessingFunctionFactory (e.g. an instance of a subclass, in this
case, MyProcessingFunctionFactory).

Now let’s actually write some code to generate the LaTeX. Doing this requires at least a familiarity with the LaTeX
language. Search Google for “latex tutorial” and you will find any number of useful LaTeX resources.

from twisted.lore import latex
from twisted.lore.latex import processFile
import os.path

class MyLatexSpitter(latex.LatexSpitter):
def visitNode_span_productname(self, node):

start an underline section in LaTeX

CHAPTER 8. DOT PRODUCTS 225

self.writer(’\\underline{’)
process the node and its children
self.visitNodeDefault(node)
end the underline block
self.writer(’}’)

def visitNode_span_marketinglie(self, node):
this example turns on more than one LaTeX effect at once
self.writer(’\\begin{bf}\\begin{Large}’)
self.visitNodeDefault(node)
self.writer(’\\end{Large}\\end{bf}’)

Listing 3: spitters.py — spitters.py-1

The method visitNode span productname is our handler for � span � tags with the
class="productname" identifier. Lore knows to try methods visitNode span * and visitNode div *
whenever it encounters a new class in one of these tags. This is why the class names have to be valid Python
identifiers.

Now let’s see what Lore does with these new classes with the following input file:

<html>
<head>
<title>My First Example</title>

</head>
<body>
<h1>My First Example</h1>
<p>The Frabjulon Limpet 2000
is the industry-leading aquatic
mollusc counter, bar none.</p>

</body>
</html>

Listing 4: 1st example.html — 1st example.html

First, verify that your package is laid out correctly. Your directory structure should look like this:

1st_example.html
myhtml/

__init__.py
factory.py
plugins.tml
spitters.py

In the parent directory of myhtml (that is, myhtml/..), run lore and pdflatex on the input:

$ lore --input myhtml --output latex 1st_example.html
[##] (*Done*)

CHAPTER 8. DOT PRODUCTS 226

$ pdflatex 1st_example.tex
[. . . latex output omitted for brevity . . .]
Output written on 1st_example.pdf (1 page, 22260 bytes).
Transcript written on 1st_example.log.

And here’s what the rendered PDF looks like:

What happens when we run lore on this file using the lint output?

$ lore --input myhtml --output lint 1st_example.html
1st_example.html:7:47: unknown class productname
1st_example.html:8:38: unknown class marketinglie
[##] (*Done*)

Lint reports these classes as errors, even though our spitter knows how to process them. To fix this problem, we
must add to factory.py.

from twisted.lore import default
import spitters

class MyProcessingFunctionFactory(default.ProcessingFunctionFactory):
latexSpitters={None: spitters.MyLatexSpitter,

}

redefine getLintChecker to validate our classes
def getLintChecker(self):

use the default checker from parent
checker = lint.getDefaultChecker()
checker.allowedClasses = checker.allowedClasses.copy()
oldSpan = checker.allowedClasses[’span’]

CHAPTER 8. DOT PRODUCTS 227

checkfunc=lambda cl: oldSpan(cl) or cl in [’marketinglie’,
’productname’]

checker.allowedClasses[’span’] = checkfunc
return checker

initialize the global variable factory with an instance of your new factory
factory=MyProcessingFunctionFactory()

Listing 5: Input Factory with Lint Support — factory.py-2

The method getLintChecker is called by Lore to produce the lint output. This modification adds our classes
to the list of classes lint ignores:

$ lore --input myhtml --output lint 1st_example.html
[##] (*Done*)
$ # Hooray!

Finally, there are two other sub-outputs of LaTeX, for a total of three different ways that Lore can produce LaTeX:
the default way, which produces as output an entire, self-contained LaTeX document; with --config section
on the command line, which produces a LaTeX � section; and with --config chapter, which produces a LaTeX
� chapter. To support these options as well, the solution is to make the new spitter class a mixin, and use it with the
SectionLatexSpitter and ChapterLatexSpitter, respectively. Comments in the following listings tell
you everything you need to know about making these simple changes:

� from twisted.lore import default
import spitters

class MyProcessingFunctionFactory(default.ProcessingFunctionFactory):
1. add the keys "chapter" and "section" to latexSpitters to handle the
--config chapter and --config section options
latexSpitters={None: spitters.MyLatexSpitter,

"section": spitters.MySectionLatexSpitter,
"chapter": spitters.MyChapterLatexSpitter,
}

def getLintChecker(self):
checker = lint.getDefaultChecker()
checker.allowedClasses = checker.allowedClasses.copy()
oldSpan = checker.allowedClasses[’span’]
checkfunc=lambda cl: oldSpan(cl) or cl in [’marketinglie’,

’productname’]
checker.allowedClasses[’span’] = checkfunc
return checker

factory=MyProcessingFunctionFactory()

factory.py — factory.py-3

CHAPTER 8. DOT PRODUCTS 228

� from twisted.lore import latex
from twisted.lore.latex import processFile
import os.path

2. Create a new mixin that does what the old MyLatexSpitter used to do:
process the new classes we defined
class MySpitterMixin:

def visitNode_span_productname(self, node):
self.writer(’\\underline{’)
self.visitNodeDefault(node)
self.writer(’}’)

def visitNode_span_marketinglie(self, node):
self.writer(’\\begin{bf}\\begin{Large}’)
self.visitNodeDefault(node)
self.writer(’\\end{Large}\\end{bf}’)

3. inherit from the mixin class for each of the three sub-spitters
class MyLatexSpitter(MySpitterMixin, latex.LatexSpitter):

pass

class MySectionLatexSpitter(MySpitterMixin, latex.SectionLatexSpitter):
pass

class MyChapterLatexSpitter(MySpitterMixin, latex.ChapterLatexSpitter):
pass

spitters.py — spitters.py-2

Creating New Outputs

write some stuff

8.3.3 Other Uses for Lore Extensions

write some stuff

Color-Code Programming Languages

write some stuff

Add New Structural Elements

write some stuff

CHAPTER 8. DOT PRODUCTS 229

Support New File Formats

write some stuff

8.4 Writing a client with Twisted.Conch

8.4.1 Introduction

In the original days of computing, rsh/rlogin were used to connect to remote computers and execute commands. These
commands had the problem that the passwords and commands were sent in the clear. To solve this problem, the SSH
protocol was created. Twisted.Conch implements the second version of this protocol.

8.4.2 Writing a client

Writing a client with Conch involves sub-classing 4 classes: twisted.conch.ssh.transport.
SSHClientTransport, twisted.conch.ssh.userauth.SSHUserAuthClient, twisted.conch.
ssh.connection.SSHConnection, and twisted.conch.ssh.channel.SSHChannel. We’ll start out
with SSHClientTransport because it’s the base of the client.

8.4.3 The Transport

from twisted.conch import error
from twisted.conch.ssh import transport
from twisted.internet import defer

class ClientTransport(transport.SSHClientTransport):

def verifyHostKey(self, pubKey, fingerprint):
if fingerprint != ’b1:94:6a:c9:24:92:d2:34:7c:62:35:b4:d2:61:11:84’:

return defer.fail(error.ConchError(’bad key’))
else:

return defer.succeed(1)

def connectionSecure(self):
self.requestService(ClientUserAuth(’user’, ClientConnection()))

See how easy it is? SSHClientTransport handles the negotiation of encryption and the verification of keys
for you. The one security element that you as a client writer need to implement is verifyHostKey(). This
method is called with two strings: the public key sent by the server and its fingerprint. You should verify the host
key the server sends, either by checking against a hard-coded value as in the example, or by asking the user. verify
HostKey returns a twisted.internet.defer.Deferredwhich gets a callback if the host key is valid, or an
errback if it is not. Note that in the above, replace ’user’ with the username you’re attempting to ssh with, for instance
a call to os.getlogin() for the current user.

The second method you need to implement is connectionSecure(). It is called when the encryption is set
up and other services can be run. The example requests that the ClientUserAuth service be started. This service
will be discussed next.

CHAPTER 8. DOT PRODUCTS 230

8.4.4 The Authorization Client

from twisted.conch.ssh import keys, userauth

these are the public/private keys from test_conch

publicKey = ’ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEArzJx8OYOnJmzf4tfBEvLi8DVPrJ3\
/c9k2I/Az64fxjHf9imyRJbixtQhlH9lfNjUIx+4LmrJH5QNRsFporcHDKOTwTTYLh5KmRpslkYHR\
ivcJSkbh/C+BR3utDS555mV’

privateKey = """-----BEGIN RSA PRIVATE KEY-----
MIIByAIBAAJhAK8ycfDmDpyZs3+LXwRLy4vA1T6yd/3PZNiPwM+uH8Yx3/YpskSW
4sbUIZR/ZXzY1CMfuC5qyR+UDUbBaaK3Bwyjk8E02C4eSpkabJZGB0Yr3CUpG4fw
vgUd7rQ0ueeZlQIBIwJgbh+1VZfr7WftK5lu7MHtqE1S1vPWZQYE3+VUn8yJADyb
Z4fsZaCrzW9lkIqXkE3GIY+ojdhZhkO1gbG0118sIgphwSWKRxK0mvh6ERxKqIt1
xJEJO74EykXZV4oNJ8sjAjEA3J9r2ZghVhGN6V8DnQrTk24Td0E8hU8AcP0FVP+8
PQm/g/aXf2QQkQT+omdHVEJrAjEAy0pL0EBH6EVS98evDCBtQw22OZT52qXlAwZ2
gyTriKFVoqjeEjt3SZKKqXHSApP/AjBLpF99zcJJZRq2abgYlf9lv1chkrWqDHUu
DZttmYJeEfiFBBavVYIF1dOlZT0G8jMCMBc7sOSZodFnAiryP+Qg9otSBjJ3bQML
pSTqy7c3a2AScC/YyOwkDaICHnnD3XyjMwIxALRzl0tQEKMXs6hH8ToUdlLROCrP
EhQ0wahUTCk1gKA4uPD6TMTChavbh4K63OvbKg==
-----END RSA PRIVATE KEY-----"""

class ClientUserAuth(userauth.SSHUserAuthClient):

def getPassword(self, prompt = None):
return
this says we won’t do password authentication

def getPublicKey(self):
return keys.getPublicKeyString(data = publicKey)

def getPrivateKey(self):
return defer.succeed(keys.getPrivateKeyObject(data = privateKey))

Again, fairly simple. The SSHUserAuthClient takes care of most of the work, but the actual authentica-
tion data needs to be supplied. getPassword() asks for a password, getPublicKey() and getPrivate
Key() get public and private keys, respectively. getPassword() returns a Deferred that is called back with the
password to use. getPublicKey() returns the SSH key data for the public key to use. keys.getPublicKey
String() will take keys in OpenSSH and LSH format, and convert them to the required format. getPrivate
Key() returns a Deferred which is called back with the key object (as used in PyCrypto) for the private key. get
Password() and getPrivateKey() return Deferreds because they may need to ask the user for input.

Once the authentication is complete, SSHUserAuthClient takes care of starting the code SSHConnection
object given to it. Next, we’ll look at how to use the SSHConnection

CHAPTER 8. DOT PRODUCTS 231

8.4.5 The Connection

from twisted.conch.ssh import connection

class ClientConnection(connection.SSHConnection):

def serviceStarted(self):
self.openChannel(CatChannel(conn = self))

SSHConnection is the easiest, as it’s only responsible for starting the channels. It has other methods, those will
be examined when we look at SSHChannel.

8.4.6 The Channel

from twisted.conch.ssh import channel, common

class CatChannel(channel.SSHChannel):

name = ’session’

def channelOpen(self, data):
d = self.conn.sendRequest(self, ’exec’, common.NS(’cat’),

wantReply = 1)
d.addCallback(self._cbSendRequest)
self.catData = ’’

def _cbSendRequest(self, ignored):
self.write(’This data will be echoed back to us by "cat."\r\n’)
self.conn.sendEOF(self)
self.loseConnection()

def dataReceived(self, data):
self.catData += data

def closed(self):
print ’We got this from "cat":’, self.catData

Now that we’ve spent all this time getting the server and client connected, here is where that work pays off.
SSHChannel is the interface between you and the other side. This particular channel opens a session and plays with
the ’cat’ program, but your channel can implement anything, so long as the server supports it.

The channelOpen() method is where everything gets started. It gets passed a chunk of data; however, this
chunk is usually nothing and can be ignored. Our channelOpen() initializes our channel, and sends a request to
the other side, using the sendRequest()method of the SSHConnection object. Requests are used to send events
to the other side. We pass the method self so that it knows to send the request for this channel. The 2nd argument of
’exec’ tells the server that we want to execute a command. The third argument is the data that accompanies the request.
common.NS encodes the data as a length-prefixed string, which is how the server expects the data. We also say that

CHAPTER 8. DOT PRODUCTS 232

we want a reply saying that the process has a been started. sendRequest() then returns a Deferred which we
add a callback for.

Once the callback fires, we send the data. SSHChannel supports the twisted.internet.interface.
Transport interface, so it can be given to Protocols to run them over the secure connection. In our case, we just
write the data directly. sendEOF() does not follow the interface, but Conch uses it to tell the other side that we
will write no more data. loseConnection() shuts down our side of the connection, but we will still receive data
through dataReceived(). The closed() method is called when both sides of the connection are closed, and we
use it to display the data we received (which should be the same as the data we sent.)

Finally, let’s actually invoke the code we’ve set up.

8.4.7 The main() function

from twisted.internet import protocol, reactor

def main():
factory = protocol.ClientFactory()
factory.protocol = ClientTransport
reactor.connectTCP(’localhost’, 22, factory)
reactor.run()

if __name__ == "__main__":
main()

We call connectTCP() to connect to localhost, port 22 (the standard port for ssh), and pass it an instance
of twisted.internet.protocol.ClientFactory. This instance has the attribute protocol set to our
earlier ClientTransport class. Note that the protocol is set to the class ClientFactory, not an instance
of ClientFactory! When the connectTCP call completes, the protocol will be called to create a Client
Transport() object - this then invokes all our previous work.

It’s worth noting that in the example main() routine, the reactor.run() call never returns. If you want to
make the program exit, call reactor.stop() in the earlier closed() method.

If you wish to observe the interactions in more detail, adding a call to log.startLogging(sys.stdout,
setStdout=0) before the reactor.run() call will send all logging to stdout.

Chapter 9

Working on the Twisted Code Base

9.1 Twisted Coding Standard

9.1.1 Naming

Try to choose names which are both easy to remember and meaningful. Some silliness is OK at the module naming
level (see twisted.spread...) but when choosing class names, be as precise as possible. Write code with a
dictionary and thesaurus open on the table next to you.

Try to avoid overloaded terms. This rule is often broken, since it is incredibly difficult, as most normal words have
already been taken by some other software. More importantly, try to avoid meaningless words. In particular, words
like “handler”, “processor”, “engine”, “manager” and “component” don’t really indicate what something does, only
that it does something.

9.1.2 Testing

Unit tests are written using the twisted.trial framework. Many examples are in the twisted.test package.
Test modules should start with ’test ’ in their name. Source files should have test-case-name tags that point to
their related tests.

Acceptance tests are all automated by the admin/accepttests script currently. (TODO: real acceptance tests strat-
egy!)

Run the unit tests tests before you check anything in.
Let me repeat that, for emphasis: run the unit tests before you check anything in. Code which breaks functionality

is unfortunate and unavoidable. The acceptance tests are highly nonportable and sometimes a pain to run, so this
is pardonable. Code which breaks the unit tests in a way that you could have prevented by running them yourself,
however, may be grounds for anything from merciless taunting through revertion of the breakage to revocation of cvs
commit privileges.

It is strongly suggested that developers learn to use Emacs, and use the twisted-dev.el file included in the
TwistedEmacs package to bind the F9 key to “run unit tests” and bang on it frequently. Support for other editors is
unavailable at this time but we would love to provide it.

If you modify, or write a new, HOWTO, please read the Lore documentation (page 219) to learn the format the
docs.

233

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 234

9.1.3 Whitespace

Indentation is 4 spaces per indent. Tabs are not allowed. It is preferred that every block appear on a new line, so that
control structure indentation is always visible.

9.1.4 Modules

Modules must be named in all lower-case, preferably short, single words. If a module name contains multiple words,
they may be separated by underscores or not separated at all.

In most cases, modules should contain more than one class, function, or method; if a module contains only one
object, consider refactoring to include more related functionality in that module.

Depending on the situation, it is acceptable to have imports look like this:

from twisted.internet.defer import Deferred

or like this:

from twisted.internet import defer

That is, modules should import modules or classes and functions, but not packages.

9.1.5 Packages

Package names should follow the same conventions as module names. All modules must be encapsulated in some
package. Nested packages may be used to further organize related modules.

init .py must never contain anything other than a docstring and (optionally) an all attribute. Packages
are not modules and should be treated differently. This rule may be broken to preserve backwards compatibility if a
module is made into a nested package as part of a refactoring.

If you wish to promote code from a module to a package, for example, to break a large module out into several
smaller files, the accepted way to do this is to promote from within the module. For example,

parent/
--- __init__.py ---
import child

--- child.py ---
import parent
class Foo:

pass
parent.Foo = Foo

Every package should be added to the list in setup.py.
Packages must not depend circularly upon each other. To simplify maintaining this state, packages must also not

import each other circularly. While this applies to all packages within Twisted, one twisted.python deserves
particular attention, as it may not depend on any other Twisted package.

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 235

9.1.6 Docstrings

Wherever possible, docstrings should be used to describe the purpose of methods, functions, classes, and modules.
In cases where it’s desirable to avoid documenting thoroughly – for example, and evolving interface – insert a place-
holder docstring ("UNDOCUMENTED" is preferred), so that the auto-generated API documentation will not pick up an
extraneous comment as the documentation for that module/class/function.

Docstrings are never to be used to provide semantic information about an object; this rule may be violated if the
code in question is to be used in a system where this is a requirement (such as Zope).

Docstrings should be indented to the level of the code they are documenting.
Docstrings should be triple-quoted.
Docstrings should be written in epytext format; more documentation is available in the Epytext Markup Language

documentation1.
Additionally, to accommodate emacs users:

� Single quotes of the type of the docstring’s triple-quote should be escaped. This will prevent font-lock from
accidentally fontifying large portions of the file as a string.

� Code examples in docstrings should be prefixed by the — character. This will prevent IM-Python from regarding
sample code as real functions, methods, and classes.

For example,

def foo2bar(f):
"""I am a function to convert foos to bars.

I should be used when you have a foo but you want a bar; note that this is
a non-destructive operation. If I can\’t convert the foo to a bar I will
raise a FooException().

For example::

| import wombat
| def sample(something):
| f = something.getFoo()
| f.doFooThing()
| b = wombat.foo2bar(f)
| b.doBarThing()
| return b

"""
Optionally, actual code can go here.

9.1.7 Scripts

For each “script”, that is, a program you expect a Twisted user to run from the command-line, the following things
must be done:

1http://epydoc.sourceforge.net/epytext.html

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 236

1. Write a module in twisted.scripts which contains a callable global named run. This will be called by
the command line part with no arguments (it will usually read sys.argv). Feel free to write more functions
or classes in this module, if you feel they are useful to others.

2. Write a file in bin/ which contains the Twisted running-from-CVS header, and ending with

from twisted.scripts.yourmodule import run
run()

3. Write a manpage in doc/man. On debian systems you can find a skeleton example of a manpage in
/usr/share/doc/man-db/examples/manpage.example.

4. Add your script to the script list in setup.py.

This will insure your program will work correctly for users of CVS, Windows releases and Debian packages.

9.1.8 Standard Library Extension Modules

When using the extension version of a module for which there is also a Python version, place the import statement
inside a try/except block, and import the Python version if the import fails. This allows code to work on platforms
where the extension version is not available. For example:

try:
import cPickle as pickle

except ImportError:
import pickle

Use the ”as” syntax of the import statement as well, to set the name of the extension module to the name of the Python
module.

9.1.9 ChangeLog

All changes that will affect the way end-users see Twisted should come with an appropriate entry in the ChangeLog
that summarizes that impact.

The correct format for the ChangeLog is GNU changelog format. There is an emacs mode for editing this, use
M-x add-change-log-entry. If you are, for whatever absurd reason, using an editor other than emacs to edit
Twisted, you can use Moshe Zadka’s helpfully provided admin/change script to add a properly-formatted entry.

9.1.10 Classes

Classes are to be named in mixed case, with the first letter capitalized; each word separated by having its first letter
capitalized. Acronyms should be capitalized in their entirety. Class names should not be prefixed with the name of the
module they are in. Examples of classes meeting this criteria:

� twisted.spread.pb.ViewPoint

� twisted.parser.patterns.Pattern

Examples of classes not meeting this criteria:

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 237

� event.EventHandler

� main.MainGadget

An effort should be made to prevent class names from clashing with each other between modules, to re-
duce the need for qualification when importing. For example, a Service subclass for Forums might be named
twisted.forum.service.ForumService, and a Service subclass for Words might be twisted.words.service.WordsService.
Since neither of these modules are volatile (see above) the classes may be imported directly into the user’s namespace
and not cause confusion.

9.1.11 Methods

Methods should be in mixed case, with the first letter lower case, each word separated by having its first letter capital-
ized. For example, someMethodName, method.

Sometimes, a class will dispatch to a specialized sort of method using its name; for example,
twisted.reflect.Accessor. In those cases, the type of method should be a prefix in all lower-case with a trailing un-
derscore, so method names will have an underscore in them. For example, get someAttribute. Underscores in
method names in twisted code are therefore expected to have some semantic associated with them.

9.1.12 Functions

Functions should be named similiarly to methods.
Functions or methods which are responding to events to complete a callback or errback should be named cb

MethodName or ebMethodName, in order to distinguish them from normal methods.

9.1.13 Attributes

Attributes should be named similarly to functions and methods. Attributes should be named descriptively; attribute
names like mode, type, and buf are generally discouraged. Instead, use displayMode, playerType, or input
Buffer.

Do not use Python’s “private” attribute syntax; prefix non-public attributes with a single leading underscore. Since
several classes have the same name in Twisted, and they are distinguished by which package they come from, Python’s
double-underscore name mangling will not work reliably in some cases. Also, name-mangled private variables are
more difficult to address when unit testing or persisting a class.

An attribute (or function, method or class) should be considered private when one or more of the following condi-
tions are true:

� The attribute represents intermediate state which is not always kept up-to-date.

� Referring to the contents of the attribute or otherwise maintaining a reference to it may cause resources to leak.

� Assigning to the attribute will break internal assumptions.

� The attribute is part of a known-to-be-sub-optimal interface and will certainly be removed in a future release.

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 238

9.1.14 Database

Database tables will be named with plural nouns.
Database columns will be named with underscores between words, all lower case, since most databases do not

distinguish between case.
Any attribute, method argument, or method name that corresponds directly to a column in the database will be

named exactly the same as that column, regardless of other coding conventions surrounding that circumstance.
All SQL keywords should be in upper case.

9.1.15 C Code

Wherever possible, C code should be optional, and the default python implementation should be maintained in tandem
with it. C code should be strict ANSI C, and must build using GCC as well as Visual Studio for Windows, and really
shouldn’t have any problems with other compilers either. Don’t do anything tricky.

C code should only be used for efficiency, not for binding to external libraries. If your particular code is not
frequently run, write it in Python. If you require the use of an external library, develop a separate, external bindings
package and make your twisted code depend on it.

9.1.16 Checkin Messages

Thanks to CVSToys, the checkin messages are being used in a myriad of ways. Because of that, you need to observe
a few simple rules when writing a checkin message.

The first line of the message is being used as both the subject of the commit e-mail and the announcement on
#twisted. Therefore, it should be short (aim for � 80 characters) and descriptive – and must be able to stand alone (it
is best if it is a complete sentence). The rest of the e-mail should be separated with hard line breaks into short lines (�
70 characters). This is free-format, so you can do whatever you like here.

Checkin messages should be about what, not how: we can get how from CVS diff. Explain reasons for checkins,
and what they affect.

Each commit should be a single logical change, which is internally consistent. If you can’t summarize your
changes in one short line, this is probably a sign that they should be broken into multiple checkins.

9.1.17 Recommendations

These things aren’t necessarily standardizeable (in that code can’t be easily checked for compliance) but are a good
idea to keep in mind while working on Twisted.

If you’re going to work on a fragment of the Twisted codebase, please consider finding a way that you would use
such a fragment in daily life. I use the Twisted Web server on the main TML website, and aside from being good PR,
this encourages you to actively maintain and improve your code, as the little everyday issues with using it become
apparent.

Twisted is a big codebase! If you’re refactoring something, please make sure to recursively grep for the names of
functions you’re changing. You may be surprised to learn where something is called. Especially if you are moving or
renaming a function, class, method, or module, make sure that it won’t instantly break other code.

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 239

9.2 HTML Documentation Standard for Twisted

9.2.1 Allowable Tags

Please try to restrict your HTML usage to the following tags (all only for the original logical purpose, and not whatever
visual effect you see): <html>, <title>, <head>, <body>, <h1>, <h2, <h3>, , , <dl>, ,
<dt>, <dd>, <p>, <code>, , <blockquote>, <a>, <cite>, <div>, , , ,
<pre>, <q>, <table>,<tr>, <td> and <th>.

Please avoid using the quote sign (") for quoting, and use the relevant html tags (<q></q>) – it is impossible to
distinguish right and left quotes with the quote sign, and some more sophisticated output methods work better with
that distinction.

9.2.2 Multi-line Code Snippets

Multi-line code snippets should be delimited with a � pre � tag, with a mandatory “class” attribute. The conventional-
ized classes are “python”, “python-interpreter”, and “shell”. For example:

“python”

<p>
For example, this is how one defines a Resource:
</p>

<pre class="python">
from twisted.web import resource

class MyResource(resource.Resource):
def render(self, request):

return "Hello, world!"
</pre>

For example, this is how one defines a Resource:

from twisted.web import resource

class MyResource(resource.Resource):
def render(self, request):

return "Hello, world!"

Note that you should never have leading indentation inside a � pre � block – this makes it hard for readers to
copy/paste the code.

“python-interpreter”

<pre class="python-interpreter">
\>\>\> from twisted.web import resource
\>\>\> class MyResource(resource.Resource):
... def render(self, request):

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 240

... return "Hello, world!"

...
\>\>\> MyResource().render(None)
"Hello, world!"
</pre>

>>> from twisted.web import resource
>>> class MyResource(resource.Resource):
... def render(self, request):
... return "Hello, world!"
...
>>> MyResource().render(None)
"Hello, world!"

“shell”

<pre class="shell">
$ mktap web --path /var/www
</pre>

$ mktap web --path /var/www

9.2.3 Code inside paragraph text

For single-line code-snippets and attribute, method, class, and module names, use the � code � tag, with a class of
“API” or “python”. During processing, module or class-names with class “API” will automatically be looked up in the
API reference and have a link placed around it referencing the actual API documents for that module/classname. If
you wish to reference an API document, then make sure you at least have a single module-name so that the processing
code will be able to figure out which module or class you’re referring to.

You may also use the base attribute in conjuction with a class of “API” to indicate the module that should be
prepended to the module or classname. This is to help keep the documentation clearer and less cluttered by allowing
links to API docs that don’t need the module name.

<p>
To add a <code class="API">twisted.web.widgets.Widget</code>
instance to a <code class="API"
base="twisted.web.widgets">Gadget</code> instance, do
<code class="python">myGadget.putWidget("widgetPath",
MyWidget())</code>.

</p>

<p>
(implementation note: the widgets are stored in the <code
class="python">gadgetInstance.widgets</code> attribute,
which is a
list.)

</p>

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 241

To add a twisted.web.widgets.Widget instance to a Gadget instance, do myGadget.put
Widget("widgetPath", MyWidget()).

(implementation note: the widgets are stored in the gadgetInstance.widgets attribute, which is a list.)

9.2.4 Headers

It goes without mentioning that you should use � hN � in a sane way – � h1 � should only appear once in the document,
to specify the title. Sections of the document should use � h2 � , sub-headers � h3 � , and so on.

9.2.5 XHTML

XHTML is mandatory. That means tags that don’t have a closing tag need a “/”; for example, <hr /> . Also, tags
which have “optional” closing tags in HTML need to be closed in XHTML; for example, foo

9.2.6 Tag Case

All tags will be done in lower-case. XHTML demands this, and so do I. :-)

9.2.7 Footnotes

Footnotes are enclosed inside . They must not contain any markup.

9.2.8 Suggestions

Use lore -o lint to check your documentation is not broken. lore -o lint will never change your HTML,
but it will complain if it doesn’t like it.

Don’t use tables for formatting. ’nuff said.

9.2.9 all

all is a module level list of strings, naming objects in the module that are public. Make sure publically exported
classes, functions and constants are listed here.

9.3 Unit Tests in Twisted

Each unit test tests one bit of functionality in the software. Unit tests are entirely automated and complete quickly.
Unit tests for the entire system are gathered into one test suite, and may all be run in a single batch. The result of a
unit test is simple: either it passes, or it doesn’t. All this means you can test the entire system at any time without
inconvenience, and quickly see what passes and what fails.

9.3.1 Unit Tests in the Twisted Philosophy

The Twisted development team adheres to the practice of Extreme Programming2 (XP), and the usage of unit tests is
a cornerstone XP practice. Unit tests are a tool to give you increased confidence. You changed an algorithm – did you

2http://c2.com/cgi/wiki?ExtremeProgramming

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 242

break something? Run the unit tests. If a test fails, you know where to look, because each test covers only a small
amount of code, and you know it has something to do with the changes you just made. If all the tests pass, you’re good
to go, and you don’t need to second-guess yourself or worry that you just accidently broke someone else’s program.

9.3.2 What to Test, What Not to Test

You don’t have to write a test for every single method you write, only production methods that could possibly break.
– Kent Beck, Extreme Programming Explained, p. 58.

9.3.3 Running the Tests

How

$ Twisted/admin/runtests

You’ll find that having something like this in your emacs init files is quite handy:

(defun runtests () (interactive)
(compile "python /somepath/Twisted/admin/runtests"))

(global-set-key [(alt t)] ’runtests)

When

Always always always be sure all the tests pass3 before committing any code. If someone else checks out code at the
start of a development session and finds failing tests, they will not be happy and may decide to hunt you down.

Since this is a geographically dispersed team, the person who can help you get your code working probably isn’t
in the room with you. You may want to share your work in progress over the network, but you want to leave the main
CVS tree in good working order. So use a branch4, and merge your changes back in only after your problem is solved
and all the unit tests pass again.

9.3.4 Adding a Test

Please don’t add new modules to Twisted without adding tests for them too. Otherwise we could change something
which breaks your module and not find out until later, making it hard to know exactly what the change that broke it
was, or until after a release, and nobody wants broken code in a release.

Tests go in Twisted/twisted/test/, and are named test foo.py, where foo is the name of the module or package
being tested. Extensive documentation on using the PyUnit framework for writing unit tests can be found in the links
section (page 243) below.

One deviation from the standard PyUnit documentation: To ensure that any variations in test results are due to
variations in the code or environment and not the test process itself, Twisted ships with its own, compatible, testing
framework. That just means that when you import the unittest module, you will from twisted.trial import
unittest instead of the standard import unittest.

As long as you have followed the module naming and placement conventions, runtests will be smart enough
to pick up any new tests you write.

3http://www.xprogramming.com/xpmag/expUnitTestsAt100.htm
4http://www.cvshome.org/docs/manual/cvs 5.html

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 243

9.3.5 Associating Test Cases With Source Files

Please add a test-case-name tag to the source file that is covered by your new test. This is a comment at the
beginning of the file which looks like one of the following:

-*- test-case-name: twisted.test.test_defer -*-

or

#!/usr/bin/python
-*- test-case-name: twisted.test.test_defer -*-

This format is understood by emacs to mark “File Variables”. The intention is to accept test-case-name
anywhere emacs would on the first or second line of the file (but not in the File Variables: block that emacs
accepts at the end of the file). If you need to define other emacs file variables, you can either put them in the File
Variables: block or use a semicolon-separated list of variable definitions:

-*- test-case-name: twisted.test.test_defer; fill-column: 75; -*-

If the code is exercised by multiple test cases, those may be marked by using a comma-separated list of tests, as
follows: (NOTE: not all tools can handle this yet.. trial –testmodule does, though)

-*- test-case-name: twisted.test.test_defer,twisted.test.test_tcp -*-

The test-case-name tag will allow trial --testmodule twisted/dir/myfile.py to determine
which test cases need to be run to exercise the code in myfile.py. Several tools (as well as twisted-dev.
el’s F9 command) use this to automatically run the right tests.

9.3.6 Links
� A chapter on Unit Testing5 in Mark Pilgrim’s Dive Into Python6.

� unittest7 module documentation, in the Python Library Reference8.

� UnitTests9 on the PortlandPatternRepository Wiki10, where all the cool ExtremeProgramming11 kids hang out.

� Unit Tests12 in Extreme Programming: A Gentle Introduction13.

� Ron Jeffries espouses on the importance of Unit Tests at 100%14.

� Ron Jeffries writes about the Unit Test15 in the Extreme Programming practices of C316.

5http://diveintopython.org/roman divein.html
6http://diveintopython.org
7http://www.python.org/doc/current/lib/module-unittest.html
8http://www.python.org/doc/current/lib/
9http://c2.com/cgi/wiki?UnitTests

10http://c2.com/cgi/wiki
11http://c2.com/cgi/wiki?ExtremeProgramming
12http://www.extremeprogramming.org/rules/unittests.html
13http://www.extremeprogramming.org
14http://www.xprogramming.com/xpmag/expUnitTestsAt100.htm
15http://www.xprogramming.com/Practices/PracUnitTest.html
16http://www.xprogramming.com/Practices/xpractices.htm

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 244

� PyUnit’s homepage17.

� twisted.test18’s inline documentation.

� The twisted/test directory19 in CVS.

9.4 Working from Twisted CVS

If you’re going to be doing development on Twisted itself, or if you want to take advantage of bleeding-edge features
(or bug fixes) that are not yet available in a numbered release, you’ll probably want to check out a tree from the Twisted
CVS repository. The HEAD branch is where all current development takes place.

This document lists some useful tips for working on this cutting edge.

9.4.1 Checkout

CVS tutorials can be found elsewhere. The relevant data you need to check out a copy of the Twisted tree is available
on the pserver page20, and is as follows:

cvs -d:pserver:anon@twistedmatrix.com:/cvs checkout Twisted

The “CVS Password” is empty: just hit return when prompted. Please use -z3 when doing checkouts or updates to
conserve the limited bandwidth of the CVS server.

9.4.2 Alternate tree names

By using cvs checkout -d foo Twisted, you can put the workspace tree in a directory other than “Twisted”.
I do this (with a name like “Twisted-CVS”) to remind myself that this tree comes from CVS and not from a released
version (like “Twisted-1.0.5”). This practice can cause a few problems, because there are a few places in the Twisted
tree that need to know where the tree starts, so they can add it to sys.path without requiring the user manually
set their PYTHONPATH. These functions walk the current directory up to the root, looking for a directory named
“Twisted” (sometimes exactly that, sometimes with a .startswith test). Generally these are test scripts or other
administrative tools which expect to be launched from somewhere inside the tree (but not necessarily from the top).

If you rename the tree to something other than Twisted, these tools may wind up trying to use Twisted source
files from /usr/lib/python2.2 or elsewhere on the default sys.path. Normally this won’t matter, but it is good to be
aware of the issue in case you run into problems.

twisted/test/process twisted.py is one of these programs.

9.4.3 Compiling C extensions

There are currently 3 C extension modules in Twisted: twisted.internet.cReactor, twisted.runner.portmap, and
twisted.spread.cBanana . These modules are optional, but you’ll have to compile them if you want to experience
their features, performance improvements, or bugs. There are two approaches.

17http://pyunit.sourceforge.net
18http://twistedmatrix.com/documents/TwistedDocs/current/api/public/toc-twisted.test-module.html
19http://twistedmatrix.com/users/jh.twistd/viewcvs/cgi/viewcvs.cgi/twisted/test/?cvsroot=Twisted
20http://twistedmatrix.com/developers/cvs

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 245

The first is to do a regular distutils ./setup.py build, which will create a directory under build/ to hold
both the generated .so files as well as a copy of the 600-odd .py files that make up Twisted. If you do this, you will
need to set your PYTHONPATH to something like MyDir/Twisted/build/lib.linux-i686-2.2 in order
to run code against the CVS twisted (as opposed to whatever’s installed in /usr/lib/python2.2 or wherever
python usually looks). In addition, you will need to re-run the build command every time you change a .py file.
The build/lib.foo directory is a copy of the main tree, and that copy is only updated when you re-run setup.
py build. It is easy to forget this and then wonder why your code changes aren’t being expressed.

The second technique is to build the C modules in place, and point your PYTHONPATH at the top of the tree,
like MyDir/Twisted. This way you’re using the .py files in place too, removing the confusion a forgotten rebuild
could cause with the separate build/ directory above. To build the C modules in place, do ./setup.py build ext
-i. You only need to re-run this command when you change the C files. Note that setup.py is not Make, it does
not always get the dependencies right (.h files in particular), so if you are hacking on the cReactor you may need to
manually delete the .o files before doing a rebuild. Also note that doing a setup.py clean will remove the .o
files but not the final .so files, they must be deleted by hand.

9.4.4 Running tests

To run the full unit-test suite, do:

./bin/trial -v twisted.test

To run a single test file (like twisted/test/test defer.py), do one of:

./bin/trial -v twisted.test.test_defer

or

./bin/trial -v twisted/test/test_defer.py

To run any tests that are related to a code file, like twisted/protocols/imap4.py, do:

./bin/trial -v --testmodule twisted/protocols/imap4.py

This depends upon the .py file having an appropriate “test-case-name” tag that indicates which test cases provide
coverage. See the Coding Standards (page 233) document for details about using “test-case-name”. In this example,
the twisted.test.test imap test will be run.

Many tests create temporary files in /tmp or ./ trial temp, but everything in /tmp should be deleted when the test
finishes. Sometimes these cleanup calls are commented out by mistake, so if you see a stray /tmp/@12345.1 directory,
it is probably from test dirdbm or test popsicle. Look for an rmtree that has been commented out and complain to
the last developer who touched that file.

9.4.5 Admin scripts

The admin/ directory holds several administrative tools, some of which are used when turning a CVS checkout into
a full numbered release.

CHAPTER 9. WORKING ON THE TWISTED CODE BASE 246

9.4.6 Building docs

Twisted documentation (not including the automatically-generated API docs) is in Lore Format (page 219). These
.html files are translated into .xhtml files by the “bin/lore” script, which can check the files for syntax problems
(hlint), process multiple files at once, insert the files into a template before processing, and can also translate the files
into LaTeX or PostScript instead.

To generate the full documentation set, run the admin/process-docs shell script. This will create processed
HTML, man pages, and 250-page “book.pdf” file containing all the docs rolled into a single nicely-formatted volume.
This script needs several helper tools to handle the images and the LaTeX conversion: debian packages “tetex-extra”,
“netpbm”, and “gs-common” should be sufficient. The docs-build process currently takes about 3 minutes on the
twistedmatrix.com build machine.

To build just the HTML form of the howto/ docs, do a subset of the work done in admin/process-docs, such
as the following. Note that the index file will be placed in doc/howto/index.xhtml.

./bin/lore -p --config template=doc/howto/template.tpl doc/howto/*.html

To run hlint over a single Lore document, such as doc/howto/cvs-dev.html, do the following. This is
useful because the HTML conversion may bail without a useful explanation if it sees mismatched tags.

./bin/lore -n --output lint doc/howto/cvs-dev.html

To convert it to HTML (including markup, interpolation of examples, footnote processing, etc), do the following.
The results will be placed in doc/howto/cvs-dev.xhtml:

./bin/lore -p --config template=doc/howto/template.tpl doc/howto/cvs-dev.html

Note that hyperlinks to other documents may not be quite right unless you include a “-l” argument to bin/lore.
Links in the .html file are to .html targets: when the .html is turned into .xhtml, the link targets are supposed to be
turned into .xhtml also. In addition to this, Lore markup of the form � code class=”API” � is supposed to turn into
a link to the corresponding API reference page. These links will probably be wrong unless the correct base URL is
provided to Lore.

9.4.7 Emacs

Check out the TwistedEmacs module (which lives in the same CVS repository, just do “cvs checkout TwistedEmacs”
instead of “cvs checkout Twisted”). twisted-dev.el has several utility functions which make it easier to grep for
methods, run test cases, process Lore documents, etc.

9.4.8 Building Debian packages

Running “debuild -uc -us” from the top of the CVS tree will (hopefully) result in a collection of .deb pack-
ages in the tree’s parent directory. This requires other tools to be installed (devscripts for one), and requires that
“admin/process-docs” be run first. The .debs created will have a version number based upon whatever is at the top of
debian/changelog, which is generally only updated when an official release is made, so be careful that you don’t
create confusingly-numbered package files.

Chapter 10

Manual Pages

10.1 CONCH.1

10.1.1 NAME

conch - connect to SSH servers

10.1.2 SYNOPSIS

conch [-l user] [-i identity [-i identity ...]] [-c cipher] [-m MAC] [-p port] [-n] [-t] [-T] [-V] [-C] [-N] [-s] [arg [...]]
conch –help

10.1.3 DESCRIPTION

The –help prints out a usage message to standard output.

-t, –user � user � User name to use

-i, –identity � identity � Add an identity file.

-c, –cipher � cipher � Cipher algorithm to use.

-m, –macs � mac � Specify MAC algorithms for protocol version 2.

-p, –port � port � Port to connect to.

-n, –null Redirect input from /dev/null

-t, –tty Allocate a tty even if command is given.

-n, –notty Do not allocate a tty.

-V, –version Display version number only.

-C, –compress nable compression.

247

CHAPTER 10. MANUAL PAGES 248

-N, –noshell Do not execute a shell or command.

-s, –subsystem Invoke command (mandatory) as SSH2 subsystem

–log Log to stderr

10.1.4 DESCRIPTION

Open an SSH connection to specified server, and either run the command given there or open a remote interactive
shell.

10.1.5 AUTHOR

Written by Moshe Zadka, based on conch’s help messages

10.1.6 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.1.7 COPYRIGHT

Copyright c
�

2002 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

10.1.8 SEE ALSO

ssh(1)

CHAPTER 10. MANUAL PAGES 249

10.2 GENERATELORE.1

10.2.1 NAME

lore - convert documentations formats

10.2.2 SYNOPSIS

lore [-l linkrel] [-d docsdir] [-i input] [-o output] [–config attribute[=value] [...]] [-p] [file [...]]
lore –help

10.2.3 DESCRIPTION

The –help prints out a usage message to standard output.

-p, –plain Use non-flashy progress bar - one file per line.

-n, –null Do not report progress at all.

-l, –linkrel Where non-document links should be relative to.

-d, –docsdir Where to look for .html files if no files are given.

-i, –input Input format. New input formats can be dynamically registered. Lore itself comes with “lore” (the standard
format), “mlore” (allows LaTeX equations) and “man” (man page format). If the input format is not registered
as a plugin, a module of the named input will be searched. For example, –i twisted.lore.defaultis equivalent to
using the default Lore input.

-o, –output Output format. Available output formats depend on the input. For the core formats, lore and mlore support
html, latex and lint, while man allows lore.

–config Add input/output-specific information. HTML output allows for ’ext= � extension � ’,
’template= � template � ’ and ’baseurl= � format string for API URLs � ’. LaTeX output allows for ’sec-
tion’ or ’chapter’ in Lore, and nothing in Math-Lore. Lore output allows for ’ext= � extension � ’. Lint output
allows nothing. Note that disallowed –config options are merely ignored, and do not cause errors.

10.2.4 DESCRIPTION

If no files are given, all *.html documents in docsdir are processed.

10.2.5 SEE ALSO

doc/howto/lore.xhtml, doc/howto/doc-standard.xhtml, doc/howto/extend-lore.xhtml

10.2.6 AUTHOR

Written by Moshe Zadka

CHAPTER 10. MANUAL PAGES 250

10.2.7 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.2.8 COPYRIGHT

Copyright c
�

2003 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 10. MANUAL PAGES 251

10.3 IM.1

10.3.1 NAME

im - run Instance Messenger, the Tkinter twisted.words client

10.3.2 SYNOPSIS

im

10.3.3 DESCRIPTION

Run Instance Messenger, the Tkinter twisted.words client

10.3.4 AUTHOR

Written by Moshe Zadka, based on im’s help messages

10.3.5 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.3.6 COPYRIGHT

Copyright c
�

2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 10. MANUAL PAGES 252

10.4 MANHOLE.1

10.4.1 NAME

manhole - Connect to a Twisted Manhole service

10.4.2 SYNOPSIS

manhole

10.4.3 DESCRIPTION

manhole is a GTK interface to Twisted Manhole services. You can execute python code as if at an interactive Python
console inside a running Twisted process with this.

10.4.4 AUTHOR

Written by Chris Armstrong, copied from Moshe Zadka’s “faucet” manpage.

10.4.5 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.4.6 COPYRIGHT

Copyright c
�

2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 10. MANUAL PAGES 253

10.5 MKTAP.1

10.5.1 NAME

mktap - create twisted.servers

10.5.2 SYNOPSIS

mktap [options] apptype [application option]...
mktap –help apptype

10.5.3 DESCRIPTION

The –help prints out a usage message to standard output.

–uid, -u � uid � Application belongs to this uid, and should run with its permissions.

–gid, -d � gid � Application belongs to this gid, and should run with its permissions.

–append, -a � file � Append given servers to given file, instead of creating a new one. File should be be a tap file.

–appname, -n � name � Use the specified name as the process name when the application is run with twistd(1). This
option also causes some initialization code to be duplicated when twistd(1) is run.

–xml, -x Output as a .tax XML file rather than a pickle.

–source, -s Output as a .tas (AOT Python source) file rather than a pickle.

apptype Can be ’web’, ’portforward’, ’toc’, ’coil’, ’words’, ’manhole’, ’im’, ’news’, ’socks’, ’telnet’, ’parent’, ’sib-
ling’, ’ftp’, and ’mail’. Each of those support different options.

10.5.4 portforward options

-h, –host � host � Proxy connections to � host �
-d, –dest port � port � Proxy connections to � port � on remote host.

-p, –port � port � Listen locally on � port �

10.5.5 web options

-u, –user Makes a server with ˜/public html and ˜/.twistd-web-pb support for users.

–personal Instead of generating a webserver, generate a ResourcePublisher which listens on ˜/.twistd-web-pb

–path � path � � path � is either a specific file or a directory to be set as the root of the web server. Use this if you
have a directory full of HTML, cgi, php3, epy, or rpy files or any other files that you want to be served up raw.

-p, –port � port � � port � is a number representing which port you want to start the server on.

CHAPTER 10. MANUAL PAGES 254

-m, –mime type � mimetype � � mimetype � is the default MIME type to use for files in a –path web server when
none can be determined for a particular extension. The default is ’text/html’.

–allow ignore ext Specify whether or not a request for ’foo’ should return ’foo.ext’. Default is off.

–ignore-ext. � extension � Specify that a request for ’foo’ should return ’foo. � extension � ’.

-t, –telnet � port � Run a telnet server on � port � , for additional configuration later.

-i, –index � name � Use an index name other than “index.html”

–https � port � Port to listen on for Secure HTTP.

-c, –certificate � filename � SSL certificate to use for HTTPS. [default: server.pem]

-k, –privkey � filename � SSL certificate to use for HTTPS. [default: server.pem]

–processor � ext � = � class name � Adds a processor to those file names. (Only usable if after –path)

–resource-script � script name � Sets the root as a resource script. This script will be re-evaluated on every request.

This creates a web.tap file that can be used by twistd. If you specify no arguments, it will be a demo webserver
that has the Test class from twisted.web.test in it.

10.5.6 toc options

-p � port � � port � is a number representing which port you want to start the server on.

10.5.7 mail options

-r, –relay � ip � , � port � = � queue directory � Relay mail to all unknown domains through given IP and port, using
queue directory as temporary place to place files.

-d, –domain � domain � = � path � generate an SMTP/POP3 virtual maildir domain named “domain” which saves to
“path”

-u, –username � name � = � password � add a user/password to the last specified domains

-b, –bounce to postmaster undelivered mails are sent to the postmaster, instead of being rejected.

-p, –pop � port � � port � is a number representing which port you want to start the pop3 server on.

-s, –smtp � port � � port � is a number representing which port you want to start the smtp server on.

This creates a mail.tap file that can be used by twistd(1)

10.5.8 telnet options

-p, –port � port � Run the telnet server on � port �
-u, –username � name � set the username to � name �
-w, –password � password � set the password to � password �

CHAPTER 10. MANUAL PAGES 255

10.5.9 socks options

-i, –interface � interface � Listen on interface � interface �
-p, –port � port � Run the SOCKSv4 server on � port �
-l, –log � filename � log connection data to � filename �

10.5.10 ftp options

-a, –anonymous Allow anonymous logins

-3, –thirdparty Allow third party connections

–otp Use one time passwords (OTP)

-p, –port � port � Run the FTP server on � port �
-r, –root � path � Define the local root of the FTP server

–anonymoususer � username � Define the the name of the anonymous user

10.5.11 manhole options

-p, –port � port � Run the manhole server on � port �
-u, –user � name � set the username to � name �
-w, –password � password � set the password to � password �

10.5.12 words options

-p, –port � port � Run the Words server on � port �
-i, –irc � port � Run IRC server on port � port �
-w, –web � port � Run web server on port � port �

10.5.13 AUTHOR

Written by Moshe Zadka, based on mktap’s help messages

10.5.14 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.5.15 COPYRIGHT

Copyright c
�

2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 10. MANUAL PAGES 256

10.5.16 SEE ALSO

twistd(1)

CHAPTER 10. MANUAL PAGES 257

10.6 IM.1

10.6.1 NAME

t-im - run Instance Messenger, the GTK+ twisted.words client

10.6.2 SYNOPSIS

t-im

10.6.3 DESCRIPTION

Run Instance Messenger, the GTK+ twisted.words client

10.6.4 AUTHOR

Written by Moshe Zadka, based on t-im’s code

10.6.5 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.6.6 COPYRIGHT

Copyright c
�

2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 10. MANUAL PAGES 258

10.7 TAP2DEB.1

10.7.1 NAME

tap2deb - create Debian packages which wrap .tap files

10.7.2 SYNOPSIS

tap2deb [options]

10.7.3 DESCRIPTION

Create a ready to upload Debian package in “.build”

-u, –unsigned do not sign the Debian pacakge

-t, –tapfile � tapfile � Build the application around the given .tap (default twistd.tap)

-y, –type � type � The configuration has the given type . Allowable types are tap, source, xml and python. The first
three types are mktap(1) output formats, while the last one is a manual building of application (see twistd(1), the
-y option).

-p, –protocol � protocol � The name of the protocol this will be used to serve. This is intended as a part of the
description. Default is the name of the tapfile, minus any extensions.

-d, –debfile � debfile � The name of the debian package. Default is ’twisted-’+protocol.

-V, –set-version � version � The version of the Debian package. The default is 1.0

-e, –description � description � The one-line description. Default is uninteresting.

-l, –long description � long description � A multi-line description. Default is explanantion about this being an auto-
matic package created from tap2deb.

-m, –maintainer � maintainer � The maintainer, as “Name Lastname � email address � ”. This will go in the meta-
files, as well as be used as the id to sign the package.

-v, –version Output version information and exit.

10.7.4 AUTHOR

Written by Moshe Zadka, based on twistd’s help messages

10.7.5 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.7.6 COPYRIGHT

Copyright c
�

2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 10. MANUAL PAGES 259

10.7.7 SEE ALSO

mktap(1)

CHAPTER 10. MANUAL PAGES 260

10.8 TAPCONVERT.1

10.8.1 NAME

tapconvert - convert Twisted configurations from one format to another

10.8.2 SYNOPSIS

tapconvert -i input -o output [-f input-type] [-t output-type] [-d] [-e]
tapconvert –help

10.8.3 DESCRIPTION

The –help prints out a usage message to standard output.

–in, -i � input file � The name of the input configuration.

–out, -o � output file � The name of the output configuration.

–typein, -f � input type � The type of the input file. Can be either ’guess’, ’python’, ’pickle’, ’xml’, or ’source’.
Default is ’guess’.

–typeout, -t � output type � The type of the output file. Can be either ’pickle’, ’xml’, or ’source’. Default is ’source’.

–decrypt, -d Decrypt input.

–encrypt, -e Encrypt output.

10.8.4 AUTHOR

Written by Moshe Zadka, based on tapconvert’s help messages

10.8.5 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.8.6 COPYRIGHT

Copyright c
�

2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

10.8.7 SEE ALSO

mktap(1)

CHAPTER 10. MANUAL PAGES 261

10.9 TRIAL.1

10.9.1 NAME

trial - run unit tests

10.9.2 SYNOPSIS

trial [-b] [-v—-o—-j] [-r reactor] [-l logfile] [-m module [-m module ...]] [-p package [-p package ...]]
file—module—package—TestCase—testMethod ...

trial –help

10.9.3 DESCRIPTION

trial loads and executes a suite of unit tests, obtained from modules and packages listed on the command line. The
–help option prints out a usage message to standard output.

-s, –summary Print out just a machine-parseable summary of the results.

-v, –verbose Be more verbose. Without this option, trial prints out a single character for each test. (e.g. An ’F’ for
a failure, a ’.’ for a success, a ’S’ for skipped test, a ’T’ for a todo and ’!’ for unexpected success). With this
option, trial prints a single line for each test. This is especially useful for gauging how long each test takes.

-o, –bwverbose Be verbose, but do not attempt to use colors (more log-file friendly)

-j, –jelly Report results in a machine-readable jelly stream.

–timing Report results with timing information for each test.

–tbformat � format � Format to display tracebacks with. Valid values are ’plain’ and ’emacs’, default being ’plain’.

-m, –module � module � Module containing test cases.

–testmodule � module � Find the test case for a named file

-p, –package � package � Package containing modules that contain test cases. trial loads modules named ’test ’
within the given package.

-l, –logfile � logfile � Log exceptions (and other things) to the given logfile.

-r, –reactor � reactor � Use this reactor for running the tests.

-b, –debug Run the tests in the Python debugger. Also does post-mortem debugging on exceptions.

-R, –recurse Recursively search the specified packages for test modules.

10.9.4 AUTHOR

Written by Jonathan M. Lange

CHAPTER 10. MANUAL PAGES 262

10.9.5 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.9.6 COPYRIGHT

Copyright c
�

2003 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 10. MANUAL PAGES 263

10.10 TWISTD.1

10.10.1 NAME

twistd - run twisted.internet.app.Application pickles

10.10.2 SYNOPSIS

twistd [options]

10.10.3 DESCRIPTION

Read an twisted.internet.app.Application out of a file and runs it.

-n, –nodaemon Don’t daemonize (stay in foreground)

-q, –quiet be a little more quiet

-p, –profile Run profiler

-b, –debug Run the application in the Python Debugger (implies nodaemon option). Sending a SIGINT signal to the
process will drop it into the debugger.

-o, –no save Do not save shutdown state

–originalname Behave as though the specified Application has no process name set, and run with the standard process
name (the python binary in most cases).

-l, –logfile � logfile � Log to a specified file, - for stdout (default twistd.log). The log file will be rotated on SIGUSR1.

–pidfile � pidfile � Save pid in specified file (default twistd.pid)

–chroot � directory � Chroot to a supplied directory before running (default – don’t chroot). Chrooting is done before
changing the current directory.

-d, –rundir � directory � Change to a supplied directory before running (default .)

-r, –reactor � reactor � Choose which ReactorCore event loop to use, such as ’poll’ or ’gtk’.

–spew Write an extremely verbose log of everything that happens. Useful for debugging freezes or locks in complex
code.

-f, –file � tap file � Read the given .tap file (default twistd.tap)

-x, –xml � tax file � Load an Application from the given .tax (XML) file.

-s, –source � tas file � Load an Application from the given .tas (AOT Python source) file.

-y, –python � python file � Use the variable “application” from the given Python file. This setting, if given, overrides
-f.

-g, –plugin � plugin name � Read config.tac from a plugin package, as with -y.

–syslog Log to syslog, not to file.

–prefix � prefix � Use the specified prefix when logging to logfile. Default is “twisted”.

CHAPTER 10. MANUAL PAGES 264

10.10.4 AUTHOR

Written by Moshe Zadka, based on twistd’s help messages

10.10.5 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.10.6 COPYRIGHT

Copyright c
�

2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

10.10.7 SEE ALSO

mktap(1)

CHAPTER 10. MANUAL PAGES 265

10.11 WEBSETROOT.1

10.11.1 NAME

websetroot - set the root of a Twisted web server

10.11.2 SYNOPSIS

websetroot � -f tapfile — -y codefile — -x XML — -s AOT ��� –pickle pickle — –script script � [-e] [–port port]
websetroot –help

10.11.3 DESCRIPTION

The –help prints out a usage message to standard output.

-e, –encrypted The specified tap/aos/xml file is encrypted.

-p, –port � port � The port the web server is running on [default: 80]

-f, –file � file � read the given .tap file [default: twistd.tap]

-y, –python � file � read an application from within a Python file

-x, –xml � file � Read an application from a .tax file (Marmalade format).

-s, –source � file � Read an application from a .tas file (AOT format).

–script � file � Read the root resource from the given resource script file

–pickle � file � Read the root resource from the given resource pickle file

10.11.4 AUTHOR

Written by Moshe Zadka, based on websetroot’s help messages

10.11.5 REPORTING BUGS

Report bugs to � twisted-python@twistedmatrix.com � .

10.11.6 COPYRIGHT

Copyright c
�

2002 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

10.11.7 SEE ALSO

mktap(1)

Chapter 11

Appendix

11.1 The Twisted FAQ

11.1.1 General

What is “Twisted”?

Please see Twisted1

Why should I use Twisted?

See The Twisted Advantage2

I have a problem “getting” Twisted.

Did you check the HOWTO collection? There are so many documents there that they might overwhelm you... try
starting from the index, reading through the overviews and seeing if there seems to be a chapter which explains what
you need to. You can try reading the PostScript or PDF formatted books, inside the distribution. And, remember, the
source will be with you... always.

Why is Twisted so big?

Twisted is a lot of things, rolled into one big package. We’re not sure if it’ll stay this way, yet, but for now, if you have
only specific needs, we recommend grabbing the big Twisted tarball, and if you want, you can run the ’setup.py’ script
with a modified config file to generate a package with only certain Twisted sub-packages. Twisted as a whole makes
it into many operating system distributions (FreeBSD, Debian and Gentoo, at least) so size shouldn’t be an issue for
the end developer or user. In addition, packaging Twisted as a whole makes sure the end users do not have to worry
about versioning parts of Twisted and inter-version compatibility.

If you are distributing Twisted to end-users, you can base your distribution on the “Nodocs” packages, which are
signficantly smaller.

1http://twistedmatrix.com/products/twisted
2http://twistedmatrix.com/services/twisted-advantage

266

CHAPTER 11. APPENDIX 267

But won’t Twisted bloat my program, since it’s so big?

No. You only need to import the sub-packages which you want to use, meaning only those will be loaded into memory.
So if you write a low-level network protocol, you’d only import twisted.internet, leaving out extraneous things like
twisted.web, etc. Twisted itself is very careful with internal dependancies, so importing one subpackage is not likely
to import the whole twisted package.

11.1.2 Stability

Does the 1.0 release mean that all of Twisted’s APIs are stable?

No, only specific parts of Twisted are stable, i.e. we only promise backwards compatibility for some parts of Twisted.
While these APIs may be extended, they will not change in ways that break existing code that uses them.

While other parts of Twisted are not stable, we will however do our best to make sure that there is backwards
compatibility for these parts as well. In general, the more the module or package are used, and the closer they are to
being feature complete, the more we will concentrate on providing backwards compatibility when API changes take
place.

Which parts of Twisted are stable?

Only modules explictily marked as such can be considered stable. Semi-stable modules may change, but not in a large
way and some sort of backwards-compatibily will probably be provided. If no comment about API stability is present,
assume the module is unstable.

In Twisted 1.0, most of twisted.internet is completely stable, other than:

1. UDP support

2. twisted.internet.win32eventreactor - will be replaced with win32support in future.

But as always, the only accurate way of knowing a module’s stability is reading the module’s docstrings.

11.1.3 Installation

I run mktap (from site-packages/twisted/scripts/mktap.py) and nothing happens!

Don’t run scripts out of site-packages. The Windows installer should install executable scripts to someplace like
C: � Python22 � scripts � , *nix installers put them in $PREFIX/bin, which should be in your $PATH.

11.1.4 Core Twisted

How can I access self.factory from my Protocol’s init ?

You can’t. A Protocol doesn’t have a Factory when it is created. Instead, you should probably be doing that in your
Protocol’s connectionMade method.

Similarly you shouldn’t be doing “real” work, like connecting to databases, in a Factory’s init either. Instead,
do that in startFactory.

See Writing Servers (page 31) and Writing Clients (page 36) for more details.

CHAPTER 11. APPENDIX 268

Where can I find out how to write Twisted servers?

Try Writing Servers (page 31).

When I try to install my reactor, I get errors about a reactor already being installed. What gives?

Here’s the rule - installing a reactor should always be the first thing you do, and I do mean first. Importing other stuff
before you install the reactor can break your code.

Tkinter and wxPython support, as they do not install a new reactor, can be done at any point, IIRC.

twistd won’t load my .tap file! What’s this Ephemeral nonsense?

When the pickled application state cannot be loaded for some reason, it is common to get a rather opaque error like
so:

% twistd -f test2.tap

Failed to load application: global name ’initRun’ is not defined

The rest of the error will try to explain how to solve this problem, but a short comment first: this error is indeed
terse – but there is probably more data available elsewhere – namely, the twistd.log file. Open it up to see the full
exception.

The error might also look like this:

Failed to load application: <twisted.persisted.styles.Ephemeral instance at
0x82450a4> is not safe for unpickling

To load a .tap file, as with any unpickling operation, all the classes used by all the objects inside it must be
accessible at the time of the reload. This may require the PYTHONPATH variable to have the same directories as were
available when the application was first pickled.

A common problem occurs in single-file programs which define a few classes, then create instances of those classes
for use in a server of some sort. If the class is used directly, the name of the class will be recorded in the .tap file
as something like main .MyProtocol. When the application is reloaded, it will look for the class definition in
main , which probably won’t have it. The unpickling routines need to know the module name, and therefore the

source file, from which the class definition can be loaded.
The way to fix this is to import the class from the same source file that defines it: if your source file is called

myprogram.py and defines a class called MyProtocol, you will need to do a from myprogram import My
Protocol before (and in the same namespace as) the code that references the MyProtocol class. This makes it
important to write the module cleanly: doing an import myprogram should only define classes, and should not
cause any other subroutines to get run. All the code that builds the Application and saves it out to a .tap file must be
inside an if name == ’ main ’ clause to make sure it is not run twice (or more).

When you import the class from the module using an “external” name, that name will be recorded in the pickled
.tap file. When the .tap is reloaded by twistd, it will look for myprogram.py to provide the definition of My
Protocol.

Here is a short example of this technique:

from twisted.internet.protocol import Protocol, Factory
from twisted.internet import reactor

CHAPTER 11. APPENDIX 269

Protocol Implementation

This is just about the simplest possible protocol
class Echo(Protocol):

def dataReceived(self, data):
"""As soon as any data is received, write it back."""
self.transport.write(data)

def main():
f = Factory()
f.protocol = Echo
reactor.listenTCP(8000, f)
reactor.run()

if __name__ == ’__main__’:
main()

doc/examples/echoserv.py — echoserv.py

I get “Interrupted system call” errors when I use os.popen2. How do I read results from a sub-process in
Twisted?

You should be using reactor.spawnProcess (see interfaces.IReactorProcess.spawnProcess).
There’s also a convenience function, getProcessOutput, in twisted.internet.utils.

My Deferred or DeferredList never fires, so my program just mysteriously hangs! What’s wrong?

It really depends on what your program is doing, but the most common cause is this: it is firing – but it’s an error, not
a success, and you have forgotten to add an errback (page 273), so nothing happens. Always add errbacks!

I get “exceptions.ValueError: signal only works in main thread” when I try to run my Twisted program! What’s
wrong?

The default reactor, by default, will install signal handlers to catch events like Ctrl-C, SIGTERM, and so on.
However, you can’t install signal handlers from non-main threads in Python, which means that reactor.run()
(and Application.run) will cause an error. Pass the installSignalHandlers=0 keyword argument to
reactor.run (or Application.run) to work around this.

11.1.5 Web

Is the Twisted web server a toy?

No. It is a production grade server. It is running continously on several sites and has been proven quite stable. The
server can take loads of up to 3000 users at a time and still keep churning several million requests a day, even on low
end hardware. It can serve static files or dynamically rendered pages.

CHAPTER 11. APPENDIX 270

But can Twisted Web do PHP?

Yes. It works out-of-the-box, so long as you’ve got the standalone php interpreter installed. You might also want to
take a look at Woven, Twisted’s native web templating system.

And can Twisted Web do virtual hosting?

Can it ever!
You can decide to go with one big process for all of them, a front server and a seperate server for each virtual host

(for example, for permission reasons), and you can even mix-and-match between Apache and Twisted (for example,
put Apache in the front and have Twisted handle some subset of the virtual host).

How do I use twisted.web to do complex things?

See the Twisted.Web Howto (page 161).

I’ve been using Woven since before it was called Woven. I just upgraded and now I’m getting a confusing
traceback talking about INodeMutator. What gives?

You probably have code that’s survived the upgrade from PyXML’s minidom to Twisted’s microdom. Try deleting
any .pxp files that you have lying around and the error will probably go away.

My Woven pages are sent to the browser with a trailing slash appended to the URL, which breaks all of the
relative links. How do I get rid of the trailing slash?

If you are subclassing Page, you can add a class attribute addSlash = 0, like this:

class Foo(page.Page):
addSlash = 0

If you are still subclassing Controller, you can put the addSlash = 0 there. Consider subclassing Page
instead, as having a Model, View, Controller triad as the base of a Page will be deprecated in the near future.

If you’re just using the generic Page instance, you can set it after creation like this:

resource = page.Page("foo")
resource.addSlash = 0

The default behavior of Woven is now to automatically add a slash because it makes creating relative links far
easier, ironically ;-)

Argh! When using Woven, my newlines get mangled inside a � pre �
Use the RawText view.

11.1.6 Requests and Contributing

Twisted is cool, but I need to add more functionality.

Great! Read our the docs, and if you’re feeling generous, contribute patches.

CHAPTER 11. APPENDIX 271

I have a patch. How do I maximize the chances the Twisted developers will include it?

Use unified diff. Either use cvs diff -u or, better yet, make a clean checkout and use diff -urN between them.
Make sure your patch applies cleanly. In your post to the mailing list, make sure it is inlined and without any word
wrapping.

And to whom do I send it?

To the mailing list3. If no one picks it up after a few days, it’s recommended that you add it to the bug tracker4 so that
it doesn’t get lost.

My company would love to use Twisted, but it’s missing feature X, can you implement it?

You have 3 options:

� Pay one of the Twisted developers to implement the feature.

� Implement the feature yourself.

� Add a feature request to our bug tracker. We will try to implement the feature, but there are no guarantees when
and if this will happen.

11.1.7 Documentation

Twisted really needs documentation for X, Y or Z - how come it’s not documented?.

We are doing the best we can, and there is documentation in progress for many parts of Twisted. There is a limit to
how much we can do in our free time. See also the answer to the next question.

Wow the Twisted documentation is nice! I want my docs to look like that too!

Now you can, with twisted.lore. See the manual page for lore. For source format documentation, see the
documentation standard description (page 239). For a more comprehensive explanation, see the Lore HOWTO (page
219).

11.1.8 Communicating with us

There’s a bug in Twisted. Where do I report it?

Unless it is a show-stopper bug, we usually won’t fix it if it’s already fixed in CVS5, so you would do well to look
there. Then send any pertinent information about the bug (hopefully as much information needed to reproduce it: OS,
CVS versions of any important files, Python version, code you wrote or things you did to trigger the bug, etc.) to the
mailing list6. If no one answers immediately, you should add it to the bug tracker7.

3http://twistedmatrix.com/cgi-bin/mailman/listinfo/twisted-python
4http://sourceforge.net/tracker/?group id=49387&atid=456015
5http://twistedmatrix.com/developers/cvs
6http://twistedmatrix.com/cgi-bin/mailman/listinfo/twisted-python
7http://sourceforge.net/tracker/?group id=49387&atid=456015

CHAPTER 11. APPENDIX 272

Where do I go for help?

Ask for help where the Twisted team hangs out8

How do I e-mail a Twisted developer?

First, note that in many cases this is the wrong thing to do: if you have a question about a part of Twisted, it’s usually
better to e-mail the mailing list. However, the preferred e-mail addresses for all Twisted developers are listed in the
file “CREDITS” in the CVS repository.

11.2 Twisted Glossary

Absolute submodel paths The full path to a Model (page 274) object, starting at the root. For example,
/foo/bar/baz

adaptee An object that has been adapted, also called “original”. See Adapter (this page).

Adapter An object whose sole purpose is to implement an Interface for another object. See Interfaces and Adapters
(page 96).

Application A twisted.internet.app.Application. There are HOWTOs on creating and manipulat-
ing (page 21) them as a system-administrator, as well as using (page 62) them in your code.

Authorizer An object responsible for managing Identities (page 273). See twisted.cred.authorizer.

Banana The low-level data marshalling layer of Twisted Spread (page 274). See twisted.spread.banana.

Broker A twisted.spread.pb.Broker, the object request broker for Twisted Spread (page 274).

cache A way to store data in readily accessible place for later reuse. Caching data is often done because the data is
expensive to produce or access. Caching data risks being stale, or out of sync with the original data.

COIL “COnfiguration ILlumination”. It is a (stagnant and incomplete) end-user interface for configuring Twisted
applications. See twisted.coil.

component A special kind of (persistent) Adapter that works with a twisted.python.components.
Componentized. See also Interfaces and Adapters (page 96).

Componentized A Componentized object is a collection of information, separated into domain-specific or role-
specific instances, that all stick together and refer to each other. Each object is an Adapter, which, in the
context of Componentized, we call “components”. See also Interfaces and Adapters (page 96).

conch Twisted’s SSH implementation.

Connector Object used to interface between client connections and protocols, usually used with a twisted.
internet.protocol.ClientFactory to give you control over how a client connection reconnects. See
twisted.internet.interfaces.IConnector and Writing Clients (page 36).

8http://twistedmatrix.com/services/online-help

CHAPTER 11. APPENDIX 273

Consumer An object that consumes data from a Producer (page 274). See twisted.internet.interfaces.
IConsumer.

controller (In Woven (page 275)) an object which accepts input from the user in the form of mouse clicks, keypresses,
and web form submissions, and updates the Model (page 274) component.

Cred Twisted’s authentication API, twisted.cred. See Introduction to Twisted Cred (page 17) and Twisted Cred
usage (page 139).

CVSToys A nifty set of tools for CVS, available at http://twistedmatrix.com/users/acapnotic/wares/code/CVSToys/.

Deferred A instance of twisted.internet.defer.Deferred, an abstraction for handling chains of call-
backs and error handlers (“errbacks”). See the Deferring Execution (page 45) HOWTO.

Enterprise Twisted’s RDBMS support. It contains twisted.enterprise.adbapi for asynchronous access to
any standard DB-API 2.0 module, and twisted.enterprise.row, a “Relational Object Wrapper (page
274)”. See Introduction to Twisted Enterprise (page 15) and Twisted Enterprise Row Objects (page 75) for more
details.

errback A callback attached to a Deferred (this page) with .addErrback to handle errors.

Factory In general, an object that constructs other objects. In Twisted, a Factory usually refers to a twisted.
internet.protocol.Factory, which constructs Protocol (page 274) instances for incoming or outgoing
connections. See Writing Servers (page 31) and Writing Clients (page 36).

Failure Basically, an asynchronous exception that contains traceback information; these are used for passing errors
through asynchronous callbacks.

Identity A Cred (this page) object that represents a single user with a username and a password of some sort.

im, t-im Abbreviation of “(Twisted) Instance Messenger (this page)”.

Instance Messenger Instance Messenger is a multi-protocol chat program that comes with Twisted. It can communi-
cate via TOC with the AOL servers, via IRC, as well as via PB (page 274) with Twisted Words (page 275). See
twisted.im.

Interface A class that defines and documents methods that a class conforming to that interface needs to have. A
collection of core twisted.internet interfaces can be found in twisted.internet.interfaces. See also
Interfaces and Adapters (page 96).

Jelly The serialization layer for Twisted Spread (page 274), although it can be used seperately from Twisted Spread as
well. It is similar in purpose to Python’s standard pickle module, but is more network-friendly, and depends
on a separate marshaller (Banana (page 272), in most cases). See twisted.spread.jelly.

Lore twisted.lore is Twisted’s documentation system. The source format is a subset of XHTML, and output
formats include HTML and LaTeX. See lore(1) (page 249) and the Twisted Documentation Standard (page 239).

Manhole A debugging/administration interface to a Twisted application. See Debugging with Manhole (page 23).

Marmalade An XML-based serialisation module. See twisted.persisted.marmalade.

CHAPTER 11. APPENDIX 274

Microdom A partial DOM implementation using SUX (page 275). It is simple and pythonic, rather than strictly
standards-compliant. See twisted.web.microdom.

model An object that contains data and business logic for manipulating this data.

model stack A stack of Model (page 274) instances which keeps track of the Model that is currently in scope during
the Woven (page 275) Page rendering process.

Names Twisted’s DNS server, found in twisted.names.

overrides (In Woven (page 275)) A way to add data to cached data. Overrides are not replaced when base data is
updated.

pattern A node in a Woven (page 275) HTML template whose sole purpose is to be copied and filled with data by a
View component.

relative submodel path A partial path to a Model (this page) object, relative to the top of the Model stack.

PB Abbreviation of “Perspective Broker (this page)”.

Perspective A Cred (page 273) object; an Identity (page 273)’s “perspective” (or “view”) onto a Service. There
may be many Perspectives associated with an Identity, and an Identity may have multiple Perspectives onto the
same Service (this page).

Perspective Broker The high-level object layer of Twisted Spread (this page), implementing semantics for method
calling and object copying, caching, and referencing. See twisted.spread.pb.

Producer An object that generates data a chunk at a time, usually to be processed by a Consumer (page 273). See
twisted.internet.interfaces.IProducer.

Protocol In general each network connection has its own Protocol instance to manage connection-specific state.
There is a collection of standard protocol implementations in twisted.protocols. See also Writing
Servers (page 31) and Writing Clients (page 36).

PSU There is no PSU.

Reactor The core event-loop of a Twisted application. See Reactor Basics (page 30).

Reality See “Twisted Reality (page 275)”

Resource A twisted.web.resource.Resource, which are served by Twisted Web. Resources can be as
simple as a static file on disk, or they can have dynamically generated content.

ROW Relational Object Wrapper, an object-oriented interface to a relational database. See Twisted Enterprise Row
Objects (page 75).

Service A twisted.cred.service.Service. See Twisted Cred usage (page 139) for a description of how
they relate to Applications (page 272), Perspectives (this page) and Identities (page 273).

Spread Twisted Spread9 is Twisted’s remote-object suite. It consists of three layers: Perspective Broker (this page),
Jelly (page 273) and Banana. (page 272) See Writing Applications with Perspective Broker (page 15).

9http://twistedmatrix.com/products/spread

CHAPTER 11. APPENDIX 275

Sturdy A persistent reference manager for PB (this page). See twisted.spread.sturdy.

submodel paths A path to a Model (this page) object. A way of referring to a piece of data in a Woven (page 275)
template that allows Python to locate the data in a tree of python objects.

SUX Small Uncomplicated XML, Twisted’s simple XML parser written in pure Python. See twisted.
protocols.sux.

TAP Twisted Application Pickle, or simply just a Twisted APplication. A serialised application that created with
mktap and runnable by twistd. See Using the Utilities (page 21).

Tendril A bridge between Twisted Words (this page) and IRC. See twisted.words.tendril.

Trial twisted.trial, Twisted’s unit-testing framework, modelled after pyunit10. See also Twisted’s Test Stan-
dard (page 241).

Twisted Matrix Laboratories The team behind Twisted. http://twistedmatrix.com/.

Twisted Reality In days of old, the Twisted Reality11 multiplayer text-based interactive-fiction system was the main
focus of Twisted Matrix Labs; Twisted, the general networking framework, grew out of Reality’s need for better
network functionality. Twisted Reality has since been broken off into a separate project.

usage The twisted.python.usage module, a replacement for the standard getopt module for parsing
command-lines which is much easier to work with. See Parsing command-lines (page 78).

wcfactory A factory (page 273) method for producing Controller (page 273) objects when a controller=
directive is encountered in a Woven (this page) Template.

wchild In Woven (this page), a factory (page 273) method for producing objects which represent URL segments
below the current object.

widgets In Woven (this page), a View subclass which specializes in rendering a fragment of the DOM tree.

wmfactory A factory (page 273) method for producing Model (page 274) objects when a model= directive is
encountered in a Woven (this page) Template.

Words Twisted Words is a multi-protocol chat server that uses the Perspective Broker (page 274) protocol as its native
communication style. See twisted.words.

Woven Web Object Visualization Environment. A web templating system based on XML and the Model-View-
Controller design pattern. See Developing Componentized Applications using Woven (page 179).

wvfactory A factory (page 273) method for producing View objects when a view= directive is encoutered in a
Woven (this page)Template.

Zoot Twisted’s Gnutella implementation (currently very incomplete). See twisted.zoot.

10http://pyunit.sourceforge.net/
11http://twistedmatrix.com/products/reality

CHAPTER 11. APPENDIX 276

11.3 Banana Protocol Specifications

11.3.1 Introduction

Banana is an efficient, extendable protocol for sending and receiving s-expressions. A s-expression in this context is a
list composed of byte strings, integers, large integers, floats and/or s-expressions.

11.3.2 Banana Encodings

The banana protocol is a stream of data composed of elements. Each element has the following general structure -
first, the length of element encoded in base-128, least signficant bit first. For example length 4674 will be sent as
0x42 0x24. For certain element types the length will be omitted (e.g. float) or have a different meaning (it is the
actual value of integer elements).

Following the length is a delimiter byte, which tells us what kind of element this is. Depending on the element
type, there will then follow the number of bytes specified in the length. The byte’s high-bit will always be set, so that
we can differentiate between it and the length (since the length bytes use 128-base, their high bit will never be set).

11.3.3 Element Types

Given a series of bytes that gave us length N, these are the different delimiter bytes:

List – 0x80 The following bytes are a list of N elements. Lists may be nested, and a child list counts as only one
element to its parent (regardless of how many elements the child list contains).

Integer – 0x81 The value of this element is the positive integer N. Following bytes are not part of this element.
Integers can have values of 0 � = N � = 2147483647.

String – 0x82 The following N bytes are a string element.

Negative Integer – 0x83 The value of this element is the integer N * -1, i.e. -N. Following bytes are not part of this
element. Negative integers can have values of 0 � = -N � = -2147483648.

Float - 0x84 The next 8 bytes are the float encoded in IEEE 754 floating-point “double format” bit layout. No length
bytes should have been defined.

Large Integer – 0x85 The value of this element is the positive large integer N. Following bytes are not part of this
element. Large integers have no size limitation.

Large Negative Integer – 0x86 The value of this element is the negative large integer -N. Following bytes are not
part of this element. Large integers have no size limitation.

Large integers are intended for arbitary length integers. Regular integers types (positive and negative) are limited
to 32-bit values.

Examples

Here are some examples of elements and their encodings - the type bytes are marked in bold:

1 0x01 0x81

CHAPTER 11. APPENDIX 277

-1 0x01 0x83

1.5 0x84 0x3f 0xf8 0x00 0x00 0x00 0x00 0x00 0x00

"hello" 0x05 0x82 0x68 0x65 0x6c 0x6c 0x6f

[] 0x00 0x80

[1, 23] 0x02 0x80 0x01 0x81 0x17 0x81

123456789123456789 0x15 0x3e 0x41 0x66 0x3a 0x69 0x26 0x5b 0x01 0x85

[1, ["hello"]] 0x02 0x80 0x01 0x81 0x01 0x80 0x05 0x82 0x68 0x65 0x6c 0x6c
0x6f

11.3.4 Profiles

The Banana protocol is extendable. Therefore, it supports the concept of profiles. Profiles allow developers to extend
the banana protocol, adding new element types, while still keeping backwards compatability with implementations
that don’t support the extensions. The profile used in each session is determined at the handshake stage (see below.)

A profile is specified by a unique string. This specification defines two profiles - "none" and "pb". The
"none" profile is the standard profile that should be supported by all Banana implementations. Additional profiles
may be added in the future.

The ”none” Profile

The "none" profile is identical to the delimiter types listed above. It is highly recommended that all Banana clients
and servers support the "none" profile.

The ”pb” Profile

The "pb" profile is intended for use with the Perspective Broker protocol, that runs on top of Banana. Basically, it
converts commonly used PB strings into shorter versions, thus minimizing bandwidth usage. It does this by adding an
additional delimiter byte, 0x87. This byte should not be prefixed by a length. It should be followed by a single byte,
which tells us to which string element to convert it:

0x01 ’None’

0x02 ’class’

0x03 ’dereference’

0x04 ’reference’

0x05 ’dictionary’

0x06 ’function’

0x07 ’instance’

0x08 ’list’

CHAPTER 11. APPENDIX 278

0x09 ’module’

0x0a ’persistent’

0x0b ’tuple’

0x0c ’unpersistable’

0x0d ’copy’

0x0e ’cache’

0x0f ’cached’

0x10 ’remote’

0x11 ’local’

0x12 ’lcache’

0x13 ’version’

0x14 ’login’

0x15 ’password’

0x16 ’challenge’

0x17 ’logged in’

0x18 ’not logged in’

0x19 ’cachemessage’

0x1a ’message’

0x1b ’answer’

0x1c ’error’

0x1d ’decref’

0x1e ’decache’

0x1f ’uncache’

11.3.5 Protocol Handshake and Behaviour

The initiating side of the connection will be referred to as “client”, and the other side as “server”.
Upon connection, the server will send the client a list of string elements, signifying the profiles it supports. It is

recommended that "none" be included in this list. The client then sends the server a string from this list, telling the
server which profile it wants to use. At this point the whole session will use this profile.

Once a profile has been established, the two sides may start exchanging elements. There is no limitation on order
or dependencies of messages. Any such limitation (e.g. “server can only send an element to client in response to a
request from client”) is application specific.

Upon receiving illegal messages, failed handshakes, etc., a Banana client or server should close its connection.

