
Compiler Application (COMPILER)

version 4.0

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Compiler Reference Manual 1

1.1 compile . 2

iiiCompiler Application (COMPILER)

iv Compiler Application (COMPILER)

Compiler Reference Manual

Short Summaries

� Erlang Module compile [page 2] – Erlang Compiler

compile

The following functions are exported:

� file(File)
[page 2] Compile a file

� file(File, Options) -> CompRet
[page 2] Compile a file

� forms(Forms)
[page 3] Compile a list of forms

� forms(Forms, Options) -> CompRet
[page 3] Compile a list of forms

� format error(ErrorDescriptor) -> string()
[page 4] Format an error descriptor

1Compiler Application (COMPILER)

compile Compiler Reference Manual

compile
Erlang Module

This module provides an interface to the standard Erlang compiler. It can generate
either a new file which contains the object code, or return a binary which can be loaded
directly.

Exports

file(File)

Is the same as file(File, [verbose,report errors,report warnings]).

file(File, Options) -> CompRet

Types:

� CompRet = ModRet | BinRet | ErrRet
� ModRet = fok,ModuleNameg | fok,ModuleName,Warningsg
� BinRet = fok,ModuleName,Binaryg | fok,ModuleName,Binary,Warningsg
� ErrRet = error | ferror,Errors,Warningsg

Compiles the code in the file File, which is an Erlang source code file without the .erl
extension. Options determine the behavior of the compiler.

Returns fok,ModuleNameg if successful, or error if there are errors. An object code file
is created if the compilation succeeds with no errors.

As a step in the compilation of Erlang code, erl lint is run, resulting in warning and
error messages, if appropriate. The options relevant to the syntactic and semantic
controls of erl lint are listed in the documentation of the module erl lint.

The elements of Options can be selected as follows:

binary Causes the compiler to return the object code in a binary instead of creating an
object file. If successful, the compiler returns fok,ModuleName,Binaryg

debug info Include debug information in the compiled beam module. Currently, the
only application that uses the debug information is the new xref tool.
Warning: Note that the source code can be reconstructed from the abstract code.
Therefore, never include debug information if you want to keep the source code
secret.

’P’ Produces a listing of the parsed code after preprocessing and parse transforms, in
the file <File>.P. No object file is produced.

’E’ Produces a listing of the code after all source code transformations have been
performed, in the file <File>.E. No object file is produced.

2 Compiler Application (COMPILER)

Compiler Reference Manual compile

’S’ Produces a listing of the assembler code in the file <File>.S. No object file is
produced.

report errors/report warnings Causes errors/warnings to be printed as they occur.

report This is a short form for both report errors and report warnings.

return errors If this flag is set, then ferror,ErrorList,WarningListg is returned
when there are errors.

return warnings If this flag is set, then an extra field containing WarningList is added
to the tuples returned on success.

return This is a short form for both return errors and return warnings.

verbose Causes more verbose information from the compiler describing what it is
doing.

foutdir,Dirg Sets a new directory for the object code. The current directory is used
for output, except when a directory has been specified with this option.

export all Causes all functions in the module to be exported.

fi,Dirg Add Dir to the list of directories to be searched when including a file.

fd,Macrog

fd,Macro,Valueg Defines a macro Macro to have the value Value. The default is
true).

fparse transform,Moduleg Causes the parse transformation function
Module:parse transform/2 to be applied to the parsed code before the code is
checked for errors.

asm The input file is expected to be assembler code (default file suffix “.S”). Note that
the format of assembler files is not documented, and may change between releases
- this option is primarily for internal debugging use.

Note that all the options except the include path can also be given in the file with a
-compile([Option,...]). attribute.

For debugging of the compiler, or for pure curiosity, the intermediate code generated by
each compiler pass can be inspected. A complete list of the options to produce list files
can be printed by typing compile:options() at the Erlang shell prompt. The options
will be printed in order that the passes are executed. If more than one listing option is
used, the one representing the earliest pass takes effect.

Unrecognized options are ignored.

Both WarningList and ErrorList have the following format:

[{FileName,[ErrorInfo]}].

ErrorInfo is described below. The file name has been included here as the compiler
uses the Erlang pre-processor epp, which allows the code to be included in other files.
For this reason, it is important to know to which file an error or warning line number
refers.

forms(Forms)

Is the same as forms(File, [verbose,report errors,report warnings]).

forms(Forms, Options) -> CompRet

Types:

3Compiler Application (COMPILER)

compile Compiler Reference Manual

� Forms = [Form]
� CompRet = ModRet | BinRet | ErrRet
� ModRet = fok,ModuleNameg | fok,ModuleName,Warningsg
� BinRet = fok,ModuleName,Binaryg | fok,ModuleName,Binary,Warningsg
� ErrRet = error | ferror,Errors,Warningsg

Analogous to file/1, but takes a list of forms (in the Erlang abstract format
representation) as first argument. The option binary is implicit; i.e., no object code file
is produced. If the options indicate that a listing file should be produced (e.g., ’E’), the
module name is taken as the file name.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Uses an ErrorDescriptor and returns a string which describes the error. This function
is usually called implicitly when an ErrorInfo structure is processed. See below.

Default compiler options

The (host operating system) environment variable ERL COMPILER OPTIONS can be used
to give default compiler options. Its value must be a valid Erlang term. If the value is a
list, it will be used as is. If it is not a list, it will be put into a list. The list will be
appended to any options given to file/2 or forms/2.

Inlining

The compiler can now do function inlining within an Erlang module. Inlining means
that a call to a function is replaced with the function body with the arguments replaced
with the actual values. The semantics are preserved, except if exceptions are generated
in the inlined code. Exceptions will be reported as occurring in the function the body
was inlined into. Also, function clause exceptions will be converted to similar
case clause exceptions.

When a function is inlined, the original function may be kept as a separate function as
well, because there might still be calls to it. Therefore, inlining almost always increases
code size.

Inlining does not necessarily improve running time, especially if large functions are
inlined. The increased code size may cause the code to run the slower (because of
worse CPU cache performance). Also, inlining may increase Beam stack usage which
will probably be detrimental to performance for recursive functions.

Inlining is never default; it must be explicitly enabled with a compiler option or a
’-compile()’ attribute in the source module.

There are two distinct ways to enable inlining (which may be combined).

The first way is to explicitly list the functions to be inlined at all call places. The syntax
is finline,[fF,Ag,...]g, where F is a function name and A its arity.

Example from an Erlang module:

-compile(finline,[fmkop,3g,fmkop,2g,fline,1g]g).

4 Compiler Application (COMPILER)

Compiler Reference Manual compile

Here the functions mkop/3, mkop/2, and line/1 will be inlined every time they are
used.

This type of unconditional inlining is useful for small, simple functions as an alternative
to macros. The functions mentioned in the example are defined like this:

mkop(L, fOp,Posg, R) -> fop,Pos,Op,L,Rg.
mkop(fOp,Posg, A) -> fop,Pos,Op,Ag.
line(Tup) -> element(2, Tup).

There are other benefits when using explicit inlining instead of macros. The arguments
will only be evaluated once, which can be critical if they contain side effects or are large
computations, and it also makes it easy to have local variables, which is difficult with
macros.

The other type of inlining is conditional inlining. The compiler will search for
candidates suitable for inlining. It does this by calculating a weight for each function.
The weight is roughly proportional to the size of the function. Given the weight for
each function, the compiler will only inline functions lighter than calling function and
below a given threshold value.

To enable conditional inlining, you can use the ’inline’ option, which sets a threshold
value of 10, or you can explicitly give a threshold value like this: finline,Thresholdg.

Example:

-compile(finline,1000g).

A threshold of 1000 would inline most functions (except for extremely large), provided
that the functions are lighter than the functions they are inlined into. It is not clear that
this is a good idea. It all depends on your code.

Warning:
Conditional inlining should be used with caution, since it may actually increase the
execution time and make debugging harder. You should only use it for modules that
are known to be bottle-necks and measure execution times with and without inlining.

Parse Transformations

Parse transformations are used when a programmer wants to use Erlang syntax but with
different semantics. The original Erlang code is then transformed into other Erlang code.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

5Compiler Application (COMPILER)

compile Compiler Reference Manual

See Also

epp, erl id trans, erl lint

6 Compiler Application (COMPILER)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

compile
file/1, 2
file/2, 2
format_error/1, 4
forms/1, 3
forms/2, 3

file/1
compile , 2

file/2
compile , 2

format_error/1
compile , 4

forms/1
compile , 3

forms/2
compile , 3

7Compiler Application (COMPILER)

8 Compiler Application (COMPILER)

