
System Principles

version 5.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 System Principles 1

1.1 System Principles . 1

1.1.1 Starting the System . 1

1.1.2 Restarting and Stopping the System . 2

1.1.3 Command Line Arguments . 3

1.1.4 The Boot File . 4

1.1.5 Making a Boot File . 5

1.1.6 Starting the System with a Boot File . 5

1.1.7 Code Loading Strategy . 9

1.1.8 Making an Embedded System . 10

1.1.9 The Primitive Loader . 10

1.1.10 File Types . 11

List of Tables 13

iiiSystem Principles

iv System Principles

Chapter 1

System Principles

1.1 System Principles

This chapter describes the strategies and options which are available to start the Erlang runtime system
of Erlang/OTP. This section includes the following topics:

� Starting the system

� Re-starting and stopping the system

� Command line arguments

� The boot file

� Code loading strategies

� Making a boot file

� Starting the system with a boot file

� Code loading strategy

� Making an embedded system

� The primitive loader.

1.1.1 Starting the System

An Erlang runtime system is started with the command:

erl [-boot B] [-config F] [-mode M] [-heart]
[-loader L] [-id Id] [-nodes N1 N2 ... Nn]
[-pa Dir1 Dir2 ... Dirn] [-pz Dir1 Dir2 ... Dirn]
[-path Dir1 Dir2 ... Dirn]
[-AppName Key Value]
[Other args]

� -boot B tells the system to use the boot file named B.boot to boot the system. This boot file is
responsible for the initial loading of the system. If B is not supplied it defaults to start.
When Erlang starts, it searches for the boot file in the current working directory and then in
$ROOT/bin, where $ROOT is the root of the Erlang distribution.
If -loader distributed -nodes N1 N2 was specified, the script is fetched from one of the
nodes N1, N2, ..., otherwise it is fetched by requesting it from the program given in the
argument to the -loader parameter.

1System Principles

Chapter 1: System Principles

� -config F tells the system to use data in the system configuration file F.config to override the
arguments contained in the application resource files for the set of applications used by this
system.

� -mode M is the mode in which the system is started. M must be either embedded or interactive.
If -mode M is omitted, it defaults to interactive. In embedded mode all, modules are loaded at
system start.

� -heart This argument starts an external program which monitors the Erlang node. If the Erlang
node hangs, or terminates abnormally, the heart program can restart the Erlang node.

� -loader L defines the loader program L which fetches code when the system is started. L is either
the atom distributed, or the name of an external program. If L is not supplied, it defaults to
efile which is the normal Erlang filer.

� -id Id gives a unique identifier to each Erlang node. If omitted, Id defaults to the atom none.
This flag is not required if the default loader efile is used. If the -sname Name or -name Name
parameters are given, Id must be the same as Name.

� -nodes N1 N2 ... Nn must be supplied if -loader distributed is specified. N1, N2,..., Nn
are Erlang node names from which the system can fetch the modules to be loaded.

� -pa Dir1 Dir2 ...Dirn defines a set of directories, Dir1, Dir2, .. Dirn which are added to
the front of the standard search path which is defined in the start-up script.

� -pz Dir1 Dir2 ...Dirn defines a set of directories, Dir1, Dir2, .. Dirn which are added to
the end of the standard search path which is defined in the start-up script.

� -path Dir1 Dir2 ...Dirn defines a set of directories, Dir1, Dir2, .. Dirn which replace
the standard search path defined in the start-up script.

� [-AppName Key Value] overrides the AppName application configuration parameter Key with
Value.

� [Other Args] are parsed in a standard manner and can be accessed by any application.

The following comments apply to the arguments listed above:

� The default loader is the program efile. Through erl prim loader, it provides a minimal file
system interface between Erlang and the local file system in order to load code.

� When -loader L is specified, the primitive code loader must know how to retrieve a boot script
with name B.boot.

� When -loader distributed -nodes N1 N2 ... Nn is specified, the boot servers with
registered names boot server are assumed to be running on all Erlang nodes N1, N2, ..., Nn.
If they are not, the system waits for these boot servers to start. Requests are sent to these boot
servers to obtain files with names fId, Nameg (Id is specified in the command line arguments).
The boot servers must know how to map these names onto local file names. A simple boot server
erl boot server is provided with the system.

� The boot file with extension .boot is created by evaluating the expression
systools:script2boot("File"). This function converts the script file File.script to a boot
file File.boot.

1.1.2 Restarting and Stopping the System

The system is restarted and stopped with the following commands:

� init:restart(). This command restarts the system inside the running Erlang node. All
applications are taken down smoothly, and all code is unloaded before the system is started again
in the same way as it was started initially.

2 System Principles

1.1: System Principles

� init:reboot(). All applications are taken down smoothly, and all code is unloaded before the
Erlang node terminates. The heart argument affects the reboot sequence as follows:

1. If the -heart argument was supplied, the heart program tries to reboot according to the
HEART COMMAND environment variable.

2. If this variable is not set, heart simply writes to std out that it should have rebooted.
3. If HEART COMMAND is /usr/sbin/reboot, the whole machine is rebooted.

� init:stop(). All applications are taken down smoothly, and all code is unloaded. If the -heart
argument was supplied, the heart program is terminated before the Erlang node terminates.

1.1.3 Command Line Arguments

When the system has started, application programs can access the values of the command line
arguments by calling one of the functions init:get argument(Key), or init:get arguments().

Erlang was started by giving a command of the form:

erl -flag1 arg1 arg2 -flag2 arg3 ...

When the erl -flag1 ... command has been issued, Erlang starts by spawning a new process and the
system behaves as if the function spawn(init, boot, [Args]) had been evaluated. Args is a list of all
the command line arguments to erl. These are passed as strings. For example, the command erl -id
123 -loader efile -script "abc" ... causes the system to behave as if it had evaluated the
following function:

spawn(init, boot, ["-id", "123", "-loader", "efile",
"-script", "\"abc\""]).

The first thing init does is to call init:parse args(Args) to “normalize” the input arguments. After
normalization, the arguments can be accessed as follows:

� init:get argument(Flag) -> fok, [[Arg]]g | error tries to fetch the argument associated
with Flag. The return value is either a list of argument lists, or the atom error. Flags can have
multiple values. If the command line was erl -p1 a b c -p2 a x -p1 ww zz:

– init:get argument(p1) would return:

{ok, [["a", "b", "c"], ["ww", "zz"]]}

– init:get argument(p2) would return:

{ok, [["a", "x"]]}

This is why get argument returns a list of lists, and not just a list.

� init:get arguments() -> [fFlag, [Arg]g] returns all the command line arguments. For the
command line given above, this would return:

[{p1,["a","b","c"]}, {p2,["a","x"]}, {p1,["ww","zz"]}]

Both get arguments/0 and get argument/1 preserve the argument order of the arguments supplied
with the command line.

Note:
Applications should not normally be configured with command line flags, but should use the
application environment instead. Refer to Configuring an Application in the Design Principles
chapter for details.

3System Principles

Chapter 1: System Principles

1.1.4 The Boot File

The boot script is stored in a file with the extension .script

A typical boot script file may look as follows:

fscript, fName, Vsng,
[
fprogress, loadingg,
fpreLoaded, [Mod1, Mod2, ...]g,
fpath, [Dir1,"$ROOT/Dir",...]g.
fprimLoad, [Mod1, Mod2, ...]g,
...
fkernel load completedg,
fprogress, loadedg,
fkernelProcess, Name, fMod, Func, Argsgg,
...
fapply, fMod, Func, Argsgg,
...
fprogress, startedg]g.

The meanings of these terms are as follows:

� fscript, fName, Vsng,...g defines the script name and version.

� fprogress, Termg sets the “progress” of the initialization program. The function
init:get status() returns the current value of the progress, which is
fInternalStatus,Progressg.

� fpath, [Dir]g. Dir is a string. This argument sets the load path of the system to [Dir]. The
load path used to load modules is obtained from the initial load path, which is given in the script
file, together with any path flags which were supplied in the command line arguments. The
command line arguments modify the path as follows:

– -pa Dir1 Dir2 ... Dirn adds the directories Dir1, Dir2, ..., Dirn to the front of the
initial load path.

– -pz Dir1 Dir2 ... Dirn adds the directories Dir1, Dir2, ..., Dirn to the end of the
initial load path.

– -path Dir1 Dir2 ... Dirn defines a set of directories Dir1, Dir2, ..., Dirn which
replaces the search path given in the script file. Directory names in the path are interpreted
as follows:

� Directory names starting with / are assumed to be absolute path names.
� Directory names not starting with / are assumed to be relative to the current working

directory.
� The special $ROOT variable can only be used in the script, not as a command line

argument. The given directory is relative to the Erlang installation directory.

� fprimLoad, [Mod]g loads the modules [Mod] from the directories specified in Path. The script
interpreter fetches the appropriate module by calling the function
erl prim loader:get file(Mod). A fatal error which terminates the system will occur if the
module cannot be located.

� fkernel load completedg indicates that all modules which must be loaded before any processes
are started are loaded. In interactive mode, all fprimLoad,[Mod]g commands interpreted after
this command are ignored, and these modules are loaded on demand. In embedded mode,
kernel load completed is ignored, and all modules are loaded during system start.

4 System Principles

1.1: System Principles

� fkernelProcess, Name, fMod, Func, Argsgg starts a “kernel process”. The kernel process Name
is started by evaluating apply(Mod, Func, Args) which is expected to return fok, Pidg or
ignore. The init process monitors the behaviour of Pid and terminates the system if Pid dies.
Kernel processes are key components of the runtime system. Users do not normally add new
kernel processes.

� fapply, fMod, Func, Argsgg, The init process simply evaluates apply(Mod, Func, Args).
The system terminates if this results in an error. The boot procedure hangs if this function never
returns.

Note:
In the interactive system the code loader provides demand driven code loading, but in the
embedded system the code loader loads all the code immediately. The same version of code is used in
both cases. The code server calls init:get argument(mode) to find out if it should run in demand
mode, or non-demand driven mode.

1.1.5 Making a Boot File

If a boot script is written manually, the systools:script2boot(File) function can be used to
generate the compiled (binary) form File.boot from the File.script file. However, it is
recommended that the systools:make script function is used in order to create a boot script.

1.1.6 Starting the System with a Boot File

The command erl -boot File starts the system with a boot file called File.boot. An ASCII version
of the boot file can be found in File.script.

The boot file is created by evaluating:

systools:script2boot(File)

Several standard boot files are available. For example, start.script starts the system as a plain Erlang
runtime system with the application controller and the kernel applications.

start.script

The start.script is as follows:

{script,{"OTP APN 181 01","R1A"},
[{preLoaded,[init,erl_prim_loader]},
{progress,preloaded},
{path,["$ROOT/lib/kernel-1.1/ebin",

"$ROOT/lib/stdlib-1.1/ebin"]},
{primLoad,[error_handler,

ets,
lib,
lists,
slave,
heart,

5System Principles

Chapter 1: System Principles

application_controller,
application_master,
application,
auth,
c,
calendar,
code,
erlang,
erl_distribution,
erl_parse,
erl_scan,
io_lib,
io_lib_format,
io_lib_fread,
io_lib_pretty,
error_logger,
file,
gen,
gen_event,
gen_server,
global,
kernel,
net_kernel,
proc_lib,
rpc,
supervisor,
sys]},

{kernel_load_completed},
{progress,kernel_load_completed},
{primLoad,[group,

user,
user_drv,
kernel_config,
net,
erl_boot_server,
net_adm]},

{primLoad,[math,
random,
ordsets,
shell_default,
timer,
gen_fsm,
pg,
unix,
dict,
pool,
string,
digraph,
io,
epp,
log_mf_h,
queue,
erl_eval,

6 System Principles

1.1: System Principles

erl_id_trans,
shell,
erl_internal,
erl_lint,
error_logger_file_h,
error_logger_tty_h,
edlin,
erl_pp,
dets,
regexp,
supervisor_bridge]},

{progress,modules_loaded},
{kernelProcess,heart,{heart,start,[]}},
{kernelProcess,error_logger,{error_logger,start_link,[]}},
{kernelProcess,application_controller,

{application_controller,
start,
[{application,

kernel,
[{description,"ERTS CXC 138 10"},
{vsn,"1.1"},
{modules,

[{application,1},
{erlang,1},
{group,1},
{rpc,1},
{application_controller,1},
{error_handler,1},
{heart,1},
{application_master,1},
{error_logger,1},
{init,1},
{user,1},
{auth,1},
{kernel,1},
{user_drv,1},
{code,1},
{kernel_config,1},
{net,1},
{erl_boot_server,1},
{erl_prim_loader,1},
{file,1},
{net_adm,1},
{erl_distribution,1},
{global,1},
{net_kernel,1}]},

{registered,
[init,
erl_prim_loader,
heart,
error_logger,
application_controller,
kernel_sup,

7System Principles

Chapter 1: System Principles

kernel_config,
net_sup,
net_kernel,
auth,
code_server,
file_server,
boot_server,
global_name_server,
rex,
user]},

{applications,[]},
{env,

[{error_logger,tty},
{os, {unix, ’solaris’}}]},

{maxT,infinity},
{maxP,infinity},
{mod,{kernel,[]}}]}]}},

{progress,init_kernel_started},
{apply,{application,load,

[{application,
stdlib,
[{description,"ERTS CXC 138 10"},
{vsn,"1.1"},
{modules,

[{c,1},
{gen,1},
{io_lib_format,1},
{math,1},
{random,1},
{sys,1},
{calendar,1},
{gen_event,1},
{io_lib_fread,1},
{ordsets,1},
{shell_default,1},
{timer,1},
{gen_fsm,1},
{io_lib_pretty,1},
{pg,1},
{slave,1},
{unix,1},
{dict,1},
{gen_server,1},
{lib,1},
{pool,1},
{string,1},
{digraph,1},
{io,1},
{lists,1},
{proc_lib,1},
{supervisor,1},
{epp,1},
{io_lib,1},

8 System Principles

1.1: System Principles

{log_mf_h,1},
{queue,1},
{erl_eval,1},
{erl_id_trans,1},
{shell,1},
{erl_internal,1},
{erl_lint,1},
{error_logger_file_h,1},
{erl_parse,1},
{error_logger_tty_h,1},
{edlin,1},
{erl_pp,1},
{ets,1},
{dets,1},
{regexp,1},
{erl_scan,1},
{supervisor_bridge,1}]},

{registered,
[timer_server,
rsh_starter,
take_over_monitor,
pool_master,
dets]},

{applications,[kernel]},
{env,[]},
{maxT,infinity},
{maxP,infinity}]}]}},

{progress,applications_loaded},
{apply,{application,start_boot,[kernel,permanent]}},
{apply,{application,start_boot,[stdlib,permanent]}},
{apply,{c,erlangrc,[]}},
{progress,started}]}.

1.1.7 Code Loading Strategy

The code is always loaded relative to the current path and this path is obtained from the value given in
the script file, possibly modified by the path manipulation flags in the command line.

This approach allows us to run the system in a number of different ways:

� Interactive mode. The system dynamically loads code on demand from the directories specified in
the path command. This is the “normal” way to develop code.

� Embedded mode. The system loads all its code during system start-up. In special cases, all code can
be located in a single directory. We would copy all files to a given directory and create a path to
this directory only.

� Test mode. Test mode is typically used if we want to run some new test code together with a
particular release of the embedded system. We want all the convenience of the interactive system
with code loading on demand, and the rigor of the embedded system. In test mode, we run the
system with command line arguments such as -pa ".".

9System Principles

Chapter 1: System Principles

1.1.8 Making an Embedded System

When using the the interactive Erlang development environment, it often does not matter if things go
wrong at runtime. The main difference with an embedded system is that it is extremely important that
things do not go wrong at runtime.

Before building a release which is targeted for an embedded system, we must perform a large number of
compile-time checks on the code.

A boot script file can be created with the systools:make script function. This function reads a .rel
release file and generates the boot script in accordance with the specified applications in the release file.
A boot script which is generated this way ensures that all code specified in the application resource files
are loaded and that all specified applications are started.

A complete release can be packaged with the systools:make tar function . All application directories
and files are packaged according to the release file. The release file and the release upgrade script are
also included in the release package.

1.1.9 The Primitive Loader

Unlike the Erlang node, the primitive file loader “knows” how to fetch modules and scripts from its
environment.

The interface to the primitive loader is as follows:

� erl prim loader:start(Id, L, Nodes) -> ok | error starts the primitive loader with the
arguments given in the command line.

� erl prim loader:set path([Dir]) -> ok sets the path given in the boot file. The value of
[Dir] comes from the command fpath, [Dir]g in the start-up script combined with the
command line arguments.

� erl prim loader:get path() -> fok,Pathg returns the Path used by the primitive loader.

� erl prim loader:get file(File) -> fok, FullName, Bing | error loads a file from the
current path. File is either an absolute file name or just the name of the file, for example
lists.beam. FullName is the name of the file if the load succeeds. Bin is the contents of the file
as a binary.

Note:
We assume the primitive loader to be running as long as the Erlang node is up and running. In the
interactive mode, the code server fetches all code through the loader and the
application controller fetches configuration and application files this way.

If an other loader than the one distributed with the system is required, this loader must be
implemented by the user as an external port program. The Loader provided by the user must fulfill a
protocol defined for the erl prim loader, and it will be started by the erl prim loader using the
open port(fspawn,Loaderg,[binary]) function call. Refer to the Reference Manual for more
information.

10 System Principles

1.1: System Principles

1.1.10 File Types

The following file types are defined in Erlang/OTP:

Type File name/Extension Description Manual page which de-
scribes the file syntax

module .erl Erlang code -

application .app Application resource file app(4)

release .rel Release resource file rel(4)

script .script Start script script(4)

boot .boot Binary boot file -

config .config Configuration file - used to
override values in the .app

files

config(4)

application upgrade .appup Application upgrade appup(4)

release upgrade script relup Release upgrade script relup(4)

Table 1.1: File Types

11System Principles

Chapter 1: System Principles

12 System Principles

List of Tables

1.1 File Types . 11

13System Principles

