
 Exim’s interface to mail filtering

Exim is a mail transfer agent for Unix-like systems. This document describes the user interface to its
in-built mail filtering facility, and is copyright University of Cambridge 2002. It corresponds to
Exim version 4.10.

Contents

1. Introduction 2
2. Testing a new filter file 2
3. Installing a filter file 3
4. Testing an installed filter file 3
5. Format of filter files 3
6. String expansion 4
7. Some useful general variables 5
8. Header variables 6
9. User variables 6
10. Significant deliveries 6

 11. Filter commands 6
12. The add command 7
13. The deliver command 7
14. The save command 8
15. The pipe command 8
16. Mail commands 10
17. Logging commands 11
18. The finish command 12
19. The testprint command 12
20. The fail command 12
21. The freeze command 12
22. Obeying commands conditionally 12
23. String testing conditions 13
24. Numeric testing conditions 14
25. Testing for personal mail 14
26. Testing for significant deliveries 15
27. Testing for error messages 15
28. Testing delivery status 16
29. Testing a list of addresses 16
30. Multiple personal mailboxes 16
31. Ignoring delivery errors 17
32. Examples of filter commands 17

[1]

1. Introduction

Most Unix mail transfer agents (programs that deliver mail) permit individual users to specify
automatic forwarding of their mail, usually by placing a list of forwarding addresses in a file called
.forward in their home directories. Exim extends this facility by allowing the forwarding instructions
to be a set of rules rather than just a list of addresses, in effect providing ‘.forward with conditions’.
Operating the set of rules is called filtering, and the file that contains them is called a filter file.

The ability to use filtering has to be enabled by the system administrator, and some of the individual
facilities can be separately enabled or disabled. A local document should be provided to describe
exactly what has been enabled. In the absence of this, consult your system administrator.

It is important to realize that no deliveries are actually made while a filter file is being processed. The
result of filtering is a list of destinations to which a message should be delivered – the deliveries
themselves take place later, along with all other deliveries for the message. This means that it is not
possible to test for successful deliveries while filtering. It also means that duplicate addresses gener-
ated by filtering are dropped, as with any other duplicate addresses.

This document describes how to use a filter file and the format of its contents. It is intended for use by
end-users. How the system administrator can set up and control the use of filtering is described in the
full Exim specification.

2. Testing a new filter file
Filter files, especially the more complicated ones, should always be tested, as it is easy to make
mistakes. Exim provides a facility for preliminary testing of a filter file before installing it. This tests
the syntax of the file and its basic operation, and can also be used with ordinary .forward files.

Because a filter can do tests on the content of messages, a test message is required. Suppose you have
a new filter file called myfilter and a test message called test-message. Assuming that Exim is
installed with the conventional path name /usr/sbin/sendmail (some operating systems use
/usr/lib/sendmail), the following command can be used:

/usr/sbin/sendmail -bf myfilter <test-message

The -bf option tells Exim that the following item on the command line is the name of a filter file
which is to be tested. There is also a -bF option, which is similar, but which is used for testing system
filter files, as opposed to user filter files, and which is therefore of use only to the system
administrator.

The test message is supplied on the standard input. If there are no message-dependent tests in the filter,
an empty file (/dev/null) can be used. A supplied message must start with header lines or the ‘From’
message separator line which is found in many multi-message folder files. Note that blank lines at the
start terminate the header lines. A warning is given if no header lines are read.

The result of running this command, provided no errors are detected in the filter file, is a list of the
actions that Exim would try to take if presented with the message for real. For example, the output

Deliver message to: gulliver@lilliput.fict.example
Save message to: /home/lemuel/mail/archive

means that one copy of the message would be sent to gulliver@lilliput.fict.example, and another
would be added to the file /home/lemuel/mail/archive, if all went well.

The actions themselves are not attempted while testing a filter file in this way; there is no check, for
example, that any forwarding addresses are valid. If you want to know why a particular action is being
taken, add the -v option to the command. This causes Exim to output the results of any conditional
tests and to indent its output according to the depth of nesting of if commands. Further additional
output from a filter test can be generated by the testprint command, which is described below.

When Exim is outputting a list of the actions it would take, if any text strings are included in the
output, non-printing characters therein are converted to escape sequences. In particular, if any text
string contains a newline character, this is shown as ‘\n’ in the testing output.

[2]

When testing a filter in this way, Exim makes up an ‘envelope’ for the message. The recipient is by
default the user running the command, and so is the sender, but the command can be run with the -f
option to supply a different sender. For example,

/usr/sbin/sendmail -bf myfilter -f islington@neverwhere <test-message

Alternatively, if the -f option is not used, but the first line of the supplied message is a ‘From’
separator from a message folder file (not the same thing as a From: header line), the sender is taken
from there. If -f is present, the contents of any ‘From’ line are ignored.

The ‘return path’ is the same as the envelope sender, unless the message contains a Return-path:
header, in which case it is taken from there. You need not worry about any of this unless you want to
test out features of a filter file that rely on the sender address or the return path.

It is possible to change the envelope recipient by specifying further options. The -bfd option changes
the domain of the recipient address, while the -bfl option changes the ‘local part’, that is, the part
before the @ sign. An adviser could make use of these to test someone else’s filter file.

The -bfp and -bfs options specify the prefix or suffix for the local part. These are relevant only when
support for multiple personal mailboxes is implemented; see the description in section 30 below.

3. Installing a filter file
A filter file is normally installed under the name .forward in your home directory – it is distinguished
from a conventional .forward file by its first line (described below). However, the file name is
configurable, and some system administrators may choose to use some different name or location for
filter files.

4. Testing an installed filter file
Testing a filter file before installation cannot find every potential problem; for example, it does not
actually run commands to which messages are piped. Some ‘live’ tests should therefore also be done
once a filter is installed.

If at all possible, test your filter file by sending messages from some other account. If you send a
message to yourself from the filtered account, and delivery fails, the error message will be sent back to
the same account, which may cause another delivery failure. It won’t cause an infinite sequence of
such messages, because delivery failure messages do not themselves generate further messages.
However, it does mean that the failure won’t be returned to you, and also that the postmaster will have
to investigate the stuck message.

If you have to test a filter from the same account, a sensible precaution is to include the line

if error_message then finish endif

as the first filter command, at least while testing. This causes filtering to be abandoned for a delivery
failure message, and since no destinations are generated, the message goes on to get delivered to the
original address. Unless there is a good reason for not doing so, it is recommended that the above test
be left in all filter files.

5. Format of filter files
Apart from leading white space, the first text in a filter file must be

Exim filter

This is what distinguishes it from a conventional .forward file. If the file does not have this initial line
it is treated as a conventional .forward file, both when delivering mail and when using the -bf testing
mechanism. The white space in the line is optional, and any capitalization may be used. Further text
on the same line is treated as a comment. For example, you could have

Exim filter <<== do not edit or remove this line!

[3]

The remainder of the file is a sequence of filtering commands, which consist of keywords and data
values. For example, in the command

deliver gulliver@lilliput.fict.example

the keyword is deliver and the data value is gulliver@lilliput.fict.example. White
space or line breaks separate the components of a command, except in the case of conditions for the
if command, where round brackets (parentheses) also act as separators. Complete commands are
separated from each other by white space or line breaks; there are no special terminators. Thus, several
commands may appear on one line, or one command may be spread over a number of lines.

If the character # follows a separator anywhere in a command, everything from # up to the next
newline is ignored. This provides a way of including comments in a filter file.

There are two ways in which a data value can be input:

• If the text contains no white space then it can be typed verbatim. However, if it is part of a
condition, it must also be free of round brackets (parentheses), as these are used for grouping in
conditions.

• Otherwise it must be enclosed in double quotation marks. In this case, the character \ (backslash)
is treated as an ‘escape character’ within the string, causing the following character or characters
to be treated specially:

\n is replaced by a newline
\r is replaced by a carriage return
\t is replaced by a tab

Backslash followed by up to three octal digits is replaced by the character specified by those
digits, and \x followed by up to two hexadecimal digits is treated similarly. Backslash followed
by any other character is replaced by the second character, so that in particular, \" becomes " and
\\ becomes \ . A data item enclosed in double quotes can be continued onto the next line by
ending the first line with a backslash. Any leading white space at the start of the continuation line
is ignored.

In addition to the escape character processing that occurs when strings are enclosed in quotes, most
data values are also subject to string expansion (as described in the next section), in which case the
characters $ and \ are also significant. This means that if a single backslash is actually required in such
a string, and the string is also quoted, \\\\ has to be entered.

6. String expansion
Most data values are expanded before use. Expansion consists of replacing substrings beginning with $
with other text. The full expansion facilities available in Exim are extensive. If you want to know
everything that Exim can do with strings, you should consult the chapter on string expansion in the
Exim documentation.

In filter files, by far the most common use of string expansion is the substitution of the contents of a
variable. For example, the substring

$reply_address

is replaced by the address to which replies to the message should be sent. If such a variable name is
followed by a letter or digit or underscore, it must be enclosed in curly brackets (braces), for example,

${reply_address}

If a $ character is actually required in an expanded string, it must be escaped with a backslash, and
because backslash is also an escape character in quoted input strings, it must be doubled in that case.
The following two examples illustrate two different ways of testing for a $ character in a message:

if $message_body contains \$ then ...
if $message_body contains "\\$" then ...

[4]

You can prevent part of a string from being expanded by enclosing it between two occurrences of \N.
For example,

if $message_body contains \N$$$$\N then ...

tests for a run of four dollar characters.

7. Some useful general variables
A complete list of the available variables is given in the Exim documentation. This shortened list
contains the ones that are most likely to be useful in personal filter files:

$body_linecount: The number of lines in the body of the message.

$home: The user ’s home directory.

$local_part: The part of the email address that precedes the @ sign – normally the user ’s login name.
If support for multiple personal mailboxes is enabled (see section 30 below) and a prefix or suffix for
the local part was recognized, it is removed from the string in this variable.

$local_part_prefix: If support for multiple personal mailboxes is enabled (see section 30 below), and
a local part prefix was recognized, this variable contains the prefix. Otherwise it contains an empty
string.

$local_part_suffix: If support for multiple personal mailboxes is enabled (see section 30 below), and a
local part suffix was recognized, this variable contains the suffix. Otherwise it contains an empty
string.

$message_body: The initial portion of the body of the message. By default, up to 500 characters are
read into this variable, but the system administrator can configure this to some other value. Newlines
in the body are converted into single spaces.

$message_body_end: The final portion of the body of the message, formatted and limited in the same
way as $message_body.

$message_body_size: The size of the body of the message, in bytes.

$message_headers: The header lines of the message, concatenated into a single string, with newline
characters between them.

$message_id: The message’s local identification string, which is unique for each message handled by a
single host.

$message_size: The size of the entire message, in bytes.

$original_local_part: When an address that arrived with the message is being processed, this contains
the same value as the variable $local_part. However, if an address generated by an alias, forward, or
filter file is being processed, this variable contains the local part of the original address.

$reply_address: The contents of the Reply-to: header, if the message has one; otherwise the
contents of the From: header. It is the address to which normal replies to the message should be sent.

$return_path: The return path – that is, the sender field that will be transmitted as part of the
message’s envelope if the message is sent to another host. This is the address to which delivery errors
are sent. In many cases, this variable has the same value as $sender_address, but if, for example, an
incoming message to a mailing list has been expanded, $return_path may have been changed to
contain the address of the list maintainer.

$sender_address: The sender address that was received in the envelope of the message. This is not
necessarily the same as the contents of the From: or Sender: header lines. For delivery error
messages (‘bounce messages’) there is no sender address, and this variable is empty.

$tod_full: A full version of the time and date, for example: Wed, 18 Oct 1995 09:51:40 +0100. The
timezone is always given as a numerical offset from GMT.

[5]

$tod_log: The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
15:32:29.

8. Header variables
There is a special set of expansion variables containing the header lines of the message being
processed. These variables have names beginning with $header_ followed by the name of the
header, terminated by a colon. For example,

$header_from:
$header_subject:

The whole item, including the terminating colon, is replaced by the contents of the message header
line. If there is more than one header line with the same name, their contents are concatenated. For
header lines whose data consists of a list of addresses (for example, From: and To:), a comma and
newline is inserted between each set of data. For all other header lines, just a newline is used.

The capitalization of the name following $header_ is not significant. Because any printing character
except colon may appear in the name of a message’s header (this is a requirement of RFC 2822, the
document that describes the format of a mail message) curly brackets must not be used in this case, as
they will be taken as part of the header name. Two shortcuts are allowed in naming header variables:

• The initiating $header_ can be abbreviated to $h_.

• The terminating colon can be omitted if the next character is white space. The white space
character is retained in the expanded string. However, this is not recommended, because it makes
it easy to forget the colon when it really is needed.

If the message does not contain a header of the given name, an empty string is substituted. Thus it is
important to spell the names of headers correctly. Do not use $header_Reply_to when you really
mean $header_Reply-to.

9. User variables
There are ten user variables with names $n0 – $n9 that can be incremented by the add command (see
section 12). These can be used for ‘scoring’ messages in various ways. If Exim is configured to run a
‘system filter’ on every message, the values left in these variables are copied into the variables $sn0 –
$sn9 at the end of the system filter, thus making them available to users’ filter files. How these values
are used is entirely up to the individual installation.

10. Significant deliveries
When in the course of delivery a message is processed by a filter file, what happens next, that is, after
the whole filter file has been processed, depends on whether the filter has set up any significant
deliveries or not. If there is at least one significant delivery, the filter is considered to have handled the
entire delivery arrangements for the current address, and no further processing of the address takes
place. If, however, no significant deliveries have been set up, Exim continues processing the current
address as if there were no filter file, and typically sets up a delivery of a copy of the message into a
local mailbox. In particular, this happens in the special case of a filter file containing only comments.

The delivery commands deliver, save, and pipe are by default significant. However, if such a
command is preceded by the word unseen, its delivery is not considered to be significant. In
contrast, other commands such as mail and vacation do not count as significant deliveries unless
preceded by the word seen.

11. Filter commands
The filter commands which are described in subsequent sections are listed below, with the section in
which they are described in brackets:

[6]

add increment a user variable (section 12)
deliver deliver to an email address (section 13)
fail force delivery failure (sysadmin use) (section 20)
finish end processing (section 18)

 freeze freeze message (sysadmin use) (section 21)
if test condition(s) (section 22)
logfile define log file (section 17)
logwrite write to log file (section 17)
mail send a reply message (section 16)
pipe pipe to a command (section 15)
save save to a file (section 14)
testprint print while testing (section 19)
vacation tailored form of mail (section 16)

In addition, when Exim’s filtering facilities are being used as a system filter, the fail, freeze, and
headers commands are available. However, since they are usable only by the system administrator
and not by ordinary users, they are described in the main Exim specification rather than in this
document.

12. The add command

add <number> to <user variable>
e.g. add 2 to n3

There are 10 user variables of this type, and their values can be obtained by the normal expansion
syntax (for example $n3) in other commands. At the start of filtering, these variables all contain zero.
Both arguments of the add command are expanded before use, making it possible to add variables to
each other. Subtraction can be obtained by adding negative numbers.

13. The deliver command

deliver <mail address>
e.g. deliver "Dr Livingstone <David@somewhere.africa.example>"

This provides a forwarding operation. The message is sent on to the given address, exactly as happens
if the address had appeared in a traditional .forward file. If you want to deliver the message to a
number of different addresses, you can use more than one deliver command (each one may have
only one address). However, duplicate addresses are discarded.

To deliver a copy of the message to your normal mailbox, your login name can be given as the
address. Once an address has been processed by the filtering mechanism, an identical generated
address will not be so processed again, so doing this does not cause a loop.

However, if you have a mail alias, you should not refer to it here. For example, if the mail address
L.Gulliver is aliased to lg103 then all references in Gulliver ’s .forward file should be to lg103.
A reference to the alias will not work for messages that are addressed to that alias, since, like
.forward file processing, aliasing is performed only once on an address, in order to avoid looping.

Following the new address, an optional second address, preceded by errors_to may appear. This
changes the address to which delivery errors on the forwarded message will be sent. Instead of going
to the message’s original sender, they go to this new address. For ordinary users, the only value that is
permitted for this address is the user whose filter file is being processed. For example, the user lg103
whose mailbox is in the domain lilliput.example could have a filter file that contains

deliver jon@elsewhere.example errors_to lg103@lilliput.example

Clearly, using this feature makes sense only in situations where not all messages are being forwarded.
In particular, bounce messages must not be forwarded in this way, as this is likely to create a mail loop
if something goes wrong.

[7]

14. The save command

save <file name>
e.g. save $home/mail/bookfolder

This causes a copy of the message to be appended to the given file (that is, the file is used as a mail
folder). More than one save command may appear; each one causes a copy of the message to be
written to its argument file, provided they are different (duplicate save commands are ignored).

If the file name does not start with a / character, the contents of the $home variable are prepended. In
conventional configurations, this variable is normally set in a user filter. However, it is never set in a
system filter.

The user must of course have permission to write to the file, and the writing of the file takes place in a
process that is running as the user, under the user ’s primary group. Any secondary groups to which the
user may belong are not normally taken into account, though the system administrator can configure
Exim to set them up. In addition, the ability to use this command at all is controlled by the system
administrator – it may be forbidden on some systems.

An optional mode value may be given after the file name. The value for the mode is interpreted as an
octal number, even if it does not begin with a zero. For example:

save /some/folder 640

This makes it possible for users to override the system-wide mode setting for file deliveries, which is
normally 600. If an existing file does not have the correct mode, it is changed.

An alternative form of delivery may be enabled on your system, in which each message is delivered
into a new file in a given directory. If this is the case, this functionality can be requested by giving the
directory name terminated by a slash after the save command, for example

save separated/messages/

There are several different formats for such deliveries; check with your system administrator or local
documentation to find out which (if any) are available on your system. If this functionality is not
enabled, the use of a path name ending in a slash causes an error.

15. The pipe command

pipe <command>
e.g. pipe "$home/bin/countmail $sender_address"

This command sets up delivery to a specified command using a pipe. Remember, however, that no
deliveries are done while the filter is being processed. All deliveries happen later on. Therefore, the
result of running the pipe is not available to the filter.

When the deliveries are done, a separate process is run, and a copy of the message is passed on its
standard input. The process runs as the user, under the user ’s primary group. Any secondary groups to
which the user may belong are not normally taken into account, though the system administrator can
configure Exim to set them up. More than one pipe command may appear; each one causes a copy of
the message to be written to its argument pipe, provided they are different (duplicate pipe commands
are ignored).

The command supplied to pipe is split up by Exim into a command name and a number of
arguments. These are delimited by white space except for arguments enclosed in double quotes, in
which case backslash is interpreted as an escape, or in single quotes, in which case no escaping is
recognized. Note that as the whole command is normally supplied in double quotes, a second level of
quoting is required for internal double quotes. For example:

pipe "$home/myscript \"size is $message_size\""

String expansion is performed on the separate components after the line has been split up, and the
command is then run directly by Exim; it is not run under a shell. Therefore, substitution cannot

[8]

change the number of arguments, nor can quotes, backslashes or other shell metacharacters in variables
cause confusion.

Documentation for some programs that are normally run via this kind of pipe often suggest that the
command should start with

IFS=" "

This is a shell command, and should not be present in Exim filter files, since it does not normally run
the command under a shell.

However, there is an option that the administrator can set to cause a shell to be used. In this case, the
entire command is expanded as a single string and passed to the shell for interpretation. It is
recommended that this be avoided if at all possible, since it can lead to problems when inserted
variables contain shell metacharacters.

The default PATH set up for the command is determined by the system administrator, usually containing
at least /usr/bin so that common commands are available without having to specify an absolute file
name. However, it is possible for the system administrator to restrict the pipe facility so that the
command name must not contain any / characters, and must be found in one of the directories in the
configured PATH. It is also possible for the system administrator to lock out the use of the pipe
command altogether.

When the command is run, a number of environment variables are set up. The complete list for pipe
deliveries may be found in the Exim reference manual. Those that may be useful for pipe deliveries
from user filter files are:

DOMAIN the domain of the address
HOME your home directory
LOCAL_PART see below
LOCAL_PART_PREFIX see below
LOCAL_PART_SUFFIX see below
LOGNAME your login name
MESSAGE_ID the message’s unique id
PATH the command search path
RECIPIENT the complete recipient address
SENDER the sender of the message
SHELL /bin/sh
USER see below

LOCAL_PART, LOGNAME, and USER are all set to the same value, namely, your login id. LOCAL_PART_PREFIX

and LOCAL_PART_SUFFIX may be set if Exim is configured to recognize prefixes or suffixes in the local
parts of addresses. For example, a message addressed to pat-suf2@domain.example may cause user
pat’s filter file to be run. If this sets up a pipe delivery, LOCAL_PART_SUFFIX is -suf2 when the pipe
command runs. The system administrator has to configure Exim specially for this feature to be
available.

If you run a command that is a shell script, be very careful in your use of data from the incoming
message in the commands in your script. RFC 2822 is very generous in the characters that are legally
permitted to appear in mail addresses, and in particular, an address may begin with a vertical bar or a
slash. For this reason you should always use quotes round any arguments that involve data from the
message, like this:

/some/command ’$SENDER’

so that inserted shell meta-characters do not cause unwanted effects.

Remember that, as was explained earlier, the pipe command is not run at the time the filter file is
interpreted. The filter just defines what deliveries are required for one particular addressee of a
message. The deliveries themselves happen later, once Exim has decided everything that needs to be
done for the message.

[9]

A consequence of this is that you cannot inspect the return code from the pipe command from within
the filter. Neverthless, the code returned by the command is important, because Exim uses it to decide
whether the delivery has succeeded or failed.

The command should return a zero completion code if all has gone well. Most non-zero codes are
treated by Exim as indicating a failure of the pipe. This is treated as a delivery failure, causing the
message to be returned to its sender. However, there are some completion codes which are treated as
temporary errors. The message remains on Exim’s spool disc, and the delivery is tried again later,
though it will ultimately time out if the delivery failures go on too long. The completion codes to
which this applies can be specified by the system administrator; the default values are 73 and 75.

The pipe command should not normally write anything to its standard output or standard error file
descriptors. If it does, whatever is written is normally returned to the sender of the message as a
delivery error, though this action can be varied by the system administrator.

16. Mail commands
There are two commands which cause the creation of a new mail message, neither of which count as a
significant delivery unless the command is preceded by the word seen. This is a powerful facility, but
it should be used with care, because of the danger of creating infinite sequences of messages. The
system administrator can forbid the use of these commands altogether.

To help prevent runaway message sequences, these commands have no effect when the incoming
message is a delivery error message, and messages sent by this means are treated as if they were
reporting delivery errors. Thus they should never themselves cause a delivery error message to be
returned. The basic mail-sending command is

mail [to <address-list>]
[cc <address-list>]
[bcc <address-list>]
[from <address>]
[reply_to <address>]
[subject <text>]
[text <text>]
[[expand] file <filename>]
[return message]
[log <log file name>]
[once <note file name>]
[once_repeat <time interval>]

e.g. mail text "Your message about $h_subject: has been received"

As a convenience for use in one common case, there is also a command called vacation. It behaves in
the same way as mail, except that the defaults for the file, log, once, and once_repeat
options are

expand file .vacation.msg
log .vacation.log
once .vacation
once_repeat 7d

respectively. These are the same file names and repeat period used by the traditional Unix vacation
command. The defaults can be overridden by explicit settings, but if a file name is given its contents
are expanded only if explicitly requested. The vacation command is normally used conditionally,
subject to the personal condition (see section 25 below) so as not to send automatic replies to non-
personal messages from mailing lists or elsewhere.

For both commands, the key/value argument pairs can appear in any order. At least one of text or
file must appear (except with vacation); if both are present, the text string appears first in the
message. If expand precedes file, each line of the file is subject to string expansion as it is
included in the message.

[10]

Several lines of text can be supplied to text by including the escape sequence ‘\n’ in the string
where newlines are required. If the command is output during filter file testing, newlines in the text are
shown as ‘\n’.

Note that the keyword for creating a Reply-To: header is reply_to, because Exim keywords may
contain underscores, but not hyphens. If the from keyword is present and the given address does not
match the user who owns the forward file, Exim normally adds a Sender: header to the message,
though it can be configured not to do this.

If no to argument appears, the message is sent to the address in the $reply_address variable (see
section 6 above). An In-Reply-To: header is automatically included in the created message, giving
a reference to the message identification of the incoming message.

If return message is specified, the incoming message that caused the filter file to be run is added
to the end of the message, subject to a maximum size limitation.

If a log file is specified, a line is added to it for each message sent.

If a once file is specified, it is used to hold a database for remembering who has received a message,
and no more than one message is ever sent to any particular address, unless once_repeat is set.
This specifies a time interval after which another copy of the message is sent. The interval is specified
as a sequence of numbers, each followed by the initial letter of one of ‘seconds’, ‘minutes’, ‘hours’,
‘days’, or ‘weeks’. For example,

once_repeat 5d4h

causes a new message to be sent if 5 days and 4 hours have elapsed since the last one was sent. There
must be no white space in a time interval.

Commonly, the file name specified for once is used as the base name for direct-access (DBM) file
operations. There are a number of different DBM libraries in existence. Some operating systems
provide one as a default, but even in this case a different one may have been used when building
Exim. With some DBM libraries, specifying once results in two files being created, with the suffixes
.dir and .pag being added to the given name. With some others a single file with the suffix .db is
used, or the name is used unchanged.

Using a DBM file for implementing the once feature means that the file grows as large as necessary.
This is not usually a problem, but some system administrators want to put a limit on it. The facility
can be configured not to use a DBM file, but instead, to use a regular file with a maximum size. The
data in such a file is searched sequentially, and if the file fills up, the oldest entry is deleted to make
way for a new one. This means that some correspondents may receive a second copy of the message
after an unpredictable interval. Consult your local information to see if your system is configured this
way.

More than one mail or vacation command may be obeyed in a single filter run; they are all
honoured, even when they are to the same recipient.

17. Logging commands

A log can be kept of actions taken by a filter file. This facility is normally available in conventional
configurations, but there are some situations where it might not be. Also, the system administrator may
choose to disable it. Check your local information if in doubt.

Logging takes place while the filter file is being interpreted. It does not queue up for later like the
delivery commands. The reason for this is so that a log file need be opened only once for several write
operations. There are two commands, neither of which constitutes a significant delivery. The first
defines a file to which logging output is subsequently written:

logfile <file name>
e.g. logfile $home/filter.log

[11]

The file name must be fully qualified. You can use $home, as in this example, to refer to your home
directory. The file name may optionally be followed by a mode for the file, which is used if the file
has to be created. For example,

logfile $home/filter.log 0644

The number is interpreted as octal, even if it does not begin with a zero. The default for the mode is
600. It is suggested that the logfile command normally appear as the first command in a filter file.
Once logfile has been obeyed, the logwrite command can be used to write to the log file:

logwrite "<some text string>"
e.g. logwrite "$tod_log $message_id processed"

It is possible to have more than one logfile command, to specify writing to different log files in
different circumstances. Writing takes place at the end of the file, and a newline character is added to
the end of each string if there isn’t one already there. Newlines can be put in the middle of the string
by using the ‘\n’ escape sequence. Lines from simultaneous deliveries may get interleaved in the file,
as there is no interlocking, so you should plan your logging with this in mind. However, data should
not get lost.

18. The finish command

The command finish, which has no arguments, causes Exim to stop interpreting the filter file. This
is not a significant action unless preceded by seen. A filter file containing only seen finish is a
black hole.

19. The testprint command

It is sometimes helpful to be able to print out the values of variables when testing filter files. The
command

testprint <text>
e.g. testprint "home=$home reply_address=$reply_address"

does nothing when mail is being delivered. However, when the filtering code is being tested by means
of the -bf option (see section 2 above), the value of the string is written to the standard output.

20. The fail command

When Exim’s filtering facilities are being used as a system filter, the fail command is available, to
force delivery failure. Because this command is normally usable only by the system administrator, and
not enabled for use by ordinary users, it is described in more detail in the main Exim specification
rather than in this document.

21. The freeze command

When Exim’s filtering facilities are being used as a system filter, the freeze command is available,
to freeze a message on the queue. Because this command is normally usable only by the system
administrator, and not enabled for use by ordinary users, it is described in more detail in the main
Exim specification rather than in this document.

22. Obeying commands conditionally

Most of the power of filtering comes from the ability to test conditions and obey different commands
depending on the outcome. The if command is used to specify conditional execution, and its general
form is

[12]

if <condition>
then <commands>
elif <condition>
then <commands>
else <commands>
endif

There may be any number of elif and then sections (including none) and the else section is also
optional. Any number of commands, including nested if commands, may appear in any of the
<commands> sections.

Conditions can be combined by using the words and and or, and round brackets (parentheses) can be
used to specify how several conditions are to combine. Without brackets, and is more binding than
or. For example,

if
$h_subject: contains "Make money" or
$h_precedence: is "junk" or
($h_sender: matches ^\\d{8}@ and not personal) or
$message_body contains "this is spam"

then
seen finish

endif

A condition can be preceded by not to negate it, and there are also some negative forms of condition
that are more English-like.

23. String testing conditions
There are a number of conditions that operate on text strings, using the words ‘begins’, ‘ends’, ‘is’,
‘contains’ and ‘matches’. If the condition names are written in lower case, the testing of letters is done
without regard to case; if they are written in upper case (for example, ‘CONTAINS’) then the case of
letters is significant.

<text1> begins <text2>
 <text1> does not begin <text2>
e.g. $header_from: begins "Friend@"

A ‘begins’ test checks for the presence of the second string at the start of the first, both strings having
been expanded.

<text1> ends <text2>
 <text1> does not end <text2>
e.g. $header_from: ends "public.com.example"

An ‘ends’ test checks for the presence of the second string at the end of the first, both strings having
been expanded.

<text1> is <text2>
 <text1> is not <text2>
e.g. $local_part_suffix is "-foo"

An ‘is’ test does an exact match between the strings, having first expanded both strings.

<text1> contains <text2>
 <text1> does not contain <text2>
e.g. $header_subject: contains "evolution"

A ‘contains’ test does a partial string match, having expanded both strings.

<text1> matches <text2>
 <text2> does not match <text2>
e.g. $sender_address matches "(Bill|John)@"

[13]

For a ‘matches’ test, after expansion of both strings, the second one is interpreted as a regular
expression. Exim uses the PCRE regular expression library, which provides regular expressions that
are compatible with Perl.

Care must be taken if you need a backslash in a regular expression, because backslashes are
interpreted as escape characters both by the string expansion code and by Exim’s normal processing of
strings in quotes. For example, if you want to test the sender address for a domain ending in .com the
regular expression is

\.com$

The backslash and dollar sign in that expression have to be escaped when used in a filter command, as
otherwise they would be interpreted by the expansion code. Thus what you actually write is

if $sender_address matches \\.com\$

An alternative way of handling this is to make use of the \N expansion flag for suppressing expansion:

if $sender_address matches \N\.com$\N

Everything between the two occurrences of \N is copied without change by the string expander (and
in fact you do not need the final one, because it is at the end of the string).

If the regular expression is given in quotes (mandatory only if it contains white space) you have to
write either

if $sender_address matches "\\\\.com\\$"

or

if $sender_address matches "\\N\\.com$\\N"

If the regular expression contains bracketed sub-expressions, numeric variable substitutions such as $1
can be used in the subsequent actions after a successful match. If the match fails, the values of the
numeric variables remain unchanged. Previous values are not restored after endif – in other words,
only one set of values is ever available. If the condition contains several sub-conditions connected by
and or or, it is the strings extracted from the last successful match that are available in subsequent
actions. Numeric variables from any one sub-condition are also available for use in subsequent sub-
conditions, since string expansion of a condition occurs just before it is tested.

24. Numeric testing conditions

The following conditions are available for performing numerical tests:

<number1> is above <number2>
 <number1> is not above <number2>
 <number1> is below <number2>
 <number1> is not below <number2>
e.g. $message_size is not above 10k

The <number> arguments must expand to strings of digits, optionally followed by one of the letters K
or M (upper case or lower case) which cause multiplication by 1024 and 1024x1024 respectively.

25. Testing for personal mail

A common requirement is to distinguish between incoming personal mail and mail from a mailing list.
In particular, this test is normally required for so-called ‘vacation messages’. The condition

personal

is a shorthand for

[14]

$header_to: contains "$local_part@$domain" and
$header_from: does not contain "$local_part@$domain" and
$header_from: does not contain "server@" and
$header_from: does not contain "daemon@" and
$header_from: does not contain "root@" and
$header_subject: does not contain "circular" and
$header_precedence: does not contain "bulk" and
$header_precedence: does not contain "list" and
$header_precedence: does not contain "junk"

The variable $local_part contains the local part of the mail address of the user whose filter file is
being run – it is normally your login id. The $domain variable contains the mail domain. This
condition tests for the appearance of the current user in the To: header, checks that the sender is not
the current user or one of a number of common daemons, and checks the content of the Subject:
and Precedence: headers.

If prefixes or suffixes are in use for local parts – something which depends on the configuration of
Exim (see section 30 below) – the first two tests above are also done with

$local_part_prefix$local_part$local_part_suffix

instead of just $local_part. If the system is configured to rewrite local parts of mail addresses, for
example, to rewrite ‘dag46’ as ‘Dirk.Gently’, the rewritten form of the address is also used in the tests.

This example shows the use of personal in a filter file that is sending out vacation messages:

if personal then
mail
to $reply_address
subject "Re: $h_subject:"
file $home/vacation/message
once $home/vacation/once
once_repeat 10d

 endif

It is quite common for people who have mail accounts on a number of different systems to forward all
their mail to one system, and in this case a check for personal mail should test all their various mail
addresses. To allow for this, the personal condition keyword can be followed by

alias <address>

any number of times, for example

if personal alias smith@else.where.example
alias jones@other.place.example

then ...

This causes messages containing the alias addresses in any places where the local address is tested to
be treated as personal.

26. Testing for significant deliveries
Whether or not any previously obeyed filter commands have resulted in a significant delivery can be
tested by the condition delivered, for example:

if not delivered then save mail/anomalous endif

27. Testing for error messages
The condition error_message is true if the incoming message is a mail delivery error message
(bounce message). Putting the command

if error_message then finish endif

[15]

at the head of your filter file is a useful insurance against things going wrong in such a way that you
cannot receive delivery error reports, and is highly recommended. Note that error_message is a
condition, not an expansion variable, and therefore is not preceded by $.

28. Testing delivery status
There are two conditions which are intended mainly for use in system filter files, but which are
available in users’ filter files as well. The condition first_delivery is true if this is the first
attempt to deliver the message, and false otherwise. In a user filter file it will be false only if there was
previously an error in the filter, or if a delivery for the user failed owing to, for example, a quota error,
or forwarding to a remote address that was deferred for some reason.

The condition manually_thawed is true only if the message was ‘frozen’ for some reason, and was
subsequently released by the system administrator. It is unlikely to be of use in users’ filter files.

29. Testing a list of addresses
There is a facility for looping through a list of addresses and applying a condition to each of them. It
takes the form

foranyaddress <string> (<condition>)

where <string> is interpreted as a list of RFC 2822 addresses, as in a typical header line, and
<condition> is any valid filter condition or combination of conditions. The ‘group’ syntax that is
defined for certain header lines that contain addresses is supported.

The parentheses surrounding the condition are mandatory, to delimit it from possible further sub-
conditions of the enclosing if command. Within the condition, the expansion variable $thisaddress is
set to the non-comment portion of each of the addresses in the string in turn. For example, if the
string is

B.Simpson <bart@sfld.example>, lisa@sfld.example (his sister)

then $thisaddress would take on the values bart@sfld.example and lisa@sfld.example in
turn.

If there are no valid addresses in the list, the whole condition is false. If the internal condition is true
for any one address, the overall condition is true and the loop ends. If the internal condition is false for
all addresses in the list, the overall condition is false. This example tests for the presence of an eight-
digit local part in any address in a To: header:

if foranyaddress $h_to: ($thisaddress matches ^\\d{8}@) then ...

When the overall condition is true, the value of $thisaddress in the commands that follow then is the
last value it took on inside the loop. At the end of the if command, the value of $thisaddress is reset
to what it was before. It is best to avoid the use of multiple occurrences of foranyaddress, nested
or otherwise, in a single if command, if the value of $thisaddress is to be used afterwards, because it
isn’t always clear what the value will be. Nested if commands should be used instead.

Header lines can be joined together if a check is to be applied to more than one of them. For example:

if foranyaddress $h_to:,$h_cc:

scans through the addresses in both the To: and the Cc: headers.

30. Multiple personal mailboxes
The system administrator can configure Exim so that users can set up variants on their email addresses
and handle them separately. Consult your system administrator or local documentation to see if this
facility is enabled on your system, and if so, what the details are.

The facility involves the use of a prefix or a suffix on an email address. For example, all mail
addressed to lg103-<something> would be the property of user lg103, who could determine how it was
to be handled, depending on the value of <something>.

[16]

There are two possible ways in which this can be set up. The first possibility is the use of multiple
.forward files. In this case, mail to lg103-foo, for example, is handled by looking for a file called
.forward-foo in lg103’s home directory. If such a file does not exist, delivery fails and the message is
returned to its sender.

The alternative approach is to pass all messages through a single .forward file, which must be a filter
file in order to distinguish between the different cases by referencing the variables $local_part_prefix
or $local_part_suffix, as in the final example in section 32 below. If the filter file does not handle a
prefixed or suffixed address, delivery fails and the message is returned to its sender.

It is possible to configure Exim to support both schemes at once. In this case, a specific .forward-foo
file is first sought; if it is not found, the basic .forward file is used.

The personal test (see section 25) includes prefixes and suffixes in its checking.

31. Ignoring delivery errors

As was explained above, filtering just sets up addresses for delivery – no deliveries are actually done
while a filter file is active. If any of the generated addresses subsequently suffers a delivery failure, an
error message is generated in the normal way. However, if the filter command which sets up a delivery
is preceded by the word noerror, errors for that delivery, and any deliveries consequent on it (that
is, from alias, forwarding, or filter files it invokes) are ignored.

32. Examples of filter commands
Simple forwarding:

Exim filter
deliver baggins@rivendell.middle-earth.example

Vacation handling using traditional means, assuming that the .vacation.msg and other files have been
set up in your home directory:

Exim filter
unseen pipe "/usr/ucb/vacation \"$local_part\""

Vacation handling inside Exim, having first created a file called .vacation.msg in your home directory:

Exim filter
if personal then vacation endif

File some messages by subject:

Exim filter
if $header_subject: contains "empire" or

$header_subject: contains "foundation"
 then

save $home/mail/f+e
 endif

Save all non-urgent messages by weekday:

Exim filter
if $header_subject: does not contain "urgent" and

$tod_full matches "^(...),"
 then

save $home/mail/$1
 endif

Throw away all mail from one site, except from postmaster:

[17]

Exim filter
if $reply_address contains "@spam.site.example" and

$reply_address does not contain "postmaster@"
 then

seen finish
 endif

Handle multiple personal mailboxes

Exim filter
if $local_part_suffix is "-foo"

 then
save $home/mail/foo

elif $local_part_suffix is "-bar"
 then

save $home/mail/bar
 endif

[18]

