
UNIVERSITY OF TÜBINGEN

WILHELM-SCHICKARD-INSTITUTE
FOR COMPUTER SCIENCE

Department of Computer Architecture

JavaNNS

Java Neural Network Simulator

User Manual, Version 1.0 beta

Igor Fischer, Fabian Hennecke, Andreas Zell

Contents
1. Introduction .. 4

1.1. How to read this manual... 4
2. Licensing and Acknowledgements .. 5

2.1. License Agreement ... 5
2.2. Acknowledgments .. 6

3. Installation.. 8
3.1. Windows Installation.. 8
3.2. Unix Installation ... 8
3.3. Setting up JavaNNS.. 8
3.4. Running JavaNNS .. 9

4. A Quick Tour of JavaNNS... 10
4.1. Starting JavaNNS ... 10
4.2. Loading Files .. 10
4.3. View Network... 10
4.4. Training Network ... 10
4.5. Analyzing Network... 11
4.6. Creating a Network... 11
4.7. Graphical Network Display .. 11
4.8. Training and Validation Pattern Sets.. 12

5. Network Creation and Editing ... 13
5.1. Network View and Display Settings .. 13
5.2. Tools for Creating Networks .. 14
5.3. Editing Units... 15

6. Pattern Management... 16
7. Training and Pruning Networks ... 17
8. Analyzing Networks... 19

8.1. Projection Panel.. 19
8.2. Weights Panel ... 19
8.3. Analyzer.. 20

9. Loading, Saving and Printing... 21

4

d on
rface
qual to
- so we

features
tponed

depen-
 also

 man-

 differ-
vailable

 theory
idea of
s step

ure that
differs
nstall-
ion of
ulation
rence.
1. Introduction
Java Neural Network Simulator (JavaNNS) is a simulator for neural networks developed at the
Wilhelm-Schickard-Institute for Computer Science (WSI) in Tübingen, Germany. It is base
the Stuttgart Neural Network Simulator (SNNS) 4.2 kernel, with a new graphical user inte
written in Java set on top of it. As a consequence, the capabilities of JavaNNS are mostly e
the capabilities of the SNNS, whereas the user interface has been newly designed and -
hope -- become easier and more intuitive to use. Some complex, but not very often used
of the SNNS (e.g. three-dimensional display of neural networks) have been left out or pos
for a later version, whereas some new, like the log panel, have been introduced.

Besides the new user interface, a big advantage of JavaNNS is its increased platform in
dence. Whereas SNNS was developed with primarily Unix workstations in mind, JavaNNS
runs on PCs, provided that the Java Runtime Environment is installed. As of writing of this
ual JavaNNS has been tested on:

• Windows NT
• Windows 2000
• RedHat Linux 6.1
• Solaris 7
with more to follow soon.

1.1. How to read this manual
Because of large similarities between SNNS and JavaNNS, this manual covers only the
ences between the two. It should be read as a companion to the SNNS User Manual, a
from the WSI web site:

 http://www-ra.informatik.uni-tuebingen.de/SNNS/

We suggest that you first read the SNNS Manual, in order to become acquainted with the
of neural networks, the way they are implemented in the SNNS kernel and to get a basic
the SNNS graphical user interface. If you are already familiar with SNNS, you can skip thi
and start directly with this manual.

In the next chapter, you will find the license agreement. Please read it carefully and make s
it is acceptable for you before installing and using JavaNNS. The installation process
slightly for Windows and Unix machines and is described separately for each case. After i
ing, we suggest that you follow our quick tour through the simulator to get the first impress
how it is organized and used. The rest of the manual covers in more detail creating, manip
and analyzing neural networks. You can skim it in the first reading and use it later as a refe

5

es the
NNS
ity of

nary.

aNNS
re or
ns as
o send
rs may

copies

 WAR-

grams
y be
 such

rk con-
e is

eive
h
tices

ipients

n
te
r
ove-
e

lso

 the
but-

ressly
ibute
NNS
ies,
arties
2. Licensing and Acknowledgements
JavaNNS is Copyright (c) 1996-2001 JavaNNS Group, Wilhelm-Schickard-Institute for Com-
puter Science (WSI), University of Tübingen, Sand 1, 72076 Tübingen, Germany. It us
kernel of SNNS (Stuttgart Neural Network Simulator), which is Copyright (c) 1990-95 S
Group, Institute for Parallel and Distributed High-Performance Systems (IPVR), Univers
Stuttgart, Breitwiesenstrasse 20-22, 70565 Stuttgart, Germany.

Currently, JavaNNS is distributed by the University of Tübingen and only as a bi
Although it is distributed free of charge, please note that it is NOT PUBLIC DOMAIN.

The JavaNNS License is gives you the freedom to give away verbatim copies of the Jav
distribution (which include the license). We do not allow modified copies of our softwa
software derived from it to be distributed. You may, however, distribute your modificatio
separate files along with our unmodified JavaNNS software. We encourage users t
changes and improvements which would benefit many other users to us so that all use
receive these improvements in a later version. The restriction not to distribute modified
is also useful to prevent bug reports from someone else's modifications.

For our protection, we want to make certain that everyone understands that there is NO
RANTY OF ANY KIND for the JavaNNS software.

2.1. License Agreement
1. This License Agreement applies to the JavaNNS program and all accompanying pro

and files that are distributed with a notice placed by the copyright holder saying it ma
distributed under the terms of the JavaNNS License. 'JavaNNS', below, refers to any
program or work, and a 'work based on JavaNNS' means either JavaNNS or any wo
taining JavaNNS or a portion of it, either verbatim or with modifications. Each license
addressed as 'you'.

2. You may copy and distribute verbatim copies of the JavaNNS distribution as you rec
it, in any medium, provided that you conspicuously and appropriately publish on eac
copy an appropriate copyright notice and disclaimer of warranty, keep intact all the no
that refer to this License and to the absence of any warranty, and give any other rec
of JavaNNS a copy of this license along with JavaNNS.

3. You may modify your copy or copies of JavaNNS or any portion of it only for your ow
use. You may not distribute modified copies of JavaNNS. You may, however, distribu
your modifications as separate files (e.,g. new network or pattern files) along with ou
unmodified JavaNNS software. We also encourage users to send changes and impr
ments which would benefit many other users to us so that all users may receive thes
improvements in a later version. The restriction not to distribute modified copies is a
useful to prevent bug reports from someone else's modifications.

4. If you distribute copies of JavaNNS you may not charge anything except the cost for
media and a fair estimate of the costs of computer time or network time directly attri
able to the copying.

5. You may not copy, modify, sublicense, distribute or transfer JavaNNS except as exp
provided under this License. Any attempt otherwise to copy, modify, sublicense, distr
or transfer JavaNNS is void, and will automatically terminate your rights to use Java
under this License. However, parties who have received copies, or rights to use cop
from you under this License will not have their licenses terminated so long as such p
remain in full compliance.

6

came
isor for
NS, Jav-
MB in
ter and
 com-

er in
6. By copying, distributing or modifying JavaNNS (or any work based on javaNNS) you indi-
cate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute JavaNNS (or any work based on JavaNNS), the recipient automat-
ically receives a license from the original licensor to copy, distribute or modify JavaNNS sub-
ject to these terms and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein.

8. Because JavaNNS is licensed free of charge, there is no warranty for it, to the extent permitted
by applicable law. The copyright holders and/or other parties provide JavaNNS ’as is’ without
warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to the
quality and performance of JavaNNS is with you. Should the program prove defective, you
assume the cost of all necessary servicing, repair or correction.

9. In no event will any copyright holder, or any other party who may redistribute JavaNNS as
permitted above, be liable to you for damages, including any general, special, incidental or
consequential damages arising out of the use or inability to use JavaNNS (including but not
limited to loss of data or data being rendered inaccurate or losses sustained by you or third
parties or a failure of JavaNNS to operate with any other programs), even if such holder or
other party has been advised of the possibility of such damages.

2.2. Acknowledgments
JavaNNS is a joint effort of a large number of people, computer science students, research assis-
tants as well as faculty members at the Institute for Parallel and Distributed High Performance
Systems (IPVR) at University of Stuttgart, the Wilhelm Schickard Institute of Computer Science
at the University of Tübingen, and the European Particle Research Lab CERN in Geneva.

The project to develop an efficient and portable neural network simulator which later be
SNNS was lead since 1989 by Dr. Andreas Zell, who designed SNNS and acted as adv
more than two dozen independent research and Master's thesis projects that made up SN
aNNS and some of its applications. Over time the source grew to a total size of now 5
160.000+ lines of code. Research began under the supervision of Prof. Dr. Andreas Reu
Prof. Dr. Paul Levi. We are grateful for their support and for providing us with the necessary
puter and network equipment.

The following persons were directly involved in the SNNS project. They are listed in the ord
which they joined the SNNS team.

Table 1: SNNS and JavaNNS project members

Andreas Zell Design of the SNNS simulator, SNNS project team leader.

Niels Mache SNNS simulator kernel (really the heart of SNNS), parallel
SNNS kernel on MasPar MP-1216.

Tilman Sommer original version of the graphical user interface XGUI with
integrated network editor, PostScript printing.

Ralf Hübner SNNS simulator 3D graphical user interface, user interface
development (version 2.0 to 3.0).

7

-
t-

e

s-
There are a number of important external contributions by: Martin Reczko, Martin Riedmiller
Mark Seemann, Marcus Ritt, Jamie DeCoster Jochen Biedermann, Joachim Danz, Christian
Wehrfritz Randolf Werner, Michael Berthold and Bruno Orsier.

Thomas Korb SNNS network compiler and network description language
Nessus.

Michael Vogt Radial Basis Functions. Together with Günter Mamier imple
mentation of Time Delay Networks. Definition of the new pa
tern format.

Günter Mamier SNNS visualization and analyzing tools. Implementation of
the batch execution capability. Together with Michael Vogt
implementation of the new pattern handling. Compilation and
continuous update of the user manual. Maintenance of the ftp
server. Bugfixes and installation of external contributions.

Michael Schmalzl SNNS network creation tool Bignet, implementation of Cas-
cade Correlation, and printed character recognition with
SNNS.

Kai-Uwe Herrmann ART models ART1, ART2, ARTMAP and modification of the
BigNet tool.

Artemis Hatzigeorgiou documentation about the SNNS project, learning procedur
Backpercolation 1.

Dietmar Posselt ANSI-C translation of SNNS.

Sven Döring ANSI-C translation of SNNS and source code maintenance.
Implementation of distributed kernel for workstation clusters.

Tobias Soyez Jordan and Elman networks, implementation of the network
analyzer.

Tobias Schreiner Network pruning algorithms.

Bernward Kett Redesign of C-code generator snns2c.

Jens Wieland Design and implementation of batchman.

Jürgen Gatter Implementation of TACOMA and some modifications of Ca
cade Correlation.

Igor Fischer Java user interface design and development.

Fabian Hennecke Java user interface development.

Table 1: SNNS and JavaNNS project members

8

3. Installation
To be able to use JavaNNS, you have to have Java Runtime Environment (or JDK, which contains
it) installed. JavaNNS has been tested to work with Java 1.2.2, but we recommend Java 1.3 for
better performance and appearance.

The installation process differs slightly for Windows and Unix machines, therefore we describe it
separately.

3.1. Windows Installation
JavaNNS is distributed as the zip file JavaNNS-Win.zip. Unzip the file into a folder of your
choice. You should get:

1. JavaNNS.jar - the Java archive file containing the JavaNNS user interface classes
2. SNNS_jkr.dll - the SNNS kernel shared library
3. JavaNNSini.html - JavaNNS initialization file
4. JavaNNS.bat - batch file for starting the JavaNNS
5. examples - folder with example networks, patterns etc.
6. manual - folder containing this manual
In order to make JavaNNS functional, make sure that the kernel library SNNS_jkr.dll is placed in
your path. There are two ways of doing it:

1. Moving the file into a folder that is already in the path (e.g. Windows\system32; or
2. Setting the Path system variable through the Control Panel to point to the JavaNNS folder.

3.2. Unix Installation
JavaNNS is distributed in gzipped tar archives for different operating systems, like JavaNNS-
LinuxIntel.tar.gz and JavaNNS-Solaris.tar.gz. Unpack the archive into a directory of your choice.
You should get:

1. JavaNNS.jar - the Java archive file containing the JavaNNS user interface classes
2. libSNNS_jkr.so - the SNNS kernel shared library
3. JavaNNSini.html - JavaNNS initialization file
4. examples - directory with example networks, patterns etc.
5. manual - directory containing this manual
In order to make JavaNNS functional, make sure that the kernel library (libSNNS_jkr.so) is
placed in your library path. There are two ways of doing it:

1. Moving the file into a directory that is already in the library path. You can check the
LD_LIBRARY_PATH environment variable to see the directories in the path; or

2. Setting the LD_LIBRARY_PATH environment variable, e.g.
setenv LD_LIBRARY_PATH mylibrarypath

3.3. Setting up JavaNNS
Settings for JavaNNS are stored in the initialization file:

JavaNNSini.html

9

h the

-man-
” is

is vari-
s a Web
 the
s (i.e.

corre-

S.bat
located in the same directory (folder) as other JavaNNS files. It is a HTML file, containing
only HTML links. It’s structure is simple: each link represents a JavaNNS variable, wit
HREF part representing the variable value, and the text its name. For example, the link

<a href=
 "file:///JNNS/manual/JavaNNS-manual.html">User Manual URL

states that the HTML version of the user manual is to be found in the file JavaNNS
ual.html, placed in the directory (folder) JNNS/manual. In this link, “User Manual URL
the variable name, and “file:///JNNS/manual/JavaNNS-manual.html” its value.

You can use an ordinary text editor for editing JavaNNSini.html.

In order to be able to access the manual from JavaNNS, you should set the value of th
able according to the path where you installed JavaNNS. Also, because JavaNNS use
browser for displaying help, you should set the variable “Browser name” to point to
browser you wish to use. Use naming conventions common for your operating system
normal slash (/) for Unix and backslash (\) for Windows) to specify the path.

You can also set the initial width and height of the JavaNNS screen by adjusting the
sponding variables.

3.4. Running JavaNNS
That’s all! Now you can start JavaNNS by typing:

java -jar JavaNNS.jar

from the command prompt. If you are running Windows, you can also click the JavaNN
batch file from Windows Explorer.

10
4. A Quick Tour of JavaNNS
JavaNNS is a simulator for artificial neural networks, i.e. computational models inspired by bio-
logical neural networks. It enables you to use predefined networks or create your own, to train and
to analyze them. If any of these terms is unknown to you, please refer to a book about neural net-
works or to the SNNS User Manual - this manual describes only the usage of JavaNNS.

4.1. Starting JavaNNS
To begin the tour, let’s start JavaNNS, as described in "Installing": type java -jar JavaNNS.jar or,
if using Windows, click the JavaNNS.bat file. After starting the program, its main window opens.
As we have started the program no parameters in the command line, the window is empty, con-
taining only the usual menu bar. Also, no network files have been loaded.

4.2. Loading Files
Use File/Open menu to open an example file: navigate to the examples directory and open the
files xor_untrained.net, and xor.pat - a simple network and a corresponding pattern file.

4.3. View Network
The main window still remains empty, so choose View/Network to display the network. You
should see a new window appearing, schematically showing a network, consisting of 4 units (neu-
rons) and links between them, in its main part. Neurons and links have different colors, represent-
ing different values of unit activations and link weights. The colored bar on the left edge of the
window shows which color corresponds to which value and can be used as reminder. The colors -
and appearance in general - can be adjusted through View/Display Settings, which corresponds to
the Display/Setup window in SNNS.

4.4. Training Network
Let us now train the network - reprogram its weights, so that it gives the desired output when pre-
sented an input pattern. For that purpose, open the Control Panel in the Tools menu. The Control
Panel is, as in the SNNS, the most important window in the simulator, because almost all modifi-
cations and manipulations of the network are done through it. We shall also open the Error Graph
window, in order to watch the training progress. Finally, to receive some textual and numerical
information, we can open the Log window. Both are accessible through the View menu.

A sample screen shot with the windows open is shown in Figure 1.

The Control Panel is, contrary to the one in SNNS, divided into six tabs, each containing controls
for specific purpose. For this introduction, let us switch directly to the learning tab. Here, the user
can choose the learning function, set its parameters, number of learning cycles and update steps
and finally perform network initialization and learning. The classic Backpropagation (equals
Std_Backpropagation in SNNS) is the default learning function. As you can see, for each learning
function default parameters are provided.

Learning is performed by pressing one of the buttons: "Learn current" which performs training
with the currently selected pattern, and "Learn all", which trains the network with all patterns
from the pattern set. During learning, the error graph displays the error curve - the type of error to
be drawn is set on the left edge of the window. The error is also written into the log window.

11
4.5. Analyzing Network
For analyzing the network and its performance, tools like Analyzer (in the Tools menu) and
Projection (in the View menu), already familiar to SNNS users, can be used. For Projection,
two input units and a hidden or output unit have to be selected in order for the menu item to
become enabled. The Projection Panel than displays the activation of the hidden or output unit
as a function of the two inputs. The activation is represented by color, so a colored rectangle is
obtained. Analyzer is used to show output or activation of a unit as a function of other unit’s
activation or of the input pattern. Its usage is similar to the Analyze panel in the SNNS.

4.6. Creating a Network
Now let’s create a network of our own. Choose File/New to remove the current network from
the simulator. Then, choose Create/Layers from the Tools menu. A window resembling the
Bignet tool of SNNS appears. Choose width and height "1", unit type "Input" and click "Cre-
ate" to create a new layer. For the next layer, set height to five and the unit type to "Hidden"
and click "Create" again. Finally, create the output layer with the height of one and unit type
"Output" and close the window. To connect the created units, use Create/Connections from the
Tools menu. Simply choose "Connect feed-forward" and click "Connect". Doing that, you
have created a simple feed-forward neural network, with one input, five hidden and one output
unit. You can now close the Connections window, too.

4.7. Graphical Network Display
You can arrange units on the display manually, by clicking and dragging them with the mouse.
In fact, clicking a unit selects it, and dragging moves all selected units. To deselect a unit,
press the CTRL-Key on the keyboard and click it while still holding the key pressed. Using

Figure 1: JavaNNS with XOR network, error graph, control and log panel

12
View/View Settings, tab Units and Links, you can choose what to display above and under each
unit. Make sure that "Name" is selected as top label. Since the units have just been created, they
are all called "noName". To change the names, choose "Names" from the Edit menu. The top
labels turn to text fields. Use the mouse to place the caret into each one and enter some names.
After you have finished, press "Enter" or click in an empty are of the display to turn the text fields
to labels again.

4.8. Training and Validation Pattern Sets
To see how two pattern sets can be used for training and validation, load two pattern sets from
"examples" directory: trainMAP.pat and validMAP.pat. In the Control Panel, tab "Patterns", select
trainMap as the training set and validMAP as the validation set. Switch back to the "Learning" tab
and train the network. During training two curves are displayed in the Error Graph: one, who’s
color depends on the number of already displayed curves and which represents the error of the
training set, and the other, pink one, which represents the error of the validation set. The valida-
tion set is normally used to avoid overtraining of a network. For more information refer to the
SNNS User Manual and other neural networks literature.

13
5. Network Creation and Editing

5.1. Network View and Display Settings
Although not necessary, it is
recommended that a network
view is open when creating and
editing networks. Network
view is opened through View/
Network menu. The network
view displays a visual repre-
sentation of the network, which
comprises of units and connec-
tions (links) between them.
Units are drawn as colored
squares with 16 pixels side
length, and connections as col-
ored lines. For both units and
links the color represents a
value: activation for units and
weight for links. The colored
bar on the left edge of the net-
work view serves as a quick reminder for color-to-value correspondence. (Figure 2)

Units are placed along an invisible grid in the network view. Optionally, above and below each
unit diverse unit properties can be displayed. Which ones, as well as grid size, chroma coding
for units and links and some more data are set in the Display Settings panel, accessible from
the View menu. This panel corresponds to the Display/Setup panel in SNNS.

Display Settings comprise of two tabs: General and
Units&Links (or SOM for Kohonen tool). In tab
General, grid size (in pixels), subnet number and
chroma codes for different values can be set. In
Units&Links, the user can set which properties, like
name, unit activation etc. are to be shown above
(Top label) and below (Base label) of each unit.
Also, the user can decide if the connections are to be
shown, if their weights are to be displayed numeri-
cally and if the direction arrows should be drawn.
Sliders "Maximum expected value" and "Maximum
expected weight" control the chroma coding for
units and links, since they determine which value
corresponds to the full color, as set in the "General"
tab. Minimum values are simply taken to be nega-
tives of the maximums, and for values between the
color is interpolated. The Slider "Weakest visible
link" is self-explanatory and helps keeping the net-
work view more comprehensible.

Figure 2: Network view

Figure 3: Display Settings - General

14
Since more than one network view can be open at the
same time, Display Settings refer to the currently
selected one.

5.2. Tools for Creating Networks
Networks are created using two tools from the "Tools"
menu, both from the "Create" submenu: "Layers" and
"Connections". They together correspond to the "Big-
net" tool in SNNS.

In JavaNNS layer has a different meaning as in the
SNNS. In JavaNNS, layer corresponds to a physical
layer of units that is being created. When creating lay-
ers, width and height determine the number of units in
horizontal and vertical direction for the layer. Top left
position is updated automatically, but can also be
entered manually, and controls the layer’s position in the
display area. For all the data - width, height and coordi-
nates of the top left position - the measuring unit is "grid
size unit", which is set in the View/Display Settings panel.

In "Unit detail" segment of the window, the unit type (e.g. Input or Hidden), activation function of
the units (Logistic by default), output function of the units (Identity by default), the layer number
and the subnet number are set.

The "Connections" window provides for creating links
(connections) between units. Three different ways are pos-
sible for creating links: by manually selecting units to con-
nect ("Connect selected units"), by automatically
connecting the whole network in a feed-forward style
("Connect feed-forward") and by interconnecting those in
the same layer (Auto-associative). In case of feed-forward
networks, shortcut connections (links connecting units
form non-adjacent layers) can optionally be created. For
auto-associative networks, self-connections (feedback
connections from the output to the input of a same unit)
can be allowed.

Except for automatic generation of feed-forward connec-
tions, the user has to select units to be connected. Units are selected using the mouse, either by
clicking each unit, or by clicking the mouse and dragging a rectangle around units to be selected.
Units are deselected by clicking them while holding the CTRL key pressed. A simple click in an
empty area in a network view deselects all units.

Figure 4: Display Settings - Units and
Links

Figure 5: Create Layers tool

15
Connecting selected units is a two-step process. In the first step,
the user selects units where the connections are to originate
(source units) and presses the button "Mark selected units as
source". In the second step, the user selects the receiving units
(targets) and presses the button, which is now labeled "Connect
source with selected units". For auto-associative connections it
suffices to select the desired units and press the "Connect
selected units" button.

Selected units can be dragged with the mouse in order to
change their positions.

5.3. Editing Units
Existing units can be edited by selecting them and then choos-
ing Unit Properties from the Edit menu or Edit Units in the con-
text-sensitive menu, which is accessed by pressing the right
mouse button while over a unit. An extra window appears, displaying all editable unit proper-
ties, like name, type, activation etc. This method allows only for setting the same values for all
selected units. Alternatively, the user can edit values displayed as top and base labels of each
unit individually. For that purpose, the user has to choose from the Edit menu which property
he or she wants to edit. The labels displaying the property turn to entry fields, which can now
be edited. The fields are selected by the mouse and can be traversed by pressing the Tab key.
Pressing Enter accepts changes and turns the fields back to labels.

Changing activation values of units is useful if patterns are created manually.

Figure 6: Create Links tool

16
6. Pattern Management
Like in SNNS, patterns are organized in pattern
sets, which are stored as text files. They can be
loaded using the Open option and saved using
"Save data" (not Save!) from the File menu.
Further manipulation is primarily performed
from the Control Panel (accessible from the
Tools menu), in the "Patterns" tab. Some sim-
ple manipulations (adding, modifying, delet-
ing) can be also performed from the Patterns
menu in the main menu bar.

In the Control Panel, a pattern remapping func-
tion and its parameters can be selected. The
two combo boxes - Training set and Validation
set - are used for selecting the active training and validation set, respectively. Also, when new pat-
tern sets are created (by pressing the second button next to each of the combo boxes), the corre-
sponding combo box becomes editable, so that the new pattern set can be given a name. The other
button, adjacent to the combo box, deletes the current pattern set from the memory.

Near the right edge of the panel, in the pre-last row, three more buttons serve for modifying the
current pattern set. Their function, from left to right, is: add, copy and delete pattern. Add creates
a new pattern from current input and output unit activations and adds it to the current pattern set.
Copy creates a new pattern, which is a verbatim copy of the currently selected one, and adds it to
the pattern set. Finally, the delete button deletes the currently selected pattern.

The current pattern is identified by its ordinal number in the pattern set. This number is displayed
in a text field between arrow buttons in the bottom right corner of the panel. The arrow buttons
provide for navigating through the patterns in the currently selected set.

Some patterns can contain subpatterns of variable length. In that case, the tab "Subpatterns" is
enabled and provides for defining size and shape of subpatterns, as well as for navigating through
them. This corresponds to the Subpattern window in SNNS.

Propagating patterns through the network is done in the Update tab of the Control Panel. Same
navigational controls are provided as in the Patterns tab. Besides, the button between the arrows
propagates the current pattern through the network.

The same panel is also used for selecting the updating function and its parameters to be used in
training.

Figure 7: Control Panel - Patterns

17
7. Training and Pruning Networks
Training is also performed through the
Control Panel. In the Initializing tab, an ini-
tialization function and its parameters can
be set. The Init button (also available in the
Learning tab) performs the initialization.

Under the Learning tab, the user can choose
the learning function, set its parameters,
number of learning cycles and update steps
and finally perform network initialization
and learning. The classic Backpropagation
(equals Std_Backpropagation in SNNS) is
the default learning function. For each
learning function default parameters are
provided.

The "Learn current" button performs train-
ing with the currently selected pattern and
"Learn all" with all patterns from the pat-
tern set. In order to monitor learning
progress, it is useful to open the Error
Graph and/or Log window, both available
from the View menu. During learning, the
error graph displays the error curve. The
type of the error to be drawn is set through
the middle button located on the left edge
of the window. The arrow buttons near the
axes are used for scaling. The two buttons
in the left bottom corner clear the error
graph and toggle grid, respectively.

During training, the error is also written into the log window. Also, many other useful infor-
mation about the network are written there on diverse occasions. The log window corresponds
roughly to the command shell window from which SNNS is started in a Unix system.

Options and controls for pruning networks
are found under the Pruning tab in the Con-
trol Panel. Its contents corresponds mostly
to the Pruning window in SNNS. However,
contrary to the SNNS, the user does not
have to set the learning function to Pruning-
FeedForward. In JavaNNS it is done auto-
matically and transparently for him/her.
The learning function, as set under the
Learning tab, as well as number of cycles,
correspond to the data entered in "General
parameters for Training" section of the
SNNS’ Pruning window. In JavaNNS, prun-
ing is performed by pressing the Prune button.

Figure 8: Control Panel - Init

Figure 9: Control Panel - Learning

Figure 10: Control Panel - Pruning

18
Cascade correlation and TACOMA learning are the only
exceptions to the concept of the Control Panel being the
central place for manipulating networks. Because of the
large number of parameters needed by the two learning
methods, a separate window, accessible from the Tools
menu is used. Contrary to SNNS, where parameters for
cascade correlation and TACOMA are dispersed between
the Control Panel and the Cascade window, in JavaNNS the
Cascade window alone covers all data and parameters
needed for applying the two learning algorithms.

The window is divided into six tabs. Tabs "General",
"Modification" and "Learn" cover the parameters set in
SNNS in the section "General Parameters for Cascade" of
the Cascade window. Under the "Lear" tab of the JavaNNS
Cascade window, the learning function, together with its
parameters and the maximal number of cascades (hidden
units generated during learning) are set. The "Init" tab is
introduced for convenience and provides for initializing
network. Tabs "Candidates" and "Output" correspond to
"Parameters for Candidate Units" and "Parameters for Out-
put Units" sections in the SNNS window. The default
learning method invoked from the window is cascade cor-
relation, TACOMA can be set as a modification under the
corresponding tab.

Figure 11: Cascade Correlation and
TACOMA - General

Figure 12: Cascade Correlation and
TACOMA - Learning

19
8. Analyzing Networks
Weights and Projection panels, accessible
through the View menu, and Analyzer, accessi-
ble from the Tools menu, can be used for get-
ting insight into a network. All the panels
correspond to their SNNS counterparts and
differ only in appearance.

8.1. Projection Panel
The Projection panel shows activation of a hid-
den or output unit as a function of activations
of two input units. The panel can only be
opened when the three units are selected in a
network view. The activations of the input
units are drawn on the x- and y-axis, while cor-
responding activations of the output unit are
represented by different pixel colors. For the
chroma coding, the same values as for the network view apply.

Arrows at the panel edges are used for moving
the projection window in the input space. The
two buttons on in the top left corner are used
for zooming, and the buttons in the bottom left
corner for adjusting the view resolution. Zoom-
ing can also be performed manually, by drag-
ging a rectangle in the projection area.

8.2. Weights Panel
The Weights panel presents link weights as col-
ored rectangles. The x-axis is used for source
units and the y-axis for the target units of the
links. The two buttons at the panel bottom are
used for toggling grid and for auto zoom for
optimal display. As in the projection panel,
zooming can be performed manually.

Figure 13: Projection panel

Figure 14: Weights panel

20
8.3. Analyzer
The Analyzer is used to show output or activation of a
unit as a function of other unit’s activation or of the
input pattern. Its usage is similar to the Analyze panel
in the SNNS. The control buttons are also familiar
and have the same function as in the Error Graph,
Projection and Weights panel.

Figure 15: Analyzer panel

21
9. Loading, Saving and Printing
File loading, saving and printing of
results is performed through the
File menu. Whereas "Open" can be
used for loading any type of file
(network, pattern, text...), "Save",
as well as "Save as" are used only
for saving the current network.
Other file types are saved through
"Save data", by choosing the appro-
priate file type in the combo box at
the bottom of the dialog window.
For result files, additional options
(start and end pattern, inclusion of
input and output files and file cre-
ation mode) like in SNNS can be
set.

When choosing files for loading in the file dialog window it is possible to select multiple files,
even of different types. That way, the user can load a network, configuration and multiple pat-
tern files in only one step. (This currently doesn’t work in the Linux implementation)

Print always refers to the currently active window. Therefore, anything that can be displayed
in JavaNNS can also be printed by making the desired window active (i.e. clicking it with the
mouse) and choosing "Print" from the File menu.

Figure 16: File Save dialog

	JavaNNS
	Contents
	1. Introduction
	1.1. How to read this manual

	2. Licensing and Acknowledgements
	2.1. License Agreement
	2.2. Acknowledgments

	3. Installation
	3.1. Windows Installation
	3.2. Unix Installation
	3.3. Setting up JavaNNS
	3.4. Running JavaNNS

	4. A Quick Tour of JavaNNS
	4.1. Starting JavaNNS
	4.2. Loading Files
	4.3. View Network
	4.4. Training Network
	4.5. Analyzing Network
	4.6. Creating a Network
	4.7. Graphical Network Display
	4.8. Training and Validation Pattern Sets

	5. Network Creation and Editing
	5.1. Network View and Display Settings
	5.2. Tools for Creating Networks
	5.3. Editing Units

	6. Pattern Management
	7. Training and Pruning Networks
	8. Analyzing Networks
	8.1. Projection Panel
	8.2. Weights Panel
	8.3. Analyzer

	9. Loading, Saving and Printing

